Science.gov

Sample records for high radiation levels

  1. Effects of high vs low-level radiation exposure

    SciTech Connect

    Bond, V.P.

    1983-01-01

    In order to appreciate adequately the various possible effects of radiation, particularly from high-level vs low-level radiation exposure (HLRE, vs LLRE), it is necessary to understand the substantial differences between (a) exposure as used in exposure-incidence curves, which are always initially linear and without threshold, and (b) dose as used in dose-response curves, which always have a threshold, above which the function is curvilinear with increasing slope. The differences are discussed first in terms of generally familiar nonradiation situations involving dose vs exposure, and then specifically in terms of exposure to radiation, vs a dose of radiation. Examples are given of relevant biomedical findings illustrating that, while dose can be used with HLRE, it is inappropriate and misleading the LLRE where exposure is the conceptually correct measure of the amount of radiation involved.

  2. Radiative Lifetimes for High Levels of Neutral Fe

    NASA Astrophysics Data System (ADS)

    Lawler, James E.; Den Hartog, E.; Guzman, A.

    2013-01-01

    New radiative lifetime measurements for ~ 50 high lying levels of Fe I are reported. Laboratory astrophysics faces a challenge to provide basic spectroscopic data, especially reliable atomic transition probabilities, in the IR region for abundance studies. The availability of HgCdTe (HAWAII) detector arrays has opened IR spectral regions for extensive new spectroscopic studies. The SDSS III APOGEE project in the H-Band is an important example which will penetrate the dust obscuring the Galactic bulge. APOGEE will survey elemental abundances of 100,000 red giant stars in the bulge, bar, disk, and halo of the Milky Way. Many stellar spectra in the H-Band are, as expected, dominated by transitions of Fe I. Most of these IR transitions connect high levels of Fe. Our program has started an effort to meet this challenge with new radiative lifetime measurements on high lying levels of Fe I using time resolved laser induced fluorescence (TRLIF). The TRLIF method is typically accurate to 5% and is efficient. Our goal is to combine these accurate, absolute radiative lifetimes with emission branching fractions [1] to determine log(gf) values of the highest quality for Fe I lines in the UV, visible, and IR. This method was used very successfully by O’Brian et al. [2] on lower levels of Fe I. This method is still the best available for all but very simple spectra for which ab-initio theory is more accurate. Supported by NSF grant AST-0907732. [1] Branching fractions are being measured by M. Ruffoni and J. C. Pickering at Imperial College London. [2] O'Brian, T. R., Wickliffe, M. E., Lawler, J. E., Whaling, W., & Brault, J. W. 1991, J. Opt. Soc. Am. B 8, 1185

  3. Radiation properties and emissivity parameterization of high level thin clouds

    NASA Technical Reports Server (NTRS)

    Wu, M.-L. C.

    1984-01-01

    To parameterize emissivity of clouds at 11 microns, a study has been made in an effort to understand the radiation field of thin clouds. The contributions to the intensity and flux from different sources and through different physical processes are calculated by using the method of successive orders of scattering. The effective emissivity of thin clouds is decomposed into the effective absorption emissivity, effective scattering emissivity, and effective reflection emissivity. The effective absorption emissivity depends on the absorption and emission of the cloud; it is parameterized in terms of optical thickness. The effective scattering emissivity depends on the scattering properties of the cloud; it is parameterized in terms of optical thickness and single scattering albedo. The effective reflection emissivity follows the similarity relation as in the near infrared cases. This is parameterized in terms of the similarity parameter and optical thickness, as well as the temperature difference between the cloud and ground.

  4. Increased Artemis levels confer radioresistance to both high and low LET radiation exposures.

    PubMed

    Sridharan, Deepa M; Whalen, Mary K; Almendrala, Donna; Cucinotta, Francis A; Kawahara, Misako; Yannone, Steven M; Pluth, Janice M

    2012-06-19

    Artemis has a defined role in V(D)J recombination and has been implicated in the repair of radiation induced double-strand breaks. However the exact function(s) of Artemis in DNA repair and its preferred substrate(s) in vivo remain undefined. Our previous work suggests that Artemis is important for the repair of complex DNA damage like that inflicted by high Linear Energy Transfer (LET) radiation. To establish the contribution of Artemis in repairing DNA damage caused by various radiation qualities, we evaluated the effect of over-expressing Artemis on cell survival, DNA repair, and cell cycle arrest after exposure to high and low LET radiation. Our data reveal that Artemis over-expression confers marked radioprotection against both types of radiation, although the radioprotective effect was greater following high LET radiation. Inhibitor studies reveal that the radioprotection imparted by Artemis is primarily dependent on DNA-PK activity, and to a lesser extent on ATM kinase activity. Together, these data suggest a DNA-PK dependent role for Artemis in the repair of complex DNA damage. These findings indicate that Artemis levels significantly influence radiation toxicity in human cells and suggest that Artemis inhibition could be a practical target for adjuvant cancer therapies.

  5. Increased Artemis levels confer radioresistance to both high and low LET radiation exposures

    PubMed Central

    2012-01-01

    Background Artemis has a defined role in V(D)J recombination and has been implicated in the repair of radiation induced double-strand breaks. However the exact function(s) of Artemis in DNA repair and its preferred substrate(s) in vivo remain undefined. Our previous work suggests that Artemis is important for the repair of complex DNA damage like that inflicted by high Linear Energy Transfer (LET) radiation. To establish the contribution of Artemis in repairing DNA damage caused by various radiation qualities, we evaluated the effect of over-expressing Artemis on cell survival, DNA repair, and cell cycle arrest after exposure to high and low LET radiation. Results Our data reveal that Artemis over-expression confers marked radioprotection against both types of radiation, although the radioprotective effect was greater following high LET radiation. Inhibitor studies reveal that the radioprotection imparted by Artemis is primarily dependent on DNA-PK activity, and to a lesser extent on ATM kinase activity. Together, these data suggest a DNA-PK dependent role for Artemis in the repair of complex DNA damage. Conclusions These findings indicate that Artemis levels significantly influence radiation toxicity in human cells and suggest that Artemis inhibition could be a practical target for adjuvant cancer therapies. PMID:22713703

  6. Radiation doses in alternative commercial high-level waste management systems

    SciTech Connect

    Schneider, K.J.; Pelto, P.J.; Lavender, J.C.; Daling, P.M.; Fecht, B.A.

    1986-01-01

    In the commercial high-level waste management system, potential changes are being considered that will augment the benefits of an integral monitored retrievable storage (MRS) facility. The US Department of Energy (DOE) has recognized that alternative options could be implemented in the authorized waste management system (i.e., without an integral MRS facility) to potentially achieve some of the same beneficial effects of the integral MRS system. This paper summarizes those DOE-sponsored analyses related to radiation doses resulting from changes in the waste management system. This report presents generic analyses of aggregated radiation dose impacts to the public and occupational workers, of nine postulated changes in the operation of a spent-fuel management system without an MRS facility.

  7. Radioactivity levels in the mostly local foodstuff consumed by residents of the high level natural radiation areas of Ramsar, Iran.

    PubMed

    Fathabadi, Nasrin; Salehi, Ali Akbar; Naddafi, Kazem; Kardan, Mohammad Reza; Yunesian, Masud; Nodehi, Ramin Nabizadeh; Deevband, Mohammad Reza; Shooshtari, Molood Gooniband; Hosseini, Saeedeh Sadat; Karimi, Mahtab

    2017-04-01

    Among High Level Natural Radiation Areas (HLNRAs) all over the world, the northern coastal city of Ramsar has been considered enormously important. Many studies have measured environmental radioactivity in Ramsar, however, no survey has been undertaken to measure concentrations in the diets of residents. This study determined the (226)Ra activity concentration in the daily diet of people of Ramsar. The samples were chosen from both normal and high level natural radiation areas and based on the daily consumption patterns of residents. About 150 different samples, which all are local and have the highest consumption, were collected during the four seasons. In these samples, after washing and drying and pretreatment, the radionuclide was determined by α-spectrometry. The mean radioactivity concentration of (226)Ra ranged between 5 ± 1 mBq kg(-1) wet weight (chino and meat) to 725 ± 480 mBq kg(-1) for tea dry leaves. The (226)Ra activity concentrations compared with the reference values of UNSCEAR appear to be higher in leafy vegetables, milk and meat product. Of the total daily dietary (226)Ra exposure for adults in Ramsar, the largest percentage was from eggs. The residents consuming eggs from household chickens may receive an elevated dose in the diet.

  8. Theoretical and experimental investigation of high-level radiation sources used to model a heat input

    NASA Astrophysics Data System (ADS)

    Gradov, V. M.; Petrikevich, B. B.; Shcherbakov, A. A.

    1980-03-01

    This paper examines high-intensity xenon-filled radiation sources for heat load simulation. A mathematical model of the discharge is proposed, and results of a theoretical and an experimental investigation are presented.

  9. Radiation dose due to radon and thoron progeny inhalation in high-level natural radiation areas of Kerala, India.

    PubMed

    Omori, Yasutaka; Tokonami, Shinji; Sahoo, Sarata Kumar; Ishikawa, Tetsuo; Sorimachi, Atsuyuki; Hosoda, Masahiro; Kudo, Hiromi; Pornnumpa, Chanis; Nair, Raghu Ram K; Jayalekshmi, Padmavaty Amma; Sebastian, Paul; Akiba, Suminori

    2017-03-20

    In order to evaluate internal exposure to radon and thoron, concentrations for radon, thoron, and thoron progeny were measured for 259 dwellings located in high background radiation areas (HBRAs, outdoor external dose: 3-5 mGy y(-1)) and low background radiation areas (control areas, outdoor external dose: 1 mGy y(-1)) in Karunagappally Taluk, Kerala, India. The measurements were conducted using passive-type radon-thoron detectors and thoron progeny detectors over two six-month measurement periods from June 2010 to June 2011. The results showed no major differences in radon and thoron progeny concentrations between the HBRAs and the control areas. The geometric mean of the annual effective dose due to radon and thoron was calculated as 0.10 and 0.44 mSv, respectively. The doses were small, but not negligible compared with the external dose in the two areas.

  10. Theoretical and experimental investigation of high-level radiation sources used to model a heat input

    NASA Astrophysics Data System (ADS)

    Gradov, V. M.; Petrikevich, B. B.; Shcherbakov, A. A.

    1980-09-01

    A mathematical model of a wall-stabilized discharge is proposed for calculating the characteristics of high-intensity radiation sources used in high-temperature testing of materials and structures. The proposed model takes into consideration a number of processes and their effect on the total plasma absorption coefficient. These include photoionization of Xe atoms and ions and Xe bremsstrahlung. Theoretical calculations are verified by experiments carried out with a xenon arc lamp.

  11. Levels of thoron and progeny in high background radiation area of southeastern coast of Odisha, India.

    PubMed

    Ramola, R C; Gusain, G S; Rautela, B S; Sagar, D V; Prasad, G; Shahoo, S K; Ishikawa, T; Omori, Y; Janik, M; Sorimachi, A; Tokonami, S

    2012-11-01

    Exposure to radon, (222)Rn, is assumed to be the most significant source of natural radiation to human beings in most cases. It is thought that radon and its progeny are major factors that cause cancer. The presence of thoron, (220)Rn, was often neglected because it was considered that the quantity of thoron in the environment is less than that of radon. However, recent studies have shown that a high thoron concentration was found in some regions and the exposure to (220)Rn and its progeny can equal or several time exceed that of (220)Rn and its progeny. The results of thoron and its progeny measurements in the houses of high background radiation area (HBRA) of the southeastern coast of Odisha, India presented here. This area is one of the high background radiation areas in India with a large deposit of monazite sand which is the probable source of thoron. Both active and passive methods were employed for the measurement of thoron and its progeny in cement, brick and mud houses in the study area. Thoron concentration was measured using RAD-7 and Raduet. A CR-39 track detector was employed for the measurement of environmental thoron progeny, both in active and passive modes. Thoron and its progeny concentrations were found to be comparatively high in the area. A comparison between the results obtained with various techniques is presented in this paper.

  12. System-Level Radiation Hardening

    NASA Technical Reports Server (NTRS)

    Ladbury, Ray

    2014-01-01

    Although system-level radiation hardening can enable the use of high-performance components and enhance the capabilities of a spacecraft, hardening techniques can be costly and can compromise the very performance designers sought from the high-performance components. Moreover, such techniques often result in a complicated design, especially if several complex commercial microcircuits are used, each posing its own hardening challenges. The latter risk is particularly acute for Commercial-Off-The-Shelf components since high-performance parts (e.g. double-data-rate synchronous dynamic random access memories - DDR SDRAMs) may require other high-performance commercial parts (e.g. processors) to support their operation. For these reasons, it is essential that system-level radiation hardening be a coordinated effort, from setting requirements through testing up to and including validation.

  13. Radiative data for highly excited 3d84d levels in Ni II from laboratory measurements and atomic calculations

    NASA Astrophysics Data System (ADS)

    Hartman, H.; Engström, L.; Lundberg, H.; Nilsson, H.; Quinet, P.; Fivet, V.; Palmeri, P.; Malcheva, G.; Blagoev, K.

    2017-04-01

    Aims: This work reports new experimental radiative lifetimes and calculated oscillator strengths for transitions from 3d84d levels of astrophysical interest in singly ionized nickel. Methods: Radiative lifetimes of seven high-lying levels of even parity in Ni II (98 400-100 600 cm-1) have been measured using the time-resolved laser-induced fluorescence method. Two-step photon excitation of ions produced by laser ablation has been utilized to populate the levels. Theoretical calculations of the radiative lifetimes of the measured levels and transition probabilities from these levels are reported. The calculations have been performed using a pseudo-relativistic Hartree-Fock method, taking into account core polarization effects. Results: A new set of transition probabilities and oscillator strengths has been deduced for 477 Ni II transitions of astrophysical interest in the spectral range 194-520 nm depopulating even parity 3d84d levels. The new calculated gf-values are, on the average, about 20% higher than a previous calculation and yield lifetimes within 5% of the experimental values.

  14. A model for the formation of defects in RPC bakelite plates at high radiation levels

    NASA Astrophysics Data System (ADS)

    Greci, T.; Felli, F.; Saviano, G.; Benussi, L.; Bianco, S.; Passamonti, L.; Piccolo, D.; Pierluigi, D.; Russo, A.

    2013-04-01

    This study analyzes in detail the defects in bakelite observed in Resistive Plate Counters (RPC) after exposure to high-radiation environment and fluxed with humidified gas mixture at 9 kV voltage. Objective of this study was to identify the nature of defects and their formation mechanism. The defects were observed firstly on the whole RPC inner surface, and their localization mapped. The defected areas have been analyzed with optical and electron microscopy (SEM), and chemically by EDS (Energy Dispersion Spectroscopy) techniques. An area particularly defect-rich also analysed by x-ray diffraction (XRD). Samples of new and fluxed bakelite have been chemically analyzed by ICP-Plasma (via sample total digestion) in order to determine trace elements variations in composition. model is proposed to explain the chemistry of the formation process.

  15. The radiation characteristics of the transport packages with vitrified high-level waste

    SciTech Connect

    Bogatov, S. A.; Mitenkova, E. F. Novikov, N. V.

    2015-12-15

    The calculation method of neutron yield in the (α, n) reaction for a homogeneous material of arbitrary composition is represented. It is shown that the use of the ORIGEN 2 code excluding the real elemental composition of vitrified high-level waste leads to significant underestimation of the neutron yield in the (α, n) reaction. For vitrified high-level waste and spent nuclear fuel from VVER, the neutron fluxes are analyzed. The thickness of the protective materials for a transfer cask and a shipping cask with vitrified highlevel waste are estimated.

  16. The radiation characteristics of the transport packages with vitrified high-level waste

    NASA Astrophysics Data System (ADS)

    Bogatov, S. A.; Mitenkova, E. F.; Novikov, N. V.

    2015-12-01

    The calculation method of neutron yield in the (α, n) reaction for a homogeneous material of arbitrary composition is represented. It is shown that the use of the ORIGEN 2 code excluding the real elemental composition of vitrified high-level waste leads to significant underestimation of the neutron yield in the (α, n) reaction. For vitrified high-level waste and spent nuclear fuel from VVER, the neutron fluxes are analyzed. The thickness of the protective materials for a transfer cask and a shipping cask with vitrified highlevel waste are estimated.

  17. Effects of low-level radiation

    SciTech Connect

    Goldman, M.

    1993-12-31

    The effects of low-level radiation inhumans are usually estimated by extrapolation from high-level effects. Biological radiation effects from low-level radiation can be defined as those from doses below which no deterministic or graded biological responses will occur. In addition, the health consequences are almost all probabilistic. There is incomplete knowledge regarding the role of sex, age at exposure, co-factors, or environmental pollutants.

  18. Measurements of high level of iodine activity in thyroid with different radiation meters

    NASA Astrophysics Data System (ADS)

    Ośko, Jakub; Golnik, Natalia; Pliszczyński, Tomasz; Sosnowiec, Renata; Umaniec, Marianna; Zielczyński, Mieczysław

    2012-03-01

    Iodine activity in thyroid of female patient was measured with different radiation meters in order to estimate a possibility to use them in case of radiation accident. Two series of measurements were performed - first after diagnostic and second after therapeutic administration of iodine to the patient. The isotope activities were higher than those registered during routine radiation monitoring and similar to the activities which could be registered after radiation accident. The studies showed that simple dose rate meters may serve for identification and selection of contaminated persons which should be later subjected to the measurements with especially dedicated equipment. The initial measurements can be performed outside laboratory.

  19. Evaluation of spontaneous DNA damage in lymphocytes of healthy adult individuals from high-level natural radiation areas of Kerala in India.

    PubMed

    Kumar, P R Vivek; Cheriyan, V D; Seshadri, M

    2012-05-01

    Inhabitants of the high-level natural radiation areas (>1 mSv year(-1)) of Kerala in southwest India were evaluated for basal damage (spontaneous DNA strand breaks and alkali-labile sites) by the alkaline comet assay and oxidative DNA damage (ENDO III- and hOGG1-sensitive sites) by the enzyme-modified comet assay. Of the 67 adult male subjects studied, 45 were from high-level natural radiation areas and 22 subjects were from a nearby normal-level natural radiation area (≤1 mSv year(-1)). Basal damage due to the age and residential area (normal-level natural radiation area/high-level natural radiation areas) of the donors showed significant interaction (P < 0.001) when all subjects were analyzed using a general linear model (GLM). In subgroup analysis, basal damage increased with age in subjects from the normal-level natural radiation area (P = 0.02), while a significant negative correlation (P = 0.002) was observed in subjects from high-level natural radiation areas. Further, basal damage in elderly subjects from high-level natural radiation areas was significantly (P < 0.001) lower compared to the subjects from the normal-level natural radiation area. Oxidative DNA damage was not influenced by age, smoking habit or residential area in the entire sample. However, in a subgroup analysis, hOGG1-sensitive sites showed a significant increase with age in subjects from high-level natural radiation areas (P = 0.005). ENDO III-sensitive sites increased with natural radiation exposure in subjects from high-level natural radiation areas (P = 0.02), but when stratified according to smoking, a significant increase was observed only in smokers (P = 0.01). To the best of our knowledge, this is the first study on basal and oxidative DNA damage in healthy adults of this population. However, our findings need more validation in a larger study population.

  20. Study of stillbirth and major congenital anomaly among newborns in the high-level natural radiation areas of Kerala, India.

    PubMed

    Jaikrishan, G; Sudheer, K R; Andrews, V J; Koya, P K M; Madhusoodhanan, M; Jagadeesan, C K; Seshadri, M

    2013-01-01

    Monitoring newborns for adverse outcomes like stillbirth and major congenital anomalies (MCA) is being carried out in government hospitals since 1995 in and around high-level natural radiation areas, a narrow strip of land on the southwest coast of Kerala, India. Natural deposits of monazite sand containing thorium and its daughter products account for elevated levels of natural radiation. Among 141,540 newborns [140,558 deliveries: 139,589 singleton, 957 twins (6.81 ‰), 11 triplets (0.078 ‰), and one quadruplet] screened, 615 (4.35 ‰) were stillbirth and MCA were seen in 1,370 (9.68 ‰) newborns. Clubfoot (404, 2.85 ‰) was the most frequent MCA followed by hypospadias (152, 2.10 ‰ among male newborns), congenital heart disease (168, 1.19 ‰), cleft lip/palate (149, 1.05 ‰), Down syndrome (104, 0.73 ‰), and neural tube defects (72, 0.51 ‰). Newborns with MCA among stillbirths were about 20-fold higher at 190.24 ‰ (117/615) compared to 8.89 ‰ (1,253/140,925) among live births (P < .001). Logistic regression was carried out to compare stillbirth, overall, and specific MCA among newborns from areas with dose levels of ≤1.5, 1.51-3.0, 3.01-6.0 and >6 mGy/year after controlling for maternal age at birth, gravida, consanguinity, ethnicity, and gender of the baby. Clubfoot showed higher prevalence of 3.26 ‰ at dose level of 1.51-3.0 mGy/year compared to 2.33 ‰ at ≤1.5 mGy/year (OR = 1.39; 95 % CI, 1.12-1.72), without indication of any clear dose-response. Prevalences of stillbirth, overall MCA, and other specific MCA were similar across different dose levels and were relatively lower than that reported elsewhere in India, probably due to better literacy, health awareness, and practices in the study population.

  1. Total effective dose equivalent assessment after exposure to high-level natural radiation using the RESRAD code.

    PubMed

    Ziajahromi, Shima; Khanizadeh, Meysam; Nejadkoorki, Farhad

    2014-03-01

    The current work reports the activity concentrations of several natural radionuclides ((226)Ra, (232)Th, and (40)K) in Khak-Sefid area of Ramsar, Iran. An evaluation of total effective dose equivalent (TEDE) from exposure to high-level natural radiations is also presented. Soil samples were analyzed using a high-purity germanium detector with 80 % relative efficiency. The TEDE was calculated on a land area of 40,000 m(2) with 1.5-m thickness of contaminated zone for the member of three critical groups of farmer, construction worker, and resident using Residual Radioactive Material Guidelines (RESRAD) modeling program. It was found that the mean activity concentrations (in Bq/kg) were 23,118 ± 468, 25.8 ± 2.3, and 402.6 ± 16.5 for (226)Ra, (232)Th, and (40)K, respectively. The maximum calculated TEDE during 1,000 years was 107.1 mSv/year at year 90, 92.42 mSv/year at year 88, and 22.09 mSv/year at year 46 for farmer, resident, and construction worker scenarios, respectively. The maximum TEDE in farmer scenario can be reduced to the level below the dose limit of 1 mSv/year which is safe for public health using soil cover with thickness of 50 cm or more on the contaminated zone. According to RESRAD prediction, the TEDE received by individuals for all exposure scenarios considerably exceed the set dose limit, and it is mainly due to (226)Ra.

  2. Personal radiation detector at a high technology readiness level that satisfies DARPA's SN-13-47 and SIGMA program requirements

    NASA Astrophysics Data System (ADS)

    Ginzburg, D.; Knafo, Y.; Manor, A.; Seif, R.; Ghelman, M.; Ellenbogen, M.; Pushkarsky, V.; Ifergan, Y.; Semyonov, N.; Wengrowicz, U.; Mazor, T.; Kadmon, Y.; Cohen, Y.; Osovizky, A.

    2015-06-01

    There is a need to develop new personal radiation detector (PRD) technologies that can be mass produced. On August 2013, DARPA released a request for information (RFI) seeking innovative radiation detection technologies. In addition, on December 2013, a Broad Agency Announcement (BAA) for the SIGMA program was released. The RFI requirements focused on a sensor that should possess three main properties: low cost, high compactness and radioisotope identification capabilities. The identification performances should facilitate the detection of a hidden threat, ranging from special nuclear materials (SNM) to commonly used radiological sources. Subsequently, the BAA presented the specific requirements at an instrument level and provided a comparison between the current market status (state-of-the-art) and the SIGMA program objectives. This work presents an optional alternative for both the detection technology (sensor with communication output and without user interface) for DARPA's initial RFI and for the PRD required by the SIGMA program. A broad discussion is dedicated to the method proposed to fulfill the program objectives and to the selected alternative that is based on the PDS-GO design and technology. The PDS-GO is the first commercially available PRD that is based on a scintillation crystal optically coupled with a silicon photomultiplier (SiPM), a solid-state light sensor. This work presents the current performance of the instrument and possible future upgrades based on recent technological improvements in the SiPM design. The approach of utilizing the SiPM with a commonly available CsI(Tl) crystal is the key for achieving the program objectives. This approach provides the appropriate performance, low cost, mass production and small dimensions; however, it requires a creative approach to overcome the obstacles of the solid-state detector dark current (noise) and gain stabilization over a wide temperature range. Based on the presented results, we presume that

  3. Radiation Levels on the Way to Mars

    NASA Image and Video Library

    2012-08-02

    This graphic shows the flux of radiation detected by NASA Mars Science Laboratory on the trip from Earth to Mars; the spikes in radiation levels occurred because of large solar energetic particle events caused by giant flares on the sun.

  4. The European strategy on low dose risk research and the role of radiation quality according to the recommendations of the "ad hoc" High Level and Expert Group (HLEG).

    PubMed

    Belli, Mauro; Ottolenghi, Andrea; Weiss, Wolfgang

    2010-08-01

    Health effects of exposures at low doses and/or low dose rates are recognized as requiring intensive research activity to answer several questions. To address these issues at a strategic level in Europe, with the perspective of integrating national and EC efforts (in particular those within the Euratom research programmes), a "European High Level and Expert Group (HLEG) on low dose risk research" was formed and carried out its work during 2008. The Group produced a report published by the European Commission in 2009 and available on the website http://www.hleg.de . The more important research issues identified by the HLEG were as follows: (a) the shape of dose-response for cancer; (b) the tissue sensitivities for cancer induction; (c) the individual variability in cancer risk; (d) the effects of radiation quality (type); (e) the risks from internal radiation exposure; and (f) the risks of, and dose response relationships for, non-cancer diseases. In this paper, the radiation quality issues are especially considered, since they are closely linked to health problems and related radioprotection in space and in emerging radiotherapeutic techniques (i.e., hadrontherapy). The peculiar features of low-fluence, high-LET radiation exposures can question in particular the validity of the radiation-weighting factor (w ( R )) approach. Specific strategies are therefore needed to assess such risks. A multi-scale/systems biology approach, based on mechanistic studies coordinated with molecular-epidemiological studies, is considered essential to elucidate differences and similarities between specific effects of low- and high-LET radiation.

  5. Suppressing the high-level expression and function of ATM in advanced-stage melanomas does not sensitize the cells to ionizing radiation.

    PubMed

    Moschos, Stergios J; Dodd, Nicole R; Jukic, Drazen M; Fayewicz, Shelley L; Wang, Xiaolei; Becker, Dorothea

    2009-10-01

    Melanoma in its advanced stages is resistant not only to chemotherapy but also to radiation treatment. In line with efforts to identify genes that are key regulators of the disease and as such, may prove valuable targets for adjuvant and neo-adjuvant therapy of melanomas, we previously reported the presence of Serial Analysis of Gene Expression (SAGE) tags, corresponding to the Ataxia Telangiectasia Mutated (ATM) gene, in SAGE libraries generated from tissues representing primary and metastatic melanomas. In the present study, we document that ATM is expressed at high levels in advanced-stage melanomas. Given its crucial role in the cellular response to DNA double-strand breaks (DSB), ionizing radiation, and UV damage, we pursued a series of functional studies involving the targeting of ATM by way of RNA interference or an ATM-specific small-molecule inhibitor, followed by exposure of the cells to ionizing radiation or radiation combined with a DNA-intercalating drug, to test the hypothesis that the high-level expression of ATM prevents melanoma cells from undergoing apoptosis in response to DNA DSB-inducing treatments. However, unlike as demonstrated in the case of other malignancies, our findings summarized herein do not point to ATM as a pivotal DNA damage sensor for advanced-stage melanomas, raising the possibility that in these cells, genes other than ATM regulate and control the repair of DNA DSB.

  6. Radio-adaptive response in peripheral blood lymphocytes of individuals residing in high-level natural radiation areas of Kerala in the southwest coast of India.

    PubMed

    Ramachandran, E N; Karuppasamy, C V; Kumar, V Anil; Soren, D C; Kumar, P R Vivek; Koya, P K M; Jaikrishan, G; Das, Birajalaxmi

    2016-11-09

    The present study investigates whether the chronic low-dose radiation exposure induces an in vivo radio-adaptive response in individuals from high-level natural radiation areas (HLNRA) of the Kerala coast. Peripheral blood samples from 54 adult male individuals aged between 26 and 65 years were collected for the study with written informed consent. Each of the whole blood sample was divided into three, one was sham irradiated, second and third was exposed to challenging doses of 1.0 and 2.0 Gy gamma radiation, respectively. Cytokinesis-block micronucleus (CBMN) assay was employed to study the radio-adaptive response. Seventeen individuals were from normal-level natural radiation area (NLNRA ≤1.5 mGy/year) and 37 from HLNRA (> 1.5 mGy/year). Based on the annual dose received, individuals from HLNRA were further classified into low-dose group (LDG, 1.51-5.0 mGy/year, N = 19) and high-dose group (HDG >5.0 mGy/year, N = 18). Basal frequency of micronucleus (MN) was comparable across the three dose groups (NLNRA, LDG and HDG, P = 0.64). Age of the individuals showed a significant effect on the frequency of MN after challenging dose exposures. The mean frequency of MN was significantly lower in elder (>40 years) individuals from HDG of HLNRA as compared to the young (≤40 years) individuals after 1.0 Gy (P < 0.001) and 2.0 Gy (P = 0.002) of challenging doses. However, young and elder individuals within NLNRA and LDG of HLNRA showed similar frequency of MN after the challenging dose exposures. Thus, increased level of chronic low-dose radiation (>5.0 mGy/year) seems to act as a priming dose resulting in the induction of an in vivo radio-adaptive response in elder individuals of the Kerala coast.

  7. Induction of wound-periderm-like tissue in Kalanchoe pinnata (Lam.) Pers. (Crassulaceae) leaves as a defence response to high UV-B radiation levels.

    PubMed

    Nascimento, Luana Beatriz dos Santos; Moreira, Nattacha dos Santos; Leal-Costa, Marcos Vinícius; Costa, Sônia Soares; Tavares, Eliana Schwartz

    2015-10-01

    UV-B radiation can be stressful for plants and cause morphological and biochemical changes. Kalanchoe pinnata is a CAM leaf-succulent species distributed in hot and dry regions, and is rich in flavonoids, which are considered to be protective against UV-B radiation. This study aims to verify if K. pinnata has morphological or anatomical responses as a strategy in response to high UV-B levels. Kalanchoe pinnata plants of the same age were grown under white light (control) or white light plus supplemental UV-B radiation (5 h d(-1)). The plants were treated with the same photoperiod, photosynthetically active radiation, temperature and daily watering system. Fragments of the middle third of the leaf blade and petiole were dehydrated and then embedded in historesin and sectioned in a rotary microtome. Sections were stained with toluidine blue O and mounted in Entellan®. Microchemical analyses by optical microscopy were performed on fresh material with Sudan III, Sudan IV and phloroglucinol, and analysed using fluorescence microscopy. Supplemental UV-B radiation caused leaf curling and the formation of brown areas on the leaves. These brown areas developed into a protective tissue on the adaxial side of the leaf, but only in directly exposed regions. Anatomically, this protective tissue was similar to a wound-periderm, with outer layer cell walls impregnated with suberin and lignin. This is the first report of wound-periderm formation in leaves in response to UV-B radiation. This protective tissue could be important for the survival of the species in desert regions under high UV-B stress conditions. © The Author 2015. Published by Oxford University Press on behalf of the Annals of Botany Company. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  8. Induction of wound-periderm-like tissue in Kalanchoe pinnata (Lam.) Pers. (Crassulaceae) leaves as a defence response to high UV-B radiation levels

    PubMed Central

    Nascimento, Luana Beatriz dos Santos; Moreira, Nattacha dos Santos; Leal-Costa, Marcos Vinícius; Costa, Sônia Soares; Tavares, Eliana Schwartz

    2015-01-01

    Background and Aims UV-B radiation can be stressful for plants and cause morphological and biochemical changes. Kalanchoe pinnata is a CAM leaf-succulent species distributed in hot and dry regions, and is rich in flavonoids, which are considered to be protective against UV-B radiation. This study aims to verify if K. pinnata has morphological or anatomical responses as a strategy in response to high UV-B levels. Methods Kalanchoe pinnata plants of the same age were grown under white light (control) or white light plus supplemental UV-B radiation (5 h d–1). The plants were treated with the same photoperiod, photosynthetically active radiation, temperature and daily watering system. Fragments of the middle third of the leaf blade and petiole were dehydrated and then embedded in historesin and sectioned in a rotary microtome. Sections were stained with toluidine blue O and mounted in Entellan®. Microchemical analyses by optical microscopy were performed on fresh material with Sudan III, Sudan IV and phloroglucinol, and analysed using fluorescence microscopy. Key Results Supplemental UV-B radiation caused leaf curling and the formation of brown areas on the leaves. These brown areas developed into a protective tissue on the adaxial side of the leaf, but only in directly exposed regions. Anatomically, this protective tissue was similar to a wound-periderm, with outer layer cell walls impregnated with suberin and lignin. Conclusions This is the first report of wound-periderm formation in leaves in response to UV-B radiation. This protective tissue could be important for the survival of the species in desert regions under high UV-B stress conditions. PMID:26346722

  9. The effect of high level natural ionizing radiation on expression of PSA, CA19-9 and CEA tumor markers in blood serum of inhabitants of Ramsar, Iran.

    PubMed

    Heidari, Mohammad Hassan; Porghasem, Mohsen; Mirzaei, Nazanin; Mohseni, Jafar Hesam; Heidari, Matine; Azargashb, Eznollah; Movafagh, Abolfazl; Heidari, Reihane; Molouki, Aidin; Larijani, Leila

    2014-02-01

    Since several high level natural radiation areas (HLNRAs) exist on our planet, considerable attention has been drawn to health issues that may develop as the result of visiting or living in such places. City of Ramsar in Iran is an HNLRA, and is a tourist attraction mainly due to its hot spas. However, the growing awareness over its natural radiation sources has prompted widespread scientific investigation at national level. In this study, using an ELISA method, the level of expression of three tumor markers known as carcinoembryonic antigen (CEA), prostate-specific antigen (PSA) and carcino antigen 19-9 (CA19-9) in blood serum of 40 local men of Ramsar (subject group) was investigated and compared to 40 men from the city of Noshahr (control group). Noshahr was previously identified as a normal level natural radiation area (NLNRA) that is some 85 km far from Ramsar. According to statistical analysis, there was a significant difference in the levels of PSA and CA19-9 markers between the two groups (p < 0.001) with those of Ramsar being considerably higher. CEA level did not show any difference. Although some of the volunteers tested positive to the markers, they were in good health as confirmed by the physician. Moreover, the high number of positive markers in Noshahr was considerable. Therefore, future study is needed to further validate this result and to determine the level of positivity to tumor markers in both cities. Copyright © 2013 Elsevier Ltd. All rights reserved.

  10. Concerns with low-level ionizing radiation

    SciTech Connect

    Yalow, R.S.

    1994-12-31

    Populations have been studied in geographic areas of increased natural radiation, in radiation-exposed workers, in patients medically exposed, and in accidental exposures. No reproducible evidence exists of harmful effects from increases in background radiation three to ten times the usual levels. There is no increase in leukemia or other cancers among American military participants in nuclear testing, no increase in leukemia or thyroid cancer among medical patients receiving {sup 131}I for diagnosis or treatment of hypothyroidism, and no increase in lung cancer among nonsmokers exposed to increased radon in the home. The association of radiation with the atomic bomb and with excessive regulatory and health physics as-low-as-reasonably-achievable (ALARA) radiation levels practices has created a climate of fear about the dangers of radiation at any level. However, there is no evidence that radiation exposures at the levels equivalent to medical usage are harmful. The unjustified excessive concern with radiation at any level, however, precludes beneficial uses of radiation and radioactivity in medicine, science, and industry.

  11. Role of light and heavy minerals on natural radioactivity level of high background radiation area, Kerala, India.

    PubMed

    Ramasamy, V; Sundarrajan, M; Suresh, G; Paramasivam, K; Meenakshisundaram, V

    2014-02-01

    Natural radionuclides ((238)U, (232)Th and (40)K) concentrations and eight different radiological parameters have been analyzed for the beach sediments of Kerala with an aim of evaluating the radiation hazards. Activity concentrations ((238)U and (232)Th) and all the radiological parameters in most of the sites have higher values than recommended values. The Kerala beach sediments pose significant radiological threat to the people living in the area and tourists going to the beaches for recreation or to the sailors and fishermen involved in their activities in the study area. In order to know the light mineral characterization of the present sediments, mineralogical analysis has been carried out using Fourier transform infrared (FTIR) spectroscopic technique. The eight different minerals are identified and they are characterized. Among the various observed minerals, the minerals such as quartz, microcline feldspar, kaolinite and calcite are major minerals. The relative distribution of major minerals is determined by calculating extinction co-efficient and the values show that the amount of quartz is higher than calcite and much higher than microcline feldspar. Crystallinity index is calculated to know the crystalline nature of quartz present in the sediments. Heavy mineral separation analysis has been carried out to know the total heavy mineral (THM) percentage. This analysis revealed the presence of nine heavy minerals. The minerals such as monazite, zircon, magnetite and illmenite are predominant. Due to the rapid and extreme changes occur in highly dynamic environments of sandy beaches, quantities of major light and heavy minerals are widely varied from site to site. Granulometric analysis shows that the sand is major content. Multivariate statistical (Pearson correlation, cluster and factor) analysis has been carried out to know the effect of mineralogy on radionuclide concentrations. The present study concluded that heavy minerals induce the (238)U and (232)Th

  12. Sex ratio at birth: scenario from normal- and high-level natural radiation areas of Kerala coast in south-west India.

    PubMed

    Koya, P K M; Jaikrishan, G; Sudheer, K R; Andrews, V J; Madhusoodhanan, M; Jagadeesan, C K; Das, Birajalaxmi

    2015-11-01

    Newborns were monitored for congenital malformations in four government hospitals located in high-level (ambient dose >1.5 mGy/year) and normal-level (≤ 1.5 mGy/year) natural radiation areas of Kerala, India, from August 1995 to December 2012. Sex ratio at birth (SRB) among live singleton newborns and among previous children, if any, of their mothers without history of any abortion, stillbirth or twins is reported here. In the absence of environmental stress or selective abortion of females, global average of SRB is about 1050 males to 1000 females. A total of 151,478 singleton, 1031 twins, 12 triplets and 1 quadruplet deliveries were monitored during the study period. Sex ratio among live singleton newborns was 1046 males (95 % CI 1036-1057) for 1000 females (77,153 males:73,730 females) and was comparable to the global average. It was similar in high-level and normal-level radiation areas of Kerala with SRB of 1050 and 1041, respectively. It was consistently more than 1000 and had no association with background radiation levels, maternal and paternal age at birth, parental age difference, gravida status, ethnicity, consanguinity or year of birth. Analysis of SRB of the children of 139,556 women whose reproductive histories were available suggested that couples having male child were likely to opt for more children and this, together with enhanced rate of males at all birth order, was skewing the overall SRB in favour of male children. Though preference for male child was apparent, extreme steps of sex-selective abortion or infanticide were not prevalent.

  13. Observation of ultralow-level Al impurities on a silicon surface by high-resolution grazing emission x-ray fluorescence excited by synchrotron radiation

    SciTech Connect

    Kubala-Kukus, A.; Banas, D.; Pajek, M.; Cao, W.; Dousse, J.-Cl.; Hoszowska, J.; Kayser, Y.; Szlachetko, M.; Salome, M.; Susini, J.; Szlachetko, J.

    2009-09-15

    We demonstrate that ultralow-level Al impurities on a silicon surface can be measured by using the high-resolution grazing emission x-ray fluorescence (GEXRF) technique combined with synchrotron-radiation excitation. An Al-impurity level of about 10{sup 12} atoms/cm{sup 2} was reached by observing the Al K{alpha} x-ray fluorescence in the resonant Raman-scattering background-''free'' regime by choosing an appropriate beam energy below the Si K absorption edge. Present results show that by combining the GEXRF method with the vapor phase decomposition technique the 10{sup 7} atoms/cm{sup 2} level can be reached for Al detection on silicon. Finally, we found that the high-resolution GEXRF technique is a sensitive tool to study the morphology of surface nanostructures.

  14. Efficient repair of DNA double strand breaks in individuals from high level natural radiation areas of Kerala coast, south-west India.

    PubMed

    Jain, Vinay; Saini, Divyalakshmi; Kumar, P R Vivek; Jaikrishan, G; Das, Birajalaxmi

    2017-09-20

    High level natural radiation areas (HLNRA) of Kerala coastal strip (55km long and 0.5km wide) in southwest India exhibit wide variations in the level of background dose (< 1.0-45.0mGy/year) due to thorium deposits in the beach sand. The areas with ≤1.5mGy/year are considered as normal level natural radiation area (NLNRA), whereas areas with >1.5mGy/year are HLNRA. Individuals belonging to HLNRA were stratified into two groups, Low dose group (LDG: 1.51-5.0mGy/year) and high dose group (HDG: >5.0mGy/year). The mean annual dose received by the individuals from NLNRA, LDG and HDG was 1.3±0.1, 2.7±0.9 and 9.4±2.3mGy/year, respectively. Induction and repair of DNA double strand breaks (DSBs) in terms of gamma-H2AX positive cells were analysed in peripheral blood mononuclear cells (PBMCs) using flow cytometry. Induction of DSBs was studied at low (0.25Gy) and high challenge doses (1.0 and 2.0Gy) of gamma radiation in 78 individuals {NLNRA, N=23; HLNRA (LDG, N=21 and HDG, N=34)}. Repair kinetics of DSBs were evaluated in PBMCs of 30 individuals belonging to NLNRA (N=8), LDG (N=7) and HDG (N=15) at low (0.25Gy) and high doses (2.0Gy) of gamma radiation. Transcription profile of DNA damage response (DDR) and DSB repair genes involved in non-homologous end joining (NHEJ) and homologous recombination repair (HRR) pathways was analysed after a challenge dose of 2.0Gy in PBMCs of NLNRA (N=10) and HDG, HLNRA (N=10) group. Our results revealed significantly lower induction and efficient repair of DSBs in HLNRA groups as compared to NLNRA. Transcription profile of DCLRE1C, XRCC4, NBS1 and CDK2 showed significant up-regulation (p≤0.05) in HDG at a challenge dose of 2.0Gy indicating active involvement of DDR and DSB repair pathways. In conclusion, lower induction and efficient repair of DNA DSBs in HLNRA groups is suggestive of an in vivo radio-adaptive response due to priming effect of chronic low dose radiation prevailing in this area. Copyright © 2017 Elsevier B.V. All

  15. Lack of increased DNA double-strand breaks in peripheral blood mononuclear cells of individuals from high level natural radiation areas of Kerala coast in India.

    PubMed

    Jain, Vinay; Kumar, P R Vivek; Koya, P K M; Jaikrishan, G; Das, Birajalaxmi

    2016-06-01

    The high level natural radiation area (HLNRA) of Kerala is a 55km long and 0.5km wide strip in south west coast of India. The level of background radiation in this area varies from <1.0mGy/year to 45.0mGy/year. It offers unique opportunity to study the effect of chronic low dose/low dose-rate radiation directly on human population. Spontaneous level of DNA double strand breaks (DSBs) was quantified in peripheral blood mononuclear cells of 91 random individuals from HLNRA (N=61, mean age: 36.1±7.43years) and normal level natural radiation area (NLNRA) (N=30, mean age: 35.5±6.35years) using gamma-H2AX as a marker. The mean annual dose received by NLNRA and HLNRA individuals was 1.28±0.086mGy/year and 8.28±4.96mGy/year, respectively. The spontaneous frequency of DSBs in terms of gamma-H2AX foci among NLNRA and HLNRA individuals were 0.095±0.009 and 0.084±0.004 per cell (P=0.22). The individuals from HLNRA were further classified as low dose group (LDG, 1.51-5.0mGy/year, mean dose: 2.63±0.76mGy/year) and high dose group (HDG, >5.0mGy/year, mean dose: 11.04±3.57mGy/year). The spontaneous frequency of gamma-H2AX foci per cell in NLNRA, LDG and HDG was observed to be 0.095±0.009, 0.096±0.008 and 0.078±0.004 respectively. Individuals belonging to HDG of HLNRA showed marginally lower frequency of DSBs as compared to NLNRA and LDG of HLNRA. This could be suggestive of either lower induction or better repair of DSBs in individuals from HDG of HLNRA. The present study indicated that 5.0mGy/year could be a possible threshold dose for DSB induction at chronic low-dose radiation exposure in vivo. However, further studies on DNA damage induction and repair kinetics are required to draw firm conclusions.

  16. Assessment of risk to wildlife from ionising radiation: can initial screening tiers be used with a high level of confidence?

    PubMed

    Beresford, N A; Hosseini, A; Brown, J E; Cailes, C; Beaugelin-Seiller, K; Barnett, C L; Copplestone, D

    2010-06-01

    A number of models are being used to assess the potential environmental impact of releases of radioactivity. These often use a tiered assessment structure whose first tier is designed to be highly conservative and simple to use. An aim of using this initial tier is to identify sites of negligible concern and to remove them from further consideration with a high degree of confidence. In this paper we compare the screening assessment outputs of three freely available models. The outputs of these models varied considerably in terms of estimated risk quotient (RQ) and the radionuclide-organism combinations identified as being the most limiting. A number of factors are identified as contributing to this variability: values of transfer parameters (concentration ratios and K(d)) used; organisms considered; different input options and how these are utilised in the assessment; assumptions as regards secular equilibrium; geometries and exposure scenarios. This large variation in RQ values between models means that the level of confidence required by users is not achieved. We recommend that the factors contributing to the variation in screening assessments be subjected to further investigation so that they can be more fully understood and assessors (and those reviewing assessment outputs) can better justify and evaluate the results obtained.

  17. REDOX state analysis of platinoid elements in simulated high-level radioactive waste glass by synchrotron radiation based EXAFS

    NASA Astrophysics Data System (ADS)

    Okamoto, Yoshihiro; Shiwaku, Hideaki; Nakada, Masami; Komamine, Satoshi; Ochi, Eiji; Akabori, Mitsuo

    2016-04-01

    Extended X-ray Absorption Fine Structure (EXAFS) analyses were performed to evaluate REDOX (REDuction and OXidation) state of platinoid elements in simulated high-level nuclear waste glass samples prepared under different conditions of temperature and atmosphere. At first, EXAFS functions were compared with those of standard materials such as RuO2. Then structural parameters were obtained from a curve fitting analysis. In addition, a fitting analysis used a linear combination of the two standard EXAFS functions of a given elements metal and oxide was applied to determine ratio of metal/oxide in the simulated glass. The redox state of Ru was successfully evaluated from the linear combination fitting results of EXAFS functions. The ratio of metal increased at more reducing atmosphere and at higher temperatures. Chemical form of rhodium oxide in the simulated glass samples was RhO2 unlike expected Rh2O3. It can be estimated rhodium behaves according with ruthenium when the chemical form is oxide.

  18. Peripheral blood lymphocyte micronucleus frequencies in men from areas of Kerala, India, with high vs normal levels of natural background ionizing radiation.

    PubMed

    Karuppasamy, C V; Ramachandran, E N; Kumar, V Anil; Kumar, P R Vivek; Koya, P K M; Jaikrishan, G; Das, Birajalaxmi

    2016-04-01

    We have measured the frequencies of micronuclei (MN) in adult male individuals living in areas of the Kerala coast, southwest India, with either high (HLNRA, >1.5mGy/year) or normal levels of natural ionizing radiation (NLNRA, ≤1.5mGy/year). Blood samples were obtained from 141 individuals, 94 from HLNRA and 47 from NLNRA, aged 18-72, and were subjected to the cytokinesis-block micronucleus (CBMN) assay. An average of 1835 binucleated (BN) cells per individual were scored. The overall frequency of MN (mean±SD) was 11.7±6.7 per 1000 BN cells. The frequencies of MN in the HLNRA (11.7±6.6) and NLNRA (11.6±6.7) were not statistically significantly different (P=0.59). However, a statistically significant (P<0.001) age-dependent increase in MN frequency was observed among individuals from both HLNRA and NLNRA. No natural background radiation dose-dependent increase in MN frequency was seen. MN frequency was not influenced by tobacco smoking or chewing but it was increased among individuals consuming alcohol. Chronic low-dose radiation in the Kerala coast did not have a significant effect on MN frequency among adult men.

  19. INSTALLATION OF A POST-ACCIDENT CONFINEMENT HIGH-LEVEL RADIATION MONITORING SYSTEM IN THE KOLA NUCLEAR POWER STATION (UNIT 2) IN RUSSIA

    SciTech Connect

    GREENE,G.A.; GUPPY,J.G.

    1998-09-01

    This is the final report on the INSP project entitled, ``Post-Accident Confinement High-Level Radiation Monitoring System'' conducted by BNL under the authorization of Project Work Plan WBS 1.2.2.6 (Attachment 1). This project was initiated in February 1993 to assist the Russians in reducing risks associated with the continued operation of older Soviet-designed nuclear power plants, specifically the Kola VVER-440/230 Unit 2, through improved accident detection capability, specifically by the installation of a dual train high-level radiation detection system in the confinement of Unit 2 of the Kola NPP. The major technical objective of this project was to provide, install and make operational the necessary hardware inside the confinement of the Kola NPP Unit 2 to provide early and reliable warning of the release of radionuclides from the reactor into the confinement air space as an indication of the occurrence of a severe accident at the plant. In addition, it was intended to provide hands-on experience and training to the Russian plant workers in the installation, operation, calibration and maintenance of the equipment in order that they may use the equipment without continued US assistance as an effective measure to improve reactor safety at the plant.

  20. Effects of low levels of radiation on humans

    SciTech Connect

    Auxier, J.A.

    1981-01-01

    The state of knowledge on effects of low-level ionizing radiations on humans is reviewed. Several problems relating to dose thresholds or lack of thresholds for several types of cancer and high LET radiations and the effects of fractionation and dose protection are discussed. (ACR)

  1. Assessment of shielding analysis methods, codes, and data for spent fuel transport/storage applications. [Radiation dose rates from shielded spent fuels and high-level radioactive waste

    SciTech Connect

    Parks, C.V.; Broadhead, B.L.; Hermann, O.W.; Tang, J.S.; Cramer, S.N.; Gauthey, J.C.; Kirk, B.L.; Roussin, R.W.

    1988-07-01

    This report provides a preliminary assessment of the computational tools and existing methods used to obtain radiation dose rates from shielded spent nuclear fuel and high-level radioactive waste (HLW). Particular emphasis is placed on analysis tools and techniques applicable to facilities/equipment designed for the transport or storage of spent nuclear fuel or HLW. Applications to cask transport, storage, and facility handling are considered. The report reviews the analytic techniques for generating appropriate radiation sources, evaluating the radiation transport through the shield, and calculating the dose at a desired point or surface exterior to the shield. Discrete ordinates, Monte Carlo, and point kernel methods for evaluating radiation transport are reviewed, along with existing codes and data that utilize these methods. A literature survey was employed to select a cadre of codes and data libraries to be reviewed. The selection process was based on specific criteria presented in the report. Separate summaries were written for several codes (or family of codes) that provided information on the method of solution, limitations and advantages, availability, data access, ease of use, and known accuracy. For each data library, the summary covers the source of the data, applicability of these data, and known verification efforts. Finally, the report discusses the overall status of spent fuel shielding analysis techniques and attempts to illustrate areas where inaccuracy and/or uncertainty exist. The report notes the advantages and limitations of several analysis procedures and illustrates the importance of using adequate cross-section data sets. Additional work is recommended to enable final selection/validation of analysis tools that will best meet the US Department of Energy's requirements for use in developing a viable HLW management system. 188 refs., 16 figs., 27 tabs.

  2. High-LET radiation carcinogenesis

    SciTech Connect

    Fry, R.J.M.; Powers-Risius, P.; Alpen, E.L.; Ainsworth, E.J.

    1985-01-01

    The dose-response curves for the induction of tumors by high-LET radiation are complex and are insufficiently understood. There is no model or formulation to describe the dose-response relationship over a range 0 to 100 rad. Evidence suggests that at doses below 20 rad the response is linear, at least for life shortening and some tumor systems. Thus, limiting values of RBEs for the induction of cancer in various tissues can be determined, but it will require sufficient data obtained at low single doses or with small fractions. The results obtained from experiments with heavy ions indicate an initial linear response with a plateauing of the curve at a tumor incidence level that is dependent on the type of tissue. The RBE values for the heavy ions using /sup 60/Co gamma rays as the reference radiation increase with the estimated LET from 4 for /sup 4/H to about 27 for /sup 56/Fe, /sup 40/Ar. The dose-responses and RBEs for /sup 56/Fe and /sup 40/Ar are similar to those for fission neutrons. These findings suggest the possibility that the effectiveness for tumor induction reaches a maximum. 26 refs., 4 figs., 2 tabs.

  3. Radiation levels on empty cylinders containing heel material

    SciTech Connect

    Shockley, C.W.

    1991-12-31

    Empty UF{sub 6} cylinders containing heel material were found to emit radiation levels in excess of 200 mr/hr, the maximum amount stated in ORO-651. The radiation levels were as high as 335 mr/hr for thick wall (48X and 48Y) cylinders and 1050 mr/hr for thin wall (48G and 48H) cylinders. The high readings were found only on the bottom of the cylinders. These radiation levels exceeded the maximum levels established in DOT 49 CFR, Part 173.441 for shipment of cylinders. Holding periods of four weeks for thick-wall cylinders and ten weeks for thin-wall cylinders were established to allow the radiation levels to decay prior to shipment.

  4. High-let radiation carcinogenesis

    SciTech Connect

    Fry, R.J.M.; Powers-Risius, P.; Alpen, E.L.; Ainsworth, E.J.; Ullrich, R.L.

    1982-01-01

    Recent results for neutron radiation-induced tumors are presented to illustrate the complexities of the dose-response curves for high-LET radiation. It is suggested that in order to derive an appropriate model for dose-response curves for the induction of tumors by high-LET radiation it is necessary to take into account dose distribution, cell killing and the susceptibility of the tissue under study. Preliminary results for the induction of Harderian gland tumors in mice exposed to various heavy ion beams are presented. The results suggest that the effectiveness of the heavy ion beams increases with increasing LET. The slopes of the dose-response curves for the different high-LET radiations decrease between 20 and 40 rads and therefore comparisons of the relative effectiveness should be made from data obtained at doses below about 20 to 30 rads.

  5. High-LET radiation carcinogenesis

    NASA Astrophysics Data System (ADS)

    Fry, R. J. M.; Ullrich, R. L.; Powers-Risius, P.; Alpen, E. L.; Ainsworth, E. J.

    Recent results for neutron radiation-induced tumors are presented to illustrate the complexities of the dose-response curves for high-LET radiation. It is suggested that in order to derive an appropriate model for dose-response curves for the induction of tumors by high-LET radiation it is necessary to take into account dose distribution, cell killing and the susceptibility of the tissue under study. Preliminary results for the induction of Harderian gland tumors in mice exposed to various heavy ion beams are presented. The results suggest that the effectiveness of the heavy ion beams increases with increasing LET. The slopes of the dose-response curves for the different high-LET radiations decrease between 20 and 40 rads and therefore comparisons of the relative effectiveness should be made from data obtained at doses below about 20-30 rads.

  6. NATURAL RADIOACTIVITY LEVEL AND ELEMENTAL COMPOSITION OF SOIL SAMPLES FROM A HIGH BACKGROUND RADIATION AREA ON EASTERN COAST OF INDIA (ODISHA).

    PubMed

    Sahoo, S K; Kierepko, R; Sorimachi, A; Omori, Y; Ishikawa, T; Tokonami, S; Prasad, G; Gusain, G S; Ramola, R C

    2016-10-01

    A comprehensive study was carried out to determine the radioactivity concentration of soil samples from different sites of a high background radiation area in the eastern coast of India, Odisha state. The dose rate measured in situ varied from 0.25 to 1.2 µSv h(-1) The gamma spectrometry measurements indicated Th series elements as the main contributors to the enhanced level of radiation and allowed the authors to find the mean level of the activity concentration (±SD) for (226)Ra, (228)Th and (40)K as 130±97, 1110±890 and 360±140 Bq kg(-1), respectively. Human exposure from radionuclides occurring outdoor was estimated based on the effective dose rate, which ranged from 0.14±0.02 to 2.15±0.26 mSv and was higher than the UNSCEAR annual worldwide average value 0.07 mSv. Additionally, X-ray fluorescence analysis provided information about the content of major elements in samples and indicated the significant amount of Ti (7.4±4.9 %) in soils.

  7. A system-level model for high-speed, radiation-hard optical links in HEP experiments based on silicon Mach-Zehnder modulators

    NASA Astrophysics Data System (ADS)

    Zeiler, M.; Detraz, S.; Olantera, L.; Sigaud, C.; Soos, C.; Troska, J.; Vasey, F.

    2016-12-01

    Silicon Mach-Zehnder modulators have been shown to be relatively insensitive to displacement damage beyond a 1-MeV-equivalent neutron fluence of 3ṡ1016n/cm2. Recent investigations on optimized device designs have also led to a high resistance against total ionizing dose levels of above 1 MGy. Such devices could potentially replace electrical and/or optical links close to the particle interaction points in future high energy physics experiments. Since they require an external continuous-wave light source, radiation-hard optical links based on silicon Mach-Zehnder modulators need to have a different system design when compared to existing directly modulated laser-based optical links. 10 Gb/s eye diagrams of irradiated Mach-Zehnder modulators were measured. The outcomes demonstrate the suitability for using these components in harsh radiation environments. A proposal for the implementation of silicon Mach-Zehnder modulators in CERN's particle detectors was developed and a model to calculate the system performance is presented. The optical power budget and the electrical power dissipation of the proposed link is compared to that of the upcoming Versatile Link system that will be installed in 2018.

  8. Radiative Strength Functions and Level Densities

    SciTech Connect

    Schiller, A; Becker, J A; Bernstein, L A; Voinov, A; Guttormsen, M; Hjorth-Jensen, M; Rekstad, J; Siem, S; Mitchell, G E; Tavukcu, E

    2002-08-28

    Radiative strength functions and level densities have been extracted from primary {gamma}-ray spectra for {sup 27,28}Si, {sup 56,57}Fe, {sup 96,97}Mo, and several rare earth nuclei. An unexpectedly strong ({approx} 1 mb MeV) resonance at 3 MeV in the radiative strength function has been observed for well-deformed rare earth nuclei. The physical origin of this resonance and its connection to the scissors mode is discussed.

  9. Radiation-Induced Defects in Kaolinite as Tracers of Past Occurrence of Radionuclides in a Natural Analogue of High Level Nuclear Waste Repository

    NASA Astrophysics Data System (ADS)

    Allard, T.; Fourdrin, C.; Calas, G.

    2007-05-01

    Understanding the processes controlling migrations of radioelements at the Earth's surface is an important issue for the long-term safety assessment of high level nuclear waste repositories (HLNWR). Evidence of past occurrence and transfer of radionuclides can be found using radiation-induced defects in minerals. Clay minerals are particularly relevant because of their widespread occurrence at the Earth's surface and their finely divided nature which provides high contact area with radioactive fluids. Owing to its sensitivity to radiations, kaolinite can be used as natural, in situ dosimeter. Kaolinite is known to contain radiation-induced defects which are detected by Electron Paramagnetic Resonance. They are differentiated by their nature, their production kinetics and their thermal stability. One of these defects is stable at the scale of geological periods and provides a record of past radionuclide occurrence. Based on artificial irradiations, a methodology has been subsequently proposed to determine paleodose cumulated by kaolinite since its formation. The paleodose can be used to derive equivalent radioelement concentrations, provided that the age of kaolinite formation can be constrained. This allows quantitative reconstruction of past transfers of radioelements in natural systems. An example is given for the Nopal I U-deposit (Chihuahua, Mexico), hosted in hydrothermally altered volcanic tufs and considered as analogue of the Yucca Mountain site. The paleodoses experienced by kaolinites were determined from the concentration of defects and dosimetry parameters of experimental irradiations. Using few geochemical assumption, a equivalent U-content responsible for defects in kaolinite was calculated from the paleodose, a dose rate balance and model ages of kaolinites constrained by tectonic phases. In a former study, the ages were assumptions derived from regional tectonic events. In thepresent study, ages of mineralization events are measured from U

  10. Ultraviolet radiation levels during the Antarctic spring

    NASA Technical Reports Server (NTRS)

    Frederick, John E.; Snell, Hilary E.

    1988-01-01

    The decrease in atmospheric ozone over Antarctica during spring implies enhanced levels of ultraviolet (UV) radiation received at the earth's surface. Model calculations show that UV irradiances encountered during the occurrence of an Antarctic 'ozone hole' remain less than those typical of a summer solstice at low to middle latitudes. However, the low ozone amounts observed in October 1987 imply biologically effective irradiances for McMurdo Station, Antarctica, that are comparable to or greater than those for the same location at December solstice. Life indigenous to Antarctica thereby experiences a greatly extended period of summerlike UV radiation levels.

  11. Ultraviolet radiation levels during the Antarctic spring

    NASA Technical Reports Server (NTRS)

    Frederick, John E.; Snell, Hilary E.

    1988-01-01

    The decrease in atmospheric ozone over Antarctica during spring implies enhanced levels of ultraviolet (UV) radiation received at the earth's surface. Model calculations show that UV irradiances encountered during the occurrence of an Antarctic 'ozone hole' remain less than those typical of a summer solstice at low to middle latitudes. However, the low ozone amounts observed in October 1987 imply biologically effective irradiances for McMurdo Station, Antarctica, that are comparable to or greater than those for the same location at December solstice. Life indigenous to Antarctica thereby experiences a greatly extended period of summerlike UV radiation levels.

  12. Background compensation for a radiation level monitor

    DOEpatents

    Keefe, D.J.

    1975-12-01

    Background compensation in a device such as a hand and foot monitor is provided by digital means using a scaler. With no radiation level test initiated, a scaler is down-counted from zero according to the background measured. With a radiation level test initiated, the scaler is up-counted from the previous down-count position according to the radiation emitted from the monitored object and an alarm is generated if, with the scaler having crossed zero in the positive going direction, a particular number is exceeded in a specific time period after initiation of the test. If the test is initiated while the scale is down-counting, the background count from the previous down- count stored in a memory is used as the initial starting point for the up-count.

  13. Radiation exposure at ground level by secondary cosmic radiation.

    PubMed

    Wissmann, F; Dangendorf, V; Schrewe, U

    2005-01-01

    The contribution of the charged component of secondary cosmic radiation to the ambient dose equivalent H*(10) at ground level is investigated using the muon detector MUDOS and a TEPC detector surrounded by the coincidence detector CACS to identify charged particles. The ambient dose equivalent rate H*(10)T as measured with the TEPC/CACS is used to calibrate the MUDOS count rate in terms of H*(10). First results from long-term measurements at the PTB reference site for ambient radiation dosimetry are reported. The air pressure corrected dose rate shows, as expected, a strong correlation with the neutron count rate as measured with the Kiel neutron monitor. The measured seasonal variations exhibit a negative correlation with the temperature changes in the upper layers of the atmosphere where the ground level muons are produced.

  14. Vital parameters related low level laser radiation

    NASA Astrophysics Data System (ADS)

    Palmieri, Beniamino; Capone, Stefania

    2011-08-01

    The first work hypotesis is that biosensors on the patient detecting heart, breath rate and skin parameters, modulate laser radiation to enhance the therapeutic outcome; in the second work hypotesis: biofeedback could be effective, when integrated in the low level laser energy release.

  15. Network-level fallout radiation effects assessment. Final report

    SciTech Connect

    Not Available

    1991-05-01

    National Security calls for the ability to maintain communication capabilities in times of national disaster, which could include a nuclear attack. Nuclear detonation has two basic by-products for which telecommunication equipments are susceptible to damage. These are electromagnetic pulse (EMP) and fallout radiation. The purposes of the EMP Mitigation Program are to analyze and to lessen the effects of EMP and fallout radiation on national telecommunications resources. Fallout radiation occurs after the initial intense high-frequency EMP, and is the subject of this analysis. Fallout radiation is the residual radiation that remains in the atmosphere after a nuclear blast, and which can be carried by weather conditions to locations far from the detonation point. This analysis focuses on the effects of fallout radiation on the telecommunications network of the American Telephone and Telegraph Co. (AT and T). This assessment of AT and T-network's communications-capabilities uses a network-level approach to assess fallout-radiation effects on the network's performance. The approach used was developed for assessing network-level EMP effects on Public Switched Network communication capabilities. Details are given on how EMP assessments utilize this method. Equipment-level fallout-radiation survivability data is also required.

  16. The Highly Miniaturised Radiation Monitor

    NASA Astrophysics Data System (ADS)

    Mitchell, E. F.; Araújo, H. M.; Daly, E.; Guerrini, N.; Gunes-Lasnet, S.; Griffin, D.; Marshall, A.; Menicucci, A.; Morse, T.; Poyntz-Wright, O.; Turchetta, R.; Woodward, S.

    2014-07-01

    We present the design and preliminary calibration results of a novel highly miniaturised particle radiation monitor (HMRM) for spacecraft use. The HMRM device comprises a telescopic configuration of active pixel sensors enclosed in a titanium shield, with an estimated total mass of 52 g and volume of 15 cm3. The monitor is intended to provide real-time dosimetry and identification of energetic charged particles in fluxes of up to 108 cm-2 s-1 (omnidirectional). Achieving this capability with such a small instrument could open new prospects for radiation detection in space.

  17. High-power radiating plasma

    NASA Technical Reports Server (NTRS)

    Rozanov, V. B.; Rukhadze, A. A.

    1984-01-01

    The physical principles underlying the use of radiating plasmas for the optical pumping of lasers are described. Particular consideration is given to the properties of radiating plasmas; radiation selectivity; the dynamics, equilibrium, and stability of radiating plasmas; the radiative Reynolds number; and experimental results on radiating discharges.

  18. Final deactivation project report on the High Radiation Level Analytical Facility, Building 3019B at Oak Ridge National Laboratory, Oak Ridge, Tennessee

    SciTech Connect

    1997-09-01

    The purpose of this report is to document the condition of the High Radiation Level Analytical Facility (Building 3019B) at Oak Ridge National Laboratory (ORNL) after completion of deactivation activities. This report identifies the activities conducted to place the facility in a safe and environmentally sound condition prior to transfer to the Environmental Restoration EM-40 Program. This document provides a history and description of the facility prior to the commencement of deactivation activities and documents the condition of the building after completion of all deactivation activities. Turnover items, such as the Post-Deactivation Surveillance and Maintenance (S&M) Plan, remaining hazardous materials inventory, radiological controls, safeguards and security, quality assurance, facility operations, and supporting documentation provided in the Nuclear Material and Facility Stabilization (EM-60) Turnover package are discussed. Building 3019B will require access to perform required S&M activities to maintain the building safety envelope. Building 3019B was stabilized during deactivation so that when transferred to the EM-40 Program, only a minimal S&M effort would be required to maintain the building safety envelope. Other than the minimal S&M activities the building will be unoccupied and the exterior doors locked to prevent unauthorized access. The building will be entered only to perform the required S&M until decommissioning activities begin.

  19. Radiation modified high impact polystyrene

    NASA Astrophysics Data System (ADS)

    Jelčić, Želimir; Ranogajec, Franjo

    2012-09-01

    The purpose of applying high energy (ionising) radiation with absorbed doses up to 1 MGy was to achieve controllable changes in mechanical properties of high impact polystyrene (PS-HI) and, at the same time, to investigate the possibility of using reprocessed irradiated polymeric material. Dielectric relaxation of a radiation modified high impact polystyrene (PS-HI) has been investigated by the time dependence of charging and discharging current. The transient currents for the irradiated PS-HI were well approximated by the power function of the logarithm of time and related to the fractal dimension. It was also shown that yield strength and tensile strength increase while elongation at break decreases with increasing absorbed dose. The specimen prepared by a post-irradiation moulding gave higher melt flow rate than those of specimen formed before irradiation. These results indicate that after radiation the system of PS-HI is reprocessable. It is concluded that an oxygen environment at the beginning of irradiation leads to enhanced chain scission at the expense of crosslinks via peroxide formation and causes oxidative degradation of the main polymer chain of irradiated PS-HI at a low absorbed dose. However, at higher absorbed doses the quasi-inert environment has been established and crosslinking, due to recombination of macroradicals, is dominant.

  20. Solar radiation monitoring for high altitude aircraft

    NASA Technical Reports Server (NTRS)

    Wilson, J. W.

    1981-01-01

    Ground-based and satellite-based ionizing radiation monitoring systems are considered as alternative methods for ensuring safe radiation levels for high-altitude aircraft. It is found that ground-based methods are of limited accuracy due to insensitivity to solar particles of energies between the riometer upper cutoff of about 50 MeV and the neutron monitor threshold of about 450 MeV. This energy range is demonstrated to be essential for atmospheric radiation monitoring at high altitude, and must be covered by satellite measurement. On the basis of presently available data, the accuracy to which the incident solar particle flux must be measured by satellite-borne detectors is examined and recommendations are made to establish minimum requirements.

  1. Is Exposure to Low Radiation Levels Good For You?

    NASA Astrophysics Data System (ADS)

    Dimitroyannis, Dimitri

    1996-05-01

    Little is known about the biological effects of very low levels of ionizing radiation. We propose an experiment to compare cell response to such low radiation levels, using fast replicating yeast cells. Saccharomyces Cerevisae (SC), a type of yeast, is an eukariotic unicellular microorganism with a mean cell generation time of 90 min. Its genetic organization is similar to that of superior organisms, but at the same time is very easy to handle, with special reference to its genetic analysis. Certain CS strains are widely employed for mutagenesis studies. We propose to expose simultaneously three indentical CS cultures for a period of up to a few weeks (100s of cell generations): to natural backgroung (NB) ionizing radiation (at a ground level lab), to sub-NB level (underground) and to supra-NB level (at a high altitude). At the end of the exposure we will chemically challenge the cultured cells with methyl-methane-sulphonate (MMS), a standard chemical mutagen. Mitotic recombination frequency in the MMS exposed cultures is an index of early DNA damage induction at high survival levels (ie at very low radiation levels). This experiment can be handsomely and inexpensively accomodated in one of the existing underground laboratories.

  2. High mortality of Red Sea zooplankton under ambient solar radiation.

    PubMed

    Al-Aidaroos, Ali M; El-Sherbiny, Mohsen M O; Satheesh, Sathianeson; Mantha, Gopikrishna; Agustī, Susana; Carreja, Beatriz; Duarte, Carlos M

    2014-01-01

    High solar radiation along with extreme transparency leads to high penetration of solar radiation in the Red Sea, potentially harmful to biota inhabiting the upper water column, including zooplankton. Here we show, based on experimental assessments of solar radiation dose-mortality curves on eight common taxa, the mortality of zooplankton in the oligotrophic waters of the Red Sea to increase steeply with ambient levels of solar radiation in the Red Sea. Responses curves linking solar radiation doses with zooplankton mortality were evaluated by exposing organisms, enclosed in quartz bottles, allowing all the wavelengths of solar radiation to penetrate, to five different levels of ambient solar radiation (100%, 21.6%, 7.2%, 3.2% and 0% of solar radiation). The maximum mortality rates under ambient solar radiation levels averaged (±standard error of the mean, SEM) 18.4±5.8% h(-1), five-fold greater than the average mortality in the dark for the eight taxa tested. The UV-B radiation required for mortality rates to reach ½ of maximum values averaged (±SEM) 12±5.6 h(-1)% of incident UVB radiation, equivalent to the UV-B dose at 19.2±2.7 m depth in open coastal Red Sea waters. These results confirm that Red Sea zooplankton are highly vulnerable to ambient solar radiation, as a consequence of the combination of high incident radiation and high water transparency allowing deep penetration of damaging UV-B radiation. These results provide evidence of the significance of ambient solar radiation levels as a stressor of marine zooplankton communities in tropical, oligotrophic waters. Because the oligotrophic ocean extends across 70% of the ocean surface, solar radiation can be a globally-significant stressor for the ocean ecosystem, by constraining zooplankton use of the upper levels of the water column and, therefore, the efficiency of food transfer up the food web in the oligotrophic ocean.

  3. High Mortality of Red Sea Zooplankton under Ambient Solar Radiation

    PubMed Central

    Al-Aidaroos, Ali M.; El-Sherbiny, Mohsen M. O.; Satheesh, Sathianeson; Mantha, Gopikrishna; Agustī, Susana; Carreja, Beatriz; Duarte, Carlos M.

    2014-01-01

    High solar radiation along with extreme transparency leads to high penetration of solar radiation in the Red Sea, potentially harmful to biota inhabiting the upper water column, including zooplankton. Here we show, based on experimental assessments of solar radiation dose-mortality curves on eight common taxa, the mortality of zooplankton in the oligotrophic waters of the Red Sea to increase steeply with ambient levels of solar radiation in the Red Sea. Responses curves linking solar radiation doses with zooplankton mortality were evaluated by exposing organisms, enclosed in quartz bottles, allowing all the wavelengths of solar radiation to penetrate, to five different levels of ambient solar radiation (100%, 21.6%, 7.2%, 3.2% and 0% of solar radiation). The maximum mortality rates under ambient solar radiation levels averaged (±standard error of the mean, SEM) 18.4±5.8% h−1, five-fold greater than the average mortality in the dark for the eight taxa tested. The UV-B radiation required for mortality rates to reach ½of maximum values averaged (±SEM) 12±5.6 h−1% of incident UVB radiation, equivalent to the UV-B dose at 19.2±2.7 m depth in open coastal Red Sea waters. These results confirm that Red Sea zooplankton are highly vulnerable to ambient solar radiation, as a consequence of the combination of high incident radiation and high water transparency allowing deep penetration of damaging UV-B radiation. These results provide evidence of the significance of ambient solar radiation levels as a stressor of marine zooplankton communities in tropical, oligotrophic waters. Because the oligotrophic ocean extends across 70% of the ocean surface, solar radiation can be a globally-significant stressor for the ocean ecosystem, by constraining zooplankton use of the upper levels of the water column and, therefore, the efficiency of food transfer up the food web in the oligotrophic ocean. PMID:25309996

  4. Lung cancer in relation to airborne radiation levels

    SciTech Connect

    Helsing, K.J.; Natta, P.V.; Comstock, G.W. ); Kalin, Heidi ) Chee, E. )

    1992-01-01

    A 1986 aeroradiometric survey of the eastern two-thirds of Washington County, Maryland provided and opportunity to study lung cancers in relation to gamma radiation levels. In the first approach, lung cancer deaths between 1963 and 1975 in four areas of the county categorized as low, moderately low, moderately high, and high showed relative risks of 1.00, 0.93, 1.01, and 1.43, respectively, after adjustment of sex, age, and smoking. A second approach used lung cancer cases diagnosed between 1975 and 1989, controls matched to cases by race, sex, and age, and aerometric radiation readings above the individual residences. In four levels of increasing gamma radiation, odds ratios adjusted for smoking were 1.00, 0.84, 0.90, and 0.92, respectively. No differences were statistically significant.

  5. High level nuclear waste

    SciTech Connect

    Crandall, J L

    1980-01-01

    The DOE Division of Waste Products through a lead office at Savannah River is developing a program to immobilize all US high-level nuclear waste for terminal disposal. DOE high-level wastes include those at the Hanford Plant, the Idaho Chemical Processing Plant, and the Savannah River Plant. Commercial high-level wastes, for which DOE is also developing immobilization technology, include those at the Nuclear Fuel Services Plant and any future commercial fuels reprocessing plants. The first immobilization plant is to be the Defense Waste Processing Facility at Savannah River, scheduled for 1983 project submission to Congress and 1989 operation. Waste forms are still being selected for this plant. Borosilicate glass is currently the reference form, but alternate candidates include concretes, calcines, other glasses, ceramics, and matrix forms.

  6. Ambient ultraviolet radiation levels in public shade settings.

    PubMed

    Moise, A F; Aynsley, R

    1999-11-01

    As people become better informed about the harmful effects of prolonged exposure to solar ultraviolet radiation (UVR, 280-400 nm) they will seek the protection of shade, particularly in tropical locations such as Townsville (19 degrees south). Using broad-band radiation sensors for solar ultraviolet-B (280-315 nm), ultraviolet-A (315-400 nm) and daylight (400-800 nm) radiation, the exposure levels were measured in both the horizontal (shaded and unshaded) and vertical (shaded and unshaded) directions. The measurements were conducted at eight locations (shade settings) in Townsville during the period between December 1997 (summer) and May 1998 (beginning of winter). The quality of protection was assessed by the ratio of unshaded to shaded radiation exposure, the UVB/shade protection ratio (UVB-SPR). The UVB-SPR varies considerably between the different shade settings, with a beach umbrella showing the least protection and dense foliage the highest protection. The roof of a house verandah can provide only little protection if the verandah catches the afternoon sun. Increasing cloud cover decreases the UVB-SPR for all settings because of the increase in the diffuse fraction of the radiation. Only one setting provided a UVB-SPR of 15 or higher, as suggested for protective shading against solar UVB radiation. Shade from direct sunlight alone does not provide enough protection against high levels of solar UVR. Apart from the transmission qualities of the shading material, it is the construction of the whole shade setting that determines the exposure levels underneath. A shade structure with enough overhang is recommended so that high levels of scattered radiation do not reach the skin.

  7. The effect of vernal solar UV radiation on serum 25-hydroxyvitamin D concentration depends on the baseline level: observations from a high latitude in Finland.

    PubMed

    Karppinen, Toni; Ala-Houhala, Meri; Ylianttila, Lasse; Kautiainen, Hannu; Lakkala, Kaisa; Hannula, Henna-Reetta; Turunen, Esa; Viljakainen, Heli; Reunala, Timo; Snellman, Erna

    2017-01-01

    Humans obtain vitamin D from conversion of 7-dehydrocholesterol in the skin by ultraviolet B (UVB) radiation or from dietary sources. As the radiation level is insufficient in winter, vitamin D deficiency is common at higher latitudes. We assessed whether vernal solar UVB radiation at latitudes 61°N and 67°N in Finland has an impact on serum 25-hydroxyvitamin D [S-25(OH)D] concentrations. Twenty-seven healthy volunteers participated in outdoor activities in snow-covered terrain for 4-10 days in March or April, with their face and hands sun-exposed. The personal UVB doses and S-25(OH)D levels were monitored. A mean UVB dose of 11.8 standard erythema doses (SED) was received during an average of 12.3 outdoor hours. The mean S-25(OH)D concentration in subjects with a baseline concentration below 90.0 nmol/L (n=13) increased significantly, by 6.0 nmol/L from an initial mean of 62.4 nmol/L (p<0.001), whereas in those with a basal concentration above 90.0 nmol/L (n=12) it decreased significantly, by 6.7 nmol/L from a mean of 116.9 nmol/L (p<0.01). To conclude, only 7% of total body surface area was exposed to vernal sunlight and this was capable of increasing S-25(OH)D levels in subjects with a baseline level below 90 nmol/L but not in those with higher levels.

  8. The effect of vernal solar UV radiation on serum 25-hydroxyvitamin D concentration depends on the baseline level: observations from a high latitude in Finland

    PubMed Central

    Karppinen, Toni; Ala-Houhala, Meri; Ylianttila, Lasse; Kautiainen, Hannu; Lakkala, Kaisa; Hannula, Henna-Reetta; Turunen, Esa; Viljakainen, Heli; Reunala, Timo; Snellman, Erna

    2017-01-01

    ABSTRACT Humans obtain vitamin D from conversion of 7-dehydrocholesterol in the skin by ultraviolet B (UVB) radiation or from dietary sources. As the radiation level is insufficient in winter, vitamin D deficiency is common at higher latitudes. We assessed whether vernal solar UVB radiation at latitudes 61°N and 67°N in Finland has an impact on serum 25-hydroxyvitamin D [S-25(OH)D] concentrations. Twenty-seven healthy volunteers participated in outdoor activities in snow-covered terrain for 4–10 days in March or April, with their face and hands sun-exposed. The personal UVB doses and S-25(OH)D levels were monitored. A mean UVB dose of 11.8 standard erythema doses (SED) was received during an average of 12.3 outdoor hours. The mean S-25(OH)D concentration in subjects with a baseline concentration below 90.0 nmol/L (n=13) increased significantly, by 6.0 nmol/L from an initial mean of 62.4 nmol/L (p<0.001), whereas in those with a basal concentration above 90.0 nmol/L (n=12) it decreased significantly, by 6.7 nmol/L from a mean of 116.9 nmol/L (p<0.01). To conclude, only 7% of total body surface area was exposed to vernal sunlight and this was capable of increasing S-25(OH)D levels in subjects with a baseline level below 90 nmol/L but not in those with higher levels.

  9. Health effects of low level radiation: carcinogenesis, teratogenesis, and mutagenesis

    SciTech Connect

    Ritenour, E.R.

    1986-04-01

    The carcinogenic effects of radiation have been demonstrated at high dose levels. At low dose levels, such as those encountered in medical diagnosis, the magnitude of the effect is more difficult to quantify. Three reasons for this difficulty are (1) the effects in human populations are small compared with the natural incidence of cancer in the populations; (2) it is difficult to transfer results obtained in animal studies to the human experience; and (3) the effects of latency period and plateau increase the complexity of population studies. In spite of these difficulties, epidemiologic studies of human populations exposed to low levels of radiation still play a valuable role in the determination of radiation carcinogenecity. They serve to provide upper estimates of risk and to rule out the appearance of new effects that may be masked by the effects of high doses. While there is evidence for mutagenic effects of radiation in experimental animals, no conclusive human data exist at the present. It is not possible to rule out the presence of genetic effects of radiation in humans, however, because many problems exist with regard to the epidemiologic detection of small effects when the natural incidence is relatively large. In animals, subtle effects (eg, a decrease in the probability of survival from egg to adult) may occur with greater frequency than more dramatic disorders in irradiated populations. However, these types of genetic abnormalities are difficult to quantitate. Current risk estimates are based primarily upon data pertaining to dominant mutations in rodents. Some specific locus studies also permit identification of recessive mutation rates. The embryo and fetus are considered to be at greater risk for adverse effects of radiation than is the adult.

  10. Portable radiation monitor assures cleanup levels

    SciTech Connect

    Hasbach, A.

    1995-10-01

    Sevenson Environmental Services, Niagara Falls, NY, is a contractor at the EPA Superfund site at Montclair, NJ. Working with the Army Corps of Engineers, they are cleaning up radium waste left by a watch factory from the early 1900s. With the hazards of radium unknown at the time, radium in its many forms was spread throughout the region. As sand, it was used for concrete, as ash for packing material, and sometimes as landfill. When a hazardous site is found, Sevenson excavates the contaminated material and replaces it with clean fill. A Reuter-Stokes RSS-112 portable gamma monitoring system is used to ensure radiation is at sample background levels. Using a pressurized ionization chamber (PIC), the RSS-112 measures exposure rates from background to serious alarm levels over a wide energy range. Measurement takes place every five seconds. The portable system is 50% lighter than its predecessor and includes 300 point data storage, graphic display panel, 120-hour battery life between recharges, and RS-232 interface for downloading to a PC.

  11. Radiation levels in the SSC interaction regions

    SciTech Connect

    Groom, D.E.

    1988-06-10

    The radiation environment in a typical SSC detector has been evaluated using the best available particle production models coupled with Monte Carlo simulations of hadronic and electromagnetic cascades. The problems studied include direct charged particle dose, dose inside a calorimeter from the cascades produced by incident photons and hadrons, the flux of neutrons and photons backscattered from the calorimeter into a central cavity, and neutron flux in the calorimeter. The luminosity lifetime at the SSC is dominated by collision losses in the interaction regions, where the luminosity is equivalent to losing an entire full-energy proton beam into the apparatus every six days. The result of an average p-p collision can be described quite simply. The mean charged multiplicity is about 110, and the particles are distributed nearly uniformly in pseudorapidity ({eta}) over all the angles of interest. The transverse momentum distribution is independent of angle, and for our purposes may be written as p{perpendicular}exp(-p{perpendicular}/{beta}). The mean value of p{perpendicular} may be as high as 0.6 GeV/c. Most of the radiation is produced by the very abundant low-p{perpendicular} particles. The dose or neutron fluence produced by individual particles in this energy region are simulated over a wide variety of conditions, and several measurements serve to confirm the simulation results. In general, the response (a dose, fluence, the number of backscattered neutrons, etc.) for an incident particle of momentum p can be parameterized in the form Np{sup {alpha}}, where 0.5 < {alpha}< 1.0. The authors believe most of their results to be accurate to within a factor of two or three, sufficiently precise to serve as the basis for detailed designs.

  12. Galactic cosmic ray radiation levels in spacecraft on interplanetary missions

    NASA Technical Reports Server (NTRS)

    Shinn, J. L.; Nealy, J. E.; Townsend, L. W.; Wilson, J. W.; Wood, J.S.

    1994-01-01

    Using the Langley Research Center Galactic Cosmic Ray (GCR) transport computer code (HZETRN) and the Computerized Anatomical Man (CAM) model, crew radiation levels inside manned spacecraft on interplanetary missions are estimated. These radiation-level estimates include particle fluxes, LET (Linear Energy Transfer) spectra, absorbed dose, and dose equivalent within various organs of interest in GCR protection studies. Changes in these radiation levels resulting from the use of various different types of shield materials are presented.

  13. Galactic cosmic ray radiation levels in spacecraft on interplanetary missions

    NASA Technical Reports Server (NTRS)

    Shinn, J. L.; Nealy, J. E.; Townsend, L. W.; Wilson, J. W.; Wood, J.S.

    1994-01-01

    Using the Langley Research Center Galactic Cosmic Ray (GCR) transport computer code (HZETRN) and the Computerized Anatomical Man (CAM) model, crew radiation levels inside manned spacecraft on interplanetary missions are estimated. These radiation-level estimates include particle fluxes, LET (Linear Energy Transfer) spectra, absorbed dose, and dose equivalent within various organs of interest in GCR protection studies. Changes in these radiation levels resulting from the use of various different types of shield materials are presented.

  14. Modelling of ground-level UV radiation

    NASA Astrophysics Data System (ADS)

    Koepke, P.; Schwander, H.; Thomalla, E.

    1996-06-01

    A number of modifications were made on the STAR radiation transmission model for greater ease of use while keeping its fault liability low. The improvements concern the entire aerosol description function of the model, the option of radiation calculation for different receiver geometries, the option of switching off temperature-dependent ozone absorption, and simplications of the STAR menu. The assets of using STAR are documented in the studies on the accuracy of the radiation transmission model. One of these studies gives a detailed comparison of the present model with a simple radiation model which reveals the limitations of approximation models. The other examines the error margin of radiation transmission models as a function of the input parameters available. It was found here that errors can be expected to range between 5 and 15% depending on the quality of the input data sets. A comparative study on the values obtained by measurement and through the model proved this judgement correct, the relative errors lying within the predicted range. Attached to this final report is a comprehensive sensitivity study which quantifies the action of various atmospheric parameters relevant to UV radiation, thus contributing to an elucidation of the process.

  15. High Intensity Radiation Laboratory Reverberation Facility

    NASA Technical Reports Server (NTRS)

    1995-01-01

    This photo depicts the interior of the large Reverberation Chamber located in the High Intensity, Radiation Facility (HIRL). These chambers are used to test susceptibility of aircraft avionics systems responses to high intensity radiated fields. These resources include a Gigahertz Transverse Electromagnetic Cell (GTEM), which provides a uniform field of up to 1000V/m from 10 kHz to 18 Ghz.

  16. Cataractogenesis following high-LET radiation exposure.

    PubMed

    Hamada, Nobuyuki; Sato, Tatsuhiko

    Biological effectiveness of ionizing radiation differs with its linear energy transfer (LET) such that high-LET radiation is more effective for various biological endpoints than low-LET radiation. Human exposure to high-LET radiation occurs in cancer patients, nuclear workers, aviators, astronauts and other space travellers. From the radiation protection viewpoint, the ocular lens is among the most radiosensitive tissues in the body, and cataract (a clouding of the normally transparent lens) is classified as tissue reactions (formerly called nonstochastic or deterministic effects) with a threshold below which no effect would occur. To prevent radiation cataracts, the International Commission on Radiological Protection (ICRP) has recommended an equivalent dose limit for the lens according to the threshold for vision-impairing cataracts. ICRP recommended the threshold of >8Gy in 1984 and an occupational dose limit of 150mSv/year in 1980. These remained unchanged until 2011, when ICRP recommended lowering the threshold to 0.5Gy and the dose limit to 20mSv/year (averaged over 5 years with no single year exceeding 50mSv). Although such reduction of the threshold was based on findings from low-LET radiation, the dose limit was recommended in Sv. Historically, the lens is the exceptional tissue for which ICRP had assigned a special factor in addition to a general radiation weighting factor, predicated on a belief that the lens is more vulnerable to high-LET radiation than other tissues. Considering such radiosensitive nature of the lens, a deeper understanding of a cataractogenic potential of high-LET radiation is indispensable. This review is thus designed to provide an update on the current knowledge as to high-LET radiation cataractogenesis. To this end, changes in ICRP recommendations on lenticular radiation protection, epidemiological and biological findings on high-LET cataractogenesis are reviewed, and future research needs are then discussed.

  17. Production of high power femtosecond terahertz radiation

    SciTech Connect

    Neil, George R.; Carr, G.L.; Gubeli III, Joseph F.; Jordan, K.; Martin, Michael C.; McKinney, Wayne R.; Shinn, Michelle; Tani, Masahiko; Williams, G.P.; Zhang, X.-C.

    2003-07-11

    The terahertz (THz) region of the electromagnetic spectrum is attracting interest for a broad range of applications ranging from diagnosing electron beams to biological imaging. Most sources of short pulse THz radiation utilize excitation of biased semiconductors or electro-optic crystals by high peak power lasers. For example, this was done by using an un-doped InAs wafer irradiated by a femtosecond free-electron laser (FEL) at the Thomas Jefferson National Accelerator Facility. Microwatt levels of THz radiation were detected when excited with FEL pulses at 1.06 mm wavelength and 10W average power. Recently substantially higher powers of femtosecond THz pulses produced by synchrotron emission were extracted from the electron beamline. Calculations and measurements confirm the production of coherent broadband THz radiation from relativistic electrons with an average power of nearly 20W, a world record in this wavelength range by a factor of 10,000. We describe the source, presenting theoretical calculations and their experimental verification. Potential applications of this exciting new source include driving new non-linear phenomena, performing pump-probe studies of dynamical properties of novel materials, and studying molecular vibrations and rotations, low frequency protein motions, phonons, superconductor band gaps, electronic scattering, collective electronic excitations (e.g., charge density waves), and spintronics.

  18. Responses to the low-level-radiation controversy

    SciTech Connect

    Bond, V.P.

    1981-10-07

    Some data sets dealing with the hazards of low-level radiation are discussed. It is concluded that none of these reports, individually or collectively, changes appreciably or even significantly the evaluations of possible low-level radiation effects that have been made by several authoritative national and international groups. (ACR)

  19. Spatial and vertical distributions of heavy metals and their potential toxicity levels in various beach sediments from high-background-radiation area, Kerala, India.

    PubMed

    Suresh, G; Ramasamy, V; Sundarrajan, M; Paramasivam, K

    2015-02-15

    The spatial and vertical distribution of heavy metals and the sediment characteristics of beaches in Kerala, India (the upper surface sediments and the first, second and third one-foot-thick strata) were assessed in this study. The concentrations of most of the studied metals were highest at sampling site S1 (Cochin). The measured concentrations were compared with background and toxicological reference values. The results show that definite adverse biological effects are possible at most of the sampling sites due to the high Pb levels. Three different indexes were calculated to investigate the potential toxicity level. Most of the studied metals and all calculated indexes were highest in the third foot of sediment. Multivariate statistical analyses were performed and suggested that particular heavy metals, e.g., Pb, Cd, Cr and Ni, may represent contamination from a common source. The Cd and Pb concentrations and all the calculated index values show a relationship with the content of organic matter. The results of the present study suggest the recommendation that a systematic analysis is needed to monitor heavy metal levels in the studied area. Copyright © 2014 Elsevier Ltd. All rights reserved.

  20. Blood lead levels in radiator repair workers in Colorado.

    PubMed

    Dalton, C B; McCammon, J B; Hoffman, R E; Baron, R C

    1997-01-01

    A laboratory-based blood lead surveillance system in Colorado identified radiator repair workers as having the highest blood lead levels of all worker groups reported. A survey of 42 radiator repair shops in ten locales throughout Colorado was undertaken to estimate the prevalence of workers with elevated blood lead levels > 25 micrograms/dL. The survey was designed to test the sensitivity of the surveillance system and to assess working conditions and practices in the radiator repair industry in Colorado. Of 63 workers, 39 (62%) had blood lead levels > 25 micrograms/dL. The sensitivity of the surveillance system for detecting radiator repair workers with elevated blood lead levels was estimated at 11%. None of the radiator repair shops had adequate local exhaust ventilation. Work practice and engineering modifications are needed to reduce lead exposure in this industry.

  1. Physics of intense, high energy radiation effects.

    SciTech Connect

    Hjalmarson, Harold Paul; Hartman, E. Frederick; Magyar, Rudolph J.; Crozier, Paul Stewart

    2011-02-01

    This document summarizes the work done in our three-year LDRD project titled 'Physics of Intense, High Energy Radiation Effects.' This LDRD is focused on electrical effects of ionizing radiation at high dose-rates. One major thrust throughout the project has been the radiation-induced conductivity (RIC) produced by the ionizing radiation. Another important consideration has been the electrical effect of dose-enhanced radiation. This transient effect can produce an electromagnetic pulse (EMP). The unifying theme of the project has been the dielectric function. This quantity contains much of the physics covered in this project. For example, the work on transient electrical effects in radiation-induced conductivity (RIC) has been a key focus for the work on the EMP effects. This physics in contained in the dielectric function, which can also be expressed as a conductivity. The transient defects created during a radiation event are also contained, in principle. The energy loss lead the hot electrons and holes is given by the stopping power of ionizing radiation. This information is given by the inverse dielectric function. Finally, the short time atomistic phenomena caused by ionizing radiation can also be considered to be contained within the dielectric function. During the LDRD, meetings about the work were held every week. These discussions involved theorists, experimentalists and engineers. These discussions branched out into the work done in other projects. For example, the work on EMP effects had influence on another project focused on such phenomena in gases. Furthermore, the physics of radiation detectors and radiation dosimeters was often discussed, and these discussions had impact on related projects. Some LDRD-related documents are now stored on a sharepoint site (https://sharepoint.sandia.gov/sites/LDRD-REMS/default.aspx). In the remainder of this document the work is described in catergories but there is much overlap between the atomistic calculations, the

  2. Arc-textured high emittance radiator surfaces

    NASA Technical Reports Server (NTRS)

    Banks, Bruce A. (Inventor)

    1991-01-01

    High emittance radiator surfaces are produced by arc-texturing. This process produces such a surface on a metal by scanning it with a low voltage electric arc from a carbon electrode in an inert environment.

  3. Radiation threshold levels for noise degradation of photodiodes. Technical report

    SciTech Connect

    Aukerman, L.W.; Vernon, F.L.; Song, Y.

    1986-09-30

    Space radiation can increase the noise of photodiodes as a result of either a sustained ionizing-dose-rate effect or displacement damage. Elementary, straightforward models are presented for calculating radiation threshold levels and rad hit susceptibility. Radiation-effects experiments that verify these models are discussed. Calculations for room-temperature silicon p-i-n photodetectors, an avalanche photodiode, and a hypothetical cooled staring detector indicate that this damage mechanism should not be ignored for space and nuclear environments.

  4. A Review: Some biological effects of high LET radiations

    NASA Technical Reports Server (NTRS)

    Wiley, A., Jr.

    1972-01-01

    There are qualitative and quantitative differences in the biological damage observed after exposure to high LET radiation as compared to that caused by low LET radiations. This review is concerned with these differences, which are ultimately reflected at the biochemical, cellular and even whole animal levels. In general, high LET radiations seem to produce biochemical damage which is more severe and possibly less repairable. Experimental data for those effects are presented in terms of biochemical RBE's with consideration of both early and late manifestations. An LET independent process by which significant biochemical damage may result from protons, neutrons and negative pion mesons is discussed.

  5. Revised and extended calculations of level energies, M1 and E2 radiative rates for highly charged tungsten ions from W57+ to W60+

    NASA Astrophysics Data System (ADS)

    Singh, Gajendra; Puri, Nitin K.

    2016-10-01

    We have applied systematically enlarged multiconfiguration Dirac-Fock wavefunctions using Grasp2K to calculate the transition energies, oscillator strengths and transition probabilities for fine structure M1 and E2 transitions between the low-lying levels of the 3s23p5, 3s23p4, 3s23p3 and 3s23p2 configurations of highly charged tungsten ions from {{{W}}}57+ to {{{W}}}60+. Large wavefunction expansions are applied to calculate the transition probabilities, which are indispensable for calculating various plasma parameters accurately. In the present calculations, our theoretical data agrees well with that obtained in precise electron beam ion trap measurements, and is therefore important for the identification of weak forbidden lines for plasma diagnostic applications.

  6. Ultrasound Thermometry for Therapy-level Radiation Dosimetry

    NASA Astrophysics Data System (ADS)

    Taylor, Courtney

    2010-03-01

    Radiation oncology is the process of administering a specified dose of radiation to a patient currently receiving treatment for a form of cancer. In this process, it is vital to know the delivered dose for a given radiation beam to correctly treat a patient. The primary reference standard for absorbed dose is established using water calorimetry. The absorbed dose, typically of order 1 Gy (J/kg) at therapy levels, is realized by measuring sub-millikelvin temperature changes using a thermistor in a sensitive Wheatstone bridge. Ultrasound technology has been investigated as an alternative to thermistor measurements since the speed of sound propagation in water varies with temperature. With ultrasonic time-of-flight and highly sensitive phase detection techniques, temperature sensitivity comparable to that of the thermistor bridge has been achieved without introducing non-water materials into the test area. A single ultrasound transducer transmitting and receiving at 5.0 MHz throughout the length of the water phantom, and the phase change of the sound wave was used to determine temperature increase from an irradiative source at specified depths of the phantom. In this experiment, the exposure period was varied from 15s to 160s cyclically by modulating a heat lamp, and a profile of the measured temperature response as a function of the period was obtained using Fourier analysis. Due to the large temperature gradient in the water phantom, measurements are prone to convection which was indeed observed and will be discussed.

  7. Prevention of polymorphic light eruption with a sunscreen of very high protection level against UVB and UVA radiation under standardized photodiagnostic conditions.

    PubMed

    Schleyer, Verena; Weber, Oliver; Yazdi, Amir; Benedix, Frauke; Dietz, Klaus; Röcken, Martin; Berneburg, Mark

    2008-01-01

    Polymorphic light eruption (PLE), with an overall prevalence of 10-20%, is mainly provoked by ultraviolet A (UVA) (320-400 nm) and to a lesser degree by UVB (280-320 nm). The most effective prophylaxis of PLE, application of UV protection clothing, is not feasible for all sun-exposed areas of the skin and UV-hardening is time-consuming and may be associated with side-effects. Most sunscreens protect predominantly against UVB and therefore fail to prevent PLE. The protection level of potent UVA-protective filters remains unresolved. This single-centre, open, placebo-controlled, intra-individual, comparative study, analysed the efficacy of a sunscreen of very high protection level against UVB and UVA, containing methylene bis-benzotriazolyl tetramethylbutylphenol (Tinosorb M), bis-ethylhexyloxyphenol methoxyphenyl triazine (Tinosorb S) and butyl methoxydibenzoylmethane as UVA absorbing filters, in the prevention of PLE under standardized photodiagnostic conditions. After determination of the minimal erythema dose at day 0, photoprovocation was performed in 12 patients with a clinical history of PLE, on days 1, 2 and 3 with 100 J/cm2 UVA and variable doses of UVB, starting with the 1.5-fold minimal erythema dose of UVB. Prior to irradiation, placebo was applied to the right and sunscreen to the left dorsal forearm under COLIPA (European Cosmetic, Toiletry and Perfumery Association) conditions. In 10 patients PLE could be provoked at the placebo site, with positive reactions in 90% of the UVA, 40% of the UVB and 90% of the UVA/UVB irradiated fields. At the site with the active treatment none of these patients developed PLE. These data demonstrate that a sunscreen with effective filters against UVA and UVB can successfully prevent the development of PLE. Further studies are needed to examine whether regular application of sunscreen under everyday conditions, especially in doses less than the tested COLIPA-norm, could be an equivalent alternative to UV-hardening therapy.

  8. Examining a link between SPEs and ground level radiation

    NASA Astrophysics Data System (ADS)

    Overholt, Andrew

    2015-01-01

    Researchers have previously found a correlation between solar proton events (SPEs) and congenital malformations (CMs). A similar correlation has also been found between long term solar variability and CMs. We examine the ionizing radiation dose from these events as well as the largest events on record to determine whether these events are capable of producing these effects. We show that the total ionizing radiation dose (consisting of neutrons and muons) at ground level is insufficient for production of the observed increases in CM rate under the current paradigm regarding ionizing radiation from muons and neutrons. Current research on the subject shows that our assumptions regarding muonic ionizing radiation may be underestimating their biologic effect. We recommend further experimentation regarding the radiation dose due to muons, as this may prove to be a more substantial contribution to our radiation environment than previously assumed.

  9. Skylab experiments. Volume 5: Astronomy and space physics. [Skylab observations of galactic radiation, solar energy, and interplanetary composition for high school level education

    NASA Technical Reports Server (NTRS)

    1973-01-01

    The astronomy and space physics investigations conducted in the Skylab program include over 20 experiments in four categories to explore space phenomena that cannot be observed from earth. The categories of space research are as follows: (1) phenomena within the solar system, such as the effect of solar energy on Earth's atmosphere, the composition of interplanetary space, the possibility of an inner planet, and the X-ray radiation from Jupiter, (2) analysis of energetic particles such as cosmic rays and neutrons in the near-earth space, (3) stellar and galactic astronomy, and (4) self-induced environment surrounding the Skylab spacecraft.

  10. What Is The Optimal Level of Solar Radiation Management?

    NASA Astrophysics Data System (ADS)

    Irvine, Peter; Ridgwell, Andy; Lunt, Dan

    2010-05-01

    Solar radiation management (SRM), achieved by stratospheric aerosol injections or by placing a sunshade in orbit, has the potential to cool the Earth's climate to pre-industrial temperatures even with large quantities of CO2 in the atmosphere. Many authors have observed that in such a geoengineered world there would be an undesirable reduction in the intensity of the hydrological cycle. With a large geoengineering intervention in the climate there are many known issues, and potentially some unexpected issues, which could arise as a result. If climate geoengineering is to be conducted, what is the optimal level of solar radiation management? Here we present the results from a set of experiments using the UK Met Office HadCM3L coupled GCM to simulate the effect of reductions in insolation on the climate of a world with four times the pre-industrial CO2 level. We consider 10 levels of SRM geoengineering from 100% application, returning global average temperature to pre-industrial levels, to 10% of this reduction in insolation. A pre-industrial control, two and four times pre-industrial CO2 experiments were also conducted. All the simulations were run for 400 years to allow the climate to reach a new equilibrium, with the last 100 years used for the climatological averages. In addition the Glimmer Ice Sheet model was used to simulate the viability of the Greenland ice sheet in each of these climates, the results of this section of the work are already published. We assess the effects of different levels of geoengineering on a high CO2 world by a number of different methods, including: temperature and precipitation changes and the stability of the Greenland Ice-Sheet. We include a measure of the change in the climate due solely to the geoengineering intervention, accounting for imperfect mitigation. We combine these variables to find a first estimate of the optimal level of solar radiation management for a high CO2 world. Global average temperature and precipitation

  11. The NASA High Intensity Radiated Fields Laboratory

    NASA Technical Reports Server (NTRS)

    Williams, Reuben A.

    1997-01-01

    High Intensity Radiated Fields (HIRF) are the result of a multitude of intentional and nonintentional electromagnetic sources that currently exists in the world. Many of today's digital systems are susceptible to electronic upset if subjected to certain electromagnetic environments (EME). Modern aerospace designers and manufacturers increasingly rely on sophisticated digital electronic systems to provide critical flight control in both military, commercial, and general aviation aircraft. In an effort to understand and emulate the undesired environment that high energy RF provides modern electronics, the Electromagnetics Research Branch (ERB) of the Flight Electronics and Technology Division (FETD) conducts research on RF and microwave measurement methods related to the understanding of HIRF. In the High Intensity Radiated Fields Laboratory, the effects of high energy radiating electromagnetic fields on avionics and electronic systems are tested and studied.

  12. Radiation levels in cyclotron-radiochemistry facility measured by a novel comprehensive computerized monitoring system

    NASA Astrophysics Data System (ADS)

    Mishani, E.; Lifshits, N.; Osavistky, A.; Kaufman, J.; Ankry, N.; Tal, N.; Chisin, R.

    1999-04-01

    Radiation levels in a cyclotron-radiochemistry facility were measured during the production of commonly used PET radiopharmaceuticals by a comprehensive computerized monitoring system. The system consists of three major components: on-line radiation monitoring channels, an area control unit, and a gas waste management unit. During production the radiation levels were measured in the cyclotron vault, inside automatic chemistry production and research shielded cells, in the radiochemistry room, in the gas waste decay tank, in the chimney filters, and at the top of the cells chimney. Each detector was calibrated in a known radiation field, and a special detector dead time correction was performed in order to achieve detected signal-to-radiation linearity for the Geiger tubes located in the radiochemistry production and research cells. During production of C-11 and O-15 PET radiopharmaceuticals, high radiation levels were measured in the gas waste decay tank (240 and 80 mR/h, respectively). In contrast, the radiation levels at the chimney filters and at the top of the cells chimney did not exceed the International Atomic Energy Agency (IAEA) Drive Air Concentration (DAC) recommended for C-11 or O-15. During production of FDG, high radiation levels were measured at the chimney filters, however the radiation level at the top of the chimney (3.7 μCi/m 3) did not exceed the F-18 DAC recommendation (27 μCi/m 3). Low radiation levels of approximately 0.5-1 mR/h were measured in the radiochemistry room during production of PET radiopharmaceuticals. In the cyclotron vault, 2 min after bombardment the radiation levels at 2 m from the cyclotron decreased to 1-2 mR/h. The addition of a gas waste decay system to computerized monitoring channels located near each strategic point of the site allows for a comprehensive survey of the radiochemical processes.

  13. Predicted levels of human radiation tolerance extrapolated from clinical studies of radiation effects

    NASA Technical Reports Server (NTRS)

    Lushbaugh, C. C.

    1972-01-01

    Results of clinical studies of radiation effects on man are used to evaluate space radiation hazards encountered during manned space travel. Considered are effects of photons as well as of mixed fission neutrons and gamma irradiations in establishing body radiosensitivity and tolerance levels. Upper and lower dose-response-time relations for acute radiation syndromes in patients indicate that man is more than sufficiently radioresistant to make the risks of an early radiation effect during one short space mission intangibly small in relation to the other nonradiation risks involved.

  14. Radiation Dose Testing on Juno High Voltage Cables

    NASA Technical Reports Server (NTRS)

    Green, Nelson W.; Kirkham, Harold; Kim, Wousik; McAlpine, Bill

    2008-01-01

    The Juno mission to Jupiter will have a highly elliptical orbit taking the spacecraft through the radiation belts surrounding the planet. During these passes through the radiation belts, the spacecraft will be subject to high doses of radiation from energetic electrons and protons with energies ranging from 10 keV to 1 GeV. While shielding within the spacecraft main body will reduce the total absorbed dose to much of the spacecraft electronics, instruments and cables on the outside of the spacecraft will receive much higher levels of absorbed dose. In order to estimate the amount of degradation to two such cables, testing has been performed on two coaxial cables intended to provide high voltages to three of the instruments on Juno. Both cables were placed in a vacuum of 5x10-6 torr and cooled to -50 C prior to exposure to the radiation sources. Measurements of the coaxial capacitance per unit length and partial discharge noise floor indicate that increasing levels of radiation make measurable but acceptably small changes to the F EP Teflon utilized in the construction of these cables. In addition to the radiation dose testing, observations were made on the internal electrostatic charging characteristics of these cables and multiple discharges were recorded.

  15. Radiation Dose Testing on Juno High Voltage Cables

    NASA Technical Reports Server (NTRS)

    Green, Nelson W.; Kirkham, Harold; Kim, Wousik; McAlpine, Bill

    2008-01-01

    The Juno mission to Jupiter will have a highly elliptical orbit taking the spacecraft through the radiation belts surrounding the planet. During these passes through the radiation belts, the spacecraft will be subject to high doses of radiation from energetic electrons and protons with energies ranging from 10 keV to 1 GeV. While shielding within the spacecraft main body will reduce the total absorbed dose to much of the spacecraft electronics, instruments and cables on the outside of the spacecraft will receive much higher levels of absorbed dose. In order to estimate the amount of degradation to two such cables, testing has been performed on two coaxial cables intended to provide high voltages to three of the instruments on Juno. Both cables were placed in a vacuum of 5x10(exp -6) torr and cooled to -50(deg)C prior to exposure to the radiation sources. Measurements of the coaxial capacitance per unit length and partial discharge noise floor indicate that increasing levels of radiation make measurable but acceptably small changes to the F EP Teflon utilized in the construction of these cables. In addition to the radiation dose testing, observations were made on the internal electrostatic charging characteristics of these cables and multiple discharges were recorded.

  16. High Radiation Resistance IMM Solar Cell

    NASA Technical Reports Server (NTRS)

    Pan, Noren

    2015-01-01

    Due to high launch costs, weight reduction is a key driver for the development of new solar cell technologies suitable for space applications. This project is developing a unique triple-junction inverted metamorphic multijunction (IMM) technology that enables the manufacture of very lightweight, low-cost InGaAsP-based multijunction solar cells. This IMM technology consists of indium (In) and phosphorous (P) solar cell active materials, which are designed to improve the radiation-resistant properties of the triple-junction solar cell while maintaining high efficiency. The intrinsic radiation hardness of InP materials makes them of great interest for building solar cells suitable for deployment in harsh radiation environments, such as medium Earth orbit and missions to the outer planets. NASA Glenn's recently developed epitaxial lift-off (ELO) process also will be applied to this new structure, which will enable the fabrication of the IMM structure without the substrate.

  17. Radiation reaction in high-intensity fields

    NASA Astrophysics Data System (ADS)

    Seto, Keita

    2015-10-01

    Since the development of a radiating electron model by Dirac in 1938 [P. A. M. Dirac, Proc. R. Soc. Lond. A 167, 148 (1938)], many authors have tried to reformulate this model of the so-called "radiation reaction". Recently, this effect has become important in ultra-intense laser-electron (plasma) interactions. In our recent research, we found a way of stabilizing the radiation reaction by quantum electrodynamics (QED) vacuum fluctuation [K Seto et al., Prog. Theor. Exp. Phys. 2014, 043A01 (2014); K. Seto, Prog. Theor. Exp. Phys. 2015, 023A01 (2015)]. On the other hand, the modification of the radiated field by highly intense incoming laser fields should be taken into account when the laser intensity is higher than 10^{22} W/cm2, which could be achieved by next-generation ultra-short-pulse 10 PW lasers, like the ones under construction for the ELI-NP facility. In this paper, I propose a running charge-mass method for the description of the QED-based synchrotron radiation by high-intensity external fields with stabilization by the QED vacuum fluctuation as an extension from the model by Dirac.

  18. The cancer mortality in high natural radiation areas in poland.

    PubMed

    Fornalski, Krzysztof Wojciech; Dobrzyński, Ludwik

    2012-12-01

    The cancer mortality ratios (CMRs) in Poland in high and low level radiation areas were analyzed based on information from national cancer registry. Presented ecological study concerned six regions, extending from the largest administration areas (a group of voivodeships), to the smallest regions (single counties). The data show that the relative risk of cancer deaths is lower in the higher radiation level areas. The decrease by 1.17%/mSv/year (p = 0.02) of all cancer deaths and by 0.82%/mSv/year (p = 0.2) of lung cancers only are observed.Tribute to Prof. Zbigniew Jaworowski (1927-2011).

  19. Jupiter radiation test levels and their expected impact on an encounter mission

    NASA Technical Reports Server (NTRS)

    Barengoltz, J. B.

    1972-01-01

    The upper limit, of electron and proton fluences for a thermoelectric outer planet spacecraft mission in a near-Jupiter environment, for use as radiation design restraints, were extracted from a model of the Jovian trapped radiation belts. Considerations of radiation effects in semiconductor devices were employed to construct simplified radiation test levels based on the design restraints. Corresponding levels, based on the nominal belt models, are one to three orders of magnitude smaller. In terms of expected radiation-induced degradation in semiconductor devices, an encounter with an environment as severe as the design restraints would require hardening the system in order to guarantee high reliability. On the other hand, the nominal levels would only necessitate care in the selection of components and the avoidance of certain semiconductor components.

  20. Multipurpose High Sensitivity Radiation Detector: Terradex

    NASA Astrophysics Data System (ADS)

    Alpat, Behcet; Aisa, Damiano; Bizzarri, Marco; Blasko, Sandor; Esposito, Gennaro; Farnesini, Lucio; Fiori, Emmanuel; Papi, Andrea; Postolache, Vasile; Renzi, Francesca; Ionica, Romeo; Manolescu, Florentina; Ozkorucuklu, Suat; Denizli, Haluk; Tapan, Ilhan; Pilicer, Ercan; Egidi, Felice; Moretti, Cesare; Dicola, Luca

    2007-05-01

    Terradex project aims to realise an accurate and programmable multiparametric tool which will measure relevant physical quantities such as observation time, energy and type of all decay products of three naturally occurring decay chains of uranium and thorium series present in nature as well as the decay products of man-made radioactivity. The measurements described in this work are based on the performance tests of the first version of an instrument that is designed to provide high counting accuracy, by introducing self-triggering, delayed time-coincidence technique, of products of a given decay chain. In order to qualify the technique and to calibrate the Terradex, a 222Rn source is used. The continuous and accurate monitoring of radon concentration in air is realised by observing the alpha and beta particles produced by the decay of 222Rn and its daughters and tag each of them with a precise occurrence time. The validity of delayed coincident technique by using the state of the art electronics with application of novel data sampling and analysis methods are discussed. The flexibility of sampling protocols and the advantages of online calibration capability to achieve the highest level of precision in natural and man-made radiation measurements are also described.

  1. ULTRA SECURE HIGH RELIABILITY WIRELESS RADIATION MONITOR

    SciTech Connect

    Cordaro, J.; Shull, D.; Farrar, M.; Reeves, G.

    2011-08-03

    Radiation monitoring in nuclear facilities is essential to safe operation of the equipment as well as protecting personnel. In specific, typical air monitoring of radioactive gases or particulate involves complex systems of valves, pumps, piping and electronics. The challenge is to measure a representative sample in areas that are radioactively contaminated. Running cables and piping to these locations is very expensive due to the containment requirements. Penetration into and out of an airborne or containment area is complex and costly. The process rooms are built with thick rebar-enforced concrete walls with glove box containment chambers inside. Figure 1 shows high temperature radiation resistance cabling entering the top of a typical glove box. In some case, the entire processing area must be contained in a 'hot cell' where the only access into the chamber is via manipulators. An example is shown in Figure 2. A short range wireless network provides an ideal communication link for transmitting the data from the radiation sensor to a 'clean area', or area absent of any radiation fields or radioactive contamination. Radiation monitoring systems that protect personnel and equipment must meet stringent codes and standards due to the consequences of failure. At first glance a wired system would seem more desirable. Concerns with wireless communication include latency, jamming, spoofing, man in the middle attacks, and hacking. The Department of Energy's Savannah River National Laboratory (SRNL) has developed a prototype wireless radiation air monitoring system that address many of the concerns with wireless and allows quick deployment in radiation and contamination areas. It is stand alone and only requires a standard 120 VAC, 60 Hz power source. It is designed to be mounted or portable. The wireless link uses a National Security Agency (NSA) Suite B compliant wireless network from Fortress Technologies that is considered robust enough to be used for classified data

  2. High resolution amorphous silicon radiation detectors

    DOEpatents

    Street, R.A.; Kaplan, S.N.; Perez-Mendez, V.

    1992-05-26

    A radiation detector employing amorphous Si:H cells in an array with each detector cell having at least three contiguous layers (n-type, intrinsic, p-type), positioned between two electrodes to which a bias voltage is applied. An energy conversion layer atop the silicon cells intercepts incident radiation and converts radiation energy to light energy of a wavelength to which the silicon cells are responsive. A read-out device, positioned proximate to each detector element in an array allows each such element to be interrogated independently to determine whether radiation has been detected in that cell. The energy conversion material may be a layer of luminescent material having a columnar structure. In one embodiment a column of luminescent material detects the passage therethrough of radiation to be detected and directs a light beam signal to an adjacent a-Si:H film so that detection may be confined to one or more such cells in the array. One or both electrodes may have a comb structure, and the teeth of each electrode comb may be interdigitated for capacitance reduction. The amorphous Si:H film may be replaced by an amorphous Si:Ge:H film in which up to 40 percent of the amorphous material is Ge. Two dimensional arrays may be used in X-ray imaging, CT scanning, crystallography, high energy physics beam tracking, nuclear medicine cameras and autoradiography. 18 figs.

  3. High resolution amorphous silicon radiation detectors

    DOEpatents

    Street, Robert A.; Kaplan, Selig N.; Perez-Mendez, Victor

    1992-01-01

    A radiation detector employing amorphous Si:H cells in an array with each detector cell having at least three contiguous layers (n type, intrinsic, p type), positioned between two electrodes to which a bias voltage is applied. An energy conversion layer atop the silicon cells intercepts incident radiation and converts radiation energy to light energy of a wavelength to which the silicon cells are responsive. A read-out device, positioned proximate to each detector element in an array allows each such element to be interrogated independently to determine whether radiation has been detected in that cell. The energy conversion material may be a layer of luminescent material having a columnar structure. In one embodiment a column of luminescent material detects the passage therethrough of radiation to be detected and directs a light beam signal to an adjacent a-Si:H film so that detection may be confined to one or more such cells in the array. One or both electrodes may have a comb structure, and the teeth of each electrode comb may be interdigitated for capacitance reduction. The amorphous Si:H film may be replaced by an amorphous Si:Ge:H film in which up to 40 percent of the amorphous material is Ge. Two dimensional arrays may be used in X-ray imaging, CT scanning, crystallography, high energy physics beam tracking, nuclear medicine cameras and autoradiography.

  4. Protein microcrystal diffraction and the effects of radiation damage with ultra-high-flux synchrotron radiation.

    PubMed Central

    Hedman, B; Hodgson, K O; Helliwell, J R; Liddington, R; Papiz, M Z

    1985-01-01

    By using ultra-high-flux synchrotron x-radiation from a wiggler source, good Laue diffraction data have been obtained from protein microcrystals of size 30 X 35 X 10 microns3, mounted wet in glass capillaries. At the flux level of 10(13)-10(14) photons per sec/mm2, the radiation damage is still low enough to allow a large survey of reciprocal space for a microcrystal and a complete survey for a normal-sized protein crystal. The development of sources for ultra-high-intensity synchrotron radiation is thus an important improvement in the technique for determination of structure through protein crystallography as well as in other cases where crystal size is often a limiting factor. Images PMID:2415965

  5. High-resolution ultrasonic thermometer for radiation dosimetry.

    PubMed

    Malyarenko, Eugene V; Heyman, Joseph S; Chen-Mayer, H Heather; Tosh, Ronald E

    2008-12-01

    This paper describes recent developments in the area of high-precision ultrasonic thermometry with the potential to provide on-site direct determination of radiation doses administered for cancer treatment. Conventional calorimeters used for this purpose measure radiation-induced heating in a water phantom at one point in space by means of immersed thermistors and are subject to various thermal disturbances due to Ohmic heating and interactions of the radiation with the sensor probes. By contrast, the method described here is based on a high-resolution ultrasonic system that determines the change of the speed of sound due to small temperature changes in an acoustic propagation path in the radiation-heated water, thereby avoiding such undesired thermal effects. The thermometer is able to measure tens of microkelvin changes in the water temperature averaged over the acoustic path of about 60 cm at room temperature, with root-mean-squared noise of about 5 microK. Both incandescent and ionizing radiation heating data are presented for analog and digital implementations of a laboratory prototype. This application of the ultrasonic technique opens up possibilities for a new approach to performing therapy-level radiation dosimetry for medical clinics and standards laboratories.

  6. High pressure liquid level monitor

    DOEpatents

    Bean, Vern E.; Long, Frederick G.

    1984-01-01

    A liquid level monitor for tracking the level of a coal slurry in a high-pressure vessel including a toroidal-shaped float with magnetically permeable bands thereon disposed within the vessel, two pairs of magnetic field generators and detectors disposed outside the vessel adjacent the top and bottom thereof and magnetically coupled to the magnetically permeable bands on the float, and signal processing circuitry for combining signals from the top and bottom detectors for generating a monotonically increasing analog control signal which is a function of liquid level. The control signal may be utilized to operate high-pressure control valves associated with processes in which the high-pressure vessel is used.

  7. Coherence properties of high order harmonic radiation

    SciTech Connect

    Ditmire, T.; Budil, K.S.; Crane, J.K.; Nguyen, H.; Perry, M.D.; Salieres, P.; Huillier, A.L.

    1994-05-01

    The results of a series of experiments to characterize the coherence properties of xuv radiation produced by high-order harmonic generation in helium, neon and argon are reported and compared to predictions from an effective order model. The harmonics exhibit smooth, near gaussian spatial profiles, and have a divergence that is approximately constant ( < 12 mrad) in the plateau region and decreases ({approx}4 mrad) in the cutoff for f/17 focusing. For a bandwidth limited, 140 fsec incident pulse, we measure a harmonic line width of {Delta}{lambda}/{lambda} {approx} 2 {times} 10{sup {minus}3} at 30.3 nm. By reducing the spectral width of the driving pulse, harmonics with {Delta}{lambda}/{lambda} {approx} 2 {times} 10{sup {minus}4} can be produced. Absolute conversion efficiency as high as 10{sup {minus}7} for harmonic radiation as short as 20 nm has been achieved by using 400 fsec, 526 nm pulses from an Nd:Glass laser.

  8. High-temperature miniature blackbody radiation sources.

    PubMed

    Chernin, S M

    1997-03-01

    Various high-temperature blackbody sources for quantitative energy measurements in the IR spectral region are developed. Techniques that ensure a stable operation of the sources at high temperatures are described. The developed blackbody models with maximum temperatures of 2000, 2500, and 3000 K can also operate at other temperatures. Graphite is used as a material for radiators. These blackbodies can be used successfully in radiometric measurements in UV and visible spectral ranges. Blackbodies as high-brightness sources may find wide application in solving the problems of multipass spectroscopy. The blackbody sources developed as rocket engineering has progressed have remained outside the knowledge of foreign scientists.

  9. The effects of radiative transfer on low-level cyclogenesis

    SciTech Connect

    Leach, M.J.; Raman, S.

    1995-04-01

    Many investigators have documented the role that thermodynamic forcing due to radiative flux divergence plays in the enhancement or generation of circulation. Most of these studies involve large-scale systems, small-scale systems such as thunderstorms, and squall lines. The generation of circulation on large scales results from the creation of divergence in the upper troposphere and the maintenance of low-level potentially unstable air, and the maintenance of baroclinicity throughout the atmosphere. On smaller scales, radiative flux divergence acts similarly. In the thunderstorms and squall lines, the radiative forcing acts as a pump, increasing the divergence at the top of the storm systems and increasing the updraft velocity and the intensity of inflow at mid-levels in the storm systems. Other researchers have examined the role of surface processes and low-level baroclinicity in east coast cyclogenesis. In this paper, we examine the interactive role that radiative flux divergence, clouds, and surface processes play in low-level cyclogenesis and the creation or maintenance of the boundary layer baroclinicity.

  10. Migration levels of PVC plasticisers: Effect of ionising radiation treatment.

    PubMed

    Zygoura, Panagiota D; Paleologos, Evangelos K; Kontominas, Michael G

    2011-09-01

    Migration levels of commercial plasticisers [di-(2-ethylhexyl) adipate (DEHA) and acetyl tributyl citrate (ATBC)] from polyvinyl chloride (PVC) film into the EU specified aqueous food simulants (distilled water, 3% w/v acetic acid and 10% v/v ethanol) were monitored as a function of time. Migration testing was carried out at 40°C for 10days (EEC, 1993). Determination of the analytes was performed by applying the analytical methodology based on surfactant (Triton X-114) mediated extraction prior to gas chromatographic-flame ionisation detection (GC-FID) recently proposed by our group. The study focuses on the determination of the effect of gamma radiation on plasticiser migration into the selected simulants. PVC cling film used was subjected to ionising treatment with a [(60)Co] source at doses equal to 5, 15 and 25kGy. DEHA and ATBC migration into the EU aqueous simulating solvents was limited, yielding final concentrations in the respective ranges 10-100μg/l and 171-422μg/l; hence, ATBC demonstrated a stronger interaction with all three simulants compared to DEHA. Migration data, with respect to ATBC, showed that the most aggressive simulant seemed to be the 10% ethanol, while in the case of DEHA the 3% aqueous acetic acid exhibited the highest extraction efficiency; distilled water demonstrated the lowest migration in both cases. With regard to PVC treatment with gamma rays, high radiation doses up to 25kGy produced a statistically significant (p<0.05) effect on the migration of both plasticisers.

  11. Radiation and Turbulence-Chemistry-Soot-Radiation Interactions in a High-Pressure Turbulent Spray Flame

    NASA Astrophysics Data System (ADS)

    Ferreyro, S.; Paul, C.; Sircar, A.; Imren, A.; Haworth, D. C.; Roy, S.; Modest, M. F.

    2016-11-01

    Simulations are performed of a transient high-pressure turbulent n-dodecane spray flame under engine-relevant conditions. An unsteady RANS formulation is used, with detailed chemistry, a two-equation soot model, various radiation heat transfer models, and a particle-based transported composition probability density function (PDF) method to account for composition and temperature. The PDF model results are compared with those from a locally well-stirred reactor (WSR) model to quantify the effects of turbulence-chemistry-soot-radiation interactions. Computed liquid and vapor penetration versus time, ignition delay, and flame lift-off are in good agreement with experiment, and relatively small differences are seen between the WSR and PDF models for these global quantities. Computed soot levels and spatial distributions from the WSR and PDF models show large differences, with PDF results being in better agreement with experimental measurements. A photon Monte Carlo method with line-by-line spectral resolution is used to compute the spectral intensity distribution of the radiation reachingthe wall. This provides new insight into the relative importance of molecular gas radiation versus soot radiation, and the importance of unresolved turbulent fluctuations on radiative heat transfer.

  12. Spontaneous Raman scattering as a high resolution XUV radiation source

    NASA Technical Reports Server (NTRS)

    Rothenberg, J. E.; Young, J. F.; Harris, S. E.

    1983-01-01

    A type of high resolution XUV radiation source is described which is based upon spontaneous anti-Stokes scattering of tunable incident laser radiation from atoms excited to metastable levels. The theory of the source is summarized and two sets of experiments using He (1s2s)(1)S atoms, produced in a cw hollow cathode and in a pulsed high power microwave discharge, are discussed. The radiation source is used to examine transitions originating from the 3p(6) shell of potassium. The observed features include four previously unreported absorption lines and several sharp interferences of closely spaced autoionizing lines. A source linewidth of about 1.9 cm(-1) at 185,000 cm(-1) is demonstrated.

  13. Radiation efficiency of earthquake sources at different hierarchical levels

    SciTech Connect

    Kocharyan, G. G.

    2015-10-27

    Such factors as earthquake size and its mechanism define common trends in alteration of radiation efficiency. The macroscopic parameter that controls the efficiency of a seismic source is stiffness of fault or fracture. The regularities of this parameter alteration with scale define several hierarchical levels, within which earthquake characteristics obey different laws. Small variations of physical and mechanical properties of the fault principal slip zone can lead to dramatic differences both in the amplitude of released stress and in the amount of radiated energy.

  14. High performance radiation curable hybrid coatings

    NASA Astrophysics Data System (ADS)

    Nik Salleh, Nik Ghazali; Sofian Alias, Mohd; Gläsel, H.-J.; Mehnert, R.

    2013-03-01

    Radiation curing is one of the most effective processes to produce rapidly composite materials at ambient temperature. Silica nanoparticles can be introduced into radiation curable resins to produce scratch and abrasion resistant materials, which can be used as sealants or clear coatings. In preparation of radiation cured polymeric composites for wood based products such as medium density fiberboard etc., we synthesized radiation curable silico-organic nanoparticles from silica/acrylates system. These nano-sized silica particles were used as fillers. Epoxy acrylates was used as prepolymer while pentaerythritol triacrylate and tetraacrylate (PETIA) was used as monomer. The acrylated epoxy resin synthesized from palm oil based product (EPOLA) i.e. bio-renewable raw materials was also used in the system. The surface of the silica was chemically modified to improve the embedding of the filler within the acrylate matrix. Modification of the silica surface using silane was done to overcome the problem of incompatibility with acrylates at high silica contents. The nature of the nanoparticles is now changed from hydrophilic to organophilic. In these investigations, we use low energy electron beam accelerator to initiate polymerization and interaction at the interface between the nanoparticles and the monomeric materials. These polymerization active nanoparticles were obtained by heterogeneous hydrolytic condensation of the silane to the silanol groups of the silica particles. Formulations useful for technical coating processes could be prepared and these composite materials showed highly improved mechanical properties. They also provided a high network density whilst the coatings remain transparent. These polymeric nanocomposites show excellent resistances toward abrasion properties including scratch property as compared to pure acrylates.

  15. Modelling of radiation exposure at high altitudes during solar storms.

    PubMed

    Al Anid, H; Lewis, B J; Bennett, L G I; Takada, M

    2009-10-01

    A transport code analysis using Monte Carlo N-Particle eXtended code, MCNPX, has been used to propagate an extrapolated particle spectrum based on satellite measurements through the atmosphere to estimate radiation exposure during solar storms at high altitudes. Neutron monitor count rate data from stations around the world were used to benchmark the model calculations during a ground-level event (GLE). A comparison was made between the model predictions and actual flight measurements taken with various types of instruments used to measure the mixed radiation field during GLE 60. A computer code has been developed to implement the model for routine analysis.

  16. High-Level Radioactive Waste.

    ERIC Educational Resources Information Center

    Hayden, Howard C.

    1995-01-01

    Presents a method to calculate the amount of high-level radioactive waste by taking into consideration the following factors: the fission process that yields the waste, identification of the waste, the energy required to run a 1-GWe plant for one year, and the uranium mass required to produce that energy. Briefly discusses waste disposal and…

  17. High-Level Radioactive Waste.

    ERIC Educational Resources Information Center

    Hayden, Howard C.

    1995-01-01

    Presents a method to calculate the amount of high-level radioactive waste by taking into consideration the following factors: the fission process that yields the waste, identification of the waste, the energy required to run a 1-GWe plant for one year, and the uranium mass required to produce that energy. Briefly discusses waste disposal and…

  18. New techniques of low level environmental radiation monitoring at JLab

    SciTech Connect

    P. Degtiarenko, V. Popov

    2010-07-01

    We present the first long-term environmental radiation monitoring results obtained using the technique of pulse mode readout for the industry-standard Reuter-Stokes RSS-1013 argon-filled high pressure ionization chambers (HPIC). With novel designs for the front-end electronics readout and customized signal processing algorithms, we are capable of detecting individual events of gas ionization in the HPIC, caused by interactions of gammas and charged particles in the gas. The technique provides enough spectroscopic information to distinguish between several different types of environmental and man-made radiation. The technique also achieves a high degree of sensitivity and stability of the data, allowing long-term environmental radiation monitoring with unprecedented precision.

  19. The CMS High Level Trigger

    NASA Astrophysics Data System (ADS)

    Trocino, Daniele

    2014-06-01

    The CMS experiment has been designed with a two-level trigger system: the Level-1 Trigger, implemented in custom-designed electronics, and the High-Level Trigger (HLT), a streamlined version of the CMS offline reconstruction software running on a computer farm. A software trigger system requires a tradeoff between the complexity of the algorithms running with the available computing power, the sustainable output rate, and the selection efficiency. We present the performance of the main triggers used during the 2012 data taking, ranging from simple single-object selections to more complex algorithms combining different objects, and applying analysis-level reconstruction and selection. We discuss the optimisation of the trigger and the specific techniques to cope with the increasing LHC pile-up, reducing its impact on the physics performance.

  20. Factors controlling high-frequency radiation from extended ruptures

    NASA Astrophysics Data System (ADS)

    Beresnev, Igor A.

    2017-04-01

    Small-scale slip heterogeneity or variations in rupture velocity on the fault plane are often invoked to explain the high-frequency radiation from earthquakes. This view has no theoretical basis, which follows, for example, from the representation integral of elasticity, an exact solution for the radiated wave field. The Fourier transform, applied to the integral, shows that the seismic spectrum is fully controlled by that of the source time function, while the distribution of final slip and rupture acceleration/deceleration only contribute to directivity. This inference is corroborated by the precise numerical computation of the full radiated field from the representation integral. We compare calculated radiation from four finite-fault models: (1) uniform slip function with low slip velocity, (2) slip function spatially modulated by a sinusoidal function, (3) slip function spatially modulated by a sinusoidal function with random roughness added, and (4) uniform slip function with high slip velocity. The addition of "asperities," both regular and irregular, does not cause any systematic increase in the spectral level of high-frequency radiation, except for the creation of maxima due to constructive interference. On the other hand, an increase in the maximum rate of slip on the fault leads to highly amplified high frequencies, in accordance with the prediction on the basis of a simple point-source treatment of the fault. Hence, computations show that the temporal rate of slip, not the spatial heterogeneity on faults, is the predominant factor forming the high-frequency radiation and thus controlling the velocity and acceleration of the resulting ground motions.

  1. Factors controlling high-frequency radiation from extended ruptures

    NASA Astrophysics Data System (ADS)

    Beresnev, Igor A.

    2017-09-01

    Small-scale slip heterogeneity or variations in rupture velocity on the fault plane are often invoked to explain the high-frequency radiation from earthquakes. This view has no theoretical basis, which follows, for example, from the representation integral of elasticity, an exact solution for the radiated wave field. The Fourier transform, applied to the integral, shows that the seismic spectrum is fully controlled by that of the source time function, while the distribution of final slip and rupture acceleration/deceleration only contribute to directivity. This inference is corroborated by the precise numerical computation of the full radiated field from the representation integral. We compare calculated radiation from four finite-fault models: (1) uniform slip function with low slip velocity, (2) slip function spatially modulated by a sinusoidal function, (3) slip function spatially modulated by a sinusoidal function with random roughness added, and (4) uniform slip function with high slip velocity. The addition of "asperities," both regular and irregular, does not cause any systematic increase in the spectral level of high-frequency radiation, except for the creation of maxima due to constructive interference. On the other hand, an increase in the maximum rate of slip on the fault leads to highly amplified high frequencies, in accordance with the prediction on the basis of a simple point-source treatment of the fault. Hence, computations show that the temporal rate of slip, not the spatial heterogeneity on faults, is the predominant factor forming the high-frequency radiation and thus controlling the velocity and acceleration of the resulting ground motions.

  2. Radiation effects on high performance polymers

    NASA Technical Reports Server (NTRS)

    Orwoll, R. A.

    1986-01-01

    Polymer matrix materials are candidates for use in large space antennas and space platforms that may be deployed in geosynchronous orbit 22,500 miles above the Earth. A principal concern is the long term effects of an environment that is hostile to organic polymers, including high energy electromagnetic radiation, bombardment by charged particles, and large abrupt changes in temperature. Two polyarylene ethers which might be utilized as models for polymers in space applications were subjected to dosages of 70 keV electrons up to 3.4 x 10 to the 10th power rad. The irradiated films were then examined to determine the effects of the high-energy electrons.

  3. Optical fibres for high radiation dose environments

    NASA Astrophysics Data System (ADS)

    Henschel, H.; Kohn, O.; Schmidt, H. U.; Bawirzanski, E.; Landers, A.

    1994-06-01

    A variety of modern single mode (SM) and graded index (GI) fibres as well as a new pure silica multimode step index (MMSI) fibre with high OH content were irradiated at a Co-60 gamma ray source with a dose rate of approximately = 1.5Gy/s up to a total dose of 10(exp 6)Gy. The radiation-induced loss of all fibres was measured continuously during and after irradiation at discrete wavelengths (approximately = 850, approximately = 1070, approximately = 1300, approximately = 1550nm). With one SM fibre type also the 'breaking stress' before and after irradiation was determined. Radiation-induced losses of approximately less than 5dB/50m (at approximately = 1300nm) were found with some of the SM fibres, whereas the MMSI fibre showed a final induced loss of only 0.5dB/50m at 1070nm wavelength. The breaking stress of the SM fibre increased by about 10%.

  4. High-energy radiation background in space

    NASA Astrophysics Data System (ADS)

    Rester, A. C., Jr.; Trombka, J. I.

    The radiation environment of near-earth space and its effects on biological and hardware systems are examined in reviews and reports. Sections are devoted to particle interactions and propagation, data bases, instrument background and dosimetry, detectors and experimental progress, biological effects, and future needs and strategies. Particular attention is given to angular distributions and spectra of geomagnetically trapped protons in LEO, bremsstrahlung production by electrons, nucleon-interaction data bases for background estimates, instrumental and atmospheric background lines observed by the SMM gamma-ray spectrometer, the GRAD high-altitude balloon flight over Antarctica, space protons and brain tumors, a new radioprotective antioxidative agent, LEO radiation measurements on the Space Station, and particle-background effects on the Hubble Space Telescope and the Lyman FUV Spectroscopic Explorer.

  5. High-energy radiation background in space

    NASA Technical Reports Server (NTRS)

    Rester, A. C., Jr. (Editor); Trombka, J. I. (Editor)

    1989-01-01

    The radiation environment of near-earth space and its effects on biological and hardware systems are examined in reviews and reports. Sections are devoted to particle interactions and propagation, data bases, instrument background and dosimetry, detectors and experimental progress, biological effects, and future needs and strategies. Particular attention is given to angular distributions and spectra of geomagnetically trapped protons in LEO, bremsstrahlung production by electrons, nucleon-interaction data bases for background estimates, instrumental and atmospheric background lines observed by the SMM gamma-ray spectrometer, the GRAD high-altitude balloon flight over Antarctica, space protons and brain tumors, a new radioprotective antioxidative agent, LEO radiation measurements on the Space Station, and particle-background effects on the Hubble Space Telescope and the Lyman FUV Spectroscopic Explorer.

  6. High-energy proton radiation belt.

    NASA Technical Reports Server (NTRS)

    White, R. S.

    1973-01-01

    The experiments and theories to explain the high-energy protons trapped in the earth's radiation belt are reviewed. The theory of cosmic ray albedo neutron decay injection of protons into the radiation belt is discussed. Radial diffusion and change in the earth's dipole moment are considered along with losses of protons by ionization and nuclear collision. It is found that the measured albedo neutron escape current is sufficient to supply trapped protons above 30 MeV. The theoretical calculations of the trapped protons are in agreement with the measurements for L less than or equal to 1.7 both on and off the equator. For L greater than or equal to 1.7, additional trapped proton differential energy measurements should be made before the theory can be adequately tested. It appears that an additional loss mechanism such as pitch angle scattering may be required.

  7. Radiation of long and high power arcs

    NASA Astrophysics Data System (ADS)

    Cressault, Y.; Bauchire, J. M.; Hong, D.; Rabat, H.; Riquel, G.; Sanchez, F.; Gleizes, A.

    2015-10-01

    The operators working on electrical installations of low, medium and high voltages can be accidentally exposed to short-circuit arcs ranging from a few kA to several tens of kA. To protect them from radiation, according to the exposure limits, we need to characterize the radiation emitted by the powerful arc. Therefore, we have developed a general experimental and numerical study in order to estimate the spectral irradiance received at a given distance from the arc. The experimental part was based on a very long arc (up to 2 m) with high ac current (between 4 and 40 kA rms, duration 100 ms) using 3 kinds of metallic contacts (copper, steel and aluminium). We measured the irradiance received 10m from the axis of the arc, and integrated on 4 spectral intervals corresponding to the UV, visible, IRA  +  B and IRC. The theoretical part consisted of calculating the radiance of isothermal plasmas in mixtures of air and metal vapour, integrated over the same spectral intervals as defined in the experiments. The comparison between the theoretical and experimental results has allowed the defining of three isothermal radiation sources whose combination leads to a spectral irradiation equivalent to the experimental one. Then the calculation allowed the deduction of the spectral description of the irradiance over all the wavelength range, between 200 nm and 20 μm. The final results indicate that the influence of metal is important in the visible and UVA ranges whereas the IR radiation is due to the air plasma and surrounding hot gas and fumes.

  8. RPython high-level synthesis

    NASA Astrophysics Data System (ADS)

    Cieszewski, Radoslaw; Linczuk, Maciej

    2016-09-01

    The development of FPGA technology and the increasing complexity of applications in recent decades have forced compilers to move to higher abstraction levels. Compilers interprets an algorithmic description of a desired behavior written in High-Level Languages (HLLs) and translate it to Hardware Description Languages (HDLs). This paper presents a RPython based High-Level synthesis (HLS) compiler. The compiler get the configuration parameters and map RPython program to VHDL. Then, VHDL code can be used to program FPGA chips. In comparison of other technologies usage, FPGAs have the potential to achieve far greater performance than software as a result of omitting the fetch-decode-execute operations of General Purpose Processors (GPUs), and introduce more parallel computation. This can be exploited by utilizing many resources at the same time. Creating parallel algorithms computed with FPGAs in pure HDL is difficult and time consuming. Implementation time can be greatly reduced with High-Level Synthesis compiler. This article describes design methodologies and tools, implementation and first results of created VHDL backend for RPython compiler.

  9. Sunlight-exposed biofilm microbial communities are naturally resistant to chernobyl ionizing-radiation levels.

    PubMed

    Ragon, Marie; Restoux, Gwendal; Moreira, David; Møller, Anders Pape; López-García, Purificación

    2011-01-01

    The Chernobyl accident represents a long-term experiment on the effects of exposure to ionizing radiation at the ecosystem level. Though studies of these effects on plants and animals are abundant, the study of how Chernobyl radiation levels affect prokaryotic and eukaryotic microbial communities is practically non-existent, except for a few reports on human pathogens or soil microorganisms. Environments enduring extreme desiccation and UV radiation, such as sunlight exposed biofilms could in principle select for organisms highly resistant to ionizing radiation as well. To test this hypothesis, we explored the diversity of microorganisms belonging to the three domains of life by cultivation-independent approaches in biofilms developing on concrete walls or pillars in the Chernobyl area exposed to different levels of radiation, and we compared them with a similar biofilm from a non-irradiated site in Northern Ireland. Actinobacteria, Alphaproteobacteria, Bacteroidetes, Acidobacteria and Deinococcales were the most consistently detected bacterial groups, whereas green algae (Chlorophyta) and ascomycete fungi (Ascomycota) dominated within the eukaryotes. Close relatives to the most radio-resistant organisms known, including Rubrobacter species, Deinococcales and melanized ascomycete fungi were always detected. The diversity of bacteria and eukaryotes found in the most highly irradiated samples was comparable to that of less irradiated Chernobyl sites and Northern Ireland. However, the study of mutation frequencies in non-coding ITS regions versus SSU rRNA genes in members of a same actinobacterial operational taxonomic unit (OTU) present in Chernobyl samples and Northern Ireland showed a positive correlation between increased radiation and mutation rates. Our results show that biofilm microbial communities in the most irradiated samples are comparable to non-irradiated samples in terms of general diversity patterns, despite increased mutation levels at the single

  10. High-Performance, Radiation-Hardened Electronics for Space Environments

    NASA Technical Reports Server (NTRS)

    Keys, Andrew S.; Watson, Michael D.; Frazier, Donald O.; Adams, James H.; Johnson, Michael A.; Kolawa, Elizabeth A.

    2007-01-01

    The Radiation Hardened Electronics for Space Environments (RHESE) project endeavors to advance the current state-of-the-art in high-performance, radiation-hardened electronics and processors, ensuring successful performance of space systems required to operate within extreme radiation and temperature environments. Because RHESE is a project within the Exploration Technology Development Program (ETDP), RHESE's primary customers will be the human and robotic missions being developed by NASA's Exploration Systems Mission Directorate (ESMD) in partial fulfillment of the Vision for Space Exploration. Benefits are also anticipated for NASA's science missions to planetary and deep-space destinations. As a technology development effort, RHESE provides a broad-scoped, full spectrum of approaches to environmentally harden space electronics, including new materials, advanced design processes, reconfigurable hardware techniques, and software modeling of the radiation environment. The RHESE sub-project tasks are: SelfReconfigurable Electronics for Extreme Environments, Radiation Effects Predictive Modeling, Radiation Hardened Memory, Single Event Effects (SEE) Immune Reconfigurable Field Programmable Gate Array (FPGA) (SIRF), Radiation Hardening by Software, Radiation Hardened High Performance Processors (HPP), Reconfigurable Computing, Low Temperature Tolerant MEMS by Design, and Silicon-Germanium (SiGe) Integrated Electronics for Extreme Environments. These nine sub-project tasks are managed by technical leads as located across five different NASA field centers, including Ames Research Center, Goddard Space Flight Center, the Jet Propulsion Laboratory, Langley Research Center, and Marshall Space Flight Center. The overall RHESE integrated project management responsibility resides with NASA's Marshall Space Flight Center (MSFC). Initial technology development emphasis within RHESE focuses on the hardening of Field Programmable Gate Arrays (FPGA)s and Field Programmable Analog

  11. Low-level radiation effects on immune cells

    SciTech Connect

    Makinodan, T.

    1995-12-31

    The purpose of this study was to characterize the effects of chronic low-dose ionizing radiation (LDR) on murine immune cells. Previously, it had been reported that LDR enhances the proliferative activity of T cells in vitro and delays the growth of transplantable immunogenic tumors in vivo. This suggests that LDR eliminates immune suppressor cells, which downregulates immune response and/or adoptively upregulates the responsiveness of immune effector cells. It had also been reported that human lymphocytes become refractive to high dose radiation-induced chromosomal aberrations by pretreating mitotically active lymphocytes in vitro with very low doses of ionizing radiation, and the adaptive effect can be abrogated by cycloheximide. This suggests that protein synthesis is required for lymphocytes to respond adoptively to LDR.

  12. High-dose radiation sensor with wireless optical detection

    NASA Astrophysics Data System (ADS)

    Knapkiewicz, Paweł; Augustyniak, Izabela; Sareło, Katarzyna; Gorecka-Drzazga, Anna; Dziuban, Jan

    2017-05-01

    We present a miniature silicon-glass MEMS sensor for measurement of high doses of ionizing radiation (above 10 kGy) using a novel wireless optical detection method. The radiation sensor is a miniaturized version of the so-called hydrogen dosimeter. An amount of high-density polyethylene, located inside the MEMS sensor, degrades under ionizing radiation, releasing gaseous hydrogen. The increasing pressure deflects the thin silicon membrane. The sensor’s destructive and proportional modes of work are also proposed. In the destructive mode, sensors provide in situ information on excessive and discrete levels of radiation. The optical detection method is based on an optical head consisting of a moving membrane and a silicon screen with a matrix of micro-holes. Laser light is reflected from the membrane and scattered when the membrane is deflected, in the process illuminating the holes on the silicon screen. The number of illuminated holes is a function of the degree of membrane deflection; the transformation of the holes to the deflection allows for the calculation of pressure and eventually the dose of ionizing radiation.

  13. The ALICE high level trigger

    NASA Astrophysics Data System (ADS)

    Alt, T.; Grastveit, G.; Helstrup, H.; Lindenstruth, V.; Loizides, C.; Röhrich, D.; Skaali, B.; Steinbeck, T.; Stock, R.; Tilsner, H.; Ullaland, K.; Vestbø, A.; Vik, T.; Wiebalck, A.; the ALICE Collaboration

    2004-08-01

    The ALICE experiment at LHC will implement a high-level trigger system for online event selection and/or data compression. The largest computing challenge is posed by the TPC detector, which requires real-time pattern recognition. The system entails a very large processing farm that is designed for an anticipated input data stream of 25 GB s-1. In this paper, we present the architecture of the system and the current state of the tracking methods and data compression applications.

  14. High-Level Connectionist Models

    DTIC Science & Technology

    1993-10-01

    Artficial Intelligence Research Computer and Information Science Department The Ohio State Universiy Columbus, Ohio 43210 pja@ci.ohio-state.edu saunders...Peter J. Angeline, Gregory M. Saunders and Jordan B. Pollack Laboratory for Artficial Intelligence Research Computer and 1i4ormadon Science Deparment...AD-A273 638 OHIOi High-Level Connectionist Models 5LPJE UNIVERSITY Jordan B. Pollack Laboratory for Artificial Intelligence Research Department of

  15. Development of high temperature, high radiation resistant silicon semiconductors

    NASA Technical Reports Server (NTRS)

    Whorl, C. A.; Evans, A. W.

    1972-01-01

    The development of a hardened silicon power transistor for operation in severe nuclear radiation environments at high temperature was studied. Device hardness and diffusion techniques are discussed along with the geometries of hardened power transistor chips. Engineering drawings of 100 amp and 5 amp silicon devices are included.

  16. Coherent spontaneous radiation from highly bunched electron beams

    SciTech Connect

    Berryman, K.W.; Crosson, E.R.; Ricci, K.N.

    1995-12-31

    Coherent spontaneous radiation has now been observed in several FELs, and is a subject of great importance to the design of self-amplified spontaneous emission (SASE) devices. We report observations of coherent spontaneous radiation in both FIREFLY and the mid-infrared FEL at the Stanford Picosecond FEL Center. Coherent emission has been observed at wavelengths as short as 5 microns, and enhancement over incoherent levels by as much as a factor of 4x10{sup 4} has been observed at longer wavelengths. The latter behavior was observed at 45 microns in FIREFLY with short bunches produced by off-peak acceleration and dispersive compression. We present temporal measurements of the highly bunched electron distributions responsible for the large enhancements, using both transition radiation and energy-phase techniques.

  17. On High-Order Radiation Boundary Conditions

    NASA Technical Reports Server (NTRS)

    Hagstrom, Thomas

    1995-01-01

    In this paper we develop the theory of high-order radiation boundary conditions for wave propagation problems. In particular, we study the convergence of sequences of time-local approximate conditions to the exact boundary condition, and subsequently estimate the error in the solutions obtained using these approximations. We show that for finite times the Pade approximants proposed by Engquist and Majda lead to exponential convergence if the solution is smooth, but that good long-time error estimates cannot hold for spatially local conditions. Applications in fluid dynamics are also discussed.

  18. Low-Level Radiation: Are Chemical Officers Adequately Trained

    DTIC Science & Technology

    2004-06-17

    84 vii ACRONYMS ALARA As Low As Reasonably Achievable BEIR Biological Effects of Ionizing Radiation CBOLC Chemical Basic Officer Leadership...exposure levels as low as reasonably achievable ( ALARA ). Commanders can factor the units RES into their 36 decision-making process and consider...acronyms. JP 1-02 does not define the key terms RDD, LLR, DU, or ALARA in the definition section of the publication and RDD is the only one of the

  19. High Power Amplifier Harmonic Output Level Measurement

    NASA Technical Reports Server (NTRS)

    Perez, R. M.; Hoppe, D. J.; Khan, A. R.

    1995-01-01

    A method is presented for the measurement of the harmonic output power of high power klystron amplifiers, involving coherent hemispherical radiation pattern measurements of the radiated klystron output. Results are discussed for the operation in saturated and unsaturated conditions, and with a waveguide harmonic filter included.

  20. High Power Amplifier Harmonic Output Level Measurement

    NASA Technical Reports Server (NTRS)

    Perez, R. M.; Hoppe, D. J.; Khan, A. R.

    1995-01-01

    A method is presented for the measurement of the harmonic output power of high power klystron amplifiers, involving coherent hemispherical radiation pattern measurements of the radiated klystron output. Results are discussed for the operation in saturated and unsaturated conditions, and with a waveguide harmonic filter included.

  1. Human exposure to high natural background radiation: what can it teach us about radiation risks?

    PubMed Central

    Hendry, Jolyon H; Simon, Steven L; Wojcik, Andrzej; Sohrabi, Mehdi; Burkart, Werner; Cardis, Elisabeth; Laurier, Dominique; Tirmarche, Margot; Hayata, Isamu

    2014-01-01

    Natural radiation is the major source of human exposure to ionising radiation, and its largest contributing component to effective dose arises from inhalation of 222Rn and its radioactive progeny. However, despite extensive knowledge of radiation risks gained through epidemiologic investigations and mechanistic considerations, the health effects of chronic low-level radiation exposure are still poorly understood. The present paper reviews the possible contribution of studies of populations living in high natural background radiation (HNBR) areas (Guarapari, Brazil; Kerala, India; Ramsar, Iran; Yangjiang, China), including radon-prone areas, to low dose risk estimation. Much of the direct information about risk related to HNBR comes from case–control studies of radon and lung cancer, which provide convincing evidence of an association between long-term protracted radiation exposures in the general population and disease incidence. The success of these studies is mainly due to the careful organ dose reconstruction (with relatively high doses to the lung), and to the fact that large-scale collaborative studies have been conducted to maximise the statistical power and to ensure the systematic collection of information on potential confounding factors. In contrast, studies in other (non-radon) HNBR areas have provided little information, relying mainly on ecological designs and very rough effective dose categorisations. Recent steps taken in China and India to establish cohorts for follow-up and to conduct nested case–control studies may provide useful information about risks in the future, provided that careful organ dose reconstruction is possible and information is collected on potential confounding factors. PMID:19454802

  2. Radiation safety in high-altitude air traffic

    NASA Technical Reports Server (NTRS)

    Foelsche, T.

    1977-01-01

    Results of an experimental and theoretical study on dose equivalent rates at high altitudes are presented. The flight personnel flying 500 hours per year at SST cruise altitude in high latitudes (maximum of radiation) would be exposed to less than 14% of the maximum permissible dose rate (MPD) for radiation workers (5 rem/yr), averaged over the solar cycle. One-half or more is due to energetic secondary neutrons that are penetrant and highly biologically effective. Passengers would, in general, be exposed only to the low-level galactic cosmic rays, except for a relative few who encounter rare, intense, and energetic solar-particle events. If the airplane descends to subsonic altitudes during events such as that of Feb. 23, 1956 - the most intense and unique giant energy event of the last 35 years - passenger exposure even then remains at or below permissible levels (0.5 rem for the general population). Systems of radiation monitoring are briefly discussed which will prevent false alarms and which would be useful in disproving overexposure in potential malpractice suits against the airlines. In subsonic jet transports the exposure of the crews is lower by a factor 3 to 4; for passengers it is about the same for the same distance traveled. Solar events, except for giant energy events, will yield only a minor fraction of the MPD of the general population.

  3. Diamond based detectors for high temperature, high radiation environments

    NASA Astrophysics Data System (ADS)

    Metcalfe, A.; Fern, G. R.; Hobson, P. R.; Smith, D. R.; Lefeuvre, G.; Saenger, R.

    2017-01-01

    Single crystal CVD diamond has many desirable properties as a radiation detector; exceptional radiation hardness and physical hardness, chemical inertness, low Z (close to human tissue, good for dosimetry and transmission mode applications), wide bandgap (high temperature operation with low noise and solar blind), an intrinsic pathway to fast neutron detection through the 12C(n,α)9Be reaction. This combination of radiation hardness, temperature tolerance and ability to detect mixed radiation types with a single sensor makes diamond particularly attractive as a detector material for harsh environments such as nuclear power station monitoring (fission and fusion) and oil well logging. Effective exploitation of these properties requires the development of a metallisation scheme to give contacts that remain stable over extended periods at elevated temperatures (up to 250°C in this instance). Due to the cost of the primary detector material, computational modelling is essential to best utilise the available processing methods for optimising sensor response through geometry and conversion media configurations and to fully interpret experimental data. Monte Carlo simulations of our diamond based sensor have been developed, using MCNP6 and FLUKA2011, assessing the sensor performance in terms of spectral response and overall efficiency as a function of the detector and converter geometry. Sensors with varying metallisation schemes for high temperature operation have been fabricated at Brunel University London and by Micron Semiconductor Limited. These sensors have been tested under a varied set of conditions including irradiation with fast neutrons and alpha particles at high temperatures. The presented study indicates that viable metallisation schemes for high temperature contacts have been successfully developed and the modelling results, supported by preliminary experimental data from partners, indicate that the simulations provide a reasonable representation of

  4. Superconducting magnets in high-radiation environment at supercolliders

    SciTech Connect

    Mokhov, N.V.; Chichili, D.R.; Gourlay, S.A.; Van Sciver, S.; Zeller, A.

    2006-07-01

    The principal challenges arising from beam-induced energy deposition in superconducting (SC) magnets at high-energy high-luminosity hadron and lepton colliders are described. Radiation constraints are analyzed that include quench stability, dynamic heat loads on the cryogenic system, radiation damage limiting the component lifetime, and residual dose rates related to hands-on maintenance. These issues are especially challenging for the interaction regions (IR), particularly for the considered upgrade layouts of the Large Hadron Collider. Up to a few kW of beam power can dissipate in a single SC magnet, and a local peak power density can substantially exceed the quench levels. Just formally, the magnet lifetime is limited to a few months under these conditions. Possible solutions and the ways to mitigate these problems are described in this paper along with R&D needed.

  5. Superconducting magnets in high radiation environments: Design problems and solutions

    SciTech Connect

    St. Lorant, S.J.; Tillmann, E.

    1989-11-01

    As part of the Stanford Linear Collider Project, three high-field superconducting solenoid magnets are used to rotate the spin direction of a polarized electron beam. The magnets are installed in a high-radiation environment, where they will receive a dose of approximately 10{sup 3} rad per hour, or 10{sup 8} rad over their lifetimes. This level of radiation and the location in which the magnets are installed, some 10 meters below ground in contiguous tunnels, required careful selection of materials for the construction of the solenoids and their ancillary cryogenic equipment, as well as the development of compatible component designs. This paper describes the materials used and the design of the equipment appropriate for the application. Included are summaries of the physical and mechanical properties of the materials and how they behave when irradiated. 16 refs., 7 figs., 1 tab.

  6. Broadband EM radiation amplification by means of a monochromatically driven two-level system

    NASA Astrophysics Data System (ADS)

    Soldatov, Andrey V.

    2017-02-01

    It is shown that a two-level quantum system possessing dipole moment operator with permanent non-equal diagonal matrix elements and driven by external semiclassical monochromatic high-frequency electromagnetic (EM) (laser) field can amplify EM radiation waves of much lower frequency.

  7. Energy levels and radiative rates for Cr-like Cu VI and Zn VII

    NASA Astrophysics Data System (ADS)

    Aggarwal, K. M.; Bogdanovich, P.; Keenan, F. P.; Kisielius, R.

    2016-09-01

    Energy levels and radiative rates (A-values) for transitions in Cr-like Cu VI and Zn VII are reported. These data are determined in the quasi-relativistic approach (QR), by employing a very large configuration interaction (CI) expansion which is highly important for these ions. No radiative rates are available in the literature to compare with our results, but our calculated energies are in close agreement with those compiled by NIST and other available theoretical data, for a majority of the levels. The A-values (and resultant lifetimes) are listed for all significantly contributing E1, E2 and M1 radiative transitions among the energetically lowest 322 levels of each ion.

  8. Plasma effects in high frequency radiative transfer

    SciTech Connect

    Alonso, C.T.

    1981-02-08

    This paper is intended as a survey of collective plasma processes which can affect the transfer of high frequency radiation in a hot dense plasma. We are rapidly approaching an era when this subject will become important in the laboratory. For pedagogical reasons we have chosen to examine plasma processes by relating them to a particular reference plasma which will consist of fully ionized carbon at a temperature kT=1 KeV (10/sup 70/K) and an electron density N = 3 x 10/sup 23/cm/sup -3/, (which corresponds to a mass density rho = 1 gm/cm/sup 3/ and an ion density N/sub i/ = 5 x 10/sup 22/ cm/sup -3/). We will consider the transport in such a plasma of photons ranging from 1 eV to 1 KeV in energy. Such photons will probably be frequently used as diagnostic probes of hot dense laboratory plasmas.

  9. 41 CFR 50-204.35 - Application for variations from radiation levels.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... variations from radiation levels. 50-204.35 Section 50-204.35 Public Contracts and Property Management Other... FOR FEDERAL SUPPLY CONTRACTS Radiation Standards § 50-204.35 Application for variations from radiation levels. (a) In accordance with policy expressed in the Federal Radiation Council's memorandum concerning...

  10. 41 CFR 50-204.35 - Application for variations from radiation levels.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... variations from radiation levels. 50-204.35 Section 50-204.35 Public Contracts and Property Management Other... FOR FEDERAL SUPPLY CONTRACTS Radiation Standards § 50-204.35 Application for variations from radiation levels. (a) In accordance with policy expressed in the Federal Radiation Council's memorandum concerning...

  11. 41 CFR 50-204.35 - Application for variations from radiation levels.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... variations from radiation levels. 50-204.35 Section 50-204.35 Public Contracts and Property Management Other... FOR FEDERAL SUPPLY CONTRACTS Radiation Standards § 50-204.35 Application for variations from radiation levels. (a) In accordance with policy expressed in the Federal Radiation Council's memorandum concerning...

  12. 41 CFR 50-204.35 - Application for variations from radiation levels.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... variations from radiation levels. 50-204.35 Section 50-204.35 Public Contracts and Property Management Other... FOR FEDERAL SUPPLY CONTRACTS Radiation Standards § 50-204.35 Application for variations from radiation levels. (a) In accordance with policy expressed in the Federal Radiation Council's memorandum concerning...

  13. 41 CFR 50-204.35 - Application for variations from radiation levels.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... variations from radiation levels. 50-204.35 Section 50-204.35 Public Contracts and Property Management Other... FOR FEDERAL SUPPLY CONTRACTS Radiation Standards § 50-204.35 Application for variations from radiation levels. (a) In accordance with policy expressed in the Federal Radiation Council's memorandum concerning...

  14. Risk evaluation - conventional and low level effects of radiation

    SciTech Connect

    Bond, V.P.; Varma, M.N.

    1984-04-01

    Any discussion of the risk of exposure to potentially-hazardous agents in the environment inevitably involves the question of whether the dose effect curve is of the threshold or linear, non-threshold type. A principal objective of this presentation is to show that the function is actually two separate relationships, each representing distinctly different functions with differing variables on the axes, and each characteristic of quite different functions with differing variables on the axes, and each characteristic of quite different disciplines (i.e., the threshold function, of Pharmacology, Toxicology and Medicine (PTM); the linear, non-threshold function, of Public Health including safety and accident statistics (PHS)). It is shown that low-level exposure (LLE) to radiation falls clearly in the PHS category. A function for cell dose vs. the fraction of single cell quantal responses is characterized, which reflects the absolute and relative sensitivities of cells. Acceptance of this function would obviate any requirement for the use in Radiation Protection of the concepts of a standard radiation, Q, dose equivalent and rem. 9 references, 4 figures.

  15. Characterization of Radiation Hardened Bipolar Linear Devices for High Total Dose Missions

    NASA Technical Reports Server (NTRS)

    McClure, Steven S.; Harris, Richard D.; Rax, Bernard G.; Thorbourn, Dennis O.

    2012-01-01

    Radiation hardened linear devices are characterized for performance in combined total dose and displacement damage environments for a mission scenario with a high radiation level. Performance at low and high dose rate for both biased and unbiased conditions is compared and the impact to hardness assurance methodology is discussed.

  16. Characterization of Radiation Hardened Bipolar Linear Devices for High Total Dose Missions

    NASA Technical Reports Server (NTRS)

    McClure, Steven S.; Harris, Richard D.; Rax, Bernard G.; Thorbourn, Dennis O.

    2012-01-01

    Radiation hardened linear devices are characterized for performance in combined total dose and displacement damage environments for a mission scenario with a high radiation level. Performance at low and high dose rate for both biased and unbiased conditions is compared and the impact to hardness assurance methodology is discussed.

  17. Creating a strategy for science-based national policy: Addressing conflicting views on the health risk of low-level ionizing radiation. Final report, Wingspread Conference

    SciTech Connect

    McClellan, Roger O.; Apple, Martin A.

    1998-03-03

    Significant cancer risk for adults exposed to more than 100 millisieverts (10 REM) of ionizing radiation. More research on low-level ionizing radiation is needed in molecular and cellular mechanisms of injury and ongoing exposed populations. Implementation costs should be considered in regulating low-level ionizing radiation. Comparative risk assessment is a powerful tool for risk-based policy formation, and conflicting legal statutes should become harmonized for radiation regulation. More public dialog on low-level radiation is needed. A high level commission should evaluate radiation hazard control practices.

  18. High Speed Link Radiated Emission Reduction

    NASA Astrophysics Data System (ADS)

    Bisognin, P.; Pelissou, P.; Cissou, R.; Giniaux, M.; Vargas, O.

    2016-05-01

    To control the radiated emission of high-speed link and associated unit, the current approach is to implement overall harness shielding on cables bundles. This method is very efficient in the HF/ VHF (high frequency/ very high frequency) and UHF (ultra-high frequency) ranges when the overall harness shielding is properly bonded on EMC back-shell. Unfortunately, with the increasing frequency, the associated half wavelength matches with the size of Sub-D connector that is the case for the L band. Therefore, the unit connectors become the main source of interference emission. For the L-band and S-band, the current technology of EMC back-shell leaves thin aperture matched with the L band half wavelength and therefore, the shielding effectiveness is drastically reduced. In addition, overall harness shielding means significant increases of the harness mass.Airbus D&S Toulouse and Elancourt investigated a new solution to avoid the need of overall harness shielding. The objective is to procure EM (Electro-Magnetic) clean unit connected to cables bundles free of any overall harness shielding. The proposed solution is to implement EMC common mode filtering on signal interfaces directly on unit PCB as close as possible the unit connector.Airbus D&S Elancourt designed and manufactured eight mock-ups of LVDS (Low Voltage Differential Signaling) interface PCBs' with different solutions of filtering. After verification of the signal integrity, three mock-ups were retained (RC filter and two common mode choke coil) in addition to the reference one (without EMC filter).Airbus D&S Toulouse manufactured associated LVDS cable bundles and integrated the RX (Receiver) and TX (Transmitter) LVDS boards in shielded boxes.Then Airbus D&S performed radiated emission measurement of the LVDS links subassemblies (e.g. RX and TX boxes linked by LVDS cables) according to the standard test method. This paper presents the different tested solutions and main conclusions on the feasibility of such

  19. High Radiation Environment Nuclear Fragment Separator Magnet

    SciTech Connect

    Kahn, Stephen; Gupta, Ramesh

    2016-01-31

    Superconducting coils wound with HTS conductor can be used in magnets located in a high radiation environment. NbTi and Nb3Sn superconductors must operate at 4.5 K or below where removal of heat is less efficient. The HTS conductor can carry significant current at higher temperatures where the Carnot efficiency is significantly more favorable and where the coolant heat capacity is much larger. Using the HTS conductor the magnet can be operated at 40 K. This project examines the use of HTS conductor for the Michigan State University Facility For Rare Isotope Beams (FRIB) fragment separator dipole magnet which bends the beam by 30° and is located in a high radiation region that will not be easily accessible. Two of these magnets are needed to select the chosen isotope. There are a number of technical challenges to be addressed in the design of this magnet. The separator dipole is 2 m long and subtends a large angle. The magnet should keep a constant transverse field profile along its beam reference path. Winding coils with a curved inner segment is difficult as the conductor will tend to unwind during the process. In the Phase I project two approaches to winding the conductor were examined. The first was to wind the coils with curved sections on the inner and outer segments with the inner segment wound with negative curvature. The alternate approach was to use a straight segment on the inner segment to avoid negative curvature. In Phase I coils with a limited number of turns were successfully wound and tested at 77 K for both coil configurations. The Phase II program concentrated on the design, coil winding procedures, structural analysis, prototyping and testing of an HTS curved dipole coil at 40 K with a heat load representative of the radiation environment. One of the key criteria of the design of this magnet is to avoid the use of organic materials that would degrade rapidly in radiation. The Lorentz forces expected from the coils interacting with the

  20. Nonlinear radiative transfer in high temperature plasmas

    NASA Astrophysics Data System (ADS)

    Soloviev, Vadim Y.

    2017-10-01

    An approximation to the nonlinear radiative transfer equation is considered in the context of magnetohydrodynamics. This approximation retains nonlinear terms which are responsible for the Compton plasma heating in addition to the radiation cooling. The effect is studied numerically. In particular, the Kelvin-Helmholtz instability and the Dai-Woodward case are modeled. It is shown that radiation-plasma coupling results in damping of small scale instabilities and alters the shock wave structure.

  1. High level white noise generator

    DOEpatents

    Borkowski, Casimer J.; Blalock, Theron V.

    1979-01-01

    A wide band, stable, random noise source with a high and well-defined output power spectral density is provided which may be used for accurate calibration of Johnson Noise Power Thermometers (JNPT) and other applications requiring a stable, wide band, well-defined noise power spectral density. The noise source is based on the fact that the open-circuit thermal noise voltage of a feedback resistor, connecting the output to the input of a special inverting amplifier, is available at the amplifier output from an equivalent low output impedance caused by the feedback mechanism. The noise power spectral density level at the noise source output is equivalent to the density of the open-circuit thermal noise or a 100 ohm resistor at a temperature of approximately 64,000 Kelvins. The noise source has an output power spectral density that is flat to within 0.1% (0.0043 db) in the frequency range of from 1 KHz to 100 KHz which brackets typical passbands of the signal-processing channels of JNPT's. Two embodiments, one of higher accuracy that is suitable for use as a standards instrument and another that is particularly adapted for ambient temperature operation, are illustrated in this application.

  2. Effect of radiation and age on immunoglobulin levels in rhesus monkeys (Macaca mulatta)

    NASA Technical Reports Server (NTRS)

    Stone, W. H.; Saphire, D. G.; Hackleman, S. M.; Braun, A. M.; Pennington, P.; Scheffler, J.; Wigle, J. C.; Cox, A. B.

    1994-01-01

    We report the results of a study on the immunoglobulin levels of rhesus monkeys (Macaca mulatta) in a colony consisting of the survivors of monkeys that received a single whole-body exposure to protons, electrons or X rays between 1964 and 1969. This colony has been maintained to assess the long-term effects of ionizing radiation on astronauts and high-flying pilots. Of the original 358 monkeys that were retained for lifetime studies, 129 (97 irradiated and 32 controls) were available for our study. We found no significant difference between the irradiated and control monkeys in mean levels of IgA, IgG and IgM, irrespective of the radiation treatment. The availability of these aged monkeys provided a unique opportunity to compare their immunoglobulin levels to those of other monkeys of various ages, and thus assess the effect of age on immunoglobulin levels. We found that only the IgA levels increase with age.

  3. Effect of radiation and age on immunoglobulin levels in rhesus monkeys (Macaca mulatta)

    NASA Technical Reports Server (NTRS)

    Stone, W. H.; Saphire, D. G.; Hackleman, S. M.; Braun, A. M.; Pennington, P.; Scheffler, J.; Wigle, J. C.; Cox, A. B.

    1994-01-01

    We report the results of a study on the immunoglobulin levels of rhesus monkeys (Macaca mulatta) in a colony consisting of the survivors of monkeys that received a single whole-body exposure to protons, electrons or X rays between 1964 and 1969. This colony has been maintained to assess the long-term effects of ionizing radiation on astronauts and high-flying pilots. Of the original 358 monkeys that were retained for lifetime studies, 129 (97 irradiated and 32 controls) were available for our study. We found no significant difference between the irradiated and control monkeys in mean levels of IgA, IgG and IgM, irrespective of the radiation treatment. The availability of these aged monkeys provided a unique opportunity to compare their immunoglobulin levels to those of other monkeys of various ages, and thus assess the effect of age on immunoglobulin levels. We found that only the IgA levels increase with age.

  4. Shielding materials for highly penetrating space radiations

    NASA Technical Reports Server (NTRS)

    Kiefer, Richard L.; Orwoll, Robert A.

    1995-01-01

    Interplanetary travel involves the transfer from an Earth orbit to a solar orbit. Once outside the Earth's magnetosphere, the major sources of particulate radiation are solar cosmic rays (SCR's) and galactic cosmic rays (GCR's). Intense fluxes of SCR's come from solar flares and consist primarily of protons with energies up to 1 GeV. The GCR consists of a low flux of nuclei with energies up to 10(exp 10) GeV. About 70 percent of the GCR are protons, but a small amount (0.6 percent) are nuclei with atomic numbers greater than 10. High energy charged particles (HZE) interact with matter by transferring energy to atomic electrons in a Coulomb process and by reacting with an atomic nucleus. Energy transferred in the first process increases with the square of the atomic number, so particles with high atomic numbers would be expected to lose large amounts of energy by this process. Nuclear reactions produced by (HZE) particles produce high-energy secondary particles which in turn lose energy to the material. The HZE nuclei are a major concern for radiation protection of humans during interplanetary missions because of the very high specific ionization of both primary and secondary particles. Computer codes have been developed to calculate the deposition of energy by very energetic charged particles in various materials. Calculations show that there is a significant buildup of secondary particles from nuclear fragmentation and Coulomb dissociation processes. A large portion of these particles are neutrons. Since neutrons carry no charge, they only lose energy by collision or reaction with a nucleus. Neutrons with high energies transfer large amounts of energy by inelastic collisions with nuclei. However, as the neutron energy decreases, elastic collisions become much more effective for energy loss. The lighter the nucleus, the greater the fraction of the neutron's kinetic energy that can be lost in an elastic collision. Thus, hydrogen-containing materials such as polymers

  5. Shielding materials for highly penetrating space radiations

    NASA Astrophysics Data System (ADS)

    Kiefer, Richard L.; Orwoll, Robert A.

    1995-11-01

    Interplanetary travel involves the transfer from an Earth orbit to a solar orbit. Once outside the Earth's magnetosphere, the major sources of particulate radiation are solar cosmic rays (SCR's) and galactic cosmic rays (GCR's). Intense fluxes of SCR's come from solar flares and consist primarily of protons with energies up to 1 GeV. The GCR consists of a low flux of nuclei with energies up to 10(exp 10) GeV. About 70 percent of the GCR are protons, but a small amount (0.6 percent) are nuclei with atomic numbers greater than 10. High energy charged particles (HZE) interact with matter by transferring energy to atomic electrons in a Coulomb process and by reacting with an atomic nucleus. Energy transferred in the first process increases with the square of the atomic number, so particles with high atomic numbers would be expected to lose large amounts of energy by this process. Nuclear reactions produced by (HZE) particles produce high-energy secondary particles which in turn lose energy to the material. The HZE nuclei are a major concern for radiation protection of humans during interplanetary missions because of the very high specific ionization of both primary and secondary particles. Computer codes have been developed to calculate the deposition of energy by very energetic charged particles in various materials. Calculations show that there is a significant buildup of secondary particles from nuclear fragmentation and Coulomb dissociation processes. A large portion of these particles are neutrons. Since neutrons carry no charge, they only lose energy by collision or reaction with a nucleus. Neutrons with high energies transfer large amounts of energy by inelastic collisions with nuclei. However, as the neutron energy decreases, elastic collisions become much more effective for energy loss. The lighter the nucleus, the greater the fraction of the neutron's kinetic energy that can be lost in an elastic collision. Thus, hydrogen-containing materials such as polymers

  6. RadTracker: Optical Imaging of High Energy Radiation Tracks

    SciTech Connect

    Vernon, S P; Lowry, M E; Comaskey, B J; Heebner, J E; Kallman, J S; Richards, J B

    2007-03-02

    This project examined the possibility of extending the recently demonstrated radoptic detection approach to gamma imaging. Model simulations of the light scattering process predicted that expected signal levels were small and likely below the detection limit of large area, room-temperature detectors. A series of experiments using pulsed x-ray excitation, modulated gamma excitation and optical pump-probe methods confirmed those theoretical predictions. At present the technique does not appear to provide a viable approach to volumetric radiation detection; however, in principal, orders of magnitude improvement in the SNR can result by using designer materials to concentrate and localize the radiation-absorption induced charge, simultaneously confining the optical mode to increase 'fill' factor and overlap of the probe beam with the affected regions, and employing high speed gated imaging detectors to measure the scattered signal.

  7. Elevated blood lead levels from exposure via a radiator workshop.

    PubMed

    Treble, R G; Thompson, T S; Morton, D N

    1998-04-01

    Elevated lead levels were discovered in blood samples collected from family members where both the father and the mother worked in a radiator repair workshop. The father and mother were found to have blood lead levels of 2.0 and 0.5 mumol/L (41.7 and 10.4 micrograms/dL), respectively. The father's blood lead level was just below the Canadian occupational health and safety intervention level (2.5 mumol/L or 52.1 micrograms/dL). The two children had blood lead levels of 1.0 and 0.8 mumol/L (20.8 and 16.7 micrograms/dL), both of which are in excess of the recommended guideline for intervention in the case of children (0.5 mumol/L or 10.4 micrograms/dL). The exposure of the two children was possibly due to a combination of pathways including exposure at the workshop itself during visits and also the transportation of lead-containing dust to the home environment.

  8. High-Absorptance Radiative Heat Sink

    NASA Technical Reports Server (NTRS)

    Cafferty, T.

    1983-01-01

    Absorptance of black-painted open-cell aluminum honeycomb improved by cutting honeycomb at angle or bias rather than straight across. This ensures honeycomb cavities escapes. At each reflection radiation attenuated by absorption. Applications include space-background simulators, space radiators, solar absorbers, and passive coolers for terrestrial use.

  9. Control over the cosmic radiation level during flight of space vehicles Vostok 3, Vostok 4, Vostok 5 and Vostok 6.

    PubMed

    Savenko, I A; Pisarenko, N F; Shavrin, P I; Nesterov, V E

    1965-01-01

    1. During the flights of the"Vostok"series of spaceships the radiation conditions in space were kept under operative control which comprised: a. The solar activity observation and forecasting of the solar flares followed by the appearance of proton fluxes in the near space. b. Probing the upper atmosphere with the help of balloon launchings at high altitudes. c. Direct measuring radiation level inside the "Vostok" spaceships. 2. The radiation dose received by the cosmonauts during the flights of the "Vostok" spaceships is given. Contributions of various components of cosmic radiation are considered. 3. The possibility of flights of the "Vostok" series of spaceships at high altitudes is evaluated.

  10. Optimizing High Level Waste Disposal

    SciTech Connect

    Dirk Gombert

    2005-09-01

    If society is ever to reap the potential benefits of nuclear energy, technologists must close the fuel-cycle completely. A closed cycle equates to a continued supply of fuel and safe reactors, but also reliable and comprehensive closure of waste issues. High level waste (HLW) disposal in borosilicate glass (BSG) is based on 1970s era evaluations. This host matrix is very adaptable to sequestering a wide variety of radionuclides found in raffinates from spent fuel reprocessing. However, it is now known that the current system is far from optimal for disposal of the diverse HLW streams, and proven alternatives are available to reduce costs by billions of dollars. The basis for HLW disposal should be reassessed to consider extensive waste form and process technology research and development efforts, which have been conducted by the United States Department of Energy (USDOE), international agencies and the private sector. Matching the waste form to the waste chemistry and using currently available technology could increase the waste content in waste forms to 50% or more and double processing rates. Optimization of the HLW disposal system would accelerate HLW disposition and increase repository capacity. This does not necessarily require developing new waste forms, the emphasis should be on qualifying existing matrices to demonstrate protection equal to or better than the baseline glass performance. Also, this proposed effort does not necessarily require developing new technology concepts. The emphasis is on demonstrating existing technology that is clearly better (reliability, productivity, cost) than current technology, and justifying its use in future facilities or retrofitted facilities. Higher waste processing and disposal efficiency can be realized by performing the engineering analyses and trade-studies necessary to select the most efficient methods for processing the full spectrum of wastes across the nuclear complex. This paper will describe technologies being

  11. 49 CFR 173.441 - Radiation level limitations and exclusive use provisions.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 49 Transportation 2 2014-10-01 2014-10-01 false Radiation level limitations and exclusive use... Radiation level limitations and exclusive use provisions. (a) Except as provided in paragraph (b) of this... prepared for shipment, so that under conditions normally incident to transportation, the radiation level...

  12. 49 CFR 173.441 - Radiation level limitations and exclusive use provisions.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 49 Transportation 2 2012-10-01 2012-10-01 false Radiation level limitations and exclusive use... Radiation level limitations and exclusive use provisions. (a) Except as provided in paragraph (b) of this... prepared for shipment, so that under conditions normally incident to transportation, the radiation level...

  13. 49 CFR 173.441 - Radiation level limitations and exclusive use provisions.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 49 Transportation 2 2011-10-01 2011-10-01 false Radiation level limitations and exclusive use... Radiation level limitations and exclusive use provisions. (a) Except as provided in paragraph (b) of this... prepared for shipment, so that under conditions normally incident to transportation, the radiation level...

  14. 49 CFR 173.441 - Radiation level limitations and exclusive use provisions.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 49 Transportation 2 2013-10-01 2013-10-01 false Radiation level limitations and exclusive use... Radiation level limitations and exclusive use provisions. (a) Except as provided in paragraph (b) of this... prepared for shipment, so that under conditions normally incident to transportation, the radiation level...

  15. 49 CFR 173.441 - Radiation level limitations and exclusive use provisions.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 49 Transportation 2 2010-10-01 2010-10-01 false Radiation level limitations and exclusive use... Radiation level limitations and exclusive use provisions. (a) Except as provided in paragraph (b) of this... prepared for shipment, so that under conditions normally incident to transportation, the radiation level...

  16. Radiation-induced taste aversion: effects of radiation exposure level and the exposure-taste interval

    SciTech Connect

    Spector, A.C.; Smith, J.C.; Hollander, G.R.

    1986-05-01

    Radiation-induced taste aversion has been suggested to possibly play a role in the dietary difficulties observed in some radiotherapy patients. In rats, these aversions can still be formed even when the radiation exposure precedes the taste experience by several hours. This study was conducted to examine whether increasing the radiation exposure level could extend the range of the exposure-taste interval that would still support the formation of a taste aversion. Separate groups of rats received either a 100 or 300 R gamma-ray exposure followed 1, 3, 6, or 24 h later by a 10-min saccharin (0.1% w/v) presentation. A control group received a sham exposure followed 1 h later by a 10-min saccharin presentation. Twenty-four hours following the saccharin presentation all rats received a series of twelve 23-h two-bottle preference tests between saccharin and water. The results indicated that the duration of the exposure-taste interval plays an increasingly more important role in determining the initial extent of the aversion as the dose decreases. The course of recovery from taste aversion seems more affected by dose than by the temporal parameters of the conditioning trial.

  17. THE HIGH BACKGROUND RADIATION AREA IN RAMSAR IRAN: GEOLOGY, NORM, BIOLOGY, LNT, AND POSSIBLE REGULATORY FUN

    SciTech Connect

    Karam, P. A.

    2002-02-25

    The city of Ramsar Iran hosts some of the highest natural radiation levels on earth, and over 2000 people are exposed to radiation doses ranging from 1 to 26 rem per year. Curiously, inhabitants of this region seem to have no greater incidence of cancer than those in neighboring areas of normal background radiation levels, and preliminary studies suggest their blood cells experience fewer induced chromosomal abnormalities when exposed to 150 rem ''challenge'' doses of radiation than do the blood cells of their neighbors. This paper will briefly describe the unique geology that gives Ramsar its extraordinarily high background radiation levels. It will then summarize the studies performed to date and will conclude by suggesting ways to incorporate these findings (if they are borne out by further testing) into future radiation protection standards.

  18. Grad-Level Radiation Damage of SIO2 Detectors

    SciTech Connect

    Simos, N.; Atoian, G.; Ludewig, H; White, S; O'Conor, J; Mokhov, N.V.

    2009-05-04

    Radiation effects and levels to detectors. SiO{sub 2} quartz fibers of the LHC ATLAS Zero-degree Calorimeter (ZDC) anticipated to experience integrated doses of a few Grad at their closest position were exposed to 200 MeV protons and neutrons at the Brookhaven National Laboratory (BNL) Linac. Specifically, 1 mm- and 2mm-diameter quartz (GE 124) rods were exposed to direct 200 MeV protons during the first phase of exposure leading to peak integrated dose of {approx}28 Grad. Exposure to a primarily neutron flux of 1mm-diameter SiO{sub 2} fibers was also achieved with a special neutron source arrangement. In a post-irradiation analysis the quartz fiber transmittance was evaluated as a function of the absorbed dose. Dramatic degradation of the transmittance property was observed with increased radiation damage. In addition, detailed evaluation of the fibers under the microscope revealed interesting micro-structural damage features and irradiation-induced defects.

  19. High contrast computed tomography with synchrotron radiation

    NASA Astrophysics Data System (ADS)

    Itai, Yuji; Takeda, Tohoru; Akatsuka, Takao; Maeda, Tomokazu; Hyodo, Kazuyuki; Uchida, Akira; Yuasa, Tetsuya; Kazama, Masahiro; Wu, Jin; Ando, Masami

    1995-02-01

    This article describes a new monochromatic x-ray CT system using synchrotron radiation with applications in biomedical diagnosis which is currently under development. The system is designed to provide clear images and to detect contrast materials at low concentration for the quantitative functional evaluation of organs in correspondence with their anatomical structures. In this system, with x-ray energy changing from 30 to 52 keV, images can be obtained to detect various contrast materials (iodine, barium, and gadolinium), and K-edge energy subtraction is applied. Herein, the features of the new system designed to enhance the advantages of SR are reported. With the introduction of a double-crystal monochromator, the high-order x-ray contamination is eliminated. The newly designed CCD detector with a wide dynamic range of 60 000:1 has a spatial resolution of 200 μm. The resulting image quality, which is expected to show improved contrast and spatial resolution, is currently under investigation.

  20. Sunlight-Exposed Biofilm Microbial Communities Are Naturally Resistant to Chernobyl Ionizing-Radiation Levels

    PubMed Central

    Ragon, Marie; Restoux, Gwendal; Moreira, David; Møller, Anders Pape; López-García, Purificación

    2011-01-01

    Background The Chernobyl accident represents a long-term experiment on the effects of exposure to ionizing radiation at the ecosystem level. Though studies of these effects on plants and animals are abundant, the study of how Chernobyl radiation levels affect prokaryotic and eukaryotic microbial communities is practically non-existent, except for a few reports on human pathogens or soil microorganisms. Environments enduring extreme desiccation and UV radiation, such as sunlight exposed biofilms could in principle select for organisms highly resistant to ionizing radiation as well. Methodology/Principal Findings To test this hypothesis, we explored the diversity of microorganisms belonging to the three domains of life by cultivation-independent approaches in biofilms developing on concrete walls or pillars in the Chernobyl area exposed to different levels of radiation, and we compared them with a similar biofilm from a non-irradiated site in Northern Ireland. Actinobacteria, Alphaproteobacteria, Bacteroidetes, Acidobacteria and Deinococcales were the most consistently detected bacterial groups, whereas green algae (Chlorophyta) and ascomycete fungi (Ascomycota) dominated within the eukaryotes. Close relatives to the most radio-resistant organisms known, including Rubrobacter species, Deinococcales and melanized ascomycete fungi were always detected. The diversity of bacteria and eukaryotes found in the most highly irradiated samples was comparable to that of less irradiated Chernobyl sites and Northern Ireland. However, the study of mutation frequencies in non-coding ITS regions versus SSU rRNA genes in members of a same actinobacterial operational taxonomic unit (OTU) present in Chernobyl samples and Northern Ireland showed a positive correlation between increased radiation and mutation rates. Conclusions/Significance Our results show that biofilm microbial communities in the most irradiated samples are comparable to non-irradiated samples in terms of general

  1. Radiation length imaging with high-resolution telescopes

    NASA Astrophysics Data System (ADS)

    Stolzenberg, U.; Frey, A.; Schwenker, B.; Wieduwilt, P.; Marinas, C.; Lütticke, F.

    2017-02-01

    The construction of low mass vertex detectors with a high level of system integration is of great interest for next generation collider experiments. Radiation length images with a sufficient spatial resolution can be used to measure and disentangle complex radiation length X/X0 profiles and contribute to the understanding of vertex detector systems. Test beam experiments with multi GeV particle beams and high-resolution tracking telescopes provide an opportunity to obtain precise 2D images of the radiation length of thin planar objects. At the heart of the X/X0 imaging is a spatially resolved measurement of the scattering angles of particles traversing the object under study. The main challenges are the alignment of the reference telescope and the calibration of its angular resolution. In order to demonstrate the capabilities of X/X0 imaging, a test beam experiment has been conducted. The devices under test were two mechanical prototype modules of the Belle II vertex detector. A data sample of 100 million tracks at 4 GeV has been collected, which is sufficient to resolve complex material profiles on the 30 μm scale.

  2. Influence of low-level laser radiation on kidney functions

    NASA Astrophysics Data System (ADS)

    Koultchavenia, Ekaterina V.

    1998-12-01

    Most of all renal diseases are accompanied by lowering of kidney functions. That makes the quality of the treatment worse. On an example 69 patients receiving Low-Level Laser Therapy (LLLT), the influence of the laser radiation on a contracting system of blood, on current of an active and inactive tubercular inflammation and on partial functions of kidneys were investigated. Is established, that LLLT does not render influence to a contracting system; promotes stopping of unspecific and moderate peaking of a specific inflammation of kidneys. Is proved, that after a rate of laserotherapy the improving of a blood micricirculation in kidney occurs in 57.9% of patients; a secretion - in 63.1% of the patients; a stimulation of urodynamic is fixed in 79% of cases. Magnification of diuresis, improving filtration and concentration functions of kidneys also is marked.

  3. Deep levels and radiation effects in p-InP

    NASA Technical Reports Server (NTRS)

    Anderson, W. A.; Singh, A.; Jiao, K.; Lee, B.

    1989-01-01

    A survey was conducted on past studies of hole traps in InP. An experiment was designed to evaluate hole traps in Zn-doped InP after fabrication, after electron irradiation and after annealing using deep level transient spectroscopy. Data similar to that of Yamaguchi was seen with observation of both radiation-induced hole and electron traps at E sub A=0.45 eV and 0.03 eV, respectively. Both traps are altered by annealing. It is also shown that trap parameters for surface-barrier devices are influenced by many factors such as bias voltage, which probes traps at different depths below the surface. These devices require great care in data evaluation.

  4. Low Level Laser Therapy: laser radiation absorption in biological tissues

    NASA Astrophysics Data System (ADS)

    Di Giacomo, Paola; Orlando, Stefano; Dell'Ariccia, Marco; Brandimarte, Bruno

    2013-07-01

    In this paper we report the results of an experimental study in which we have measured the transmitted laser radiation through dead biological tissues of various animals (chicken, adult and young bovine, pig) in order to evaluate the maximum thickness through which the power density could still produce a reparative cellular effect. In our experiments we have utilized a pulsed laser IRL1 ISO model (based on an infrared diode GaAs, λ=904 nm) produced by BIOMEDICA s.r.l. commonly used in Low Level Laser Therapy. Some of the laser characteristics have been accurately studied and reported in this paper. The transmission results suggest that even with tissue thicknesses of several centimeters the power density is still sufficient to produce a cell reparative effect.

  5. 14 CFR 29.1317 - High-intensity Radiated Fields (HIRF) Protection.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 14 Aeronautics and Space 1 2010-01-01 2010-01-01 false High-intensity Radiated Fields (HIRF...-intensity Radiated Fields (HIRF) Protection. (a) Except as provided in paragraph (d) of this section, each... equipment HIRF test level 1 or 2, as described in appendix E to this part. (c) Each electrical and...

  6. Hawking radiation of a high-dimensional rotating black hole

    NASA Astrophysics Data System (ADS)

    Ren, Zhao; Lichun, Zhang; Huaifan, Li; Yueqin, Wu

    2010-01-01

    We extend the classical Damour-Ruffini method and discuss Hawking radiation spectrum of high-dimensional rotating black hole using Tortoise coordinate transformation defined by taking the reaction of the radiation to the spacetime into consideration. Under the condition that the energy and angular momentum are conservative, taking self-gravitation action into account, we derive Hawking radiation spectrums which satisfy unitary principle in quantum mechanics. It is shown that the process that the black hole radiates particles with energy ω is a continuous tunneling process. We provide a theoretical basis for further studying the physical mechanism of black-hole radiation.

  7. Correcting spaceborne reflectivity measurements for application in solar ultraviolet radiation levels calculations at ground level

    NASA Astrophysics Data System (ADS)

    den Outer, P. N.; van Dijk, A.; Slaper, H.; Lindfors, A. V.; de Backer, H.; Bais, A. F.; Feister, U.; Koskela, T.; Josefsson, W.

    2012-01-01

    The Lambertian Equivalent Reflection (LER) produced by satellite-carried instruments is used to determine cloud effects on ground level UltraViolet (UV) radiation. The focus is on data use from consecutive operating instruments: the Total Ozone Mapping Spectrometers (TOMS) flown on Nimbus 7 from 1979 to 1992, TOMS on Earth Probe from 1996 to 2005, and the Ozone Monitoring Instrument (OMI) flown on Aura since 2004. The LER data produced by TOMS on Earth Probe is only included until 2002. The possibility to use the Radiative Cloud Fraction (RCF)-product of OMI is also investigated. A comparison is made with cloud effects inferred from ground-based pyranometer measurements at over 83 World Radiation Data Centre stations. Modelled UV irradiances utilizing LER data are compared with measurements of UV irradiances at eight European low elevation stations. The LER data set of the two TOMS instruments shows a consistent agreement, and the required corrections are of low percentage i.e. 2-3%. In contrast, the LER data of OMI requires correction of 7-10%, and a solar angle dependency therein is more pronounced. These corrections were inferred from a comparison with pyranometer data, and tested using the UV measurements. The RCF product of OMI requires a large correction but can then be implemented as a cloud effect proxy. However, a major drawback of RCF is the large number of clipped data, i.e. 18%, and results are not better than those obtained with the corrected LER product of OMI. The average reduction of UV radiation due to clouds for all sites together indicate a small trend: a diminishing cloudiness, in line with ground-based UV observations. Uncorrected implementation of LER would have indicated the opposite. An optimal field of view of 1.25° was established for LER data to calculate UV radiations levels. The corresponding area can be traversed within 5-7 h at the average wind speeds found for the West European continent.

  8. Is the electron radiation length constant at high energies?

    PubMed

    Hansen, H D; Uggerhøj, U I; Biino, C; Ballestrero, S; Mangiarotti, A; Sona, P; Ketel, T J; Vilakazi, Z Z

    2003-07-04

    Experimental results for the radiative energy loss of 149, 207, and 287 GeV electrons in a thin Ir target are presented. From the data we conclude that at high energies the radiation length increases in accordance with the Landau-Pomeranchuk-Migdal (LPM) theory and thus electrons become more penetrating the higher the energy. The increase of the radiation length as a result of the LPM effect has a significant impact on the behavior of high-energy electromagnetic showers.

  9. The Australasian Radiation Protection Society's position statement on risks from low levels of ionizing radiation.

    PubMed

    Higson, Donald

    2007-09-30

    Controversy continues on whether or not ionizing radiation is harmful at low doses, with unresolved scientific uncertainty about effects below a few tens of millisieverts. To settle what regulatory controls should apply in this dose region, an assumption has to be made relating dose to the possibility of harm or benefit. The position of the Australasian Radiation Protection Society on this matter is set out in a statement adopted by the Society in 2005. Its salient features are: --There is insufficient evidence to establish a dose-effect relationship for doses that are less than a few tens of millisieverts in a year. A linear extrapolation from higher dose levels should be assumed only for the purpose of applying regulatory controls.--Estimates of collective dose arising from individual doses that are less than some tens of millisieverts in a year should not be used to predict numbers of fatal cancers. --The risk to an individual of doses significantly less than 100 microsieverts in a year is so small, if it exists at all, that regulatory requirements to control exposure at this level are not warranted.

  10. High temperature liquid level sensor

    DOEpatents

    Tokarz, Richard D.

    1983-01-01

    A length of metal sheathed metal oxide cable is perforated to permit liquid access to the insulation about a pair of conductors spaced close to one another. Changes in resistance across the conductors will be a function of liquid level, since the wetted insulation will have greater electrical conductivity than that of the dry insulation above the liquid elevation.

  11. Carcinogenesis and low-level ionizing radiation with special reference to lung cancer and exposure to radon daughters

    SciTech Connect

    Fabrikant, J.I.

    1982-04-01

    Of the important health effects of ionizing radiation, three important late effects - carcinogenesis, teratogenesis and mutagenesis are of greatest concern. This is because any exposure, even at low levels, carries some risk of such deleterious effects. As the dose of radiation increases above very low levels, the risk of health effects increases. Cancer-induction is the most important late somatic effect of low-dose ionizing radiation. Solid cancers, rather than leukemia, are principal late effects in exposed individuals. Tissues vary greatly in their susceptibility to radiation carcinogenesis. The most frequently occurring radiation-induced cancers in man include, in decreasing order of susceptibility: the female breast, the thyroid gland, the blood-forming tissues, the lung, certain organs of the gastrointestinal tract, and the bones. A number of biological and physical factors affect the cancer risk, such as age, sex, life-style, LET, and RBE. Despite uncertainty about low-level radiation risks, regulatory and advisory bodies must set standards for exposure, and individuals need information to be able to make informed judgments for themselves. From the point of view of the policy maker, the overriding concern is the fact that small doses of radiation can cause people to have more cancers than would otherwise be expected. While concern for all radiation effects exists, our human experience is limited to cancer-induction in exposed populations. This discussion is limited to cancer risk estimation and decision-making in relation to the health effects on populations of exposure to low levels of ionizing radiation. Here, low-level radiation will refer to yearly whole-body doses up to 5 rems or 0.05 Sv, or to cumulative doses up to 50 rems or 0.5 Sv from low-LET radiation and from high-LET radiation. (ERB)

  12. Network-level fallout radiation-effects assessment. Final report

    SciTech Connect

    Not Available

    1989-05-12

    The EMP Mitigation Program analyzes, and where feasible, lessens the degradation effects of EMP on national telecommunication resources. The program focuses on the resources of the public switched network (PSN) because the PSN comprises the largest, most diverse set of telecommunication assets in the United States and is the focus of National Security Emergency Preparedness (NSEP) telecommunication enhancement activities. Additionally, the majority of various organizations rely on the PSN to conduct their NSEP telecommunications responsibilities. Telecommunication equipment is most susceptible to high altitude EMP (HEMP) which occurs when a nuclear weapon is detonated at an altitude greater that 50 km above the earth's surface. In addition to studying the effects of EMP, the program has expanded to address the effects of fallout radiation and serve traffic congestion on the PSN.

  13. Compatibility of advanced tokamak plasma with high density and high radiation loss operation in JT-60U

    NASA Astrophysics Data System (ADS)

    Takenaga, H.; Asakura, N.; Kubo, H.; Higashijima, S.; Konoshima, S.; Nakano, T.; Oyama, N.; Porter, G. D.; Rognlien, T. D.; Rensink, M. E.; Ide, S.; Fujita, T.; Takizuka, T.; Kamada, Y.; Miura, Y.; JT-60 Team

    2005-12-01

    Compatibility of advanced tokamak plasmas with high density and high radiation loss has been investigated in both reversed shear (RS) plasmas and high βp H-mode plasmas with a weak positive shear on JT-60U. In the RS plasmas, the operating regime is extended to high density above the Greenwald density (nGW) with high confinement (HHy2 > 1) and high radiation loss fraction (frad > 0.9) by tailoring the internal transport barriers (ITBs). With a small plasma-wall gap, the radiation loss in the main plasma (inside the magnetic separatrix) reaches 80% of the heating power due to metal impurity accumulation. However, high confinement of HHy2 = 1.2 is sustained even with such a large radiation loss in the main plasma. By neon seeding, the divertor radiation loss is enhanced from 20% to 40% of the total radiation loss. In the high βp H-mode plasmas, high confinement (HHy2 = 0.96) is maintained at high density ( \\bar{n}_{\\rme}/n_GW=0.92 ) with high radiation loss fraction (frad ~ 1) by utilizing high-field-side pellets and argon (Ar) injection. The high \\bar{n}_{\\rme}/n_GW is attributed to the formation of strong density ITB. Strong core-edge parameter linkage for confinement improvement is observed, where the pedestal pressure and the core plasma confinement increase together. The measured radiation profile including contributions from all impurities in the main plasma is peaked, and the central radiation is ascribed to the contribution from Ar accumulated inside the ITB. Impurity transport analyses indicate that the Ar density profile, twice as peaked as the electron density profile, which is the same level as that observed in the high βp H-mode plasma, can yield an acceptable radiation profile even with a peaked density profile in a fusion reactor.

  14. Silicon carbide semiconductor technology for high temperature and radiation environments

    NASA Technical Reports Server (NTRS)

    Matus, Lawrence G.

    1993-01-01

    Viewgraphs on silicon carbide semiconductor technology and its potential for enabling electronic devices to function in high temperature and high radiation environments are presented. Topics covered include silicon carbide; sublimation growth of 6H-SiC boules; SiC chemical vapor deposition reaction system; 6H silicon carbide p-n junction diode; silicon carbide MOSFET; and silicon carbide JFET radiation response.

  15. High-Level Connectionist Models

    DTIC Science & Technology

    1990-04-01

    Freeman, 1987) and on the mathematical level ( Derrida & Meir, 1988; Huberman & Hogg, 1987; Kurten, 1987). It is time that this link be further...Wesley. Derrida B. & Meir, R. (198sL80moac behavior of a layered neural network. Phys. Rev. A, 38. Elman, J. L. (1988). Findi4 Structure in Time. Report...and Huberman, 1983; Kurten and Clark. 1986; Babcock and Westervelt, 1987; Derrida and Meir, 1988; Riedal et al., 1988; Sompolin- sky et al., 1988

  16. 10 CFR 835.502 - High and very high radiation areas.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 10 Energy 4 2013-01-01 2013-01-01 false High and very high radiation areas. 835.502 Section 835.502 Energy DEPARTMENT OF ENERGY OCCUPATIONAL RADIATION PROTECTION Entry Control Program § 835.502 High and very high radiation areas. (a) The following measures shall be implemented for each entry into...

  17. 10 CFR 835.502 - High and very high radiation areas.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 10 Energy 4 2010-01-01 2010-01-01 false High and very high radiation areas. 835.502 Section 835.502 Energy DEPARTMENT OF ENERGY OCCUPATIONAL RADIATION PROTECTION Entry Control Program § 835.502 High and very high radiation areas. (a) The following measures shall be implemented for each entry into a...

  18. 10 CFR 835.502 - High and very high radiation areas.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 10 Energy 4 2014-01-01 2014-01-01 false High and very high radiation areas. 835.502 Section 835.502 Energy DEPARTMENT OF ENERGY OCCUPATIONAL RADIATION PROTECTION Entry Control Program § 835.502 High and very high radiation areas. (a) The following measures shall be implemented for each entry into a...

  19. 10 CFR 835.502 - High and very high radiation areas.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 10 Energy 4 2011-01-01 2011-01-01 false High and very high radiation areas. 835.502 Section 835.502 Energy DEPARTMENT OF ENERGY OCCUPATIONAL RADIATION PROTECTION Entry Control Program § 835.502 High and very high radiation areas. (a) The following measures shall be implemented for each entry into a...

  20. 10 CFR 835.502 - High and very high radiation areas.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 10 Energy 4 2012-01-01 2012-01-01 false High and very high radiation areas. 835.502 Section 835.502 Energy DEPARTMENT OF ENERGY OCCUPATIONAL RADIATION PROTECTION Entry Control Program § 835.502 High and very high radiation areas. (a) The following measures shall be implemented for each entry into a...

  1. 10 CFR 34.21 - Limits on external radiation levels from storage containers and source changers.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 10 Energy 1 2011-01-01 2011-01-01 false Limits on external radiation levels from storage... INDUSTRIAL RADIOGRAPHY AND RADIATION SAFETY REQUIREMENTS FOR INDUSTRIAL RADIOGRAPHIC OPERATIONS Equipment § 34.21 Limits on external radiation levels from storage containers and source changers. The maximum...

  2. 10 CFR 34.21 - Limits on external radiation levels from storage containers and source changers.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 10 Energy 1 2013-01-01 2013-01-01 false Limits on external radiation levels from storage... INDUSTRIAL RADIOGRAPHY AND RADIATION SAFETY REQUIREMENTS FOR INDUSTRIAL RADIOGRAPHIC OPERATIONS Equipment § 34.21 Limits on external radiation levels from storage containers and source changers. The maximum...

  3. 10 CFR 34.21 - Limits on external radiation levels from storage containers and source changers.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 10 Energy 1 2014-01-01 2014-01-01 false Limits on external radiation levels from storage... INDUSTRIAL RADIOGRAPHY AND RADIATION SAFETY REQUIREMENTS FOR INDUSTRIAL RADIOGRAPHIC OPERATIONS Equipment § 34.21 Limits on external radiation levels from storage containers and source changers. The maximum...

  4. 10 CFR 34.21 - Limits on external radiation levels from storage containers and source changers.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 10 Energy 1 2010-01-01 2010-01-01 false Limits on external radiation levels from storage... INDUSTRIAL RADIOGRAPHY AND RADIATION SAFETY REQUIREMENTS FOR INDUSTRIAL RADIOGRAPHIC OPERATIONS Equipment § 34.21 Limits on external radiation levels from storage containers and source changers. The maximum...

  5. 10 CFR 34.21 - Limits on external radiation levels from storage containers and source changers.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 10 Energy 1 2012-01-01 2012-01-01 false Limits on external radiation levels from storage... INDUSTRIAL RADIOGRAPHY AND RADIATION SAFETY REQUIREMENTS FOR INDUSTRIAL RADIOGRAPHIC OPERATIONS Equipment § 34.21 Limits on external radiation levels from storage containers and source changers. The maximum...

  6. An Underappreciated Radiation Hazard from High Voltage Electrodes in Vacuum.

    PubMed

    West, Adam D; Lasner, Zack; DeMille, David; West, Elizabeth P; Panda, Cristian D; Doyle, John M; Gabrielse, Gerald; Kryskow, Adam; Mitchell, Corinne

    2017-01-01

    The use of high voltage (HV) electrodes in vacuum is commonplace in physics laboratories. In such systems, it has long been known that electron emission from an HV cathode can lead to bremsstrahlung x rays; indeed, this is the basic principle behind the operation of standard x-ray sources. However, in laboratory setups where x-ray production is not the goal and no electron source is deliberately introduced, field-emitted electrons accelerated by HV can produce x rays as an unintended hazardous byproduct. Both the level of hazard and the safe operating regimes for HV vacuum electrode systems are not widely appreciated, at least in university laboratories. A reinforced awareness of the radiation hazards associated with vacuum HV setups would be beneficial. The authors present a case study of a HV vacuum electrode device operated in a university atomic physics laboratory. They describe the characterization of the observed x-ray radiation, its relation to the observed leakage current in the device, the steps taken to contain and mitigate the radiation hazard, and suggested safety guidelines.

  7. Outdoor radiofrequency radiation levels in the West Bank-Palestine.

    PubMed

    Lahham, Adnan; Hammash, Alaa

    2012-05-01

    This work presents the results of exposure levels to radio frequency (RF) emission from different sources in the environment of the West Bank-Palestine. These RF emitters include FM and TV broadcasting stations and mobile phone base stations. Power densities were measured at 65 locations distributed over the West Bank area. These locations include mainly centres of the major cities. Also a 24 h activity level was investigated for a mobile phone base station to determine the maximum activity level for this kind of RF emitters. All measurements were conducted at a height of 1.7 m above ground level using hand held Narda SRM 3000 spectrum analyzer with isotropic antenna capable of collecting RF signals in the frequency band from 75 MHz to 3 GHz. The average value of power density resulted from FM radio broadcasting in all investigated locations was 0.148 μW cm(-2), from TV broadcasting was 0.007 μW cm(-2) and from mobile phone base station was 0.089 μW cm(-2). The maximum total exposure evaluated at any location was 3.86 μW cm(-2). The corresponding exposure quotient calculated for this site was 0.02. This value is well below unity indicating compliance with the International Commission on non-ionising Radiation protection guidelines. Contributions from all relevant RF sources to the total exposure were evaluated and found to be ~62 % from FM radio, 3 % for TV broadcasting and 35 % from mobile phone base stations. The average total exposure from all investigated RF sources was 0.37 μW cm(-2).

  8. Hardening electronic devices against very high total dose radiation environments

    NASA Technical Reports Server (NTRS)

    Buchanan, B.; Shedd, W.; Roosild, S.; Dolan, R.

    1972-01-01

    The possibilities and limitations of hardening silicon semiconductor devices to the high neutron and gamma radiation levels and greater than 10 to the eighth power rads required for the NERVA nuclear engine development are discussed. A comparison is made of the high dose neutron and gamma hardening potential of bipolar, metal insulator semiconductors and junction field effect transistors. Experimental data is presented on device degradation for the high neutron and gamma doses. Previous data and comparisons indicate that the JFET is much more immune to the combined neutron displacement and gamma ionizing effects than other transistor types. Experimental evidence is also presented which indicates that p channel MOS devices may be able to meet the requirements.

  9. Revisiting radiative deep-level transitions in CuGaSe{sub 2} by photoluminescence

    SciTech Connect

    Spindler, Conrad Regesch, David; Siebentritt, Susanne

    2016-07-18

    Recent defect calculations suggest that the open circuit voltage of CuGaSe{sub 2} solar cells can be limited by deep intrinsic electron traps by Ga{sub Cu} antisites and their complexes with Cu-vacancies. To gain experimental evidence, two radiative defect transitions at 1.10 eV and 1.24 eV are characterized by steady-state photoluminescence on epitaxial-grown CuGaSe{sub 2} thin films. Cu-rich samples are studied, since they show highest crystal quality, exciton luminescence, and no potential fluctuations. Variations of the laser intensity and temperature dependent measurements suggest that emission occurs from two deep donor-like levels into the same shallow acceptor. At 10 K, power-law exponents of 1 (low excitation regime) and 1/2 (high excitation regime) are observed identically for both transitions. The theory and a fitting function for the double power law is derived. It is concluded that the acceptor becomes saturated by excess carriers which changes the exponent of all transitions. Activation energies determined from the temperature quenching depend on the excitation level and show unexpected values of 600 meV and higher. The thermal activation of non-radiative processes can explain the distortion of the ionization energies. Both the deep levels play a major role as radiative and non-radiative recombination centers for electrons and can be detrimental for photovoltaic applications.

  10. Revisiting radiative deep-level transitions in CuGaSe2 by photoluminescence

    NASA Astrophysics Data System (ADS)

    Spindler, Conrad; Regesch, David; Siebentritt, Susanne

    2016-07-01

    Recent defect calculations suggest that the open circuit voltage of CuGaSe2 solar cells can be limited by deep intrinsic electron traps by GaCu antisites and their complexes with Cu-vacancies. To gain experimental evidence, two radiative defect transitions at 1.10 eV and 1.24 eV are characterized by steady-state photoluminescence on epitaxial-grown CuGaSe2 thin films. Cu-rich samples are studied, since they show highest crystal quality, exciton luminescence, and no potential fluctuations. Variations of the laser intensity and temperature dependent measurements suggest that emission occurs from two deep donor-like levels into the same shallow acceptor. At 10 K, power-law exponents of 1 (low excitation regime) and 1/2 (high excitation regime) are observed identically for both transitions. The theory and a fitting function for the double power law is derived. It is concluded that the acceptor becomes saturated by excess carriers which changes the exponent of all transitions. Activation energies determined from the temperature quenching depend on the excitation level and show unexpected values of 600 meV and higher. The thermal activation of non-radiative processes can explain the distortion of the ionization energies. Both the deep levels play a major role as radiative and non-radiative recombination centers for electrons and can be detrimental for photovoltaic applications.

  11. Effect of low-level alpha-radiation on bioluminescent assay systems of various complexity.

    PubMed

    Rozhko, Tatiana V; Kudryasheva, Nadezhda S; Kuznetsov, Alexander M; Vydryakova, Galina A; Bondareva, Lydia G; Bolsunovsky, Alexander Ya

    2007-01-01

    This study addresses the effects of low-level alpha-radiation on bioluminescent assay systems of different levels of organization: in vivo and in vitro. Three bioluminescent assay systems are used: intact bacteria, lyophilized bacteria, and bioluminescent system of coupled enzyme reactions. Solutions of 241Am(NO3)3 are used as a source of alpha-radiation. It has been shown that activation processes predominate in all the three bioluminescent assay systems subjected to short-term exposure (20-55 h) and inhibition processes in the systems subjected to longer-term exposure to radiation. It has been found that these effects are caused by the radiation component of 241Am3+ impact. The intensity of the 241Am3+ effect on the bioluminescent assay systems has been shown to depend on the 241Am3+ concentration, level of organization and integrity of the bioluminescent assay system. The bioluminescent assay systems in vivo have been found to be highly sensitive to 241Am3+ (up to 10(-17) M).

  12. High Altitude Radiations Relevant to the High Speed Civil Transport (HSCT)

    NASA Technical Reports Server (NTRS)

    Wilson, J. W.; Goldhagan, P.; Maiden, D. L.; Tai, H.

    2004-01-01

    The Langley Research Center (LaRC) performed atmospheric radiation studies under the SST development program in which important ionizing radiation components were measured and extended by calculations to develop the existing atmospheric ionizing radiation (AIR) model. In that program the measured neutron spectrum was limited to less than 10 MeV by the available 1960-1970 instrumentation. Extension of the neutron spectrum to high energies was made using the LaRC PROPER-3C monte carlo code. It was found that the atmospheric neutrons contributed about half of the dose equivalent and approximately half of the neutron contribution was from high energy neutrons above 10 MeV. Furthermore, monte carlo calculations of solar particle events showed that potential exposures as large as 10-100 mSv/hr may occur on important high latitude routes but acceptable levels of exposure could be obtained if timely descent to subsonic altitudes could be made. The principal concern was for pregnant occupants onboard the aircraft. As a result of these studies the FAA Advisory Committee on the Radiobiological Aspects of the SST recommended: 1. Crew members will have to be informed of their exposure levels 2. Maximum exposures on any flight to be limited to 5 mSv 3. Airborne radiation detection devices for total exposure and exposure rates 4. Satellite monitoring system to provide SST aircraft real-time information on atmospheric radiation levels for exposure mitigation 5. A solar forecasting system to warn flight operations of an impending solar event for flight scheduling and alert status. These recommendations are a reasonable starting point to requirements for the HSCT with some modification reflecting new standards of protection as a result of changing risk coefficients.

  13. High Altitude Radiations Relevant to the High Speed Civil Transport (HSCT)

    NASA Technical Reports Server (NTRS)

    Wilson, J. W.; Goldhagan, P.; Maiden, D. L.; Tai, H.

    2004-01-01

    The Langley Research Center (LaRC) performed atmospheric radiation studies under the SST development program in which important ionizing radiation components were measured and extended by calculations to develop the existing atmospheric ionizing radiation (AIR) model. In that program the measured neutron spectrum was limited to less than 10 MeV by the available 1960-1970 instrumentation. Extension of the neutron spectrum to high energies was made using the LaRC PROPER-3C monte carlo code. It was found that the atmospheric neutrons contributed about half of the dose equivalent and approximately half of the neutron contribution was from high energy neutrons above 10 MeV. Furthermore, monte carlo calculations of solar particle events showed that potential exposures as large as 10-100 mSv/hr may occur on important high latitude routes but acceptable levels of exposure could be obtained if timely descent to subsonic altitudes could be made. The principal concern was for pregnant occupants onboard the aircraft. As a result of these studies the FAA Advisory Committee on the Radiobiological Aspects of the SST recommended: 1. Crew members will have to be informed of their exposure levels 2. Maximum exposures on any flight to be limited to 5 mSv 3. Airborne radiation detection devices for total exposure and exposure rates 4. Satellite monitoring system to provide SST aircraft real-time information on atmospheric radiation levels for exposure mitigation 5. A solar forecasting system to warn flight operations of an impending solar event for flight scheduling and alert status. These recommendations are a reasonable starting point to requirements for the HSCT with some modification reflecting new standards of protection as a result of changing risk coefficients.

  14. High-energy radiation from active galactic nuclei

    NASA Technical Reports Server (NTRS)

    Sikora, Marek

    1994-01-01

    Two recent findings concerning high-energy radiation properties of active galactic nuclei -- discovery of breaks in hard X-ray spectra of Seyfert galaxies, and discovery of huge fluxes of hard gamma rays from blazars -- seem to press us to change our standard views about radiation production in these objects. I review briefly the existing radiation models, confront them with the newest observations, and discuss newly emerging theoretical pictures which attempt to account for the discoveries.

  15. High-Level Data Races

    NASA Technical Reports Server (NTRS)

    Artho, Cyrille; Havelund, Klaus; Biere, Armin; Koga, Dennis (Technical Monitor)

    2003-01-01

    Data races are a common problem in concurrent and multi-threaded programming. They are hard to detect without proper tool support. Despite the successful application of these tools, experience shows that the notion of data race is not powerful enough to capture certain types of inconsistencies occurring in practice. In this paper we investigate data races on a higher abstraction layer. This enables us to detect inconsistent uses of shared variables, even if no classical race condition occurs. For example, a data structure representing a coordinate pair may have to be treated atomically. By lifting the meaning of a data race to a higher level, such problems can now be covered. The paper defines the concepts view and view consistency to give a notation for this novel kind of property. It describes what kinds of errors can be detected with this new definition, and where its limitations are. It also gives a formal guideline for using data structures in a multi-threading environment.

  16. The association betweeen cancers and low level radiation: An evaluation of the epidemiological evidence at the Hanford Nuclear Weapons Facility

    SciTech Connect

    Britton, J. |

    1993-05-01

    Cancer has traditionally been linked to exposure to high doses of radiation, but there is considerable controversy regarding the carcinogenicity of low doses of ionizing radiation in humans. Over the past 30 years there have been 14 studies conducted on employees at the Hanford nuclear weapons facility to investigate the relationship between exposure to low doses of radiation and mortality due to cancer (1-14). Interest in this issue was originally stimulated by the Atomic Energy Commission (AEC) which was trying to determine whether the linear extrapolation of health effects from high to low dose exposure was accurate. If the risk has been underestimated, then the maximum permissible occupational radiation exposure in the United States had been set too high. Because the health risk associated with low level radiation are unclear and controversial it seems appropriate to review the studies relating to Hanford at this time.

  17. Therapy of locally unresectable pancreatic carcinoma: a randomized comparison of high dose (6000 rads) radiation alone, moderate dose radiation (4000 rads + 5-fluorouracil), and high dose radiation + 5-fluorouracil: the Gastrointestinal Tumor Study Group. [X ray

    SciTech Connect

    Moertel, C.G.; Frytak, S.; Hahn, R.G.

    1981-10-15

    One-hundred-ninety-four eligible and evaluable patients with histologically confirmed locally unresectable adenocarcinoma of the pancreas were randomly assigned to therapy with high-dose (6000 rads) radiation therapy alone, to moderate-dose (4000 rads) radiation + 5-fluorouracil (5-FU), and to high-dose radiation plus 5-FU. Median survival with radiation alone was only 5 1/2 months from date of diagnosis. Both 5-FU-containing treatment regimens produced a highly significant survival improvement when compared with radiation alone. Survival differences between 4000 rads plus 5-FU and 6000 rads plus 5-FU were not significant with an overall median survival of ten months. Significant prognostic variables, in addition to treatment, were pretreatment performance status and pretreatment CEA level. The toxic reactions related to the treatment are discussed.

  18. Radiation interactions in high-pressure gases

    SciTech Connect

    Christophorou, L.G. Tennessee Univ., Knoxville, TN )

    1990-01-01

    This article is on basic radiation interaction processes in dense fluids and on interphase studies aiming at the interfacing of knowledge on radiation interaction processes in the gaseous and the liquid state of matter. It is specifically focused on the effect of the density and nature of the medium on electron production in irradiated fluids and on the state, energy, transport, and attachment of slow excess electrons in dense fluids especially dielectric liquids which possess excess-electron conduction bands (V{sub 0} < 0 eV). Studies over the past two decades have shown that the interactions of low-energy electrons with molecules embedded in dense media depend not only on the molecules themselves and their internal state of excitation, but also on the electron state and energy in -- and the nature and density of -- the medium in which the interactions occur.

  19. Radiation Safety Issues in High Altitude Commercial Aircraft

    NASA Technical Reports Server (NTRS)

    Wilson, John W.; Cucinotta, Francis A.; Shinn, Judy L.

    1995-01-01

    The development of a global economy makes the outlook for high speed commercial intercontinental flight feasible, and the development of various configurations operating from 20 to 30 km have been proposed. In addition to the still unresolved issues relating to current commercial operations (12-16 km), the higher dose rates associated with the higher operating altitudes makes il imperative that the uncertainties in the atmospheric radiation environment and the associated health risks be re-examined. Atmospheric radiation associated with the galactic cosmic rays forms a background level which may, under some circumstances, exceed newly recommended allowable exposure limits proposed on the basis of recent evaluations of the A -bomb survivor data (due to increased risk coefficients). These larger risk coefficients, within the context of the methodology for estimating exposure limits, are resulting in exceedingly low estimated allowable exposure limits which may impact even present day flight operations and was the reason for the CEC workshop in Luxembourg (1990). At higher operating altitudes, solar particles events can produce exposures many orders of magnitude above background levels and pose significant health risks to the most sensitive individuals (such as during pregnancy). In this case the appropriate quality factors are undefined, and some evidence exists which indicates that the quality factor for stochastic effects is a substantial underestimate.

  20. Operational Radiation Protection in High-Energy Physics Accelerators

    SciTech Connect

    Rokni, S.H.; Fasso, A.; Liu, J.C.; /SLAC

    2012-04-03

    An overview of operational radiation protection (RP) policies and practices at high-energy electron and proton accelerators used for physics research is presented. The different radiation fields and hazards typical of these facilities are described, as well as access control and radiation control systems. The implementation of an operational RP programme is illustrated, covering area and personnel classification and monitoring, radiation surveys, radiological environmental protection, management of induced radioactivity, radiological work planning and control, management of radioactive materials and wastes, facility dismantling and decommissioning, instrumentation and training.

  1. High energy limit of single photon channeling radiation spectrum

    NASA Astrophysics Data System (ADS)

    Khokonov, M. Kh.; Efendiev, K. V.

    2006-11-01

    The properties of channeling radiation spectra for above 100 GeV electrons have been studied with account of multiple scattering and radiation cooling. It has been shown, that the shape of a spectrum does not depend neither on energy of electrons, nor on the atomic number of a target when the energy of electrons exceeds ˜1 TeV. The consideration is based on the uniform field approximation (UFA). Simple phenomenological expressions are presented which describe the radiation spectrum with good degree of accuracy. It has been shown, that the radiation length in the high energy limit depends weakly on the energy of incident electrons.

  2. Space solar cells: High efficiency and radiation damage

    NASA Technical Reports Server (NTRS)

    Brandhorst, H., Jr.; Bernatowicz, D. T.

    1980-01-01

    The progress and status of efforts to increase the end-of-life efficiency of solar cells for space use is assessed. High efficiency silicon solar cells, silicon solar cell radiation damage, GaAs solar cell performance and radiation damage and 30 percent devices are discussed.

  3. Polarization of radiation of electrons in highly turbulent magnetic fields

    NASA Astrophysics Data System (ADS)

    Prosekin, A. Yu.; Kelner, S. R.; Aharonian, F. A.

    2016-09-01

    We study the polarization properties of the jitter and synchrotron radiation produced by electrons in highly turbulent anisotropic magnetic fields. The net polarization is provided by the geometry of the magnetic field the directions of which are parallel to a certain plane. Such conditions may appear in the relativistic shocks during the amplification of the magnetic field through the so-called Weibel instability. While the polarization properties of the jitter radiation allows extraction of direct information on the turbulence spectrum as well as the geometry of magnetic field, the polarization of the synchrotron radiation reflects the distribution of the magnetic field over its strength. For the isotropic distribution of monoenergetic electrons, we found that the degree of polarization of the synchrotron radiation is larger than the polarization of the jitter radiation. For the power-law energy distribution of electrons the relation between the degree of polarization of synchrotron and jitter radiation depends on the spectral index of the distribution.

  4. High LET, passive space radiation dosimetry and spectrometry

    SciTech Connect

    Benton, E.V.; Frank, A.L.; Benton, E.R.; Keegan, R.P.; Frigo, L.A.; Sanner, D.; Rowe, V.

    1995-03-01

    The development of high linear energy transfer (LET), passive radiation dosimetry and spectrometry is needed for the purpose of accurate determination of equivalent doses and assessment of health risks to astronauts on long duration missions. Progress in the following research areas is summerized: intercomparisons of cosmic ray equivalent dose and LET spectra measurements between STS missions and between astronauts; increases LET spectra measurement accuracy with ATAS; space radiation measurements for intercomparisons of passive (PNTD, TLD, TRND, Emulsion) and active (TEPC, RME-111) dosimeters; interaction of cosmic ray particles with nuclei in matter; radiation measurements after long duration space exposures; ground based dosimeter calibrations; neutron detector calibrations; radiation measurements on Soviet/Russian spacecraft; space radiation measurements under thin shielding; and space radiation. Separate abstracts were prepared for articles from this report.

  5. High LET, passive space radiation dosimetry and spectrometry

    NASA Technical Reports Server (NTRS)

    Benton, E. V.; Frank, A. L.; Benton, E. R.; Keegan, R. P.; Frigo, L. A.; Sanner, D.; Rowe, V.

    1995-01-01

    The development of high linear energy transfer (LET), passive radiation dosimetry and spectrometry is needed for the purpose of accurate determination of equivalent doses and assessment of health risks to astronauts on long duration missions. Progress in the following research areas is summerized: intercomparisons of cosmic ray equivalent dose and LET spectra measurements between STS missions and between astronauts; increases LET spectra measurement accuracy with ATAS; space radiation measurements for intercomparisons of passive (PNTD, TLD, TRND, Emulsion) and active (TEPC, RME-111) dosimeters; interaction of cosmic ray particles with nuclei in matter; radiation measurements after long duration space exposures; ground based dosimeter calibrations; neutron detector calibrations; radiation measurements on Soviet/Russian spacecraft; space radiation measurements under thin shielding; and space radiation.

  6. Radiation-induced reductions in transporter mRNA levels parallel reductions in intestinal sugar transport

    PubMed Central

    Roche, Marjolaine; Neti, Prasad V. S. V.; Kemp, Francis W.; Agrawal, Amit; Attanasio, Alicia; Douard, Véronique; Muduli, Anjali; Azzam, Edouard I.; Norkus, Edward; Brimacombe, Michael; Howell, Roger W.

    2010-01-01

    More than a century ago, ionizing radiation was observed to damage the radiosensitive small intestine. Although a large number of studies has since shown that radiation reduces rates of intestinal digestion and absorption of nutrients, no study has determined whether radiation affects mRNA expression and dietary regulation of nutrient transporters. Since radiation generates free radicals and disrupts DNA replication, we tested the hypotheses that at doses known to reduce sugar absorption, radiation decreases the mRNA abundance of sugar transporters SGLT1 and GLUT5, prevents substrate regulation of sugar transporter expression, and causes reductions in sugar absorption that can be prevented by consumption of the antioxidant vitamin A, previously shown by us to radioprotect the testes. Mice were acutely irradiated with 137Cs gamma rays at doses of 0, 7, 8.5, or 10 Gy over the whole body. Mice were fed with vitamin A-supplemented diet (100× the control diet) for 5 days prior to irradiation after which the diet was continued until death. Intestinal sugar transport was studied at days 2, 5, 8, and 14 postirradiation. By day 8, d-glucose uptake decreased by ∼10–20% and d-fructose uptake by 25–85%. With increasing radiation dose, the quantity of heterogeneous nuclear RNA increased for both transporters, whereas mRNA levels decreased, paralleling reductions in transport. Enterocytes of mice fed the vitamin A supplement had ≥ 6-fold retinol concentrations than those of mice fed control diets, confirming considerable intestinal vitamin A uptake. However, vitamin A supplementation had no effect on clinical or transport parameters and afforded no protection against radiation-induced changes in intestinal sugar transport. Radiation markedly reduced GLUT5 activity and mRNA abundance, but high-d-fructose diets enhanced GLUT5 activity and mRNA expression in both unirradiated and irradiated mice. In conclusion, the effect of radiation may be posttranscriptional, and

  7. Radiation-induced reductions in transporter mRNA levels parallel reductions in intestinal sugar transport.

    PubMed

    Roche, Marjolaine; Neti, Prasad V S V; Kemp, Francis W; Agrawal, Amit; Attanasio, Alicia; Douard, Véronique; Muduli, Anjali; Azzam, Edouard I; Norkus, Edward; Brimacombe, Michael; Howell, Roger W; Ferraris, Ronaldo P

    2010-01-01

    More than a century ago, ionizing radiation was observed to damage the radiosensitive small intestine. Although a large number of studies has since shown that radiation reduces rates of intestinal digestion and absorption of nutrients, no study has determined whether radiation affects mRNA expression and dietary regulation of nutrient transporters. Since radiation generates free radicals and disrupts DNA replication, we tested the hypotheses that at doses known to reduce sugar absorption, radiation decreases the mRNA abundance of sugar transporters SGLT1 and GLUT5, prevents substrate regulation of sugar transporter expression, and causes reductions in sugar absorption that can be prevented by consumption of the antioxidant vitamin A, previously shown by us to radioprotect the testes. Mice were acutely irradiated with (137)Cs gamma rays at doses of 0, 7, 8.5, or 10 Gy over the whole body. Mice were fed with vitamin A-supplemented diet (100x the control diet) for 5 days prior to irradiation after which the diet was continued until death. Intestinal sugar transport was studied at days 2, 5, 8, and 14 postirradiation. By day 8, d-glucose uptake decreased by approximately 10-20% and d-fructose uptake by 25-85%. With increasing radiation dose, the quantity of heterogeneous nuclear RNA increased for both transporters, whereas mRNA levels decreased, paralleling reductions in transport. Enterocytes of mice fed the vitamin A supplement had > or = 6-fold retinol concentrations than those of mice fed control diets, confirming considerable intestinal vitamin A uptake. However, vitamin A supplementation had no effect on clinical or transport parameters and afforded no protection against radiation-induced changes in intestinal sugar transport. Radiation markedly reduced GLUT5 activity and mRNA abundance, but high-d-fructose diets enhanced GLUT5 activity and mRNA expression in both unirradiated and irradiated mice. In conclusion, the effect of radiation may be posttranscriptional

  8. Dose build up correction for radiation monitors in high-energy bremsstrahlung photon radiation fields.

    PubMed

    Nair, Haridas G; Nayak, M K; Dev, Vipin; Thakkar, K K; Sarkar, P K; Sharma, D N

    2006-01-01

    Conventional radiation monitors have been found to underestimate the personal dose equivalent in the high-energy bremsstrahlung photon radiation fields encountered near electron storage rings. Depth-dose measurements in a water phantom were carried out with a radiation survey meter in the bremsstrahlung photon radiation fields from a 450 MeV electron storage ring to find out the magnitude of the underestimation. Dose equivalent indicated by the survey meter was found to build up with increase in thickness of water placed in front of the meter up to certain depth and then reduce with further increase in thickness. A dose equivalent build up factor was estimated from the measurements. An absorbed dose build up factor in a water phantom was also estimated from calculations performed using the Monte Carlo codes, EGS-4 and EGSnrc. The calculations are found to be in very good agreement with the measurements. The studies indicate inadequacy of commercially available radiation monitors for radiation monitoring within shielded enclosures and in streaming high-energy photon radiation fields from electron storage rings, and the need for proper correction for use in such radiation fields.

  9. Derivation of the radiation budget at ground level from satellite measurements

    NASA Technical Reports Server (NTRS)

    Raschke, E.

    1982-01-01

    Determination of the Earth radiaton budget and progress in measurement of the budget components and in the treatment of imaging data from satellites are described. Methods for calculating the radiation budget in a general circulation model, radiative transfer characteristics of clouds, computation of solar radiation at ground level using meteorological data and development of a 10-channel radiometer are discussed.

  10. 28 CFR 79.44 - Proof of working level month exposure to radiation.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... radiation. 79.44 Section 79.44 Judicial Administration DEPARTMENT OF JUSTICE (CONTINUED) CLAIMS UNDER THE RADIATION EXPOSURE COMPENSATION ACT Eligibility Criteria for Claims by Uranium Miners § 79.44 Proof of working level month exposure to radiation. (a) If one or more of the sources in § 79.43(a) contain a...

  11. 28 CFR 79.44 - Proof of working level month exposure to radiation.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... radiation. 79.44 Section 79.44 Judicial Administration DEPARTMENT OF JUSTICE (CONTINUED) CLAIMS UNDER THE RADIATION EXPOSURE COMPENSATION ACT Eligibility Criteria for Claims by Uranium Miners § 79.44 Proof of working level month exposure to radiation. (a) If one or more of the sources in § 79.43(a) contain a...

  12. 28 CFR 79.44 - Proof of working level month exposure to radiation.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... radiation. 79.44 Section 79.44 Judicial Administration DEPARTMENT OF JUSTICE (CONTINUED) CLAIMS UNDER THE RADIATION EXPOSURE COMPENSATION ACT Eligibility Criteria for Claims by Uranium Miners § 79.44 Proof of working level month exposure to radiation. (a) If one or more of the sources in § 79.43(a) contain a...

  13. 28 CFR 79.44 - Proof of working level month exposure to radiation.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... radiation. 79.44 Section 79.44 Judicial Administration DEPARTMENT OF JUSTICE (CONTINUED) CLAIMS UNDER THE RADIATION EXPOSURE COMPENSATION ACT Eligibility Criteria for Claims by Uranium Miners § 79.44 Proof of working level month exposure to radiation. (a) If one or more of the sources in § 79.43(a) contain a...

  14. 28 CFR 79.44 - Proof of working level month exposure to radiation.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... radiation. 79.44 Section 79.44 Judicial Administration DEPARTMENT OF JUSTICE (CONTINUED) CLAIMS UNDER THE RADIATION EXPOSURE COMPENSATION ACT Eligibility Criteria for Claims by Uranium Miners § 79.44 Proof of working level month exposure to radiation. (a) If one or more of the sources in § 79.43(a) contain a...

  15. The influence of high intensity terahertz radiation on mammalian cell adhesion, proliferation and differentiation

    NASA Astrophysics Data System (ADS)

    Williams, Rachel; Schofield, Amy; Holder, Gareth; Downes, Joan; Edgar, David; Harrison, Paul; Siggel-King, Michele; Surman, Mark; Dunning, David; Hill, Stephen; Holder, David; Jackson, Frank; Jones, James; McKenzie, Julian; Saveliev, Yuri; Thomsen, Neil; Williams, Peter; Weightman, Peter

    2013-01-01

    Understanding the influence of exposure of biological systems to THz radiation is becoming increasingly important. There is some evidence to suggest that THz radiation can influence important activities within mammalian cells. This study evaluated the influence of the high peak power, low average power THz radiation produced by the ALICE (Daresbury Laboratory, UK) synchrotron source on human epithelial and embryonic stem cells. The cells were maintained under standard tissue culture conditions, during which the THz radiation was delivered directly into the incubator for various exposure times. The influence of the THz radiation on cell morphology, attachment, proliferation and differentiation was evaluated. The study demonstrated that there was no difference in any of these parameters between irradiated and control cell cultures. It is suggested that under these conditions the cells are capable of compensating for any effects caused by exposure to THz radiation with the peak powers levels employed in these studies.

  16. The radiation protection problems of high altitude and space flight

    SciTech Connect

    Fry, R.J.M.

    1993-04-01

    This paper considers the radiation environment in aircraft at high altitudes and spacecraft in low earth orbit and in deep space and the factors that influence the dose equivalents. Altitude, latitude and solar cycle are the major influences for flights below the radiation belts. In deep space, solar cycle and the occurrence of solar particle events are the factors of influence. The major radiation effects of concern are cancer and infertility in males. In high altitude aircraft the radiation consists mainly of protons and neutrons, with neutrons contributing about half the equivalent dose. The average dose rate at altitudes of transcontinental flights that approach the polar regions are greater by a factor of about 2.5 than on routes at low latitudes. Current estimates of does to air crews suggest they are well within the ICRP (1990) recommended dose limits for radiation workers.

  17. The radiation protection problems of high altitude and space flight

    SciTech Connect

    Fry, R.J.M.

    1993-01-01

    This paper considers the radiation environment in aircraft at high altitudes and spacecraft in low earth orbit and in deep space and the factors that influence the dose equivalents. Altitude, latitude and solar cycle are the major influences for flights below the radiation belts. In deep space, solar cycle and the occurrence of solar particle events are the factors of influence. The major radiation effects of concern are cancer and infertility in males. In high altitude aircraft the radiation consists mainly of protons and neutrons, with neutrons contributing about half the equivalent dose. The average dose rate at altitudes of transcontinental flights that approach the polar regions are greater by a factor of about 2.5 than on routes at low latitudes. Current estimates of does to air crews suggest they are well within the ICRP (1990) recommended dose limits for radiation workers.

  18. Comparison of Some Radiation Exposures to Mars-Trip Level

    NASA Image and Video Library

    2013-05-30

    This graphic compares the radiation dose equivalent for several types of experiences, including a calculation for a trip from Earth to Mars based on measurements made by the RAD instrument shielded inside NASA Mars Science Laboratory spacecraft.

  19. High and low dose radiation effects on mammary adenocarcinoma cells – an epigenetic connection

    PubMed Central

    Luzhna, Lidia; Filkowski, Jody; Kovalchuk, Olga

    2016-01-01

    The successful treatment of cancer, including breast cancer, depends largely on radiation therapy and proper diagnostics. The effect of ionizing radiation on cells and tissues depends on the radiation dose and energy level, but there is insufficient evidence concerning how tumor cells respond to the low and high doses of radiation that are often used in medical diagnostic and treatment modalities. The purpose of this study was to investigate radiation-induced gene expression changes in the MCF-7 breast adenocarcinoma cell line. Using microarray technology tools, we were able to screen the differential gene expressions profiles between various radiation doses applied to MCF-7 cells. Here, we report the substantial alteration in the expression level of genes after high-dose treatment. In contrast, no dramatic gene expression alterations were noticed after the application of low and medium doses of radiation. In response to a high radiation dose, MCF-7 cells exhibited down-regulation of biological pathways such as cell cycle, DNA replication, and DNA repair and activation of the p53 pathway. Similar dose-dependent responses were seen on the epigenetic level, which was tested by a microRNA expression analysis. MicroRNA analysis showed dose-dependent radiation-induced microRNA expression alterations that were associated with cell cycle arrest and cell death. An increased rate of apoptosis was determined by an Annexin V assay. The results of this study showed that high doses of radiation affect gene expression genetically and epigenetically, leading to alterations in cell cycle, DNA replication, and apoptosis. PMID:27226982

  20. High and low dose radiation effects on mammary adenocarcinoma cells - an epigenetic connection.

    PubMed

    Luzhna, Lidia; Filkowski, Jody; Kovalchuk, Olga

    2016-01-01

    The successful treatment of cancer, including breast cancer, depends largely on radiation therapy and proper diagnostics. The effect of ionizing radiation on cells and tissues depends on the radiation dose and energy level, but there is insufficient evidence concerning how tumor cells respond to the low and high doses of radiation that are often used in medical diagnostic and treatment modalities. The purpose of this study was to investigate radiation-induced gene expression changes in the MCF-7 breast adenocarcinoma cell line. Using microarray technology tools, we were able to screen the differential gene expressions profiles between various radiation doses applied to MCF-7 cells. Here, we report the substantial alteration in the expression level of genes after high-dose treatment. In contrast, no dramatic gene expression alterations were noticed after the application of low and medium doses of radiation. In response to a high radiation dose, MCF-7 cells exhibited down-regulation of biological pathways such as cell cycle, DNA replication, and DNA repair and activation of the p53 pathway. Similar dose-dependent responses were seen on the epigenetic level, which was tested by a microRNA expression analysis. MicroRNA analysis showed dose-dependent radiation-induced microRNA expression alterations that were associated with cell cycle arrest and cell death. An increased rate of apoptosis was determined by an Annexin V assay. The results of this study showed that high doses of radiation affect gene expression genetically and epigenetically, leading to alterations in cell cycle, DNA replication, and apoptosis.

  1. Potential interactions between different levels of cosmic radiation and their influence on the assessment of radiation risk during a manned deep space mission

    NASA Astrophysics Data System (ADS)

    Mortazavi, S.

    Despite the fact that galactic cosmic rays is believed to be isotropic throughout interstellar space, solar flares and coronal mass ejections can produce sudden and dramatic increase in flux of particles and expose the astronauts to transient high levels of ionizing radiation Furthermore, astronauts receive extra doses in the course of their extravehicular activities. It has been estimated that exposure to unpredictable extremely large solar particle events would kill the astronauts without massive shielding in interplanetary space. It is also generally believed that the biological effects of small doses of ionizing radiation may lie below the detection limits. However, potential interactions between a small dose and a subsequent high dose are still a black box that its output may be much different from the effect of a high dose alone. Potential interactions from low and high doses can either be a simple additivity, adaptive responses or synergistic effects. Significant adaptive response has been demonstrated in humans after exposure to high levels of natural radiation. Furthermore, non-linear behavior has been observed for cosmic radiation. Recent long-term follow-up studies as well as studies performed on twins show that in contrast to early reports, the type of interaction is determined by intrinsic factors such as genetic constitution of each individual. Despite that these responses for low- LET radiations (mainly photons and beta particles) are documented to some extent, there are no data on possible interactions of high-energy protons or high-LET heavy ions. The assessment of potential interactions between chronic low doses and acute high doses of high energy protons and heavy ions will be of importance in practical radiation protection of cosmonauts during a deep space mission.

  2. Johnson noise thermometer for high radiation and high temperature environments

    NASA Astrophysics Data System (ADS)

    Oakes, L. C.; Shepard, R. L.

    The purpose of development work on the Johnson noise power thermometer (JNPT) was to apply the work of Nyquist, who showed that the mean-squared noise voltage spectrum appearing across an unloaded resistor of value R is given by anti e sub n (2) = 4hfR (exp(hf/kT) - 1)) where anti e sub n (2) has the units volts squared per unit frequency, and h and k are the Planck and Boltzmann constants, respectively, f is the frequency in hertz (Hz) and T is the absolute temperature in Kelvins (K). J.B. Johnson showed that the noise was independent of the composition of the resistor. These discoveries gave rise to a temperature measurement technique using the Johnson noise voltage and Johnson noise current in a noise power mode, which essentially gives immunity to the decalibrating effects of radiation-induced transmutations of the temperature-sensing element. Experiments have been conducted in which temperature measurements were made in the range from 300 to 1200 K. Extrapolation of plots of these data pass through absolute zero, as expected. In-pile irradiation experiments show no perceptible decalibration after 4500 h in high neutron flux even though 80 percent of the original sensor material, rhenium, had been transmuted to osmium.

  3. Spectral Analysis in High Radiation Space Backgrounds with Robust Fitting

    NASA Technical Reports Server (NTRS)

    Lasche, G. P.; Coldwell, R. L.; Nobel, L. A.; Rester, A. C.; Trombka, J. I.

    1997-01-01

    Spectral analysis software is tested for its ability to fit spectra from space. The approach, which emphasizes the background shape function, is uniquely suited to the identification of weak-strength nuclides in high-radiation background environments.

  4. Radiation safety audit of a high volume Nuclear Medicine Department.

    PubMed

    Jha, Ashish Kumar; Singh, Abhijith Mohan; Shetye, Bhakti; Shah, Sneha; Agrawal, Archi; Purandare, Nilendu Chandrakant; Monteiro, Priya; Rangarajan, Venkatesh

    2014-10-01

    Professional radiation exposure cannot be avoided in nuclear medicine practices. It can only be minimized up to some extent by implementing good work practices. The aim of our study was to audit the professional radiation exposure and exposure rate of radiation worker working in and around Department of nuclear medicine and molecular imaging, Tata Memorial Hospital. We calculated the total number of nuclear medicine and positron emission tomography/computed tomography (PET/CT) procedures performed in our department and the radiation exposure to the radiation professionals from year 2009 to 2012. We performed an average of 6478 PET/CT scans and 3856 nuclear medicine scans/year from January 2009 to December 2012. The average annual whole body radiation exposure to nuclear medicine physician, technologist and nursing staff are 1.74 mSv, 2.93 mSv and 4.03 mSv respectively. Efficient management and deployment of personnel is of utmost importance to optimize radiation exposure in a high volume nuclear medicine setup in order to work without anxiety of high radiation exposure.

  5. Radiation safety audit of a high volume Nuclear Medicine Department

    PubMed Central

    Jha, Ashish Kumar; Singh, Abhijith Mohan; Shetye, Bhakti; Shah, Sneha; Agrawal, Archi; Purandare, Nilendu Chandrakant; Monteiro, Priya; Rangarajan, Venkatesh

    2014-01-01

    Introduction: Professional radiation exposure cannot be avoided in nuclear medicine practices. It can only be minimized up to some extent by implementing good work practices. Aim and Objectives: The aim of our study was to audit the professional radiation exposure and exposure rate of radiation worker working in and around Department of nuclear medicine and molecular imaging, Tata Memorial Hospital. Materials and Methods: We calculated the total number of nuclear medicine and positron emission tomography/computed tomography (PET/CT) procedures performed in our department and the radiation exposure to the radiation professionals from year 2009 to 2012. Results: We performed an average of 6478 PET/CT scans and 3856 nuclear medicine scans/year from January 2009 to December 2012. The average annual whole body radiation exposure to nuclear medicine physician, technologist and nursing staff are 1.74 mSv, 2.93 mSv and 4.03 mSv respectively. Conclusion: Efficient management and deployment of personnel is of utmost importance to optimize radiation exposure in a high volume nuclear medicine setup in order to work without anxiety of high radiation exposure. PMID:25400361

  6. Background radiation measurements at high power research reactors

    DOE PAGES

    Ashenfelter, J.; Yeh, M.; Balantekin, B.; ...

    2015-10-23

    Research reactors host a wide range of activities that make use of the intense neutron fluxes generated at these facilities. Recent interest in performing measurements with relatively low event rates, e.g. reactor antineutrino detection, at these facilities necessitates a detailed understanding of background radiation fields. Both reactor-correlated and naturally occurring background sources are potentially important, even at levels well below those of importance for typical activities. Here we describe a comprehensive series of background assessments at three high-power research reactors, including γ-ray, neutron, and muon measurements. For each facility we describe the characteristics and identify the sources of the backgroundmore » fields encountered. Furthermore, the general understanding gained of background production mechanisms and their relationship to facility features will prove valuable for the planning of any sensitive measurement conducted therein.« less

  7. Background radiation measurements at high power research reactors

    SciTech Connect

    Ashenfelter, J.; Yeh, M.; Balantekin, B.; Baldenegro, C. X.; Band, H. R.; Barclay, G.; Bass, C. D.; Berish, D.; Bowden, N. S.; Bryan, C. D.; Cherwinka, J. J.; Chu, R.; Classen, T.; Davee, D.; Dean, D.; Deichert, G.; Dolinski, M. J.; Dolph, J.; Dwyer, D. A.; Fan, S.; Gaison, J. K.; Galindo-Uribarri, A.; Gilje, K.; Glenn, A.; Green, M.; Han, K.; Hans, S.; Heeger, K. M.; Heffron, B.; Jaffe, D. E.; Kettell, S.; Langford, T. J.; Littlejohn, B. R.; Martinez, D.; McKeown, R. D.; Morrell, S.; Mueller, P. E.; Mumm, H. P.; Napolitano, J.; Norcini, D.; Pushin, D.; Romero, E.; Rosero, R.; Saldana, L.; Seilhan, B. S.; Sharma, R.; Stemen, N. T.; Surukuchi, P. T.; Thompson, S. J.; Varner, R. L.; Wang, W.; Watson, S. M.; White, B.; White, C.; Wilhelmi, J.; Williams, C.; Wise, T.; Yao, H.; Yen, Y. -R.; Zhang, C.; Zhang, X.

    2015-10-23

    Research reactors host a wide range of activities that make use of the intense neutron fluxes generated at these facilities. Recent interest in performing measurements with relatively low event rates, e.g. reactor antineutrino detection, at these facilities necessitates a detailed understanding of background radiation fields. Both reactor-correlated and naturally occurring background sources are potentially important, even at levels well below those of importance for typical activities. Here we describe a comprehensive series of background assessments at three high-power research reactors, including γ-ray, neutron, and muon measurements. For each facility we describe the characteristics and identify the sources of the background fields encountered. Furthermore, the general understanding gained of background production mechanisms and their relationship to facility features will prove valuable for the planning of any sensitive measurement conducted therein.

  8. Background radiation measurements at high power research reactors

    NASA Astrophysics Data System (ADS)

    Ashenfelter, J.; Balantekin, B.; Baldenegro, C. X.; Band, H. R.; Barclay, G.; Bass, C. D.; Berish, D.; Bowden, N. S.; Bryan, C. D.; Cherwinka, J. J.; Chu, R.; Classen, T.; Davee, D.; Dean, D.; Deichert, G.; Dolinski, M. J.; Dolph, J.; Dwyer, D. A.; Fan, S.; Gaison, J. K.; Galindo-Uribarri, A.; Gilje, K.; Glenn, A.; Green, M.; Han, K.; Hans, S.; Heeger, K. M.; Heffron, B.; Jaffe, D. E.; Kettell, S.; Langford, T. J.; Littlejohn, B. R.; Martinez, D.; McKeown, R. D.; Morrell, S.; Mueller, P. E.; Mumm, H. P.; Napolitano, J.; Norcini, D.; Pushin, D.; Romero, E.; Rosero, R.; Saldana, L.; Seilhan, B. S.; Sharma, R.; Stemen, N. T.; Surukuchi, P. T.; Thompson, S. J.; Varner, R. L.; Wang, W.; Watson, S. M.; White, B.; White, C.; Wilhelmi, J.; Williams, C.; Wise, T.; Yao, H.; Yeh, M.; Yen, Y.-R.; Zhang, C.; Zhang, X.

    2016-01-01

    Research reactors host a wide range of activities that make use of the intense neutron fluxes generated at these facilities. Recent interest in performing measurements with relatively low event rates, e.g. reactor antineutrino detection, at these facilities necessitates a detailed understanding of background radiation fields. Both reactor-correlated and naturally occurring background sources are potentially important, even at levels well below those of importance for typical activities. Here we describe a comprehensive series of background assessments at three high-power research reactors, including γ-ray, neutron, and muon measurements. For each facility we describe the characteristics and identify the sources of the background fields encountered. The general understanding gained of background production mechanisms and their relationship to facility features will prove valuable for the planning of any sensitive measurement conducted therein.

  9. Aerosols attenuating the solar radiation collected by solar tower plants: The horizontal pathway at surface level

    NASA Astrophysics Data System (ADS)

    Elias, Thierry; Ramon, Didier; Dubus, Laurent; Bourdil, Charles; Cuevas-Agulló, Emilio; Zaidouni, Taoufik; Formenti, Paola

    2016-05-01

    Aerosols attenuate the solar radiation collected by solar tower plants (STP), along two pathways: 1) the atmospheric column pathway, between the top of the atmosphere and the heliostats, resulting in Direct Normal Irradiance (DNI) changes; 2) the grazing pathway close to surface level, between the heliostats and the optical receiver. The attenuation along the surface-level grazing pathway has been less studied than the aerosol impact on changes of DNI, while it becomes significant in STP of 100 MW or more. Indeed aerosols mostly lay within the surface atmospheric layer, called the boundary layer, and the attenuation increases with the distance covered by the solar radiation in the boundary layer. In STP of 100 MW or more, the distance between the heliostats and the optical receiver becomes large enough to produce a significant attenuation by aerosols. We used measured aerosol optical thickness and computed boundary layer height to estimate the attenuation of the solar radiation at surface level at Ouarzazate (Morocco). High variabilities in aerosol amount and in vertical layering generated a significant magnitude in the annual cycle and significant inter-annual changes. Indeed the annual mean of the attenuation caused by aerosols over a 1-km heliostat-receiver distance was 3.7% in 2013, and 5.4% in 2014 because of a longest desert dust season. The monthly minimum attenuation of less than 3% was observed in winter and the maximum of more than 7% was observed in summer.

  10. Radioactivity in the groundwater of a high background radiation area.

    PubMed

    Shabana, E I; Kinsara, A A

    2014-11-01

    Natural radioactivity was measured in groundwater samples collected from 37 wells scattered in an inhabited area of high natural background radiation, in a purpose of radiation protection. The study area is adjacent to Aja heights of granitic composition in Hail province, Saudi Arabia. Initial screening for gross α and gross β activities showed levels exceeded the national regulation limits set out for gross α and gross β activities in drinking water. The gross α activity ranged from 0.17 to 5.41 Bq L(-)(1) with an average value of 2.15 Bq L(-)(1), whereas gross β activity ranged from 0.48 to 5.16 Bq L(-)(1), with an average value of 2.60 Bq L(-)(1). The detail analyses indicated that the groundwater of this province is contaminated with uranium and radium ((226)Ra and (228)Ra). The average activity concentrations of (238)U, (234)U, (226)Ra and (228)Ra were 0.40, 0.77, 0.29 and 0.46 Bq L(-)(1), respectively. The higher uranium content was found in the samples of granitic aquifers, whereas the higher radium content was found in the samples of sandstone aquifers. Based on the obtained results, mechanism of leaching of the predominant radionuclides has been discussed in detail.

  11. Fine-structure energy levels, radiative rates and lifetimes in Si-like nickel

    NASA Astrophysics Data System (ADS)

    Gupta, G. P.; Msezane, A. Z.

    2012-07-01

    Large scale CIV3 calculations of excitation energies from ground state as well as of oscillator strengths and radiative decay rates for all electric-dipole-allowed and intercombination transitions among the fine-structure levels of the terms belonging to the (1s22s22p6)3s23p2, 3s3p3, 3p4, 3s23p3d, 3s23p4s, 3s23p4p, 3s23p4d and 3s23p4f configurations of Ni XV, are performed using very extensive configuration-interaction wave functions. The relativistic effects in intermediate coupling are incorporated by means of the Breit-Pauli Hamiltonian. In order to keep our calculated energy splittings as close as possible to the National Institute of Standard and Technology (NIST) values, we have made small adjustments to the diagonal elements of the Hamiltonian matrices. Our calculated excitation energies, including their ordering, are in excellent agreement with the available NIST results. From our radiative decay rates we have also calculated radiative lifetimes of the fine-structure levels. It is noted that our calculated radiative rates show significant disagreement (23-30%) with those calculated by Ishikawa and Vilkas (2002 Phys. Scr. 65 219) for the transitions involving the 3s3p3(5S2) level. For this high spin level 3s3p3(5S2) our calculated lifetime is found to be in excellent agreement with the experimental value of Träbert et al (1989 Z. Phys. D 11 207). In this calculation, we also predict many additional new and accurate data for various optically allowed and intercombination transitions to complete the void in the existing data.

  12. Estimating the Reliability of Electronic Parts in High Radiation Fields

    NASA Technical Reports Server (NTRS)

    Everline, Chester; Clark, Karla; Man, Guy; Rasmussen, Robert; Johnston, Allan; Kohlhase, Charles; Paulos, Todd

    2008-01-01

    Radiation effects on materials and electronic parts constrain the lifetime of flight systems visiting Europa. Understanding mission lifetime limits is critical to the design and planning of such a mission. Therefore, the operational aspects of radiation dose are a mission success issue. To predict and manage mission lifetime in a high radiation environment, system engineers need capable tools to trade radiation design choices against system design and reliability, and science achievements. Conventional tools and approaches provided past missions with conservative designs without the ability to predict their lifetime beyond the baseline mission.This paper describes a more systematic approach to understanding spacecraft design margin, allowing better prediction of spacecraft lifetime. This is possible because of newly available electronic parts radiation effects statistics and an enhanced spacecraft system reliability methodology. This new approach can be used in conjunction with traditional approaches for mission design. This paper describes the fundamentals of the new methodology.

  13. Radiation noise in a high sensitivity star sensor

    NASA Technical Reports Server (NTRS)

    Parkinson, J. B.; Gordon, E.

    1972-01-01

    An extremely accurate attitude determination was developed for space applications. This system uses a high sensitivity star sensor in which the photomultiplier tube is subject to noise generated by space radiations. The space radiation induced noise arises from trapped electrons, solar protons and other ionizing radiations, as well as from dim star background. The solar activity and hence the electron and proton environments are predicted through the end of the twentieth century. The available data for the response of the phototube to proton, electron, gamma ray, and bremsstrahlung radiations are reviewed and new experimental data is presented. A simulation was developed which represents the characteristics of the effect of radiations on the star sensor, including the non-stationarity of the backgrounds.

  14. Radiation Hardened, Modulator ASIC for High Data Rate Communications

    NASA Technical Reports Server (NTRS)

    McCallister, Ron; Putnam, Robert; Andro, Monty; Fujikawa, Gene

    2000-01-01

    Satellite-based telecommunication services are challenged by the need to generate down-link power levels adequate to support high quality (BER approx. equals 10(exp 12)) links required for modem broadband data services. Bandwidth-efficient Nyquist signaling, using low values of excess bandwidth (alpha), can exhibit large peak-to-average-power ratio (PAPR) values. High PAPR values necessitate high-power amplifier (HPA) backoff greater than the PAPR, resulting in unacceptably low HPA efficiency. Given the high cost of on-board prime power, this inefficiency represents both an economical burden, and a constraint on the rates and quality of data services supportable from satellite platforms. Constant-envelope signals offer improved power-efficiency, but only by imposing a severe bandwidth-efficiency penalty. This paper describes a radiation- hardened modulator which can improve satellite-based broadband data services by combining the bandwidth-efficiency of low-alpha Nyquist signals with high power-efficiency (negligible HPA backoff).

  15. High Resolution Cloud Microphysics and Radiation Studies

    DTIC Science & Technology

    2011-06-16

    characteristics of mid level altocumulus clouds and upper level visible and subvisual cirrus clouds The MPL lidar provided information about the temporal...balloon, lidar, and radar study of cirrus and altocumulus clouds to further investigate the presence of multi- cloud and nearly cloud -free layers...data set of the clouds and thermodynanuc structure to build a mesoscale and LF.S test-bed for cirrus and altocumulus cloud layers. The project was

  16. Fused Silica Final Optics for Inertial Fusion Energy: Radiation Studies and System-Level Analysis

    SciTech Connect

    Latkowski, Jeffery F.; Kubota, Alison; Caturla, Maria J.; Dixit, Sham N.; Speth, Joel A.; Payne, Stephen A.

    2003-06-15

    The survivability of the final optic, which must sit in the line of sight of high-energy neutrons and gamma rays, is a key issue for any laser-driven inertial fusion energy (IFE) concept. Previous work has concentrated on the use of reflective optics. Here, we introduce and analyze the use of a transmissive final optic for the IFE application. Our experimental work has been conducted at a range of doses and dose rates, including those comparable to the conditions at the IFE final optic. The experimental work, in conjunction with detailed analysis, suggests that a thin, fused silica Fresnel lens may be an attractive option when used at a wavelength of 351 nm. Our measurements and molecular dynamics simulations provide convincing evidence that the radiation damage, which leads to optical absorption, not only saturates but that a 'radiation annealing' effect is observed. A system-level description is provided, including Fresnel lens and phase plate designs.

  17. Photosensitizing potential of ciprofloxacin at ambient level of UV radiation.

    PubMed

    Agrawal, Neeraj; Ray, Ratan Singh; Farooq, Mohammad; Pant, Aditya Bhushan; Hans, Rajendra Kumar

    2007-01-01

    Ciprofloxacin is a widely used fluoroquinolone drug with broad spectrum antibacterial activities. Clinical experience has shown incidences of adverse effects related to skin, hepatic, central nervous system, gastrointestinal and phototoxicity. India is a tropical country and sunlight is abundant throughout the day. In this scenario exposure to ambient levels of ultraviolet radiation (UV-R) in sunlight may lead to harmful effects in ciprofloxacin users. Phototoxicity assessment of ciprofloxacin was studied by two mouse fibroblast cell lines L-929 and NIH-3T3. Generation of reactive oxygen species (ROS) like singlet oxygen (1O2), superoxide anion radical (O2*-) and hydroxyl radical (*OH) was studied under the exposure of ambient intensities of UV-A (1.14, 1.6 and 2.2 mW cm(-2)), UV-B (0.6, 0.9 and 1.2 mW cm(-2)) and sunlight (60 min). The drug was generating 1O2, O2*- and *OH in a concentration and dose-dependent manner. Sodium azide (NaN3) and 1,4-diazabicyclo 2-2-2-octane (DABCO) inhibited the generation of 1O2. Superoxide dismutase (SOD) inhibited 90-95% O2*- generation. The drug (5-40 microg mL(-1)) was responsible for linoleic acid peroxidation. Quenching study of linoleic acid peroxidation with SOD (25 and 50 U mL(-1)) confirms the involvement of ROS in drug-induced lipid peroxidation. The generation of *OH radical was further confirmed by using specific quenchers of *OH such as mannitol (0.5 M) and sodium benzoate (0.5 M). 2'-deoxyguanosine (2'-dGuO) assay and linoleic acid peroxidation showed that ROS were mainly responsible for ciprofloxacin-sensitized photo-degradation of guanine base. L-929 cell line showed 29%, 34% and 54% reduced cell viability at higher drug concentration (300 microg mL(-1)) under UV-A, UV-B and sunlight, respectively. 3-(4,5-dimethyl-2-thiazolyl)-2,5-diphenyl-2H-tetrazolium bromide (MTT) assay in NIH-3T3 cell line at higher drug concentration (300 microg mL(-1)) showed a decrease in cell viability by 54%, 56% and 59% under UV-A, UV

  18. Radiation environment at high-mountains stations and onboard spacecraft

    SciTech Connect

    Spurny, Frantisek; Ploc, Ondrej; Jadrmickova, Iva

    2008-08-07

    Radiation environment has been studied at high-mountain observatories and onboard spacecraft. The most important contribution to this environment at high-mountain observatories represents cosmic radiation component. We have been studied this environment in two high-mountain observatories: one situated on the top of Lomnicky Stit, High Tatras, Slovakia, and another one close to the top of Moussala, Rila, Bulgaria (Basic Environment Observatory--BEO). The studies have been performed using: an energy deposition spectrometer with a Si-diode (MDU) developed at BAS, Sofia, permitting to estimate non-neutron as well as neutron component of the radiation field; other active equipment designated to measure natural radiation background, and thermoluminescent detectors as passive dosimeters. Basic dosimetry characteristics of these fields are presented, analyzed, and discussed; they are also compared with the estimation of cosmic radiation component as published in the Report of UNSCEAR 2000. Measuring instruments mentioned above, together with an LET spectrometer based on chemically etched track detectors have been also used to characterize radiation environment onboard spacecraft, particularly International Space Station. They have been exposed on the surface and/or inside a phantom. Some of results obtained are presented, and discussed.

  19. Multidimensional Image Analysis for High Precision Radiation Therapy.

    PubMed

    Arimura, Hidetaka; Soufi, Mazen; Haekal, Mohammad

    2017-01-01

    High precision radiation therapy (HPRT) has been improved by utilizing conventional image engineering technologies. However, different frameworks are necessary for further improvement of HPRT. This review paper attempted to define the multidimensional image and what multidimensional image analysis is, which may be feasible for increasing the accuracy of HPRT. A number of researches in radiation therapy field have been introduced to understand the multidimensional image analysis. Multidimensional image analysis could greatly assist clinical staffs in radiation therapy planning, treatment, and prediction of treatment outcomes.

  20. Feedback regulated escape of ionising radiation from high redshift galaxies

    NASA Astrophysics Data System (ADS)

    Trebitsch, M.; Blaizot, J.

    2016-12-01

    Small galaxies are thought to provide the bulk of the radiation necessary to reionise the Universe by z ˜ 6. Their ionising efficiency is usually quantified by their escape fraction f_{esc}, but it is extremely hard to constrain from observations. With the goal of studying the physical processes that determine the values of the escape fraction, we have run a series of high resolution, cosmological, radiative hydrodynamics simulations centred on three galaxies. We find that the variability of the escape fraction follows that of the star formation rate, and that local feedback is necessary for radiation to escape.

  1. Optimization of Smith-Purcell radiation at very high energies

    NASA Astrophysics Data System (ADS)

    Trotz, Seth R.; Brownell, J. H.; Walsh, John E.; Doucas, George

    2000-06-01

    A theoretical analysis of Smith-Purcell radiation at very high energies is presented. The energy per unit frequency and solid angle is expressed in closed form as a function of the grating geometry, beam energy, and viewing angles. A certain choice of grating geometry is shown to optimize the output energy for a particular order of radiation. Scaling laws are derived for the energy emitted into all orders of radiation in the relativistic limit. It is shown that the total energy emitted into each order scales as the three-halves power of the beam voltage.

  2. Optimization of Smith-Purcell radiation at very high energies.

    PubMed

    Trotz, S R; Brownell, J H; Walsh, J E; Doucas, G

    2000-06-01

    A theoretical analysis of Smith-Purcell radiation at very high energies is presented. The energy per unit frequency and solid angle is expressed in closed form as a function of the grating geometry, beam energy, and viewing angles. A certain choice of grating geometry is shown to optimize the output energy for a particular order of radiation. Scaling laws are derived for the energy emitted into all orders of radiation in the relativistic limit. It is shown that the total energy emitted into each order scales as the three-halves power of the beam voltage.

  3. Effect of radiation and age on immunoglobulin levels in rhesus monkeys (Macaca mulatta)

    SciTech Connect

    Stone, W.H.; Hackleman, S.M.; Braun, A.M.; Pennington, P.; Saphire, D.G.; Scheffler, J.; Wigle, J.C.; Cox, A.B.

    1994-06-01

    We report the results of a study on the immunoglobulin levels of rhesus monkeys (Macaca mulatta) in a colony consisting of the survivors of monkeys that received a single whole-body exposure of protons, electrons or X rays between 1964 and 1969. This colony has been maintained to assess the long-term effects of ionizing radiation on astronauts and high-flying pilots. Of the original 358 monkeys that were retained for lifetime studies, 129 (97 irradiated and 32 controls) were available for our study. We found no significant difference between the irradiated and control monkeys in mean levels of IgA, IgG and IgM, irrespective of the radiation treatment. The availability of these aged monkeys provided a unique opportunity to compare their immunoglobulin levels to those of other monkeys of various ages, and thus assess the effect of age on immunoglobulin levels. We found that only the IgA levels increase with age. 48 refs., 2 figs., 4 tabs.

  4. Very High Power THz Radiation Sources.

    PubMed

    Carr, G L; Martin, M C; McKinney, W R; Jordan, K; Neil, G R; Williams, G P

    2003-06-01

    We report the production of high power (20watts average, ∼ 1 Megawatt peak) broadbandTHz light based on coherent emission fromrelativistic electrons. Such sources areideal for imaging, for high power damagestudies and for studies of non-linearphenomena in this spectral range. Wedescribe the source, presenting theoreticalcalculations and their experimentalverification. For clarity we compare thissource with one based on ultrafast lasertechniques.

  5. High-Precision Direct Method for the Radiative Transfer Problems

    NASA Astrophysics Data System (ADS)

    Zhang, Yan; Hou, Su-Qing; Yang, Ping; Wu, Kai-Su

    2013-06-01

    It is the main aim of this paper to investigate the numerical methods of the radiative transfer equation. Using the five-point formula to approximate the differential part and the Simpson formula to substitute for integral part respectively, a new high-precision numerical scheme, which has 4-order local truncation error, is obtained. Subsequently, a numerical example for radiative transfer equation is carried out, and the calculation results show that the new numerical scheme is more accurate.

  6. Excitotoxic and Radiation Stress Increase TERT Levels in the Mitochondria and Cytosol of Cerebellar Purkinje Neurons.

    PubMed

    Eitan, Erez; Braverman, Carmel; Tichon, Ailone; Gitler, Daniel; Hutchison, Emmette R; Mattson, Mark P; Priel, Esther

    2016-08-01

    Telomerase reverse transcriptase (TERT) is the catalytic subunit of telomerase, an enzyme that elongates telomeres at the ends of chromosomes during DNA replication. Recently, it was shown that TERT has additional roles in cell survival, mitochondrial function, DNA repair, and Wnt signaling, all of which are unrelated to telomeres. Here, we demonstrate that TERT is enriched in Purkinje neurons, but not in the granule cells of the adult mouse cerebellum. TERT immunoreactivity in Purkinje neurons is present in the nucleus, mitochondria, and cytoplasm. Furthermore, TERT co-localizes with mitochondrial markers, and immunoblot analysis of protein extracts from isolated mitochondria and synaptosomes confirmed TERT localization in mitochondria. TERT expression in Purkinje neurons increased significantly in response to two stressors: a sub-lethal dose of X-ray radiation and exposure to a high glutamate concentration. While X-ray radiation increased TERT levels in the nucleus, glutamate exposure elevated TERT levels in mitochondria. Our findings suggest that in mature Purkinje neurons, TERT is present both in the nucleus and in mitochondria, where it may participate in adaptive responses of the neurons to excitotoxic and radiation stress.

  7. Radiation budget studies using collocated observations from advanced Very High Resolution Radiometer, High-Resolution Infrared Sounder/2, and Earth Radiation Budget Experiment instruments

    NASA Technical Reports Server (NTRS)

    Ackerman, Steven A.; Frey, Richard A.; Smith, William L.

    1992-01-01

    Collocated observations from the Advanced Very High Resolution Radiometer (AVHRR), High-Resolution Infrared Sounder/2 (HIRS/2), and Earth Radiation Budget Experiment (ERBE) instruments onboard the NOAA 9 satellite are combined to describe the broadband and spectral radiative properties of the earth-atmosphere system. Broadband radiative properties are determined from the ERBE observations, while spectral properties are determined from the HIRS/2 and AVHRR observations. The presence of clouds, their areal coverage, and cloud top pressure are determined from a combination of the HIRS/2 and the AVHRR observations. The CO2 slicing method is applied to the HIRS/2 to determine the presence of upper level clouds and their effective emissivity. The AVHRR data collocated within the HIRS/2 field of view are utilized to determine the uniformity of the scene and retrieve sea surface temperature. Changes in the top of the atmosphere longwave and shortwave radiative energy budgets, and the spectral distribution of longwave radiation are presented as a function of cloud amount and cloud top pressure. The radiative characteristics of clear sky conditions over oceans are presented as a function of sea surface temperature and atmospheric water vapor structure.

  8. Radiation budget studies using collocated observations from advanced Very High Resolution Radiometer, High-Resolution Infrared Sounder/2, and Earth Radiation Budget Experiment instruments

    NASA Technical Reports Server (NTRS)

    Ackerman, Steven A.; Frey, Richard A.; Smith, William L.

    1992-01-01

    Collocated observations from the Advanced Very High Resolution Radiometer (AVHRR), High-Resolution Infrared Sounder/2 (HIRS/2), and Earth Radiation Budget Experiment (ERBE) instruments onboard the NOAA 9 satellite are combined to describe the broadband and spectral radiative properties of the earth-atmosphere system. Broadband radiative properties are determined from the ERBE observations, while spectral properties are determined from the HIRS/2 and AVHRR observations. The presence of clouds, their areal coverage, and cloud top pressure are determined from a combination of the HIRS/2 and the AVHRR observations. The CO2 slicing method is applied to the HIRS/2 to determine the presence of upper level clouds and their effective emissivity. The AVHRR data collocated within the HIRS/2 field of view are utilized to determine the uniformity of the scene and retrieve sea surface temperature. Changes in the top of the atmosphere longwave and shortwave radiative energy budgets, and the spectral distribution of longwave radiation are presented as a function of cloud amount and cloud top pressure. The radiative characteristics of clear sky conditions over oceans are presented as a function of sea surface temperature and atmospheric water vapor structure.

  9. High and Low Doses of Ionizing Radiation Induce Different Secretome Profiles in a Human Skin Model

    SciTech Connect

    Zhang, Qibin; Matzke, Melissa M.; Schepmoes, Athena A.; Moore, Ronald J.; Webb-Robertson, Bobbie-Jo M.; Hu, Zeping; Monroe, Matthew E.; Qian, Weijun; Smith, Richard D.; Morgan, William F.

    2014-03-18

    It is postulated that secreted soluble factors are important contributors of bystander effect and adaptive responses observed in low dose ionizing radiation. Using multidimensional liquid chromatography-mass spectrometry based proteomics, we quantified the changes of skin tissue secretome – the proteins secreted from a full thickness, reconstituted 3-dimensional skin tissue model 48 hr after exposure to 3, 10 and 200 cGy of X-rays. Overall, 135 proteins showed statistical significant difference between the sham (0 cGy) and any of the irradiated groups (3, 10 or 200 cGy) on the basis of Dunnett adjusted t-test; among these, 97 proteins showed a trend of downregulation and 9 proteins showed a trend of upregulation with increasing radiation dose. In addition, there were 21 and 8 proteins observed to have irregular trends with the 10 cGy irradiated group either having the highest or the lowest level among all three radiated doses. Moreover, two proteins, carboxypeptidase E and ubiquitin carboxyl-terminal hydrolase isozyme L1 were sensitive to ionizing radiation, but relatively independent of radiation dose. Conversely, proteasome activator complex subunit 2 protein appeared to be sensitive to the dose of radiation, as rapid upregulation of this protein was observed when radiation doses were increased from 3, to 10 or 200 cGy. These results suggest that different mechanisms of action exist at the secretome level for low and high doses of ionizing radiation.

  10. Very high power THz radiation sources

    SciTech Connect

    Carr, G.L.; Martin, Michael C.; McKinney, Wayne R.; Jordan, K.; Neil, George R.; Williams, G.P.

    2002-10-31

    We report the production of high power (20 watts average, {approx} 1 Megawatt peak) broadband THz light based on coherent emission from relativistic electrons. Such sources are ideal for imaging, for high power damage studies and for studies of non-linear phenomena in this spectral range. We describe the source, presenting theoretical calculations and their experimental verification. For clarity we compare this source to one based on ultrafast laser techniques.

  11. Very High Power THz Radiation Sources

    SciTech Connect

    G.L. Carr; Michael C. Martin; Wayne R. McKinney; Kevin Jordan; George R. Neil; Gwyn P. Williams

    2002-10-01

    We report the production of high power (20 watts average, {approx}1 Megawatt peak) broadband THz light based on coherent emission from relativistic electrons. Such sources are ideal for imaging, for high power damage studies and for studies of non-linear phenomena in this spectral range. We describe the source, presenting theoretical calculations and their experimental verification. For clarity, we compare this sources with one based on ultrafast laser techniques.

  12. A Comparison between High-Energy Radiation Background Models and SPENVIS Trapped-Particle Radiation Models

    NASA Technical Reports Server (NTRS)

    Krizmanic, John F.

    2013-01-01

    We have been assessing the effects of background radiation in low-Earth orbit for the next generation of X-ray and Cosmic-ray experiments, in particular for International Space Station orbit. Outside the areas of high fluxes of trapped radiation, we have been using parameterizations developed by the Fermi team to quantify the high-energy induced background. For the low-energy background, we have been using the AE8 and AP8 SPENVIS models to determine the orbit fractions where the fluxes of trapped particles are too high to allow for useful operation of the experiment. One area we are investigating is how the fluxes of SPENVIS predictions at higher energies match the fluxes at the low-energy end of our parameterizations. I will summarize our methodology for background determination from the various sources of cosmogenic and terrestrial radiation and how these compare to SPENVIS predictions in overlapping energy ranges.

  13. Epidemiological investigations of aircrew: an occupational group with low-level cosmic radiation exposure.

    PubMed

    Zeeb, Hajo; Hammer, Gaël P; Blettner, Maria

    2012-03-01

    Aircrew and passengers are exposed to low-level cosmic ionising radiation. Annual effective doses for flight crew have been estimated to be in the order of 2-5 mSv and can attain 75 mSv at career end. Epidemiological studies in this occupational group have been conducted over the last 15-20 years, usually with a focus on radiation-associated cancer. These studies are summarised in this note. Overall cancer risk was not elevated in most studies and subpopulations analysed, while malignant melanoma, other skin cancers and breast cancer in female aircrew have shown elevated incidence, with lesser risk elevations in terms of mortality. In some studies, including the large German cohort, brain cancer risk appears elevated. Cardiovascular mortality risks were generally very low. Dose information for pilots was usually derived from calculation procedures based on routine licence information, types of aircraft and routes/hours flown, but not on direct measurements. However, dose estimates have shown high validity when compared with measured values. No clear-cut dose-response patterns pointing to a higher risk for those with higher cumulative doses were found. Studies on other health outcomes have shown mixed results. Overall, aircrew are a highly selected group with many specific characteristics and exposures that might also influence cancers or other health outcomes. Radiation-associated health effects have not been clearly established in the studies available so far.

  14. DNA damage and repair after high LET radiation

    NASA Astrophysics Data System (ADS)

    O'Neill, Peter; Cucinotta, Francis; Anderson, Jennifer

    Predictions from biophysical models of interactions of radiation tracks with cellular DNA indicate that clustered DNA damage sites, defined as two or more lesions formed within one or two helical turns of the DNA by passage of a single radiation track, are formed in mammalian cells. These complex DNA damage sites are regarded as a signature of ionizing radiation exposure particularly as the likelihood of clustered damage sites arising endogenously is low. For instance, it was predicted from biophysical modelling that 30-40% of low LET-induced double strand breaks (DSB), a form of clustered damage, are complex with the yield increasing to >90% for high LET radiation, consistent with the reduced reparability of DSB with increasing ionization density of the radiation. The question arises whether the increased biological effects such as mutagenesis, carcinogenesis and lethality is in part related to DNA damage complexity and/or spatial distribution of the damage sites, which may lead to small DNA fragments. With particle radiation it is also important to consider not only delta-rays which may cause clustered damaged sites and may be highly mutagenic but the non-random spatial distribution of DSB which may lead to deletions. In this overview I will concentrate on the molecular aspects of the variation of the complexity of DNA damage on radiation quality and the challenges this complexity presents the DNA damage repair pathways. I will draw on data from micro-irradiations which indicate that the repair of DSBs by non-homologous end joining is highly regulated with pathway choice and kinetics of repair dependent on the chemical complexity of the DSB. In summary the aim is to emphasis the link between the spatial distribution of energy deposition events related to the track, the molecular products formed and the consequence of damage complexity contributing to biological effects and to present some of the outstanding molecular challenges with particle radiation.

  15. Resistance of Feather-Associated Bacteria to Intermediate Levels of Ionizing Radiation near Chernobyl

    PubMed Central

    Ruiz-González, Mario Xavier; Czirják, Gábor Árpád; Genevaux, Pierre; Møller, Anders Pape; Mousseau, Timothy Alexander; Heeb, Philipp

    2016-01-01

    Ionizing radiation has been shown to produce negative effects on organisms, although little is known about its ecological and evolutionary effects. As a study model, we isolated bacteria associated with feathers from barn swallows Hirundo rustica from three study areas around Chernobyl differing in background ionizing radiation levels and one control study site in Denmark. Each bacterial community was exposed to four different γ radiation doses ranging from 0.46 to 3.96 kGy to test whether chronic exposure to radiation had selected for resistant bacterial strains. Experimental radiation duration had an increasingly overall negative effect on the survival of all bacterial communities. After exposure to γ radiation, bacteria isolated from the site with intermediate background radiation levels survived better and produced more colonies than the bacterial communities from other study sites with higher or lower background radiation levels. Long-term effects of radiation in natural populations might be an important selective pressure on traits of bacteria that facilitate survival in certain environments. Our findings indicate the importance of further studies to understand the proximate mechanisms acting to buffer the negative effects of ionizing radiation in natural populations. PMID:26976674

  16. Resistance of Feather-Associated Bacteria to Intermediate Levels of Ionizing Radiation near Chernobyl.

    PubMed

    Ruiz-González, Mario Xavier; Czirják, Gábor Árpád; Genevaux, Pierre; Møller, Anders Pape; Mousseau, Timothy Alexander; Heeb, Philipp

    2016-03-15

    Ionizing radiation has been shown to produce negative effects on organisms, although little is known about its ecological and evolutionary effects. As a study model, we isolated bacteria associated with feathers from barn swallows Hirundo rustica from three study areas around Chernobyl differing in background ionizing radiation levels and one control study site in Denmark. Each bacterial community was exposed to four different γ radiation doses ranging from 0.46 to 3.96 kGy to test whether chronic exposure to radiation had selected for resistant bacterial strains. Experimental radiation duration had an increasingly overall negative effect on the survival of all bacterial communities. After exposure to γ radiation, bacteria isolated from the site with intermediate background radiation levels survived better and produced more colonies than the bacterial communities from other study sites with higher or lower background radiation levels. Long-term effects of radiation in natural populations might be an important selective pressure on traits of bacteria that facilitate survival in certain environments. Our findings indicate the importance of further studies to understand the proximate mechanisms acting to buffer the negative effects of ionizing radiation in natural populations.

  17. A theoretical concept of low level/low LET radiation carcinogenic risk (LLCR) projection

    SciTech Connect

    Filyushkin, I.V.

    1992-06-01

    Carcinogenic risk to humans resulting from low level/low LET radiation exposure (LLLCR) has not been observed directly because epidemiological observations have not yet provided statistically significant data on risk values. However, these values are of great interest for radiation health science and radiation protection practice under both normal conditions and emergency situations. This report presents a theoretical contribution to the validation of dose and dose rate efficiency factors (DDREF) transforming cocinogenic risk coefficients from those revealed in A-bomb survivors to factors appropriate for the projection of the risk resulting from very low levels of low LET radiation.

  18. High Conductivity Carbon-Carbon Heat Pipes for Light Weight Space Power System Radiators

    NASA Technical Reports Server (NTRS)

    Juhasz, Albert J.

    2008-01-01

    Based on prior successful fabrication and demonstration testing of a carbon-carbon heat pipe radiator element with integral fins this paper examines the hypothetical extension of the technology via substitution of high thermal conductivity composites which would permit increasing fin length while still maintaining high fin effectiveness. As a result the specific radiator mass could approach an ultimate asymptotic minimum value near 1.0 kg/m2, which is less than one fourth the value of present day satellite radiators. The implied mass savings would be even greater for high capacity space and planetary surface power systems, which may require radiator areas ranging from hundreds to thousands of square meters, depending on system power level.

  19. Combined Effects of Gamma Radiation and High Dietary Iron on Peripheral Leukocyte Distribution and Function

    NASA Technical Reports Server (NTRS)

    Crucian, Brian E.; Morgan, Jennifer L. L.; Quiriarte, Heather A.; Sams, Clarence F.; Smith, Scott M.; Zwart, Sara R.

    2012-01-01

    Both radiation and increased iron stores can independently increase oxidative damage, resulting in protein, lipid and DNA oxidation. Oxidative stress increases the risk of many health problems including cancer, cataracts, and heart disease. This study, a subset of a larger interdisciplinary investigation of the combined effect of iron overload on sensitivity to radiation injury, monitored immune parameters in the peripheral blood of rats subjected to gamma radiation, high dietary iron or both. Specific immune measures consisted of: (1) peripheral leukocyte distribution, (2) plasma cytokine levels and (3) cytokine production profiles following whole blood mitogenic stimulation

  20. RADIATIVE PROPERTIES OF HIGH TEMPERATURE GASES

    DTIC Science & Technology

    DENSITY, *GAS IONIZATION, *GASES, *HIGH TEMPERATURE, *QUANTUM THEORY , *THERMODYNAMICS, ABSORPTION, CONTINUUM MECHANICS, EQUATIONS OF STATE, HEAT...HYDRODYNAMICS, HYDROGEN, INEQUALITIES, INTEGRAL EQUATIONS, IONS, MATRICES(MATHEMATICS), MEASUREMENT, NITROGEN, NUMBER THEORY , OXYGEN, PHOTOELECTRIC...CELLS (SEMICONDUCTOR), PHOTOTUBES, PROBABILITY, STATISTICAL FUNCTIONS, TEMPERATURE, THEORY

  1. Studies of high temperature superconductors as radiation detectors

    NASA Astrophysics Data System (ADS)

    Qiu, A.; Bhattarai, A. R.; Dahlberg, E. D.; Khan, M. Asif; Moloni, K.; van Hove, James M.

    1992-12-01

    Both DyBaCuO (DBCO) and YBaCuO (YBCO) films deposited on a variety of substrates have been investigated for their applicability as detectors of high frequency radiation. Both 10 GHz and infrared radiation (IR) were used as the high frequency radiation source. The measurements consisted of monitoring the temperature dependent resistance of superconducting films both in the presence and absence of radiation. This investigation shows that because the superconducting transition temperature is sensitive to the magnitude of the current in the film, the temperature dependence of the bolometric response is slightly tunable. In addition, effects of radiation on the current voltage characteristics below T superconducting were studied. This study found that films in this regime could also serve as radiation detectors. The substrates used included MgO, SiO, LaAlO(subscript 3), and SrTiO(subscript 3). The results obtained were independent of the substrate except for the width of the resistive transition. Disorder in the films as characterized by the resistive transition, affected the microwave more than the IR response.

  2. High Temperature Titanium-Water Heat Pipe Radiator

    NASA Astrophysics Data System (ADS)

    Anderson, William G.; Bonner, Richard; Hartenstine, John; Barth, Jim

    2006-01-01

    Space nuclear systems require large area radiators to reject the unconverted heat to space. System optimizations with Brayton cycles lead to radiators with radiator temperatures in the 400 to 550 K range. To date, nearly all space radiator systems have used aluminum/ammonia heat pipes but these components cannot function at the required temperatures. A Graphite Fiber Reinforced Composites (GFRC) radiator with high temperature water heat pipes is currently under development. High temperature GFRC materials have been selected, and will be tested for thermal conductivity and structural properties. Titanium/water and Titanium/Monel heat pipes have been successfully operated at temperatures up to 550 K. Titanium was selected as the baseline envelope material, due to its lower mass and previous experience with bonding titanium into honeycomb panels. Heat pipes were fabricated with a number of different wick designs, including slab and grooved wicks. Since titanium cannot be extruded, the grooves are being fabricated in sintered titanium powder. The paper reports on the radiator design, materials selection, heat pipe to fin bonding, heat pipe design, and experimental results.

  3. Radiation damage in high-resistivity silicon solar cells

    NASA Astrophysics Data System (ADS)

    Weinberg, I.; Swartz, C. K.; Goradia, C.

    High-resistivity silicon solar cells exhibit reduced radiation damage when light is incident on the gridded back surface. Under back illumination, radiation damage decreases as cell resistivity increases; under front illumination, radiation damage increases as cell resistivity increases. Thin back-illuminated cells outperform conventional 10 omega cm 50 and 200 micron cells at low 1-MeV electron fluences. However, at higher fluences, the conventional cells exhibit superior radiation resistance. This is attributed to the low BOL diffusion lengths observed in the thin, sack-illuminated cell. These results are discussed in terms of injected charge distributions, electric fields in the cell base, and the effects of a dominant boron-oxygen defect.

  4. Radiation damage in high-resistivity silicon solar cells

    NASA Technical Reports Server (NTRS)

    Weinberg, I.; Swartz, C. K.; Goradia, C.

    1985-01-01

    High-resistivity silicon solar cells exhibit reduced radiation damage when light is incident on the gridded back surface. Under back illumination, radiation damage decreases as cell resistivity increases; under front illumination, radiation damage increases as cell resistivity increases. Thin back-illuminated cells outperform conventional 10 omega cm 50 and 200 micron cells at low 1-MeV electron fluences. However, at higher fluences, the conventional cells exhibit superior radiation resistance. This is attributed to the low BOL diffusion lengths observed in the thin, sack-illuminated cell. These results are discussed in terms of injected charge distributions, electric fields in the cell base, and the effects of a dominant boron-oxygen defect.

  5. Lamp for generating high power ultraviolet radiation

    DOEpatents

    Morgan, Gary L.; Potter, James M.

    2001-01-01

    The apparatus is a gas filled ultraviolet generating lamp for use as a liquid purifier. The lamp is powred by high voltage AC, but has no metallic electrodes within or in contact with the gas enclosure which is constructed as two concentric quartz cylinders sealed together at their ends with the gas fill between the cylinders. Cooling liquid is pumped through the volume inside the inner quartz cylinder where an electrically conductive pipe spaced from the inner cylinder is used to supply the cooling liquid and act as the high voltage electrode. The gas enclosure is enclosed within but spaced from a metal housing which is connected to operate as the ground electrode of the circuit and through which the treated fluid flows. Thus, the electrical circuit is from the central pipe, and through the cooling liquid, the gas enclosure, the treated liquid on the outside of the outer quartz cylinder, and to the housing. The high voltage electrode is electrically isolated from the source of cooling liquid by a length of insulated hose which also supplies the cooling liquid.

  6. Specialty fiber optic applications for harsh and high radiation environments

    NASA Astrophysics Data System (ADS)

    Risch, Brian G.

    2015-05-01

    Since the first commercial introduction in the 1980s, optical fiber technology has undergone an almost exponential growth. Currently over 2 billion fiber kilometers are deployed globally with 2014 global optical fiber production exceeding 300 million fiber kilometers. 1 Along with the staggering growth in optical fiber production and deployment, an increase in optical fiber technologies and applications has also followed. Although the main use of optical fibers by far has been for traditional data transmission and communications, numerous new applications are introduced each year. Initially the practical application of optical fibers was limited by cost and sensitivity of the optical fibers to stress, radiation, and other environmental factors. Tremendous advances have taken place in optical fiber design and materials allowing optical fibers to be deployed in increasingly harsh environments with exposure to increased mechanical and environmental stresses while maintaining high reliability. With the increased reliability, lower cost, and greatly expanded range of optical fiber types now available, new optical fiber deployments in harsh and high radiation environments is seeing a tremendous increase for data, communications, and sensing applications. An overview of key optical fiber applications in data, communications, and sensing for harsh environments in industrial, energy exploration, energy generation, energy transmission, and high radiation applications will be presented. Specific recent advances in new radiation resistant optical fiber types, other specialty optical fibers, optical fiber coatings, and optical fiber cable materials will be discussed to illustrate long term reliability for deployment of optical fibers in harsh and high radiation environments.

  7. Investigation of the Frohlich hypothesis with high intensity terahertz radiation

    NASA Astrophysics Data System (ADS)

    Weightman, Peter

    2014-03-01

    This article provides an update to recent reviews of the Frohlich hypothesis that biological organisation is facilitated by the creation of coherent excited states driven by a flow of free energy provided by metabolic processes and mediated by molecular motions in the terahertz range. Sources of intense terahertz radiation have the potential to test this hypothesis since if it is true the growth and development of sensitive systems such as stem cells should be influenced by irradiation with intense terahertz radiation. A brief survey of recent work shows that it is not yet possible to make an assessment of the validity of the Frohlich hypothesis. Under some conditions a variety of cell types respond to irradiation with intense THz radiation in ways that involve changes in the activity of their DNA. In other experiments very intense and prolonged THz radiation has no measureable effect on the behavior of very sensitive systems such as stem cells. The wide variation in experimental conditions makes it impossible to draw any conclusions as to characteristics of THz radiation that will induce a response in living cells. It is possible that in environments suitable for their maintenance and growth cells are capable of compensating for any effects caused by exposure to THz radiation up to some currently unknown level of THz peak power.

  8. Cysteamine as a protective agent with high-LET radiations

    SciTech Connect

    Bird, R.P.

    1980-05-01

    Experiments to measure the radiation protection of cysteamine for high-LET radiations were carried out with synchronized Chinese hamster V79 cells. A high concentration (75 mM) of cysteamine was found to provide protection against x rays and 90 and 170 keV/..mu..m helium ions. The extent of protection decreased with increased LET value but was substantial with the highest-LET radiation. Thus the approximate dose-modifying factor for G/sub 1//S cells was decreased from 4.8 to 1.6 and for late-S cells from 3.2 to 1.5. The shape of the high-LET survival curves for both cell cycle times was preserved as expected for a dose-modifying agent.

  9. Generation and radiation of high power line harmonics

    NASA Astrophysics Data System (ADS)

    Kostrov, A. V.; Gushchin, M. E.; Strikovskii, A. V.

    2017-07-01

    The problems of frequency spectrum generation, radiation, and reception of signals at high power line (PL) harmonics of 50/60 Hz, and high PL harmonics caused by the use of thyristor power controllers in control circuits of large electricity consumers are discussed. The PL for frequencies of 2-8 kHz is considered a sufficiently effective traveling-wave antenna (the so-called Beverage antenna). The response of the spectrometer to a periodic sequence of PL radiation broadband pulses is discussed. The effects of a slow signal frequency drift at high PL harmonics and the occurrence of pulse components with fast frequency drift on the dynamic spectra, which in the literature is often associated with the magnetospheric trigger radiation, are considered.

  10. Surface solar ultraviolet radiation for paleoatmospheric levels of oxygen and ozone

    NASA Technical Reports Server (NTRS)

    Levine, J. S.

    1980-01-01

    Many investigators have concluded that the level of solar ultraviolet radiation (200-300 nm) reaching the surface was a key parameter in the origin and evolution of life on earth. The level of solar ultraviolet radiation between 200 and 300 nm is controlled primarily by molecular absorption by ozone, whose presence is strongly coupled to the level of molecular oxygen. In this paper, a series of calculations is presented of the solar ultraviolet radiation reaching the surface for oxygen levels ranging from 0.0001 the present atmospheric level to the present level. The solar spectrum between 200 and 300 nm has been divided into 34 spectral intervals. For each spectral interval, the solar ultraviolet radiation reaching the earth's surface has been calculated by considering the attenuation of the incoming beam due to ozone and oxygen absorption. A one-dimensional photochemical model of the atmosphere was used for these calculations.

  11. Radiation measurements aboard NASA ER-2 high altitude aircraft with the Liulin-4J portable spectrometer.

    PubMed

    Uchihori, Y; Benton, E; Moeller, J; Bendrick, G

    2003-01-01

    The risks to aircrew health posed by prolonged exposure to low levels of ionizing radiation at aircraft altitudes have recently received renewed attention. Civil and military aircraft currently on the drawing board are expected to operate at higher altitudes (>12 km) and fly longer ranges than do existing aircraft, thereby exposing their crews to higher levels of ionizing radiation, for longer periods of time. We are currently carrying out dosimetric measurements of the ionizing radiation environment at approximately 20 km altitude using portable Si detectors aboard NASA's two ER-2 high altitude research aircraft. The instruments, Liulin-4J, have been extensively calibrated at several particle accelerators. With these instruments, we can measure not only absorbed dose, but also variation of the absorbed dose as a function of time. We report radiation dose measurements as function of time, altitude, and latitude for several ER-2 missions. c2003 COSPAR. Published by Elsevier Ltd. All rights reserved.

  12. High-Level Binocular Rivalry Effects

    PubMed Central

    Wolf, Michal; Hochstein, Shaul

    2011-01-01

    Binocular rivalry (BR) occurs when the brain cannot fuse percepts from the two eyes because they are different. We review results relating to an ongoing controversy regarding the cortical site of the BR mechanism. Some BR qualities suggest it is low-level: (1) BR, as its name implies, is usually between eyes and only low-levels have access to utrocular information. (2) All input to one eye is suppressed: blurring doesn’t stimulate accommodation; pupilary constrictions are reduced; probe detection is reduced. (3) Rivalry is affected by low-level attributes, contrast, spatial frequency, brightness, motion. (4) There is limited priming due to suppressed words or pictures. On the other hand, recent studies favor a high-level mechanism: (1) Rivalry occurs between patterns, not eyes, as in patchwork rivalry or a swapping paradigm. (2) Attention affects alternations. (3) Context affects dominance. There is conflicting evidence from physiological studies (single cell and fMRI) regarding cortical level(s) of conscious perception. We discuss the possibility of multiple BR sites and theoretical considerations that rule out this solution. We present new data regarding the locus of the BR switch by manipulating stimulus semantic content or high-level characteristics. Since these variations are represented at higher cortical levels, their affecting rivalry supports high-level BR intervention. In Experiment I, we measure rivalry when one eye views words and the other non-words and find significantly longer dominance durations for non-words. In Experiment II, we find longer dominance times for line drawings of simple, structurally impossible figures than for similar, possible objects. In Experiment III, we test the influence of idiomatic context on rivalry between words. Results show that generally words within their idiomatic context have longer mean dominance durations. We conclude that BR has high-level cortical influences, and may be controlled by a high-level mechanism

  13. High-level binocular rivalry effects.

    PubMed

    Wolf, Michal; Hochstein, Shaul

    2011-01-01

    Binocular rivalry (BR) occurs when the brain cannot fuse percepts from the two eyes because they are different. We review results relating to an ongoing controversy regarding the cortical site of the BR mechanism. Some BR qualities suggest it is low-level: (1) BR, as its name implies, is usually between eyes and only low-levels have access to utrocular information. (2) All input to one eye is suppressed: blurring doesn't stimulate accommodation; pupilary constrictions are reduced; probe detection is reduced. (3) Rivalry is affected by low-level attributes, contrast, spatial frequency, brightness, motion. (4) There is limited priming due to suppressed words or pictures. On the other hand, recent studies favor a high-level mechanism: (1) Rivalry occurs between patterns, not eyes, as in patchwork rivalry or a swapping paradigm. (2) Attention affects alternations. (3) Context affects dominance. There is conflicting evidence from physiological studies (single cell and fMRI) regarding cortical level(s) of conscious perception. We discuss the possibility of multiple BR sites and theoretical considerations that rule out this solution. We present new data regarding the locus of the BR switch by manipulating stimulus semantic content or high-level characteristics. Since these variations are represented at higher cortical levels, their affecting rivalry supports high-level BR intervention. In Experiment I, we measure rivalry when one eye views words and the other non-words and find significantly longer dominance durations for non-words. In Experiment II, we find longer dominance times for line drawings of simple, structurally impossible figures than for similar, possible objects. In Experiment III, we test the influence of idiomatic context on rivalry between words. Results show that generally words within their idiomatic context have longer mean dominance durations. We conclude that BR has high-level cortical influences, and may be controlled by a high-level mechanism.

  14. Health effects of low-level radiation in shipyard workers. Final report: [Draft

    SciTech Connect

    Matanoski, G.M.

    1991-06-01

    The Nuclear Shipyard Workers Study (NSWS) was designed to determine whether there is an excess risk of leukemia or other cancers associated with exposure to low levels of gamma radiation. The study compares the mortality experience of shipyard workers who qualified to work in radiation areas to the mortality of similar workers who hold the same types of jobs but who are not authorized to work in radiation areas. The population consists of workers from six government and two private shipyards.

  15. TGF-β1 Is Present at High Levels in Wound Fluid from Breast Cancer Patients Immediately Post-Surgery, and Is Not Increased by Intraoperative Radiation Therapy (IORT).

    PubMed

    Scherer, Sandra D; Bauer, Jochen; Schmaus, Anja; Neumaier, Christian; Herskind, Carsten; Veldwijk, Marlon R; Wenz, Frederik; Sleeman, Jonathan P

    2016-01-01

    In patients with low-risk breast cancer, intraoperative radiotherapy (IORT) during breast-conserving surgery is a novel and convenient treatment option for delivering a single high dose of irradiation directly to the tumour bed. However, edema and fibrosis can develop after surgery and radiotherapy, which can subsequently impair quality of life. TGF- β is a strong inducer of the extracellular matrix component hyaluronan (HA). TGF-β expression and HA metabolism can be modulated by irradiation experimentally, and are involved in edema and fibrosis. We therefore hypothesized that IORT may regulate these factors.Wound fluid (WF) draining from breast lumpectomy sites was collected and levels of TGF-β1 and HA were determined by ELISA. Proliferation and marker expression was analyzed in primary lymphatic endothelial cells (LECs) treated with recombinant TGF-β or WF. Our results show that IORT does not change TGF-β1 or HA levels in wound fluid draining from breast lumpectomy sites, and does not lead to accumulation of sHA oligosaccharides. Nevertheless, concentrations of TGF-β1 were high in WF from patients regardless of IORT, at concentrations well above those associated with fibrosis and the suppression of LEC identity. Consistently, we found that TGF-β in WF is active and inhibits LEC proliferation. Furthermore, all three TGF-β isoforms inhibited LEC proliferation and suppressed LEC marker expression at pathophysiologically relevant concentrations. Given that TGF-β contributes to edema and plays a role in the regulation of LEC identity, we suggest that inhibition of TGF-β directly after surgery might prevent the development of side effects such as edema and fibrosis.

  16. TGF-β1 Is Present at High Levels in Wound Fluid from Breast Cancer Patients Immediately Post-Surgery, and Is Not Increased by Intraoperative Radiation Therapy (IORT)

    PubMed Central

    Schmaus, Anja; Neumaier, Christian; Herskind, Carsten; Veldwijk, Marlon R.; Wenz, Frederik; Sleeman, Jonathan P.

    2016-01-01

    In patients with low-risk breast cancer, intraoperative radiotherapy (IORT) during breast-conserving surgery is a novel and convenient treatment option for delivering a single high dose of irradiation directly to the tumour bed. However, edema and fibrosis can develop after surgery and radiotherapy, which can subsequently impair quality of life. TGF- β is a strong inducer of the extracellular matrix component hyaluronan (HA). TGF-β expression and HA metabolism can be modulated by irradiation experimentally, and are involved in edema and fibrosis. We therefore hypothesized that IORT may regulate these factors.Wound fluid (WF) draining from breast lumpectomy sites was collected and levels of TGF-β1 and HA were determined by ELISA. Proliferation and marker expression was analyzed in primary lymphatic endothelial cells (LECs) treated with recombinant TGF-β or WF. Our results show that IORT does not change TGF-β1 or HA levels in wound fluid draining from breast lumpectomy sites, and does not lead to accumulation of sHA oligosaccharides. Nevertheless, concentrations of TGF-β1 were high in WF from patients regardless of IORT, at concentrations well above those associated with fibrosis and the suppression of LEC identity. Consistently, we found that TGF-β in WF is active and inhibits LEC proliferation. Furthermore, all three TGF-β isoforms inhibited LEC proliferation and suppressed LEC marker expression at pathophysiologically relevant concentrations. Given that TGF-β contributes to edema and plays a role in the regulation of LEC identity, we suggest that inhibition of TGF-β directly after surgery might prevent the development of side effects such as edema and fibrosis. PMID:27589056

  17. Radiation Tests of Highly Scaled, High-Density, Commercial, Nonvolatile NAND Flash Memories - Update 2012

    NASA Technical Reports Server (NTRS)

    Irom, Farokh; Allen, Gregory R.

    2012-01-01

    The space radiation environment poses a certain risk to all electronic components on Earth-orbiting and planetary mission spacecraft. In recent years, there has been increased interest in the use of high-density, commercial, nonvolatile flash memories in space because of ever-increasing data volumes and strict power requirements. They are used in a wide variety of spacecraft subsystems. At one end of the spectrum, flash memories are used to store small amounts of mission-critical data such as boot code or configuration files and, at the other end, they are used to construct multi-gigabyte data recorders that record mission science data. This report examines single-event effect (SEE) and total ionizing dose (TID) response in single-level cell (SLC) 32-Gb, multi-level cell (MLC) 64-Gb, and Triple-level (TLC) 64-Gb NAND flash memories manufactured by Micron Technology with feature size of 25 nm.

  18. Radiation reaction at the level of the action

    NASA Astrophysics Data System (ADS)

    Birnholtz, Ofek; Hadar, Shahar; Kol, Barak

    2014-09-01

    The aim of this paper is to highlight a recently proposed method for the treatment of classical radiative effects, in particular radiation reaction, via effective field theory methods. We emphasize important features of the method and in particular the doubling of fields. We apply the method to two simple systems: a mass-rope system and an electromagnetic charge-field system. For the mass-rope system in 1 + 1 dimensions we derive a double-field effective action for the mass which describes a damped harmonic oscillator. For the EM charge-field system, i.e. the system of an accelerating electric charge in 3 + 1 dimensions, we show a reduction to a 1 + 1 dimensions radial system of an electric dipole source coupled to an electric dipole field (analogous to the mass coupled to the rope). For this system we derive a double-field effective action and reproduce in an analogous way the leading part of the Abraham-Lorentz-Dirac force.

  19. The measurement of radiation levels in Australian zircon milling plants.

    PubMed

    Hartley, B M

    2001-01-01

    The processing of zircon often involves grinding it to a fine powder known as zircon flour. As the resulting particles are small they may be inhaled if they become airborne and, since they contain some uranium and thorium, deliver radiation doses to workers. Theoretical estimates and measured radiation exposure in Australian zircon milling plants are reported in this paper. Theoretical doses, calculated in this work, indicate a potential maximum dose to workers of 5.5 mSv y(-1). Measured doses, based on normal work practices, vary in different plants from 0.66 mSv to 1.03 mSv y(-1) and suggest that in the dustiest Australian zircon milling plants the maximum dose would be of the order of 1 mSv y(-1). Measurements, which focused on the dustiest operations, indicate an upper limit of dose of about 3 mSv y(-1). Based on the theoretical and measured doses not exceeding 6 mSv y(-1), workers would not be designated as Category A workers, and probably would not be designated Category B workers, exceeding 1 mSv y(-1), under the guidelines of a EURATOM Directive.

  20. Fault tolerant, radiation hard, high performance digital signal processor

    NASA Technical Reports Server (NTRS)

    Holmann, Edgar; Linscott, Ivan R.; Maurer, Michael J.; Tyler, G. L.; Libby, Vibeke

    1990-01-01

    An architecture has been developed for a high-performance VLSI digital signal processor that is highly reliable, fault-tolerant, and radiation-hard. The signal processor, part of a spacecraft receiver designed to support uplink radio science experiments at the outer planets, organizes the connections between redundant arithmetic resources, register files, and memory through a shuffle exchange communication network. The configuration of the network and the state of the processor resources are all under microprogram control, which both maps the resources according to algorithmic needs and reconfigures the processing should a failure occur. In addition, the microprogram is reloadable through the uplink to accommodate changes in the science objectives throughout the course of the mission. The processor will be implemented with silicon compiler tools, and its design will be verified through silicon compilation simulation at all levels from the resources to full functionality. By blending reconfiguration with redundancy the processor implementation is fault-tolerant and reliable, and possesses the long expected lifetime needed for a spacecraft mission to the outer planets.

  1. Ionizing Radiation Doses Detected at the Eye Level of the Primary Surgeon During Orthopaedic Procedures.

    PubMed

    Cheriachan, Deepak; Hughes, Adrian M; du Moulin, William S M; Williams, Christopher; Molnar, Robert

    2016-07-01

    To evaluate the ionizing radiation dose received by the eyes of orthopaedic surgeons during various orthopaedic procedures. Secondary objective was to compare the ionizing radiation dose received between differing experience level. Prospective comparative study between January 2013 and May 2014. Westmead Hospital, a Level 1 Trauma Centre for Greater Western Sydney. A total of 26 surgeons volunteered to participate within the study. Experience level, procedure performed, fluoroscopy time, dose area product, total air kerma, and eye dose received was recorded. Participants were evaluated on procedure and experience level. Radiation dose received at eye level by the primary surgeon during an orthopaedic procedure. Data from a total of 131 cases was recorded and included for analysis. The mean radiation dose detected at the eye level of the primary surgeon was 0.02 mSv (SD = 0.05 mSv) per procedure. Radiation at eye level was only detected in 31 of the 131 cases. The highest registered dose for a single procedure was 0.31 mSv. Femoral nails and pelvic fixation procedures had a significantly higher mean dose received than other procedure groups (0.04 mSv (SD = 0.07 mSv) and 0.04 mSv (SD = 0.06 mSv), respectively). Comparing the eye doses received by orthopaedic consultants and trainees, there was no significant difference between the 2 groups. The risk of harmful levels of radiation exposure at eye level to orthopaedic surgeons is low. This risk is greatest during insertion of femoral intramedullary nails and pelvic fixation, and it is recommended that in these situations, surgeons take all reasonable precautions to minimize radiation dose. The orthopaedic trainees in this study were not subjected to higher doses of radiation than their consultant trainers. On the basis of these results, most of the orthopaedic surgeons remain well below the yearly radiation dose of 20 mSv as recommended by the International Commission on Radiological Protection.

  2. Monolayer graphene dispersion and radiative cooling for high power LED

    NASA Astrophysics Data System (ADS)

    Hsiao, Tun-Jen; Eyassu, Tsehaye; Henderson, Kimberly; Kim, Taesam; Lin, Chhiu-Tsu

    2013-10-01

    Molecular fan, a radiative cooling by thin film, has been developed and its application for compact electronic devices has been evaluated. The enhanced surface emissivity and heat dissipation efficiency of the molecular fan coating are shown to correlate with the quantization of lattice modes in active nanomaterials. The highly quantized G and 2D bands in graphene are achieved by our dispersion technique, and then incorporated in an organic-inorganic acrylate emulsion to form a coating assembly on heat sinks (for LED and CPU). This water-based dielectric layer coating has been formulated and applied on metal core printed circuit boards. The heat dissipation efficiency and breakdown voltage are evaluated by a temperature-monitoring system and a high-voltage breakdown tester. The molecular fan coating on heat dissipation units is able to decrease the equilibrium junction temperature by 29.1 ° C, while functioning as a dielectric layer with a high breakdown voltage (>5 kV). The heat dissipation performance of the molecular fan coating applied on LED devices shows that the coated 50 W LED gives an enhanced cooling of 20% at constant light brightness. The schematics of monolayer graphene dispersion, undispersed graphene platelet, and continuous graphene sheet are illustrated and discussed to explain the mechanisms of radiative cooling, radiative/non-radiative, and non-radiative heat re-accumulation.

  3. Development of Improved Radiation Drive Environment for High Foot Implosions at the National Ignition Facility

    NASA Astrophysics Data System (ADS)

    Hinkel, D. E.; Berzak Hopkins, L. F.; Ma, T.; Ralph, J. E.; Albert, F.; Benedetti, L. R.; Celliers, P. M.; Döppner, T.; Goyon, C. S.; Izumi, N.; Jarrott, L. C.; Khan, S. F.; Kline, J. L.; Kritcher, A. L.; Kyrala, G. A.; Nagel, S. R.; Pak, A. E.; Patel, P.; Rosen, M. D.; Rygg, J. R.; Schneider, M. B.; Turnbull, D. P.; Yeamans, C. B.; Callahan, D. A.; Hurricane, O. A.

    2016-11-01

    Analyses of high foot implosions show that performance is limited by the radiation drive environment, i.e., the hohlraum. Reported here are significant improvements in the radiation environment, which result in an enhancement in implosion performance. Using a longer, larger case-to-capsule ratio hohlraum at lower gas fill density improves the symmetry control of a high foot implosion. Moreover, for the first time, these hohlraums produce reduced levels of hot electrons, generated by laser-plasma interactions, which are at levels comparable to near-vacuum hohlraums, and well within specifications. Further, there is a noteworthy increase in laser energy coupling to the hohlraum, and discrepancies with simulated radiation production are markedly reduced. At fixed laser energy, high foot implosions driven with this improved hohlraum have achieved a 1.4 ×increase in stagnation pressure, with an accompanying relative increase in fusion yield of 50% as compared to a reference experiment with the same laser energy.

  4. Ambient radiation levels in positron emission tomography/computed tomography (PET/CT) imaging center

    PubMed Central

    Santana, Priscila do Carmo; de Oliveira, Paulo Marcio Campos; Mamede, Marcelo; Silveira, Mariana de Castro; Aguiar, Polyanna; Real, Raphaela Vila; da Silva, Teógenes Augusto

    2015-01-01

    Objective To evaluate the level of ambient radiation in a PET/CT center. Materials and Methods Previously selected and calibrated TLD-100H thermoluminescent dosimeters were utilized to measure room radiation levels. During 32 days, the detectors were placed in several strategically selected points inside the PET/CT center and in adjacent buildings. After the exposure period the dosimeters were collected and processed to determine the radiation level. Results In none of the points selected for measurements the values exceeded the radiation dose threshold for controlled area (5 mSv/year) or free area (0.5 mSv/year) as recommended by the Brazilian regulations. Conclusion In the present study the authors demonstrated that the whole shielding system is appropriate and, consequently, the workers are exposed to doses below the threshold established by Brazilian standards, provided the radiation protection standards are followed. PMID:25798004

  5. High fidelity chemistry and radiation modeling for oxy -- combustion scenarios

    NASA Astrophysics Data System (ADS)

    Abdul Sater, Hassan A.

    To account for the thermal and chemical effects associated with the high CO2 concentrations in an oxy-combustion atmosphere, several refined gas-phase chemistry and radiative property models have been formulated for laminar to highly turbulent systems. This thesis examines the accuracies of several chemistry and radiative property models employed in computational fluid dynamic (CFD) simulations of laminar to transitional oxy-methane diffusion flames by comparing their predictions against experimental data. Literature review about chemistry and radiation modeling in oxy-combustion atmospheres considered turbulent systems where the predictions are impacted by the interplay and accuracies of the turbulence, radiation and chemistry models. Thus, by considering a laminar system we minimize the impact of turbulence and the uncertainties associated with turbulence models. In the first section of this thesis, an assessment and validation of gray and non-gray formulations of a recently proposed weighted-sum-of-gray gas model in oxy-combustion scenarios was undertaken. Predictions of gas, wall temperatures and flame lengths were in good agreement with experimental measurements. The temperature and flame length predictions were not sensitive to the radiative property model employed. However, there were significant variations between the gray and non-gray model radiant fraction predictions with the variations in general increasing with decrease in Reynolds numbers possibly attributed to shorter flames and steeper temperature gradients. The results of this section confirm that non-gray model predictions of radiative heat fluxes are more accurate than gray model predictions especially at steeper temperature gradients. In the second section, the accuracies of three gas-phase chemistry models were assessed by comparing their predictions against experimental measurements of temperature, species concentrations and flame lengths. The chemistry was modeled employing the Eddy

  6. Parallel Processing at the High School Level.

    ERIC Educational Resources Information Center

    Sheary, Kathryn Anne

    This study investigated the ability of high school students to cognitively understand and implement parallel processing. Data indicates that most parallel processing is being taught at the university level. Instructional modules on C, Linux, and the parallel processing language, P4, were designed to show that high school students are highly…

  7. The assessment of risks from exposure to low-levels of ionizing radiation

    SciTech Connect

    Gilbert, E.S.

    1992-06-01

    This report is concerned with risk assessments for human populations receiving low level radiation doses; workers routinely exposed to radiation, Japanese victims of nuclear bombs, and the general public are all considered. Topics covered include risk estimates for cancer, mortality rates, risk estimates for nuclear site workers, and dosimetry.

  8. The assessment of risks from exposure to low-levels of ionizing radiation

    SciTech Connect

    Gilbert, E.S.

    1992-06-01

    This report is concerned with risk assessments for human populations receiving low level radiation doses; workers routinely exposed to radiation, Japanese victims of nuclear bombs, and the general public are all considered. Topics covered include risk estimates for cancer, mortality rates, risk estimates for nuclear site workers, and dosimetry.

  9. OPERATOR DEPENDENCY OF THE RADIATION EXPOSURE IN CARDIAC INTERVENTIONS: FEASIBILITY OF ULTRA LOW DOSE LEVELS.

    PubMed

    Ozpelit, Mehmet Emre; Ercan, Ertugrul; Ozpelit, Ebru; Pekel, Nihat; Tengiz, Istemihan; Ozyurtlu, Ferhat; Yilmaz, Akar

    2017-04-15

    Mean radiation exposure in invasive cardiology varies greatly between different centres and interventionists. The International Commission on Radiological Protection and the EURATOM Council stipulate that, despite reference values, 'All medical exposure for radiodiagnostic purposes shall be kept as low as reasonably achievable' (ALARA). The purpose of this study is to establish the effects of the routine application of ALARA principles and to determine operator and procedure impact on radiation exposure in interventional cardiology. A total of 240 consecutive cardiac interventional procedures were analysed. Five operators performed the procedures, two of whom were working in accordance with ALARA principles (Group 1 operators) with the remaining three working in a standard manner (Group 2 operators). Radiation exposure levels of these two groups were compared. Total fluoroscopy time and the number of radiographic runs were similar between groups. However, dose area product and cumulative dose were significantly lower in Group 1 when compared with Group 2. Radiation levels of Group 1 were far below even the reference levels in the literature, thus representing an ultra-low-dose radiation exposure in interventional cardiology. By use of simple radiation reducing techniques, ultra-low-dose radiation exposure is feasible in interventional cardiology. Achievability of such levels depends greatly on operator awareness, desire, knowledge and experience of radiation protection. © The Author 2016. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  10. Lightweight, High-Temperature Radiator for Space Propulsion

    NASA Technical Reports Server (NTRS)

    Hyers, R. W.; Tomboulian, B. N.; Crave, Paul D.; Rogers, J. R.

    2012-01-01

    For high-power nuclear-electric spacecraft, the radiator can account for 40% or more of the power system mass and a large fraction of the total vehicle mass. Improvements in the heat rejection per unit mass rely on lower-density and higher-thermal conductivity materials. Current radiators achieve near-ideal surface radiation through high-emissivity coatings, so improvements in heat rejection per unit area can be accomplished only by raising the temperature at which heat is rejected. We have been investigating materials that have the potential to deliver significant reductions in mass density and significant improvements in thermal conductivity, while expanding the feasible range of temperature for heat rejection up to 1000 K and higher. The presentation will discuss the experimental results and models of the heat transfer in matrix-free carbon fiber fins. Thermal testing of other carbon-based fin materials including carbon nanotube cloth and a carbon nanotube composite will also be presented.

  11. Microprocessor program storage for missions with high radiation exposure

    NASA Astrophysics Data System (ADS)

    Krahn, E.; Gliem, F.; Schwartz, P. U.; Bach, J.; Gaertner, M.

    1981-05-01

    Microprocessors have become an indispensable part of modern instruments for space research missions. A suitable selection of microprocessors and peripheral components must take into consideration also the operational performance of the devices when exposed to radiation, and their capability to withstand radiation. One of the devices to be considered is the memory unit employed for storing the program. Conditions of a particularly high exposure to radiation will exist during the Galileo and ISPM missions. While passing through the magnetic field of Jupiter, the equipment of the spacecraft will be exposed to a flux of high-energy electrons and protons. Performance under the expected conditions, availability, and cost are compared for several types of memory. It is found that the employment of bipolar PROMs has distinct advantages when compared to a use of CMOS ROMs or RAMs.

  12. Base Level Management of Radio Frequency Radiation Protection Program

    DTIC Science & Technology

    1989-04-01

    with a healti h....:d. V. STANDARDS A. The Basis of Our Permissible Exposure Limits (PELs). 1. What level of RFR is safe? It’s a big question, and a lot...mobile lifting equipment, hand-held radios, climbing gear, etc. b. Check out your equipment. Is the calibration current? Does the probe frequency range...CH--Hazardous levels possible, but only in areas that require climbing . GH--Ground-level hazardous exposures possible. DL--Transmitter dummy loaded. SH

  13. High-Level Application Framework for LCLS

    SciTech Connect

    Chu, P; Chevtsov, S.; Fairley, D.; Larrieu, C.; Rock, J.; Rogind, D.; White, G.; Zalazny, M.; /SLAC

    2008-04-22

    A framework for high level accelerator application software is being developed for the Linac Coherent Light Source (LCLS). The framework is based on plug-in technology developed by an open source project, Eclipse. Many existing functionalities provided by Eclipse are available to high-level applications written within this framework. The framework also contains static data storage configuration and dynamic data connectivity. Because the framework is Eclipse-based, it is highly compatible with any other Eclipse plug-ins. The entire infrastructure of the software framework will be presented. Planned applications and plug-ins based on the framework are also presented.

  14. The ST environment: Expected charged particle radiation levels

    NASA Technical Reports Server (NTRS)

    Stassinopoulos, E. G.

    1978-01-01

    The external (surface incident) charged particle radiation, predicted for the ST satellite at the three different mission altitudes, was determined in two ways: (1) by orbital flux-integration and (2) by geographical instantaneous flux-mapping. The latest standard models of the environment were used in this effort. Magnetic field definitions for three nominal circular trajectories and for the geographic mapping positions were obtained from a current field model. Spatial and temporal variations or conditions affecting the static environment models were considered and accounted for, wherever possible. Limited shielding and dose evaluations were performed for a simple geometry. Results, given in tabular and graphical form, are analyzed, explained, and discussed. Conclusions are included.

  15. Atmospheric Ionizing Radiation and the High Speed Civil Transport. Chapter 1

    NASA Technical Reports Server (NTRS)

    Maiden, D. L.; Wilson, J. W.; Jones, I. W.; Goldhagen, P.

    2003-01-01

    Atmospheric ionizing radiation is produced by extraterrestrial radiations incident on the Earth's atmosphere. These extraterrestrial radiations are of two sources: ever present galactic cosmic rays with origin outside the solar system and transient solar particle events that are at times very intense events associated with solar activity lasting several hours to a few days. Although the galactic radiation penetrating through the atmosphere to the ground is low in intensity, the intensity is more than two orders of magnitude greater at commercial aircraft altitudes. The radiation levels at the higher altitudes of the High Speed Civil Transport (HSCT) are an additional factor of two higher. Ionizing radiation produces chemically active radicals in biological tissues that alter the cell function or result in cell death. Protection standards against low levels of ionizing radiation are based on limitation of excess cancer mortality or limitation of developmental injury resulting in permanent damage to the offspring during pregnancy. The crews of commercial air transport operations are considered as radiation workers by the EPA, the FAA, and the International Commission on Radiological Protection (ICRP). The annual exposures of aircrews depend on the latitudes and altitudes of operation and flight time. Flight hours have significantly increased since deregulation of the airline industry in the 1980's. The FAA estimates annual subsonic aircrew exposures to range from 0.2 to 9.1 mSv compared to 0.5 mSv exposure of the average nuclear power plant worker in the nuclear industry. The commercial aircrews of the HSCT may receive exposures above recently recommended allowable limits for even radiation workers if flying their allowable number of flight hours. An adequate protection philosophy for background exposures in HSCT commercial airtraffic cannot be developed at this time due to current uncertainty in environmental levels. In addition, if a large solar particle event

  16. Infrared radiation and inversion population of CO2 laser levels in Venusian and Martian atmospheres

    NASA Technical Reports Server (NTRS)

    Gordiyets, B. F.; Panchenko, V. Y.

    1983-01-01

    Formation mechanisms of nonequilibrium 10 micron CO2 molecule radiation and the possible existence of a natural laser effect in the upper atmospheres of Venus and Mars are theoretically studied. An analysis is made of the excitation process of CO2 molecule vibrational-band levels (with natural isotropic content) induced by direct solar radiation in bands 10.6, 9.4, 4.3, 2.7 and 2.0 microns. The model of partial vibrational-band temperatures was used in the case. The problem of IR radiation transfer in vibrational-rotational bands was solved in the radiation escape approximation.

  17. Response of radiation protection dosemeters in mixed high-energy photon and electron radiation fields.

    PubMed

    Büermann, L; Gargioni, E; Kramer, H M

    2001-01-01

    The response of radiation protection dosemeters in terms of the phantom-related operational quantities Hp(10) and H'(10.0 degrees) was measured for personal and area monitoring systems in mixed high-energy electron and photon radiation fields with energies up to 7 MeV. Using mixed radiation fields composed of different fractions of charged particle and photon fluence, three conditions were produced at the point of measurement: charged particle equilibrium (CPE) (a), a lack (b) and an excess (c) of charged particles relative to the conditions of CPE. Personal and area dosemeters of different types were investigated under conditions (a)-(c). A large variability of the response of the different dosemeter types was observed. The results are presented and discussed.

  18. Coupled Fluids-Radiation Analysis of a High-Mass Mars Entry Vehicle

    NASA Technical Reports Server (NTRS)

    Palmer, Grant; Allen, Gary; Tang, Chun; Brown, Jim

    2011-01-01

    The NEQAIR line-by-line radiation code has been incorporated into the DPLR Navier-Stokes flow solver such that the NEQAIR subroutines are now callable functions of DPLR. The coupled DPLR-NEQAIR code was applied to compute the convective and radiative heating rates over high-mass Mars entry vehicles. Two vehicle geometries were considered - a 15 m diameter 70-degree sphere cone configuration and a slender, mid-L/D vehicle with a diameter of 5 m called an Ellipsled. The entry masses ranged from 100 to 165 metric tons. Solutions were generated for entry velocities ranging from 6.5 to 9.1 km/s. The coupled fluids-radiation solutions were performed at the peak heating location along trajectories generated by the Traj trajectory analysis code. The impact of fluids-radiation coupling is a function of the level of radiative heating and the freestream density and velocity. For the high-mass Mars vehicles examined in this study, coupling effects were greatest for entry velocities above 8.5 km/s where the surface radiative heating was reduced by up 17%. Generally speaking, the Ellipsled geometry experiences a lower peak radiative heating rate but a higher peak turbulent convective heating rate than the MSL-based vehicle.

  19. Effects of combined radiofrequency radiation exposure on levels of reactive oxygen species in neuronal cells

    PubMed Central

    Kang, Kyoung Ah; Lee, Hyung Chul; Lee, Je-Jung; Hong, Mi-Na; Park, Myung-Jin; Lee, Yun-Sil; Choi, Hyung-Do; Kim, Nam; Ko, Young-Gyu; Lee, Jae-Seon

    2014-01-01

    The objective of this study was to investigate the effects of the combined RF radiation (837 MHz CDMA plus 1950 MHz WCDMA) signal on levels of intracellular reactive oxygen species (ROS) in neuronal cells. Exposure of the combined RF signal was conducted at specific absorption rate values of 2 W/kg of CDMA plus 2 W/kg of WCDMA for 2 h. Co-exposure to combined RF radiation with either H2O2 or menadione was also performed. The experimental exposure groups were incubator control, sham-exposed, combined RF radiation-exposed with or without either H2O2 or menadione groups. The intracellular ROS level was measured by flow cytometry using the fluorescent probe dichlorofluorescein diacetate. Intracellular ROS levels were not consistently affected by combined RF radiation exposure alone in a time-dependent manner in U87, PC12 or SH-SY5Y cells. In neuronal cells exposed to combined RF radiation with either H2O2 or menadione, intracellular ROS levels showed no statically significant alteration compared with exposure to menadione or H2O2 alone. These findings indicate that neither combined RF radiation alone nor combined RF radiation with menadione or H2O2 influences the intracellular ROS level in neuronal cells such as U87, PC12 or SH-SY5Y. PMID:24105709

  20. Effects of combined radiofrequency radiation exposure on levels of reactive oxygen species in neuronal cells.

    PubMed

    Kang, Kyoung Ah; Lee, Hyung Chul; Lee, Je-Jung; Hong, Mi-Na; Park, Myung-Jin; Lee, Yun-Sil; Choi, Hyung-Do; Kim, Nam; Ko, Young-Gyu; Lee, Jae-Seon

    2014-03-01

    The objective of this study was to investigate the effects of the combined RF radiation (837 MHz CDMA plus 1950 MHz WCDMA) signal on levels of intracellular reactive oxygen species (ROS) in neuronal cells. Exposure of the combined RF signal was conducted at specific absorption rate values of 2 W/kg of CDMA plus 2 W/kg of WCDMA for 2 h. Co-exposure to combined RF radiation with either H2O2 or menadione was also performed. The experimental exposure groups were incubator control, sham-exposed, combined RF radiation-exposed with or without either H2O2 or menadione groups. The intracellular ROS level was measured by flow cytometry using the fluorescent probe dichlorofluorescein diacetate. Intracellular ROS levels were not consistently affected by combined RF radiation exposure alone in a time-dependent manner in U87, PC12 or SH-SY5Y cells. In neuronal cells exposed to combined RF radiation with either H2O2 or menadione, intracellular ROS levels showed no statically significant alteration compared with exposure to menadione or H2O2 alone. These findings indicate that neither combined RF radiation alone nor combined RF radiation with menadione or H2O2 influences the intracellular ROS level in neuronal cells such as U87, PC12 or SH-SY5Y.

  1. New findings: a very high natural radiation area in Afra hot springs, Jordan.

    PubMed

    Ajlouni, Abdul-Wali; Abdelsalam, Manal; Abu-Haija, Osama; Joudeh, Bassam

    2009-01-01

    A high natural radiation zone was investigated for the first time in Afra hot springs of Jordan. The radiation levels were measured using a portable Geiger-Muller counter and an Na(Tl) detector. The measured absorbed dose rates in air ranged from 10 to 1800 nGy h(-1), suggesting that the concentration of natural radioactive materials is very high compared with their normal abundance in crustal rocks. A single high-radiation zone was also found in a nearby area where a gamma radiation dose rate of 4.0 mGy h(-1) was measured. On the basis of this measurement, the area was marked as a high-radiation zone. This region is far from tourist areas and not easily reached. No intervention measures are needed to protect people because the spa area is not well inhabited, having only daily visitors (average frequency of 10 days per year per individual). The dose received by workers in the spa area should be considered and the worker should be monitored by personal radiation dosimeters, such as thermoluminescent dosimeters.

  2. G2-chromosome aberrations induced by high-LET radiations

    NASA Astrophysics Data System (ADS)

    Kawata, T.; Durante, M.; Furusawa, Y.; George, K.; Ito, H.; Wu, H.; Cucinotta, F. A.

    We report measurements of initial G2-chromatid breaks in normal human fibroblasts exposed to various types of high-LET particles. Exponentially growing AG 1522 cells were exposed to γ-rays or heavy ions. Chromosomes were prematurely condensed by calyculin A. Chromatid-type breaks and isochromatid-type breaks were scored separately. The dose response curves for the induction of total chromatid breaks (chromatid-type + isochromatid-type) and chromatid-type breaks were linear for each type of radiation. However, dose response curves for the induction of isochromatid-type breaks were linear for high-LET radiations and linear-quadratic for γ-rays. Relative biological effectiveness (RBE), calculated from total breaks, showed a LET dependent tendency with a peak at 55 keV/μm silicon (2.7) or 80 keV/μm carbon (2.7) and then decreased with LET (1.5 at 440 keV/μm). RBE for chromatid-type break peaked at 55 keV/μm (2.4) then decreased rapidly with LET. The RBE of 440 keV/μm iron particles was 0.7. The RBE calculated from induction of isochromatid-type breaks was much higher for high-LET radiations. It is concluded that the increased production of isochromatid-type breaks, induced by the densely ionizing track structure, is a signature of high-LET radiation exposure.

  3. Chromosome aberrations induced by high-LET radiations

    NASA Technical Reports Server (NTRS)

    Kawata, Tetsuya; Ito, Hisao; George, Kerry; Wu, Honglu; Cucinotta, Francis A.

    2004-01-01

    Measurements of chromosome aberrations in peripheral blood lymphocytes are currently the most sensitive and reliable indicator of radiation exposure that can be used for biological dosimetry. This technique has been implemented recently to study radiation exposures incurred by astronauts during space flight, where a significant proportion of the dose is delivered by high-LET particle exposure. Traditional methods for the assessing of cytogenetic damage in mitotic cells collected at one time point after exposure may not be suitable for measuring high-LET radiation effects due to the drastic cell cycle perturbations and interphase cell death induced by this type of exposure. In this manuscript we review the recent advances in methodology used to study high-LET induced cytogenetic effects and evaluate the use of chemically-induced Premature Chromosome Condensation (PCC) as an alternative to metaphase analysis. Published data on the cytogenetic effects of in vitro exposures of high-LET radiation is reviewed, along with biodosimetry results from astronauts after short or long space missions.

  4. Radiation Response of Emerging High Gain, Low Noise Detectors

    NASA Technical Reports Server (NTRS)

    Becker, Heidi N.; Farr, William H; Zhu, David Q.

    2007-01-01

    Data illustrating the radiation response of emerging high gain, low noise detectors are presented. Ionizing dose testing of silicon internal discrete avalanche photodiodes, and 51-MeV proton testing of InGaAs/InAlAs avalanche photodiodes operated in Geiger mode are discussed.

  5. Chromosome aberrations induced by high-LET radiations

    NASA Technical Reports Server (NTRS)

    Kawata, Tetsuya; Ito, Hisao; George, Kerry; Wu, Honglu; Cucinotta, Francis A.

    2004-01-01

    Measurements of chromosome aberrations in peripheral blood lymphocytes are currently the most sensitive and reliable indicator of radiation exposure that can be used for biological dosimetry. This technique has been implemented recently to study radiation exposures incurred by astronauts during space flight, where a significant proportion of the dose is delivered by high-LET particle exposure. Traditional methods for the assessing of cytogenetic damage in mitotic cells collected at one time point after exposure may not be suitable for measuring high-LET radiation effects due to the drastic cell cycle perturbations and interphase cell death induced by this type of exposure. In this manuscript we review the recent advances in methodology used to study high-LET induced cytogenetic effects and evaluate the use of chemically-induced Premature Chromosome Condensation (PCC) as an alternative to metaphase analysis. Published data on the cytogenetic effects of in vitro exposures of high-LET radiation is reviewed, along with biodosimetry results from astronauts after short or long space missions.

  6. Radiation Response of Emerging High Gain, Low Noise Detectors

    NASA Technical Reports Server (NTRS)

    Becker, Heidi N.; Farr, William H; Zhu, David Q.

    2007-01-01

    Data illustrating the radiation response of emerging high gain, low noise detectors are presented. Ionizing dose testing of silicon internal discrete avalanche photodiodes, and 51-MeV proton testing of InGaAs/InAlAs avalanche photodiodes operated in Geiger mode are discussed.

  7. Chromosome aberrations induced by high-LET radiations.

    PubMed

    Kawata, Tetsuya; Ito, Hisao; George, Kerry; Wu, Honglu; Cucinotta, Francis A

    2004-12-01

    Measurements of chromosome aberrations in peripheral blood lymphocytes are currently the most sensitive and reliable indicator of radiation exposure that can be used for biological dosimetry. This technique has been implemented recently to study radiation exposures incurred by astronauts during space flight, where a significant proportion of the dose is delivered by high-LET particle exposure. Traditional methods for the assessing of cytogenetic damage in mitotic cells collected at one time point after exposure may not be suitable for measuring high-LET radiation effects due to the drastic cell cycle perturbations and interphase cell death induced by this type of exposure. In this manuscript we review the recent advances in methodology used to study high-LET induced cytogenetic effects and evaluate the use of chemically-induced Premature Chromosome Condensation (PCC) as an alternative to metaphase analysis. Published data on the cytogenetic effects of in vitro exposures of high-LET radiation is reviewed, along with biodosimetry results from astronauts after short or long space missions.

  8. Human response to high-background radiation environments on Earth and in space

    NASA Astrophysics Data System (ADS)

    Durante, M.; Manti, L.

    The main long-term goal of the space exploration program is the colonization of the planets of the Solar System The high cosmic radiation equivalent dose rate represents a major problem for a stable and safe colonization of the planets The dose rate on Mars ranges between 60 and 150 mSv year depending on the Solar cycle and altitude and can reach values as high as 360 mSv year on the Moon The average dose rate on the Earth is about 3 mSv year reduced to about 1 mSv year excluding the internal exposure to Rn daughters However some areas of the Earth have anomalously high levels of background radiation Values 200-400 times higher than the world average are found in regions where monazite sand deposits are abundant Population in Tibet experience a high cosmic radiation background Epidemiological studies did not detect any adverse health effects in the populations living in those high-background radiation areas on Earth Chromosomal aberrations in the peripheral blood lymphocytes from the population living in the high-background radiation areas have been measured in several studies because the chromosomal damage represents an early biomarker of cancer risk Similar cytogenetic studies have been recently performed in cohort of astronauts involved in single or repeated space flights over many years A comparison of the cytogenetic findings in populations exposed at high dose rate on Earth or in space will be described

  9. Base-level management of radio-frequency radiation-protection program. Final report

    SciTech Connect

    Rademacher, S.E.; Montgomery, N.D.

    1989-04-01

    AFOEHL developed this report to assist the base-level aerospace medical team manage their radio-frequency radiation-protection program. This report supersedes USAFOEHL Report 80-42, 'A Practical R-F Guide for BEES.'

  10. Base-level management of radio-frequency radiation-protection program. Final report

    SciTech Connect

    Rademacher, S.E.; Montgomery, N.D.

    1989-04-01

    AFOEHL developed this report to assist the base-level aerospace medical team manage their radio-frequency radiation protection program. This report supersedes USAFOEHL Report 80-42, 'A practical R-F Guide for BEES.'

  11. Cell-oriented alternatives to dose, quality factor, and dose equivalent for low-level radiation

    SciTech Connect

    Sondhaus, C.A.; Bond, V.P.; Feinendegen, L.E. )

    1990-07-01

    Randomly occurring energy deposition events produced by low levels of ionizing radiation interacting with tissue deliver variable amounts of energy to sensitive target volumes within a small fraction of the tissue cell population. A model is described in which an experimentally derived function relating event size to cell response probability operates mathematically on the microdosimetric event size distribution characterizing a given irradiation and thus determines the total fractional number of responding cells; this fraction measures the effectiveness of the given radiation. Applying this cell response or hit size effectiveness function (HSEF) to different radiations and normalizing to equal numbers of responses produced by each radiation should define its radiation quality, or relative effectiveness, on a more nearly absolute basis than do the absorbed dose and dose equivalent, both of which are confounded when applied to low-level irradiations. Similar cell response probability functions calculated from different experimental data are presented.

  12. Cell-oriented alternatives to dose, quality factor, and dose equivalent for low-level radiation.

    PubMed

    Sondhaus, C A; Bond, V P; Feinendegen, L E

    1990-07-01

    Randomly occurring energy deposition events produced by low levels of ionizing radiation interacting with tissue deliver variable amounts of energy to sensitive target volumes within a small fraction of the tissue cell population. A model is described in which an experimentally derived function relating event size to cell response probability operates mathematically on the microdosimetric event size distribution characterizing a given irradiation and thus determines the total fractional number of responding cells; this fraction measures the effectiveness of the given radiation. Applying this cell response or hit size effectiveness function (HSEF) to different radiations and normalizing to equal numbers of responses produced by each radiation should define its radiation quality, or relative effectiveness, on a more nearly absolute basis than do the absorbed dose and dose equivalent, both of which are confounded when applied to low-level irradiations. Similar cell response probability functions calculated from different experimental data are presented.

  13. A Software Architecture for High Level Applications

    SciTech Connect

    Shen,G.

    2009-05-04

    A modular software platform for high level applications is under development at the National Synchrotron Light Source II project. This platform is based on client-server architecture, and the components of high level applications on this platform will be modular and distributed, and therefore reusable. An online model server is indispensable for model based control. Different accelerator facilities have different requirements for the online simulation. To supply various accelerator simulators, a set of narrow and general application programming interfaces is developed based on Tracy-3 and Elegant. This paper describes the system architecture for the modular high level applications, the design of narrow and general application programming interface for an online model server, and the prototype of online model server.

  14. Case hardenability at high carbon levels

    SciTech Connect

    Walton, H.W.

    1995-02-01

    Loss of hardenability in the case was thought to be responsible for a lower than specified hardness found on a large carburized bushing. Pseudo Jominy testing on several high hardenability carburizing grades confirmed that hardenability fade was present at carbon levels above 0.65% and particularly for those steels containing molybdenum. Analysis of previous work provided a formula for calculating Jominy hardenability at various carbon levels. Again the results confirmed that the loss of hardenability was more severe in steels containing molybdenum.

  15. Future high sea levels in south Sweden

    SciTech Connect

    Blomgren, S.H.; Hanson, H.

    1997-12-31

    An estimation of future mean high water levels in Oeresund and the southwest Baltic Sea is presented together with a discussion of probable consequences for Falsterbo Peninsula, a trumpet-shaped sandy formation of some 25 km{sup 2} size situated in the very southwest corner of Sweden. A literature review coupled with sea-level measurements and observations made in the area every four hours since October 1945 are given and comprise the base for the present analysis.

  16. ARTICLES: High-power laser radiation damage to transparent insulators

    NASA Astrophysics Data System (ADS)

    Gavrilov, B. G.; Kulikov, V. I.; Pedanov, V. V.

    1982-11-01

    An experimental investigation was made of the kinetics of the post-breakdown phenomena accompanying the focusing of high-power laser radiation inside transparent insulators (using the example of single-crystal potassium alum). Measurements were made of the rate of growth of the damage region and of the propagation velocity of the elastic wave, its amplitude and wavelength. The dimensions of the breakdown region were compared with those of the damage zone in the insulator. An analysis was made of the laser radiation energy distribution in the observed phenomenon.

  17. Propagation of waves in a medium with high radiation pressure

    NASA Technical Reports Server (NTRS)

    Bisnovatyy-Kogan, G. S.; Blinnikov, S. I.

    1979-01-01

    The propagation and mutual transformation of acoustic and thermal waves are investigated in media with a high radiative pressure. The equations of hydrodynamics for matter and the radiative transfer equations in a moving medium in the Eddington approximation are used in the investigation. Model problems of waves in a homogeneous medium with an abrupt jump in opacity and in a medium of variable opacity are presented. The characteristic and the times of variability are discussed. Amplitude for the brightness fluctuations for very massive stars are discussed.

  18. Very high power THz radiation at Jefferson Lab

    SciTech Connect

    Carr, G.L.; Martin, Michael C.; McKinney, Wayne R.; Jordan, K.; Neil, George R.; Williams, G.P.

    2002-03-31

    We report the production of high power (20 watts average, {approx};1 Megawatt peak) broadband THz light based on coherent emission from relativistic electrons. We describe the source, presenting theoretical calculations and their experimental verification. For clarity we compare this source with one based on ultrafast laser techniques, and in fact the radiation has qualities closely analogous to that produced by such sources, namely that it is spatially coherent, and comprises short duration pulses with transform-limited spectral content. In contrast to conventional THz radiation, however, the intensity is many orders of magnitude greater due to the relativistic enhancement.

  19. Very high Power THz radiation at Jefferson Lab

    SciTech Connect

    G.L. Carr; Michael C. Martin; Wayne R. McKinney; Kevin Jordan; George R. Neil; Gwyn P. Williams

    2002-03-01

    We report the production of high power (20 watts average, {approx}1 Megawatt peak) broadband THz light based on coherent emission from relativistic electrons. We describe the source, presenting theoretical calculations and their experimental verification. For clarity we compare this source with one based on ultrafast laser techniques, and in fact the radiation has qualities closely analogous to that produced by such sources, namely that it is spatially coherent, and comprises short duration pulses with transform-limited spectral content. In contrast to conventional THz radiation, however, the intensity is many orders of magnitude greater due to the relativistic enhancement.

  20. Very high power THz radiation at Jefferson Lab.

    PubMed

    Carr, G L; Martin, Michael C; McKinney, Wayne R; Jordan, K; Neil, George R; Williams, G P

    2002-11-07

    We report the production of high power (20 W average, approximately 1 MW peak) broadband THz light based on coherent emission from relativistic electrons. We describe the source, presenting theoretical calculations and their experimental verification. For clarity we compare this source with that based on ultrafast laser techniques, and in fact the radiation has qualities closely analogous to those produced by such sources, namely that it is spatially coherent, and comprises short duration pulses with transform-limited spectral content. In contrast to conventional THz radiation, however, the intensity is many orders of magnitude greater due to the relativistic enhancement.

  1. Alternative interpretations of statistics on health effects of low-level radiation

    SciTech Connect

    Hamilton, L.D.

    1983-11-01

    Four examples of the interpretation of statistics of data on low-level radiation are reviewed: (a) genetic effects of the atomic bombs at Hiroshima and Nagasaki, (b) cancer at Rocky Flats, (c) childhood leukemia and fallout in Utah, and (d) cancer among workers at the Portsmouth Naval Shipyard. Aggregation of data, adjustment for age, and other problems related to the determination of health effects of low-level radiation are discussed. Troublesome issues related to post hoc analysis are considered.

  2. Highly Elliptical Orbits for Arctic observations: Assessment of ionizing radiation

    NASA Astrophysics Data System (ADS)

    Trichtchenko, L. D.; Nikitina, L. V.; Trishchenko, A. P.; Garand, L.

    2014-12-01

    The ionizing radiation environment was analyzed for a variety of potential Highly Elliptical Orbits (HEOs) with orbital periods ranging from 6 h to 24 h suitable to continuously monitor the Arctic region. Several models available from the ESA Space Environment Information System (SPENVIS) online tool were employed, including the new-generation AE9/AP9 model for trapped radiation. Results showed that the Total Ionizing Dose (TID) has a well-pronounced local minimum for the 14-h orbit, which is nearly identical to the overall minimum observed for the longest orbital period (24 h). The thickness of slab aluminum shielding required to keep the annual TID below 10, 5 and 3.33 krad (i.e. 150, 75 and 50 krad for 15 years of mission duration) for a 14-h orbit is 2.1, 2.7 and 3.1 mm respectively. The 16-h orbit requires an additional 0.5 mm of aluminum to achieve the same results, while the 24-h orbit requires less shielding in the order of 0.2-0.3 mm. Comparison between the AE8/AP8 and AE9/AP9 models was conducted for all selected orbits. Results demonstrated that differences ranged from -70% to +170% depending on orbit geometry. The vulnerability to the Single Event Effect (SEE) was compared for all orbits by modeling the Linear Energy Transfer (LET) for long-term conditions and for the 5 min “worst case” scenario. The analysis showed no preference among orbits with periods longer than 15 h, and in order to keep the 14-h orbit at the same level, the shielding should be increased by ∼33% or approximately by 1 mm. To keep the Single Event Upset (SEU) rate produced by the “worst case” event at the same order of magnitude as for the “statistical” long-term case, the thickness of aluminum should be as high as 22 mm. The overall conclusion from a space environment point of view is that all HEO orbits with periods equal to or longer than 14 h can be regarded as good candidates for operational missions. Therefore, selection of orbit should be based on other criteria

  3. High speed infrared radiation thermometer, system, and method

    DOEpatents

    Markham, James R.

    2002-01-01

    The high-speed radiation thermometer has an infrared measurement wavelength band that is matched to the infrared wavelength band of near-blackbody emittance of ceramic components and ceramic thermal barrier coatings used in turbine engines. It is comprised of a long wavelength infrared detector, a signal amplifier, an analog-to-digital converter, an optical system to collect radiation from the target, an optical filter, and an integral reference signal to maintain a calibrated response. A megahertz range electronic data acquisition system is connected to the radiation detector to operate on raw data obtained. Because the thermometer operates optimally at 8 to 12 .mu.m, where emittance is near-blackbody for ceramics, interferences to measurements performed in turbine engines are minimized. The method and apparatus are optimized to enable mapping of surface temperatures on fast moving ceramic elements, and the thermometer can provide microsecond response, with inherent self-diagnostic and calibration-correction features.

  4. High dose bystander effects in spatially fractionated radiation therapy

    PubMed Central

    Asur, Rajalakshmi; Butterworth, Karl T.; Penagaricano, Jose A.; Prise, Kevin M.; Griffin, Robert J.

    2014-01-01

    Traditional radiotherapy of bulky tumors has certain limitations. Spatially fractionated radiation therapy (GRID) and intensity modulated radiotherapy (IMRT) are examples of advanced modulated beam therapies that help in significant reductions in normal tissue damage. GRID refers to the delivery of a single high dose of radiation to a large treatment area that is divided into several smaller fields, while IMRT allows improved dose conformity to the tumor target compared to conventional three-dimensional conformal radiotherapy. In this review, we consider spatially fractionated radiotherapy approaches focusing on GRID and IMRT, and present complementary evidence from different studies which support the role of radiation induced signaling effects in the overall radiobiological rationale for these treatments. PMID:24246848

  5. A high-power synthesized ultrawideband radiation source

    NASA Astrophysics Data System (ADS)

    Efremov, A. M.; Koshelev, V. I.; Plisko, V. V.; Sevostyanov, E. A.

    2017-09-01

    A high-power ultrawideband radiation source has been developed which is capable of synthesizing electromagnetic pulses with different frequency bands in free space. To this end, a new circuit design comprising a four-channel former of bipolar pulses of durations 2 and 3 ns has been elaborated and conditions for the stable operation of gas gaps of independent channels without external control pulses have been determined. Each element of the 2 × 2 array of combined antennas is driven from an individual channel of the pulse former. Antennas excited by pulses of the same duration are arranged diagonally. Two radiation synthesis modes have been examined: one aimed to attain ultimate field strength and the other aimed to attain an ultimate width of the radiation spectrum. The modes were changed by changing the time delay between the 2-ns and 3-ns pulses. For the first mode, radiation pulses with a frequency band of 0.2-0.8 GHz and an effective potential of 500 kV have been obtained. The synthesized radiation pulses produced in the second mode had an extended frequency band (0.1-1 GHz) and an effective potential of 220 kV. The pulse repetition frequency was 100 Hz.

  6. Portable radiation detection system for pulsed high energy photon sources

    SciTech Connect

    Harker, Y.D.; Lawrence, R.S.; Yoon, W.Y.

    1994-12-31

    Portable, battery-operated, radiation detection systems for measuring the intensity and energy characteristics of intense, pulsed photon sources (either high energy X-ray or gamma) have been developed at the Idaho National Engineering Laboratory. These field-deployable, suitcase-sized detection units are designed to measure and record the characteristics of a single radiation burst or multiple bursts from a pulsed ionizing radiation source. The recorded information can then be analyzed on a simple laptop computer at a location remote from the detection system and completely independent of the ongoing data acquisition process. Two detection unit designs are described. The first, called the MARK-1, has eight bismuth germanate (BGO) radiation detectors. Four of which are unshielded and have different thicknesses (diameters). The remaining four are the same size as the largest unshielded detector but have different thicknesses of lead shielding surrounding each detector. The second unit design, called the MARK-1 A, utilizes the same detection methodology as the MARK-1 but has ten BGO detectors instead of eight and utilizes a different method of amplifying detector signals enabling reduced overall size and weight of the detection unit. Both the detection system designs have sensitivity ranges from 3 x 10{sup {minus}9} cGy to 9 x 10{sup {minus}5} cGy per radiation burst. Experimental detection results will be presented and discussed along the systems` potential for commercial applications.

  7. Mechanism of low-level microwave radiation effect on nervous system.

    PubMed

    Hinrikus, Hiie; Bachmann, Maie; Karai, Denis; Lass, Jaanus

    2017-01-01

    The aim of this study is to explain the mechanism of the effect of low-level modulated microwave radiation on brain bioelectrical oscillations. The proposed model of excitation by low-level microwave radiation bases on the influence of water polarization on hydrogen bonding forces between water molecules, caused by this the enhancement of diffusion and consequences on neurotransmitters transit time and neuron resting potential. Modulated microwave radiation causes periodic alteration of the neurophysiologic parameters and parametric excitation of brain bioelectric oscillations. The experiments to detect logical outcome of the mechanism on physiological level were carried out on 15 human volunteers. The 450-MHz microwave radiation modulated at 7, 40 and 1000 Hz frequencies was applied at the field power density of 0.16 mW/cm(2). A relative change in the EEG power with and without radiation during 10 cycles was used as a quantitative measure. Experimental data demonstrated that modulated at 40 Hz microwave radiation enhanced EEG power in EEG alpha and beta frequency bands. No significant alterations were detected at 7 and 1000 Hz modulation frequencies. These results are in good agreement with the theory of parametric excitation of the brain bioelectric oscillations caused by the periodic alteration of neurophysiologic parameters and support the proposed mechanism. The proposed theoretical framework has been shown to predict the results of experimental study. The suggested mechanism, free of the restrictions related to field strength or time constant, is the first one providing explanation of low-level microwave radiation effects.

  8. [Protection of cadaver tissues exposed to high gamma radiation].

    PubMed

    Matus-Jiménez, J; Flores-Fletes, J R; Carrillo, A

    2013-01-01

    Bone tissue is the most widely used tissue for the treatment of various conditions. As a result of this, allografts are used at an increasing frequency and processes for their harvest, preservation and sterilization have improved. The sterilization method that grants the greatest sterilization is high-dose gamma radiation, which destroys prions and any microorganism thus assuring that patients will not experience any infection. But given that radiation use has proven to deteriorate bone and tendon tissue, efforts have been made to protect the latter. One way to do this is a commercially available substance called Clearant. Studies conducted elsewhere have found that it does protect bone and tendon tissue. This study was therefore conducted with allograft samples exposed to high-dose radiation. Its purpose was to assess, with photon microscopy using various dyes and electron microscopy, the presence of color changes as well as the destruction of the anatomical structure. The same tissue was followed-up throughout the process until it was placed in the patient. The review found no structural changes in bone and tendon tissues exposed to high radiation doses (60 kilograys) when the Clearant process was used, and concluded that the former may be used safely in orthopedic or traumatologic diseases.

  9. Energy levels and radiative rates for transitions in Mo XV

    NASA Astrophysics Data System (ADS)

    El-Sayed, F.; Attia, S. M.

    2017-07-01

    Energy levels, wavelengths, transition probabilities, oscillator strengths, line strengths, and lifetimes have been calculated for transitions among the fine-structure levels belonging to the (1s22s22p6)3s23p63d10, 3s23p63d94l, 3s23p53d104l, and 3s3p63d104l (l = s, p, d, f) configurations of the Ni-like Molybdenum, Mo XV. The results for electric dipole (E1), electric quadrupole (E2), magnetic dipole (M1), and magnetic quadrupole (M2) transitions among the lowest levels of Mo XV have been reported and compared with available NIST results.

  10. Defining Top-of-Atmosphere Flux Reference Level for Earth Radiation Budget Studies

    NASA Technical Reports Server (NTRS)

    Loeb, N. G.; Kato, S.; Wielicki, B. A.

    2002-01-01

    To estimate the earth's radiation budget at the top of the atmosphere (TOA) from satellite-measured radiances, it is necessary to account for the finite geometry of the earth and recognize that the earth is a solid body surrounded by a translucent atmosphere of finite thickness that attenuates solar radiation differently at different heights. As a result, in order to account for all of the reflected solar and emitted thermal radiation from the planet by direct integration of satellite-measured radiances, the measurement viewing geometry must be defined at a reference level well above the earth s surface (e.g., 100 km). This ensures that all radiation contributions, including radiation escaping the planet along slant paths above the earth s tangent point, are accounted for. By using a field-of- view (FOV) reference level that is too low (such as the surface reference level), TOA fluxes for most scene types are systematically underestimated by 1-2 W/sq m. In addition, since TOA flux represents a flow of radiant energy per unit area, and varies with distance from the earth according to the inverse-square law, a reference level is also needed to define satellite-based TOA fluxes. From theoretical radiative transfer calculations using a model that accounts for spherical geometry, the optimal reference level for defining TOA fluxes in radiation budget studies for the earth is estimated to be approximately 20 km. At this reference level, there is no need to explicitly account for horizontal transmission of solar radiation through the atmosphere in the earth radiation budget calculation. In this context, therefore, the 20-km reference level corresponds to the effective radiative top of atmosphere for the planet. Although the optimal flux reference level depends slightly on scene type due to differences in effective transmission of solar radiation with cloud height, the difference in flux caused by neglecting the scene-type dependence is less than 0.1%. If an inappropriate

  11. Defining Top-of-Atmosphere Flux Reference Level for Earth Radiation Budget Studies

    NASA Technical Reports Server (NTRS)

    Loeb, N. G.; Kato, S.; Wielicki, B. A.

    2002-01-01

    To estimate the earth's radiation budget at the top of the atmosphere (TOA) from satellite-measured radiances, it is necessary to account for the finite geometry of the earth and recognize that the earth is a solid body surrounded by a translucent atmosphere of finite thickness that attenuates solar radiation differently at different heights. As a result, in order to account for all of the reflected solar and emitted thermal radiation from the planet by direct integration of satellite-measured radiances, the measurement viewing geometry must be defined at a reference level well above the earth s surface (e.g., 100 km). This ensures that all radiation contributions, including radiation escaping the planet along slant paths above the earth s tangent point, are accounted for. By using a field-of- view (FOV) reference level that is too low (such as the surface reference level), TOA fluxes for most scene types are systematically underestimated by 1-2 W/sq m. In addition, since TOA flux represents a flow of radiant energy per unit area, and varies with distance from the earth according to the inverse-square law, a reference level is also needed to define satellite-based TOA fluxes. From theoretical radiative transfer calculations using a model that accounts for spherical geometry, the optimal reference level for defining TOA fluxes in radiation budget studies for the earth is estimated to be approximately 20 km. At this reference level, there is no need to explicitly account for horizontal transmission of solar radiation through the atmosphere in the earth radiation budget calculation. In this context, therefore, the 20-km reference level corresponds to the effective radiative top of atmosphere for the planet. Although the optimal flux reference level depends slightly on scene type due to differences in effective transmission of solar radiation with cloud height, the difference in flux caused by neglecting the scene-type dependence is less than 0.1%. If an inappropriate

  12. BEIR-III report and the health effects of low-level radiation

    SciTech Connect

    Fabrikant, J.I.

    1980-01-01

    The present BEIR-III Committee has not highlighted any controversy over the health effects of low-level radiation. In its evaluation of the experimental data and epidemiological surveys, the Committee has carefully reviewed and assessed the value of all the available scientific evidence for estimating numerical risk coefficients for the health hazards to human populations exposed to low levels of ionizing radiation. Responsible public awareness of the possible health effects of ionizing radiations from medical and industrial radiation exposure, centers on three important matters of societal concern: (1) to place into perspective the extent of harm to the health of man and his descendants to be expected in the present and in the future from those societal activities involving ionizing radiation; (2) to develop quantitative indices of harm based on dose-effect relationships; such indices could then be used with prudent caution to introduce concepts of the regulation of population doses on the basis of somatic and genetic risks; and (3) to identify the magnitude and extent of radiation activities which could cause harm, to assess their relative significance, and to provide a framework for recommendations on how to reduce unnecessary radiation exposure to human populations. The main difference of the BEIR Committee Report is not so much from new data or new interpretations of existing data, but rather from a philosophical approach and appraisal of existing and future radiation protection resulting from an atmosphere of constantly changing societal conditions and public attitudes. (PCS)

  13. Parameterization of the level-resolved radiative recombination rate coefficients for the SPEX code

    NASA Astrophysics Data System (ADS)

    Mao, Junjie; Kaastra, Jelle

    2016-03-01

    The level-resolved radiative recombination (RR) rate coefficients for H-like to Na-like ions from H (Z = 1) up to and including Zn (Z = 30) are studied here. For H-like ions, the quantum-mechanical exact photoionization cross sections for nonrelativistic hydrogenic systems are usedto calculate the RR rate coefficients under the principle of detailed balance, while for He-like to Na-like ions, the archival data on ADAS are adopted. Parameterizations are made for the direct capture rates in a wide temperature range. The fitting accuracies are better than 5% for about 99% of the ~3 × 104 levels considered here. The ~1% exceptions include levels from low-charged many-electron ions, and/or high-shell (n ≳ 4) levels are less important in terms of interpreting X-ray emitting astrophysical plasmas. The RR data will be incorporated into the high-resolution spectral analysis package SPEX. Results of the parameterizations are only available at the CDS via anonymous ftp to http://cdsarc.u-strasbg.fr (ftp://130.79.128.5) or via http://cdsarc.u-strasbg.fr/viz-bin/qcat?J/A+A/587/A84

  14. High-level radioactive wastes. Supplement 1

    SciTech Connect

    McLaren, L.H.

    1984-09-01

    This bibliography contains information on high-level radioactive wastes included in the Department of Energy's Energy Data Base from August 1982 through December 1983. These citations are to research reports, journal articles, books, patents, theses, and conference papers from worldwide sources. Five indexes, each preceded by a brief description, are provided: Corporate Author, Personal Author, Subject, Contract Number, and Report Number. 1452 citations.

  15. PAIRWISE BLENDING OF HIGH LEVEL WASTE (HLW)

    SciTech Connect

    CERTA, P.J.

    2006-02-22

    The primary objective of this study is to demonstrate a mission scenario that uses pairwise and incidental blending of high level waste (HLW) to reduce the total mass of HLW glass. Secondary objectives include understanding how recent refinements to the tank waste inventory and solubility assumptions affect the mass of HLW glass and how logistical constraints may affect the efficacy of HLW blending.

  16. Do we understand high-level vision?

    PubMed

    Cox, David Daniel

    2014-04-01

    'High-level' vision lacks a single, agreed upon definition, but it might usefully be defined as those stages of visual processing that transition from analyzing local image structure to analyzing structure of the external world that produced those images. Much work in the last several decades has focused on object recognition as a framing problem for the study of high-level visual cortex, and much progress has been made in this direction. This approach presumes that the operational goal of the visual system is to read-out the identity of an object (or objects) in a scene, in spite of variation in the position, size, lighting and the presence of other nearby objects. However, while object recognition as a operational framing of high-level is intuitive appealing, it is by no means the only task that visual cortex might do, and the study of object recognition is beset by challenges in building stimulus sets that adequately sample the infinite space of possible stimuli. Here I review the successes and limitations of this work, and ask whether we should reframe our approaches to understanding high-level vision. Copyright © 2014. Published by Elsevier Ltd.

  17. Radionuclides and Radiation Indices of High Background Radiation Area in Chavara-Neendakara Placer Deposits (Kerala, India)

    PubMed Central

    Derin, Mary Thomas; Vijayagopal, Perumal; Venkatraman, Balasubramaniam; Chaubey, Ramesh Chandra; Gopinathan, Anilkumar

    2012-01-01

    The present paper describes a detailed study on the distribution of radionuclides along Chavara – Neendakara placer deposit, a high background radiation area (HBRA) along the Southwest coast of India (Kerala). Judged from our studies using HPGe gamma spectrometric detector, it becomes evident that Uranium (238U), Thorium (232Th) and Potassium (40K) are the major sources for radioactivity prevailing in the area. Our statistical analyses reveal the existence of a high positive correlation between 238U and 232Th, implicating that the levels of these elements are interdependent. Our SEM-EDAX analyses reveal that titanium (Ti) and zircon (Zr) are the major trace elements in the sand samples, followed by aluminum, copper, iron, ruthenium, magnesium, calcium, sulphur and lead. This is first of its kind report on the radiation hazard indices on this placer deposit. The average absorbed dose rates (9795 nGy h−1) computed from the present study is comparable with the top-ranking HBRAs in the world, thus offering the Chavara-Neendakara placer the second position, after Brazil; pertinently, this value is much higher than the World average. The perceptibly high absorbed gamma dose rates, entrained with the high annual external effective dose rates (AEED) and average annual gonadal dose equivalent (AGDE) values existing in this HBRA, encourage us to suggest for a candid assessment of the impact of the background radiation, if any, on the organisms that inhabit along this placer deposit. Future research could effectively address the issue of the possible impact of natural radiation on the biota inhabiting this HBRA. PMID:23185629

  18. Radionuclides and radiation indices of high background radiation area in Chavara-Neendakara placer deposits (Kerala, India).

    PubMed

    Derin, Mary Thomas; Vijayagopal, Perumal; Venkatraman, Balasubramaniam; Chaubey, Ramesh Chandra; Gopinathan, Anilkumar

    2012-01-01

    The present paper describes a detailed study on the distribution of radionuclides along Chavara - Neendakara placer deposit, a high background radiation area (HBRA) along the Southwest coast of India (Kerala). Judged from our studies using HPGe gamma spectrometric detector, it becomes evident that Uranium ((238)U), Thorium ((232)Th) and Potassium ((40)K) are the major sources for radioactivity prevailing in the area. Our statistical analyses reveal the existence of a high positive correlation between (238)U and (232)Th, implicating that the levels of these elements are interdependent. Our SEM-EDAX analyses reveal that titanium (Ti) and zircon (Zr) are the major trace elements in the sand samples, followed by aluminum, copper, iron, ruthenium, magnesium, calcium, sulphur and lead. This is first of its kind report on the radiation hazard indices on this placer deposit. The average absorbed dose rates (9795 nGy h(-1)) computed from the present study is comparable with the top-ranking HBRAs in the world, thus offering the Chavara-Neendakara placer the second position, after Brazil; pertinently, this value is much higher than the World average. The perceptibly high absorbed gamma dose rates, entrained with the high annual external effective dose rates (AEED) and average annual gonadal dose equivalent (AGDE) values existing in this HBRA, encourage us to suggest for a candid assessment of the impact of the background radiation, if any, on the organisms that inhabit along this placer deposit. Future research could effectively address the issue of the possible impact of natural radiation on the biota inhabiting this HBRA.

  19. Photooxidation and antioxidant responses in the earthworm Amynthas gracilis exposed to environmental levels of ultraviolet B radiation.

    PubMed

    Chuang, Shu-Chun; Chen, Jiun-Hong

    2013-03-01

    Ultraviolet (UV) radiation leads to photooxidation in various organisms. Our previous study demonstrated that ultraviolet B (UV-B) radiation is lethal for particular species of earthworms, but the mechanisms responsible for the lethality are unclear. In our current study, we investigated that ultraviolet light causes photooxidative damage and reduces antioxidant responses in the earthworm Amynthas gracilis. Intact earthworms and skin/muscle tissue extracts were exposed to UV-B radiation for in vivo and in vitro studies. Both in vitro and in vivo results showed that the products of photooxidative damage, MDA and H(2)O(2), increased after UV-B exposure. Glutathione peroxidase (GPx) and catalase were inhibited immediately after exposure to high doses (3000J/m(2)) of UV-B radiation in vivo. Catalase activity was increased following a low UV-B dose (500J/m(2)) in vivo, but decreased in response to all dosage levels in vitro. These data indicate that a relationship exists between UV-B induced damage and photooxidation and also that catalase and GPx act as important antioxidants to prevent photooxidation. According to these data, A. gracilis exhibits high sensitivity to environmental levels of UV-B. Therefore, A. gracilis represents a sensitive and cost-effective model organism for investigations of UV-radiation damage and environmental UV stress.

  20. 10 CFR 140.84 - Criterion I-Substantial discharge of radioactive material or substantial radiation levels offsite.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... or substantial radiation levels offsite. 140.84 Section 140.84 Energy NUCLEAR REGULATORY COMMISSION... § 140.84 Criterion I—Substantial discharge of radioactive material or substantial radiation levels... radioactive material offsite, or that there have been substantial levels of radiation offsite, when, as a...

  1. 10 CFR 140.84 - Criterion I-Substantial discharge of radioactive material or substantial radiation levels offsite.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... or substantial radiation levels offsite. 140.84 Section 140.84 Energy NUCLEAR REGULATORY COMMISSION... § 140.84 Criterion I—Substantial discharge of radioactive material or substantial radiation levels... radioactive material offsite, or that there have been substantial levels of radiation offsite, when, as a...

  2. 10 CFR 140.84 - Criterion I-Substantial discharge of radioactive material or substantial radiation levels offsite.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... or substantial radiation levels offsite. 140.84 Section 140.84 Energy NUCLEAR REGULATORY COMMISSION... § 140.84 Criterion I—Substantial discharge of radioactive material or substantial radiation levels... radioactive material offsite, or that there have been substantial levels of radiation offsite, when, as a...

  3. Pediatric providers and radiology examinations: knowledge and comfort levels regarding ionizing radiation and potential complications of imaging.

    PubMed

    Wildman-Tobriner, Benjamin; Parente, Victoria M; Maxfield, Charles M

    2017-08-29

    Pediatric providers should understand the basic risks of the diagnostic imaging tests they order and comfortably discuss those risks with parents. Appreciating providers' level of understanding is important to guide discussions and enhance relationships between radiologists and pediatric referrers. To assess pediatric provider knowledge of diagnostic imaging modalities that use ionizing radiation and to understand provider concerns about risks of imaging. A 6-question survey was sent via email to 390 pediatric providers (faculty, trainees and midlevel providers) from a single academic institution. A knowledge-based question asked providers to identify which radiology modalities use ionizing radiation. Subjective questions asked providers about discussions with parents, consultations with radiologists, and complications of imaging studies. One hundred sixty-nine pediatric providers (43.3% response rate) completed the survey. Greater than 90% of responding providers correctly identified computed tomography (CT), fluoroscopy and radiography as modalities that use ionizing radiation, and ultrasound and magnetic resonance imaging (MRI) as modalities that do not. Fewer (66.9% correct, P<0.001) knew that nuclear medicine utilizes ionizing radiation. A majority of providers (82.2%) believed that discussions with radiologists regarding ionizing radiation were helpful, but 39.6% said they rarely had time to do so. Providers were more concerned with complications of sedation and cost than they were with radiation-induced cancer, renal failure or anaphylaxis. Providers at our academic referral center have a high level of basic knowledge regarding modalities that use ionizing radiation, but they are less aware of ionizing radiation use in nuclear medicine studies. They find discussions with radiologists helpful and are concerned about complications of sedation and cost.

  4. Electrode level Monte Carlo model of radiation damage effects on astronomical CCDs

    NASA Astrophysics Data System (ADS)

    Prod'homme, T.; Brown, A. G. A.; Lindegren, L.; Short, A. D. T.; Brown, S. W.

    2011-07-01

    Current optical space telescopes rely upon silicon charge-coupled devices (CCDs) to detect and image the incoming photons. The performance of a CCD detector depends on its ability to transfer electrons through the silicon efficiently, so that the signal from every pixel may be read out through a single amplifier. This process of electron transfer is highly susceptible to the effects of solar proton damage (or non-ionizing radiation damage). This is because charged particles passing through the CCD displace silicon atoms, introducing energy levels into the semiconductor band gap which act as localized electron traps. The reduction in charge transfer efficiency (CTE) leads to signal loss and image smearing. The European Space Agency's astrometric Gaia mission will make extensive use of CCDs to create the most complete and accurate stereoscopic map to date of the Milky Way. In the context of the Gaia mission CTE is referred to with the complementary quantity charge transfer inefficiency (CTI = 1-CTE). CTI is an extremely important issue that threatens Gaia's performances: the CCDs are very large so that the electrons need to be transferred a long way; the focal plane is also very large and difficult to shield; the mission will operate at second Lagrange point where the direct solar protons are highly energetic (penetrating) and the science requirements on image quality are very stringent. In order to tackle this issue, in depth experimental studies and modelling efforts are being conducted to explore the possible consequences and to mitigate the anticipated effects of radiation damage. We present here a detailed Monte Carlo model that has been developed to simulate the operation of a damaged CCD at the pixel electrode level. This model implements a new approach to both the charge density distribution within a pixel and the charge capture and release probabilities, which allows the reproduction of CTI effects on a variety of measurements for a large signal level range

  5. INTERNATIONAL CONFERENCE ON ULTRASHORT HIGH-ENERGY RADIATION AND MATTER

    SciTech Connect

    Wootton, A J

    2004-01-15

    The workshop is intended as a forum to discuss the latest experimental, theoretical and computational results related to the interaction of high energy radiation with matter. High energy is intended to mean soft x-ray and beyond, but important new results from visible systems will be incorporated. The workshop will be interdisciplinary amongst scientists from many fields, including: plasma physics; x-ray physics and optics; solid state physics and material science; biology ; quantum optics. Topics will include, among other subjects: understanding damage thresholds for x-ray interactions with matter developing {approx} 5 keV x-ray sources to investigate damage; developing {approx} 100 keV Thomsom sources for material studies; developing short pulse (100 fs and less) x-ray diagnostics; developing novel X-ray optics; and developing models for the response of biological samples to ultra intense, sub ps x-rays high-energy radiation.

  6. High field CdS detector for infrared radiation

    NASA Technical Reports Server (NTRS)

    Tyagi, R. C.; Robertson, J. B.; Boer, K. W.; Hadley, H. C., Jr. (Inventor)

    1974-01-01

    An infrared radiation detector including a cadmium sulfide platelet having a cathode formed on one of its ends and an anode formed on its other end is presented. The platelet is suitably doped such that stationary high-field domains are formed adjacent the cathode when based in the negative differential conductivity region. A negative potential is applied to the cathode such that a high-field domain is formed adjacent to the cathode. A potential measuring probe is located between the cathode and the anode at the edge of the high-field domain and means are provided for measuring the potential at the probe whereby this measurement is indicative of the infrared radiation striking the platelet.

  7. Radiation resistance testing of high-density polyethylene. [Gamma rays

    SciTech Connect

    Dougherty, D.R.; Adams, J.W.

    1983-01-01

    Mechanical tests following gamma inrradiation and creep tests during irradiation have been conducted on high-density polyethylene (HDPE) to assess the adequacy of this material for use in high-integrity containers (HICs). These tests were motivated by experience in nuclear power plants in which polyethylene electrical insulation detoriorated more rapidly than expected due to radiation-induced oxidation. This suggested that HDPE HICs used for radwaste disposal might degrade more rapidly than would be expected in the absence of the radiation field. Two types of HDPE, a highly cross-linked rotationally molded material and a non-cross-linked blow molded material, were used in these tests. Gamma-ray irradiations were performed at several dose rates in environments of air, Barnwell and Hanford backfill soils, and ion-exchange resins. The results of tensile and bend testing on these materials following irradiation will be presented along with preliminary results on creep during irradiation.

  8. High-power terahertz radiation from relativistic electrons.

    PubMed

    Carr, G L; Martin, Michael C; McKinney, Wayne R; Jordan, K; Neil, George R; Williams, G P

    2002-11-14

    Terahertz (THz) radiation, which lies in the far-infrared region, is at the interface of electronics and photonics. Narrow-band THz radiation can be produced by free-electron lasers and fast diodes. Broadband THz radiation can be produced by thermal sources and, more recently, by table-top laser-driven sources and by short electron bunches in accelerators, but so far only with low power. Here we report calculations and measurements that confirm the production of high-power broadband THz radiation from subpicosecond electron bunches in an accelerator. The average power is nearly 20 watts, several orders of magnitude higher than any existing source, which could enable various new applications. In particular, many materials have distinct absorptive and dispersive properties in this spectral range, so that THz imaging could reveal interesting features. For example, it would be possible to image the distribution of specific proteins or water in tissue, or buried metal layers in semiconductors; the present source would allow full-field, real-time capture of such images. High peak and average power THz sources are also critical in driving new nonlinear phenomena and for pump-probe studies of dynamical properties of materials.

  9. High-power terahertz radiation from relativistic electrons

    SciTech Connect

    Carr, G. Lawrence; Martin, Michael C.; McKinney, Wayne R.; Jordan, K.; Neil, George R.; Williams, G.P.

    2002-03-15

    Terahertz (THz) radiation, which lies in the far-infrared region, is at the interface of electronics and photonics. Narrow-band THz radiation can be produced by free-electron lasers1 and fast diodes. Broadband THz radiation can be produced by thermal sources and, more recently, by table-top laser-driven sources and by short electron bunches in accelerators, but so far only with low power. Here we report calculations and measurements that confirm the production of high-power broadband THz radiation from subpicosecond electron bunches in an accelerator. The average power is nearly 20 watts, several orders of magnitude higher than any existing source, which could enable various new applications. In particular, many materials have distinct absorptive and dispersive properties in this spectral range, so that THz imaging could reveal interesting features. For example, it would be possible to image the distribution of specific proteins or water in tissue, or buried metal layers in semiconductors; the present source would allow full-field, real-time capture of such images. High peak and average power THz sources are also critical in driving new nonlinear phenomena and for pump probe studies of dynamical properties of materials.

  10. Record High Power Terahertz Radiation from Relativistic Electrons

    SciTech Connect

    G.L. Carr; Michael C. Martin; Wayne R. McKinney; Kevin Jordan; George R. Neil; Gwyn P. Williams

    2002-03-01

    Calculations and measurements confirm the production of coherent broadband THz radiation from relativistic electrons with an average power of nearly 20 watts. The radiation has qualities closely analogous to the THz radiation produced by ultrafast laser techniques (spatially coherent, short duration pulses with transform-limited spectral content). But in contrast to conventional THz radiation, the intensity is many orders of magnitude greater due to a relativistic enhancement. The absorption and dispersive properties of materials in this spectral range provide contrast for a unique type of imaging [1,2]. The striking improvement in power reported here could revolutionize this application by allowing full-field, real-time image capture. High peak and average power THz sources are also critical in driving new non-linear phenomena with excellent signal to noise, and for pump-probe studies of dynamical properties of novel materials, both of which are central to future high-speed electronic devices [3,4]. It should also be useful for studies of molecular vibrations and rotations, low frequency protein motions, phonons, superconductor bandgaps, electronic scattering and collective electronic excitations (e.g., charge density waves).

  11. High Energy Radiation Transport Codes: Their Development and Application

    NASA Astrophysics Data System (ADS)

    Gabriel, Tony A.

    1996-05-01

    The development of high energy radiation transport codes has been very strongly correlated to the development of higher energy accelerators and more powerful computers. During the early 1960's a Nucleon Transport Code (NTC) was developed to transport neutrons and protons up to energies below the pion threshold. During the middle 1960's this code which was renamed to NMTC was expanded to include multiple pion production and could be used for particle energies up to 3.5 GeV. During the late 1960's and early 1970's with the development of Fermi National Accelerator Laboratory (FNAL) NMTC was again refined by the inclusion of a particle nucleus collision scaling model which could generate reliable collision information at the higher energies necessary for the development of radiation shielding at FNAL. This was HETC. During the 1970's HETC was coupled with the EGS code for electromagnetic particle transport the MORSE code for low-energy (<20MeV) neutron transport, and SPECT, a HETC analysis code for obtaining energy deposition, to produce the CALOR code system, a complete high energy radiation transport code package. For this paper CALOR will be described in detail and some recent applications will be presented. The strength and weakness as well as the applicability of other radiation transport code systems like FLUKA will be briefly discussed.

  12. Optically Thin Metallic Films for High-Radiative-Efficiency Plasmonics.

    PubMed

    Yang, Yi; Zhen, Bo; Hsu, Chia Wei; Miller, Owen D; Joannopoulos, John D; Soljačić, Marin

    2016-07-13

    Plasmonics enables deep-subwavelength concentration of light and has become important for fundamental studies as well as real-life applications. Two major existing platforms of plasmonics are metallic nanoparticles and metallic films. Metallic nanoparticles allow efficient coupling to far field radiation, yet their synthesis typically leads to poor material quality. Metallic films offer substantially higher quality materials, but their coupling to radiation is typically jeopardized due to the large momentum mismatch with free space. Here, we propose and theoretically investigate optically thin metallic films as an ideal platform for high-radiative-efficiency plasmonics. For far-field scattering, adding a thin high-quality metallic substrate enables a higher quality factor while maintaining the localization and tunability that the nanoparticle provides. For near-field spontaneous emission, a thin metallic substrate, of high quality or not, greatly improves the field overlap between the emitter environment and propagating surface plasmons, enabling high-Purcell (total enhancement >10(4)), high-quantum-yield (>50%) spontaneous emission, even as the gap size vanishes (3-5 nm). The enhancement has almost spatially independent efficiency and does not suffer from quenching effects that commonly exist in previous structures.

  13. Compliance with High-Intensity Radiated Fields Regulations - Emitter's Perspective

    NASA Technical Reports Server (NTRS)

    Statman, Joseph; Jamnejad, Vahraz; Nguyen, Lee

    2012-01-01

    NASA's Deep Space Network (DSN) uses high-power transmitters on its large antennas to communicate with spacecraft of NASA and its partner agencies. The prime reflectors of the DSN antennas are parabolic, at 34m and 70m in diameter. The DSN transmitters radiate Continuous Wave (CW) signals at 20 kW - 500 kW at X-band and S-band frequencies. The combination of antenna reflector size and high frequency results in a very narrow beam with extensive oscillating near-field pattern. Another unique feature of the DSN antennas is that they (and the radiated beam) move mostly at very slow sidereal rate, essentially identical in magnitude and at the opposite direction of Earth rotation.The DSN is in the process of revamping its documentation to provide analysis of the High Intensity Radiation Fields (HIRF) environment resulting from radio frequency radiation from DSN antennas for comparison to FAA regulations regarding certification of HIRF protection as outlined in the FAA regulations on HIRF protection for aircraft electrical and electronic systems (Title 14, Code of Federal Regulations (14 CFR) [section sign][section sign] 23.1308, 25.1317, 27.1317, and 29.1317).This paper presents work done at JPL, in consultation with the FAA. The work includes analysis of the radiated field structure created by the unique DSN emitters (combination of transmitters and antennas) and comparing it to the fields defined in the environments in the FAA regulations. The paper identifies areas that required special attention, including the implications of the very narrow beam of the DSN emitters and the sidereal rate motion. The paper derives the maximum emitter power allowed without mitigation and the mitigation zones, where required.Finally, the paper presents summary of the results of the analyses of the DSN emitters and the resulting DSN process documentation.

  14. Compliance with High-Intensity Radiated Fields Regulations - Emitter's Perspective

    NASA Technical Reports Server (NTRS)

    Statman, Joseph; Jamnejad, Vahraz; Nguyen, Lee

    2012-01-01

    NASA's Deep Space Network (DSN) uses high-power transmitters on its large antennas to communicate with spacecraft of NASA and its partner agencies. The prime reflectors of the DSN antennas are parabolic, at 34m and 70m in diameter. The DSN transmitters radiate Continuous Wave (CW) signals at 20 kW - 500 kW at X-band and S-band frequencies. The combination of antenna reflector size and high frequency results in a very narrow beam with extensive oscillating near-field pattern. Another unique feature of the DSN antennas is that they (and the radiated beam) move mostly at very slow sidereal rate, essentially identical in magnitude and at the opposite direction of Earth rotation.The DSN is in the process of revamping its documentation to provide analysis of the High Intensity Radiation Fields (HIRF) environment resulting from radio frequency radiation from DSN antennas for comparison to FAA regulations regarding certification of HIRF protection as outlined in the FAA regulations on HIRF protection for aircraft electrical and electronic systems (Title 14, Code of Federal Regulations (14 CFR) [section sign][section sign] 23.1308, 25.1317, 27.1317, and 29.1317).This paper presents work done at JPL, in consultation with the FAA. The work includes analysis of the radiated field structure created by the unique DSN emitters (combination of transmitters and antennas) and comparing it to the fields defined in the environments in the FAA regulations. The paper identifies areas that required special attention, including the implications of the very narrow beam of the DSN emitters and the sidereal rate motion. The paper derives the maximum emitter power allowed without mitigation and the mitigation zones, where required.Finally, the paper presents summary of the results of the analyses of the DSN emitters and the resulting DSN process documentation.

  15. Mixed high energy photon and electron radiation fields for calibrating radiation protection dosemeters.

    PubMed

    Büermann, L; Gargioni, E; Kramer, H M

    2001-01-01

    According to ISO 4037-3, calibrations of radiation protection dosemeters with photon radiation of energies above 3 MeV are performed under conditions of charged particle equilibrium. No information is provided concerning how to determine the response of dosemeters to radiation fields in the more general case when these conditions are not fulfilled. This paper deals with the production of mixed high energy photon and electron fields characterised by a lack or an excess of charged particles relative to conditions of equilibrium and describes a new procedure for the dosimetry in such fields. Through variation of the charged particle fluence fraction with respect to a nearly constant photon fluence, Hp(10) and H'(10) values varied by up to a factor of 1.74. The above mentioned basic study was utilised in the recent IAEA intercomparison (Co-ordinated Research Project 1996-1998) and EURADOS 'trial performance test' (1996-1998) for individual monitoring of photon radiation in testing response characteristics of individual dosemeters in non-charged particle equilibrium conditions.

  16. Radiation Dose Assessments of Solar Particle Events with Spectral Representation at High Energies for the Improvement of Radiation Protection

    NASA Technical Reports Server (NTRS)

    Kim, Myung-Hee; Atwell, William; Tylka, Allan J.; Dietrich, William F.; Cucinotta, Francis A.

    2010-01-01

    For radiation dose assessments of major solar particle events (SPEs), spectral functional forms of SPEs have been made by fitting available satellite measurements up to approx.100 MeV. However, very high-energy protons (above 500 MeV) have been observed with neutron monitors (NMs) in ground level enhancements (GLEs), which generally present the most severe radiation hazards to astronauts. Due to technical difficulties in converting NM data into absolutely normalized fluence measurements, those functional forms were made with little or no use of NM data. A new analysis of NM data has found that a double power law in rigidity (the so-called Band function) generally provides a satisfactory representation of the combined satellite and NM data from approx.10 MeV to approx.10 GeV in major SPEs (Tylka & Dietrich 2009). We use the Band function fits to re-assess human exposures from large SPEs. Using different spectral representations of large SPEs, variations of exposure levels were compared. The results can be applied to the development of approaches of improved radiation protection for astronauts, as well as the optimization of mission planning and shielding for future space missions.

  17. Health Effects of Low Level Radiation: When Will We Acknowledge the Reality?

    PubMed Central

    Cuttler, J. M.

    2007-01-01

    The 1986 April 26th Chernobyl event was the worst nuclear power accident—it killed 31 people. Its significance was exaggerated immensely because of the pervasive fear of ionizing radiation that has been indoctrinated in all of humanity. In reality, our environment includes radiation from natural sources, varying widely in intensity, to which all living things have adapted. The effect of radiation on organisms is primarily on their damage control biosystem, which prevents, repairs and removes cell damage. Low doses stimulate this system, while high doses inhibit it. So low doses decrease the incidences of cancer and congenital malformations; high doses have the opposite effect. Efforts by radiation protection organizations to lower exposures to (human-made) radiation to as low as reasonably achievable (ALARA) provide no benefit. They only create inappropriate fear—barriers to very important applications of nuclear technology in energy production and medicine. PMID:18648566

  18. Health effects of low level radiation: when will we acknowledge the reality?

    PubMed

    Cuttler, J M

    2007-09-10

    The 1986 April 26th Chernobyl event was the worst nuclear power accident--it killed 31 people. Its significance was exaggerated immensely because of the pervasive fear of ionizing radiation that has been indoctrinated in all of humanity. In reality, our environment includes radiation from natural sources, varying widely in intensity, to which all living things have adapted. The effect of radiation on organisms is primarily on their damage control biosystem, which prevents, repairs and removes cell damage. Low doses stimulate this system, while high doses inhibit it. So low doses decrease the incidences of cancer and congenital malformations; high doses have the opposite effect. Efforts by radiation protection organizations to lower exposures to (human-made) radiation to as low as reasonably achievable (ALARA) provide no benefit. They only create inappropriate fear-barriers to very important applications of nuclear technology in energy production and medicine.

  19. High dietary iron increases oxidative stress and radiosensitivity in the rat retina and vasculature after exposure to fractionated gamma radiation

    PubMed Central

    Theriot, Corey A; Westby, Christian M; Morgan, Jennifer L L; Zwart, Sara R; Zanello, Susana B

    2016-01-01

    Radiation exposure in combination with other space environmental factors including microgravity, nutritional status, and deconditioning is a concern for long-duration space exploration missions. Astronauts experience altered iron homeostasis due to adaptations to microgravity and an iron-rich food system. Iron intake reaches three to six times the recommended daily allowance due to the use of fortified foods on the International Space Station. Iron is associated with certain optic neuropathies and can potentiate oxidative stress. This study examined the response of eye and vascular tissue to gamma radiation exposure (3 Gy fractionated at 37.5 cGy per day every other day for 8 fractions) in rats fed an adequate-iron diet or a high-iron diet. Twelve-week-old Sprague-Dawley rats were assigned to one of four experimental groups: adequate-iron diet/no radiation (CON), high-iron diet/no radiation (IRON), adequate-iron diet/radiation (RAD), and high-iron diet/radiation (IRON+RAD). Animals were maintained on the corresponding iron diet for 2 weeks before radiation exposure. As previously published, the high-iron diet resulted in elevated blood and liver iron levels. Dietary iron overload altered the radiation response observed in serum analytes, as evidenced by a significant increase in catalase levels and smaller decrease in glutathione peroxidase and total antioxidant capacity levels. 8-OHdG immunostaining, showed increased intensity in the retina after radiation exposure. Gene expression profiles of retinal and aortic vascular samples suggested an interaction between the response to radiation and high dietary iron. This study suggests that the combination of gamma radiation and high dietary iron has deleterious effects on retinal and vascular health and physiology. PMID:28725729

  20. X-33 XRS-2200 Linear Aerospike Engine Sea Level Plume Radiation

    NASA Technical Reports Server (NTRS)

    DAgostino, Mark G.; Lee, Young C.; Wang, Ten-See; Turner, Jim (Technical Monitor)

    2001-01-01

    Wide band plume radiation data were collected during ten sea level tests of a single XRS-2200 engine at the NASA Stennis Space Center in 1999 and 2000. The XRS-2200 is a liquid hydrogen/liquid oxygen fueled, gas generator cycle linear aerospike engine which develops 204,420 lbf thrust at sea level. Instrumentation consisted of six hemispherical radiometers and one narrow view radiometer. Test conditions varied from 100% to 57% power level (PL) and 6.0 to 4.5 oxidizer to fuel (O/F) ratio. Measured radiation rates generally increased with engine chamber pressure and mixture ratio. One hundred percent power level radiation data were compared to predictions made with the FDNS and GASRAD codes. Predicted levels ranged from 42% over to 7% under average test values.

  1. Assessment of indoor radiation dose received by the residents of natural high background radiation areas of coastal villages of Kanyakumari district, Tamil Nadu, India

    NASA Astrophysics Data System (ADS)

    Deva Jayanthi, D.; Maniyan, C. G.; Perumal, S.

    2011-07-01

    Radiation exposure and effective dose received through two routes of exposure, viz. external and internal, via inhalation, by residents of 10 villages belonging to Natural High Background Radiation Areas (NHBRA) of coastal regions of Kanyakumari District and Tamil Nadu in India were studied. While the indoor gamma radiation levels were monitored using Thermo Luminescent Dosimeters (TLDs), the indoor radon and thoron gas concentrations were measured using twin chamber dosimeters employing Solid State Nuclear Track Detectors (SSNTDs, LR-115-II). The average total annual effective dose was estimated and found to be varying from 2.59 to 8.76 mSv.

  2. Python based high-level synthesis compiler

    NASA Astrophysics Data System (ADS)

    Cieszewski, Radosław; Pozniak, Krzysztof; Romaniuk, Ryszard

    2014-11-01

    This paper presents a python based High-Level synthesis (HLS) compiler. The compiler interprets an algorithmic description of a desired behavior written in Python and map it to VHDL. FPGA combines many benefits of both software and ASIC implementations. Like software, the mapped circuit is flexible, and can be reconfigured over the lifetime of the system. FPGAs therefore have the potential to achieve far greater performance than software as a result of bypassing the fetch-decode-execute operations of traditional processors, and possibly exploiting a greater level of parallelism. Creating parallel programs implemented in FPGAs is not trivial. This article describes design, implementation and first results of created Python based compiler.

  3. Radiation processing with high-energy X-rays

    NASA Astrophysics Data System (ADS)

    Cleland, Marshall R.; Stichelbaut, Frédéric

    2013-03-01

    The radiation processing of materials and commercial products with high-energy X-rays, which are also identified by the German term bremsstrahlung, can produce beneficial changes that are similar to those obtained by irradiation with nuclear gamma rays emitted by cobalt-60 sources. Both X-rays and gamma rays are electromagnetic radiations with short wavelengths and high photon energies that can stimulate chemical reactions by creating ions and free radicals in irradiated materials. Nevertheless, there are some physical differences in these energy sources that can influence the choice for practical applications. The English translation of bremsstrahlung is braking radiatiorn or deceleration radiation. It is produced when energetic electrons are deflected by the strong electric field near an atomic nucleus. The efficiency for producing this kind of electromagnetic energy increases with the kinetic energy of the electrons and the atomic number of the target material. The energy spectrum of the emitted X-ray photons is very broad and extends up to the maximum energy of the incident electrons. In contrast, a cobalt-60 nucleus emits two gamma rays simultaneously, which have well-defined energies. Another significant difference is the angular distribution of the radiation. Nuclear gamma rays are emitted in all directions, but high-energy bremsstrahlung photons are concentrated in the direction of the incident electrons when they strike the target material. This property enables an X-ray processing facility to be more compact than a gamma-ray processing facility with similar throughput capacity, and it increases the penetration and the efficiency for absorbing the emitted X-ray energy in the irradiated material. Recent increases in the electron energy and the electron beam power from modern industrial accelerators have increased the throughput rates in X-ray processing facilities, so that this irradiation method is now economically competitive with large cobalt-60

  4. Micro Penning Trap for Continuous Magnetic Field Monitoring in High Radiation Environments

    NASA Astrophysics Data System (ADS)

    Latorre, Javiera; Bollen, Georg; Gulyuz, Kerim; Ringle, Ryan; Bado, Philippe; Dugan, Mark; Lebit Team; Translume Collaboration

    2016-09-01

    As new facilities for rare isotope beams, like FRIB at MSU, are constructed, there is a need for new instrumentation to monitor magnetic fields in beam magnets that can withstand the higher radiation level. Currently NMR probes, the instruments used extensively to monitor magnetic fields, do not have a long lifespans in radiation-high environments. Therefore, a radiation-hard replacement is needed. We propose to use Penning trap mass spectrometry techniques to make high precision magnetic field measurements. Our Penning microtrap will be radiation resistant as all of the vital electronics will be at a safe distance from the radiation. The trap itself is made from materials not subject to radiation damage. Penning trap mass spectrometers can determine the magnetic field by measuring the cyclotron frequency of an ion with a known mass and charge. This principle is used on the Low Energy Beam Ion Trap (LEBIT) minitrap at NSCL which is the foundation for the microtrap. We have partnered with Translume, who specialize in glass micro-fabrication, to develop a microtrap in fused-silica glass. A microtrap is finished and ready for testing at NSCL with all of the electronic and hardware components setup. DOE Phase II SBIR Award No. DE-SC0011313, NSF Award Number 1062410 REU in Physics, NSF under Grant No. PHY-1102511.

  5. [Use of system of radiation and hygienic certification of territories for ensuring supervision of radiation safety of the population at the regional level].

    PubMed

    Rakitin, I A; Gorsky, G A

    2013-01-01

    In article the experience of Department of Federal Service for Supervision of Consumer Rights Protection and Human Welfare in St. Petersburg, related with performing of radiation and hygienic certification of the organizations and territories is considered. The annual assessment of individual and collective risks of emergence of stochastic effects for the population and the personnel of radiation objects shows the significance of radiation and hygienic certification for hygienic justification of the measures directed on a decrease in radiation exposure of the population from technogenic, natural and medical sources of ionizing radiation. The long-term analysis of the structure and dynamics of annual individual and collective effective doses of radiation of the population within the framework of radiation and hygienic certification and the Universal state system for control and accounting for individual doses of radiation of citizens allows to estimate efficiency of address target programs for the solution of actual problems of radiation safety at the regional level.

  6. Thyroid nodularity and chromosome aberrations among women in areas of high background radiation in China

    SciTech Connect

    Wang, Z.Y.; Boice, J.D. Jr.; Wei, L.X.; Beebe, G.W.; Zha, Y.R.; Kaplan, M.M.; Tao, Z.F.; Maxon, H.R. III; Zhang, S.Z.; Schneider, A.B. )

    1990-03-21

    Thyroid nodularity following continuous low-dose radiation exposure in China was determined in 1,001 women aged 50-65 years who resided in areas of high background radiation (330 mR/yr) their entire lives, and in 1,005 comparison subjects exposed to normal levels of radiation (114 mR/yr). Cumulative doses to the thyroid were estimated to be of the order of 14 cGy and 5 cGy, respectively. Personal interviews and physical examinations were conducted, and measurements were made of serum thyroid hormone levels, urinary iodine concentrations, and chromosome aberrations in circulating lymphocytes. For all nodular disease, the prevalences in the high background and control areas were 9.5% and 9.3%, respectively. For single nodules, the prevalences were 7.4% in the high background area and 6.6% in the control area (prevalence ratio = 1.13; 95% confidence interval = 0.82-1.55). There were no differences found in serum levels of thyroid hormones. Women in the high background region, however, had significantly lower concentrations of urinary iodine and significantly higher frequencies of stable and unstable chromosome aberrations. Increased intake of allium vegetables such as garlic and onions was associated with a decreased risk of nodular disease, which seems consistent with experimental studies suggesting that allium compounds can inhibit tumor growth and proliferation. The prevalence of mild diffuse goiter was higher in the high background radiation region, perhaps related to a low dietary intake of iodine. These data suggest that continuous exposure to low-level radiation throughout life is unlikely to appreciably increase the risk of thyroid cancer. However, such exposure may cause chromosomal damage.

  7. DUACS: Toward High Resolution Sea Level Products

    NASA Astrophysics Data System (ADS)

    Faugere, Y.; Gerald, D.; Ubelmann, C.; Claire, D.; Pujol, M. I.; Antoine, D.; Desjonqueres, J. D.; Picot, N.

    2016-12-01

    The DUACS system produces, as part of the CNES/SALP project, and the Copernicus Marine Environment and Monitoring Service, high quality multimission altimetry Sea Level products for oceanographic applications, climate forecasting centers, geophysic and biology communities... These products consist in directly usable and easy to manipulate Level 3 (along-track cross-calibrated SLA) and Level 4 products (multiple sensors merged as maps or time series) and are available in global and regional version (Mediterranean Sea, Arctic, European Shelves …).The quality of the products is today limited by the altimeter technology "Low Resolution Mode" (LRM), and the lack of available observations. The launch of 2 new satellites in 2016, Jason-3 and Sentinel-3A, opens new perspectives. Using the global Synthetic Aperture Radar mode (SARM) coverage of S3A and optimizing the LRM altimeter processing (retracking, editing, ...) will allow us to fully exploit the fine-scale content of the altimetric missions. Thanks to this increase of real time altimetry observations we will also be able to improve Level-4 products by combining these new Level-3 products and new mapping methodology, such as dynamic interpolation. Finally these improvements will benefit to downstream products : geostrophic currents, Lagrangian products, eddy atlas… Overcoming all these challenges will provide major upgrades of Sea Level products to better fulfill user needs.

  8. Radiation safety aspects of commercial high-speed flight transportation

    NASA Astrophysics Data System (ADS)

    Wilson, John W.; Nealy, John E.; Cucinotta, Francis A.; Shinn, Judy L.; Hajnal, Ferenc; Reginatto, Marcel; Goldhagen, Paul

    1995-05-01

    High-speed commercial flight transportation is being studied for intercontinental operations in the 21st century, the projected operational characteristics for these aircraft are examined, the radiation environment as it is now known is presented, and the relevant health issues are discussed. Based on a critical examination of the data, a number of specific issues need to be addressed to ensure an adequate knowledge of the ionizing radiation health risks of these aircraft operations. Large uncertainties in our knowledge of the physical fields for high-energy neutrons and multiply-charged ion components need to be reduced. Improved methods for estimating risks in prenatal exposure need to be developed. A firm basis for solar flare monitoring and forecasting needs to be developed with means of exposure abatement.

  9. Spontaneous Radiation Emission from Short, High Field Strength Insertion Devices

    SciTech Connect

    Geoffrey Krafft

    2005-09-15

    Since the earliest papers on undulaters were published, it has been known how to calculate the spontaneous emission spectrum from ''short'' undulaters when the magnetic field strength parameter is small compared to unity, or in ''single'' frequency sinusoidal undulaters where the magnetic field strength parameter is comparable to or larger than unity, but where the magnetic field amplitude is constant throughout the undulater. Fewer general results have been obtained in the case where the insertion device is both short, i.e., the magnetic field strength parameter changes appreciably throughout the insertion device, and the magnetic field strength is high enough that ponderomotive effects, radiation retardation, and harmonic generation are important physical phenomena. In this paper a general method is presented for calculating the radiation spectrum for short, high-field insertion devices. It is used to calculate the emission from some insertion device designs of recent interest.

  10. Simulation of DSB yield for high LET radiation.

    PubMed

    Friedrich, T; Durante, M; Scholz, M

    2015-09-01

    A simulation approach for the calculation of the LET-dependent yield of double-strand breaks (DSB) is presented. The model considers DSB formed as two close-lying single-strand breaks (SSB), whose formation is mediated by both intra-track processes (single electrons) or at local doses larger than about 1000 Gy in particle tracks also by electron inter-track processes (two independent electron tracks). A Monte Carlo algorithm and an analytical formula for the DSB yield are presented. The approach predicts that the DSB yield is enhanced after charged particle irradiation of high LET compared with X-ray or gamma radiation. It is used as an inherent part of the local effect model, which is applied to estimate the relative biological effectiveness of high LET radiation.

  11. Electronic effects in high-energy radiation damage in tungsten

    SciTech Connect

    Zarkadoula, Eva; Duffy, Dorothy M.; Nordlund, Kai; Seaton, M. A.; Todorov, I. T.; Weber, William J.; Trachenko, Kostya

    2015-01-01

    Even though the effects of the electronic excitations during high-energy radiation damage processes are not currently understood, it is shown that their role in the interaction of radiation with matter is important. We perform molecular dynamics simulations of high-energy collision cascades in bcc-tungsten using the coupled two-temperature molecular dynamics (2T-MD) model that incorporates both the effects of electronic stopping and electron–phonon interaction. We compare the combination of these effects on the induced damage with only the effect of electronic stopping, and conclude in several novel insights. In the 2T-MD model, the electron–phonon coupling results in less damage production in the molten region and in faster relaxation of the damage at short times. We show these two effects lead to a significantly smaller amount of the final damage at longer times.

  12. High-Speed Computational Applications for Space Radiation Shielding Analysis

    NASA Astrophysics Data System (ADS)

    Nealy, John E.; Anderson, Brooke M.; Wilson, John W.; Qualls, Garry D.

    2003-01-01

    Expanding knowledge of the complexities of the space radiation environment and its interactions with matter, coupled with greater burdens associated with budgetary and time constraints, have given impetus to the need for application of more sophisticated analyses in more abbreviated time spans. Recent work at NASA-LaRC in this area has resulted in development of high efficiency algorithms coupled with high speed computers and visualization hardware and software to analyze space radiation effects and shielding methodologies for advanced missions. Special interfacing with CAD solid models and 3-D immersive visualization equipment plays a major role in this endeavor. Recent applications have included analyses for EVA in a CAD-modeled STS space suit, for vector flux exposure in an ISS habitation module, and for preliminary exposure predictions within a conceptual habitation module at an Earth-Moon libration point. Execution times for these heretofore rather lengthy analyses have been reduced from matters of hours to matters of minutes.

  13. Electronic effects in high-energy radiation damage in tungsten

    DOE PAGES

    Zarkadoula, Eva; Duffy, Dorothy M.; Nordlund, Kai; ...

    2015-01-01

    Even though the effects of the electronic excitations during high-energy radiation damage processes are not currently understood, it is shown that their role in the interaction of radiation with matter is important. We perform molecular dynamics simulations of high-energy collision cascades in bcc-tungsten using the coupled two-temperature molecular dynamics (2T-MD) model that incorporates both the effects of electronic stopping and electron–phonon interaction. We compare the combination of these effects on the induced damage with only the effect of electronic stopping, and conclude in several novel insights. In the 2T-MD model, the electron–phonon coupling results in less damage production in themore » molten region and in faster relaxation of the damage at short times. We show these two effects lead to a significantly smaller amount of the final damage at longer times.« less

  14. Radiation safety aspects of commercial high-speed flight transportation

    NASA Technical Reports Server (NTRS)

    Wilson, John W.; Nealy, John E.; Cucinotta, Francis A.; Shinn, Judy L.; Hajnal, Ferenc; Reginatto, Marcel; Goldhagen, Paul

    1995-01-01

    High-speed commercial flight transportation is being studied for intercontinental operations in the 21st century, the projected operational characteristics for these aircraft are examined, the radiation environment as it is now known is presented, and the relevant health issues are discussed. Based on a critical examination of the data, a number of specific issues need to be addressed to ensure an adequate knowledge of the ionizing radiation health risks of these aircraft operations. Large uncertainties in our knowledge of the physical fields for high-energy neutrons and multiply-charged ion components need to be reduced. Improved methods for estimating risks in prenatal exposure need to be developed. A firm basis for solar flare monitoring and forecasting needs to be developed with means of exposure abatement.

  15. High Energy Ion Acceleration by Extreme Laser Radiation Pressure

    DTIC Science & Technology

    2017-03-14

    AFRL-AFOSR-UK-TR-2017-0015 High energy ion acceleration by extreme laser radiation pressure Paul McKenna UNIVERSITY OF STRATHCLYDE VIZ ROYAL COLLEGE...MM-YYYY)   14-03-2017 2. REPORT TYPE  Final 3. DATES COVERED (From - To)  01 May 2013 to 31 Dec 2016 4. TITLE AND SUBTITLE High energy ion acceleration...Prescribed by ANSI Std. Z39.18 Page 1 of 1FORM SF 298 3/15/2017https://livelink.ebs.afrl.af.mil/livelink/llisapi.dll 1 HIGH ENERGY ION ACCELERATION BY

  16. General limits on the performance of high power radiators

    SciTech Connect

    Poulsen, P.; Pincosy, P.A.; Burke, G.J.

    1994-10-01

    Performance of high power radiators of electromagnetic energy can be limited by constraints such as those due to voltage holding, corona power loss, and antenna impedance and efficiency. The issues are addressed in such a way that general limits on the electric field and energy at a distance is obtained as a function of wavelength, pulse duration, and size of the radiating element. We address the relation between the frequency content of the driving pulse and the complex impedance of the antenna; the importance of minimizing the antenna impedance and therefore limiting the antenna input voltage is clearly shown. For example, driving the antenna at a resonance with a simple oscillating waveform is shown to allow the radiation of energy with two to three times the efficiency of a mono-polar pulse input. With this information, the prospects for a successful system design of a given size to deliver a specified amount of radiation to a target at a given distance can be quickly assessed.

  17. The thermal radiative properties of metals at high temperature

    SciTech Connect

    Self, S.A. . Dept. of Mechanical Engineering)

    1990-01-01

    A knowledge of the optical radiative properties of the surfaces of various metals at high temperatures, up to and above the melting point, is of considerable technical importance for a number of applications. These include smelting and casting, welding by TIG, E-beam and laser methods, and thermal and E-beam evaporative sources for thin film and composite deposition. The optical/radiative properties are important in modeling the energy balance in such applications. Accurate information is required on the surface absorptivity, reflectivity and emissivity as a function of wavelength, temperature and angle relative to the surface normal. These parameters are known to be sensitive functions of the state of the surface, including crystalline state and surface roughness for the solid phase, and the oxidation state of the surface for both solid and liquid metals. The principal thrust of this work is to obtain detailed and accurate data on the optical/radiative properties of pure aluminum and uranium at temperatures up through their melting points. However, it should be added that with the development of apparatus techniques and expertise completed, the facility will be available for optical/radiative property measurements on a variety of materials of interest to various programs at LLNL.

  18. High-Level Waste Melter Study Report

    SciTech Connect

    Perez, Joseph M.; Bickford, Dennis F.; Day, Delbert E.; Kim, Dong-Sang; Lambert, Steven L.; Marra, Sharon L.; Peeler, David K.; Strachan, Denis M.; Triplett, Mark B.; Vienna, John D.; Wittman, Richard S.

    2001-07-13

    At the Hanford Site in Richland, Washington, the path to site cleanup involves vitrification of the majority of the wastes that currently reside in large underground tanks. A Joule-heated glass melter is the equipment of choice for vitrifying the high-level fraction of these wastes. Even though this technology has general national and international acceptance, opportunities may exist to improve or change the technology to reduce the enormous cost of accomplishing the mission of site cleanup. Consequently, the U.S. Department of Energy requested the staff of the Tanks Focus Area to review immobilization technologies, waste forms, and modifications to requirements for solidification of the high-level waste fraction at Hanford to determine what aspects could affect cost reductions with reasonable long-term risk. The results of this study are summarized in this report.

  19. High-Level Waste Melter Study Report

    SciTech Connect

    Perez Jr, Joseph M; Bickford, Dennis F; Day, Delbert E; Kim, Dong-Sang; Lambert, Steven L; Marra, Sharon L; Peeler, David K; Strachan, Denis M; Triplett, Mark B; Vienna, John D; Wittman, Richard S

    2001-07-13

    At the Hanford Site in Richland, Washington, the path to site cleanup involves vitrification of the majority of the wastes that currently reside in large underground tanks. A Joule-heated glass melter is the equipment of choice for vitrifying the high-level fraction of these wastes. Even though this technology has general national and international acceptance, opportunities may exist to improve or change the technology to reduce the enormous cost of accomplishing the mission of site cleanup. Consequently, the U.S. Department of Energy requested the staff of the Tanks Focus Area to review immobilization technologies, waste forms, and modifications to requirements for solidification of the high-level waste fraction at Hanford to determine what aspects could affect cost reductions with reasonable long-term risk. The results of this study are summarized in this report.

  20. Cancer immunotherapy: how low-level ionizing radiation can play a key role.

    PubMed

    Janiak, Marek K; Wincenciak, Marta; Cheda, Aneta; Nowosielska, Ewa M; Calabrese, Edward J

    2017-07-01

    The cancer immunoediting hypothesis assumes that the immune system guards the host against the incipient cancer, but also "edits" the immunogenicity of surviving neoplastic cells and supports remodeling of tumor microenvironment towards an immunosuppressive and pro-neoplastic state. Local irradiation of tumors during standard radiotherapy, by killing neoplastic cells and generating inflammation, stimulates anti-cancer immunity and/or partially reverses cancer-promoting immunosuppression. These effects are induced by moderate (0.1-2.0 Gy) or high (>2 Gy) doses of ionizing radiation which can also harm normal tissues, impede immune functions, and increase the risk of secondary neoplasms. In contrast, such complications do not occur with exposures to low doses (≤0.1 Gy for acute irradiation or ≤0.1 mGy/min dose rate for chronic exposures) of low-LET ionizing radiation. Furthermore, considerable evidence indicates that such low-level radiation (LLR) exposures retard the development of neoplasms in humans and experimental animals. Here, we review immunosuppressive mechanisms induced by growing tumors as well as immunomodulatory effects of LLR evidently or likely associated with cancer-inhibiting outcomes of such exposures. We also offer suggestions how LLR may restore and/or stimulate effective anti-tumor immunity during the more advanced stages of carcinogenesis. We postulate that, based on epidemiological and experimental data amassed over the last few decades, whole- or half-body irradiations with LLR should be systematically examined for its potential to be a viable immunotherapeutic treatment option for patients with systemic cancer.

  1. Fibrosarcoma after high energy radiation therapy for pituitary adenoma

    SciTech Connect

    Martin, W.H.; Cail, W.S.; Morris, J.L.; Constable, W.C.

    1980-11-01

    Pituitary sarcoma is a rare late complication of radiotherapy for pituitary tumors. Although early case reports involved multiple courses of relatively low-energy radiation therapy, pituitary sarcoma has been seen with single courses of high-energy x-ray or heavy particle radiotherapy. This report describes a fibrosarcoma of the pituitary occurring 5 years after 4,500 rad (45 Gy) of x-irradiation delivered in 20 treatments over 3 weeks by an 8 MeV linear accelerator.

  2. Commissioning of the CMS High Level Trigger

    SciTech Connect

    Agostino, Lorenzo; et al.

    2009-08-01

    The CMS experiment will collect data from the proton-proton collisions delivered by the Large Hadron Collider (LHC) at a centre-of-mass energy up to 14 TeV. The CMS trigger system is designed to cope with unprecedented luminosities and LHC bunch-crossing rates up to 40 MHz. The unique CMS trigger architecture only employs two trigger levels. The Level-1 trigger is implemented using custom electronics, while the High Level Trigger (HLT) is based on software algorithms running on a large cluster of commercial processors, the Event Filter Farm. We present the major functionalities of the CMS High Level Trigger system as of the starting of LHC beams operations in September 2008. The validation of the HLT system in the online environment with Monte Carlo simulated data and its commissioning during cosmic rays data taking campaigns are discussed in detail. We conclude with the description of the HLT operations with the first circulating LHC beams before the incident occurred the 19th September 2008.

  3. Strong correlation between levels of tropospheric hydroxyl radicals and solar ultraviolet radiation

    NASA Astrophysics Data System (ADS)

    Rohrer, Franz; Berresheim, Harald

    2006-07-01

    The most important chemical cleaning agent of the atmosphere is the hydroxyl radical, OH. It determines the oxidizing power of the atmosphere, and thereby controls the removal of nearly all gaseous atmospheric pollutants. The atmospheric supply of OH is limited, however, and could be overcome by consumption due to increasing pollution and climate change, with detrimental feedback effects. To date, the high variability of OH concentrations has prevented the use of local observations to monitor possible trends in the concentration of this species. Here we present and analyse long-term measurements of atmospheric OH concentrations, which were taken between 1999 and 2003 at the Meteorological Observatory Hohenpeissenberg in southern Germany. We find that the concentration of OH can be described by a surprisingly linear dependence on solar ultraviolet radiation throughout the measurement period, despite the fact that OH concentrations are influenced by thousands of reactants. A detailed numerical model of atmospheric reactions and measured trace gas concentrations indicates that the observed correlation results from compensations between individual processes affecting OH, but that a full understanding of these interactions may not be possible on the basis of our current knowledge of atmospheric chemistry. As a consequence of the stable relationship between OH concentrations and ultraviolet radiation that we observe, we infer that there is no long-term trend in the level of OH in the Hohenpeissenberg data set.

  4. Metronidazole as a protector of cells from electromagnetic radiation of extremely high frequencies

    NASA Astrophysics Data System (ADS)

    Kuznetsov, Pavel E.; Malinina, Ulia A.; Popyhova, Era B.; Rogacheva, Svetlana M.; Somov, Alexander U.

    2006-08-01

    It is well known that weak electromagnetic fields of extremely high frequencies cause significant modification of the functional status of biological objects of different levels of organization. The aim of the work was to study the combinatory effect of metronidazole - the drug form of 1-(2'hydroxiethil)-2-methil-5-nitroimidazole - and electromagnetic radiation of extremely high frequencies (52...75 GHz) on the hemolytic stability of erythrocytes and hemotaxis activity of Infusoria Paramecium caudatum.

  5. Key issues of ultraviolet radiation of OH at high altitudes

    SciTech Connect

    Zhang, Yuhuai; Wan, Tian; Jiang, Jianzheng; Fan, Jing

    2014-12-09

    Ultraviolet (UV) emissions radiated by hydroxyl (OH) is one of the fundamental elements in the prediction of radiation signature of high-altitude and high-speed vehicle. In this work, the OH A{sup 2}Σ{sup +}→X{sup 2}Π ultraviolet emission band behind the bow shock is computed under the experimental condition of the second bow-shock ultraviolet flight (BSUV-2). Four related key issues are discussed, namely, the source of hydrogen element in the high-altitude atmosphere, the formation mechanism of OH species, efficient computational algorithm of trace species in rarefied flows, and accurate calculation of OH emission spectra. Firstly, by analyzing the typical atmospheric model, the vertical distributions of the number densities of different species containing hydrogen element are given. According to the different dominating species containing hydrogen element, the atmosphere is divided into three zones, and the formation mechanism of OH species is analyzed in the different zones. The direct simulation Monte Carlo (DSMC) method and the Navier-Stokes equations are employed to compute the number densities of the different OH electronically and vibrationally excited states. Different to the previous work, the trace species separation (TSS) algorithm is applied twice in order to accurately calculate the densities of OH species and its excited states. Using a non-equilibrium radiation model, the OH ultraviolet emission spectra and intensity at different altitudes are computed, and good agreement is obtained with the flight measured data.

  6. High resolution surface solar radiation patterns over Eastern Mediterranean: Satellite, ground-based, reanalysis data and radiative transfer simulations

    NASA Astrophysics Data System (ADS)

    Alexandri, G.; Georgoulias, A.; Meleti, C.; Balis, D.

    2013-12-01

    Surface solar radiation (SSR) and its long and short term variations play a critical role in the modification of climate and by extent of the social and financial life of humans. Thus, SSR measurements are of primary importance. SSR is measured for decades from ground-based stations for specific spots around the planet. During the last decades, satellite observations allowed for the assessment of the spatial variability of SSR at a global as well as regional scale. In this study, a detailed spatiotemporal view of the SSR over Eastern Mediterranean is presented at a high spatial resolution. Eastern Mediterranean is affected by various aerosol types (continental, sea, dust and biomass burning particles) and encloses countries with significant socioeconomical changes during the last decades. For the aims of this study, SSR data from satellites (Climate Monitoring Satellite Application Facility - CM SAF) and our ground station in Thessaloniki, a coastal city of ~1 million inhabitants in northern Greece, situated in the heart of Eastern Mediterranean (Eppley Precision pyranometer and Kipp & Zonen CM-11 pyranometer) are used in conjunction with radiative transfer simulations (Santa Barbara DISORT Atmospheric Radiative Transfer - SBDART). The CM SAF dataset used here includes monthly mean SSR observations at a high spatial resolution of 0.03x0.03 degrees for the period 1983-2005. Our ground-based SSR observations span from 1983 until today. SBDART radiative transfer simulations were implemented for a number of spots in the area of study in order to calculate the SSR. High resolution (level-2) aerosol and cloud data from MODIS TERRA and AQUA satellite sensors were used as input, as well as ground-based data from the AERONET. Data from other satellites (Earth Probe TOMS, OMI, etc) and reanalysis projects (ECMWF) were used where needed. The satellite observations, the ground-based measurements and the model estimates are validated against each other. The good agreement

  7. Spontaneous Raman scattering as a high-resolution XUV radiation source

    NASA Technical Reports Server (NTRS)

    Rothenberg, J. E.; Young, J. F.; Harris, S. E.

    1983-01-01

    A type of high resolution XUV radiation source is described which is based upon spontaneous anti-Stokes scattering of tunable incident laser radiation from atoms excited to metastable levels. The theory of the source is summarized and two sets of experiments using He (1s2s)(1)S atoms, produced in a CW hollow cathode and in a pulsed high power microwave discharge, are discussed. The radiation source is used to examine transitions originating from the 3p(6) shell of potassium. The observed features include four previously unreported absorption lines and several sharp interferences of closely spaced autoionizing lines. A source linewidth of about 1.9 cm(-1) at 185,000 cm(-1) is demonstrated. Previously announced in STAR as N83-18422

  8. Cancer Mortality Among People Living in Areas With Various Levels of Natural Background Radiation.

    PubMed

    Dobrzyński, Ludwik; Fornalski, Krzysztof W; Feinendegen, Ludwig E

    2015-01-01

    There are many places on the earth, where natural background radiation exposures are elevated significantly above about 2.5 mSv/year. The studies of health effects on populations living in such places are crucially important for understanding the impact of low doses of ionizing radiation. This article critically reviews some recent representative literature that addresses the likelihood of radiation-induced cancer and early childhood death in regions with high natural background radiation. The comparative and Bayesian analysis of the published data shows that the linear no-threshold hypothesis does not likely explain the results of these recent studies, whereas they favor the model of threshold or hormesis. Neither cancers nor early childhood deaths positively correlate with dose rates in regions with elevated natural background radiation.

  9. Cancer Mortality Among People Living in Areas With Various Levels of Natural Background Radiation

    PubMed Central

    Fornalski, Krzysztof W.; Feinendegen, Ludwig E.

    2015-01-01

    There are many places on the earth, where natural background radiation exposures are elevated significantly above about 2.5 mSv/year. The studies of health effects on populations living in such places are crucially important for understanding the impact of low doses of ionizing radiation. This article critically reviews some recent representative literature that addresses the likelihood of radiation-induced cancer and early childhood death in regions with high natural background radiation. The comparative and Bayesian analysis of the published data shows that the linear no-threshold hypothesis does not likely explain the results of these recent studies, whereas they favor the model of threshold or hormesis. Neither cancers nor early childhood deaths positively correlate with dose rates in regions with elevated natural background radiation. PMID:26674931

  10. Performance of the CMS High Level Trigger

    NASA Astrophysics Data System (ADS)

    Perrotta, Andrea

    2015-12-01

    The CMS experiment has been designed with a 2-level trigger system. The first level is implemented using custom-designed electronics. The second level is the so-called High Level Trigger (HLT), a streamlined version of the CMS offline reconstruction software running on a computer farm. For Run II of the Large Hadron Collider, the increases in center-of-mass energy and luminosity will raise the event rate to a level challenging for the HLT algorithms. The increase in the number of interactions per bunch crossing, on average 25 in 2012, and expected to be around 40 in Run II, will be an additional complication. We present here the expected performance of the main triggers that will be used during the 2015 data taking campaign, paying particular attention to the new approaches that have been developed to cope with the challenges of the new run. This includes improvements in HLT electron and photon reconstruction as well as better performing muon triggers. We will also present the performance of the improved tracking and vertexing algorithms, discussing their impact on the b-tagging performance as well as on the jet and missing energy reconstruction.

  11. Level Densities and Radiative Strength Functions in 56FE and 57FE

    SciTech Connect

    Tavukcu, Emel

    2002-12-10

    Understanding nuclear level densities and radiative strength functions is important for pure and applied nuclear physics. Recently, the Oslo Cyclotron Group has developed an experimental method to extract level densities and radiative strength functions simultaneously from the primary γ rays after a light-ion reaction. A primary γ-ray spectrum represents the γ-decay probability distribution. The Oslo method is based on the Axel-Brink hypothesis, according to which the primary γ-ray spectrum is proportional to the product of the level density at the final energy and the radiative strength function. The level density and the radiative strength function are fit to the experimental primary γ-ray spectra, and then normalized to known data. The method works well for heavy nuclei. The present measurements extend the Oslo method to the lighter mass nuclei 56Fe and 57Fe. The experimental level densities in 56Fe and 57Fe reveal step structure. This step structure is a signature for nucleon pair breaking. The predicted pairing gap parameter is in good agreement with the step corresponding to the first pair breaking. Thermodynamic quantities for 56Fe and 57Fe are derived within the microcanonical and canonical ensembles using the experimental level densities. Energy-temperature relations are considered using caloric curves and probability density functions. The differences between the thermodynamics of small and large systems are emphasized. The experimental heat capacities are compared with the recent theoretical calculations obtained in the Shell Model Monte Carlo method. Radiative strength functions in 56Fe and 57Fe have surprisingly high values at low γ-ray energies. This behavior has not been observed for heavy nuclei, but has been observed in other light- and medium-mass nuclei. The origin of this low γ-ray energy effect remains unknown.

  12. Fifth Warren K. Sinclair Keynote Address: Issues in quantifying the effects of low-level radiation.

    PubMed

    Goodhead, Dudley T

    2009-11-01

    Health risks from exposure to high doses of ionizing radiation are well characterized from epidemiological studies. Uncertainty and controversy remain for extension of these risks to the low doses and low dose rates of particular relevance in the workplace, in medical diagnostics and screening, and from background radiations. In order to make such extrapolations, a number of concepts have been developed for radiation protection, partly on the basis of assumed processes in the mechanisms of radiation carcinogenesis. Included amongst these are the assumptions of a linear no-threshold dose response and simple scaling factors for dose rate and radiation quality. With a progressive reduction in recommended dose limits over the past half century, these approaches have had considerable success in protecting humans. But do they go far enough or, conversely, are they overprotective? Four selected underlying aspects are considered. It is concluded that (1) even the lowest dose of radiation has the capability to cause complex DNA damage that can lead to a variety of permanent cellular changes; (2) the unique clustered characteristics of radiation damage, even at very low doses, enable it to stand out above the much larger quantity of endogenous DNA damage; (3) although a chromosome aberration may represent the rate-limiting initiating event for carcinogenesis, as is often assumed, direct evidence is still lacking; and (4) the extensive influence that dicentric aberrations have had on guiding extrapolations for radiation protection may be substantially misleading. Finally, some comments are offered on aspects that lie outside the current paradigm.

  13. 10 CFR 20.2203 - Reports of exposures, radiation levels, and concentrations of radioactive material exceeding the...

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 10 Energy 1 2011-01-01 2011-01-01 false Reports of exposures, radiation levels, and concentrations... REGULATORY COMMISSION STANDARDS FOR PROTECTION AGAINST RADIATION Reports § 20.2203 Reports of exposures, radiation levels, and concentrations of radioactive material exceeding the constraints or limits....

  14. 10 CFR 20.2203 - Reports of exposures, radiation levels, and concentrations of radioactive material exceeding the...

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 10 Energy 1 2010-01-01 2010-01-01 false Reports of exposures, radiation levels, and concentrations... REGULATORY COMMISSION STANDARDS FOR PROTECTION AGAINST RADIATION Reports § 20.2203 Reports of exposures, radiation levels, and concentrations of radioactive material exceeding the constraints or limits....

  15. 10 CFR 20.2203 - Reports of exposures, radiation levels, and concentrations of radioactive material exceeding the...

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 10 Energy 1 2013-01-01 2013-01-01 false Reports of exposures, radiation levels, and concentrations... REGULATORY COMMISSION STANDARDS FOR PROTECTION AGAINST RADIATION Reports § 20.2203 Reports of exposures, radiation levels, and concentrations of radioactive material exceeding the constraints or limits....

  16. 10 CFR 20.2203 - Reports of exposures, radiation levels, and concentrations of radioactive material exceeding the...

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 10 Energy 1 2012-01-01 2012-01-01 false Reports of exposures, radiation levels, and concentrations... REGULATORY COMMISSION STANDARDS FOR PROTECTION AGAINST RADIATION Reports § 20.2203 Reports of exposures, radiation levels, and concentrations of radioactive material exceeding the constraints or limits....

  17. 10 CFR 20.2203 - Reports of exposures, radiation levels, and concentrations of radioactive material exceeding the...

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 10 Energy 1 2014-01-01 2014-01-01 false Reports of exposures, radiation levels, and concentrations... REGULATORY COMMISSION STANDARDS FOR PROTECTION AGAINST RADIATION Reports § 20.2203 Reports of exposures, radiation levels, and concentrations of radioactive material exceeding the constraints or limits....

  18. Accelerated hematopoietic toxicity by high energy (56)Fe radiation.

    PubMed

    Datta, Kamal; Suman, Shubhankar; Trani, Daniela; Doiron, Kathryn; Rotolo, Jimmy A; Kallakury, Bhaskar V S; Kolesnick, Richard; Cole, Michael F; Fornace, Albert J

    2012-03-01

    There is little information on the relative toxicity of highly charged (Z) high-energy (HZE) radiation in animal models compared to γ or X-rays, and the general assumption based on in vitro studies has been that acute toxicity is substantially greater. C57BL/6J mice were irradiated with (56)Fe ions (1 GeV/nucleon), and acute (within 30 d) toxicity compared to that of γ rays or protons (1 GeV). To assess relative hematopoietic and gastrointestinal toxicity, the effects of (56)Fe ions were compared to γ rays using complete blood count (CBC), bone marrow granulocyte-macrophage colony forming unit (GM-CFU), terminal deoxynucleotidyl transferase dUTP nick end labeling (TUNEL) assay for apoptosis in bone marrow, and intestinal crypt survival. Although onset was more rapid, (56)Fe ions were only slightly more toxic than γ rays or protons with lethal dose (LD)(50/30) (a radiation dose at which 50% lethality occurs at 30-day) values of 5.8, 7.25, and 6.8 Gy, respectively, with relative biologic effectiveness for (56)Fe ions of 1.25 and 1.06 for protons. (56)Fe radiation caused accelerated and more severe hematopoietic toxicity. Early mortality correlated with more profound leukopenia and subsequent sepsis. Results indicate that there is selective enhanced toxicity to bone marrow progenitor cells, which are typically resistant to γ rays, and bone marrow stem cells, because intestinal crypt cells did not show increased HZE toxicity.

  19. High-Capacity Spacesuit Evaporator Absorber Radiator (SEAR)

    NASA Technical Reports Server (NTRS)

    Izenson, Michael G.; Chen, Weibo; Phillips, Scott; Chepko, Ariane; Bue, Grant; Quinn, Gregory

    2014-01-01

    Future human space exploration missions will require advanced life support technology that can operate across a wide range of applications and environments. Thermal control systems for space suits and spacecraft will need to meet critical requirements for water conservation and adaptability to highly variable thermal environments. This paper describes a Space Evaporator Absorber Radiator (SEAR) that has been designed to meet performance requirements for future life support systems. A SEAR system comprises a lithium chloride absorber radiator (LCAR) for heat rejection coupled with a space water membrane evaporator (SWME) for heat acquisition. SEAR systems provide heat pumping to minimize radiator size, thermal storage to accommodate variable environmental conditions, and water absorption to minimize use of expendables. We have built and tested a flightlike, high-capacity LCAR, demonstrated its performance in thermal vacuum tests, and explored the feasibility of an ISS demonstration test of a SEAR system. The new LCAR design provides the same cooling capability as prior LCAR prototypes while enabling over 30% more heat absorbing capacity. Studies show that it should be feasible to demonstrate SEAR operation in flight by coupling with an existing EMU on the space station.

  20. Effects of very high radiation on SiPMs

    NASA Astrophysics Data System (ADS)

    Heering, A.; Musienko, Yu; Ruchti, R.; Wayne, M.; Karneyeu, A.; Postoev, V.

    2016-07-01

    During the last 5 years we have successfully completed R&D for the instrumentation of silicon photo multipliers (SiPMs) for the CMS HCAL Phase 1 upgrade in 2018. Much focus was put on radiation damage during these years. For the HCAL we expect a maximum total dose of 1012 n/cm2 for a total lifetime integrated luminosity of 3000 fb-1. Good correlation between cell size and performance with high radiation was found during this R&D. To evaluate the possibility of using the SiPMs in the wider CMS environment we have exposed the current state of the art smallest cell SiPMs to radiation of 6×1012 p/cm2 in 62 MeV LIF beam line in 2014 at UCL Belgium and up to 1.3×1014 p/cm2 in the CERN PS 23 GeV proton beam in late 2014. The SiPM's main parameters were measured before and after irradiation. Here we report on the effects of noise increase and breakdown voltage shift due to the extremely high dose.

  1. Renal Function Outcomes of High-risk Neuroblastoma Patients Undergoing Radiation Therapy.

    PubMed

    Beckham, Thomas H; Casey, Dana L; LaQuaglia, Michael P; Kushner, Brian H; Modak, Shakeel; Wolden, Suzanne L

    2017-10-01

    To analyze the renal function outcomes in patients undergoing radiation therapy for neuroblastoma. The clinical metrics of renal function were analyzed in patients undergoing radiation therapy for high-risk neuroblastoma from 2000 to 2015. The blood urea nitrogen (BUN) and creatinine values before radiation therapy were compared with last available follow-up values and analyzed with the clinical circumstances, including follow-up length, age at primary irradiation, nephrectomy, and radiation technique. The creatinine clearance was estimated using the Shull method. With a median follow-up period of 3.5 years, none of the 266 patients studied developed a chronic renal insufficiency. For all patients, the creatinine level increased from 0.44 to 0.51 mg/dL and the BUN increased from 10.53 to 15.52 mg/dL. Three patients required antihypertensive medication. The patients who underwent intensity modulated radiation therapy did not experience increased creatinine levels during the follow-up period; however, they had a reduced median follow-up length compared with patients treated with anteroposterior/posteroanterior beams (4.7 vs 3.3 years). A longer follow-up length was associated with an increased creatinine level. The preradiation therapy creatinine level increased with patient age, similar to that of the last follow-up creatinine level, suggesting that the changes in creatinine could likely be explained by physiologic increases associated with aging rather than radiation-induced renal damage. The creatinine clearance did not decrease in any circumstance. The present cohort had excellent renal outcomes after radiation therapy for neuroblastoma. No patient developed chronic renal insufficiency, and the small increases in BUN and creatinine we observed correlated, as expected, with increases in patient age. The results of the present study revealed a possible advantage for intensity modulated radiation therapy in preserving renal function; however, the follow

  2. Interaction of repetitively pulsed high energy laser radiation with matter

    NASA Astrophysics Data System (ADS)

    Hugenschmidt, M.

    1986-05-01

    Laser target interaction processes and methods of improving the overall energy balance are discussed. This can be achieved with high repetition rate pulsed lasers even for initially highly reflecting materials, such as metals. Experiments were performed using a pulsed CO2 laser at mean powers up to 2 KW and repetition rates up to 100 Hz. The rates of temperature rise of aluminum for example are increased by more than a factor of 3 as compared to cw-radiation of comparable power density. Similar improvements are found for the overall absorptivities, that are increased by more than an order of magnitude.

  3. Neoplastic cell transformation by high-LET radiation - Molecular mechanisms

    NASA Technical Reports Server (NTRS)

    Yang, Tracy Chui-Hsu; Craise, Laurie M.; Tobias, Cornelius A.; Mei, Man-Tong

    1989-01-01

    Quantitative data were collected on dose-response curves of cultured mouse-embryo cells (C3H10T1/2) irradiated with heavy ions of various charges and energies. Results suggests that two breaks formed on DNA within 80 A may cause cell transformation and that two DNA breaks formed within 20 A may be lethal. From results of experiments with restriction enzymes which produce DNA damages at specific sites, it was found that DNA double strand breaks are important primary lesions for radiogenic cell transformation and that blunt-ended double-strand breaks can form lethal as well as transformational damages due to misrepair or incomplete repair in the cell. The RBE-LET relationship for high-LET radiation is similar to that for HGPRT locus mutation, chromosomal deletion, and cell transformation, indicating that common lesions may be involved in these radiation effects.

  4. Neoplastic cell transformation by high-LET radiation - Molecular mechanisms

    NASA Technical Reports Server (NTRS)

    Yang, Tracy Chui-Hsu; Craise, Laurie M.; Tobias, Cornelius A.; Mei, Man-Tong

    1989-01-01

    Quantitative data were collected on dose-response curves of cultured mouse-embryo cells (C3H10T1/2) irradiated with heavy ions of various charges and energies. Results suggests that two breaks formed on DNA within 80 A may cause cell transformation and that two DNA breaks formed within 20 A may be lethal. From results of experiments with restriction enzymes which produce DNA damages at specific sites, it was found that DNA double strand breaks are important primary lesions for radiogenic cell transformation and that blunt-ended double-strand breaks can form lethal as well as transformational damages due to misrepair or incomplete repair in the cell. The RBE-LET relationship for high-LET radiation is similar to that for HGPRT locus mutation, chromosomal deletion, and cell transformation, indicating that common lesions may be involved in these radiation effects.

  5. Liquid level measurement in high level nuclear waste slurries

    SciTech Connect

    Weeks, G.E.; Heckendorn, F.M.; Postles, R.L.

    1990-01-01

    Accurate liquid level measurement has been a difficult problem to solve for the Defense Waste Processing Facility (DWPF). The nuclear waste sludge tends to plug or degrade most commercially available liquid-level measurement sensors. A liquid-level measurement system that meets demanding accuracy requirements for the DWPF has been developed. The system uses a pneumatic 1:1 pressure repeater as a sensor and a computerized error correction system. 2 figs.

  6. Apolipoprotein E expression and behavioral toxicity of high charge, high energy (HZE) particle radiation

    NASA Technical Reports Server (NTRS)

    Higuchi, Yoshinori; Nelson, Gregory A.; Vazquez, Marcelo; Laskowitz, Daniel T.; Slater, James M.; Pearlstein, Robert D.

    2002-01-01

    Apolipoprotein E (apoE) is a lipid binding protein that plays an important role in tissue repair following brain injury. In the present studies, we have investigated whether apoE affects the behavioral toxicity of high charge, high energy (HZE) particle radiation. METHODS: Sixteen male apoE knockout (KO) mice and sixteen genetically matched wild-type (WT) C57BL mice were used in this experiment. Half of the KO and half of the WT animals were irradiated with 600 MeV/amu iron particles (2 Gy whole body). The effect of irradiation on motor coordination and stamina (Rotarod test), exploratory behavior (open field test), and spatial working and reference memory (Morris water maze) was assessed. ROTAROD TEST: Performance was adversely affected by radiation exposure in both KO and WT groups at 30 d after irradiation. By 60 d after radiation, the radiation effect was lost in WT, but still apparent in irradiated KO mice. OPEN FIELD TEST: Radiation reduced open field exploratory activity 14, 28, 56, 84, and 168 d after irradiation of KO mice, but had no effect on WT mice. MORRIS WATER MAZE: Radiation adversely affected spatial working memory in the KO mice, but had no discernible effect in the WT mice as assessed 180 d after irradiation. In contrast, irradiated WT mice showed marked impairment of spatial reference memory in comparison to non-irradiated mice, while no effect of radiation was observed in KO mice. CONCLUSIONS: These studies show that apoE expression influences the behavioral toxicity of HZE particle radiation and suggest that apoE plays a role in the repair/recovery from radiation injury of the CNS. ApoE deficiency may exacerbate the previously reported effects of HZE particle radiation in accelerating the brain aging process.

  7. Apolipoprotein E expression and behavioral toxicity of high charge, high energy (HZE) particle radiation

    NASA Technical Reports Server (NTRS)

    Higuchi, Yoshinori; Nelson, Gregory A.; Vazquez, Marcelo; Laskowitz, Daniel T.; Slater, James M.; Pearlstein, Robert D.

    2002-01-01

    Apolipoprotein E (apoE) is a lipid binding protein that plays an important role in tissue repair following brain injury. In the present studies, we have investigated whether apoE affects the behavioral toxicity of high charge, high energy (HZE) particle radiation. METHODS: Sixteen male apoE knockout (KO) mice and sixteen genetically matched wild-type (WT) C57BL mice were used in this experiment. Half of the KO and half of the WT animals were irradiated with 600 MeV/amu iron particles (2 Gy whole body). The effect of irradiation on motor coordination and stamina (Rotarod test), exploratory behavior (open field test), and spatial working and reference memory (Morris water maze) was assessed. ROTAROD TEST: Performance was adversely affected by radiation exposure in both KO and WT groups at 30 d after irradiation. By 60 d after radiation, the radiation effect was lost in WT, but still apparent in irradiated KO mice. OPEN FIELD TEST: Radiation reduced open field exploratory activity 14, 28, 56, 84, and 168 d after irradiation of KO mice, but had no effect on WT mice. MORRIS WATER MAZE: Radiation adversely affected spatial working memory in the KO mice, but had no discernible effect in the WT mice as assessed 180 d after irradiation. In contrast, irradiated WT mice showed marked impairment of spatial reference memory in comparison to non-irradiated mice, while no effect of radiation was observed in KO mice. CONCLUSIONS: These studies show that apoE expression influences the behavioral toxicity of HZE particle radiation and suggest that apoE plays a role in the repair/recovery from radiation injury of the CNS. ApoE deficiency may exacerbate the previously reported effects of HZE particle radiation in accelerating the brain aging process.

  8. Space environmental factors affecting responses to radiation at the cellular level.

    PubMed

    Planel, H; Gaubin, Y; Pianezzi, B; Gasset, G

    1989-01-01

    Previous space experiments suggest a high value for the RBE of cosmic radiation. A possible explanation could be a change in cell radiosensitivity due to a combined effect of radiation and other factors related to the space environment and to the space flight. Results of the EXOBLOC II experiment support this assumption. On earth, vibrations or accelerations applied before or after irradiation can change the responses to radiation. Microgravity could be the main factor affecting the radiosensitivity and DNA repair but this hypothesis must be confirmed by additional experiments.

  9. Proton Affinity Calculations with High Level Methods.

    PubMed

    Kolboe, Stein

    2014-08-12

    Proton affinities, stretching from small reference compounds, up to the methylbenzenes and naphthalene and anthracene, have been calculated with high accuracy computational methods, viz. W1BD, G4, G3B3, CBS-QB3, and M06-2X. Computed and the currently accepted reference proton affinities are generally in excellent accord, but there are deviations. The literature value for propene appears to be 6-7 kJ/mol too high. Reported proton affinities for the methylbenzenes seem 4-5 kJ/mol too high. G4 and G3 computations generally give results in good accord with the high level W1BD. Proton affinity values computed with the CBS-QB3 scheme are too low, and the error increases with increasing molecule size, reaching nearly 10 kJ/mol for the xylenes. The functional M06-2X fails markedly for some of the small reference compounds, in particular, for CO and ketene, but calculates methylbenzene proton affinities with high accuracy.

  10. Electron channeling radiation experiments at very high electron bunch charges

    SciTech Connect

    Carrigan, R.A. Jr.; Freudenberger, J.; Fritzler, S.; Genz, H.; Richter, A.; Ushakov, A.; Zilges, A.; Sellschop, J.P.F.

    2003-12-01

    Plasmas offer the possibility of high acceleration gradients. An intriguing suggestion is to use the higher plasma densities possible in solids to get extremely high gradients. Although solid-state plasmas might produce high gradients they would pose daunting problems. Crystal channeling has been suggested as one mechanism to address these challenges. There is no experimental or theoretical guidance on channeling for intense electron beams. A high-density plasma in a crystal lattice could quench the channeling process. An experiment has been carried out at the Fermilab NICADD Photoinjector Laboratory to observe electron channeling radiation at high bunch charges. An electron beam with up to 8 nC per electron bunch was used to investigate the electron-crystal interaction. No evidence was found of quenching of channeling at charge densities two orders of magnitude larger than that in earlier experiments.

  11. The high-level trigger of ALICE

    NASA Astrophysics Data System (ADS)

    Tilsner, H.; Alt, T.; Aurbakken, K.; Grastveit, G.; Helstrup, H.; Lindenstruth, V.; Loizides, C.; Nystrand, J.; Roehrich, D.; Skaali, B.; Steinbeck, T.; Ullaland, K.; Vestbo, A.; Vik, T.

    One of the main tracking detectors of the forthcoming ALICE Experiment at the LHC is a cylindrical Time Projection Chamber (TPC) with an expected data volume of about 75 MByte per event. This data volume, in combination with the presumed maximum bandwidth of 1.2 GByte/s to the mass storage system, would limit the maximum event rate to 20 Hz. In order to achieve higher event rates, online data processing has to be applied. This implies either the detection and read-out of only those events which contain interesting physical signatures or an efficient compression of the data by modeling techniques. In order to cope with the anticipated data rate, massive parallel computing power is required. It will be provided in form of a clustered farm of SMP-nodes, based on off-the-shelf PCs, which are connected with a high bandwidth low overhead network. This High-Level Trigger (HLT) will be able to process a data rate of 25 GByte/s online. The front-end electronics of the individual sub-detectors is connected to the HLT via an optical link and a custom PCI card which is mounted in the clustered PCs. The PCI card is equipped with an FPGA necessary for the implementation of the PCI-bus protocol. Therefore, this FPGA can also be used to assist the host processor with first-level processing. The first-level processing done on the FPGA includes conventional cluster-finding for low multiplicity events and local track finding based on the Hough Transformation of the raw data for high multiplicity events. PACS: 07.05.-t Computers in experimental physics - 07.05.Hd Data acquisition: hardware and software - 29.85.+c Computer data analysis

  12. EAP high-level product architecture

    NASA Astrophysics Data System (ADS)

    Gudlaugsson, T. V.; Mortensen, N. H.; Sarban, R.

    2013-04-01

    EAP technology has the potential to be used in a wide range of applications. This poses the challenge to the EAP component manufacturers to develop components for a wide variety of products. Danfoss Polypower A/S is developing an EAP technology platform, which can form the basis for a variety of EAP technology products while keeping complexity under control. High level product architecture has been developed for the mechanical part of EAP transducers, as the foundation for platform development. A generic description of an EAP transducer forms the core of the high level product architecture. This description breaks down the EAP transducer into organs that perform the functions that may be present in an EAP transducer. A physical instance of an EAP transducer contains a combination of the organs needed to fulfill the task of actuator, sensor, and generation. Alternative principles for each organ allow the function of the EAP transducers to be changed, by basing the EAP transducers on a different combination of organ alternatives. A model providing an overview of the high level product architecture has been developed to support daily development and cooperation across development teams. The platform approach has resulted in the first version of an EAP technology platform, on which multiple EAP products can be based. The contents of the platform have been the result of multi-disciplinary development work at Danfoss PolyPower, as well as collaboration with potential customers and research institutions. Initial results from applying the platform on demonstrator design for potential applications are promising. The scope of the article does not include technical details.

  13. High-level waste qualification: Managing uncertainty

    SciTech Connect

    Pulsipher, B.A.

    1993-09-01

    A vitrification facility is being developed by the U.S. Department of Energy (DOE) at the West Valley Demonstration Plant (WVDP) near Buffalo, New York, where approximately 300 canisters of high-level nuclear waste glass will be produced. To assure that the produced waste form is acceptable, uncertainty must be managed. Statistical issues arise due to sampling, waste variations, processing uncertainties, and analytical variations. This paper presents elements of a strategy to characterize and manage the uncertainties associated with demonstrating that an acceptable waste form product is achieved. Specific examples are provided within the context of statistical work performed by Pacific Northwest Laboratory (PNL).

  14. Regulation of high density lipoprotein levels

    SciTech Connect

    Krauss, R.M.

    1982-03-01

    An increasing awareness of the physiologic and pathologic importance of serum high density lipoproteins (HDL) has led to a large number of observations regarding factors which influence their concentrations. HDL consists of a heterogeneous collection of macromolecules with diverse physical properties and chemical constituents. While laboratory techniques have made it possible to measure HDL and their individual components, there are as yet large gaps in our knowledge of the biochemical mechanisms and clinical significance of changes in these laboratory parameters. In this review, current concepts of the structure and metabolism of HDL will be briefly summarized, and the factors influencing their levels in humans will be surveyed. 313 references.

  15. The effects of high level infrasound

    SciTech Connect

    Johnson, D.L.

    1980-02-01

    This paper will attempt to survey the current knowledge on the effects of relative high levels of infrasound on humans. While this conference is concerned mainly about hearing, some discussion of other physiological effects is appropriate. Such discussion also serves to highlight a basic question, 'Is hearing the main concern of infrasound and low frequency exposure, or is there a more sensitive mechanism'. It would be comforting to know that the focal point of this conference is indeed the most important concern. Therefore, besides hearing loss and auditory threshold of infrasonic and low frequency exposure, four other effects will be provided. These are performance, respiration, annoyance, and vibration.

  16. Service Oriented Architecture for High Level Applications

    SciTech Connect

    Chu, Chungming; Chevtsov, Sergei; Wu, Juhao; Shen, Guobao; /Brookhaven

    2012-06-28

    Standalone high level applications often suffer from poor performance and reliability due to lengthy initialization, heavy computation and rapid graphical update. Service-oriented architecture (SOA) is trying to separate the initialization and computation from applications and to distribute such work to various service providers. Heavy computation such as beam tracking will be done periodically on a dedicated server and data will be available to client applications at all time. Industrial standard service architecture can help to improve the performance, reliability and maintainability of the service. Robustness will also be improved by reducing the complexity of individual client applications.

  17. Neoplastic cell transformation by high-LET radiation: Molecular mechanisms

    NASA Astrophysics Data System (ADS)

    Chui-Hsu Yang, Tracy; Craise, Laurie M.; Mei, Man-Tong; Tobias, Cornelius A.

    Experimental data on molecular mechanisms are essential for understanding the bioeffects of radiation and for developing biophysical models, which can help in determining the shape of dose-response curves at very low doses, e.g., doses less than 1 cGy. Although it has been shown that ionizing radiation can cause neoplastic cell transformation directly, that high-LET heavy ions in general can be more effective than photons in transforming cells, and that the radiogenic cell transformation is a multi-step processes, we know very little about the molecular nature of lesions important for cell transformation, the relationship between lethal and transformational damages, and the evolution of initial damages into final chromosomal aberrations which alter the growth control of cells. Using cultured mouse embryo cells (C3H10T1/2) as a model system, we have collected quantitative data on dose-response curves for heavy ions with various charges and energies. An analysis of these quantitative data suggested that two DNA breaks formed within 80 Å may cause cell transformation and that two DNA breaks formed within 20 Å may be lethal. Through studies with restriction enzymes which produce DNA damages at specific sites, we have found that DNA double strand breaks, including both blunt- and cohesive-ended breaks, can cause cell transformation in vitro. These results indicate that DNA double strand breaks can be important primary lesions for radiogenic cell transformation and that blunt-ended double strand breaks can form lethal as well as transformational damages due to misrepair or incomplete repair in the cell. The RBE-LET relationship is similar for HGPRT gene mutation, chromosomal deletion, and cell transformation, suggesting common lesions may be involved in these radiation effects. The high RBE of high-LET radiation for cell killing and neoplastic cell transformation is most likely related to its effectiveness in producing DNA double strand breaks in mammalian cells. At

  18. Neoplastic cell transformation by high-LET radiation: molecular mechanisms.

    PubMed

    Yang, T C; Craise, L M; Mei, M T; Tobias, C A

    1989-01-01

    Experimental data on molecular mechanisms are essential for understanding the bioeffects of radiation and for developing biophysical models, which can help in determining the shape of dose-response curves at very low doses, e.g., doses less than 1 cGy. Although it has been shown that ionizing radiation can cause neoplastic cell transformation directly, that high-LET heavy ions in general can be more effective than photons in transforming cells, and that the radiogenic cell transformation is a multi-step process [correction of processes], we know very little about the molecular nature of lesions important for cell transformation, the relationship between lethal and transformational damages, and the evolution of initial damages into final chromosomal aberrations which alter the growth control of cells. Using cultured mouse embryo cells (C3H10T1/2) as a model system, we have collected quantitative data on dose-response curves for heavy ions with various charges and energies. An analysis of these quantitative data suggested that two DNA breaks formed within 80 angstroms may cause cell transformation and that two DNA breaks formed within 20 angstroms may be lethal. Through studies with restriction enzymes which produce DNA damages at specific sites, we have found that DNA double strand breaks, including both blunt- and cohesive-ended breaks, can cause cell transformation in vitro. These results indicate that DNA double strand breaks can be important primary lesions for radiogenic cell transformation and that blunt-ended double strand breaks can form lethal as well as transformational damages due to misrepair or incomplete repair in the cell. The RBE-LET relationship is similar for HGPRT gene mutation, chromosomal deletion, and cell transformation, suggesting common lesions may be involved in these radiation effects. The high RBE of high-LET radiation for cell killing and neoplastic cell transformation is most likely related to its effectiveness in producing DNA double

  19. The High Level Data Reduction Library

    NASA Astrophysics Data System (ADS)

    Ballester, P.; Gabasch, A.; Jung, Y.; Modigliani, A.; Taylor, J.; Coccato, L.; Freudling, W.; Neeser, M.; Marchetti, E.

    2015-09-01

    The European Southern Observatory (ESO) provides pipelines to reduce data for most of the instruments at its Very Large telescope (VLT). These pipelines are written as part of the development of VLT instruments, and are used both in the ESO's operational environment and by science users who receive VLT data. All the pipelines are highly specific geared toward instruments. However, experience showed that the independently developed pipelines include significant overlap, duplication and slight variations of similar algorithms. In order to reduce the cost of development, verification and maintenance of ESO pipelines, and at the same time improve the scientific quality of pipelines data products, ESO decided to develop a limited set of versatile high-level scientific functions that are to be used in all future pipelines. The routines are provided by the High-level Data Reduction Library (HDRL). To reach this goal, we first compare several candidate algorithms and verify them during a prototype phase using data sets from several instruments. Once the best algorithm and error model have been chosen, we start a design and implementation phase. The coding of HDRL is done in plain C and using the Common Pipeline Library (CPL) functionality. HDRL adopts consistent function naming conventions and a well defined API to minimise future maintenance costs, implements error propagation, uses pixel quality information, employs OpenMP to take advantage of multi-core processors, and is verified with extensive unit and regression tests. This poster describes the status of the project and the lesson learned during the development of reusable code implementing algorithms of high scientific quality.

  20. Thermodynamic Temperature of High-Temperature Fixed Points Traceable to Blackbody Radiation and Synchrotron Radiation

    NASA Astrophysics Data System (ADS)

    Wähmer, M.; Anhalt, K.; Hollandt, J.; Klein, R.; Taubert, R. D.; Thornagel, R.; Ulm, G.; Gavrilov, V.; Grigoryeva, I.; Khlevnoy, B.; Sapritsky, V.

    2017-10-01

    Absolute spectral radiometry is currently the only established primary thermometric method for the temperature range above 1300 K. Up to now, the ongoing improvements of high-temperature fixed points and their formal implementation into an improved temperature scale with the mise en pratique for the definition of the kelvin, rely solely on single-wavelength absolute radiometry traceable to the cryogenic radiometer. Two alternative primary thermometric methods, yielding comparable or possibly even smaller uncertainties, have been proposed in the literature. They use ratios of irradiances to determine the thermodynamic temperature traceable to blackbody radiation and synchrotron radiation. At PTB, a project has been established in cooperation with VNIIOFI to use, for the first time, all three methods simultaneously for the determination of the phase transition temperatures of high-temperature fixed points. For this, a dedicated four-wavelengths ratio filter radiometer was developed. With all three thermometric methods performed independently and in parallel, we aim to compare the potential and practical limitations of all three methods, disclose possibly undetected systematic effects of each method and thereby confirm or improve the previous measurements traceable to the cryogenic radiometer. This will give further and independent confidence in the thermodynamic temperature determination of the high-temperature fixed point's phase transitions.

  1. Modeling of transient ionizing radiation effects in bipolar devices at high dose-rates

    SciTech Connect

    FJELDLY,T.A.; DENG,Y.; SHUR,M.S.; HJALMARSON,HAROLD P.; MUYSHONDT,ARNOLDO

    2000-04-25

    To optimally design circuits for operation at high intensities of ionizing radiation, and to accurately predict their a behavior under radiation, precise device models are needed that include both stationary and dynamic effects of such radiation. Depending on the type and intensity of the ionizing radiation, different degradation mechanisms, such as photoelectric effect, total dose effect, or single even upset might be dominant. In this paper, the authors consider the photoelectric effect associated with the generation of electron-hole pairs in the semiconductor. The effects of low radiation intensity on p-II diodes and bipolar junction transistors (BJTs) were described by low-injection theory in the classical paper by Wirth and Rogers. However, in BJTs compatible with modem integrated circuit technology, high-resistivity regions are often used to enhance device performance, either as a substrate or as an epitaxial layer such as the low-doped n-type collector region of the device. Using low-injection theory, the transient response of epitaxial BJTs was discussed by Florian et al., who mainly concentrated on the effects of the Hi-Lo (high doping - low doping) epilayer/substrate junction of the collector, and on geometrical effects of realistic devices. For devices with highly resistive regions, the assumption of low-level injection is often inappropriate, even at moderate radiation intensities, and a more complete theory for high-injection levels was needed. In the dynamic photocurrent model by Enlow and Alexander. p-n junctions exposed to high-intensity radiation were considered. In their work, the variation of the minority carrier lifetime with excess carrier density, and the effects of the ohmic electric field in the quasi-neutral (q-n) regions were included in a simplified manner. Later, Wunsch and Axness presented a more comprehensive model for the transient radiation response of p-n and p-i-n diode geometries. A stationary model for high-level injection in p

  2. Transport analysis of high radiation and high density plasmas in the ASDEX Upgrade tokamak

    NASA Astrophysics Data System (ADS)

    Casali, L.; Bernert, M.; Dux, R.; Fischer, R.; Kallenbach, A.; Kurzan, B.; Lang, P.; Mlynek, A.; McDermott, R. M.; Ryter, F.; Sertoli, M.; Tardini, G.; Zohm, H.

    2014-12-01

    Future fusion reactors, foreseen in the "European road map" such as DEMO, will operate under more demanding conditions compared to present devices. They will require high divertor and core radiation by impurity seeding to reduce heat loads on divertor target plates. In addition, DEMO will have to work at high core densities to reach adequate fusion performance. The performance of fusion reactors depends on three essential parameters: temperature, density and energy confinement time. The latter characterizes the loss rate due to both radiation and transport processes. The DEMO foreseen scenarios described above were not investigated so far, but are now addressed at the ASDEX Upgrade tokamak. In this work we present the transport analysis of such scenarios. Plasma with high radiation by impurity seeding: transport analysis taking into account the radiation distribution shows no change in transport during impurity seeding. The observed confinement improvement is an effect of higher pedestal temperatures which extend to the core via stiffness. A non coronal radiation model was developed and compared to the bolometric measurements in order to provide a reliable radiation profile for transport calculations. High density plasmas with pellets: the analysis of kinetic profiles reveals a transient phase at the start of the pellet fuelling due to a slower density build up compared to the temperature decrease. The low particle diffusion can explain the confinement behaviour.

  3. Exposure to unusually high indoor radon levels

    SciTech Connect

    Rasheed, F.N. )

    1993-03-27

    Unusually high indoor radon concentrations were reported in a small village in western Tyrol, Austria. The authors have measured the seasonal course of indoor radon concentrations in 390 houses of this village. 71% of houses in winter and 33% in summer, showed radon values on the ground floor above the Austrian action level of 400 Bq/cm[sup 3]. This proportion results in an unusually high indoor radon exposure of the population. The radon source was an 8,700-year-old rock slide of granite gneiss, the largest of the alpine crystalline rocks. It has a strong emanating power because its rocks are heavily fractured and show a slightly increased uranium content. Previous reports show increased lung cancer mortality, myeloid leukemia, kidney cancer, melanoma, and prostate cancer resulting from indoor radon exposure. However, many studies fail to provide accurate information on indoor radon concentrations, classifying them merely as low, intermediate, and high, or they record only minor increases in indoor radon concentrations. Mortality data for 1970-91 were used to calculate age and sex standardized mortality rates (SMR) for 51 sites of carcinoma. The total population of Tyrol were controls. A significantly higher risk was recorded for lung cancer. The high SMR for lung cancer in female subjects is especially striking. Because the numbers were low for the other cancer sites, these were combined in one group to calculate the SMR. No significant increase in SMR was found for this group.

  4. [Level of microwave radiation from mobile phone base stations built in residential districts].

    PubMed

    Hu, Ji; Lu, Yiyang; Zhang, Huacheng; Xie, Hebing; Yang, Xinwen

    2009-11-01

    To investigate the condition of microwave radiation pollution from mobile phone base station built in populated area. Random selected 18 residential districts where had base station and 10 residential districts where had no base stations. A TES-92 electromagnetic radiation monitor were used to measure the intensity of microwave radiation in external and internal living environment. The intensities of microwave radiation in the exposure residential districts were more higher than those of the control residential districts (p < 0.05). There was a intensity peak at about 10 m from the station, it would gradually weaken with the increase of the distance. The level of microwave radiation in antenna main lobe region is not certainly more higher than the side lobe direction, and the side lobe direction also is not more lower. At the same district, where there were two base stations, the electromagnetic field nestification would take place in someplace. The intensities of microwave radiation outside the exposure windows in the resident room not only changed with distance but also with the height of the floor. The intensities of microwave radiation inside the aluminum alloys security net were more lower than those of outside the aluminum alloys security net (p < 0.05), but the inside or outside of glass-window appears almost no change (p > 0.05). Although all the measure dates on the ground around the base station could be below the primary standard in "environment electromagnetic wave hygienic standard" (GB9175-88), there were still a minorities of windows which exposed to the base station were higher, and the outside or inside of a few window was even higher beyond the primary safe level defined standard. The aluminum alloys security net can partly shield the microwave radiation from the mobile phone base station.

  5. The ALICE electromagnetic calorimeter high level triggers

    NASA Astrophysics Data System (ADS)

    Ronchetti, F.; Blanco, F.; Figueredo, M.; Knospe, A. G.; Xaplanteris, L.

    2012-12-01

    The ALICE (A Large Ion Collider Experiment) detector yields a huge sample of data from different sub-detectors. On-line data processing is applied to select and reduce the volume of the stored data. ALICE applies a multi-level hardware trigger scheme where fast detectors are used to feed a three-level (L0, L1, and L2) deep chain. The High-Level Trigger (HLT) is a fourth filtering stage sitting logically between the L2 trigger and the data acquisition event building. The EMCal detector comprises a large area electromagnetic calorimeter that extends the momentum measurement of photons and neutral mesons up to pT = 250 GeV/c, which improves the ALICE capability to perform jet reconstruction with measurement of the neutral energy component of jets. An online reconstruction and trigger chain has been developed within the HLT framework to sharpen the EMCal hardware triggers, by combining the central barrel tracking information with the shower reconstruction (clusters) in the calorimeter. In the present report the status and the functionality of the software components developed for the EMCal HLT online reconstruction and trigger chain will be discussed, as well as preliminary results from their commissioning performed during the 2011 LHC running period.

  6. High Level Waste Disposal System Optimization

    SciTech Connect

    Dirk Gombert; M. Connolly; J. Roach; W. Holtzscheiter

    2005-02-01

    The high level waste (HLW) disposal system consists of the Yucca Mountain Facility (YMF) and waste product (e.g. glass) generation facilities. Responsibility for management is shared between the U. S. Department of Energy (DOE) Offices of Civilian Radioactive Waste Management (DOE-RW) and Environmental Management (DOE-EM). The DOE-RW license application and the Waste Acceptance System Requirements Document (WASRD), as well as the DOE-EM Waste Acceptance Product Specification for Vitrified High Level Waste Forms (WAPS) govern the overall performance of the system. This basis for HLW disposal should be reassessed to consider waste form and process technology research and development (R&D), which have been conducted by DOE-EM, international agencies (i.e. ANSTO, CEA), and the private sector; as well as the technical bases for including additional waste forms in the final license application. This will yield a more optimized HLW disposal system to accelerate HLW disposition, more efficient utilization of the YMF, and overall system cost reduction.

  7. High accuracy electronic material level sensor

    DOEpatents

    McEwan, T.E.

    1997-03-11

    The High Accuracy Electronic Material Level Sensor (electronic dipstick) is a sensor based on time domain reflectometry (TDR) of very short electrical pulses. Pulses are propagated along a transmission line or guide wire that is partially immersed in the material being measured; a launcher plate is positioned at the beginning of the guide wire. Reflected pulses are produced at the material interface due to the change in dielectric constant. The time difference of the reflections at the launcher plate and at the material interface are used to determine the material level. Improved performance is obtained by the incorporation of: (1) a high accuracy time base that is referenced to a quartz crystal, (2) an ultrawideband directional sampler to allow operation without an interconnect cable between the electronics module and the guide wire, (3) constant fraction discriminators (CFDs) that allow accurate measurements regardless of material dielectric constants, and reduce or eliminate errors induced by triple-transit or ``ghost`` reflections on the interconnect cable. These improvements make the dipstick accurate to better than 0.1%. 4 figs.

  8. High accuracy electronic material level sensor

    DOEpatents

    McEwan, Thomas E.

    1997-01-01

    The High Accuracy Electronic Material Level Sensor (electronic dipstick) is a sensor based on time domain reflectometry (TDR) of very short electrical pulses. Pulses are propagated along a transmission line or guide wire that is partially immersed in the material being measured; a launcher plate is positioned at the beginning of the guide wire. Reflected pulses are produced at the material interface due to the change in dielectric constant. The time difference of the reflections at the launcher plate and at the material interface are used to determine the material level. Improved performance is obtained by the incorporation of: 1) a high accuracy time base that is referenced to a quartz crystal, 2) an ultrawideband directional sampler to allow operation without an interconnect cable between the electronics module and the guide wire, 3) constant fraction discriminators (CFDs) that allow accurate measurements regardless of material dielectric constants, and reduce or eliminate errors induced by triple-transit or "ghost" reflections on the interconnect cable. These improvements make the dipstick accurate to better than 0.1%.

  9. High-Capacity Spacesuit Evaporator Absorber Radiator (SEAR)

    NASA Technical Reports Server (NTRS)

    Izenson, Michael G.; Chen, Weibo; Phillips, Scott; Chepko, Ariane; Bue, Grant; Quinn, Gregory

    2015-01-01

    Future human space exploration missions will require advanced life support technology that can operate across a wide range of applications and environments. Thermal control systems for space suits and spacecraft will need to meet critical requirements for water conservation and multifunctional operation. This paper describes a Space Evaporator Absorber Radiator (SEAR) that has been designed to meet performance requirements for future life support systems. A SEAR system comprises a lithium chloride absorber radiator (LCAR) for heat rejection coupled with a space water membrane evaporator (SWME) for heat acquisition. SEAR systems provide heat pumping to minimize radiator size, thermal storage to accommodate variable environmental conditions, and water absorption to minimize use of expendables. We have built and tested a flight-like, high-capacity LCAR, demonstrated its performance in thermal vacuum tests, and explored the feasibility of an ISS demonstration test of a SEAR system. The new LCAR design provides the same cooling capability as prior LCAR prototypes while enabling over 30% more heat absorbing capacity. Studies show that it should be feasible to demonstrate SEAR operation in flight by coupling with an existing EMU on the space station.

  10. Radiation Therapy Using High-Energy Carbon Beams

    NASA Astrophysics Data System (ADS)

    Kanai, T.

    Heavy-ion radiotherapy using high-energy carbon beams has been performed at the National Institute of Radiological Sciences, Japan. The physical frameworks for heavy-ion radiotherapy are established using an understanding of radiation physics. In this chapter, the biophysical and medical physics aspects of heavy-ion radiotherapy are presented. In order to increase the accuracy of heavy-ion radiotherapy, many physical problems should be solved. A calorimeter was developed to measure the absolute dose of the heavy-ion beams. From a comparison of the dosimetry, it was found that the dose indicated by the ionization chamber was underestimated by 3-4%. The clinical results of carbon therapy at heavy-ion medical accelerator in Chiba (HIMAC) are assessed using the linear-quadratic (LQ) model of radiation effect. Development of new scintillation and Rossi counters will allow simultaneous measurement of the radiation dose and quality of heavy-ion beams. Further research is required to provide a comprehensive biophysical model for clinical applications.

  11. Redox response of actinide materials to highly ionizing radiation

    NASA Astrophysics Data System (ADS)

    Tracy, Cameron L.; Lang, Maik; Pray, John M.; Zhang, Fuxiang; Popov, Dmitry; Park, Changyong; Trautmann, Christina; Bender, Markus; Severin, Daniel; Skuratov, Vladimir A.; Ewing, Rodney C.

    2015-01-01

    Energetic radiation can cause dramatic changes in the physical and chemical properties of actinide materials, degrading their performance in fission-based energy systems. As advanced nuclear fuels and wasteforms are developed, fundamental understanding of the processes controlling radiation damage accumulation is necessary. Here we report oxidation state reduction of actinide and analogue elements caused by high-energy, heavy ion irradiation and demonstrate coupling of this redox behaviour with structural modifications. ThO2, in which thorium is stable only in a tetravalent state, exhibits damage accumulation processes distinct from those of multivalent cation compounds CeO2 (Ce3+ and Ce4+) and UO3 (U4+, U5+ and U6+). The radiation tolerance of these materials depends on the efficiency of this redox reaction, such that damage can be inhibited by altering grain size and cation valence variability. Thus, the redox behaviour of actinide materials is important for the design of nuclear fuels and the prediction of their performance.

  12. Redox response of actinide materials to highly ionizing radiation.

    PubMed

    Tracy, Cameron L; Lang, Maik; Pray, John M; Zhang, Fuxiang; Popov, Dmitry; Park, Changyong; Trautmann, Christina; Bender, Markus; Severin, Daniel; Skuratov, Vladimir A; Ewing, Rodney C

    2015-01-27

    Energetic radiation can cause dramatic changes in the physical and chemical properties of actinide materials, degrading their performance in fission-based energy systems. As advanced nuclear fuels and wasteforms are developed, fundamental understanding of the processes controlling radiation damage accumulation is necessary. Here we report oxidation state reduction of actinide and analogue elements caused by high-energy, heavy ion irradiation and demonstrate coupling of this redox behaviour with structural modifications. ThO2, in which thorium is stable only in a tetravalent state, exhibits damage accumulation processes distinct from those of multivalent cation compounds CeO2 (Ce(3+) and Ce(4+)) and UO3 (U(4+), U(5+) and U(6+)). The radiation tolerance of these materials depends on the efficiency of this redox reaction, such that damage can be inhibited by altering grain size and cation valence variability. Thus, the redox behaviour of actinide materials is important for the design of nuclear fuels and the prediction of their performance.

  13. High efficiency long pulse gigawatt sources of HPM radiation

    NASA Astrophysics Data System (ADS)

    Arman, M. Joseph

    1999-05-01

    The High Power Microwave (HPM) technology has advanced tremendously in the last five decades. What started out as a mere passive tool in the form of radar for detecting airborne objects during the second world war, has grown to be an active vehicle that can influence and impact its target. Progress has been made in all fronts. The peak radiated power has gone up several orders of magnitude to several gigawatts, the efficiency has grown by a wide margin, and the total energy radiated for pulsed sources has grown to several hundreds of Jules per pulse. Major obstacles still exist. The number of sources that have already achieved one gigawatt or higher is too great to cover here. In what follows, we will briefly describe the sources that have radiated one gigawatt or higher with a pulselength of 300 ns or longer, and an rms efficiency of 10% or higher. We also address the obstacles lying ahead and suggest possible means of overcoming them. The sources presented are the Relativistic Klystron Oscillator (RKO), the Magnetically Insulated Line Oscillator (MILO), and the Tapered Magnetically Insulated Line Oscillator (TMILO).

  14. Applications of a high temperature radiation resistant electrical insulation

    NASA Astrophysics Data System (ADS)

    Cooper, M. H.

    Electrical components are being developed for service inside the reactor vessel of Fast Breeder Reactors. These components will function in an exceptionally hostile environment combining high temperature (1000 F), chemical activity (liquid sodium), and nuclear radiation (fast neutron fluences to 1021 n/sq cm). Two components which are being developed are an electromagnetically actuated shutdown system and an induction motor. The successful development of a glass-alumina insulation which is suitable for operation at high temperature and in high radiation fields is the key technological advance that has resulted in the development of these components. The insulation is applied by a dipping process similar to conventional enamel insulation utilizing a slurry of glass-alumina in an organic binder. Drying at modest temperature results in a green flexible coating that is adherent to the wire. After the wire is formed into the desired component, the wire is fired at high temperature to eliminate the binder and to fuse the glass mixture to the wire. Electromagnetic coils thus fabricated have been operated for more than 18 months in sodium systems from 850 to 1100 F.

  15. High Resolution Aerosol Modeling: Decadal Changes in Radiative Forcing

    SciTech Connect

    Bergmann, D J; Chuang, C C; Govindasamy, B; Cameron-Smith, P J; Rotman, D A

    2005-02-01

    The Atmospheric Science Division of LLNL has performed high-resolution calculations of direct sulfate forcing using a DOE-provided computer resource at NERSC. We integrated our global chemistry-aerosol model (IMPACT) with the LLNL high-resolution global climate model (horizontal resolution as high as 100 km) to examine the temporal evolution of sulfate forcing since 1950. We note that all previous assessments of sulfate forcing reported in IPCC (2001) were based on global models with coarse spatial resolutions ({approx} 300 km or even coarser). However, the short lifetime of aerosols ({approx} days) results in large spatial and temporal variations of radiative forcing by sulfate. As a result, global climate models with coarse resolutions do not accurately simulate sulfate forcing on regional scales. It requires much finer spatial resolutions in order to address the effects of regional anthropogenic SO{sub 2} emissions on the global atmosphere as well as the effects of long-range transport of sulfate aerosols on the regional climate forcing. By taking advantage of the tera-scale computer resources at NERSC, we simulated the historic direct sulfate forcing at much finer spatial resolutions than ever attempted before. Furthermore, we performed high-resolution chemistry simulations and saved monthly averaged oxidant fields, which will be used in subsequent simulations of sulfate aerosol formation and their radiative impact.

  16. Generating high-power short terahertz electromagnetic pulses with a multifoil radiator.

    PubMed

    Vinokurov, Nikolay A; Jeong, Young Uk

    2013-02-08

    We describe a multifoil cone radiator capable of generating high-field short terahertz pulses using short electron bunches. Round flat conducting foil plates with successively decreasing radii are stacked, forming a truncated cone with the z axis. The gaps between the foil plates are equal and filled with some dielectric (or vacuum). A short relativistic electron bunch propagates along the z axis. At sufficiently high particle energy, the energy losses and multiple scattering do not change the bunch shape significantly. When passing by each gap between the foil plates, the electron bunch emits some energy into the gap. Then, the radiation pulses propagate radially outward. For transverse electromagnetic waves with a longitudinal (along the z axis) electric field and an azimuthal magnetic field, there is no dispersion in these radial lines; therefore, the radiation pulses conserve their shapes (time dependence). At the outer surface of the cone, we have synchronous circular radiators. Their radiation field forms a conical wave. Ultrashort terahertz pulses with gigawatt-level peak power can be generated with this device.

  17. Effect of education level on outcome of patients treated on Radiation Therapy Oncology Group Protocol 90-03.

    PubMed

    Konski, Andre; Berkey, Brian A; Kian Ang, K; Fu, Karen K

    2003-10-01

    It has been hypothesized that people in lower socioeconomic groups have worse outcomes because they present with advanced-stage cancers or receive inadequate treatment. The authors investigated this hypothesis by using education level as a proxy for socioeconomic status in patients treated on Radiation Therapy Oncology Group (RTOG) Protocol 90-03. RTOG 90-03 was a Phase III randomized trial investigating four different radiation fractionation schedules in the treatment of locally advanced head and neck carcinomas. Overall survival and locoregional control rates were analyzed by education level as measured by patient response on the demographic form at study entry. A significant difference was observed in the distribution of patients by education level between the standard fractionated radiation treatment arm and the hyperfractionated radiation treatment arm. More patients in the standard fractionated treatment arm had a higher education level (P = 0.018). Patients attending college had highly and significantly better overall survival and locoregional control than the other groups combined (P = 0.0056 and P = 0.025, respectively: from Cox proportional hazards models stratified by assigned treatment with educational level, T classification, N classification, Karnofsky performance status, primary site, and race). Multivariate analysis revealed that education level was significant for predicting both overall survival and locoregional control when comparing attended college/technical school compared with all other education levels. Patients attending college or technical school had improved overall survival and locoregional control. These differences cannot be explained by differences in tumor stage or treatment. Poorer overall health or lack of support systems contributing to these results needs to be investigated further. Copyright 2003 American Cancer Society.DOI 10.1002/cncr.11661

  18. Optimizing radiation dose by using advanced modelled iterative reconstruction in high-pitch coronary CT angiography.

    PubMed

    Gordic, Sonja; Desbiolles, Lotus; Sedlmair, Martin; Manka, Robert; Plass, André; Schmidt, Bernhard; Husarik, Daniela B; Maisano, Francesco; Wildermuth, Simon; Alkadhi, Hatem; Leschka, Sebastian

    2016-02-01

    To evaluate the potential of advanced modeled iterative reconstruction (ADMIRE) for optimizing radiation dose of high-pitch coronary CT angiography (CCTA). High-pitch 192-slice dual-source CCTA was performed in 25 patients (group 1) according to standard settings (ref. 100 kVp, ref. 270 mAs/rot). Images were reconstructed with filtered back projection (FBP) and ADMIRE (strength levels 1-5). In another 25 patients (group 2), high-pitch CCTA protocol parameters were adapted according to results from group 1 (ref. 160 mAs/rot), and images were reconstructed with ADMIRE level 4. In ten patients of group 1, vessel sharpness using full width at half maximum (FWHM) analysis was determined. Image quality was assessed by two independent, blinded readers. Interobserver agreements for attenuation and noise were excellent (r = 0.88/0.85, p < 0.01). In group 1, ADMIRE level 4 images were most often selected (84%, 21/25) as preferred data set; at this level noise reduction was 40% compared to FBP. Vessel borders showed increasing sharpness (FWHM) at increasing ADMIRE levels (p < 0.05). Image quality in group 2 was similar to that of group 1 at ADMIRE levels 2-3. Radiation dose in group 2 (0.3 ± 0.1 mSv) was significantly lower than in group 1 (0.5 ± 0.3 mSv; p < 0.05). In a selected population, ADMIRE can be used for optimizing high-pitch CCTA to an effective dose of 0.3 mSv. • Advanced modeled IR (ADMIRE) reduces image noise up to 50% as compared to FBP. • Coronary artery vessel borders show an increasing sharpness at higher ADMIRE levels. • High-pitch CCTA with ADMIRE is possible at a radiation dose of 0.3 mSv.

  19. High LET Radiation Amplifies Centrosome Overduplication Through a Pathway of γ-Tubulin Monoubiquitination

    SciTech Connect

    Shimada, Mikio; Hirayama, Ryoichi; Komatsu, Kenshi

    2013-06-01

    Purpose: Radiation induces centrosome overduplication, leading to mitotic catastrophe and tumorigenesis. Because mitotic catastrophe is one of the major tumor cell killing factors in high linear energy transfer (LET) radiation therapy and long-term survivors from such treatment have a potential risk of secondary tumors, we investigated LET dependence of radiation-induced centrosome overduplication and the underlying mechanism. Methods and Materials: Carbon and iron ion beams (13-200 keV/μm) and γ-rays (0.5 keV/μm) were used as radiation sources. To count centrosomes after IR exposure, human U2OS and mouse NIH3T3 cells were immunostained with antibodies of γ-tubulin and centrin 2. Similarly, Nbs1-, Brca1-, Ku70-, and DNA-PKcs-deficient mouse cells and their counterpart wild-type cells were used for measurement of centrosome overduplication. Results: The number of excess centrosome-containing cells at interphase and the resulting multipolar spindle at mitosis were amplified with increased LET, reaching a maximum level of 100 keV/μm, followed by sharp decrease in frequency. Interestingly, Ku70 and DNA-PKcs deficiencies marginally affected the induction of centrosome overduplication, whereas the cell killings were significantly enhanced. This was in contrast to observation that high LET radiation significantly enhanced frequencies of centrosome overduplication in Nbs1- and Brca1-deficient cells. Because NBS1/BRCA1 is implicated in monoubiquitination of γ-tubulin, we subsequently tested whether it is affected by high LET radiation. As a result, monoubiquitination of γ-tubulin was abolished in 48 to 72 hours after exposure to high LET radiation, although γ-ray exposure slightly decreased it 48 hours postirradiation and was restored to a normal level at 72 hours. Conclusions: High LET radiation significantly reduces NBS1/BRCA1-mediated monoubiquitination of γ-tubulin and amplifies centrosome overduplication with a peak at 100 keV/μm. In contrast, Ku70 and DNA

  20. Diffuse radiation increases global ecosystem-level water-use efficiency

    NASA Astrophysics Data System (ADS)

    Moffat, A. M.; Reichstein, M.; Cescatti, A.; Knohl, A.; Zaehle, S.

    2012-12-01

    Current environmental changes lead not only to rising atmospheric CO2 levels and air temperature but also to changes in air pollution and thus the light quality of the solar radiation reaching the land-surface. While rising CO2 levels are thought to enhance photosynthesis and closure of stomata, thus leading to relative water savings, the effect of diffuse radiation on transpiration by plants is less clear. It has been speculated that the stimulation of photosynthesis by increased levels of diffuse light may be counteracted by higher transpiration and consequently water depletion and drought stress. Ultimately, in water co-limited systems, the overall effect of diffuse radiation will depend on the sensitivity of canopy transpiration versus photosynthesis to diffuse light, i.e. whether water-use efficiency changes with relative levels of diffuse light. Our study shows that water-use efficiency increases significantly with higher fractions of diffuse light. It uses the ecosystem-atmosphere gas-exchange observations obtained with the eddy covariance method at 29 flux tower sites. In contrast to previous global studies, the analysis is based directly on measurements of diffuse radiation. Its effect on water-use efficiency was derived by analyzing the multivariate response of carbon and water fluxes to radiation and air humidity using a purely empirical approach based on artificial neural networks. We infer that per unit change of diffuse fraction the water-use efficiency increases up to 40% depending on diffuse fraction levels and ecosystem type. Hence, in regions with increasing diffuse radiation positive effects on primary production are expected even under conditions where water is co-limiting productivity.

  1. A CONCEPTUAL FRAMEWORK FOR MANAGING RADIATION DOSE TO PATIENTS IN DIAGNOSTIC RADIOLOGY USING REFERENCE DOSE LEVELS.

    PubMed

    Almén, Anja; Båth, Magnus

    2016-06-01

    The overall aim of the present work was to develop a conceptual framework for managing radiation dose in diagnostic radiology with the intention to support optimisation. An optimisation process was first derived. The framework for managing radiation dose, based on the derived optimisation process, was then outlined. The outset of the optimisation process is four stages: providing equipment, establishing methodology, performing examinations and ensuring quality. The optimisation process comprises a series of activities and actions at these stages. The current system of diagnostic reference levels is an activity in the last stage, ensuring quality. The system becomes a reactive activity only to a certain extent engaging the core activity in the radiology department, performing examinations. Three reference dose levels-possible, expected and established-were assigned to the three stages in the optimisation process, excluding ensuring quality. A reasonably achievable dose range is also derived, indicating an acceptable deviation from the established dose level. A reasonable radiation dose for a single patient is within this range. The suggested framework for managing radiation dose should be regarded as one part of the optimisation process. The optimisation process constitutes a variety of complementary activities, where managing radiation dose is only one part. This emphasises the need to take a holistic approach integrating the optimisation process in different clinical activities.

  2. A comparison of radiation shielding effectiveness of materials for highly elliptical orbits

    NASA Astrophysics Data System (ADS)

    Emmanuel, A.; Raghavan, J.; Harris, R.; Ferguson, P.

    2014-04-01

    The Canadian Space Agency (CSA) has proposed a Polar Communications and Weather (PCW) satellite mission, in conjunction with other partners. The PCW will provide essential communications and meteorological services to the Canadian Arctic, as well as space weather observations of in situ ionizing radiation along the orbit. The CSA has identified three potential Highly Elliptical Orbits (HEOs) for a PCW satellite constellation, Molniya, Modified Tundra and Triple Apogee (TAP), each having specific merits, which would directly benefit the performance/longevity of a PCW spacecraft. Radiation shielding effectiveness of various materials was studied for the three PCW orbit options to determine the feasibility of employing materials other than conventional aluminium to achieve a specified spacecraft shielding level with weight savings over aluminium. It was found that, depending on the orbit-specific radiation environment characteristics, the benefits of using polyethylene based materials is significant enough (e.g., 22% in Molniya for PE at 50 krad TID) to merit further investigation.

  3. Radiation response of alloy T91 at damage levels up to 1000 peak dpa

    NASA Astrophysics Data System (ADS)

    Gigax, J. G.; Chen, T.; Kim, Hyosim; Wang, J.; Price, L. M.; Aydogan, E.; Maloy, S. A.; Schreiber, D. K.; Toloczko, M. B.; Garner, F. A.; Shao, Lin

    2016-12-01

    Ferritic/martensitic alloys are required for advanced reactor components to survive 500-600 neutron-induced dpa. Ion-induced void swelling of ferritic/martensitic alloy T91 in the quenched and tempered condition has been studied using a defocused, non-rastered 3.5 MeV Fe-ion beam at 475 °C to produce damage levels up to 1000 peak displacements per atom (dpa). The high peak damage level of 1000 dpa is required to reach 500-600 dpa level due to injected interstitial suppression of void nucleation in the peak dpa region, requiring data extraction closer to the surface at lower dpa levels. At a relatively low peak damage level of 250 dpa, voids began to develop, appearing first in the near-surface region. With increasing ion fluence, swelling was observed deeper in the specimen, but remained completely suppressed in the back half of the ion range, even at 1000 peak dpa. The local differences in dpa rate in the front half of the ion range induce an "internal temperature shift" that strongly influences the onset of swelling, with shorter transient regimes resulting from lower dpa rates, in agreement not only with observations in neutron irradiation studies but also in various ion irradiations. Swelling was accompanied by radiation-induced precipitation of Cu-rich and Si, Ni, Mn-rich phases were observed by atom probe tomography, indicating concurrent microchemical evolution was in progress. In comparison to other ferritic/martensitic alloys during ion irradiation, T91 exhibits good swelling resistance with a swelling incubation period of about 400 local dpa.

  4. Radiation response of alloy T91 at damage levels up to 1000 peak dpa

    SciTech Connect

    Gigax, J. G.; Chen, T.; Kim, Hyosim; Wang, J.; Price, L. M.; Aydogan, E.; Maloy, S. A.; Schreiber, D. K.; Toloczko, M. B.; Garner, F. A.; Shao, Lin

    2016-12-01

    Ferritic/martensitic alloys are required for advanced reactor components to survive 500e600 neutroninduced dpa. Ion-induced void swelling of ferritic/martensitic alloy T91 in the quenched and tempered condition has been studied using a defocused, non-rastered 3.5 MeV Fe-ion beam at 475 C to produce damage levels up to 1000 peak displacements per atom (dpa). The high peak damage level of 1000 dpa is required to reach 500e600 dpa level due to injected interstitial suppression of void nucleation in the peak dpa region, requiring data extraction closer to the surface at lower dpa levels. At a relatively low peak damage level of 250 dpa, voids began to develop, appearing first in the near-surface region. With increasing ion fluence, swelling was observed deeper in the specimen, but remained completely suppressed in the back half of the ion range, even at 1000 peak dpa. The local differences in dpa rate in the front half of the ion range induce an “internal temperature shift” that strongly influences the onset of swelling, with shorter transient regimes resulting from lower dpa rates, in agreement not only with observations in neutron irradiation studies but also in various ion irradiations. Swelling was accompanied by radiation-induced precipitation of Cu-rich and Si, Ni, Mn-rich phases were observed by atom probe tomography, indicating concurrent microchemical evolution was in progress. In comparison to other ferritic/martensitic alloys during ion irradiation, T91 exhibits good swelling resistance with a swelling incubation period of about 400 local dpa.

  5. Theoretical analysis of radiation spectrum in highly charged Tm-like Bi XV

    NASA Astrophysics Data System (ADS)

    Jiang, Ren Bin; Wang, Wan Jue; Wan, Xiao Dong

    2009-07-01

    Using the fully relativistic multiconfiguration Dirac-Fock approach, we have calculated 2249 energy levels and radiative lifetimes, and various transition elements for the E1, M1, E2 and M2 transitions among the fine-structure energy levels belonging to the 4f145s25p65d, 5s25p6nl, 5s25p55d2, 5s25p55d5l, 5s5p6 5d2, 5s5p65d65d6l (n<=8, l<=4), etc, configurations of highly charged Tm-like ions Bi XV. The calculation results of this work are in good agreement with recent experimental data. We have found some longer lifetime metastable energy levels and self-excitation phenomena, and explained the physical mechanism of many-photon radiation and many-photon absorption. The calculation results provide more necessary atomic data for the research on XUV lasers.

  6. Human response to high-background radiation environments on Earth and in space

    NASA Astrophysics Data System (ADS)

    Durante, M.; Manti, L.

    2008-09-01

    The main long-term objective of the space exploration program is the colonization of the planets of the Solar System. The high cosmic radiation equivalent dose rate represents an inescapable problem for the safe establishment of permanent human settlements on these planets. The unshielded equivalent dose rate on Mars ranges between 100 and 200 mSv/year, depending on the Solar cycle and altitude, and can reach values as high as 360 mSv/year on the Moon. The average annual effective dose on Earth is about 3 mSv, nearly 85% of which comes from natural background radiation, reduced to less than 1 mSv if man-made sources and the internal exposure to Rn daughters are excluded. However, some areas on Earth display anomalously high levels of background radiation, as is the case with thorium-rich monazite bearing sand deposits where values 200 400 times higher than the world average can be found. About 2% of the world’s population live above 3 km and receive a disproportionate 10% of the annual effective collective dose due to cosmic radiation, with a net contribution to effective dose by the neutron component which is 3 4 fold that at sea level. Thus far, epidemiological studies have failed to show any adverse health effects in the populations living in these terrestrial high-background radiation areas (HBRA), which provide an unique opportunity to study the health implications of an environment that, as closely as possibly achievable on Earth, resembles the chronic exposure of future space colonists to higher-than-normal levels of ionizing radiation. Chromosomal aberrations in the peripheral blood lymphocytes from the HBRA residents have been measured in several studies because chromosomal damage represents an early biomarker of cancer risk. Similar cytogenetic studies have been recently performed in a cohort of astronauts involved in single or repeated space flights over many years. The cytogenetic findings in populations exposed to high dose-rate background radiation

  7. A high-efficiency focusing Cherenkov radiation detector

    NASA Astrophysics Data System (ADS)

    Lewis, Katina-Pilar; Moran, Michael J.; Hall, James; Graser, Michael

    1992-03-01

    A new design uses advanced technology to produce an efficient, high-bandwidth Cherenkov detector for relativistic charged particles. The detector consists of a diamond-lathe machined ultraviolet-grade Lucite radiator, a parabolic focusing mirror, and a photodiode with an S-20 cathode. This article discusses some details of the detector design and describes preliminary measurements of its response characteristics. The data show the detector to have an overall gain of ≊76 signal electrons per incident electron and a photodiode-limited response time of ≊450 ps.

  8. Economic impact and effectiveness of radiation protection measures in aviation during a ground level enhancement

    NASA Astrophysics Data System (ADS)

    Matthiä, Daniel; Schaefer, Martin; Meier, Matthias M.

    2015-06-01

    In addition to the omnipresent irradiation from galactic cosmic rays (GCR) and their secondary products, passengers and aircraft crew may be exposed to radiation from solar cosmic rays during ground level enhancements (GLE). In general, lowering the flight altitude and changing the flight route to lower latitudes are procedures applicable to immediately reduce the radiation exposure at aviation altitudes. In practice, however, taking such action necessarily leads to modifications in the flight plan and the consequential, additional fuel consumption constrains the mitigating measures. In this work we investigate in a case study of the ground level event of December 13th 2006 how potential mitigation procedures affect the total radiation exposure during a transatlantic flight from Seattle to Cologne taking into account constraints concerning fuel consumption and range.

  9. Radiation induced deep level defects in bipolar junction transistors under various bias conditions

    NASA Astrophysics Data System (ADS)

    Liu, Chaoming; Yang, Jianqun; Li, Xingji; Ma, Guoliang; Xiao, Liyi; Bollmann, Joachim

    2015-12-01

    Bipolar junction transistor (BJT) is sensitive to ionization and displacement radiation effects in space. In this paper, 35 MeV Si ions were used as irradiation source to research the radiation damage on NPN and PNP bipolar transistors. The changing of electrical parameters of transistors was in situ measured with increasing irradiation fluence of 35 MeV Si ions. Using deep level transient spectroscopy (DLTS), defects in the bipolar junction transistors under various bias conditions are measured after irradiation. Based on the in situ electrical measurement and DLTS spectra, it is clearly that the bias conditions can affect the concentration of deep level defects, and the radiation damage induced by heavy ions.

  10. Radiation-induced conductivity and high-temperature Q changes in quartz resonators

    SciTech Connect

    Koehler, D R

    1981-01-01

    While high temperature electrolysis has proven beneficial as a technique to remove interstitial impurities from quartz, reliable indices to measure the efficacy of such a processing step are still under development. The present work is directed toward providing such an index. Two techniques have been investigated - one involves measurement of the radiation induced conductivity in quartz along the optic axis, and the second involves measurement of high temperature Q changes. Both effects originate when impurity charge compensators are released from their traps, in the first case resulting in ionic conduction and in the second case resulting in increased acoustic losses. Radiation induced conductivity measurements have been carried out with a 200 kV, 14 mA x-ray machine producing 5 rads/s. With electric fields of the order of 10/sup 4/ V/cm, the noise level in the current measuring system is equivalent to an ionic current generated by quartz impurities in the 1 ppB range. The accuracy of the high temperature ( 300 to 800/sup 0/K) Q/sup -1/ measurement technique will be determined. A number of resonators constructed of quartz material of different impurity contents have been tested and both the radiation induced conductivity and the high temperature Q/sup -1/ results compared with earlier radiation induced frequency and resonator resistance changes. 10 figures.

  11. Collisional and radiative processes in high-pressure discharge plasmas

    NASA Astrophysics Data System (ADS)

    Becker, Kurt H.; Kurunczi, Peter F.; Schoenbach, Karl H.

    2002-05-01

    Discharge plasmas at high pressures (up to and exceeding atmospheric pressure), where single collision conditions no longer prevail, provide a fertile environment for the experimental study of collisions and radiative processes dominated by (i) step-wise processes, i.e., the excitation of an already excited atomic/molecular state and by (ii) three-body collisions leading, for instance, to the formation of excimers. The dominance of collisional and radiative processes beyond binary collisions involving ground-state atoms and molecules in such environments allows for many interesting applications of high-pressure plasmas such as high power lasers, opening switches, novel plasma processing applications and sputtering, absorbers and reflectors for electromagnetic waves, remediation of pollutants and waste streams, and excimer lamps and other noncoherent vacuum-ultraviolet light sources. Here recent progress is summarized in the use of hollow cathode discharge devices with hole dimensions in the range 0.1-0.5 mm for the generation of vacuum-ultraviolet light.

  12. Radiation damage in high voltage silicon solar cells

    NASA Technical Reports Server (NTRS)

    Weinberg, I.; Brandhorst, H., Jr.; Swartz, C. K.; Weizer, V. G.

    1980-01-01

    Three high open-circuit voltage cell designs based on 0.1 ohm-cm p-type silicon were irradiated with 1 MeV electrons and their performance determined to fluences as high as 10 to the 15th power/sq cm. Of the three cell designs, radiation induced degradation was greatest in the high-low emitter (HLE cell). The diffused and ion implanted cells degraded approximately equally but less than the HLE cell. Degradation was greatest in an HLE cell exposed to X-rays before electron irradiation. The cell regions controlling both short-circuit current and open-circuit voltage degradation were defined in all three cell types. An increase in front surface recombination velocity accompanied time dependent degradation of an HLE cell after X-irradiation. It was speculated that this was indirectly due to a decrease in positive charge at the silicon-oxide interface. Modifications aimed at reducing radiation induced degradation are proposed for all three cell types.

  13. Depolarization of radiation from high-power neodymium lasers and second harmonic generation of partly depolarized radiation

    SciTech Connect

    Arifzhanov, S.B.; Gulamov, A.A.; Redkorechev, V.I.; Usmanov, T.

    1985-07-01

    A theoretical analysis is made of two mechanisms (linear and nonlinear) of depolarization of radiation emitted by high-power solid-state glass lasers: these mechanisms are anisotropy-induced in the active elements and a nonlinear rotation of the polarization ellipse. In the cases of linear and circular polarization of practical interest, a qualitative and numerical analysis is made of the influence of depolarization of the radiation on second harmonic generation by the second type of interaction in KDP crystals. It is shown that in a field of partly depolarized radiation the second harmonic generation efficiency is limited mainly by depolarization of the radiation.

  14. Radiation sterilization of medical devices. Effects of ionizing radiation on ultra-high molecular-weight polyethylene

    NASA Astrophysics Data System (ADS)

    Buchalla, R.; Schüttler, C.; Bögl, K. W.

    1995-02-01

    Sterilization by ionizing radiation has become, next to ethylene oxide treament, the most important "cold" sterilization process for medical devices made from plastics. The effects of ionizing radiation on the most important polymer for medical devices, ultra-high molecular-weight polyethylene, are briefly described in this review.

  15. COMPREHENSIVE DATA CONCERNING COSMIC RADIATION DOSES AT GROUND LEVEL AND IN-FLIGHTS FOR TURKEY.

    PubMed

    Parmaksız, A

    2016-12-01

    Cosmic radiation doses of individuals living in 81 cities in Turkey were estimated by using CARI-6 software. Annual cosmic radiation doses of individuals were found to be between 308 and 736 µSv y(-1) at ground level. The population-weighted annual effective dose from cosmic radiation was determined to be 387 µSv y(-1) for Turkey. Cosmic radiation doses on-board for 137 (60 domestic and 77 international) flights varied from 1.2 to 83 µSv. It was estimated that six or over long-route round-trip air travels may cause cosmic radiation dose above the permissible limit for member of the public, i.e. 1 mSv y(-1) According to the assumption of flights throughout 800 h on each route, cosmic radiation doses were found to be between 1.0 and 4.8 mSv for aircrew. © The Author 2015. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  16. Electronic effects in high-energy radiation damage in iron.

    PubMed

    Zarkadoula, E; Daraszewicz, S L; Duffy, D M; Seaton, M A; Todorov, I T; Nordlund, K; Dove, M T; Trachenko, K

    2014-02-26

    Electronic effects have been shown to be important in high-energy radiation damage processes where a high electronic temperature is expected, yet their effects are not currently understood. Here, we perform molecular dynamics simulations of high-energy collision cascades in α-iron using a coupled two-temperature molecular dynamics (2T-MD) model that incorporates both the effects of electronic stopping and electron-phonon interaction. We subsequently compare it with the model employing electronic stopping only, and find several interesting novel insights. The 2T-MD results in both decreased damage production in the thermal spike and faster relaxation of the damage at short times. Notably, the 2T-MD model gives a similar amount of final damage at longer times, which we interpret to be the result of two competing effects: a smaller amount of short-time damage and a shorter time available for damage recovery.

  17. The effects of atomic oxygen on the thermal emittance of high temperature radiator surfaces

    SciTech Connect

    Rutledge, S.K.; Hotes, D.L.; Paulsen, P.E.

    1994-09-01

    Radiator surfaces on high temperature space power systems such as the SP-100 space nuclear power system must maintain a high emittance level in order to reject waste heat effectively. one of the primary materials under consideration for the radiators is carbon-carbon composite. Since carbon is susceptible to attack by atomic oxygen in the low Earth orbital environment, it is important to determine the durability of carbon composites in this environment as well as the effect atomic oxygen has on the thermal emittance of the surface if it is to be considered for use as a radiator. Results indicate that the thermal emittance of carbon-carbon composite (as low as 0.42) can be enhanced by exposure to a directed beam of atomic oxygen to levels above 0.85 at 800 K. This emittance enhancement is due to a change in the surface morphology as a result of oxidation. High aspect ratio cones are formed on the surface which allow more efficient trapping of incident radiation. Erosion of the surface due to oxidation is similar to that for carbon; so that at altitudes less than {approximately}600 km, thickness loss of the radiator could be significant (as much as 0.1 cm/year). A protective coating or oxidation barrier forming additive may be needed to prevent atomic oxygen attack after the initial high emittance surface is formed. Textured surfaces can be formed in ground based facilities or possibly in space if emittance is not sensitive to the orientation of the atomic oxygen arrival that forms the texture.

  18. Umbra's High Level Architecture (HLA) Interface

    SciTech Connect

    GOTTLIEB, ERIC JOSEPH; MCDONALD, MICHAEL J.; OPPEL III, FRED J.

    2002-04-01

    This report describes Umbra's High Level Architecture HLA library. This library serves as an interface to the Defense Simulation and Modeling Office's (DMSO) Run Time Infrastructure Next Generation Version 1.3 (RTI NG1.3) software library and enables Umbra-based models to be federated into HLA environments. The Umbra library was built to enable the modeling of robots for military and security system concept evaluation. A first application provides component technologies that ideally fit the US Army JPSD's Joint Virtual Battlespace (JVB) simulation framework for Objective Force concept analysis. In addition to describing the Umbra HLA library, the report describes general issues of integrating Umbra with RTI code and outlines ways of building models to support particular HLA simulation frameworks like the JVB.

  19. Joint effects of elevated levels of ultraviolet-B radiation, carbon dioxide and ozone on plants.

    PubMed

    Krupa, Sagar V

    2003-12-01

    There is growing interest regarding the joint effects of elevated levels of surface ultraviolet B (UV-B) radiation, carbon dioxide (CO2) and ozone (O3) on plants. Our current knowledge of this subject is too limited to draw any specific conclusions, although one might state that such effects are likely to be highly species dependent and may be more than additive, additive or less than additive. There are a number of uncertainties associated with the experimental protocols used and the conclusions reached in many studies. Nevertheless, in North America, there appear to be genotypes of three monocot crop species (Avena sativa L., Oryza sativa L. and Sorghum vulgare L.); six dicot crops (Cucumis sativus L., Lactuca sativa L., Lycopersicon esculentum Mill., Phaseolus vulgaris L., Pisum sativum L. and Solanum tuberosum L.) and two conifer species (Pinus ponderosa Dougl. and Pinus taeda L.) that may be considered sensitive to the joint effects of elevated levels of UV-B, CO2 and O3. However, to provide a more reliable assessment or validation of the predictions, future research must consider the concept of plant response surfaces and describe them more fully in numerical terms. Achieving that objective will require close cooperation among a number of scientists representing geographic locations with known spatial and temporal differences in UV-B, CO2 and O3 to conduct experiments under their site-specific conditions, using common plant materials and experimental protocols.

  20. A rapid fish radiation associated with the last sea-level changes in southern Brazil: the silverside Odontesthes perugiae complex.

    PubMed Central

    Beheregaray, Luciano B; Sunnucks, Paul; Briscoe, David A

    2002-01-01

    Coastal freshwater fishes provide valuable models for studying the role of the last glaciations in promoting speciation. To date, the great majority of studies are of Northern Hemisphere taxa, and reflect the influence of vicariant events during, or prior to, the Pleistocene. Microsatellite markers and mitochondrial DNA sequences were used to investigate patterns of population divergence and evolutionary relationships in a freshwater group of silverside fishes (Odontesthes perugiae complex), endemic to the recently formed coastal plain of southern Brazil. Lacustrine morphotypes showed concordant patterns of genetic and morphological divergence consistent with the geographical history of the coastal plain. The results support the proposal of a silverside radiation chronologically shaped by the sea-level changes of the Pleistocene and Holocene. The radiating lineage comprises a minimum of three allopatric and two sympatric lacustrine species. Four species displayed extremely high levels of genetic variation and some of the most rapid speciation rates reported in fishes. These features were related to a marine-estuarine origin of the radiation. To the best of our knowledge, this study represents the first molecular phylogeographic survey of a coastal radiation in South America. PMID:11788038

  1. A screening assessment of external radiation levels on the shore of Lake Issyk-Kyol in the Kyrghyz Republic.

    PubMed

    Hamby, D M; Tynybekov, A K

    1999-10-01

    The Kyrghyz Republic, located in the southeastern region of the former Soviet Union, holds a long history of atomic weapons development activities. Historical surveys, conducted primarily for geological exploration, have indicated that areas of shoreline on Lake Issyk-Kyol in the Kyrghyz Republic have relative radiation levels in excess of background by as much as a factor of ten. Nuclear testing in China and uranium mining operations in the mountains surrounding the lake may have resulted in the contamination of a number of areas on the lake's southern shore. The valley region maintains a population of more than one-half-million persons and is heavily dependent on the lake to draw tourists to the area and its utilization by some as a food and recreation source. In this note, we show the results of a screening assessment of relative radiation levels along the shoreline of Lake Issyk-Kyol to pin-point areas of relatively high exposure rates.

  2. New Methodology for First Principle Calculations of Electrical Levels for Radiation Induced Defects in Silicates

    DTIC Science & Technology

    2005-02-22

    GRANT NUMBER 4. TITLE AND SUBTITLE New Methodology For First Principle Calculations Of Electrical Levels For Radiation Induced Defects In Silicates ...materials, space materials, Silicon on Insulator ( SOI ) materials 16. SECURITY CLASSIFICATION OF: 19a. NAME OF RESPONSIBLE PERSON DONALD J SMITH

  3. Determining the Knowledge Level of Pre-Service Teachers' on Radioactivity and Radiation

    ERIC Educational Resources Information Center

    Ergul, N. Remziye

    2012-01-01

    This study investigated the basic knowledge levels of teacher candidates from different branches regarding the subjects of radiation and radioactivity. 42 variables were determined in relation to the specified titles. In the preparation stage of determining the variables, all the related programs were examined, and attention was paid to include…

  4. Determining the Knowledge Level of Pre-Service Teachers' on Radioactivity and Radiation

    ERIC Educational Resources Information Center

    Ergul, N. Remziye

    2012-01-01

    This study investigated the basic knowledge levels of teacher candidates from different branches regarding the subjects of radiation and radioactivity. 42 variables were determined in relation to the specified titles. In the preparation stage of determining the variables, all the related programs were examined, and attention was paid to include…

  5. Determining the Knowledge Level of Pre-Service Teachers' on Radioactivity and Radiation

    ERIC Educational Resources Information Center

    Ergul, N. Remziye

    2012-01-01

    This study investigated the basic knowledge levels of teacher candidates' from different branches regarding the subjects of radiation and radioactivity. 42 variables were determined in relation to the specified titles. In the preparation stage of determining the variables, all the related programs were examined, and attention was paid to include…

  6. NATIONAL- AND STATE-LEVEL EMISSIONS ESTIMATES OF RADIATIVELY IMPORTANT TRACE GASES (RITGS) FROM ANTHROPOGENIC SOURCES

    EPA Science Inventory

    The report documents the development of national- and state- level emissions estimates of radiatively important trace gases (RlTGs). Emissions estimates are presented for the principal anthropogenic sources of carbon dioxide (CO2), methane (CH4), chlorofluorocarbons (CFCs), and o...

  7. Determining the Knowledge Level of Pre-Service Teachers' on Radioactivity and Radiation

    ERIC Educational Resources Information Center

    Ergul, N. Remziye

    2012-01-01

    This study investigated the basic knowledge levels of teacher candidates' from different branches regarding the subjects of radiation and radioactivity. 42 variables were determined in relation to the specified titles. In the preparation stage of determining the variables, all the related programs were examined, and attention was paid to include…

  8. NATIONAL- AND STATE-LEVEL EMISSIONS ESTIMATES OF RADIATIVELY IMPORTANT TRACE GASES (RITGS) FROM ANTHROPOGENIC SOURCES

    EPA Science Inventory

    The report documents the development of national- and state- level emissions estimates of radiatively important trace gases (RlTGs). Emissions estimates are presented for the principal anthropogenic sources of carbon dioxide (CO2), methane (CH4), chlorofluorocarbons (CFCs), and o...

  9. Autocorrelation in ultraviolet radiation measured at ground level using detrended fluctuation analysis

    NASA Astrophysics Data System (ADS)

    da Silva Filho, Paulo Cavalcante; da Silva, Francisco Raimundo; Corso, Gilberto

    2016-07-01

    In this study, we analyzed the autocorrelation among four ultraviolet (UV) radiation data sets obtained at 305 nm, 320 nm, 340 nm, and 380 nm. The data were recorded at ground level at the INPE climate station in Natal, RN, Brazil, which is a site close to the equator. The autocorrelations were computed by detrended fluctuation analysis (DFA) to estimate the index α. We found that the ​fluctuations in the UV radiation data were fractal, with scale-free behavior at a DFA index α ≃ 0.7. In addition, we performed a power law spectral analysis, which showed that the power spectrum exhibited a power law behavior with an exponent of β ≃ 0.45. Given that the theoretical result is β = 2 α - 1, these two results are in good agreement. Moreover, the application of the DFA ​method to the UV radiation data required detrending using a polynomial with an order of at least eight, which was related to the complex daily solar radiation curve obtained at ground level in a tropical region. The results indicated that the α exponent of UV radiation is similar to other climatic records such as air temperature, wind, or rain, but not solar activity.

  10. Radiation-induced conductivity and high temperature Q changes in quartz resonators

    SciTech Connect

    Koehler, D.R.

    1981-06-01

    While high temperature electrolysis has proven beneficial as a technique to remove interstitial impurities from quartz, reliable indices to measure the efficacy of such a processing step are still under development. The present work is directed toward providing such an index. Two techniques were investigated - one involves measurement of the radiation-induced conductivity in quartz along the optic axis, and the second involves measurement of high temperature Q changes. Both effects originate when impurity charge compensators are released from their traps, in the first case resulting in an associated increase in ionic conduction and in the second case resulting in increased acoustic losses. Radiation-induced conductivity measurements were carried out with a 200 kV, 14 mA X-ray machine producing approximately 5 rads/sec at the sample. With electric fields of the order of 10/sup 4/ V/cm, the noise level in the current measuring system is equivalent to an ionic current generated by quartz impurities in the 1 ppB range. The accuracy of the high temperature (300 to 800 K) Q/sup -1/ measurement technique is limited by the uncertainties associated with quantitative correlation of the high temperature acoustic losses with the concentration of impurity centers. A number of resonators constructed of quartz material of different impurity contents have been tested, and both the radiation-induced conductivity and the high temperature Q/sup -1/ results compared with earlier radiation-induced frequency and resonator resistance changes. A postirradiation-induced conductivity index and a high temperature Q index show excellent correlation with the earlier pulsed irradiation-induced dynamic resonator motional resistance changes, and it is therefore concluded that either measurement can be employed to serve as an acceptance criterion for radiation hardness.

  11. Comparison of low and high dose ionising radiation using topological analysis of gene coexpression networks.

    PubMed

    Ray, Monika; Yunis, Reem; Chen, Xiucui; Rocke, David M

    2012-05-17

    The growing use of imaging procedures in medicine has raised concerns about exposure to low-dose ionising radiation (LDIR). While the disastrous effects of high dose ionising radiation (HDIR) is well documented, the detrimental effects of LDIR is not well understood and has been a topic of much debate. Since little is known about the effects of LDIR, various kinds of wet-lab and computational analyses are required to advance knowledge in this domain. In this paper we carry out an "upside-down pyramid" form of systems biology analysis of microarray data. We characterised the global genomic response following 10 cGy (low dose) and 100 cGy (high dose) doses of X-ray ionising radiation at four time points by analysing the topology of gene coexpression networks. This study includes a rich experimental design and state-of-the-art computational systems biology methods of analysis to study the differences in the transcriptional response of skin cells exposed to low and high doses of radiation. Using this method we found important genes that have been linked to immune response, cell survival and apoptosis. Furthermore, we also were able to identify genes such as BRCA1, ABCA1, TNFRSF1B, MLLT11 that have been associated with various types of cancers. We were also able to detect many genes known to be associated with various medical conditions. Our method of applying network topological differences can aid in identifying the differences among similar (eg: radiation effect) yet very different biological conditions (eg: different dose and time) to generate testable hypotheses. This is the first study where a network level analysis was performed across two different radiation doses at various time points, thereby illustrating changes in the cellular response over time.

  12. Comparison of low and high dose ionising radiation using topological analysis of gene coexpression networks

    PubMed Central

    2012-01-01

    Background The growing use of imaging procedures in medicine has raised concerns about exposure to low-dose ionising radiation (LDIR). While the disastrous effects of high dose ionising radiation (HDIR) is well documented, the detrimental effects of LDIR is not well understood and has been a topic of much debate. Since little is known about the effects of LDIR, various kinds of wet-lab and computational analyses are required to advance knowledge in this domain. In this paper we carry out an “upside-down pyramid” form of systems biology analysis of microarray data. We characterised the global genomic response following 10 cGy (low dose) and 100 cGy (high dose) doses of X-ray ionising radiation at four time points by analysing the topology of gene coexpression networks. This study includes a rich experimental design and state-of-the-art computational systems biology methods of analysis to study the differences in the transcriptional response of skin cells exposed to low and high doses of radiation. Results Using this method we found important genes that have been linked to immune response, cell survival and apoptosis. Furthermore, we also were able to identify genes such as BRCA1, ABCA1, TNFRSF1B, MLLT11 that have been associated with various types of cancers. We were also able to detect many genes known to be associated with various medical conditions. Conclusions Our method of applying network topological differences can aid in identifying the differences among similar (eg: radiation effect) yet very different biological conditions (eg: different dose and time) to generate testable hypotheses. This is the first study where a network level analysis was performed across two different radiation doses at various time points, thereby illustrating changes in the cellular response over time. PMID:22594378

  13. Radiative transfer in highly scattering materials - numerical solution and evaluation of approximate analytic solutions

    NASA Technical Reports Server (NTRS)

    Weston, K. C.; Reynolds, A. C., Jr.; Alikhan, A.; Drago, D. W.

    1974-01-01

    Numerical solutions for radiative transport in a class of anisotropically scattering materials are presented. Conditions for convergence and divergence of the iterative method are given and supported by computed results. The relation of two flux theories to the equation of radiative transfer for isotropic scattering is discussed. The adequacy of the two flux approach for the reflectance, radiative flux and radiative flux divergence of highly scattering media is evaluated with respect to solutions of the radiative transfer equation.

  14. High fidelity, radiation tolerant analog-to-digital converters

    NASA Technical Reports Server (NTRS)

    Wang, Charles Chang-I (Inventor); Linscott, Ivan Richard (Inventor); Inan, Umran S. (Inventor)

    2012-01-01

    Techniques for an analog-to-digital converter (ADC) using pipeline architecture includes a linearization technique for a spurious-free dynamic range (SFDR) over 80 deciBels. In some embodiments, sampling rates exceed a megahertz. According to a second approach, a switched-capacitor circuit is configured for correct operation in a high radiation environment. In one embodiment, the combination yields high fidelity ADC (>88 deciBel SFDR) while sampling at 5 megahertz sampling rates and consuming <60 milliWatts. Furthermore, even though it is manufactured in a commercial 0.25-.mu.m CMOS technology (1 .mu.m=12.sup.-6 meters), it maintains this performance in harsh radiation environments. Specifically, the stated performance is sustained through a highest tested 2 megarad(Si) total dose, and the ADC displays no latchup up to a highest tested linear energy transfer of 63 million electron Volts square centimeters per milligram at elevated temperature (131 degrees C.) and supply (2.7 Volts, versus 2.5 Volts nominal).

  15. Interaction of a highly radiative shock with a solid obstacle

    NASA Astrophysics Data System (ADS)

    Koenig, M.; Michel, Th.; Yurchak, R.; Michaut, C.; Albertazzi, B.; Laffite, S.; Falize, E.; Van Box Som, L.; Sakawa, Y.; Sano, T.; Hara, Y.; Morita, T.; Kuramitsu, Y.; Barroso, P.; Pelka, A.; Gregori, G.; Kodama, R.; Ozaki, N.; Lamb, D.; Tzeferacos, P.

    2017-08-01

    In this paper, we present the recent results obtained regarding highly radiative shocks (RSs) generated in a low-density gas filled cell on the GEKKO XII laser facility. The RS was generated by using an ablator-pusher two-layer target (CH/Sn) and a propagation medium (Xe). High velocity RSs have been generated (100-140 km/s), while limiting as much as possible the preheating produced by the corona emission. Both self-emission and visible probe diagnostics highlighted a strong emission in the shock and an electron density in the downstream gas. The RS characteristics that depend on the initial conditions are described here as well as its precursor interaction with an aluminium foil used as an obstacle. The obtained results are discussed which show a strong extension of the radiative precursor (1 mm) leading to an expansion velocity of the obstacle up to ≈30 km/s compatible to a 20 eV temperature.

  16. High pressure x-ray diffraction techniques with synchrotron radiation

    NASA Astrophysics Data System (ADS)

    Jing, Liu

    2016-07-01

    This article summarizes the developments of experimental techniques for high pressure x-ray diffraction (XRD) in diamond anvil cells (DACs) using synchrotron radiation. Basic principles and experimental methods for various diffraction geometry are described, including powder diffraction, single crystal diffraction, radial diffraction, as well as coupling with laser heating system. Resolution in d-spacing of different diffraction modes is discussed. More recent progress, such as extended application of single crystal diffraction for measurements of multigrain and electron density distribution, time-resolved diffraction with dynamic DAC and development of modulated heating techniques are briefly introduced. The current status of the high pressure beamline at BSRF (Beijing Synchrotron Radiation Facility) and some results are also presented. Project supported by the National Natural Science Foundation of China (Grant Nos. 10875142, 11079040, and 11075175). The 4W2 beamline of BSRF was supported by the Chinese Academy of Sciences (Grant Nos. KJCX2-SW-N20, KJCX2-SW-N03, and SYGNS04).

  17. High fidelity radiative heat transfer models for high-pressure laminar hydrogen-air diffusion flames

    NASA Astrophysics Data System (ADS)

    Cai, Jian; Lei, Shenghui; Dasgupta, Adhiraj; Modest, Michael F.; Haworth, Daniel C.

    2014-11-01

    Radiative heat transfer is studied numerically for high-pressure laminar H2-air jet diffusion flames, with pressure ranging from 1 to 30 bar. Water vapour is assumed to be the only radiatively participating species. Two different radiation models are employed, the first being the full spectrum k-distribution model together with conventional Radiative Transfer Equation (RTE) solvers. Narrowband k-distributions of water vapour are calculated and databased from the HITEMP 2010 database, which claims to retain accuracy up to 4000 K. The full-spectrum k-distributions are assembled from their narrowband counterparts to yield high accuracy with little additional computational cost. The RTE is solved using various spherical harmonics methods, such as P1, simplified P3 (SP3) and simplified P5 (SP5). The resulting partial differential equations as well as other transport equations in the laminar diffusion flames are discretized with the finite-volume method in OpenFOAM®. The second radiation model is a Photon Monte Carlo (PMC) method coupled with a line-by-line spectral model. The PMC absorption coefficient database is derived from the same spectroscopy database as the k-distribution methods. A time blending scheme is used to reduce PMC calculations at each time step. Differential diffusion effects, which are important in laminar hydrogen flames, are also included in the scalar transport equations. It was found that the optically thin approximation overpredicts radiative heat loss at elevated pressures. Peak flame temperature is less affected by radiation because of faster chemical reactions at high pressures. Significant cooling effects are observed at downstream locations. As pressure increases, the performance of RTE models starts to deviate due to increased optical thickness. SPN models perform only marginally better than P1 because P1 is adequate except at very high pressure.

  18. A restatement of the natural science evidence base concerning the health effects of low-level ionizing radiation

    PubMed Central

    Cardis, Elisabeth; Elliott, Alex; Goodhead, Dudley T.; Harms-Ringdahl, Mats; Hendry, Jolyon H.; Hoskin, Peter; Jeggo, Penny A.; Mackay, David J. C.; Muirhead, Colin R.; Shepherd, John; Shore, Roy E.; Thomas, Geraldine A.; Wakeford, Richard

    2017-01-01

    Exposure to ionizing radiation is ubiquitous, and it is well established that moderate and high doses cause ill-health and can be lethal. The health effects of low doses or low dose-rates of ionizing radiation are not so clear. This paper describes a project which sets out to summarize, as a restatement, the natural science evidence base concerning the human health effects of exposure to low-level ionizing radiation. A novel feature, compared to other reviews, is that a series of statements are listed and categorized according to the nature and strength of the evidence that underpins them. The purpose of this restatement is to provide a concise entrée into this vibrant field, pointing the interested reader deeper into the literature when more detail is needed. It is not our purpose to reach conclusions on whether the legal limits on radiation exposures are too high, too low or just right. Our aim is to provide an introduction so that non-specialist individuals in this area (be they policy-makers, disputers of policy, health professionals or students) have a straightforward place to start. The summary restatement of the evidence and an extensively annotated bibliography are provided as appendices in the electronic supplementary material. PMID:28904138

  19. A restatement of the natural science evidence base concerning the health effects of low-level ionizing radiation.

    PubMed

    McLean, Angela R; Adlen, Ella K; Cardis, Elisabeth; Elliott, Alex; Goodhead, Dudley T; Harms-Ringdahl, Mats; Hendry, Jolyon H; Hoskin, Peter; Jeggo, Penny A; Mackay, David J C; Muirhead, Colin R; Shepherd, John; Shore, Roy E; Thomas, Geraldine A; Wakeford, Richard; Godfray, H Charles J

    2017-09-13

    Exposure to ionizing radiation is ubiquitous, and it is well established that moderate and high doses cause ill-health and can be lethal. The health effects of low doses or low dose-rates of ionizing radiation are not so clear. This paper describes a project which sets out to summarize, as a restatement, the natural science evidence base concerning the human health effects of exposure to low-level ionizing radiation. A novel feature, compared to other reviews, is that a series of statements are listed and categorized according to the nature and strength of the evidence that underpins them. The purpose of this restatement is to provide a concise entrée into this vibrant field, pointing the interested reader deeper into the literature when more detail is needed. It is not our purpose to reach conclusions on whether the legal limits on radiation exposures are too high, too low or just right. Our aim is to provide an introduction so that non-specialist individuals in this area (be they policy-makers, disputers of policy, health professionals or students) have a straightforward place to start. The summary restatement of the evidence and an extensively annotated bibliography are provided as appendices in the electronic supplementary material. © 2017 The Authors.

  20. Spectral Analyses and Radiation Exposures from Several Ground-Level Enhancement (GLE) Solar Proton Events: A Comparison of Methodologies

    NASA Technical Reports Server (NTRS)

    Atwell, William; Tylka, Allan; Dietrich, William; Badavi, Francis; Rojdev, Kristina

    2011-01-01

    Several methods for analyzing the particle spectra from extremely large solar proton events, called Ground-Level Enhancements (GLEs), have been developed and utilized by the scientific community to describe the solar proton energy spectra and have been further applied to ascertain the radiation exposures to humans and radio-sensitive systems, namely electronics. In this paper 12 GLEs dating back to 1956 are discussed, and the three methods for describing the solar proton energy spectra are reviewed. The three spectral fitting methodologies are EXP [an exponential in proton rigidity (R)], WEIB [Weibull fit: an exponential in proton energy], and the Band function (BAND) [a double power law in proton rigidity]. The EXP and WEIB methods use low energy (MeV) GLE solar proton data and make extrapolations out to approx.1 GeV. On the other hand, the BAND method utilizes low- and medium-energy satellite solar proton data combined with high-energy solar proton data deduced from high-latitude neutron monitoring stations. Thus, the BAND method completely describes the entire proton energy spectrum based on actual solar proton observations out to 10 GeV. Using the differential spectra produced from each of the 12 selected GLEs for each of the three methods, radiation exposures are presented and discussed in detail. These radiation exposures are then compared with the current 30-day and annual crew exposure limits and the radiation effects to electronics.