Science.gov

Sample records for high rate deposited

  1. High-deposition-rate ceramics synthesis

    SciTech Connect

    Allendorf, M.D.; Osterheld, T.H.; Outka, D.A.

    1995-05-01

    Parallel experimental and computational investigations are conducted in this project to develop validated numerical models of ceramic synthesis processes. Experiments are conducted in the High-Temperature Materials Synthesis Laboratory in Sandia`s Combustion Research Facility. A high-temperature flow reactor that can accommodate small preforms (1-3 cm diameter) generates conditions under which deposition can be observed, with flexibility to vary both deposition temperature (up to 1500 K) and pressure (as low as 10 torr). Both mass spectrometric and laser diagnostic probes are available to provide measurements of gas-phase compositions. Experiments using surface analytical techniques are also applied to characterize important processes occuring on the deposit surface. Computational tools developed through extensive research in the combustion field are employed to simulate the chemically reacting flows present in typical industrial reactors. These include the CHEMKIN and Surface-CHEMKIN suites of codes, which permit facile development of complex reaction mechanisms and vastly simplify the implementation of multi-component transport and thermodynamics. Quantum chemistry codes are also used to estimate thermodynamic and kinetic data for species and reactions for which this information is unavailable.

  2. High growth rate homoepitaxial diamond film deposition at high temperatures by microwave plasma-assisted chemical vapor deposition

    NASA Technical Reports Server (NTRS)

    Vohra, Yogesh K. (Inventor); McCauley, Thomas S. (Inventor)

    1997-01-01

    The deposition of high quality diamond films at high linear growth rates and substrate temperatures for microwave-plasma chemical vapor deposition is disclosed. The linear growth rate achieved for this process is generally greater than 50 .mu.m/hr for high quality films, as compared to rates of less than 5 .mu.m/hr generally reported for MPCVD processes.

  3. High-rate diamond deposition by microwave plasma CVD

    NASA Astrophysics Data System (ADS)

    Li, Xianglin

    In this dissertation, the growth of CVD (Chemical Vapor Deposition) diamond thin films is studied both theoretically and experimentally. The goal of this research is to deposit high quality HOD (Highly Oriented Diamond) films with a growth rate greater than 1 mum/hr. For the (100)-oriented HOD films, the growth rate achieved by the traditional process is only 0.3 mum/hr while the theoretical limit is ˜0.45 mum/hr. This research increases the growth rate up to 5.3 mum/hr (with a theoretical limit of ˜7 mum/hr) while preserving the crystal quality. This work builds a connection between the theoretical study of the CVD process and the experimental research. The study is extended from the growth of regular polycrystalline diamond to highly oriented diamond (HOD) films. For the increase of the growth rate of regular polycrystalline diamond thin films, a scaling growth model developed by Goodwin is introduced in details to assist in the understanding of the MPCVD (Microwave Plasma CVD) process. Within the Goodwin's scaling model, there are only four important sub-processes for the growth of diamond: surface modification, adsorption, desorption, and incorporation. The factors determining the diamond growth rate and film quality are discussed following the description of the experimental setup and process parameters. Growth rate and crystal quality models are reviewed to predict and understand the experimental results. It is shown that the growth rate of diamond can be increased with methane input concentration and the amount of atomic hydrogen (by changing the total pressure). It is crucial to provide enough atomic hydrogen to conserve crystal quality of the deposited diamond film. The experimental results demonstrate that for a fixed methane concentration, there is a minimum pressure for growth of good diamond. Similarly, for a fixed total pressure, there is a maximum methane concentration for growth of good diamond, and this maximum methane concentration increases

  4. Experimental study of porosity reduction in high deposition-rate Laser Material Deposition

    NASA Astrophysics Data System (ADS)

    Zhong, Chongliang; Gasser, Andres; Schopphoven, Thomas; Poprawe, Reinhart

    2015-12-01

    For several years, the interest in Additive Manufacturing (AM) is continuously expanding, owing to the paradigm shift that new production processes, such as Laser Material Deposition (LMD), provide over conventional manufacturing technologies. With LMD, three-dimensional, complex components out of a wide range of materials can be manufactured consecutively layer-by-layer. Despite the technological advantages of the LMD process, currently achieved deposition-rates of approx. 0.5 kg/h for Inconel 718 (IN 718) remain a major concern in regards to processing times and economic feasibility. Moreover, processing conditions need to be chosen carefully or else material defects can be systematically formed either at the interface separating two adjacent clad layers, at the bonding zone or within the bulk of the layer. In this respect, the effects of powder humidity, laser power, nominal powder particle size, powder morphology and shielding gas flow rate on the porosity in laser deposited single tracks at an increased deposition-rate of approx. 2 kg/h was investigated through experiments. Based on experimental results, several approaches of reducing porosity in high deposition-rate LMD are proposed in this paper.

  5. Experimental verification of vapor deposition rate theory in high velocity burner rigs

    NASA Technical Reports Server (NTRS)

    Gokoglu, Suleyman A.; Santoro, Gilbert J.

    1985-01-01

    The main objective has been the experimental verification of the corrosive vapor deposition theory in high-temperature, high-velocity environments. Towards this end a Mach 0.3 burner-rig appartus was built to measure deposition rates from salt-seeded (mostly Na salts) combustion gases on the internally cooled cylindrical collector. Deposition experiments are underway.

  6. High-selectivity and high-deposition rate tungsten CVD freed from chamber cleaning

    SciTech Connect

    Maeda, Y.; Suzuki, H.; Sakoh, T.; Morita, K.; Morita, M.; Ohmi, T. )

    1994-02-01

    A chemical vapor deposition method for tungsten films using a chamber with a cold susceptor is proposed for attaining excellent selectivity and a cleaning-free process. High-rate selective deposition above 1.0 [mu]m/min using the reduction of tungsten hexafluoride by silane is achieved at a substrate temperature of 210 C by using a cold susceptor chilled by water at room temperature. No deposition of tungsten or by-products on the susceptor surface and the inner surface of the chamber is observed, indicating that the newly developed system is free from cleaning. The deposited tungsten film has the alpha-type structure. The lattice constant of the tungsten is changed by the deposition temperature and the flow ratio of silane to tungsten hexafluoride.

  7. Experimental verification of corrosive vapor deposition rate theory in high velocity burner rigs

    NASA Technical Reports Server (NTRS)

    Gokoglu, S. A.; Santoro, G. J.

    1986-01-01

    The ability to predict deposition rates is required to facilitate modelling of high temperature corrosion by fused salt condensates in turbine engines. A corrosive salt vapor deposition theory based on multicomponent chemically frozen boundary layers (CFBL) has been successfully verified by high velocity burner rig experiments. The experiments involved internally air-impingement cooled, both rotating full and stationary segmented cylindrical collectors located in the crossflow of sodium-seeded combustion gases. Excellent agreement is found between the CFBL theory an the experimental measurements for both the absolute amounts of Na2SO4 deposition rates and the behavior of deposition rate with respect to collector temperature, mass flowrate (velocity) and Na concentration.

  8. A high power impulse magnetron sputtering model to explain high deposition rate magnetic field configurations

    NASA Astrophysics Data System (ADS)

    Raman, Priya; Weberski, Justin; Cheng, Matthew; Shchelkanov, Ivan; Ruzic, David N.

    2016-10-01

    High Power Impulse Magnetron Sputtering (HiPIMS) is one of the recent developments in the field of magnetron sputtering technology that is capable of producing high performance, high quality thin films. Commercial implementation of HiPIMS technology has been a huge challenge due to its lower deposition rates compared to direct current Magnetron Sputtering. The cylindrically symmetric "TriPack" magnet pack for a 10 cm sputter magnetron that was developed at the Center for Plasma Material Interactions was able to produce higher deposition rates in HiPIMS compared to conventional pack HiPIMS for the same average power. The "TriPack" magnet pack in HiPIMS produces superior substrate uniformity without the need of substrate rotation in addition to producing higher metal ion fraction to the substrate when compared to the conventional pack HiPIMS [Raman et al., Surf. Coat. Technol. 293, 10 (2016)]. The films that are deposited using the "TriPack" magnet pack have much smaller grains compared to conventional pack DC and HiPIMS films. In this paper, the reasons behind the observed increase in HiPIMS deposition rates from the TriPack magnet pack along with a modified particle flux model is discussed.

  9. High rate chemical vapor deposition of carbon films using fluorinated gases

    DOEpatents

    Stafford, Byron L.; Tracy, C. Edwin; Benson, David K.; Nelson, Arthur J.

    1993-01-01

    A high rate, low-temperature deposition of amorphous carbon films is produced by PE-CVD in the presence of a fluorinated or other halide gas. The deposition can be performed at less than 100.degree. C., including ambient room temperature, with a radio frequency plasma assisted chemical vapor deposition process. With less than 6.5 atomic percent fluorine incorporated into the amorphous carbon film, the characteristics of the carbon film, including index of refraction, mass density, optical clarity, and chemical resistance are within fifteen percent (15%) of those characteristics for pure amorphous carbon films, but the deposition rates are high.

  10. High power pulsed magnetron sputtering: A method to increase deposition rate

    SciTech Connect

    Raman, Priya McLain, Jake; Ruzic, David N; Shchelkanov, Ivan A.

    2015-05-15

    High power pulsed magnetron sputtering (HPPMS) is a state-of-the-art physical vapor deposition technique with several industrial applications. One of the main disadvantages of this process is its low deposition rate. In this work, the authors report a new magnetic field configuration, which produces deposition rates twice that of conventional magnetron's dipole magnetic field configuration. Three different magnet pack configurations are discussed in this paper, and an optimized magnet pack configuration for HPPMS that leads to a higher deposition rate and nearly full-face target erosion is presented. The discussed magnetic field produced by a specially designed magnet assembly is of the same size as the conventional magnet assembly and requires no external fields. Comparison of deposition rates with different power supplies and the electron trapping efficiency in complex magnetic field arrangements are discussed.

  11. Method to control deposition rate instabilities—High power impulse magnetron sputtering deposition of TiO{sub 2}

    SciTech Connect

    Kossoy, Anna E-mail: anna.kossoy@gmail.com; Magnusson, Rögnvaldur L.; Tryggvason, Tryggvi K.; Leosson, Kristjan; Olafsson, Sveinn

    2015-03-15

    The authors describe how changes in shutter state (open/closed) affect sputter plasma conditions and stability of the deposition rate of Ti and TiO{sub 2} films. The films were grown by high power impulse magnetron sputtering in pure Ar and in Ar/O{sub 2} mixture from a metallic Ti target. The shutter state was found to have an effect on the pulse waveform for both pure Ar and reactive sputtering of Ti also affecting stability of TiO{sub 2} deposition rate. When the shutter opened, the shape of pulse current changed from rectangular to peak-plateau and pulse energy decreased. The authors attribute it to the change in plasma impedance and gas rarefaction originating in geometry change in front of the magnetron. TiO{sub 2} deposition rate was initially found to be high, 1.45 Å/s, and then dropped by ∼40% during the first 5 min, while for Ti the change was less obvious. Instability of deposition rate poses significant challenge for growing multilayer heterostructures. In this work, the authors suggest a way to overcome this by monitoring the integrated average energy involved in the deposition process. It is possible to calibrate and control the film thickness by monitoring the integrated pulse energy and end growth when desired integrated pulse energy level has been reached.

  12. Elastic and Anelastic Behavior of TBCs Sprayed at High-Deposition Rates

    NASA Astrophysics Data System (ADS)

    Valarezo, A.; Dwivedi, G.; Sampath, S.; Musalek, R.; Matejicek, J.

    2015-01-01

    Coatings sprayed at high-deposition rates often result in stiff, dense, and highly stressed coatings. The high deposition temperature at which the coatings are formed is responsible for these characteristics. In this paper, TBCs were sprayed at high-deposition rates, increasing the tensile quenching stresses beyond the threshold of crack opening during spraying. Dense structures were observed within a pass, in the presence of micro and macro defects specifically horizontal cracks within interpasses and vertical segmentation cracks. Mechanical properties, mainly the elastic and anelastic behavior of TBCs were significantly affected by the strain accommodation and friction occurring within intersplats and interpass interfaces. The strain tolerance obtained in as-sprayed conditions decreased as the microstructure and defects sintered during high-temperature heat cycles. The non-linearity degree decreased while the elastic modulus of the various coatings increased to a maximum value.

  13. All hot wire CVD TFTs with high deposition rate silicon nitride (3 nm/s)

    NASA Astrophysics Data System (ADS)

    Schropp, R. E. I.; Nishizaki, S.; Houweling, Z. S.; Verlaan, V.; van der Werf, C. H. M.; Matsumura, H.

    2008-03-01

    Using the hot wire (HW) chemical vapor deposition (CVD) method for the deposition of silicon nitride (SiN x) and amorphous silicon (a-Si:H) thin films we have achieved high deposition rates for device quality materials up to 7.3 nm/s and 3.5 nm/s, respectively. For thin films of SiN 1.3, deposited at 3 nm/s, the mass-density of the material reached a very high value of 3.0 g/cm 3. The silane utilization rate for this fast process is 77%. The high mass-density was consistent with the low 16BHF etch rate of 7 nm/min. We tested this SiN 1.3 in "all hot wire" thin film transistors (TFTs), along with a-Si:H material in the protocrystalline regime at 1 nm/s. Analysis shows that these "all hot wire" TFTs have a Vth = 1.7-2.4 V, an on/off ratio of 10 6, and a mobility of 0.4 cm 2/V s after a forming gas anneal. We therefore conclude that the HWCVD provides SiN x materials with dielectric properties at least as good as PECVD does, though at a much higher deposition rate and better gas utilization rates.

  14. Deposition of device quality, low hydrogen content, hydrogenated amorphous silicon at high deposition rates

    DOEpatents

    Mahan, Archie Harvin; Molenbroek, Edith C.; Gallagher, Alan C.; Nelson, Brent P.; Iwaniczko, Eugene; Xu, Yueqin

    2002-01-01

    A method of fabricating device quality, thin-film a-Si:H for use as semiconductor material in photovoltaic and other devices, comprising in any order; positioning a substrate in a vacuum chamber adjacent a plurality of heatable filaments with a spacing distance L between the substrate and the filaments; heating the filaments to a temperature that is high enough to obtain complete decomposition of silicohydride molecules that impinge said filaments into Si and H atomic species; providing a flow of silicohydride gas, or a mixture of silicohydride gas containing Si and H, in said vacuum chamber while maintaining a pressure P of said gas in said chamber, which, in combination with said spacing distance L, provides a P.times.L product in a range of 10-300 mT-cm to ensure that most of the Si atomic species react with silicohydride molecules in the gas before reaching the substrate, to thereby grow a a-Si:H film at a rate of at least 50 .ANG./sec.; and maintaining the substrate at a temperature that balances out-diffusion of H from the growing a-Si:H film with time needed for radical species containing Si and H to migrate to preferred bonding sites.

  15. High Rate Deposition of High Quality ZnO:Al by Filtered Cathodic Arc

    SciTech Connect

    Mendelsberg, Rueben J.; Lim, S.H.N.; Milliron, D.J.; Anders, Andre

    2010-11-18

    High quality ZnO:Al (AZO) thin films were prepared on glass substrates by direct current filtered cathodic arc deposition. Substrate temperature was varied from room temperature to 425oC, and samples were grown with and without the assistance of low power oxygen plasma (75W). For each growth condition, at least 3 samples were grown to give a statistical look at the effect of the growth environment on the film properties and to explore the reproducibility of the technique. Growth rate was in the 100-400 nm/min range but was apparently random and could not be easily traced to the growth conditions explored. For optimized growth conditions, 300-600 nm AZO films had resistivities of 3-6 x 10-4 ?Omega cm, carrier concentrations in the range of 2-4 x 1020 cm3, Hall mobility as high as 55 cm2/Vs, and optical transmittance greater than 90percent. These films are also highly oriented with the c-axis perpendicular to the substrate and a surface roughness of 2-4 nm.

  16. Highly conducting phosphorous doped Nc-Si:H thin films deposited at high deposition rate by hot-wire chemical vapor deposition method.

    PubMed

    Waman, V S; Kamble, M M; Ghosh, S S; Mayabadi, Azam; Sathe, V G; Amalnekar, D P; Pathan, H M; Jadkar, S R

    2012-11-01

    In this paper, we report the synthesis of highly conducting phosphorous doped hydrogenated nanocrystalline silicon (nc-Si:H) films at substantially low substrate temperature (200 degrees C) by hot-wire chemical vapor deposition (HW-CVD) method using pure silane (SiH4) and phosphine (PH3) gas mixture without hydrogen dilution. Structural, optical and electrical properties of these films were investigated as a function of PH3 gas-phase ratio. The characterization of these films by low-angle X-ray diffraction, Raman spectroscopy and atomic force microscopy revealed that, the incorporation of phosphorous in nc-Si:H induces an amorphization in the nc-Si:H film structure. Fourier transform infrared spectroscopy analysis indicates that hydrogen predominately incorporated in phosphorous doped n-type nc-Si:H films mainly in di-hydrogen species (Si-H2) and poly-hydrogen (Si-H2)n bonded species signifying that the films become porous, and micro-void rich. We have observed high band gap (1.97-2.37 eV) in the films, though the hydrogen content is low (< 1.4 at.%) over the entire range of PH3 gas-phase ratio studied. Under the optimum deposition conditions, phosphorous doped nc-Si:H films with high dark conductivity (sigma Dark -5.3 S/cm), low charge-carrier activation energy (E(act) - 132 meV) and high band gap (- 2.01 eV), low hydrogen content (- 0.74 at.%) were obtained at high deposition rate (12.9 angstroms/s).

  17. Pulsed laser deposition of adherent hexagonal/cubic boron nitride layer systems at high growth rates

    NASA Astrophysics Data System (ADS)

    Weißmantel, Steffen; Reiße, Günter

    2002-09-01

    Cubic boron nitride (c-BN) films were prepared by ion-beam-assisted pulsed laser deposition (IAPLD) using a KrF excimer laser for ablation. The c-BN growth rates of 50 nm/min at relatively low substrate temperatures of 250 °C were achieved by using high laser energy densities of more than 30 J/cm 2 and at ion beam energies of 600-700 eV. Main advantage of IAPLD for the deposition of c-BN films is that at high laser energy densities the ratio of ions from the ion beam to ablated atoms and ions necessary for cubic film growth can be reduced to 0.14, since the ablated boron and nitrogen species themselves have high mean kinetic energies of 130-180 eV. By using pulsed laser deposited h-BN intermediate layers, 300-420 nm thick well-adherent c-BN films can be prepared on Si and WC hard metal substrates. The maximum c-BN film thickness of some 0.5 μm is limited by the accumulation of particulates, formed during the ablation process, in the films. The microstructure, stress, hardness and adhesion of such layer systems deposited at high growth rates are presented.

  18. High-rate deposition of diamond films by oxy-acetylene torch

    NASA Astrophysics Data System (ADS)

    Hudson, Martin D.; Brierley, Crofton J.

    1992-12-01

    An oxy-acetylene flame can produce diamond films at significantly higher deposition rates than those associated with either microwave plasma or hot filament assisted chemical vapor deposition. We have established the growth conditions necessary to achieve good quality diamond on silicon substrates. The addition of hydrogen to the gas mixture has been shown to give good quality material at enhanced growth rates. The growth rate has been increased further by using a growth-etch cycling process. This is achieved by periodically pulsing extra oxygen into the gas stream to change from depositing to etching conditions. Under etching conditions the non-diamond carbon in the film is rapidly removed leaving the diamond behind. This allows the use of high rate growth conditions that would otherwise produce poor quality material. The morphology and Raman spectra of films produced by these techniques are presented. The scale-up of the deposition system to cover areas as large as 15 X 20 mm is reported. This is accomplished by rastering a burner consisting of a line of small flames.

  19. Deposition Rates of High Power Impulse Magnetron Sputtering: Physics and Economics

    SciTech Connect

    Anders, Andre

    2009-11-22

    Deposition by high power impulse magnetron sputtering (HIPIMS) is considered by some as the new paradigm of advanced sputtering technology, yet this is met with skepticism by others for the reported lower deposition rates, if compared to rates of more conventional sputtering of equal average power. In this contribution, the underlying physical reasons for the rate changes are discussed, including (i) ion return to the target and self-sputtering, (ii) the less-than-linear increase of the sputtering yield with increasing ion energy, (iii) yield changes due to the shift of species responsible for sputtering, (iv) changes to due to greater film density, limited sticking, and self-sputtering on the substrate, (v) noticeable power losses in the switch module, (vi) changes of the magnetic balance and particle confinement of the magnetron due to self-fields at high current, and (vii) superposition of sputtering and sublimation/evaporation for selected materials. The situation is even more complicated for reactive systems where the target surface chemistry is a function of the reactive gas partial pressure and discharge conditions. While most of these factors imply a reduction of the normalized deposition rate, increased rates have been reported for certain conditions using hot targets and less poisoned targets. Finally, some points of economics and HIPIMS benefits considered.

  20. High-rate laser metal deposition of Inconel 718 component using low heat-input approach

    NASA Astrophysics Data System (ADS)

    Kong, C. Y.; Scudamore, R. J.; Allen, J.

    Currently many aircraft and aero engine components are machined from billets or oversize forgings. This involves significant cost, material wastage, lead-times and environmental impacts. Methods to add complex features to another component or net-shape surface would offer a substantial cost benefit. Laser Metal Deposition (LMD), currently being applied to the repair of worn or damaged aero engine components, was attempted in this work as an alternative process route, to build features onto a base component, because of its low heat input capability. In this work, low heat input and high-rate deposition was developed to deposit Inconel 718 powder onto thin plates. Using the optimised process parameters, a number of demonstrator components were successfully fabricated.

  1. Extremely high rate deposition of polymer multilayer optical thin film materials

    SciTech Connect

    Affinito, J.D.

    1993-01-01

    This paper highlights a new technique for extremely high rate deposition of optical dielectric films (vacuum deposition of polymer multilayer thin films). This is a way to produce multilayer optical filters comprised of thousands of layers of either linear or nonlinear optical materials. The technique involves the flash evaporation of an acrylic monomer onto a moving substrate; the monomer is then cured. Acrylic polymers deposited to date are very clear for wavelengths between 0.35 and 2.5 [mu]m; they have extinction coefficients of k[approx]10[sup [minus]7]. Application of electric field during cross linking can polarize (''pole'') the film to greatly enhance the nonlinear optical properties. ''Poling'' films with the polymer multilayer technique offers advantages over conventional approaches, in that the polarization should not decay over time. Battelle's Pacific Northwest Laboratory is well suited for bringing linear and nonlinear polymer multilayer optical filter technology to manufacturing production status for batch and wide area web applications. 10 figs.

  2. Extremely high rate deposition of polymer multilayer optical thin film materials

    SciTech Connect

    Affinito, J.D.

    1993-03-01

    This paper highlights a new technique for extremely high rate deposition of optical dielectric films (vacuum deposition of polymer multilayer thin films). This is a way to produce multilayer optical filters comprised of thousands of layers of either linear or nonlinear optical materials. The technique involves the flash evaporation of an acrylic monomer onto a moving substrate; the monomer is then cured. Acrylic polymers deposited to date are very clear for wavelengths between 0.35 and 2.5 {mu}m; they have extinction coefficients of k{approx}10{sup {minus}7}. Application of electric field during cross linking can polarize (``pole``) the film to greatly enhance the nonlinear optical properties. ``Poling`` films with the polymer multilayer technique offers advantages over conventional approaches, in that the polarization should not decay over time. Battelle`s Pacific Northwest Laboratory is well suited for bringing linear and nonlinear polymer multilayer optical filter technology to manufacturing production status for batch and wide area web applications. 10 figs.

  3. Supported plasma sputtering apparatus for high deposition rate over large area

    DOEpatents

    Moss, Ronald W.; McClanahan, Jr., Edwin D.; Laegreid, Nils

    1977-01-01

    A supported plasma sputtering apparatus is described having shaped electrical fields in the electron discharge region between the cathode and anode and the sputter region between the target and substrate while such regions are free of any externally applied magnetic field to provide a high deposition rate which is substantially uniform over a wide area. Plasma shaping electrodes separate from the anode and target shape the electrical fields in the electron discharge region and the sputter region to provide a high density plasma. The anode surrounds the target to cause substantially uniform sputtering over a large target area. In one embodiment the anode is in the form of an annular ring surrounding a flat target surface, such anode being provided with a ribbed upper surface which shields portions of the anode from exposure to sputtered material to maintain the electron discharge for a long stable operation. Several other embodiments accomplish the same result by using different anodes which either shield the anode from sputtered material, remove the sputtered coating on the anode by heating, or simultaneously mix sputtered metal from the auxiliary target with sputtered insulator from the main target so the resultant coating is conductive. A radio frequency potential alone or together with a D.C. potential, may be applied to the target for a greater sputtering rate.

  4. High-rate deposition of silicon films in a magnetron discharge with liquid target

    NASA Astrophysics Data System (ADS)

    Tumarkin, A.; Zibrov, M.; Khodachenko, G.; Tumarkina, D.

    2016-10-01

    Silicon coatings have been deposited on substrates made of low-carbon and high- carbon steels and tungsten in a magnetron discharge with liquid target at substrate bias voltages ranging from +100 V to -600 V. The structure of obtained coatings was examined by a scanning electron microscopy. The strong influence of substrate bias voltage on the coating structure was observed. The corrosion resistance of coated steel samples was examined in concentrated sulphuric, hydrochloric and nitric acids and their solutions. The resistance of coated tungsten samples against high-temperature oxidation was examined by their exposure to O2 gas at a pressure of 0.2 Pa and a temperature of 1073 K. The coatings deposited under bias voltages of+100 V and -600 V had dense structures and showed the best protective properties among all deposited coatings.

  5. Method to grow pure nanocrystalline diamond films at low temperatures and high deposition rates

    DOEpatents

    Carlisle, John A.; Gruen, Dieter M.; Auciello, Orlando; Xiao, Xingcheng

    2009-07-07

    A method of depositing nanocrystalline diamond film on a substrate at a rate of not less than about 0.2 microns/hour at a substrate temperature less than about 500.degree. C. The method includes seeding the substrate surface with nanocrystalline diamond powder to an areal density of not less than about 10.sup.10sites/cm.sup.2, and contacting the seeded substrate surface with a gas of about 99% by volume of an inert gas other than helium and about 1% by volume of methane or hydrogen and one or more of acetylene, fullerene and anthracene in the presence of a microwave induced plasma while maintaining the substrate temperature less than about 500.degree. C. to deposit nanocrystalline diamond on the seeded substrate surface at a rate not less than about 0.2 microns/hour. Coatings of nanocrystalline diamond with average particle diameters of less than about 20 nanometers can be deposited with thermal budgets of 500.degree. C.-4 hours or less onto a variety of substrates such as MEMS devices.

  6. Photoluminescence and anti-deliquesce of cesium iodide and its sodium-doped films deposited by thermal evaporation at high deposition rates

    NASA Astrophysics Data System (ADS)

    Hsu, Jin-Cherng; Chiang, Yueh-Sheng; Ma, Yu-Sheng

    2013-03-01

    Cesium iodide (CsI) and sodium iodide (NaI) are good scintillators due to their high luminescence efficiency. These alkali halides can be excited by ultra-violet or by ionizing radiation. In this study, CsI and its Na-doped films about 8 μm thick were deposited by thermal evaporation boat without heating substrates at high deposition rates of 30, 50, 70, 90, and 110 nm/sec, respectively. The as-deposited films were sequentially deposited a silicon dioxide film to protect from deliquesce. And, the films were also post-annealed in vacuum at 150, 200, 250, and 300 °C, respectively. We calculated the packing densities of the samples according to the measurements of Fourier transform infrared spectroscopy (FTIR) and observed the luminescence properties by photoluminescence (PL) system. The surfaces and cross sections of the films were investigated by scanning electron microscope (SEM). From the above measurements we can find the optimal deposition rate of 90 nm/sec and post-annealing temperature of 250 °C in vacuum for the asdeposited cesium iodide and its sodium-doped films.

  7. Atomic/Molecular Layer Deposition of Lithium Terephthalate Thin Films as High Rate Capability Li-Ion Battery Anodes.

    PubMed

    Nisula, Mikko; Karppinen, Maarit

    2016-02-10

    We demonstrate the fabrication of high-quality electrochemically active organic lithium electrode thin films by the currently strongly emerging combined atomic/molecular layer deposition (ALD/MLD) technique using lithium terephthalate, a recently found anode material for lithium-ion battery (LIB), as a proof-of-the-concept material. Our deposition process for Li-terephthalate is shown to well comply with the basic principles of ALD-type growth including the sequential self-saturated surface reactions, a necessity when aiming at micro-LIB devices with three-dimensional architectures. The as-deposited films are found crystalline across the deposition temperature range of 200-280 °C, which is a trait highly desired for an electrode material but rather unusual for hybrid inorganic-organic thin films. Excellent rate capability is ascertained for the Li-terephthalate films with no conductive additives required. The electrode performance can be further enhanced by depositing a thin protective LiPON solid-state electrolyte layer on top of Li-terephthalate; this yields highly stable structures with capacity retention of over 97% after 200 charge/discharge cycles at 3.2 C.

  8. Conductive ZnO:Zn Composites for High-Rate Sputtering Deposition of ZnO Thin Films

    NASA Astrophysics Data System (ADS)

    Zhou, Li Qin; Dubey, Mukul; Simões, Raul; Fan, Qi Hua; Neto, Victor

    2015-02-01

    We report an electrically conductive composite prepared by sintering ZnO and metallic Zn powders. Microstructure analysis combined with electrical conductivity studies indicated that when the proportion of metallic Zn reached a threshold (˜20 wt.%), a metal matrix was formed in accordance with percolation theory. This composite has potential as a sputtering target for deposition of high-quality ZnO. Use of the ZnO:Zn composite completely eliminates target poisoning effects in reactive sputtering of the metal, and enables deposition of thin ZnO films at rates much higher than those obtained by sputtering of pure ZnO ceramic targets. The optical transmittance of the ZnO films prepared by use of this composite is comparable with that of films produced by radio frequency sputtering of pure ZnO ceramic targets. The sputtering characteristics of the conductive ZnO:Zn composite target are reported, and possible mechanisms of the high rate of deposition are also discussed.

  9. Si nanostructures grown by picosecond high repetition rate pulsed laser deposition

    NASA Astrophysics Data System (ADS)

    Pervolaraki, M.; Komninou, Ph.; Kioseoglou, J.; Athanasopoulos, G. I.; Giapintzakis, J.

    2013-08-01

    One-step growth of n-doped Si nanostructures by picosecond ultra fast pulsed laser deposition at 1064 nm is reported for the first time. The structure and morphology of the Si nanostructures were characterized by X-ray diffraction, scanning electron microscopy and atomic force microscopy. Transmission electron microscopy studies revealed that the shape of the Si nanostructures depends on the ambient argon pressure. Fibrous networks, cauliflower formations and Si rectangular crystals grew when argon pressure of 300 Pa, 30 Pa and vacuum (10-3 Pa) conditions were used, respectively. In addition, the electrical resistance of the vacuum made material was investigated.

  10. High-rate chemical vapor deposition of diamond films by dc arc discharge in hydrogen-methane mixture gas

    NASA Astrophysics Data System (ADS)

    Jiang, Xiang-Liu; Zhang, Fang-Qing; Li, Jiang-Qi; Yang, Bin; Chen, Guang-Hua

    1990-12-01

    Polycrystalline diamond films with high growth-rate have been synthesized by dc arc discharge plasma CVD in a mixture gas of CH4 (1) and 112 (99). The diamond films are deposited on water-cooled silicon and molybdenum substrates at gaseous pressure of about 200 Torr. The typical arc discharge is performed at 200V and 4A while the hydrogen flow rate is about 3000 3500 sccm. The crystallinity of diamond films prepared are characterized by Xray differaction (XRD) Raman scattering spectroscopy and scanning electron microscopy (SEM). It is verified by XRD and Raman measurements that the synthesized diamond films are identified as natural cubic diamond structure and contain substantially no graphite or amorphous carbon. SEM photographs show that the crystal grain size reachs 60 80 im with good crystal habit and the average growth rate of diamond films deposited during 4 hours is about 40 - 60 pm/h. As shown by SEM photographs the diamond grain size obviously depends on the local nucleation density. 1.

  11. High rate reactive magnetron sputter deposition of Al-doped ZnO with unipolar pulsing and impedance control system

    SciTech Connect

    Nishi, Yasutaka; Hirohata, Kento; Tsukamoto, Naoki; Sato, Yasushi; Oka, Nobuto; Shigesato, Yuzo

    2010-07-15

    Al-doped ZnO (AZO) films were deposited on quartz glass substrates, unheated and heated to 200 deg. C, using reactive sputtering with a special feedback system of discharge impedance combined with midfrequency pulsing. A planar Zn-Al alloy target was connected to the switching unit, which was operated in a unipolar pulse mode. The oxidation of the target surface was precisely controlled by a feedback system for the entire O{sub 2} flow ratio including ''the transition region''. The deposition rate was about 10-20 times higher than that for films deposited by conventional sputtering using an oxide target. A deposition rate of AZO films of 390 nm/min with a resistivity of 3.8x10{sup -4} {Omega} cm and a transmittance in the visible region of 85% was obtained when the films were deposited on glass substrates heated to 200 deg. C with a discharge power of 4 kW.

  12. Highly effective synthesis of NiO/CNT nanohybrids by atomic layer deposition for high-rate and long-life supercapacitors.

    PubMed

    Yu, Lei; Wang, Guilong; Wan, Gengping; Wang, Guizhen; Lin, Shiwei; Li, Xinyue; Wang, Kan; Bai, Zhiming; Xiang, Yang

    2016-09-21

    In this work, we report an atomic layer deposition (ALD) method for the fabrication of NiO/CNT hybrid structures in order to improve electronic conductivity, enhance cycling stability and increase rate capability of NiO used as supercapacitor electrodes. A uniform NiO coating can be well deposited on carbon nanotubes (CNTs) through simultaneously employing O3 and H2O as oxidizing agents in a single ALD cycle of NiO for the first time, with a high growth rate of nearly 0.3 Å per cycle. The electrochemical properties of the as-prepared NiO/CNT were then investigated. The results show that the electrochemical capacitive properties are strongly associated with the thickness of the NiO coating. The NiO/CNT composite materials with 200 cycles of NiO deposition exhibit the best electrochemical properties, involving high specific capacitance (622 F g(-1) at 2 A g(-1), 2013 F g(-1) for NiO), excellent rate capability (74% retained at 50 A g(-1)) and outstanding cycling stability. The impressive results presented here suggest a great potential for the fabrication of composite electrode materials by atomic layer deposition applied in high energy density storage systems.

  13. High Efficiency and High Rate Deposited Amorphous Silicon-Based Solar Cells: Final Technical Report, 1 September 2001--6 March 2005

    SciTech Connect

    Deng, X.

    2006-01-01

    The objectives for the University of Toledo are to: (1) establish a transferable knowledge and technology base for fabricating high-efficiency triple-junction a-Si-based solar cells, and (2) develop high-rate deposition techniques for the growing a-Si-based and related alloys, including poly-Si, c-Si, a-SiGe, and a-Si films and photovoltaic devices with these materials.

  14. Visible-light active thin-film WO{sub 3} photocatalyst with controlled high-rate deposition by low-damage reactive-gas-flow sputtering

    SciTech Connect

    Oka, Nobuto Murata, Akiyo; Nakamura, Shin-ichi; Jia, Junjun; Shigesato, Yuzo; Iwabuchi, Yoshinori; Kotsubo, Hidefumi

    2015-10-01

    A process based on reactive gas flow sputtering (GFS) for depositing visible-light active photocatalytic WO{sub 3} films at high deposition rates and with high film quality was successfully demonstrated. The deposition rate for this process was over 10 times higher than that achieved by the conventional sputtering process and the process was highly stable. Furthermore, Pt nanoparticle-loaded WO{sub 3} films deposited by the GFS process exhibited much higher photocatalytic activity than those deposited by conventional sputtering, where the photocatalytic activity was evaluated by the extent of decomposition of CH{sub 3}CHO under visible light irradiation. The decomposition time for 60 ppm of CH{sub 3}CHO was 7.5 times more rapid on the films deposited by the GFS process than on the films deposited by the conventional process. During GFS deposition, there are no high-energy particles bombarding the growing film surface, whereas the bombardment of the surface with high-energy particles is a key feature of conventional sputtering. Hence, the WO{sub 3} films deposited by GFS should be of higher quality, with fewer structural defects, which would lead to a decrease in the number of centers for electron-hole recombination and to the efficient use of photogenerated holes for the decomposition of CH{sub 3}CHO.

  15. Fabrication of CeO 2 buffer layer with high deposition rate on biaxially textured Ni-3%W substrate by electron beam evaporation

    NASA Astrophysics Data System (ADS)

    Lee, J. B.; Park, S. K.; Kim, B. J.; Lee, H. J.; Kim, S. S.; Moon, S. H.; Lee, H. G.; Hong, G. W.

    2011-11-01

    CeO2 has been used as a buffer layer of a coated conductor because of good chemical and structural compatibility with YBCO. But cracks were often observed at the surface for films thicker than 100 nm deposited at a high temperature because of a large difference in a thermal expansion coefficient between metal and CeO2. The deposition rate was limited to be slow for getting good epitaxy. In order to increase the film deposition rate, while maintaining the epitaxy till a final thickness, two-step deposition process was tested. The thin seed layer with a thickness less than 10 nm was deposited with a deposition rate of 3 Å/s, and the homo-epitaxial layer at a thickness more than 240 nm was deposited at a deposition rate of 30 Å/s. The resulting CeO2 films deposited at 600 °C showed a good texture with a Δφ of 5.3°, Δω of 4.2° and Ra of 2.2 nm. The two-step process may be option for a low cost buffer layer for Ni-3%W metal substrates for the coated conductor.

  16. High Growth Rate Deposition of Hydrogenated Amorphous Silicon-Germanium Films and Devices Using ECR-PECVD

    SciTech Connect

    Liu, Yong

    2002-01-01

    Hydrogenated amorphous silicon germanium films (a-SiGe:H) and devices have been extensively studied because of the tunable band gap for matching the solar spectrum and mature the fabrication techniques. a-SiGe:H thin film solar cells have great potential for commercial manufacture because of very low cost and adaptability to large-scale manufacturing. Although it has been demonstrated that a-SiGe:H thin films and devices with good quality can be produced successfully, some issues regarding growth chemistry have remained yet unexplored, such as the hydrogen and inert-gas dilution, bombardment effect, and chemical annealing, to name a few. The alloying of the SiGe introduces above an order-of-magnitude higher defect density, which degrades the performance of the a-SiGe:H thin film solar cells. This degradation becomes worse when high growth-rate deposition is required. Preferential attachment of hydrogen to silicon, clustering of Ge and Si, and columnar structure and buried dihydride radicals make the film intolerably bad. The work presented here uses the Electron-Cyclotron-Resonance Plasma-Enhanced Chemical Vapor Deposition (ECR-PECVD) technique to fabricate a-SiGe:H films and devices with high growth rates. Helium gas, together with a small amount of H2, was used as the plasma species. Thickness, optical band gap, conductivity, Urbach energy, mobility-lifetime product, I-V curve, and quantum efficiency were characterized during the process of pursuing good materials. The microstructure of the a-(Si,Ge):H material was probed by Fourier-Transform Infrared spectroscopy. They found that the advantages of using helium as the main plasma species are: (1) high growth rate--the energetic helium ions break the reactive gas more efficiently than hydrogen ions; (2) homogeneous growth--heavy helium ions impinging on the surface promote the surface mobility of the reactive radicals, so that heteroepitaxy growth as clustering of Ge and Si, columnar structure are

  17. Atmospheric deposition to high-elevation forests

    SciTech Connect

    Lovett, G.M.; Weathers, K.C.; Lindberg, S.E. Oak Ridge National Lab., TN )

    1994-06-01

    Three important phenomena characterize atmospheric deposition to high-elevation forests: (1) multiple deposition mechanisms (wet, dry, and cloud deposition), (2) high rates of deposition, and (3) high spatial variability. The high rates of deposition are caused by changes in meteorological conditions with elevation, especially increasing wind speed and cloud immersion frequency. The high spatial variability of deposition is a result of the regulation of cloud and dry deposition rates by microclimatic and canopy structure conditions, which can be extremely heterogeneous in mountain landscapes. Spruce-fir forests are often [open quotes]hot spots[close quotes] of deposition when viewed in a landscape or regional context because of their elevation, exposure, and evergreen canopy. In this talk we will consider atmospheric depositions to high-elevation forests in both the northeastern and southeastern U.S., using field data and geographic information systems to illustrate deposition patterns.

  18. Surface Passivation of MoO₃ Nanorods by Atomic Layer Deposition toward High Rate Durable Li Ion Battery Anodes.

    PubMed

    Ahmed, B; Shahid, Muhammad; Nagaraju, D H; Anjum, D H; Hedhili, Mohamed N; Alshareef, H N

    2015-06-24

    We demonstrate an effective strategy to overcome the degradation of MoO3 nanorod anodes in lithium (Li) ion batteries at high-rate cycling. This is achieved by conformal nanoscale surface passivation of the MoO3 nanorods by HfO2 using atomic layer deposition (ALD). At high current density such as 1500 mA/g, the specific capacity of HfO2-coated MoO3 electrodes is 68% higher than that of bare MoO3 electrodes after 50 charge/discharge cycles. After 50 charge/discharge cycles, HfO2-coated MoO3 electrodes exhibited specific capacity of 657 mAh/g; on the other hand, bare MoO3 showed only 460 mAh/g. Furthermore, we observed that HfO2-coated MoO3 electrodes tend to stabilize faster than bare MoO3 electrodes because nanoscale HfO2 layer prevents structural degradation of MoO3 nanorods. Additionally, the growth temperature of MoO3 nanorods and the effect of HfO2 layer thickness was studied and found to be important parameters for optimum battery performance. The growth temperature defines the microstructural features and HfO2 layer thickness defines the diffusion coefficient of Li-ions through the passivation layer to the active material. Furthermore, ex situ high resolution transmission electron microscopy, X-ray photoelectron spectroscopy, Raman spectroscopy, and X-ray diffraction were carried out to explain the capacity retention mechanism after HfO2 coating.

  19. High-rate deposition of MgO by reactive ac pulsed magnetron sputtering in the transition mode

    SciTech Connect

    Kupfer, H.; Kleinhempel, R.; Richter, F.; Peters, C.; Krause, U.; Kopte, T.; Cheng, Y.

    2006-01-15

    A reactive ac pulsed dual magnetron sputtering process for MgO thin-film deposition was equipped with a closed-loop control of the oxygen flow rate (F{sub O2}) using the 285 nm magnesium radiation as input. Owing to this control, most of the unstable part of the partial pressure versus flowrate curve became accessible. The process worked steadily and reproducible without arcing. A dynamic deposition rate of up to 35 nm m/min could be achieved, which was higher than in the oxide mode by about a factor of 18. Both process characteristics and film properties were investigated in this work in dependence on the oxygen flow, i.e., in dependence on the particular point within the transition region where the process is operated. The films had very low extinction coefficients (<5x10{sup -5}) and refractive indices close to the bulk value. They were nearly stoichiometric with a slight oxygen surplus (Mg/O=48/52) which was independent of the oxygen flow. X-ray diffraction revealed a prevailing (111) orientation. Provided that appropriate rf plasma etching was performed prior to deposition, no other than the (111) peak could be detected. The intensity of this peak increased with increasing F{sub O{sub 2}}, indicating an even more pronounced (111) texture. The ion-induced secondary electron emission coefficient (iSEEC) was distinctly correlated with the markedness of the (111) preferential orientation. Both refractive index and (111) preferred orientation (which determines the iSEEC) were found to be improved in comparison with the MgO growth in the fully oxide mode. Consequently, working in the transition mode is superior to the oxide mode not only with respect to the growth rate, but also to most important film properties.

  20. Distributions of ionic concentrations and electric field around the three-phase contact at high rates of Langmuir-Blodgett deposition.

    PubMed

    Bondarenko, M P; Zholkovskiy, E K; Kovalchuk, V I; Vollhardt, D

    2006-02-02

    A mathematical problem is formulated and numerically solved for addressing the electric field and ionic concentration distributions developing around the three-phase contact line during the Langmuir-Blodgett deposition of charged monolayers. Compared to a previous paper dealing with the same effect (J. Phys. Chem. B 2004, 108, 13449), the present analysis is not restricted to the case of low deposition rates and small concentration changes. The obtained results show that, for sufficiently high deposition rates, the subphase composition substantially changes in the immediate vicinity of the three-phase contact line. It is shown that the predicted changes in the subphase composition can drastically affect the adhesion work and the dynamic contact angle. On this basis, the influence of the concentration polarization effect on meniscus behavior is discussed.

  1. Deposition of device quality, low hydrogen content, hydrogenated amorphous silicon at high deposition rates with increased stability using the hot wire filament technique

    DOEpatents

    Molenbroek, Edith C.; Mahan, Archie Harvin; Gallagher, Alan C.

    2000-09-26

    A method or producing hydrogenated amorphous silicon on a substrate, comprising the steps of: positioning the substrate in a deposition chamber at a distance of about 0.5 to 3.0 cm from a heatable filament in the deposition chamber; maintaining a pressure in said deposition chamber in the range of about 10 to 100 millitorr and pressure times substrate-filament spacing in the range of about 10 to 100 millitorr-cm, heating the filament to a temperature in the range of about 1,500 to 2,000.degree. C., and heating the substrate to a surface temperature in the range of about 280 to 475.degree. C.; and flowing silicohydride gas into the deposition chamber with said heated filament, decomposing said silicohydride gas into silicon and hydrogen atomic species and allowing products of gas reactions between said atomic species and the silicohydride gas to migrate to and deposit on said substrate while adjusting and maintaining said pressure times substrate-filament spacing in said deposition chamber at a value in said 10 to 100 millitorr range to produce statistically about 3 to 50 atomic collisions between the silicon and hydrogen atomic species migrating to said substrate and undecomposed molecules of the silane or other silicohydride gas in the deposition chamber.

  2. Deposition rates of oxidized iron on Mars

    NASA Technical Reports Server (NTRS)

    Burns, R. G.

    1993-01-01

    The reddened oxidized surface of Mars is indicative of temporal interactions between the Martian atmosphere and its surface. During the evolution of the Martian regolith, primary ferromagnesian silicate and sulfide minerals in basaltic rocks apparently have been oxidized to secondary ferric-bearing assemblages. To evaluate how and when such oxidized deposits were formed on Mars, information about the mechanisms and rates of chemical weathering of Fe(2+)-bearing minerals has been determined. In this paper, mechanisms and rates of deposition of ferric oxide phases on the Martian surface are discussed.

  3. Efficient Flame Retardant Thin Films Synthesized by Atmospheric Pressure PECVD through the High Co-deposition Rate of Hexamethyldisiloxane and Triethylphosphate on Polycarbonate and Polyamide-6 Substrates.

    PubMed

    Hilt, Florian; Gherardi, Nicolas; Duday, David; Berné, Aurélien; Choquet, Patrick

    2016-05-18

    An innovative approach to produce high-performance and halogen-free flame-retardant thin films at atmospheric pressure is reported. PDMS-based coatings with embedded dopant-rich polyphosphates are elaborated thanks to a straightforward approach, using an atmospheric pressure dielectric barrier discharge (AP-DBD). Deposition conditions have been tailored to elaborate various thin films that can match the fire performance requirements. Morphology, chemical composition, and structure are investigated, and results show that the coatings performances are increased by taking advantage of the synergistic effect of P and Si flame retardant compounds. More specifically, this study relates the possibility to obtain flame retardant properties on PolyCarbonate and PolyAmide-6 thanks to their covering by a 5 μm thick coating, i.e. very thin films for this field of application, yet quite substantial for plasma processes. Hence, this approach enables deposition of flame retardant coatings onto different polymer substrates, providing a versatile fireproofing solution for different natures of polymer substrates. The presence of an expanded charred layer at the surface acts as a protective barrier limiting heat and mass transfer. This latter retains and consumes a part of the PC or PA-6 degradation byproducts and then minimizes the released flammable gases. It may also insulate the substrate from the flame and limit mass transfers of remaining volatile gases. Moreover, reactions in the condensed phase have also been highlighted despite the relatively thin thickness of the deposited layers. As a result of these phenomena, excellent performances are obtained, illustrated by a decrease of the peak of the heat release rate (pHRR) and an increase of the time to ignition (TTI).

  4. Deposition Rates and Characterization of Arabian Mineral Dust

    NASA Astrophysics Data System (ADS)

    Puthan Purakkal, J.; Stenchikov, G. L.; Engelbrecht, J. P.

    2015-12-01

    Airborne mineral dust directly and indirectly impacts on global climate, continental and marine biochemistry, human and animal health, agriculture, equipment, and visibility. Annual global dust emissions are poorly known with estimates differing by a factor of at least two. Local dust emission and deposition rates are even less quantified. Dust deposition rate is a key parameter, which helps to constrain the modeled dust budget of the atmosphere. However, dust deposition remains poorly known, due to the limited number of reliable measurements. Simulations and satellite observations suggest that coastal dusts contribute substantially to the total deposition flux into the Red Sea. Starting December 2014, deposition samplers, both the "frisbee" type, and passive samplers for individual particle scanning electron microscopy were deployed at King Abdullah University of Science and Technology (KAUST), along the Red Sea in Saudi Arabia. Sampling periods of one month were adopted. The deposition rates range from 3 g m-2 month-1 for fair weather conditions to 23 g m-2 month-1 for high dust events. The X-ray diffraction (XRD) analyses of deposited dust samples show mineralogical compositions different from any of the parent soils, the former consisting mainly of gypsum, calcite, and smaller amounts of albite, montmorillonite, chlorite, quartz and biotite. The deposited dust samples on the other hand contain more gypsum and less quartz than the previously collected soil samples. This presentation discusses the results from XRD, chemical analysis and SEM-based individual particle analysis of the soils and the deposited dust samples. The monthly dust accumulation rates and their seasonal and spatial variability are compared with the regional model predictions. Data from this study provide an observational basis for validating the regional dust mass balance along the Arabian Red Sea coastal plain.

  5. Increasing the Deposition Rate of Silicon

    NASA Technical Reports Server (NTRS)

    Lutwack, R.; Yamakawa, K. A.

    1986-01-01

    Modified Siemens reactor enables chemical vapor deposition (CVD) of silicon to occur simultaneously on inner and outer surfaces of hollow cylinder, resulting in increase in mass of silicon deposited per unit time. Outer reactor for silicon deposition made from quartz or stainless steel. Hollow cylinder either single resistance-heated hollow cylinder about 5 to 10 cm or greater in diameter or 1-cm-diameter rods aligned in circular channels at top and bottom, initial circles being 5 to 10 cm in diameter or greater.

  6. Effect of substrate temperature on deposition rate of rf plasma-deposited hydrogenated amorphous silicon thin films

    NASA Astrophysics Data System (ADS)

    Andújar, J. L.; Bertran, E.; Canillas, A.; Campmany, J.; Morenza, J. L.

    1991-03-01

    We present a study about the influence of substrate temperature on deposition rate of hydrogenated amorphous silicon thin films prepared by rf glow discharge decomposition of pure silane gas in a capacitively coupled plasma reactor. Two different behaviors are observed depending on deposition pressure conditions. At high pressure (30 Pa) the influence of substrate temperature on deposition rate is mainly through a modification of gas density, in such a way that the substrate temperature of deposition rate is similar to pressure dependence at constant temperature. On the contrary, at low pressure (3 Pa), a gas density effect cannot account for the observed increase of deposition rate as substrate temperature rises above 450 K with an activation energy of 1.1 kcal/mole. In accordance with laser-induced fluorescence measurements reported in the literature, this rise has been ascribed to an increase of secondary electron emission from the growing film surface as a result of molecular hydrogen desorption.

  7. Sediment accumulation rates and high-resolution stratigraphy of recent fluvial suspension deposits in various fluvial settings, Morava River catchment area, Czech Republic

    NASA Astrophysics Data System (ADS)

    Sedláček, Jan; Bábek, Ondřej; Kielar, Ondřej

    2016-02-01

    We present a comprehensive study concerning sedimentary processes in fluvial sediment traps within the Morava River catchment area (Czech Republic) involving three dammed reservoirs, four meanders and oxbow lakes, and several natural floodplain sites. The objective of the study was to determine sediment accumulation rates (SAR), estimate erosion rates, calculating these using a combination of the 137Cs method and historical data. Another purpose of this study was to provide insight into changing erosion and accumulation rates over the last century. Extensive water course modifications were carried out in the Morava River catchment area during the twentieth century, which likely affected sedimentation rates along the river course. Other multiproxy stratigraphic methods (X-ray densitometry, magnetic susceptibility, and visible-light reflectance spectrometry) were applied to obtain additional information about sediment infill. Sediment stratigraphy revealed distinct distal-to-proximal patterns, especially in reservoirs. Granulometrically, silts and sandy silts prevailed in sediments. Oxbow lakes and meanders contained larger amounts of clay and organic matter, which is the main difference between them and reservoirs. Pronounced 137Cs peaks were recorded in all studied cores (maximum 377 Bq·kg- 1), thus indicating Chernobyl fallout from 1986 or older events. Calculated sediment accumulation rates were lowest in distal parts of reservoirs (0.13-0.58 cm/y) and floodplains (0.45-0.88 cm/y), moderately high rates were found in proximal parts of reservoirs and oxbow lakes (2.27-4.4 cm/y), and the highest rates in some oxbow lakes located near the river (6-8 cm/y). The frequency of the inundation still can be high in some natural areas as in the Litovelské Pomoraví protected area, whereas the decreasing frequency of the inundation in other modified parts can contribute to a lower sedimentation rate. The local effects such as difference between SARs in oxbow lakes and

  8. Effects of growth temperature and target material on the growth behavior and electro-optical properties of ZnO:Al films deposited by high-rate steered cathodic arc plasma evaporation

    NASA Astrophysics Data System (ADS)

    Liang, Chih-Hao; Hwang, Weng-Sing; Wang, Wei-Lin

    2015-04-01

    ZnO:Al (AZO) films were deposited using high-rate (215 nm/min) steered cathodic arc plasma evaporation with a ceramic AZO target at various deposition temperatures (Td = 80-400 °C). AZO films were also prepared with a Zn-Al target at various Td values for comparison. The high-melting-point (1975 °C) AZO target significantly reduced the droplet size to ∼150 nm. In contrast, opaque Zn-Al microdroplets (several μm) were incorporated into the film deposited using the Zn-Al target. The incorporation of large microdroplets resulted in a rough surface and a nonuniform distribution of film thickness due to the self-shadowing effect. Using a combination of a ceramic AZO target and a steered arc to deposit AZO films significantly reduces the droplet size and maintains a high growth rate. The ratio of c- and a-axes lattice constants (c/a ratio) decreased with increasing Td. A higher c/a ratio facilitates strain relaxation via the formation of basal-plane stacking faults. The Al3+ doping efficiency was improved by increasing Td; however, the Al segregated to the grain boundary at high Td (>300 °C). The films deposited with an AZO target at 200 °C had the highest figure of merit (2.21 × 10-2 Ω-1), with a corresponding average transmittance of 87.7% and resistivity of 5.48 × 10-4 Ω cm.

  9. Analysis of the rate of wildcat drilling and deposit discovery

    USGS Publications Warehouse

    Drew, L.J.

    1975-01-01

    The rate at which petroleum deposits were discovered during a 16-yr period (1957-72) was examined in relation to changes in a suite of economic and physical variables. The study area encompasses 11,000 mi2 and is located on the eastern flank of the Powder River Basin. A two-stage multiple-regression model was used as a basis for this analysis. The variables employed in this model were: (1) the yearly wildcat drilling rate, (2) a measure of the extent of the physical exhaustion of the resource base of the region, (3) a proxy for the discovery expectation of the exploration operators active in the region, (4) an exploration price/cost ratio, and (5) the expected depths of the exploration targets sought. The rate at which wildcat wells were drilled was strongly correlated with the discovery expectation of the exploration operators. Small additional variations in the wildcat drilling rate were explained by the price/cost ratio and target-depth variables. The number of deposits discovered each year was highly dependent on the wildcat drilling rate, but the aggregate quantity of petroleum discovered each year was independent of the wildcat drilling rate. The independence between these last two variables is a consequence of the cyclical behavior of the exploration play mechanism. Although the discovery success ratio declined sharply during the initial phases of the two exploration plays which developed in the study area, a learning effect occurred whereby the discovery success ratio improved steadily with the passage of time during both exploration plays. ?? 1975 Plenum Publishing Corporation.

  10. Measurements of the deposition rates of radon daughters on indoor surfaces

    SciTech Connect

    Toohey, R.E.; Essling, M.A.; Rundo, J.; Hengde, W.

    1983-01-01

    The deposition rates of radon daughters on indoor surfaces have been measured by exposing the window of a proportional counter to the air of a house with high concentrations of radon and its daughters. Deposition velocities for unattached RaA and RaB of approximately 4 mm sec/sup -1/ were obtained by dividing the deposition rates by the concentrations of unattached daughters in the air. These results agree with those obtained by other workers but are dependent on the assumptions made about the fractions of the daughters which are attached to the atmospheric aerosol.

  11. Modelling airborne concentration and deposition rate of maize pollen

    NASA Astrophysics Data System (ADS)

    Jarosz, Nathalie; Loubet, Benjamin; Huber, Laurent

    2004-10-01

    The introduction of genetically modified (GM) crops has reinforced the need to quantify gene flow from crop to crop. This requires predictive tools which take into account meteorological conditions, canopy structure as well as pollen aerodynamic characteristics. A Lagrangian Stochastic (LS) model, called SMOP-2D (Stochastic Mechanistic model for Pollen dispersion and deposition in 2 Dimensions), is presented. It simulates wind dispersion of pollen by calculating individual pollen trajectories from their emission to their deposition. SMOP-2D was validated using two field experiments where airborne concentration and deposition rate of pollen were measured within and downwind from different sized maize (Zea mays) plots together with micrometeorological measurements. SMOP-2D correctly simulated the shapes of the concentration profiles but generally underestimated the deposition rates in the first 10 m downwind from the source. Potential explanations of this discrepancy are discussed. Incorrect parameterisation of turbulence in the transition from the crop to the surroundings is probably the most likely reason. This demonstrates that LS models for particle transfer need to be coupled with air-flow models under complex terrain conditions.

  12. Energy deposition rates by charged particles. [in upper atmosphere

    NASA Technical Reports Server (NTRS)

    Torkar, K. M.; Urban, A.; Bjordal, J.; Lundblad, J. A.; Soraas, F.; Smith, L. G.; Dumbs, A.; Grandal, B.; Ulwick, J. C.; Vancour, R. P.

    1985-01-01

    A summary of measurements of the precipitation of electrons and positive ions (in the keV-MeV range) detected aboard eight rockets launched within the Energy Budget Campaign from Northern Scandinavia is given, together with corresponding satellite data. In some cases strong temporal variations of the downgoing integral fluxes were observed. The fluxes provide the background for the calculated ion production rates and altitude profiles of the energy deposition into the atmosphere at different levels of geomagnetic disturbance and cosmic noise absorption. The derived ion production rates by eneretic particles are compared to other night-time ionisation sources.

  13. Epitaxial growth of GaN by radical-enhanced metalorganic chemical vapor deposition (REMOCVD) in the downflow of a very high frequency (VHF) N2/H2 excited plasma - effect of TMG flow rate and VHF power

    NASA Astrophysics Data System (ADS)

    Lu, Yi; Kondo, Hiroki; Ishikawa, Kenji; Oda, Osamu; Takeda, Keigo; Sekine, Makoto; Amano, Hiroshi; Hori, Masaru

    2014-04-01

    Gallium nitride (GaN) films have been grown by using our newly developed Radical-Enhanced Metalorganic Chemical Vapor Deposition (REMOCVD) system. This system has three features: (1) application of very high frequency (60 MHz) power in order to increase the plasma density, (2) introduction of H2 gas together with N2 gas in the plasma discharge region to generate not only nitrogen radicals but also active NHx molecules, and (3) radical supply under remote plasma arrangement with suppression of charged ions and photons by employing a Faraday cage. Using this new system, we have studied the effect of the trimethylgallium (TMG) source flow rate and of the plasma generation power on the GaN crystal quality by using scanning electron microscopy (SEM) and double crystal X-ray diffraction (XRD). We found that this REMOCVD allowed the growth of epitaxial GaN films of the wurtzite structure of (0001) orientation on sapphire substrates with a high growth rate of 0.42 μm/h at a low temperature of 800 °C. The present REMOCVD is a promising method for GaN growth at relatively low temperature and without using costly ammonia gas.

  14. High rate PLD of diamond-like-carbon utilizing high repetition rate visible lasers

    SciTech Connect

    McLean, W. II; Fehring, E.J.; Dragon, E.P.; Warner, B.E.

    1994-09-15

    Pulsed Laser Deposition (PLD) has been shown to be an effective method for producing a wide variety of thin films of high-value-added materials. The high average powers and high pulse repetition frequencies of lasers under development at LLNL make it possible to scale-up PLD processes that have been demonstrated in small systems in a number of university, government, and private laboratories to industrially meaningful, economically feasible technologies. A copper vapor laser system at LLNL has been utilized to demonstrate high rate PLD of high quality diamond-like-carbon (DLC) from graphite targets. The deposition rates for PLD obtained with a 100 W laser were {approx} 2000 {mu}m{center_dot}cm{sup 2}/h, or roughly 100 times larger than those reported by chemical vapor deposition (CVD) or physical vapor deposition (PVD) methods. Good adhesion of thin (up to 2 pm) films has been achieved on a small number of substrates that include SiO{sub 2} and single crystal Si. Present results indicate that the best quality DLC films can be produced at optimum rates at power levels and wavelengths compatible with fiber optic delivery systems. If this is also true of other desirable coating systems, this PLD technology could become an extremely attractive industrial tool for high value added coatings.

  15. Solid deposit-induced high temperature oxidation

    NASA Astrophysics Data System (ADS)

    Jung, Keeyoung

    The present study is aimed at investigating the high temperature oxidation induced by ash deposition from use of alternative fuels. The alloys and coatings being studied are typical of those used in current power generating gas turbines, as well as those that may be used in advanced systems. To achieve this objective, the alloys Rene' N5, GTD 111, and IN 738 as well as these alloys coated with platinum aluminide and CoNiCrAlY were exposed to conditions relevant to corrosion induced by using alternative fuels. The test conditions representative of deposits from use of alternative fuels were selected based upon initial experiments that involved testing the alloy Rene' N5 with a platinum aluminide coating at 750°C, 950°C, and 1150°C in a variety of environments with deposits of CaO, CaSO4, and Na 2SO4. Based upon the results from such tests, a temperature (950°C) and a deposit (CaO) were selected for the further experiments to compare the corrosion characteristics of all of the alloys and coatings. At 950°C with deposits of CaO, which are the selected experimental conditions obtained from the preliminary tests, accelerated cyclic oxidation experiments were performed with all uncoated and coated superalloys in extra dry air and wet ( pH2O = 0.1 atm) air to compare corrosion characteristics of each with one another. Experimental details will be described followed by the presentation of experimental results and discussion. Additionally, uncoated GTD 111 specimens were exposed to different contaminants and moisture level environments to study the effect of contaminant level and water vapor pressure on CaO-induced degradation. Then, CaO deposits were coated on thermal barrier coatings (TBCs) and specimens with TBCs were exposed to the cyclic oxidation environments. The effects of deposits other than CaO, such as Fe2O3 and SiO2, on the oxidation characteristics of the specimens were also investigated. Finally, a mechanism for high temperature oxidation induced by Ca

  16. High Rate Digital Demodulator ASIC

    NASA Technical Reports Server (NTRS)

    Ghuman, Parminder; Sheikh, Salman; Koubek, Steve; Hoy, Scott; Gray, Andrew

    1998-01-01

    The architecture of High Rate (600 Mega-bits per second) Digital Demodulator (HRDD) ASIC capable of demodulating BPSK and QPSK modulated data is presented in this paper. The advantages of all-digital processing include increased flexibility and reliability with reduced reproduction costs. Conventional serial digital processing would require high processing rates necessitating a hardware implementation in other than CMOS technology such as Gallium Arsenide (GaAs) which has high cost and power requirements. It is more desirable to use CMOS technology with its lower power requirements and higher gate density. However, digital demodulation of high data rates in CMOS requires parallel algorithms to process the sampled data at a rate lower than the data rate. The parallel processing algorithms described here were developed jointly by NASA's Goddard Space Flight Center (GSFC) and the Jet Propulsion Laboratory (JPL). The resulting all-digital receiver has the capability to demodulate BPSK, QPSK, OQPSK, and DQPSK at data rates in excess of 300 Mega-bits per second (Mbps) per channel. This paper will provide an overview of the parallel architecture and features of the HRDR ASIC. In addition, this paper will provide an over-view of the implementation of the hardware architectures used to create flexibility over conventional high rate analog or hybrid receivers. This flexibility includes a wide range of data rates, modulation schemes, and operating environments. In conclusion it will be shown how this high rate digital demodulator can be used with an off-the-shelf A/D and a flexible analog front end, both of which are numerically computer controlled, to produce a very flexible, low cost high rate digital receiver.

  17. Influence of solution deposition rate on properties of V2O5 thin films deposited by spray pyrolysis technique

    NASA Astrophysics Data System (ADS)

    Abd-Alghafour, N. M.; Ahmed, Naser M.; Hassan, Zai; Mohammad, Sabah M.

    2016-07-01

    Vanadium oxide (V2O5) thin films were deposited on glass substrates by using a cost-efficient spray pyrolysis technique. The films were grown at 350° through thermal decomposition of VCl3 in deionized water with different solution spray rates. The high resolution X-ray diffraction results revealed the formation of nanocrystalline films having orthorhombic structures with preferential orientation along (101) direction. The spray rate influenced the surface morphology and crystallite size of the films. The crystallite size was found to increase whereas the micro-strain was decreased by increasing the spray deposition rates. The increase in crystallite size and decrease in the macrostrain resulted in an improvement in the films' crystallinity. The UV-Visible spectroscopy analysis indicated that the average transmittance of all films lies in the range 75-80 %. The band gap of V2O5 film was decreased from 2.65 to 2.46 eV with increase of the spray deposition rate from 5 ml/min to 10 ml/min. first, second, and third level headings (first level heading).

  18. Modeling the influence of incident angle and deposition rate on a nanostructure grown by oblique angle deposition

    NASA Astrophysics Data System (ADS)

    Li, Kun-Dar; Dong, Yu-Wei

    2017-02-01

    In this study, numerical approaches were applied to theoretically investigate the influence of process parameters, such as the incident angle and the deposition rate, on the nanostructural formation of thin films by oblique angle deposition (OAD). A continuum model was first developed, and the atomic diffusion, shadowing effect and steering effect were incorporated in the formation mechanisms of the surface morphology and nanostructure of the deposited films. A characteristic morphology of columnar nanorods corresponding to an OAD was well reproduced through this kinetic model. With the increase of the incident angle, the shadowing effect played a significant role in the columnar structures and the ratio of the surface area to volume was raised, implying a high level of voids in the nanostructures. When the deposition rate decreased, the porosity was notably suppressed due to the atomic diffusion in the growth process. These simulation results coincide well with many experimental observations. With the manipulation of the numerical simulations, the underlying mechanisms of the morphological formation during OAD were revealed, which also provided plentiful information to stimulate the process designs for manufacturing advanced materials.

  19. High Rate GPS on Volcanoes

    NASA Astrophysics Data System (ADS)

    Mattia, M.

    2005-12-01

    The high rate GPS data processing can be considered as the "new deal" in geodetic monitoring of active volcanoes. Before an eruption, infact, transient episodes of ground displacements related to the dynamics of magmatic fluids can be revealed through a careful analysis of high rate GPS data. In the very first phases of an eruption the real time processing of high rate GPS data can be used by the authorities of Civil Protection to follow the opening of fractures field on the slopes of the volcanoes. During an eruption large explosions, opening of vents, migration of fractures fields, landslides and other dangerous phenomena can be followed and their potential of damage estimated by authorities. Examples from the recent eruption of Stromboli volcano and from the current activities of high rate GPS monitoring on Mt. Etna are reported, with the aim to show the great potential and the perspectives of this technique.

  20. Carbon dioxide-induced homogeneous deposition of nanometer-sized cobalt ferrite (CoFe2O4) on graphene as high-rate and cycle-stable anode materials for lithium-ion batteries

    NASA Astrophysics Data System (ADS)

    Wang, Lingyan; Zhuo, Linhai; Zhang, Chao; Zhao, Fengyu

    2015-02-01

    In the preparation of metal oxide composite materials, the common organic solvents limit the homogenous dispersion of guest component on substrate for their high viscosity, surface tension and low diffusivity. Herein, we take advantage of the unique properties of supercritical carbon dioxide (scCO2) to successfully deposit uniform CoFe2O4 nanoparticles (CFO NPs) on the surface of graphene without need of surfactants or precipitants. The obtained CFO NPs are 8-10 nm in size and homogeneously anchored on graphene sheets as spacers to reduce the degree of graphene restacking. Additionally, the effects of pressure and solvent on the crystallinity, dispersion and particle size of the NPs are discussed. The CFO@G-CE composite synthesized in scCO2-expanded ethanol exhibits excellent cyclability and significantly improved rate capability than the CFO@G-E in pure ethanol and CFO@G-NE in the mixture of high pressure nitrogen and ethanol. It is certified, by the structural and morphological analyses of the intermediates and phase observations, that the reaction medium greatly affects the dispersion and size of the particles, and thus influences their electrochemical performances. The proposed strategy is shortcut (reaction time: 2 h) and effective in execution, hence, we hope that the presented strategy would encourage further studies on other hybrid nanomaterials fabrication.

  1. A high temperature, plasma-assisted chemical vapor deposition system

    SciTech Connect

    Brusasco, R.M.; Britten, J.A.; Thorsness, C.B.; Scrivener, M.S.; Unites, W.G.; Campbell, J.H. ); Johnson, W.L. )

    1990-02-01

    We have designed and built a high-temperature, plasma-assisted, chemical vapor deposition system to deposit multilayer optical coatings of SiO{sub 2} and doped-SiO{sub 2} flat substrates. The coater concept and design is an outgrowth of our recent work with Schott Glasswerke demonstrating the use of plasma assisted CVD to prepare very high damage threshold optical coatings. The coater is designed to deposit up to several thousand alternating quarterwave layers of SiO{sub 2} and doped SiO{sub 2} substrate at deposition rates up to several microns per minute. The substrate is resistively heated to about 1000{degree}C during the deposition phase of the process. The plasma is driven by a 13.56 MHz RF unit capable of producing power densities of up to 140 W cm{sup {minus}3} in the reaction zone. The coater is designed to be adaptable to microwave generated plasmas, as well as RF. Reactant gas flow rates of up to 10 slm can be achieved at a 10 tar operating pressure. Reactants consist of O{sub 2}, SiCl{sub 4} and a volatile halogenated dopant. These gases react in the plasma volume producing SiO{sub 2} with dopant concentrations of up to a few percent. A variable dopant concentration is used to produce index differences between adjacent optical layers.

  2. TEST METHODS TO CHARACTERIZE PARTICULATE MATTER EMISSIONS AND DEPOSITION RATES IN A RESEARCH HOUSE

    EPA Science Inventory

    The paper discusses test methods to characterize particulate matter (PM) emissions and deposition rates in a research house. In a room in the research house, specially configured for PM source testing, a high-efficiency particulate air (HEPA)-filtered air supply system, used for...

  3. High temperature electrochemical corrosion rate probes

    SciTech Connect

    Bullard, Sophie J.; Covino, Bernard S., Jr.; Holcomb, Gordon R.; Ziomek-Moroz, M.

    2005-09-01

    Corrosion occurs in the high temperature sections of energy production plants due to a number of factors: ash deposition, coal composition, thermal gradients, and low NOx conditions, among others. Electrochemical corrosion rate (ECR) probes have been shown to operate in high temperature gaseous environments that are similar to those found in fossil fuel combustors. ECR probes are rarely used in energy production plants at the present time, but if they were more fully understood, corrosion could become a process variable at the control of plant operators. Research is being conducted to understand the nature of these probes. Factors being considered are values selected for the Stern-Geary constant, the effect of internal corrosion, and the presence of conductive corrosion scales and ash deposits. The nature of ECR probes will be explored in a number of different atmospheres and with different electrolytes (ash and corrosion product). Corrosion rates measured using an electrochemical multi-technique capabilities instrument will be compared to those measured using the linear polarization resistance (LPR) technique. In future experiments, electrochemical corrosion rates will be compared to penetration corrosion rates determined using optical profilometry measurements.

  4. Disilane as a growth rate catalyst of plasma deposited microcrystalline silicon thin films

    NASA Astrophysics Data System (ADS)

    Dimitrakellis, P.; Kalampounias, A. G.; Spiliopoulos, N.; Amanatides, E.; Mataras, D.; Lahootun, V.; Coeuret, F.; Madec, A.

    2016-07-01

    The effect of small disilane addition on the gas phase properties of silane-hydrogen plasmas and the microcrystalline silicon thin films growth is presented. The investigation was conducted in the high pressure regime and for constant power dissipation in the discharge with the support of plasma diagnostics, thin film studies and calculations of discharge microscopic parameters and gas dissociation rates. The experimental data and the calculations show a strong effect of disilane on the electrical properties of the discharge in the pressure window from 2 to 3 Torr that is followed by significant raise of the electron number density and the drop of the sheaths electric field intensity. Deposition rate measurements show an important four to six times increase even for disilane mole fractions as low as 0.3 %. The deposition rate enhancement was followed by a drop of the material crystalline volume fraction but films with crystallinity above 40 % were deposited with different combinations of total gas pressure, disilane and silane molar ratios. The enhancement was partly explained by the increase of the electron impact dissociation rate of silane which rises by 40% even for 0.1% disilane mole fraction. The calculations of the gas usage, the dissociation and the deposition efficiencies show that the beneficial effect on the growth rate is not just the result of the increase of Si-containing molecules density but significant changes on the species participating to the deposition and the mechanism of the film growth are caused by the disilane addition. The enhanced participation of the highly sticking to the surface radical such as disilylene, which is the main product of disilane dissociation, was considered as the most probable reason for the significant raise of the deposition efficiency. The catalytic effect of such type of radical on the surface reactivity of species with lower sticking probability is further discussed, while it is also used to explain the restricted

  5. High Data Rate Instrument Study

    NASA Technical Reports Server (NTRS)

    Schober, Wayne; Lansing, Faiza; Wilson, Keith; Webb, Evan

    1999-01-01

    The High Data Rate Instrument Study was a joint effort between the Jet Propulsion Laboratory (JPL) and the Goddard Space Flight Center (GSFC). The objectives were to assess the characteristics of future high data rate Earth observing science instruments and then to assess the feasibility of developing data processing systems and communications systems required to meet those data rates. Instruments and technology were assessed for technology readiness dates of 2000, 2003, and 2006. The highest data rate instruments are hyperspectral and synthetic aperture radar instruments which are capable of generating 3.2 Gigabits per second (Gbps) and 1.3 Gbps, respectively, with a technology readiness date of 2003. These instruments would require storage of 16.2 Terebits (Tb) of information (RF communications case of two orbits of data) or 40.5 Tb of information (optical communications case of five orbits of data) with a technology readiness date of 2003. Onboard storage capability in 2003 is estimated at 4 Tb; therefore, all the data created cannot be stored without processing or compression. Of the 4 Tb of stored data, RF communications can only send about one third of the data to the ground, while optical communications is estimated at 6.4 Tb across all three technology readiness dates of 2000, 2003, and 2006 which were used in the study. The study includes analysis of the onboard processing and communications technologies at these three dates and potential systems to meet the high data rate requirements. In the 2003 case, 7.8% of the data can be stored and downlinked by RF communications while 10% of the data can be stored and downlinked with optical communications. The study conclusion is that only 1 to 10% of the data generated by high data rate instruments will be sent to the ground from now through 2006 unless revolutionary changes in spacecraft design and operations such as intelligent data extraction are developed.

  6. Role of Sputter Deposition Rate in Tailoring Nanogranular Gold Structures on Polymer Surfaces.

    PubMed

    Schwartzkopf, Matthias; Hinz, Alexander; Polonskyi, Oleksandr; Strunskus, Thomas; Löhrer, Franziska C; Körstgens, Volker; Müller-Buschbaum, Peter; Faupel, Franz; Roth, Stephan V

    2017-02-15

    The reproducible low-cost fabrication of functional polymer-metal interfaces via self-assembly is of crucial importance in organic electronics and organic photovoltaics. In particular, submonolayer and nanogranular systems expose highly interesting electrical, plasmonic, and catalytic properties. The exploitation of their great potential requires tailoring of the structure on the nanometer scale and below. To obtain full control over the complex nanostructural evolution at the polymer-metal interface, we monitor the evolution of the metallic layer morphology with in situ time-resolved grazing-incidence small-angle X-ray scattering during sputter deposition. We identify the impact of different deposition rates on the growth regimes: the deposition rate affects primarily the nucleation process and the adsorption-mediated growth, whereas rather small effects on diffusion-mediated growth processes are observed. Only at higher rates are initial particle densities higher due to an increasing influence of random nucleation, and an earlier onset of thin film percolation occurs. The obtained results are discussed to identify optimized morphological parameters of the gold cluster ensemble relevant for various applications as a function of the effective layer thickness and deposition rate. Our study opens up new opportunities to improve the fabrication of tailored metal-polymer nanostructures for plasmonic-enhanced applications such as organic photovoltaics and sensors.

  7. Aeolian dust deposition rates in Northern French forests and inputs to their biogeochemical cycles

    NASA Astrophysics Data System (ADS)

    Lequy, Émeline; Legout, Arnaud; Conil, Sébastien; Turpault, Marie-Pierre

    2013-12-01

    This study describes the Aeolian dust deposition (ADD) in 4 sites of Northern France. Between December 2009 and March 2012, we sampled (i) Aeolian dust every four weeks, and (ii) 6 episodes of forecasted high atmospheric dust load mainly from the Saharan desert, the largest source of Aeolian dust in the world. These samples were treated with oxygen peroxide to remove organic matter so as to only compare the mineral fraction of the samples in the 4 sampling sites and to analyze their mineralogy. The solid samples contained the hardly soluble part of Aeolian dust (H-ADD). Its deposition was of 1.9 ± 0.3 g m-2 year-1 with a seasonal pattern of high deposition from spring to early autumn and a low deposition in winter. H-ADD deposition during the forecasted episodes of high atmospheric load did not systematically exceed the deposition rate during the rest of the sampling period. This indicates that such episodes little contributed to the annual H-ADD rate. The mineralogy revealed a heterogeneous set of minerals dominated by silicates with a common basis of major types (quartz, feldspars, mica, chlorite, kaolinite and interlayered clay minerals in every sample) with randomly trace minerals (Fe-oxides, sulfates, amphibole, talc, gibbsite and carbonates). The chemistry of H-ADD led to a dominant input of Si (up to 4.4 kg ha-1 year-1), while the nutrients inputs of Ca, K, Mg and P from ADD and the atmospheric organics (APD) in openfield were together of 1.5 ± 0.5 kg ha-1 year-1 with a high contribution of soluble minerals and organic matter of ca. 40% for Mg and K, and of ca. 80% for Ca and P. Nutrient inputs from APD are especially an interesting source of P for forests developed on acidic soils.

  8. High Data Rate Quantum Cryptography

    NASA Astrophysics Data System (ADS)

    Kwiat, Paul; Christensen, Bradley; McCusker, Kevin; Kumor, Daniel; Gauthier, Daniel

    2015-05-01

    While quantum key distribution (QKD) systems are now commercially available, the data rate is a limiting factor for some desired applications (e.g., secure video transmission). Most QKD systems receive at most a single random bit per detection event, causing the data rate to be limited by the saturation of the single-photon detectors. Recent experiments have begun to explore using larger degree of freedoms, i.e., temporal or spatial qubits, to optimize the data rate. Here, we continue this exploration using entanglement in multiple degrees of freedom. That is, we use simultaneous temporal and polarization entanglement to reach up to 8.3 bits of randomness per coincident detection. Due to current technology, we are unable to fully secure the temporal degree of freedom against all possible future attacks; however, by assuming a technologically-limited eavesdropper, we are able to obtain 23.4 MB/s secure key rate across an optical table, after error reconciliation and privacy amplification. In this talk, we will describe our high-rate QKD experiment, with a short discussion on our work towards extending this system to ship-to-ship and ship-to-shore communication, aiming to secure the temporal degree of freedom and to implement a 30-km free-space link over a marine environment.

  9. Impact of deposition-rate fluctuations on thin-film thickness and uniformity

    SciTech Connect

    Oliver, Joli B.

    2016-11-04

    Variations in deposition rate are superimposed on a thin-film–deposition model with planetary rotation to determine the impact on film thickness. Variations in magnitude and frequency of the fluctuations relative to the speed of planetary revolution lead to thickness errors and uniformity variations up to 3%. Sufficiently rapid oscillations in the deposition rate have a negligible impact, while slow oscillations are found to be problematic, leading to changes in the nominal film thickness. Finally, superimposing noise as random fluctuations in the deposition rate has a negligible impact, confirming the importance of any underlying harmonic oscillations in deposition rate or source operation.

  10. ZrN coatings deposited by high power impulse magnetron sputtering and cathodic arc techniques

    SciTech Connect

    Purandare, Yashodhan Ehiasarian, Arutiun; Hovsepian, Papken; Santana, Antonio

    2014-05-15

    Zirconium nitride (ZrN) coatings were deposited on 1 μm finish high speed steel and 316L stainless steel test coupons. Cathodic Arc (CA) and High Power Impulse Magnetron Sputtering (HIPIMS) + Unbalanced Magnetron Sputtering (UBM) techniques were utilized to deposit coatings. CA plasmas are known to be rich in metal and gas ions of the depositing species as well as macroparticles (droplets) emitted from the arc sports. Combining HIPIMS technique with UBM in the same deposition process facilitated increased ion bombardment on the depositing species during coating growth maintaining high deposition rate. Prior to coating deposition, substrates were pretreated with Zr{sup +} rich plasma, for both arc deposited and HIPIMS deposited coatings, which led to a very high scratch adhesion value (L{sub C2}) of 100 N. Characterization results revealed the overall thickness of the coatings in the range of 2.5 μm with hardness in the range of 30–40 GPa depending on the deposition technique. Cross-sectional transmission electron microscopy and tribological experiments such as dry sliding wear tests and corrosion studies have been utilized to study the effects of ion bombardment on the structure and properties of these coatings. In all the cases, HIPIMS assisted UBM deposited coating fared equal or better than the arc deposited coatings, the reasons being discussed in this paper. Thus H+U coatings provide a good alternative to arc deposited where smooth, dense coatings are required and macrodroplets cannot be tolerated.

  11. Effect of wall shear rate on biofilm deposition and grazing in drinking water flow chambers.

    PubMed

    Paris, Tony; Skali-Lami, Salaheddine; Block, Jean-Claude

    2007-08-15

    The effect of four-wall shear rates (34.9, 74.8, 142.5, and 194.5 s(-1)) on bacterial deposition on glass slides in drinking water flow chambers was studied. Biofilm image acquisition was performed over a 50-day period. Bacterial accumulation and surface coverage curves were obtained. Microscopic observations allowed us to obtain information about the dynamics and spatial distribution of the biofilm. During the first stage of biofilm formation (210-518 h), bacterial accumulation was a function of the wall shear rate: the higher the wall shear rate, the faster the bacterial deposition (1.1 and 1.9 x 10(4) bacterial cells . cm(-2) for wall shear rates of 34.9 and 142.5 s(-1), respectively). A new similarity relationship characteristic of a non-dimensional time and function of the wall shear rate was proposed to describe initial bacterial deposition. After 50 days of exposure to drinking water, surface coverage was more or less identical under the entire wall shear rates (7.44 +/- 0.9%), suggesting that biofilm bacterial density cannot be controlled using hydrodynamics. However, the spatial distribution of the biofilm was clearly different. Under low wall shear rate, aggregates were composed of bacterial cells able to "vibrate" independently on the surface, whereas, under a high wall shear rate, aggregates were more cohesive. Therefore, susceptibility to the hydraulic discontinuities occurring in drinking water system may not be similar. In all the flow chambers, significant decreases in bacterial biomass (up to 77%) were associated with the presence of amoebae. This grazing preferentially targeted small, isolated cells.

  12. High Resolution, High Frame Rate Video Technology

    NASA Technical Reports Server (NTRS)

    1990-01-01

    Papers and working group summaries presented at the High Resolution, High Frame Rate Video (HHV) Workshop are compiled. HHV system is intended for future use on the Space Shuttle and Space Station Freedom. The Workshop was held for the dual purpose of: (1) allowing potential scientific users to assess the utility of the proposed system for monitoring microgravity science experiments; and (2) letting technical experts from industry recommend improvements to the proposed near-term HHV system. The following topics are covered: (1) State of the art in the video system performance; (2) Development plan for the HHV system; (3) Advanced technology for image gathering, coding, and processing; (4) Data compression applied to HHV; (5) Data transmission networks; and (6) Results of the users' requirements survey conducted by NASA.

  13. Thin film growth rate effects for primary ion beam deposited diamondlike carbon films

    NASA Technical Reports Server (NTRS)

    Nir, D.; Mirtich, M.

    1986-01-01

    Diamondlike carbon (DLC) films were grown by primary ion beam deposition and the growth rates were measured for various beam energies, types of hydrocarbon gases and their ratio to Ar, and substrate materials. The growth rate had a linear dependence upon hydrocarbon content in the discharge chamber, and only small dependence on other parameters. For given deposition conditions a threshold in the atomic ratio of carbon to argon gas was identified below which films did not grow on fused silica substrate, but grew on Si substrate and on existing DLC films. Ion source deposition parameters and substrate material were found to affect the deposition threshold and film growth rates.

  14. High-damage threshold antireflectors by physical-vapor-deposited amorphous fluoropolymer

    NASA Astrophysics Data System (ADS)

    Chow, Robert; Spragge, Maura K.; Loomis, Gary E.; Thomas, Ian M.; Rainer, Frank; Ward, Richard L.; Kozlowski, Mark R.

    1994-07-01

    High laser-resistant anti-reflective coatings were made from an amorphous fluoropolymer (Teflon AF2400) material by physical vapor deposition. Single layers of Teflon AF2400 were thermally deposited in a vacuum chamber. The refractive index and adhesion of the coatings were determined as a function of deposition rate (2 to 20 angstroms/s), substrate temperature (20 to 200 degree(s)C), and glow-discharge bias potential (-1500 to 1500 V).

  15. Variable ingestion rate and its role in optimal foraging behavior of marine deposit feeders

    SciTech Connect

    Taghon, G.L.; Jumars, P.A.

    1984-04-01

    Tests of optimal foraging theory have focused generally on food item selection by mobile, high-trophic-level predators. Deposit-feeding invertebrates are aquatic organisms with limited mobility and hence limited ability to forage actively for food-rich patches. In addition, there is little evidence for a major role of behaviorally mediated food item choice in these animals, and growing evidence of mechanical limitations in food particle choice. Given such limited food-selection ability, varying ingestion rate in response to changes in food value is likely to be an important animal response affecting feeding energetics. A previously developed optimal foraging model predicted that ingestion rate and food value should covary positively in order to maximize net time rate of energy gain. To test this general prediction, the authors fed three species of deposit-feeding polychaetes artifical sediments which varied only in protein content (food value); other physical and chemical properties which might affect ingestion rate were kept constant. In support of the model, ingestion rates increased as protein levels increased.

  16. Investigation of the Influence of the Sea Surface Microlayer on Ozone Deposition Rates

    NASA Astrophysics Data System (ADS)

    Moore, K.; Matrai, P.; Archer, S.

    2013-12-01

    Ozone deposition to the ocean surface represents a significant loss from the atmosphere with current best estimates, based on chemistry transport model analyses, being about one third of the global annual ozone deposition of 600-1000 Tg O3 yr-1. Such deposition likely represents the net flux to the physical ocean surface, chemical interactions in the presence or absence of a surface microlayer, and bidirectional reactions between ozone and reactive iodine dependent on the environmental light regime. A laboratory-based experimental approach is used to further explore controls on the rate of ozone deposition to seawater. We examine the influence of iodide concentration and microlayer composition or absence on ozone deposition velocity as a means to assess the role surface-active organics play in mediating ozone deposition rates. Experimental results are used to discern whether soluble and insoluble model surfactants, micro-algal exudates and natural microlayers act to physically and/or chemically enhance or suppress ozone deposition.

  17. High temperature diamond film deposition on a natural diamond anvil

    SciTech Connect

    McCauley, T.S.; Vohra, Y.K.

    1995-12-31

    We report on the growth and characterization of a 100 {mu}m thick by 350 {mu}m diameter diamond layer on the culet of a type Ia brilliant cut natural diamond anvil by microwave plasma-assisted CVD (MPCVD). While our previous work [1] on diamond anvils resulted in homoepitaxial film growth at a rate of approximately 20 {mu}m/hr, the present 100 {mu}m thick diamond layer grew in less than 2 hours. This unprecedented growth rate of {approximately} 50 {mu}m/hr is believed to be the result of the extremely high substrate temperature (1800{degrees}-2100{degrees}C) during deposition. The translucent diamond layer was characterized by micro-Raman, low temperature photoluminescence (PL) and PL excitation spectroscopy, as well as atomic force microscopy (AFM). Raman analysis shows the deposit to be of high quality. The PL spectra show numerous features, including prominent emission bands at 575 nm (2.16 eV), 636 nm (1.95 eV), 735 nm (1.68 eV) and 777 run, (1.60 eV).

  18. Paleoclimatic significance of high-latitude loess deposits

    SciTech Connect

    Beget, J.E.

    1992-03-01

    Loess deposits reflect changing environmental conditions in terrestrial regions, and contain long paleoclimatic records analogous to those found in marine sediments, lacustrine sediments, and ice sheets. Alaskan loess was deposited at rates of ca. 0.05-0.5 mm yr-l during the last 2-3 x 106 years; loess deposits contain some of the longest and most complete proxy climate records yet found. New analytical methods are used to reconstruct changes in climate and atmospheric regime including wind intensity, storminess, temperature, and precipitation. Loess also contains a history of permafrost and paleosol formation, volcanic eruptions, and paleoecologic changes in high latitude regions, as well as Quaternary fossils and early man sites and artifacts. Time-series analysis of proxy climate data from loess supports the astronomic model of climate change, although some transient climate events recorded in loess records are too short to be explained by orbital insolation forcing, and may instead correlate with rapid, short-term changes in atmospheric C02 and CH4 content.

  19. Debris-flow deposits and watershed erosion rates near southern Death Valley, CA, United States

    USGS Publications Warehouse

    Schmidt, K.M.; Menges, C.M.; ,

    2003-01-01

    Debris flows from the steep, granitic hillslopes of the Kingston Range, CA are commensurate in age with nearby fluvial deposits. Quaternary chronostratigraphic differentiation of debris-flow deposits is based upon time-dependent characteristics such as relative boulder strength, derived from Schmidt Hammer measurements, degree of surface desert varnish, pedogenesis, and vertical separation. Rock strength is highest for Holocene-aged boulders and decreases for Pleistocene-aged boulders weathering to grus. Volumes of age-stratified debris-flow deposits, constrained by deposit thickness above bedrock, GPS surveys, and geologic mapping, are greatest for Pleistocene deposits. Shallow landslide susceptibility, derived from a topographically based GIS model, in conjunction with deposit volumes produces watershed-scale erosion rates of ???2-47 mm ka-1, with time-averaged Holocene rates exceeding Pleistocene rates. ?? 2003 Millpress.

  20. Fundamental Study on Temperature Dependence of Deposition Rate of Silicic Acid - 13270

    SciTech Connect

    Shinmura, Hayata; Niibori, Yuichi; Mimura, Hitoshi

    2013-07-01

    The dynamic behavior of the silicic acid is one of the key factors to estimate the condition of the repository system after the backfill. This study experimentally examined the temperature dependence of dynamic behavior of supersaturated silicic acid in the co-presence of solid phase, considering Na ions around the repository, and evaluated the deposition rate constant, k, of silicic acid by using the first-order reaction equation considering the specific surface area. The values of k were in the range of 1.0x10{sup -11} to 1.0x10{sup -9} m/s in the temperature range of 288 K to 323 K. The deposition rate became larger with increments of temperature under the Na ion free condition. Besides, in the case of Na ions 0.6 M, colloidal silicic acid decreased dramatically at a certain time. This means that the diameter of the colloidal silicic acid became larger than the pore size of filter (0.45 μm) due to bridging of colloidal silicic acid. Furthermore, this study estimated the range of altering area and the aperture of flow-path in various value of k corresponding to temperature by using advection-dispersion model. The concentration in the flow-path became lower with increments of temperature, and when the value of k is larger than 1.0x10{sup -11} m/s, the deposition range of supersaturated silicic acid was estimated to be less than 20 m around the repository. In addition, the deposition of supersaturated silicic acid led the decrement of flow-path aperture, which was remarkable under the condition of relatively high temperature. Such a clogging in flow paths is expected as a retardation effect of radionuclides. (authors)

  1. Polyelectrolyte Coacervates Deposited as High Gas Barrier Thin Films.

    PubMed

    Haile, Merid; Sarwar, Owais; Henderson, Robert; Smith, Ryan; Grunlan, Jaime C

    2017-01-01

    Multilayer coatings consisting of oppositely charged polyelectrolytes have proven to be extraordinarily effective oxygen barriers but require many processing steps to fabricate. In an effort to prepare high oxygen barrier thin films more quickly, a polyelectrolyte complex coacervate composed of polyethylenimine and polyacrylic acid is prepared. The coacervate fluid is applied as a thin film using a rod coating process. With humidity and thermal post-treatment, a 2 µm thin film reduces the oxygen transmission rate of 0.127 mm poly(ethylene terephthalate) by two orders of magnitude, rivalling conventional oxygen barrier technologies. These films are fabricated in ambient conditions using low-cost, water-based solutions, providing a tremendous opportunity for single-step deposition of polymeric high barrier thin films.

  2. Deposition method for producing silicon carbide high-temperature semiconductors

    DOEpatents

    Hsu, George C.; Rohatgi, Naresh K.

    1987-01-01

    An improved deposition method for producing silicon carbide high-temperature semiconductor material comprising placing a semiconductor substrate composed of silicon carbide in a fluidized bed silicon carbide deposition reactor, fluidizing the bed particles by hydrogen gas in a mildly bubbling mode through a gas distributor and heating the substrate at temperatures around 1200.degree.-1500.degree. C. thereby depositing a layer of silicon carbide on the semiconductor substrate.

  3. Effects of deposition rate and thickness on the properties of YBCO films deposited by pulsed laser deposition

    NASA Astrophysics Data System (ADS)

    Shi, D. Q.; Ko, R. K.; Song, K. J.; Chung, J. K.; Choi, S. J.; Park, Y. M.; Shin, K. C.; Yoo, S. I.; Park, C.

    2004-02-01

    YBCO films with various thicknesses from 100 nm to 1.6 µm were deposited on single crystal SrTiO3 substrates by pulsed laser deposition (PLD). The effects of thickness and deposition rate—by means of controlling the pulsed laser frequency—on the critical current density (Jc) were studied. X-ray diffraction (XRD) and scanning electron microscopy (SEM) were used to examine the orientation, crystallization and surface quality. The amount of a-axis YBCO component evaluated from the ratio of XRD chi-scan intensities of the a-axis and c-axis for the YBCO (102) plane increased as the YBCO film became thicker. SEM was used to analyse the surface of YBCO film, and it was shown that the surface of YBCO film became rougher with increasing thickness. There were many large singular outgrowths and networks of outgrowths on the surface of the YBCO films with thickness greater than 0.4 µm. The increased amount of a-axis YBCO component and the coarse microstructure of the thick YBCO film caused degradation of Jc with increasing thickness.

  4. 19 CFR 351.107 - Cash deposit rates for nonproducing exporters; rates in antidumping proceedings involving a...

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ...; rates in antidumping proceedings involving a nonmarket economy country. 351.107 Section 351.107 Customs... proceedings involving a nonmarket economy country. (a) Introduction. This section deals with the establishment... involving imports from a nonmarket economy country. (b) Cash deposit rates for nonproducing...

  5. 19 CFR 351.107 - Cash deposit rates for nonproducing exporters; rates in antidumping proceedings involving a...

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ...; rates in antidumping proceedings involving a nonmarket economy country. 351.107 Section 351.107 Customs... proceedings involving a nonmarket economy country. (a) Introduction. This section deals with the establishment... involving imports from a nonmarket economy country. (b) Cash deposit rates for nonproducing...

  6. 19 CFR 351.107 - Cash deposit rates for nonproducing exporters; rates in antidumping proceedings involving a...

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ...; rates in antidumping proceedings involving a nonmarket economy country. 351.107 Section 351.107 Customs... proceedings involving a nonmarket economy country. (a) Introduction. This section deals with the establishment... involving imports from a nonmarket economy country. (b) Cash deposit rates for nonproducing...

  7. 19 CFR 351.107 - Cash deposit rates for nonproducing exporters; rates in antidumping proceedings involving a...

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ...; rates in antidumping proceedings involving a nonmarket economy country. 351.107 Section 351.107 Customs... proceedings involving a nonmarket economy country. (a) Introduction. This section deals with the establishment... involving imports from a nonmarket economy country. (b) Cash deposit rates for nonproducing...

  8. 19 CFR 351.107 - Cash deposit rates for nonproducing exporters; rates in antidumping proceedings involving a...

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ...; rates in antidumping proceedings involving a nonmarket economy country. 351.107 Section 351.107 Customs... proceedings involving a nonmarket economy country. (a) Introduction. This section deals with the establishment... involving imports from a nonmarket economy country. (b) Cash deposit rates for nonproducing...

  9. Reactive dynamics analysis of critical Nb2O5 sputtering rate for drum-based metal-like deposition.

    PubMed

    Song, Shigeng; Li, Cheng; Chu, Hin On; Gibson, Des

    2017-02-01

    Drum-based metal-like film deposition for oxide was investigated using single wavelength in situ monitoring. The data were used to investigate the oxidation mechanism using combined second-order kinetic and parabolic models. A critical Nb2O5 deposition rate of 0.507 nm/s was found at drum rotation of 1 rev/s. However, Nb2O5 samples prepared at varying deposition rates showed that the deposition rate must be much lower than the critical deposition rate to achieve reasonable absorption. Thus simulation for the volume-fraction of metal in the oxide layer was done using effective medium approximation and a distribution function. Simulation gave high agreement with experimental results and allows the prediction of extinction coefficients at various deposition rates.

  10. Amyloid-β deposition and regional grey matter atrophy rates in dementia with Lewy bodies.

    PubMed

    Sarro, Lidia; Senjem, Matthew L; Lundt, Emily S; Przybelski, Scott A; Lesnick, Timothy G; Graff-Radford, Jonathan; Boeve, Bradley F; Lowe, Val J; Ferman, Tanis J; Knopman, David S; Comi, Giancarlo; Filippi, Massimo; Petersen, Ronald C; Jack, Clifford R; Kantarci, Kejal

    2016-10-01

    Alzheimer's disease pathology frequently coexists with Lewy body disease at autopsy in patients with probable dementia with Lewy bodies. More than half of patients with probable dementia with Lewy bodies have high amyloid-β deposition as measured with (11)C-Pittsburgh compound B binding on positron emission tomography. Biomarkers of amyloid-β deposition precede neurodegeneration on magnetic resonance imaging during the progression of Alzheimer's disease, but little is known about how amyloid-β deposition relates to longitudinal progression of atrophy in patients with probable dementia with Lewy bodies. We investigated the associations between baseline (11)C-Pittsburgh compound B binding on positron emission tomography and the longitudinal rates of grey matter atrophy in a cohort of clinically diagnosed patients with dementia with Lewy bodies (n = 20), who were consecutively recruited to the Mayo Clinic Alzheimer's Disease Research Centre. All patients underwent (11)C-Pittsburgh compound B positron emission tomography and magnetic resonance imaging examinations at baseline. Follow-up magnetic resonance imaging was performed after a mean (standard deviation) interval of 2.5 (1.1) years. Regional grey matter loss was determined on three-dimensional T1-weighted magnetic resonance imaging with the tensor-based morphometry-symmetric normalization technique. Linear regression was performed between baseline (11)C-Pittsburgh compound B standard unit value ratio and longitudinal change in regional grey matter volumes from an in-house modified atlas. We identified significant associations between greater baseline (11)C-Pittsburgh compound B standard unit value ratio and greater grey matter loss over time in the posterior cingulate gyrus, lateral and medial temporal lobe, and occipital lobe as well as caudate and putamen nuclei, after adjusting for age (P < 0.05). Greater baseline (11)C-Pittsburgh compound B standard unit value ratio was also associated with greater

  11. Characterisation of DLC films deposited using titanium isopropoxide (TIPOT) at different flow rates.

    PubMed

    Said, R; Ali, N; Ghumman, C A A; Teodoro, O M N D; Ahmed, W

    2009-07-01

    In recent years, there has been growing interest in the search for advanced biomaterials for biomedical applications, such as human implants and surgical cutting tools. It is known that both carbon and titanium exhibit good biocompatibility and have been used as implants in the human body. It is highly desirable to deposit biocompatible thin films onto a range of components in order to impart biocompatibility and to minimise wear in implants. Diamond like carbon (DLC) is a good candidate material for achieving biocompatibility and low wear rates. In this study, thin films of diamond-like-carbon DLC were deposited onto stainless steel (316) substrates using C2H2, argon and titanium isopropoxide (TIPOT) precursors. Argon was used to generate the plasma in the plasma enhanced vapour deposition (PECVD) system. A critical coating feature governing the performance of the component during service is film thickness. The as-grown films were in the thickness range 90-100 nm and were found to be dependent on TIPOT flow rate. Atomic force microscopy (AFM) was used to characterise the surface roughness of the samples. As the flow rate of TIPOT increased the average roughness was found to increase in conjunction with the film thickness. Raman spectroscopy was used to investigate the chemical structure of amorphous carbon matrix. Surface tension values were calculated using contact angle measurements. In general, the trend of the surface tension results exhibited an opposite trend to that of the contact angle. The elemental composition of the samples was characterised using a VG ToF SIMS (IX23LS) instrument and X-ray photoelectron spectroscopy (XPS). Surprisingly, SIMS and XPS results showed that the DLC samples did not show evidence of titanium since no peaks representing to titanium appeared on the SIMS/XPS spectra.

  12. Effect of tellurium deposition rate on the properties of Cu-In-Te based thin films and solar cells

    NASA Astrophysics Data System (ADS)

    Mise, Takahiro; Nakada, Tokio

    2011-01-01

    To investigate the effects of tellurium (Te) deposition rate on the properties of Cu-In-Te based thin films (Cu/In=0.30-0.31), the films were grown on both bare and Mo-coated soda-lime glass substrates at 200 °C by co-evaporation using a molecular beam epitaxy system. The microstructural properties were examined by means of scanning electron microscopy and X-ray diffraction. The crystalline quality of the films was improved with increase in the deposition rate of Te, and exhibited a single CuIn 3Te 5 phase with a highly preferred (1 1 2) orientation. Te-deficient film (Te/(Cu+In)=1.07) grown with a low Te deposition rate showed a narrow bandgap of 0.99 eV at room temperature. The solar cell performance was affected by the deposition rate of Te. The best solar cell fabricated using CuIn 3Te 5 thin films grown with the highest deposition rate of Te (2.6 nm/s) yielded a total area (0.50 cm 2) efficiency of 4.4% ( Voc=309 mV, Jsc=28.0 mA/cm 2, and FF=0.509) without light soaking.

  13. The effect of device resistance and inhalation flow rate on the lung deposition of orally inhaled mannitol dry powder.

    PubMed

    Yang, Michael Y; Verschuer, Jordan; Shi, Yuyu; Song, Yang; Katsifis, Andrew; Eberl, Stefan; Wong, Keith; Brannan, John D; Cai, Weidong; Finlay, Warren H; Chan, Hak-Kim

    2016-11-20

    The present study investigates the effect of DPI resistance and inhalation flow rates on the lung deposition of orally inhaled mannitol dry powder. Mannitol powder radiolabeled with (99m)Tc-DTPA was inhaled from an Osmohaler™ by healthy human volunteers at 50-70L/min peak inhalation flow rate (PIFR) using both a low and high resistance Osmohaler™, and 110-130L/min PIFR using the low resistance Osmohaler™ (n=9). At 50-70L/min PIFR, the resistance of the Osmohaler™ did not significantly affect the total and peripheral lung deposition of inhaled mannitol [for low resistance Osmohaler™, 20% total lung deposition (TLD), 0.3 penetration index (PI); for high resistance Osmohaler™, 17% TLD, 0.23 PI]. Increasing the PIFR 50-70L/min to 110-130L/min (low resistance Osmohaler™) significantly reduced the total lung deposition (10% TLD) and the peripheral lung deposition (PI 0.21). The total lung deposition showed dependency on the in vitro FPF (R(2)=1.0). On the other hand, the PI had a stronger association with the MMAD (R(2)=1.0) than the FPF (R(2)=0.7). In conclusion the resistance of Osmohaler™ did not significantly affect the total and regional lung deposition at 50-70L/min PIFR. Instead, the total and regional lung depositions are dependent on the particle size of the aerosol and inhalation flow rate, the latter itself affecting the particle size distribution.

  14. A high rate proportional chamber

    SciTech Connect

    Henderson, R.; Fraszer, W.; Openshaw, R.; Sheffer, G.; Salomon, M.; Dew, S.; Marans, J.; Wilson, P.

    1987-02-01

    Gas mixtures with high specific ionization allow the use of small interelectrode distances while still maintaining full efficiency. With the short electron drift distances the timing resolution is also improved. The authors have built and operated two 25 cm/sup 2/ chambers with small interelectrode distances. Also single wire detector cells have been built to test gas mixture lifetimes. Various admixtures of CF/sub 4/, DME, Isobutane, Ethane and Argon have been tested. Possible applications of such chambers are as beam profile monitors, position tagging of rare events and front end chambers in spectrometers.

  15. Regional trends in soil acidification and exchangeable metal concentrations in relation to acid deposition rates.

    PubMed

    Stevens, Carly J; Dise, Nancy B; Gowing, David J

    2009-01-01

    The deposition of high levels of reactive nitrogen (N) and sulphur (S), or the legacy of that deposition, remain among the world's most important environmental problems. Although regional impacts of acid deposition in aquatic ecosystems have been well documented, quantitative evidence of wide-scale impacts on terrestrial ecosystems is not common. In this study we analysed surface and subsoil chemistry of 68 acid grassland sites across the UK along a gradient of acid deposition, and statistically related the concentrations of exchangeable soil metals (1 M KCl extraction) to a range of potential drivers. The deposition of N, S or acid deposition was the primary correlate for 8 of 13 exchangeable metals measured in the topsoil and 5 of 14 exchangeable metals in the subsoil. In particular, exchangeable aluminium and lead both show increased levels above a soil pH threshold of about 4.5, strongly related to the deposition flux of acid compounds.

  16. Drastically Enhanced High-Rate Performance of Carbon-Coated LiFePO4 Nanorods Using a Green Chemical Vapor Deposition (CVD) Method for Lithium Ion Battery: A Selective Carbon Coating Process.

    PubMed

    Tian, Ruiyuan; Liu, Haiqiang; Jiang, Yi; Chen, Jiankun; Tan, Xinghua; Liu, Guangyao; Zhang, Lina; Gu, Xiaohua; Guo, Yanjun; Wang, Hanfu; Sun, Lianfeng; Chu, Weiguo

    2015-06-03

    Application of LiFePO4 (LFP) to large current power supplies is greatly hindered by its poor electrical conductivity (10(-9) S cm(-1)) and sluggish Li+ transport. Carbon coating is considered to be necessary for improving its interparticle electronic conductivity and thus electrochemical performance. Here, we proposed a novel, green, low cost and controllable CVD approach using solid glucose as carbon source which can be extended to most cathode and anode materials in need of carbon coating. Hydrothermally synthesized LFP nanorods with optimized thickness of carbon coated by this recipe are shown to have superb high-rate performance, high energy, and power densities, as well as long high-rate cycle lifetime. For 200 C (18s) charge and discharge, the discharge capacity and voltage are 89.69 mAh g(-1) and 3.030 V, respectively, and the energy and power densities are 271.80 Wh kg(-1) and 54.36 kW kg(-1), respectively. The capacity retention of 93.0%, and the energy and power density retention of 93.6% after 500 cycles at 100 C were achieved. Compared to the conventional carbon coating through direct mixing with glucose (or other organic substances) followed by annealing (DMGA), the carbon phase coated using this CVD recipe is of higher quality and better uniformity. Undoubtedly, this approach enhances significantly the electrochemical performance of high power LFP and thus broadens greatly the prospect of its applications to large current power supplies such as electric and hybrid electric vehicles.

  17. Experimental and theoretical deposition rates from salt-seeded combustion gases of a Mach 0.3 burner rig

    NASA Technical Reports Server (NTRS)

    Santoro, G. J.; Kohl, F. J.; Stearns, C. A.; Gokoglu, S. A.; Rosner, D. E.

    1984-01-01

    Deposition rates on platinum-rhodium cylindrical collectors rotating in the cross streams of the combustion gases of a salt-seeded Mach 0.3 burner rig were determined. The collectors were internally air cooled so that their surface temperatures could be widely varied while they were exposed to constant combustion gas temperatures. The deposition rates were compared with those predicted by the chemically frozen boundary layer (CFBL) computer program, which is based on multicomponent vapor transport through the boundary layer. Excellent agreement was obtained between theory and experiment for the NaCl-seeded case, but the agreement lessened as the seed was changed to synthetic sea salt, NaNO3, and K2SO4, respectively, and was particularly poor in the case of Na2SO4. However, when inertial impaction was assumed to be the deposition mechanism for the Na2SO4 case, the predicted rates agreed well with the experimental rates. The former were calculated from a mean particle diameter that was derived from the measured intial droplet size distribution of the solution spray. Critical experiments showed that liquid phase deposits were blown off the smooth surface of the platinum-rhodium collectors by the aerodynamic shear forces of the high-velocity combustion gases but that rough or porous surfaces retained their liquid deposits.

  18. High Mercury Wet Deposition at a "Clean Air" Site in Puerto Rico.

    PubMed

    Shanley, James B; Engle, Mark A; Scholl, Martha; Krabbenhoft, David P; Brunette, Robert; Olson, Mark L; Conroy, Mary E

    2015-10-20

    Atmospheric mercury deposition measurements are rare in tropical latitudes. Here we report on seven years (April 2005 to April 2012, with gaps) of wet Hg deposition measurements at a tropical wet forest in the Luquillo Mountains, northeastern Puerto Rico, U.S. Despite receiving unpolluted air off the Atlantic Ocean from northeasterly trade winds, during two complete years the site averaged 27.9 μg m(-2) yr(-1) wet Hg deposition, or about 30% more than Florida and the Gulf Coast, the highest deposition areas within the U.S. These high Hg deposition rates are driven in part by high rainfall, which averaged 2855 mm yr(-1). The volume-weighted mean Hg concentration was 9.8 ng L(-1), and was highest during summer and lowest during the winter dry season. Rainout of Hg (decreasing concentration with increasing rainfall depth) was minimal. The high Hg deposition was not supported by gaseous oxidized mercury (GOM) at ground level, which remained near global background concentrations (<10 pg m(-3)). Rather, a strong positive correlation between Hg concentrations and the maximum height of rain detected within clouds (echo tops) suggests that droplets in high convective cloud tops scavenge GOM from above the mixing layer. The high wet Hg deposition at this "clean air" site suggests that other tropical areas may be hotspots for Hg deposition as well.

  19. High mercury wet deposition at a “clean Air” site in Puerto Rico

    USGS Publications Warehouse

    Shanley, James B.; Engle, Mark A.; Scholl, Martha A.; Krabbenhoft, David P.; Brunette, Robert; Olson, Mark L.; Conroy, Mary E.

    2015-01-01

    Atmospheric mercury deposition measurements are rare in tropical latitudes. Here we report on seven years (April 2005 to April 2012, with gaps) of wet Hg deposition measurements at a tropical wet forest in the Luquillo Mountains, northeastern Puerto Rico, U.S. Despite receiving unpolluted air off the Atlantic Ocean from northeasterly trade winds, during two complete years the site averaged 27.9 μg m–2 yr–1 wet Hg deposition, or about 30% more than Florida and the Gulf Coast, the highest deposition areas within the U.S. These high Hg deposition rates are driven in part by high rainfall, which averaged 2855 mm yr–1. The volume-weighted mean Hg concentration was 9.8 ng L–1, and was highest during summer and lowest during the winter dry season. Rainout of Hg (decreasing concentration with increasing rainfall depth) was minimal. The high Hg deposition was not supported by gaseous oxidized mercury (GOM) at ground level, which remained near global background concentrations (<10 pg m–3). Rather, a strong positive correlation between Hg concentrations and the maximum height of rain detected within clouds (echo tops) suggests that droplets in high convective cloud tops scavenge GOM from above the mixing layer. The high wet Hg deposition at this “clean air” site suggests that other tropical areas may be hotspots for Hg deposition as well.

  20. Chemical vapor deposition of high T sub c superconductors

    NASA Technical Reports Server (NTRS)

    Webb, G. W.; Engelhardt, J. J.

    1978-01-01

    The results are reported of an investigation into the synthesis and properties of high temperature superconducting materials. A chemical vapor deposition apparatus was designed and built which is suitable for the preparation of multicomponent metal films This apparatus was used to prepare a series of high T sub c A-15 structure superconducting films in the binary system Nb-Ge. The effect on T sub c of a variety of substrate materials was investigated. An extensive series of ternary alloys were also prepared. Conditions allowing the brittle high T sub c (approximately 18 K) A-15 structure superconductor Nb3A1 to be prepared in a low T sub c but ductile form were found. Some of the ways that the ductile (bcc) form can be cold worked or machined are described. Measurements of rate of transformation of cold worked bcc material to the high T sub c A-15 structure with low temperature annealing are given. Preliminary measurements indicate that this material has attractive high field critical current densities.

  1. Ages and Accumulation Rates of the Martian Polar Layered Deposits Estimated from Orbital Tuning

    NASA Astrophysics Data System (ADS)

    Sori, M.; Bailey, E. A.; Perron, J.; Huybers, P. J.; Aharonson, O.; Limaye, A.

    2013-12-01

    Layers of dusty water ice in the polar caps of Mars have been hypothesized to record climate changes driven by variation of the planet's orbit and spin axis, but the time interval over which the polar layered deposits (PLDs) formed is unknown, and an orbital influence has not been conclusively demonstrated. We performed orbital tuning of reconstructed PLD stratigraphic sequences in an attempt to constrain the accumulation interval and test for the presence of an orbital signal. Our procedure uses dynamic time warping (DTW) to search for a match between two time series - the polar insolation history and brightness or topographic information in the PLDs - and then assesses the significance of potential matches using a Monte Carlo procedure. We selected 30 images of the northern PLDs from the Mars Orbiter Camera (MOC) aboard the Mars Global Surveyor spacecraft and used Mars Orbiter Laser Altimeter profiles to transform each image into a record of image brightness as a function of vertical depth. To constrain the PLD age and accumulation rate, we tuned each image record to Martian insolation records for varying time intervals. If a particular insolation interval produced the strongest match to an image, and if the match became weaker as the image was tuned to progressively longer or shorter intervals, we chose the best-fitting interval as an estimated accumulation time for that PLD sequence, and used the depth range to estimate a corresponding PLD accumulation rate. We also tuned the insolation records to synthetic records containing no orbital influence to test whether the image matches were spurious. Of the 30 MOC images analyzed, 16 produce insolation intervals that we consider strong matches. These images yield an average deposition rate of 0.5 × 0.2 mm/yr for the northern PLDs. The images represent only a fraction of the entire stratigraphy; extrapolating that deposition rate farther back in time yields an age of ~4 Ma for the entire PLD sequence present in the

  2. High Throughput Atomic Layer Deposition Processes: High Pressure Operations, New Reactor Designs, and Novel Metal Processing

    NASA Astrophysics Data System (ADS)

    Mousa, MoatazBellah Mahmoud

    Atomic Layer Deposition (ALD) is a vapor phase nano-coating process that deposits very uniform and conformal thin film materials with sub-angstrom level thickness control on various substrates. These unique properties made ALD a platform technology for numerous products and applications. However, most of these applications are limited to the lab scale due to the low process throughput relative to the other deposition techniques, which hinders its industrial adoption. In addition to the low throughput, the process development for certain applications usually faces other obstacles, such as: a required new processing mode (e.g., batch vs continuous) or process conditions (e.g., low temperature), absence of an appropriate reactor design for a specific substrate and sometimes the lack of a suitable chemistry. This dissertation studies different aspects of ALD process development for prospect applications in the semiconductor, textiles, and battery industries, as well as novel organic-inorganic hybrid materials. The investigation of a high pressure, low temperature ALD process for metal oxides deposition using multiple process chemistry revealed the vital importance of the gas velocity over the substrate to achieve fast depositions at these challenging processing conditions. Also in this work, two unique high throughput ALD reactor designs are reported. The first is a continuous roll-to-roll ALD reactor for ultra-fast coatings on porous, flexible substrates with very high surface area. While the second reactor is an ALD delivery head that allows for in loco ALD coatings that can be executed under ambient conditions (even outdoors) on large surfaces while still maintaining very high deposition rates. As a proof of concept, part of a parked automobile window was coated using the ALD delivery head. Another process development shown herein is the improvement achieved in the selective synthesis of organic-inorganic materials using an ALD based process called sequential vapor

  3. Polyimide films from vapor deposition: toward high strength, NIF capsules

    SciTech Connect

    Cook, R C; Hsieh, E J; Letts, S A; Roberts, C C; Saculla, M

    1998-10-16

    The focus of recent efforts at LLNL has been to demonstrate that vapor deposition processing is a suitable technique to form polyimide fnms with sufficient strength for current national ignition facility target specifications. Production of polyimide films with controlled stoichiometry was acccomplished by: 1) depositing a novel co-functional monomer and 2) matching the vapor pressure of each monomer in PMDA/ODA co-depositions. The sublimation and deposition rate for the monomers was determined over a range of temperatures. Polyimide films with thicknesses up to 30 p.m were fabricated. Composition, structure and strength were assessed using FTIR, SEM and biaxial burst testing. The best films had a tensile strength of approximately 100 MPa. A qualitative relationship between the stoichiometry and tensile strength of the film was demonstrated. Thin films ({approximately}3.5 {micro}m) were typically smooth with an rms of 1.5 nm.

  4. Silicon epitaxy using tetrasilane at low temperatures in ultra-high vacuum chemical vapor deposition

    NASA Astrophysics Data System (ADS)

    Hazbun, Ramsey; Hart, John; Hickey, Ryan; Ghosh, Ayana; Fernando, Nalin; Zollner, Stefan; Adam, Thomas N.; Kolodzey, James

    2016-06-01

    The deposition of silicon using tetrasilane as a vapor precursor is described for an ultra-high vacuum chemical vapor deposition tool. The growth rates and morphology of the Si epitaxial layers over a range of temperatures and pressures are presented. The layers were characterized using transmission electron microscopy, x-ray diffraction, spectroscopic ellipsometry, Atomic Force Microscopy, and secondary ion mass spectrometry. Based on this characterization, high quality single crystal silicon epitaxy was observed. Tetrasilane was found to produce higher growth rates relative to lower order silanes, with the ability to deposit crystalline Si at low temperatures (T=400 °C), with significant amorphous growth and reactivity measured as low as 325 °C, indicating the suitability of tetrasilane for low temperature chemical vapor deposition such as for SiGeSn alloys.

  5. Influence of deposition rate on the structural properties of plasma-enhanced CVD epitaxial silicon

    PubMed Central

    Chen, Wanghua; Cariou, Romain; Hamon, Gwenaëlle; Léal, Ronan; Maurice, Jean-Luc; Cabarrocas, Pere Roca i

    2017-01-01

    Solar cells based on epitaxial silicon layers as the absorber attract increasing attention because of the potential cost reduction. In this work, we studied the influence of the deposition rate on the structural properties of epitaxial silicon layers produced by plasma-enhanced chemical vapor deposition (epi-PECVD) using silane as a precursor and hydrogen as a carrier gas. We found that the crystalline quality of epi-PECVD layers depends on their thickness and deposition rate. Moreover, increasing the deposition rate may lead to epitaxy breakdown. In that case, we observe the formation of embedded amorphous silicon cones in the epi-PECVD layer. To explain this phenomenon, we develop a model based on the coupling of hydrogen and built-in strain. By optimizing the deposition conditions to avoid epitaxy breakdown, including substrate temperatures and plasma potential, we have been able to synthesize epi-PECVD layers up to a deposition rate of 8.3 Å/s. In such case, we found that the incorporation of hydrogen in the hydrogenated crystalline silicon can reach 4 at. % at a substrate temperature of 350 °C. PMID:28262840

  6. Influence of deposition rate on the structural properties of plasma-enhanced CVD epitaxial silicon

    NASA Astrophysics Data System (ADS)

    Chen, Wanghua; Cariou, Romain; Hamon, Gwenaëlle; Léal, Ronan; Maurice, Jean-Luc; Cabarrocas, Pere Roca I.

    2017-03-01

    Solar cells based on epitaxial silicon layers as the absorber attract increasing attention because of the potential cost reduction. In this work, we studied the influence of the deposition rate on the structural properties of epitaxial silicon layers produced by plasma-enhanced chemical vapor deposition (epi-PECVD) using silane as a precursor and hydrogen as a carrier gas. We found that the crystalline quality of epi-PECVD layers depends on their thickness and deposition rate. Moreover, increasing the deposition rate may lead to epitaxy breakdown. In that case, we observe the formation of embedded amorphous silicon cones in the epi-PECVD layer. To explain this phenomenon, we develop a model based on the coupling of hydrogen and built-in strain. By optimizing the deposition conditions to avoid epitaxy breakdown, including substrate temperatures and plasma potential, we have been able to synthesize epi-PECVD layers up to a deposition rate of 8.3 Å/s. In such case, we found that the incorporation of hydrogen in the hydrogenated crystalline silicon can reach 4 at. % at a substrate temperature of 350 °C.

  7. Gold nanoarray deposited using alternating current for emission rate-manipulating nanoantenna

    PubMed Central

    2013-01-01

    We have proposed an easy and controllable method to prepare highly ordered Au nanoarray by pulse alternating current deposition in anodic aluminum oxide template. Using the ultraviolet–visible-near-infrared region spectrophotometer, finite difference time domain, and Green function method, we experimentally and theoretically investigated the surface plasmon resonance, electric field distribution, and local density of states enhancement of the uniform Au nanoarray system. The time-resolved photoluminescence spectra of quantum dots show that the emission rate increased from 0.0429 to 0.5 ns−1 (10.7 times larger) by the existence of the Au nanoarray. Our findings not only suggest a convenient method for ordered nanoarray growth but also prove the utilization of the Au nanoarray for light emission-manipulating antennas, which can help build various functional plasmonic nanodevices. PMID:23799880

  8. Simulation of growth rate and deposition profile on the periodically patterned substrate

    NASA Astrophysics Data System (ADS)

    Baek, Byung-Joon; Kang, Sung-Ju; Kim, Jin-Taek; Pak, Bockchoon; Lee, Cheul-Ro

    2007-06-01

    The growth of GaN on the patterned substances has proven favorable to achieve thick, crack-free GaN layers. Based on these methods, we specially designed periodically patterned Si substrate process, which is referred to as lateral epitaxy on patterned Si substrate (LEPS). High crystalline quality GaN are obtained by using this technique. In this paper, numerical modeling of transport and reaction of species is performed to estimate the growth rate of GaN from the reaction of trimethyl gallium (TMG) and ammonia. The effect of fabricated structure of feature scale model will be predicted by using the topography simulator, and deposition profile of the GaN on the pattern will be discussed. The effect of flow conditions and pattern shape and periodicity will also be addressed, which can be critical for the quality of crystal growth. The dependency of step coverage and conformality of patterned mask will also be discussed.

  9. Strain-Rate Dependency of Strength of Soft Marine Deposits of the Gulf of Mexico

    DTIC Science & Technology

    2010-06-01

    abstract number: 090612-057 Strain-rate dependency of strength of soft marine deposits of the Gulf of Mexico Andrei Abelev and Philip Valent...from the Gulf of Mexico . The vane test may not always be the most accurate method of describing the undrained shear strength, mainly because it...deposits of the Gulf of Mexico 5a. CONTRACT NUMBER 5b. GRANT NUMBER 5c. PROGRAM ELEMENT NUMBER 6. AUTHOR(S) 5d. PROJECT NUMBER 5e. TASK NUMBER

  10. Surface Ages and Resurfacing Rates of the Polar Layered Deposits on Mars

    USGS Publications Warehouse

    Herkenhoff, K. E.; Plaut, J.J.

    2000-01-01

    Interpretation of the polar stratigraphy of Mars in terms of global climate changes is complicated by the significant difference in surface ages between the north and south polar layered terrains inferred from crater statistics. We have reassessed the cratering record in both polar regions using Viking Orbiter and Mariner 9 images. No craters have been found in the north polar layered terrain, but the surface of most of the south polar layered deposits appears to have been stable for many of the orbital/axial cycles that are thought to have induced global climate changes on Mars. The inferred surface age of the south polar layered deposits (about 10 Ma) is two orders of magnitude greater than the surface age of the north polar layered deposits and residual cap (at most 100 ka). Similarly, modeled resurfacing rates are at least 20 times greater in the north than in the south. These results are consistent with the hypotheses that polar layered deposit resurfacing rates are highest in areas covered by perennial ice and that the differences in polar resurfacing rates result from the 6.4 km difference in elevation between the polar regions. Deposition on the portion of the south polar layered deposits that is not covered by the perennial ice cap may have ceased about 5 million years ago when the obliquity of Mars no longer exceeded 40??. ?? 2000 Academic Press.

  11. High rate reactive sputtering of MoN(x) coatings

    NASA Technical Reports Server (NTRS)

    Rudnik, Paul J.; Graham, Michael E.; Sproul, William D.

    1991-01-01

    High rate reactive sputtering of MoN(x) films was performed using feedback control of the nitorgen partial pressure. Coatings were made at four different target powers: 2.5, 5.0, 7.5 and 10 kW. No hysteresis was observed in the nitrogen partial pressure vs. flow plot, as is typically seen for the Ti-N system. Four phases were determined by X-ray diffraction: molybdenum, Mo-N solid solution, Beta-Mo2N and gamma-Mo2N. The hardness of the coatings depended upon composition, substrate bias, and target power. The phases present in the hardest films differed depending upon deposition parameters. For example, the Beta-Mo2N phase was hardest (load 25 gf) at 5.0 kW with a value of 3200 kgf/sq mm, whereas the hardest coatings at 10 kW were the gamma-Mo2N phase (3000 kgf/sq mm). The deposition rate generally decreased with increasing nitrogen partial pressure, but there was a range of partial pressures where the rate was relatively constant. At a target power of 5.0 kW, for example, the deposition rates were 3300 A/min for a N2 partial pressure of 0.05 - 1.0 mTorr.

  12. Structure of turbulence at high shear rate

    NASA Technical Reports Server (NTRS)

    Lee, Moon Joo; Kim, John; Moin, Parviz

    1990-01-01

    The structure of homogeneous turbulence subject to high shear rate has been investigated by using three-dimensional, time-dependent numerical simulations of the Navier-Stokes equations. This study indicates that high shear rate alone is sufficient for generation of the streaky structures, and that the presence of a solid boundary is not necessary. Evolution of the statistical correlations is examined to determine the effect of high shear rate on the development of anisotropy in turbulence. It is shown that the streamwise fluctuating motions are enhanced so profoundly that a highly anisotropic turbulence state with a 'one-component' velocity field and 'two-component' vorticity field develops asymptotically as total shear increases. Because of high-shear rate, rapid distortion theory predicts remarkably well the anisotropic behavior of the structural quantities.

  13. Effects of long-term grazing on sediment deposition and salt-marsh accretion rates

    NASA Astrophysics Data System (ADS)

    Elschot, Kelly; Bouma, Tjeerd J.; Temmerman, Stijn; Bakker, Jan P.

    2013-11-01

    Many studies have attempted to predict whether coastal marshes will be able to keep up with future acceleration of sea-level rise by estimating marsh accretion rates. However, there are few studies focussing on the long-term effects of herbivores on vegetation structure and subsequent effects on marsh accretion. Deposition of fine-grained, mineral sediment during tidal inundations, together with organic matter accumulation from the local vegetation, positively affects accretion rates of marsh surfaces. Tall vegetation can enhance sediment deposition by reducing current flow and wave action. Herbivores shorten vegetation height and this could potentially reduce sediment deposition. This study estimated the effects of herbivores on 1) vegetation height, 2) sediment deposition and 3) resulting marsh accretion after long-term (at least 16 years) herbivore exclusion of both small (i.e. hare and goose) and large grazers (i.e. cattle) for marshes of different ages. Our results firstly showed that both small and large herbivores can have a major impact on vegetation height. Secondly, grazing processes did not affect sediment deposition. Finally, trampling by large grazers affected marsh accretion rates by compacting the soil. In many European marshes, grazing is used as a tool in nature management as well as for agricultural purposes. Thus, we propose that soil compaction by large grazers should be taken in account when estimating the ability of coastal systems to cope with an accelerating sea-level rise.

  14. Nitrogen accumulation and partitioning in a High Arctic tundra ecosystem from extreme atmospheric N deposition events.

    PubMed

    Choudhary, Sonal; Blaud, Aimeric; Osborn, A Mark; Press, Malcolm C; Phoenix, Gareth K

    2016-06-01

    Arctic ecosystems are threatened by pollution from recently detected extreme atmospheric nitrogen (N) deposition events in which up to 90% of the annual N deposition can occur in just a few days. We undertook the first assessment of the fate of N from extreme deposition in High Arctic tundra and are presenting the results from the whole ecosystem (15)N labelling experiment. In 2010, we simulated N depositions at rates of 0, 0.04, 0.4 and 1.2 g Nm(-2)yr(-1), applied as (15)NH4(15)NO3 in Svalbard (79(°)N), during the summer. Separate applications of (15)NO3(-) and (15)NH4(+) were also made to determine the importance of N form in their retention. More than 95% of the total (15)N applied was recovered after one growing season (~90% after two), demonstrating a considerable capacity of Arctic tundra to retain N from these deposition events. Important sinks for the deposited N, regardless of its application rate or form, were non-vascular plants>vascular plants>organic soil>litter>mineral soil, suggesting that non-vascular plants could be the primary component of this ecosystem to undergo measurable changes due to N enrichment from extreme deposition events. Substantial retention of N by soil microbial biomass (70% and 39% of (15)N in organic and mineral horizon, respectively) during the initial partitioning demonstrated their capacity to act as effective buffers for N leaching. Between the two N forms, vascular plants (Salix polaris) in particular showed difference in their N recovery, incorporating four times greater (15)NO3(-) than (15)NH4(+), suggesting deposition rich in nitrate will impact them more. Overall, these findings show that despite the deposition rates being extreme in statistical terms, biologically they do not exceed the capacity of tundra to sequester pollutant N during the growing season. Therefore, current and future extreme events may represent a major source of eutrophication.

  15. Nitrogen Accumulation and Partitioning in High Arctic Tundra from Extreme Atmospheric N Deposition Events

    NASA Astrophysics Data System (ADS)

    Phoenix, G. K.; Osborn, A.; Blaud, A.; Press, M. C.; Choudhary, S.

    2013-12-01

    Arctic ecosystems are threatened by pollution from extreme atmospheric nitrogen (N) deposition events. These events occur from the long-range transport of reactive N from pollution sources at lower latitudes and can deposit up to 80% of the annual N deposition in just a few days. To date, the fate and impacts of these extreme pollutant events has remained unknown. Using a field simulation study, we undertook the first assessment of the fate of acutely deposited N on arctic tundra. Extreme N deposition events were simulated on field plots at Ny-Ålesund, Svalbard (79oN) at rates of 0, 0.04, 0.4 and 1.2 g N m-2 yr-1 applied as NH4NO3 solution over 4 days, with 15N tracers used in the second year to quantify the fate of the deposited N in the plant, soil, microbial and leachate pools. Separate applications of 15NO3- and 15NH4+ were also made to determine the importance of N form in the fate of N. Recovery of the 15N tracer at the end of the first growing season approached 100% of the 15N applied irrespective of treatment level, demonstrating the considerable capacity of High Arctic tundra to capture pollutant N from extreme deposition events. Most incorporation of the 15N was found in bryophytes, followed by the dominant vascular plant (Salix polaris) and the microbial biomass of the soil organic layer. Total recovery remained high in the second growing season (average of 90%), indicating highly conservative N retention. Between the two N forms, recovery of 15NO3- and 15NH4+ were equal in the non-vascular plants, whereas in the vascular plants (particularly Salix polaris) recovery of 15NO3- was four times higher than of 15NH4+. Overall, these findings show that High Arctic tundra has considerable capacity to capture and retain the pollutant N deposited in acute extreme deposition events. Given they can represent much of the annual N deposition, extreme deposition events may be more important than increased chronic N deposition as a pollution source. Furthermore

  16. Deconvolution of high rate flicker electroretinograms.

    PubMed

    Alokaily, A; Bóhorquez, J; Özdamar, Ö

    2014-01-01

    Flicker electroretinograms are steady-state electroretinograms (ERGs) generated by high rate flash stimuli that produce overlapping periodic responses. When a flash stimulus is delivered at low rates, a transient response named flash ERG (FERG) representing the activation of neural structures within the outer retina is obtained. Although FERGs and flicker ERGs are used in the diagnosis of many retinal diseases, their waveform relationships have not been investigated in detail. This study examines this relationship by extracting transient FERGs from specially generated quasi steady-state flicker and ERGs at stimulation rates above 10 Hz and similarly generated conventional flicker ERGs. The ability to extract the transient FERG responses by deconvolving flicker responses to temporally jittered stimuli at high rates is investigated at varying rates. FERGs were obtained from seven normal subjects stimulated with LED-based displays, delivering steady-state and low jittered quasi steady-state responses at five rates (10, 15, 32, 50, 68 Hz). The deconvolution method enabled a successful extraction of "per stimulus" unit transient ERG responses for all high stimulation rates. The deconvolved FERGs were used successfully to synthesize flicker ERGs obtained at the same high stimulation rates.

  17. ISS Update: High Rate Communications System

    NASA Video Gallery

    ISS Update Commentator Pat Ryan interviews Diego Serna, Communications and Tracking Officer, about the High Rate Communications System. Questions? Ask us on Twitter @NASA_Johnson and include the ha...

  18. [Hopes of high dose-rate radiotherapy].

    PubMed

    Fouillade, Charles; Favaudon, Vincent; Vozenin, Marie-Catherine; Romeo, Paul-Henri; Bourhis, Jean; Verrelle, Pierre; Devauchelle, Patrick; Patriarca, Annalisa; Heinrich, Sophie; Mazal, Alejandro; Dutreix, Marie

    2017-03-07

    In this review, we present the synthesis of the newly acquired knowledge concerning high dose-rate irradiations and the hopes that these new radiotherapy modalities give rise to. The results were presented at a recent symposium on the subject.

  19. Modelling Deposition and Erosion rates with RadioNuclides (MODERN) - Part 1: A new conversion model to derive soil redistribution rates from inventories of fallout radionuclides.

    PubMed

    Arata, Laura; Meusburger, Katrin; Frenkel, Elena; A'Campo-Neuen, Annette; Iurian, Andra-Rada; Ketterer, Michael E; Mabit, Lionel; Alewell, Christine

    2016-10-01

    The measurement of fallout radionuclides (FRN) has become one of the most commonly used tools to quantify sediment erosion or depositional processes. The conversion of FRN inventories into soil erosion and deposition rates is done with a variety of models, which suitability is dependent on the selected FRN, soil cultivation (ploughed or unploughed) and movement (erosion or deposition). The authors propose a new conversion model, which can be easily and comprehensively used for different FRN, land uses and soil redistribution processes. The new model MODERN (Modelling Deposition and Erosion rates with RadioNuclides) considers the precise depth distribution of any FRN at the reference site, and allows adapting it for any specific site conditions. MODERN adaptability and performance in converting different FRN inventories is discussed for a theoretical case as well as for two already published case studies i.e. a (137)Cs study in an alpine and unploughed area in the Aosta valley (Italy) and a (210)Pbex study on a ploughed area located in the Transylvanian Plain (Romania). The tests highlight a highly significant correspondence (i.e. correlation factor of 0.91) between the results of MODERN and the published results of other models currently used by the FRN scientific community (i.e. the Profile Distribution Model and the Mass Balance Model). The development and the cost free accessibility of MODERN (see modern.umweltgeo.unibas.ch) will ensure the promotion of wider application of FRNs for tracing soil erosion and sedimentation.

  20. Modern deposition rates and patterns of organic carbon burial in Fiordland, New Zealand

    NASA Astrophysics Data System (ADS)

    Ramirez, Michael T.; Allison, Mead A.; Bianchi, Thomas S.; Cui, Xingqian; Savage, Candida; Schüller, Susanne E.; Smith, Richard W.; Vetter, Lael

    2016-11-01

    Fjords are disproportionately important for global organic carbon (OC) burial relative to their spatial extent and may be important in sequestering atmospheric CO2, providing a negative climate feedback. Within fjords, multiple locally variable delivery mechanisms control mineral sediment deposition, which in turn modulates OC burial. Sediment and OC sources in Fiordland, New Zealand, include terrigenous input at fjord heads, sediment reworking over fjord-mouth sills, and landslide events from steep fjord walls. Box cores were analyzed for sedimentary texture, sediment accumulation rate, and OC content to evaluate the relative importance of each delivery mechanism. Sediment accumulation was up to 3.4 mm/yr in proximal and distal fjord areas, with lower rates in medial reaches. X-radiograph and 210Pb stratigraphy indicate mass wasting and surface-sediment bioturbation throughout the fjords. Sediment accumulation rates are inversely correlated with %OC. Spatial heterogeneity in sediment depositional processes and rates is important when evaluating OC burial within fjords.

  1. Turnover of texture in low rate sputter-deposited nanocrystalline molybdenum films

    SciTech Connect

    Druesedau, T.P.; Klabunde, F.; Loehmann, M.; Hempel, T.; Blaesing, J.

    1997-07-01

    The crystallite size and orientation in molybdenum films prepared by magnetron sputtering at a low rate of typical 1 {angstrom}/s and a pressure of 0.45 Pa was investigated by X-ray diffraction and texture analysis. The surface topography was studied using atomic force microscopy. Increasing the film thickness from 20 nm to 3 {micro}m, the films show a turnover from a (110) fiber texture to a (211) mosaic-like texture. In the early state of growth (20 nm thickness) the development of dome-like structures on the surface is observed. The number of these structures increases with film thickness, whereas their size is weakly influenced. The effect of texture turnover is reduced by increasing the deposition rate by a factor of six, and it is absent for samples mounted above the center of the magnetron source. The effect of texture turnover is related to the bombardment of the films with high energetic argon neutrals resulting from backscattering at the target under oblique angle and causing resputtering. Due to the narrow angular distribution of the reflected argon, bombardment of the substrate plane is inhomogeneous and only significant for regions close to the erosion zone of the magnetron.

  2. Fuel deposition rates of montane and subalpine conifers in the central Sierra Nevada, California, USA

    USGS Publications Warehouse

    van Wagtendonk, J.W.; Moore, P.E.

    2010-01-01

    Fire managers and researchers need information on fuel deposition rates to estimate future changes in fuel bed characteristics, determine when forests transition to another fire behavior fuel model, estimate future changes in fuel bed characteristics, and parameterize and validate ecosystem process models. This information is lacking for many ecosystems including the Sierra Nevada in California, USA. We investigated fuel deposition rates and stand characteristics of seven montane and four subalpine conifers in the Sierra Nevada. We collected foliage, miscellaneous bark and crown fragments, cones, and woody fuel classes from four replicate plots each in four stem diameter size classes for each species, for a total of 176 sampling sites. We used these data to develop predictive equations for each fuel class and diameter size class of each species based on stem and crown characteristics. There were consistent species and diameter class differences in the annual amount of foliage and fragments deposited. Foliage deposition rates ranged from just over 50 g m-2 year-1 in small diameter mountain hemlock stands to ???300 g m-2 year-1 for the three largest diameter classes of giant sequoia. The deposition rate for most woody fuel classes increased from the smallest diameter class stands to the largest diameter class stands. Woody fuel deposition rates varied among species as well. The rates for the smallest woody fuels ranged from 0.8 g m-2 year-1 for small diameter stands of Jeffrey pine to 126.9 g m-2 year-1 for very large diameter stands of mountain hemlock. Crown height and live crown ratio were the best predictors of fuel deposition rates for most fuel classes and species. Both characteristics reflect the amount of crown biomass including foliage and woody fuels. Relationships established in this study allow predictions of fuel loads to be made on a stand basis for each of these species under current and possible future conditions. These predictions can be used to

  3. Deposited silicon high-speed integrated electro-optic modulator.

    PubMed

    Preston, Kyle; Manipatruni, Sasikanth; Gondarenko, Alexander; Poitras, Carl B; Lipson, Michal

    2009-03-30

    We demonstrate a micrometer-scale electro-optic modulator operating at 2.5 Gbps and 10 dB extinction ratio that is fabricated entirely from deposited silicon. The polycrystalline silicon material exhibits properties that simultaneously enable high quality factor optical resonators and sub-nanosecond electrical carrier injection. We use an embedded p(+)n(-)n(+) diode to achieve optical modulation using the free carrier plasma dispersion effect. Active optical devices in a deposited microelectronic material can break the dependence on the traditional single layer silicon-on-insulator platform and help lead to monolithic large-scale integration of photonic networks on a microprocessor chip.

  4. Turbulence structure at high shear rate

    NASA Technical Reports Server (NTRS)

    Lee, Moon Joo; Kim, John; Moin, Parviz

    1987-01-01

    The structure of homogeneous turbulence in the presence of a high shear rate is studied using results obtained from three-dimensional time-dependent numerical simulations of the Navier-Stokes equations on a grid of 512 x 128 x 128 node points. It is shown that high shear rate enhances the streamwise fluctuating motion to such an extent that a highly anisotropic turbulence state with a one-dimensional velocity field and two-dimensional small-scale turbulence develops asymptotically as total shear increases. Instantaneous velocity fields show that high shear rate in homogeneous turbulent shear flow produces structures which are similar to the streaks present in the viscous sublayer of turbulent boundary layers.

  5. Massive accumulation of highly polluted sedimentary deposits by river damming.

    PubMed

    Palanques, Albert; Grimalt, Joan; Belzunces, Marc; Estrada, Ferran; Puig, Pere; Guillén, Jorge

    2014-11-01

    Uncontrolled dumping of anthropogenic waste in rivers regulated by dams has created contaminated deposits in reservoirs that have remained unidentified for decades. The Flix Reservoir is located in the Ebro River, the second largest river flowing into the NW Mediterranean, has been affected by residue dumping from a chlor-alkali electrochemical plant for decades. High-resolution seismic profiles, bathymetric data, surficial sediment samples and sediment cores were obtained in the Flix Reservoir to study the characteristics of the deposit accumulated by this dumping. These data were used to reconstruct the waste deposit history. Since the construction of the Flix Dam in 1948, more than 3.6×10(5) t of industrial waste has accumulated in the reservoir generating a delta-like deposit formed by three sediment lobes of fine-grained material highly contaminated by Hg, Cd, Zn and Cr (max: 640, 26, 420 and 750 mg kg(-1), respectively). This contamination was associated with the Hg that was used for the cathode in the electrochemical plant from 1949 and with the production of phosphorite derivatives from 1973. After the construction of two large dams only a few kilometres upstream during the 1960s, the solids discharged from the industrial complex became the main sediment source to the Flix Reservoir. The deposit has remained in the reservoir forming a delta that obstructs about 50% of the river water section. Its stability only depended on the flow retention by the Flix Dam. At present, this contaminated waste deposit is being removed from the water reservoir as it is a cause of concern for the environment and for human health downriver.

  6. A numerical and experimental analysis of reactor performance and deposition rates for CVD on monofilaments

    NASA Technical Reports Server (NTRS)

    Gokoglu, S. A.; Kuczmarski, M.; Veitch, L.; Tsui, P.; Chait, A.

    1990-01-01

    The computational fluid dynamics (CFD) code FLUENT is adopted to simulate a cylindrical upflow reactor designed for chemical vapor deposition (CVD) on monofilaments. Equilibrium temperature profiles along the fiber and quartz reactor wall are experimentally measured and used as boundary conditions in numerical simulations. Two-dimensional axisymmetric flow and temperature fields are calculated for hydrogen and argon; the effect of free convection is assessed. The gas and surface chemistry is included for predicting silicon deposition from silane. The model predictions are compared with experimentally measured silicon CVD rates. Inferences are made for optimum conditions to obtain uniformity.

  7. High rate and stable cycling of lithium metal anode

    DOE PAGES

    Qian, Jiangfeng; Henderson, Wesley A.; Xu, Wu; ...

    2015-02-20

    Lithium (Li) metal is an ideal anode material for rechargeable batteries. However, dendritic Li growth and limited Coulombic efficiency (CE) during repeated Li deposition/stripping processes have prevented the application of this anode in rechargeable Li metal batteries, especially for use at high current densities. Here, we report that the use of highly concentrated electrolytes composed of ether solvents and the lithium bis(fluorosulfonyl)imide (LiFSI) salt enables the high rate cycling of a Li metal anode at high CE (up to 99.1 %) without dendrite growth. With 4 M LiFSI in 1,2-dimethoxyethane (DME) as the electrolyte, a Li|Li cell can be cycledmore » at high rates (10 mA cm-2) for more than 6000 cycles with no increase in the cell impedance, and a Cu|Li cell can be cycled at 4 mA cm-2 for more than 1000 cycles with an average CE of 98.4%. These excellent high rate performances can be attributed to the increased solvent coordination and increased availability of Li+ concentration in the electrolyte. Lastly, further development of this electrolyte may lead to practical applications for Li metal anode in rechargeable batteries. The fundamental mechanisms behind the high rate ion exchange and stability of the electrolytes also shine light on the stability of other electrochemical systems.« less

  8. High rate and stable cycling of lithium metal anode

    SciTech Connect

    Qian, Jiangfeng; Henderson, Wesley A.; Xu, Wu; Bhattacharya, Priyanka; Engelhard, Mark H.; Borodin, Oleg; Zhang, Jiguang

    2015-02-20

    Lithium (Li) metal is an ideal anode material for rechargeable batteries. However, dendritic Li growth and limited Coulombic efficiency (CE) during repeated Li deposition/stripping processes have prevented the application of this anode in rechargeable Li metal batteries, especially for use at high current densities. Here, we report that the use of highly concentrated electrolytes composed of ether solvents and the lithium bis(fluorosulfonyl)imide (LiFSI) salt enables the high rate cycling of a Li metal anode at high CE (up to 99.1 %) without dendrite growth. With 4 M LiFSI in 1,2-dimethoxyethane (DME) as the electrolyte, a Li|Li cell can be cycled at high rates (10 mA cm-2) for more than 6000 cycles with no increase in the cell impedance, and a Cu|Li cell can be cycled at 4 mA cm-2 for more than 1000 cycles with an average CE of 98.4%. These excellent high rate performances can be attributed to the increased solvent coordination and increased availability of Li+ concentration in the electrolyte. Lastly, further development of this electrolyte may lead to practical applications for Li metal anode in rechargeable batteries. The fundamental mechanisms behind the high rate ion exchange and stability of the electrolytes also shine light on the stability of other electrochemical systems.

  9. The El Niño Southern Oscillation (ENSO) induced modulations in precipitation and nitrogen wet deposition rates in the continental United States

    NASA Astrophysics Data System (ADS)

    Nergui, T.; Chung, S. H.; Adam, J. C.; Evans, R. D.

    2015-12-01

    The ENSO affects atmospheric nitrogen (N) deposition rates through its modulation on N wet deposition. Precipitation and wet deposition measurements at 151 sites of the National Atmospheric Deposition Program/National Trends Network and the NINO3.4 SST climate index from the NOAA's Climate Prediction Center are analyzed to determine the impacts of the ENSO on N wet deposition and precipitation rates in the continental U.S. Precipitation and N wet deposition time series are dominated by high frequency components; however, they contain a wide range of inter-annual frequency components depending on the location. At the 2-to 6-year timescale, variability of precipitation and N wet deposition rates in the Pacific Northwest, the Rocky Mountains, the Gulf States, the Northeast, and the Great Lakes regions are correlated with that of the NINO3.4 index (r2= 0.09-0.59 for precipitation and r2= 0.09-0.52 for N wet deposition, p<0.05). The spatial patterns and strength of the correlations vary by region and season. The correlations are the strongest and most spatially extensive during winter; 46-62% and 46-53% of the 2- to 6-year variability of precipitation and N wet deposition rates in the Rocky Mountains, the Gulf of Mexico, and near the Great Lakes can be explained by ENSO activity. The wintertime relationships tend to hold through springtime in the Great Lakes, the Ohio River Valley, and the Northeast. During the El Niño winters and springs, N wet deposition rates are higher than normal (greater than the 70thpercentile) in the southern Great Plains and the Gulf Coast. Winter and spring La Niña episodes bring precipitation and N wet deposition rates above normal over the Cascades, the Ohio River Valley, the Northeast and the Great Lakes regions. The ensemble mean of eleven coupled General Circulation Models (Yeh et al., 2009) shows that the weak ENSO cycles, having small to moderate amplitudes and reoccurring in shorter time intervals, are projected to dominate in the 21

  10. High Temperature Multilayer Environmental Barrier Coatings Deposited Via Plasma Spray-Physical Vapor Deposition

    NASA Technical Reports Server (NTRS)

    Harder, Bryan James; Zhu, Dongming; Schmitt, Michael P.; Wolfe, Douglas E.

    2014-01-01

    Si-based ceramic matrix composites (CMCs) require environmental barrier coatings (EBCs) in combustion environments to avoid rapid material loss. Candidate EBC materials have use temperatures only marginally above current technology, but the addition of a columnar oxide topcoat can substantially increase the durability. Plasma Spray-Physical Vapor Deposition (PS-PVD) allows application of these multilayer EBCs in a single process. The PS-PVD technique is a unique method that combines conventional thermal spray and vapor phase methods, allowing for tailoring of thin, dense layers or columnar microstructures by varying deposition conditions. Multilayer coatings were deposited on CMC specimens and assessed for durability under high heat flux and load. Coated samples with surface temperatures ranging from 2400-2700F and 10 ksi loads using the high heat flux laser rigs at NASA Glenn. Coating morphology was characterized in the as-sprayed condition and after thermomechanical loading using electron microscopy and the phase structure was tracked using X-ray diffraction.

  11. Highly sensitive wide bandwidth photodetectors using chemical vapor deposited graphene

    NASA Astrophysics Data System (ADS)

    Goo Kang, Chang; Kyung Lee, Sang; Jin Yoo, Tae; Park, Woojin; Jung, Ukjin; Ahn, Jinho; Hun Lee, Byoung

    2014-04-01

    A photodetector generating a nearly constant photocurrent in a very wide spectral range from ultraviolet (UV) to infrared has been demonstrated using chemical vapor deposited (CVD) graphene. Instability due to a photochemical reaction in the UV region has been minimized using an Al2O3 passivation layer, and a responsivity comparable to that of Highly Ordered Pyrolytic Graphite graphene photodetectors of ˜8 mA/W has been achieved at a 0.1 V bias, despite high defect density in the CVD graphene. A highly sensitive multi-band photodetector using graphene has many potential applications including optical interconnects, multi-band imaging sensors, highly sensitive motion detectors, etc.

  12. High Bit Rate Experiments Over ACTS

    NASA Technical Reports Server (NTRS)

    Bergman, Larry A.; Gary, J. Patrick; Edelsen, Burt; Helm, Neil; Cohen, Judith; Shopbell, Patrick; Mechoso, C. Roberto; Chung-Chun; Farrara, M.; Spahr, Joseph

    1996-01-01

    This paper describes two high data rate experiments chat are being developed for the gigabit NASA Advanced Communications Technology Satellite (ACTS). The first is a telescience experiment that remotely acquires image data at the Keck telescope from the Caltech campus. The second is a distributed global climate application that is run between two supercomputer centers interconnected by ACTS. The implementation approach for each is described along with the expected results. Also. the ACTS high data rate (HDR) ground station is also described in detail.

  13. Constraints on the Martian cratering rate imposed by the SNC meteorites and Vallis Marineris layered deposits

    NASA Technical Reports Server (NTRS)

    Brandenburg, J. E.

    1993-01-01

    Following two independent lines of evidence -- estimates of the age and formation time of a portion of the Martian geologic column exposed in the layered deposits and the crystallization and ejection ages of the SNC meteorites -- it appears that the Martian cratering rate must be double the lunar rate or even higher. This means models such as NHII or NHIII (Neukum and Hiller models II and III), which estimate the Martian cratering rate as being several times lunar are probably far closer to reality on Mars than lunar rates. The effect of such a shift is profound: Mars is transformed from a rather Moon-like place into a planet with vigorous dynamics, multiple large impacts, erosion, floods, and volcanism throughout its history. A strong shift upward in cratering rates on Mars apparently solves some glaring problems; however, it creates others. The period of time during which Earth-like atmospheric conditions existed, the liquid water era on Mars, persists in NHIII up to only 0.5 b.y. ago. Scenarios of extended Earth-like conditions on Mars have been discounted in the past because they would have removed many of the craters from the early bombardment era found in the south. It does appear that some process of crater removal was quite vigorous in the north during Mars' past. Evidence exists that the northern plains may have been the home of long-lived seas or perhaps even a paleo-ocean, so models exist for highly localized destruction of craters in the north. However, the question of how the ancient crater population could be preserved in the south under a long liquid-water era found in any high-cratering-rate models is a serious question that must be addressed. It does appear to be a higher-order problem because it involves low-energy dynamics acting in localized areas, i.e., erosion of craters in the south of Mars, whereas the two problems with the low-cratering-rate models involve high-energy events acting over large areas: the formation of the Vallis Marineris

  14. Constraints on the Martian cratering rate imposed by the SNC meteorites and Vallis Marineris layered deposits

    NASA Astrophysics Data System (ADS)

    Brandenburg, J. E.

    Following two independent lines of evidence -- estimates of the age and formation time of a portion of the Martian geologic column exposed in the layered deposits and the crystallization and ejection ages of the SNC meteorites -- it appears that the Martian cratering rate must be double the lunar rate or even higher. This means models such as NHII or NHIII (Neukum and Hiller models II and III), which estimate the Martian cratering rate as being several times lunar are probably far closer to reality on Mars than lunar rates. The effect of such a shift is profound: Mars is transformed from a rather Moon-like place into a planet with vigorous dynamics, multiple large impacts, erosion, floods, and volcanism throughout its history. A strong shift upward in cratering rates on Mars apparently solves some glaring problems; however, it creates others. The period of time during which Earth-like atmospheric conditions existed, the liquid water era on Mars, persists in NHIII up to only 0.5 b.y. ago. Scenarios of extended Earth-like conditions on Mars have been discounted in the past because they would have removed many of the craters from the early bombardment era found in the south. It does appear that some process of crater removal was quite vigorous in the north during Mars' past. Evidence exists that the northern plains may have been the home of long-lived seas or perhaps even a paleo-ocean, so models exist for highly localized destruction of craters in the north. However, the question of how the ancient crater population could be preserved in the south under a long liquid-water era found in any high-cratering-rate models is a serious question that must be addressed. It does appear to be a higher-order problem because it involves low-energy dynamics acting in localized areas, i.e., erosion of craters in the south of Mars, whereas the two problems with the low-cratering-rate models involve high-energy events acting over large areas: the formation of the Vallis Marineris

  15. TMF ultra-high rate discharge performance

    SciTech Connect

    Nelson, B.

    1997-12-01

    BOLDER Technologies Corporation has developed a valve-regulated lead-acid product line termed Thin Metal Film (TMF{trademark}) technology. It is characterized by extremely thin plates and close plate spacing that facilitate high rates of charge and discharge with minimal temperature increases, at levels unachievable with other commercially-available battery technologies. This ultra-high rate performance makes TMF technology ideal for such applications as various types of engine start, high drain rate portable devices and high-current pulsing. Data are presented on very high current continuous and pulse discharges. Power and energy relationships at various discharge rates are explored and the fast-response characteristics of the BOLDER{reg_sign} cell are qualitatively defined. Short-duration recharge experiments will show that devices powered by BOLDER batteries can be in operation for more than 90% of an extended usage period with multiple fast recharges. The BOLDER cell is ideal for applications such as engine-start, a wide range of portable devices including power tools, hybrid electric vehicles and pulse-power devices. Applications such as this are very attractive, and are well served by TMF technology, but an area of great interest and excitement is ultrahigh power delivery in excess of 1 kW/kg.

  16. Rapid growth rates of syndepositional marine aragonite cements in steep marginal slope deposits, Bahamas and Belize

    SciTech Connect

    Grammer, G.M.; Ginsburg, R.N.; Swart, P.K.; McNeill, D.F. . Div. of Marine Geology); Jull, A.J.T. . NSF Accelerator Facility); Prezbindowski, D.R. )

    1993-09-01

    Growth rates of marine botryoidal aragonite cements from steep (35-45[degree]) marginal slope deposits in the Bahamas and Belize have been determined by accelerator mass spectrometer radiocarbon dating of samples taken at the base and top of individual botryoids. The pore-filling cements, which range from approximately 11,000-13,000 years old, grew at average rates of 8-10mm/100 yr with maximum rates > 25mm/100 yr. Radiocarbon dating of coexisting skeletal components indicates that cementation was syndepositional. Microsampling transects across individual botryoids for stable-isotope analyses show little variation in [delta][sup 31]C and [delta][sup 18]O, supporting the conclusion that cementation was extremely rapid. Although the cements show a progressive depletion in isotopic composition of approximately 1[per thousand]([delta][sup 13]C) and 2[per thousand]([delta][sup 18]O) from 13 ka to 11 ka, the average variation ([delta][sub 1]) within individual pore-filling cements, ranging in size 2 mm to 32 mm (bottom to top), was 0.11[per thousand]([delta][sup 13]C) and 0.14[per thousand]([delta][sup 18]O). Results of this study provide the first quantitative data on growth rates of marine carbonate cements in a marginal slope environment. The data indicate that marginal slope deposits may lithify within several tens of years and suggest that geologically instantaneous cementation may be critical in stabilizing steep carbonate slope deposits at or above angles of repose.

  17. Evolution of High Tooth Replacement Rates in Sauropod Dinosaurs

    PubMed Central

    Smith, Kathlyn M.; Fisher, Daniel C.; Wilson, Jeffrey A.

    2013-01-01

    Background Tooth replacement rate can be calculated in extinct animals by counting incremental lines of deposition in tooth dentin. Calculating this rate in several taxa allows for the study of the evolution of tooth replacement rate. Sauropod dinosaurs, the largest terrestrial animals that ever evolved, exhibited a diversity of tooth sizes and shapes, but little is known about their tooth replacement rates. Methodology/Principal Findings We present tooth replacement rate, formation time, crown volume, total dentition volume, and enamel thickness for two coexisting but distantly related and morphologically disparate sauropod dinosaurs Camarasaurus and Diplodocus. Individual tooth formation time was determined by counting daily incremental lines in dentin. Tooth replacement rate is calculated as the difference between the number of days recorded in successive replacement teeth. Each tooth family in Camarasaurus has a maximum of three replacement teeth, whereas each Diplodocus tooth family has up to five. Tooth formation times are about 1.7 times longer in Camarasaurus than in Diplodocus (315 vs. 185 days). Average tooth replacement rate in Camarasaurus is about one tooth every 62 days versus about one tooth every 35 days in Diplodocus. Despite slower tooth replacement rates in Camarasaurus, the volumetric rate of Camarasaurus tooth replacement is 10 times faster than in Diplodocus because of its substantially greater tooth volumes. A novel method to estimate replacement rate was developed and applied to several other sauropodomorphs that we were not able to thin section. Conclusions/Significance Differences in tooth replacement rate among sauropodomorphs likely reflect disparate feeding strategies and/or food choices, which would have facilitated the coexistence of these gigantic herbivores in one ecosystem. Early neosauropods are characterized by high tooth replacement rates (despite their large tooth size), and derived titanosaurs and diplodocoids independently

  18. High Resolution Measurement of the Glycolytic Rate

    PubMed Central

    Bittner, Carla X.; Loaiza, Anitsi; Ruminot, Iván; Larenas, Valeria; Sotelo-Hitschfeld, Tamara; Gutiérrez, Robin; Córdova, Alex; Valdebenito, Rocío; Frommer, Wolf B.; Barros, L. Felipe

    2010-01-01

    The glycolytic rate is sensitive to physiological activity, hormones, stress, aging, and malignant transformation. Standard techniques to measure the glycolytic rate are based on radioactive isotopes, are not able to resolve single cells and have poor temporal resolution, limitations that hamper the study of energy metabolism in the brain and other organs. A new method is described in this article, which makes use of a recently developed FRET glucose nanosensor to measure the rate of glycolysis in single cells with high temporal resolution. Used in cultured astrocytes, the method showed for the first time that glycolysis can be activated within seconds by a combination of glutamate and K+, supporting a role for astrocytes in neurometabolic and neurovascular coupling in the brain. It was also possible to make a direct comparison of metabolism in neurons and astrocytes lying in close proximity, paving the way to a high-resolution characterization of brain energy metabolism. Single-cell glycolytic rates were also measured in fibroblasts, adipocytes, myoblasts, and tumor cells, showing higher rates for undifferentiated cells and significant metabolic heterogeneity within cell types. This method should facilitate the investigation of tissue metabolism at the single-cell level and is readily adaptable for high-throughput analysis. PMID:20890447

  19. High Rate for Type IC Supernovae

    SciTech Connect

    Muller, R.A.; Marvin-Newberg, H.J.; Pennypacker, Carl R.; Perlmutter, S.; Sasseen, T.P.; Smith, C.K.

    1991-09-01

    Using an automated telescope we have detected 20 supernovae in carefully documented observations of nearby galaxies. The supernova rates for late spiral (Sbc, Sc, Scd, and Sd) galaxies, normalized to a blue luminosity of 10{sup 10} L{sub Bsun}, are 0.4 h{sup 2}, 1.6 h{sup 2}, and 1.1 h{sup 2} per 100 years for SNe type la, Ic, and II. The rate for type Ic supernovae is significantly higher than found in previous surveys. The rates are not corrected for detection inefficiencies, and do not take into account the indications that the Ic supernovae are fainter on the average than the previous estimates; therefore the true rates are probably higher. The rates are not strongly dependent on the galaxy inclination, in contradiction to previous compilations. If the Milky Way is a late spiral, then the rate of Galactic supernovae is greater than 1 per 30 {+-} 7 years, assuming h = 0.75. This high rate has encouraging consequences for future neutrino and gravitational wave observatories.

  20. High rate, high reliability Li/SO2 cells

    NASA Astrophysics Data System (ADS)

    Chireau, R.

    1982-03-01

    The use of the lithium/sulfur dioxide system for aerospace applications is discussed. The high rate density in the system is compared to some primary systems: mercury zinc, silver zinc, and magnesium oxide. Estimates are provided of the storage life and shelf life of typical lithium sulfur batteries. The design of lithium cells is presented and criteria are given for improving the output of cells in order to achieve high rate and high reliability.

  1. Growth of Nanowires by High-Temperature Glancing Angle Deposition

    NASA Astrophysics Data System (ADS)

    Suzuki, Motofumi; Minamitake, Haruhiko; Kita, Ryo; Hamachi, Kenji; Hara, Hideki; Nakajima, Kaoru; Kimura, Kenji; Hsu, Chia-Wei; Chou, Li-Jen

    2013-11-01

    We have demonstrated that nanowires of various metals, Ge, and Ga2O3 can be grown by high-temperature glancing angle deposition (HT-GLAD). The nanowires of metals including Al, Cu, Ag, Au, Mn, Fe, Co, Ni, and Zn are self-catalyzed, while the nanowires of other materials such as Ge and Ga2O3 are catalyzed by Au nanoparticles. However, once the nanowires start to grow, the growth modes of the HT-GLAD nanowires are fundamentally the same, i.e., nanowires with uniform diameter grow only when the vapor is incident at a very high glancing angle and reach a length larger than 1-8 µm even though the number of deposited atoms corresponds to the average thickness of 20-30 nm. This suggests that there is a universal growth mechanism for the nanowires grown by HT-GLAD.

  2. Baltimore District Tackles High Suspension Rates

    ERIC Educational Resources Information Center

    Maxwell, Lesli A.

    2007-01-01

    This article reports on how the Baltimore District tackles its high suspension rates. Driven by an increasing belief that zero-tolerance disciplinary policies are ineffective, more educators are embracing strategies that do not exclude misbehaving students from school for offenses such as insubordination, disrespect, cutting class, tardiness, and…

  3. Nickel oxide film with open macropores fabricated by surfactant-assisted anodic deposition for high capacitance supercapacitors.

    PubMed

    Wu, Mao-Sung; Wang, Min-Jyle

    2010-10-07

    Nickel oxide film with open macropores prepared by anodic deposition in the presence of surfactant shows a very high capacitance of 1110 F g(-1) at a scan rate of 10 mV s(-1), and the capacitance value reduces to 950 F g(-1) at a high scan rate of 200 mV s(-1).

  4. Reconstruction of 20th Century Atmospheric Deposition Rates in the Sierra Nevada (California) using Spheroidal Carbonaceous Particles

    NASA Astrophysics Data System (ADS)

    Heard, A.; Sickman, J. O.; Rose, N.

    2012-12-01

    Atmospheric nitrogen deposition is altering biogeochemical cycles and ecological processes in high-elevation aquatic ecosystems. A need for stricter standards based on measurable ecological effects has been identified as an important step towards their long-term protection. One of the challenges with identifying ecological thresholds is a lack of knowledge of background conditions (pre- industrial) and changes that may have occurred prior to extensive monitoring programs. However, this information can be obtained using paleolimnological approaches. We are investigating historic atmospheric deposition in the Sierra Nevada using spheroidal carbonaceous particles (SCPs) in lake sediments. SCPs are strong geochemical indicators of anthropogenic atmospheric deposition because they are only produced by industrial combustion of fossil fuels---there are no natural sources. We detected SCPs as early as 1870 at Moat Lake in the eastern Sierra Nevada. SCP concentrations increased over time, peaking in the mid-1980's (2,399 gDM-1) while SCP accumulation rates peaked in the early 1920's (105 no, cm-2 yr-1) (Figure 1). Lakes along the western slope of the Sierra (Pear and Emerald) show similar patterns although differences vary by site and are likely explained by watershed characteristics and proximity to emission sources. SCP concentrations at Pear and Emerald lakes peak 10-15 years earlier than Moat. A consistent decrease was observed at Pear and Moat following the peak concentrations until present. Present day concentrations are 556 gDM-1 at Moat and 473 gDM-1 at Pear. At Emerald lake SCPs also initially decreased starting in 1964, but an increasing trend is observed from 1995 through present. These data improve our understanding of historic atmospheric deposition patterns and are being used to inform additional palaeolimnological research, including diatom analyses, with the broader objective of reconstructing historic nitrogen deposition and estimating critical loads for

  5. High strain rate behaviour of polypropylene microfoams

    NASA Astrophysics Data System (ADS)

    Gómez-del Río, T.; Garrido, M. A.; Rodríguez, J.; Arencón, D.; Martínez, A. B.

    2012-08-01

    Microcellular materials such as polypropylene foams are often used in protective applications and passive safety for packaging (electronic components, aeronautical structures, food, etc.) or personal safety (helmets, knee-pads, etc.). In such applications the foams which are used are often designed to absorb the maximum energy and are generally subjected to severe loadings involving high strain rates. The manufacture process to obtain polymeric microcellular foams is based on the polymer saturation with a supercritical gas, at high temperature and pressure. This method presents several advantages over the conventional injection moulding techniques which make it industrially feasible. However, the effect of processing conditions such as blowing agent, concentration and microfoaming time and/or temperature on the microstructure of the resulting microcellular polymer (density, cell size and geometry) is not yet set up. The compressive mechanical behaviour of several microcellular polypropylene foams has been investigated over a wide range of strain rates (0.001 to 3000 s-1) in order to show the effects of the processing parameters and strain rate on the mechanical properties. High strain rate tests were performed using a Split Hopkinson Pressure Bar apparatus (SHPB). Polypropylene and polyethylene-ethylene block copolymer foams of various densities were considered.

  6. Pulse electrodeposition of gold-nickel alloys from a citrate bath. 1. Deposition rate and coating appearance

    SciTech Connect

    Kostin, N.A.; Kaptanovskii, V.I.

    1994-11-01

    The effect of various parameters of pulse polarizing current on the deposition rate and appearance of gold-nickel coatings used in the watch industry was studied. It was shown that the pulse conditions allow deposition-rate enhancement and production of variously colored coatings.

  7. Computer Program for the Calculation of Multicomponent Convective Diffusion Deposition Rates from Chemically Frozen Boundary Layer Theory

    NASA Technical Reports Server (NTRS)

    Gokoglu, S. A.; Chen, B. K.; Rosner, D. E.

    1984-01-01

    The computer program based on multicomponent chemically frozen boundary layer (CFBL) theory for calculating vapor and/or small particle deposition rates is documented. A specific application to perimter-averaged Na2SO4 deposition rate calculations on a cylindrical collector is demonstrated. The manual includes a typical program input and output for users.

  8. Impact of future Arctic shipping on high-latitude black carbon deposition (Invited)

    NASA Astrophysics Data System (ADS)

    Corbett, J. J.; Browse, J.; Carslaw, K. S.; Schmidt, A.

    2013-12-01

    The retreat of Arctic sea-ice has led to renewed calls to exploit Arctic shipping routes. The diversion of ship traffic through the Arctic will shorten shipping routes and possibly reduce global shipping emissions. However, deposition of black carbon (BC) aerosol emitted by additional Arctic ships could cause a reduction in the albedo of snow and ice, accelerating snow-melt and sea-ice loss. We use recently compiled Arctic shipping emission inventories for 2004 and 2050 together with a global aerosol microphysics model GLOMAP coupled to the chemical transport model TOMCAT to quantify the contribution of future Arctic shipping to high-latitude BC deposition. Emission rates of SOx (SO2 and SO4) and particulate matter (PM) were estimated for 2050 under both business-as-usual and high-growth scenarios. BC particles are assumed to be water-insoluble at emission but can become active in cloud drop formation through soluble material accumulation. After BC particles become cloud-active they are more efficiently wet scavenged, which accounts for 80% of modeled BC deposition. Current-day Arctic shipping contributes 0.3% to the BC mass deposited north of 60N (250 Gg). About 50% of modelled BC deposition is on open ocean, suggesting that current Arctic ship traffic may not significantly contribute to BC deposition on central Arctic sea ice. However, 6 - 8% of deposited BC on the west coast of Greenland originates from local ship traffic. Moreover, in-Arctic shipping contributes some 32% to high-latitude ship-sourced deposition despite accounting for less than 1.0% of global shipping emissions. This suggests that control of in-Arctic shipping BC emissions could yield greater decrease in high-latitude BC deposition than a similar control strategy applied only to the extra-Arctic shipping industry. Arctic shipping in 2050 will contribute less than 1% to the total BC deposition north of 60N due to the much greater relative contribution of BC transported from non-shipping sources

  9. Highly stable high-rate discriminator for nuclear counting

    NASA Technical Reports Server (NTRS)

    English, J. J.; Howard, R. H.; Rudnick, S. J.

    1969-01-01

    Pulse amplitude discriminator is specially designed for nuclear counting applications. At very high rates, the threshold is stable. The output-pulse width and the dead time change negligibly. The unit incorporates a provision for automatic dead-time correction.

  10. Phosphor thermometry at high repetition rates

    NASA Astrophysics Data System (ADS)

    Fuhrmann, N.; Brübach, J.; Dreizler, A.

    2013-09-01

    Phosphor thermometry is a semi-invasive surface temperature measurement technique utilizing the luminescence properties of thermographic phosphors. Typically these ceramic materials are coated onto the object of interest and are excited by a short UV laser pulse. Photomultipliers and high-speed camera systems are used to transiently detect the subsequently emitted luminescence decay point wise or two-dimensionally resolved. Based on appropriate calibration measurements, the luminescence lifetime is converted to temperature. Up to now, primarily Q-switched laser systems with repetition rates of 10 Hz were employed for excitation. Accordingly, this diagnostic tool was not applicable to resolve correlated temperature transients at time scales shorter than 100 ms. For the first time, the authors realized a high-speed phosphor thermometry system combining a highly repetitive laser in the kHz regime and a fast decaying phosphor. A suitable material was characterized regarding its temperature lifetime characteristic and precision. Additionally, the influence of laser power on the phosphor coating in terms of heating effects has been investigated. A demonstration of this high-speed technique has been conducted inside the thermally highly transient system of an optically accessible internal combustion engine. Temperatures have been measured with a repetition rate of one sample per crank angle degree at an engine speed of 1000 rpm. This experiment has proven that high-speed phosphor thermometry is a promising diagnostic tool for the resolution of surface temperature transients.

  11. High strain rate characterization of polymers

    NASA Astrophysics Data System (ADS)

    Siviour, Clive R.

    2017-01-01

    This paper reviews the literature on the response of polymers to high strain rate deformation. The main focus is on the experimental techniques used to characterize this response. The paper includes a small number of examples as well as references to experimental data over a wide range of rates, which illustrate the key features of rate dependence in these materials; however this is by no means an exhaustive list. The aim of the paper is to give the reader unfamiliar with the subject an overview of the techniques available with sufficient references from which further information can be obtained. In addition to the `well established' techniques of the Hopkinson bar, Taylor Impact and Transverse impact, a discussion of the use of time-temperature superposition in interpreting and experimentally replicating high rate response is given, as is a description of new techniques in which mechanical parameters are derived by directly measuring wave propagation in specimens; these are particularly appropriate for polymers with low wave speeds. The vast topic of constitutive modelling is deliberately excluded from this review.

  12. Analytical Modeling of High Rate Processes.

    DTIC Science & Technology

    2007-11-02

    TYPE AND DATES COVERED 1 13 Apr 98 Final (01 Sep 94 - 31 Aug 97) 4. TITLE AND SUBTITLE 5 . FUNDING NUMBERS Analytical Modeling of High Rate Processes...20332- 8050 FROM: S. E. Jones, University Research Professor Department of Aerospace Engineering and Mechanics University of Alabama SUBJECT: Final...Mr. Sandor Augustus and Mr. Jeffrey A. Drinkard. There are no outstanding commitments. The balance in the account, as of July 31 , 1997, was $102,916.42

  13. HIGH ENERGY RATE EXTRUSION OF URANIUM

    DOEpatents

    Lewis, L.

    1963-07-23

    A method of extruding uranium at a high energy rate is described. Conditions during the extrusion are such that the temperature of the metal during extrusion reaches a point above the normal alpha to beta transition, but the metal nevertheless remains in the alpha phase in accordance with the Clausius- Clapeyron equation. Upon exiting from the die, the metal automatically enters the beta phase, after which the metal is permitted to cool. (AEC)

  14. Reserve, flowing electrolyte, high rate lithium battery

    NASA Astrophysics Data System (ADS)

    Puskar, M.; Harris, P.

    Flowing electrolyte Li/SOCl2 tests in single cell and multicell bipolar fixtures have been conducted, and measurements are presented for electrolyte flow rates, inlet and outlet temperatures, fixture temperatures at several points, and the pressure drop across the fixture. Reserve lithium batteries with flowing thionyl-chloride electrolytes are found to be capable of very high energy densities with usable voltages and capacities at current densities as high as 500 mA/sq cm. At this current density, a battery stack 10 inches in diameter is shown to produce over 60 kW of power while maintaining a safe operating temperature.

  15. Inspection of Powder Flow During LMD Deposition by High Speed Imaging

    NASA Astrophysics Data System (ADS)

    Montero, Javier; Rodríguez, Ángel; Amado, José Manuel; Yáñez, Armando J.

    Laser cladding and LMD (Laser Metal Deposition) processes are continuously gaining ground in aerospace and energy industries. One of the known issues with that kind of processes is the difficulty of maintaining a constant and well distributed powder flow mass rate between the nozzle and the substrate. In this work, a method for real time inspection of powder distribution and mass flow rate is presented. Inference of mass flow rate and powder distribution is made using a high speed camera and a laser illumination device. Both on-process and off-process monitoring can be achieved. Different experimental results for the validation of the proposed method are presented.

  16. Field metabolic rate and PCB adipose tissue deposition efficiency in East Greenland polar bears derived from contaminant monitoring data.

    PubMed

    Pavlova, Viola; Nabe-Nielsen, Jacob; Dietz, Rune; Svenning, Jens-Christian; Vorkamp, Katrin; Rigét, Frank Farsø; Sonne, Christian; Letcher, Robert J; Grimm, Volker

    2014-01-01

    Climate change will increasingly affect the natural habitat and diet of polar bears (Ursus maritimus). Understanding the energetic needs of polar bears is therefore important. We developed a theoretical method for estimating polar bear food consumption based on using the highly recalcitrant polychlorinated biphenyl (PCB) congener, 2,2',4,4',55-hexaCB (CB153) in bear adipose tissue as an indicator of food intake. By comparing the CB153 tissue concentrations in wild polar bears with estimates from a purposely designed individual-based model, we identified the possible combinations of field metabolic rates (FMR) and CB153 deposition efficiencies in East Greenland polar bears. Our simulations indicate that if 30% of the CB153 consumed by polar bear individuals were deposited into their adipose tissue, the corresponding FMR would be only two times the basal metabolic rate. In contrast, if the modelled CB153 deposition efficiency were 10%, adult polar bears would require six times more energy than that needed to cover basal metabolism. This is considerably higher than what has been assumed for polar bears in previous studies though it is similar to FMRs found in other marine mammals. An implication of this result is that even relatively small reductions in future feeding opportunities could impact the survival of East Greenland polar bears.

  17. Field Metabolic Rate and PCB Adipose Tissue Deposition Efficiency in East Greenland Polar Bears Derived from Contaminant Monitoring Data

    PubMed Central

    Pavlova, Viola; Nabe-Nielsen, Jacob; Dietz, Rune; Svenning, Jens-Christian; Vorkamp, Katrin; Rigét, Frank Farsø; Sonne, Christian; Letcher, Robert J.; Grimm, Volker

    2014-01-01

    Climate change will increasingly affect the natural habitat and diet of polar bears (Ursus maritimus). Understanding the energetic needs of polar bears is therefore important. We developed a theoretical method for estimating polar bear food consumption based on using the highly recalcitrant polychlorinated biphenyl (PCB) congener, 2,2′,4,4′,55-hexaCB (CB153) in bear adipose tissue as an indicator of food intake. By comparing the CB153 tissue concentrations in wild polar bears with estimates from a purposely designed individual-based model, we identified the possible combinations of field metabolic rates (FMR) and CB153 deposition efficiencies in East Greenland polar bears. Our simulations indicate that if 30% of the CB153 consumed by polar bear individuals were deposited into their adipose tissue, the corresponding FMR would be only two times the basal metabolic rate. In contrast, if the modelled CB153 deposition efficiency were 10%, adult polar bears would require six times more energy than that needed to cover basal metabolism. This is considerably higher than what has been assumed for polar bears in previous studies though it is similar to FMRs found in other marine mammals. An implication of this result is that even relatively small reductions in future feeding opportunities could impact the survival of East Greenland polar bears. PMID:25101837

  18. Nitrogen Deposition Reduces Decomposition Rates Through Shifts in Microbial Community Composition and Function

    NASA Astrophysics Data System (ADS)

    Waldrop, M.; Zak, D.; Sinsabaugh, R.

    2002-12-01

    Atmospheric nitrogen (N) deposition may alter soil biological activity in northern hardwood forests by repressing phenol oxidase enzyme activity and altering microbial community composition, thereby slowing decomposition and increasing the export of phenolic compounds. We tested this hypothesis by adding 13C-labelled cellobiose, vanillin, and catechol to control and N fertilized soils (30 and 80 kg ha-1) collected from three forests; two dominated by Acer Saccharum and one dominated by Quercus Alba and Quercus Velutina. While N deposition increased total microbial respiration, it decreased soil oxidative enzyme activities, resulting in slower degradation rates of all compounds, and larger DOC pools. This effect was larger in the oak forest, where fungi dominate C-cycling processes. DNA and 13C-phospolipid analyses showed that N addition altered the fungal community and reduced the activity of fungal and bacterial populations in soil, potentially explaining reduced soil enzyme activities and incomplete decomposition.

  19. The effect of Be and Cr electrode deposition rate on the performance of MIS solar cells

    NASA Astrophysics Data System (ADS)

    Moharram, A. H.; Panayotatos, P.; Yeh, J. L.; Lalevic, B.

    1985-07-01

    An experimental study has been performed on MIS solar cells with Be, Cr and layered Cr-Be electrodes on single crystal Si, Wacker and Monsanto poly-Si substrates. Electrical characterization in the dark and under illumination was correlated to X-ray and Auger spectroscopy results. It was found that the electrode deposition rate directly affects the oxygen content of the electrodes for all metal-substrate configurations. This oxygen is believed to originate from the deposition ambient as well as from the SiO2 layer. In the case of cells with Cr and layered Cr-Be electrodes oxygen acts to reduce the electrode work function (thus increasing the open-circuit voltage) in direct proportion to the relative content of oxygen to chromium.

  20. Civilian residential fire fatality rates: Six high-rate states versus six low-rate states

    NASA Astrophysics Data System (ADS)

    Hall, J. R., Jr.; Helzer, S. G.

    1983-08-01

    Results of an analysis of 1,600 fire fatalities occurring in six states with high fire-death rates and six states with low fire-death rates are presented. Reasons for the differences in rates are explored, with special attention to victim age, sex, race, and condition at time of ignition. Fire cause patterns are touched on only lightly but are addressed more extensively in the companion piece to this report, "Rural and Non-Rural Civilian Residential Fire Fatalities in Twelve States', NBSIR 82-2519.

  1. Direct Deposition of Uniform High-κ Dielectrics on Graphene

    PubMed Central

    Zhou, Peng; Yang, Songbo; Sun, Qingqing; Chen, Lin; Wang, Pengfei; Ding, Shijin; Zhang, David Wei

    2014-01-01

    High quality High-κ dielectrics on graphene were achieved by atomic layer deposition directly using remote oxygen plasma surface pretreatment. The uniform coverage on graphene is illustrated by atomic force microscopy and confirmed by high resolution transmission microscopy. The possible surface lattice damage induced by plasma is limited and demonstrated by Raman spectra. The excellent Hall mobility for graphene is maintained at 2.7 × 103 cm2/V·s, which only decreases by 25%. The excellent electrical characteristic of dielectric presents the low leakage current density and high breakdown voltage. Moreover, the technology is compatible with the traditional CMOS process which brings much possibility to future graphene devices. PMID:25264077

  2. High rate pulse processing algorithms for microcalorimeters

    SciTech Connect

    Rabin, Michael; Hoover, Andrew S; Bacrania, Mnesh K; Tan, Hui; Breus, Dimitry; Henning, Wolfgang; Sabourov, Konstantin; Collins, Jeff; Warburton, William K; Dorise, Bertrand; Ullom, Joel N

    2009-01-01

    It has been demonstrated that microcalorimeter spectrometers based on superconducting transition-edge-sensor can readily achieve sub-100 eV energy resolution near 100 keV. However, the active volume of a single microcalorimeter has to be small to maintain good energy resolution, and pulse decay times are normally in the order of milliseconds due to slow thermal relaxation. Consequently, spectrometers are typically built with an array of microcalorimeters to increase detection efficiency and count rate. Large arrays, however, require as much pulse processing as possible to be performed at the front end of the readout electronics to avoid transferring large amounts of waveform data to a host computer for processing. In this paper, they present digital filtering algorithms for processing microcalorimeter pulses in real time at high count rates. The goal for these algorithms, which are being implemented in the readout electronics that they are also currently developing, is to achieve sufficiently good energy resolution for most applications while being (a) simple enough to be implemented in the readout electronics and (b) capable of processing overlapping pulses and thus achieving much higher output count rates than the rates that existing algorithms are currently achieving. Details of these algorithms are presented, and their performance was compared to that of the 'optimal filter' that is the dominant pulse processing algorithm in the cryogenic-detector community.

  3. High-Temperature Performance of Ferritic Steels in Fireside Corrosion Regimes: Temperature and Deposits

    NASA Astrophysics Data System (ADS)

    Dudziak, T.; Hussain, T.; Simms, N. J.

    2016-11-01

    The paper reports high temperature resistance of ferritic steels in fireside corrosion regime in terms of temperature and deposits aggressiveness. Four candidate power plant steels: 15Mo3, T22, T23 and T91 were exposed under simulated air-fired combustion environment for 1000 h. The tests were conducted at 600, 650 and 700 °C according to deposit-recoat test method. Post-exposed samples were examined via dimensional metrology (the main route to quantify metal loss), and mass change data were recorded to perform the study of kinetic behavior at elevated temperatures. Microstructural investigations using ESEM-EDX were performed in order to investigate corrosion degradation and thickness of the scales. The ranking of the steels from most to the least damage was 15Mo3 > T22 > T23 > T91 in all three temperatures. The highest rate of corrosion in all temperatures occurred under the screening deposit.

  4. High-Temperature Performance of Ferritic Steels in Fireside Corrosion Regimes: Temperature and Deposits

    NASA Astrophysics Data System (ADS)

    Dudziak, T.; Hussain, T.; Simms, N. J.

    2017-01-01

    The paper reports high temperature resistance of ferritic steels in fireside corrosion regime in terms of temperature and deposits aggressiveness. Four candidate power plant steels: 15Mo3, T22, T23 and T91 were exposed under simulated air-fired combustion environment for 1000 h. The tests were conducted at 600, 650 and 700 °C according to deposit-recoat test method. Post-exposed samples were examined via dimensional metrology (the main route to quantify metal loss), and mass change data were recorded to perform the study of kinetic behavior at elevated temperatures. Microstructural investigations using ESEM-EDX were performed in order to investigate corrosion degradation and thickness of the scales. The ranking of the steels from most to the least damage was 15Mo3 > T22 > T23 > T91 in all three temperatures. The highest rate of corrosion in all temperatures occurred under the screening deposit.

  5. High Strain Rate Behavior of Polyurea Compositions

    NASA Astrophysics Data System (ADS)

    Joshi, Vasant; Milby, Christopher

    2011-06-01

    Polyurea has been gaining importance in recent years due to its impact resistance properties. The actual compositions of this viscoelastic material must be tailored for specific use. It is therefore imperative to study the effect of variations in composition on the properties of the material. High-strain-rate response of three polyurea compositions with varying molecular weights has been investigated using a Split Hopkinson Pressure Bar arrangement equipped with titanium bars. The polyurea compositions were synthesized from polyamines (Versalink, Air Products) with a multi-functional isocyanate (Isonate 143L, Dow Chemical). Amines with molecular weights of 1000, 650, and a blend of 250/1000 have been used in the current investigation. The materials have been tested up to strain rates of 6000/s. Results from these tests have shown interesting trends on the high rate behavior. While higher molecular weight composition show lower yield, they do not show dominant hardening behavior. On the other hand, the blend of 250/1000 show higher load bearing capability but lower strain hardening effects than the 600 and 1000 molecular weight amine based materials. Refinement in experimental methods and comparison of results using aluminum Split Hopkinson Bar is presented.

  6. High strain rate behavior of polyurea compositions

    NASA Astrophysics Data System (ADS)

    Joshi, Vasant S.; Milby, Christopher

    2012-03-01

    High-strain-rate response of three polyurea compositions with varying molecular weights has been investigated using a Split Hopkinson Pressure Bar arrangement equipped with aluminum bars. Three polyurea compositions were synthesized from polyamines (Versalink, Air Products) with a multi-functional isocyanate (Isonate 143L, Dow Chemical). Amines with molecular weights of 1000, 650, and a blend of 250/1000 have been used in the current investigation. These materials have been tested to strain rates of over 6000/s. High strain rate results from these tests have shown varying trends as a function of increasing strain. While higher molecular weight composition show lower yield, they do not show dominant hardening behavior at lower strain. On the other hand, the blend of 250/1000 show higher load bearing capability but lower strain hardening effects than the 600 and 1000 molecular weight amine based materials. Results indicate that the initial increase in the modulus of the blend of 250/1000 may lead to the loss of strain hardening characteristics as the material is compressed to 50% strain, compared to 1000 molecular weight amine based material.

  7. High strain-rate magnetoelasticity in Galfenol

    NASA Astrophysics Data System (ADS)

    Domann, J. P.; Loeffler, C. M.; Martin, B. E.; Carman, G. P.

    2015-09-01

    This paper presents the experimental measurements of a highly magnetoelastic material (Galfenol) under impact loading. A Split-Hopkinson Pressure Bar was used to generate compressive stress up to 275 MPa at strain rates of either 20/s or 33/s while measuring the stress-strain response and change in magnetic flux density due to magnetoelastic coupling. The average Young's modulus (44.85 GPa) was invariant to strain rate, with instantaneous stiffness ranging from 25 to 55 GPa. A lumped parameters model simulated the measured pickup coil voltages in response to an applied stress pulse. Fitting the model to the experimental data provided the average piezomagnetic coefficient and relative permeability as functions of field strength. The model suggests magnetoelastic coupling is primarily insensitive to strain rates as high as 33/s. Additionally, the lumped parameters model was used to investigate magnetoelastic transducers as potential pulsed power sources. Results show that Galfenol can generate large quantities of instantaneous power (80 MW/m3 ), comparable to explosively driven ferromagnetic pulse generators (500 MW/m3 ). However, this process is much more efficient and can be cyclically carried out in the linear elastic range of the material, in stark contrast with explosively driven pulsed power generators.

  8. High strain rate deformation of layered nanocomposites.

    PubMed

    Lee, Jae-Hwang; Veysset, David; Singer, Jonathan P; Retsch, Markus; Saini, Gagan; Pezeril, Thomas; Nelson, Keith A; Thomas, Edwin L

    2012-01-01

    Insight into the mechanical behaviour of nanomaterials under the extreme condition of very high deformation rates and to very large strains is needed to provide improved understanding for the development of new protective materials. Applications include protection against bullets for body armour, micrometeorites for satellites, and high-speed particle impact for jet engine turbine blades. Here we use a microscopic ballistic test to report the responses of periodic glassy-rubbery layered block-copolymer nanostructures to impact from hypervelocity micron-sized silica spheres. Entire deformation fields are experimentally visualized at an exceptionally high resolution (below 10 nm) and we discover how the microstructure dissipates the impact energy via layer kinking, layer compression, extreme chain conformational flattening, domain fragmentation and segmental mixing to form a liquid phase. Orientation-dependent experiments show that the dissipation can be enhanced by 30% by proper orientation of the layers.

  9. High frame-rate digital radiographic videography

    SciTech Connect

    King, N.S.P.; Cverna, F.H.; Albright, K.L.; Jaramillo, S.A.; Yates, G.J.; McDonald, T.E.; Flynn, M.J.; Tashman, S.

    1994-09-01

    High speed x-ray imaging can be an important tool for observing internal processes in a wide range of applications. In this paper we describe preliminary implementation of a system having the eventual goal of observing the internal dynamics of bone and joint reactions during loading. Two Los Alamos National Laboratory (LANL) gated and image intensified camera systems were used to record images from an x-ray image convertor tube to demonstrate the potential of high frame-rate digital radiographic videography in the analysis of bone and joint dynamics of the human body. Preliminary experiments were done at LANL to test the systems. Initial high frame-rate imaging (from 500 to 1000 frames/s) of a swinging pendulum mounted to the face of an X-ray image convertor tube demonstrated high contrast response and baseline sensitivity. The systems were then evaluated at the Motion Analysis Laboratory of Henry Ford Health Systems Bone and Joint Center. Imaging of a 9 inch acrylic disk with embedded lead markers rotating at approximately 1000 RPM, demonstrated the system response to a high velocity/high contrast target. By gating the P-20 phosphor image from the X-ray image convertor with a second image intensifier (II) and using a 100-microsecond wide optical gate through the second II, enough prompt light decay from the x-ray image convertor phosphor had taken place to achieve reduction of most of the motion blurring. Measurement of the marker velocity was made by using video frames acquired at 500 frames/s. The data obtained from both experiments successfully demonstrated the feasibility of the technique. Several key areas for improvement are discussed along with salient test results and experiment details.

  10. Subaqueous ice-contact fans: Depositional systems characterised by highly aggradational supercritical flow conditions

    NASA Astrophysics Data System (ADS)

    Lang, Joerg; Winsemann, Jutta

    2015-04-01

    Subaqueous ice-contact fans are deposited by high-energy plane-wall jets from subglacial conduits into standing water bodies. Highly aggradational conditions during flow expansion and deceleration allow for the preservation of bedforms related to supercritical flows, which are commonly considered rare in the depositional record. We present field examples from gravelly and sandy subaqueous ice-contact fan successions, which indicate that deposition by supercritical flows might be considered as a characteristic feature of these depositional systems. The studied successions were deposited in deep ice-dammed lakes, which formed along the margins of the Middle Pleistocene Scandinavian ice sheets across Northern Germany. The gravel-rich subaqueous fan deposits are dominated by large scour-fills (up to 25 m wide and 3 m) deep and deposits of turbulent hyperconcentrated flows, which are partly attributed to supercritical flow conditions (Winsemann et al., 2009). Scours (up to 4.5 m wide and 0.9 m deep) infilled by gravelly backsets are observed above laterally extensive erosional surfaces and are interpreted as deposits of cyclic steps. Laterally discontinuous beds of low-angle cross-stratified gravel are interpreted as antidune deposits. Downflow and up-section the gravel-rich deposits pass into sand-rich successions, which include deposits of chutes-and-pools, breaking antidunes, stationary antidunes and humpback dunes (Lang and Winsemann, 2013). Deposits of chutes-and-pools and breaking antidunes are characterised by scour-fills (up to 4 m wide and 1.2 m deep) comprising backsets or gently dipping sigmoidal foresets. Stationary antidune deposits consist of laterally extensive sinusoidal waveforms with long wavelengths (1-12 m) and low amplitudes (0.1-0.5 m), which formed under quasi-steady flows at the lower limit of the supercritical flow stage and high rates of sedimentation. Humpback dunes are characterised by divergent sigmoidal foresets and are interpreted as

  11. Fabrication of highly ultramicroporous carbon nanofoams by SF6-catalyzed laser-induced chemical vapor deposition

    NASA Astrophysics Data System (ADS)

    Hattori, Yoshiyuki; Shuhara, Ai; Kondo, Atsushi; Utsumi, Shigenori; Tanaka, Hideki; Ohba, Tomonori; Kanoh, Hirofumi; Takahashi, Kunimitsu; Vallejos-Burgos, Fernando; Kaneko, Katsumi

    2016-05-01

    We have developed a laser-induced chemical vapor deposition (LCVD) method for preparing nanocarbons with the aid of SF6. This method would offer advantages for the production of aggregates of nanoscale foams (nanofoams) at high rates. Pyrolysis of the as-grown nanofoams induced the high surface area (1120 m2 g-1) and significantly enhanced the adsorption of supercritical H2 (16.6 mg g-1 at 77 K and 0.1 MPa). We also showed that the pyrolized nanofoams have highly ultramicroporous structures. The pyrolized nanofoams would be superior to highly microporous nanocarbons for the adsorption of supercritical gases.

  12. Comparison of elemental accumulation rates between ferromanganese deposits and sediments in the South Pacific Ocean

    USGS Publications Warehouse

    Kraemer, T.; Schornick, J.C.

    1974-01-01

    Rates of accumulation of Fe and Mn, as well as Cu, Ni, Co, Pb, Zn, Hg, U and Th have been determined for five ferromanganese deposits from four localities in the South Pacific Ocean. Manganese is accumulating in nodules and crusts at a rate roughly equivalent to that found to be accumulating in sediments in the same area. Iron shows a deficiency in accumulation in nodules and crusts with respect to sediments, especially near the continents, but also in the central and south-central Pacific. Copper is accumulating in nodules and crusts at a rate one order of magnitude less than the surrounding sediments. This is interpreted as meaning that most of the Mn is supplied as an authigenic phase to both sediments and nodules while Fe is supplied mostly by ferromanganese micro-nodules and by detrital and adsorbed components of sediments; and Cu is enriched in sediments relative to nodules and crusts most probably through biological activity. ?? 1974.

  13. Hydrodynamic control of inorganic calcite precipitation in Huanglong Ravine, China: Field measurements and theoretical prediction of deposition rates

    NASA Astrophysics Data System (ADS)

    Zaihua, Liu; Svensson, U.; Dreybrodt, W.; Daoxian, Yuan; Buhmann, D.

    1995-08-01

    Hydrochemical and hydrodynamical investigations are presented to explain tufa deposition rates along the flow path of the Huanglong Ravine, located in northwestern Sichuan province, China, on an altitude of about 3400 m asl. Due to outgassing of CO 2 the mainly spring-fed stream exhibits, along a valley of 3.5 km, calcite precipitation rates up to a few mm/year. We have carried out in situ experiments to measure calcite deposition rates at rimstone dams, inside of pools and in the stream-bed. Simultaneously, the downstream evolution of water chemistry was investigated at nine locations with respect to Ca 2+, Mg 2+, Na +, Cl -, SO 42-, and alkalinity. Temperature, pH, and conductivity were measured in situ, while total hardness, Ca T, and alkalinity have been determined immediately after sampling, performing standard titration methods. The water turned out to be of an almost pure CaMgHCO 3 type. The degassing of CO 2 causes high supersaturation with respect to calcite and due to calcite precipitation the Ca 2+ concentration decreases from 6·10 -3 mole/1 upstream down to 2.5·10 -3 mole/1 at the lower course. Small rectangular shaped tablets of pure marble were mounted under different flow regimes, i.e., at the dam sites with fast water flow as well as inside pools with still water. After the substrate samples had stayed in the water for a period of a few days, the deposition rates were measured by weight increase, up to several tens of milligrams. Although there were no differences in hydrochemistry, deposition rates in fast flowing water were higher by as much as a factor of four compared to still water, indicating a strong influence of hydrodynamics. While upstream rates amounted up to 5 mm/year, lower rates of about 1 mm/year were observed downstream. Inspection of the marble substrate surfaces by EDAX and SEM (scanning electron microscope) revealed authigeneously grown calcite crystals of about 10 μm. Their shape and habit are indicative of a chemically

  14. Nitrogen Addition Significantly Affects Forest Litter Decomposition under High Levels of Ambient Nitrogen Deposition

    PubMed Central

    Chen, Gang; Peng, Yong; Xiao, Yin-long; Hu, Ting-xing; Zhang, Jian; Li, Xian-wei; Liu, Li; Tang, Yi

    2014-01-01

    Background Forest litter decomposition is a major component of the global carbon (C) budget, and is greatly affected by the atmospheric nitrogen (N) deposition observed globally. However, the effects of N addition on forest litter decomposition, in ecosystems receiving increasingly higher levels of ambient N deposition, are poorly understood. Methodology/Principal Findings We conducted a two-year field experiment in five forests along the western edge of the Sichuan Basin in China, where atmospheric N deposition was up to 82–114 kg N ha–1 in the study sites. Four levels of N treatments were applied: (1) control (no N added), (2) low-N (50 kg N ha–1 year–1), (3) medium-N (150 kg N ha–1 year–1), and (4) high-N (300 kg N ha–1 year–1), N additions ranging from 40% to 370% of ambient N deposition. The decomposition processes of ten types of forest litters were then studied. Nitrogen additions significantly decreased the decomposition rates of six types of forest litters. N additions decreased forest litter decomposition, and the mass of residual litter was closely correlated to residual lignin during the decomposition process over the study period. The inhibitory effect of N addition on litter decomposition can be primarily explained by the inhibition of lignin decomposition by exogenous inorganic N. The overall decomposition rate of ten investigated substrates exhibited a significant negative linear relationship with initial tissue C/N and lignin/N, and significant positive relationships with initial tissue K and N concentrations; these relationships exhibited linear and logarithmic curves, respectively. Conclusions/Significance This study suggests that the expected progressive increases in N deposition may have a potential important impact on forest litter decomposition in the study area in the presence of high levels of ambient N deposition. PMID:24551152

  15. Key factors influencing rates of heterotrophic sulfate reduction in hydrothermal massive sulfide deposits

    NASA Astrophysics Data System (ADS)

    Frank, K. L.; Rogers, D.; Girguis, P. R.

    2012-12-01

    Despite sulfate reduction's ubiquity in marine systems, relatively little is known about how environmental or ecological factors influence rates of sulfate reduction. While numerous studies have considered how sulfate reduction and methanogenesis compete for reductants in natural and human-made systems, less is known about how temperature or metabolite concentration, such as sulfate and sulfide concentrations, affects rates of sulfate reduction. Here we use a factorial experimental design to evaluate the effects of key variables on sulfate reduction kinetics in sulfide deposits recovered from hydrothermal vents in the Main Endeavor Field, Juan de Fuca ridge. Microbial sulfate reduction rates were measured by 35-S tracer techniques over a range of environmentally relevant chemical conditions (pH, H2S, SO42-, and organic carbon concentrations) and temperatures (4, 50 and 90°C). Maximum sulfate reduction rates were observed at 50°C, and sulfate reduction rates had significant positive correlations with increasing sulfide, pH and sulfate. However, sulfate reduction rates did not correlate to exogenous dissolved organic carbon, implicating exogenous hydrogen or endogenous organic matter as the reductant (or even sulfur disproportionation). This research presents an opportunity to better understand the key variables that influence the rates of microbial sulfate reduction in hydrothermal environments and provides a framework for modeling sulfate reduction in mid-ocean ridge systems.

  16. Microalgal separation from high-rate ponds

    SciTech Connect

    Nurdogan, Y.

    1988-01-01

    High rate ponding (HRP) processes are playing an increasing role in the treatment of organic wastewaters in sunbelt communities. Photosynthetic oxygenation by algae has proved to cost only one-seventh as much as mechanical aeration for activated sludge systems. During this study, an advanced HRP, which produces an effluent equivalent to tertiary treatment has been studied. It emphasizes not only waste oxidation but also algal separation and nutrient removal. This new system is herein called advanced tertiary high rate ponding (ATHRP). Phosphorus removal in HRP systems is normally low because algal uptake of phosphorus is about one percent of their 200-300 mg/L dry weights. Precipitation of calcium phosphates by autofluocculation also occurs in HRP at high pH levels, but it is generally not complete due to insufficient calcium concentration in the pond. In the case of Richmond where the studies were conducted, the sewage is very low in calcium. Therefore, enhancement of natural autoflocculation was studied by adding small amounts of lime to the pond. Through this simple procedure phosphorus and nitrogen removals were virtually complete justifying the terminology ATHRP.

  17. Hazards in determination and extrapolation of depositional rates of recent sediments

    SciTech Connect

    Isphording, W.C. . Dept. of Geology-Geography); Jackson, R.B. )

    1992-01-01

    Calculation of depositional rates for the past 250 years in estuarine sediments at sites in the Gulf of Mexico have been carried out by measuring changes that have taken place on bathymetric charts. Depositional rates during the past 50 to 100 years can similarly be estimated by this method and may be often confirmed by relatively abrupt changes at depth in the content of certain heavy metals in core samples. Analysis of bathymetric charts of Mobile Bay, Alabama, dating back to 1858, disclosed an essentially constant sedimentation rate of 3.9 mm/year. Apalachicola Bay, Florida, similarly, was found to have a rate of 5.4 mm/year. Though, in theory, these rates should provide reliable estimates of the influx of sediment into the estuaries, considerable caution must be used in attempting to extrapolate them to any depth in core samples. The passage of hurricanes in the Gulf of Mexico is a common event and can rapidly, and markedly, alter the bathymetry of an estuary. The passage of Hurricane Elena near Apalachicola Bay in 1985, for example, removed over 84 million tons of sediment from the bay and caused an average deepening of nearly 50 cm. The impact of Hurricane Frederick on Mobile Bay in 1979 was more dramatic. During the approximate 7 hour period when winds from this storm impacted the estuary, nearly 290 million tons of sediment was driven out of the bay and an average deepening of 46 cm was observed. With such weather events common in the Gulf Coast, it is not surprising that when radioactive age dating methods were used to obtain dates of approximately 7,500 years for organic remains in cores from Apalachicola Bay, that the depths at which the dated materials were obtained in the cores corresponded to depositional rates of only 0.4 mm/year, or one-tenth that obtained from historic bathymetric data. Because storm scour effects are a common occurrence in the Gulf, no attempt should be made to extrapolate bathymetric-derived rates to beyond the age of the charts.

  18. Radionuclides in the terrestrial ecosystem near a Canadian uranium mill--Part III: Atmospheric deposition rates (pilot test).

    PubMed

    Thomas, P A

    2000-06-01

    Atmospheric deposition rates of uranium series radionuclides were directly measured at three sites near the operating Key Lake uranium mill in northern Saskatchewan. Sites impacted by windblown tailings and mill dusts had elevated rates of uranium deposition near the mill and elevated 226Ra deposition near the tailings compared to a control site. Rainwater collectors, dust jars, and passive vinyl collectors previously used at the Ranger Mine in Australia were pilot-tested. Adhesive vinyl surfaces (1 m2) were oriented horizontally, vertically, and facing the ground as a means of measuring gravitational settling, wind impaction, and soil resuspension, respectively. Although the adhesive glue on the vinyls proved difficult to digest, relative differences in deposition mode were found among radionuclides and among sites. Dry deposition was a more important transport mechanism for uranium, 226Ra, and 210Pb than rainfall, while more 210Po was deposited with rainfall.

  19. Radionuclides in the terrestrial ecosystem near a Canadian uranium mill -- Part 3: Atmospheric deposition rates (pilot test)

    SciTech Connect

    Thomas, P.A.

    2000-06-01

    Atmospheric deposition rates of uranium series radionuclides were directly measured at three sites near the operating Key Lake uranium mill in northern Saskatchewan. Sites impacted by windblown tailings and mill dusts had elevated rates of uranium deposition near the mill and elevated {sup 226}Ra deposition near the tailings compared to a control site. Rainwater collectors, dust jars, and passive vinyl collectors previously used at the Ranger Mine in Australia were pilot-tested. Adhesive vinyl surfaces (1 m{sup 2}) were oriented horizontally, vertically, and facing the ground as a means of measuring gravitational settling, wind impaction, and soil resuspension, respectively. Although the adhesive glue on the vinyls proved difficult to digest, relative differences in deposition mode were found among radionuclides and among sites. Dry deposition was a more important transport mechanism for uranium, {sup 226}Ra, and {sup 210}Pb than rainfall, while more {sup 210}Po was deposited with rainfall.

  20. Innovations in high rate condensate polishing systems

    SciTech Connect

    O`Brien, M.

    1995-01-01

    Test work is being conducted at two major east coast utilities to evaluate flow distribution in high flow rate condensate polishing service vessels. The work includes core sample data used to map the flow distribution in vessels as originally manufactured. Underdrain modifications for improved flow distribution are discussed with data that indicates performance increases of the service vessel following the modifications. The test work is on going, with preliminary data indicating that significant improvements in cycle run length are possible with underdrain modifications. The economic benefits of the above modifications are discussed.

  1. Chemical Vapor Deposition at High Pressure in a Microgravity Environment

    NASA Technical Reports Server (NTRS)

    McCall, Sonya; Bachmann, Klaus; LeSure, Stacie; Sukidi, Nkadi; Wang, Fuchao

    1999-01-01

    In this paper we present an evaluation of critical requirements of organometallic chemical vapor deposition (OMCVD) at elevated pressure for a channel flow reactor in a microgravity environment. The objective of using high pressure is to maintain single-phase surface composition for materials that have high thermal decomposition pressure at their optimum growth temperature. Access to microgravity is needed to maintain conditions of laminar flow, which is essential for process analysis. Based on ground based observations we present an optimized reactor design for OMCVD at high pressure and reduced gravity. Also, we discuss non-intrusive real-time optical monitoring of flow dynamics coupled to homogeneous gas phase reactions, transport and surface processes. While suborbital flights may suffice for studies of initial stages of heteroepitaxy experiments in space are essential for a complete evaluation of steady-state growth.

  2. Pulsed laser deposition of compact high adhesion polytetrafluoroethylene thin films

    NASA Astrophysics Data System (ADS)

    Smausz, Tomi; Hopp, Béla; Kresz, Norbert

    2002-08-01

    Polytetrafluoroethylene (PTFE) thin films were prepared from pressed powder pellets via pulsed laser deposition by using ArF (193 nm) excimer laser. The applied laser fluences were in the 1.6-10 J cm-2 range, the substrate temperature was varied between 27°C and 250°C and post-annealing of the films was carried out in air at temperatures between 320°C and 500°C. Films deposited at 250°C substrate temperature were found to be stoichiometric while those prepared at lower temperatures were fluorine deficient. Morphological analyses proved that the film thickness did not significantly depend on the substrate temperature and the post annealing at 500°C resulted in a thickness reduction of approximately 50%. It was demonstrated that the films prepared at 8.2 J cm-2 fluence and annealed at 500°C followed by cooling at 1°C min-1 rate were compact, pinhole-free layers. The adherence of films to the substrates was determined by tensile strength measurements. Tensile strength values up to 2.4 MPa were obtained. These properties are of great significance when PTFE films are fabricated for the purpose of protecting coatings.

  3. Sweep Rate and Concentration Effects on Metastable Structures Formed in the Underpotential Deposition of Silver on Pt(111)

    DTIC Science & Technology

    1993-01-01

    Sweep Rate and Concentration Effects on Metastable Structures 0) Formed in the Underpotential Deposition of Silver on Pt(111) _Vm D. L. Taylor and H...process of underpotential deposition (UPD) of metals on foreign metal substrates continues to be the subject of intense investigation [1] through the...1" 0•- There are several parameters involved in the underpotential deposition of metals which 1 1 S•. may affect the growth mechanism of the metal

  4. A comprehensive study on different modelling approaches to predict platelet deposition rates in a perfusion chamber

    PubMed Central

    Pallarès, Jordi; Senan, Oriol; Guimerà, Roger; Vernet, Anton; Aguilar-Mogas, Antoni; Vilahur, Gemma; Badimon, Lina; Sales-Pardo, Marta; Cito, Salvatore

    2015-01-01

    Thrombus formation is a multiscale phenomenon triggered by platelet deposition over a protrombotic surface (eg. a ruptured atherosclerotic plaque). Despite the medical urgency for computational tools that aid in the early diagnosis of thrombotic events, the integration of computational models of thrombus formation at different scales requires a comprehensive understanding of the role and limitation of each modelling approach. We propose three different modelling approaches to predict platelet deposition. Specifically, we consider measurements of platelet deposition under blood flow conditions in a perfusion chamber for different time periods (3, 5, 10, 20 and 30 minutes) at shear rates of 212 s−1, 1390 s−1 and 1690 s−1. Our modelling approaches are: i) a model based on the mass-transfer boundary layer theory; ii) a machine-learning approach; and iii) a phenomenological model. The results indicate that the three approaches on average have median errors of 21%, 20.7% and 14.2%, respectively. Our study demonstrates the feasibility of using an empirical data set as a proxy for a real-patient scenario in which practitioners have accumulated data on a given number of patients and want to obtain a diagnosis for a new patient about whom they only have the current observation of a certain number of variables. PMID:26391513

  5. Spatial and temporal variability in sedimentation rates associated with cutoff channel infill deposits: Ain River, France

    USGS Publications Warehouse

    Piegay, H.; Hupp, C.R.; Citterio, A.; Dufour, S.; Moulin, B.; Walling, D.E.

    2008-01-01

    Floodplain development is associated with lateral accretion along stable channel geometry. Along shifting rivers, the floodplain sedimentation is more complex because of changes in channel position but also cutoff channel presence, which exhibit specific overflow patterns. In this contribution, the spatial and temporal variability of sedimentation rates in cutoff channel infill deposits is related to channel changes of a shifting gravel bed river (Ain River, France). The sedimentation rates estimated from dendrogeomorphic analysis are compared between and within 14 cutoff channel infills. Detailed analyses along a single channel infill are performed to assess changes in the sedimentation rates through time by analyzing activity profiles of the fallout radionuclides 137Cs and unsupported 210Pb. Sedimentation rates are also compared within the channel infills with rates in other plots located in the adjacent floodplain. Sedimentation rates range between 0.65 and 2.4 cm a -1 over a period of 10 to 40 years. The data provide additional information on the role of distance from the bank, overbank flow frequency, and channel geometry in controlling the sedimentation rate. Channel infills, lower than adjacent floodplains, exhibit higher sedimentation rates and convey overbank sediment farther away within the floodplain. Additionally, channel degradation, aggradation, and bank erosion, which reduce or increase the distance between the main channel and the cutoff channel aquatic zone, affect local overbank flow magnitude and frequency and therefore sedimentation rates, thereby creating a complex mosaic of sedimentation zones within the floodplain and along the cutoff channel infills. Last, the dendrogeomorphic and 137Cs approaches are cross validated for estimating the sedimentation rate within a channel infill. Copyright 2008 by the American Geophysical Union.

  6. Cervix cancer brachytherapy: high dose rate.

    PubMed

    Miglierini, P; Malhaire, J-P; Goasduff, G; Miranda, O; Pradier, O

    2014-10-01

    Cervical cancer, although less common in industrialized countries, is the fourth most common cancer affecting women worldwide and the fourth leading cause of cancer death. In developing countries, these cancers are often discovered at a later stage in the form of locally advanced tumour with a poor prognosis. Depending on the stage of the disease, treatment is mainly based on a chemoradiotherapy followed by uterovaginal brachytherapy ending by a potential remaining tumour surgery or in principle for some teams. The role of irradiation is crucial to ensure a better local control. It has been shown that the more the delivered dose is important, the better the local results are. In order to preserve the maximum of organs at risk and to allow this dose escalation, brachytherapy (intracavitary and/or interstitial) has been progressively introduced. Its evolution and its progressive improvement have led to the development of high dose rate brachytherapy, the advantages of which are especially based on the possibility of outpatient treatment while maintaining the effectiveness of other brachytherapy forms (i.e., low dose rate or pulsed dose rate). Numerous innovations have also been completed in the field of imaging, leading to a progress in treatment planning systems by switching from two-dimensional form to a three-dimensional one. Image-guided brachytherapy allows more precise target volume delineation as well as an optimized dosimetry permitting a better coverage of target volumes.

  7. Key Factors Influencing Rates of Heterotrophic Sulfate Reduction in Hydrothermal Massive Sulfide Deposits

    NASA Astrophysics Data System (ADS)

    Frank, K. L.; Rogers, K. L.; Rogers, D.; Johnston, D. T.; Girguis, P. R.

    2015-12-01

    Hydrothermal vents are thermally and geochemically dynamic habitats, and the organisms therein are subject to steep fluctuations in temperature and chemistry. To date, the influence of these environmental dynamics on microbial sulfate reduction has not been well constrained. Here, via multivariate experiments, we evaluate the effects of key environmental variables (temperature, pH, H2S, SO42-, DOC) on sulfate reduction rates and metabolic energy yields in a hydrothermal flange recovered from the Grotto vent in the Main Endeavor Field, Juan de Fuca ridge. Sulfate reduction was measured in batch reactions across a range of physico-chemical conditions. Temperature and pH were the strongest stimuli and maximum sulfate reduction rates were observed at 50°C and pH 6, suggesting that the in situ community of sulfate reducing organisms at Grotto may be most active in a slightly acidic and moderate thermal/chemical regime. At pH 4, sulfate reduction rates increased with sulfide concentrations most likely due to the mitigation of metal toxicity. While substrate concentrations also influenced sulfate reduction rates, energy-rich conditions muted the effect of metabolic energetics on sulfate reduction rates. We posit that variability in sulfate reduction rates reflect the response of the active microbial consortia to environmental constraints on in situ microbial physiology, toxicity, and the type and extent of energy limitation. These experiments help to constrain models of the spatial contribution of heterotrophic sulfate within the complex gradients inherent to hydrothermal deposits.

  8. High surface area graphene foams by chemical vapor deposition

    NASA Astrophysics Data System (ADS)

    Drieschner, Simon; Weber, Michael; Wohlketzetter, Jörg; Vieten, Josua; Makrygiannis, Evangelos; Blaschke, Benno M.; Morandi, Vittorio; Colombo, Luigi; Bonaccorso, Francesco; Garrido, Jose A.

    2016-12-01

    Three-dimensional (3D) graphene-based structures combine the unique physical properties of graphene with the opportunity to get high electrochemically available surface area per unit of geometric surface area. Several preparation techniques have been reported to fabricate 3D graphene-based macroscopic structures for energy storage applications such as supercapacitors. Although reaserch has been focused so far on achieving either high specific capacitance or high volumetric capacitance, much less attention has been dedicated to obtain high specific and high volumetric capacitance simultaneously. Here, we present a facile technique to fabricate graphene foams (GF) of high crystal quality with tunable pore size grown by chemical vapor deposition. We exploited porous sacrificial templates prepared by sintering nickel and copper metal powders. Tuning the particle size of the metal powders and the growth temperature allow fine control of the resulting pore size of the 3D graphene-based structures smaller than 1 μm. The as-produced 3D graphene structures provide a high volumetric electric double layer capacitance (165 mF cm-3). High specific capacitance (100 Fg-1) is obtained by lowering the number of layers down to single layer graphene. Furthermore, the small pore size increases the stability of these GFs in contrast to the ones that have been grown so far on commercial metal foams. Electrodes based on the as-prepared GFs can be a boost for the development of supercapacitors, where both low volume and mass are required.

  9. Comparisons of Solar Wind Coupling Parameters with Auroral Energy Deposition Rates

    NASA Technical Reports Server (NTRS)

    Elsen, R.; Brittnacher, M. J.; Fillingim, M. O.; Parks, G. K.; Germany G. A.; Spann, J. F., Jr.

    1997-01-01

    Measurement of the global rate of energy deposition in the ionosphere via auroral particle precipitation is one of the primary goals of the Polar UVI program and is an important component of the ISTP program. The instantaneous rate of energy deposition for the entire month of January 1997 has been calculated by applying models to the UVI images and is presented by Fillingim et al. In this session. A number of parameters that predict the rate of coupling of solar wind energy into the magnetosphere have been proposed in the last few decades. Some of these parameters, such as the epsilon parameter of Perrault and Akasofu, depend on the instantaneous values in the solar wind. Other parameters depend on the integrated values of solar wind parameters, especially IMF Bz, e.g. applied flux which predicts the net transfer of magnetic flux to the tail. While these parameters have often been used successfully with substorm studies, their validity in terms of global energy input has not yet been ascertained, largely because data such as that supplied by the ISTP program was lacking. We have calculated these and other energy coupling parameters for January 1997 using solar wind data provided by WIND and other solar wind monitors. The rates of energy input predicted by these parameters are compared to those measured through UVI data and correlations are sought. Whether these parameters are better at providing an instantaneous rate of energy input or an average input over some time period is addressed. We also study if either type of parameter may provide better correlations if a time delay is introduced; if so, this time delay may provide a characteristic time for energy transport in the coupled solar wind-magnetosphere-ionosphere system.

  10. Experimental investigation on the energy deposition and expansion rate under the electrical explosion of aluminum wire in vacuum

    SciTech Connect

    Shi, Zongqian; Wang, Kun; Shi, Yuanjie; Wu, Jian; Han, Ruoyu

    2015-12-28

    Experimental investigations on the electrical explosion of aluminum wire using negative polarity current in vacuum are presented. Current pulses with rise rates of 40 A/ns, 80 A/ns, and 120 A/ns are generated for investigating the influence of current rise rate on energy deposition. Experimental results show a significant increase of energy deposition into the wire before the voltage breakdown with the increase of current rise rate. The influence of wire dimension on energy deposition is investigated as well. Decreasing the wire length allows more energy to be deposited into the wire. The energy deposition of a 0.5 cm-long wire explosion is ∼2.5 times higher than the energy deposition of a 2 cm-long wire explosion. The dependence of the energy deposition on wire diameter demonstrates a maximum energy deposition of 2.7 eV/atom with a diameter of ∼18 μm. Substantial increase in energy deposition is observed in the electrical explosion of aluminum wire with polyimide coating. A laser probe is applied to construct the shadowgraphy, schlieren, and interferometry diagnostics. The morphology and expansion trajectory of exploding products are analyzed based on the shadowgram. The interference phase shift is reconstructed from the interferogram. Parallel dual wires are exploded to estimate the expansion velocity of the plasma shell.

  11. Method for depositing layers of high quality semiconductor material

    DOEpatents

    Guha, Subhendu; Yang, Chi C.

    2001-08-14

    Plasma deposition of substantially amorphous semiconductor materials is carried out under a set of deposition parameters which are selected so that the process operates near the amorphous/microcrystalline threshold. This threshold varies as a function of the thickness of the depositing semiconductor layer; and, deposition parameters, such as diluent gas concentrations, must be adjusted as a function of layer thickness. Also, this threshold varies as a function of the composition of the depositing layer, and in those instances where the layer composition is profiled throughout its thickness, deposition parameters must be adjusted accordingly so as to maintain the amorphous/microcrystalline threshold.

  12. High-Rate Digital Receiver Board

    NASA Technical Reports Server (NTRS)

    Ghuman, Parminder; Bialas, Thomas; Brambora, Clifford; Fisher, David

    2004-01-01

    A high-rate digital receiver (HRDR) implemented as a peripheral component interface (PCI) board has been developed as a prototype of compact, general-purpose, inexpensive, potentially mass-producible data-acquisition interfaces between telemetry systems and personal computers. The installation of this board in a personal computer together with an analog preprocessor enables the computer to function as a versatile, highrate telemetry-data-acquisition and demodulator system. The prototype HRDR PCI board can handle data at rates as high as 600 megabits per second, in a variety of telemetry formats, transmitted by diverse phase-modulation schemes that include binary phase-shift keying and various forms of quadrature phaseshift keying. Costing less than $25,000 (as of year 2003), the prototype HRDR PCI board supplants multiple racks of older equipment that, when new, cost over $500,000. Just as the development of standard network-interface chips has contributed to the proliferation of networked computers, it is anticipated that the development of standard chips based on the HRDR could contribute to reductions in size and cost and increases in performance of telemetry systems.

  13. Soil calcium status and the response of stream chemistry to changing acidic deposition rates

    USGS Publications Warehouse

    Lawrence, G.B.; David, M.B.; Lovett, Gary M.; Murdoch, Peter S.; Burns, Douglas A.; Stoddard, J.L.; Baldigo, Barry P.; Porter, J.H.; Thompson, A.W.

    1999-01-01

    Despite a decreasing trend in acidic deposition rates over the past two to three decades, acidified surface waters in the northeastern United States have shown minimal changes. Depletion of soil Ca pools has been suggested as a cause, although changes in soil Ca pools have not been directly related to long-term records of stream chemistry. To investigate this problem, a comprehensive watershed study was conducted in the Neversink River Basin, in the Catskill Mountains of New York, during 1991-1996. Spatial variations of atmospheric deposition, soil chemistry, and stream chemistry were evaluated over an elevation range of 817-1234 m to determine whether these factors exhibited elevational patterns. An increase in atmospheric deposition of SO4 with increasing elevation corresponded with upslope decreases of exchangeable soil base concentrations and acid-neutralizing capacity of stream water. Exchangeable base concentrations in homogeneous soil incubated within the soil profile for one year also decreased with increasing elevation. An elevational gradient in precipitation was not observed, and effects of a temperature gradient on soil properties were not detected. Laboratory leaching experiments with soils from this watershed showed that (1) concentrations of Ca in leachate increased as the concentrations of acid anions in added solution increased, and (2) the slope of this relationship was positively correlated with base saturation. Field and laboratory soil analyses are consistent with the interpretation that decreasing trends in acid-neutralizing capacity in stream water in the Neversink Basin, dating back to 1984, are the result of decreases in soil base saturation caused by acidic deposition.

  14. Deposition rate and etching rate due to neutral radicals and dust particles measured using QCMs together with a dust eliminating filter

    NASA Astrophysics Data System (ADS)

    Katayama, Ryu; Koga, Kazunori; Yamashita, Daisuke; Kamataki, Kunihiro; Seo, Hyunwoong; Itagaki, Naho; Shiratani, Masaharu; Ashikawa, Naoko; Tokitani, Masayuki; Masuzaki, Suguru; Nishimura, Kiyohiko; Sagara, Akio; the LHD experimental Group Team

    2015-09-01

    We have developed an in-situ method for measuring deposition rate of radicals and dust particles using quartz crystal microbalances (QCMs) together with a dust eliminating filter. The QCMs have three channels of quartz crystals. Channel 1 was used to measure total deposition rate due to radicals and dust particles. Channel 2 was covered with a dust eliminating filter. Channel 3 was covered with a stainless-steel plate. Moreover, all QCMs are covered with a grounded stainless steel mesh for suppressing influx of charged particles. The measurements were conducted in the Large Helical Device in the National Institute for Fusion Science, Japan. Although the deposition measurements during the discharges were difficult, we obtained deposition rate and etching rate by comparing the data before and after each discharge. The frequency difference for channel 1 changes from 0.1 Hz (etching) to -0.5 Hz (deposition), while those for channels 2 and 3 are within a range of +/-0.1 Hz and +/-0.05 Hz, respectively. The QCM method gives information on deposition rate and etching rate due to neutral radicals and dust particles.

  15. Corrosion and runoff rates of Cu and three Cu-alloys in marine environments with increasing chloride deposition rate.

    PubMed

    Odnevall Wallinder, Inger; Zhang, Xian; Goidanich, Sara; Le Bozec, Nathalie; Herting, Gunilla; Leygraf, Christofer

    2014-02-15

    Bare copper sheet and three commercial Cu-based alloys, Cu15Zn, Cu4Sn and Cu5Al5Zn, have been exposed to four test sites in Brest, France, with strongly varying chloride deposition rates. The corrosion rates of all four materials decrease continuously with distance from the coast, i.e. with decreasing chloride load, and in the following order: Cu4Sn>Cu sheet>Cu15Zn>Cu5Al5Zn. The patina on all materials was composed of two main layers, Cu2O as the inner layer and Cu2(OH)3Cl as the outer layer, and with a discontinuous presence of CuCl in between. Additional minor patina constituents are SnO2 (Cu4Sn), Zn5(OH)6(CO3)2 (Cu15Zn and Cu5Al5Zn) and Zn6Al2(OH)16CO3·4H2O/Zn2Al(OH)6Cl·2H2O/Zn5Cl2(OH)8·H2O and Al2O3 (Cu5Al5Zn). The observed Zn- and Zn/Al-containing corrosion products might be important factors for the lower sensitivity of Cu15Zn and Cu5Al5Zn against chloride-induced atmospheric corrosion compared with Cu sheet and Cu4Sn. Decreasing corrosion rates with exposure time were observed for all materials and chloride loads and attributed to an improved adherence with time of the outer patina to the underlying inner oxide. Flaking of the outer patina layer was mainly observed on Cu4Sn and Cu sheet and associated with the gradual transformation of CuCl to Cu2(OH)3Cl of larger volume. After three years only Cu5Al5Zn remains lustrous because of a patina compared with the other materials that appeared brownish-reddish. Significantly lower release rates of metals compared with corresponding corrosion rates were observed for all materials. Very similar release rates of copper from all four materials were observed during the fifth year of marine exposure due to an outer surface patina that with time revealed similar constituents and solubility properties.

  16. A Longitudinal Evaluation of the Rate of Flow of Freshman Applications and Freshman Tuition Deposits. SAIR Conference Paper.

    ERIC Educational Resources Information Center

    Yost, Michael

    Freshmen recruitment and admissions trends at Trinity University, a small, independent Texas university, are described. Attention is directed to the weekly rates at which freshman applications and tuition deposits were received over a 4-year time period. The patterns of the receipt of applications and deposits were consistent across years. The…

  17. Understanding High Rate Behavior Through Low Rate Analog

    DTIC Science & Technology

    2014-04-28

    Transition Temperature[°C] 82.4 -20 Melting Point [°C] 100-260 40-50 Thermal conductivity [W·m -1 ·K -1 ] 0.14–0.28 0.14–0.17 Table 2. The four PVC...13) Here, the thermal diffusivity, α, is first calculated from the conductivity , k, density, ρ, and specific heat capacity, C; alternatively the...chapter. Furthermore, the low thermal conductivity means that specimen heating also occurs at lower strain rates than for PVC. Before performing

  18. Chemical vapor deposition modeling for high temperature materials

    NASA Technical Reports Server (NTRS)

    Goekoglu, Sueleyman

    1992-01-01

    The formalism for the accurate modeling of chemical vapor deposition (CVD) processes has matured based on the well established principles of transport phenomena and chemical kinetics in the gas phase and on surfaces. The utility and limitations of such models are discussed in practical applications for high temperature structural materials. Attention is drawn to the complexities and uncertainties in chemical kinetics. Traditional approaches based on only equilibrium thermochemistry and/or transport phenomena are defended as useful tools, within their validity, for engineering purposes. The role of modeling is discussed within the context of establishing the link between CVD process parameters and material microstructures/properties. It is argued that CVD modeling is an essential part of designing CVD equipment and controlling/optimizing CVD processes for the production and/or coating of high performance structural materials.

  19. Fabrication of AIN Nano-Structures Using Polarity Control by High Temperature Metalorganic Chemical Vapor Deposition.

    PubMed

    Eom, Daeyong; Kim, Jinwan; Lee, Kyungjae; Jeon, Minhwan; Heo, Cheon; Pyeon, Jaedo; Nam, Okhyun

    2015-07-01

    This study investigates the crystallographic polarity transition of AIN layers grown by high temperature metalorganic chemical vapor deposition (HT-MOCVD), with varying trimethylaluminum (TMAI) pre-flow rates. AIN layers grown without TMAI pre-flow had a mixed polarity, consisting of Al- and N-polarity, and exhibited a rough surface. With an increasing rate of TMAI pre-flow, the AIN layer was changed to an Al-polarity, with a smooth surface morphology. Finally, AIN nano-pillars and nano-rods of Al-polarity were fabricated by etching a mixed polarity AIN layer using an aqueous KOH solution.

  20. Application of high-rate cutting tools

    NASA Astrophysics Data System (ADS)

    Moriarty, John L., Jr.

    1989-03-01

    Widespread application of the newest high-rate cutting tools to the most appropriate jobs is slowed by the sheer magnitude of developments in tool types, materials, workpiece applications, and by the rapid pace of change. Therefore, a study of finishing and roughing sizes of coated carbide inserts having a variety of geometries for single point turning was completed. The cutting tools were tested for tool life, chip quality, and workpiece surface finish at various cutting conditions with medium alloy steel. An empirical wear-life data base was established, and a computer program was developed to facilitate technology transfer, assist selection of carbide insert grades, and provide machine operating parameters. A follow-on test program was implemented suitable for next generation coated carbides, rotary cutting tools, cutting fluids, and ceramic tool materials.

  1. Consideration of wear rates at high velocity

    NASA Astrophysics Data System (ADS)

    Hale, Chad S.

    The development of the research presented here is one in which high velocity relative sliding motion between two bodies in contact has been considered. Overall, the wear environment is truly three-dimensional. The attempt to characterize three-dimensional wear was not economically feasible because it must be analyzed at the micro-mechanical level to get results. Thus, an engineering approximation was carried out. This approximation was based on a metallographic study identifying the need to include viscoplasticity constitutive material models, coefficient of friction, relationships between the normal load and velocity, and the need to understand wave propagation. A sled test run at the Holloman High Speed Test Track (HHSTT) was considered for the determination of high velocity wear rates. In order to adequately characterize high velocity wear, it was necessary to formulate a numerical model that contained all of the physical events present. The experimental results of a VascoMax 300 maraging steel slipper sliding on an AISI 1080 steel rail during a January 2008 sled test mission were analyzed. During this rocket sled test, the slipper traveled 5,816 meters in 8.14 seconds and reached a maximum velocity of 1,530 m/s. This type of environment was never considered previously in terms of wear evaluation. Each of the features of the metallography were obtained through micro-mechanical experimental techniques. The byproduct of this analysis is that it is now possible to formulate a model that contains viscoplasticity, asperity collisions, temperature and frictional features. Based on the observations of the metallographic analysis, these necessary features have been included in the numerical model, which makes use of a time-dynamic program which follows the movement of a slipper during its experimental test run. The resulting velocity and pressure functions of time have been implemented in the explicit finite element code, ABAQUS. Two-dimensional, plane strain models

  2. Age determinations and growth rates of Pacific ferromanganese deposits using strontium isotopes

    USGS Publications Warehouse

    Ingram, B.L.; Hein, J.R.; Farmer, G.L.

    1990-01-01

    87Sr 86Sr ratios, trace element and REE compositions, and textural characteristics were determined for three hydrogenetic Fe-Mn crusts, one hydrothermal deposit, and two mixed hydrothermalhydrogenetic crusts from the Pacific. The Sr isotope data are compared to the Sr seawater curve for the Cenozoic to determine the ages and growth rates of the crusts. The 87Sr 86Sr in the crusts does not increase monotonically with depth as expected if the Sr were solely derived from seawater and perfectly preserved since deposition. This indicates post-depositional exchange of Sr or heterogeneous sources for the Sr originally contained in the crusts. Textures of hydrogenetic crusts generally correlate with Sr isotopic variations. The highest porosity intervals commonly exhibit the highest 87Sr 86Sr ratios, indicating exchange with younger seawater. Intervals with the lowest porosity commonly have lower 87Sr 86Sr and may preserve the original Sr isotopic ratios. Minimum ages of crust growth inception were calculated from dense, low porosity intervals. Growth of the hydrogenetic crusts began at or after 23 Ma, although their substrates are Cretaceous. Estimated average growth rates of the three hydrogenetic crusts vary between 0.9 and 2.7 mm/Ma, consistent with published rates determined by other techniques. Within the Marshall Islands crust, growth rates for individual layers varied greatly between 1.0 and 5.4 mm/Ma. For one crust, very low 87Sr 86Sr ratios occurred in detrital-rich intervals. Hydrothermal Fe-Mn oxide from the active Lau Basin back-arc spreading axis (Valu Fa Ridge) has an 87Sr 86Sr ratio with a predominantly seawater signature ( 87Sr 86Sr 0.709196), indicating a maximum age of 0.9 Ma. One crust from an off-axis seamount west of Gorda Ridge may have begun precipitating hydrogenetically at 0.5 Ma (0.709211), and had increasing hydrothermal or volcanic input in the top half of the crust, indicated by a significantly lower 87Sr 86Sr ratio (0.709052). ?? 1990.

  3. High speed deposition of SiO2 film by slot-type microwave CVD system

    NASA Astrophysics Data System (ADS)

    Toyoda, Hirotaka; Yamamoto, Masaki; Suzuki, Haruka

    2016-09-01

    High density microwave plasma is attractive because of its ability for high-throughput processing. So far, we have successfully produced large-area surface wave excited plasma (SWP) and have applied it to plasma-enhanced chemical vapor deposition (PE-CVD) of silicon films. However, the SWP requires a dielectric plate for the surface wave propagation, and high density plasma sometimes erodes the dielectric plate to produce oxygen contamination. To avoid such problem, we propose the PE-CVD using the microwave plasma produced inside slots of a waveguide without using the dielectric plate. A 2.45 GHz pulsed microwave (repetition: 20 kHz, duty ratio: 20%, average power: 40 W) is introduced to a rectangular waveguide through an isolator, a tuner, and a vacuum window. A slot of 4 mm in length and 0.2 mm in width is placed at the end of the waveguide, and is connected to a vacuum chamber. Both the waveguide and the chamber are evacuated by a turbomolecular pump. Oxygen and tetraethyl orthosilicate (TEOS) gases are introduced from the waveguide and from the outside of the waveguide, respectively, to deposit SiO2 film on Si substrates at a pressure of 15 Torr and a slot-substrate distance of 1.1 cm. Deposition rate as high as 80 nm/s is observed at a TEOS flow rate of 0.8 sccm. The result suggests that the present PE-CVD system is promising as a new high-speed film deposition technique. Part of this work is supported by JSPS KAKENHI Grant Number 25286079.

  4. Reaction rates, depositional history and sources of indium in sediments from Appalachian and Canadian Shield lakes

    NASA Astrophysics Data System (ADS)

    Tessier, André; Gobeil, Charles; Laforte, Lucie

    2014-07-01

    Sediment cores were collected at the deepest site of twelve headwater lakes from the Province of Québec, Canada that receive contaminants only from atmospheric deposition, either directly to the lake surface or indirectly from the watershed. Several of the lakes are located within relatively short distance (<40 km) and others at more than 200 km from potential sources of contamination. The sediments were dated and analyzed for In and other elements including Fe, Mn, Al and organic C. Fe-rich authigenic material was collected on Teflon sheets inserted vertically into the sediments at the only study site whose hypolimnion remains perennially oxic. Porewater samples collected at the coring site of four of the lakes were also analyzed for In and other solutes including sulfide, sulfate, Fe, Mn, inorganic and organic C and major ions. The porewater In profiles display concentration gradients at or below the sediment-water interface. Modeling these profiles with a one-dimensional transport-reaction equation assuming steady state allows definition of depth intervals (zones) where In is either released to or removed from porewater and quantification of net In reactions rates in each zone. The position of the In consumption zones, the shape of the vertical profiles of dissolved In, sulfide and iron, as well as thermodynamic calculations of saturation states collectively suggest that In(OH)3(s) and In2S3(s) do not precipitate in the sediments and that adsorption of In onto sedimentary FeS(s) does not occur. However, similarities in the In and Fe porewater profiles, and the presence of In in the authigenic Fe-rich solids, reveal that part of the In becomes associated with authigenic Fe oxyhydroxides in the perennially oxic lake and is coupled to the Fe redox cycling. Comparison of the In/Corg and In/Fe molar ratios in the authigenic Fe-rich material and in surface sediments (0-0.5 cm) of this lake suggests that most non-lithogenic In was bound to humic substances. From the

  5. Solar Energy Deposition Rates in the Mesosphere Derived from Airglow Measurements: Implications for the Ozone Model Deficit Problem

    NASA Technical Reports Server (NTRS)

    Mlynczak, Martin G.; Garcia, Rolando R.; Roble, Raymond G.; Hagan, Maura

    2000-01-01

    We derive rates of energy deposition in the mesosphere due to the absorption of solar ultraviolet radiation by ozone. The rates are derived directly from measurements of the 1.27-microns oxygen dayglow emission, independent of knowledge of the ozone abundance, the ozone absorption cross sections, and the ultraviolet solar irradiance in the ozone Hartley band. Fifty-six months of airglow data taken between 1982 and 1986 by the near-infrared spectrometer on the Solar-Mesosphere Explorer satellite are analyzed. The energy deposition rates exhibit altitude-dependent annual and semi-annual variations. We also find a positive correlation between temperatures and energy deposition rates near 90 km at low latitudes. This correlation is largely due to the semiannual oscillation in temperature and ozone and is consistent with model calculations. There is also a suggestion of possible tidal enhancement of this correlation based on recent theoretical and observational analyses. The airglow-derived rates of energy deposition are then compared with those computed by multidimensional numerical models. The observed and modeled deposition rates typically agree to within 20%. This agreement in energy deposition rates implies the same agreement exists between measured and modeled ozone volume mixing ratios in the mesosphere. Only in the upper mesosphere at midlatitudes during winter do we derive energy deposition rates (and hence ozone mixing ratios) consistently and significantly larger than the model calculations. This result is contrary to previous studies that have shown a large model deficit in the ozone abundance throughout the mesosphere. The climatology of solar energy deposition and heating presented in this paper is available to the community at the Middle Atmosphere Energy Budget Project web site at http://heat-budget.gats-inc.com.

  6. Diamond detector for high rate monitors of fast neutrons beams

    SciTech Connect

    Giacomelli, L.; Rebai, M.; Cippo, E. Perelli; Tardocchi, M.; Fazzi, A.; Andreani, C.; Pietropaolo, A.; Frost, C. D.; Rhodes, N.; Schooneveld, E.; Gorini, G.

    2012-06-19

    A fast neutron detection system suitable for high rate measurements is presented. The detector is based on a commercial high purity single crystal diamond (SDD) coupled to a fast digital data acquisition system. The detector was tested at the ISIS pulsed spallation neutron source. The SDD event signal was digitized at 1 GHz to reconstruct the deposited energy (pulse amplitude) and neutron arrival time; the event time of flight (ToF) was obtained relative to the recorded proton beam signal t{sub 0}. Fast acquisition is needed since the peak count rate is very high ({approx}800 kHz) due to the pulsed structure of the neutron beam. Measurements at ISIS indicate that three characteristics regions exist in the biparametric spectrum: i) background gamma events of low pulse amplitudes; ii) low pulse amplitude neutron events in the energy range E{sub dep}= 1.5-7 MeV ascribed to neutron elastic scattering on {sup 12}C; iii) large pulse amplitude neutron events with E{sub n} < 7 MeV ascribed to {sup 12}C(n,{alpha}){sup 9}Be and 12C(n,n')3{alpha}.

  7. Sediment data for computation of deposition rates in the tidal Potomac system, Maryland and Virginia

    USGS Publications Warehouse

    Glenn, J.L.; Martin, E.A.; Rice, C.A.

    1986-01-01

    Sixty-two cores ranging in length from 33 to 1002 cm were collected from the tidal Potomac system and from selected tributaries downstream from the local head-of-tides between June 1978 and July 1981. Segments from selected depths below the sediment surface have been analyzed for a variety of constituents, including lead-210, trace metals, nutrients, and particle size. The core sites were positioned throughout the hydrologic divisions and geomorphic units of the tidal Potomac system and in water depths ranging from 1 to 30 cm. Cores collected by divers were mostly for historical deposition-rate computations. Vibra cores, as much as 12 m long, were collected primarily to provide data on long-term (pre-historical) sedimentation rates and conditions. Benthos cores were used to provide samples rapidly in locations where divers were not available. Alpha counting methods were used to determine the polonium-210 radioactivity and secular equilibrium was assumed between lead-210 and polonium-210. The alpha decay of polonium-210 provides a measure of the lead-210 radioactivity of the lead-210 produced by in-situ decay of radium-226 in the sediment column (background lead-210) and the lead-210 from external sources (unsupported lead-210). Only the unsupported lead-210 was used in computations of the deposition rate. The count error is based on the counting statistics alone and varies from 3 to 5% of the total number of counts. The background level of lead-210 in tidal Potomac system sediment cores usually is based on in-situ measurements of total lead-210 at depths below which no unsupported lead-210 is believed to be present, and the lead-210 concentrations are relatively constant. (Lantz-PTT)

  8. High Data Rate Architecture (HiDRA)

    NASA Technical Reports Server (NTRS)

    Hylton, Alan; Raible, Daniel

    2016-01-01

    high-rate laser terminals. These must interface with the existing, aging data infrastructure. The High Data Rate Architecture (HiDRA) project is designed to provide networked store, carry, and forward capability to optimize data flow through both the existing radio frequency (RF) and new laser communications terminal. The networking capability is realized through the Delay Tolerant Networking (DTN) protocol, and is used for scheduling data movement as well as optimizing the performance of existing RF channels. HiDRA is realized as a distributed FPGA memory and interface controller that is itself controlled by a local computer running DTN software. Thus HiDRA is applicable to other arenas seeking to employ next-generation communications technologies, e.g. deep space. In this paper, we describe HiDRA and its far-reaching research implications.

  9. High conductivity transparent carbon nanotube films deposited from superacid.

    PubMed

    Hecht, David S; Heintz, Amy M; Lee, Roland; Hu, Liangbing; Moore, Bryon; Cucksey, Chad; Risser, Steven

    2011-02-18

    Carbon nanotubes (CNTs) were deposited from a chlorosulfonic superacid solution onto PET substrates by a filtration/transfer method. The sheet resistance and transmission (at 550 nm) of the films were 60 Ω/sq and 90.9% respectively, which corresponds to a DC conductivity of 12,825 S cm(-1) and a DC/optical conductivity ratio of 64.1. This is the highest DC conductivity reported for CNT thin films to date, and attributed to both the high quality of the CNT material and the exfoliation/doping by the superacid. This work demonstrates that CNT transparent films have not reached the conductivity limit; continued improvements will enable these films to be used as the transparent electrode for applications in solid state lighting, LCD displays, touch panels, and photovoltaics.

  10. Very high frequency plasma reactant for atomic layer deposition

    NASA Astrophysics Data System (ADS)

    Oh, Il-Kwon; Yoo, Gilsang; Yoon, Chang Mo; Kim, Tae Hyung; Yeom, Geun Young; Kim, Kangsik; Lee, Zonghoon; Jung, Hanearl; Lee, Chang Wan; Kim, Hyungjun; Lee, Han-Bo-Ram

    2016-11-01

    Although plasma-enhanced atomic layer deposition (PE-ALD) results in several benefits in the formation of high-k dielectrics, including a low processing temperature and improved film properties compared to conventional thermal ALD, energetic radicals and ions in the plasma cause damage to layer stacks, leading to the deterioration of electrical properties. In this study, the growth characteristics and film properties of PE-ALD Al2O3 were investigated using a very-high-frequency (VHF) plasma reactant. Because VHF plasma features a lower electron temperature and higher plasma density than conventional radio frequency (RF) plasma, it has a larger number of less energetic reaction species, such as radicals and ions. VHF PE-ALD Al2O3 shows superior physical and electrical properties over RF PE-ALD Al2O3, including high growth per cycle, excellent conformality, low roughness, high dielectric constant, low leakage current, and low interface trap density. In addition, interlayer-free Al2O3 on Si was achieved in VHF PE-ALD via a significant reduction in plasma damage. VHF PE-ALD will be an essential process to realize nanoscale devices that require precise control of interfaces and electrical properties.

  11. Key Factors Influencing Rates of Heterotrophic Sulfate Reduction in Active Seafloor Hydrothermal Massive Sulfide Deposits

    PubMed Central

    Frank, Kiana L.; Rogers, Karyn L.; Rogers, Daniel R.; Johnston, David T.; Girguis, Peter R.

    2015-01-01

    Hydrothermal vents are thermally and geochemically dynamic habitats, and the organisms therein are subject to steep gradients in temperature and chemistry. To date, the influence of these environmental dynamics on microbial sulfate reduction has not been well constrained. Here, via multivariate experiments, we evaluate the effects of key environmental variables (temperature, pH, H2S, SO42−, DOC) on sulfate reduction rates and metabolic energy yields in material recovered from a hydrothermal flange from the Grotto edifice in the Main Endeavor Field, Juan de Fuca Ridge. Sulfate reduction was measured in batch reactions across a range of physico-chemical conditions. Temperature and pH were the strongest stimuli, and maximum sulfate reduction rates were observed at 50°C and pH 6, suggesting that the in situ community of sulfate-reducing organisms in Grotto flanges may be most active in a slightly acidic and moderate thermal/chemical regime. At pH 4, sulfate reduction rates increased with sulfide concentrations most likely due to the mitigation of metal toxicity. While substrate concentrations also influenced sulfate reduction rates, energy-rich conditions muted the effect of metabolic energetics on sulfate reduction rates. We posit that variability in sulfate reduction rates reflect the response of the active microbial consortia to environmental constraints on in situ microbial physiology, toxicity, and the type and extent of energy limitation. These experiments help to constrain models of the spatial contribution of heterotrophic sulfate reduction within the complex gradients inherent to seafloor hydrothermal deposits. PMID:26733984

  12. A comparison of rates of hornblende etching in soils in glacial deposits of the northern Rocky Mountains: Influence of climate and characteristics of parent material

    SciTech Connect

    Horn, L.L. . Dept. of Geology); Hall, R.D. . Dept. of Geology)

    1993-04-01

    Etching rates of hornblende grains in the soil matrix of glacial deposits in the Northern Rocky Mountains are dependent primarily upon the influences on soil moisture of the climate and texture of the parent materials. Etching is measured as the deepest penetration of weathering along cleavages. Previous works have shown that hornblende etching is a logarithmic function of depth. Hornblende etching is also a logarithmic function of age of the parent material, with etching rates declining rapidly after initially high rates during the first 10 to 15 kyr after deposition. A comparison of etching rates was made among four chronosequences from the Wind River Range, Wyoming and the Tobacco Root Range, Montana, which have differences in mean annual precipitation (MAP) and texture of the till parent materials. Using rates calculated from both ranges for the first 12 kyr after deposition, etching is slowest (0.02 [mu]m/1,000 yrs) in coarse-textured granitic parent materials where the MAP is 25--40 cm. In contrast, etching is faster by an order of magnitude (0.21 [mu]m/1,000 yrs) where MAP is 110--150 cm and the parent material is finer textured due to about 15% sedimentary rock material mixed with a granitic component. Within individual chronosequences, deposits at higher elevations have accelerated etching rates due to higher orographic precipitation or the influence of late-lying snow. These factors result in higher soil moisture content.

  13. Lacustrine responses to decreasing wet mercury deposition rates: results from a case study in northern Minnesota

    USGS Publications Warehouse

    Brigham, Mark E.; Sandheinrich, Mark B.; Gay, David A.; Maki, Ryan P.; Krabbenhoft, David P.; Wiener, James G.

    2014-01-01

    We present a case study comparing metrics of methylmercury (MeHg) contamination for four undeveloped lakes in Voyageurs National Park to wet atmospheric deposition of mercury (Hg), sulfate (SO4–2), and hydrogen ion (H+) in northern Minnesota. Annual wet Hg, SO4–2, and H+ deposition rates at two nearby precipitation monitoring sites indicate considerable decreases from 1998 to 2012 (mean decreases of 32, 48, and 66%, respectively). Consistent with decreases in the atmospheric pollutants, epilimnetic aqueous methylmercury (MeHgaq) and mercury in small yellow perch (Hgfish) decreased in two of four lakes (mean decreases of 46.5% and 34.5%, respectively, between 2001 and 2012). Counter to decreases in the atmospheric pollutants, MeHgaq increased by 85% in a third lake, whereas Hgfish increased by 80%. The fourth lake had two disturbances in its watershed during the study period (forest fire; changes in shoreline inundation due to beaver activity); this lake lacked overall trends in MeHgaq and Hgfish. The diverging responses among the study lakes exemplify the complexity of ecosystem responses to decreased loads of atmospheric pollutants.

  14. Photocathodes for High Repetition Rate Light Sources

    SciTech Connect

    Ben-Zvi, Ilan

    2014-04-20

    This proposal brought together teams at Brookhaven National Laboratory (BNL), Lawrence Berkeley National Laboratory (LBNL) and Stony Brook University (SBU) to study photocathodes for high repetition rate light sources such as Free Electron Lasers (FEL) and Energy Recovery Linacs (ERL). Below details the Principal Investigators and contact information. Each PI submits separately for a budget through his corresponding institute. The work done under this grant comprises a comprehensive program on critical aspects of the production of the electron beams needed for future user facilities. Our program pioneered in situ and in operando diagnostics for alkali antimonide growth. The focus is on development of photocathodes for high repetition rate Free Electron Lasers (FELs) and Energy Recovery Linacs (ERLs), including testing SRF photoguns, both normal-­conducting and superconducting. Teams from BNL, LBNL and Stony Brook University (SBU) led this research, and coordinated their work over a range of topics. The work leveraged a robust infrastructure of existing facilities and the support was used for carrying out the research at these facilities. The program concentrated in three areas: a) Physics and chemistry of alkali-­antimonide cathodes (BNL – LBNL) b) Development and testing of a diamond amplifier for photocathodes (SBU -­ BNL) c) Tests of both cathodes in superconducting RF photoguns (SBU) and copper RF photoguns (LBNL) Our work made extensive use of synchrotron radiation materials science techniques, such as powder-­ and single-­crystal diffraction, x-­ray fluorescence, EXAFS and variable energy XPS. BNL and LBNL have many complementary facilities at the two light sources associated with these laboratories (NSLS and ALS, respectively); use of these will be a major thrust of our program and bring our understanding of these complex materials to a new level. In addition, CHESS at Cornell will be used to continue seamlessly throughout the NSLS dark period and

  15. An accurate derivation of the air dose-rate and the deposition concentration distribution by aerial monitoring in a low level contaminated area

    NASA Astrophysics Data System (ADS)

    Nishizawa, Yukiyasu; Sugita, Takeshi; Sanada, Yukihisa; Torii, Tatsuo

    2015-04-01

    Since 2011, MEXT (Ministry of Education, Culture, Sports, Science and Technology, Japan) have been conducting aerial monitoring to investigate the distribution of radioactive cesium dispersed into the atmosphere after the accident at the Fukushima Dai-ichi Nuclear Power Plant (FDNPP), Tokyo Electric Power Company. Distribution maps of the air dose-rate at 1 m above the ground and the radioactive cesium deposition concentration on the ground are prepared using spectrum obtained by aerial monitoring. The radioactive cesium deposition is derived from its dose rate, which is calculated by excluding the dose rate of the background radiation due to natural radionuclides from the air dose-rate at 1 m above the ground. The first step of the current method of calculating the dose rate due to natural radionuclides is calculate the ratio of the total count rate of areas where no radioactive cesium is detected and the count rate of regions with energy levels of 1,400 keV or higher (BG-Index). Next, calculate the air dose rate of radioactive cesium by multiplying the BG-Index and the integrated count rate of 1,400 keV or higher for the area where the radioactive cesium is distributed. In high dose-rate areas, however, the count rate of the 1,365-keV peak of Cs-134, though small, is included in the integrated count rate of 1,400 keV or higher, which could cause an overestimation of the air dose rate of natural radionuclides. We developed a method for accurately evaluating the distribution maps of natural air dose-rate by excluding the effect of radioactive cesium, even in contaminated areas, and obtained the accurate air dose-rate map attributed the radioactive cesium deposition on the ground. Furthermore, the natural dose-rate distribution throughout Japan has been obtained by this method.

  16. Solid-solution CrCoCuFeNi high-entropy alloy thin films synthesized by sputter deposition

    DOE PAGES

    An, Zhinan; Jia, Haoling; Wu, Yueying; ...

    2015-05-04

    The concept of high configurational entropy requires that the high-entropy alloys (HEAs) yield single-phase solid solutions. However, phase separations are quite common in bulk HEAs. A five-element alloy, CrCoCuFeNi, was deposited via radio frequency magnetron sputtering and confirmed to be a single-phase solid solution through the high-energy synchrotron X-ray diffraction, energy-dispersive spectroscopy, wavelength-dispersive spectroscopy, and transmission electron microscopy. The formation of the solid-solution phase is presumed to be due to the high cooling rate of the sputter-deposition process.

  17. Application of high-resolution depositional modeling to reservoir characterisation

    SciTech Connect

    Keyu, L.; Paterson, L.

    1995-08-01

    As hydrocarbon producing basins and fields become more intensely developed, conventional stratigraphic analysis methods can sometimes no longer meet the resolution required by petroleum geologists and engineers. High-resolution depositional modeling provides a quantitative alternative to the conventional approach of sequence stratigraphic analysis. A computer program, SEDPAK, which was designed primarily according to the basic premise of the sequence stratigraphic concept, was here used to conduct high-resolution simulations for two sedimentary sequences. One is a Pliocene to Recent shelf margin sediment sequence of the offshore Sydney Basin continental shelf, Australia; the other is the Early Cretaceous (Aptian) Windalia Sand reservoir of the Barrow Island Field, North West Shelf, Australia. In both instances, the simulations have well mimicked the variations of the sedimentary facies temporally and spatially in fine detail with each time step representing 10 ka and a vertical resolution of one meter. The reservoir heterogeneities and the observed cyclicity in the Windalia Sand were particularly well documented by the SEDPAK simulation using a locally derived sealevel curve. The simulation result suggested that high-frequency sealevel variations ?associated with Milankovitch cyclicity were probably the primary cause that controlled the reservoir heterogeneities of the Windalia Sand. This finding provides a working model for the Cretaceous coeval reservoirs in the North West Shelf, Australia.

  18. High Gradient Accelerator Cavities Using Atomic Layer Deposition

    SciTech Connect

    Ives, Robert Lawrence; Parsons, Gregory; Williams, Philip; Oldham, Christopher; Mundy, Zach; Dolgashev, Valery

    2014-12-09

    In the Phase I program, Calabazas Creek Research, Inc. (CCR), in collaboration with North Carolina State University (NCSU), fabricated copper accelerator cavities and used Atomic Layer Deposition (ALD) to apply thin metal coatings of tungsten and platinum. It was hypothesized that a tungsten coating would provide a robust surface more resistant to arcing and arc damage. The platinum coating was predicted to reduce processing time by inhibiting oxides that form on copper surfaces soon after machining. Two sets of cavity parts were fabricated. One was coated with 35 nm of tungsten, and the other with approximately 10 nm of platinum. Only the platinum cavity parts could be high power tested during the Phase I program due to schedule and funding constraints. The platinum coated cavity exhibit poor performance when compared with pure copper cavities. Not only did arcing occur at lower power levels, but the processing time was actually longer. There were several issues that contributed to the poor performance. First, machining of the base copper cavity parts failed to achieve the quality and cleanliness standards specified to SLAC National Accelerator Center. Secondly, the ALD facilities were not configured to provide the high levels of cleanliness required. Finally, the nanometer coating applied was likely far too thin to provide the performance required. The coating was ablated or peeled from the surface in regions of high fields. It was concluded that the current ALD process could not provide improved performance over cavities produced at national laboratories using dedicated facilities.

  19. Evolution of radioactive dose rates in fresh sediment deposits along coastal rivers draining Fukushima contamination plume.

    PubMed

    Evrard, Olivier; Chartin, Caroline; Onda, Yuichi; Patin, Jeremy; Lepage, Hugo; Lefèvre, Irène; Ayrault, Sophie; Ottlé, Catherine; Bonté, Philippe

    2013-10-29

    Measurement of radioactive dose rates in fine sediment that has recently deposited on channel bed-sand provides a solution to address the lack of continuous river monitoring in Fukushima Prefecture after Fukushima Dai-ichi nuclear power plant (FDNPP) accident. We show that coastal rivers of Eastern Fukushima Prefecture were rapidly supplied with sediment contaminated by radionuclides originating from inland mountain ranges, and that this contaminated material was partly exported by typhoons to the coastal plains as soon as by November 2011. This export was amplified during snowmelt and typhoons in 2012. In 2013, contamination levels measured in sediment found in the upper parts of the catchments were almost systematically lower than the ones measured in nearby soils, whereas their contamination was higher in the coastal plains. We thereby suggest that storage of contaminated sediment in reservoirs and in coastal sections of the river channels now represents the most crucial issue.

  20. On the Strain Rate Sensitivity of Abs and Abs Plus Fused Deposition Modeling Parts

    NASA Astrophysics Data System (ADS)

    Vairis, A.; Petousis, M.; Vidakis, N.; Savvakis, K.

    2016-09-01

    In this work the effect of strain rate on the tensile strength of fused deposition modeling parts built with Acrylonitrile-butadiene-styrene (ABS) and ABS plus material is presented. ASTM D638-02a specimens were built with ABS and ABS plus and they were tested on a Schenck Trebel Co. tensile test machine at three different test speeds, equal, lower, and higher to the test speed required by the ASTM D638-02a standard. The experimental tensile strength results were compared and evaluated. The fracture surfaces of selected specimens were examined with a scanning electron microscope, to determine failure mode of the filament strands. It was found that, as the test speed increases, specimens develop higher tensile strength and have higher elastic modulus. Specimens tested in the highest speed of the experiment had on average about 10% higher elastic modulus and developed on average about 11% higher tensile strength.

  1. Evolution of radioactive dose rates in fresh sediment deposits along coastal rivers draining Fukushima contamination plume

    PubMed Central

    Evrard, Olivier; Chartin, Caroline; Onda, Yuichi; Patin, Jeremy; Lepage, Hugo; Lefèvre, Irène; Ayrault, Sophie; Ottlé, Catherine; Bonté, Philippe

    2013-01-01

    Measurement of radioactive dose rates in fine sediment that has recently deposited on channel bed-sand provides a solution to address the lack of continuous river monitoring in Fukushima Prefecture after Fukushima Dai-ichi nuclear power plant (FDNPP) accident. We show that coastal rivers of Eastern Fukushima Prefecture were rapidly supplied with sediment contaminated by radionuclides originating from inland mountain ranges, and that this contaminated material was partly exported by typhoons to the coastal plains as soon as by November 2011. This export was amplified during snowmelt and typhoons in 2012. In 2013, contamination levels measured in sediment found in the upper parts of the catchments were almost systematically lower than the ones measured in nearby soils, whereas their contamination was higher in the coastal plains. We thereby suggest that storage of contaminated sediment in reservoirs and in coastal sections of the river channels now represents the most crucial issue. PMID:24165695

  2. Auroral energy deposition rate, characteristic electron energy, and ionospheric parameters derived from Dynamics Explorer 1 images

    NASA Technical Reports Server (NTRS)

    Rees, M. H.; Lummerzheim, D.; Roble, R. G.; Winningham, J. D.; Craven, J. D.

    1988-01-01

    Auroral images obtained by the Spin Scan Auroral Imager (SAI) aboard the DE-1 satellite were used to derive auroral energy deposition rate, characteristic electron energy, and ionospheric parameters. The principles involved in the imaging technique and the physical mechanisms that underlie the relationship between the spectral images and the geophysical parameters are discussed together with the methodology for implementing such analyses. It is shown that images obtained with the SAI provide global parameters at 12-min temporal resolution; the spatial resolution is limited by the field of view of a pixel. The analysis of the 12-min images presented yielded a representation of ionospheric parameters that was better than can be obtained using empirical models based on local measurements averaged over long periods of time.

  3. High-temperature ductility of electro-deposited nickel

    NASA Technical Reports Server (NTRS)

    Dini, J. W.; Johnson, H. R.

    1977-01-01

    Work done during the past several months on high temperature ductility of electrodeposited nickel is summarized. Data are presented which show that earlier measurements made at NASA-Langley erred on the low side, that strain rate has a marked influence on high temperature ductility, and that codeposition of a small amount of manganese helps to improve high temperature ductility. Influences of a number of other factors on nickel properties were also investigated. They included plating solution temperature, current density, agitation, and elimination of the wetting agent from the plating solution. Repair of a large nozzle section by nickel plating is described.

  4. Enhanced high intensity focused ultrasound heat deposition for more efficient hemostasis

    NASA Astrophysics Data System (ADS)

    Labuda, Cecille Pemberton

    High intensity focused ultrasound (HIFU) is currently being developed for hemorrhage control since it provides rapid energy deposition in the form of heat in the HIFU focal region. When the HIFU focus is targeted on soft tissue wounds, the resulting elevation of tissue temperature cauterizes the tissues thus stopping the bleeding. If HIFU is targeted near blood vessels with millimeter-range diameter, the rate of heat deposition is limited by loss of heat to the blood flow. Maximizing the local heat deposition is important for the achievement of HIFU-induced hemorrhage control, or "hemostasis", near large vessels. In this study, the effect of a fiber device on the heat deposition in the HIFU focal region is investigated in tissue-mimicking flow phantoms with liquid albumen as the heat-sensitive denaturing flow fluid. The effect of the embedded fiber on albumen coagulation in the flow phantom is compared to the degree and rate of albumen coagulation when no fiber is present. The effect of the fiber device on the size of lesions formed in a heat-sensitive tissue-mimicking phantom is also investigated. Finally, finite difference time domain simulations are performed to determine the heat deposition in a tissue-mimicking phantom with a nylon disc embedded and a phantom with the nylon disc removed. The results of this study are quite promising for the possibility of increased efficacy of hemostasis for such a device in concert with HIFU in vessel-containing tissue volumes where HIFU alone is not completely effective.

  5. Distinctive features of kinetics of plasma at high specific energy deposition

    NASA Astrophysics Data System (ADS)

    Lepikhin, Nikita; Popov, Nikolay; Starikovskaia, Svetlana

    2016-09-01

    A nanosecond capillary discharge in pure nitrogen at moderate pressures is used as an experimental tool for plasma kinetics studies at conditions of high specific deposited energy up to 1 eV/molecule. Experimental observations based on electrical (back current shunts, capacitive probe) and spectroscopic measurements (quenching rates; translational, rotational and vibrational temperature measurements) demonstrate that high specific deposited energy, at electric fields of 200-300 Td, can significantly change gas kinetics in the discharge and in the afterglow. The numerical calculations in 1D axially symmetric geometry using experimental data as input parameters show that changes in the plasma kinetics are caused by extremely high excitation degree: up to 10% of molecular nitrogen is electronically excited at present conditions. Distinctive features of kinetics of plasma at high specific energy deposition as well as details of the experimental technique and numerical calculations will be present. The work was partially supported by French National Agency, ANR (PLASMAFLAME Project, 2011 BS09 025 01), AOARD AFOSR, FA2386-13-1-4064 grant (Program Officer Prof. Chiping Li), LabEx Plas@Par and Linked International Laboratory LIA KaPPA (France-Russia).

  6. Sinks for inorganic nitrogen deposition in forest ecosystems with low and high nitrogen deposition in China.

    PubMed

    Sheng, Wenping; Yu, Guirui; Fang, Huajun; Jiang, Chunming; Yan, Junhua; Zhou, Mei

    2014-01-01

    We added the stable isotope (15)N in the form of ((15)NH4)2SO4 and K(15)NO3 to forest ecosystems in eastern China under two different N deposition levels to study the fate of the different forms of deposited N. Prior to the addition of the (15)N tracers, the natural (15)N abundance ranging from -3.4‰ to +10.9‰ in the forest under heavy N deposition at Dinghushan (DHS), and from -3.92‰ to +7.25‰ in the forest under light N deposition at Daxinganling (DXAL). Four months after the tracer application, the total (15)N recovery from the major ecosystem compartments ranged from 55.3% to 90.5%. The total (15)N recoveries were similar under the ((15)NH4)2SO4 tracer treatment in both two forest ecosystems, whereas the total (15)N recovery was significantly lower in the subtropical forest ecosystem at DHS than in the boreal forest ecosystem at DXAL under the K(15)NO3 tracer treatment. The (15)N assimilated into the tree biomass represented only 8.8% to 33.7% of the (15)N added to the forest ecosystems. In both of the tracer application treatments, more (15)N was recovered from the tree biomass in the subtropical forest ecosystem at DHS than the boreal forest ecosystem at DXAL. The amount of (15)N assimilated into tree biomass was greater under the K(15)NO3 tracer treatment than that of the ((15)NH4)2SO4 treatment in both forest ecosystems. This study suggests that, although less N was immobilized in the forest ecosystems under more intensive N deposition conditions, forest ecosystems in China strongly retain N deposition, even in areas under heavy N deposition intensity or in ecosystems undergoing spring freezing and thawing melts. Compared to ammonium deposition, deposited nitrate is released from the forest ecosystem more easily. However, nitrate deposition could be retained mostly in the plant N pool, which might lead to more C sequestration in these ecosystems.

  7. Processing and characterization of high temperature superconductor thin films deposited by electron beam co-evaporation

    NASA Astrophysics Data System (ADS)

    Huh, Jeong-Uk

    Ever since the high temperature superconductors (HTS) were discovered in the late 1980s, there have been enormous efforts to make this into applications such as power transmission cables, transformers, motors and generators. However, many obstacles in performance and high manufacturing cost made this difficult. The first generation HTS wires had low critical current density and were expensive to fabricate. The motivation of this research was to make high performance and low cost second generation HTS coated conductor. Electron beam co-evaporation technique was used to deposit YBCO(YBa2Cu3O7-x ) film at a high rate (10nm/s and higher) on single crystals and metal tapes. The oxygen pressure at the stage of depositing Y, Ba, Cu was 5x10 -5 Torr and the process temperature was 810-840°C. In-situ Fourier Transform Infrared spectroscopy (FTIR) was used to monitor the optical properties of the YBCO during and after deposition. The deposit transformed to a glassy amorphous mixture of Y, Ba and Cu at 3 mTorr of oxygen. YBCO crystallization occurred after extra oxygen was applied to several Torr. FTIR showed almost the same signature during the formation of YBCO and liquid Ba-Cu-O during deposition, which indicates the liquid played an important role in determining the properties of YBCO in terms of providing epitaxy and fast transport of atoms to nucleate on the film-metal interface. The transformation was very rapid---seconds to minutes, compared to minutes to hours for other post-reaction processes. The oxygen partial pressure and the rate of oxidation (supersaturation) in the liquid region defined in the YBCO phase stability diagram determined the electrical and microstructural properties. In-situ X-ray diffraction heating stage with ambient control was utilized to study this supersaturation effect and explore the temperature-pressure space during YBCO growth. With all the information gathered from FTIR and XRD in-situ experiments and also with nano-engineering during

  8. High resolution, high rate x-ray spectrometer

    DOEpatents

    Goulding, F.S.; Landis, D.A.

    1983-07-14

    It is an object of the invention to provide a pulse processing system for use with detected signals of a wide dynamic range which is capable of very high counting rates, with high throughput, with excellent energy resolution and a high signal-to-noise ratio. It is a further object to provide a pulse processing system wherein the fast channel resolving time is quite short and substantially independent of the energy of the detected signals. Another object is to provide a pulse processing system having a pile-up rejector circuit which will allow the maximum number of non-interfering pulses to be passed to the output. It is also an object of the invention to provide new methods for generating substantially symmetrically triangular pulses for use in both the main and fast channels of a pulse processing system.

  9. Nanoparticle layer deposition for highly controlled multilayer formation based on high- coverage monolayers of nanoparticles

    PubMed Central

    Liu, Yue; Williams, Mackenzie G.; Miller, Timothy J.; Teplyakov, Andrew V.

    2015-01-01

    This paper establishes a strategy for chemical deposition of functionalized nanoparticles onto solid substrates in a layer-by-layer process based on self-limiting surface chemical reactions leading to complete monolayer formation within the multilayer system without any additional intermediate layers – nanoparticle layer deposition (NPLD). This approach is fundamentally different from previously established traditional layer-by-layer deposition techniques and is conceptually more similar to well-known atomic and molecular – layer deposition processes. The NPLD approach uses efficient chemical functionalization of the solid substrate material and complementary functionalization of nanoparticles to produce a nearly 100% coverage of these nanoparticles with the use of “click chemistry”. Following this initial deposition, a second complete monolayer of nanoparticles is deposited using a copper-catalyzed “click reaction” with the azide-terminated silica nanoparticles of a different size. This layer-by-layer growth is demonstrated to produce stable covalently-bound multilayers of nearly perfect structure over macroscopic solid substrates. The formation of stable covalent bonds is confirmed spectroscopically and the stability of the multilayers produced is tested by sonication in a variety of common solvents. The 1-, 2- and 3-layer structures are interrogated by electron microscopy and atomic force microscopy and the thickness of the multilayers formed is fully consistent with that expected for highly efficient monolayer formation with each cycle of growth. This approach can be extended to include a variety of materials deposited in a predesigned sequence on different substrates with a highly conformal filling. PMID:26726273

  10. PS foams at high pressure drop rates

    NASA Astrophysics Data System (ADS)

    Tammaro, Daniele; De Maio, Attilio; Carbone, Maria Giovanna Pastore; Di Maio, Ernesto; Iannace, Salvatore

    2014-05-01

    In this paper, we report data on PS foamed at 100 °C after CO2 saturation at 10 MPa in a new physical foaming batch that achieves pressure drop rates up to 120 MPa/s. Results show how average cell size of the foam nicely fit a linear behavior with the pressure drop rate in a double logarithmic plot. Furthermore, foam density initially decreases with the pressure drop rate, attaining a constant value at pressure drop rates higher than 40 MPa/s. Interestingly, furthermore, we observed that the shape of the pressure release curve has a large effect on the final foam morphology, as observed in tests in which the maximum pressure release rate was kept constant but the shape of the curve changed. These results allow for a fine tuning of the foam density and morphology for specific applications.

  11. Simulation of Cooling Rate Effects on Ti-48Al-2Cr-2Nb Crack Formation in Direct Laser Deposition

    NASA Astrophysics Data System (ADS)

    Yan, Lei; Li, Wei; Chen, Xueyang; Zhang, Yunlu; Newkirk, Joe; Liou, Frank; Dietrich, David

    2017-03-01

    Transient temperature history is vital in direct laser deposition (DLD) as it reveals the cooling rate at specific temperatures. Cooling rate directly relates to phase transformation and types of microstructure formed in deposits. In this paper, finite element analysis simulation was employed to study the transient temperature history and cooling rate at different experimental setups in the Ti-48Al-2Cr-2Nb DLD process. An innovative prediction strategy was developed to model with a moving Gaussian distribution heat source and element birth and death technology in ANSYS®, and fabricate crack-free deposits. This approach helps to understand and analyze the impact of cooling rate and also explain phase information gathered from x-ray diffraction.

  12. High voltage high repetition rate pulse using Marx topology

    NASA Astrophysics Data System (ADS)

    Hakki, A.; Kashapov, N.

    2015-06-01

    The paper describes Marx topology using MOSFET transistors. Marx circuit with 10 stages has been done, to obtain pulses about 5.5KV amplitude, and the width of the pulses was about 30μsec with a high repetition rate (PPS > 100), Vdc = 535VDC is the input voltage for supplying the Marx circuit. Two Ferrite ring core transformers were used to control the MOSFET transistors of the Marx circuit (the first transformer to control the charging MOSFET transistors, the second transformer to control the discharging MOSFET transistors).

  13. Influence of travel speed on spray deposition uniformity from an air-assisted variable-rate sprayer

    Technology Transfer Automated Retrieval System (TEKTRAN)

    A newly developed LiDAR-guided air-assisted variable-rate sprayer for nursery and orchard applications was tested at various travel speeds to compare its spray deposition and coverage uniformity with constant-rate applications. Spray samplers, including nylon screens and water-sensitive papers (WSP)...

  14. High-Rate Compression of Polypropylene

    NASA Astrophysics Data System (ADS)

    Okereke, Michael; Buckley, C. Paul

    2008-08-01

    Three grades of polypropylene were tested in compression at room temperature, across an unusually wide range of strain rate: 10-4 to 104 s-1. The quasi-static testing was done in a Hounsfield machine fitted with a digital image acquisition kit, while tests at the highest strain rates were carried out using a compression split Hopkinson pressure bar. The strain rate dependence of compressive yield stress was compared with the Eyring prediction, and found to be a nonlinear function of log10(strain-rate). The nonlinearity is attributed to the presence of two relaxation processes in polypropylene, with differing activation volumes: the α- and β-processes. According to the Bauwens two-process model this would lead naturally to curved Eyring plots, where the apparent activation volume decreases with increasing strain-rate. Another prominent feature in the experimental results was the increase in magnitude of post-yield strain-softening with increase in strain-rate. This indicates that the dominant structural relaxation time exceeds the experimental time-scale at the highest strain-rates, but lies below it for the quasi-static tests.

  15. HIgh Rate X-ray Fluorescence Detector

    SciTech Connect

    Grudberg, Peter Matthew

    2013-04-30

    The purpose of this project was to develop a compact, modular multi-channel x-ray detector with integrated electronics. This detector, based upon emerging silicon drift detector (SDD) technology, will be capable of high data rate operation superior to the current state of the art offered by high purity germanium (HPGe) detectors, without the need for liquid nitrogen. In addition, by integrating the processing electronics inside the detector housing, the detector performance will be much less affected by the typically noisy electrical environment of a synchrotron hutch, and will also be much more compact than current systems, which can include a detector involving a large LN2 dewar and multiple racks of electronics. The combined detector/processor system is designed to match or exceed the performance and features of currently available detector systems, at a lower cost and with more ease of use due to the small size of the detector. In addition, the detector system is designed to be modular, so a small system might just have one detector module, while a larger system can have many you can start with one detector module, and add more as needs grow and budget allows. The modular nature also serves to simplify repair. In large part, we were successful in achieving our goals. We did develop a very high performance, large area multi-channel SDD detector, packaged with all associated electronics, which is easy to use and requires minimal external support (a simple power supply module and a closed-loop water cooling system). However, we did fall short of some of our stated goals. We had intended to base the detector on modular, large-area detectors from Ketek GmbH in Munich, Germany; however, these were not available in a suitable time frame for this project, so we worked instead with pnDetector GmbH (also located in Munich). They were able to provide a front-end detector module with six 100 m^2 SDD detectors (two monolithic arrays of three elements each) along with

  16. Numerical analysis of the effect of electrode spacing on deposition rate profiles in a capacitively coupled plasma reactor

    NASA Astrophysics Data System (ADS)

    Kim, Ho Jun; Lee, Hae June

    2016-12-01

    The effect of reactor dimension on deposition rate profiles is analyzed with a two-dimensional (2D) fluid simulation of a capacitively coupled plasma (CCP) reactor to deposit a hydrogenated silicon nitride (SiN x H y ) film with a SiH4/NH3/N2/He gas mixture. We focus on the complex function of electrode spacing to reveal the physical relation between reactor geometry and deposition rate profiles. The simulation demonstrates that the localization of electron density is concentrated close to the powered electrode periphery for electrode spacing of 9 mm. However, the plasma distribution becomes bulk dominated with electrode spacing of 15 mm by relaxing the localization. As a result, the increase in the electrode spacing creates a more uniform electron power density profile, and the deposition rate profile of SiN x H y film changes from convex to concave in a radial direction. The change in the deposition rate profile is validated through comparison with the experimental observation, which agrees well with the simulation results with errors of less than 5%. The deposition rate profile with electrode spacing of 9 mm is very sensitive to the non-uniform gas density condition applied to the showerhead inlet. However, the deposition rate profile with electrode spacing of 15 mm is not sensitive to the inlet gas profile because of the increasing residence time. The increase of the electrode spacing promotes molecule-molecule gas phase reactions and consequently weakens the effect of the inlet boundary condition.

  17. High-resolution stratigraphy and depositional model of wind- and water-laid deposits in the ordovician Guaritas rift (Southernmost Brazil)

    NASA Astrophysics Data System (ADS)

    Paim, Paulo S. G.; Scherer, Claiton M. S.

    2007-12-01

    The upper portion of the Pedra Pintada Alloformation includes about 100 m of mostly eolian deposits. This paper emphasizes the vertical succession and lateral association of sedimentary facies, based on analysis of outcrop data and aerial photographs, as well as the hierarchy and origin of bounding surfaces. It aims to propose a high-resolution stratigraphic and depositional model that may be useful to exploitation of eolian reservoirs. The succession has been preserved due to basin subsidence, and is described in terms of four facies associations that constitute three dominantly eolian units. These units are sharply bounded by major flooding surfaces (super surfaces) that, in turn, are overlain by 1 to 2 m thick, dominantly water-laid facies (lacustrine, fluvial, deltaic and eolian). Both their internal organization and boundaries were controlled by changes in the base level rise rate. The basal Eolian Unit is composed of crescentic eolian dunes and damp interdune deposits ascribed to a wet eolian system. On the other hand, eolian units II and III, also characterized by crescentic eolian dunes (simple and compound) deposits, were related to dry eolian systems, since they comprise dry (eventually wet) interdune facies. Eolian Unit III is truncated by basinwide unconformity, which is then overlain by the ephemeral fluvial deposits (Varzinha Alloformation). This second type of super surface is related to climate-induced wind erosion (deflation) down to the water table level (regional Stokes surface) followed by fluvial incision linked to tectonic activity.

  18. High rate copper and energy recovery in microbial fuel cells.

    PubMed

    Rodenas Motos, Pau; Ter Heijne, Annemiek; van der Weijden, Renata; Saakes, Michel; Buisman, Cees J N; Sleutels, Tom H J A

    2015-01-01

    Bioelectrochemical systems (BESs) are a novel, promising technology for the recovery of metals. The prerequisite for upscaling from laboratory to industrial size is that high current and high power densities can be produced. In this study we report the recovery of copper from a copper sulfate stream (2 g L(-1) Cu(2+)) using a laboratory scale BES at high rate. To achieve this, we used a novel cell configuration to reduce the internal voltage losses of the system. At the anode, electroactive microorganisms produce electrons at the surface of an electrode, which generates a stable cell voltage of 485 mV when combined with a cathode where copper is reduced. In this system, a maximum current density of 23 A m(-2) in combination with a power density of 5.5 W m(-2) was produced. XRD analysis confirmed 99% purity in copper of copper deposited onto cathode surface. Analysis of voltage losses showed that at the highest current, most voltage losses occurred at the cathode, and membrane, while anode losses had the lowest contribution to the total voltage loss. These results encourage further development of BESs for bioelectrochemical metal recovery.

  19. High rate copper and energy recovery in microbial fuel cells

    PubMed Central

    Rodenas Motos, Pau; ter Heijne, Annemiek; van der Weijden, Renata; Saakes, Michel; Buisman, Cees J. N.; Sleutels, Tom H. J. A.

    2015-01-01

    Bioelectrochemical systems (BESs) are a novel, promising technology for the recovery of metals. The prerequisite for upscaling from laboratory to industrial size is that high current and high power densities can be produced. In this study we report the recovery of copper from a copper sulfate stream (2 g L-1 Cu2+) using a laboratory scale BES at high rate. To achieve this, we used a novel cell configuration to reduce the internal voltage losses of the system. At the anode, electroactive microorganisms produce electrons at the surface of an electrode, which generates a stable cell voltage of 485 mV when combined with a cathode where copper is reduced. In this system, a maximum current density of 23 A m-2 in combination with a power density of 5.5 W m-2 was produced. XRD analysis confirmed 99% purity in copper of copper deposited onto cathode surface. Analysis of voltage losses showed that at the highest current, most voltage losses occurred at the cathode, and membrane, while anode losses had the lowest contribution to the total voltage loss. These results encourage further development of BESs for bioelectrochemical metal recovery. PMID:26150802

  20. Advances in high-rate uncooled detector fabrication at Raytheon

    NASA Astrophysics Data System (ADS)

    Black, S. H.; Kraft, R.; Medrano, A.; Kocian, T.; Bradstreet, D.; Williams, R.; Yang, T.

    2010-04-01

    Over the past two years Raytheon has made a major investment aimed at establishing a high volume uncooled manufacturing capability. This effort has addressed three elements of the uncooled value stream, namely bolometer fabrication, packaging and calibration/test. To facilitate a low cost / high volume source of bolometers Raytheon has formed a partnership with a high volume 200mm commercial silicon wafer fabrication. Over a 12 month period Raytheon has installed 200mm VOx deposition equipment, matched the metrology used on the Raytheon 150mm line, transferred the process flow used to fabricate Raytheon's double layer bolometer process and qualified the product. In this paper we will review the process transfer methodology and bolometer performance. To reduce bolometer packaging cost and increase production rates, Raytheon has implemented an automated packaging line. This line utilizes automated adhesive dispense, component pick and place, wire bonding and solder seal. In this paper we will review the process flow, qualification process and line capacity Calibration and test has traditionally been performed using a number of temperature chambers, with increased throughput being obtained by adding more chambers. This comes at the expense of increased test labor required to feed the chambers and an increased energy and floor space foot print. To avoid these collateral costs, Raytheon has implemented an automated robotic calibration cell capable of performing in excess of 5,000 calibrations a month. In this paper we will provide an overview of the calibration cell along with takt time and throughput data.

  1. Bipolar high-repetition-rate high-voltage nanosecond pulser.

    PubMed

    Tian, Fuqiang; Wang, Yi; Shi, Hongsheng; Lei, Qingquan

    2008-06-01

    The pulser designed is mainly used for producing corona plasma in waste water treatment system. Also its application in study of dielectric electrical properties will be discussed. The pulser consists of a variable dc power source for high-voltage supply, two graded capacitors for energy storage, and the rotating spark gap switch. The key part is the multielectrode rotating spark gap switch (MER-SGS), which can ensure wider range modulation of pulse repetition rate, longer pulse width, shorter pulse rise time, remarkable electrical field distortion, and greatly favors recovery of the gap insulation strength, insulation design, the life of the switch, etc. The voltage of the output pulses switched by the MER-SGS is in the order of 3-50 kV with pulse rise time of less than 10 ns and pulse repetition rate of 1-3 kHz. An energy of 1.25-125 J per pulse and an average power of up to 10-50 kW are attainable. The highest pulse repetition rate is determined by the driver motor revolution and the electrode number of MER-SGS. Even higher voltage and energy can be switched by adjusting the gas pressure or employing N(2) as the insulation gas or enlarging the size of MER-SGS to guarantee enough insulation level.

  2. Bipolar high-repetition-rate high-voltage nanosecond pulser

    SciTech Connect

    Tian Fuqiang; Wang Yi; Shi Hongsheng; Lei Qingquan

    2008-06-15

    The pulser designed is mainly used for producing corona plasma in waste water treatment system. Also its application in study of dielectric electrical properties will be discussed. The pulser consists of a variable dc power source for high-voltage supply, two graded capacitors for energy storage, and the rotating spark gap switch. The key part is the multielectrode rotating spark gap switch (MER-SGS), which can ensure wider range modulation of pulse repetition rate, longer pulse width, shorter pulse rise time, remarkable electrical field distortion, and greatly favors recovery of the gap insulation strength, insulation design, the life of the switch, etc. The voltage of the output pulses switched by the MER-SGS is in the order of 3-50 kV with pulse rise time of less than 10 ns and pulse repetition rate of 1-3 kHz. An energy of 1.25-125 J per pulse and an average power of up to 10-50 kW are attainable. The highest pulse repetition rate is determined by the driver motor revolution and the electrode number of MER-SGS. Even higher voltage and energy can be switched by adjusting the gas pressure or employing N{sub 2} as the insulation gas or enlarging the size of MER-SGS to guarantee enough insulation level.

  3. High data rate systems for the future

    NASA Technical Reports Server (NTRS)

    Chitwood, John

    1991-01-01

    Information systems in the next century will transfer data at rates that are much greater than those in use today. Satellite based communication systems will play an important role in networking users. Typical data rates; use of microwave, millimeter wave, or optical systems; millimeter wave communication technology; modulators/exciters; solid state power amplifiers; beam waveguide transmission systems; low noise receiver technology; optical communication technology; and the potential commercial applications of these technologies are discussed.

  4. Consideration of Wear Rates at High Velocities

    DTIC Science & Technology

    2010-03-01

    evaluations were performed for different velocity ranges depending on the interest of the individual researcher. As a result, an inconsistency 4 W L...together will produce heat. The slipper-rail interaction being studied is no different . The amount of heat generated is a function of the frictional...the one which provides the highest wear rate. To correlate specimens from different sources and of varying sizes and shapes, the wear rate, normal

  5. Cheetah: A high frame rate, high resolution SWIR image camera

    NASA Astrophysics Data System (ADS)

    Neys, Joel; Bentell, Jonas; O'Grady, Matt; Vermeiren, Jan; Colin, Thierry; Hooylaerts, Peter; Grietens, Bob

    2008-10-01

    A high resolution, high frame rate InGaAs based image sensor and associated camera has been developed. The sensor and the camera are capable of recording and delivering more than 1700 full 640x512pixel frames per second. The FPA utilizes a low lag CTIA current integrator in each pixel, enabling integration times shorter than one microsecond. On-chip logics allows for four different sub windows to be read out simultaneously at even higher rates. The spectral sensitivity of the FPA is situated in the SWIR range [0.9-1.7 μm] and can be further extended into the Visible and NIR range. The Cheetah camera has max 16 GB of on-board memory to store the acquired images and transfer the data over a Gigabit Ethernet connection to the PC. The camera is also equipped with a full CameralinkTM interface to directly stream the data to a frame grabber or dedicated image processing unit. The Cheetah camera is completely under software control.

  6. Depositing highly adhesive optical thin films on acrylic substrates.

    PubMed

    Takahashi, Tomoaki; Harada, Toshinori; Murotani, Hiroshi; Matumoto, Shigeharu

    2014-02-01

    Optical thin films are used to control the reflectance and transmittance of optical components. However, conventional deposition technologies applicable to organic (plastic) substrates typically result in weak adhesion. We overcame this problem by using vacuum deposition in combination with sputtering to directly deposit a SiO2 optical thin film onto an acrylic resin substrate. We observed neither yellowing nor deformation. The hardness of the film is 2H as measured by the pencil hardness test, indicating successful modulation of optical properties without sacrificing substrate hardness.

  7. Method for depositing high-quality microcrystalline semiconductor materials

    DOEpatents

    Guha, Subhendu; Yang, Chi C.; Yan, Baojie

    2011-03-08

    A process for the plasma deposition of a layer of a microcrystalline semiconductor material is carried out by energizing a process gas which includes a precursor of the semiconductor material and a diluent with electromagnetic energy so as to create a plasma therefrom. The plasma deposits a layer of the microcrystalline semiconductor material onto the substrate. The concentration of the diluent in the process gas is varied as a function of the thickness of the layer of microcrystalline semiconductor material which has been deposited. Also disclosed is the use of the process for the preparation of an N-I-P type photovoltaic device.

  8. High mobility n-type organic thin-film transistors deposited at room temperature by supersonic molecular beam deposition

    SciTech Connect

    Chiarella, F. Barra, M.; Ciccullo, F.; Cassinese, A.; Toccoli, T.; Aversa, L.; Tatti, R.; Verucchi, R.

    2014-04-07

    In this paper, we report on the fabrication of N,N′-1H,1H-perfluorobutil dicyanoperylenediimide (PDIF-CN{sub 2}) organic thin-film transistors by Supersonic Molecular Beam Deposition. The devices exhibit mobility up to 0.2 cm{sup 2}/V s even if the substrate is kept at room temperature during the organic film growth, exceeding by three orders of magnitude the electrical performance of those grown at the same temperature by conventional Organic Molecular Beam Deposition. The possibility to get high-mobility n-type transistors avoiding thermal treatments during or after the deposition could significantly extend the number of substrates suitable to the fabrication of flexible high-performance complementary circuits by using this compound.

  9. Deposition of Na2SO4 from salt-seeded combustion gases of a high velocity burner rig

    NASA Technical Reports Server (NTRS)

    Santoro, G. J.; Kohl, F. J.; Stearns, C. A.; Gokoglu, S. A.; Rosner, D. A.

    1985-01-01

    With a view to developing simulation criteria for the laboratory testing of high-temperature materials for gas turbine engines, the deposition rates of sodium sulfate from sodium salt-seeded combustion gases were determined experimentally using a well instrumented high-velocity burner. In the experiments, Na2SO4, NaCl, NaNO3, and simulated sea salt solutions were injected into the combustor of the Mach 0.3 burner rig operating at constant fuel/air ratios. The deposits formed on an inert rotating collector were then weighed and analyzed. The experimental results are compared to Rosner's vapor diffusion theory. Some additional test results, including droplet size distribution of an atomized salt spray, are used in interpreting the deposition rate data.

  10. High Invasive Pollen Transfer, Yet Low Deposition on Native Stigmas in a Carpobrotus-invaded Community

    PubMed Central

    Bartomeus, Ignasi; Bosch, Jordi; Vilà, Montserrat

    2008-01-01

    Background and Aims Invasive plants are potential agents of disruption in plant–pollinator interactions. They may affect pollinator visitation rates to native plants and modify the plant–pollinator interaction network. However, there is little information about the extent to which invasive pollen is incorporated into the pollination network and about the rates of invasive pollen deposition on the stigmas of native plants. Methods The degree of pollinator sharing between the invasive plant Carpobrotus affine acinaciformis and the main co-flowering native plants was tested in a Mediterranean coastal shrubland. Pollen loads were identified from the bodies of the ten most common pollinator species and stigmatic pollen deposition in the five most common native plant species. Key Results It was found that pollinators visited Carpobrotus extensively. Seventy-three per cent of pollinator specimens collected on native plants carried Carpobrotus pollen. On average 23 % of the pollen on the bodies of pollinators visiting native plants was Carpobrotus. However, most of the pollen found on the body of pollinators belonged to the species on which they were collected. Similarly, most pollen on native plant stigmas was conspecific. Invasive pollen was present on native plant stigmas, but in low quantity. Conclusions Carpobrotus is highly integrated in the pollen transport network. However, the plant-pollination network in the invaded community seems to be sufficiently robust to withstand the impacts of the presence of alien pollen on native plant pollination, as shown by the low levels of heterospecific pollen deposition on native stigmas. Several mechanisms are discussed for the low invasive pollen deposition on native stigmas. PMID:18593688

  11. ENHANCED GROWTH RATE AND SILANE UTILIZATION IN AMORPHOUS SILICON AND NANOCRYSTALLINE-SILICON SOLAR CELL DEPOSITION VIA GAS PHASE ADDITIVES

    SciTech Connect

    Ridgeway, R G; Hegedus, S S; Podraza, N J

    2012-08-31

    Air Products set out to investigate the impact of additives on the deposition rate of both CSi and Si-H films. One criterion for additives was that they could be used in conventional PECVD processing, which would require sufficient vapor pressure to deliver material to the process chamber at the required flow rates. The flow rate required would depend on the size of the substrate onto which silicon films were being deposited, potentially ranging from 200 mm diameter wafers to the 5.7 m2 glass substrates used in GEN 8.5 flat-panel display tools. In choosing higher-order silanes, both disilane and trisilane had sufficient vapor pressure to withdraw gas at the required flow rates of up to 120 sccm. This report presents results obtained from testing at Air Products electronic technology laboratories, located in Allentown, PA, which focused on developing processes on a commercial IC reactor using silane and mixtures of silane plus additives. These processes were deployed to compare deposition rates and film properties with and without additives, with a goal of maximizing the deposition rate while maintaining or improving film properties.

  12. The Combustion of HMX. [burning rate at high pressures

    NASA Technical Reports Server (NTRS)

    Boggs, T. L.; Price, C. F.; Atwood, A. I.; Zurn, D. E.; Eisel, J. L.

    1980-01-01

    The burn rate of HMX was measured at high pressures (p more than 1000 psi). The self deflagration rate of HMX was determined from 1 atmosphere to 50,000 psi. The burning rate shows no significant slope breaks.

  13. Pulsed Laser Deposition of High Temperature Protonic Films

    NASA Technical Reports Server (NTRS)

    Dynys, Fred W.; Berger, M. H.; Sayir, Ali

    2006-01-01

    Pulsed laser deposition has been used to fabricate nanostructured BaCe(0.85)Y(0.15)O3- sigma) films. Protonic conduction of fabricated BaCe(0.85)Y(0.15)O(3-sigma) films was compared to sintered BaCe(0.85)Y(0.15)O(3-sigma). Sintered samples and laser targets were prepared by sintering BaCe(0.85)Y(0.15)O(3-sigma) powders derived by solid state synthesis. Films 1 to 8 micron thick were deposited by KrF excimer laser on porous Al2O3 substrates. Thin films were fabricated at deposition temperatures of 700 to 950 C at O2 pressures up to 200 mTorr using laser pulse energies of 0.45 - 0.95 J. Fabricated films were characterized by X-ray diffraction, electron microscopy and electrical impedance spectroscopy. Single phase BaCe(0.85)Y(0.15)O(3-sigma) films with a columnar growth morphology are observed with preferred crystal growth along the [100] or [001] direction. Results indicate [100] growth dependence upon laser pulse energy. Electrical conductivity of bulk samples produced by solid state sintering and thin film samples were measured over a temperature range of 100 C to 900 C. Electrical conduction behavior was dependent upon film deposition temperature. Maximum conductivity occurs at deposition temperature of 900 oC; the electrical conductivity exceeds the sintered specimen. All other deposited films exhibit a lower electrical conductivity than the sintered specimen. Activation energy for electrical conduction showed dependence upon deposition temperature, it varied

  14. Insights into Proximal-Medial Pyroclastic Density Current Deposits at a High-Risk Glaciated Volcano: Mt Ruapehu, New Zealand

    NASA Astrophysics Data System (ADS)

    Cowlyn, J.; Kennedy, B.; Gravley, D. M.; Cronin, S. J.; Pardo, N.; Wilson, T. M.; Leonard, G.; Townsend, D.; Dufek, J.

    2014-12-01

    Pyroclastic density currents (PDCs) are a destructive volcanic hazard. Quantifying the types, frequency and magnitudes of PDC events in the geological record is essential for effective risk management. However small-medium volume valley-confined PDC deposits have low preservation potential, especially when emplaced in active drainages or onto snow or ice. Where PDC deposits are preserved they can be difficult to distinguish from other surficial deposits and are frequently misinterpreted or overlooked. This is the case at Mt. Ruapehu; a much visited, high-risk active volcano in New Zealand with no historical PDCs. Through systematic field observations we identified several young proximal-medial andesitic PDC deposits exposed on Ruapehu's eastern flanks. The oldest deposits (Ohinewairua PDCs, <13.6 ka) are massive pumice-rich deposits that are preserved at least 7km from source (North Crater) and correlate with Ruapehu's largest plinian eruptions. Overlying these, the pumice-rich Pourahu PDC deposit reaches >10km from source (South Crater) and correlates with Ruapehu's last known plinian eruption (~11.6 ka). Several younger locally preserved PDC deposits (Tukino PDCs) with denser juvenile clasts represent proximal PDCs from smaller eruptions at South Crater. Finally, a variably welded, bedded deposit containing clasts of welded spatter is interpreted to represent multiple failures of near-vent (North Ruapehu) accumulations of erupted material. Here, PDC initiation appears to have been controlled by the topographic gradient and deposition rate, without requiring a collapsing eruption column. The Ruapehu deposits highlight the limited preservation of PDC deposits, which appears to be favoured at PDC margins. Lateral and vertical flow stratification means the resulting deposits may not then represent the bulk flow. Additionally, deposit textures, distributions, and associations with moraines indicate that many of Ruapehu's PDCs encountered glacial ice during transport

  15. Colloidal asphaltene deposition in laminar pipe flow: Flow rate and parametric effects

    NASA Astrophysics Data System (ADS)

    Hashmi, S. M.; Loewenberg, M.; Firoozabadi, A.

    2015-08-01

    Deposition from a suspended phase onto a surface can aversely affect everyday transport processes on a variety of scales, from mineral scale corrosion of household plumbing systems to asphaltene deposition in large-scale pipelines in the petroleum industry. While petroleum may be a single fluid phase under reservoir conditions, depressurization upon production often induces a phase transition in the fluid, resulting in the precipitation of asphaltene material which readily aggregates to the colloidal scale and deposits on metallic surfaces. Colloidal asphaltene deposition in wellbores and pipelines can be especially problematic for industrial purposes, where cleanup processes necessitate costly operational shutdowns. In order to better understand the parametric dependence of deposition which leads to flow blockages, we carry out lab-scale experiments under a variety of material and flow conditions. We develop a parametric scaling model to understand the fluid dynamics and transport considerations governing deposition. The lab-scale experiments are performed by injecting precipitating petroleum fluid mixtures into a small metal pipe, which results in deposition and clogging, assessed by measuring the pressure drop across the pipe. Parametric scaling arguments suggest that the clogging behavior is determined by a combination of the Peclet number, volume fraction of depositing material, and the volume of the injection itself.

  16. DETERMINATION OF PARTICLE DEPOSITION RATES FOR COOKING AND OTHER INDOOR SOURCE

    EPA Science Inventory

    Residential indoor particle concentrations are dependent on indoor sources, penetration of outdoor particles, air change with outdoors, and deposition of particles on indoor surfaces as well as other loss mechanisms. Of these factors, few data are available on deposition of pa...

  17. A High Fidelity Multiphysics Framework for Modeling CRUD Deposition on PWR Fuel Rods

    NASA Astrophysics Data System (ADS)

    Walter, Daniel John

    Corrosion products on the fuel cladding surfaces within pressurized water reactor fuel assemblies have had a significant impact on reactor operation. These types of deposits are referred to as CRUD and can lead to power shifts, as a consequence of the accumulation of solid boron phases on the fuel rod surfaces. Corrosion deposits can also lead to fuel failure resulting from localized corrosion, where the increased thermal resistance of the deposit leads to higher cladding temperatures. The prediction of these occurrences requires a comprehensive model of local thermal hydraulic and chemical processes occurring in close proximity to the cladding surface, as well as their driving factors. Such factors include the rod power distribution, coolant corrosion product concentration, as well as the feedbacks between heat transfer, fluid dynamics, chemistry, and neutronics. To correctly capture the coupled physics and corresponding feedbacks, a high fidelity framework is developed that predicts three-dimensional CRUD deposition on a rod-by-rod basis. Multiphysics boundary conditions resulting from the coupling of heat transfer, fluid dynamics, coolant chemistry, CRUD deposition, neutron transport, and nuclide transmutation inform the CRUD deposition solver. Through systematic parametric sensitivity studies of the CRUD property inputs, coupled boundary conditions, and multiphysics feedback mechanisms, the most important variables of multiphysics CRUD modeling are identified. Moreover, the modeling framework is challenged with a blind comparison of plant data to predictions by a simulation of a sub-assembly within the Seabrook nuclear plant that experienced CRUD induced fuel failures. The physics within the computational framework are loosely coupled via an operator-splitting technique. A control theory approach is adopted to determine the temporal discretization at which to execute a data transfer from one physics to another. The coupled stepsize selection is viewed as a

  18. Plasma-enhanced atomic layer deposition and etching of high-k gadolinium oxide

    SciTech Connect

    Vitale, Steven A.; Wyatt, Peter W.; Hodson, Chris J.

    2012-01-15

    Atomic layer deposition (ALD) of high-quality gadolinium oxide thin films is achieved using Gd(iPrCp){sub 3} and O{sub 2} plasma. Gd{sub 2}O{sub 3} growth is observed from 150 to 350 deg. C, though the optical properties of the film improve at higher temperature. True layer-by-layer ALD growth of Gd{sub 2}O{sub 3} occurred in a relatively narrow window of temperature and precursor dose. A saturated growth rate of 1.4 A/cycle was observed at 250 deg. C. As the temperature increases, high-quality films are deposited, but the growth mechanism appears to become CVD-like, indicating the onset of precursor decomposition. At 250 deg. C, the refractive index of the film is stable at {approx}1.80 regardless of other deposition conditions, and the measured dispersion characteristics are comparable to those of bulk Gd{sub 2}O{sub 3}. XPS data show that the O/Gd ratio is oxygen deficient at 1.3, and that it is also very hygroscopic. The plasma etching rate of the ALD Gd{sub 2}O{sub 3} film in a high-density helicon reactor is very low. Little difference is observed in etching rate between Cl{sub 2} and pure Ar plasmas, suggesting that physical sputtering dominates the etching. A threshold bias power exists below which etching does not occur; thus it may be possible to etch a metal gate material and stop easily on the Gd{sub 2}O{sub 3} gate dielectric. The Gd{sub 2}O{sub 3} film has a dielectric constant of about 16, exhibits low C-V hysteresis, and allows a 50 x reduction in gate leakage compared to SiO{sub 2}. However, the plasma enhanced atomic layer deposition (PE-ALD) process causes formation of an {approx}1.8 nm SiO{sub 2} interfacial layer, and generates a fixed charge of -1.21 x 10{sup 12} cm{sup -2}, both of which may limit use of PE-ALD Gd{sub 2}O{sub 3} as a gate dielectric.

  19. Highly sensitive NO2 sensors by pulsed laser deposition on graphene

    NASA Astrophysics Data System (ADS)

    Kodu, Margus; Berholts, Artjom; Kahro, Tauno; Avarmaa, Tea; Kasikov, Aarne; Niilisk, Ahti; Alles, Harry; Jaaniso, Raivo

    2016-09-01

    Graphene as a single-atomic-layer material is fully exposed to environmental factors and has therefore a great potential for the creation of sensitive gas sensors. However, in order to realize this potential for different polluting gases, graphene has to be functionalized—adsorption centers of different types and with high affinity to target gases have to be created at its surface. In the present work, the modification of graphene by small amounts of laser-ablated materials is introduced for this purpose as a versatile and precise tool. The approach has been demonstrated with two very different materials chosen for pulsed laser deposition (PLD)—a metal (Ag) and a dielectric oxide (ZrO2). It was shown that the gas response and its recovery rate can be significantly enhanced by choosing the PLD target material and deposition conditions. The response to NO2 gas in air was amplified up to 40 times in the case of PLD-modified graphene, in comparison with pristine graphene, and it reached 7%-8% at 40 ppb of NO2 and 20%-30% at 1 ppm of NO2. The PLD process was conducted in a background gas (5 × 10-2 mbar oxygen or nitrogen) and resulted in the atomic areal densities of the deposited materials of about 1015 cm-2. The ultimate level of NO2 detection in air, as extrapolated from the experimental data obtained at room temperature under mild ultraviolet excitation, was below 1 ppb.

  20. High damage threshold anti-reflectors by physical vapor deposited amorphous fluoropolymer

    SciTech Connect

    Chow, R.; Spragge, M.K.; Loomis, G.E.; Thomas, I.M.; Rainer, F.; Ward, R.L.; Kozlowski, M.R.

    1993-11-01

    High laser-resistant anti-reflective coatings were made from an amorphous fluoropolymer (Teflon AF2400) material by physical vapor deposition. Single layers of Teflon AF2400 were thermally deposited in a vacuum chamber. Refractive index and adhesion of the coatings were determined as a function of deposition rate (2 to 20 {Angstrom}/s), substrate temperature (20 to 200C), and glow-discharge bias potential ({minus}1500 to 1500 V). An anti-reflective coating of an amorphous fluoropolymer (Teflon AF2400) had a laser resistance of > 47 J/cm{sup 2} (1.06 {mu}m, 3-ns pulselength) and is transparent from 200 nm to 1600 nm. The majority of the coatings had a 1.30 refractive index, similar to that of the bulk material. Scanning electron microscopy and preliminary nuclear magnetic resonance observations indicated that morphological changes caused the variations in the refractive index rather than compositional changes. The coatings adhered to fused silica and silicon wafers under normal laboratory handling conditions. Scotch tape with 12.6 gr/mm tension was sufficient to pull off every coating from fused silica substrates.

  1. High Count Rate Electron Probe Microanalysis.

    PubMed

    Geller, Joseph D; Herrington, Charles

    2002-01-01

    Reducing the measurement uncertainty of quantitative analyses made using electron probe microanalyzers (EPMA) requires a careful study of the individual uncertainties from each definable step of the measurement. Those steps include measuring the incident electron beam current and voltage, knowing the angle between the electron beam and the sample (takeoff angle), collecting the emitted x rays from the sample, comparing the emitted x-ray flux to known standards (to determine the k-ratio) and transformation of the k-ratio to concentration using algorithms which includes, as a minimum, the atomic number, absorption, and fluorescence corrections. This paper discusses the collection and counting of the emitted x rays, which are diffracted into the gas flow or sealed proportional x-ray detectors. The representation of the uncertainty in the number of collected x rays collected reduces as the number of counts increase. The uncertainty of the collected signal is fully described by Poisson statistics. Increasing the number of x rays collected involves either counting longer or at a higher counting rate. Counting longer means the analysis time increases and may become excessive to get to the desired uncertainty. Instrument drift also becomes an issue. Counting at higher rates has its limitations, which are a function of the detector physics and the detecting electronics. Since the beginning of EPMA analysis, analog electronics have been used to amplify and discriminate the x-ray induced ionizations within the proportional counter. This paper will discuss the use of digital electronics for this purpose. These electronics are similar to that used for energy dispersive analysis of x rays with either Si(Li) or Ge(Li) detectors except that the shaping time constants are much smaller.

  2. High performance interconnection between high data rate networks

    NASA Technical Reports Server (NTRS)

    Foudriat, E. C.; Maly, K.; Overstreet, C. M.; Zhang, L.; Sun, W.

    1992-01-01

    The bridge/gateway system needed to interconnect a wide range of computer networks to support a wide range of user quality-of-service requirements is discussed. The bridge/gateway must handle a wide range of message types including synchronous and asynchronous traffic, large, bursty messages, short, self-contained messages, time critical messages, etc. It is shown that messages can be classified into three basic classes, synchronous and large and small asynchronous messages. The first two require call setup so that packet identification, buffer handling, etc. can be supported in the bridge/gateway. Identification enables resequences in packet size. The third class is for messages which do not require call setup. Resequencing hardware based to handle two types of resequencing problems is presented. The first is for a virtual parallel circuit which can scramble channel bytes. The second system is effective in handling both synchronous and asynchronous traffic between networks with highly differing packet sizes and data rates. The two other major needs for the bridge/gateway are congestion and error control. A dynamic, lossless congestion control scheme which can easily support effective error correction is presented. Results indicate that the congestion control scheme provides close to optimal capacity under congested conditions. Under conditions where error may develop due to intervening networks which are not lossless, intermediate error recovery and correction takes 1/3 less time than equivalent end-to-end error correction under similar conditions.

  3. High dose rate brachytherapy source measurement intercomparison.

    PubMed

    Poder, Joel; Smith, Ryan L; Shelton, Nikki; Whitaker, May; Butler, Duncan; Haworth, Annette

    2017-03-24

    This work presents a comparison of air kerma rate (AKR) measurements performed by multiple radiotherapy centres for a single HDR (192)Ir source. Two separate groups (consisting of 15 centres) performed AKR measurements at one of two host centres in Australia. Each group travelled to one of the host centres and measured the AKR of a single (192)Ir source using their own equipment and local protocols. Results were compared to the (192)Ir source calibration certificate provided by the manufacturer by means of a ratio of measured to certified AKR. The comparisons showed remarkably consistent results with the maximum deviation in measurement from the decay-corrected source certificate value being 1.1%. The maximum percentage difference between any two measurements was less than 2%. The comparisons demonstrated the consistency of well-chambers used for (192)Ir AKR measurements in Australia, despite the lack of a local calibration service, and served as a valuable focal point for the exchange of ideas and dosimetry methods.

  4. Dependence of the structural, electrical and magnetic properties of the superconductive YBCO thin films on the deposition rate

    NASA Astrophysics Data System (ADS)

    Karci, A. B.; Tepe, M.; Sozeri, H.

    2009-03-01

    In this study, YBCO thin films on single crystal LaAlO3 (100) substrates have been grown using DC inverted cylindrical magnetron sputtering technique and the effect of the deposition rate on these films is investigated. Three different deposition rates are used to produce superconducting YBCO thin films with 150 nm of thickness on (100) LaAlO3 single crystal substrate at 780 0C. The samples are analyzed in detail by means of XRD, R-T, χ-T, M-H and AFM characterizations and also the critical current densities (Jc) are derived from the magnetic hysteresis curves using the modified Bean formula [1]. The critical current density at 50 K was found to be in the range of 3.107 A/m2 to 8. 107 A/m2 with a deposition rate between 2nm/min and 1.2nm/min. A correlation has been obtained so that as the film deposition rate increases, the surface smoothness and crystalline quality of the films significantly deteriorate, resulting in a significant decrease in Jc.

  5. 210Pb mass accumulation rates in the depositional area of the Magra River (Mediterranean Sea, Italy)

    NASA Astrophysics Data System (ADS)

    Delbono, I.; Barsanti, M.; Schirone, A.; Conte, F.; Delfanti, R.

    2016-08-01

    Nine sediment cores were collected between 2009 and 2012 in the inner continental shelf (Mediterranean Sea, Italy) mainly influenced by the Magra River, at water depths ranging from 11 to 64 m. Mass Accumulation Rates (MARs) were calculated through 210Pb analysed by Gamma spectrometry. Three different dating models (single and two-layer CF-CS, CRS) were applied to clay normalised 210Pbxs profiles and 137Cs was used to validate the 210Pb geochronology. The maximum MAR values (>2 g cm-2 yr-1) were found in the region adjacent to the Magra River mouth and outside the Gulf of La Spezia (0.9±0.1 g cm-2 yr-1 at St. 3-C6 and 4-C4). Results from 137Cs/210Pbxs ratios calculated in Surface Mixed Layers (SMLs) evidenced the coastal boundaries of the Magra River depositional area, which is very limited towards south. Differently, in the north-west sector, fine sediments are generally driven by the Ligurian Current and move towards north-west: at the deepest and most distant station from the River mouth, the MAR value is the lowest one in the study area. Few major Magra River floods occurred during the sediment core sampling period. By using the short-lived radioisotope 7Be as a tracer of river floods, a clear 7Be signature of 2009 flood is present at St. 1-SA1C. Finally, by analyzing the clay normalised 210Pbxs profiles, a decrease of its activity dating the years 1999 and 2000 is observed in four cores, corresponding to two major Magra River floods occurring in those years.

  6. Depositing High-T(sub c) Superconductors On Normal-Conductor Wires

    NASA Technical Reports Server (NTRS)

    Kirlin, Peter S.

    1994-01-01

    Experiments have demonstrated feasibility of depositing thin layers of high-T(sub c) superconductor on normally electrically conductive wires. Superconductivity evident at and below critical temperature (T{sub c}) of 71 K. OMCVD, organometallic vapor deposition, apparatus coats Ag wire with layer high-T(sub c) superconductor. Superconductive phase of this material formed subsequently by annealing under controlled conditions.

  7. Selective deposition of a crystalline Si film by a chemical sputtering process in a high pressure hydrogen plasma

    NASA Astrophysics Data System (ADS)

    Ohmi, Hiromasa; Kakiuchi, Hiroaki; Yasutake, Kiyoshi

    2015-07-01

    The selective deposition of Si films was demonstrated using a chemical sputtering process induced by a high pressure hydrogen plasma at 52.6 kPa (400 Torr). In this chemical sputtering process, the initial deposition rate (Rd) is dependent upon the substrate type. At the initial stage of Si film formation, Rd on glass substrates increased with elapsed time and reached to a constant value. In contrast, Rd on Si substrates remained constant during the deposition. The selective deposition of Si films can be achieved by adjusting the substrate temperature (Tsub) and hydrogen concentration (CH2) in the process atmosphere. For any given deposition time, it was found that an optimum CH2 exists for a given Tsub to realize the selective deposition of a Si film, and the optimum Tsub value tends to increase with decreasing CH2. According to electron diffraction patterns obtained from the samples, the selectively prepared Si films showed epitaxial-like growth, although the Si films contained many defects. It was revealed by Raman scattering spectroscopy that some of the defects in the Si films were platelet defects induced by excess hydrogen incorporated during Si film formation. Raman spectrum also suggested that Si related radicals (SiH2, SiH, Si) with high reactivity contribute to the Si film formation. Simple model was derived as the guideline for achieving the selective growth.

  8. High Strain Rate Tensile and Compressive Effects in Glassy Polymers

    DTIC Science & Technology

    2013-02-08

    polymers under high strain rates has been determined in compression. Some research programs have studied the combined effects of temperature and strain rate...glassy polymers to high strain rate loading in compression. More recently, research programs that study the combined effects of temperature and strain...Force Materiel Command  United States Air Force  Eglin Air Force Base AFRL-RW-EG-TP-2013-006 High Strain Rate

  9. High repetition rate ultrashort laser cuts a path through fog

    NASA Astrophysics Data System (ADS)

    de la Cruz, Lorena; Schubert, Elise; Mongin, Denis; Klingebiel, Sandro; Schultze, Marcel; Metzger, Thomas; Michel, Knut; Kasparian, Jérôme; Wolf, Jean-Pierre

    2016-12-01

    We experimentally demonstrate that the transmission of a 1030 nm, 1.3 ps laser beam of 100 mJ energy through fog increases when its repetition rate increases to the kHz range. Due to the efficient energy deposition by the laser filaments in the air, a shockwave ejects the fog droplets from a substantial volume of the beam, at a moderate energy cost. This process opens prospects for applications requiring the transmission of laser beams through fogs and clouds.

  10. Accretion rate of extraterrestrial matter: Iridium deposited over the last 70 million years

    NASA Technical Reports Server (NTRS)

    Kyte, Frank T.

    1988-01-01

    In order to quantify the accretion rate of extraterrestrial matter during the Cenozoic, Ir concentrations were measured in a continuous series of 450 samples across most of the length of piston core LL44-GPC3. LL44-GPC3 is a 25-meter-long, large-diameter piston core of abyssal clay from the central North Pacific. This core contains a nearly continuous record of sedimentation over the last 70 Ma, as this site migrated from a region near the Equator in the late Cretaceous to its present position north of Hawaii. The first-cut survey across the core is nearing completion, and all of the conclusions of the earlier study, in which was reported the concentrations of Ir, Co, and Sb across 9 meters of this core, remain unchanged. The only strongly enhanced Ir concentrations occur at the Cretaceous-Tertiary (K-T) boundary and outside the K-T boundary Ir correlates well with Co, a terrestrial element which is largely present in hydrogenous ferromanganese oxide precipitates from seawater. Concentrations of both elements appear to be inversely correlated with the sedimentation rate. Although the K-T Ir anomaly is unique in magnitude in this core, there are several small bumps in the Ir profile which may reflect smaller accretionary events. The most promising Ir enhancement was observed in a 30 cm section approximately 1 m below the K-T boundary. Preliminary data suggest deposition of an excess across this interval at a time estimate to be approximate 1 Ma before the K-T impact event, but there is insufficient evidence at present to prove that this reflects enhanced accretion of extraterrestrial matter. A detailed model is being prepared of the chemical record of sedimentation in this core using a combined database of 39 elements in approximately 450 samples across the Cenozoic. Preliminary working model indicates that the only sedimentary sources which contribute significantly to the Ir budget in this core are the hydrogenous precipitates and extraterrestrial particulates.

  11. High rate fabrication of compression molded components

    DOEpatents

    Matsen, Marc R.; Negley, Mark A.; Dykstra, William C.; Smith, Glen L.; Miller, Robert J.

    2016-04-19

    A method for fabricating a thermoplastic composite component comprises inductively heating a thermoplastic pre-form with a first induction coil by inducing current to flow in susceptor wires disposed throughout the pre-form, inductively heating smart susceptors in a molding tool to a leveling temperature with a second induction coil by applying a high-strength magnetic field having a magnetic flux that passes through surfaces of the smart susceptors, shaping the magnetic flux that passes through surfaces of the smart susceptors to flow substantially parallel to a molding surface of the smart susceptors, placing the heated pre-form between the heated smart susceptors; and applying molding pressure to the pre-form to form the composite component.

  12. High data rate optical transceiver terminal

    NASA Technical Reports Server (NTRS)

    Clarke, E. S.

    1973-01-01

    The objectives of this study were: (1) to design a 400 Mbps optical transceiver terminal to operate from a high-altitude balloon-borne platform in order to permit the quantitative evaluation of a space-qualifiable optical communications system design, (2) to design an atmospheric propagation experiment to operate in conjunction with the terminal to measure the degrading effects of the atmosphere on the links, and (3) to design typical optical communications experiments for space-borne laboratories in the 1980-1990 time frame. As a result of the study, a transceiver package has been configured for demonstration flights during late 1974. The transceiver contains a 400 Mbps transmitter, a 400 Mbps receiver, and acquisition and tracking receivers. The transmitter is a Nd:YAG, 200 Mhz, mode-locked, CW, diode-pumped laser operating at 1.06 um requiring 50 mW for 6 db margin. It will be designed to implement Pulse Quaternary Modulation (PQM). The 400 Mbps receiver utilizes a Dynamic Crossed-Field Photomultiplier (DCFP) detector. The acquisition receiver is a Quadrant Photomultiplier Tube (QPMT) and receives a 400 Mbps signal chopped at 0.1 Mhz.

  13. Field investigation of surface-deposited radon progeny as a possible predictor of the airborne radon progeny dose rate.

    PubMed

    Sun, Kainan; Steck, Daniel J; Field, R William

    2009-08-01

    The quantitative relationships between radon gas concentration, the surface-deposited activities of various radon progeny, the airborne radon progeny dose rate, and various residential environmental factors were investigated through actual field measurements in 38 selected Iowa houses occupied by either smokers or nonsmokers. Airborne dose rate was calculated from unattached and attached potential alpha energy concentrations (PAECs) using two dosimetric models with different activity-size weighting factors. These models are labeled Pdose and Jdose, respectively. Surface-deposited 218Po and 214Po were found significantly correlated to radon, unattached PAEC, and both airborne dose rates (p < 0.0001) in nonsmoking environments. However, deposited 218Po was not significantly correlated to the above parameters in smoking environments. In multiple linear regression analysis, natural logarithm transformation was performed for airborne dose rate as the dependent variable, as well as for radon and deposited 218Po and 214Po as predictors. An interaction effect was found between deposited 214Po and an obstacle in front of the Retrospective Reconstruction Detector (RRD) in predicting dose rate (p = 0.049 and 0.058 for Pdose and Jdose, respectively) for nonsmoking environments. After adjusting for radon and deposited radon progeny effects, the presence of either cooking, usage of a fireplace, or usage of a ceiling fan significantly, or marginally significantly, reduced the Pdose to 0.65 (90% CI 0.42-0.996), 0.54 (90% CI 0.28-1.02), and 0.66 (90% CI 0.45-0.96), respectively. For Jdose, only the usage of a ceiling fan significantly reduced the dose rate to 0.57 (90% CI 0.39-0.85). In smoking environments, deposited 218Po was a significant negative predictor for Pdose (RR 0.68, 90% CI 0.55-0.84) after adjusting for long-term 222Rn and environmental factors. A significant decrease of 0.72 (90% CI 0.64-0.83) in the mean Pdose was noted, after adjusting for the radon and radon

  14. High Heat Flux Surface Coke Deposition and Removal Assessment

    DTIC Science & Technology

    2015-01-01

    deposited over the course of multiple missions. Therefore, there is a need for a method to survey coke layer thicknesses and locations in the cooling...thin coke layers makes this a difficult and challenging problem. Reaction Systems, Inc. has developed a low temperature oxidation method that can...rapidly remove the coke layers in the cooling channels and at the same time map their location. We demonstrated this technique in a recent SBIR Phase II

  15. The use of bulk collectors in monitoring wet deposition at high-altitude sites in winter

    USGS Publications Warehouse

    Ranalli, A.J.; Turk, J.T.; Campbell, D.H.

    1997-01-01

    Concentrations of dissolved ions from samples collected by wet/dry collectors were compared to those collected by bulk collectors at Halfmoon Creek and Ned Wilson Lake in western Colorado to determine if bulk collectors can be used to monitor wet deposition chemistry in remote, high-altitude regions in winter. Hydrogen-ion concentration was significantly lower (p 0.05) at Halfmoon Creek. Wet deposition concentrations were predicated from bulk deposition concentrations through linear regression analysis. Results indicate that anions (chloride, nitrate and sulfate) can be predicted with a high degree of confidence. Lack of significant differences between seasonal (winter and summer) ratios of bulk to wet deposition concentrations indicates that at sites where operation of a wet/dry collector during the winter is not practical, wet deposition concentrations can be predicted from bulk collector samples through regression analysis of wet and bulk deposition data collected during the summer.

  16. Development of compact CW-IR laser deposition system for high-throughput growth of organic single crystals.

    PubMed

    Takeyama, Yoko; Maruyama, Shingo; Matsumoto, Yuji

    2011-10-01

    We developed a compact continuous-wave infrared (CW-IR) laser deposition system for the high-throughput growth of organic single crystals. In this system, two CW-IR lasers are used for the sample heating and thermal evaporation of materials. The CW-IR laser heating is simple and allows good control of the deposition rate and growth temperature, in response to the on/off laser switching. Six samples can be loaded simultaneously in a chamber, which allows one-by-one sequential deposition for high-throughput experiments, without breaking the vacuum. Using this setup, we studied the effect of ionic liquids on the growth of C60 crystals in vacuum.

  17. The Effect of Minimum Wage Rates on High School Completion

    ERIC Educational Resources Information Center

    Warren, John Robert; Hamrock, Caitlin

    2010-01-01

    Does increasing the minimum wage reduce the high school completion rate? Previous research has suffered from (1. narrow time horizons, (2. potentially inadequate measures of states' high school completion rates, and (3. potentially inadequate measures of minimum wage rates. Overcoming each of these limitations, we analyze the impact of changes in…

  18. Technology of High-speed Direct Laser Deposition from Ni-based Superalloys

    NASA Astrophysics Data System (ADS)

    Klimova-Korsmik, Olga; Turichin, Gleb; Zemlyakov, Evgeniy; Babkin, Konstantin; Petrovsky, Pavel; Travyanov, Andrey

    Recently, additive manufacturing is the one of most perspective technologies; it can replace conventional methods of casting and subsequent time-consuming machining. One of the most interesting additive technologies - high-speed direct laser deposition (HSDLD) allows realizing heterophase process during the manufacturing, which there is process takes place with a partial melting of powder. This is particularly important for materials, which are sensitive to strong fluctuations of temperature treatment regimes, like nickel base alloys with high content of gamma prime phase. This alloys are interested for many industrial areas, mostly there are used in engine systems, aircraft and shipbuilding, aeronautics. Heating and cooling rates during the producing process determine structure and affect on its properties. Using HSDLD process it possible to make a products from Ni superalloys with ultrafine microstructure and satisfactory mechanical characteristics without special subsequent heatreatment.

  19. Impact of aerosol composition and foliage characteristics on forest canopy deposition rates: A laboratory study

    NASA Astrophysics Data System (ADS)

    Hornsby, K. E.; Pryor, S. C.

    2013-12-01

    Forests are a major sink for atmospheric aerosols. Hence it has been suggested that (i) increased tree planting in urban areas might lead to a reduction in aerosol particle concentrations and thus a reduction in respiratory conditions and heart complications, and (ii) forests may be responsible for removing a disproportionately large fraction of potentially climate-relevant fine and ultra-fine aerosol particles from the atmosphere. However, larger uncertainties remain with respect to controls on uptake rates for forests. E.g. the deposition flux partitioning between foliage and non-foliage elements, the influence of particle size and composition, the role of leaf surface morphology and stomatal aperture in surface uptake. Improved understanding of the relative importance of these factors and the variability across different tree species should help determine how much of a sink naturally occurring and planted forests can provide downstream of fine particle production. In this study, a sample of trees native to southern Indiana were exposed to ultra-fine aerosol particle populations in a 1.5 m x 1.5 m x 1.5 m Teflon chamber. Stable particle size distributions (PSD) with geometric mean diameters (GMD) ranging from 40 to 80 nm were generated from sodium chloride, ammonium nitrate, ammonium sulfate and sodium sulfite solutions using a TSI model 3940 Aerosol Generation System (AGS). The aerosol stream was diluted using scrubbed and dried zero air to allow a variation of total number concentration across two orders of magnitude. PSD in the chamber are continuously measured using a TSI Scanning Mobility Particle Spectrometer (SMPS) comprising an Electrostatic Classifier (EC model 3080) attached to a Long DMA (LDMA model 3081) and a TSI model 3025A Butanol Condensation Particle Counter (CPC) operated with both the internal diffusion loss and multiple charge corrections turned on. The composition of the chamber air was also monitored for carbon dioxide (CO2) and water vapor

  20. Hysteresis-free high rate reactive sputtering of niobium oxide, tantalum oxide, and aluminum oxide

    SciTech Connect

    Särhammar, Erik Berg, Sören; Nyberg, Tomas

    2014-07-01

    This work reports on experimental studies of reactive sputtering from targets consisting of a metal and its oxide. The composition of the targets varied from pure metal to pure oxide of Al, Ta, and Nb. This combines features from both the metal target and oxide target in reactive sputtering. If a certain relation between the metal and oxide parts is chosen, it may be possible to obtain a high deposition rate, due to the metal part, and a hysteresis-free process, due to the oxide part. The aim of this work is to quantify the achievable boost in oxide deposition rate from a hysteresis-free process by using a target consisting of segments of a metal and its oxide. Such an increase has been previously demonstrated for Ti using a homogeneous substoichiometric target. The achievable gain in deposition rate depends on transformation mechanisms from oxide to suboxides due to preferential sputtering of oxygen. Such mechanisms are different for different materials and the achievable gain is therefore material dependent. For the investigated materials, the authors have demonstrated oxide deposition rates that are 1.5–10 times higher than what is possible from metal targets in compound mode. However, although the principle is demonstrated for oxides of Al, Ta, and Nb, a similar behavior is expected for most oxides.

  1. Characterization of the ion cathode fall region in relation to the growth rate in plasma sputter deposition

    NASA Astrophysics Data System (ADS)

    Palmero, A.; van Hattum, E. D.; Rudolph, H.; Habraken, F. H. P. M.

    2007-02-01

    In plasma-assisted magnetron sputtering, the ion cathode fall region is the part of the plasma where the DC electric field and ion current evolve from zero to their maximum values at the cathode. These quantities are straightforwardly related to the deposition rate of the sputtered material. In this work we derive simple relations for the measurable axially averaged values of the ion density and the ion current at the ion cathode fall region and relate them with the deposition rate. These relations have been tested experimentally in the case of an argon plasma in a magnetron sputtering system devoted to depositing amorphous silicon. Using a movable Langmuir probe, the profiles of the plasma potential and ion density were measured along an axis perpendicularly to the cathode and in front of the so-called race-track. The deposition rate of silicon, under different conditions of pressure and input power, has been found to compare well with those determined with the relations derived.

  2. Dose rate in brachytherapy using after-loading machine: pulsed or high-dose rate?

    PubMed

    Hannoun-Lévi, J-M; Peiffert, D

    2014-10-01

    Since February 2014, it is no longer possible to use low-dose rate 192 iridium wires due to the end of industrial production of IRF1 and IRF2 sources. The Brachytherapy Group of the French society of radiation oncology (GC-SFRO) has recommended switching from iridium wires to after-loading machines. Two types of after-loading machines are currently available, based on the dose rate used: pulsed-dose rate or high-dose rate. In this article, we propose a comparative analysis between pulsed-dose rate and high-dose rate brachytherapy, based on biological, technological, organizational and financial considerations.

  3. Pulsed laser deposition of SrRuO3 thin-films: The role of the pulse repetition rate

    NASA Astrophysics Data System (ADS)

    Schraknepper, H.; Bäumer, C.; Gunkel, F.; Dittmann, R.; De Souza, R. A.

    2016-12-01

    SrRuO3 thin-films were deposited with different pulse repetition rates, fdep, epitaxially on vicinal SrTiO3 substrates by means of pulsed laser deposition. The measurement of several physical properties (e.g., composition by means of X-ray photoelectron spectroscopy, the out-of-plane lattice parameter, the electric conductivity, and the Curie temperature) consistently reveals that an increase in laser repetition rate results in an increase in ruthenium deficiency in the films. By the same token, it is shown that when using low repetition rates, approaching a nearly stoichiometric cation ratio in SrRuO3 becomes feasible. Based on these results, we propose a mechanism to explain the widely observed Ru deficiency of SrRuO3 thin-films. Our findings demand these theoretical considerations to be based on kinetic rather than widely employed thermodynamic arguments.

  4. High-rate reactive magnetron sputtering of zirconia films for laser optics applications

    NASA Astrophysics Data System (ADS)

    Juškevičius, K.; Audronis, M.; Subačius, A.; Drazdys, R.; Juškėnas, R.; Matthews, A.; Leyland, A.

    2014-09-01

    ZrO2 exhibits low optical absorption in the near-UV range and is one of the highest laser-induced damage threshold (LIDT) materials; it is, therefore, very attractive for laser optics applications. This paper reports explorations of reactive sputtering technology for deposition of ZrO2 films with low extinction coefficient k values in the UV spectrum region at low substrate temperature. A high deposition rate (64 % of the pure metal rate) process is obtained by employing active feedback reactive gas control which creates a stable and repeatable deposition processes in the transition region. Substrate heating at 200 °C was found to have no significant effect on the optical ZrO2 film properties. The addition of nitrogen to a closed-loop controlled process was found to have mostly negative effects in terms of deposition rate and optical properties. Open-loop O2 gas-regulated ZrO2 film deposition is slow and requires elevated (200 °C) substrate temperature or post-deposition annealing to reduce absorption losses. Refractive indices of the films were distributed in the range n = 2.05-2.20 at 1,000 nm and extinction coefficients were in the range k = 0.6 × 10-4 and 4.8 × 10-3 at 350 nm. X-ray diffraction analysis showed crystalline ZrO2 films consisted of monoclinic + tetragonal phases when produced in Ar/O2 atmosphere and monoclinic + rhombohedral or a single rhombohedral phase when produced in Ar/O2 + N2. Optical and physical properties of the ZrO2 layers produced in this study are suitable for high-power laser applications in the near-UV range.

  5. Enthalpy and high temperature relaxation kinetics of stable vapor-deposited glasses of toluene

    SciTech Connect

    Bhattacharya, Deepanjan; Sadtchenko, Vlad

    2014-09-07

    Stable non-crystalline toluene films of micrometer and nanometer thicknesses were grown by vapor deposition at distinct rates and probed by fast scanning calorimetry. Fast scanning calorimetry is shown to be extremely sensitive to the structure of the vapor-deposited phase and was used to characterize simultaneously its kinetic stability and its thermodynamic properties. According to our analysis, transformation of vapor-deposited samples of toluene during heating with rates in excess 10{sup 5} K s{sup −1} follows the zero-order kinetics. The transformation rate correlates strongly with the initial enthalpy of the sample, which increases with the deposition rate according to sub-linear law. Analysis of the transformation kinetics of vapor-deposited toluene films of various thicknesses reveal a sudden increase in the transformation rate for films thinner than 250 nm. The change in kinetics seems to correlate with the surface roughness scale of the substrate. The implications of these findings for the formation mechanism and structure of vapor-deposited stable glasses are discussed.

  6. High rates of bedload transport measured from infilling rate of large strudelscour craters in the Beaufort Sea, Alaska

    USGS Publications Warehouse

    Reimnitz, Erk; Kempema, E.W.

    1982-01-01

    Strudel scours are craters as much as 20 m wide and 4 m deep, that are excavated by vertical drainage flow during the yearly spring flooding of vast reaches of fast ice surrounding arctic deltas; they form at a rate of about 2.5 km^-2 yr^-1. Monitoring two such craters in the Beaufort Sea, we found that in relatively unprotected sites they fill in by deposition from bedload in 2 to 3 years. Net westward sediment transport results in sand layers dipping at the angle of repose westward into the strudel-scour crater, whereas the west wall of the crater remains steep to vertical. Initially the crater traps almost all bedload: sand, pebbles, and organic detritus; as infilling progresses, the materials are increasingly winnowed, and bypassing must occur. Over a 20-m-wide sector, an exposed strudel scour trapped 360 m3 of bedload during two seasons; this infilling represents a bedload transport rate of 9 m3 yr^-1 m^-1. This rate should be applicable to a 4.5-km-wide zone with equal exposure and similar or shallower depth. Within this zone, the transport rate is 40,500 m3 yr^-1, similar to estimated longshore transport rates on local barrier beaches. On the basis of the established rate of cut and fill, all the delta-front deposits should consist of strudel-scour fill. Vibracores typically show dipping interbedded sand and lenses of organic material draped over very steep erosional contacts, and an absence of horizontal continuity of strata--criteria that should uniquely identify high-latitude deltaic deposits. Given a 2- to 3-year lifespan, most strudel scours seen in surveys must be old. The same holds true for ice gouges and other depressions not adjusted to summer waves and currents, although these features record events of only the past few years. In view of such high rates of bottom reworking of the shallow shelf, any human activities creating turbidity, such as dredging, would have little effect on the environment. However, huge amounts of transitory material

  7. Influence of variable rates of neritic carbonate deposition on atmospheric carbon dioxide and pelagic sediments

    NASA Technical Reports Server (NTRS)

    Walker, J. C.; Opdyke, B. C.

    1995-01-01

    Short-term imbalances in the global cycle of shallow water calcium carbonate deposition and dissolution may be responsible for much of the observed Pleistocene change in atmospheric carbon dioxide content. However, any proposed changes in the alkalinity balance of the ocean must be reconciled with the sedimentary record of deep-sea carbonates. The possible magnitude of the effect of shallow water carbonate deposition on the dissolution of pelagic carbonate can be tested using numerical simulations of the global carbon cycle. Boundary conditions can be defined by using extant shallow water carbonate accumulation data and pelagic carbonate deposition/dissolution data. On timescales of thousands of years carbonate deposition versus dissolution is rarely out of equilibrium by more than 1.5 x 10(13) mole yr-1. Results indicate that the carbonate chemistry of the ocean is rarely at equilibrium on timescales less than 10 ka. This disequilibrium is probably due to sea level-induced changes in shallow water calcium carbonate deposition/dissolution, an interpretation that does not conflict with pelagic sedimentary data from the central Pacific.

  8. Focused electron beam induced deposition of copper with high resolution and purity from aqueous solutions

    NASA Astrophysics Data System (ADS)

    Esfandiarpour, Samaneh; Boehme, Lindsay; Hastings, J. Todd

    2017-03-01

    Electron-beam induced deposition of high-purity copper nanostructures is desirable for nanoscale rapid prototyping, interconnection of chemically synthesized structures, and integrated circuit editing. However, metalorganic, gas-phase precursors for copper introduce high levels of carbon contamination. Here we demonstrate electron beam induced deposition of high-purity copper nanostructures from aqueous solutions of copper sulfate. The addition of sulfuric acid eliminates oxygen contamination from the deposit and produces a deposit with ∼95 at% copper. The addition of sodium dodecyl sulfate (SDS), Triton X-100, or polyethylene glycole (PEG) improves pattern resolution and controls deposit morphology but leads to slightly reduced purity. High resolution nested lines with a 100 nm pitch are obtained from CuSO4–H2SO4–SDS–H2O. Higher aspect ratios (∼1:1) with reduced line edge roughness and unintended deposition are obtained from CuSO4–H2SO4–PEG–H2O. Evidence for radiation-chemical deposition mechanisms was observed, including deposition efficiency as high as 1.4 primary electrons/Cu atom.

  9. Focused electron beam induced deposition of copper with high resolution and purity from aqueous solutions.

    PubMed

    Esfandiarpour, Samaneh; Boehme, Lindsay; Hastings, J Todd

    2017-03-24

    Electron-beam induced deposition of high-purity copper nanostructures is desirable for nanoscale rapid prototyping, interconnection of chemically synthesized structures, and integrated circuit editing. However, metalorganic, gas-phase precursors for copper introduce high levels of carbon contamination. Here we demonstrate electron beam induced deposition of high-purity copper nanostructures from aqueous solutions of copper sulfate. The addition of sulfuric acid eliminates oxygen contamination from the deposit and produces a deposit with ∼95 at% copper. The addition of sodium dodecyl sulfate (SDS), Triton X-100, or polyethylene glycole (PEG) improves pattern resolution and controls deposit morphology but leads to slightly reduced purity. High resolution nested lines with a 100 nm pitch are obtained from CuSO4-H2SO4-SDS-H2O. Higher aspect ratios (∼1:1) with reduced line edge roughness and unintended deposition are obtained from CuSO4-H2SO4-PEG-H2O. Evidence for radiation-chemical deposition mechanisms was observed, including deposition efficiency as high as 1.4 primary electrons/Cu atom.

  10. High-frequency depositional sequences and stratal stacking patterns in lower pliocene coastal deltas, mid-Norwegian continental shelf

    SciTech Connect

    Henriksen, S.; Weimer, P.

    1996-12-01

    Extensive deltaic and coastal progradation occurred along the mid-Norwegian continental shelf during the early Pliocene. Thirty-eight well-developed, high-frequency (fourth-order) sequences are identified within the deltaic complex on multifold seismic data. The fourth-order sequences are arranged in four oblique progradational and two sigmoid progradational sequence sets. Deposition of the high-frequency sequences and their stacking patterns probably were in response to high-frequency cycles of relative changes in sea level cycles produced by variable rates of subsidence and uplift, superimposed on ;high-frequency eustatic cycles within a lower frequency eustatic system. The mixed aggrading/prograding sequence sets are interpreted to represent increased space-added accommodation rates and deposition within third-order highstand systems tracts. Conversely, the progradational sequence sets are interpreted to represent decreasing space-added accommodation rates and deposition within the third-order low-stand systems tracts. The recognition of multiple sequence sets likely reflects the effect of long-term relative fall in sea level (tectonic uplift?) super-imposed on high-frequency eustatic cycles.

  11. Novel in situ method for locating virtual source in high-rate electron-beam evaporation

    NASA Astrophysics Data System (ADS)

    Bhatia, M. S.

    1994-07-01

    The concept of virtual source simplifies calculation of thickness distribution on extended substrates in high rate vacuum coating employing electron-beam heating. The height of the point (virtual source), from which vapor can be assumed to emanate in accordance with Knudsen's cosine law, to yield the experimentally obtained thickness distribution, is calculated and this establishes the position of virtual source. Such as post facto determination is cumbersome as it is valid for the prescribed material evaporating at a certain rate in a specified geometry. A change in any of these entails a fresh measurement. Experimenters who use a large number of materials and deposit at different rates therefore have to carry out a number of trials before they can locate the virtual source at the desired deposition parameters. An in situ method for obtaining virtual source position can go a long way in reducing the labor of these experiments. A novel in situ method is described to locate the virtual source.

  12. Determination of silica deposition rates and thresholds applied towards protection of injection reservoirs

    SciTech Connect

    Geothermal Development Associates; Don Michels Associates

    1999-07-01

    This program was instituted to quantify certain aspects of silica scaling deposition processes at the Miravalles Geothermal Field, Costa Rica. The program objective was to identify the highest temperature at which silica scale will develop from partially evaporated and significantly cooled geothermal liquid under operating conditions. Integral to the study objective was the quantification of certain aspects of silica deposition processes at the Miravalles Geothermal Field, Costa Rica. There, the objective was to reduce the scaling risk associated with adding a bottoming-cycle to generate more electricity from the liquids already being produced.

  13. Using deposition rate as a means to alter the properties of small molecule organic glasses for OLED applications

    NASA Astrophysics Data System (ADS)

    Kearns, Kenneth; Krzyskowski, Paige; Devereaux, Zachary

    2015-03-01

    Organic light emitting diode (OLED) devices rely on vapor-deposited, small molecule organic glasses. Recent work has shown that deposition condition plays a critical role in altering OLED device performance. Here it will be shown that the deposition rate alters the onset and fictive temperatures measured by differential scanning calorimetry (DSC) of the deposited glass. Glasses of the common hole transport materials NPD and TPD were prepared with onset temperatures 17 and 16 K higher, respectively, than the ordinary glass prepared by cooling the supercooled liquid. The thermal stability of glasses in functioning devices can be underestimated due to increases in onset temperature relative to Tg. The fictive temperatures for NPD and TPD were 32 and 27 K lower, respectively, than the Tg of the ordinary glass. These results are consistent with literature reports on other non-OLED glasses where enhanced surface mobility allowed for glasses with similar properties to be made. Ellipsometry studies on NPD showed that the fictive and onset temperatures were consistent with the DSC results. Additionally, the modeled birefringence of the as-deposited NPD glass was non-zero and quickly decreased upon heating above the onset temperature, which has implications for device performance. Formerly at Department of Chemistry, Saginaw Valley State University.

  14. High-speed growth of YBa2Cu3O7 - δ film with high critical temperature on MgO single crystal substrate by laser chemical vapor deposition

    NASA Astrophysics Data System (ADS)

    Zhao, Pei; Ito, Akihiko; Tu, Rong; Goto, Takashi

    2010-12-01

    a-axis- and c-axis-oriented YBa2Cu3O7 - δ films were prepared on a (100) MgO single crystal substrate by chemical vapor deposition enhanced by a continuous wave Nd:YAG laser. A c-axis-oriented YBCO film with a critical temperature of 89 K was prepared at a high deposition rate of 57 µm h - 1, about 2-600 times higher than that of conventional chemical vapor deposition.

  15. High-Rate Strong-Signal Quantum Cryptography

    NASA Technical Reports Server (NTRS)

    Yuen, Horace P.

    1996-01-01

    Several quantum cryptosystems utilizing different kinds of nonclassical lights, which can accommodate high intensity fields and high data rate, are described. However, they are all sensitive to loss and both the high rate and the strong-signal character rapidly disappear. A squeezed light homodyne detection scheme is proposed which, with present-day technology, leads to more than two orders of magnitude data rate improvement over other current experimental systems for moderate loss.

  16. High Strain Rate Mechanical Properties of Glassy Polymers

    DTIC Science & Technology

    2012-07-25

    Force Materiel Command  United States Air Force  Eglin Air Force Base AFRL-RW-EG-TP-2012-008 High Strain Rate...TITLE AND SUBTITLE High Strain Rate Mechanical Properties of Glassy Polymers 5a. CONTRACT NUMBER 5b. GRANT NUMBER 5c. PROGRAM ELEMENT...1990s, a range of experimental data has been generated describing the response of glassy polymers to high strain rate loading in compression. More

  17. High Pressure Chemical Vapor Deposition of Hydrogenated Amorphous Silicon Films and Solar Cells.

    PubMed

    He, Rongrui; Day, Todd D; Sparks, Justin R; Sullivan, Nichole F; Badding, John V

    2016-07-01

    Thin films of hydrogenated amorphous silicon can be produced at MPa pressures from silane without the use of plasma at temperatures as low as 345 °C. High pressure chemical vapor deposition may open a new way to low cost deposition of amorphous silicon solar cells and other thin film structures over very large areas in very compact, simple reactors.

  18. High Concentration of Zinc in Sub-retinal Pigment Epithelial Deposits

    SciTech Connect

    Lengyel,I.; Flinn, J.; Peto, T.; Linkous, D.; Cano, K.; Bird, A.; Lanzirotti, A.; Frederickson, C.; van Kuijk, F.

    2007-01-01

    One of the hallmarks of age-related macular degeneration (AMD), the leading cause of blindness in the elderly in Western societies, is the accumulation of sub-retinal pigment epithelial deposits (sub-RPE deposits), including drusen and basal laminar deposits, in Bruch's membrane (BM). The nature and the underlying mechanisms of this deposit formation are not fully understood. Because we know that zinc contributes to deposit formation in neurodegenerative diseases, we tested the hypothesis that zinc might be involved in deposit formation in AMD. Using zinc specific fluorescent probes and microprobe synchrotron X-ray fluorescence we showed that sub-RPE deposits in post-mortem human tissues contain unexpectedly high concentrations of zinc, including abundant bio-available (ionic and/or loosely protein bound) ions. Zinc accumulation was especially high in the maculae of eyes with AMD. Internal deposit structures are especially enriched in bio-available zinc. Based on the evidence provided here we suggest that zinc plays a role in sub-RPE deposit formation in the aging human eye and possibly also in the development and/or progression of AMD.

  19. A suitable deposition method of CdS for high performance CdS-sensitized ZnO electrodes: Sequential chemical bath deposition

    SciTech Connect

    Chen, Haining; Li, Weiping; Liu, Huicong; Zhu, Liqun

    2010-07-15

    A suitable deposition method of CdS is necessary for the high performance CdS-sensitized ZnO electrodes. In this paper, chemical bath deposition (CBD) and sequential chemical bath deposition (S-CBD) methods were used to deposit CdS on ZnO mesoporous films for ZnO/CdS electrodes. The analysis results of XRD patterns and UV-vis spectroscopy indicated that CBD deposition method leaded to the dissolving of ZnO mesoporous films in deposition solution and thickness reduction of ZnO/CdS electrodes. Absorption in visible region by the ZnO/CdS electrodes with CdS deposition by S-CBD was enhanced as deposition cycles increased due to the stability of ZnO mesoporous films in the S-CBD deposition solutions. The results of photocurrent-voltage (I-V) measurement showed that the performance of ZnO/CdS electrodes with CdS deposition by CBD first increased and then decreased as deposition time increased, and the greatest short-circuit current (J{sub sc}) was obtained at the deposition time of 4 min. The performance of ZnO/CdS electrodes with CdS deposition by S-CBD increased as deposition cycles increased, and both open-circuit voltage (V{sub oc}) and J{sub sc} were greater than those electrodes with CdS deposition by CBD when the deposition cycles of S-CBD were 10 or greater. These results indicated that S-CBD is a more suitable method for high performance ZnO/CdS electrodes. (author)

  20. Chemically frozen multicomponent boundary layer theory of salt and/or ash deposition rates from combustion gases

    NASA Technical Reports Server (NTRS)

    Rosner, D. E.; Chen, B.-K.; Fryburg, G. C.; Kohl, F. J.

    1979-01-01

    There is increased interest in, and concern about, deposition and corrosion phenomena in combustion systems containing inorganic condensible vapors and particles (salts, ash). To meet the need for a computationally tractable deposition rate theory general enough to embrace multielement/component situations of current and future gas turbine and magnetogasdynamic interest, a multicomponent chemically 'frozen' boundary layer (CFBL) deposition theory is presented and its applicability to the special case of Na2SO4 deposition from seeded laboratory burner combustion products is demonstrated. The coupled effects of Fick (concentration) diffusion and Soret (thermal) diffusion are included, along with explicit corrections for effects of variable properties and free stream turbulence. The present formulation is sufficiently general to include the transport of particles provided they are small enough to be formally treated as heavy molecules. Quantitative criteria developed to delineate the domain of validity of CFBL-rate theory suggest considerable practical promise for the present framework, which is characterized by relatively modest demands for new input information and computer time.

  1. Surface Ages and Resurfacing Rates of the Polar Layered Deposits on Mars

    NASA Technical Reports Server (NTRS)

    Herkenhoff, K. E.; Plaut, J. J.

    1999-01-01

    The martian polar layered deposits (PLD) are probably the best source of information about the recent climate history of Mars, but their origin and the mechanisms of accumulation are still a mystery. The polar layers are sedimentary deposits that most planetary scientists believe are composed of water ice and varying amounts of wind-blown dust, but their composition is poorly constrained. Interpretation of the observed polar stratigraphy in terms of global climate changes is complicated by the significant difference in surface ages between the north and south PLD inferred from crater statistics. While no craters have been found in the north PLD, the surface of the south PLD appears to have been stable for many of the orbital/axial cycles that are thought to have induced global climate changes on Mars. Using medium-resolution Viking imagery, Plaut et al. found at least 15 impact craters in the southern layered deposits and concluded that their surface is 120 +/- 40 million years old. In contrast, Cutts et al. found no fresh impact craters larger than about 300 meters in summertime images of the north polar layered deposits. Additional information is contained in the original extended abstract.

  2. Energy deposition rates by charged particles measured during the energy budget campaign

    NASA Technical Reports Server (NTRS)

    Urban, A.; Torkar, K. M.; Bjordal, J.; Lundblad, J. A.; Soraas, F.; Grandal, B.; Smith, L. G.; Ulwick, J. C.; Vancour, R. P.

    1982-01-01

    Measurements of the precipitation of electrons and positive ions (in the keV to MeV range) detected aboard eight rockets launched from Northern Scandinavia are reported together with corresponding satellite data. The downgoing integral fluxes indicate the temporal fluctuations during each flight. Height profiles of the energy deposition into the atmosphere at different levels of geomagnetic disturbance are given.

  3. Optical coatings of variable refractive index and high laser-resistance from physical-vapor-deposited perfluorinated amorphous polymer

    DOEpatents

    Chow, Robert; Loomis, Gary E.; Thomas, Ian M.

    1999-01-01

    Variable index optical single-layers, optical multilayer, and laser-resistant coatings were made from a perfluorinated amorphous polymer material by physical vapor deposition. This was accomplished by physically vapor depositing a polymer material, such as bulk Teflon AF2400, for example, to form thin layers that have a very low refractive index (.about.1.10-1.31) and are highly transparent from the ultra-violet through the near infrared regime, and maintain the low refractive index of the bulk material. The refractive index can be varied by simply varying one process parameter, either the deposition rate or the substrate temperature. The thus forming coatings may be utilized in anti-reflectors and graded anti-reflection coatings, as well as in optical layers for laser-resistant coatings at optical wavelengths of less than about 2000 nm.

  4. Optical coatings of variable refractive index and high laser-resistance from physical-vapor-deposited perfluorinated amorphous polymer

    DOEpatents

    Chow, R.; Loomis, G.E.; Thomas, I.M.

    1999-03-16

    Variable index optical single-layers, optical multilayer, and laser-resistant coatings were made from a perfluorinated amorphous polymer material by physical vapor deposition. This was accomplished by physically vapor depositing a polymer material, such as bulk Teflon AF2400, for example, to form thin layers that have a very low refractive index (ca. 1.10--1.31) and are highly transparent from the ultra-violet through the near infrared regime, and maintain the low refractive index of the bulk material. The refractive index can be varied by simply varying one process parameter, either the deposition rate or the substrate temperature. The thus forming coatings may be utilized in anti-reflectors and graded anti-reflection coatings, as well as in optical layers for laser-resistant coatings at optical wavelengths of less than about 2000 nm. 2 figs.

  5. Highly efficient photocatalytic TiO2 coatings deposited by open air atmospheric pressure plasma jet with aerosolized TTIP precursor

    NASA Astrophysics Data System (ADS)

    Fakhouri, H.; Ben Salem, D.; Carton, O.; Pulpytel, J.; Arefi-Khonsari, F.

    2014-07-01

    A simple method to deposit photocatalytic TiO2 coatings, at a high rate (20-40 µm s-1), and with a high porosity, is reported in this paper. This method, which allows the treatment of membranes (with an 800 nm pore size), is based on the introduction of a liquid precursor sprayed into an open-air atmospheric pressure plasma jet (APPJ). The photocatalytic activity of the TiO2 thin films prepared by APPJ have been compared with our best N-doped TiO2 thin films, deposited by reactive radio frequency (RF) magnetron sputtering, previously reported in the literature. The morphology, chemical composition, photoelectrochemical, and photocatalytic properties of the coatings have been studied in this paper. Significant control of the porosity and crystallinity was achieved by varying the deposition parameters and the annealing temperature. Under optimized conditions, the TiO2 coatings deposited by APPJ are characterized by a higher photocatalytic activity as compared to the optimized thin films deposited by RF sputtering. This difference can be explained by the higher specific surface of the APPJ coatings. Finally, the most interesting characteristic of this APPJ-liquid spray process is its capacity to treat membranes without blocking the pores, and to produce photocatalytic membranes which can efficiently combine filtration and photocatalysis for water treatment.

  6. Development of High Rate Coating Technology for Low Cost Electrochromic Dynamic Windows

    SciTech Connect

    Kwak, B.; Joshi, Ajey

    2013-03-31

    Objectives of the Project: The objective of this project was to develop and demonstrate the feasibility of depositing critical electrochromic layers at high rate using new novel vacuum coating sources, to develop a full electrochromic process flow by combining conventional processes with new deposition sources, to characterize, test, evaluate, and optimize the resulting coatings and devices, and, to demonstrate an electrochromic device using the new process flow and sources. As addendum objectives, this project was to develop and demonstrate direct patterning methods with novel integration schemes. The long term objective, beyond this program, is to integrate these innovations to enable production of low-cost, high-performance electrochromic windows produced on highly reliable and high yielding manufacturing equipment and systems.

  7. Highly reflective polymeric substrates functionalized utilizing atomic layer deposition

    NASA Astrophysics Data System (ADS)

    Zuzuarregui, Ana; Coto, Borja; Rodríguez, Jorge; Gregorczyk, Keith E.; Ruiz de Gopegui, Unai; Barriga, Javier; Knez, Mato

    2015-08-01

    Reflective surfaces are one of the key elements of solar plants to concentrate energy in the receivers of solar thermal electricity plants. Polymeric substrates are being considered as an alternative to the widely used glass mirrors due to their intrinsic and processing advantages, but optimizing both the reflectance and the physical stability of polymeric mirrors still poses technological difficulties. In this work, polymeric surfaces have been functionalized with ceramic thin-films by atomic layer deposition. The characterization and optimization of the parameters involved in the process resulted in surfaces with a reflection index of 97%, turning polymers into a real alternative to glass substrates. The solution we present here can be easily applied in further technological areas where seemingly incompatible combinations of polymeric substrates and ceramic coatings occur.

  8. Highly reflective polymeric substrates functionalized utilizing atomic layer deposition

    SciTech Connect

    Zuzuarregui, Ana Gregorczyk, Keith E.; Coto, Borja; Ruiz de Gopegui, Unai; Barriga, Javier; Rodríguez, Jorge; Knez, Mato

    2015-08-10

    Reflective surfaces are one of the key elements of solar plants to concentrate energy in the receivers of solar thermal electricity plants. Polymeric substrates are being considered as an alternative to the widely used glass mirrors due to their intrinsic and processing advantages, but optimizing both the reflectance and the physical stability of polymeric mirrors still poses technological difficulties. In this work, polymeric surfaces have been functionalized with ceramic thin-films by atomic layer deposition. The characterization and optimization of the parameters involved in the process resulted in surfaces with a reflection index of 97%, turning polymers into a real alternative to glass substrates. The solution we present here can be easily applied in further technological areas where seemingly incompatible combinations of polymeric substrates and ceramic coatings occur.

  9. Characterization of high temperature deposited Ti-containing hydrogenated carbon thin films

    NASA Astrophysics Data System (ADS)

    Shi, B.; Meng, W. J.; Evans, R. D.

    2004-12-01

    A detailed structural and mechanical characterization was performed on Ti-containing hydrogenated amorphous carbon (Ti-C:H) thin films deposited at ˜600°C by plasma assisted hybrid chemical/physical vapor deposition. The structural and mechanical characteristics of these specimens were compared to those deposited at the lower temperature of ˜250°C. The results indicated that Ti-C :H consisted of a nanocrystalline TiC phase and a hydrogenated amorphous carbon (a-C:H) phase, and that Ti atoms were incorporated into Ti-C :H predominantly as B1-TiC. Deposition at ˜600°C promoted TiC precipitation, resulting in little Ti dissolution within the a-C :H matrix. High temperature deposited Ti-C :H specimens were found to possess lower modulus and hardness values as compared to low temperature deposited specimens, especially at low Ti compositions. This is rationalized by electron microscopy evidence of increased short and medium range graphitic order within the a-C :H matrix of high temperature deposited Ti-C :H, and supported by additional Raman spectroscopic observations. Heat treatments at 600 °C combined with Raman scattering measurements showed that the a-C :H matrix in high temperature deposited Ti-C :H specimens appears to be less structurally sensitive to additional annealing.

  10. Pulsed external magnetic fields increase the deposition rate in reactive HiPIMS while preserving stoichiometry: An application to amorphous HfO2

    NASA Astrophysics Data System (ADS)

    Ganesan, R.; Treverrow, B.; Denniss, P.; McCulloch, D. G.; McKenzie, D. R.; Bilek, M. M. M.

    2016-09-01

    We compare the use of externally applied pulsed and steady magnetic fields for the enhancement of deposition rate in reactive High Power Impulse Magnetron Sputtering (HiPIMS), using the deposition of amorphous hafnium oxide (a-HfO2) on Si as an example. The external magnetic fields were applied by a solenoidal coil, placed above the magnetron target. In the case of a steady magnetic field, a higher voltage was required to initiate the HiPIMS discharge, a longer delay time was observed for current onset, and the films became substoichiometric. For the pulsed magnetic field, film stoichiometry was maintained under all applied external magnetic field strengths. Varying the duration and delay times of the magnetic field after the application of HiPIMS voltage pulse revealed that the afterglow of the plasma between HiPIMS pulses was actively quenched by the presence of the magnetic field. Therefore, the optimum operation with the highest plasma density was obtained by applying the external magnetic field only when the plasma was established and removing it at the end of the HiPIMS pulse. A model to explain the findings is presented in which the target poisoning by oxide formation is determined by the conditions in the afterglow. We describe an approach to achieve maximum deposition rate while maintaining film stoichiometry and high film quality. Amorphous HfO2 films with leakage current through the film of less than 5 × 10-5 A/cm2 at 0.1 MV/cm were obtained at the maximum deposition rate. The refractive index, at a wavelength of 500 nm, of the film prepared with pulsed magnetic field was 2.05 with a very low extinction coefficient of 8 × 10-5.

  11. Direct measurement technique for determining ventilation rate in the deposit-feeding clam Macoma nasuta (bivalvia, tellinaceae)

    SciTech Connect

    Specht, D.T.; Lee, H.

    1989-01-01

    An exposure chamber, the 'clambox', was developed to measure ventilation rate, sediment processing rate, and efficiency of pollutant uptake by Macoma nasuta, Conrad, a surface-deposit-feeding clam. Clams, collected from Yaquina Bay, Oregon, USA, were cemented into a hole in a piece of rubber dental dam so that the inhalant siphons were separated by a membrane. The dental dam was then clamped between two glass chambers. The inhalant and exhalant siphons were thus diirected into separate chambers of the device so that the amount of water or feces discharged into the exhalant camber provided direct measure ventilation rate and sediment processing rate, respectively. The short-term pattern was for ventilation to be intermittently interrupted, essentially ceasing for 12 to 120 min, followed by a short period of active ventilation and then a resumption of the normal rate.

  12. Atomic layer deposition of ultrathin platinum films on tungsten atomic layer deposition adhesion layers: Application to high surface area substrates

    SciTech Connect

    Clancey, Joel W.; Cavanagh, Andrew S.; Kukreja, Ratandeep S.; Kongkanand, Anusorn; George, Steven M.

    2015-01-15

    Platinum (Pt) atomic layer deposition (ALD) usually yields Pt nanoparticles during initial film growth. In contrast, deposition of continuous and ultrathin Pt films is needed for many important applications, such as the oxygen reduction reaction in polymer electrolyte membrane (PEM) fuel cells. A continuous and high radius of curvature Pt film is more stable and has a higher area-specific activity than the Pt nanoparticles commonly used in PEM fuel cells. However, the Pt film must be ultrathin and have a large surface area to be cost effective. In this paper, a review of earlier Pt ALD studies on flat substrates is presented that demonstrates that tungsten, with a higher surface energy than platinum, can serve as an adhesion layer to achieve Pt ALD films that are continuous at ultrathin thicknesses of ∼1.5 nm. This work utilized MeCpPtMe{sub 3} and H{sub 2} plasma as the Pt ALD reactants. The deposition of continuous and ultrathin Pt ALD films using MeCpPtMe{sub 3} and H{sub 2} plasma as the reactants is then studied on two high surface area substrate materials: TiO{sub 2} nanoparticles and 3M nanostructured thin film (NSTF). Transmission electron microscopy (TEM) showed uniform and continuous Pt films with thicknesses of ∼4 nm on the TiO{sub 2} nanoparticles. TEM with electron energy loss spectroscopy analysis revealed W ALD and Pt ALD films with thicknesses of ∼3 nm that were continuous and conformal on the high aspect ratio NSTF substrates. These results demonstrate that cost effective use of Pt ALD on high surface area substrates is possible for PEM fuel cells.

  13. Sediment facies and Holocene deposition rate of near-coastal fluvial systems: An example from the Nobi Plain, Japan

    NASA Astrophysics Data System (ADS)

    Hori, Kazuaki; Usami, Shogo; Ueda, Hiroki

    2011-05-01

    Floodplains are a major component of present near-coastal fluvial systems that have evolved in response to postglacial changes in climate and sea level. Knowledge of sedimentary facies and deposition rates on a centennial to millennial time scale is required for considering floodplain evolution. Two cores, AP1 and AP2, were acquired from an abandoned channel of the Ibi River and its natural levee on the Nobi Plain, central Japan. Sediment facies analysis, electrical conductivity, and radiocarbon dating of borehole samples showed that in both cores organic-rich dark gray floodbasin mud overlies deltaic deposits dating to after approximately 3200 years calibrated radiocarbon age (cal BP) in relation to delta progradation. The accumulation of floodbasin mud continued at the both sites until about 400 cal BP. Around 400 cal BP, the mud was eroded by the overlying channel sand and gravel at AP1 and was covered by fine-grained natural levee deposits at AP2 with an abrupt contact. This timing is concordant with the historical record of avulsion of the Ibi River during the Keicho Era (AD 1596-1615). Averaged aggradation rates at the AP1 and AP2 sites were approximately 2.2 and 3.2 mm/yr, respectively. Faulting-related subsidence along the western edge of the plain has influenced these rates by creating accommodation. Averaged deposition rates differed greatly between the floodbasin and the levee, suggesting that rapid aggradation of the natural levee also occurred on a centennial to millennial scale. These empirical data may be useful for testing models of the architecture and evolution of near-coastal fluvial systems.

  14. Stratigraphy of the north polar layered deposits of Mars from high-resolution topography

    USGS Publications Warehouse

    Becerra, Patricio; Byrne, Shane; Sori, Michael M.; Sutton, Sarah; Herkenhoff, Kenneth E.

    2016-01-01

    The stratigraphy of the layered deposits of the polar regions of Mars is theorized to contain a record of recent climate change linked to insolation changes driven by variations in the planet's orbital and rotational parameters. In order to confidently link stratigraphic signals to insolation periodicities, a description of the stratigraphy is required based on quantities that directly relate to intrinsic properties of the layers. We use stereo Digital Terrain Models (DTMs) from the High Resolution Imaging Science Experiment (HiRISE) to derive a characteristic of North Polar Layered Deposits (NPLD) strata that can be correlated over large distances: the topographic protrusion of layers exposed in troughs, which is a proxy for the layers’ resistance to erosion. Using a combination of image analysis and a signal-matching algorithm to correlate continuous depth-protrusion signals taken from DTMs at different locations, we construct a stratigraphic column that describes the upper ~500 m of at least 7% of the area of the NPLD, and find accumulation rates that vary by factors of up to two. We find that, when coupled with observations of exposed layers in orbital images, the topographic expression of the strata is consistently continuous through large distances in the top 300 – 500 m of the NPLD, suggesting it is better related to intrinsic layer properties than brightness alone.

  15. Stratigraphy of the north polar layered deposits of Mars from high-resolution topography

    NASA Astrophysics Data System (ADS)

    Becerra, Patricio; Byrne, Shane; Sori, Michael M.; Sutton, Sarah; Herkenhoff, Kenneth E.

    2016-08-01

    The stratigraphy of the layered deposits in the polar regions of Mars is theorized to contain a record of recent climate change linked to insolation changes driven by variations in the planet's orbital and rotational parameters. In order to confidently link stratigraphic signals to insolation periodicities, a description of the stratigraphy is required based on quantities that directly relate to intrinsic properties of the layers. We use stereo digital terrain models (DTMs) from the High Resolution Imaging Science Experiment to derive a characteristic of north polar layered deposit (NPLD) strata that can be correlated over large distances: the topographic protrusion of layers exposed in troughs, which is a proxy for the layers' resistance to erosion. Using a combination of image analysis and a signal-matching algorithm to correlate continuous depth-protrusion signals taken from DTMs at different locations, we construct a stratigraphic column that describes the upper 500 m of at least 7% of the area of the NPLD and find accumulation rates that vary by factors of up to 2. We find that, when coupled with observations of exposed layers in images, the topographic expression of the strata is consistently continuous across large distances in the top 300-500 m of the NPLD, suggesting that it is better related to intrinsic layer properties than the brightness of exposed layers alone.

  16. First high-resolution stratigraphic column of the Martian north polar layered deposits

    USGS Publications Warehouse

    Fishbaugh, K.E.; Hvidberg, C.S.; Byrne, S.; Russell, P.S.; Herkenhoff, K. E.; Winstrup, M.; Kirk, R.

    2010-01-01

    This study achieves the first high-spatial-resolution, layer-scale, measured stratigraphic column of the Martian north polar layered deposits using a 1m-posting DEM. The marker beds found throughout the upper North Polar Layered Deposits range in thickness from 1.6 m-16.0 m +/-1.4 m, and 6 of 13 marker beds are separated by ???25-35 m. Thin-layer sets have average layer separations of 1.6 m. These layer separations may account for the spectral-power-peaks found in previous brightness-profile analyses. Marker-bed layer thicknesses show a weak trend of decreasing thickness with depth that we interpret to potentially be the result of a decreased accumulation rate in the past, for those layers. However, the stratigraphic column reveals that a simple rhythmic or bundled layer sequence is not immediately apparent throughout the column, implying that the relationship between polar layer formation and cyclic climate forcing is quite complex. Copyright ?? 2010 by the American Geophysical Union.

  17. Measured density of copper atoms in the ground and metastable states in argon magnetron discharge correlated with the deposition rate

    NASA Astrophysics Data System (ADS)

    Naghshara, H.; Sobhanian, S.; Khorram, S.; Sadeghi, N.

    2011-01-01

    In a dc-magnetron discharge with argon feed gas, densities of copper atoms in the ground state Cu(2S1/2) and metastable state Cu*(2D5/2) were measured by the resonance absorption technique, using a commercial hollow cathode lamp as light source. The operating conditions were 0.3-14 µbar argon pressure and 10-200 W magnetron discharge power. The deposition rate of copper in a substrate positioned at 18 cm from the target was also measured with a quartz microbalance. The gas temperature, in the range 300-380 K, was deduced from the emission spectral profile of N2(C 3Πu - B 3Πg) 0-0 band at 337 nm when trace of nitrogen was added to the argon feed gas. The isotope-shifts and hyperfine structures of electronic states of Cu have been taken into account to deduce the emission and absorption line profiles, and hence for the determination of atoms' densities from the measured absorption rates. To prevent error in the evaluation of Cu density, attributed to the line profile distortion by auto-absorption inside the lamp, the lamp current was limited to 5 mA. Density of Cu(2S1/2) atoms and deposition rate both increased with the enhanced magnetron discharge power. But at fixed power, the copper density augmented with argon pressure whereas the deposition rate followed the opposite trend. Whatever the gas pressure, the density of Cu*(2D5/2) metastable atoms remained below the detection limit of 1 × 1010 cm-3 for magnetron discharge powers below 50 W and hence increased much more rapidly than the density of Cu(2S1/2) atoms, over passing this later at some discharge power, whose value decreases with increasing argon pressure. This behaviour is believed to result from the enhancement of plasma density with increasing discharge power and argon pressure, which would increase the excitation rate of copper into metastable states. At fixed pressure, the deposition rate followed the same trend as the total density of copper atoms in the ground and metastable states. Two important

  18. High-shear-rate capillary viscometer for inkjet inks

    SciTech Connect

    Wang Xi; Carr, Wallace W.; Bucknall, David G.; Morris, Jeffrey F.

    2010-06-15

    A capillary viscometer developed to measure the apparent shear viscosity of inkjet inks at high apparent shear rates encountered during inkjet printing is described. By using the Weissenberg-Rabinowitsch equation, true shear viscosity versus true shear rate is obtained. The device is comprised of a constant-flow generator, a static pressure monitoring device, a high precision submillimeter capillary die, and a high stiffness flow path. The system, which is calibrated using standard Newtonian low-viscosity silicone oil, can be easily operated and maintained. Results for measurement of the shear-rate-dependent viscosity of carbon-black pigmented water-based inkjet inks at shear rates up to 2x10{sup 5} s{sup -1} are discussed. The Cross model was found to closely fit the experimental data. Inkjet ink samples with similar low-shear-rate viscosities exhibited significantly different shear viscosities at high shear rates depending on particle loading.

  19. HIGH-RATE DISINFECTION TECHNIQUES FOR COMBIND SEWER OVERFLOW

    EPA Science Inventory

    This paper presents high-rate disinfection technologies for combined sewer overflow (CSO). The high-rate disinfection technologies of interest are: chlorination/dechlorination, ultraviolet light irradiation (UV), chlorine dioxide (ClO2 ), ozone (O3), peracetic acid (CH3COOOH )...

  20. Hydrodynamic Instability in High-speed Direct Laser Deposition for Additive Manufacturing

    NASA Astrophysics Data System (ADS)

    Turichin, Gleb; Zemlyakov, Evgeny; Klimova, Olga; Babkin, Konstantin

    High speed direct laser deposition, when product forms from metal powder, transferred by gas-powder jet, supplied coaxially or non-coaxially to focused laser beam, in one of most prospective additive technologies for production parts for aircraft engines. The limit of process productivity is connected with development of hydrodynamic instability of the melt pool in conditions of high power laser action and material supply by gas-powder jet. Theoretical analysis and experiments allowed clarified a physical nature of instability appearance, determine a stability conditions and invent a methods which allow avoid instability in deposition process. Nozzles for direct laser deposition, designed with consideration of stability conditions, allow get a level of process productivity more then 2 kg/h. The developed technology of deposition and technological equipment, based on high power fiber laser, has been used for manufacturing of parts for "high temperature" unit of aircraft engine.

  1. Numerical reconstruction of high dose rate zones due to the Fukushima Dai-ichi Nuclear Power Plant accident.

    PubMed

    Katata, Genki; Terada, Hiroaki; Nagai, Haruyasu; Chino, Masamichi

    2012-09-01

    To understand how the high dose rate zones were created during the Fukushima Dai-ichi Nuclear Power Plant (FNPP1) accident on March 2011, the atmospheric dispersion of radionuclides during the period from 15 to 17 March was reproduced by using a computer-based nuclear emergency response system, WSPEEDI-II. With use of limited environmental monitoring data, prediction accuracy of meteorological and radiological fields by the system was improved to obtain best estimates of release rates, radiation dose maps, and plume movements. A large part of current high dose rate zones in Fukushima was explained by simulated surface deposition of radionuclides due to major releases of radionuclides on 15 March. In the simulation, the highest dose rate zones to the northwest of FNPP1 were created by a significant deposition of radionuclides discharged from FNPP1 during the afternoon. The results indicate that two environmental factors, i.e., rainfall and topography, strongly affected the spatial patterns of surface deposition of radionuclides. The wet deposition due to rainfall particularly played an important role in the formation of wide and heterogeneous distributions of high dose rate zones. The simulation also demonstrated that the radioactive plume flowed along the valleys to its leeward, which can expand the areas of a large amount of surface deposition in complex topography.

  2. High Yield Chemical Vapor Deposition Growth of High Quality Large-Area AB Stacked Bilayer Graphene

    PubMed Central

    Liu, Lixin; Zhou, Hailong; Cheng, Rui; Yu, Woo Jong; Liu, Yuan; Chen, Yu; Shaw, Jonathan; Zhong, Xing; Huang, Yu; Duan, Xiangfeng

    2012-01-01

    Bernal stacked (AB stacked) bilayer graphene is of significant interest for functional electronic and photonic devices due to the feasibility to continuously tune its band gap with a vertical electrical field. Mechanical exfoliation can be used to produce AB stacked bilayer graphene flakes but typically with the sizes limited to a few micrometers. Chemical vapor deposition (CVD) has been recently explored for the synthesis of bilayer graphene but usually with limited coverage and a mixture of AB and randomly stacked structures. Herein we report a rational approach to produce large-area high quality AB stacked bilayer graphene. We show that the self-limiting effect of graphene growth on Cu foil can be broken by using a high H2/CH4 ratio in a low pressure CVD process to enable the continued growth of bilayer graphene. A high temperature and low pressure nucleation step is found to be critical for the formation of bilayer graphene nuclei with high AB stacking ratio. A rational design of a two-step CVD process is developed for the growth of bilayer graphene with high AB stacking ratio (up to 90 %) and high coverage (up to 99 %). The electrical transport studies demonstrated that devices made of the as-grown bilayer graphene exhibit typical characteristics of AB stacked bilayer graphene with the highest carrier mobility exceeding 4,000 cm2/V·s at room temperature, comparable to that of the exfoliated bilayer graphene. PMID:22906199

  3. ANEMOS: A computer code to estimate air concentrations and ground deposition rates for atmospheric nuclides emitted from multiple operating sources

    SciTech Connect

    Miller, C.W.; Sjoreen, A.L.; Begovich, C.L.; Hermann, O.W.

    1986-11-01

    This code estimates concentrations in air and ground deposition rates for Atmospheric Nuclides Emitted from Multiple Operating Sources. ANEMOS is one component of an integrated Computerized Radiological Risk Investigation System (CRRIS) developed for the US Environmental Protection Agency (EPA) for use in performing radiological assessments and in developing radiation standards. The concentrations and deposition rates calculated by ANEMOS are used in subsequent portions of the CRRIS for estimating doses and risks to man. The calculations made in ANEMOS are based on the use of a straight-line Gaussian plume atmospheric dispersion model with both dry and wet deposition parameter options. The code will accommodate a ground-level or elevated point and area source or windblown source. Adjustments may be made during the calculations for surface roughness, building wake effects, terrain height, wind speed at the height of release, the variation in plume rise as a function of downwind distance, and the in-growth and decay of daughter products in the plume as it travels downwind. ANEMOS can also accommodate multiple particle sizes and clearance classes, and it may be used to calculate the dose from a finite plume of gamma-ray-emitting radionuclides passing overhead. The output of this code is presented for 16 sectors of a circular grid. ANEMOS can calculate both the sector-average concentrations and deposition rates at a given set of downwind distances in each sector and the average of these quantities over an area within each sector bounded by two successive downwind distances. ANEMOS is designed to be used primarily for continuous, long-term radionuclide releases. This report describes the models used in the code, their computer implementation, the uncertainty associated with their use, and the use of ANEMOS in conjunction with other codes in the CRRIS. A listing of the code is included in Appendix C.

  4. Equivalent titanium dioxide nanoparticle deposition by intratracheal instillation and whole body inhalation: the effect of dose rate on acute respiratory tract inflammation

    PubMed Central

    2014-01-01

    Background The increased production of nanomaterials has caused a corresponding increase in concern about human exposures in consumer and occupational settings. Studies in rodents have evaluated dose–response relationships following respiratory tract (RT) delivery of nanoparticles (NPs) in order to identify potential hazards. However, these studies often use bolus methods that deliver NPs at high dose rates that do not reflect real world exposures and do not measure the actual deposited dose of NPs. We hypothesize that the delivered dose rate is a key determinant of the inflammatory response in the RT when the deposited dose is constant. Methods F-344 rats were exposed to the same deposited doses of titanium dioxide (TiO2) NPs by single or repeated high dose rate intratracheal instillation or low dose rate whole body aerosol inhalation. Controls were exposed to saline or filtered air. Bronchoalveolar lavage fluid (BALF) neutrophils, biochemical parameters and inflammatory mediator release were quantified 4, 8, and 24 hr and 7 days after exposure. Results Although the initial lung burdens of TiO2 were the same between the two methods, instillation resulted in greater short term retention than inhalation. There was a statistically significant increase in BALF neutrophils at 4, 8 and 24 hr after the single high dose TiO2 instillation compared to saline controls and to TiO2 inhalation, whereas TiO2 inhalation resulted in a modest, yet significant, increase in BALF neutrophils 24 hr after exposure. The acute inflammatory response following instillation was driven primarily by monocyte chemoattractant protein-1 and macrophage inflammatory protein-2, mainly within the lung. Increases in heme oxygenase-1 in the lung were also higher following instillation than inhalation. TiO2 inhalation resulted in few time dependent changes in the inflammatory mediator release. The single low dose and repeated exposure scenarios had similar BALF cellular and mediator response trends

  5. Alunite in the Pascua-Lama high-sulfidation deposit: Constraints on alteration and ore deposition using stable isotope geochemistry

    USGS Publications Warehouse

    Deyell, C.L.; Leonardson, R.; Rye, R.O.; Thompson, J.F.H.; Bissig, T.; Cooke, D.R.

    2005-01-01

    The Pascua-Lama high-sulfidation system, located in the El Indio-Pascua belt of Chile and Argentina, contains over 16 million ounces (Moz) Au and 585 Moz Ag. The deposit is hosted primarily in granite rocks of Triassic age with mineralization occurring in several discrete Miocene-age phreatomagmatic breccias and related fracture networks. The largest of these areas is Brecha Central, which is dominated by a mineralizing assemblage of alunite-pyrite-enargite and precious metals. Several stages of hydrothermal alteration related to mineralization are recognized, including all types of alunite-bearing advanced argillic assemblages (magmatic-hydrothermal, steam-heated, magmatic steam, and supergene). The occurrence of alunite throughout the paragenesis of this epithermal system is unusual and detailed radiometric, mineralogical, and stable isotope studies provide constraints on the timing and nature of alteration and mineralization of the alunite-pyiite-enargite assemblage in the deposit. Early (preore) alteration occurred prior to ca. 9 Ma and consists of intense silicic and advanced argillic assemblages with peripheral argillic and widespread propylitic zones. Alunite of this stage occurs as fine intergrowths of alunite-quartz ?? kaolinite, dickite, and pyrophyllite that selectively replaced feldspars in the host rock. Stable isotope systematics suggest a magmatic-hydrothermal origin with a dominantly magmatic fluid source. Alunite is coeval with the main stage of Au-Ag-Cu mineralization (alunite-pyrite-enargite assemblage ore), which has been dated at approximately 8.8 Ma. Ore-stage alunite has an isotopic signature similar to preore alunite, and ?? 34Salun-py data indicate depositional temperatures of 245?? to 305??C. The ??D and ?? 18O data exclude significant involvement of meteoric water during mineralization and indicate that the assemblage formed from H2S-dominated magmatic fluids. Thick steam-heated alteration zones are preserved at the highest elevations in

  6. Sedimentation rates in eastern North America reveal strong links between regional climate, depositional environments, and sediment accumulation

    NASA Astrophysics Data System (ADS)

    Goring, S. J.; McLachlan, J. S.; Jackson, S. T.; Blaauw, M.; Christen, J.; Marlon, J.; Blois, J.; Williams, J. W.

    2011-12-01

    PalEON is a multidisciplinary project that combines paleo and modern ecological data with state-of-the-art statistical and modelling tools to examine the interactions between climate, fire and vegetation during the past two millennia in the northeastern United States. A fundamental challenge for PalEON (and paleo research more broadly) is to improve age modelling to yield more accurate sediment-core chronologies. To address this challenge, we assessed sedimentation rates and their controls for 218 lakes and mires in the northeastern U.S. Sedimentation rates (yr/cm) were calculated from age-depth models, which were obtained from the Neotoma database (www.neotomadb.org) and other contributed pollen records. The age models were recalibrated to IntCal09 and augmented in some cases using biostratigraphic markers (Picea decline, 16 kcal BP - 10.5 kcal BP; Quercus rise, 12 - 9.1 kcal BP; and Alnus decline, 11.5 - 10.6 kcal BP) as described in Blois et al. (2011). Relationships between sedimentation rates and sediment age, site longitude, and depositional environment (lacustrine or mire) are significant but weak. There are clear and significant links between variations in the NGRIP record of δ18O and sedimentation in mires across the PalEON region, but no links to lacustrine sedimentation rates. This result indicates that super-regional climatic control of primary productivity, and thus autochthonic sediment deposition, dominates in mires while deposition in lacustrine basins may be driven primarily by local and regional factors including watershed size, surficial materials,and regional vegetation. The shape of the gamma probability functions that best describe sedimentation rate distributions are calculated and presented here for use as priors in Bayesian age modelling applications such as BACON (Blaauw and Christen, in press). Future applications of this research are also discussed.

  7. Process for High-Rate Fabrication of Alumina Nanotemplates

    NASA Technical Reports Server (NTRS)

    Myung, Nosang; Fleurial, Jean-Pierre; Yun, Minhee; West, William; Choi, Daniel

    2007-01-01

    An anodizing process, at an early stage of development at the time of reporting the information for this article, has shown promise as a means of fabricating alumina nanotemplates integrated with silicon wafers. Alumina nanotemplates are basically layers of alumina, typically several microns thick, in which are formed approximately regular hexagonal arrays of holes having typical diameters of the order of 10 to 100 nm. Interest in alumina nanotemplates has grown in recent years because they have been found to be useful as templates in the fabrication of nanoscale magnetic, electronic, optoelectronic, and other devices. The present anodizing process is attractive for the fabrication of alumina nanotemplates integrated with silicon wafers in two respects: (1) the process involves self-ordering of the holes; that is, the holes as formed by the process are spontaneously arranged in approximately regular hexagonal arrays; and (2) the rates of growth (that is, elongation) of the holes are high enough to make the process compatible with other processes used in the mass production of integrated circuits. In preparation for fabrication of alumina nanotemplates in this process, one first uses electron-beam evaporation to deposit thin films of titanium, followed by thin films of aluminum, on silicon wafers. Then the alumina nanotemplates are formed by anodizing the aluminum layers, as described below. In experiments in which the process was partially developed, the titanium films were 200 A thick and the aluminum films were 5 m thick. The aluminum films were oxidized to alumina, and the arrays of holes were formed by anodizing the aluminum in aqueous solutions of sulfuric and/or oxalic acid at room temperature (see figure). The diameters, spacings, and rates of growth of the holes were found to depend, variously, on the composition of the anodizing solution, the applied current, or the applied potential, as follows: In galvanostatically controlled anodizing, regardless of the

  8. Recent ice-rich deposits formed at high latitudes on Mars by sublimation of unstable equatorial ice during low obliquity.

    PubMed

    Levrard, Benjamin; Forget, François; Montmessin, Franck; Laskar, Jacques

    2004-10-28

    Observations from the gamma-ray spectrometer instrument suite on the Mars Odyssey spacecraft have been interpreted as indicating the presence of vast reservoirs of near-surface ice in high latitudes of both martian hemispheres. Ice concentrations are estimated to range from 70 per cent at 60 degrees latitude to 100 per cent near the poles, possibly overlain by a few centimetres of ice-free material in most places. This result is supported by morphological evidence of metres-thick layered deposits that are rich in water-ice and periglacial-like features found only at high latitudes. Diffusive exchange of water between the pore space of the regolith and the atmosphere has been proposed to explain this distribution, but such a degree of concentration is difficult to accommodate with such processes. Alternatively, there are suggestions that ice-rich deposits form by transport of ice from polar reservoirs and direct redeposition in high latitudes during periods of higher obliquity, but these results have been difficult to reproduce with other models. Here we propose instead that, during periods of low obliquity (less than 25 degrees), high-latitude ice deposits form in both hemispheres by direct deposition of ice, as a result of sublimation from an equatorial ice reservoir that formed earlier, during a prolonged high-obliquity excursion. Using the ice accumulation rates estimated from global climate model simulations we show that, over the past ten million years, large variations of Mars' obliquity have allowed the formation of such metres-thick, sedimentary layered deposits in high latitude and polar regions.

  9. Process for the deposition of high temperature stress and oxidation resistant coatings on silicon-based substrates

    DOEpatents

    Sarin, V.K.

    1991-07-30

    A process is disclosed for depositing a high temperature stress and oxidation resistant coating on a silicon nitride- or silicon carbide-based substrate body. A gas mixture is passed over the substrate at about 900--1500 C and about 1 torr to about ambient pressure. The gas mixture includes one or more halide vapors with other suitable reactant gases. The partial pressure ratios, flow rates, and process times are sufficient to deposit a continuous, fully dense, adherent coating. The halide and other reactant gases are gradually varied during deposition so that the coating is a graded coating of at least two layers. Each layer is a graded layer changing in composition from the material over which it is deposited to the material of the layer and further to the material, if any, deposited thereon, so that no clearly defined compositional interfaces exist. The gases and their partial pressures are varied according to a predetermined time schedule and the halide and other reactant gases are selected so that the layers include (a) an adherent, continuous intermediate layer about 0.5-20 microns thick of an aluminum nitride or an aluminum oxynitride material, over and chemically bonded to the substrate body, and (b) an adherent, continuous first outer layer about 0.5-900 microns thick including an oxide of aluminum or zirconium over and chemically bonded to the intermediate layer.

  10. Process for the deposition of high temperature stress and oxidation resistant coatings on silicon-based substrates

    DOEpatents

    Sarin, Vinod K.

    1991-01-01

    A process for depositing a high temperature stress and oxidation resistant coating on a silicon nitride- or silicon carbide-based substrate body. A gas mixture is passed over the substrate at about 900.degree.-1500.degree. C. and about 1 torr to about ambient pressure. The gas mixture includes one or more halide vapors with other suitable reactant gases. The partial pressure ratios, flow rates, and process times are sufficient to deposit a continuous, fully dense, adherent coating. The halide and other reactant gases are gradually varied during deposition so that the coating is a graded coating of at least two layers. Each layer is a graded layer changing in composition from the material over which it is deposited to the material of the layer and further to the material, if any, deposited thereon, so that no clearly defined compositional interfaces exist. The gases and their partial pressures are varied according to a predetermined time schedule and the halide and other reactant gases are selected so that the layers include (a) an adherent, continuous intermediate layer about 0.5-20 microns thick of an aluminum nitride or an aluminum oxynitride material, over and chemically bonded to the substrate body, and (b) an adherent, continuous first outer layer about 0.5-900 microns thick including an oxide of aluminum or zirconium over and chemically bonded to the intermediate layer.

  11. High-Strain-Rate behavior of Hydrated Cement Paste.

    DTIC Science & Technology

    1987-01-29

    bar and the transmitter bar are made from high yield- strength material, peak loads of 150,000 psi or 10 kbar are easily reached. Typical strain rates...was originally set up for testing very high yield- strength materials. Therefore, for use with cement paste samples, a series of new pressure bars -- 1...a. A a.5.. ~ A - a .- ~- . . . ~0 MML TR 87-12c HIGH -STRAIN-RATE BEHAVIOR OF HYDRATED CEMENT PASTE

  12. Optical experiments on thermophoretically augmented submicron particle deposition from 'dusty' high temperature gas flows

    NASA Technical Reports Server (NTRS)

    Rosner, Daniel E.; Kim, Sang-Soo

    1984-01-01

    A real-time laser reflectivity method and Pt ribbon targets are used to obtain experimental data on the initial deposition rate of MgO(s) particles of approximately 700 nm diameter from otherwise clean combustion products as a function of target temperature (about 950-1450 K) and mainstream gas temperature (about 1500-1600 K). These preliminary data are used to demonstrate the dominant role of thermophoresis (particle drift down a temperature gradient) and to assess the utility of recently developed theoretical methods for predicting and correlating the temperature dependence of thermophoretically augmented convective-diffusion 'dust' deposition rates from flowing hot gases.

  13. Effect of PbI2 deposition rate on two-step PVD/CVD all-vacuum prepared perovskite

    NASA Astrophysics Data System (ADS)

    Ioakeimidis, Apostolos; Christodoulou, Christos; Lux-Steiner, Martha; Fostiropoulos, Konstantinos

    2016-12-01

    In this work we fabricate all-vacuum processed methyl ammonium lead halide perovskite by a sequence of physical vapour deposition of PbI2 and chemical vapour deposition (CVD) of CH3NH3I under a static atmosphere. We demonstrate that for higher deposition rate the (001) planes of PbI2 film show a higher degree of alignment parallel to the sample's surface. From X-ray diffraction data of the resulted perovskite film we derive that the intercalation rate of CH3NH3I is fostered for PbI2 films with higher degree of (001) planes alignment. The stoichiometry of the produced perovskite film is also studied by Hard X-ray photoelectron spectroscopy measurements. Complete all-vacuum perovskite solar cells were fabricated on glass/ITO substrates coated by an ultra-thin (5 nm) Zn-phthalocyanine film as hole selective layer. A dependence of residual PbI2 on the solar cells performance is displayed, while photovoltaic devices with efficiency up to η=11.6% were achieved.

  14. Highly conductive and pure gold nanostructures grown by electron beam induced deposition

    PubMed Central

    Shawrav, Mostafa M.; Taus, Philipp; Wanzenboeck, Heinz D.; Schinnerl, M.; Stöger-Pollach, M.; Schwarz, S.; Steiger-Thirsfeld, A.; Bertagnolli, Emmerich

    2016-01-01

    This work introduces an additive direct-write nanofabrication technique for producing extremely conductive gold nanostructures from a commercial metalorganic precursor. Gold content of 91 atomic % (at. %) was achieved by using water as an oxidative enhancer during direct-write deposition. A model was developed based on the deposition rate and the chemical composition, and it explains the surface processes that lead to the increases in gold purity and deposition yield. Co-injection of an oxidative enhancer enabled Focused Electron Beam Induced Deposition (FEBID)—a maskless, resistless deposition method for three dimensional (3D) nanostructures—to directly yield pure gold in a single process step, without post-deposition purification. Gold nanowires displayed resistivity down to 8.8 μΩ cm. This is the highest conductivity achieved so far from FEBID and it opens the possibility of applications in nanoelectronics, such as direct-write contacts to nanomaterials. The increased gold deposition yield and the ultralow carbon level will facilitate future applications such as the fabrication of 3D nanostructures in nanoplasmonics and biomolecule immobilization. PMID:27666531

  15. Highly conductive and pure gold nanostructures grown by electron beam induced deposition

    NASA Astrophysics Data System (ADS)

    Shawrav, Mostafa M.; Taus, Philipp; Wanzenboeck, Heinz D.; Schinnerl, M.; Stöger-Pollach, M.; Schwarz, S.; Steiger-Thirsfeld, A.; Bertagnolli, Emmerich

    2016-09-01

    This work introduces an additive direct-write nanofabrication technique for producing extremely conductive gold nanostructures from a commercial metalorganic precursor. Gold content of 91 atomic % (at. %) was achieved by using water as an oxidative enhancer during direct-write deposition. A model was developed based on the deposition rate and the chemical composition, and it explains the surface processes that lead to the increases in gold purity and deposition yield. Co-injection of an oxidative enhancer enabled Focused Electron Beam Induced Deposition (FEBID)—a maskless, resistless deposition method for three dimensional (3D) nanostructures—to directly yield pure gold in a single process step, without post-deposition purification. Gold nanowires displayed resistivity down to 8.8 μΩ cm. This is the highest conductivity achieved so far from FEBID and it opens the possibility of applications in nanoelectronics, such as direct-write contacts to nanomaterials. The increased gold deposition yield and the ultralow carbon level will facilitate future applications such as the fabrication of 3D nanostructures in nanoplasmonics and biomolecule immobilization.

  16. The fate of 5N-nitrate in mesocosms from five European peatlands differing in long-term nitrogen deposition rate

    NASA Astrophysics Data System (ADS)

    Zając, K.; Blodau, C.

    2015-10-01

    Elevated nitrogen (N) deposition changes the retention, transformation, and fluxes of N in ombrotrophic peatlands. To evaluate such effects we applied a 15N tracer (NH415NO3) at a rate of 2.3 g N m-2 yr-1 to mesocosms of five European peatlands with differing long-term N deposition rates for a period of 76 days of dry and 90 days of wet conditions. We determined background N content and moss length growth, and recovered the 15N tracer from the mosses, graminoids, shrubs, the peat, and dissolved N. Background N contents in Sphagnum mosses increased from 5.5 (Degerö Stormyr, deposition < 0.2 g N m-2 yr-1) up to 12.2 mg g-1 (Frölichshaier Sattelmoor, 4.7-6.0 g N m-2 yr-1). In peat from Degerö nitrate and ammonium concentrations were below 3 mg L-1, whereas up to 30 mg L-1 (nitrate) and 11 mg L-1 (ammonium) was found in peat from Frölichshaier Sattelmoor. Sphagnum mosses (down to 5 cm below surface) generally intercepted large amounts of 15N (0.2-0.35 mg g-1) and retained the tracer most effectively relative to their biomass. Similar quantities of the 15N were recovered from the peat, followed by shrubs, graminoids and the dissolved pool. At the most polluted sites we recovered more 15N from shrubs (up to 12.4 %) and from nitrate and ammonium (up to 0.7 %). However, no impact of N deposition on 15N retention by Sphagnum could be identified and their length growth was highest under high N background deposition. Our experiment suggests that the decline in N retention at levels above ca. 1.5 g m-2 yr-1, as expressed by elevated near-surface peat N content and increased dissolved N concentrations, is likely more modest than previously thought. This conclusion is related to the finding that Sphagnum species can apparently thrive at elevated long-term N deposition rates in European peatlands.

  17. The fate of 15N-nitrate in mesocosms from five European peatlands differing in long-term nitrogen deposition rate

    NASA Astrophysics Data System (ADS)

    Zając, K.; Blodau, C.

    2016-02-01

    Elevated nitrogen (N) deposition changes the retention, transformation, and fluxes of N in ombrotrophic peatlands. To evaluate such effects we applied a 15N tracer (NH4 15NO3) at a rate of 2.3 g N m-2 yr-1 to mesocosms of five European peatlands with differing long-term N deposition rates for a period of 76 days of dry and 90 days of wet conditions. We determined background N content and moss length growth, and recovered the 15N tracer from the mosses, graminoids, shrubs, the peat, and dissolved N. Background N contents in Sphagnum mosses increased from 5.5 (Degerö Stormyr, deposition < 0.2 g N m-2 yr-1) up to 12.2 mg g-1 (Frölichshaier Sattelmoor, 4.7-6.0 g N m-2 yr-1). In peat from Degerö, nitrate and ammonium concentrations were below 3 mg L-1, whereas up to 30 (nitrate) and 11 mg L-1 (ammonium) was found in peat from Frölichshaier Sattelmoor. Sphagnum mosses (down to 5 cm below surface) generally intercepted large amounts of 15N (0.2-0.35 mg g-1) and retained the tracer most effectively relative to their biomass. Similar quantities of the 15N were recovered from the peat, followed by shrubs, graminoids, and the dissolved pool. At the most polluted sites we recovered more 15N from shrubs (up to 12.4 %) and from nitrate and ammonium (up to 0.7 %). However, no impact of N deposition on 15N retention by Sphagnum could be identified and their length growth was highest under high N background deposition. Our experiment suggests that the decline in N retention at levels above ca. 1.5 g m-2 yr-1, as expressed by elevated near-surface peat N content and increased dissolved N concentrations, is likely more modest than previously thought. This conclusion is related to the finding that Sphagnum species can apparently thrive at elevated long-term N deposition rates in European peatlands.

  18. Investigation of High-Pressure Hydraulic Vortex Rate Sensor

    DTIC Science & Technology

    stability - augmentation system . The feasibility of low-pressure fluid stabilization systems was demonstrated. The primary component that requires development for implementation in a high pressure system is the vortex rate sensor. The high-pressure hydraulic vortex rate sensor has an on-board built-in supply of hydraulic fluid which is used in the primary hydro-mechanical flight control of the vehicle. A small amount of hydraulic fluid under high pressure can be diverted from the main system to the vortex rate sensor, used to perform a sensing function, and

  19. Quantum data locking for high-rate private communication

    NASA Astrophysics Data System (ADS)

    Lupo, Cosmo; Lloyd, Seth

    2015-03-01

    We show that, if the accessible information is used as a security quantifier, quantum channels with a certain symmetry can convey private messages at a tremendously high rate, as high as less than one bit below the rate of non-private classical communication. This result is obtained by exploiting the quantum data locking effect. The price to pay to achieve such a high private communication rate is that accessible information security is in general not composable. However, composable security holds against an eavesdropper who is forced to measure her share of the quantum system within a finite time after she gets it.

  20. Pulsed Laser Deposition of High Tc Superconducting Thin Films

    DTIC Science & Technology

    1992-04-15

    de- temperature thermal detectors such as the pyroelectric ec sign of imaging arrays of high-T, bolometers for wave- tector, the thermopile , or the... concepts to discuss materials and fabrication considerations. The thermal con- the sensitivity of imaging arrays of high-T, bolometers as a ductance G to...any conceived IR detector . In addition, flux motion studies have been made by this group using our films of YBCO grown on 0.003" thick silicon wafers

  1. Uncovering high-strain rate protection mechanism in nacre

    NASA Astrophysics Data System (ADS)

    Huang, Zaiwang; Li, Haoze; Pan, Zhiliang; Wei, Qiuming; Chao, Yuh J.; Li, Xiaodong

    2011-11-01

    Under high-strain-rate compression (strain rate ~103 s-1), nacre (mother-of-pearl) exhibits surprisingly high fracture strength vis-à-vis under quasi-static loading (strain rate 10-3 s-1). Nevertheless, the underlying mechanism responsible for such sharply different behaviors in these two loading modes remains completely unknown. Here we report a new deformation mechanism, adopted by nacre, the best-ever natural armor material, to protect itself against predatory penetrating impacts. It involves the emission of partial dislocations and the onset of deformation twinning that operate in a well-concerted manner to contribute to the increased high-strain-rate fracture strength of nacre. Our findings unveil that Mother Nature delicately uses an ingenious strain-rate-dependent stiffening mechanism with a purpose to fight against foreign attacks. These findings should serve as critical design guidelines for developing engineered body armor materials.

  2. Uncovering high-strain rate protection mechanism in nacre.

    PubMed

    Huang, Zaiwang; Li, Haoze; Pan, Zhiliang; Wei, Qiuming; Chao, Yuh J; Li, Xiaodong

    2011-01-01

    Under high-strain-rate compression (strain rate approximately 10(3) s(-1)), nacre (mother-of-pearl) exhibits surprisingly high fracture strength vis-à-vis under quasi-static loading (strain rate 10(-3) s(-1)). Nevertheless, the underlying mechanism responsible for such sharply different behaviors in these two loading modes remains completely unknown. Here we report a new deformation mechanism, adopted by nacre, the best-ever natural armor material, to protect itself against predatory penetrating impacts. It involves the emission of partial dislocations and the onset of deformation twinning that operate in a well-concerted manner to contribute to the increased high-strain-rate fracture strength of nacre. Our findings unveil that Mother Nature delicately uses an ingenious strain-rate-dependent stiffening mechanism with a purpose to fight against foreign attacks. These findings should serve as critical design guidelines for developing engineered body armor materials.

  3. Uncovering high-strain rate protection mechanism in nacre

    PubMed Central

    Huang, Zaiwang; Li, Haoze; Pan, Zhiliang; Wei, Qiuming; Chao, Yuh J.; Li, Xiaodong

    2011-01-01

    Under high-strain-rate compression (strain rate ∼103 s−1), nacre (mother-of-pearl) exhibits surprisingly high fracture strength vis-à-vis under quasi-static loading (strain rate 10−3 s−1). Nevertheless, the underlying mechanism responsible for such sharply different behaviors in these two loading modes remains completely unknown. Here we report a new deformation mechanism, adopted by nacre, the best-ever natural armor material, to protect itself against predatory penetrating impacts. It involves the emission of partial dislocations and the onset of deformation twinning that operate in a well-concerted manner to contribute to the increased high-strain-rate fracture strength of nacre. Our findings unveil that Mother Nature delicately uses an ingenious strain-rate-dependent stiffening mechanism with a purpose to fight against foreign attacks. These findings should serve as critical design guidelines for developing engineered body armor materials. PMID:22355664

  4. Laser nanoablation of diamond surface at high pulse repetition rates

    NASA Astrophysics Data System (ADS)

    Kononenko, V. V.; Gololobov, V. M.; Pashinin, V. P.; Konov, V. I.

    2016-10-01

    The chemical etching of the surface of a natural diamond single crystal irradiated by subpicosecond laser pulses with a high repetition rate (f ≤slant 500 {\\text{kHz}}) in air is experimentally investigated. The irradiation has been performed by the second-harmonic (515 {\\text{nm}}) radiation of a disk Yb : YAG laser. Dependences of the diamond surface etch rate on the laser energy density and pulse repetition rate are obtained.

  5. Flexible Electronics: High Pressure Chemical Vapor Deposition of Hydrogenated Amorphous Silicon Films and Solar Cells (Adv. Mater. 28/2016).

    PubMed

    He, Rongrui; Day, Todd D; Sparks, Justin R; Sullivan, Nichole F; Badding, John V

    2016-07-01

    On page 5939, J. V. Badding and co-workers describe the unrolling of a flexible hydrogenated amorphous silicon solar cell, deposited by high-pressure chemical vapor deposition. The high-pressure deposition process is represented by the molecules of silane infiltrating the small voids between the rolled up substrate, facilitating plasma-free deposition over a very large area. The high-pressure approach is expected to also find application for 3D nanoarchitectures.

  6. Selective deposition of a crystalline Si film by a chemical sputtering process in a high pressure hydrogen plasma

    SciTech Connect

    Ohmi, Hiromasa Yasutake, Kiyoshi; Kakiuchi, Hiroaki

    2015-07-28

    The selective deposition of Si films was demonstrated using a chemical sputtering process induced by a high pressure hydrogen plasma at 52.6 kPa (400 Torr). In this chemical sputtering process, the initial deposition rate (R{sub d}) is dependent upon the substrate type. At the initial stage of Si film formation, R{sub d} on glass substrates increased with elapsed time and reached to a constant value. In contrast, R{sub d} on Si substrates remained constant during the deposition. The selective deposition of Si films can be achieved by adjusting the substrate temperature (T{sub sub}) and hydrogen concentration (C{sub H2}) in the process atmosphere. For any given deposition time, it was found that an optimum C{sub H2} exists for a given T{sub sub} to realize the selective deposition of a Si film, and the optimum T{sub sub} value tends to increase with decreasing C{sub H2}. According to electron diffraction patterns obtained from the samples, the selectively prepared Si films showed epitaxial-like growth, although the Si films contained many defects. It was revealed by Raman scattering spectroscopy that some of the defects in the Si films were platelet defects induced by excess hydrogen incorporated during Si film formation. Raman spectrum also suggested that Si related radicals (SiH{sub 2}, SiH, Si) with high reactivity contribute to the Si film formation. Simple model was derived as the guideline for achieving the selective growth.

  7. Putative extremely high rate of proteome innovation in lancelets might be explained by high rate of gene prediction errors.

    PubMed

    Bányai, László; Patthy, László

    2016-08-01

    A recent analysis of the genomes of Chinese and Florida lancelets has concluded that the rate of creation of novel protein domain combinations is orders of magnitude greater in lancelets than in other metazoa and it was suggested that continuous activity of transposable elements in lancelets is responsible for this increased rate of protein innovation. Since morphologically Chinese and Florida lancelets are highly conserved, this finding would contradict the observation that high rates of protein innovation are usually associated with major evolutionary innovations. Here we show that the conclusion that the rate of proteome innovation is exceptionally high in lancelets may be unjustified: the differences observed in domain architectures of orthologous proteins of different amphioxus species probably reflect high rates of gene prediction errors rather than true innovation.

  8. Putative extremely high rate of proteome innovation in lancelets might be explained by high rate of gene prediction errors

    PubMed Central

    Bányai, László; Patthy, László

    2016-01-01

    A recent analysis of the genomes of Chinese and Florida lancelets has concluded that the rate of creation of novel protein domain combinations is orders of magnitude greater in lancelets than in other metazoa and it was suggested that continuous activity of transposable elements in lancelets is responsible for this increased rate of protein innovation. Since morphologically Chinese and Florida lancelets are highly conserved, this finding would contradict the observation that high rates of protein innovation are usually associated with major evolutionary innovations. Here we show that the conclusion that the rate of proteome innovation is exceptionally high in lancelets may be unjustified: the differences observed in domain architectures of orthologous proteins of different amphioxus species probably reflect high rates of gene prediction errors rather than true innovation. PMID:27476717

  9. Comparison of Calibration of Sensors Used for the Quantification of Nuclear Energy Rate Deposition

    SciTech Connect

    Brun, J.; Reynard-Carette, C.; Tarchalski, M.; Pytel, K.; Lyoussi, A.; Fourmentel, D.; Villard, J.F.; Jagielski, J.

    2015-07-01

    This present work deals with a collaborative program called GAMMA-MAJOR 'Development and qualification of a deterministic scheme for the evaluation of GAMMA heating in MTR reactors with exploitation as example MARIA reactor and Jules Horowitz Reactor' between the National Centre for Nuclear Research of Poland, the French Atomic Energy and Alternative Energies Commission and Aix Marseille University. One of main objectives of this program is to optimize the nuclear heating quantification thanks to calculation validated from experimental measurements of radiation energy deposition carried out in irradiation reactors. The quantification of the nuclear heating is a key data especially for the thermal, mechanical design and sizing of irradiation experimental devices in specific irradiated conditions and locations. The determination of this data is usually performed by differential calorimeters and gamma thermometers such as used in the experimental multi-sensors device called CARMEN 'Calorimetric en Reacteur et Mesures des Emissions Nucleaires'. In the framework of the GAMMA-MAJOR program a new calorimeter was designed for the nuclear energy deposition quantification. It corresponds to a single-cell calorimeter and it is called KAROLINA. This calorimeter was recently tested during an irradiation campaign inside MARIA reactor in Poland. This new single-cell calorimeter differs from previous CALMOS or CARMEN type differential calorimeters according to three main points: its geometry, its preliminary out-of-pile calibration, and its in-pile measurement method. The differential calorimeter, which is made of two identical cells containing heaters, has a calibration method based on the use of steady thermal states reached by simulating the nuclear energy deposition into the calorimeter sample by Joule effect; whereas the single-cell calorimeter, which has no heater, is calibrated by using the transient thermal response of the sensor (heating and cooling steps). The paper will

  10. Rural and Urban High School Dropout Rates: Are They Different?

    ERIC Educational Resources Information Center

    Jordan, Jeffrey L.; Kostandini, Genti; Mykerezi, Elton

    2012-01-01

    This study estimates the high school dropout rate in rural and urban areas, the determinants of dropping out, and whether the differences in graduation rates have changed over time. We use geocoded data from two nationally representative panel household surveys (NLSY 97 and NLSY 79) and a novel methodology that corrects for biases in graduation…

  11. How Did Successful High Schools Improve Their Graduation Rates?

    ERIC Educational Resources Information Center

    Robertson, Janna Siegel; Smith, Robert W.; Rinka, Jason

    2016-01-01

    The researchers surveyed 23 North Carolina high schools that had markedly improved their graduation rates over the past five years. The administrators reported on the dropout prevention practices and programs to which they attributed their improved graduation rates. The majority of schools reported policy changes, especially with suspension. The…

  12. CROSS-DISCIPLINARY PHYSICS AND RELATED AREAS OF SCIENCE AND TECHNOLOGY: Influence of the total gas flow rate on high rate growth microcrystalline silicon films and solar cells

    NASA Astrophysics Data System (ADS)

    Han, Xiao-Yan; Hou, Guo-Fu; Zhang, Xiao-Dan; Wei, Chang-Chun; Li, Gui-Jun; Zhang, De-Kun; Chen, Xin-Liang; Sun, Jian; Zhang, Jian-Jun; Zhao, Ying; Geng, Xin-Hua

    2009-08-01

    This paper reports that high-rate-deposition of microcrystalline silicon solar cells was performed by very-high-frequency plasma-enhanced chemical vapor deposition. These solar cells, whose intrinsic μc-Si:H layers were prepared by using a different total gas flow rate (Ftotal), behave much differently in performance, although their intrinsic layers have similar crystalline volume fraction, opto-electronic properties and a deposition rate of ~ 1.0 nm/s. The influence of Ftotal on the micro-structural properties was analyzed by Raman and Fourier transformed infrared measurements. The results showed that the vertical uniformity and the compact degree of μc-Si:H thin films were improved with increasing Ftotal. The variation of the microstructure was regarded as the main reason for the difference of the J-V parameters. Combined with optical emission spectroscopy, we found that the gas temperature plays an important role in determining the microstructure of thin films. With Ftotal of 300 sccm, a conversion efficiency of 8.11% has been obtained for the intrinsic layer deposited at 8.5 Å/s (1 Å = 0.1 nm).

  13. Acetic acid effects on enhancement of growth rate and reduction of amorphous carbon deposition on CNT arrays along a growth window in a floating catalyst reactor

    NASA Astrophysics Data System (ADS)

    Maghrebi, Morteza; Khodadadi, Abbas Ali; Mortazavi, Yadollah; Sane, Ali; Rahimi, Mohsen; Shirazi, Yaser; Tsakadze, Zviad; Mhaisalkar, Subodh

    2009-11-01

    The mm-long carbon nanotube (CNT) arrays were grown in a floating catalyst reactor, using xylene-ferrocene and a small amount of acetic acid as the feed. The CNT arrays deposited on a quartz substrate at several positions along the reactor were extensively characterized using Raman spectroscopy, scanning electron microscopy, X-ray diffraction, high-resolution transmission electron microscopy, and optical microscopy. Various characterization methods consistently reveal that the acetic acid additive to the feed alleviates deposition of amorphous carbon layer, which gradually thickens CNTs along the reactor. The acetic acid also resulted in a higher growth rate along the so-called growth window, where CNT arrays are deposited on the quartz substrate. High-performance liquid chromatography of extracted byproducts (PAHs) confirmed the presence of some polycyclic aromatic hydrocarbons. The solid weight of PAHs decreased upon addition of ferrocene as the catalyst precursor, as well as of acetic acid to xylene feed. The results suggest that primary light products of xylene pyrolysis can be competitive reactants for both catalytic and subsequent pyrolytic reactions. They may also be more efficient feeds for CNT growth than xylene itself.

  14. Relation between growth rate and structure of graphene grown in a 4″ showerhead chemical vapor deposition reactor.

    PubMed

    Bekdüz, B; Beckmann, Y; Meier, J; Rest, J; Mertin, W; Bacher, G

    2017-04-07

    The chemical vapor deposition (CVD) growth of graphene on copper is controlled by a complex interplay of substrate preparation, substrate temperature, pressure and flow of reactive gases. A large variety of recipes have been suggested in literature, often quite specific to the reactor, which is being used. Here, we report on a relation between growth rate and quality of graphene grown in a scalable 4″ CVD reactor. The growth rate is varied by substrate pre-treatment, chamber pressure, and methane to hydrogen (CH4:H2) ratio, respectively. We found that at lower growth rates graphene grains become hexagonal rather than randomly shaped, which leads to a reduced defect density and a sheet resistance down to 268 Ω/sq.

  15. Evaluating the interaction of faecal pellet deposition rates and DNA degradation rates to optimize sampling design for DNA-based mark-recapture analysis of Sonoran pronghorn.

    PubMed

    Woodruff, S P; Johnson, T R; Waits, L P

    2015-07-01

    Knowledge of population demographics is important for species management but can be challenging in low-density, wide-ranging species. Population monitoring of the endangered Sonoran pronghorn (Antilocapra americana sonoriensis) is critical for assessing the success of recovery efforts, and noninvasive DNA sampling (NDS) could be more cost-effective and less intrusive than traditional methods. We evaluated faecal pellet deposition rates and faecal DNA degradation rates to maximize sampling efficiency for DNA-based mark-recapture analyses. Deposition data were collected at five watering holes using sampling intervals of 1-7 days and averaged one pellet pile per pronghorn per day. To evaluate nuclear DNA (nDNA) degradation, 20 faecal samples were exposed to local environmental conditions and sampled at eight time points from one to 124 days. Average amplification success rates for six nDNA microsatellite loci were 81% for samples on day one, 63% by day seven, 2% by day 14 and 0% by day 60. We evaluated the efficiency of different sampling intervals (1-10 days) by estimating the number of successful samples, success rate of individual identification and laboratory costs per successful sample. Cost per successful sample increased and success and efficiency declined as the sampling interval increased. Results indicate NDS of faecal pellets is a feasible method for individual identification, population estimation and demographic monitoring of Sonoran pronghorn. We recommend collecting samples <7 days old and estimate that a sampling interval of four to seven days in summer conditions (i.e., extreme heat and exposure to UV light) will achieve desired sample sizes for mark-recapture analysis while also maximizing efficiency [Corrected].

  16. Investigations of high mobility single crystal chemical vapor deposition diamond for radiotherapy photon beam monitoring

    SciTech Connect

    Tromson, D.; Descamps, C.; Tranchant, N.; Bergonzo, P.; Nesladek, M.; Isambert, A.

    2008-03-01

    The intrinsic properties of diamond make this material theoretically very suitable for applications in medical physics. Until now ionization chambers have been fabricated from natural stones and are commercialized by PTW, but their fairly high costs and long delivery times have often limited their use in hospital. The properties of commercialized intrinsic polycrystalline diamond were investigated in the past by many groups. The results were not completely satisfactory due to the nature of the polycrystalline material itself. In contrast, the recent progresses in the growth of high mobility single crystal synthetic diamonds prepared by chemical vapor deposition (CVD) technique offer new alternatives. In the framework of the MAESTRO project (Methods and Advanced Treatments and Simulations for Radio Oncology), the CEA-LIST is studying the potentialities of synthetic diamond for new techniques of irradiation such as intensity modulated radiation therapy. In this paper, we present the growth and characteristics of single crystal diamond prepared at CEA-LIST in the framework of the NoRHDia project (Novel Radiation Hard CVD Diamond Detector for Hadrons Physics), as well as the investigations of high mobility single crystal CVD diamond for radiotherapy photon beam monitoring: dosimetric analysis performed with the single crystal diamond detector in terms of stability and repeatability of the response signal, signal to noise ratio, response speed, linearity of the signal versus the absorbed dose, and dose rate. The measurements performed with photon beams using radiotherapy facilities demonstrate that single crystal CVD diamond is a good alternative for air ionization chambers for beam quality control.

  17. High-performance supercapacitors using graphene/polyaniline composites deposited on kitchen sponge

    NASA Astrophysics Data System (ADS)

    Moussa, Mahmoud; El-Kady, Maher F.; Wang, Hao; Michimore, Andrew; Zhou, Qinqin; Xu, Jian; Majeswki, Peter; Ma, Jun

    2015-02-01

    We in this study used a commercial grade kitchen sponge as the scaffold where both graphene platelets (GnPs) and polyaniline (PANi) nanorods were deposited. The high electrical conductivity of GnPs (1460 S cm-1) enhances the pseudo-capacitive performance of PANi grown vertically on the GnPs basal planes; the interconnected pores of the sponge provide sufficient inner surface between the GnPs/PANi composite and the electrolyte, which thus facilitates ion diffusion during charge and discharge processes. When the composite electrode was used to build a supercapacitor with two-electrode configuration, it exhibited a specific capacitance of 965.3 F g-1 at a scan rate of 10 mV s-1 in 1.0 M H2SO4 solution. In addition, the composite Nyquist plot showed no semicircle at high frequency corresponding to a low equivalent series resistance of 0.35 Ω. At 100 mV s-1, the supercapacitor demonstrated an energy density of 34.5 Wh kg-1 and a power density of 12.4 kW kg-1 based on the total mass of the active materials on both electrodes. To demonstrate the performance, we built an array consisting of three cells connected in series, which lit up a red light emitting diode for five minutes. This simple method holds promise for high-performance yet low-cost electrodes for supercapacitors.

  18. Identifying High-Rate Flows Based on Sequential Sampling

    NASA Astrophysics Data System (ADS)

    Zhang, Yu; Fang, Binxing; Luo, Hao

    We consider the problem of fast identification of high-rate flows in backbone links with possibly millions of flows. Accurate identification of high-rate flows is important for active queue management, traffic measurement and network security such as detection of distributed denial of service attacks. It is difficult to directly identify high-rate flows in backbone links because tracking the possible millions of flows needs correspondingly large high speed memories. To reduce the measurement overhead, the deterministic 1-out-of-k sampling technique is adopted which is also implemented in Cisco routers (NetFlow). Ideally, a high-rate flow identification method should have short identification time, low memory cost and processing cost. Most importantly, it should be able to specify the identification accuracy. We develop two such methods. The first method is based on fixed sample size test (FSST) which is able to identify high-rate flows with user-specified identification accuracy. However, since FSST has to record every sampled flow during the measurement period, it is not memory efficient. Therefore the second novel method based on truncated sequential probability ratio test (TSPRT) is proposed. Through sequential sampling, TSPRT is able to remove the low-rate flows and identify the high-rate flows at the early stage which can reduce the memory cost and identification time respectively. According to the way to determine the parameters in TSPRT, two versions of TSPRT are proposed: TSPRT-M which is suitable when low memory cost is preferred and TSPRT-T which is suitable when short identification time is preferred. The experimental results show that TSPRT requires less memory and identification time in identifying high-rate flows while satisfying the accuracy requirement as compared to previously proposed methods.

  19. Dispersion engineering of thick high-Q silicon nitride ring-resonators via atomic layer deposition.

    PubMed

    Riemensberger, Johann; Hartinger, Klaus; Herr, Tobias; Brasch, Victor; Holzwarth, Ronald; Kippenberg, Tobias J

    2012-12-03

    We demonstrate dispersion engineering of integrated silicon nitride based ring resonators through conformal coating with hafnium dioxide deposited on top of the structures via atomic layer deposition. Both, magnitude and bandwidth of anomalous dispersion can be significantly increased. The results are confirmed by high resolution frequency-comb-assisted-diode-laser spectroscopy and are in very good agreement with the simulated modification of the mode spectrum.

  20. IN-SITU Diagnostics For Deposition And Processing Of High Tc Superconducting Thin Films

    NASA Astrophysics Data System (ADS)

    Venkatesan, T.

    1990-02-01

    The deposition of high quality superconducting thin films based on the metal oxides has given rise to a variety of needs for diagnostic techniques. These needs are primarily for monitoring, 1. the material ejection process from the target, 2. the ejected vapor interaction with the background oxygen, 3. the crystallization dynamics at the substrate and 4. post deposition analysis and processing of the film. This paper summarizes some of the recent work in this direction

  1. Scalable high-power redox capacitors with aligned nanoforests of crystalline MnO₂ nanorods by high voltage electrophoretic deposition.

    PubMed

    Santhanagopalan, Sunand; Balram, Anirudh; Meng, Dennis Desheng

    2013-03-26

    It is commonly perceived that reduction-oxidation (redox) capacitors have to sacrifice power density to achieve higher energy density than carbon-based electric double layer capacitors. In this work, we report the synergetic advantages of combining the high crystallinity of hydrothermally synthesized α-MnO2 nanorods with alignment for high performance redox capacitors. Such an approach is enabled by high voltage electrophoretic deposition (HVEPD) technology which can obtain vertically aligned nanoforests with great process versatility. The scalable nanomanufacturing process is demonstrated by roll-printing an aligned forest of α-MnO2 nanorods on a large flexible substrate (1 inch by 1 foot). The electrodes show very high power density (340 kW/kg at an energy density of 4.7 Wh/kg) and excellent cyclability (over 92% capacitance retention over 2000 cycles). Pretreatment of the substrate and use of a conductive holding layer have also been shown to significantly reduce the contact resistance between the aligned nanoforests and the substrates. High areal specific capacitances of around 8500 μF/cm(2) have been obtained for each electrode with a two-electrode device configuration. Over 93% capacitance retention was observed when the cycling current densities were increased from 0.25 to 10 mA/cm(2), indicating high rate capabilities of the fabricated electrodes and resulting in the very high attainable power density. The high performance of the electrodes is attributed to the crystallographic structure, 1D morphology, aligned orientation, and low contact resistance.

  2. High Heating Rates Affect Greatly the Inactivation Rate of Escherichia coli

    PubMed Central

    Huertas, Juan-Pablo; Aznar, Arantxa; Esnoz, Arturo; Fernández, Pablo S.; Iguaz, Asunción; Periago, Paula M.; Palop, Alfredo

    2016-01-01

    Heat resistance of microorganisms can be affected by different influencing factors. Although, the effect of heating rates has been scarcely explored by the scientific community, recent researches have unraveled its important effect on the thermal resistance of different species of vegetative bacteria. Typically heating rates described in the literature ranged from 1 to 20°C/min but the impact of much higher heating rates is unclear. The aim of this research was to explore the effect of different heating rates, such as those currently achieved in the heat exchangers used in the food industry, on the heat resistance of Escherichia coli. A pilot plant tubular heat exchanger and a thermoresistometer Mastia were used for this purpose. Results showed that fast heating rates had a deep impact on the thermal resistance of E. coli. Heating rates between 20 and 50°C/min were achieved in the heat exchanger, which were much slower than those around 20°C/s achieved in the thermoresistometer. In all cases, these high heating rates led to higher inactivation than expected: in the heat exchanger, for all the experiments performed, when the observed inactivation had reached about seven log cycles, the predictions estimated about 1 log cycle of inactivation; in the thermoresistometer these differences between observed and predicted values were even more than 10 times higher, from 4.07 log cycles observed to 0.34 predicted at a flow rate of 70 mL/min and a maximum heating rate of 14.7°C/s. A quantification of the impact of the heating rates on the level of inactivation achieved was established. These results point out the important effect that the heating rate has on the thermal resistance of E. coli, with high heating rates resulting in an additional sensitization to heat and therefore an effective food safety strategy in terms of food processing. PMID:27563300

  3. High Heating Rates Affect Greatly the Inactivation Rate of Escherichia coli.

    PubMed

    Huertas, Juan-Pablo; Aznar, Arantxa; Esnoz, Arturo; Fernández, Pablo S; Iguaz, Asunción; Periago, Paula M; Palop, Alfredo

    2016-01-01

    Heat resistance of microorganisms can be affected by different influencing factors. Although, the effect of heating rates has been scarcely explored by the scientific community, recent researches have unraveled its important effect on the thermal resistance of different species of vegetative bacteria. Typically heating rates described in the literature ranged from 1 to 20°C/min but the impact of much higher heating rates is unclear. The aim of this research was to explore the effect of different heating rates, such as those currently achieved in the heat exchangers used in the food industry, on the heat resistance of Escherichia coli. A pilot plant tubular heat exchanger and a thermoresistometer Mastia were used for this purpose. Results showed that fast heating rates had a deep impact on the thermal resistance of E. coli. Heating rates between 20 and 50°C/min were achieved in the heat exchanger, which were much slower than those around 20°C/s achieved in the thermoresistometer. In all cases, these high heating rates led to higher inactivation than expected: in the heat exchanger, for all the experiments performed, when the observed inactivation had reached about seven log cycles, the predictions estimated about 1 log cycle of inactivation; in the thermoresistometer these differences between observed and predicted values were even more than 10 times higher, from 4.07 log cycles observed to 0.34 predicted at a flow rate of 70 mL/min and a maximum heating rate of 14.7°C/s. A quantification of the impact of the heating rates on the level of inactivation achieved was established. These results point out the important effect that the heating rate has on the thermal resistance of E. coli, with high heating rates resulting in an additional sensitization to heat and therefore an effective food safety strategy in terms of food processing.

  4. High quality chemical vapor deposition diamond growth on iron and stainless steel substrates

    NASA Astrophysics Data System (ADS)

    Nakamura, Eri; Hirakuri, Kenji K.; Ohyama, Manabu; Friedbacher, Gernot; Mutsukura, Nobuki

    2002-09-01

    Due to the catalytic effect and the rapid diffusion coefficients of carbon species into iron-based materials such as iron and 18-8 stainless steel [18% chrome (Cr) and 8% nickel (Ni)], it is very difficult to produce diamond grains on such substrates. However, diamond growth on iron-based materials is extremely important for mechanical and electrical applications, since these materials are widely used in industrial field and fundamental science. In our previous study, diamond nucleation and subsequent growth have been precisely controlled by the residence time of the source gas, which is an essential parameter. Here, we have carried out diamond growth on iron-based materials using the hot-filament chemical vapor deposition technique with varying residence times. At low residence times, diamond grains with practically useful growth rate are grown. The growth rate of diamond grains on stainless steel substrates was a factor of about 10 greater than that on a regular silicon substrate at optimum conditions. At optimized conditions, diamond growths with high crystalline quality on stainless steel substrates were confirmed by Raman spectroscopy and scanning electron microscopy. The full width of half maximums of the Raman peaks for diamonds grown in this study are comparable to the ones of natural diamonds.

  5. Computer-controlled ion beam deposition systems for high T c superconductor and other multi-component oxide thin films and layered structures

    NASA Astrophysics Data System (ADS)

    Krauss, A. R.; Auciello, O.; Kingon, A. I.; Ameen, M. S.; Liu, Y. L.; Barr, T.; Graettinger, T. M.; Rou, S. H.; Soble, C. S.; Gruen, D. M.

    1990-12-01

    A single beam, multiple target (SBMT) deposition system which features a rotating target holder with either elemental or simple compound targets has been developed for the production of layered thin film structures and multicomponent oxide, silicade or other compound thin films. We are employing the SBMT ion beam sputtering system for the deposition of high temperature superconducting, electro-optic and ferroelectric thin films and multilayered structures. The beam-target-substrate geometry and ion beam characteristics are designed to minimize scattering of the ion beam from the target (which results in resputtering of, and inert gas incorporation into the film) while maintaining high deposition rates. The amount of energy which is deposited into the film may be controlled by means of a secondary reactive or inert ion beam impacting on the growing film. This secondary beam may provide enough energy to promote activated processes, such as the in-situ formation of oriented crystal structures of high temperature superconducting materials. All parameters necessary to control the film properties are under computer control. A deposition cycle, defined as a number of sequential steps, may be easily modified or added to previously existing deposition cycles, thereby permitting the creation of complicated deposition procedures suitable for the production of films with highly reproducible properties for research purposes, and the in-situ fabrication of complex devices for technological applications. Examples are given of the capabilities of the technique as they apply to the production of high Tc superconducting devices.

  6. Computer-controlled ion beam deposition systems for high T(sub c) superconductor and other multi-component oxide thin films and layered structures

    NASA Astrophysics Data System (ADS)

    Krauss, A. R.; Gruen, Dieter M.; Auciello, O.; Kingon, A. I.; Ameen, M. S.; Graettinger, T. M.; Rou, C. S.; Soble, C. S.

    A single beam, multiple target (SBMT) deposition system which features a rotating target holder with either elemental or simple compound targets has been developed for the production of layered thin film structures and multicomponent oxide, silicide or other compound thin films. We are employing the SBMT ion beam sputtering system for the deposition of high temperature superconducting films and electro-optical multilayer structures. The beam-target-substrate geometry and ion beam characteristics are designed to minimize beam implantation and secondary sputtering effects, while maintaining high deposition rates. Consequently, the amount of energy which is deposited into the film may be controlled providing enough energy to promote activated processes, such as the in-situ formation of oriented crystal structures of high temperature superconducting materials, while minimizing amorphization and gas incorporation. All parameters necessary to control the film properties are under computer control. A deposition cycle, defined as a number of sequential steps may be easily modified or added to previously existing deposition cycles, thereby permitting the creation of complicated deposition procedures suitable for the production of films with highly reproducible properties for research purposes, and the in-situ fabrication of complex devices for technological applications. Examples are given of the capabilities of the technique as they apply to the production of high T(sub c) superconducting devices.

  7. Studying solutions at high shear rates: a dedicated microfluidics setup.

    PubMed

    Wieland, D C F; Garamus, V M; Zander, T; Krywka, C; Wang, M; Dedinaite, A; Claesson, P M; Willumeit-Römer, R

    2016-03-01

    The development of a dedicated small-angle X-ray scattering setup for the investigation of complex fluids at different controlled shear conditions is reported. The setup utilizes a microfluidics chip with a narrowing channel. As a consequence, a shear gradient is generated within the channel and the effect of shear rate on structure and interactions is mapped spatially. In a first experiment small-angle X-ray scattering is utilized to investigate highly concentrated protein solutions up to a shear rate of 300000 s(-1). These data demonstrate that equilibrium clusters of lysozyme are destabilized at high shear rates.

  8. Rate Equation Theory for Island Sizes and Capture Zone Areas in Submonolayer Deposition: Realistic Treatment of Spatial Aspects of Nucleation

    SciTech Connect

    Evans, J W; Li, M; Bartelt, M C

    2002-12-05

    Extensive information on the distribution of islands formed during submonolayer deposition is provided by the joint probability distribution (JPD) for island sizes, s, and capture zone areas, A. A key ingredient determining the form of the JPD is the impact of each nucleation event on existing capture zone areas. Combining a realistic characterization of such spatial aspects of nucleation with a factorization ansatz for the JPD, we provide a concise rate equation formulation for the variation with island size of both the capture zone area and the island density.

  9. Continuous roll-to-roll serpentine deposition for high throughput a-Si PV manufacturing

    SciTech Connect

    Izu, M.; Ovshinsky, H.C.; Deng, X.; Krisko, A.J.; Narasimhan, K.L.; Crucet, R.; Laarman, T.; Myatt, A.; Ovshinsky, S.R.

    1994-12-31

    In order to further improve the economies of scale which are inherent in ECD`s continuous roll-to-roll amorphous silicon alloy solar cell manufacturing process, the authors have developed a concept for a serpentine web plasma CVD deposition process to maximize throughput while keeping the size of the deposition chambers small. When this technique is incorporated into a continuous roll-to-roll PV manufacturing process, it will maximize the throughput for a high volume production plant, reduce the machine cost, improve gas utilization, reduce power consumption, and improve the solar cell stability. To demonstrate the serpentine web deposition concept, the authors have constructed a single loop serpentine deposition chamber to deposit a-Si for n-i-p structure solar cells. During the initial process of optimization, they have produced single-junction a-Si solar cells with 8.6% efficiency, and triple-junction a-Si solar cells with a 9.5% initial efficiency, where the top cell intrinsic layer was deposited in the serpentine deposition chamber.

  10. Slow rate of molecular evolution in high-elevation hummingbirds.

    PubMed

    Bleiweiss, R

    1998-01-20

    Estimates of relative rates of molecular evolution from a DNA-hybridization phylogeny for 26 hummingbird species provide evidence for a negative association between elevation and rate of single-copy genome evolution. This effect of elevation on rate remains significant even after taking into account a significant negative association between body mass and molecular rate. Population-level processes do not appear to account for these patterns because (i) all hummingbirds breed within their first year and (ii) the more extensive subdivision and speciation of bird populations living at high elevations predicts a positive association between elevation and rate. The negative association between body mass and molecular rate in other organisms has been attributed to higher mutation rates in forms with higher oxidative metabolism. As ambient oxygen tensions and temperature decrease with elevation, the slow rate of molecular evolution in high-elevation hummingbirds also may have a metabolic basis. A slower rate of single-copy DNA change at higher elevations suggests that the dynamics of molecular evolution cannot be separated from the environmental context.

  11. Stretching Behavior of Red Blood Cells at High Strain Rates

    NASA Astrophysics Data System (ADS)

    Mancuso, Jordan; Ristenpart, William

    2016-11-01

    Most work on the mechanical behavior of red blood cells (RBCs) has focused on simple shear flows. Relatively little work has examined RBC deformations in the physiologically important extensional flow that occurs at the entrance to a constriction. In particular, previous work suggests that RBCs rapidly stretch out and then retract upon entering the constriction, but to date no model predicts this behavior for the extremely high strain rates typically experienced there. In this work, we use high speed video to perform systematic measurements of the dynamic stretching behavior of RBCs as they enter a microfluidic constriction. We demonstrate that a simple viscoelastic model captures the observed stretching dynamics, up to strain rates as high as 1000 s-1. The results indicate that the effective elastic modulus of the RBC membrane at these strain rates is an order of magnitude larger than moduli measured by micropipette aspiration or other low strain rate techniques.

  12. Advances in solid polymer electrochemical capacitors for high rate applications

    NASA Astrophysics Data System (ADS)

    Lian, Keryn; Gao, Han

    2011-06-01

    All solid electrochemical capacitors (EC) have been demonstrated using proton conducting silicotungstic acid (SiWA) and poly(vinyl alcohol) (PVA) based polymer electrolytes. Graphite electrodes were utilized for electrochemical double layer capacitors (EDLC), while RuO2 electrodes were employed as pseudocapacitive electrodes. Both solid EDLC and pseudocapacitors exhibited very high charge/discharge rate capability. Especially for solid EDLC, a charge/discharge rate of 25 V/s and a 10 ms time constant ("factor of merit") were obtained. The rate capability of the solid EC is attributable to thin film thickness, good proton conductivity of the polymer electrolyte, and intimate contact between electrode and electrolyte. These results demonstrate promise of polymer electrolytes as enablers of high rate and high performance solid EC devices.

  13. Graphdiyne oxides as excellent substrate for electroless deposition of Pd clusters with high catalytic activity.

    PubMed

    Qi, Hetong; Yu, Ping; Wang, Yuexiang; Han, Guangchao; Liu, Huibiao; Yi, Yuanping; Li, Yuliang; Mao, Lanqun

    2015-04-29

    Graphdiyne (GDY), a novel kind of two-dimensional carbon allotrope consisting of sp- and sp(2)-hybridized carbon atoms, is found to be able to serve as the reducing agent and stabilizer for electroless deposition of highly dispersed Pd nanoparticles owing to its low reduction potential and highly conjugated electronic structure. Furthermore, we observe that graphdiyne oxide (GDYO), the oxidation form of GDY, can be used as an even excellent substrate for electroless deposition of ultrafine Pd clusters to form Pd/GDYO nanocomposite that exhibits a high catalytic performance toward the reduction of 4-nitrophenol. The high catalytic performance is considered to benefit from the rational design and electroless deposition of active metal catalysts with GDYO as the support.

  14. Solidification at the High and Low Rate Extreme

    SciTech Connect

    Meco, Halim

    2004-12-19

    The microstructures formed upon solidification are strongly influenced by the imposed growth rates on an alloy system. Depending on the characteristics of the solidification process, a wide range of growth rates is accessible. The prevailing solidification mechanisms, and thus the final microstructure of the alloy, are governed by these imposed growth rates. At the high rate extreme, for instance, one can have access to novel microstructures that are unattainable at low growth rates. While the low growth rates can be utilized for the study of the intrinsic growth behavior of a certain phase growing from the melt. Although the length scales associated with certain processes, such as capillarity, and the diffusion of heat and solute, are different at low and high rate extremes, the phenomena that govern the selection of a certain microstructural length scale or a growth mode are the same. Consequently, one can analyze the solidification phenomena at both high and low rates by using the same governing principles. In this study, we examined the microstructural control at both low and high extremes. For the high rate extreme, the formation of crystalline products and factors that control the microstructure during rapid solidification by free-jet melt spinning are examined in Fe-Si-B system. Particular attention was given to the behavior of the melt pool at different quench-wheel speeds. Since the solidification process takes place within the melt-pool that forms on the rotating quench-wheel, we examined the influence of melt-pool dynamics on nucleation and growth of crystalline solidification products and glass formation. High-speed imaging of the melt-pool, analysis of ribbon microstructure, and measurement of ribbon geometry and surface character all indicate upper and lower limits for melt-spinning rates for which nucleation can be avoided, and fully amorphous ribbons can be achieved. Comparison of the relevant time scales reveals that surface-controlled melt

  15. Effect of Ablation Rate on the Microstructure and Electrochromic Properties of Pulsed-Laser-Deposited Molybdenum Oxide Thin Films.

    PubMed

    Santhosh, S; Mathankumar, M; Selva Chandrasekaran, S; Nanda Kumar, A K; Murugan, P; Subramanian, B

    2017-01-10

    Molybdenum trioxide (MoO3) is a well-known electrochromic material. In the present work, n-type α-MoO3 thin films with both direct and indirect band gaps were fabricated by varying the laser repetition (ablation) rate in a pulsed laser deposition (PLD) system at a constant reactive O2 pressure. The electrochromic properties of the films are compared and correlated to the microstructure and molecular-level coordination. Mixed amorphous and textured crystallites evolve at the microstructural level. At the molecular level, using NMR and EPR, we show that the change in the repetition rate results in a variation of the molybdenum coordination with oxygen: at low repetition rates (2 Hz), the larger the octahedral coordination, and greater the texture, whereas at 10 Hz, tetrahedral coordination is significant. The anion vacancies also introduce a large density of defect states into the band gap, as evidenced by XPS studies of the valence band and supported by DFT calculations. The electrochromic contrast improved remarkably by almost 100% at higher repetition rates whereas the switching speed decreased by almost 6-fold. Although the electrochromic contrast and coloration efficiency were better at higher repetition rates, the switching speed, reversibility, and stability were better at low repetition rates. This difference in the electrochromic properties of the two MoO3 films is attributed to the variation in the defect and molecular coordination states of the Mo cation.

  16. Integrating atomic layer deposition and ultra-high vacuum physical vapor deposition for in situ fabrication of tunnel junctions.

    PubMed

    Elliot, Alan J; Malek, Gary A; Lu, Rongtao; Han, Siyuan; Yu, Haifeng; Zhao, Shiping; Wu, Judy Z

    2014-07-01

    Atomic Layer Deposition (ALD) is a promising technique for growing ultrathin, pristine dielectrics on metal substrates, which is essential to many electronic devices. Tunnel junctions are an excellent example which require a leak-free, ultrathin dielectric tunnel barrier of typical thickness around 1 nm between two metal electrodes. A challenge in the development of ultrathin dielectric tunnel barriers using ALD is controlling the nucleation of dielectrics on metals with minimal formation of native oxides at the metal surface for high-quality interfaces between the tunnel barrier and metal electrodes. This poses a critical need for integrating ALD with ultra-high vacuum (UHV) physical vapor deposition. In order to address these challenges, a viscous-flow ALD chamber was designed and interfaced to an UHV magnetron sputtering chamber via a load lock. A sample transportation system was implemented for in situ sample transfer between the ALD, load lock, and sputtering chambers. Using this integrated ALD-UHV sputtering system, superconductor-insulator-superconductor (SIS) Nb-Al/Al2O2/Nb Josephson tunnel junctions were fabricated with tunnel barriers of thickness varied from sub-nm to ~1 nm. The suitability of using an Al wetting layer for initiation of the ALD Al2O3 tunnel barrier was investigated with ellipsometry, atomic force microscopy, and electrical transport measurements. With optimized processing conditions, leak-free SIS tunnel junctions were obtained, demonstrating the viability of this integrated ALD-UHV sputtering system for the fabrication of tunnel junctions and devices comprised of metal-dielectric-metal multilayers.

  17. Integrating atomic layer deposition and ultra-high vacuum physical vapor deposition for in situ fabrication of tunnel junctions

    SciTech Connect

    Elliot, Alan J. E-mail: jwu@ku.edu; Malek, Gary A.; Lu, Rongtao; Han, Siyuan; Wu, Judy Z. E-mail: jwu@ku.edu; Yu, Haifeng; Zhao, Shiping

    2014-07-15

    Atomic Layer Deposition (ALD) is a promising technique for growing ultrathin, pristine dielectrics on metal substrates, which is essential to many electronic devices. Tunnel junctions are an excellent example which require a leak-free, ultrathin dielectric tunnel barrier of typical thickness around 1 nm between two metal electrodes. A challenge in the development of ultrathin dielectric tunnel barriers using ALD is controlling the nucleation of dielectrics on metals with minimal formation of native oxides at the metal surface for high-quality interfaces between the tunnel barrier and metal electrodes. This poses a critical need for integrating ALD with ultra-high vacuum (UHV) physical vapor deposition. In order to address these challenges, a viscous-flow ALD chamber was designed and interfaced to an UHV magnetron sputtering chamber via a load lock. A sample transportation system was implemented for in situ sample transfer between the ALD, load lock, and sputtering chambers. Using this integrated ALD-UHV sputtering system, superconductor-insulator-superconductor (SIS) Nb-Al/Al{sub 2}O{sub 2}/Nb Josephson tunnel junctions were fabricated with tunnel barriers of thickness varied from sub-nm to ∼1 nm. The suitability of using an Al wetting layer for initiation of the ALD Al{sub 2}O{sub 3} tunnel barrier was investigated with ellipsometry, atomic force microscopy, and electrical transport measurements. With optimized processing conditions, leak-free SIS tunnel junctions were obtained, demonstrating the viability of this integrated ALD-UHV sputtering system for the fabrication of tunnel junctions and devices comprised of metal-dielectric-metal multilayers.

  18. Formation conditions of high-grade gold-silver ore of epithermal Tikhoe deposit, Russian Northeast

    NASA Astrophysics Data System (ADS)

    Volkov, A. V.; Kolova, E. E.; Savva, N. E.; Sidorov, A. A.; Prokof'ev, V. Yu.; Ali, A. A.

    2016-09-01

    The Tikhoe epithermal deposit is located in the Okhotsk-Chukotka volcanic belt (OChVB) 250 km northeast of Magadan. Like other deposits belonging to the Ivan'insky volcanic-plutonic depression (VTD), the Tikhoe deposit is characterized by high-grade Au-Ag ore with an average Au grade of 23.13 gpt Au and Au/Ag ratio varying from 1: 1 to 1: 10. The detailed explored Tikhoe-1 orebody is accompanied by a thick (20 m) aureole of argillic alteration. Pyrite is predominant among ore minerals; galena, arsenopyrite, sphalerite, Ag sulfosalts, fahlore, electrum, and küstelite are less abundant. The ore is characterized by abundant Sebearing minerals. Cu-As geochemical specialization is noted for silver minerals. Elevated Se and Fe molar fractions of the main ore minerals are caused by their formation in the near-surface argillic alteration zone. The veins and veinlets of the Tikhoe-1 ore zone formed stepwise at a temperature of 230 to 105°C from Nachloride solution enriched in Mg and Ca cations with increasing salinity. The parameters of the ore-forming fluid correspond to those of epithermal low-sulfidation deposits and assume the formation of high-grade ore under a screening unit of volcanic rocks. In general, the composition of the ore-forming fluid fits the mineralogy and geochemistry of ore at this deposit. The similarity of the ore composition and parameters of the ore-forming fluid between the Tikhoe and Julietta deposits is noteworthy. Meanwhile, differences are mainly related to the lower temperature and fluid salinity at the Julietta deposit with respect to the Tikhoe deposit. The fluid at the Julietta deposit is depleted in most components compared with that at the Tikhoe deposit except for Sb, Cd, and Ag. The results testify to a different erosion level at the deposits as derivatives of the same ore-forming system. The large scale of the latter allows us to predict the discovery of new high-grade objects, including hidden mineralization, which is not exposed at

  19. Authoritative School Climate and High School Dropout Rates

    ERIC Educational Resources Information Center

    Jia, Yuane; Konold, Timothy R.; Cornell, Dewey

    2016-01-01

    This study tested the association between school-wide measures of an authoritative school climate and high school dropout rates in a statewide sample of 315 high schools. Regression models at the school level of analysis used teacher and student measures of disciplinary structure, student support, and academic expectations to predict overall high…

  20. Schiaparelli Crater Rim and Interior Deposits - High Resolution Image

    NASA Technical Reports Server (NTRS)

    1998-01-01

    A portion of the rim and interior of the large impact crater Schiaparelli is seen at high resolution in this image acquired October 18, 1997 by the Mars Global Surveyor Orbiter Camera (MOC). The area covered is very small--3.9 X 10.2 km (2.4 X 6.33 mi)--but is seen at 63 times higher resolution than the Viking image. The subdued relief and bright surface are attributed to blanketing by dust; many small craters have been completely filled in, and only the most recent (and very small) craters appear sharp and bowl-shaped. Some of the small craters are only 10-12 m (30-35 feet) across. Occasional dark streaks on steeper slopes are small debris slides that have probably occurred in the past few decades. The two prominent, narrow ridges in the center of the image may be related to the adjustment of the crater floor to age or the weight of the material filling the basin.

    Malin Space Science Systems (MSSS) and the California Institute of Technology built the MOC using spare hardware from the Mars Observer mission. MSSS operates the camera from its facilities in San Diego, CA. The Jet Propulsion Laboratory's Mars Surveyor Operations Project operates the Mars Global Surveyor spacecraft with its industrial partner, Lockheed Martin Astronautics, from facilities in Pasadena, CA and Denver, CO.

  1. 77 FR 5416 - Financial Derivatives Transactions To Offset Interest Rate Risk; Investment and Deposit Activities

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-02-03

    ... in certain derivatives transactions for the purpose of offsetting interest rate risk (IRR).\\1\\ This... permit FCUs to enter derivatives transactions for the purpose of offsetting IRR. It now seeks additional... engage in derivatives to offset IRR. In ANPR I, the Board sought comment on whether it should allow...

  2. Spray deposition inside tree canopies from a newly developed variable-rate air assisted sprayer

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Conventional spray applications in orchards and ornamental nurseries are not target-oriented, resulting in significant waste of pesticides and contamination of the environment. To address this problem, a variable-rate air-assisted sprayer implementing laser scanning technology was developed to apply...

  3. 76 FR 37030 - Financial Derivatives Transactions To Offset Interest Rate Risk; Investment and Deposit Activities

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-06-24

    .... A credit union may enter into a derivatives transaction to protect itself against interest rate risk... obligations associated with non-cleared swaps, including methods used to mitigate credit risk. The information... credit risks associated with derivatives in financial markets. For these reasons, NCUA is...

  4. Synthesis of high performance ceramic fibers by chemical vapor deposition for advanced metallics reinforcing

    NASA Technical Reports Server (NTRS)

    Revankar, Vithal; Hlavacek, Vladimir

    1991-01-01

    The chemical vapor deposition (CVD) synthesis of fibers capable of effectively reinforcing intermetallic matrices at elevated temperatures which can be used for potential applications in high temperature composite materials is described. This process was used due to its advantage over other fiber synthesis processes. It is extremely important to produce these fibers with good reproducible and controlled growth rates. However, the complex interplay of mass and energy transfer, blended with the fluid dynamics makes this a formidable task. The design and development of CVD reactor assembly and system to synthesize TiB2, CrB, B4C, and TiC fibers was performed. Residual thermal analysis for estimating stresses arising form thermal expansion mismatch were determined. Various techniques to improve the mechanical properties were also performed. Various techniques for improving the fiber properties were elaborated. The crystal structure and its orientation for TiB2 fiber is discussed. An overall view of the CVD process to develop CrB2, TiB2, and other high performance ceramic fibers is presented.

  5. Controlled growth of high-quality graphene using hot-filament chemical vapor deposition

    NASA Astrophysics Data System (ADS)

    Selvakumar, N.; Vadivel, B.; Rao, D. V. Sridhara; Krupanidhi, S. B.; Barshilia, Harish C.

    2016-11-01

    High-quality graphene was grown on polycrystalline copper (Cu) foils (1 cm × 1 cm) using hot-filament chemical vapor deposition method. The role of process parameters such as gas flow rates (methane and hydrogen), growth temperatures (filament and substrate) and durations on the growth of graphene was studied. The process parameters were also optimized to grow monolayer, bilayer and multilayer graphene in a controlled manner, and a growth mechanism was deduced from the experimental results. The presence of graphene on Cu foils was confirmed using X-ray photoelectron spectroscopy, micro-Raman spectroscopy, field-emission scanning electron microscopy (FESEM) and transmission electron microscopy (TEM) techniques. FESEM micrographs clearly showed that the graphene starts nucleating as hexagonal islands and later evolves as dendritic lobe-shaped islands with an increase in supersaturation. The TEM images substantiate the growth of monolayer, bilayer and multilayer graphene. The I 2D/ I G ratio = 2 confirmed the presence of the monolayer graphene and the absence of `D' peak in the Raman spectrum indicated the high purity of graphene grown on Cu foils. These results also show that the polycrystalline copper foil morphology has negligible effect on the growth of monolayer graphene.

  6. Breakdown Limit Studies in High-Rate Gaseous Detectors

    NASA Technical Reports Server (NTRS)

    Ivaniouchenkov, Yu; Fonte, P.; Peskov, V.; Ramsey, B. D.

    1999-01-01

    We report results from a systematic study of breakdown limits for novel high-rate gaseous detectors: MICROMEGAS, CAT and GEM, together with more conventional devices such as thin-gap parallel-mesh chambers and high-rate wire chambers. It was found that for all these detectors, the maximum achievable pin, before breakdown appears, drops dramatically with incident flux, and is sometimes inversely proportional to it. Further, in the presence of alpha particles, typical of the breakgrounds in high-energy experiments, additional gain drops of 1-2 orders of magnitude were observed for many detectors. It was found that breakdowns at high rates occur through what we have termed an "accumulative" mechanism, which does not seem to have been previously reported in the literature. Results of these studies may help in choosing the optimum detector for given experimental conditions.

  7. High-rate squeezing process of bulk metallic glasses

    NASA Astrophysics Data System (ADS)

    Fan, Jitang

    2017-03-01

    High-rate squeezing process of bulk metallic glasses from a cylinder into an intact sheet achieved by impact loading is investigated. Such a large deformation is caused by plastic flow, accompanied with geometrical confinement, shear banding/slipping, thermo softening, melting and joining. Temperature rise during the high-rate squeezing process makes a main effect. The inherent mechanisms are illustrated. Like high-pressure torsion (HPT), equal channel angular pressing (ECAP) and surface mechanical attrition treatments (SMAT) for refining grain of metals, High-Rate Squeezing (HRS), as a multiple-functions technique, not only creates a new road of processing metallic glasses and other metallic alloys for developing advanced materials, but also directs a novel technology of processing, grain refining, coating, welding and so on for treating materials.

  8. High-rate squeezing process of bulk metallic glasses

    PubMed Central

    Fan, Jitang

    2017-01-01

    High-rate squeezing process of bulk metallic glasses from a cylinder into an intact sheet achieved by impact loading is investigated. Such a large deformation is caused by plastic flow, accompanied with geometrical confinement, shear banding/slipping, thermo softening, melting and joining. Temperature rise during the high-rate squeezing process makes a main effect. The inherent mechanisms are illustrated. Like high-pressure torsion (HPT), equal channel angular pressing (ECAP) and surface mechanical attrition treatments (SMAT) for refining grain of metals, High-Rate Squeezing (HRS), as a multiple-functions technique, not only creates a new road of processing metallic glasses and other metallic alloys for developing advanced materials, but also directs a novel technology of processing, grain refining, coating, welding and so on for treating materials. PMID:28338092

  9. Effect of high temperature deposition on CoSi{sub 2} phase formation

    SciTech Connect

    Comrie, C. M.; Ahmed, H.; Smeets, D.; Demeulemeester, J.; Vantomme, A.; Turner, S.; Van Tendeloo, G.; Detavernier, C.

    2013-06-21

    This paper discusses the nucleation behaviour of the CoSi to CoSi{sub 2} transformation from cobalt silicide thin films grown by deposition at elevated substrate temperatures ranging from 375 Degree-Sign C to 600 Degree-Sign C. A combination of channelling, real-time Rutherford backscattering spectrometry, real-time x-ray diffraction, and transmission electron microscopy was used to investigate the effect of the deposition temperature on the subsequent formation temperature of CoSi{sub 2}, its growth behaviour, and the epitaxial quality of the CoSi{sub 2} thus formed. The temperature at which deposition took place was observed to exert a significant and systematic influence on both the formation temperature of CoSi{sub 2} and its growth mechanism. CoSi films grown at the lowest temperatures were found to increase the CoSi{sub 2} nucleation temperature above that of CoSi{sub 2} grown by conventional solid phase reaction, whereas the higher deposition temperatures reduced the nucleation temperature significantly. In addition, a systematic change in growth mechanism of the subsequent CoSi{sub 2} growth occurs as a function of deposition temperature. First, the CoSi{sub 2} growth rate from films grown at the lower reactive deposition temperatures is substantially lower than that grown at higher reactive deposition temperatures, even though the onset of growth occurs at a higher temperature, Second, for deposition temperatures below 450 Degree-Sign C, the growth appears columnar, indicating nucleation controlled growth. Elevated deposition temperatures, on the other hand, render the CoSi{sub 2} formation process layer-by-layer which indicates enhanced nucleation of the CoSi{sub 2} and diffusion controlled growth. Our results further indicate that this observed trend is most likely related to stress and changes in microstructure introduced during reactive deposition of the CoSi film. The deposition temperature therefore provides a handle to tune the CoSi{sub 2} growth

  10. In-situ monitoring by reflective high energy electron diffraction during pulsed laser deposition

    NASA Astrophysics Data System (ADS)

    Blank, Dave H. A.; Rijnders, Guus J. H. M.; Koster, Gertjan; Rogalla, Horst

    1999-01-01

    Pulsed laser deposition (PLD) has developed during the past decade from a fast but limited preparation tool towards a competitive thin film deposition technique. One of the advantages above other techniques is the possibility of growth at relative high background pressure. There is a large freedom in choosing which kind of gas. Moreover, in a number of applications, the gaseous species in the background pressure are part of the elements to be grown, e.g., oxygen in the case of high Tc superconductors. However, the advantage of relative high pressures leads to restrictions of using standard diagnostics and monitoring of the film growth, e.g., reflective high energy electron diffraction (RHEED). Here, a PLD chamber including an in-situ RHEED system is presented, which makes it possible to monitor and study the growth at standard PLD parameters. Using a two-stages differential pumped, magnetically shielded, extension tube mounted at the electron gun side and a special designed phosphor screen including CCD camera, real time monitoring by observation of RHEED oscillations could be established at pressures up to 50 Pa. In this paper the latest results on applying this technique on SrTiO 3 and YBa 2Cu 3O 7 will be presented. Additional to the usual diagnostics performed with RHEED, another phenomena can be observed. The pulsed way of deposition, characteristic for PLD, leads to relaxations in the intensity of the diffracted pattern due to the mobility of the deposited material. These relaxation times give extra information about relaxation, crystallization, and nucleation of the deposited material. The presented technique leads to a better understanding of the growth during pulsed laser deposition and, because of the possibility to monitor the growth, will make PLD competitive with other deposition techniques.

  11. Plasma-assisted atomic layer deposition of conformal Pt films in high aspect ratio trenches.

    PubMed

    Erkens, I J M; Verheijen, M A; Knoops, H C M; Keuning, W; Roozeboom, F; Kessels, W M M

    2017-02-07

    To date, conventional thermal atomic layer deposition (ALD) has been the method of choice to deposit high-quality Pt thin films grown typically from (MeCp)PtMe3 vapor and O2 gas at 300 °C. Plasma-assisted ALD of Pt using O2 plasma can offer several advantages over thermal ALD, such as faster nucleation and deposition at lower temperatures. In this work, it is demonstrated that plasma-assisted ALD at 300 °C also allows for the deposition of highly conformal Pt films in trenches with high aspect ratio ranging from 3 to 34. Scanning electron microscopy inspection revealed that the conformality of the deposited Pt films was 100% in trenches with aspect ratio (AR) up to 34. These results were corroborated by high-precision layer thickness measurements by transmission electron microscopy for trenches with an aspect ratio of 22. The role of the surface recombination of O-radicals and the contribution of thermal ALD reactions is discussed.

  12. High temperature cracking and deposition behavior of an n-alkane mixture

    SciTech Connect

    Atria, J.V.; Edwards, T.

    1996-10-01

    Advanced jet engine designs and the need for jet fuel in aircraft to handle increasing heat loads has generated much interest in investigating the thermal stability of jet fuels at temperatures greater than 500{degrees}C. A mixture of C12 to C15 normal paraffins, was used to model the high temperature deposition and cracking behavior of jet fuels. The model hydrocarbon mixture was pumped through a single tube heat exchanger under supercritical conditions and heated to a final temperature of 550{degrees}C. Gas and liquid products were analyzed by gas chromatography/mass spectrometry, GC/MS, and gas chromatography with a flame ionization detector, GC FID. Amounts of carbon deposit through the tube were also determined by carbon burnoff analysis. Results showed the long chain normal paraffins to be stable in the oxidative deposition region, 150 to 300{degrees}C, while creating large amounts of pyrolytic deposits at temperatures greater than 500{degrees}C. The normal paraffins were found to crack to form smaller chain alkanes and alkenes with highly stressed samples then forming higher numbered olefins and cyclohexanes. This model mixture was also highly useful in observing the effects of fuel additives and tube surfaces on chemistry and deposit formation. Both high temperature hydrogen donors and an inert surface were found to increase the thermal stability of the paraffin mixture.

  13. Plasma-assisted atomic layer deposition of conformal Pt films in high aspect ratio trenches

    NASA Astrophysics Data System (ADS)

    Erkens, I. J. M.; Verheijen, M. A.; Knoops, H. C. M.; Keuning, W.; Roozeboom, F.; Kessels, W. M. M.

    2017-02-01

    To date, conventional thermal atomic layer deposition (ALD) has been the method of choice to deposit high-quality Pt thin films grown typically from (MeCp)PtMe3 vapor and O2 gas at 300 °C. Plasma-assisted ALD of Pt using O2 plasma can offer several advantages over thermal ALD, such as faster nucleation and deposition at lower temperatures. In this work, it is demonstrated that plasma-assisted ALD at 300 °C also allows for the deposition of highly conformal Pt films in trenches with high aspect ratio ranging from 3 to 34. Scanning electron microscopy inspection revealed that the conformality of the deposited Pt films was 100% in trenches with aspect ratio (AR) up to 34. These results were corroborated by high-precision layer thickness measurements by transmission electron microscopy for trenches with an aspect ratio of 22. The role of the surface recombination of O-radicals and the contribution of thermal ALD reactions is discussed.

  14. Chemical vapor deposition of high T(sub c) superconducting films in a microgravity environment

    NASA Technical Reports Server (NTRS)

    Levy, Moises; Sarma, Bimal K.

    1994-01-01

    Since the discovery of the YBaCuO bulk materials in 1987, Metalorganic Chemical Vapor Deposition (MOCVD) has been proposed for preparing HTSC high T(sub c) films. This technique is now capable of producing high-T(sub c) superconducting thin films comparable in quality to those prepared by any other methods. The MOCVD technique has demonstrated its superior advantage in making large area high quality HTSC thin films and will play a major role in the advance of device applications of HTSC thin films. The organometallic precursors used in the MOCVD preparation of HTSC oxide thin films are most frequently metal beta-diketonates. High T(sub c) superconductors are multi-component oxides which require more than one component source, with each source, containing one kind of precursor. Because the volatility and stability of the precursors are strongly dependent on temperature, system pressure, and carrier gas flow rate, it has been difficult to control the gas phase composition, and hence film stoichiometry. In order circumvent these problems we have built and tested a single source MOCVD reactor in which a specially designed vaporizer was employed. This vaporizer can be used to volatilize a stoichiometric mixture of diketonates of yttrium, barium and copper to produce a mixed vapor in a 1:2:3 ratio respectively of the organometellics. This is accomplished even though the three compounds have significantly different volatilities. We have developed a model which provides insight into the process of vaporizing mixed precursors to produce high quality thin films of Y1Ba2Cu3O7. It shows that under steady state conditions the mixed organometallic vapor must have a stoichiometric ratio of the individual organometallics identical to that in the solid mixture.

  15. Criteria for significance of simultaneous presence of both condensible vapors and aerosol particles on mass transfer (deposition) rates

    NASA Technical Reports Server (NTRS)

    Gokoglu, S. A.

    1987-01-01

    The simultaneous presence of aerosol particles and condensible vapors in a saturated boundary layer which may affect deposition rates to subcooled surfaces because of vapor-particle interactions is discussed. Scavenging of condensible vapors by aerosol particles may lead to increased particle size and decreased vapor mass fraction, which alters both vapor and particle deposition rates. Particles, if sufficiently concentrated, may also coagulate. Criteria are provided to assess the significance of such phenomena when particles are already present in the mainstream and are not created inside the boundary layer via homogeneous nucleation. It is determined that there is direct proportionality with: (1) the mass concentration of both condensible vapors and aerosol particles; and (2) the square of the boundary layer thickness to particle diameter ratio (delta d sub p) square. Inverse proportionality was found for mainstream to surface temperature difference if thermophoresis dominates particle transport. It is concluded that the square of the boundary layer thickness to particle diameter ratio is the most critical factor to consider in deciding when to neglect vapor-particle interactions.

  16. Criteria for significance of simultaneous presence of both condensible vapors and aerosol particles on mass transfer (deposition) rates

    NASA Technical Reports Server (NTRS)

    Gokoglu, S. A.

    1986-01-01

    The simultaneous presence of aerosol particles and condensible vapors in a saturated boundary layer which may affect deposition rates to subcooled surfaces because of vapor-particle interactions is discussed. Scavenging of condensible vapors by aerosol particles may lead to increased particle size and decreased vapor mass fraction, which alters both vapor and particle deposition rates. Particles, if sufficiently concentrated, may also coagulate. Criteria are provided to assess the significance of such phenomena when particles are already present in the mainstream and are not created inside the boundary layer via homogeneous nucleation. It is determined that there is direct proportionality with: (1) the mass concentration of both condensible vapors and aerosol particles; and (2) the square of the boundary layer thickness to particle diameter ratio (delta d sub p) square. Inverse proportionality was found for mainstream to surface temperature difference if thermophoresis dominates particle transport. It is concluded that the square of the boundary layer thickness to particle diameter ratio is the most critical factor to consider in deciding when to neglect vapor-particle interactions.

  17. Soap-film coating: High-speed deposition of multilayer nanofilms

    PubMed Central

    Zhang, Renyun; Andersson, Henrik A.; Andersson, Mattias; Andres, Britta; Edlund, Håkan; Edström, Per; Edvardsson, Sverker; Forsberg, Sven; Hummelgård, Magnus; Johansson, Niklas; Karlsson, Kristoffer; Nilsson, Hans-Erik; Norgren, Magnus; Olsen, Martin; Uesaka, Tetsu; Öhlund, Thomas; Olin, Håkan

    2013-01-01

    The coating of thin films is applied in numerous fields and many methods are employed for the deposition of these films. Some coating techniques may deposit films at high speed; for example, ordinary printing paper is coated with micrometre-thick layers of clay at a speed of tens of meters per second. However, to coat nanometre thin films at high speed, vacuum techniques are typically required, which increases the complexity of the process. Here, we report a simple wet chemical method for the high-speed coating of films with thicknesses at the nanometre level. This soap-film coating technique is based on forcing a substrate through a soap film that contains nanomaterials. Molecules and nanomaterials can be deposited at a thickness ranging from less than a monolayer to several layers at speeds up to meters per second. We believe that the soap-film coating method is potentially important for industrial-scale nanotechnology. PMID:23503102

  18. Method for high-precision multi-layered thin film deposition for deep and extreme ultraviolet mirrors

    DOEpatents

    Ruffner, J.A.

    1999-06-15

    A method for coating (flat or non-flat) optical substrates with high-reflectivity multi-layer coatings for use at Deep Ultra-Violet (DUV) and Extreme Ultra-Violet (EUV) wavelengths. The method results in a product with minimum feature sizes of less than 0.10 [micro]m for the shortest wavelength (13.4 nm). The present invention employs a computer-based modeling and deposition method to enable lateral and vertical thickness control by scanning the position of the substrate with respect to the sputter target during deposition. The thickness profile of the sputter targets is modeled before deposition and then an appropriate scanning algorithm is implemented to produce any desired, radially-symmetric thickness profile. The present invention offers the ability to predict and achieve a wide range of thickness profiles on flat or figured substrates, i.e., account for 1/R[sup 2] factor in a model, and the ability to predict and accommodate changes in deposition rate as a result of plasma geometry, i.e., over figured substrates. 15 figs.

  19. Method for high-precision multi-layered thin film deposition for deep and extreme ultraviolet mirrors

    DOEpatents

    Ruffner, Judith Alison

    1999-01-01

    A method for coating (flat or non-flat) optical substrates with high-reflectivity multi-layer coatings for use at Deep Ultra-Violet ("DUV") and Extreme Ultra-Violet ("EUV") wavelengths. The method results in a product with minimum feature sizes of less than 0.10-.mu.m for the shortest wavelength (13.4-nm). The present invention employs a computer-based modeling and deposition method to enable lateral and vertical thickness control by scanning the position of the substrate with respect to the sputter target during deposition. The thickness profile of the sputter targets is modeled before deposition and then an appropriate scanning algorithm is implemented to produce any desired, radially-symmetric thickness profile. The present invention offers the ability to predict and achieve a wide range of thickness profiles on flat or figured substrates, i.e., account for 1/R.sup.2 factor in a model, and the ability to predict and accommodate changes in deposition rate as a result of plasma geometry, i.e., over figured substrates.

  20. Pregnancy rates in cattle with cryopreserved sexed sperm: effects of sperm numbers per inseminate and site of sperm deposition.

    PubMed

    Seidel, G E; Schenk, J L

    2008-04-01

    In six field trials, doses between 1.0 and 6.0 x 10(6) total sexed, frozen-thawed sperm were inseminated into the uterine body or bilaterally into the uterine horns of heifers and nursing Angus cows 12 or 24h after observed estrus. Except for one comparison in one trial in which uterine body insemination was slightly superior (P<0.05) to uterine horn insemination, there was no significant (P>0.1) difference between sites of semen deposition. Additionally, except for one small study with limited numbers, there was essentially no difference in pregnancy rates in the range between 1.5 and 6 x 10(6) sexed, frozen-thawed sperm per inseminate. Pregnancy rates with smaller doses of sexed sperm averaged about 75% of controls of 20 x 10(6) total frozen-thawed, unsexed sperm. While 1.0 x 10(6) sexed, frozen-thawed sperm per insemination dose resulted in decreased pregnancy rates compared to larger doses, the lesser fertility with sexed sperm could not be compensated by increasing sperm numbers in the range of 1.5-6 x 10(6) sperm per dose. Pregnancy rates with 2 x 10(6) sexed, frozen-thawed sperm per dose were not markedly less than control pregnancy rates with 20 x 10(6) frozen-thawed unsexed sperm/dose in well-managed herds.

  1. High power, high efficiency millimeter wavelength traveling wave tubes for high rate communications from deep space

    NASA Technical Reports Server (NTRS)

    Dayton, James A., Jr.

    1991-01-01

    The high-power transmitters needed for high data rate communications from deep space will require a new class of compact, high efficiency traveling wave tubes (TWT's). Many of the recent TWT developments in the microwave frequency range are generically applicable to mm wave devices, in particular much of the technology of computer aided design, cathodes, and multistage depressed collectors. However, because TWT dimensions scale approximately with wavelength, mm wave devices will be physically much smaller with inherently more stringent fabrication tolerances and sensitivity to thermal dissipation.

  2. High Strain Rate Behavior of Polymer Matrix Composites Analyzed

    NASA Technical Reports Server (NTRS)

    Goldberg, Robert K.; Roberts, Gary D.

    2001-01-01

    Procedures for modeling the high-speed impact of composite materials are needed for designing reliable composite engine cases that are lighter than the metal cases in current use. The types of polymer matrix composites that are likely to be used in such an application have a deformation response that is nonlinear and that varies with strain rate. To characterize and validate material models that could be used in the design of impactresistant engine cases, researchers must obtain material data over a wide variety of strain rates. An experimental program has been carried out through a university grant with the Ohio State University to obtain deformation data for a representative polymer matrix composite for strain rates ranging from quasi-static to high rates of several hundred per second. This information has been used to characterize and validate a constitutive model that was developed at the NASA Glenn Research Center.

  3. Sediment-deposition rates and organic compounds in bottom sediment at four sites in Lake Mead, Nevada, May 1998

    USGS Publications Warehouse

    Covay, K.J.; Beck, D.A.

    2001-01-01

    In May 1998 the U.S. Geological Survey, in cooperation with the University of Nevada, Las Vegas, investigated rates of sediment deposition and concentrations of selected synthetic organic compounds at four sites in Lake Mead. Sediment cores were extracted from two sites (one shallow and one deep) in Las Vegas Bay, from one site in the Overton Arm, and from one site near the historic confluence of the Colorado and Virgin Rivers. The sediment cores were age-dated using cesium-137 and were analyzed for the presence of organochlorine compounds (pesticides and degradation products, polychlorinated biphenyls, dioxins, and furans) and for semivolatile organic compounds (polycyclic aromatic hydrocarbons and phenols). Sediment-deposition rates after impoundment of the Colorado River by Hoover Dam were determined by measuring the accumulation of mass during three different periods: (1) from the approximate impoundment date for each site (1935-37) to the initial occurrence of cesium-137 in the atmosphere (1952); (2) from 1952 to the maximum concentration of cesium-137 in the atmosphere (1964); and (3) from 1964 to the collection date of the sample (1998). Sediment-deposition rates for the entire post-impoundment period (1935-98) averaged 1.45 (g/cm2)/yr (grams per square centimeter per year) at the Las Vegas Bay shallow site, 1.25 (g/cm2)/yr at the Las Vegas Bay deep site, 0.80 (g/cm2)/yr at the Overton Arm site, and 0.65 (g/cm2)/yr at the Colorado and Virgin Rivers confluence site. Sediment-deposition rates after impoundment of the Colorado River by Hoover Dam were determined by measuring the accumulation of mass during three different periods: (1) from the approximate impoundment date for each site (1935-37) to the initial occurrence of cesium-137 in the atmosphere (1952); (2) from 1952 to the maximum concentration of cesium-137 in the atmosphere (1964); and (3) from 1964 to the collection date of the sample (1998). Sediment-deposition rates for the entire post

  4. Radionuclides and Radiation Indices of High Background Radiation Area in Chavara-Neendakara Placer Deposits (Kerala, India)

    PubMed Central

    Derin, Mary Thomas; Vijayagopal, Perumal; Venkatraman, Balasubramaniam; Chaubey, Ramesh Chandra; Gopinathan, Anilkumar

    2012-01-01

    The present paper describes a detailed study on the distribution of radionuclides along Chavara – Neendakara placer deposit, a high background radiation area (HBRA) along the Southwest coast of India (Kerala). Judged from our studies using HPGe gamma spectrometric detector, it becomes evident that Uranium (238U), Thorium (232Th) and Potassium (40K) are the major sources for radioactivity prevailing in the area. Our statistical analyses reveal the existence of a high positive correlation between 238U and 232Th, implicating that the levels of these elements are interdependent. Our SEM-EDAX analyses reveal that titanium (Ti) and zircon (Zr) are the major trace elements in the sand samples, followed by aluminum, copper, iron, ruthenium, magnesium, calcium, sulphur and lead. This is first of its kind report on the radiation hazard indices on this placer deposit. The average absorbed dose rates (9795 nGy h−1) computed from the present study is comparable with the top-ranking HBRAs in the world, thus offering the Chavara-Neendakara placer the second position, after Brazil; pertinently, this value is much higher than the World average. The perceptibly high absorbed gamma dose rates, entrained with the high annual external effective dose rates (AEED) and average annual gonadal dose equivalent (AGDE) values existing in this HBRA, encourage us to suggest for a candid assessment of the impact of the background radiation, if any, on the organisms that inhabit along this placer deposit. Future research could effectively address the issue of the possible impact of natural radiation on the biota inhabiting this HBRA. PMID:23185629

  5. Radionuclides and radiation indices of high background radiation area in Chavara-Neendakara placer deposits (Kerala, India).

    PubMed

    Derin, Mary Thomas; Vijayagopal, Perumal; Venkatraman, Balasubramaniam; Chaubey, Ramesh Chandra; Gopinathan, Anilkumar

    2012-01-01

    The present paper describes a detailed study on the distribution of radionuclides along Chavara - Neendakara placer deposit, a high background radiation area (HBRA) along the Southwest coast of India (Kerala). Judged from our studies using HPGe gamma spectrometric detector, it becomes evident that Uranium ((238)U), Thorium ((232)Th) and Potassium ((40)K) are the major sources for radioactivity prevailing in the area. Our statistical analyses reveal the existence of a high positive correlation between (238)U and (232)Th, implicating that the levels of these elements are interdependent. Our SEM-EDAX analyses reveal that titanium (Ti) and zircon (Zr) are the major trace elements in the sand samples, followed by aluminum, copper, iron, ruthenium, magnesium, calcium, sulphur and lead. This is first of its kind report on the radiation hazard indices on this placer deposit. The average absorbed dose rates (9795 nGy h(-1)) computed from the present study is comparable with the top-ranking HBRAs in the world, thus offering the Chavara-Neendakara placer the second position, after Brazil; pertinently, this value is much higher than the World average. The perceptibly high absorbed gamma dose rates, entrained with the high annual external effective dose rates (AEED) and average annual gonadal dose equivalent (AGDE) values existing in this HBRA, encourage us to suggest for a candid assessment of the impact of the background radiation, if any, on the organisms that inhabit along this placer deposit. Future research could effectively address the issue of the possible impact of natural radiation on the biota inhabiting this HBRA.

  6. Response of lake chemistry to changes in atmospheric deposition and climate in three high-elevation wilderness areas of Colorado

    USGS Publications Warehouse

    Mast, M. Alisa; Turk, John T.; Clow, David W.; Campbell, Donald D.

    2011-01-01

    Trends in precipitation chemistry and hydrologic and climatic data were examined as drivers of long-term changes in the chemical composition of high-elevation lakes in three wilderness areas in Colorado during 1985-2008. Sulfate concentrations in precipitation decreased at a rate of -0.15 to -0.55 μeq/l/year at 10 high-elevation National Atmospheric Deposition Program stations in the state during 1987-2008 reflecting regional reductions in SO2 emissions. In lakes where sulfate is primarily derived from atmospheric inputs, sulfate concentrations also decreased although the rates generally were less, ranging from -0.12 to -0.27 μeq/l/year. The similarity in timing and sulfur isotopic data support the hypothesis that decreases in atmospheric deposition are driving the response of high-elevation lakes in some areas of the state. By contrast, in lakes where sulfate is derived primarily from watershed weathering sources, sulfate concentrations showed sharp increases during 1985-2008. Analysis of long-term climate records indicates that annual air temperatures have increased between 0.45 and 0.93°C per decade throughout most mountainous areas of Colorado, suggesting climate as a factor. Isotopic data reveal that sulfate in these lakes is largely derived from pyrite, which may indicate climate warming is preferentially affecting the rate of pyrite weathering.

  7. Response of lake chemistry to changes in atmospheric deposition and climate in three high-elevation wilderness areas of Colorado

    USGS Publications Warehouse

    Mast, M.A.; Turk, J.T.; Clow, D.W.; Campbell, D.H.

    2011-01-01

    Trends in precipitation chemistry and hydrologic and climatic data were examined as drivers of long-term changes in the chemical composition of high-elevation lakes in three wilderness areas in Colorado during 1985-2008. Sulfate concentrations in precipitation decreased at a rate of -0.15 to -0.55 ??eq/l/year at 10 high-elevation National Atmospheric Deposition Program stations in the state during 1987-2008 reflecting regional reductions in SO2 emissions. In lakes where sulfate is primarily derived from atmospheric inputs, sulfate concentrations also decreased although the rates generally were less, ranging from -0.12 to -0.27 ??eq/l/year. The similarity in timing and sulfur isotopic data support the hypothesis that decreases in atmospheric deposition are driving the response of high-elevation lakes in some areas of the state. By contrast, in lakes where sulfate is derived primarily from watershed weathering sources, sulfate concentrations showed sharp increases during 1985-2008. Analysis of long-term climate records indicates that annual air temperatures have increased between 0.45 and 0.93??C per decade throughout most mountainous areas of Colorado, suggesting climate as a factor. Isotopic data reveal that sulfate in these lakes is largely derived from pyrite, which may indicate climate warming is preferentially affecting the rate of pyrite weathering. ?? 2010 US Government.

  8. Measuring the emission rate of an aerosol source placed in a ventilated room using a tracer gas: influence of particle wall deposition.

    PubMed

    Bémer, D; Lecler, M T; Régnier, R; Hecht, G; Gerber, J M

    2002-04-01

    A method to measure the emission rate of an airborne pollutant source using a tracer gas was tested in the case of an aerosol source. The influence of particle deposition on the walls of a test room of 72 m3 was studied. The deposition rate of an aerosol of MgCl2 was determined by means of two methods: one based on measuring the aerosol concentration decay inside the ventilated room, the other based on calculation of the material mass balance. The concentration decay was monitored by optical counting and the aerosol mass concentration determined by means of sampling on a filter and analysis of the mass deposited by atomic absorption spectrometry. Four series of measurements were carried out. The curve giving the deposition rate according to the particle aerodynamic diameter (d(ae)) was established and shows deposition rates higher than those predicted using the model of Corner. The decay method gives the best results. The study carried out has shown that the phenomenon of deposition has little effect on the measurement of the aerosol source emission rate using a tracer gas for particles of aerodynamic diameter < 5 microm (underestimation < 25%). For particles of a greater diameter, wall deposition is an extremely limiting factor for the method, the influence of which can, however, be limited by using a test booth of small volume and keeping the sampling duration as short as possible.

  9. Study of High Strain Rate Response of Composites

    NASA Technical Reports Server (NTRS)

    Gilat, Amos

    2003-01-01

    The objective of the research was to continue the experimental study of the effect of strain rate on mechanical response (deformation and failure) of epoxy resins and carbon fibers/epoxy matrix composites, and to initiate a study of the effects of temperature by developing an elevated temperature test. The experimental data provide the information needed for NASA scientists for the development of a nonlinear, rate dependent deformation and strength models for composites that can subsequently be used in design. This year effort was directed into testing the epoxy resin. Three types of epoxy resins were tested in tension and shear at various strain rates that ranges from 5 x 10(exp -5), to 1000 per second. Pilot shear experiments were done at high strain rate and an elevated temperature of 80 C. The results show that all, the strain rate, the mode of loading, and temperature significantly affect the response of epoxy.

  10. High-Strain Rate Testing of Gun Propellants

    DTIC Science & Technology

    1988-12-01

    specimen is loaded beyond the elastic range. Instrumentation of the bars allows recording of the strain history in the bars during the test event. The...strain history on the input bar gives a record of the strain rate history in the sample. )The output bar strain history is proportional to the stress... history in the sample.) The data were compared to the results reported in the literature of earlier high strain rate tests on the same propellants. The

  11. High-Strain-Rate Compression Testing of Ice

    NASA Technical Reports Server (NTRS)

    Shazly, Mostafa; Prakash, Vikas; Lerch, Bradley A.

    2006-01-01

    In the present study a modified split Hopkinson pressure bar (SHPB) was employed to study the effect of strain rate on the dynamic material response of ice. Disk-shaped ice specimens with flat, parallel end faces were either provided by Dartmouth College (Hanover, NH) or grown at Case Western Reserve University (Cleveland, OH). The SHPB was adapted to perform tests at high strain rates in the range 60 to 1400/s at test temperatures of -10 and -30 C. Experimental results showed that the strength of ice increases with increasing strain rates and this occurs over a change in strain rate of five orders of magnitude. Under these strain rate conditions the ice microstructure has a slight influence on the strength, but it is much less than the influence it has under quasi-static loading conditions. End constraint and frictional effects do not influence the compression tests like they do at slower strain rates, and therefore the diameter/thickness ratio of the samples is not as critical. The strength of ice at high strain rates was found to increase with decreasing test temperatures. Ice has been identified as a potential source of debris to impact the shuttle; data presented in this report can be used to validate and/or develop material models for ice impact analyses for shuttle Return to Flight efforts.

  12. Semi-solid electrodes having high rate capability

    DOEpatents

    Chiang, Yet-Ming; Duduta, Mihai; Holman, Richard; Limthongkul, Pimpa; Tan, Taison

    2015-11-10

    Embodiments described herein relate generally to electrochemical cells having high rate capability, and more particularly to devices, systems and methods of producing high capacity and high rate capability batteries having relatively thick semi-solid electrodes. In some embodiments, an electrochemical cell includes an anode, a semi-solid cathode that includes a suspension of an active material and a conductive material in a liquid electrolyte, and an ion permeable membrane disposed between the anode and the cathode. The semi-solid cathode has a thickness in the range of about 250 .mu.m-2,500 .mu.m, and the electrochemical cell has an area specific capacity of at least 5 mAh/cm.sup.2 at a C-rate of C/2.

  13. Semi-solid electrodes having high rate capability

    DOEpatents

    Chiang, Yet-Ming; Duduta, Mihai; Holman, Richard; Limthongkul, Pimpa; Tan, Taison

    2016-07-05

    Embodiments described herein relate generally to electrochemical cells having high rate capability, and more particularly to devices, systems and methods of producing high capacity and high rate capability batteries having relatively thick semi-solid electrodes. In some embodiments, an electrochemical cell includes an anode, a semi-solid cathode that includes a suspension of an active material and a conductive material in a liquid electrolyte, and an ion permeable membrane disposed between the anode and the cathode. The semi-solid cathode has a thickness in the range of about 250 .mu.m-2,500 .mu.m, and the electrochemical cell has an area specific capacity of at least 5 mAh/cm.sup.2 at a C-rate of C/2.

  14. Online aging study of a high rate MRPC

    NASA Astrophysics Data System (ADS)

    Wang, Jie; Wang, Yi; Feng, S. Q.; Xie, Bo; Lv, Pengfei; Wang, Fuyue; Guo, Baohong; Han, Dong; Li, Yuanjing

    2016-05-01

    With the constant increase of accelerator luminosity, the rate requirements of MRPC detectors have become very important, and the aging characteristics of the detector have to be studied meticulously. An online aging test system has been set up in our lab, and in this paper the setup of the system is described and the performance stability of a high-rate MRPC studied over a long running time under a high luminosity environment. The high rate MRPC was irradiated by X-rays for 36 days and the accumulated charge density reached 0.1 C/cm2. No obvious performance degradation was observed for the detector. Supported by National Natural Science Foundation of China (11420101004, 11461141011, 11275108), Ministry of Science and Technology (2015CB856905)

  15. Effect of Carbon Deposition on the Oxidation Rate of Copper/Bentonite in the Chemical Looping Process

    SciTech Connect

    Monazam, Esmail R.; Breault, Ronald W.; Siriwardane, Ranjani; Tian, Hanjing; Simonyi, Thomas; Carpenter, Stephen

    2012-10-31

    The presented work is part of the Industrial Carbon Management Initiative (ICMI) on the development of metal oxide oxygen carriers for use in the chemical looping combustion process. An oxygen carrier, CuO/bentonite (60:40%), was reacted with methane gas and then oxidized in air. The change in weight and reaction gas concentrations were measured using a thermogravimetric analyzer (TGA) equipped with a real-time gas analyzer. The reduction–oxidation cycle was conducted within the temperature range of 750–900 °C for 10 cycles, using 20, 50, and100% CH{sub 4} concentrations in N{sub 2} for the reduction segment and dry air for the oxidation segment. Several analysis methods were evaluated to fit the oxidation of reduced CuO (i.e., Cu) data over the complete conversion range with suitable rate expressions derived from existing models for oxidation, including the shrinking core model (diffusion and reaction control), first- and second-order reaction rates, parallel and series reaction mechanisms, and Johnson–Mehl–Avrami (JMA) rate. The best agreement between the experimental data and the models of the Cu oxidation was accomplished using the JMA model. The reactivity of the oxygen carrier during the oxidation reactions was affected by the CH{sub 4} concentration as well as the temperature. The rate of fractional uptake of oxygen onto the carrier decreased as the temperature increased, contrary to expectations and indicative that the mechanism is changing during the test. Analysis of the exit gas provided evidence of carbon deposition on the reduced sorbent particle and resulted in the CO{sub 2} product upon oxidation. The oxidation of this carbon releases significant heat that is capable of changing the particle morphology (Zhu, Y.; Mimura, K.; Isshiki, M. Oxid. Met. 2004, 62, 207-222). On the basis of experimental results, the overall reaction process in the fuel reactor may be considered to consist of the decomposition of CH{sub 4} into C and H{sub 2} and

  16. Highly Controlled Codeposition Rate of Organolead Halide Perovskite by Laser Evaporation Method.

    PubMed

    Miyadera, Tetsuhiko; Sugita, Takeshi; Tampo, Hitoshi; Matsubara, Koji; Chikamatsu, Masayuki

    2016-10-05

    Organolead-halide perovskites can be promising materials for next-generation solar cells because of its high power conversion efficiency. The method of precise fabrication is required because both solution-process and vacuum-process fabrication of the perovskite have problems of controllability and reproducibility. Vacuum deposition process was expected to achieve precise control; however, vaporization of amine compound significantly degrades the controllability of deposition rate. Here we achieved the reduction of the vaporization by implementing the laser evaporation system for the codeposition of perovskite. Locally irradiated continuous-wave lasers on the source materials realized the reduced vaporization of CH3NH3I. The deposition rate was stabilized for several hours by adjusting the duty ratio of modulated laser based on proportional-integral control. Organic-photovoltaic-type perovskite solar cells were fabricated by codeposition of PbI2 and CH3NH3I. A power-conversion efficiency of 16.0% with reduced hysteresis was achieved.

  17. Flexible high-repetition-rate ultrafast fiber laser

    PubMed Central

    Mao, Dong; Liu, Xueming; Sun, Zhipei; Lu, Hua; Han, Dongdong; Wang, Guoxi; Wang, Fengqiu

    2013-01-01

    High-repetition-rate pulses have widespread applications in the fields of fiber communications, frequency comb, and optical sensing. Here, we have demonstrated high-repetition-rate ultrashort pulses in an all-fiber laser by exploiting an intracavity Mach-Zehnder interferometer (MZI) as a comb filter. The repetition rate of the laser can be tuned flexibly from about 7 to 1100 GHz by controlling the optical path difference between the two arms of the MZI. The pulse duration can be reduced continuously from about 10.1 to 0.55 ps with the spectral width tunable from about 0.35 to 5.7 nm by manipulating the intracavity polarization controller. Numerical simulations well confirm the experimental observations and show that filter-driven four-wave mixing effect, induced by the MZI, is the main mechanism that governs the formation of the high-repetition-rate pulses. This all-fiber-based laser is a simple and low-cost source for various applications where high-repetition-rate pulses are necessary. PMID:24226153

  18. High strain rate deformation of NiAl

    SciTech Connect

    Maloy, S.A.; Gray, G.T. III; Darolia, R.

    1994-07-01

    NiAl is a potential high temperature structural material. Applications for which NiAl is being considered (such as rotating components in jet engines) requires knowledge of mechanical properties over a wide range of strain rates. Single crystal NiAl (stoichiometric and Ni 49.75Al 0.25Fe) has been deformed in compression along [100] at strain rates of 0.001, 0.1/s and 2000/s and temperatures of 76,298 and 773K. <111> slip was observed after 76K testing at a strain rate of 0.001/s and 298K testing at a strain rate of 2000/s. Kinking was observed after deformation at 298K and a strain rate of 0.001/s and sometimes at 298 K and a strain rate of 0.1/s. Strain hardening rates of 8200 and 4000 MPa were observed after 773 and 298K testing respectively, at a strain rate of 2000/s. Results are discussed in reference to resulting dislocation substructure.

  19. Temporal pitch perception at high rates in cochlear implants.

    PubMed

    Kong, Ying-Yee; Carlyon, Robert P

    2010-05-01

    A recent study reported that a group of Med-El COMBI 40+CI (cochlear implant) users could, in a forced-choice task, detect changes in the rate of a pulse train for rates higher than the 300 pps "upper limit" commonly reported in the literature [Kong, Y.-Y., et al. (2009). J. Acoust. Soc. Am. 125, 1649-1657]. The present study further investigated the upper limit of temporal pitch in the same group of CI users on three tasks [pitch ranking, rate discrimination, and multidimensional scaling (MDS)]. The patterns of results were consistent across the three tasks and all subjects could follow rate changes above 300 pps. Two subjects showed exceptional ability to follow temporal pitch change up to about 900 pps. Results from the MDS study indicated that, for the two listeners tested, changes in pulse rate over the range of 500-840 pps were perceived along a perceptual dimension that was orthogonal to the place of excitation. Some subjects showed a temporal pitch reversal at rates beyond their upper limit of pitch and some showed a reversal within a small range of rates below the upper limit. These results are discussed in relation to the possible neural bases for temporal pitch processing at high rates.

  20. Strategies for adapting to high rates of employee turnover.

    PubMed

    Mowday, R T

    1984-01-01

    For many organizations facing high rates of employee turnover, strategies for increasing employee retention may not be practical because employees leave for reasons beyond the control of management or the costs of reducing turnover exceed the benefits to be derived. In this situation managers need to consider strategies that can minimize or buffer the organization from the negative consequences that often follow from turnover. Strategies organizations can use to adapt to uncontrollably high employee turnover rates are presented in this article. In addition, suggestions are made for how managers should make choices among the alternative strategies.

  1. Calcium thionyl chloride high-rate reserve cell

    NASA Astrophysics Data System (ADS)

    Peled, E.; Meitav, A.; Brand, M.

    1981-09-01

    The goal is to assess the high-rate capability of a reserve type calcium-Ca(AlCl4) thionyl chloride cell and to demonstrate its excellent safety features. The good discharge performance at a discharge time of 10-15 min, together with the excellent safety features of the cell, is seen as warranting further investigations of this system as a candidate for high-rate multicell reserved and nonreserved battery applications. A test is described proving that it is practically impossible to 'charge' this cell.

  2. High removal rate laser-based coating removal system

    DOEpatents

    Matthews, Dennis L.; Celliers, Peter M.; Hackel, Lloyd; Da Silva, Luiz B.; Dane, C. Brent; Mrowka, Stanley

    1999-11-16

    A compact laser system that removes surface coatings (such as paint, dirt, etc.) at a removal rate as high as 1000 ft.sup.2 /hr or more without damaging the surface. A high repetition rate laser with multiple amplification passes propagating through at least one optical amplifier is used, along with a delivery system consisting of a telescoping and articulating tube which also contains an evacuation system for simultaneously sweeping up the debris produced in the process. The amplified beam can be converted to an output beam by passively switching the polarization of at least one amplified beam. The system also has a personal safety system which protects against accidental exposures.

  3. The Effects of High Frequency Oscillatory Flow on Particles' Deposition in Upper Human Lung Airways

    NASA Astrophysics Data System (ADS)

    Bonifacio, Jeremy; Rahai, Hamid; Taherian, Shahab

    2016-11-01

    The effects of oscillatory inspiration on particles' deposition in upper airways of a human lung during inhalation/exhalation have been numerically investigated and results of flow characteristics, and particles' deposition pattern have been compared with the corresponding results without oscillation. The objective of the investigation was to develop an improved method for drug delivery for Asthma and COPD patients. Previous clinical investigations of using oral airway oscillations have shown enhanced expectoration in cystic fibrosis (CF) patients, when the frequency of oscillation was at 8 Hz with 9:1 inspiratory/expiratory (I:E) ratio. Other investigations on oscillatory ventilation had frequency range of 0.5 Hz to 2.5 Hz. In the present investigations, the frequency of oscillation was changed between 2 Hz to 10 Hz. The particles were injected at the inlet and particle velocity was equal to the inlet air velocity. One-way coupling of air and particles was assumed. Lagrangian phase model was used for transport and depositions of solid 2.5 micron diameter round particles with 1200 kg/m3 density. Preliminary results have shown enhanced PM deposition with oscillatory flow with lower frequency having a higher deposition rate Graduate Assistant.

  4. Relationships between the El Niño-Southern Oscillation, precipitation, and nitrogen wet deposition rates in the contiguous United States

    NASA Astrophysics Data System (ADS)

    Nergui, Tsengel; Evans, R. David; Adam, Jennifer C.; Chung, Serena H.

    2016-11-01

    Human activities have significantly increased reactive nitrogen (N) in the environment, leading to adverse effects on various ecosystems. We used 1979-2012 seasonal inorganic N wet deposition data from the National Atmospheric Deposition Program to evaluate the relationship between the El Niño-Southern Oscillation (ENSO) and N wet deposition in the contiguous U.S. The correlations between precipitation and inorganic N wet deposition were the strongest and most spatially extensive during winter; up to 62% and 53% of the 2 to 6 year variations of precipitation and N wet deposition rates, respectively, in the Rocky Mountains, along the coast of the Gulf of Mexico and near the Great Lakes, can be explained by variation in the NINO3.4 climate index, which was used as a measure of ENSO activity. During El Niño winters, precipitation and N wet deposition rates were higher than normal in the southern U.S., while La Niña events brought higher precipitation and N wet deposition to the Rocky Mountains and Great Lakes regions. Wintertime N wet deposition correlations held through springtime in the Great Lakes and the northeast; however, correlations between NINO3.4 and precipitation were not significant at most sites, suggesting factors besides precipitation amount contributed to the 2 to 6 year variation of N wet deposition in these regions. As the frequency, strength, and types of ENSO change in the future, interannual variability of N wet deposition will be affected, indirectly affecting spatial distribution of dry N deposition and potentially changing the overall spatial patterns of N deposition.

  5. Geographical coincidence of high heat flow, high seismicity, and upwelling, with hydrocarbon deposits, phosphorites, evaporites, and uranium ores.

    PubMed

    Libby, L M; Libby, W F

    1974-10-01

    Oil deposits occur in deep sediments, and appear to be organic matter that has been transformed through the action of geothermal heat and pressure. Deep sediments, rich in biological remains, are created by ocean upwelling, caused in part by high geothermal heat flow through the sea bottom. Such regions correlate with enhanced seismic activity. We look for correlations of seismicity, high heat flux, petroleum, uranium, phosphates, and salts, deposited from abundant plant life. These may be useful in discovering more petroleum and coal. We estimate that the known world reserves of petroleum and coal are about 10(-4) of the total of buried biogenic carbon.

  6. Chemical vapor deposition of highly adherent diamond coatings onto co-cemented tungsten carbides irradiated by high power diode laser.

    PubMed

    Barletta, M; Rubino, G; Valle, R; Polini, R

    2012-02-01

    The present investigation deals with the definition of a new eco-friendly alternative to pretreat Co-cemented tungsten carbide (WC-Co) substrates before diamond deposition by hot filament chemical vapor deposition (HFCVD). In particular, WC-5.8 wt %Co substrates were submitted to a thermal treatment by a continuous wave-high power diode laser to reduce surface Co concentration and promote the reconstruction of the WC grains. Laser pretreatments were performed both in N(2) and Ar atmosphere to prevent substrate oxidation. Diamond coatings were deposited onto the laser pretreated substrates by HFCVD. For comparative purpose, diamond coatings were also deposited on WC-5.8 wt %Co substrates chemically etched by the well-known two-step pretreatment employing Murakami's reagent and Caro's acid. Surface morphology, microstructure, and chemical composition of the WC-5.8 wt %Co substrates after the different pretreatments and the deposition of diamond coatings were assessed by surface profiler, scanning electron microscopy, energy-dispersive X-ray spectroscopy, and X-ray diffraction analyses. Wear performance of the diamond coatings was checked by dry sliding linear reciprocating tribological tests. The worn volume of the diamond coatings deposited on the laser pretreated substrates was always found lower than the one measured on the chemically etched substrates, with the N(2) atmosphere being particularly promising.

  7. Ultra High-Rate Germanium (UHRGe) Modeling Status Report

    SciTech Connect

    Warren, Glen A.; Rodriguez, Douglas C.

    2012-06-07

    The Ultra-High Rate Germanium (UHRGe) project at Pacific Northwest National Laboratory (PNNL) is conducting research to develop a high-purity germanium (HPGe) detector that can provide both the high resolution typical of germanium and high signal throughput. Such detectors may be beneficial for a variety of potential applications ranging from safeguards measurements of used fuel to material detection and verification using active interrogation techniques. This report describes some of the initial radiation transport modeling efforts that have been conducted to help guide the design of the detector as well as a description of the process used to generate the source spectrum for the used fuel application evaluation.

  8. Atmospheric Deposition and Fate of Mercury in High-altitude Watersheds of the Rocky Mountains.

    NASA Astrophysics Data System (ADS)

    Campbell, D. H.; Mast, M. A.; Ingersoll, G. P.; Manthorne, D. J.; Krabbenhoft, D. P.; Taylor, H. E.; Aiken, G. R.; Schuster, P. F.; Reddy, M. M.

    2003-12-01

    Despite the potential for cold high-altitude ecosystems to act as sinks in the global mercury cycle, atmospheric deposition and fate of mercury have not been measured extensively at mountain sites in the Western United States. At Buffalo Pass in northwestern Colorado (the highest site in the national Mercury Deposition Network at 3234 m elevation), mercury in wet deposition was 9 μ gm-2 in 2000, comparable to many sites in the upper Midwestern United States where fish consumption advisories are widespread because of elevated levels of mercury from atmospheric deposition. Similar levels of mercury deposition were measured about 90 km east of Buffalo Pass at Loch Vale in Rocky Mountain National Park (RMNP) during 2002. Concentrations of total mercury in headwater streams in RMNP averaged 2-4 ngL-1 during spring and summer of 2001-2002. Higher concentrations were observed during snowmelt and rainfall events. Dissolved mercury was generally greater than particulate mercury in these clear mountain streams. Mercury and dissolved organic carbon peaked as soils were flushed during early snowmelt and rainy summer periods. Overall, mercury deposition was greater than mercury export, indicating accumulation in alpine/subalpine ecosystems; however, the mercury exported in streamflow may contribute substantially to mercury loading in downstream lakes and reservoirs where fish consumption advisories have increased. Methyl mercury concentrations measured in the streams in 2002 were generally near or less than detection limits, however, extreme drought conditions limited hydrologic flushing of soils and wetlands that may be sources of methyl mercury. In 2003, surface and ground water from various alpine and subalpine landscapes were sampled to determine sources and transport of total and methyl mercury. The elevated levels of mercury in atmospheric deposition indicate a need for better understanding of mercury cycling and transport in high-altitude ecosystems of Western North

  9. Atmospherc deposition of organochlorine compounds to remote high mountain lakes of Europe.

    PubMed

    Carrera, Guillem; Fernández, Pilar; Grimalt, Joan O; Ventura, Marc; Camarero, Lluis; Catalan, Jordi; Nickus, Ulrike; Thies, Hansjörg; Psenner, Roland

    2002-06-15

    Bulk deposition samples were taken near three mountain lakes located in the Pyrenees (Estany Redó), Alps (Gossenköllesee), and Caledonian Mountains (Ovre Neådalsvatn) for evaluation of the atmospheric deposition load of organochlorine compounds (OC), namely, polychlorobiphenyls (PCBs), hexachlorocyclohexanes (HCHs), hexachlorobenzene (HCB), and endosulfans, in the remote European high mountain areas. The compounds of present use in agriculture, namely, endosulfans and gamma-HCH, exhibit large differences in mean deposition fluxes between the three sites. They occur in large amounts in Estany Redó (340 and 430 ng m(-2) month(-1) for endosulfans and gamma-HCH, respectively), reflecting the impact of agricultural activities in southern Europe. This lake showed also the highest proportion of the more labile endosulfan isomers (alpha and beta = 82%) whereas only the most recalcitrant species, endosulfan sulfate, was found in Ovre Neådalsvatn. In contrast, the OC whose use is now banned exhibit a more uniform geographic distribution with deposition fluxes of 31-40, 30-100, and 1.4-15 ng m(-2) month(-1) for alpha-HCH, PCBs, and HCB. Both compounds of present and past use exhibit a clear seasonal pattern, with higher deposition in the warm periods, which is consistent with enhanced volatilization at higher temperatures. In the case of the agricultural pesticides it may also reflect higher use during application periods. The OC distributions in the atmospheric deposition of the three sites are rather uniform and highly enriched in compounds with volatilities larger than 0.0032 Pa. However, more than 90% of these compounds are not retained in the lake waters or sediments. Comparison of OC composition in atmospheric and sedimentary deposition evidences a selective trapping of the less volatile compounds. Trapping efficiencies increase at decreasing air temperatures of the lacustrine systems.

  10. Atomic-Layer-Deposition Functionalized Carbonized Mesoporous Wood Fiber for High Sulfur Loading Lithium Sulfur Batteries.

    PubMed

    Luo, Chao; Zhu, Hongli; Luo, Wei; Shen, Fei; Fan, Xiulin; Dai, Jiaqi; Liang, Yujia; Wang, Chunsheng; Hu, Liangbing

    2017-04-14

    Lithium-sulfur battery (LSB) as one of the most promising energy storage devices suffers from poor conductivity of sulfur and fast capacity decay triggered by the dissolution of polysulfides. In this work, functionalized carbonized mesoporous wood fiber (f-CMWF) is employed as a host to accommodate sulfur for the first time. Natural wood microfiber has unique hierarchical and mesoporous structure, which is well maintained after carbonization. With such a hierarchical mesoporous structure, a high sulfur loading of 76 wt% is achieved in CMWF electrodes. The pore size of CMWF is tunable by atomic layer deposition (ALD) of 5 nm Al2O3 coating to form the f-CMWF. Such a thin layer coating slightly decreases the sulfur loading to 70%, but remarkably promotes the cyclic stability of sulfur cathode, which delivers an initial capacity of 1115 mAh g-1, and maintains a reversible capacity of 859 mAh g-1 for 450 cycles, corresponding to a slow capacity decay rate of 0.046% per cycle. More importantly, natural wood microfiber is firstly used as a raw material for sulfur encapsulating. This work is also critical for using low cost and mesoporous biomass carbon as bi-functional scaffold for LSB.

  11. Interface Engineering through Atomic Layer Deposition towards Highly Improved Performance of Dye-Sensitized Solar Cells

    NASA Astrophysics Data System (ADS)

    Lu, Hao; Tian, Wei; Guo, Jun; Li, Liang

    2015-08-01

    A composite photoanode comprising ultralong ZnO nanobelts and TiO2 nanoparticles was prepared and its performance in dye-sensitized solar cells (DSSCs) was optimized and compared to the photoanode consisting of conventional TiO2 nanoparticles. The ultralong ZnO nanobelts were synthesized in high yield by a facile solution approach at 90 oC followed by annealing at 500 oC. The effect of the ratio of ZnO nanobelts to TiO2 nanoparticles on the light scattering, specific surface area, and interface recombination were investigated. An optimum amount of ZnO nanobelts enhanced the photon-conversion efficiency by 61.4% compared to that of the conventional TiO2 nanoparticles. To further reduce the recombination rate and increase the carrier lifetime, Atomic Layer Deposition (ALD) technique was utilized to coat a continuous TiO2 film surrounding the ZnO nanobelts and TiO2 nanoparticles, functioning as a barrier-free access of all electrons to conductive electrodes. This ALD treatment improved the interface contact within the whole photoanode system, finally leading to significant enhancement (137%) in the conversion efficiency of DSSCs.

  12. Interface Engineering through Atomic Layer Deposition towards Highly Improved Performance of Dye-Sensitized Solar Cells

    PubMed Central

    Lu, Hao; Tian, Wei; Guo, Jun; Li, Liang

    2015-01-01

    A composite photoanode comprising ultralong ZnO nanobelts and TiO2 nanoparticles was prepared and its performance in dye-sensitized solar cells (DSSCs) was optimized and compared to the photoanode consisting of conventional TiO2 nanoparticles. The ultralong ZnO nanobelts were synthesized in high yield by a facile solution approach at 90 oC followed by annealing at 500 oC. The effect of the ratio of ZnO nanobelts to TiO2 nanoparticles on the light scattering, specific surface area, and interface recombination were investigated. An optimum amount of ZnO nanobelts enhanced the photon-conversion efficiency by 61.4% compared to that of the conventional TiO2 nanoparticles. To further reduce the recombination rate and increase the carrier lifetime, Atomic Layer Deposition (ALD) technique was utilized to coat a continuous TiO2 film surrounding the ZnO nanobelts and TiO2 nanoparticles, functioning as a barrier-free access of all electrons to conductive electrodes. This ALD treatment improved the interface contact within the whole photoanode system, finally leading to significant enhancement (137%) in the conversion efficiency of DSSCs. PMID:26238737

  13. Machining and grinding: High rate deformation in practice

    SciTech Connect

    Follansbee, P.S.

    1993-04-01

    Machining and grinding are well-established material-working operations involving highly non-uniform deformation and failure processes. A typical machining operation is characterized by uncertain boundary conditions (e.g.,surface interactions), three-dimensional stress states, large strains, high strain rates, non-uniform temperatures, highly localized deformations, and failure by both nominally ductile and brittle mechanisms. While machining and grinding are thought to be dominated by empiricism, even a cursory inspection leads one to the conclusion that this results more from necessity arising out of the complicated and highly interdisciplinary nature of the processes than from the lack thereof. With these conditions in mind, the purpose of this paper is to outline the current understanding of strain rate effects in metals.

  14. Machining and grinding: High rate deformation in practice

    SciTech Connect

    Follansbee, P.S.

    1993-01-01

    Machining and grinding are well-established material-working operations involving highly non-uniform deformation and failure processes. A typical machining operation is characterized by uncertain boundary conditions (e.g.,surface interactions), three-dimensional stress states, large strains, high strain rates, non-uniform temperatures, highly localized deformations, and failure by both nominally ductile and brittle mechanisms. While machining and grinding are thought to be dominated by empiricism, even a cursory inspection leads one to the conclusion that this results more from necessity arising out of the complicated and highly interdisciplinary nature of the processes than from the lack thereof. With these conditions in mind, the purpose of this paper is to outline the current understanding of strain rate effects in metals.

  15. High frame rate CCD camera with fast optical shutter

    SciTech Connect

    Yates, G.J.; McDonald, T.E. Jr.; Turko, B.T.

    1998-09-01

    A high frame rate CCD camera coupled with a fast optical shutter has been designed for high repetition rate imaging applications. The design uses state-of-the-art microchannel plate image intensifier (MCPII) technology fostered/developed by Los Alamos National Laboratory to support nuclear, military, and medical research requiring high-speed imagery. Key design features include asynchronous resetting of the camera to acquire random transient images, patented real-time analog signal processing with 10-bit digitization at 40--75 MHz pixel rates, synchronized shutter exposures as short as 200pS, sustained continuous readout of 512 x 512 pixels per frame at 1--5Hz rates via parallel multiport (16-port CCD) data transfer. Salient characterization/performance test data for the prototype camera are presented, temporally and spatially resolved images obtained from range-gated LADAR field testing are included, an alternative system configuration using several cameras sequenced to deliver discrete numbers of consecutive frames at effective burst rates up to 5GHz (accomplished by time-phasing of consecutive MCPII shutter gates without overlap) is discussed. Potential applications including dynamic radiography and optical correlation will be presented.

  16. Characteristics of a magnetorheological fluid in high shear rate

    NASA Astrophysics Data System (ADS)

    Kikuchi, Takehito; Abe, Isao; Inoue, Akio; Iwasaki, Akihiko; Okada, Katsuhiko

    2016-11-01

    The information on the properties of the magnetorheological fluid (MRF) in high shear rate, in particular a shear rate greater than 10 000 s-1, is important for the design of devices utilizing the MRF with very narrow fluid gaps, which are used in high-speed applications. However, very little research has been conducted on this subject. The objective of this study is to provide such information. MRF-140CG (Lord Corp.) is chosen as an example MRF. The plastic viscosity, thermal sensitivity, and durability of the fluid, especially under a shear rate greater than 10 000 s-1, are reported. The plastic viscosity is almost constant under a wide range of magnetic input. In contrast, MRF-140CG is sensitive to the shear rate; its sensitivity is relatively low at high shear rates. The thermal sensitivity shows negative values, and the effect of temperature decreases with increasing magnetic input. According to the result of the duration test at 30 000 s-1 and at a temperature of 120 °C, the lifetime dissipation energy is 5.48 MJ ml-1.

  17. Atomic Layer Deposition of High-k Dielectrics Using Supercritical CO2

    NASA Astrophysics Data System (ADS)

    Shende, Rajesh

    2005-03-01

    Atomic layer deposition (ALD) of high-κdielectric was performed in supercritical CO2 (SCCO2), using a two-step reaction sequence. In step one, tetraethoxy silane (TEOS) precursor was injected in SCCO2 at 80-100 C and 50 MPa pressure to obtain a chemisorbed surface monolayer, which was then oxidized into SiO2 using peroxide entrained in SCCO2. ALD process was controlled by estimating precursor solubility and its mass transport with respect to the density of SCCO2, and correlating these parameters with precursor injection volume. In the ALD process, 7 pulses of precursor were used anticipating deposition of one atomic layer in each of the pulses. The thickness of the SiO2 atomic layers deposited using SCCO2 was measured by variable angle spectroscopic ellipsometry (VASE), and the C-V measurements were also performed. The result obtained using VASE indicates that there were 7 monolayers of SiO2 with total thickness of 35 å, and the dielectric constant of the deposited layers was 4.0±0.1. Our initial findings clearly demonstrate that SCCO2 is capable of atomic layer deposition of high quality dielectric films at very low process temperatures preventing interface reaction. More research is in progress to achieve ALD of HfO2 and TiO2 in SCCO2.

  18. Distribution and deposition of organic fouling on the microfiltration membrane evaluated by high-frequency ultrasound

    PubMed Central

    Lin, Yi-Hsun; Tung, Kuo-Lun; Wang, Shyh-Hau; Zhou, Qifa; Shung, K. Kirk

    2014-01-01

    A 50 MHz high-frequency ultrasound and analysis method were developed to further improve the in situ assessment of deposition and distribution of organic fouling on the polyvinylidene fluoride (PVDF) membranes. Measurements of fouling depositions were performed from PVDF membranes filtrated with aqueous humic acid solutions (HAS) of 2 and 4 ppm concentrations in a flat-sheet module. Ultrasound signals reflected from the PVDF membranes, following filtrations at various durations including 0, 5, 15, 30, 60, and 100 min, were acquired. The thickness and distribution of fouling estimated and assessed by peak-to-peak echo voltage (Vpp) and C-mode images were found to be non-homogeneously deposited on the membranes. Following the filtrations with 2 and 4 ppm HAS for 100 min, the corresponding thickness of fouling deposition increased from 1.81±9 to 2.4571.57 mm, respectively; those average Vpp decreased from 2.05±07 to 1.13±16 V and from 2.11±08 to 0.94±15 V. These results demonstrated that the deposition and distribution of organic fouling could be sensitively and rapidly evaluated by high-frequency ultrasound image incorporated with the analysis method. PMID:25309028

  19. Distribution and deposition of organic fouling on the microfiltration membrane evaluated by high-frequency ultrasound.

    PubMed

    Lin, Yi-Hsun; Tung, Kuo-Lun; Wang, Shyh-Hau; Zhou, Qifa; Shung, K Kirk

    2013-04-15

    A 50 MHz high-frequency ultrasound and analysis method were developed to further improve the in situ assessment of deposition and distribution of organic fouling on the polyvinylidene fluoride (PVDF) membranes. Measurements of fouling depositions were performed from PVDF membranes filtrated with aqueous humic acid solutions (HAS) of 2 and 4 ppm concentrations in a flat-sheet module. Ultrasound signals reflected from the PVDF membranes, following filtrations at various durations including 0, 5, 15, 30, 60, and 100 min, were acquired. The thickness and distribution of fouling estimated and assessed by peak-to-peak echo voltage (Vpp) and C-mode images were found to be non-homogeneously deposited on the membranes. Following the filtrations with 2 and 4 ppm HAS for 100 min, the corresponding thickness of fouling deposition increased from 1.81±9 to 2.4571.57 mm, respectively; those average Vpp decreased from 2.05±07 to 1.13±16 V and from 2.11±08 to 0.94±15 V. These results demonstrated that the deposition and distribution of organic fouling could be sensitively and rapidly evaluated by high-frequency ultrasound image incorporated with the analysis method.

  20. Evaporation-assisted high-power impulse magnetron sputtering: The deposition of tungsten oxide as a case study

    SciTech Connect

    Hemberg, Axel; Dauchot, Jean-Pierre; Snyders, Rony; Konstantinidis, Stephanos

    2012-07-15

    The deposition rate during the synthesis of tungsten trioxide thin films by reactive high-power impulse magnetron sputtering (HiPIMS) of a tungsten target increases, above the dc threshold, as a result of the appropriate combination of the target voltage, the pulse duration, and the amount of oxygen in the reactive atmosphere. This behavior is likely to be caused by the evaporation of the low melting point tungsten trioxide layer covering the metallic target in such working conditions. The HiPIMS process is therefore assisted by thermal evaporation of the target material.

  1. User microprogrammable processors for high data rate telemetry preprocessing

    NASA Technical Reports Server (NTRS)

    Pugsley, J. H.; Ogrady, E. P.

    1973-01-01

    The use of microprogrammable processors for the preprocessing of high data rate satellite telemetry is investigated. The following topics are discussed along with supporting studies: (1) evaluation of commercial microprogrammable minicomputers for telemetry preprocessing tasks; (2) microinstruction sets for telemetry preprocessing; and (3) the use of multiple minicomputers to achieve high data processing. The simulation of small microprogrammed processors is discussed along with examples of microprogrammed processors.

  2. High-rate deformation of nanocrystalline iron and copper

    NASA Astrophysics Data System (ADS)

    Sinani, A. B.; Shpeizman, V. V.; Vlasov, A. S.; Zil'berbrand, E. L.; Kozachuk, A. I.

    2016-11-01

    Stress-strain curves are recorded during a high-speed impact and slow loading for nanocrystalline and coarse-grained iron and copper. The strain-rate sensitivity is determined as a function of the grain size and the strain. It is shown that the well-known difference between the variations of the strain-rate sensitivity of the yield strength with the grain size in fcc and bcc metals can be extended to other strain dependences: the strain-rate sensitivity of flow stresses in iron decreases with increasing strain, and that in copper increases. This difference also manifests itself in different slopes of the dependence of the strain-rate sensitivity on the grain size when the strain changes.

  3. Performance Evaluation of High-Rate GPS Seismometers

    NASA Astrophysics Data System (ADS)

    Kato, T.; Ebinuma, T.

    2011-12-01

    High-rate GPS observations with higher than once-per-second sampling are getting increasingly important for seismology. Unlike a traditional seismometer which measures short period vibration using accelerometers, the GPS receiver can measure its antenna position directly and record long period seismic wave and permanent displacements as well. The high-rate GPS observations are expected to provide new insights in understanding the whole aspects of earthquake process. In this study, we investigated dynamic characteristics of the high-rate GPS receivers capable of outputting the observations at up to 50Hz. This higher output rate, however, doesn't mean higher dynamics range of the GPS observations. Since many GPS receivers are designed for low dynamics applications, such as static survey, personal and car navigation, the bandwidth of the loop filters tend to be narrower in order to reduce the noise level of the observations. The signal tracking loop works like a low-pass filter. Thus the narrower the bandwidth, the lower the dynamics range. In order to extend this dynamical limit, high-rate GPS receivers might use wider loop bandwidth for phase tracking. In this case, the GPS observations are degraded by higher noise level in return. In addition to the limitation of the loop bandwidth, higher acceleration due to earthquake may cause the steady state error in the signal tracking loop. As a result, kinematic solutions experience undesirable position offsets, or the receiver may lose the GPS signals in an extreme case. In order to examine those effects for the high-rate GPS observations, we made an experiment using a GPS signal simulator and several geodetic GPS receivers, including Trimble Net-R8, NovAtel OEMV, Topcon Net-G3A, and Javad SIGMA-G2T. We set up the zero-baseline simulation scenario in which the rover receiver was vibrating in a periodic motion with the frequency from 1Hz to 10Hz around the reference station. The amplitude of the motion was chosen to provide

  4. High Reported Spontaneous Stuttering Recovery Rates: Fact or Fiction?

    ERIC Educational Resources Information Center

    Ramig, Peter R.

    1993-01-01

    Contact after 6 to 8 years with families of 21 children who were diagnosed as stuttering but did not receive fluency intervention services found that almost all subjects still had a stuttering problem. Results dispute the high spontaneous recovery rates reported in the literature and support the value of early intervention. (Author/DB)

  5. Distance Education: Why Are the Attrition Rates so High?

    ERIC Educational Resources Information Center

    Moody, Johnette

    2004-01-01

    Distance education is being hailed as the next best thing to sliced bread. But is it really? Many problems exist with distance-delivered courses. Everything from course development and management to the student not being adequately prepared are problematic and result in high attrition rates in distance-delivered courses. Students initially…

  6. Binary interactions with high accretion rates onto main sequence stars

    NASA Astrophysics Data System (ADS)

    Shiber, Sagiv; Schreier, Ron; Soker, Noam

    2016-07-01

    Energetic outflows from main sequence stars accreting mass at very high rates might account for the powering of some eruptive objects, such as merging main sequence stars, major eruptions of luminous blue variables, e.g., the Great Eruption of Eta Carinae, and other intermediate luminosity optical transients (ILOTs; red novae; red transients). These powerful outflows could potentially also supply the extra energy required in the common envelope process and in the grazing envelope evolution of binary systems. We propose that a massive outflow/jets mediated by magnetic fields might remove energy and angular momentum from the accretion disk to allow such high accretion rate flows. By examining the possible activity of the magnetic fields of accretion disks, we conclude that indeed main sequence stars might accrete mass at very high rates, up to ≈ 10-2 M ⊙ yr-1 for solar type stars, and up to ≈ 1 M ⊙ yr-1 for very massive stars. We speculate that magnetic fields amplified in such extreme conditions might lead to the formation of massive bipolar outflows that can remove most of the disk's energy and angular momentum. It is this energy and angular momentum removal that allows the very high mass accretion rate onto main sequence stars.

  7. Design of abrasive tool for high-rate grinding

    NASA Astrophysics Data System (ADS)

    Ilinykh, AS

    2017-02-01

    The experimental studies aimed to design heavy-duty abrasive wheels for high-rate grinding are presented. The design of abrasive wheels with the working speed up to 100 m/s is based on the selection of optimized material composition and manufacture technology of the wheels.

  8. Plant respirometer enables high resolution of oxygen consumption rates

    NASA Technical Reports Server (NTRS)

    Foster, D. L.

    1966-01-01

    Plant respirometer permits high resolution of relatively small changes in the rate of oxygen consumed by plant organisms undergoing oxidative metabolism in a nonphotosynthetic state. The two stage supply and monitoring system operates by a differential pressure transducer and provides a calibrated output by digital or analog signals.

  9. Cassini High Rate Detector V16.0

    NASA Astrophysics Data System (ADS)

    Economou, T.; DiDonna, P.

    2016-05-01

    The High Rate Detector (HRD) from the University of Chicago is an independent part of the CDA instrument on the Cassini Orbiter that measures the dust flux and particle mass distribution of dust particles hitting the HRD detectors. This data set includes all data from the HRD through December 31, 2015. Please refer to Srama et al. (2004) for a detailed HRD description.

  10. Predicting the College Attendance Rate of Graduating High School Classes.

    ERIC Educational Resources Information Center

    Hoover, Donald R.

    1990-01-01

    An important element of school counseling is providing assessments on the collective future needs and activities of a graduating school class. The College Attendance Rate (CAR) is defined here as the proportion of seniors graduating from a given high school, during a given year, that will enroll full-time at an academic college sometime during the…

  11. Digital approach to high rate gamma-ray spectrometry

    SciTech Connect

    Korolczuk, Stefan; Mianowski, Slawomir; Rzadkiewicz, Jacek; Sibczynski, Pawel; Swiderski, Lukasz; Szewinski, Jaroslaw; Zychor, Izabella

    2015-07-01

    Basic concepts and preliminary results of creating high rate digital spectrometry system using efficient ADCs and latest FPGA are presented as well as a comparison with commercially available devices. The possibility to use such systems, coupled to scintillators, in plasma experiments is discussed. (authors)

  12. Corrected High-Frame Rate Anchored Ultrasound with Software Alignment

    ERIC Educational Resources Information Center

    Miller, Amanda L.; Finch, Kenneth B.

    2011-01-01

    Purpose: To improve lingual ultrasound imaging with the Corrected High Frame Rate Anchored Ultrasound with Software Alignment (CHAUSA; Miller, 2008) method. Method: A production study of the IsiXhosa alveolar click is presented. Articulatory-to-acoustic alignment is demonstrated using a Tri-Modal 3-ms pulse generator. Images from 2 simultaneous…

  13. Childhood Onset Schizophrenia: High Rate of Visual Hallucinations

    ERIC Educational Resources Information Center

    David, Christopher N.; Greenstein, Deanna; Clasen, Liv; Gochman, Pete; Miller, Rachel; Tossell, Julia W.; Mattai, Anand A.; Gogtay, Nitin; Rapoport, Judith L.

    2011-01-01

    Objective: To document high rates and clinical correlates of nonauditory hallucinations in childhood onset schizophrenia (COS). Method: Within a sample of 117 pediatric patients (mean age 13.6 years), diagnosed with COS, the presence of auditory, visual, somatic/tactile, and olfactory hallucinations was examined using the Scale for the Assessment…

  14. Cassini High Rate Detector V14.0

    NASA Astrophysics Data System (ADS)

    Economou, T.; DiDonna, P.

    2014-06-01

    The High Rate Detector (HRD) from the University of Chicago is an independent part of the CDA instrument on the Cassini Orbiter that measures the dust flux and particle mass distribution of dust particles hitting the HRD detectors. This data set includes all data from the HRD through December 31, 2013. Please refer to Srama et al. (2004) for a detailed HRD description.

  15. READOUT ELECTRONICS FOR A HIGH-RATE CSC DETECTOR

    SciTech Connect

    OCONNOR,P.; GRATCHEV,V.; KANDASAMY,A.; POLYCHRONAKOS,V.; TCHERNIATINE,V.; PARSONS,J.; SIPPACH,W.

    1999-09-25

    A readout system for a high-rate muon Cathode Strip Chamber (CSC) is described. The system, planned for use in the forward region of the ATLAS muon spectrometer, uses two custom CMOS integrated circuits to achieve good position resolution at a flux of up to 2,500 tracks/cm{sup 2}/s.

  16. Trends in High School Graduation Rates. Research Brief. Volume 0710

    ERIC Educational Resources Information Center

    Romanik, Dale; Froman, Terry

    2008-01-01

    This Research Brief addresses an outcome measure that is of paramount importance to senior high schools--graduation rate. Nationwide a student drops out of school approximately every nine seconds. The significance of this issue locally is exemplified by a recent American Civil Liberties Union filing of a class action law suit against the Palm…

  17. High Interview Response Rates: Much Ado about Nothing?

    ERIC Educational Resources Information Center

    Berdie, Doug R.

    The question of how high a response rate is needed in order for telephone surveys to obtain data that accurately represent the entire sample, was investigated via reevaluating results of three previously published studies and reporting on three 1989 studies for the first time. The three previous studies indicated that, if the sample…

  18. Recent Advances in High-Growth Rate Single-Crystal CVD Diamond

    SciTech Connect

    Liang, Q.; Yan, C; Meng, Y; Lai, J; Krasnicki, S; Mao, H; Hemley, R

    2009-01-01

    There have been important advances in microwave plasma chemical vapor deposition (MPCVD) of large single-crystal CVD diamond at high growth rates and applications of this diamond. The types of gas chemistry and growth conditions, including microwave power, pressure, and substrate surface temperatures, have been varied to optimize diamond quality and growth rates. The diamond has been characterized by a variety of spectroscopic and diffraction techniques. We have grown single-crystal CVD diamond over ten carats and above 1 cm in thickness at growth rates of 50-100 {micro}m/h. Colorless and near colorless single crystals up to two carats have been produced by further optimizing the process. The nominal Vickers fracture toughness of this high-growth rate diamond can be tuned to exceed 20 MPa m{sup 1/2} in comparison to 5-10 MPa m{sup 1/2} for conventional natural and CVD diamond. Post-growth high-pressure/high-temperature (HPHT) and low-pressure/high-temperature (LPHT) annealing have been carried out to alter the optical, mechanical, and electronic properties. Most recently, single-crystal CVD diamond has been successfully annealed by LPHT methods without graphitization up to 2200 C and < 300 Torr for periods of time ranging from a fraction of minute to a few hours. Significant changes observed in UV, visible, infrared, and photoluminescence spectra are attributed to changes in various vacancy centers and extended defects.

  19. Some physical effects of reaction rate on PbS thin films obtained by chemical bath deposition

    NASA Astrophysics Data System (ADS)

    Altıokka, Barış; Baykul, Mevlana Celalettin; Altıokka, Mehmet Rıza

    2013-12-01

    Thin films of polycrystalline lead sulfide (PbS) have been deposited on glass substrates at 303±1 K using chemical bath deposition (CBD). The precipitation of PbS on solid surfaces under four different reaction conditions was performed using a sodium sulfite (Na2SO3) compound as an inhibitor. The kinetics model for the reaction between Pb2+ and S2- was developed according to the amounts of Pb2+ concentrations measured by atomic absorption spectroscopy (AAS) during the precipitation of PbS. The surface morphologies of PbS thin films were studied with a Scanning Electron Microscope (SEM). It was found that the precipitation rate effects the formation of pinhole. To obtain a good quality of thin films the optimum concentration of lead nitrate (Pb(NO3)2), sodium hydroxide (NaOH), thiourea (CS(NH2)2) and Na2SO3 in the final solution was determined to be 0.0089, 0.1460, 0.510 and 0.00023 M, respectively. The film structures were characterized by X-ray diffractometer (XRD). The XRD results showed that the films formed galena cubic structures which represent the natural mineral of PbS. The crystallite sizes of the films were found to be between 23 and 37 nm.

  20. Energy deposition and middle atmosphere electrodynamic response to a highly relativistic electron precipitation event

    NASA Technical Reports Server (NTRS)

    Goldberg, R. A.; Baker, D. N.; Herrero, F. A.; Mccarthy, S. P.; Twigg, P. A.; Croskey, C. L.; Hale, L. C.

    1994-01-01

    Rocket data have been used to evaluate the characteristics of precipitating relativistic electrons and their effects on the electrodynamic structure of the middle atmosphere. These data were obtained at Poker Flat, Alaska, on May 13 and 14, 1990, during a midday, highly relativistic electron (HRE) precipitation event. Solid state detectors were used to measure the electron fluxes and their energy spectra. An X ray scintillator was included on each flight to measure bremsstrahlung X rays produced by energetic electrons impacting on the upper atmosphere. However, these were found the be of negligible importance for this particular event. The energy deposition by the electrons has been determined from the flux measurements and compared with in situ measurements of the atmospheric electrical response. The electrodynamic measurements were obtained by the same rockets and additionally on May 13, with an accompanying rocket. The impact flux was highly irregular, containing short-lived bursts of relativistic electrons, mainly with energies below 0.5 MeV and with fluxes most enhanced between pitch angles of 0 deg - 20 deg. Although the geostationary counterpart of this measured event was considered to be of relatively low intensity and hardness, energy deposition peaked near 75 km with fluxes approaching an ion pair production rate in excess of 100/cu cm s. This exceeds peak fluxes in relativistic electron precipitation (REP) events as observed by us in numerous rocket soundings since 1976. Conductivity measurements from a blunt probe showed that negative electrical conductivities exceeded positive conductivities down to 50 km or lower, consistent with steady ionization by precipitating electrons above 1 MeV. These findings imply that the electrons from the outer radiation zone can modulate the electrical properties of the middle atmosphere to altitudes below 50 km. During the decline and activity minimum of the current solar cycle, we anticipate the occurence of similar

  1. High-rate RPECVD of a-Si:H films by means of a VHF resonant plasma source

    SciTech Connect

    Blum, T.; Suchaneck, G.; Kuske, J.; Stephan, U.; Kottwitz, A.; Beyer, W.

    1996-12-31

    Thin film polycrystalline silicon on large-area glass substrate is a promising material for low-cost high efficiency solar cells. High deposition rate (up to 5 nm/s) a-Si:H films suitable for recrystallization were deposited using a {lambda}/4 helical resonator source. Refractive index, Tauc-gap, photo- and dark conductivities were measured for film characterization. The metastable behavior was characterized by the light-induced degradation of the photoconductivity. Hydrogen content and bonding configuration were analyzed by IR absorption and mass separated thermal fusion transients, film microstructure was studied by intentionally incorporating carbon and oxygen. Most of the hydrogen is located on internal surfaces in the otherwise dense material. Differences between the deposition from the highly excited plasma and the conventional remote PECVD process are discussed.

  2. Direct Metal Deposition of Refractory High Entropy Alloy MoNbTaW

    NASA Astrophysics Data System (ADS)

    Dobbelstein, Henrik; Thiele, Magnus; Gurevich, Evgeny L.; George, Easo P.; Ostendorf, Andreas

    Alloying of refractory high entropy alloys (HEAs) such as MoNbTaW is usually done by vacuum arc melting (VAM) or powder metallurgy (PM) due to the high melting points of the elements. Machining to produce the final shape of parts is often needed after the PM process. Casting processes, which are often used for aerospace components (turbine blades, vanes), are not possible. Direct metal deposition (DMD) is an additive manufacturing technique used for the refurbishment of superalloy components, but generating these components from the bottom up is also of current research interest. MoNbTaW possesses high yield strength at high temperatures and could be an alternative to state-of-the-art materials. In this study, DMD of an equimolar mixture of elemental powders was performed with a pulsed Nd:YAG laser. Single wall structures were built, deposition strategies developed and the microstructure of MoNbTaW was analyzed by back scattered electrons (BSE) and energy dispersive X-ray (EDX) spectroscopy in a scanning electron microscope. DMD enables the generation of composition gradients by using dynamic powder mixing instead of pre-alloyed powders. However, the simultaneous handling of several elemental or pre-alloyed powders brings new challenges to the deposition process. The influence of thermal properties, melting point and vapor pressure on the deposition process and chemical composition will be discussed.

  3. High temperature polymetallic sulfide deposits in back arc environment: Lau basin SW Pacific

    SciTech Connect

    Fouquet, Y. ); Von Stackelberg, U. ); Herzig, P. )

    1990-06-01

    During the French-German diving cruise Nautilau, black smokers were observed for the first time in a back-arc environment. Twenty-two dives have been completed to investigate the southern Lau basin. The objectives were to understand the genesis of sulfide ores, the volcanic and tectonic activity in a back arc close to an island arc. The four diving sites in a water depth of about 2,000 m are located between 21{degree}25'S and 22{degree}40'S. Three types of hydrothermal deposits were discovered during the cruise: (1) Low temperature (40{degree}) deposits that are related to discharge through highly vesicular andesite and dacite. They are characterized by extensive deposits of Fe-Mn oxides underlaid by sulfides. (2) Medium- to high-temperature barite/sulfides mineralization was observed in many places along the ridge. The most important field, a few hundred meters in diameter and 20 m high, consists of barite chimneys and massive barite boulders mixed with massive sulfides. (3) Very high temperature black and white smokers were discovered at the central Valu Fa Ridge. The chemistry of the fluid and the plume is described elsewhere. The temperature measured at the vents (342{degree}C) and the general anomalies of the bottom seawater (up to 25{degree}C) indicate that the area is one of the most active known in the oceans at the present time. A complete cross section was sampled through a massive sulfide deposit including the stockwork.

  4. Air-stable ink for scalable, high-throughput layer deposition

    DOEpatents

    Weil, Benjamin D; Connor, Stephen T; Cui, Yi

    2014-02-11

    A method for producing and depositing air-stable, easily decomposable, vulcanized ink on any of a wide range of substrates is disclosed. The ink enables high-volume production of optoelectronic and/or electronic devices using scalable production methods, such as roll-to-roll transfer, fast rolling processes, and the like.

  5. Chemical Alteration Pathways Resulting in High-Silica Deposits on Mars

    NASA Astrophysics Data System (ADS)

    Yen, A. S.; Gellert, R.; Clark, B. C.; Ming, D. W.; Morris, R. V.; Mittlefehldt, D. W.

    2015-12-01

    The chemical compositions of nearly 1000 targets at the surface of Mars have been established by the cross-calibrated Alpha-Particle X-ray Spectrometers (APXS) onboard the Mars Science Laboratory (MSL) and the two Mars Exploration Rovers (MER). Comparing and contrasting these measurements provides greater insight into martian surface processes than the standalone use of data from an individual mission. For example, the combination of MER and MSL APXS data indicate two distinct pathways for silicate weathering: 1. Open system alteration at circumneutral pH. Fracture-filling deposits in impact breccias at the rim of Endeavour Crater analyzed by the Opportunity rover show the highest SiO2 concentrations at Meridiani Planum (62 wt%) with correlated Si and Al (Si:Al ~0.3). These Mg and Fe-depleted veins have chemical signatures consistent with an Al-rich smectite and likely formed as a precipitate from non-acidic aqueous solutions. Similar high Si and Al deposits found at the Gusev landing site by the Spirit rover were interpreted as montmorillonite. 2. Open system, acid-sulfate alteration. In sharp contrast to Si and Al-rich deposits, a group of high-Si targets have low concentrations of Al. Deposits in Gusev Crater near "Home Plate," a hydrothermal locale with nearby fumarolic deposits, fall into this category. Acid-sulfate processes are likely responsible for mobilizing most other elements, including Al, leaving behind a Si-rich, and generally Ti-rich, residue. Recent high-Si samples (up to 72 wt% SiO2) analyzed by the Curiosity rover exhibit similar chemical patterns, including elevated TiO2 concentrations, suggestive that acidic leaching may also have been an important process in the development of deposits found within Gale Crater. The framework of chemical analyses established through years of Mars surface operations provides the basis against which future measurements by Opportunity, Curiosity and the Mars 2020 rover can be compared.

  6. A new highly automated sputter equipment for in situ investigation of deposition processes with synchrotron radiation

    SciTech Connect

    Doehrmann, Ralph; Botta, Stephan; Buffet, Adeline; Santoro, Gonzalo; Schlage, Kai; Schwartzkopf, Matthias; Risch, Johannes F. H.; Mannweiler, Roman; Roth, Stephan V.; Bommel, Sebastian; Brunner, Simon; Metwalli, Ezzeldin; Mueller-Buschbaum, Peter

    2013-04-15

    HASE (Highly Automated Sputter Equipment) is a new mobile setup developed to investigate deposition processes with synchrotron radiation. HASE is based on an ultra-high vacuum sputter deposition chamber equipped with an in-vacuum sample pick-and-place robot. This enables a fast and reliable sample change without breaking the vacuum conditions and helps to save valuable measurement time, which is required for experiments at synchrotron sources like PETRA III at DESY. An advantageous arrangement of several sputter guns, mounted on a rotative flange, gives the possibility to sputter under different deposition angles or to sputter different materials on the same substrate. The chamber is also equipped with a modular sample stage, which allows for the integration of different sample environments, such as a sample heating and cooling device. The design of HASE is unique in the flexibility. The combination of several different sputtering methods like standard deposition, glancing angle deposition, and high pressure sputter deposition combined with heating and cooling possibil-ities of the sample, the large exit windows, and the degree of automation facilitate many different grazing incidence X-ray scattering experiments, such as grazing incidence small and wide angle X-ray scattering, in one setup. In this paper we describe in detail the design and the performance of the new equipment and present the installation of the HASE apparatus at the Micro and Nano focus X-ray Scattering beamline (MiNaXS) at PETRA III. Furthermore, we describe the measurement options and present some selected results. The HASE setup has been successfully commissioned and is now available for users.

  7. A new highly automated sputter equipment for in situ investigation of deposition processes with synchrotron radiation.

    PubMed

    Döhrmann, Ralph; Botta, Stephan; Buffet, Adeline; Santoro, Gonzalo; Schlage, Kai; Schwartzkopf, Matthias; Bommel, Sebastian; Risch, Johannes F H; Mannweiler, Roman; Brunner, Simon; Metwalli, Ezzeldin; Müller-Buschbaum, Peter; Roth, Stephan V

    2013-04-01

    HASE (Highly Automated Sputter Equipment) is a new mobile setup developed to investigate deposition processes with synchrotron radiation. HASE is based on an ultra-high vacuum sputter deposition chamber equipped with an in-vacuum sample pick-and-place robot. This enables a fast and reliable sample change without breaking the vacuum conditions and helps to save valuable measurement time, which is required for experiments at synchrotron sources like PETRA III at DESY. An advantageous arrangement of several sputter guns, mounted on a rotative flange, gives the possibility to sputter under different deposition angles or to sputter different materials on the same substrate. The chamber is also equipped with a modular sample stage, which allows for the integration of different sample environments, such as a sample heating and cooling device. The design of HASE is unique in the flexibility. The combination of several different sputtering methods like standard deposition, glancing angle deposition, and high pressure sputter deposition combined with heating and cooling possibilities of the sample, the large exit windows, and the degree of automation facilitate many different grazing incidence X-ray scattering experiments, such as grazing incidence small and wide angle X-ray scattering, in one setup. In this paper we describe in detail the design and the performance of the new equipment and present the installation of the HASE apparatus at the Micro and Nano focus X-ray Scattering beamline (MiNaXS) at PETRA III. Furthermore, we describe the measurement options and present some selected results. The HASE setup has been successfully commissioned and is now available for users.

  8. LDRD Project 52523 final report :Atomic layer deposition of highly conformal tribological coatings.

    SciTech Connect

    Jungk, John Michael; Dugger, Michael Thomas; George, Steve M.; Prasad, Somuri V.; Grubbs, Robert K.; Moody, Neville Reid; Mayer, Thomas Michael; Scharf, Thomas W.; Goeke, Ronald S.; Gerberich, William W.

    2005-10-01

    Friction and wear are major concerns in the performance and reliability of micromechanical (MEMS) devices. While a variety of lubricant and wear resistant coatings are known which we might consider for application to MEMS devices, the severe geometric constraints of many micromechanical systems (high aspect ratios, shadowed surfaces) make most deposition methods for friction and wear-resistance coatings impossible. In this program we have produced and evaluate highly conformal, tribological coatings, deposited by atomic layer deposition (ALD), for use on surface micromachined (SMM) and LIGA structures. ALD is a chemical vapor deposition process using sequential exposure of reagents and self-limiting surface chemistry, saturating at a maximum of one monolayer per exposure cycle. The self-limiting chemistry results in conformal coating of high aspect ratio structures, with monolayer precision. ALD of a wide variety of materials is possible, but there have been no studies of structural, mechanical, and tribological properties of these films. We have developed processes for depositing thin (<100 nm) conformal coatings of selected hard and lubricious films (Al2O3, ZnO, WS2, W, and W/Al{sub 2}O{sub 3} nanolaminates), and measured their chemical, physical, mechanical and tribological properties. A significant challenge in this program was to develop instrumentation and quantitative test procedures, which did not exist, for friction, wear, film/substrate adhesion, elastic properties, stress, etc., of extremely thin films and nanolaminates. New scanning probe and nanoindentation techniques have been employed along with detailed mechanics-based models to evaluate these properties at small loads characteristic of microsystem operation. We emphasize deposition processes and fundamental properties of ALD materials, however we have also evaluated applications and film performance for model SMM and LIGA devices.

  9. A new highly automated sputter equipment for in situ investigation of deposition processes with synchrotron radiation

    NASA Astrophysics Data System (ADS)

    Döhrmann, Ralph; Botta, Stephan; Buffet, Adeline; Santoro, Gonzalo; Schlage, Kai; Schwartzkopf, Matthias; Bommel, Sebastian; Risch, Johannes F. H.; Mannweiler, Roman; Brunner, Simon; Metwalli, Ezzeldin; Müller-Buschbaum, Peter; Roth, Stephan V.

    2013-04-01

    HASE (Highly Automated Sputter Equipment) is a new mobile setup developed to investigate deposition processes with synchrotron radiation. HASE is based on an ultra-high vacuum sputter deposition chamber equipped with an in-vacuum sample pick-and-place robot. This enables a fast and reliable sample change without breaking the vacuum conditions and helps to save valuable measurement time, which is required for experiments at synchrotron sources like PETRA III at DESY. An advantageous arrangement of several sputter guns, mounted on a rotative flange, gives the possibility to sputter under different deposition angles or to sputter different materials on the same substrate. The chamber is also equipped with a modular sample stage, which allows for the integration of different sample environments, such as a sample heating and cooling device. The design of HASE is unique in the flexibility. The combination of several different sputtering methods like standard deposition, glancing angle deposition, and high pressure sputter deposition combined with heating and cooling possibil-ities of the sample, the large exit windows, and the degree of automation facilitate many different grazing incidence X-ray scattering experiments, such as grazing incidence small and wide angle X-ray scattering, in one setup. In this paper we describe in detail the design and the performance of the new equipment and present the installation of the HASE apparatus at the Micro and Nano focus X-ray Scattering beamline (MiNaXS) at PETRA III. Furthermore, we describe the measurement options and present some selected results. The HASE setup has been successfully commissioned and is now available for users.

  10. Heart Rate Variability for Early Detection of Cardiac Iron Deposition in Patients with Transfusion-Dependent Thalassemia

    PubMed Central

    Silvilairat, Suchaya; Charoenkwan, Pimlak; Saekho, Suwit; Tantiworawit, Adisak; Phrommintikul, Arintaya; Srichairatanakool, Somdet; Chattipakorn, Nipon

    2016-01-01

    Background Iron overload cardiomyopathy remains the major cause of death in patients with transfusion-dependent thalassemia. Cardiac T2* magnetic resonance imaging is costly yet effective in detecting cardiac iron accumulation in the heart. Heart rate variability (HRV) has been used to evaluate cardiac autonomic function and is depressed in cases of thalassemia. We evaluated whether HRV could be used as an indicator for early identification of cardiac iron deposition. Methods One hundred and one patients with transfusion-dependent thalassemia were enrolled in this study. The correlation between recorded HRV and hemoglobin, non-transferrin bound iron (NTBI), serum ferritin and cardiac T2* were evaluated. Results The median age was 18 years (range 8–59 years). The patient group with a 5-year mean serum ferritin >5,000 ng/mL included significantly more homozygous β-thalassemia and splenectomized patients, had lower hemoglobin levels, and had more cardiac iron deposit than all other groups. Anemia strongly influenced all domains of HRV. After adjusting for anemia, neither serum ferritin nor NTBI impacted the HRV. However cardiac T2* was an independent predictor of HRV, even after adjusting for anemia. For receiver operative characteristic (ROC) curve analysis of cardiac T2* ≤20 ms, only mean ferritin in the last 12 months and the average of the standard deviation of all R-R intervals for all five-minute segments in the 24-hour recording were predictors for cardiac T2* ≤20 ms, with area under the ROC curve of 0.961 (p<0.0001) and 0.701 (p = 0.05), respectively. Conclusions Hemoglobin and cardiac T2* as significant predictors for HRV indicate that anemia and cardiac iron deposition result in cardiac autonomic imbalance. The mean ferritin in the last 12 months could be useful as the best indicator for further evaluation of cardiac risk. The ability of serum ferritin to predict cardiac risk is stronger than observed in other thalassemia cohorts. HRV might be a

  11. Lime-mud layers in high-energy tidal channels: a record of hurricane deposition

    USGS Publications Warehouse

    Shinn, E.A.; Steinen, R.P.; Dill, R.F.; Major, R.

    1993-01-01

    During or immediately following the transit of Hurricane Andrew (August 23-24, 1992) across the northern part of the Great Bahama Bank, thin laminated beds of carbonate mud were deposited in high-energy subtidal channels (4 m depth) through the ooid shoals of south Cat Cay and Joulters Cays. Thicker, more cohesive (and therefore older) mud beds and angular mud fragments associated with ooids from Joulters Cays have similar characteristics but lack fresh plant fragments. We infer that these older beds were similarly deposited and thus record the passage of previous hurricanes or tropical storms. -from Authors

  12. High frame rate photoacoustic imaging using clinical ultrasound system

    NASA Astrophysics Data System (ADS)

    Sivasubramanian, Kathyayini; Pramanik, Manojit

    2016-03-01

    Photoacoustic tomography (PAT) is a potential hybrid imaging modality which is gaining attention in the field of medical imaging. Typically a Q-switched Nd:YAG laser is used to excite the tissue and generate photoacoustic signals. But, they are not suitable for clinical applications owing to their high cost, large size. Also, their low pulse repetition rate (PRR) of few tens of hertz prevents them from being used in real-time PAT. So, there is a growing need for an imaging system capable of real-time imaging for various clinical applications. In this work, we are using a nanosecond pulsed laser diode as an excitation source and a clinical ultrasound imaging system to obtain the photoacoustic imaging. The excitation laser is ~803 nm in wavelength with energy of ~1.4 mJ per pulse. So far, the reported frame rate for photoacoustic imaging is only a few hundred Hertz. We have demonstrated up to 7000 frames per second framerate in photoacoustic imaging (B-mode) and measured the flow rate of fast moving obje ct. Phantom experiments were performed to test the fast imaging capability and measure the flow rate of ink solution inside a tube. This fast photoacoustic imaging can be used for various clinical applications including cardiac related problems, where the blood flow rate is quite high, or other dynamic studies.

  13. Improvement and characterization of high-reflective and anti-reflective nanostructured mirrors by ion beam assisted deposition for 944 nm high power diode laser

    NASA Astrophysics Data System (ADS)

    Ghadimi-Mahani, A.; Farsad, E.; Goodarzi, A.; Tahamtan, S.; Abbasi, S. P.; Zabihi, M. S.

    2015-11-01

    Single-layer and multi-layer coatings were applied on the surface of diode laser facets as mirrors. This thin film mirrors were designed, deposited, optimized and characterized. The effects of mirrors on facet passivation and optical properties of InGaAs/AlGaAs/GaAs diode lasers were investigated. High-Reflective (HR) and Anti-Reflective (AR) mirrors comprising of four double-layers of Al2O3/Si and a single layer of Al2O3, respectively, were designed and optimized by Macleod software for 944 nm diode lasers. Optimization of Argon flow rate was studied through Alumina thin film deposition by Ion Beam Assisted Deposition (IBAD) for mirror improvement. The nanostructured HR and AR mirrors were deposited on the front and back facet of the laser respectively, by IBAD system under optimum condition. Atomic Force Microscope (AFM), Vis-IR Spectrophotometer, Field Emission Scanning Electron Microscopy (FESEM) and laser characterization Test (P-I) were used to characterize various properties of mirrors and lasers. AFM images show mirror's root mean square roughness is nearly 1 nm. The Spectrophotometer results of the front facet transmission and the back facet reflection are in good agreement with the simulation results. Optical output power (P) versus driving current (I) characteristics, measured before and after coating the facet, revealed a significant output power enhancement due to optimized AR and HR optical coatings on facets.

  14. High strain rate behavior of pure metals at elevated temperature

    NASA Astrophysics Data System (ADS)

    Testa, Gabriel; Bonora, Nicola; Ruggiero, Andrew; Iannitti, Gianluca; Domenico, Gentile

    2013-06-01

    In many applications and technology processes, such as stamping, forging, hot working etc., metals and alloys are subjected to elevated temperature and high strain rate deformation process. Characterization tests, such as quasistatic and dynamic tension or compression test, and validation tests, such as Taylor impact and DTE - dynamic tensile extrusion -, provide the experimental base of data for constitutive model validation and material parameters identification. Testing material at high strain rate and temperature requires dedicated equipment. In this work, both tensile Hopkinson bar and light gas gun where modified in order to allow material testing under sample controlled temperature conditions. Dynamic tension tests and Taylor impact tests, at different temperatures, on high purity copper (99.98%), tungsten (99.95%) and 316L stainless steel were performed. The accuracy of several constitutive models (Johnson and Cook, Zerilli-Armstrong, etc.) in predicting the observed material response was verified by means of extensive finite element analysis (FEA).

  15. Magnetic Implosion for Novel Strength Measurements at High Strain Rates

    SciTech Connect

    Lee, H.; Preston, D.L.; Bartsch, R.R.; Bowers, R.L.; Holtkamp, D.; Wright, B.L.

    1998-10-19

    Recently Lee and Preston have proposed to use magnetic implosions as a new method for measuring material strength in a regime of large strains and high strain rates inaccessible to previously established techniques. By its shockless nature, this method avoids the intrinsic difficulties associated with an earlier approach using high explosives. The authors illustrate how the stress-strain relation for an imploding liner can be obtained by measuring the velocity and temperature history of its inner surface. They discuss the physical requirements that lead us to a composite liner design applicable to different test materials, and also compare the code-simulated prediction with the measured data for the high strain-rate experiments conducted recently at LANL. Finally, they present a novel diagnostic scheme that will enable us to remove the background in the pyrometric measurement through data reduction.

  16. High repetition rate plasma mirror device for attosecond science

    SciTech Connect

    Borot, A.; Douillet, D.; Iaquaniello, G.; Lefrou, T.; Lopez-Martens, R.; Audebert, P.; Geindre, J.-P.

    2014-01-15

    This report describes an active solid target positioning device for driving plasma mirrors with high repetition rate ultra-high intensity lasers. The position of the solid target surface with respect to the laser focus is optically monitored and mechanically controlled on the nm scale to ensure reproducible interaction conditions for each shot at arbitrary repetition rate. We demonstrate the target capabilities by driving high-order harmonic generation from plasma mirrors produced on glass targets with a near-relativistic intensity few-cycle pulse laser system operating at 1 kHz. During experiments, residual target surface motion can be actively stabilized down to 47 nm (root mean square), which ensures sub-300-as relative temporal stability of the plasma mirror as a secondary source of coherent attosecond extreme ultraviolet radiation in pump-probe experiments.

  17. In situ growth rate measurements and length control during chemical vapor deposition of vertically aligned multiwall carbon nanotubes

    NASA Astrophysics Data System (ADS)

    Geohegan, D. B.; Puretzky, A. A.; Ivanov, I. N.; Jesse, S.; Eres, G.; Howe, J. Y.

    2003-09-01

    Time-resolved reflectivity is employed as an in situ diagnostic in thermal chemical vapor deposition of vertically aligned arrays of multiwall carbon nanotubes (VAA-MWNT). Fabry-Ṕerot interference fringes and attenuation of a reflected HeNe laser beam are used to measure the length of VAA-MWNT throughout the first 3-8 μm of growth yielding in situ measurements of growth rates and kinetics and the capability to observe the onset and termination of growth. VAA-MWNT growth is characterized between 565 and 750 °C on Si substrates with evaporated Al/Fe/Mo multilayer catalysts and acetylene feedstock. Nanotube lengths were controlled by rapid evacuation of the chamber at predetermined reflectivities, and it was demonstrated that growth can be restarted at later times. The extinction coefficients of the VAA-MWNT were studied and correlated with nanotube wall structure. Growth rates for VAA-MWNT are found to vary depending on the catalyst preparation, temperature, and time. Both the highest growth rates (0.3 μm/s) and the tallest VAA-MWNT (0.75 mm long) were achieved at 730 °C.

  18. Nitrogen retention in contrasting temperate forests exposed to high nitrogen deposition

    NASA Astrophysics Data System (ADS)

    Staelens, J.; Adriaenssens, S.; Wuyts, K.; Verheyen, K.; Boeckx, P. F.

    2011-12-01

    A better understanding of factors affecting nitrogen (N) retention is needed to assess the impact of changing anthropogenic N emissions and climatic conditions on N cycling and N loss by terrestrial ecosystems. Retention of N has been demonstrated for a wide range of forests, including ecosystems exposed to chronically enhanced N deposition, but it is still unclear which factors determine this N retention capacity. Therefore, we examined the possible effects of forest type on N retention using stable N isotopes. The study was carried out in adjacent equal-aged deciduous (pedunculate oak (Quercus robur L.)) and coniferous (Scots pine (Pinus sylvestris L.)) stands with a similar stand history and growing on a well-drained sandy soil in a region with enhanced N deposition (Belgium). The N input-output budgets and gross soil N transformation rates differed significantly between the two stands. The forest floor was exposed to a high inorganic N input from atmospheric deposition, which was nearly twice as high in the pine stand (33 ± 2 kg N ha-1 yr-1; mean ± standard error) as in the oak stand (18 ± 1 kg N ha-1 yr-1). The N input was reflected in the soil solution under the rooting zone, but the mean nitrate concentration was eight times higher under pine (19 ± 5 mg N L-1) than under oak (2.3 ± 0.9 mg N L-1). Gross N dynamics in the mineral topsoil were determined by in situ 15N labelling of undisturbed soil cores combined with numerical data analysis. Gross N mineralization was two times faster in the oak soil while nitrate production was two times faster in the pine soil, indicating a dominant effect of vegetation cover on soil N cycling. The higher gross nitrification, particularly due to oxidation of organic N, in the pine soil compared to the oak soil, combined with negligible nitrate immobilization, was in line with the higher nitrate leaching under the pine forest. On a larger spatial and temporal scale, the fate of dissolved inorganic N within these forests

  19. A macroscale mixture theory analysis of deposition and sublimation rates during heat and mass transfer in dry snow

    NASA Astrophysics Data System (ADS)

    Hansen, A. C.; Foslien, W. E.

    2015-09-01

    The microstructure of a dry alpine snowpack is a dynamic environment where microstructural evolution is driven by seasonal density profiles and weather conditions. Notably, temperature gradients on the order of 10-20 K m-1, or larger, are known to produce a faceted snow microstructure exhibiting little strength. However, while strong temperature gradients are widely accepted as the primary driver for kinetic growth, they do not fully account for the range of experimental observations. An additional factor influencing snow metamorphism is believed to be the rate of mass transfer at the macroscale. We develop a mixture theory capable of predicting macroscale deposition and/or sublimation in a snow cover under temperature gradient conditions. Temperature gradients and mass exchange are tracked over periods ranging from 1 to 10 days. Interesting heat and mass transfer behavior is observed near the ground, near the surface, as well as immediately above and below dense ice crusts. Information about deposition (condensation) and sublimation rates may help explain snow metamorphism phenomena that cannot be accounted for by temperature gradients alone. The macroscale heat and mass transfer analysis requires accurate representations of the effective thermal conductivity and the effective mass diffusion coefficient for snow. We develop analytical models for these parameters based on first principles at the microscale. The expressions derived contain no empirical adjustments, and further, provide self consistent values for effective thermal conductivity and the effective diffusion coefficient for the limiting cases of air and solid ice. The predicted values for these macroscale material parameters are also in excellent agreement with numerical results based on microscale finite element analyses of representative volume elements generated from X-ray tomography.

  20. High-speed deposition of titanium carbide coatings by laser-assisted metal–organic CVD

    SciTech Connect

    Gong, Yansheng; Tu, Rong; Goto, Takashi

    2013-08-01

    Graphical abstract: - Highlights: • A semiconductor laser was first used to prepare wide-area LCVD-TiC{sub x} coatings. • The effect of laser power for the deposition of TiC{sub x} coatings was discussed. • TiC{sub x} coatings showed a columnar cross section and a dense surface texture. • TiC{sub x} coatings had a 1–4 order lower laser density than those of previous reports. • This study gives the possibility of LCVD applying on the preparation of TiC{sub x} coating. - Abstract: A semiconductor laser-assisted chemical vapor deposition (LCVD) of titanium carbide (TiC{sub x}) coatings on Al{sub 2}O{sub 3} substrate using tetrakis (diethylamido) titanium (TDEAT) and C{sub 2}H{sub 2} as source materials were investigated. The influences of laser power (P{sub L}) and pre-heating temperature (T{sub pre}) on the microstructure and deposition rate of TiC{sub x} coatings were examined. Single phase of TiC{sub x} coatings were obtained at P{sub L} = 100–200 W. TiC{sub x} coatings had a cauliflower-like surface and columnar cross section. TiC{sub x} coatings in the present study had the highest R{sub dep} (54 μm/h) at a relative low T{sub dep} than those of conventional CVD-TiC{sub x} coatings. The highest volume deposition rate (V{sub dep}) of TiC{sub x} coatings was about 4.7 × 10{sup −12} m{sup 3} s{sup −1}, which had 3–10{sup 5} times larger deposition area and 1–4 order lower laser density than those of previous LCVD using CO{sub 2}, Nd:YAG and argon ion laser.

  1. Systematic Uncertainties in High-Rate Germanium Data

    SciTech Connect

    Gilbert, Andrew J.; Fast, James E.; Fulsom, Bryan G.; Pitts, William K.; VanDevender, Brent A.; Wood, Lynn S.

    2016-10-06

    For many nuclear material safeguards inspections, spectroscopic gamma detectors are required which can achieve high event rates (in excess of 10^6 s^-1) while maintaining very good energy resolution for discrimination of neighboring gamma signatures in complex backgrounds. Such spectra can be useful for non-destructive assay (NDA) of spent nuclear fuel with long cooling times, which contains many potentially useful low-rate gamma lines, e.g., Cs-134, in the presence of a few dominating gamma lines, such as Cs-137. Detectors in use typically sacrifice energy resolution for count rate, e.g., LaBr3, or visa versa, e.g., CdZnTe. In contrast, we anticipate that beginning with a detector with high energy resolution, e.g., high-purity germanium (HPGe), and adapting the data acquisition for high throughput will be able to achieve the goals of the ideal detector. In this work, we present quantification of Cs-134 and Cs-137 activities, useful for fuel burn-up quantification, in fuel that has been cooling for 22.3 years. A segmented, planar HPGe detector is used for this inspection, which has been adapted for a high-rate throughput in excess of 500k counts/s. Using a very-high-statistic spectrum of 2.4*10^11 counts, isotope activities can be determined with very low statistical uncertainty. However, it is determined that systematic uncertainties dominate in such a data set, e.g., the uncertainty in the pulse line shape. This spectrum offers a unique opportunity to quantify this uncertainty and subsequently determine required counting times for given precision on values of interest.

  2. High rate constitutive modeling of aluminium alloy tube

    NASA Astrophysics Data System (ADS)

    Salisbury, C. P.; Worswick, M. J.; Mayer, R.

    2006-08-01

    As the need for fuel efficient automobiles increases, car designers are investigating light-weight materials for automotive bodies that will reduce the overall automobile weight. Aluminium alloy tube is a desirable material to use in automotive bodies due to its light weight. However, aluminium suffers from lower formability than steel and its energy absorption ability in a crash event after a forming operation is largely unknown. As part of a larger study on the relationship between crashworthiness and forming processes, constitutive models for 3mm AA5754 aluminium tube were developed. A nominal strain rate of 100/s is often used to characterize overall automobile crash events, whereas strain rates on the order of 1000/s can occur locally. Therefore, tests were performed at quasi-static rates using an Instron test fixture and at strain rates of 500/s to 1500/s using a tensile split Hopkinson bar. High rate testing was then conducted at rates of 500/s, 1000/s and 1500/s at 21circC, 150circC and 300circC. The generated data was then used to determine the constitutive parameters for the Johnson-Cook and Zerilli-Armstrong material models.

  3. High-performance ZnO thin-film transistor fabricated by atomic layer deposition

    NASA Astrophysics Data System (ADS)

    Oh, Byeong-Yun; Kim, Young-Hwan; Lee, Hee-Jun; Kim, Byoung-Yong; Park, Hong-Gyu; Han, Jin-Woo; Heo, Gi-Seok; Kim, Tae-Won; Kim, Kwang-Young; Seo, Dae-Shik

    2011-08-01

    We report the fabrication and characteristics of a ZnO thin-film transistor (TFT) using a 50 nm thick ZnO film as an active layer on an Al2O3 gate dielectric film deposited by atomic layer deposition. Lowering the deposition temperature allowed the control of the carrier concentration of the active channel layer (ZnO film) in the TFT device. The ZnO TFT fabricated at 110 °C exhibited high-performance TFT characteristics including a saturation field-effect mobility of 11.86 cm2 V-1 s-1, an on-to-off current ratio of 3.09 × 107 and a sub-threshold gate-voltage swing of 0.72 V decade-1.

  4. Novel spraying apparatus to investigate the lubricant deposition on metal sheets at high temperature

    NASA Astrophysics Data System (ADS)

    Medea, Francesco; Ghiotti, Andrea; Bruschi, Stefania; Bellin, Marco

    2016-10-01

    The constant demand of increasing performances and safety in automotive industry has led significant innovations in the materials as well as in forming processes. In particular, lightweight aluminium alloys are knowing higher and higher importance, thanks to the development of new stamping processes at high temperatures capable to allow improved formability, low spring-back and accurate micro-structural control in the formed parts. However, the choice of proper process parameters, in terms of lubrication at the interfaces between the dies and the blank, still represents a critical point for the process feasibility. On this basis, the paper aims at presenting a novel spraying apparatus to investigate the deposition of lubricants in hot stamping. The equipment allows the accurate control of the quantity of the lubricant that is deposited on the specimen and of the deposition temperature to maximize the lubricant adhesion. The results show the capability of the new equipment and the good stability of the conditions during testing.

  5. High strain-rate model for fiber-reinforced composites

    SciTech Connect

    Aidun, J.B.; Addessio, F.L.

    1995-07-01

    Numerical simulations of dynamic uniaxial strain loading of fiber-reinforced composites are presented that illustrate the wide range of deformation mechanisms that can be captured using a micromechanics-based homogenization technique as the material model in existing continuum mechanics computer programs. Enhancements to the material model incorporate high strain-rate plastic response, elastic nonlinearity, and rate-dependent strength degradation due to material damage, fiber debonding, and delamination. These make the model relevant to designing composite structural components for crash safety, armor, and munitions applications.

  6. Demonstration of a high repetition rate capillary discharge waveguide

    SciTech Connect

    Gonsalves, A. J. Pieronek, C.; Daniels, J.; Bulanov, S. S.; Waldron, W. L.; Mittelberger, D. E.; Leemans, W. P.; Liu, F.; Antipov, S.; Butler, J. E.; Bobrova, N. A.; Sasorov, P. V.

    2016-01-21

    A hydrogen-filled capillary discharge waveguide operating at kHz repetition rates is presented for parameters relevant to laser plasma acceleration (LPA). The discharge current pulse was optimized for erosion mitigation with laser guiding experiments and MHD simulation. Heat flow simulations and measurements showed modest temperature rise at the capillary wall due to the average heat load at kHz repetition rates with water-cooled capillaries, which is promising for applications of LPAs such as high average power radiation sources.

  7. Highly Challenging Balance Program Reduces Fall Rate in Parkinson Disease

    PubMed Central

    Sparrow, David; DeAngelis, Tamara R.; Hendron, Kathryn; Thomas, Cathi A.; Saint-Hilaire, Marie; Ellis, Terry

    2015-01-01

    Background and Purpose There is a paucity of effective treatment options to reduce falls in Parkinson’s disease (PD). Although a variety of rehabilitative approaches have been shown to improve balance, evidence of a reduction in falls has been mixed. Prior balance trials suggest that programs with highly challenging exercises had superior outcomes. We investigated the effects of a theoretically driven, progressive, highly challenging group exercise program on fall rate, balance, and fear of falling. Methods Twenty-three subjects with PD participated in this randomized cross-over trial. Subjects were randomly allocated to 3 months of active balance exercises or usual care followed by the reverse. During the active condition, subjects participated in a progressive, highly challenging group exercise program twice weekly for 90 minutes. Outcomes included a change in fall rate over the 3-month active period and differences in balance (Mini-BESTest), and fear of falling (Falls Efficacy Scale-International (FES-I)) between active and usual care conditions. Results: The effect of time on falls was significant (regression coefficient = −0.015 per day, p<0.001). The estimated rate ratio comparing incidence rates at time points one month apart was 0.632 (95% CI 0.524 to 0.763). Thus, there was an estimated 37% decline in fall rate per month (95% CI 24% to 48%). Improvements were also observed on the Mini-BESTest (p=0.037) and FES-I (p=0.059). Discussion and Conclusions The results of this study show that a theoretically based, highly challenging, and progressive exercise program was effective in reducing falls, improving balance, and reducing fear of falling in PD. PMID:26655100

  8. Palaeohistological Evidence for Ancestral High Metabolic Rate in Archosaurs.

    PubMed

    Legendre, Lucas J; Guénard, Guillaume; Botha-Brink, Jennifer; Cubo, Jorge

    2016-11-01

    Metabolic heat production in archosaurs has played an important role in their evolutionary radiation during the Mesozoic, and their ancestral metabolic condition has long been a matter of debate in systematics and palaeontology. The study of fossil bone histology provides crucial information on bone growth rate, which has been used to indirectly investigate the evolution of thermometabolism in archosaurs. However, no quantitative estimation of metabolic rate has ever been performed on fossils using bone histological features. Moreover, to date, no inference model has included phylogenetic information in the form of predictive variables. Here we performed statistical predictive modeling using the new method of phylogenetic eigenvector maps on a set of bone histological features for a sample of extant and extinct vertebrates, to estimate metabolic rates of fossil archosauromorphs. This modeling procedure serves as a case study for eigenvector-based predictive modeling in a phylogenetic context, as well as an investigation of the poorly known evolutionary patterns of metabolic rate in archosaurs. Our results show that Mesozoic theropod dinosaurs exhibit metabolic rates very close to those found in modern birds, that archosaurs share a higher ancestral metabolic rate than that of extant ectotherms, and that this derived high metabolic rate was acquired at a much more inclusive level of the phylogenetic tree, among non-archosaurian archosauromorphs. These results also highlight the difficulties of assigning a given heat production strategy (i.e., endothermy, ectothermy) to an estimated metabolic rate value, and confirm findings of previous studies that the definition of the endotherm/ectotherm dichotomy may be ambiguous.

  9. Development of plasma assisted thermal vapor deposition technique for high-quality thin film

    NASA Astrophysics Data System (ADS)

    Lee, Kang-Il; Choi, Yong Sup; Park, Hyun Jae

    2016-12-01

    The novel technique of Plasma-Assisted Vapor Deposition (PAVD) is developed as a new deposition method for thin metal films. The PAVD technique yields a high-quality thin film without any heating of the substrate because evaporated particles acquire energy from plasma that is confined to the inside of the evaporation source. Experiments of silver thin film deposition have been carried out in conditions of pressure lower than 10-3 Pa. Pure silver plasma generation is verified by the measurement of the Ag-I peak using optical emission spectroscopy. A four point probe and a UV-VIS spectrophotometer are used to measure the electrical and optical properties of the silver film that is deposited by PAVD. For an ultra-thin silver film with a thickness of 6.5 nm, we obtain the result of high-performance silver film properties, including a sheet resistance <20 Ω sq-1 and a visible-range transmittance >75%. The PAVD-film properties show a low sheet resistance of 30% and the same transmittance with conventional thermal evaporation film. In the PAVD source, highly energetic particles and UV from plasma do not reach the substrate because the plasma is completely shielded by the optimized nozzle of the crucible. This new PAVD technique could be a realistic solution to improve the qualities of transparent electrodes for organic light emission device fabrication without causing damage to the organic layers.

  10. Development of plasma assisted thermal vapor deposition technique for high-quality thin film.

    PubMed

    Lee, Kang-Il; Choi, Yong Sup; Park, Hyun Jae

    2016-12-01

    The novel technique of Plasma-Assisted Vapor Deposition (PAVD) is developed as a new deposition method for thin metal films. The PAVD technique yields a high-quality thin film without any heating of the substrate because evaporated particles acquire energy from plasma that is confined to the inside of the evaporation source. Experiments of silver thin film deposition have been carried out in conditions of pressure lower than 10(-3) Pa. Pure silver plasma generation is verified by the measurement of the Ag-I peak using optical emission spectroscopy. A four point probe and a UV-VIS spectrophotometer are used to measure the electrical and optical properties of the silver film that is deposited by PAVD. For an ultra-thin silver film with a thickness of 6.5 nm, we obtain the result of high-performance silver film properties, including a sheet resistance <20 Ω sq(-1) and a visible-range transmittance >75%. The PAVD-film properties show a low sheet resistance of 30% and the same transmittance with conventional thermal evaporation film. In the PAVD source, highly energetic particles and UV from plasma do not reach the substrate because the plasma is completely shielded by the optimized nozzle of the crucible. This new PAVD technique could be a realistic solution to improve the qualities of transparent electrodes for organic light emission device fabrication without causing damage to the organic layers.

  11. Hispanic High School Graduates Pass Whites in Rate of College Enrollment: High School Drop-out Rate at Record Low

    ERIC Educational Resources Information Center

    Fry, Richard; Taylor, Paul

    2013-01-01

    A record seven-in-ten (69%) Hispanic high school graduates in the class of 2012 enrolled in college that fall, two percentage points higher than the rate (67%) among their white counterparts, according to a Pew Research Center analysis of new data from the U.S. Census Bureau. This milestone is the result of a long-term increase in Hispanic…

  12. Study on the behavior of atomic layer deposition coatings on a nickel substrate at high temperature.

    PubMed

    Heidary, Damoon Sohrabi Baba; Randall, Clive A

    2016-06-17

    Although many techniques have been applied to protect nickel (Ni) alloys from oxidation at intermediate and high temperatures, the potential of atomic layer deposition (ALD) coatings has not been fully explored. In this paper, the application of ALD coatings (HfO2, Al2O3, SnO2, and ZnO) on Ni foils has been evaluated by electrical characterization and transmission electron microscopy analyses in order to assess their merit to increase Ni oxidation resistance; particular consideration was given to preserving Ni electrical conductivity at high temperatures. The results suggested that as long as the temperature was below 850 °C, the ALD coatings provided a physical barrier between outside oxygen and Ni metal and hindered the oxygen diffusion. It was illustrated that the barrier power of ALD coatings depends on their robustness, thicknesses, and heating rate. Among the tested ALD coatings, Al2O3 showed the maximum protection below 900 °C. However, above that temperature, the ALD coatings dissolved in the Ni substrate. As a result, they could not offer any physical barrier. The dissolution of ALD coatings doped on the NiO film, formed on the top of the Ni foils. As found by the electron energy loss spectroscopy (EELS), this doping affected the electronic transport process, through manipulating the Ni(3+)/Ni(2+) ratio in the NiO films and the chance of polaron hopping. It was demonstrated that by using the ZnO coating, one would be able to decrease the electrical resistance of Ni foils by two orders of magnitude after exposure to 1020 °C for 4 min. In contrast, the Al2O3 coating increased the resistance of the uncoated foil by one order of magnitude, mainly due to the decrease in the ratio of Ni(3+)/Ni(2+).

  13. Study on the behavior of atomic layer deposition coatings on a nickel substrate at high temperature

    NASA Astrophysics Data System (ADS)

    Sohrabi Baba Heidary, Damoon; Randall, Clive A.

    2016-06-01

    Although many techniques have been applied to protect nickel (Ni) alloys from oxidation at intermediate and high temperatures, the potential of atomic layer deposition (ALD) coatings has not been fully explored. In this paper, the application of ALD coatings (HfO2, Al2O3, SnO2, and ZnO) on Ni foils has been evaluated by electrical characterization and transmission electron microscopy analyses in order to assess their merit to increase Ni oxidation resistance; particular consideration was given to preserving Ni electrical conductivity at high temperatures. The results suggested that as long as the temperature was below 850 °C, the ALD coatings provided a physical barrier between outside oxygen and Ni metal and hindered the oxygen diffusion. It was illustrated that the barrier power of ALD coatings depends on their robustness, thicknesses, and heating rate. Among the tested ALD coatings, Al2O3 showed the maximum protection below 900 °C. However, above that temperature, the ALD coatings dissolved in the Ni substrate. As a result, they could not offer any physical barrier. The dissolution of ALD coatings doped on the NiO film, formed on the top of the Ni foils. As found by the electron energy loss spectroscopy (EELS), this doping affected the electronic transport process, through manipulating the Ni3+/Ni2+ ratio in the NiO films and the chance of polaron hopping. It was demonstrated that by using the ZnO coating, one would be able to decrease the electrical resistance of Ni foils by two orders of magnitude after exposure to 1020 °C for 4 min. In contrast, the Al2O3 coating increased the resistance of the uncoated foil by one order of magnitude, mainly due to the decrease in the ratio of Ni3+/Ni2+.

  14. Vitreous bond CBN high speed and high material removal rate grinding of ceramics

    SciTech Connect

    Shih, A.J.; Grant, M.B.; Yonushonis, T.M.; Morris, T.O.; McSpadden, S.B.

    1998-08-01

    High speed (up to 127 m/s) and high material removal rate (up to 10 mm{sup 3}/s/mm) grinding experiments using a vitreous bond CBN wheel were conducted to investigate the effects of material removal rate, wheel speed, dwell time and truing speed ratio on cylindrical grinding of silicon nitride and zirconia. Experimental results show that the high grinding wheel surface speed can reduce the effective chip thickness, lower grinding forces, enable high material removal rate grinding and achieve a higher G-ratio. The radial feed rate was increased to as high as 0.34 {micro}m/s for zirconia and 0.25 {micro}m/s for silicon nitride grinding to explore the advantage of using high wheel speed for cost-effective high material removal rate grinding of ceramics.

  15. A high-rate PCI-based telemetry processor system

    NASA Astrophysics Data System (ADS)

    Turri, R.

    2002-07-01

    The high performances reached by the Satellite on-board telemetry generation and transmission, as consequently, will impose the design of ground facilities with higher processing capabilities at low cost to allow a good diffusion of these ground station. The equipment normally used are based on complex, proprietary bus and computing architectures that prevent the systems from exploiting the continuous and rapid increasing in computing power available on market. The PCI bus systems now allow processing of high-rate data streams in a standard PC-system. At the same time the Windows NT operating system supports multitasking and symmetric multiprocessing, giving the capability to process high data rate signals. In addition, high-speed networking, 64 bit PCI-bus technologies and the increase in processor power and software, allow creating a system based on COTS products (which in future may be