Sample records for high recognition accuracy

  1. A Novel Energy-Efficient Approach for Human Activity Recognition.

    PubMed

    Zheng, Lingxiang; Wu, Dihong; Ruan, Xiaoyang; Weng, Shaolin; Peng, Ao; Tang, Biyu; Lu, Hai; Shi, Haibin; Zheng, Huiru

    2017-09-08

    In this paper, we propose a novel energy-efficient approach for mobile activity recognition system (ARS) to detect human activities. The proposed energy-efficient ARS, using low sampling rates, can achieve high recognition accuracy and low energy consumption. A novel classifier that integrates hierarchical support vector machine and context-based classification (HSVMCC) is presented to achieve a high accuracy of activity recognition when the sampling rate is less than the activity frequency, i.e., the Nyquist sampling theorem is not satisfied. We tested the proposed energy-efficient approach with the data collected from 20 volunteers (14 males and six females) and the average recognition accuracy of around 96.0% was achieved. Results show that using a low sampling rate of 1Hz can save 17.3% and 59.6% of energy compared with the sampling rates of 5 Hz and 50 Hz. The proposed low sampling rate approach can greatly reduce the power consumption while maintaining high activity recognition accuracy. The composition of power consumption in online ARS is also investigated in this paper.

  2. A Novel Energy-Efficient Approach for Human Activity Recognition

    PubMed Central

    Zheng, Lingxiang; Wu, Dihong; Ruan, Xiaoyang; Weng, Shaolin; Tang, Biyu; Lu, Hai; Shi, Haibin

    2017-01-01

    In this paper, we propose a novel energy-efficient approach for mobile activity recognition system (ARS) to detect human activities. The proposed energy-efficient ARS, using low sampling rates, can achieve high recognition accuracy and low energy consumption. A novel classifier that integrates hierarchical support vector machine and context-based classification (HSVMCC) is presented to achieve a high accuracy of activity recognition when the sampling rate is less than the activity frequency, i.e., the Nyquist sampling theorem is not satisfied. We tested the proposed energy-efficient approach with the data collected from 20 volunteers (14 males and six females) and the average recognition accuracy of around 96.0% was achieved. Results show that using a low sampling rate of 1Hz can save 17.3% and 59.6% of energy compared with the sampling rates of 5 Hz and 50 Hz. The proposed low sampling rate approach can greatly reduce the power consumption while maintaining high activity recognition accuracy. The composition of power consumption in online ARS is also investigated in this paper. PMID:28885560

  3. The effect of letter string length and report condition on letter recognition accuracy.

    PubMed

    Raghunandan, Avesh; Karmazinaite, Berta; Rossow, Andrea S

    Letter sequence recognition accuracy has been postulated to be limited primarily by low-level visual factors. The influence of high level factors such as visual memory (load and decay) has been largely overlooked. This study provides insight into the role of these factors by investigating the interaction between letter sequence recognition accuracy, letter string length and report condition. Letter sequence recognition accuracy for trigrams and pentagrams were measured in 10 adult subjects for two report conditions. In the complete report condition subjects reported all 3 or all 5 letters comprising trigrams and pentagrams, respectively. In the partial report condition, subjects reported only a single letter in the trigram or pentagram. Letters were presented for 100ms and rendered in high contrast, using black lowercase Courier font that subtended 0.4° at the fixation distance of 0.57m. Letter sequence recognition accuracy was consistently higher for trigrams compared to pentagrams especially for letter positions away from fixation. While partial report increased recognition accuracy in both string length conditions, the effect was larger for pentagrams, and most evident for the final letter positions within trigrams and pentagrams. The effect of partial report on recognition accuracy for the final letter positions increased as eccentricity increased away from fixation, and was independent of the inner/outer position of a letter. Higher-level visual memory functions (memory load and decay) play a role in letter sequence recognition accuracy. There is also suggestion of additional delays imposed on memory encoding by crowded letter elements. Copyright © 2016 Spanish General Council of Optometry. Published by Elsevier España, S.L.U. All rights reserved.

  4. When the face fits: recognition of celebrities from matching and mismatching faces and voices.

    PubMed

    Stevenage, Sarah V; Neil, Greg J; Hamlin, Iain

    2014-01-01

    The results of two experiments are presented in which participants engaged in a face-recognition or a voice-recognition task. The stimuli were face-voice pairs in which the face and voice were co-presented and were either "matched" (same person), "related" (two highly associated people), or "mismatched" (two unrelated people). Analysis in both experiments confirmed that accuracy and confidence in face recognition was consistently high regardless of the identity of the accompanying voice. However accuracy of voice recognition was increasingly affected as the relationship between voice and accompanying face declined. Moreover, when considering self-reported confidence in voice recognition, confidence remained high for correct responses despite the proportion of these responses declining across conditions. These results converged with existing evidence indicating the vulnerability of voice recognition as a relatively weak signaller of identity, and results are discussed in the context of a person-recognition framework.

  5. Fuzzy difference-of-Gaussian-based iris recognition method for noisy iris images

    NASA Astrophysics Data System (ADS)

    Kang, Byung Jun; Park, Kang Ryoung; Yoo, Jang-Hee; Moon, Kiyoung

    2010-06-01

    Iris recognition is used for information security with a high confidence level because it shows outstanding recognition accuracy by using human iris patterns with high degrees of freedom. However, iris recognition accuracy can be reduced by noisy iris images with optical and motion blurring. We propose a new iris recognition method based on the fuzzy difference-of-Gaussian (DOG) for noisy iris images. This study is novel in three ways compared to previous works: (1) The proposed method extracts iris feature values using the DOG method, which is robust to local variations of illumination and shows fine texture information, including various frequency components. (2) When determining iris binary codes, image noises that cause the quantization error of the feature values are reduced with the fuzzy membership function. (3) The optimal parameters of the DOG filter and the fuzzy membership function are determined in terms of iris recognition accuracy. Experimental results showed that the performance of the proposed method was better than that of previous methods for noisy iris images.

  6. Vehicle logo recognition using multi-level fusion model

    NASA Astrophysics Data System (ADS)

    Ming, Wei; Xiao, Jianli

    2018-04-01

    Vehicle logo recognition plays an important role in manufacturer identification and vehicle recognition. This paper proposes a new vehicle logo recognition algorithm. It has a hierarchical framework, which consists of two fusion levels. At the first level, a feature fusion model is employed to map the original features to a higher dimension feature space. In this space, the vehicle logos become more recognizable. At the second level, a weighted voting strategy is proposed to promote the accuracy and the robustness of the recognition results. To evaluate the performance of the proposed algorithm, extensive experiments are performed, which demonstrate that the proposed algorithm can achieve high recognition accuracy and work robustly.

  7. Evidence for a confidence-accuracy relationship in memory for same- and cross-race faces.

    PubMed

    Nguyen, Thao B; Pezdek, Kathy; Wixted, John T

    2017-12-01

    Discrimination accuracy is usually higher for same- than for cross-race faces, a phenomenon known as the cross-race effect (CRE). According to prior research, the CRE occurs because memories for same- and cross-race faces rely on qualitatively different processes. However, according to a continuous dual-process model of recognition memory, memories that rely on qualitatively different processes do not differ in recognition accuracy when confidence is equated. Thus, although there are differences in overall same- and cross-race discrimination accuracy, confidence-specific accuracy (i.e., recognition accuracy at a particular level of confidence) may not differ. We analysed datasets from four recognition memory studies on same- and cross-race faces to test this hypothesis. Confidence ratings reliably predicted recognition accuracy when performance was above chance levels (Experiments 1, 2, and 3) but not when performance was at chance levels (Experiment 4). Furthermore, at each level of confidence, confidence-specific accuracy for same- and cross-race faces did not significantly differ when overall performance was above chance levels (Experiments 1, 2, and 3) but significantly differed when overall performance was at chance levels (Experiment 4). Thus, under certain conditions, high-confidence same-race and cross-race identifications may be equally reliable.

  8. Distinguishing highly confident accurate and inaccurate memory: insights about relevant and irrelevant influences on memory confidence

    PubMed Central

    Chua, Elizabeth F.; Hannula, Deborah E.; Ranganath, Charan

    2012-01-01

    It is generally believed that accuracy and confidence in one’s memory are related, but there are many instances when they diverge. Accordingly, it is important to disentangle the factors which contribute to memory accuracy and confidence, especially those factors that contribute to confidence, but not accuracy. We used eye movements to separately measure fluent cue processing, the target recognition experience, and relative evidence assessment on recognition confidence and accuracy. Eye movements were monitored during a face-scene associative recognition task, in which participants first saw a scene cue, followed by a forced-choice recognition test for the associated face, with confidence ratings. Eye movement indices of the target recognition experience were largely indicative of accuracy, and showed a relationship to confidence for accurate decisions. In contrast, eye movements during the scene cue raised the possibility that more fluent cue processing was related to higher confidence for both accurate and inaccurate recognition decisions. In a second experiment, we manipulated cue familiarity, and therefore cue fluency. Participants showed higher confidence for cue-target associations for when the cue was more familiar, especially for incorrect responses. These results suggest that over-reliance on cue familiarity and under-reliance on the target recognition experience may lead to erroneous confidence. PMID:22171810

  9. Distinguishing highly confident accurate and inaccurate memory: insights about relevant and irrelevant influences on memory confidence.

    PubMed

    Chua, Elizabeth F; Hannula, Deborah E; Ranganath, Charan

    2012-01-01

    It is generally believed that accuracy and confidence in one's memory are related, but there are many instances when they diverge. Accordingly it is important to disentangle the factors that contribute to memory accuracy and confidence, especially those factors that contribute to confidence, but not accuracy. We used eye movements to separately measure fluent cue processing, the target recognition experience, and relative evidence assessment on recognition confidence and accuracy. Eye movements were monitored during a face-scene associative recognition task, in which participants first saw a scene cue, followed by a forced-choice recognition test for the associated face, with confidence ratings. Eye movement indices of the target recognition experience were largely indicative of accuracy, and showed a relationship to confidence for accurate decisions. In contrast, eye movements during the scene cue raised the possibility that more fluent cue processing was related to higher confidence for both accurate and inaccurate recognition decisions. In a second experiment we manipulated cue familiarity, and therefore cue fluency. Participants showed higher confidence for cue-target associations for when the cue was more familiar, especially for incorrect responses. These results suggest that over-reliance on cue familiarity and under-reliance on the target recognition experience may lead to erroneous confidence.

  10. Activity Recognition for Personal Time Management

    NASA Astrophysics Data System (ADS)

    Prekopcsák, Zoltán; Soha, Sugárka; Henk, Tamás; Gáspár-Papanek, Csaba

    We describe an accelerometer based activity recognition system for mobile phones with a special focus on personal time management. We compare several data mining algorithms for the automatic recognition task in the case of single user and multiuser scenario, and improve accuracy with heuristics and advanced data mining methods. The results show that daily activities can be recognized with high accuracy and the integration with the RescueTime software can give good insights for personal time management.

  11. Recollection is a continuous process: implications for dual-process theories of recognition memory.

    PubMed

    Mickes, Laura; Wais, Peter E; Wixted, John T

    2009-04-01

    Dual-process theory, which holds that recognition decisions can be based on recollection or familiarity, has long seemed incompatible with signal detection theory, which holds that recognition decisions are based on a singular, continuous memory-strength variable. Formal dual-process models typically regard familiarity as a continuous process (i.e., familiarity comes in degrees), but they construe recollection as a categorical process (i.e., recollection either occurs or does not occur). A continuous process is characterized by a graded relationship between confidence and accuracy, whereas a categorical process is characterized by a binary relationship such that high confidence is associated with high accuracy but all lower degrees of confidence are associated with chance accuracy. Using a source-memory procedure, we found that the relationship between confidence and source-recollection accuracy was graded. Because recollection, like familiarity, is a continuous process, dual-process theory is more compatible with signal detection theory than previously thought.

  12. Facial emotion recognition and borderline personality pathology.

    PubMed

    Meehan, Kevin B; De Panfilis, Chiara; Cain, Nicole M; Antonucci, Camilla; Soliani, Antonio; Clarkin, John F; Sambataro, Fabio

    2017-09-01

    The impact of borderline personality pathology on facial emotion recognition has been in dispute; with impaired, comparable, and enhanced accuracy found in high borderline personality groups. Discrepancies are likely driven by variations in facial emotion recognition tasks across studies (stimuli type/intensity) and heterogeneity in borderline personality pathology. This study evaluates facial emotion recognition for neutral and negative emotions (fear/sadness/disgust/anger) presented at varying intensities. Effortful control was evaluated as a moderator of facial emotion recognition in borderline personality. Non-clinical multicultural undergraduates (n = 132) completed a morphed facial emotion recognition task of neutral and negative emotional expressions across different intensities (100% Neutral; 25%/50%/75% Emotion) and self-reported borderline personality features and effortful control. Greater borderline personality features related to decreased accuracy in detecting neutral faces, but increased accuracy in detecting negative emotion faces, particularly at low-intensity thresholds. This pattern was moderated by effortful control; for individuals with low but not high effortful control, greater borderline personality features related to misattributions of emotion to neutral expressions, and enhanced detection of low-intensity emotional expressions. Individuals with high borderline personality features may therefore exhibit a bias toward detecting negative emotions that are not or barely present; however, good self-regulatory skills may protect against this potential social-cognitive vulnerability. Copyright © 2017 Elsevier Ireland Ltd. All rights reserved.

  13. Fast neuromimetic object recognition using FPGA outperforms GPU implementations.

    PubMed

    Orchard, Garrick; Martin, Jacob G; Vogelstein, R Jacob; Etienne-Cummings, Ralph

    2013-08-01

    Recognition of objects in still images has traditionally been regarded as a difficult computational problem. Although modern automated methods for visual object recognition have achieved steadily increasing recognition accuracy, even the most advanced computational vision approaches are unable to obtain performance equal to that of humans. This has led to the creation of many biologically inspired models of visual object recognition, among them the hierarchical model and X (HMAX) model. HMAX is traditionally known to achieve high accuracy in visual object recognition tasks at the expense of significant computational complexity. Increasing complexity, in turn, increases computation time, reducing the number of images that can be processed per unit time. In this paper we describe how the computationally intensive and biologically inspired HMAX model for visual object recognition can be modified for implementation on a commercial field-programmable aate Array, specifically the Xilinx Virtex 6 ML605 evaluation board with XC6VLX240T FPGA. We show that with minor modifications to the traditional HMAX model we can perform recognition on images of size 128 × 128 pixels at a rate of 190 images per second with a less than 1% loss in recognition accuracy in both binary and multiclass visual object recognition tasks.

  14. Nonintrusive Finger-Vein Recognition System Using NIR Image Sensor and Accuracy Analyses According to Various Factors

    PubMed Central

    Pham, Tuyen Danh; Park, Young Ho; Nguyen, Dat Tien; Kwon, Seung Yong; Park, Kang Ryoung

    2015-01-01

    Biometrics is a technology that enables an individual person to be identified based on human physiological and behavioral characteristics. Among biometrics technologies, face recognition has been widely used because of its advantages in terms of convenience and non-contact operation. However, its performance is affected by factors such as variation in the illumination, facial expression, and head pose. Therefore, fingerprint and iris recognitions are preferred alternatives. However, the performance of the former can be adversely affected by the skin condition, including scarring and dryness. In addition, the latter has the disadvantages of high cost, large system size, and inconvenience to the user, who has to align their eyes with the iris camera. In an attempt to overcome these problems, finger-vein recognition has been vigorously researched, but an analysis of its accuracies according to various factors has not received much attention. Therefore, we propose a nonintrusive finger-vein recognition system using a near infrared (NIR) image sensor and analyze its accuracies considering various factors. The experimental results obtained with three databases showed that our system can be operated in real applications with high accuracy; and the dissimilarity of the finger-veins of different people is larger than that of the finger types and hands. PMID:26184214

  15. Nonintrusive Finger-Vein Recognition System Using NIR Image Sensor and Accuracy Analyses According to Various Factors.

    PubMed

    Pham, Tuyen Danh; Park, Young Ho; Nguyen, Dat Tien; Kwon, Seung Yong; Park, Kang Ryoung

    2015-07-13

    Biometrics is a technology that enables an individual person to be identified based on human physiological and behavioral characteristics. Among biometrics technologies, face recognition has been widely used because of its advantages in terms of convenience and non-contact operation. However, its performance is affected by factors such as variation in the illumination, facial expression, and head pose. Therefore, fingerprint and iris recognitions are preferred alternatives. However, the performance of the former can be adversely affected by the skin condition, including scarring and dryness. In addition, the latter has the disadvantages of high cost, large system size, and inconvenience to the user, who has to align their eyes with the iris camera. In an attempt to overcome these problems, finger-vein recognition has been vigorously researched, but an analysis of its accuracies according to various factors has not received much attention. Therefore, we propose a nonintrusive finger-vein recognition system using a near infrared (NIR) image sensor and analyze its accuracies considering various factors. The experimental results obtained with three databases showed that our system can be operated in real applications with high accuracy; and the dissimilarity of the finger-veins of different people is larger than that of the finger types and hands.

  16. Social power and recognition of emotional prosody: High power is associated with lower recognition accuracy than low power.

    PubMed

    Uskul, Ayse K; Paulmann, Silke; Weick, Mario

    2016-02-01

    Listeners have to pay close attention to a speaker's tone of voice (prosody) during daily conversations. This is particularly important when trying to infer the emotional state of the speaker. Although a growing body of research has explored how emotions are processed from speech in general, little is known about how psychosocial factors such as social power can shape the perception of vocal emotional attributes. Thus, the present studies explored how social power affects emotional prosody recognition. In a correlational study (Study 1) and an experimental study (Study 2), we show that high power is associated with lower accuracy in emotional prosody recognition than low power. These results, for the first time, suggest that individuals experiencing high or low power perceive emotional tone of voice differently. (c) 2016 APA, all rights reserved).

  17. Automatic anatomy recognition via multiobject oriented active shape models.

    PubMed

    Chen, Xinjian; Udupa, Jayaram K; Alavi, Abass; Torigian, Drew A

    2010-12-01

    This paper studies the feasibility of developing an automatic anatomy recognition (AAR) system in clinical radiology and demonstrates its operation on clinical 2D images. The anatomy recognition method described here consists of two main components: (a) multiobject generalization of OASM and (b) object recognition strategies. The OASM algorithm is generalized to multiple objects by including a model for each object and assigning a cost structure specific to each object in the spirit of live wire. The delineation of multiobject boundaries is done in MOASM via a three level dynamic programming algorithm, wherein the first level is at pixel level which aims to find optimal oriented boundary segments between successive landmarks, the second level is at landmark level which aims to find optimal location for the landmarks, and the third level is at the object level which aims to find optimal arrangement of object boundaries over all objects. The object recognition strategy attempts to find that pose vector (consisting of translation, rotation, and scale component) for the multiobject model that yields the smallest total boundary cost for all objects. The delineation and recognition accuracies were evaluated separately utilizing routine clinical chest CT, abdominal CT, and foot MRI data sets. The delineation accuracy was evaluated in terms of true and false positive volume fractions (TPVF and FPVF). The recognition accuracy was assessed (1) in terms of the size of the space of the pose vectors for the model assembly that yielded high delineation accuracy, (2) as a function of the number of objects and objects' distribution and size in the model, (3) in terms of the interdependence between delineation and recognition, and (4) in terms of the closeness of the optimum recognition result to the global optimum. When multiple objects are included in the model, the delineation accuracy in terms of TPVF can be improved to 97%-98% with a low FPVF of 0.1%-0.2%. Typically, a recognition accuracy of > or = 90% yielded a TPVF > or = 95% and FPVF < or = 0.5%. Over the three data sets and over all tested objects, in 97% of the cases, the optimal solutions found by the proposed method constituted the true global optimum. The experimental results showed the feasibility and efficacy of the proposed automatic anatomy recognition system. Increasing the number of objects in the model can significantly improve both recognition and delineation accuracy. More spread out arrangement of objects in the model can lead to improved recognition and delineation accuracy. Including larger objects in the model also improved recognition and delineation. The proposed method almost always finds globally optimum solutions.

  18. Recognition memory and awareness: A high-frequency advantage in the accuracy of knowing.

    PubMed

    Gregg, Vernon H; Gardiner, John M; Karayianni, Irene; Konstantinou, Ira

    2006-04-01

    The well-established advantage of low-frequency words over high-frequency words in recognition memory has been found to occur in remembering and not knowing. Two experiments employed remember and know judgements, and divided attention to investigate the possibility of an effect of word frequency on know responses given appropriate study conditions. With undivided attention at study, the usual low-frequency advantage in the accuracy of remember responses, but no effect on know responses, was obtained. Under a demanding divided attention task at encoding, a high-frequency advantage in the accuracy of know responses was obtained. The results are discussed in relation to theories of knowing, particularly those incorporating perceptual and conceptual fluency.

  19. Evaluation of a Home Biomonitoring Autonomous Mobile Robot.

    PubMed

    Dorronzoro Zubiete, Enrique; Nakahata, Keigo; Imamoglu, Nevrez; Sekine, Masashi; Sun, Guanghao; Gomez, Isabel; Yu, Wenwei

    2016-01-01

    Increasing population age demands more services in healthcare domain. It has been shown that mobile robots could be a potential solution to home biomonitoring for the elderly. Through our previous studies, a mobile robot system that is able to track a subject and identify his daily living activities has been developed. However, the system has not been tested in any home living scenarios. In this study we did a series of experiments to investigate the accuracy of activity recognition of the mobile robot in a home living scenario. The daily activities tested in the evaluation experiment include watching TV and sleeping. A dataset recorded by a distributed distance-measuring sensor network was used as a reference to the activity recognition results. It was shown that the accuracy is not consistent for all the activities; that is, mobile robot could achieve a high success rate in some activities but a poor success rate in others. It was found that the observation position of the mobile robot and subject surroundings have high impact on the accuracy of the activity recognition, due to the variability of the home living daily activities and their transitional process. The possibility of improvement of recognition accuracy has been shown too.

  20. Emotion recognition and social skills in child and adolescent offspring of parents with schizophrenia.

    PubMed

    Horton, Leslie E; Bridgwater, Miranda A; Haas, Gretchen L

    2017-05-01

    Emotion recognition, a social cognition domain, is impaired in people with schizophrenia and contributes to social dysfunction. Whether impaired emotion recognition emerges as a manifestation of illness or predates symptoms is unclear. Findings from studies of emotion recognition impairments in first-degree relatives of people with schizophrenia are mixed and, to our knowledge, no studies have investigated the link between emotion recognition and social functioning in that population. This study examined facial affect recognition and social skills in 16 offspring of parents with schizophrenia (familial high-risk/FHR) compared to 34 age- and sex-matched healthy controls (HC), ages 7-19. As hypothesised, FHR children exhibited impaired overall accuracy, accuracy in identifying fearful faces, and overall recognition speed relative to controls. Age-adjusted facial affect recognition accuracy scores predicted parent's overall rating of their child's social skills for both groups. This study supports the presence of facial affect recognition deficits in FHR children. Importantly, as the first known study to suggest the presence of these deficits in young, asymptomatic FHR children, it extends findings to a developmental stage predating symptoms. Further, findings point to a relationship between early emotion recognition and social skills. Improved characterisation of deficits in FHR children could inform early intervention.

  1. Good Practices for Learning to Recognize Actions Using FV and VLAD.

    PubMed

    Wu, Jianxin; Zhang, Yu; Lin, Weiyao

    2016-12-01

    High dimensional representations such as Fisher vectors (FV) and vectors of locally aggregated descriptors (VLAD) have shown state-of-the-art accuracy for action recognition in videos. The high dimensionality, on the other hand, also causes computational difficulties when scaling up to large-scale video data. This paper makes three lines of contributions to learning to recognize actions using high dimensional representations. First, we reviewed several existing techniques that improve upon FV or VLAD in image classification, and performed extensive empirical evaluations to assess their applicability for action recognition. Our analyses of these empirical results show that normality and bimodality are essential to achieve high accuracy. Second, we proposed a new pooling strategy for VLAD and three simple, efficient, and effective transformations for both FV and VLAD. Both proposed methods have shown higher accuracy than the original FV/VLAD method in extensive evaluations. Third, we proposed and evaluated new feature selection and compression methods for the FV and VLAD representations. This strategy uses only 4% of the storage of the original representation, but achieves comparable or even higher accuracy. Based on these contributions, we recommend a set of good practices for action recognition in videos for practitioners in this field.

  2. Error Rates in Users of Automatic Face Recognition Software

    PubMed Central

    White, David; Dunn, James D.; Schmid, Alexandra C.; Kemp, Richard I.

    2015-01-01

    In recent years, wide deployment of automatic face recognition systems has been accompanied by substantial gains in algorithm performance. However, benchmarking tests designed to evaluate these systems do not account for the errors of human operators, who are often an integral part of face recognition solutions in forensic and security settings. This causes a mismatch between evaluation tests and operational accuracy. We address this by measuring user performance in a face recognition system used to screen passport applications for identity fraud. Experiment 1 measured target detection accuracy in algorithm-generated ‘candidate lists’ selected from a large database of passport images. Accuracy was notably poorer than in previous studies of unfamiliar face matching: participants made over 50% errors for adult target faces, and over 60% when matching images of children. Experiment 2 then compared performance of student participants to trained passport officers–who use the system in their daily work–and found equivalent performance in these groups. Encouragingly, a group of highly trained and experienced “facial examiners” outperformed these groups by 20 percentage points. We conclude that human performance curtails accuracy of face recognition systems–potentially reducing benchmark estimates by 50% in operational settings. Mere practise does not attenuate these limits, but superior performance of trained examiners suggests that recruitment and selection of human operators, in combination with effective training and mentorship, can improve the operational accuracy of face recognition systems. PMID:26465631

  3. Research of Face Recognition with Fisher Linear Discriminant

    NASA Astrophysics Data System (ADS)

    Rahim, R.; Afriliansyah, T.; Winata, H.; Nofriansyah, D.; Ratnadewi; Aryza, S.

    2018-01-01

    Face identification systems are developing rapidly, and these developments drive the advancement of biometric-based identification systems that have high accuracy. However, to develop a good face recognition system and to have high accuracy is something that’s hard to find. Human faces have diverse expressions and attribute changes such as eyeglasses, mustache, beard and others. Fisher Linear Discriminant (FLD) is a class-specific method that distinguishes facial image images into classes and also creates distance between classes and intra classes so as to produce better classification.

  4. Accurate, fast, and secure biometric fingerprint recognition system utilizing sensor fusion of fingerprint patterns

    NASA Astrophysics Data System (ADS)

    El-Saba, Aed; Alsharif, Salim; Jagapathi, Rajendarreddy

    2011-04-01

    Fingerprint recognition is one of the first techniques used for automatically identifying people and today it is still one of the most popular and effective biometric techniques. With this increase in fingerprint biometric uses, issues related to accuracy, security and processing time are major challenges facing the fingerprint recognition systems. Previous work has shown that polarization enhancementencoding of fingerprint patterns increase the accuracy and security of fingerprint systems without burdening the processing time. This is mainly due to the fact that polarization enhancementencoding is inherently a hardware process and does not have detrimental time delay effect on the overall process. Unpolarized images, however, posses a high visual contrast and when fused (without digital enhancement) properly with polarized ones, is shown to increase the recognition accuracy and security of the biometric system without any significant processing time delay.

  5. Stress reaction process-based hierarchical recognition algorithm for continuous intrusion events in optical fiber prewarning system

    NASA Astrophysics Data System (ADS)

    Qu, Hongquan; Yuan, Shijiao; Wang, Yanping; Yang, Dan

    2018-04-01

    To improve the recognition performance of optical fiber prewarning system (OFPS), this study proposed a hierarchical recognition algorithm (HRA). Compared with traditional methods, which employ only a complex algorithm that includes multiple extracted features and complex classifiers to increase the recognition rate with a considerable decrease in recognition speed, HRA takes advantage of the continuity of intrusion events, thereby creating a staged recognition flow inspired by stress reaction. HRA is expected to achieve high-level recognition accuracy with less time consumption. First, this work analyzed the continuity of intrusion events and then presented the algorithm based on the mechanism of stress reaction. Finally, it verified the time consumption through theoretical analysis and experiments, and the recognition accuracy was obtained through experiments. Experiment results show that the processing speed of HRA is 3.3 times faster than that of a traditional complicated algorithm and has a similar recognition rate of 98%. The study is of great significance to fast intrusion event recognition in OFPS.

  6. Multispectral image fusion for illumination-invariant palmprint recognition

    PubMed Central

    Zhang, Xinman; Xu, Xuebin; Shang, Dongpeng

    2017-01-01

    Multispectral palmprint recognition has shown broad prospects for personal identification due to its high accuracy and great stability. In this paper, we develop a novel illumination-invariant multispectral palmprint recognition method. To combine the information from multiple spectral bands, an image-level fusion framework is completed based on a fast and adaptive bidimensional empirical mode decomposition (FABEMD) and a weighted Fisher criterion. The FABEMD technique decomposes the multispectral images into their bidimensional intrinsic mode functions (BIMFs), on which an illumination compensation operation is performed. The weighted Fisher criterion is to construct the fusion coefficients at the decomposition level, making the images be separated correctly in the fusion space. The image fusion framework has shown strong robustness against illumination variation. In addition, a tensor-based extreme learning machine (TELM) mechanism is presented for feature extraction and classification of two-dimensional (2D) images. In general, this method has fast learning speed and satisfying recognition accuracy. Comprehensive experiments conducted on the PolyU multispectral palmprint database illustrate that the proposed method can achieve favorable results. For the testing under ideal illumination, the recognition accuracy is as high as 99.93%, and the result is 99.50% when the lighting condition is unsatisfied. PMID:28558064

  7. Multispectral image fusion for illumination-invariant palmprint recognition.

    PubMed

    Lu, Longbin; Zhang, Xinman; Xu, Xuebin; Shang, Dongpeng

    2017-01-01

    Multispectral palmprint recognition has shown broad prospects for personal identification due to its high accuracy and great stability. In this paper, we develop a novel illumination-invariant multispectral palmprint recognition method. To combine the information from multiple spectral bands, an image-level fusion framework is completed based on a fast and adaptive bidimensional empirical mode decomposition (FABEMD) and a weighted Fisher criterion. The FABEMD technique decomposes the multispectral images into their bidimensional intrinsic mode functions (BIMFs), on which an illumination compensation operation is performed. The weighted Fisher criterion is to construct the fusion coefficients at the decomposition level, making the images be separated correctly in the fusion space. The image fusion framework has shown strong robustness against illumination variation. In addition, a tensor-based extreme learning machine (TELM) mechanism is presented for feature extraction and classification of two-dimensional (2D) images. In general, this method has fast learning speed and satisfying recognition accuracy. Comprehensive experiments conducted on the PolyU multispectral palmprint database illustrate that the proposed method can achieve favorable results. For the testing under ideal illumination, the recognition accuracy is as high as 99.93%, and the result is 99.50% when the lighting condition is unsatisfied.

  8. Effect of physical workload and modality of information presentation on pattern recognition and navigation task performance by high-fit young males.

    PubMed

    Zahabi, Maryam; Zhang, Wenjuan; Pankok, Carl; Lau, Mei Ying; Shirley, James; Kaber, David

    2017-11-01

    Many occupations require both physical exertion and cognitive task performance. Knowledge of any interaction between physical demands and modalities of cognitive task information presentation can provide a basis for optimising performance. This study examined the effect of physical exertion and modality of information presentation on pattern recognition and navigation-related information processing. Results indicated males of equivalent high fitness, between the ages of 18 and 34, rely more on visual cues vs auditory or haptic for pattern recognition when exertion level is high. We found that navigation response time was shorter under low and medium exertion levels as compared to high intensity. Navigation accuracy was lower under high level exertion compared to medium and low levels. In general, findings indicated that use of the haptic modality for cognitive task cueing decreased accuracy in pattern recognition responses. Practitioner Summary: An examination was conducted on the effect of physical exertion and information presentation modality in pattern recognition and navigation. In occupations requiring information presentation to workers, who are simultaneously performing a physical task, the visual modality appears most effective under high level exertion while haptic cueing degrades performance.

  9. Fast and accurate face recognition based on image compression

    NASA Astrophysics Data System (ADS)

    Zheng, Yufeng; Blasch, Erik

    2017-05-01

    Image compression is desired for many image-related applications especially for network-based applications with bandwidth and storage constraints. The face recognition community typical reports concentrate on the maximal compression rate that would not decrease the recognition accuracy. In general, the wavelet-based face recognition methods such as EBGM (elastic bunch graph matching) and FPB (face pattern byte) are of high performance but run slowly due to their high computation demands. The PCA (Principal Component Analysis) and LDA (Linear Discriminant Analysis) algorithms run fast but perform poorly in face recognition. In this paper, we propose a novel face recognition method based on standard image compression algorithm, which is termed as compression-based (CPB) face recognition. First, all gallery images are compressed by the selected compression algorithm. Second, a mixed image is formed with the probe and gallery images and then compressed. Third, a composite compression ratio (CCR) is computed with three compression ratios calculated from: probe, gallery and mixed images. Finally, the CCR values are compared and the largest CCR corresponds to the matched face. The time cost of each face matching is about the time of compressing the mixed face image. We tested the proposed CPB method on the "ASUMSS face database" (visible and thermal images) from 105 subjects. The face recognition accuracy with visible images is 94.76% when using JPEG compression. On the same face dataset, the accuracy of FPB algorithm was reported as 91.43%. The JPEG-compressionbased (JPEG-CPB) face recognition is standard and fast, which may be integrated into a real-time imaging device.

  10. The role of unconscious memory errors in judgments of confidence for sentence recognition.

    PubMed

    Sampaio, Cristina; Brewer, William F

    2009-03-01

    The present experiment tested the hypothesis that unconscious reconstructive memory processing can lead to the breakdown of the relationship between memory confidence and memory accuracy. Participants heard deceptive schema-inference sentences and nondeceptive sentences and were tested with either simple or forced-choice recognition. The nondeceptive items showed a positive relation between confidence and accuracy in both simple and forced-choice recognition. However, the deceptive items showed a strong negative confidence/accuracy relationship in simple recognition and a low positive relationship in forced choice. The mean levels of confidence for erroneous responses for deceptive items were inappropriately high in simple recognition but lower in forced choice. These results suggest that unconscious reconstructive memory processes involved in memory for the deceptive schema-inference items led to inaccurate confidence judgments and that, when participants were made aware of the deceptive nature of the schema-inference items through the use of a forced-choice procedure, they adjusted their confidence accordingly.

  11. Is White Light the Best Illumination for Palmprint Recognition?

    NASA Astrophysics Data System (ADS)

    Guo, Zhenhua; Zhang, David; Zhang, Lei

    Palmprint as a new biometric has received great research attention in the past decades. It owns many merits, such as robustness, low cost, user friendliness, and high accuracy. Most of the current palmprint recognition systems use an active light to acquire clear palmprint images. Thus, light source is a key component in the system to capture enough of discriminant information for palmprint recognition. To the best of our knowledge, white light is the most widely used light source. However, little work has been done on investigating whether white light is the best illumination for palmprint recognition. In this study, we empirically compared palmprint recognition accuracy using white light and other six different color lights. The experiments on a large database show that white light is not the optimal illumination for palmprint recognition. This finding will be useful to future palmprint recognition system design.

  12. Presentation Attack Detection for Iris Recognition System Using NIR Camera Sensor

    PubMed Central

    Nguyen, Dat Tien; Baek, Na Rae; Pham, Tuyen Danh; Park, Kang Ryoung

    2018-01-01

    Among biometric recognition systems such as fingerprint, finger-vein, or face, the iris recognition system has proven to be effective for achieving a high recognition accuracy and security level. However, several recent studies have indicated that an iris recognition system can be fooled by using presentation attack images that are recaptured using high-quality printed images or by contact lenses with printed iris patterns. As a result, this potential threat can reduce the security level of an iris recognition system. In this study, we propose a new presentation attack detection (PAD) method for an iris recognition system (iPAD) using a near infrared light (NIR) camera image. To detect presentation attack images, we first localized the iris region of the input iris image using circular edge detection (CED). Based on the result of iris localization, we extracted the image features using deep learning-based and handcrafted-based methods. The input iris images were then classified into real and presentation attack categories using support vector machines (SVM). Through extensive experiments with two public datasets, we show that our proposed method effectively solves the iris recognition presentation attack detection problem and produces detection accuracy superior to previous studies. PMID:29695113

  13. Presentation Attack Detection for Iris Recognition System Using NIR Camera Sensor.

    PubMed

    Nguyen, Dat Tien; Baek, Na Rae; Pham, Tuyen Danh; Park, Kang Ryoung

    2018-04-24

    Among biometric recognition systems such as fingerprint, finger-vein, or face, the iris recognition system has proven to be effective for achieving a high recognition accuracy and security level. However, several recent studies have indicated that an iris recognition system can be fooled by using presentation attack images that are recaptured using high-quality printed images or by contact lenses with printed iris patterns. As a result, this potential threat can reduce the security level of an iris recognition system. In this study, we propose a new presentation attack detection (PAD) method for an iris recognition system (iPAD) using a near infrared light (NIR) camera image. To detect presentation attack images, we first localized the iris region of the input iris image using circular edge detection (CED). Based on the result of iris localization, we extracted the image features using deep learning-based and handcrafted-based methods. The input iris images were then classified into real and presentation attack categories using support vector machines (SVM). Through extensive experiments with two public datasets, we show that our proposed method effectively solves the iris recognition presentation attack detection problem and produces detection accuracy superior to previous studies.

  14. Tuberculosis disease diagnosis using artificial immune recognition system.

    PubMed

    Shamshirband, Shahaboddin; Hessam, Somayeh; Javidnia, Hossein; Amiribesheli, Mohsen; Vahdat, Shaghayegh; Petković, Dalibor; Gani, Abdullah; Kiah, Miss Laiha Mat

    2014-01-01

    There is a high risk of tuberculosis (TB) disease diagnosis among conventional methods. This study is aimed at diagnosing TB using hybrid machine learning approaches. Patient epicrisis reports obtained from the Pasteur Laboratory in the north of Iran were used. All 175 samples have twenty features. The features are classified based on incorporating a fuzzy logic controller and artificial immune recognition system. The features are normalized through a fuzzy rule based on a labeling system. The labeled features are categorized into normal and tuberculosis classes using the Artificial Immune Recognition Algorithm. Overall, the highest classification accuracy reached was for the 0.8 learning rate (α) values. The artificial immune recognition system (AIRS) classification approaches using fuzzy logic also yielded better diagnosis results in terms of detection accuracy compared to other empirical methods. Classification accuracy was 99.14%, sensitivity 87.00%, and specificity 86.12%.

  15. Design and test of a hybrid foot force sensing and GPS system for richer user mobility activity recognition.

    PubMed

    Zhang, Zelun; Poslad, Stefan

    2013-11-01

    Wearable and accompanied sensors and devices are increasingly being used for user activity recognition. However, typical GPS-based and accelerometer-based (ACC) methods face three main challenges: a low recognition accuracy; a coarse recognition capability, i.e., they cannot recognise both human posture (during travelling) and transportation mode simultaneously, and a relatively high computational complexity. Here, a new GPS and Foot-Force (GPS + FF) sensor method is proposed to overcome these challenges that leverages a set of wearable FF sensors in combination with GPS, e.g., in a mobile phone. User mobility activities that can be recognised include both daily user postures and common transportation modes: sitting, standing, walking, cycling, bus passenger, car passenger (including private cars and taxis) and car driver. The novelty of this work is that our approach provides a more comprehensive recognition capability in terms of reliably recognising both human posture and transportation mode simultaneously during travel. In addition, by comparing the new GPS + FF method with both an ACC method (62% accuracy) and a GPS + ACC based method (70% accuracy) as baseline methods, it obtains a higher accuracy (95%) with less computational complexity, when tested on a dataset obtained from ten individuals.

  16. SA36. Atypical Memory Structure Related to Recollective Ability

    PubMed Central

    Greenland-White, Sarah; Niendam, Tara

    2017-01-01

    Abstract Background: People with schizophrenia have impaired recognition memory and disproportionate recollection rather than familiarity deficits. This pattern also occurs in individuals with early psychosis (EP) and those at clinical high risk (CHR; Ragland et al., 2016). Additionally, these groups show atypical relationships between different memory processes, with patients demonstrating a stronger reliance on familiarity to support recognition accuracy. However, it is unclear whether these group differences represent a compensatory “trade-off” in memory strategies, whereby patients adopt an overreliance on familiarity to compensate for impaired recollection. We examined data from the Relational and Item-Specific memory task (RiSE) in healthy control (HC), EP and CHR participants, and contrasted subgroups with and without prominent recollection impairments. Interrelations between these memory processes (accuracy, recollection, and familiarity) were examined with Structural Equation Modeling (SEM). Methods: A total of 181 individuals (57 HC, 101 EP, and 21 CHR) completed the RiSE. Measures of recognition accuracy, familiarity, and recollection were computed. We divided the patient group into those with poor recollection (overall d’ recognition accuracy < 1.5, n = 52) and those with good recollection (overall d’ recollection accuracy ≥ 1.5, n = 70). SEM was used to investigate the pattern of memory relationships between HC and patient groups as well as between patients with good versus bad recollection. Results: Recollection and familiarity were negatively correlated in the HC group (r = −.467, P < .01) and in the patient group, though more weakly (r = −.288,P < .05). Improved recollection was correlated with overall improvement in recognition accuracy for both the groups (HC r = .771, P < .01; r = .753, P < .01). Improved familiarity was associated with higher recognition accuracy in the patient group only (.361, P < .01). Moreover, patients with poor recollection showed a stronger association (Fisher’s Z = 2.58, P < .01) between familiarity performance and recognition accuracy (.718, P < .01) than patients with good recollection performance (.396, P < .01). Conclusion: Results suggest that patients may be overrelying on more intact familiarity processes to support recognition accuracy. This potential compensatory strategy is particularly marked in those patients with the worst recollection abilities. The finding that recognition accuracy remains impaired in both patient subgroups, however, reveals that this compensatory familiarity-based strategy is not fully successful. Further work is needed to understand how patients can be remediated for their consistently impaired recollection processes.

  17. Recollection can be Weak and Familiarity can be Strong

    PubMed Central

    Ingram, Katherine M.; Mickes, Laura; Wixted, John T.

    2012-01-01

    The Remember/Know procedure is widely used to investigate recollection and familiarity in recognition memory, but almost all of the results obtained using that procedure can be readily accommodated by a unidimensional model based on signal-detection theory. The unidimensional model holds that Remember judgments reflect strong memories (associated with high confidence, high accuracy, and fast reaction times), whereas Know judgments reflect weaker memories (associated with lower confidence, lower accuracy, and slower reaction times). Although this is invariably true on average, a new two-dimensional account (the Continuous Dual-Process model) suggests that Remember judgments made with low confidence should be associated with lower old/new accuracy, but higher source accuracy, than Know judgments made with high confidence. We tested this prediction – and found evidence to support it – using a modified Remember/Know procedure in which participants were first asked to indicate a degree of recollection-based or familiarity-based confidence for each word presented on a recognition test and were then asked to recollect the color (red or blue) and screen location (top or bottom) associated with the word at study. For familiarity-based decisions, old/new accuracy increased with old/new confidence, but source accuracy did not (suggesting that stronger old/new memory was supported by higher degrees of familiarity). For recollection-based decisions, both old/new accuracy and source accuracy increased with old/new confidence (suggesting that stronger old/new memory was supported by higher degrees of recollection). These findings suggest that recollection and familiarity are continuous processes and that participants can indicate which process mainly contributed to their recognition decisions. PMID:21967320

  18. Time-Shift Correlation Algorithm for P300 Event Related Potential Brain-Computer Interface Implementation

    PubMed Central

    Liu, Ju-Chi; Chou, Hung-Chyun; Chen, Chien-Hsiu; Lin, Yi-Tseng

    2016-01-01

    A high efficient time-shift correlation algorithm was proposed to deal with the peak time uncertainty of P300 evoked potential for a P300-based brain-computer interface (BCI). The time-shift correlation series data were collected as the input nodes of an artificial neural network (ANN), and the classification of four LED visual stimuli was selected as the output node. Two operating modes, including fast-recognition mode (FM) and accuracy-recognition mode (AM), were realized. The proposed BCI system was implemented on an embedded system for commanding an adult-size humanoid robot to evaluate the performance from investigating the ground truth trajectories of the humanoid robot. When the humanoid robot walked in a spacious area, the FM was used to control the robot with a higher information transfer rate (ITR). When the robot walked in a crowded area, the AM was used for high accuracy of recognition to reduce the risk of collision. The experimental results showed that, in 100 trials, the accuracy rate of FM was 87.8% and the average ITR was 52.73 bits/min. In addition, the accuracy rate was improved to 92% for the AM, and the average ITR decreased to 31.27 bits/min. due to strict recognition constraints. PMID:27579033

  19. Time-Shift Correlation Algorithm for P300 Event Related Potential Brain-Computer Interface Implementation.

    PubMed

    Liu, Ju-Chi; Chou, Hung-Chyun; Chen, Chien-Hsiu; Lin, Yi-Tseng; Kuo, Chung-Hsien

    2016-01-01

    A high efficient time-shift correlation algorithm was proposed to deal with the peak time uncertainty of P300 evoked potential for a P300-based brain-computer interface (BCI). The time-shift correlation series data were collected as the input nodes of an artificial neural network (ANN), and the classification of four LED visual stimuli was selected as the output node. Two operating modes, including fast-recognition mode (FM) and accuracy-recognition mode (AM), were realized. The proposed BCI system was implemented on an embedded system for commanding an adult-size humanoid robot to evaluate the performance from investigating the ground truth trajectories of the humanoid robot. When the humanoid robot walked in a spacious area, the FM was used to control the robot with a higher information transfer rate (ITR). When the robot walked in a crowded area, the AM was used for high accuracy of recognition to reduce the risk of collision. The experimental results showed that, in 100 trials, the accuracy rate of FM was 87.8% and the average ITR was 52.73 bits/min. In addition, the accuracy rate was improved to 92% for the AM, and the average ITR decreased to 31.27 bits/min. due to strict recognition constraints.

  20. Motion-sensor fusion-based gesture recognition and its VLSI architecture design for mobile devices

    NASA Astrophysics Data System (ADS)

    Zhu, Wenping; Liu, Leibo; Yin, Shouyi; Hu, Siqi; Tang, Eugene Y.; Wei, Shaojun

    2014-05-01

    With the rapid proliferation of smartphones and tablets, various embedded sensors are incorporated into these platforms to enable multimodal human-computer interfaces. Gesture recognition, as an intuitive interaction approach, has been extensively explored in the mobile computing community. However, most gesture recognition implementations by now are all user-dependent and only rely on accelerometer. In order to achieve competitive accuracy, users are required to hold the devices in predefined manner during the operation. In this paper, a high-accuracy human gesture recognition system is proposed based on multiple motion sensor fusion. Furthermore, to reduce the energy overhead resulted from frequent sensor sampling and data processing, a high energy-efficient VLSI architecture implemented on a Xilinx Virtex-5 FPGA board is also proposed. Compared with the pure software implementation, approximately 45 times speed-up is achieved while operating at 20 MHz. The experiments show that the average accuracy for 10 gestures achieves 93.98% for user-independent case and 96.14% for user-dependent case when subjects hold the device randomly during completing the specified gestures. Although a few percent lower than the conventional best result, it still provides competitive accuracy acceptable for practical usage. Most importantly, the proposed system allows users to hold the device randomly during operating the predefined gestures, which substantially enhances the user experience.

  1. [Recognition of visual objects under forward masking. Effects of cathegorial similarity of test and masking stimuli].

    PubMed

    Gerasimenko, N Iu; Slavutskaia, A V; Kalinin, S A; Kulikov, M A; Mikhaĭlova, E S

    2013-01-01

    In 38 healthy subjects accuracy and response time were examined during recognition of two categories of images--animals andnonliving objects--under forward masking. We revealed new data that masking effects depended of categorical similarity of target and masking stimuli. The recognition accuracy was the lowest and the response time was the most slow, when the target and masking stimuli belongs to the same category, that was combined with high dispersion of response times. The revealed effects were more clear in the task of animal recognition in comparison with the recognition of nonliving objects. We supposed that the revealed effects connected with interference between cortical representations of the target and masking stimuli and discussed our results in context of cortical interference and negative priming.

  2. Processing environmental stimuli in paranoid schizophrenia: recognizing facial emotions and performing executive functions.

    PubMed

    Yu, Shao Hua; Zhu, Jun Peng; Xu, You; Zheng, Lei Lei; Chai, Hao; He, Wei; Liu, Wei Bo; Li, Hui Chun; Wang, Wei

    2012-12-01

    To study the contribution of executive function to abnormal recognition of facial expressions of emotion in schizophrenia patients. Abnormal recognition of facial expressions of emotion was assayed according to Japanese and Caucasian facial expressions of emotion (JACFEE), Wisconsin card sorting test (WCST), positive and negative symptom scale, and Hamilton anxiety and depression scale, respectively, in 88 paranoid schizophrenia patients and 75 healthy volunteers. Patients scored higher on the Positive and Negative Symptom Scale and the Hamilton Anxiety and Depression Scales, displayed lower JACFEE recognition accuracies and poorer WCST performances. The JACFEE recognition accuracy of contempt and disgust was negatively correlated with the negative symptom scale score while the recognition accuracy of fear was positively with the positive symptom scale score and the recognition accuracy of surprise was negatively with the general psychopathology score in patients. Moreover, the WCST could predict the JACFEE recognition accuracy of contempt, disgust, and sadness in patients, and the perseverative errors negatively predicted the recognition accuracy of sadness in healthy volunteers. The JACFEE recognition accuracy of sadness could predict the WCST categories in paranoid schizophrenia patients. Recognition accuracy of social-/moral emotions, such as contempt, disgust and sadness is related to the executive function in paranoid schizophrenia patients, especially when regarding sadness. Copyright © 2012 The Editorial Board of Biomedical and Environmental Sciences. Published by Elsevier B.V. All rights reserved.

  3. Learning representation hierarchies by sharing visual features: a computational investigation of Persian character recognition with unsupervised deep learning.

    PubMed

    Sadeghi, Zahra; Testolin, Alberto

    2017-08-01

    In humans, efficient recognition of written symbols is thought to rely on a hierarchical processing system, where simple features are progressively combined into more abstract, high-level representations. Here, we present a computational model of Persian character recognition based on deep belief networks, where increasingly more complex visual features emerge in a completely unsupervised manner by fitting a hierarchical generative model to the sensory data. Crucially, high-level internal representations emerging from unsupervised deep learning can be easily read out by a linear classifier, achieving state-of-the-art recognition accuracy. Furthermore, we tested the hypothesis that handwritten digits and letters share many common visual features: A generative model that captures the statistical structure of the letters distribution should therefore also support the recognition of written digits. To this aim, deep networks trained on Persian letters were used to build high-level representations of Persian digits, which were indeed read out with high accuracy. Our simulations show that complex visual features, such as those mediating the identification of Persian symbols, can emerge from unsupervised learning in multilayered neural networks and can support knowledge transfer across related domains.

  4. The benefit of deep processing and high educational level for verbal learning in young and middle-aged adults.

    PubMed

    Meijer, Willemien A; Van Gerven, Pascal W; de Groot, Renate H; Van Boxtel, Martin P; Jolles, Jelle

    2007-10-01

    The aim of the present study was to examine whether deeper processing of words during encoding in middle-aged adults leads to a smaller increase in word-learning performance and a smaller decrease in retrieval effort than in young adults. It was also assessed whether high education attenuates age-related differences in performance. Accuracy of recall and recognition, and reaction times of recognition, after performing incidental and intentional learning tasks were compared between 40 young (25-35) and 40 middle-aged (50-60) adults with low and high educational levels. Age differences in recall increased with depth of processing, whereas age differences in accuracy and reaction times of recognition did not differ across levels. High education does not moderate age-related differences in performance. These findings suggest a smaller benefit of deep processing in middle age, when no retrieval cues are available.

  5. The range of confidence scales does not affect the relationship between confidence and accuracy in recognition memory.

    PubMed

    Tekin, Eylul; Roediger, Henry L

    2017-01-01

    Researchers use a wide range of confidence scales when measuring the relationship between confidence and accuracy in reports from memory, with the highest number usually representing the greatest confidence (e.g., 4-point, 20-point, and 100-point scales). The assumption seems to be that the range of the scale has little bearing on the confidence-accuracy relationship. In two old/new recognition experiments, we directly investigated this assumption using word lists (Experiment 1) and faces (Experiment 2) by employing 4-, 5-, 20-, and 100-point scales. Using confidence-accuracy characteristic (CAC) plots, we asked whether confidence ratings would yield similar CAC plots, indicating comparability in use of the scales. For the comparisons, we divided 100-point and 20-point scales into bins of either four or five and asked, for example, whether confidence ratings of 4, 16-20, and 76-100 would yield similar values. The results show that, for both types of material, the different scales yield similar CAC plots. Notably, when subjects express high confidence, regardless of which scale they use, they are likely to be very accurate (even though they studied 100 words and 50 faces in each list in 2 experiments). The scales seem convertible from one to the other, and choice of scale range probably does not affect research into the relationship between confidence and accuracy. High confidence indicates high accuracy in recognition in the present experiments.

  6. Expression intensity, gender and facial emotion recognition: Women recognize only subtle facial emotions better than men.

    PubMed

    Hoffmann, Holger; Kessler, Henrik; Eppel, Tobias; Rukavina, Stefanie; Traue, Harald C

    2010-11-01

    Two experiments were conducted in order to investigate the effect of expression intensity on gender differences in the recognition of facial emotions. The first experiment compared recognition accuracy between female and male participants when emotional faces were shown with full-blown (100% emotional content) or subtle expressiveness (50%). In a second experiment more finely grained analyses were applied in order to measure recognition accuracy as a function of expression intensity (40%-100%). The results show that although women were more accurate than men in recognizing subtle facial displays of emotion, there was no difference between male and female participants when recognizing highly expressive stimuli. Copyright © 2010 Elsevier B.V. All rights reserved.

  7. A Random Forest-based ensemble method for activity recognition.

    PubMed

    Feng, Zengtao; Mo, Lingfei; Li, Meng

    2015-01-01

    This paper presents a multi-sensor ensemble approach to human physical activity (PA) recognition, using random forest. We designed an ensemble learning algorithm, which integrates several independent Random Forest classifiers based on different sensor feature sets to build a more stable, more accurate and faster classifier for human activity recognition. To evaluate the algorithm, PA data collected from the PAMAP (Physical Activity Monitoring for Aging People), which is a standard, publicly available database, was utilized to train and test. The experimental results show that the algorithm is able to correctly recognize 19 PA types with an accuracy of 93.44%, while the training is faster than others. The ensemble classifier system based on the RF (Random Forest) algorithm can achieve high recognition accuracy and fast calculation.

  8. Active Multimodal Sensor System for Target Recognition and Tracking

    PubMed Central

    Zhang, Guirong; Zou, Zhaofan; Liu, Ziyue; Mao, Jiansen

    2017-01-01

    High accuracy target recognition and tracking systems using a single sensor or a passive multisensor set are susceptible to external interferences and exhibit environmental dependencies. These difficulties stem mainly from limitations to the available imaging frequency bands, and a general lack of coherent diversity of the available target-related data. This paper proposes an active multimodal sensor system for target recognition and tracking, consisting of a visible, an infrared, and a hyperspectral sensor. The system makes full use of its multisensor information collection abilities; furthermore, it can actively control different sensors to collect additional data, according to the needs of the real-time target recognition and tracking processes. This level of integration between hardware collection control and data processing is experimentally shown to effectively improve the accuracy and robustness of the target recognition and tracking system. PMID:28657609

  9. Facial emotion recognition and sleep in mentally disordered patients: A natural experiment in a high security hospital.

    PubMed

    Chu, Simon; McNeill, Kimberley; Ireland, Jane L; Qurashi, Inti

    2015-12-15

    We investigated the relationship between a change in sleep quality and facial emotion recognition accuracy in a group of mentally-disordered inpatients at a secure forensic psychiatric unit. Patients whose sleep improved over time also showed improved facial emotion recognition while patients who showed no sleep improvement showed no change in emotion recognition. Copyright © 2015 Elsevier Ireland Ltd. All rights reserved.

  10. Design and Test of a Hybrid Foot Force Sensing and GPS System for Richer User Mobility Activity Recognition

    PubMed Central

    Zhang, Zelun; Poslad, Stefan

    2013-01-01

    Wearable and accompanied sensors and devices are increasingly being used for user activity recognition. However, typical GPS-based and accelerometer-based (ACC) methods face three main challenges: a low recognition accuracy; a coarse recognition capability, i.e., they cannot recognise both human posture (during travelling) and transportation mode simultaneously, and a relatively high computational complexity. Here, a new GPS and Foot-Force (GPS + FF) sensor method is proposed to overcome these challenges that leverages a set of wearable FF sensors in combination with GPS, e.g., in a mobile phone. User mobility activities that can be recognised include both daily user postures and common transportation modes: sitting, standing, walking, cycling, bus passenger, car passenger (including private cars and taxis) and car driver. The novelty of this work is that our approach provides a more comprehensive recognition capability in terms of reliably recognising both human posture and transportation mode simultaneously during travel. In addition, by comparing the new GPS + FF method with both an ACC method (62% accuracy) and a GPS + ACC based method (70% accuracy) as baseline methods, it obtains a higher accuracy (95%) with less computational complexity, when tested on a dataset obtained from ten individuals. PMID:24189333

  11. Road sign recognition with fuzzy adaptive pre-processing models.

    PubMed

    Lin, Chien-Chuan; Wang, Ming-Shi

    2012-01-01

    A road sign recognition system based on adaptive image pre-processing models using two fuzzy inference schemes has been proposed. The first fuzzy inference scheme is to check the changes of the light illumination and rich red color of a frame image by the checking areas. The other is to check the variance of vehicle's speed and angle of steering wheel to select an adaptive size and position of the detection area. The Adaboost classifier was employed to detect the road sign candidates from an image and the support vector machine technique was employed to recognize the content of the road sign candidates. The prohibitory and warning road traffic signs are the processing targets in this research. The detection rate in the detection phase is 97.42%. In the recognition phase, the recognition rate is 93.04%. The total accuracy rate of the system is 92.47%. For video sequences, the best accuracy rate is 90.54%, and the average accuracy rate is 80.17%. The average computing time is 51.86 milliseconds per frame. The proposed system can not only overcome low illumination and rich red color around the road sign problems but also offer high detection rates and high computing performance.

  12. Road Sign Recognition with Fuzzy Adaptive Pre-Processing Models

    PubMed Central

    Lin, Chien-Chuan; Wang, Ming-Shi

    2012-01-01

    A road sign recognition system based on adaptive image pre-processing models using two fuzzy inference schemes has been proposed. The first fuzzy inference scheme is to check the changes of the light illumination and rich red color of a frame image by the checking areas. The other is to check the variance of vehicle's speed and angle of steering wheel to select an adaptive size and position of the detection area. The Adaboost classifier was employed to detect the road sign candidates from an image and the support vector machine technique was employed to recognize the content of the road sign candidates. The prohibitory and warning road traffic signs are the processing targets in this research. The detection rate in the detection phase is 97.42%. In the recognition phase, the recognition rate is 93.04%. The total accuracy rate of the system is 92.47%. For video sequences, the best accuracy rate is 90.54%, and the average accuracy rate is 80.17%. The average computing time is 51.86 milliseconds per frame. The proposed system can not only overcome low illumination and rich red color around the road sign problems but also offer high detection rates and high computing performance. PMID:22778650

  13. Double-Windows-Based Motion Recognition in Multi-Floor Buildings Assisted by a Built-In Barometer.

    PubMed

    Liu, Maolin; Li, Huaiyu; Wang, Yuan; Li, Fei; Chen, Xiuwan

    2018-04-01

    Accelerometers, gyroscopes and magnetometers in smartphones are often used to recognize human motions. Since it is difficult to distinguish between vertical motions and horizontal motions in the data provided by these built-in sensors, the vertical motion recognition accuracy is relatively low. The emergence of a built-in barometer in smartphones improves the accuracy of motion recognition in the vertical direction. However, there is a lack of quantitative analysis and modelling of the barometer signals, which is the basis of barometer's application to motion recognition, and a problem of imbalanced data also exists. This work focuses on using the barometers inside smartphones for vertical motion recognition in multi-floor buildings through modelling and feature extraction of pressure signals. A novel double-windows pressure feature extraction method, which adopts two sliding time windows of different length, is proposed to balance recognition accuracy and response time. Then, a random forest classifier correlation rule is further designed to weaken the impact of imbalanced data on recognition accuracy. The results demonstrate that the recognition accuracy can reach 95.05% when pressure features and the improved random forest classifier are adopted. Specifically, the recognition accuracy of the stair and elevator motions is significantly improved with enhanced response time. The proposed approach proves effective and accurate, providing a robust strategy for increasing accuracy of vertical motions.

  14. Effect of acute exposure to a complex fragrance on lexical decision performance.

    PubMed

    Gaygen, Daniel E; Hedge, Alan

    2009-01-01

    This study tested the effect of acute exposure to a commercial air freshener, derived from fragrant botanical extracts, at an average concentration of 3.16 mg/m(3) total volatile organic compounds on the lexical decision performance of 28 naive participants. Participants attended two 18-min sessions on separate days and were continuously exposed to the fragrance in either the first (F/NF) or second (NF/F) session. Participants were not instructed about the fragrance. Exposure to the fragrance did not affect high-frequency word recognition. However, there was an order of administration effect for low-frequency word recognition accuracy. When the fragrance was administered first before the no-odor control condition, it did not affect accuracy, but when it was administered second after the control condition, it significantly decreased low-frequency word recognition accuracy. Reaction times to low-frequency words were significantly slower than those for high-frequency words, but no effect of either fragrance or order of administration on reaction times was found. The presence of fragrance in the second session apparently served as a distraction that impaired lexical task performance accuracy. The introduction of fragrances into buildings may not necessarily facilitate all aspects of work performance as anticipated.

  15. Does aging impair first impression accuracy? Differentiating emotion recognition from complex social inferences.

    PubMed

    Krendl, Anne C; Rule, Nicholas O; Ambady, Nalini

    2014-09-01

    Young adults can be surprisingly accurate at making inferences about people from their faces. Although these first impressions have important consequences for both the perceiver and the target, it remains an open question whether first impression accuracy is preserved with age. Specifically, could age differences in impressions toward others stem from age-related deficits in accurately detecting complex social cues? Research on aging and impression formation suggests that young and older adults show relative consensus in their first impressions, but it is unknown whether they differ in accuracy. It has been widely shown that aging disrupts emotion recognition accuracy, and that these impairments may predict deficits in other social judgments, such as detecting deceit. However, it is unclear whether general impression formation accuracy (e.g., emotion recognition accuracy, detecting complex social cues) relies on similar or distinct mechanisms. It is important to examine this question to evaluate how, if at all, aging might affect overall accuracy. Here, we examined whether aging impaired first impression accuracy in predicting real-world outcomes and categorizing social group membership. Specifically, we studied whether emotion recognition accuracy and age-related cognitive decline (which has been implicated in exacerbating deficits in emotion recognition) predict first impression accuracy. Our results revealed that emotion recognition accuracy did not predict first impression accuracy, nor did age-related cognitive decline impair it. These findings suggest that domains of social perception outside of emotion recognition may rely on mechanisms that are relatively unimpaired by aging. PsycINFO Database Record (c) 2014 APA, all rights reserved.

  16. Kruskal-Wallis-based computationally efficient feature selection for face recognition.

    PubMed

    Ali Khan, Sajid; Hussain, Ayyaz; Basit, Abdul; Akram, Sheeraz

    2014-01-01

    Face recognition in today's technological world, and face recognition applications attain much more importance. Most of the existing work used frontal face images to classify face image. However these techniques fail when applied on real world face images. The proposed technique effectively extracts the prominent facial features. Most of the features are redundant and do not contribute to representing face. In order to eliminate those redundant features, computationally efficient algorithm is used to select the more discriminative face features. Extracted features are then passed to classification step. In the classification step, different classifiers are ensemble to enhance the recognition accuracy rate as single classifier is unable to achieve the high accuracy. Experiments are performed on standard face database images and results are compared with existing techniques.

  17. Multispectral Palmprint Recognition Using a Quaternion Matrix

    PubMed Central

    Xu, Xingpeng; Guo, Zhenhua; Song, Changjiang; Li, Yafeng

    2012-01-01

    Palmprints have been widely studied for biometric recognition for many years. Traditionally, a white light source is used for illumination. Recently, multispectral imaging has drawn attention because of its high recognition accuracy. Multispectral palmprint systems can provide more discriminant information under different illuminations in a short time, thus they can achieve better recognition accuracy. Previously, multispectral palmprint images were taken as a kind of multi-modal biometrics, and the fusion scheme on the image level or matching score level was used. However, some spectral information will be lost during image level or matching score level fusion. In this study, we propose a new method for multispectral images based on a quaternion model which could fully utilize the multispectral information. Firstly, multispectral palmprint images captured under red, green, blue and near-infrared (NIR) illuminations were represented by a quaternion matrix, then principal component analysis (PCA) and discrete wavelet transform (DWT) were applied respectively on the matrix to extract palmprint features. After that, Euclidean distance was used to measure the dissimilarity between different features. Finally, the sum of two distances and the nearest neighborhood classifier were employed for recognition decision. Experimental results showed that using the quaternion matrix can achieve a higher recognition rate. Given 3000 test samples from 500 palms, the recognition rate can be as high as 98.83%. PMID:22666049

  18. Multispectral palmprint recognition using a quaternion matrix.

    PubMed

    Xu, Xingpeng; Guo, Zhenhua; Song, Changjiang; Li, Yafeng

    2012-01-01

    Palmprints have been widely studied for biometric recognition for many years. Traditionally, a white light source is used for illumination. Recently, multispectral imaging has drawn attention because of its high recognition accuracy. Multispectral palmprint systems can provide more discriminant information under different illuminations in a short time, thus they can achieve better recognition accuracy. Previously, multispectral palmprint images were taken as a kind of multi-modal biometrics, and the fusion scheme on the image level or matching score level was used. However, some spectral information will be lost during image level or matching score level fusion. In this study, we propose a new method for multispectral images based on a quaternion model which could fully utilize the multispectral information. Firstly, multispectral palmprint images captured under red, green, blue and near-infrared (NIR) illuminations were represented by a quaternion matrix, then principal component analysis (PCA) and discrete wavelet transform (DWT) were applied respectively on the matrix to extract palmprint features. After that, Euclidean distance was used to measure the dissimilarity between different features. Finally, the sum of two distances and the nearest neighborhood classifier were employed for recognition decision. Experimental results showed that using the quaternion matrix can achieve a higher recognition rate. Given 3000 test samples from 500 palms, the recognition rate can be as high as 98.83%.

  19. Relevance feedback-based building recognition

    NASA Astrophysics Data System (ADS)

    Li, Jing; Allinson, Nigel M.

    2010-07-01

    Building recognition is a nontrivial task in computer vision research which can be utilized in robot localization, mobile navigation, etc. However, existing building recognition systems usually encounter the following two problems: 1) extracted low level features cannot reveal the true semantic concepts; and 2) they usually involve high dimensional data which require heavy computational costs and memory. Relevance feedback (RF), widely applied in multimedia information retrieval, is able to bridge the gap between the low level visual features and high level concepts; while dimensionality reduction methods can mitigate the high-dimensional problem. In this paper, we propose a building recognition scheme which integrates the RF and subspace learning algorithms. Experimental results undertaken on our own building database show that the newly proposed scheme appreciably enhances the recognition accuracy.

  20. Iris recognition based on key image feature extraction.

    PubMed

    Ren, X; Tian, Q; Zhang, J; Wu, S; Zeng, Y

    2008-01-01

    In iris recognition, feature extraction can be influenced by factors such as illumination and contrast, and thus the features extracted may be unreliable, which can cause a high rate of false results in iris pattern recognition. In order to obtain stable features, an algorithm was proposed in this paper to extract key features of a pattern from multiple images. The proposed algorithm built an iris feature template by extracting key features and performed iris identity enrolment. Simulation results showed that the selected key features have high recognition accuracy on the CASIA Iris Set, where both contrast and illumination variance exist.

  1. Face Configuration Accuracy and Processing Speed among Adults with High-Functioning Autism Spectrum Disorders

    ERIC Educational Resources Information Center

    Faja, Susan; Webb, Sara Jane; Merkle, Kristen; Aylward, Elizabeth; Dawson, Geraldine

    2009-01-01

    The present study investigates the accuracy and speed of face processing employed by high-functioning adults with autism spectrum disorders (ASDs). Two behavioral experiments measured sensitivity to distances between features and face recognition when performance depended on holistic versus featural information. Results suggest adults with ASD…

  2. Development of detection and recognition of orientation of geometric and real figures.

    PubMed

    Stein, N L; Mandler, J M

    1975-06-01

    Black and white kindergarten and second-grade children were tested for accuracy of detection and recognition of orientation and location changes in pictures of real-world and geometric figures. No differences were found in accuracy of recognition between the 2 kinds of pictures, but patterns of verbalization differed on specific transformations. Although differences in accuracy were found between kindergarten and second grade on an initial recognition task, practice on a matching-to-sample task eliminated differences on a second recognition task. Few ethnic differences were found on accuracy of recognition, but significant differences were found in amount of verbal output on specific transformations. For both groups, mention of orientation changes was markedly reduced when location changes were present.

  3. A Versatile Embedded Platform for EMG Acquisition and Gesture Recognition.

    PubMed

    Benatti, Simone; Casamassima, Filippo; Milosevic, Bojan; Farella, Elisabetta; Schönle, Philipp; Fateh, Schekeb; Burger, Thomas; Huang, Qiuting; Benini, Luca

    2015-10-01

    Wearable devices offer interesting features, such as low cost and user friendliness, but their use for medical applications is an open research topic, given the limited hardware resources they provide. In this paper, we present an embedded solution for real-time EMG-based hand gesture recognition. The work focuses on the multi-level design of the system, integrating the hardware and software components to develop a wearable device capable of acquiring and processing EMG signals for real-time gesture recognition. The system combines the accuracy of a custom analog front end with the flexibility of a low power and high performance microcontroller for on-board processing. Our system achieves the same accuracy of high-end and more expensive active EMG sensors used in applications with strict requirements on signal quality. At the same time, due to its flexible configuration, it can be compared to the few wearable platforms designed for EMG gesture recognition available on market. We demonstrate that we reach similar or better performance while embedding the gesture recognition on board, with the benefit of cost reduction. To validate this approach, we collected a dataset of 7 gestures from 4 users, which were used to evaluate the impact of the number of EMG channels, the number of recognized gestures and the data rate on the recognition accuracy and on the computational demand of the classifier. As a result, we implemented a SVM recognition algorithm capable of real-time performance on the proposed wearable platform, achieving a classification rate of 90%, which is aligned with the state-of-the-art off-line results and a 29.7 mW power consumption, guaranteeing 44 hours of continuous operation with a 400 mAh battery.

  4. Voice reaction times with recognition for Commodore computers

    NASA Technical Reports Server (NTRS)

    Washburn, David A.; Putney, R. Thompson

    1990-01-01

    Hardware and software modifications are presented that allow for collection and recognition by a Commodore computer of spoken responses. Responses are timed with millisecond accuracy and automatically analyzed and scored. Accuracy data for this device from several experiments are presented. Potential applications and suggestions for improving recognition accuracy are also discussed.

  5. Identification of Biomolecular Building Blocks by Recognition Tunneling: Stride towards Nanopore Sequencing of Biomolecules

    NASA Astrophysics Data System (ADS)

    Sen, Suman

    DNA, RNA and Protein are three pivotal biomolecules in human and other organisms, playing decisive roles in functionality, appearance, diseases development and other physiological phenomena. Hence, sequencing of these biomolecules acquires the prime interest in the scientific community. Single molecular identification of their building blocks can be done by a technique called Recognition Tunneling (RT) based on Scanning Tunneling Microscope (STM). A single layer of specially designed recognition molecule is attached to the STM electrodes, which trap the targeted molecules (DNA nucleoside monophosphates, RNA nucleoside monophosphates or amino acids) inside the STM nanogap. Depending on their different binding interactions with the recognition molecules, the analyte molecules generate stochastic signal trains accommodating their "electronic fingerprints". Signal features are used to detect the molecules using a machine learning algorithm and different molecules can be identified with significantly high accuracy. This, in turn, paves the way for rapid, economical nanopore sequencing platform, overcoming the drawbacks of Next Generation Sequencing (NGS) techniques. To read DNA nucleotides with high accuracy in an STM tunnel junction a series of nitrogen-based heterocycles were designed and examined to check their capabilities to interact with naturally occurring DNA nucleotides by hydrogen bonding in the tunnel junction. These recognition molecules are Benzimidazole, Imidazole, Triazole and Pyrrole. Benzimidazole proved to be best among them showing DNA nucleotide classification accuracy close to 99%. Also, Imidazole reader can read an abasic monophosphate (AP), a product from depurination or depyrimidination that occurs 10,000 times per human cell per day. In another study, I have investigated a new universal reader, 1-(2-mercaptoethyl)pyrene (Pyrene reader) based on stacking interactions, which should be more specific to the canonical DNA nucleosides. In addition, Pyrene reader showed higher DNA base-calling accuracy compare to Imidazole reader, the workhorse in our previous projects. In my other projects, various amino acids and RNA nucleoside monophosphates were also classified with significantly high accuracy using RT. Twenty naturally occurring amino acids and various RNA nucleosides (four canonical and two modified) were successfully identified. Thus, we envision nanopore sequencing biomolecules using Recognition Tunneling (RT) that should provide comprehensive betterment over current technologies in terms of time, chemical and instrumental cost and capability of de novo sequencing.

  6. Evaluation of accelerometer based multi-sensor versus single-sensor activity recognition systems.

    PubMed

    Gao, Lei; Bourke, A K; Nelson, John

    2014-06-01

    Physical activity has a positive impact on people's well-being and it had been shown to decrease the occurrence of chronic diseases in the older adult population. To date, a substantial amount of research studies exist, which focus on activity recognition using inertial sensors. Many of these studies adopt a single sensor approach and focus on proposing novel features combined with complex classifiers to improve the overall recognition accuracy. In addition, the implementation of the advanced feature extraction algorithms and the complex classifiers exceed the computing ability of most current wearable sensor platforms. This paper proposes a method to adopt multiple sensors on distributed body locations to overcome this problem. The objective of the proposed system is to achieve higher recognition accuracy with "light-weight" signal processing algorithms, which run on a distributed computing based sensor system comprised of computationally efficient nodes. For analysing and evaluating the multi-sensor system, eight subjects were recruited to perform eight normal scripted activities in different life scenarios, each repeated three times. Thus a total of 192 activities were recorded resulting in 864 separate annotated activity states. The methods for designing such a multi-sensor system required consideration of the following: signal pre-processing algorithms, sampling rate, feature selection and classifier selection. Each has been investigated and the most appropriate approach is selected to achieve a trade-off between recognition accuracy and computing execution time. A comparison of six different systems, which employ single or multiple sensors, is presented. The experimental results illustrate that the proposed multi-sensor system can achieve an overall recognition accuracy of 96.4% by adopting the mean and variance features, using the Decision Tree classifier. The results demonstrate that elaborate classifiers and feature sets are not required to achieve high recognition accuracies on a multi-sensor system. Copyright © 2014 IPEM. Published by Elsevier Ltd. All rights reserved.

  7. Gesture recognition for smart home applications using portable radar sensors.

    PubMed

    Wan, Qian; Li, Yiran; Li, Changzhi; Pal, Ranadip

    2014-01-01

    In this article, we consider the design of a human gesture recognition system based on pattern recognition of signatures from a portable smart radar sensor. Powered by AAA batteries, the smart radar sensor operates in the 2.4 GHz industrial, scientific and medical (ISM) band. We analyzed the feature space using principle components and application-specific time and frequency domain features extracted from radar signals for two different sets of gestures. We illustrate that a nearest neighbor based classifier can achieve greater than 95% accuracy for multi class classification using 10 fold cross validation when features are extracted based on magnitude differences and Doppler shifts as compared to features extracted through orthogonal transformations. The reported results illustrate the potential of intelligent radars integrated with a pattern recognition system for high accuracy smart home and health monitoring purposes.

  8. Noise Robust Speech Recognition Applied to Voice-Driven Wheelchair

    NASA Astrophysics Data System (ADS)

    Sasou, Akira; Kojima, Hiroaki

    2009-12-01

    Conventional voice-driven wheelchairs usually employ headset microphones that are capable of achieving sufficient recognition accuracy, even in the presence of surrounding noise. However, such interfaces require users to wear sensors such as a headset microphone, which can be an impediment, especially for the hand disabled. Conversely, it is also well known that the speech recognition accuracy drastically degrades when the microphone is placed far from the user. In this paper, we develop a noise robust speech recognition system for a voice-driven wheelchair. This system can achieve almost the same recognition accuracy as the headset microphone without wearing sensors. We verified the effectiveness of our system in experiments in different environments, and confirmed that our system can achieve almost the same recognition accuracy as the headset microphone without wearing sensors.

  9. Character recognition using a neural network model with fuzzy representation

    NASA Technical Reports Server (NTRS)

    Tavakoli, Nassrin; Seniw, David

    1992-01-01

    The degree to which digital images are recognized correctly by computerized algorithms is highly dependent upon the representation and the classification processes. Fuzzy techniques play an important role in both processes. In this paper, the role of fuzzy representation and classification on the recognition of digital characters is investigated. An experimental Neural Network model with application to character recognition was developed. Through a set of experiments, the effect of fuzzy representation on the recognition accuracy of this model is presented.

  10. Traffic Sign Recognition with Invariance to Lighting in Dual-Focal Active Camera System

    NASA Astrophysics Data System (ADS)

    Gu, Yanlei; Panahpour Tehrani, Mehrdad; Yendo, Tomohiro; Fujii, Toshiaki; Tanimoto, Masayuki

    In this paper, we present an automatic vision-based traffic sign recognition system, which can detect and classify traffic signs at long distance under different lighting conditions. To realize this purpose, the traffic sign recognition is developed in an originally proposed dual-focal active camera system. In this system, a telephoto camera is equipped as an assistant of a wide angle camera. The telephoto camera can capture a high accuracy image for an object of interest in the view field of the wide angle camera. The image from the telephoto camera provides enough information for recognition when the accuracy of traffic sign is low from the wide angle camera. In the proposed system, the traffic sign detection and classification are processed separately for different images from the wide angle camera and telephoto camera. Besides, in order to detect traffic sign from complex background in different lighting conditions, we propose a type of color transformation which is invariant to light changing. This color transformation is conducted to highlight the pattern of traffic signs by reducing the complexity of background. Based on the color transformation, a multi-resolution detector with cascade mode is trained and used to locate traffic signs at low resolution in the image from the wide angle camera. After detection, the system actively captures a high accuracy image of each detected traffic sign by controlling the direction and exposure time of the telephoto camera based on the information from the wide angle camera. Moreover, in classification, a hierarchical classifier is constructed and used to recognize the detected traffic signs in the high accuracy image from the telephoto camera. Finally, based on the proposed system, a set of experiments in the domain of traffic sign recognition is presented. The experimental results demonstrate that the proposed system can effectively recognize traffic signs at low resolution in different lighting conditions.

  11. Pattern Perception and Pictures for the Blind

    ERIC Educational Resources Information Center

    Heller, Morton A.; McCarthy, Melissa; Clark, Ashley

    2005-01-01

    This article reviews recent research on perception of tangible pictures in sighted and blind people. Haptic picture naming accuracy is dependent upon familiarity and access to semantic memory, just as in visual recognition. Performance is high when haptic picture recognition tasks do not depend upon semantic memory. Viewpoint matters for the ease…

  12. Test battery for measuring the perception and recognition of facial expressions of emotion

    PubMed Central

    Wilhelm, Oliver; Hildebrandt, Andrea; Manske, Karsten; Schacht, Annekathrin; Sommer, Werner

    2014-01-01

    Despite the importance of perceiving and recognizing facial expressions in everyday life, there is no comprehensive test battery for the multivariate assessment of these abilities. As a first step toward such a compilation, we present 16 tasks that measure the perception and recognition of facial emotion expressions, and data illustrating each task's difficulty and reliability. The scoring of these tasks focuses on either the speed or accuracy of performance. A sample of 269 healthy young adults completed all tasks. In general, accuracy and reaction time measures for emotion-general scores showed acceptable and high estimates of internal consistency and factor reliability. Emotion-specific scores yielded lower reliabilities, yet high enough to encourage further studies with such measures. Analyses of task difficulty revealed that all tasks are suitable for measuring emotion perception and emotion recognition related abilities in normal populations. PMID:24860528

  13. Practical vision based degraded text recognition system

    NASA Astrophysics Data System (ADS)

    Mohammad, Khader; Agaian, Sos; Saleh, Hani

    2011-02-01

    Rapid growth and progress in the medical, industrial, security and technology fields means more and more consideration for the use of camera based optical character recognition (OCR) Applying OCR to scanned documents is quite mature, and there are many commercial and research products available on this topic. These products achieve acceptable recognition accuracy and reasonable processing times especially with trained software, and constrained text characteristics. Even though the application space for OCR is huge, it is quite challenging to design a single system that is capable of performing automatic OCR for text embedded in an image irrespective of the application. Challenges for OCR systems include; images are taken under natural real world conditions, Surface curvature, text orientation, font, size, lighting conditions, and noise. These and many other conditions make it extremely difficult to achieve reasonable character recognition. Performance for conventional OCR systems drops dramatically as the degradation level of the text image quality increases. In this paper, a new recognition method is proposed to recognize solid or dotted line degraded characters. The degraded text string is localized and segmented using a new algorithm. The new method was implemented and tested using a development framework system that is capable of performing OCR on camera captured images. The framework allows parameter tuning of the image-processing algorithm based on a training set of camera-captured text images. Novel methods were used for enhancement, text localization and the segmentation algorithm which enables building a custom system that is capable of performing automatic OCR which can be used for different applications. The developed framework system includes: new image enhancement, filtering, and segmentation techniques which enabled higher recognition accuracies, faster processing time, and lower energy consumption, compared with the best state of the art published techniques. The system successfully produced impressive OCR accuracies (90% -to- 93%) using customized systems generated by our development framework in two industrial OCR applications: water bottle label text recognition and concrete slab plate text recognition. The system was also trained for the Arabic language alphabet, and demonstrated extremely high recognition accuracy (99%) for Arabic license name plate text recognition with processing times of 10 seconds. The accuracy and run times of the system were compared to conventional and many states of art methods, the proposed system shows excellent results.

  14. Ensemble Methods for Classification of Physical Activities from Wrist Accelerometry.

    PubMed

    Chowdhury, Alok Kumar; Tjondronegoro, Dian; Chandran, Vinod; Trost, Stewart G

    2017-09-01

    To investigate whether the use of ensemble learning algorithms improve physical activity recognition accuracy compared to the single classifier algorithms, and to compare the classification accuracy achieved by three conventional ensemble machine learning methods (bagging, boosting, random forest) and a custom ensemble model comprising four algorithms commonly used for activity recognition (binary decision tree, k nearest neighbor, support vector machine, and neural network). The study used three independent data sets that included wrist-worn accelerometer data. For each data set, a four-step classification framework consisting of data preprocessing, feature extraction, normalization and feature selection, and classifier training and testing was implemented. For the custom ensemble, decisions from the single classifiers were aggregated using three decision fusion methods: weighted majority vote, naïve Bayes combination, and behavior knowledge space combination. Classifiers were cross-validated using leave-one subject out cross-validation and compared on the basis of average F1 scores. In all three data sets, ensemble learning methods consistently outperformed the individual classifiers. Among the conventional ensemble methods, random forest models provided consistently high activity recognition; however, the custom ensemble model using weighted majority voting demonstrated the highest classification accuracy in two of the three data sets. Combining multiple individual classifiers using conventional or custom ensemble learning methods can improve activity recognition accuracy from wrist-worn accelerometer data.

  15. Gaze Dynamics in the Recognition of Facial Expressions of Emotion.

    PubMed

    Barabanschikov, Vladimir A

    2015-01-01

    We studied preferably fixated parts and features of human face in the process of recognition of facial expressions of emotion. Photographs of facial expressions were used. Participants were to categorize these as basic emotions; during this process, eye movements were registered. It was found that variation in the intensity of an expression is mirrored in accuracy of emotion recognition; it was also reflected by several indices of oculomotor function: duration of inspection of certain areas of the face, its upper and bottom or right parts, right and left sides; location, number and duration of fixations, viewing trajectory. In particular, for low-intensity expressions, right side of the face was found to be attended predominantly (right-side dominance); the right-side dominance effect, was, however, absent for expressions of high intensity. For both low- and high-intensity expressions, upper face part was predominantly fixated, though with greater fixation of high-intensity expressions. The majority of trials (70%), in line with findings in previous studies, revealed a V-shaped pattern of inspection trajectory. No relationship, between accuracy of recognition of emotional expressions, was found, though, with either location and duration of fixations or pattern of gaze directedness in the face. © The Author(s) 2015.

  16. Extended depth of field system for long distance iris acquisition

    NASA Astrophysics Data System (ADS)

    Chen, Yuan-Lin; Hsieh, Sheng-Hsun; Hung, Kuo-En; Yang, Shi-Wen; Li, Yung-Hui; Tien, Chung-Hao

    2012-10-01

    Using biometric signatures for identity recognition has been practiced for centuries. Recently, iris recognition system attracts much attention due to its high accuracy and high stability. The texture feature of iris provides a signature that is unique for each subject. Currently most commercial iris recognition systems acquire images in less than 50 cm, which is a serious constraint that needs to be broken if we want to use it for airport access or entrance that requires high turn-over rate . In order to capture the iris patterns from a distance, in this study, we developed a telephoto imaging system with image processing techniques. By using the cubic phase mask positioned front of the camera, the point spread function was kept constant over a wide range of defocus. With adequate decoding filter, the blurred image was restored, where the working distance between the subject and the camera can be achieved over 3m associated with 500mm focal length and aperture F/6.3. The simulation and experimental results validated the proposed scheme, where the depth of focus of iris camera was triply extended over the traditional optics, while keeping sufficient recognition accuracy.

  17. A comparison study between MLP and convolutional neural network models for character recognition

    NASA Astrophysics Data System (ADS)

    Ben Driss, S.; Soua, M.; Kachouri, R.; Akil, M.

    2017-05-01

    Optical Character Recognition (OCR) systems have been designed to operate on text contained in scanned documents and images. They include text detection and character recognition in which characters are described then classified. In the classification step, characters are identified according to their features or template descriptions. Then, a given classifier is employed to identify characters. In this context, we have proposed the unified character descriptor (UCD) to represent characters based on their features. Then, matching was employed to ensure the classification. This recognition scheme performs a good OCR Accuracy on homogeneous scanned documents, however it cannot discriminate characters with high font variation and distortion.3 To improve recognition, classifiers based on neural networks can be used. The multilayer perceptron (MLP) ensures high recognition accuracy when performing a robust training. Moreover, the convolutional neural network (CNN), is gaining nowadays a lot of popularity for its high performance. Furthermore, both CNN and MLP may suffer from the large amount of computation in the training phase. In this paper, we establish a comparison between MLP and CNN. We provide MLP with the UCD descriptor and the appropriate network configuration. For CNN, we employ the convolutional network designed for handwritten and machine-printed character recognition (Lenet-5) and we adapt it to support 62 classes, including both digits and characters. In addition, GPU parallelization is studied to speed up both of MLP and CNN classifiers. Based on our experimentations, we demonstrate that the used real-time CNN is 2x more relevant than MLP when classifying characters.

  18. One process is not enough! A speed-accuracy tradeoff study of recognition memory.

    PubMed

    Boldini, Angela; Russo, Riccardo; Avons, S E

    2004-04-01

    Speed-accuracy tradeoff (SAT) methods have been used to contrast single- and dual-process accounts of recognition memory. In these procedures, subjects are presented with individual test items and are required to make recognition decisions under various time constraints. In this experiment, we presented word lists under incidental learning conditions, varying the modality of presentation and level of processing. At test, we manipulated the interval between each visually presented test item and a response signal, thus controlling the amount of time available to retrieve target information. Study-test modality match had a beneficial effect on recognition accuracy at short response-signal delays (< or =300 msec). Conversely, recognition accuracy benefited more from deep than from shallow processing at study only at relatively long response-signal delays (> or =300 msec). The results are congruent with views suggesting that both fast familiarity and slower recollection processes contribute to recognition memory.

  19. "It's Always the Judge's Fault": Attention, Emotion Recognition, and Expertise in Rhythmic Gymnastics Assessment.

    PubMed

    van Bokhorst, Lindsey G; Knapová, Lenka; Majoranc, Kim; Szebeni, Zea K; Táborský, Adam; Tomić, Dragana; Cañadas, Elena

    2016-01-01

    In many sports, such as figure skating or gymnastics, the outcome of a performance does not rely exclusively on objective measurements, but on more subjective cues. Judges need high attentional capacities to process visual information and overcome fatigue. Also their emotion recognition abilities might have an effect in detecting errors and making a more accurate assessment. Moreover, the scoring given by judges could be also influenced by their level of expertise. This study aims to assess how rhythmic gymnastics judges' emotion recognition and attentional abilities influence accuracy of performance assessment. Data will be collected from rhythmic gymnastics judges and coaches at different international levels. This study will employ an online questionnaire consisting on an emotion recognition test and attentional test. Participants' task is to watch a set of videotaped rhythmic gymnastics performances and evaluate them on the artistic and execution components of performance. Their scoring will be compared with the official scores given at the competition the video was taken from to measure the accuracy of the participants' evaluations. The proposed research represents an interdisciplinary approach that integrates cognitive and sport psychology within experimental and applied contexts. The current study advances the theoretical understanding of how emotional and attentional aspects affect the evaluation of sport performance. The results will provide valuable evidence on the direction and strength of the relationship between the above-mentioned factors and the accuracy of sport performance evaluation. Importantly, practical implications might be drawn from this study. Intervention programs directed at improving the accuracy of judges could be created based on the understanding of how emotion recognition and attentional abilities are related to the accuracy of performance assessment.

  20. “It’s Always the Judge’s Fault”: Attention, Emotion Recognition, and Expertise in Rhythmic Gymnastics Assessment

    PubMed Central

    van Bokhorst, Lindsey G.; Knapová, Lenka; Majoranc, Kim; Szebeni, Zea K.; Táborský, Adam; Tomić, Dragana; Cañadas, Elena

    2016-01-01

    In many sports, such as figure skating or gymnastics, the outcome of a performance does not rely exclusively on objective measurements, but on more subjective cues. Judges need high attentional capacities to process visual information and overcome fatigue. Also their emotion recognition abilities might have an effect in detecting errors and making a more accurate assessment. Moreover, the scoring given by judges could be also influenced by their level of expertise. This study aims to assess how rhythmic gymnastics judges’ emotion recognition and attentional abilities influence accuracy of performance assessment. Data will be collected from rhythmic gymnastics judges and coaches at different international levels. This study will employ an online questionnaire consisting on an emotion recognition test and attentional test. Participants’ task is to watch a set of videotaped rhythmic gymnastics performances and evaluate them on the artistic and execution components of performance. Their scoring will be compared with the official scores given at the competition the video was taken from to measure the accuracy of the participants’ evaluations. The proposed research represents an interdisciplinary approach that integrates cognitive and sport psychology within experimental and applied contexts. The current study advances the theoretical understanding of how emotional and attentional aspects affect the evaluation of sport performance. The results will provide valuable evidence on the direction and strength of the relationship between the above-mentioned factors and the accuracy of sport performance evaluation. Importantly, practical implications might be drawn from this study. Intervention programs directed at improving the accuracy of judges could be created based on the understanding of how emotion recognition and attentional abilities are related to the accuracy of performance assessment. PMID:27458406

  1. High-speed cell recognition algorithm for ultrafast flow cytometer imaging system.

    PubMed

    Zhao, Wanyue; Wang, Chao; Chen, Hongwei; Chen, Minghua; Yang, Sigang

    2018-04-01

    An optical time-stretch flow imaging system enables high-throughput examination of cells/particles with unprecedented high speed and resolution. A significant amount of raw image data is produced. A high-speed cell recognition algorithm is, therefore, highly demanded to analyze large amounts of data efficiently. A high-speed cell recognition algorithm consisting of two-stage cascaded detection and Gaussian mixture model (GMM) classification is proposed. The first stage of detection extracts cell regions. The second stage integrates distance transform and the watershed algorithm to separate clustered cells. Finally, the cells detected are classified by GMM. We compared the performance of our algorithm with support vector machine. Results show that our algorithm increases the running speed by over 150% without sacrificing the recognition accuracy. This algorithm provides a promising solution for high-throughput and automated cell imaging and classification in the ultrafast flow cytometer imaging platform. (2018) COPYRIGHT Society of Photo-Optical Instrumentation Engineers (SPIE).

  2. High-speed cell recognition algorithm for ultrafast flow cytometer imaging system

    NASA Astrophysics Data System (ADS)

    Zhao, Wanyue; Wang, Chao; Chen, Hongwei; Chen, Minghua; Yang, Sigang

    2018-04-01

    An optical time-stretch flow imaging system enables high-throughput examination of cells/particles with unprecedented high speed and resolution. A significant amount of raw image data is produced. A high-speed cell recognition algorithm is, therefore, highly demanded to analyze large amounts of data efficiently. A high-speed cell recognition algorithm consisting of two-stage cascaded detection and Gaussian mixture model (GMM) classification is proposed. The first stage of detection extracts cell regions. The second stage integrates distance transform and the watershed algorithm to separate clustered cells. Finally, the cells detected are classified by GMM. We compared the performance of our algorithm with support vector machine. Results show that our algorithm increases the running speed by over 150% without sacrificing the recognition accuracy. This algorithm provides a promising solution for high-throughput and automated cell imaging and classification in the ultrafast flow cytometer imaging platform.

  3. Online Sensor Drift Compensation for E-Nose Systems Using Domain Adaptation and Extreme Learning Machine.

    PubMed

    Ma, Zhiyuan; Luo, Guangchun; Qin, Ke; Wang, Nan; Niu, Weina

    2018-03-01

    Sensor drift is a common issue in E-Nose systems and various drift compensation methods have received fruitful results in recent years. Although the accuracy for recognizing diverse gases under drift conditions has been largely enhanced, few of these methods considered online processing scenarios. In this paper, we focus on building online drift compensation model by transforming two domain adaptation based methods into their online learning versions, which allow the recognition models to adapt to the changes of sensor responses in a time-efficient manner without losing the high accuracy. Experimental results using three different settings confirm that the proposed methods save large processing time when compared with their offline versions, and outperform other drift compensation methods in recognition accuracy.

  4. [Association between intelligence development and facial expression recognition ability in children with autism spectrum disorder].

    PubMed

    Pan, Ning; Wu, Gui-Hua; Zhang, Ling; Zhao, Ya-Fen; Guan, Han; Xu, Cai-Juan; Jing, Jin; Jin, Yu

    2017-03-01

    To investigate the features of intelligence development, facial expression recognition ability, and the association between them in children with autism spectrum disorder (ASD). A total of 27 ASD children aged 6-16 years (ASD group, full intelligence quotient >70) and age- and gender-matched normally developed children (control group) were enrolled. Wechsler Intelligence Scale for Children Fourth Edition and Chinese Static Facial Expression Photos were used for intelligence evaluation and facial expression recognition test. Compared with the control group, the ASD group had significantly lower scores of full intelligence quotient, verbal comprehension index, perceptual reasoning index (PRI), processing speed index(PSI), and working memory index (WMI) (P<0.05). The ASD group also had a significantly lower overall accuracy rate of facial expression recognition and significantly lower accuracy rates of the recognition of happy, angry, sad, and frightened expressions than the control group (P<0.05). In the ASD group, the overall accuracy rate of facial expression recognition and the accuracy rates of the recognition of happy and frightened expressions were positively correlated with PRI (r=0.415, 0.455, and 0.393 respectively; P<0.05). The accuracy rate of the recognition of angry expression was positively correlated with WMI (r=0.397; P<0.05). ASD children have delayed intelligence development compared with normally developed children and impaired expression recognition ability. Perceptual reasoning and working memory abilities are positively correlated with expression recognition ability, which suggests that insufficient perceptual reasoning and working memory abilities may be important factors affecting facial expression recognition ability in ASD children.

  5. Hierarchical Recognition Scheme for Human Facial Expression Recognition Systems

    PubMed Central

    Siddiqi, Muhammad Hameed; Lee, Sungyoung; Lee, Young-Koo; Khan, Adil Mehmood; Truc, Phan Tran Ho

    2013-01-01

    Over the last decade, human facial expressions recognition (FER) has emerged as an important research area. Several factors make FER a challenging research problem. These include varying light conditions in training and test images; need for automatic and accurate face detection before feature extraction; and high similarity among different expressions that makes it difficult to distinguish these expressions with a high accuracy. This work implements a hierarchical linear discriminant analysis-based facial expressions recognition (HL-FER) system to tackle these problems. Unlike the previous systems, the HL-FER uses a pre-processing step to eliminate light effects, incorporates a new automatic face detection scheme, employs methods to extract both global and local features, and utilizes a HL-FER to overcome the problem of high similarity among different expressions. Unlike most of the previous works that were evaluated using a single dataset, the performance of the HL-FER is assessed using three publicly available datasets under three different experimental settings: n-fold cross validation based on subjects for each dataset separately; n-fold cross validation rule based on datasets; and, finally, a last set of experiments to assess the effectiveness of each module of the HL-FER separately. Weighted average recognition accuracy of 98.7% across three different datasets, using three classifiers, indicates the success of employing the HL-FER for human FER. PMID:24316568

  6. Nonlinguistic vocalizations from online amateur videos for emotion research: A validated corpus.

    PubMed

    Anikin, Andrey; Persson, Tomas

    2017-04-01

    This study introduces a corpus of 260 naturalistic human nonlinguistic vocalizations representing nine emotions: amusement, anger, disgust, effort, fear, joy, pain, pleasure, and sadness. The recognition accuracy in a rating task varied greatly per emotion, from <40% for joy and pain, to >70% for amusement, pleasure, fear, and sadness. In contrast, the raters' linguistic-cultural group had no effect on recognition accuracy: The predominantly English-language corpus was classified with similar accuracies by participants from Brazil, Russia, Sweden, and the UK/USA. Supervised random forest models classified the sounds as accurately as the human raters. The best acoustic predictors of emotion were pitch, harmonicity, and the spacing and regularity of syllables. This corpus of ecologically valid emotional vocalizations can be filtered to include only sounds with high recognition rates, in order to study reactions to emotional stimuli of known perceptual types (reception side), or can be used in its entirety to study the association between affective states and vocal expressions (production side).

  7. Empathic competencies in violent offenders☆

    PubMed Central

    Seidel, Eva-Maria; Pfabigan, Daniela Melitta; Keckeis, Katinka; Wucherer, Anna Maria; Jahn, Thomas; Lamm, Claus; Derntl, Birgit

    2013-01-01

    Violent offending has often been associated with a lack of empathy, but experimental investigations are rare. The present study aimed at clarifying whether violent offenders show a general empathy deficit or specific deficits regarding the separate subcomponents. To this end, we assessed three core components of empathy (emotion recognition, perspective taking, affective responsiveness) as well as skin conductance response (SCR) in a sample of 30 male violent offenders and 30 healthy male controls. Data analysis revealed reduced accuracy in violent offenders compared to healthy controls only in emotion recognition, and that a high number of violent assaults was associated with decreased accuracy in perspective taking for angry scenes. SCR data showed reduced physiological responses in the offender group specifically for fear and disgust stimuli during emotion recognition and perspective taking. In addition, higher psychopathy scores in the violent offender group were associated with reduced accuracy in affective responsiveness. This is the first study to show that mainly emotion recognition is deficient in violent offenders whereas the other components of empathy are rather unaffected. This divergent impact of violent offending on the subcomponents of empathy suggests that all three empathy components can be targeted by therapeutic interventions separately. PMID:24035702

  8. Brief report: accuracy and response time for the recognition of facial emotions in a large sample of children with autism spectrum disorders.

    PubMed

    Fink, Elian; de Rosnay, Marc; Wierda, Marlies; Koot, Hans M; Begeer, Sander

    2014-09-01

    The empirical literature has presented inconsistent evidence for deficits in the recognition of basic emotion expressions in children with autism spectrum disorders (ASD), which may be due to the focus on research with relatively small sample sizes. Additionally, it is proposed that although children with ASD may correctly identify emotion expression they rely on more deliberate, more time-consuming strategies in order to accurately recognize emotion expressions when compared to typically developing children. In the current study, we examine both emotion recognition accuracy and response time in a large sample of children, and explore the moderating influence of verbal ability on these findings. The sample consisted of 86 children with ASD (M age = 10.65) and 114 typically developing children (M age = 10.32) between 7 and 13 years of age. All children completed a pre-test (emotion word-word matching), and test phase consisting of basic emotion recognition, whereby they were required to match a target emotion expression to the correct emotion word; accuracy and response time were recorded. Verbal IQ was controlled for in the analyses. We found no evidence of a systematic deficit in emotion recognition accuracy or response time for children with ASD, controlling for verbal ability. However, when controlling for children's accuracy in word-word matching, children with ASD had significantly lower emotion recognition accuracy when compared to typically developing children. The findings suggest that the social impairments observed in children with ASD are not the result of marked deficits in basic emotion recognition accuracy or longer response times. However, children with ASD may be relying on other perceptual skills (such as advanced word-word matching) to complete emotion recognition tasks at a similar level as typically developing children.

  9. Sunspot drawings handwritten character recognition method based on deep learning

    NASA Astrophysics Data System (ADS)

    Zheng, Sheng; Zeng, Xiangyun; Lin, Ganghua; Zhao, Cui; Feng, Yongli; Tao, Jinping; Zhu, Daoyuan; Xiong, Li

    2016-05-01

    High accuracy scanned sunspot drawings handwritten characters recognition is an issue of critical importance to analyze sunspots movement and store them in the database. This paper presents a robust deep learning method for scanned sunspot drawings handwritten characters recognition. The convolution neural network (CNN) is one algorithm of deep learning which is truly successful in training of multi-layer network structure. CNN is used to train recognition model of handwritten character images which are extracted from the original sunspot drawings. We demonstrate the advantages of the proposed method on sunspot drawings provided by Chinese Academy Yunnan Observatory and obtain the daily full-disc sunspot numbers and sunspot areas from the sunspot drawings. The experimental results show that the proposed method achieves a high recognition accurate rate.

  10. The Effects of Aging and IQ on Item and Associative Memory

    PubMed Central

    Ratcliff, Roger; Thapar, Anjali; McKoon, Gail

    2011-01-01

    The effects of aging and IQ on performance were examined in four memory tasks: item recognition, associative recognition, cued recall, and free recall. For item and associative recognition, accuracy and the response time distributions for correct and error responses were explained by Ratcliff’s (1978) diffusion model, at the level of individual participants. The values of the components of processing identified by the model for the recognition tasks, as well as accuracy for cued and free recall, were compared across levels of IQ ranging from 85 to 140 and age (college-age, 60-74 year olds, and 75-90 year olds). IQ had large effects on the quality of the evidence from memory on which decisions were based in the recognition tasks and accuracy in the recall tasks, except for the oldest participants for whom some of the measures were near floor values. Drift rates in the recognition tasks, accuracy in the recall tasks, and IQ all correlated strongly with each other. However, there was a small decline in drift rates for item recognition and a large decline for associative recognition and accuracy in cued recall (about 70 percent). In contrast, there were large age effects on boundary separation and nondecision time (which correlated across tasks), but little effect of IQ. The implications of these results for single- and dual- process models of item recognition are discussed and it is concluded that models that deal with both RTs and accuracy are subject to many more constraints than models that deal with only one of these measures. Overall, the results of the study show a complicated but interpretable pattern of interactions that present important targets for response time and memory models. PMID:21707207

  11. Modeling Fan Effects on the Time Course of Associative Recognition

    PubMed Central

    Schneider, Darryl W.; Anderson, John R.

    2011-01-01

    We investigated the time course of associative recognition using the response signal procedure, whereby a stimulus is presented and followed after a variable lag by a signal indicating that an immediate response is required. More specifically, we examined the effects of associative fan (the number of associations that an item has with other items in memory) on speed–accuracy tradeoff functions obtained in a previous response signal experiment involving briefly studied materials and in a new experiment involving well-learned materials. High fan lowered asymptotic accuracy or the rate of rise in accuracy across lags, or both. We developed an Adaptive Control of Thought–Rational (ACT-R) model for the response signal procedure to explain these effects. The model assumes that high fan results in weak associative activation that slows memory retrieval, thereby decreasing the probability that retrieval finishes in time and producing a speed–accuracy tradeoff function. The ACT-R model provided an excellent account of the data, yielding quantitative fits that were as good as those of the best descriptive model for response signal data. PMID:22197797

  12. Accurate forced-choice recognition without awareness of memory retrieval.

    PubMed

    Voss, Joel L; Baym, Carol L; Paller, Ken A

    2008-06-01

    Recognition confidence and the explicit awareness of memory retrieval commonly accompany accurate responding in recognition tests. Memory performance in recognition tests is widely assumed to measure explicit memory, but the generality of this assumption is questionable. Indeed, whether recognition in nonhumans is always supported by explicit memory is highly controversial. Here we identified circumstances wherein highly accurate recognition was unaccompanied by hallmark features of explicit memory. When memory for kaleidoscopes was tested using a two-alternative forced-choice recognition test with similar foils, recognition was enhanced by an attentional manipulation at encoding known to degrade explicit memory. Moreover, explicit recognition was most accurate when the awareness of retrieval was absent. These dissociations between accuracy and phenomenological features of explicit memory are consistent with the notion that correct responding resulted from experience-dependent enhancements of perceptual fluency with specific stimuli--the putative mechanism for perceptual priming effects in implicit memory tests. This mechanism may contribute to recognition performance in a variety of frequently-employed testing circumstances. Our results thus argue for a novel view of recognition, in that analyses of its neurocognitive foundations must take into account the potential for both (1) recognition mechanisms allied with implicit memory and (2) recognition mechanisms allied with explicit memory.

  13. Deep learning and non-negative matrix factorization in recognition of mammograms

    NASA Astrophysics Data System (ADS)

    Swiderski, Bartosz; Kurek, Jaroslaw; Osowski, Stanislaw; Kruk, Michal; Barhoumi, Walid

    2017-02-01

    This paper presents novel approach to the recognition of mammograms. The analyzed mammograms represent the normal and breast cancer (benign and malignant) cases. The solution applies the deep learning technique in image recognition. To obtain increased accuracy of classification the nonnegative matrix factorization and statistical self-similarity of images are applied. The images reconstructed by using these two approaches enrich the data base and thanks to this improve of quality measures of mammogram recognition (increase of accuracy, sensitivity and specificity). The results of numerical experiments performed on large DDSM data base containing more than 10000 mammograms have confirmed good accuracy of class recognition, exceeding the best results reported in the actual publications for this data base.

  14. Emotion recognition deficits associated with ventromedial prefrontal cortex lesions are improved by gaze manipulation.

    PubMed

    Wolf, Richard C; Pujara, Maia; Baskaya, Mustafa K; Koenigs, Michael

    2016-09-01

    Facial emotion recognition is a critical aspect of human communication. Since abnormalities in facial emotion recognition are associated with social and affective impairment in a variety of psychiatric and neurological conditions, identifying the neural substrates and psychological processes underlying facial emotion recognition will help advance basic and translational research on social-affective function. Ventromedial prefrontal cortex (vmPFC) has recently been implicated in deploying visual attention to the eyes of emotional faces, although there is mixed evidence regarding the importance of this brain region for recognition accuracy. In the present study of neurological patients with vmPFC damage, we used an emotion recognition task with morphed facial expressions of varying intensities to determine (1) whether vmPFC is essential for emotion recognition accuracy, and (2) whether instructed attention to the eyes of faces would be sufficient to improve any accuracy deficits. We found that vmPFC lesion patients are impaired, relative to neurologically healthy adults, at recognizing moderate intensity expressions of anger and that recognition accuracy can be improved by providing instructions of where to fixate. These results suggest that vmPFC may be important for the recognition of facial emotion through a role in guiding visual attention to emotionally salient regions of faces. Copyright © 2016 Elsevier Ltd. All rights reserved.

  15. Online Sensor Drift Compensation for E-Nose Systems Using Domain Adaptation and Extreme Learning Machine

    PubMed Central

    Luo, Guangchun; Qin, Ke; Wang, Nan; Niu, Weina

    2018-01-01

    Sensor drift is a common issue in E-Nose systems and various drift compensation methods have received fruitful results in recent years. Although the accuracy for recognizing diverse gases under drift conditions has been largely enhanced, few of these methods considered online processing scenarios. In this paper, we focus on building online drift compensation model by transforming two domain adaptation based methods into their online learning versions, which allow the recognition models to adapt to the changes of sensor responses in a time-efficient manner without losing the high accuracy. Experimental results using three different settings confirm that the proposed methods save large processing time when compared with their offline versions, and outperform other drift compensation methods in recognition accuracy. PMID:29494543

  16. A method of object recognition for single pixel imaging

    NASA Astrophysics Data System (ADS)

    Li, Boxuan; Zhang, Wenwen

    2018-01-01

    Computational ghost imaging(CGI), utilizing a single-pixel detector, has been extensively used in many fields. However, in order to achieve a high-quality reconstructed image, a large number of iterations are needed, which limits the flexibility of using CGI in practical situations, especially in the field of object recognition. In this paper, we purpose a method utilizing the feature matching to identify the number objects. In the given system, approximately 90% of accuracy of recognition rates can be achieved, which provides a new idea for the application of single pixel imaging in the field of object recognition

  17. Research on pre-processing of QR Code

    NASA Astrophysics Data System (ADS)

    Sun, Haixing; Xia, Haojie; Dong, Ning

    2013-10-01

    QR code encodes many kinds of information because of its advantages: large storage capacity, high reliability, full arrange of utter-high-speed reading, small printing size and high-efficient representation of Chinese characters, etc. In order to obtain the clearer binarization image from complex background, and improve the recognition rate of QR code, this paper researches on pre-processing methods of QR code (Quick Response Code), and shows algorithms and results of image pre-processing for QR code recognition. Improve the conventional method by changing the Souvola's adaptive text recognition method. Additionally, introduce the QR code Extraction which adapts to different image size, flexible image correction approach, and improve the efficiency and accuracy of QR code image processing.

  18. Relationship between Measures of Working Memory Capacity and the Time Course of Short-Term Memory Retrieval and Interference Resolution

    ERIC Educational Resources Information Center

    Oztekin, Ilke; McElree, Brian

    2010-01-01

    The response-signal speed-accuracy trade-off (SAT) procedure was used to investigate the relationship between measures of working memory capacity and the time course of short-term item recognition. High- and low-span participants studied sequentially presented 6-item lists, immediately followed by a recognition probe. Analyses of composite list…

  19. Boost OCR accuracy using iVector based system combination approach

    NASA Astrophysics Data System (ADS)

    Peng, Xujun; Cao, Huaigu; Natarajan, Prem

    2015-01-01

    Optical character recognition (OCR) is a challenging task because most existing preprocessing approaches are sensitive to writing style, writing material, noises and image resolution. Thus, a single recognition system cannot address all factors of real document images. In this paper, we describe an approach to combine diverse recognition systems by using iVector based features, which is a newly developed method in the field of speaker verification. Prior to system combination, document images are preprocessed and text line images are extracted with different approaches for each system, where iVector is transformed from a high-dimensional supervector of each text line and is used to predict the accuracy of OCR. We merge hypotheses from multiple recognition systems according to the overlap ratio and the predicted OCR score of text line images. We present evaluation results on an Arabic document database where the proposed method is compared against the single best OCR system using word error rate (WER) metric.

  20. Primary Stability Recognition of the Newly Designed Cementless Femoral Stem Using Digital Signal Processing

    PubMed Central

    Salleh, Sh-Hussain; Hamedi, Mahyar; Zulkifly, Ahmad Hafiz; Lee, Muhammad Hisyam; Mohd Noor, Alias; Harris, Arief Ruhullah A.; Abdul Majid, Norazman

    2014-01-01

    Stress shielding and micromotion are two major issues which determine the success of newly designed cementless femoral stems. The correlation of experimental validation with finite element analysis (FEA) is commonly used to evaluate the stress distribution and fixation stability of the stem within the femoral canal. This paper focused on the applications of feature extraction and pattern recognition using support vector machine (SVM) to determine the primary stability of the implant. We measured strain with triaxial rosette at the metaphyseal region and micromotion with linear variable direct transducer proximally and distally using composite femora. The root mean squares technique is used to feed the classifier which provides maximum likelihood estimation of amplitude, and radial basis function is used as the kernel parameter which mapped the datasets into separable hyperplanes. The results showed 100% pattern recognition accuracy using SVM for both strain and micromotion. This indicates that DSP could be applied in determining the femoral stem primary stability with high pattern recognition accuracy in biomechanical testing. PMID:24800230

  1. Primary stability recognition of the newly designed cementless femoral stem using digital signal processing.

    PubMed

    Baharuddin, Mohd Yusof; Salleh, Sh-Hussain; Hamedi, Mahyar; Zulkifly, Ahmad Hafiz; Lee, Muhammad Hisyam; Mohd Noor, Alias; Harris, Arief Ruhullah A; Abdul Majid, Norazman

    2014-01-01

    Stress shielding and micromotion are two major issues which determine the success of newly designed cementless femoral stems. The correlation of experimental validation with finite element analysis (FEA) is commonly used to evaluate the stress distribution and fixation stability of the stem within the femoral canal. This paper focused on the applications of feature extraction and pattern recognition using support vector machine (SVM) to determine the primary stability of the implant. We measured strain with triaxial rosette at the metaphyseal region and micromotion with linear variable direct transducer proximally and distally using composite femora. The root mean squares technique is used to feed the classifier which provides maximum likelihood estimation of amplitude, and radial basis function is used as the kernel parameter which mapped the datasets into separable hyperplanes. The results showed 100% pattern recognition accuracy using SVM for both strain and micromotion. This indicates that DSP could be applied in determining the femoral stem primary stability with high pattern recognition accuracy in biomechanical testing.

  2. Improved dense trajectories for action recognition based on random projection and Fisher vectors

    NASA Astrophysics Data System (ADS)

    Ai, Shihui; Lu, Tongwei; Xiong, Yudian

    2018-03-01

    As an important application of intelligent monitoring system, the action recognition in video has become a very important research area of computer vision. In order to improve the accuracy rate of the action recognition in video with improved dense trajectories, one advanced vector method is introduced. Improved dense trajectories combine Fisher Vector with Random Projection. The method realizes the reduction of the characteristic trajectory though projecting the high-dimensional trajectory descriptor into the low-dimensional subspace based on defining and analyzing Gaussian mixture model by Random Projection. And a GMM-FV hybrid model is introduced to encode the trajectory feature vector and reduce dimension. The computational complexity is reduced by Random Projection which can drop Fisher coding vector. Finally, a Linear SVM is used to classifier to predict labels. We tested the algorithm in UCF101 dataset and KTH dataset. Compared with existed some others algorithm, the result showed that the method not only reduce the computational complexity but also improved the accuracy of action recognition.

  3. Confidence-Accuracy Calibration in Absolute and Relative Face Recognition Judgments

    ERIC Educational Resources Information Center

    Weber, Nathan; Brewer, Neil

    2004-01-01

    Confidence-accuracy (CA) calibration was examined for absolute and relative face recognition judgments as well as for recognition judgments from groups of stimuli presented simultaneously or sequentially (i.e., simultaneous or sequential mini-lineups). When the effect of difficulty was controlled, absolute and relative judgments produced…

  4. Post processing for offline Chinese handwritten character string recognition

    NASA Astrophysics Data System (ADS)

    Wang, YanWei; Ding, XiaoQing; Liu, ChangSong

    2012-01-01

    Offline Chinese handwritten character string recognition is one of the most important research fields in pattern recognition. Due to the free writing style, large variability in character shapes and different geometric characteristics, Chinese handwritten character string recognition is a challenging problem to deal with. However, among the current methods over-segmentation and merging method which integrates geometric information, character recognition information and contextual information, shows a promising result. It is found experimentally that a large part of errors are segmentation error and mainly occur around non-Chinese characters. In a Chinese character string, there are not only wide characters namely Chinese characters, but also narrow characters like digits and letters of the alphabet. The segmentation error is mainly caused by uniform geometric model imposed on all segmented candidate characters. To solve this problem, post processing is employed to improve recognition accuracy of narrow characters. On one hand, multi-geometric models are established for wide characters and narrow characters respectively. Under multi-geometric models narrow characters are not prone to be merged. On the other hand, top rank recognition results of candidate paths are integrated to boost final recognition of narrow characters. The post processing method is investigated on two datasets, in total 1405 handwritten address strings. The wide character recognition accuracy has been improved lightly and narrow character recognition accuracy has been increased up by 10.41% and 10.03% respectively. It indicates that the post processing method is effective to improve recognition accuracy of narrow characters.

  5. Implicit recognition based on lateralized perceptual fluency.

    PubMed

    Vargas, Iliana M; Voss, Joel L; Paller, Ken A

    2012-02-06

    In some circumstances, accurate recognition of repeated images in an explicit memory test is driven by implicit memory. We propose that this "implicit recognition" results from perceptual fluency that influences responding without awareness of memory retrieval. Here we examined whether recognition would vary if images appeared in the same or different visual hemifield during learning and testing. Kaleidoscope images were briefly presented left or right of fixation during divided-attention encoding. Presentation in the same visual hemifield at test produced higher recognition accuracy than presentation in the opposite visual hemifield, but only for guess responses. These correct guesses likely reflect a contribution from implicit recognition, given that when the stimulated visual hemifield was the same at study and test, recognition accuracy was higher for guess responses than for responses with any level of confidence. The dramatic difference in guessing accuracy as a function of lateralized perceptual overlap between study and test suggests that implicit recognition arises from memory storage in visual cortical networks that mediate repetition-induced fluency increments.

  6. Detecting facial emotion recognition deficits in schizophrenia using dynamic stimuli of varying intensities.

    PubMed

    Hargreaves, A; Mothersill, O; Anderson, M; Lawless, S; Corvin, A; Donohoe, G

    2016-10-28

    Deficits in facial emotion recognition have been associated with functional impairments in patients with Schizophrenia (SZ). Whilst a strong ecological argument has been made for the use of both dynamic facial expressions and varied emotion intensities in research, SZ emotion recognition studies to date have primarily used static stimuli of a singular, 100%, intensity of emotion. To address this issue, the present study aimed to investigate accuracy of emotion recognition amongst patients with SZ and healthy subjects using dynamic facial emotion stimuli of varying intensities. To this end an emotion recognition task (ERT) designed by Montagne (2007) was adapted and employed. 47 patients with a DSM-IV diagnosis of SZ and 51 healthy participants were assessed for emotion recognition. Results of the ERT were tested for correlation with performance in areas of cognitive ability typically found to be impaired in psychosis, including IQ, memory, attention and social cognition. Patients were found to perform less well than healthy participants at recognising each of the 6 emotions analysed. Surprisingly, however, groups did not differ in terms of impact of emotion intensity on recognition accuracy; for both groups higher intensity levels predicted greater accuracy, but no significant interaction between diagnosis and emotional intensity was found for any of the 6 emotions. Accuracy of emotion recognition was, however, more strongly correlated with cognition in the patient cohort. Whilst this study demonstrates the feasibility of using ecologically valid dynamic stimuli in the study of emotion recognition accuracy, varying the intensity of the emotion displayed was not demonstrated to impact patients and healthy participants differentially, and thus may not be a necessary variable to include in emotion recognition research. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.

  7. Image enhancement and advanced information extraction techniques for ERTS-1 data

    NASA Technical Reports Server (NTRS)

    Malila, W. A. (Principal Investigator); Nalepka, R. F.; Sarno, J. E.

    1975-01-01

    The author has identified the following significant results. It was demonstrated and concluded that: (1) the atmosphere has significant effects on ERTS MSS data which can seriously degrade recognition performance; (2) the application of selected signature extension techniques serve to reduce the deleterious effects of both the atmosphere and changing ground conditions on recognition performance; and (3) a proportion estimation algorithm for overcoming problems in acreage estimation accuracy resulting from the coarse spatial resolution of the ERTS MSS, was able to significantly improve acreage estimation accuracy over that achievable by conventional techniques, especially for high contrast targets such as lakes and ponds.

  8. Facial recognition using simulated prosthetic pixelized vision.

    PubMed

    Thompson, Robert W; Barnett, G David; Humayun, Mark S; Dagnelie, Gislin

    2003-11-01

    To evaluate a model of simulated pixelized prosthetic vision using noncontiguous circular phosphenes, to test the effects of phosphene and grid parameters on facial recognition. A video headset was used to view a reference set of four faces, followed by a partially averted image of one of those faces viewed through a square pixelizing grid that contained 10x10 to 32x32 dots separated by gaps. The grid size, dot size, gap width, dot dropout rate, and gray-scale resolution were varied separately about a standard test condition, for a total of 16 conditions. All tests were first performed at 99% contrast and then repeated at 12.5% contrast. Discrimination speed and performance were influenced by all stimulus parameters. The subjects achieved highly significant facial recognition accuracy for all high-contrast tests except for grids with 70% random dot dropout and two gray levels. In low-contrast tests, significant facial recognition accuracy was achieved for all but the most adverse grid parameters: total grid area less than 17% of the target image, 70% dropout, four or fewer gray levels, and a gap of 40.5 arcmin. For difficult test conditions, a pronounced learning effect was noticed during high-contrast trials, and a more subtle practice effect on timing was evident during subsequent low-contrast trials. These findings suggest that reliable face recognition with crude pixelized grids can be learned and may be possible, even with a crude visual prosthesis.

  9. High confidence in falsely recognizing prototypical faces.

    PubMed

    Sampaio, Cristina; Reinke, Victoria; Mathews, Jeffrey; Swart, Alexandra; Wallinger, Stephen

    2018-06-01

    We applied a metacognitive approach to investigate confidence in recognition of prototypical faces. Participants were presented with sets of faces constructed digitally as deviations from prototype/base faces. Participants were then tested with a simple recognition task (Experiment 1) or a multiple-choice task (Experiment 2) for old and new items plus new prototypes, and they showed a high rate of confident false alarms to the prototypes. Confidence and accuracy relationship in this face recognition paradigm was found to be positive for standard items but negative for the prototypes; thus, it was contingent on the nature of the items used. The data have implications for lineups that employ match-to-suspect strategies.

  10. An Improved Iris Recognition Algorithm Based on Hybrid Feature and ELM

    NASA Astrophysics Data System (ADS)

    Wang, Juan

    2018-03-01

    The iris image is easily polluted by noise and uneven light. This paper proposed an improved extreme learning machine (ELM) based iris recognition algorithm with hybrid feature. 2D-Gabor filters and GLCM is employed to generate a multi-granularity hybrid feature vector. 2D-Gabor filter and GLCM feature work for capturing low-intermediate frequency and high frequency texture information, respectively. Finally, we utilize extreme learning machine for iris recognition. Experimental results reveal our proposed ELM based multi-granularity iris recognition algorithm (ELM-MGIR) has higher accuracy of 99.86%, and lower EER of 0.12% under the premise of real-time performance. The proposed ELM-MGIR algorithm outperforms other mainstream iris recognition algorithms.

  11. ECG Sensor Card with Evolving RBP Algorithms for Human Verification.

    PubMed

    Tseng, Kuo-Kun; Huang, Huang-Nan; Zeng, Fufu; Tu, Shu-Yi

    2015-08-21

    It is known that cardiac and respiratory rhythms in electrocardiograms (ECGs) are highly nonlinear and non-stationary. As a result, most traditional time-domain algorithms are inadequate for characterizing the complex dynamics of the ECG. This paper proposes a new ECG sensor card and a statistical-based ECG algorithm, with the aid of a reduced binary pattern (RBP), with the aim of achieving faster ECG human identity recognition with high accuracy. The proposed algorithm has one advantage that previous ECG algorithms lack-the waveform complex information and de-noising preprocessing can be bypassed; therefore, it is more suitable for non-stationary ECG signals. Experimental results tested on two public ECG databases (MIT-BIH) from MIT University confirm that the proposed scheme is feasible with excellent accuracy, low complexity, and speedy processing. To be more specific, the advanced RBP algorithm achieves high accuracy in human identity recognition and is executed at least nine times faster than previous algorithms. Moreover, based on the test results from a long-term ECG database, the evolving RBP algorithm also demonstrates superior capability in handling long-term and non-stationary ECG signals.

  12. Diminished Sensitivity to Sad Facial Expressions in High Functioning Autism Spectrum Disorders Is Associated with Symptomatology and Adaptive Functioning

    ERIC Educational Resources Information Center

    Wallace, Gregory L.; Case, Laura K.; Harms, Madeline B.; Silvers, Jennifer A.; Kenworthy, Lauren; Martin, Alex

    2011-01-01

    Prior studies implicate facial emotion recognition (FER) difficulties among individuals with autism spectrum disorders (ASD); however, many investigations focus on FER accuracy alone and few examine ecological validity through links with everyday functioning. We compared FER accuracy and perceptual sensitivity (from neutral to full expression)…

  13. Automated thematic mapping and change detection of ERTS-A images. [digital interpretation of Arizona imagery

    NASA Technical Reports Server (NTRS)

    Gramenopoulos, N. (Principal Investigator)

    1973-01-01

    The author has identified the following significant results. For the recognition of terrain types, spatial signatures are developed from the diffraction patterns of small areas of ERTS-1 images. This knowledge is exploited for the measurements of a small number of meaningful spatial features from the digital Fourier transforms of ERTS-1 image cells containing 32 x 32 picture elements. Using these spatial features and a heuristic algorithm, the terrain types in the vicinity of Phoenix, Arizona were recognized by the computer with a high accuracy. Then, the spatial features were combined with spectral features and using the maximum likelihood criterion the recognition accuracy of terrain types increased substantially. It was determined that the recognition accuracy with the maximum likelihood criterion depends on the statistics of the feature vectors. Nonlinear transformations of the feature vectors are required so that the terrain class statistics become approximately Gaussian. It was also determined that for a given geographic area the statistics of the classes remain invariable for a period of a month but vary substantially between seasons.

  14. The episodic engram transformed: Time reduces retrieval-related brain activity but correlates it with memory accuracy.

    PubMed

    Furman, Orit; Mendelsohn, Avi; Dudai, Yadin

    2012-11-15

    We took snapshots of human brain activity with fMRI during retrieval of realistic episodic memory over several months. Three groups of participants were scanned during a memory test either hours, weeks, or months after viewing a documentary movie. High recognition accuracy after hours decreased after weeks and remained at similar levels after months. In contrast, BOLD activity in a retrieval-related set of brain areas during correctly remembered events was similar after hours and weeks but significantly declined after months. Despite this reduction, BOLD activity in retrieval-related regions was positively correlated with recognition accuracy only after months. Hippocampal engagement during retrieval remained similar over time during recall but decreased in recognition. Our results are in line with the hypothesis that hippocampus subserves retrieval of real-life episodic memory long after encoding, its engagement being dependent on retrieval demands. Furthermore, our findings suggest that over time episodic engrams are transformed into a parsimonious form capable of supporting accurate retrieval of the crux of events, arguably a critical goal of memory, with only minimal network activation.

  15. Performance Evaluation of Multimodal Multifeature Authentication System Using KNN Classification.

    PubMed

    Rajagopal, Gayathri; Palaniswamy, Ramamoorthy

    2015-01-01

    This research proposes a multimodal multifeature biometric system for human recognition using two traits, that is, palmprint and iris. The purpose of this research is to analyse integration of multimodal and multifeature biometric system using feature level fusion to achieve better performance. The main aim of the proposed system is to increase the recognition accuracy using feature level fusion. The features at the feature level fusion are raw biometric data which contains rich information when compared to decision and matching score level fusion. Hence information fused at the feature level is expected to obtain improved recognition accuracy. However, information fused at feature level has the problem of curse in dimensionality; here PCA (principal component analysis) is used to diminish the dimensionality of the feature sets as they are high dimensional. The proposed multimodal results were compared with other multimodal and monomodal approaches. Out of these comparisons, the multimodal multifeature palmprint iris fusion offers significant improvements in the accuracy of the suggested multimodal biometric system. The proposed algorithm is tested using created virtual multimodal database using UPOL iris database and PolyU palmprint database.

  16. Performance Evaluation of Multimodal Multifeature Authentication System Using KNN Classification

    PubMed Central

    Rajagopal, Gayathri; Palaniswamy, Ramamoorthy

    2015-01-01

    This research proposes a multimodal multifeature biometric system for human recognition using two traits, that is, palmprint and iris. The purpose of this research is to analyse integration of multimodal and multifeature biometric system using feature level fusion to achieve better performance. The main aim of the proposed system is to increase the recognition accuracy using feature level fusion. The features at the feature level fusion are raw biometric data which contains rich information when compared to decision and matching score level fusion. Hence information fused at the feature level is expected to obtain improved recognition accuracy. However, information fused at feature level has the problem of curse in dimensionality; here PCA (principal component analysis) is used to diminish the dimensionality of the feature sets as they are high dimensional. The proposed multimodal results were compared with other multimodal and monomodal approaches. Out of these comparisons, the multimodal multifeature palmprint iris fusion offers significant improvements in the accuracy of the suggested multimodal biometric system. The proposed algorithm is tested using created virtual multimodal database using UPOL iris database and PolyU palmprint database. PMID:26640813

  17. Speed, Dissipation, and Accuracy in Early T-cell Recognition

    NASA Astrophysics Data System (ADS)

    Cui, Wenping; Mehta, Pankaj

    In the immune system, T cells can perform self-foreign discrimination with great foreign ligand sensitivity, high decision speed and low energy cost. There is significant evidence T-cells achieve such great performance with a mechanism: kinetic proofreading(KPR). KPR-based mechanisms actively consume energy to increase the specificity of T-cell recognition. An important theoretical question arises: how to understand trade-offs and fundamental limits on accuracy, speed, and dissipation (energy consumption). Recent theoretical work suggests that it is always possible to reduce the the error of KPR-based mechanisms by waiting longer and/or consuming more energy. Surprisingly, we find that this is not the case and that there actually exists an optimal point in the speed-energy-accuracy plane for KPR and its generalizations. This work was supported by NIH R35 and Simons MMLS Grant.

  18. Recognition memory: a review of the critical findings and an integrated theory for relating them.

    PubMed

    Malmberg, Kenneth J

    2008-12-01

    The development of formal models has aided theoretical progress in recognition memory research. Here, I review the findings that are critical for testing them, including behavioral and brain imaging results of single-item recognition, plurality discrimination, and associative recognition experiments under a variety of testing conditions. I also review the major approaches to measurement and process modeling of recognition. The review indicates that several extant dual-process measures of recollection are unreliable, and thus they are unsuitable as a basis for forming strong conclusions. At the process level, however, the retrieval dynamics of recognition memory and the effect of strengthening operations suggest that a recall-to-reject process plays an important role in plurality discrimination and associative recognition, but not necessarily in single-item recognition. A new theoretical framework proposes that the contribution of recollection to recognition depends on whether the retrieval of episodic details improves accuracy, and it organizes the models around the construct of efficiency. Accordingly, subjects adopt strategies that they believe will produce a desired level of accuracy in the shortest amount of time. Several models derived from this framework are shown to account the accuracy, latency, and confidence with which the various recognition tasks are performed.

  19. A preliminary analysis of human factors affecting the recognition accuracy of a discrete word recognizer for C3 systems

    NASA Astrophysics Data System (ADS)

    Yellen, H. W.

    1983-03-01

    Literature pertaining to Voice Recognition abounds with information relevant to the assessment of transitory speech recognition devices. In the past, engineering requirements have dictated the path this technology followed. But, other factors do exist that influence recognition accuracy. This thesis explores the impact of Human Factors on the successful recognition of speech, principally addressing the differences or variability among users. A Threshold Technology T-600 was used for a 100 utterance vocubalary to test 44 subjects. A statistical analysis was conducted on 5 generic categories of Human Factors: Occupational, Operational, Psychological, Physiological and Personal. How the equipment is trained and the experience level of the speaker were found to be key characteristics influencing recognition accuracy. To a lesser extent computer experience, time or week, accent, vital capacity and rate of air flow, speaker cooperativeness and anxiety were found to affect overall error rates.

  20. Investigating the encoding-retrieval match in recognition memory: effects of experimental design, specificity, and retention interval.

    PubMed

    Dewhurst, Stephen A; Knott, Lauren M

    2010-12-01

    Five experiments investigated the encoding-retrieval match in recognition memory by manipulating read and generate conditions at study and at test. Experiments 1A and 1B confirmed previous findings that reinstating encoding operations at test enhances recognition accuracy in a within-groups design but reduces recognition accuracy in a between-groups design. Experiment 2A showed that generating from anagrams at study and at test enhanced recognition accuracy even when study and test items were generated from different anagrams. Experiment 2B showed that switching from one generation task at study (e.g., anagram solution) to a different generation task at test (e.g., fragment completion) eliminated this recognition advantage. Experiment 3 showed that the recognition advantage found in Experiment 1A is reliably present up to 1 week after study. The findings are consistent with theories of memory that emphasize the importance of the match between encoding and retrieval operations.

  1. Speed and accuracy of dyslexic versus typical word recognition: an eye-movement investigation

    PubMed Central

    Kunert, Richard; Scheepers, Christoph

    2014-01-01

    Developmental dyslexia is often characterized by a dual deficit in both word recognition accuracy and general processing speed. While previous research into dyslexic word recognition may have suffered from speed-accuracy trade-off, the present study employed a novel eye-tracking task that is less prone to such confounds. Participants (10 dyslexics and 12 controls) were asked to look at real word stimuli, and to ignore simultaneously presented non-word stimuli, while their eye-movements were recorded. Improvements in word recognition accuracy over time were modeled in terms of a continuous non-linear function. The words' rhyme consistency and the non-words' lexicality (unpronounceable, pronounceable, pseudohomophone) were manipulated within-subjects. Speed-related measures derived from the model fits confirmed generally slower processing in dyslexics, and showed a rhyme consistency effect in both dyslexics and controls. In terms of overall error rate, dyslexics (but not controls) performed less accurately on rhyme-inconsistent words, suggesting a representational deficit for such words in dyslexics. Interestingly, neither group showed a pseudohomophone effect in speed or accuracy, which might call the task-independent pervasiveness of this effect into question. The present results illustrate the importance of distinguishing between speed- vs. accuracy-related effects for our understanding of dyslexic word recognition. PMID:25346708

  2. Incorporating Duration Information in Activity Recognition

    NASA Astrophysics Data System (ADS)

    Chaurasia, Priyanka; Scotney, Bryan; McClean, Sally; Zhang, Shuai; Nugent, Chris

    Activity recognition has become a key issue in smart home environments. The problem involves learning high level activities from low level sensor data. Activity recognition can depend on several variables; one such variable is duration of engagement with sensorised items or duration of intervals between sensor activations that can provide useful information about personal behaviour. In this paper a probabilistic learning algorithm is proposed that incorporates episode, time and duration information to determine inhabitant identity and the activity being undertaken from low level sensor data. Our results verify that incorporating duration information consistently improves the accuracy.

  3. Foot-mounted inertial measurement unit for activity classification.

    PubMed

    Ghobadi, Mostafa; Esfahani, Ehsan T

    2014-01-01

    This paper proposes a classification technique for daily base activity recognition for human monitoring during physical therapy in home. The proposed method estimates the foot motion using single inertial measurement unit, then segments the motion into steps classify them by template-matching as walking, stairs up or stairs down steps. The results show a high accuracy of activity recognition. Unlike previous works which are limited to activity recognition, the proposed approach is more qualitative by providing similarity index of any activity to its desired template which can be used to assess subjects improvement.

  4. Postencoding cognitive processes in the cross-race effect: Categorization and individuation during face recognition.

    PubMed

    Ho, Michael R; Pezdek, Kathy

    2016-06-01

    The cross-race effect (CRE) describes the finding that same-race faces are recognized more accurately than cross-race faces. According to social-cognitive theories of the CRE, processes of categorization and individuation at encoding account for differential recognition of same- and cross-race faces. Recent face memory research has suggested that similar but distinct categorization and individuation processes also occur postencoding, at recognition. Using a divided-attention paradigm, in Experiments 1A and 1B we tested and confirmed the hypothesis that distinct postencoding categorization and individuation processes occur during the recognition of same- and cross-race faces. Specifically, postencoding configural divided-attention tasks impaired recognition accuracy more for same-race than for cross-race faces; on the other hand, for White (but not Black) participants, postencoding featural divided-attention tasks impaired recognition accuracy more for cross-race than for same-race faces. A social categorization paradigm used in Experiments 2A and 2B tested the hypothesis that the postencoding in-group or out-group social orientation to faces affects categorization and individuation processes during the recognition of same-race and cross-race faces. Postencoding out-group orientation to faces resulted in categorization for White but not for Black participants. This was evidenced by White participants' impaired recognition accuracy for same-race but not for cross-race out-group faces. Postencoding in-group orientation to faces had no effect on recognition accuracy for either same-race or cross-race faces. The results of Experiments 2A and 2B suggest that this social orientation facilitates White but not Black participants' individuation and categorization processes at recognition. Models of recognition memory for same-race and cross-race faces need to account for processing differences that occur at both encoding and recognition.

  5. Automated recognition and extraction of tabular fields for the indexing of census records

    NASA Astrophysics Data System (ADS)

    Clawson, Robert; Bauer, Kevin; Chidester, Glen; Pohontsch, Milan; Kennard, Douglas; Ryu, Jongha; Barrett, William

    2013-01-01

    We describe a system for indexing of census records in tabular documents with the goal of recognizing the content of each cell, including both headers and handwritten entries. Each document is automatically rectified, registered and scaled to a known template following which lines and fields are detected and delimited as cells in a tabular form. Whole-word or whole-phrase recognition of noisy machine-printed text is performed using a glyph library, providing greatly increased efficiency and accuracy (approaching 100%), while avoiding the problems inherent with traditional OCR approaches. Constrained handwriting recognition results for a single author reach as high as 98% and 94.5% for the Gender field and Birthplace respectively. Multi-author accuracy (currently 82%) can be improved through an increased training set. Active integration of user feedback in the system will accelerate the indexing of records while providing a tightly coupled learning mechanism for system improvement.

  6. Automated thematic mapping and change detection of ERTS-A images

    NASA Technical Reports Server (NTRS)

    Gramenopoulos, N. (Principal Investigator)

    1975-01-01

    The author has identified the following significant results. In the first part of the investigation, spatial and spectral features were developed which were employed to automatically recognize terrain features through a clustering algorithm. In this part of the investigation, the size of the cell which is the number of digital picture elements used for computing the spatial and spectral features was varied. It was determined that the accuracy of terrain recognition decreases slowly as the cell size is reduced and coincides with increased cluster diffuseness. It was also proven that a cell size of 17 x 17 pixels when used with the clustering algorithm results in high recognition rates for major terrain classes. ERTS-1 data from five diverse geographic regions of the United States were processed through the clustering algorithm with 17 x 17 pixel cells. Simple land use maps were produced and the average terrain recognition accuracy was 82 percent.

  7. Breast Cancer Recognition Using a Novel Hybrid Intelligent Method

    PubMed Central

    Addeh, Jalil; Ebrahimzadeh, Ata

    2012-01-01

    Breast cancer is the second largest cause of cancer deaths among women. At the same time, it is also among the most curable cancer types if it can be diagnosed early. This paper presents a novel hybrid intelligent method for recognition of breast cancer tumors. The proposed method includes three main modules: the feature extraction module, the classifier module, and the optimization module. In the feature extraction module, fuzzy features are proposed as the efficient characteristic of the patterns. In the classifier module, because of the promising generalization capability of support vector machines (SVM), a SVM-based classifier is proposed. In support vector machine training, the hyperparameters have very important roles for its recognition accuracy. Therefore, in the optimization module, the bees algorithm (BA) is proposed for selecting appropriate parameters of the classifier. The proposed system is tested on Wisconsin Breast Cancer database and simulation results show that the recommended system has a high accuracy. PMID:23626945

  8. Urdu Nasta'liq text recognition using implicit segmentation based on multi-dimensional long short term memory neural networks.

    PubMed

    Naz, Saeeda; Umar, Arif Iqbal; Ahmed, Riaz; Razzak, Muhammad Imran; Rashid, Sheikh Faisal; Shafait, Faisal

    2016-01-01

    The recognition of Arabic script and its derivatives such as Urdu, Persian, Pashto etc. is a difficult task due to complexity of this script. Particularly, Urdu text recognition is more difficult due to its Nasta'liq writing style. Nasta'liq writing style inherits complex calligraphic nature, which presents major issues to recognition of Urdu text owing to diagonality in writing, high cursiveness, context sensitivity and overlapping of characters. Therefore, the work done for recognition of Arabic script cannot be directly applied to Urdu recognition. We present Multi-dimensional Long Short Term Memory (MDLSTM) Recurrent Neural Networks with an output layer designed for sequence labeling for recognition of printed Urdu text-lines written in the Nasta'liq writing style. Experiments show that MDLSTM attained a recognition accuracy of 98% for the unconstrained Urdu Nasta'liq printed text, which significantly outperforms the state-of-the-art techniques.

  9. Navon letters affect face learning and face retrieval.

    PubMed

    Lewis, Michael B; Mills, Claire; Hills, Peter J; Weston, Nicola

    2009-01-01

    Identifying the local letters of a Navon letter (a large letter made up of smaller different letters) prior to recognition causes impairment in accuracy, while identifying the global letters of a Navon letter causes an enhancement in recognition accuracy (Macrae & Lewis, 2002). This effect may result from a transfer-inappropriate processing shift (TIPS) (Schooler, 2002). The present experiment extends research on the underlying mechanism of this effect by exploring this Navon effect on face learning as well as face recognition. The results of the two experiments revealed that when the Navon task used at retrieval was the same as that used at encoding then the performance accuracy is enhanced, whereas when the processing operations mismatch at retrieval and at encoding, this impairs recognition accuracy. These results provide support for the TIPS explanation of the Navon effect.

  10. PEM-PCA: a parallel expectation-maximization PCA face recognition architecture.

    PubMed

    Rujirakul, Kanokmon; So-In, Chakchai; Arnonkijpanich, Banchar

    2014-01-01

    Principal component analysis or PCA has been traditionally used as one of the feature extraction techniques in face recognition systems yielding high accuracy when requiring a small number of features. However, the covariance matrix and eigenvalue decomposition stages cause high computational complexity, especially for a large database. Thus, this research presents an alternative approach utilizing an Expectation-Maximization algorithm to reduce the determinant matrix manipulation resulting in the reduction of the stages' complexity. To improve the computational time, a novel parallel architecture was employed to utilize the benefits of parallelization of matrix computation during feature extraction and classification stages including parallel preprocessing, and their combinations, so-called a Parallel Expectation-Maximization PCA architecture. Comparing to a traditional PCA and its derivatives, the results indicate lower complexity with an insignificant difference in recognition precision leading to high speed face recognition systems, that is, the speed-up over nine and three times over PCA and Parallel PCA.

  11. Multimodal biometric method that combines veins, prints, and shape of a finger

    NASA Astrophysics Data System (ADS)

    Kang, Byung Jun; Park, Kang Ryoung; Yoo, Jang-Hee; Kim, Jeong Nyeo

    2011-01-01

    Multimodal biometrics provides high recognition accuracy and population coverage by using various biometric features. A single finger contains finger veins, fingerprints, and finger geometry features; by using multimodal biometrics, information on these multiple features can be simultaneously obtained in a short time and their fusion can outperform the use of a single feature. This paper proposes a new finger recognition method based on the score-level fusion of finger veins, fingerprints, and finger geometry features. This research is novel in the following four ways. First, the performances of the finger-vein and fingerprint recognition are improved by using a method based on a local derivative pattern. Second, the accuracy of the finger geometry recognition is greatly increased by combining a Fourier descriptor with principal component analysis. Third, a fuzzy score normalization method is introduced; its performance is better than the conventional Z-score normalization method. Fourth, finger-vein, fingerprint, and finger geometry recognitions are combined by using three support vector machines and a weighted SUM rule. Experimental results showed that the equal error rate of the proposed method was 0.254%, which was lower than those of the other methods.

  12. The Episodic Engram Transformed: Time Reduces Retrieval-Related Brain Activity but Correlates It with Memory Accuracy

    ERIC Educational Resources Information Center

    Furman, Orit; Mendelsohn, Avi; Dudai, Yadin

    2012-01-01

    We took snapshots of human brain activity with fMRI during retrieval of realistic episodic memory over several months. Three groups of participants were scanned during a memory test either hours, weeks, or months after viewing a documentary movie. High recognition accuracy after hours decreased after weeks and remained at similar levels after…

  13. Intelligibility of emotional speech in younger and older adults.

    PubMed

    Dupuis, Kate; Pichora-Fuller, M Kathleen

    2014-01-01

    Little is known about the influence of vocal emotions on speech understanding. Word recognition accuracy for stimuli spoken to portray seven emotions (anger, disgust, fear, sadness, neutral, happiness, and pleasant surprise) was tested in younger and older listeners. Emotions were presented in either mixed (heterogeneous emotions mixed in a list) or blocked (homogeneous emotion blocked in a list) conditions. Three main hypotheses were tested. First, vocal emotion affects word recognition accuracy; specifically, portrayals of fear enhance word recognition accuracy because listeners orient to threatening information and/or distinctive acoustical cues such as high pitch mean and variation. Second, older listeners recognize words less accurately than younger listeners, but the effects of different emotions on intelligibility are similar across age groups. Third, blocking emotions in list results in better word recognition accuracy, especially for older listeners, and reduces the effect of emotion on intelligibility because as listeners develop expectations about vocal emotion, the allocation of processing resources can shift from emotional to lexical processing. Emotion was the within-subjects variable: all participants heard speech stimuli consisting of a carrier phrase followed by a target word spoken by either a younger or an older talker, with an equal number of stimuli portraying each of seven vocal emotions. The speech was presented in multi-talker babble at signal to noise ratios adjusted for each talker and each listener age group. Listener age (younger, older), condition (mixed, blocked), and talker (younger, older) were the main between-subjects variables. Fifty-six students (Mage= 18.3 years) were recruited from an undergraduate psychology course; 56 older adults (Mage= 72.3 years) were recruited from a volunteer pool. All participants had clinically normal pure-tone audiometric thresholds at frequencies ≤3000 Hz. There were significant main effects of emotion, listener age group, and condition on the accuracy of word recognition in noise. Stimuli spoken in a fearful voice were the most intelligible, while those spoken in a sad voice were the least intelligible. Overall, word recognition accuracy was poorer for older than younger adults, but there was no main effect of talker, and the pattern of the effects of different emotions on intelligibility did not differ significantly across age groups. Acoustical analyses helped elucidate the effect of emotion and some intertalker differences. Finally, all participants performed better when emotions were blocked. For both groups, performance improved over repeated presentations of each emotion in both blocked and mixed conditions. These results are the first to demonstrate a relationship between vocal emotion and word recognition accuracy in noise for younger and older listeners. In particular, the enhancement of intelligibility by emotion is greatest for words spoken to portray fear and presented heterogeneously with other emotions. Fear may have a specialized role in orienting attention to words heard in noise. This finding may be an auditory counterpart to the enhanced detection of threat information in visual displays. The effect of vocal emotion on word recognition accuracy is preserved in older listeners with good audiograms and both age groups benefit from blocking and the repetition of emotions.

  14. Extracting fingerprint of wireless devices based on phase noise and multiple level wavelet decomposition

    NASA Astrophysics Data System (ADS)

    Zhao, Weichen; Sun, Zhuo; Kong, Song

    2016-10-01

    Wireless devices can be identified by the fingerprint extracted from the signal transmitted, which is useful in wireless communication security and other fields. This paper presents a method that extracts fingerprint based on phase noise of signal and multiple level wavelet decomposition. The phase of signal will be extracted first and then decomposed by multiple level wavelet decomposition. The statistic value of each wavelet coefficient vector is utilized for constructing fingerprint. Besides, the relationship between wavelet decomposition level and recognition accuracy is simulated. And advertised decomposition level is revealed as well. Compared with previous methods, our method is simpler and the accuracy of recognition remains high when Signal Noise Ratio (SNR) is low.

  15. Hierarchical Leak Detection and Localization Method in Natural Gas Pipeline Monitoring Sensor Networks

    PubMed Central

    Wan, Jiangwen; Yu, Yang; Wu, Yinfeng; Feng, Renjian; Yu, Ning

    2012-01-01

    In light of the problems of low recognition efficiency, high false rates and poor localization accuracy in traditional pipeline security detection technology, this paper proposes a type of hierarchical leak detection and localization method for use in natural gas pipeline monitoring sensor networks. In the signal preprocessing phase, original monitoring signals are dealt with by wavelet transform technology to extract the single mode signals as well as characteristic parameters. In the initial recognition phase, a multi-classifier model based on SVM is constructed and characteristic parameters are sent as input vectors to the multi-classifier for initial recognition. In the final decision phase, an improved evidence combination rule is designed to integrate initial recognition results for final decisions. Furthermore, a weighted average localization algorithm based on time difference of arrival is introduced for determining the leak point’s position. Experimental results illustrate that this hierarchical pipeline leak detection and localization method could effectively improve the accuracy of the leak point localization and reduce the undetected rate as well as false alarm rate. PMID:22368464

  16. Hierarchical leak detection and localization method in natural gas pipeline monitoring sensor networks.

    PubMed

    Wan, Jiangwen; Yu, Yang; Wu, Yinfeng; Feng, Renjian; Yu, Ning

    2012-01-01

    In light of the problems of low recognition efficiency, high false rates and poor localization accuracy in traditional pipeline security detection technology, this paper proposes a type of hierarchical leak detection and localization method for use in natural gas pipeline monitoring sensor networks. In the signal preprocessing phase, original monitoring signals are dealt with by wavelet transform technology to extract the single mode signals as well as characteristic parameters. In the initial recognition phase, a multi-classifier model based on SVM is constructed and characteristic parameters are sent as input vectors to the multi-classifier for initial recognition. In the final decision phase, an improved evidence combination rule is designed to integrate initial recognition results for final decisions. Furthermore, a weighted average localization algorithm based on time difference of arrival is introduced for determining the leak point's position. Experimental results illustrate that this hierarchical pipeline leak detection and localization method could effectively improve the accuracy of the leak point localization and reduce the undetected rate as well as false alarm rate.

  17. Robust and Effective Component-based Banknote Recognition for the Blind

    PubMed Central

    Hasanuzzaman, Faiz M.; Yang, Xiaodong; Tian, YingLi

    2012-01-01

    We develop a novel camera-based computer vision technology to automatically recognize banknotes for assisting visually impaired people. Our banknote recognition system is robust and effective with the following features: 1) high accuracy: high true recognition rate and low false recognition rate, 2) robustness: handles a variety of currency designs and bills in various conditions, 3) high efficiency: recognizes banknotes quickly, and 4) ease of use: helps blind users to aim the target for image capture. To make the system robust to a variety of conditions including occlusion, rotation, scaling, cluttered background, illumination change, viewpoint variation, and worn or wrinkled bills, we propose a component-based framework by using Speeded Up Robust Features (SURF). Furthermore, we employ the spatial relationship of matched SURF features to detect if there is a bill in the camera view. This process largely alleviates false recognition and can guide the user to correctly aim at the bill to be recognized. The robustness and generalizability of the proposed system is evaluated on a dataset including both positive images (with U.S. banknotes) and negative images (no U.S. banknotes) collected under a variety of conditions. The proposed algorithm, achieves 100% true recognition rate and 0% false recognition rate. Our banknote recognition system is also tested by blind users. PMID:22661884

  18. Examining ERP correlates of recognition memory: Evidence of accurate source recognition without recollection

    PubMed Central

    Addante, Richard, J.; Ranganath, Charan; Yonelinas, Andrew, P.

    2012-01-01

    Recollection is typically associated with high recognition confidence and accurate source memory. However, subjects sometimes make accurate source memory judgments even for items that are not confidently recognized, and it is not known whether these responses are based on recollection or some other memory process. In the current study, we measured event related potentials (ERPs) while subjects made item and source memory confidence judgments in order to determine whether recollection supported accurate source recognition responses for items that were not confidently recognized. In line with previous studies, we found that recognition memory was associated with two ERP effects: an early on-setting FN400 effect, and a later parietal old-new effect [Late Positive Component (LPC)], which have been associated with familiarity and recollection, respectively. The FN400 increased gradually with item recognition confidence, whereas the LPC was only observed for highly confident recognition responses. The LPC was also related to source accuracy, but only for items that had received a high confidence item recognition response; accurate source judgments to items that were less confidently recognized did not exhibit the typical ERP correlate of recollection or familiarity, but rather showed a late, broadly distributed negative ERP difference. The results indicate that accurate source judgments of episodic context can occur even when recollection fails. PMID:22548808

  19. The Effect of Involuntary Motor Activity on Myoelectric Pattern Recognition: A Case Study with Chronic Stroke Patients

    PubMed Central

    Zhang, Xu; Li, Yun; Chen, Xiang; Li, Guanglin; Rymer, William Zev; Zhou, Ping

    2013-01-01

    This study investigates the effect of involuntary motor activity of paretic-spastic muscles on classification of surface electromyography (EMG) signals. Two data collection sessions were designed for 8 stroke subjects to voluntarily perform 11 functional movements using their affected forearm and hand at a relatively slow and fast speed. For each stroke subject, the degree of involuntary motor activity present in voluntary surface EMG recordings was qualitatively described from such slow and fast experimental protocols. Myoelectric pattern recognition analysis was performed using different combinations of voluntary surface EMG data recorded from slow and fast sessions. Across all tested stroke subjects, our results revealed that when involuntary surface EMG was absent or present in both training and testing datasets, high accuracies (> 96%, > 98%, respectively, averaged over all the subjects) can be achieved in classification of different movements using surface EMG signals from paretic muscles. When involuntary surface EMG was solely involved in either training or testing datasets, the classification accuracies were dramatically reduced (< 89%, < 85%, respectively). However, if both training and testing datasets contained EMG signals with presence and absence of involuntary EMG interference, high accuracies were still achieved (> 97%). The findings of this study can be used to guide appropriate design and implementation of myoelectric pattern recognition based systems or devices toward promoting robot-aided therapy for stroke rehabilitation. PMID:23860192

  20. Emotion Recognition from Chinese Speech for Smart Affective Services Using a Combination of SVM and DBN

    PubMed Central

    Zhu, Lianzhang; Chen, Leiming; Zhao, Dehai

    2017-01-01

    Accurate emotion recognition from speech is important for applications like smart health care, smart entertainment, and other smart services. High accuracy emotion recognition from Chinese speech is challenging due to the complexities of the Chinese language. In this paper, we explore how to improve the accuracy of speech emotion recognition, including speech signal feature extraction and emotion classification methods. Five types of features are extracted from a speech sample: mel frequency cepstrum coefficient (MFCC), pitch, formant, short-term zero-crossing rate and short-term energy. By comparing statistical features with deep features extracted by a Deep Belief Network (DBN), we attempt to find the best features to identify the emotion status for speech. We propose a novel classification method that combines DBN and SVM (support vector machine) instead of using only one of them. In addition, a conjugate gradient method is applied to train DBN in order to speed up the training process. Gender-dependent experiments are conducted using an emotional speech database created by the Chinese Academy of Sciences. The results show that DBN features can reflect emotion status better than artificial features, and our new classification approach achieves an accuracy of 95.8%, which is higher than using either DBN or SVM separately. Results also show that DBN can work very well for small training databases if it is properly designed. PMID:28737705

  1. Gaze Estimation for Off-Angle Iris Recognition Based on the Biometric Eye Model

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Karakaya, Mahmut; Barstow, Del R; Santos-Villalobos, Hector J

    Iris recognition is among the highest accuracy biometrics. However, its accuracy relies on controlled high quality capture data and is negatively affected by several factors such as angle, occlusion, and dilation. Non-ideal iris recognition is a new research focus in biometrics. In this paper, we present a gaze estimation method designed for use in an off-angle iris recognition framework based on the ANONYMIZED biometric eye model. Gaze estimation is an important prerequisite step to correct an off-angle iris images. To achieve the accurate frontal reconstruction of an off-angle iris image, we first need to estimate the eye gaze direction frommore » elliptical features of an iris image. Typically additional information such as well-controlled light sources, head mounted equipment, and multiple cameras are not available. Our approach utilizes only the iris and pupil boundary segmentation allowing it to be applicable to all iris capture hardware. We compare the boundaries with a look-up-table generated by using our biologically inspired biometric eye model and find the closest feature point in the look-up-table to estimate the gaze. Based on the results from real images, the proposed method shows effectiveness in gaze estimation accuracy for our biometric eye model with an average error of approximately 3.5 degrees over a 50 degree range.« less

  2. A cross-race effect in metamemory: Predictions of face recognition are more accurate for members of our own race

    PubMed Central

    Hourihan, Kathleen L.; Benjamin, Aaron S.; Liu, Xiping

    2012-01-01

    The Cross-Race Effect (CRE) in face recognition is the well-replicated finding that people are better at recognizing faces from their own race, relative to other races. The CRE reveals systematic limitations on eyewitness identification accuracy and suggests that some caution is warranted in evaluating cross-race identification. The CRE is a problem because jurors value eyewitness identification highly in verdict decisions. In the present paper, we explore how accurate people are in predicting their ability to recognize own-race and other-race faces. Caucasian and Asian participants viewed photographs of Caucasian and Asian faces, and made immediate judgments of learning during study. An old/new recognition test replicated the CRE: both groups displayed superior discriminability of own-race faces, relative to other-race faces. Importantly, relative metamnemonic accuracy was also greater for own-race faces, indicating that the accuracy of predictions about face recognition is influenced by race. This result indicates another source of concern when eliciting or evaluating eyewitness identification: people are less accurate in judging whether they will or will not recognize a face when that face is of a different race than they are. This new result suggests that a witness’s claim of being likely to recognize a suspect from a lineup should be interpreted with caution when the suspect is of a different race than the witness. PMID:23162788

  3. An adaptive deep Q-learning strategy for handwritten digit recognition.

    PubMed

    Qiao, Junfei; Wang, Gongming; Li, Wenjing; Chen, Min

    2018-02-22

    Handwritten digits recognition is a challenging problem in recent years. Although many deep learning-based classification algorithms are studied for handwritten digits recognition, the recognition accuracy and running time still need to be further improved. In this paper, an adaptive deep Q-learning strategy is proposed to improve accuracy and shorten running time for handwritten digit recognition. The adaptive deep Q-learning strategy combines the feature-extracting capability of deep learning and the decision-making of reinforcement learning to form an adaptive Q-learning deep belief network (Q-ADBN). First, Q-ADBN extracts the features of original images using an adaptive deep auto-encoder (ADAE), and the extracted features are considered as the current states of Q-learning algorithm. Second, Q-ADBN receives Q-function (reward signal) during recognition of the current states, and the final handwritten digits recognition is implemented by maximizing the Q-function using Q-learning algorithm. Finally, experimental results from the well-known MNIST dataset show that the proposed Q-ADBN has a superiority to other similar methods in terms of accuracy and running time. Copyright © 2018 Elsevier Ltd. All rights reserved.

  4. Human Activity Recognition from Smart-Phone Sensor Data using a Multi-Class Ensemble Learning in Home Monitoring.

    PubMed

    Ghose, Soumya; Mitra, Jhimli; Karunanithi, Mohan; Dowling, Jason

    2015-01-01

    Home monitoring of chronically ill or elderly patient can reduce frequent hospitalisations and hence provide improved quality of care at a reduced cost to the community, therefore reducing the burden on the healthcare system. Activity recognition of such patients is of high importance in such a design. In this work, a system for automatic human physical activity recognition from smart-phone inertial sensors data is proposed. An ensemble of decision trees framework is adopted to train and predict the multi-class human activity system. A comparison of our proposed method with a multi-class traditional support vector machine shows significant improvement in activity recognition accuracies.

  5. Recognition of handwritten similar Chinese characters by self-growing probabilistic decision-based neural network.

    PubMed

    Fu, H C; Xu, Y Y; Chang, H Y

    1999-12-01

    Recognition of similar (confusion) characters is a difficult problem in optical character recognition (OCR). In this paper, we introduce a neural network solution that is capable of modeling minor differences among similar characters, and is robust to various personal handwriting styles. The Self-growing Probabilistic Decision-based Neural Network (SPDNN) is a probabilistic type neural network, which adopts a hierarchical network structure with nonlinear basis functions and a competitive credit-assignment scheme. Based on the SPDNN model, we have constructed a three-stage recognition system. First, a coarse classifier determines a character to be input to one of the pre-defined subclasses partitioned from a large character set, such as Chinese mixed with alphanumerics. Then a character recognizer determines the input image which best matches the reference character in the subclass. Lastly, the third module is a similar character recognizer, which can further enhance the recognition accuracy among similar or confusing characters. The prototype system has demonstrated a successful application of SPDNN to similar handwritten Chinese recognition for the public database CCL/HCCR1 (5401 characters x200 samples). Regarding performance, experiments on the CCL/HCCR1 database produced 90.12% recognition accuracy with no rejection, and 94.11% accuracy with 6.7% rejection, respectively. This recognition accuracy represents about 4% improvement on the previously announced performance. As to processing speed, processing before recognition (including image preprocessing, segmentation, and feature extraction) requires about one second for an A4 size character image, and recognition consumes approximately 0.27 second per character on a Pentium-100 based personal computer, without use of any hardware accelerator or co-processor.

  6. The MIT Summit Speech Recognition System: A Progress Report

    DTIC Science & Technology

    1989-01-01

    understanding of the human communication process. Despite recent development of some speech recognition systems with high accuracy, the performance of such...over the past four decades on human communication , in the hope that such systems will one day have a performance approaching that of humans. We are...optimize its use. Third, the system must have a stochastic component to deal with the present state of ignorance in our understanding of the human

  7. Seamless Tracing of Human Behavior Using Complementary Wearable and House-Embedded Sensors

    PubMed Central

    Augustyniak, Piotr; Smoleń, Magdalena; Mikrut, Zbigniew; Kańtoch, Eliasz

    2014-01-01

    This paper presents a multimodal system for seamless surveillance of elderly people in their living environment. The system uses simultaneously a wearable sensor network for each individual and premise-embedded sensors specific for each environment. The paper demonstrates the benefits of using complementary information from two types of mobility sensors: visual flow-based image analysis and an accelerometer-based wearable network. The paper provides results for indoor recognition of several elementary poses and outdoor recognition of complex movements. Instead of complete system description, particular attention was drawn to a polar histogram-based method of visual pose recognition, complementary use and synchronization of the data from wearable and premise-embedded networks and an automatic danger detection algorithm driven by two premise- and subject-related databases. The novelty of our approach also consists in feeding the databases with real-life recordings from the subject, and in using the dynamic time-warping algorithm for measurements of distance between actions represented as elementary poses in behavioral records. The main results of testing our method include: 95.5% accuracy of elementary pose recognition by the video system, 96.7% accuracy of elementary pose recognition by the accelerometer-based system, 98.9% accuracy of elementary pose recognition by the combined accelerometer and video-based system, and 80% accuracy of complex outdoor activity recognition by the accelerometer-based wearable system. PMID:24787640

  8. Normative Data on Audiovisual Speech Integration Using Sentence Recognition and Capacity Measures

    PubMed Central

    Altieri, Nicholas; Hudock, Daniel

    2016-01-01

    Objective The ability to use visual speech cues and integrate them with auditory information is important, especially in noisy environments and for hearing-impaired (HI) listeners. Providing data on measures of integration skills that encompass accuracy and processing speed will benefit researchers and clinicians. Design The study consisted of two experiments: First, accuracy scores were obtained using CUNY sentences, and capacity measures that assessed reaction-time distributions were obtained from a monosyllabic word recognition task. Study Sample We report data on two measures of integration obtained from a sample comprised of 86 young and middle-age adult listeners: Results To summarize our results, capacity showed a positive correlation with accuracy measures of audiovisual benefit obtained from sentence recognition. More relevant, factor analysis indicated that a single-factor model captured audiovisual speech integration better than models containing more factors. Capacity exhibited strong loadings on the factor, while the accuracy-based measures from sentence recognition exhibited weaker loadings. Conclusions Results suggest that a listener’s integration skills may be assessed optimally using a measure that incorporates both processing speed and accuracy. PMID:26853446

  9. Normative data on audiovisual speech integration using sentence recognition and capacity measures.

    PubMed

    Altieri, Nicholas; Hudock, Daniel

    2016-01-01

    The ability to use visual speech cues and integrate them with auditory information is important, especially in noisy environments and for hearing-impaired (HI) listeners. Providing data on measures of integration skills that encompass accuracy and processing speed will benefit researchers and clinicians. The study consisted of two experiments: First, accuracy scores were obtained using City University of New York (CUNY) sentences, and capacity measures that assessed reaction-time distributions were obtained from a monosyllabic word recognition task. We report data on two measures of integration obtained from a sample comprised of 86 young and middle-age adult listeners: To summarize our results, capacity showed a positive correlation with accuracy measures of audiovisual benefit obtained from sentence recognition. More relevant, factor analysis indicated that a single-factor model captured audiovisual speech integration better than models containing more factors. Capacity exhibited strong loadings on the factor, while the accuracy-based measures from sentence recognition exhibited weaker loadings. Results suggest that a listener's integration skills may be assessed optimally using a measure that incorporates both processing speed and accuracy.

  10. Accurate label-free 3-part leukocyte recognition with single cell lens-free imaging flow cytometry.

    PubMed

    Li, Yuqian; Cornelis, Bruno; Dusa, Alexandra; Vanmeerbeeck, Geert; Vercruysse, Dries; Sohn, Erik; Blaszkiewicz, Kamil; Prodanov, Dimiter; Schelkens, Peter; Lagae, Liesbet

    2018-05-01

    Three-part white blood cell differentials which are key to routine blood workups are typically performed in centralized laboratories on conventional hematology analyzers operated by highly trained staff. With the trend of developing miniaturized blood analysis tool for point-of-need in order to accelerate turnaround times and move routine blood testing away from centralized facilities on the rise, our group has developed a highly miniaturized holographic imaging system for generating lens-free images of white blood cells in suspension. Analysis and classification of its output data, constitutes the final crucial step ensuring appropriate accuracy of the system. In this work, we implement reference holographic images of single white blood cells in suspension, in order to establish an accurate ground truth to increase classification accuracy. We also automate the entire workflow for analyzing the output and demonstrate clear improvement in the accuracy of the 3-part classification. High-dimensional optical and morphological features are extracted from reconstructed digital holograms of single cells using the ground-truth images and advanced machine learning algorithms are investigated and implemented to obtain 99% classification accuracy. Representative features of the three white blood cell subtypes are selected and give comparable results, with a focus on rapid cell recognition and decreased computational cost. Copyright © 2018 The Authors. Published by Elsevier Ltd.. All rights reserved.

  11. Optical coherence tomography in the diagnosis of dysplasia and adenocarcinoma in Barret's esophagus

    NASA Astrophysics Data System (ADS)

    Gladkova, N. D.; Zagaynova, E. V.; Zuccaro, G.; Kareta, M. V.; Feldchtein, F. I.; Balalaeva, I. V.; Balandina, E. B.

    2007-02-01

    Statistical analysis of endoscopic optical coherence tomography (EOCT) surveillance of 78 patients with Barrett's esophagus (BE) is presented in this study. The sensitivity of OCT device in retrospective open detection of early malignancy (including high grade dysplasia and intramucosal adenocarcinoma (IMAC)) was 75%, specificity 82%, diagnostic accuracy - 80%, positive predictive value- 60%, negative predictive value- 87%. In the open recognition of IMAC sensitivity was 81% and specificity were 85% each. Results of a blind recognition with the same material were similar: sensitivity - 77%, specificity 85%, diagnostic accuracy - 82%, positive predictive value- 70%, negative predictive value- 87%. As the endoscopic detection of early malignancy is problematic, OCT holds great promise in enhancing the diagnostic capability of clinical GI endoscopy.

  12. A new pre-classification method based on associative matching method

    NASA Astrophysics Data System (ADS)

    Katsuyama, Yutaka; Minagawa, Akihiro; Hotta, Yoshinobu; Omachi, Shinichiro; Kato, Nei

    2010-01-01

    Reducing the time complexity of character matching is critical to the development of efficient Japanese Optical Character Recognition (OCR) systems. To shorten processing time, recognition is usually split into separate preclassification and recognition stages. For high overall recognition performance, the pre-classification stage must both have very high classification accuracy and return only a small number of putative character categories for further processing. Furthermore, for any practical system, the speed of the pre-classification stage is also critical. The associative matching (AM) method has often been used for fast pre-classification, because its use of a hash table and reliance solely on logical bit operations to select categories makes it highly efficient. However, redundant certain level of redundancy exists in the hash table because it is constructed using only the minimum and maximum values of the data on each axis and therefore does not take account of the distribution of the data. We propose a modified associative matching method that satisfies the performance criteria described above but in a fraction of the time by modifying the hash table to reflect the underlying distribution of training characters. Furthermore, we show that our approach outperforms pre-classification by clustering, ANN and conventional AM in terms of classification accuracy, discriminative power and speed. Compared to conventional associative matching, the proposed approach results in a 47% reduction in total processing time across an evaluation test set comprising 116,528 Japanese character images.

  13. Biometric iris image acquisition system with wavefront coding technology

    NASA Astrophysics Data System (ADS)

    Hsieh, Sheng-Hsun; Yang, Hsi-Wen; Huang, Shao-Hung; Li, Yung-Hui; Tien, Chung-Hao

    2013-09-01

    Biometric signatures for identity recognition have been practiced for centuries. Basically, the personal attributes used for a biometric identification system can be classified into two areas: one is based on physiological attributes, such as DNA, facial features, retinal vasculature, fingerprint, hand geometry, iris texture and so on; the other scenario is dependent on the individual behavioral attributes, such as signature, keystroke, voice and gait style. Among these features, iris recognition is one of the most attractive approaches due to its nature of randomness, texture stability over a life time, high entropy density and non-invasive acquisition. While the performance of iris recognition on high quality image is well investigated, not too many studies addressed that how iris recognition performs subject to non-ideal image data, especially when the data is acquired in challenging conditions, such as long working distance, dynamical movement of subjects, uncontrolled illumination conditions and so on. There are three main contributions in this paper. Firstly, the optical system parameters, such as magnification and field of view, was optimally designed through the first-order optics. Secondly, the irradiance constraints was derived by optical conservation theorem. Through the relationship between the subject and the detector, we could estimate the limitation of working distance when the camera lens and CCD sensor were known. The working distance is set to 3m in our system with pupil diameter 86mm and CCD irradiance 0.3mW/cm2. Finally, We employed a hybrid scheme combining eye tracking with pan and tilt system, wavefront coding technology, filter optimization and post signal recognition to implement a robust iris recognition system in dynamic operation. The blurred image was restored to ensure recognition accuracy over 3m working distance with 400mm focal length and aperture F/6.3 optics. The simulation result as well as experiment validates the proposed code apertured imaging system, where the imaging volume was 2.57 times extended over the traditional optics, while keeping sufficient recognition accuracy.

  14. Primacy and Recency Effects for Taste

    ERIC Educational Resources Information Center

    Daniel, Thomas A.; Katz, Jeffrey S.

    2018-01-01

    Historically, much of what we know about human memory has been discovered in experiments using visual and verbal stimuli. In two experiments, participants demonstrated reliably high recognition for nonverbal liquids. In Experiment 1, participants showed high accuracy for recognizing tastes (bitter, salty, sour, sweet) over a 30-s delay in a…

  15. Effectiveness of feature and classifier algorithms in character recognition systems

    NASA Astrophysics Data System (ADS)

    Wilson, Charles L.

    1993-04-01

    At the first Census Optical Character Recognition Systems Conference, NIST generated accuracy data for more than character recognition systems. Most systems were tested on the recognition of isolated digits and upper and lower case alphabetic characters. The recognition experiments were performed on sample sizes of 58,000 digits, and 12,000 upper and lower case alphabetic characters. The algorithms used by the 26 conference participants included rule-based methods, image-based methods, statistical methods, and neural networks. The neural network methods included Multi-Layer Perceptron's, Learned Vector Quantitization, Neocognitrons, and cascaded neural networks. In this paper 11 different systems are compared using correlations between the answers of different systems, comparing the decrease in error rate as a function of confidence of recognition, and comparing the writer dependence of recognition. This comparison shows that methods that used different algorithms for feature extraction and recognition performed with very high levels of correlation. This is true for neural network systems, hybrid systems, and statistically based systems, and leads to the conclusion that neural networks have not yet demonstrated a clear superiority to more conventional statistical methods. Comparison of these results with the models of Vapnick (for estimation problems), MacKay (for Bayesian statistical models), Moody (for effective parameterization), and Boltzmann models (for information content) demonstrate that as the limits of training data variance are approached, all classifier systems have similar statistical properties. The limiting condition can only be approached for sufficiently rich feature sets because the accuracy limit is controlled by the available information content of the training set, which must pass through the feature extraction process prior to classification.

  16. Long-Term Memory for Odors: Influences of Familiarity and Identification Across 64 Days

    PubMed Central

    Jönsson, Fredrik U.; Willander, Johan; Sikström, Sverker; Larsson, Maria

    2015-01-01

    Few studies have investigated long-term odor recognition memory, although some early observations suggested that the forgetting rate of olfactory representations is slower than for other sensory modalities. This study investigated recognition memory across 64 days for high and low familiar odors and faces. Memory was assessed in 83 young participants at 4 occasions; immediate, 4, 16, and 64 days after encoding. The results indicated significant forgetting for odors and faces across the 64 days. The forgetting functions for the 2 modalities were not fundamentally different. Moreover, high familiar odors and faces were better remembered than low familiar ones, indicating an important role of semantic knowledge on recognition proficiency for both modalities. Although odor recognition was significantly better than chance at the 64 days testing, memory for the low familiar odors was relatively poor. Also, the results indicated that odor identification consistency across sessions, irrespective of accuracy, was positively related to successful recognition. PMID:25740304

  17. An automatic iris occlusion estimation method based on high-dimensional density estimation.

    PubMed

    Li, Yung-Hui; Savvides, Marios

    2013-04-01

    Iris masks play an important role in iris recognition. They indicate which part of the iris texture map is useful and which part is occluded or contaminated by noisy image artifacts such as eyelashes, eyelids, eyeglasses frames, and specular reflections. The accuracy of the iris mask is extremely important. The performance of the iris recognition system will decrease dramatically when the iris mask is inaccurate, even when the best recognition algorithm is used. Traditionally, people used the rule-based algorithms to estimate iris masks from iris images. However, the accuracy of the iris masks generated this way is questionable. In this work, we propose to use Figueiredo and Jain's Gaussian Mixture Models (FJ-GMMs) to model the underlying probabilistic distributions of both valid and invalid regions on iris images. We also explored possible features and found that Gabor Filter Bank (GFB) provides the most discriminative information for our goal. Finally, we applied Simulated Annealing (SA) technique to optimize the parameters of GFB in order to achieve the best recognition rate. Experimental results show that the masks generated by the proposed algorithm increase the iris recognition rate on both ICE2 and UBIRIS dataset, verifying the effectiveness and importance of our proposed method for iris occlusion estimation.

  18. Local visual perception bias in children with high-functioning autism spectrum disorders; do we have the whole picture?

    PubMed

    Falkmer, Marita; Black, Melissa; Tang, Julia; Fitzgerald, Patrick; Girdler, Sonya; Leung, Denise; Ordqvist, Anna; Tan, Tele; Jahan, Ishrat; Falkmer, Torbjorn

    2016-01-01

    While local bias in visual processing in children with autism spectrum disorders (ASD) has been reported to result in difficulties in recognizing faces and facially expressed emotions, but superior ability in disembedding figures, associations between these abilities within a group of children with and without ASD have not been explored. Possible associations in performance on the Visual Perception Skills Figure-Ground test, a face recognition test and an emotion recognition test were investigated within 25 8-12-years-old children with high-functioning autism/Asperger syndrome, and in comparison to 33 typically developing children. Analyses indicated a weak positive correlation between accuracy in Figure-Ground recognition and emotion recognition. No other correlation estimates were significant. These findings challenge both the enhanced perceptual function hypothesis and the weak central coherence hypothesis, and accentuate the importance of further scrutinizing the existance and nature of local visual bias in ASD.

  19. Face recognition in the thermal infrared domain

    NASA Astrophysics Data System (ADS)

    Kowalski, M.; Grudzień, A.; Palka, N.; Szustakowski, M.

    2017-10-01

    Biometrics refers to unique human characteristics. Each unique characteristic may be used to label and describe individuals and for automatic recognition of a person based on physiological or behavioural properties. One of the most natural and the most popular biometric trait is a face. The most common research methods on face recognition are based on visible light. State-of-the-art face recognition systems operating in the visible light spectrum achieve very high level of recognition accuracy under controlled environmental conditions. Thermal infrared imagery seems to be a promising alternative or complement to visible range imaging due to its relatively high resistance to illumination changes. A thermal infrared image of the human face presents its unique heat-signature and can be used for recognition. The characteristics of thermal images maintain advantages over visible light images, and can be used to improve algorithms of human face recognition in several aspects. Mid-wavelength or far-wavelength infrared also referred to as thermal infrared seems to be promising alternatives. We present the study on 1:1 recognition in thermal infrared domain. The two approaches we are considering are stand-off face verification of non-moving person as well as stop-less face verification on-the-move. The paper presents methodology of our studies and challenges for face recognition systems in the thermal infrared domain.

  20. Younger and Older Adults Weigh Multiple Cues in a Similar Manner to Generate Judgments of Learning

    PubMed Central

    Hines, Jarrod C.; Hertzog, Christopher; Touron, Dayna R.

    2015-01-01

    One's memory for past test performance (MPT) is a key piece of information individuals use when deciding how to restudy material. We used a multi-trial recognition memory task to examine adult age differences in the influence of MPT (measured by actual Trial 1 memory accuracy and subjective confidence judgments, CJs) along with Trial 1 judgments of learning (JOLs), objective and participant-estimated recognition fluencies, and Trial 2 study time on Trial 2 JOLs. We found evidence of simultaneous and independent influences of multiple objective and subjective (i.e., metacognitive) cues on Trial 2 JOLs, and these relationships were highly similar for younger and older adults. Individual differences in Trial 1 recognition accuracy and CJs on Trial 2 JOLs indicate that individuals may vary in the degree to which they rely on each MPT cue when assessing subsequent memory confidence. Aging appears to spare the ability to access multiple cues when making JOLs. PMID:25827630

  1. Optical signal processing using photonic reservoir computing

    NASA Astrophysics Data System (ADS)

    Salehi, Mohammad Reza; Dehyadegari, Louiza

    2014-10-01

    As a new approach to recognition and classification problems, photonic reservoir computing has such advantages as parallel information processing, power efficient and high speed. In this paper, a photonic structure has been proposed for reservoir computing which is investigated using a simple, yet, non-partial noisy time series prediction task. This study includes the application of a suitable topology with self-feedbacks in a network of SOA's - which lends the system a strong memory - and leads to adjusting adequate parameters resulting in perfect recognition accuracy (100%) for noise-free time series, which shows a 3% improvement over previous results. For the classification of noisy time series, the rate of accuracy showed a 4% increase and amounted to 96%. Furthermore, an analytical approach was suggested to solve rate equations which led to a substantial decrease in the simulation time, which is an important parameter in classification of large signals such as speech recognition, and better results came up compared with previous works.

  2. Importance of Personalized Health-Care Models: A Case Study in Activity Recognition.

    PubMed

    Zdravevski, Eftim; Lameski, Petre; Trajkovik, Vladimir; Pombo, Nuno; Garcia, Nuno

    2018-01-01

    Novel information and communication technologies create possibilities to change the future of health care. Ambient Assisted Living (AAL) is seen as a promising supplement of the current care models. The main goal of AAL solutions is to apply ambient intelligence technologies to enable elderly people to continue to live in their preferred environments. Applying trained models from health data is challenging because the personalized environments could differ significantly than the ones which provided training data. This paper investigates the effects on activity recognition accuracy using single accelerometer of personalized models compared to models built on general population. In addition, we propose a collaborative filtering based approach which provides balance between fully personalized models and generic models. The results show that the accuracy could be improved to 95% with fully personalized models, and up to 91.6% with collaborative filtering based models, which is significantly better than common models that exhibit accuracy of 85.1%. The collaborative filtering approach seems to provide highly personalized models with substantial accuracy, while overcoming the cold start problem that is common for fully personalized models.

  3. Reading handprinted addresses on IRS tax forms

    NASA Astrophysics Data System (ADS)

    Ramanaprasad, Vemulapati; Shin, Yong-Chul; Srihari, Sargur N.

    1996-03-01

    The hand-printed address recognition system described in this paper is a part of the Name and Address Block Reader (NABR) system developed by the Center of Excellence for Document Analysis and Recognition (CEDAR). NABR is currently being used by the IRS to read address blocks (hand-print as well as machine-print) on fifteen different tax forms. Although machine- print address reading was relatively straightforward, hand-print address recognition has posed some special challenges due to demands on processing speed (with an expected throughput of 8450 forms/hour) and recognition accuracy. We discuss various subsystems involved in hand- printed address recognition, including word segmentation, word recognition, digit segmentation, and digit recognition. We also describe control strategies used to make effective use of these subsystems to maximize recognition accuracy. We present system performance on 931 address blocks in recognizing various fields, such as city, state, ZIP Code, street number and name, and personal names.

  4. Facial recognition using multisensor images based on localized kernel eigen spaces.

    PubMed

    Gundimada, Satyanadh; Asari, Vijayan K

    2009-06-01

    A feature selection technique along with an information fusion procedure for improving the recognition accuracy of a visual and thermal image-based facial recognition system is presented in this paper. A novel modular kernel eigenspaces approach is developed and implemented on the phase congruency feature maps extracted from the visual and thermal images individually. Smaller sub-regions from a predefined neighborhood within the phase congruency images of the training samples are merged to obtain a large set of features. These features are then projected into higher dimensional spaces using kernel methods. The proposed localized nonlinear feature selection procedure helps to overcome the bottlenecks of illumination variations, partial occlusions, expression variations and variations due to temperature changes that affect the visual and thermal face recognition techniques. AR and Equinox databases are used for experimentation and evaluation of the proposed technique. The proposed feature selection procedure has greatly improved the recognition accuracy for both the visual and thermal images when compared to conventional techniques. Also, a decision level fusion methodology is presented which along with the feature selection procedure has outperformed various other face recognition techniques in terms of recognition accuracy.

  5. An on-chip imaging droplet-sorting system: a real-time shape recognition method to screen target cells in droplets with single cell resolution

    NASA Astrophysics Data System (ADS)

    Girault, Mathias; Kim, Hyonchol; Arakawa, Hisayuki; Matsuura, Kenji; Odaka, Masao; Hattori, Akihiro; Terazono, Hideyuki; Yasuda, Kenji

    2017-01-01

    A microfluidic on-chip imaging cell sorter has several advantages over conventional cell sorting methods, especially to identify cells with complex morphologies such as clusters. One of the remaining problems is how to efficiently discriminate targets at the species level without labelling. Hence, we developed a label-free microfluidic droplet-sorting system based on image recognition of cells in droplets. To test the applicability of this method, a mixture of two plankton species with different morphologies (Dunaliella tertiolecta and Phaeodactylum tricornutum) were successfully identified and discriminated at a rate of 10 Hz. We also examined the ability to detect the number of objects encapsulated in a droplet. Single cell droplets sorted into collection channels showed 91 ± 4.5% and 90 ± 3.8% accuracy for D. tertiolecta and P. tricornutum, respectively. Because we used image recognition to confirm single cell droplets, we achieved highly accurate single cell sorting. The results indicate that the integrated method of droplet imaging cell sorting can provide a complementary sorting approach capable of isolating single target cells from a mixture of cells with high accuracy without any staining.

  6. An on-chip imaging droplet-sorting system: a real-time shape recognition method to screen target cells in droplets with single cell resolution.

    PubMed

    Girault, Mathias; Kim, Hyonchol; Arakawa, Hisayuki; Matsuura, Kenji; Odaka, Masao; Hattori, Akihiro; Terazono, Hideyuki; Yasuda, Kenji

    2017-01-06

    A microfluidic on-chip imaging cell sorter has several advantages over conventional cell sorting methods, especially to identify cells with complex morphologies such as clusters. One of the remaining problems is how to efficiently discriminate targets at the species level without labelling. Hence, we developed a label-free microfluidic droplet-sorting system based on image recognition of cells in droplets. To test the applicability of this method, a mixture of two plankton species with different morphologies (Dunaliella tertiolecta and Phaeodactylum tricornutum) were successfully identified and discriminated at a rate of 10 Hz. We also examined the ability to detect the number of objects encapsulated in a droplet. Single cell droplets sorted into collection channels showed 91 ± 4.5% and 90 ± 3.8% accuracy for D. tertiolecta and P. tricornutum, respectively. Because we used image recognition to confirm single cell droplets, we achieved highly accurate single cell sorting. The results indicate that the integrated method of droplet imaging cell sorting can provide a complementary sorting approach capable of isolating single target cells from a mixture of cells with high accuracy without any staining.

  7. An on-chip imaging droplet-sorting system: a real-time shape recognition method to screen target cells in droplets with single cell resolution

    PubMed Central

    Girault, Mathias; Kim, Hyonchol; Arakawa, Hisayuki; Matsuura, Kenji; Odaka, Masao; Hattori, Akihiro; Terazono, Hideyuki; Yasuda, Kenji

    2017-01-01

    A microfluidic on-chip imaging cell sorter has several advantages over conventional cell sorting methods, especially to identify cells with complex morphologies such as clusters. One of the remaining problems is how to efficiently discriminate targets at the species level without labelling. Hence, we developed a label-free microfluidic droplet-sorting system based on image recognition of cells in droplets. To test the applicability of this method, a mixture of two plankton species with different morphologies (Dunaliella tertiolecta and Phaeodactylum tricornutum) were successfully identified and discriminated at a rate of 10 Hz. We also examined the ability to detect the number of objects encapsulated in a droplet. Single cell droplets sorted into collection channels showed 91 ± 4.5% and 90 ± 3.8% accuracy for D. tertiolecta and P. tricornutum, respectively. Because we used image recognition to confirm single cell droplets, we achieved highly accurate single cell sorting. The results indicate that the integrated method of droplet imaging cell sorting can provide a complementary sorting approach capable of isolating single target cells from a mixture of cells with high accuracy without any staining. PMID:28059147

  8. Effect of Time Delay on Recognition Memory for Pictures: The Modulatory Role of Emotion

    PubMed Central

    Wang, Bo

    2014-01-01

    This study investigated the modulatory role of emotion in the effect of time delay on recognition memory for pictures. Participants viewed neutral, positive and negative pictures, and took a recognition memory test 5 minutes, 24 hours, or 1 week after learning. The findings are: 1) For neutral, positive and negative pictures, overall recognition accuracy in the 5-min delay did not significantly differ from that in the 24-h delay. For neutral and positive pictures, overall recognition accuracy in the 1-week delay was lower than in the 24-h delay; for negative pictures, overall recognition in the 24-h and 1-week delay did not significantly differ. Therefore negative emotion modulates the effect of time delay on recognition memory, maintaining retention of overall recognition accuracy only within a certain frame of time. 2) For the three types of pictures, recollection and familiarity in the 5-min delay did not significantly differ from that in the 24-h and the 1-week delay. Thus emotion does not appear to modulate the effect of time delay on recollection and familiarity. However, recollection in the 24-h delay was higher than in the 1-week delay, whereas familiarity in the 24-h delay was lower than in the 1-week delay. PMID:24971457

  9. NutriNet: A Deep Learning Food and Drink Image Recognition System for Dietary Assessment.

    PubMed

    Mezgec, Simon; Koroušić Seljak, Barbara

    2017-06-27

    Automatic food image recognition systems are alleviating the process of food-intake estimation and dietary assessment. However, due to the nature of food images, their recognition is a particularly challenging task, which is why traditional approaches in the field have achieved a low classification accuracy. Deep neural networks have outperformed such solutions, and we present a novel approach to the problem of food and drink image detection and recognition that uses a newly-defined deep convolutional neural network architecture, called NutriNet. This architecture was tuned on a recognition dataset containing 225,953 512 × 512 pixel images of 520 different food and drink items from a broad spectrum of food groups, on which we achieved a classification accuracy of 86 . 72 % , along with an accuracy of 94 . 47 % on a detection dataset containing 130 , 517 images. We also performed a real-world test on a dataset of self-acquired images, combined with images from Parkinson's disease patients, all taken using a smartphone camera, achieving a top-five accuracy of 55 % , which is an encouraging result for real-world images. Additionally, we tested NutriNet on the University of Milano-Bicocca 2016 (UNIMIB2016) food image dataset, on which we improved upon the provided baseline recognition result. An online training component was implemented to continually fine-tune the food and drink recognition model on new images. The model is being used in practice as part of a mobile app for the dietary assessment of Parkinson's disease patients.

  10. Continuous Speech Recognition for Clinicians

    PubMed Central

    Zafar, Atif; Overhage, J. Marc; McDonald, Clement J.

    1999-01-01

    The current generation of continuous speech recognition systems claims to offer high accuracy (greater than 95 percent) speech recognition at natural speech rates (150 words per minute) on low-cost (under $2000) platforms. This paper presents a state-of-the-technology summary, along with insights the authors have gained through testing one such product extensively and other products superficially. The authors have identified a number of issues that are important in managing accuracy and usability. First, for efficient recognition users must start with a dictionary containing the phonetic spellings of all words they anticipate using. The authors dictated 50 discharge summaries using one inexpensive internal medicine dictionary ($30) and found that they needed to add an additional 400 terms to get recognition rates of 98 percent. However, if they used either of two more expensive and extensive commercial medical vocabularies ($349 and $695), they did not need to add terms to get a 98 percent recognition rate. Second, users must speak clearly and continuously, distinctly pronouncing all syllables. Users must also correct errors as they occur, because accuracy improves with error correction by at least 5 percent over two weeks. Users may find it difficult to train the system to recognize certain terms, regardless of the amount of training, and appropriate substitutions must be created. For example, the authors had to substitute “twice a day” for “bid” when using the less expensive dictionary, but not when using the other two dictionaries. From trials they conducted in settings ranging from an emergency room to hospital wards and clinicians' offices, they learned that ambient noise has minimal effect. Finally, they found that a minimal “usable” hardware configuration (which keeps up with dictation) comprises a 300-MHz Pentium processor with 128 MB of RAM and a “speech quality” sound card (e.g., SoundBlaster, $99). Anything less powerful will result in the system lagging behind the speaking rate. The authors obtained 97 percent accuracy with just 30 minutes of training when using the latest edition of one of the speech recognition systems supplemented by a commercial medical dictionary. This technology has advanced considerably in recent years and is now a serious contender to replace some or all of the increasingly expensive alternative methods of dictation with human transcription. PMID:10332653

  11. The effect of involuntary motor activity on myoelectric pattern recognition: a case study with chronic stroke patients

    NASA Astrophysics Data System (ADS)

    Zhang, Xu; Li, Yun; Chen, Xiang; Li, Guanglin; Zev Rymer, William; Zhou, Ping

    2013-08-01

    Objective. This study investigates the effect of the involuntary motor activity of paretic-spastic muscles on the classification of surface electromyography (EMG) signals. Approach. Two data collection sessions were designed for 8 stroke subjects to voluntarily perform 11 functional movements using their affected forearm and hand at relatively slow and fast speeds. For each stroke subject, the degree of involuntary motor activity present in the voluntary surface EMG recordings was qualitatively described from such slow and fast experimental protocols. Myoelectric pattern recognition analysis was performed using different combinations of voluntary surface EMG data recorded from the slow and fast sessions. Main results. Across all tested stroke subjects, our results revealed that when involuntary surface EMG is absent or present in both the training and testing datasets, high accuracies (>96%, >98%, respectively, averaged over all the subjects) can be achieved in the classification of different movements using surface EMG signals from paretic muscles. When involuntary surface EMG was solely involved in either the training or testing datasets, the classification accuracies were dramatically reduced (<89%, <85%, respectively). However, if both the training and testing datasets contained EMG signals with the presence and absence of involuntary EMG interference, high accuracies were still achieved (>97%). Significance. The findings of this study can be used to guide the appropriate design and implementation of myoelectric pattern recognition based systems or devices toward promoting robot-aided therapy for stroke rehabilitation.

  12. An investigation of the usability of sound recognition for source separation of packaging wastes in reverse vending machines.

    PubMed

    Korucu, M Kemal; Kaplan, Özgür; Büyük, Osman; Güllü, M Kemal

    2016-10-01

    In this study, we investigate the usability of sound recognition for source separation of packaging wastes in reverse vending machines (RVMs). For this purpose, an experimental setup equipped with a sound recording mechanism was prepared. Packaging waste sounds generated by three physical impacts such as free falling, pneumatic hitting and hydraulic crushing were separately recorded using two different microphones. To classify the waste types and sizes based on sound features of the wastes, a support vector machine (SVM) and a hidden Markov model (HMM) based sound classification systems were developed. In the basic experimental setup in which only free falling impact type was considered, SVM and HMM systems provided 100% classification accuracy for both microphones. In the expanded experimental setup which includes all three impact types, material type classification accuracies were 96.5% for dynamic microphone and 97.7% for condenser microphone. When both the material type and the size of the wastes were classified, the accuracy was 88.6% for the microphones. The modeling studies indicated that hydraulic crushing impact type recordings were very noisy for an effective sound recognition application. In the detailed analysis of the recognition errors, it was observed that most of the errors occurred in the hitting impact type. According to the experimental results, it can be said that the proposed novel approach for the separation of packaging wastes could provide a high classification performance for RVMs. Copyright © 2016 Elsevier Ltd. All rights reserved.

  13. [An Extraction and Recognition Method of the Distributed Optical Fiber Vibration Signal Based on EMD-AWPP and HOSA-SVM Algorithm].

    PubMed

    Zhang, Yanjun; Liu, Wen-zhe; Fu, Xing-hu; Bi, Wei-hong

    2016-02-01

    Given that the traditional signal processing methods can not effectively distinguish the different vibration intrusion signal, a feature extraction and recognition method of the vibration information is proposed based on EMD-AWPP and HOSA-SVM, using for high precision signal recognition of distributed fiber optic intrusion detection system. When dealing with different types of vibration, the method firstly utilizes the adaptive wavelet processing algorithm based on empirical mode decomposition effect to reduce the abnormal value influence of sensing signal and improve the accuracy of signal feature extraction. Not only the low frequency part of the signal is decomposed, but also the high frequency part the details of the signal disposed better by time-frequency localization process. Secondly, it uses the bispectrum and bicoherence spectrum to accurately extract the feature vector which contains different types of intrusion vibration. Finally, based on the BPNN reference model, the recognition parameters of SVM after the implementation of the particle swarm optimization can distinguish signals of different intrusion vibration, which endows the identification model stronger adaptive and self-learning ability. It overcomes the shortcomings, such as easy to fall into local optimum. The simulation experiment results showed that this new method can effectively extract the feature vector of sensing information, eliminate the influence of random noise and reduce the effects of outliers for different types of invasion source. The predicted category identifies with the output category and the accurate rate of vibration identification can reach above 95%. So it is better than BPNN recognition algorithm and improves the accuracy of the information analysis effectively.

  14. Online Farsi digit recognition using their upper half structure

    NASA Astrophysics Data System (ADS)

    Ghods, Vahid; Sohrabi, Mohammad Karim

    2015-03-01

    In this paper, we investigated the efficiency of upper half Farsi numerical digit structure. In other words, half of data (upper half of the digit shapes) was exploited for the recognition of Farsi numerical digits. This method can be used for both offline and online recognition. Half of data is more effective in speed process, data transfer and in this application accuracy. Hidden Markov model (HMM) was used to classify online Farsi digits. Evaluation was performed by TMU dataset. This dataset contains more than 1200 samples of online handwritten Farsi digits. The proposed method yielded more accuracy in recognition rate.

  15. L2 Word Recognition: Influence of L1 Orthography on Multi-syllabic Word Recognition.

    PubMed

    Hamada, Megumi

    2017-10-01

    L2 reading research suggests that L1 orthographic experience influences L2 word recognition. Nevertheless, the findings on multi-syllabic words in English are still limited despite the fact that a vast majority of words are multi-syllabic. The study investigated whether L1 orthography influences the recognition of multi-syllabic words, focusing on the position of an embedded word. The participants were Arabic ESL learners, Chinese ESL learners, and native speakers of English. The task was a word search task, in which the participants identified a target word embedded in a pseudoword at the initial, middle, or final position. The search accuracy and speed indicated that all groups showed a strong preference for the initial position. The accuracy data further indicated group differences. The Arabic group showed higher accuracy in the final than middle, while the Chinese group showed the opposite and the native speakers showed no difference between the two positions. The findings suggest that L2 multi-syllabic word recognition involves unique processes.

  16. Metacognitive Influences on Study Time Allocation in an Associative Recognition Task: An Analysis of Adult Age Differences

    PubMed Central

    Hines, Jarrod C.; Touron, Dayna R.; Hertzog, Christopher

    2009-01-01

    The current study evaluated a metacognitive account of study time allocation, which argues that metacognitive monitoring of recognition test accuracy and latency influences subsequent strategic control and regulation. We examined judgments of learning (JOLs), recognition test confidence judgments (CJs), and subjective response time (RT) judgments by younger and older adults in an associative recognition task involving two study-test phases, with self-paced study in phase 2. Multilevel regression analyses assessed the degree to which age and metacognitive variables predicted phase 2 study time independent of actual test accuracy and RT. Outcomes supported the metacognitive account – JOLs and CJs predicted study time independent of recognition accuracy. For older adults with errant RT judgments, subjective retrieval fluency influenced response confidence as well as (mediated through confidence) subsequent study time allocation. Older adults studied items longer which had been assigned lower CJs, suggesting no age deficit in using memory monitoring to control learning. PMID:19485662

  17. Separating Speed from Accuracy in Beginning Reading Development

    ERIC Educational Resources Information Center

    Juul, Holger; Poulsen, Mads; Elbro, Carsten

    2014-01-01

    Phoneme awareness, letter knowledge, and rapid automatized naming (RAN) are well-known kindergarten predictors of later word recognition skills, but it is not clear whether they predict developments in accuracy or speed, or both. The present longitudinal study of 172 Danish beginning readers found that speed of word recognition mainly developed…

  18. Novel Blind Recognition Algorithm of Frame Synchronization Words Based on Soft-Decision in Digital Communication Systems.

    PubMed

    Qin, Jiangyi; Huang, Zhiping; Liu, Chunwu; Su, Shaojing; Zhou, Jing

    2015-01-01

    A novel blind recognition algorithm of frame synchronization words is proposed to recognize the frame synchronization words parameters in digital communication systems. In this paper, a blind recognition method of frame synchronization words based on the hard-decision is deduced in detail. And the standards of parameter recognition are given. Comparing with the blind recognition based on the hard-decision, utilizing the soft-decision can improve the accuracy of blind recognition. Therefore, combining with the characteristics of Quadrature Phase Shift Keying (QPSK) signal, an improved blind recognition algorithm based on the soft-decision is proposed. Meanwhile, the improved algorithm can be extended to other signal modulation forms. Then, the complete blind recognition steps of the hard-decision algorithm and the soft-decision algorithm are given in detail. Finally, the simulation results show that both the hard-decision algorithm and the soft-decision algorithm can recognize the parameters of frame synchronization words blindly. What's more, the improved algorithm can enhance the accuracy of blind recognition obviously.

  19. Automatic classification of fish germ cells through optimum-path forest.

    PubMed

    Papa, João P; Gutierrez, Mario E M; Nakamura, Rodrigo Y M; Papa, Luciene P; Vicentini, Irene B F; Vicentini, Carlos A

    2011-01-01

    The spermatogenesis is crucial to the species reproduction, and its monitoring may shed light over some important information of such process. Thus, the germ cells quantification can provide useful tools to improve the reproduction cycle. In this paper, we present the first work that address this problem in fishes with machine learning techniques. We show here how to obtain high recognition accuracies in order to identify fish germ cells with several state-of-the-art supervised pattern recognition techniques.

  20. Multi-modal gesture recognition using integrated model of motion, audio and video

    NASA Astrophysics Data System (ADS)

    Goutsu, Yusuke; Kobayashi, Takaki; Obara, Junya; Kusajima, Ikuo; Takeichi, Kazunari; Takano, Wataru; Nakamura, Yoshihiko

    2015-07-01

    Gesture recognition is used in many practical applications such as human-robot interaction, medical rehabilitation and sign language. With increasing motion sensor development, multiple data sources have become available, which leads to the rise of multi-modal gesture recognition. Since our previous approach to gesture recognition depends on a unimodal system, it is difficult to classify similar motion patterns. In order to solve this problem, a novel approach which integrates motion, audio and video models is proposed by using dataset captured by Kinect. The proposed system can recognize observed gestures by using three models. Recognition results of three models are integrated by using the proposed framework and the output becomes the final result. The motion and audio models are learned by using Hidden Markov Model. Random Forest which is the video classifier is used to learn the video model. In the experiments to test the performances of the proposed system, the motion and audio models most suitable for gesture recognition are chosen by varying feature vectors and learning methods. Additionally, the unimodal and multi-modal models are compared with respect to recognition accuracy. All the experiments are conducted on dataset provided by the competition organizer of MMGRC, which is a workshop for Multi-Modal Gesture Recognition Challenge. The comparison results show that the multi-modal model composed of three models scores the highest recognition rate. This improvement of recognition accuracy means that the complementary relationship among three models improves the accuracy of gesture recognition. The proposed system provides the application technology to understand human actions of daily life more precisely.

  1. Confidence and memory: assessing positive and negative correlations.

    PubMed

    Roediger, Henry L; DeSoto, K Andrew

    2014-01-01

    The capacity to learn and remember surely evolved to help animals solve problems in their quest to reproduce and survive. In humans we assume that metacognitive processes also evolved, so that we know when to trust what we remember (i.e., when we have high confidence in our memories) and when not to (when we have low confidence). However this latter feature has been questioned by researchers, with some finding a high correlation between confidence and accuracy in reports from memory and others finding little to no correlation. In two experiments we report a recognition memory paradigm that, using the same materials (categorised lists), permits the study of positive correlations, zero correlations, and negative correlations between confidence and accuracy within the same procedure. We had subjects study words from semantic categories with the five items most frequently produced in norms omitted from the list; later, subjects were given an old/new recognition test and made confidence ratings on their judgements. Although the correlation between confidence and accuracy for studied items was generally positive, the correlation for the five omitted items was negative in some methods of analysis. We pinpoint the similarity between lures and targets as creating inversions between confidence and accuracy in memory. We argue that, while confidence is generally a useful indicant of accuracy in reports from memory, in certain environmental circumstances even adaptive processes can foster illusions of memory. Thus understanding memory illusions is similar to understanding perceptual illusions: Processes that are usually adaptive can go awry under certain circumstances.

  2. Female voice communications in high level aircraft cockpit noises--part II: vocoder and automatic speech recognition systems.

    PubMed

    Nixon, C; Anderson, T; Morris, L; McCavitt, A; McKinley, R; Yeager, D; McDaniel, M

    1998-11-01

    The intelligibility of female and male speech is equivalent under most ordinary living conditions. However, due to small differences between their acoustic speech signals, called speech spectra, one can be more or less intelligible than the other in certain situations such as high levels of noise. Anecdotal information, supported by some empirical observations, suggests that some of the high intensity noise spectra of military aircraft cockpits may degrade the intelligibility of female speech more than that of male speech. In an applied research study, the intelligibility of female and male speech was measured in several high level aircraft cockpit noise conditions experienced in military aviation. In Part I, (Nixon CW, et al. Aviat Space Environ Med 1998; 69:675-83) female speech intelligibility measured in the spectra and levels of aircraft cockpit noises and with noise-canceling microphones was lower than that of the male speech in all conditions. However, the differences were small and only those at some of the highest noise levels were significant. Although speech intelligibility of both genders was acceptable during normal cruise noises, improvements are required in most of the highest levels of noise created during maximum aircraft operating conditions. These results are discussed in a Part I technical report. This Part II report examines the intelligibility in the same aircraft cockpit noises of vocoded female and male speech and the accuracy with which female and male speech in some of the cockpit noises were understood by automatic speech recognition systems. The intelligibility of vocoded female speech was generally the same as that of vocoded male speech. No significant differences were measured between the recognition accuracy of male and female speech by the automatic speech recognition systems. The intelligibility of female and male speech was equivalent for these conditions.

  3. Gesture recognition by instantaneous surface EMG images.

    PubMed

    Geng, Weidong; Du, Yu; Jin, Wenguang; Wei, Wentao; Hu, Yu; Li, Jiajun

    2016-11-15

    Gesture recognition in non-intrusive muscle-computer interfaces is usually based on windowed descriptive and discriminatory surface electromyography (sEMG) features because the recorded amplitude of a myoelectric signal may rapidly fluctuate between voltages above and below zero. Here, we present that the patterns inside the instantaneous values of high-density sEMG enables gesture recognition to be performed merely with sEMG signals at a specific instant. We introduce the concept of an sEMG image spatially composed from high-density sEMG and verify our findings from a computational perspective with experiments on gesture recognition based on sEMG images with a classification scheme of a deep convolutional network. Without any windowed features, the resultant recognition accuracy of an 8-gesture within-subject test reached 89.3% on a single frame of sEMG image and reached 99.0% using simple majority voting over 40 frames with a 1,000 Hz sampling rate. Experiments on the recognition of 52 gestures of NinaPro database and 27 gestures of CSL-HDEMG database also validated that our approach outperforms state-of-the-arts methods. Our findings are a starting point for the development of more fluid and natural muscle-computer interfaces with very little observational latency. For example, active prostheses and exoskeletons based on high-density electrodes could be controlled with instantaneous responses.

  4. Emotion recognition and social adjustment in school-aged girls and boys.

    PubMed

    Leppänen, J M; Hietanen, J K

    2001-12-01

    The present study investigated emotion recognition accuracy and its relation to social adjustment in 7-10 year-old children. The ability to recognize basic emotions from facial and vocal expressions was measured and compared to peer popularity and to teacher-rated social competence. The results showed that emotion recognition was related to these measures of social adjustment, but the gender of a child and emotion category affected this relationship. Emotion recognition accuracy was significantly related to social adjustment for the girls, but not for the boys. For the girls, especially the recognition of surprise was related to social adjustment. Together, these results suggest that the ability to recognize others' emotional states from nonverbal cues is an important socio-cognitive ability for school-aged girls.

  5. A Survey on Sentiment Classification in Face Recognition

    NASA Astrophysics Data System (ADS)

    Qian, Jingyu

    2018-01-01

    Face recognition has been an important topic for both industry and academia for a long time. K-means clustering, autoencoder, and convolutional neural network, each representing a design idea for face recognition method, are three popular algorithms to deal with face recognition problems. It is worthwhile to summarize and compare these three different algorithms. This paper will focus on one specific face recognition problem-sentiment classification from images. Three different algorithms for sentiment classification problems will be summarized, including k-means clustering, autoencoder, and convolutional neural network. An experiment with the application of these algorithms on a specific dataset of human faces will be conducted to illustrate how these algorithms are applied and their accuracy. Finally, the three algorithms are compared based on the accuracy result.

  6. NutriNet: A Deep Learning Food and Drink Image Recognition System for Dietary Assessment

    PubMed Central

    Koroušić Seljak, Barbara

    2017-01-01

    Automatic food image recognition systems are alleviating the process of food-intake estimation and dietary assessment. However, due to the nature of food images, their recognition is a particularly challenging task, which is why traditional approaches in the field have achieved a low classification accuracy. Deep neural networks have outperformed such solutions, and we present a novel approach to the problem of food and drink image detection and recognition that uses a newly-defined deep convolutional neural network architecture, called NutriNet. This architecture was tuned on a recognition dataset containing 225,953 512 × 512 pixel images of 520 different food and drink items from a broad spectrum of food groups, on which we achieved a classification accuracy of 86.72%, along with an accuracy of 94.47% on a detection dataset containing 130,517 images. We also performed a real-world test on a dataset of self-acquired images, combined with images from Parkinson’s disease patients, all taken using a smartphone camera, achieving a top-five accuracy of 55%, which is an encouraging result for real-world images. Additionally, we tested NutriNet on the University of Milano-Bicocca 2016 (UNIMIB2016) food image dataset, on which we improved upon the provided baseline recognition result. An online training component was implemented to continually fine-tune the food and drink recognition model on new images. The model is being used in practice as part of a mobile app for the dietary assessment of Parkinson’s disease patients. PMID:28653995

  7. Scene Text Recognition using Similarity and a Lexicon with Sparse Belief Propagation

    PubMed Central

    Weinman, Jerod J.; Learned-Miller, Erik; Hanson, Allen R.

    2010-01-01

    Scene text recognition (STR) is the recognition of text anywhere in the environment, such as signs and store fronts. Relative to document recognition, it is challenging because of font variability, minimal language context, and uncontrolled conditions. Much information available to solve this problem is frequently ignored or used sequentially. Similarity between character images is often overlooked as useful information. Because of language priors, a recognizer may assign different labels to identical characters. Directly comparing characters to each other, rather than only a model, helps ensure that similar instances receive the same label. Lexicons improve recognition accuracy but are used post hoc. We introduce a probabilistic model for STR that integrates similarity, language properties, and lexical decision. Inference is accelerated with sparse belief propagation, a bottom-up method for shortening messages by reducing the dependency between weakly supported hypotheses. By fusing information sources in one model, we eliminate unrecoverable errors that result from sequential processing, improving accuracy. In experimental results recognizing text from images of signs in outdoor scenes, incorporating similarity reduces character recognition error by 19%, the lexicon reduces word recognition error by 35%, and sparse belief propagation reduces the lexicon words considered by 99.9% with a 12X speedup and no loss in accuracy. PMID:19696446

  8. An Interactive Image Segmentation Method in Hand Gesture Recognition

    PubMed Central

    Chen, Disi; Li, Gongfa; Sun, Ying; Kong, Jianyi; Jiang, Guozhang; Tang, Heng; Ju, Zhaojie; Yu, Hui; Liu, Honghai

    2017-01-01

    In order to improve the recognition rate of hand gestures a new interactive image segmentation method for hand gesture recognition is presented, and popular methods, e.g., Graph cut, Random walker, Interactive image segmentation using geodesic star convexity, are studied in this article. The Gaussian Mixture Model was employed for image modelling and the iteration of Expectation Maximum algorithm learns the parameters of Gaussian Mixture Model. We apply a Gibbs random field to the image segmentation and minimize the Gibbs Energy using Min-cut theorem to find the optimal segmentation. The segmentation result of our method is tested on an image dataset and compared with other methods by estimating the region accuracy and boundary accuracy. Finally five kinds of hand gestures in different backgrounds are tested on our experimental platform, and the sparse representation algorithm is used, proving that the segmentation of hand gesture images helps to improve the recognition accuracy. PMID:28134818

  9. Gender affects body language reading.

    PubMed

    Sokolov, Arseny A; Krüger, Samuel; Enck, Paul; Krägeloh-Mann, Ingeborg; Pavlova, Marina A

    2011-01-01

    Body motion is a rich source of information for social cognition. However, gender effects in body language reading are largely unknown. Here we investigated whether, and, if so, how recognition of emotional expressions revealed by body motion is gender dependent. To this end, females and males were presented with point-light displays portraying knocking at a door performed with different emotional expressions. The findings show that gender affects accuracy rather than speed of body language reading. This effect, however, is modulated by emotional content of actions: males surpass in recognition accuracy of happy actions, whereas females tend to excel in recognition of hostile angry knocking. Advantage of women in recognition accuracy of neutral actions suggests that females are better tuned to the lack of emotional content in body actions. The study provides novel insights into understanding of gender effects in body language reading, and helps to shed light on gender vulnerability to neuropsychiatric and neurodevelopmental impairments in visual social cognition.

  10. Identification of Alfalfa Leaf Diseases Using Image Recognition Technology

    PubMed Central

    Qin, Feng; Liu, Dongxia; Sun, Bingda; Ruan, Liu; Ma, Zhanhong; Wang, Haiguang

    2016-01-01

    Common leaf spot (caused by Pseudopeziza medicaginis), rust (caused by Uromyces striatus), Leptosphaerulina leaf spot (caused by Leptosphaerulina briosiana) and Cercospora leaf spot (caused by Cercospora medicaginis) are the four common types of alfalfa leaf diseases. Timely and accurate diagnoses of these diseases are critical for disease management, alfalfa quality control and the healthy development of the alfalfa industry. In this study, the identification and diagnosis of the four types of alfalfa leaf diseases were investigated using pattern recognition algorithms based on image-processing technology. A sub-image with one or multiple typical lesions was obtained by artificial cutting from each acquired digital disease image. Then the sub-images were segmented using twelve lesion segmentation methods integrated with clustering algorithms (including K_means clustering, fuzzy C-means clustering and K_median clustering) and supervised classification algorithms (including logistic regression analysis, Naive Bayes algorithm, classification and regression tree, and linear discriminant analysis). After a comprehensive comparison, the segmentation method integrating the K_median clustering algorithm and linear discriminant analysis was chosen to obtain lesion images. After the lesion segmentation using this method, a total of 129 texture, color and shape features were extracted from the lesion images. Based on the features selected using three methods (ReliefF, 1R and correlation-based feature selection), disease recognition models were built using three supervised learning methods, including the random forest, support vector machine (SVM) and K-nearest neighbor methods. A comparison of the recognition results of the models was conducted. The results showed that when the ReliefF method was used for feature selection, the SVM model built with the most important 45 features (selected from a total of 129 features) was the optimal model. For this SVM model, the recognition accuracies of the training set and the testing set were 97.64% and 94.74%, respectively. Semi-supervised models for disease recognition were built based on the 45 effective features that were used for building the optimal SVM model. For the optimal semi-supervised models built with three ratios of labeled to unlabeled samples in the training set, the recognition accuracies of the training set and the testing set were both approximately 80%. The results indicated that image recognition of the four alfalfa leaf diseases can be implemented with high accuracy. This study provides a feasible solution for lesion image segmentation and image recognition of alfalfa leaf disease. PMID:27977767

  11. Identification of Alfalfa Leaf Diseases Using Image Recognition Technology.

    PubMed

    Qin, Feng; Liu, Dongxia; Sun, Bingda; Ruan, Liu; Ma, Zhanhong; Wang, Haiguang

    2016-01-01

    Common leaf spot (caused by Pseudopeziza medicaginis), rust (caused by Uromyces striatus), Leptosphaerulina leaf spot (caused by Leptosphaerulina briosiana) and Cercospora leaf spot (caused by Cercospora medicaginis) are the four common types of alfalfa leaf diseases. Timely and accurate diagnoses of these diseases are critical for disease management, alfalfa quality control and the healthy development of the alfalfa industry. In this study, the identification and diagnosis of the four types of alfalfa leaf diseases were investigated using pattern recognition algorithms based on image-processing technology. A sub-image with one or multiple typical lesions was obtained by artificial cutting from each acquired digital disease image. Then the sub-images were segmented using twelve lesion segmentation methods integrated with clustering algorithms (including K_means clustering, fuzzy C-means clustering and K_median clustering) and supervised classification algorithms (including logistic regression analysis, Naive Bayes algorithm, classification and regression tree, and linear discriminant analysis). After a comprehensive comparison, the segmentation method integrating the K_median clustering algorithm and linear discriminant analysis was chosen to obtain lesion images. After the lesion segmentation using this method, a total of 129 texture, color and shape features were extracted from the lesion images. Based on the features selected using three methods (ReliefF, 1R and correlation-based feature selection), disease recognition models were built using three supervised learning methods, including the random forest, support vector machine (SVM) and K-nearest neighbor methods. A comparison of the recognition results of the models was conducted. The results showed that when the ReliefF method was used for feature selection, the SVM model built with the most important 45 features (selected from a total of 129 features) was the optimal model. For this SVM model, the recognition accuracies of the training set and the testing set were 97.64% and 94.74%, respectively. Semi-supervised models for disease recognition were built based on the 45 effective features that were used for building the optimal SVM model. For the optimal semi-supervised models built with three ratios of labeled to unlabeled samples in the training set, the recognition accuracies of the training set and the testing set were both approximately 80%. The results indicated that image recognition of the four alfalfa leaf diseases can be implemented with high accuracy. This study provides a feasible solution for lesion image segmentation and image recognition of alfalfa leaf disease.

  12. Predicting the Accuracy of Facial Affect Recognition: The Interaction of Child Maltreatment and Intellectual Functioning

    ERIC Educational Resources Information Center

    Shenk, Chad E.; Putnam, Frank W.; Noll, Jennie G.

    2013-01-01

    Previous research demonstrates that both child maltreatment and intellectual performance contribute uniquely to the accurate identification of facial affect by children and adolescents. The purpose of this study was to extend this research by examining whether child maltreatment affects the accuracy of facial recognition differently at varying…

  13. Emotion recognition from multichannel EEG signals using K-nearest neighbor classification.

    PubMed

    Li, Mi; Xu, Hongpei; Liu, Xingwang; Lu, Shengfu

    2018-04-27

    Many studies have been done on the emotion recognition based on multi-channel electroencephalogram (EEG) signals. This paper explores the influence of the emotion recognition accuracy of EEG signals in different frequency bands and different number of channels. We classified the emotional states in the valence and arousal dimensions using different combinations of EEG channels. Firstly, DEAP default preprocessed data were normalized. Next, EEG signals were divided into four frequency bands using discrete wavelet transform, and entropy and energy were calculated as features of K-nearest neighbor Classifier. The classification accuracies of the 10, 14, 18 and 32 EEG channels based on the Gamma frequency band were 89.54%, 92.28%, 93.72% and 95.70% in the valence dimension and 89.81%, 92.24%, 93.69% and 95.69% in the arousal dimension. As the number of channels increases, the classification accuracy of emotional states also increases, the classification accuracy of the gamma frequency band is greater than that of the beta frequency band followed by the alpha and theta frequency bands. This paper provided better frequency bands and channels reference for emotion recognition based on EEG.

  14. Associations between facial emotion recognition and young adolescents’ behaviors in bullying

    PubMed Central

    Gini, Gianluca; Altoè, Gianmarco

    2017-01-01

    This study investigated whether different behaviors young adolescents can act during bullying episodes were associated with their ability to recognize morphed facial expressions of the six basic emotions, expressed at high and low intensity. The sample included 117 middle-school students (45.3% girls; mean age = 12.4 years) who filled in a peer nomination questionnaire and individually performed a computerized emotion recognition task. Bayesian generalized mixed-effects models showed a complex picture, in which type and intensity of emotions, students’ behavior and gender interacted in explaining recognition accuracy. Results were discussed with a particular focus on negative emotions and suggesting a “neutral” nature of emotion recognition ability, which does not necessarily lead to moral behavior but can also be used for pursuing immoral goals. PMID:29131871

  15. Activity and function recognition for moving and static objects in urban environments from wide-area persistent surveillance inputs

    NASA Astrophysics Data System (ADS)

    Levchuk, Georgiy; Bobick, Aaron; Jones, Eric

    2010-04-01

    In this paper, we describe results from experimental analysis of a model designed to recognize activities and functions of moving and static objects from low-resolution wide-area video inputs. Our model is based on representing the activities and functions using three variables: (i) time; (ii) space; and (iii) structures. The activity and function recognition is achieved by imposing lexical, syntactic, and semantic constraints on the lower-level event sequences. In the reported research, we have evaluated the utility and sensitivity of several algorithms derived from natural language processing and pattern recognition domains. We achieved high recognition accuracy for a wide range of activity and function types in the experiments using Electro-Optical (EO) imagery collected by Wide Area Airborne Surveillance (WAAS) platform.

  16. Human activity recognition based on feature selection in smart home using back-propagation algorithm.

    PubMed

    Fang, Hongqing; He, Lei; Si, Hao; Liu, Peng; Xie, Xiaolei

    2014-09-01

    In this paper, Back-propagation(BP) algorithm has been used to train the feed forward neural network for human activity recognition in smart home environments, and inter-class distance method for feature selection of observed motion sensor events is discussed and tested. And then, the human activity recognition performances of neural network using BP algorithm have been evaluated and compared with other probabilistic algorithms: Naïve Bayes(NB) classifier and Hidden Markov Model(HMM). The results show that different feature datasets yield different activity recognition accuracy. The selection of unsuitable feature datasets increases the computational complexity and degrades the activity recognition accuracy. Furthermore, neural network using BP algorithm has relatively better human activity recognition performances than NB classifier and HMM. Copyright © 2014 ISA. Published by Elsevier Ltd. All rights reserved.

  17. Eye movements during object recognition in visual agnosia.

    PubMed

    Charles Leek, E; Patterson, Candy; Paul, Matthew A; Rafal, Robert; Cristino, Filipe

    2012-07-01

    This paper reports the first ever detailed study about eye movement patterns during single object recognition in visual agnosia. Eye movements were recorded in a patient with an integrative agnosic deficit during two recognition tasks: common object naming and novel object recognition memory. The patient showed normal directional biases in saccades and fixation dwell times in both tasks and was as likely as controls to fixate within object bounding contour regardless of recognition accuracy. In contrast, following initial saccades of similar amplitude to controls, the patient showed a bias for short saccades. In object naming, but not in recognition memory, the similarity of the spatial distributions of patient and control fixations was modulated by recognition accuracy. The study provides new evidence about how eye movements can be used to elucidate the functional impairments underlying object recognition deficits. We argue that the results reflect a breakdown in normal functional processes involved in the integration of shape information across object structure during the visual perception of shape. Copyright © 2012 Elsevier Ltd. All rights reserved.

  18. Image dependency in the recognition of newly learnt faces.

    PubMed

    Longmore, Christopher A; Santos, Isabel M; Silva, Carlos F; Hall, Abi; Faloyin, Dipo; Little, Emily

    2017-05-01

    Research investigating the effect of lighting and viewpoint changes on unfamiliar and newly learnt faces has revealed that such recognition is highly image dependent and that changes in either of these leads to poor recognition accuracy. Three experiments are reported to extend these findings by examining the effect of apparent age on the recognition of newly learnt faces. Experiment 1 investigated the ability to generalize to novel ages of a face after learning a single image. It was found that recognition was best for the learnt image with performance falling the greater the dissimilarity between the study and test images. Experiments 2 and 3 examined whether learning two images aids subsequent recognition of a novel image. The results indicated that interpolation between two studied images (Experiment 2) provided some additional benefit over learning a single view, but that this did not extend to extrapolation (Experiment 3). The results from all studies suggest that recognition was driven primarily by pictorial codes and that the recognition of faces learnt from a limited number of sources operates on stored images of faces as opposed to more abstract, structural, representations.

  19. A system for activity recognition using multi-sensor fusion.

    PubMed

    Gao, Lei; Bourke, Alan K; Nelson, John

    2011-01-01

    This paper proposes a system for activity recognition using multi-sensor fusion. In this system, four sensors are attached to the waist, chest, thigh, and side of the body. In the study we present two solutions for factors that affect the activity recognition accuracy: the calibration drift and the sensor orientation changing. The datasets used to evaluate this system were collected from 8 subjects who were asked to perform 8 scripted normal activities of daily living (ADL), three times each. The Naïve Bayes classifier using multi-sensor fusion is adopted and achieves 70.88%-97.66% recognition accuracies for 1-4 sensors.

  20. Speech as a pilot input medium

    NASA Technical Reports Server (NTRS)

    Plummer, R. P.; Coler, C. R.

    1977-01-01

    The speech recognition system under development is a trainable pattern classifier based on a maximum-likelihood technique. An adjustable uncertainty threshold allows the rejection of borderline cases for which the probability of misclassification is high. The syntax of the command language spoken may be used as an aid to recognition, and the system adapts to changes in pronunciation if feedback from the user is available. Words must be separated by .25 second gaps. The system runs in real time on a mini-computer (PDP 11/10) and was tested on 120,000 speech samples from 10- and 100-word vocabularies. The results of these tests were 99.9% correct recognition for a vocabulary consisting of the ten digits, and 99.6% recognition for a 100-word vocabulary of flight commands, with a 5% rejection rate in each case. With no rejection, the recognition accuracies for the same vocabularies were 99.5% and 98.6% respectively.

  1. Improving the recognition of fingerprint biometric system using enhanced image fusion

    NASA Astrophysics Data System (ADS)

    Alsharif, Salim; El-Saba, Aed; Stripathi, Reshma

    2010-04-01

    Fingerprints recognition systems have been widely used by financial institutions, law enforcement, border control, visa issuing, just to mention few. Biometric identifiers can be counterfeited, but considered more reliable and secure compared to traditional ID cards or personal passwords methods. Fingerprint pattern fusion improves the performance of a fingerprint recognition system in terms of accuracy and security. This paper presents digital enhancement and fusion approaches that improve the biometric of the fingerprint recognition system. It is a two-step approach. In the first step raw fingerprint images are enhanced using high-frequency-emphasis filtering (HFEF). The second step is a simple linear fusion process between the raw images and the HFEF ones. It is shown that the proposed approach increases the verification and identification of the fingerprint biometric recognition system, where any improvement is justified using the correlation performance metrics of the matching algorithm.

  2. Integrated system for automated financial document processing

    NASA Astrophysics Data System (ADS)

    Hassanein, Khaled S.; Wesolkowski, Slawo; Higgins, Ray; Crabtree, Ralph; Peng, Antai

    1997-02-01

    A system was developed that integrates intelligent document analysis with multiple character/numeral recognition engines in order to achieve high accuracy automated financial document processing. In this system, images are accepted in both their grayscale and binary formats. A document analysis module starts by extracting essential features from the document to help identify its type (e.g. personal check, business check, etc.). These features are also utilized to conduct a full analysis of the image to determine the location of interesting zones such as the courtesy amount and the legal amount. These fields are then made available to several recognition knowledge sources such as courtesy amount recognition engines and legal amount recognition engines through a blackboard architecture. This architecture allows all the available knowledge sources to contribute incrementally and opportunistically to the solution of the given recognition query. Performance results on a test set of machine printed business checks using the integrated system are also reported.

  3. Electrocardiographic recognition of right ventricular hypertrophy.

    PubMed

    Nikus, Kjell; Pérez-Riera, Andrés Ricardo; Konttila, Kaari; Barbosa-Barros, Raimundo

    The electrocardiogram (ECG) is a relatively insensitive tool for the detection of right ventricular hypertrophy (RVH), but some criteria have high specificity. The recommended ECG screening criteria for RVH are not sufficiently sensitive or specific for screening for mild RVH in adults without clinical cardiovascular disease. The greatest accuracy of the ECG is in congenital heart disease, with intermediate accuracy in acquired heart disease and primary pulmonary hypertension in adults. Copyright © 2017 Elsevier Inc. All rights reserved.

  4. Collection and processing of data from a phase-coherent meteor radar

    NASA Technical Reports Server (NTRS)

    Backof, C. A., Jr.; Bowhill, S. A.

    1974-01-01

    An analysis of the measurement accuracy requirement of a high resolution meteor radar for observing short period, atmospheric waves is presented, and a system which satisfies the requirements is described. A medium scale, real time computer is programmed to perform all echo recognition and coordinate measurement functions. The measurement algorithms are exercised on noisy data generated by a program which simulates the hardware system, in order to find the effects of noise on the measurement accuracies.

  5. Support vector machine-based facial-expression recognition method combining shape and appearance

    NASA Astrophysics Data System (ADS)

    Han, Eun Jung; Kang, Byung Jun; Park, Kang Ryoung; Lee, Sangyoun

    2010-11-01

    Facial expression recognition can be widely used for various applications, such as emotion-based human-machine interaction, intelligent robot interfaces, face recognition robust to expression variation, etc. Previous studies have been classified as either shape- or appearance-based recognition. The shape-based method has the disadvantage that the individual variance of facial feature points exists irrespective of similar expressions, which can cause a reduction of the recognition accuracy. The appearance-based method has a limitation in that the textural information of the face is very sensitive to variations in illumination. To overcome these problems, a new facial-expression recognition method is proposed, which combines both shape and appearance information, based on the support vector machine (SVM). This research is novel in the following three ways as compared to previous works. First, the facial feature points are automatically detected by using an active appearance model. From these, the shape-based recognition is performed by using the ratios between the facial feature points based on the facial-action coding system. Second, the SVM, which is trained to recognize the same and different expression classes, is proposed to combine two matching scores obtained from the shape- and appearance-based recognitions. Finally, a single SVM is trained to discriminate four different expressions, such as neutral, a smile, anger, and a scream. By determining the expression of the input facial image whose SVM output is at a minimum, the accuracy of the expression recognition is much enhanced. The experimental results showed that the recognition accuracy of the proposed method was better than previous researches and other fusion methods.

  6. Bag-of-visual-phrases and hierarchical deep models for traffic sign detection and recognition in mobile laser scanning data

    NASA Astrophysics Data System (ADS)

    Yu, Yongtao; Li, Jonathan; Wen, Chenglu; Guan, Haiyan; Luo, Huan; Wang, Cheng

    2016-03-01

    This paper presents a novel algorithm for detection and recognition of traffic signs in mobile laser scanning (MLS) data for intelligent transportation-related applications. The traffic sign detection task is accomplished based on 3-D point clouds by using bag-of-visual-phrases representations; whereas the recognition task is achieved based on 2-D images by using a Gaussian-Bernoulli deep Boltzmann machine-based hierarchical classifier. To exploit high-order feature encodings of feature regions, a deep Boltzmann machine-based feature encoder is constructed. For detecting traffic signs in 3-D point clouds, the proposed algorithm achieves an average recall, precision, quality, and F-score of 0.956, 0.946, 0.907, and 0.951, respectively, on the four selected MLS datasets. For on-image traffic sign recognition, a recognition accuracy of 97.54% is achieved by using the proposed hierarchical classifier. Comparative studies with the existing traffic sign detection and recognition methods demonstrate that our algorithm obtains promising, reliable, and high performance in both detecting traffic signs in 3-D point clouds and recognizing traffic signs on 2-D images.

  7. Robust vehicle detection under various environments to realize road traffic flow surveillance using an infrared thermal camera.

    PubMed

    Iwasaki, Yoichiro; Misumi, Masato; Nakamiya, Toshiyuki

    2015-01-01

    To realize road traffic flow surveillance under various environments which contain poor visibility conditions, we have already proposed two vehicle detection methods using thermal images taken with an infrared thermal camera. The first method uses pattern recognition for the windshields and their surroundings to detect vehicles. However, the first method decreases the vehicle detection accuracy in winter season. To maintain high vehicle detection accuracy in all seasons, we developed the second method. The second method uses tires' thermal energy reflection areas on a road as the detection targets. The second method did not achieve high detection accuracy for vehicles on left-hand and right-hand lanes except for two center-lanes. Therefore, we have developed a new method based on the second method to increase the vehicle detection accuracy. This paper proposes the new method and shows that the detection accuracy for vehicles on all lanes is 92.1%. Therefore, by combining the first method and the new method, high vehicle detection accuracies are maintained under various environments, and road traffic flow surveillance can be realized.

  8. Robust Vehicle Detection under Various Environments to Realize Road Traffic Flow Surveillance Using an Infrared Thermal Camera

    PubMed Central

    Iwasaki, Yoichiro; Misumi, Masato; Nakamiya, Toshiyuki

    2015-01-01

    To realize road traffic flow surveillance under various environments which contain poor visibility conditions, we have already proposed two vehicle detection methods using thermal images taken with an infrared thermal camera. The first method uses pattern recognition for the windshields and their surroundings to detect vehicles. However, the first method decreases the vehicle detection accuracy in winter season. To maintain high vehicle detection accuracy in all seasons, we developed the second method. The second method uses tires' thermal energy reflection areas on a road as the detection targets. The second method did not achieve high detection accuracy for vehicles on left-hand and right-hand lanes except for two center-lanes. Therefore, we have developed a new method based on the second method to increase the vehicle detection accuracy. This paper proposes the new method and shows that the detection accuracy for vehicles on all lanes is 92.1%. Therefore, by combining the first method and the new method, high vehicle detection accuracies are maintained under various environments, and road traffic flow surveillance can be realized. PMID:25763384

  9. Exploratory data analysis of acceleration signals to select light-weight and accurate features for real-time activity recognition on smartphones.

    PubMed

    Khan, Adil Mehmood; Siddiqi, Muhammad Hameed; Lee, Seok-Won

    2013-09-27

    Smartphone-based activity recognition (SP-AR) recognizes users' activities using the embedded accelerometer sensor. Only a small number of previous works can be classified as online systems, i.e., the whole process (pre-processing, feature extraction, and classification) is performed on the device. Most of these online systems use either a high sampling rate (SR) or long data-window (DW) to achieve high accuracy, resulting in short battery life or delayed system response, respectively. This paper introduces a real-time/online SP-AR system that solves this problem. Exploratory data analysis was performed on acceleration signals of 6 activities, collected from 30 subjects, to show that these signals are generated by an autoregressive (AR) process, and an accurate AR-model in this case can be built using a low SR (20 Hz) and a small DW (3 s). The high within class variance resulting from placing the phone at different positions was reduced using kernel discriminant analysis to achieve position-independent recognition. Neural networks were used as classifiers. Unlike previous works, true subject-independent evaluation was performed, where 10 new subjects evaluated the system at their homes for 1 week. The results show that our features outperformed three commonly used features by 40% in terms of accuracy for the given SR and DW.

  10. Emotion recognition in fathers and mothers at high-risk for child physical abuse.

    PubMed

    Asla, Nagore; de Paúl, Joaquín; Pérez-Albéniz, Alicia

    2011-09-01

    The present study was designed to determine whether parents at high risk for physical child abuse, in comparison with parents at low risk, show deficits in emotion recognition, as well as to examine the moderator effect of gender and stress on the relationship between risk for physical child abuse and emotion recognition. Based on their scores on the Abuse Scale of the CAP Inventory (Milner, 1986), 64 parents at high risk (24 fathers and 40 mothers) and 80 parents at low risk (40 fathers and 40 mothers) for physical child abuse were selected. The Subtle Expression Training Tool/Micro Expression Training Tool (Ekman, 2004a, 2004b) and the Diagnostic Analysis of Nonverbal Accuracy II (Nowicki & Carton, 1993) were used to assess emotion recognition. As expected, parents at high risk, in contrast to parents at low risk, showed deficits in emotion recognition. However, differences between high- and low-risk participants were observed only for fathers, but not for mothers. Whereas fathers at high risk for physical child abuse made more errors than mothers at high risk, no differences between mothers at low risk and fathers at low risk were found. No interaction between stress, gender, and risk status was observed for errors in emotion recognition. The present findings, if confirmed with physical abusers, could be helpful to further our understanding of deficits in processing information of physically abusive parents and to develop treatment strategies specifically focused on emotion recognition. Moreover, if gender differences can be confirmed, the findings could be helpful to develop specific treatment programs for abusive fathers. Copyright © 2011 Elsevier Ltd. All rights reserved.

  11. Multi-sensor information fusion method for vibration fault diagnosis of rolling bearing

    NASA Astrophysics Data System (ADS)

    Jiao, Jing; Yue, Jianhai; Pei, Di

    2017-10-01

    Bearing is a key element in high-speed electric multiple unit (EMU) and any defect of it can cause huge malfunctioning of EMU under high operation speed. This paper presents a new method for bearing fault diagnosis based on least square support vector machine (LS-SVM) in feature-level fusion and Dempster-Shafer (D-S) evidence theory in decision-level fusion which were used to solve the problems about low detection accuracy, difficulty in extracting sensitive characteristics and unstable diagnosis system of single-sensor in rolling bearing fault diagnosis. Wavelet de-nosing technique was used for removing the signal noises. LS-SVM was used to make pattern recognition of the bearing vibration signal, and then fusion process was made according to the D-S evidence theory, so as to realize recognition of bearing fault. The results indicated that the data fusion method improved the performance of the intelligent approach in rolling bearing fault detection significantly. Moreover, the results showed that this method can efficiently improve the accuracy of fault diagnosis.

  12. On-line analysis of algae in water by discrete three-dimensional fluorescence spectroscopy.

    PubMed

    Zhao, Nanjing; Zhang, Xiaoling; Yin, Gaofang; Yang, Ruifang; Hu, Li; Chen, Shuang; Liu, Jianguo; Liu, Wenqing

    2018-03-19

    In view of the problem of the on-line measurement of algae classification, a method of algae classification and concentration determination based on the discrete three-dimensional fluorescence spectra was studied in this work. The discrete three-dimensional fluorescence spectra of twelve common species of algae belonging to five categories were analyzed, the discrete three-dimensional standard spectra of five categories were built, and the recognition, classification and concentration prediction of algae categories were realized by the discrete three-dimensional fluorescence spectra coupled with non-negative weighted least squares linear regression analysis. The results show that similarities between discrete three-dimensional standard spectra of different categories were reduced and the accuracies of recognition, classification and concentration prediction of the algae categories were significantly improved. By comparing with that of the chlorophyll a fluorescence excitation spectra method, the recognition accuracy rate in pure samples by discrete three-dimensional fluorescence spectra is improved 1.38%, and the recovery rate and classification accuracy in pure diatom samples 34.1% and 46.8%, respectively; the recognition accuracy rate of mixed samples by discrete-three dimensional fluorescence spectra is enhanced by 26.1%, the recovery rate of mixed samples with Chlorophyta 37.8%, and the classification accuracy of mixed samples with diatoms 54.6%.

  13. High Accuracy Human Activity Recognition Based on Sparse Locality Preserving Projections.

    PubMed

    Zhu, Xiangbin; Qiu, Huiling

    2016-01-01

    Human activity recognition(HAR) from the temporal streams of sensory data has been applied to many fields, such as healthcare services, intelligent environments and cyber security. However, the classification accuracy of most existed methods is not enough in some applications, especially for healthcare services. In order to improving accuracy, it is necessary to develop a novel method which will take full account of the intrinsic sequential characteristics for time-series sensory data. Moreover, each human activity may has correlated feature relationship at different levels. Therefore, in this paper, we propose a three-stage continuous hidden Markov model (TSCHMM) approach to recognize human activities. The proposed method contains coarse, fine and accurate classification. The feature reduction is an important step in classification processing. In this paper, sparse locality preserving projections (SpLPP) is exploited to determine the optimal feature subsets for accurate classification of the stationary-activity data. It can extract more discriminative activities features from the sensor data compared with locality preserving projections. Furthermore, all of the gyro-based features are used for accurate classification of the moving data. Compared with other methods, our method uses significantly less number of features, and the over-all accuracy has been obviously improved.

  14. High Accuracy Human Activity Recognition Based on Sparse Locality Preserving Projections

    PubMed Central

    2016-01-01

    Human activity recognition(HAR) from the temporal streams of sensory data has been applied to many fields, such as healthcare services, intelligent environments and cyber security. However, the classification accuracy of most existed methods is not enough in some applications, especially for healthcare services. In order to improving accuracy, it is necessary to develop a novel method which will take full account of the intrinsic sequential characteristics for time-series sensory data. Moreover, each human activity may has correlated feature relationship at different levels. Therefore, in this paper, we propose a three-stage continuous hidden Markov model (TSCHMM) approach to recognize human activities. The proposed method contains coarse, fine and accurate classification. The feature reduction is an important step in classification processing. In this paper, sparse locality preserving projections (SpLPP) is exploited to determine the optimal feature subsets for accurate classification of the stationary-activity data. It can extract more discriminative activities features from the sensor data compared with locality preserving projections. Furthermore, all of the gyro-based features are used for accurate classification of the moving data. Compared with other methods, our method uses significantly less number of features, and the over-all accuracy has been obviously improved. PMID:27893761

  15. Original and Mirror Face Images and Minimum Squared Error Classification for Visible Light Face Recognition.

    PubMed

    Wang, Rong

    2015-01-01

    In real-world applications, the image of faces varies with illumination, facial expression, and poses. It seems that more training samples are able to reveal possible images of the faces. Though minimum squared error classification (MSEC) is a widely used method, its applications on face recognition usually suffer from the problem of a limited number of training samples. In this paper, we improve MSEC by using the mirror faces as virtual training samples. We obtained the mirror faces generated from original training samples and put these two kinds of samples into a new set. The face recognition experiments show that our method does obtain high accuracy performance in classification.

  16. Optimal spatiotemporal representation of multichannel EEG for recognition of brain states associated with distinct visual stimulus

    NASA Astrophysics Data System (ADS)

    Hramov, Alexander; Musatov, Vyacheslav Yu.; Runnova, Anastasija E.; Efremova, Tatiana Yu.; Koronovskii, Alexey A.; Pisarchik, Alexander N.

    2018-04-01

    In the paper we propose an approach based on artificial neural networks for recognition of different human brain states associated with distinct visual stimulus. Based on the developed numerical technique and the analysis of obtained experimental multichannel EEG data, we optimize the spatiotemporal representation of multichannel EEG to provide close to 97% accuracy in recognition of the EEG brain states during visual perception. Different interpretations of an ambiguous image produce different oscillatory patterns in the human EEG with similar features for every interpretation. Since these features are inherent to all subjects, a single artificial network can classify with high quality the associated brain states of other subjects.

  17. Pattern recognition of electronic bit-sequences using a semiconductor mode-locked laser and spatial light modulators

    NASA Astrophysics Data System (ADS)

    Bhooplapur, Sharad; Akbulut, Mehmetkan; Quinlan, Franklyn; Delfyett, Peter J.

    2010-04-01

    A novel scheme for recognition of electronic bit-sequences is demonstrated. Two electronic bit-sequences that are to be compared are each mapped to a unique code from a set of Walsh-Hadamard codes. The codes are then encoded in parallel on the spectral phase of the frequency comb lines from a frequency-stabilized mode-locked semiconductor laser. Phase encoding is achieved by using two independent spatial light modulators based on liquid crystal arrays. Encoded pulses are compared using interferometric pulse detection and differential balanced photodetection. Orthogonal codes eight bits long are compared, and matched codes are successfully distinguished from mismatched codes with very low error rates, of around 10-18. This technique has potential for high-speed, high accuracy recognition of bit-sequences, with applications in keyword searches and internet protocol packet routing.

  18. The Potential of Using Brain Images for Authentication

    PubMed Central

    Zhou, Zongtan; Shen, Hui; Hu, Dewen

    2014-01-01

    Biometric recognition (also known as biometrics) refers to the automated recognition of individuals based on their biological or behavioral traits. Examples of biometric traits include fingerprint, palmprint, iris, and face. The brain is the most important and complex organ in the human body. Can it be used as a biometric trait? In this study, we analyze the uniqueness of the brain and try to use the brain for identity authentication. The proposed brain-based verification system operates in two stages: gray matter extraction and gray matter matching. A modified brain segmentation algorithm is implemented for extracting gray matter from an input brain image. Then, an alignment-based matching algorithm is developed for brain matching. Experimental results on two data sets show that the proposed brain recognition system meets the high accuracy requirement of identity authentication. Though currently the acquisition of the brain is still time consuming and expensive, brain images are highly unique and have the potential possibility for authentication in view of pattern recognition. PMID:25126604

  19. The potential of using brain images for authentication.

    PubMed

    Chen, Fanglin; Zhou, Zongtan; Shen, Hui; Hu, Dewen

    2014-01-01

    Biometric recognition (also known as biometrics) refers to the automated recognition of individuals based on their biological or behavioral traits. Examples of biometric traits include fingerprint, palmprint, iris, and face. The brain is the most important and complex organ in the human body. Can it be used as a biometric trait? In this study, we analyze the uniqueness of the brain and try to use the brain for identity authentication. The proposed brain-based verification system operates in two stages: gray matter extraction and gray matter matching. A modified brain segmentation algorithm is implemented for extracting gray matter from an input brain image. Then, an alignment-based matching algorithm is developed for brain matching. Experimental results on two data sets show that the proposed brain recognition system meets the high accuracy requirement of identity authentication. Though currently the acquisition of the brain is still time consuming and expensive, brain images are highly unique and have the potential possibility for authentication in view of pattern recognition.

  20. Evaluation of Feature Extraction and Recognition for Activity Monitoring and Fall Detection Based on Wearable sEMG Sensors.

    PubMed

    Xi, Xugang; Tang, Minyan; Miran, Seyed M; Luo, Zhizeng

    2017-05-27

    As an essential subfield of context awareness, activity awareness, especially daily activity monitoring and fall detection, plays a significant role for elderly or frail people who need assistance in their daily activities. This study investigates the feature extraction and pattern recognition of surface electromyography (sEMG), with the purpose of determining the best features and classifiers of sEMG for daily living activities monitoring and fall detection. This is done by a serial of experiments. In the experiments, four channels of sEMG signal from wireless, wearable sensors located on lower limbs are recorded from three subjects while they perform seven activities of daily living (ADL). A simulated trip fall scenario is also considered with a custom-made device attached to the ankle. With this experimental setting, 15 feature extraction methods of sEMG, including time, frequency, time/frequency domain and entropy, are analyzed based on class separability and calculation complexity, and five classification methods, each with 15 features, are estimated with respect to the accuracy rate of recognition and calculation complexity for activity monitoring and fall detection. It is shown that a high accuracy rate of recognition and a minimal calculation time for daily activity monitoring and fall detection can be achieved in the current experimental setting. Specifically, the Wilson Amplitude (WAMP) feature performs the best, and the classifier Gaussian Kernel Support Vector Machine (GK-SVM) with Permutation Entropy (PE) or WAMP results in the highest accuracy for activity monitoring with recognition rates of 97.35% and 96.43%. For fall detection, the classifier Fuzzy Min-Max Neural Network (FMMNN) has the best sensitivity and specificity at the cost of the longest calculation time, while the classifier Gaussian Kernel Fisher Linear Discriminant Analysis (GK-FDA) with the feature WAMP guarantees a high sensitivity (98.70%) and specificity (98.59%) with a short calculation time (65.586 ms), making it a possible choice for pre-impact fall detection. The thorough quantitative comparison of the features and classifiers in this study supports the feasibility of a wireless, wearable sEMG sensor system for automatic activity monitoring and fall detection.

  1. Evaluation of Feature Extraction and Recognition for Activity Monitoring and Fall Detection Based on Wearable sEMG Sensors

    PubMed Central

    Xi, Xugang; Tang, Minyan; Miran, Seyed M.; Luo, Zhizeng

    2017-01-01

    As an essential subfield of context awareness, activity awareness, especially daily activity monitoring and fall detection, plays a significant role for elderly or frail people who need assistance in their daily activities. This study investigates the feature extraction and pattern recognition of surface electromyography (sEMG), with the purpose of determining the best features and classifiers of sEMG for daily living activities monitoring and fall detection. This is done by a serial of experiments. In the experiments, four channels of sEMG signal from wireless, wearable sensors located on lower limbs are recorded from three subjects while they perform seven activities of daily living (ADL). A simulated trip fall scenario is also considered with a custom-made device attached to the ankle. With this experimental setting, 15 feature extraction methods of sEMG, including time, frequency, time/frequency domain and entropy, are analyzed based on class separability and calculation complexity, and five classification methods, each with 15 features, are estimated with respect to the accuracy rate of recognition and calculation complexity for activity monitoring and fall detection. It is shown that a high accuracy rate of recognition and a minimal calculation time for daily activity monitoring and fall detection can be achieved in the current experimental setting. Specifically, the Wilson Amplitude (WAMP) feature performs the best, and the classifier Gaussian Kernel Support Vector Machine (GK-SVM) with Permutation Entropy (PE) or WAMP results in the highest accuracy for activity monitoring with recognition rates of 97.35% and 96.43%. For fall detection, the classifier Fuzzy Min-Max Neural Network (FMMNN) has the best sensitivity and specificity at the cost of the longest calculation time, while the classifier Gaussian Kernel Fisher Linear Discriminant Analysis (GK-FDA) with the feature WAMP guarantees a high sensitivity (98.70%) and specificity (98.59%) with a short calculation time (65.586 ms), making it a possible choice for pre-impact fall detection. The thorough quantitative comparison of the features and classifiers in this study supports the feasibility of a wireless, wearable sEMG sensor system for automatic activity monitoring and fall detection. PMID:28555016

  2. Computer-assisted visual interactive recognition and its prospects of implementation over the Internet

    NASA Astrophysics Data System (ADS)

    Zou, Jie; Gattani, Abhishek

    2005-01-01

    When completely automated systems don't yield acceptable accuracy, many practical pattern recognition systems involve the human either at the beginning (pre-processing) or towards the end (handling rejects). We believe that it may be more useful to involve the human throughout the recognition process rather than just at the beginning or end. We describe a methodology of interactive visual recognition for human-centered low-throughput applications, Computer Assisted Visual InterActive Recognition (CAVIAR), and discuss the prospects of implementing CAVIAR over the Internet. The novelty of CAVIAR is image-based interaction through a domain-specific parameterized geometrical model, which reduces the semantic gap between humans and computers. The user may interact with the computer anytime that she considers its response unsatisfactory. The interaction improves the accuracy of the classification features by improving the fit of the computer-proposed model. The computer makes subsequent use of the parameters of the improved model to refine not only its own statistical model-fitting process, but also its internal classifier. The CAVIAR methodology was applied to implement a flower recognition system. The principal conclusions from the evaluation of the system include: 1) the average recognition time of the CAVIAR system is significantly shorter than that of the unaided human; 2) its accuracy is significantly higher than that of the unaided machine; 3) it can be initialized with as few as one training sample per class and still achieve high accuracy; and 4) it demonstrates a self-learning ability. We have also implemented a Mobile CAVIAR system, where a pocket PC, as a client, connects to a server through wireless communication. The motivation behind a mobile platform for CAVIAR is to apply the methodology in a human-centered pervasive environment, where the user can seamlessly interact with the system for classifying field-data. Deploying CAVIAR to a networked mobile platform poses the challenge of classifying field images and programming under constraints of display size, network bandwidth, processor speed, and memory size. Editing of the computer-proposed model is performed on the handheld while statistical model fitting and classification take place on the server. The possibility that the user can easily take several photos of the object poses an interesting information fusion problem. The advantage of the Internet is that the patterns identified by different users can be pooled together to benefit all peer users. When users identify patterns with CAVIAR in a networked setting, they also collect training samples and provide opportunities for machine learning from their intervention. CAVIAR implemented over the Internet provides a perfect test bed for, and extends, the concept of Open Mind Initiative proposed by David Stork. Our experimental evaluation focuses on human time, machine and human accuracy, and machine learning. We devoted much effort to evaluating the use of our image-based user interface and on developing principles for the evaluation of interactive pattern recognition system. The Internet architecture and Mobile CAVIAR methodology have many applications. We are exploring in the directions of teledermatology, face recognition, and education.

  3. Deep learning based hand gesture recognition in complex scenes

    NASA Astrophysics Data System (ADS)

    Ni, Zihan; Sang, Nong; Tan, Cheng

    2018-03-01

    Recently, region-based convolutional neural networks(R-CNNs) have achieved significant success in the field of object detection, but their accuracy is not too high for small objects and similar objects, such as the gestures. To solve this problem, we present an online hard example testing(OHET) technology to evaluate the confidence of the R-CNNs' outputs, and regard those outputs with low confidence as hard examples. In this paper, we proposed a cascaded networks to recognize the gestures. Firstly, we use the region-based fully convolutional neural network(R-FCN), which is capable of the detection for small object, to detect the gestures, and then use the OHET to select the hard examples. To enhance the accuracy of the gesture recognition, we re-classify the hard examples through VGG-19 classification network to obtain the final output of the gesture recognition system. Through the contrast experiments with other methods, we can see that the cascaded networks combined with the OHET reached to the state-of-the-art results of 99.3% mAP on small and similar gestures in complex scenes.

  4. Arrhythmia Classification Based on Multi-Domain Feature Extraction for an ECG Recognition System.

    PubMed

    Li, Hongqiang; Yuan, Danyang; Wang, Youxi; Cui, Dianyin; Cao, Lu

    2016-10-20

    Automatic recognition of arrhythmias is particularly important in the diagnosis of heart diseases. This study presents an electrocardiogram (ECG) recognition system based on multi-domain feature extraction to classify ECG beats. An improved wavelet threshold method for ECG signal pre-processing is applied to remove noise interference. A novel multi-domain feature extraction method is proposed; this method employs kernel-independent component analysis in nonlinear feature extraction and uses discrete wavelet transform to extract frequency domain features. The proposed system utilises a support vector machine classifier optimized with a genetic algorithm to recognize different types of heartbeats. An ECG acquisition experimental platform, in which ECG beats are collected as ECG data for classification, is constructed to demonstrate the effectiveness of the system in ECG beat classification. The presented system, when applied to the MIT-BIH arrhythmia database, achieves a high classification accuracy of 98.8%. Experimental results based on the ECG acquisition experimental platform show that the system obtains a satisfactory classification accuracy of 97.3% and is able to classify ECG beats efficiently for the automatic identification of cardiac arrhythmias.

  5. Arrhythmia Classification Based on Multi-Domain Feature Extraction for an ECG Recognition System

    PubMed Central

    Li, Hongqiang; Yuan, Danyang; Wang, Youxi; Cui, Dianyin; Cao, Lu

    2016-01-01

    Automatic recognition of arrhythmias is particularly important in the diagnosis of heart diseases. This study presents an electrocardiogram (ECG) recognition system based on multi-domain feature extraction to classify ECG beats. An improved wavelet threshold method for ECG signal pre-processing is applied to remove noise interference. A novel multi-domain feature extraction method is proposed; this method employs kernel-independent component analysis in nonlinear feature extraction and uses discrete wavelet transform to extract frequency domain features. The proposed system utilises a support vector machine classifier optimized with a genetic algorithm to recognize different types of heartbeats. An ECG acquisition experimental platform, in which ECG beats are collected as ECG data for classification, is constructed to demonstrate the effectiveness of the system in ECG beat classification. The presented system, when applied to the MIT-BIH arrhythmia database, achieves a high classification accuracy of 98.8%. Experimental results based on the ECG acquisition experimental platform show that the system obtains a satisfactory classification accuracy of 97.3% and is able to classify ECG beats efficiently for the automatic identification of cardiac arrhythmias. PMID:27775596

  6. Hybrid Speaker Recognition Using Universal Acoustic Model

    NASA Astrophysics Data System (ADS)

    Nishimura, Jun; Kuroda, Tadahiro

    We propose a novel speaker recognition approach using a speaker-independent universal acoustic model (UAM) for sensornet applications. In sensornet applications such as “Business Microscope”, interactions among knowledge workers in an organization can be visualized by sensing face-to-face communication using wearable sensor nodes. In conventional studies, speakers are detected by comparing energy of input speech signals among the nodes. However, there are often synchronization errors among the nodes which degrade the speaker recognition performance. By focusing on property of the speaker's acoustic channel, UAM can provide robustness against the synchronization error. The overall speaker recognition accuracy is improved by combining UAM with the energy-based approach. For 0.1s speech inputs and 4 subjects, speaker recognition accuracy of 94% is achieved at the synchronization error less than 100ms.

  7. Scene recognition following locomotion around a scene.

    PubMed

    Motes, Michael A; Finlay, Cory A; Kozhevnikov, Maria

    2006-01-01

    Effects of locomotion on scene-recognition reaction time (RT) and accuracy were studied. In experiment 1, observers memorized an 11-object scene and made scene-recognition judgments on subsequently presented scenes from the encoded view or different views (ie scenes were rotated or observers moved around the scene, both from 40 degrees to 360 degrees). In experiment 2, observers viewed different 5-object scenes on each trial and made scene-recognition judgments from the encoded view or after moving around the scene, from 36 degrees to 180 degrees. Across experiments, scene-recognition RT increased (in experiment 2 accuracy decreased) with angular distance between encoded and judged views, regardless of how the viewpoint changes occurred. The findings raise questions about conditions in which locomotion produces spatially updated representations of scenes.

  8. Low-contrast underwater living fish recognition using PCANet

    NASA Astrophysics Data System (ADS)

    Sun, Xin; Yang, Jianping; Wang, Changgang; Dong, Junyu; Wang, Xinhua

    2018-04-01

    Quantitative and statistical analysis of ocean creatures is critical to ecological and environmental studies. And living fish recognition is one of the most essential requirements for fishery industry. However, light attenuation and scattering phenomenon are present in the underwater environment, which makes underwater images low-contrast and blurry. This paper tries to design a robust framework for accurate fish recognition. The framework introduces a two stage PCA Network to extract abstract features from fish images. On a real-world fish recognition dataset, we use a linear SVM classifier and set penalty coefficients to conquer data unbalanced issue. Feature visualization results show that our method can avoid the feature distortion in boundary regions of underwater image. Experiments results show that the PCA Network can extract discriminate features and achieve promising recognition accuracy. The framework improves the recognition accuracy of underwater living fishes and can be easily applied to marine fishery industry.

  9. Autonomous facial recognition system inspired by human visual system based logarithmical image visualization technique

    NASA Astrophysics Data System (ADS)

    Wan, Qianwen; Panetta, Karen; Agaian, Sos

    2017-05-01

    Autonomous facial recognition system is widely used in real-life applications, such as homeland border security, law enforcement identification and authentication, and video-based surveillance analysis. Issues like low image quality, non-uniform illumination as well as variations in poses and facial expressions can impair the performance of recognition systems. To address the non-uniform illumination challenge, we present a novel robust autonomous facial recognition system inspired by the human visual system based, so called, logarithmical image visualization technique. In this paper, the proposed method, for the first time, utilizes the logarithmical image visualization technique coupled with the local binary pattern to perform discriminative feature extraction for facial recognition system. The Yale database, the Yale-B database and the ATT database are used for computer simulation accuracy and efficiency testing. The extensive computer simulation demonstrates the method's efficiency, accuracy, and robustness of illumination invariance for facial recognition.

  10. A Lightweight Hierarchical Activity Recognition Framework Using Smartphone Sensors

    PubMed Central

    Han, Manhyung; Bang, Jae Hun; Nugent, Chris; McClean, Sally; Lee, Sungyoung

    2014-01-01

    Activity recognition for the purposes of recognizing a user's intentions using multimodal sensors is becoming a widely researched topic largely based on the prevalence of the smartphone. Previous studies have reported the difficulty in recognizing life-logs by only using a smartphone due to the challenges with activity modeling and real-time recognition. In addition, recognizing life-logs is difficult due to the absence of an established framework which enables the use of different sources of sensor data. In this paper, we propose a smartphone-based Hierarchical Activity Recognition Framework which extends the Naïve Bayes approach for the processing of activity modeling and real-time activity recognition. The proposed algorithm demonstrates higher accuracy than the Naïve Bayes approach and also enables the recognition of a user's activities within a mobile environment. The proposed algorithm has the ability to classify fifteen activities with an average classification accuracy of 92.96%. PMID:25184486

  11. A Comprehensive Analysis on Wearable Acceleration Sensors in Human Activity Recognition.

    PubMed

    Janidarmian, Majid; Roshan Fekr, Atena; Radecka, Katarzyna; Zilic, Zeljko

    2017-03-07

    Sensor-based motion recognition integrates the emerging area of wearable sensors with novel machine learning techniques to make sense of low-level sensor data and provide rich contextual information in a real-life application. Although Human Activity Recognition (HAR) problem has been drawing the attention of researchers, it is still a subject of much debate due to the diverse nature of human activities and their tracking methods. Finding the best predictive model in this problem while considering different sources of heterogeneities can be very difficult to analyze theoretically, which stresses the need of an experimental study. Therefore, in this paper, we first create the most complete dataset, focusing on accelerometer sensors, with various sources of heterogeneities. We then conduct an extensive analysis on feature representations and classification techniques (the most comprehensive comparison yet with 293 classifiers) for activity recognition. Principal component analysis is applied to reduce the feature vector dimension while keeping essential information. The average classification accuracy of eight sensor positions is reported to be 96.44% ± 1.62% with 10-fold evaluation, whereas accuracy of 79.92% ± 9.68% is reached in the subject-independent evaluation. This study presents significant evidence that we can build predictive models for HAR problem under more realistic conditions, and still achieve highly accurate results.

  12. Towards Smart Homes Using Low Level Sensory Data

    PubMed Central

    Khattak, Asad Masood; Truc, Phan Tran Ho; Hung, Le Xuan; Vinh, La The; Dang, Viet-Hung; Guan, Donghai; Pervez, Zeeshan; Han, Manhyung; Lee, Sungyoung; Lee, Young-Koo

    2011-01-01

    Ubiquitous Life Care (u-Life care) is receiving attention because it provides high quality and low cost care services. To provide spontaneous and robust healthcare services, knowledge of a patient’s real-time daily life activities is required. Context information with real-time daily life activities can help to provide better services and to improve healthcare delivery. The performance and accuracy of existing life care systems is not reliable, even with a limited number of services. This paper presents a Human Activity Recognition Engine (HARE) that monitors human health as well as activities using heterogeneous sensor technology and processes these activities intelligently on a Cloud platform for providing improved care at low cost. We focus on activity recognition using video-based, wearable sensor-based, and location-based activity recognition engines and then use intelligent processing to analyze the context of the activities performed. The experimental results of all the components showed good accuracy against existing techniques. The system is deployed on Cloud for Alzheimer’s disease patients (as a case study) with four activity recognition engines to identify low level activity from the raw data captured by sensors. These are then manipulated using ontology to infer higher level activities and make decisions about a patient’s activity using patient profile information and customized rules. PMID:22247682

  13. These College Teams Go Sky-High Competing for a Championship.

    ERIC Educational Resources Information Center

    Monaghan, Peter

    1986-01-01

    The National Collegiate Flying Association's annual national competition in flight skills and safety involves competition among flight-trained college students and teams in precision landing with and without engines, cross-country navigation, flight-computer accuracy, message drops, preflight inspection proficiency, and aircraft recognition. (MSE)

  14. Ambulance Clinical Triage for Acute Stroke Treatment: Paramedic Triage Algorithm for Large Vessel Occlusion.

    PubMed

    Zhao, Henry; Pesavento, Lauren; Coote, Skye; Rodrigues, Edrich; Salvaris, Patrick; Smith, Karen; Bernard, Stephen; Stephenson, Michael; Churilov, Leonid; Yassi, Nawaf; Davis, Stephen M; Campbell, Bruce C V

    2018-04-01

    Clinical triage scales for prehospital recognition of large vessel occlusion (LVO) are limited by low specificity when applied by paramedics. We created the 3-step ambulance clinical triage for acute stroke treatment (ACT-FAST) as the first algorithmic LVO identification tool, designed to improve specificity by recognizing only severe clinical syndromes and optimizing paramedic usability and reliability. The ACT-FAST algorithm consists of (1) unilateral arm drift to stretcher <10 seconds, (2) severe language deficit (if right arm is weak) or gaze deviation/hemineglect assessed by simple shoulder tap test (if left arm is weak), and (3) eligibility and stroke mimic screen. ACT-FAST examination steps were retrospectively validated, and then prospectively validated by paramedics transporting culturally and linguistically diverse patients with suspected stroke in the emergency department, for the identification of internal carotid or proximal middle cerebral artery occlusion. The diagnostic performance of the full ACT-FAST algorithm was then validated for patients accepted for thrombectomy. In retrospective (n=565) and prospective paramedic (n=104) validation, ACT-FAST displayed higher overall accuracy and specificity, when compared with existing LVO triage scales. Agreement of ACT-FAST between paramedics and doctors was excellent (κ=0.91; 95% confidence interval, 0.79-1.0). The full ACT-FAST algorithm (n=60) assessed by paramedics showed high overall accuracy (91.7%), sensitivity (85.7%), specificity (93.5%), and positive predictive value (80%) for recognition of endovascular-eligible LVO. The 3-step ACT-FAST algorithm shows higher specificity and reliability than existing scales for clinical LVO recognition, despite requiring just 2 examination steps. The inclusion of an eligibility step allowed recognition of endovascular-eligible patients with high accuracy. Using a sequential algorithmic approach eliminates scoring confusion and reduces assessment time. Future studies will test whether field application of ACT-FAST by paramedics to bypass suspected patients with LVO directly to endovascular-capable centers can reduce delays to endovascular thrombectomy. © 2018 American Heart Association, Inc.

  15. Oxytocin Reduces Face Processing Time but Leaves Recognition Accuracy and Eye-Gaze Unaffected.

    PubMed

    Hubble, Kelly; Daughters, Katie; Manstead, Antony S R; Rees, Aled; Thapar, Anita; van Goozen, Stephanie H M

    2017-01-01

    Previous studies have found that oxytocin (OXT) can improve the recognition of emotional facial expressions; it has been proposed that this effect is mediated by an increase in attention to the eye-region of faces. Nevertheless, evidence in support of this claim is inconsistent, and few studies have directly tested the effect of oxytocin on emotion recognition via altered eye-gaze Methods: In a double-blind, within-subjects, randomized control experiment, 40 healthy male participants received 24 IU intranasal OXT and placebo in two identical experimental sessions separated by a 2-week interval. Visual attention to the eye-region was assessed on both occasions while participants completed a static facial emotion recognition task using medium intensity facial expressions. Although OXT had no effect on emotion recognition accuracy, recognition performance was improved because face processing was faster across emotions under the influence of OXT. This effect was marginally significant (p<.06). Consistent with a previous study using dynamic stimuli, OXT had no effect on eye-gaze patterns when viewing static emotional faces and this was not related to recognition accuracy or face processing time. These findings suggest that OXT-induced enhanced facial emotion recognition is not necessarily mediated by an increase in attention to the eye-region of faces, as previously assumed. We discuss several methodological issues which may explain discrepant findings and suggest the effect of OXT on visual attention may differ depending on task requirements. (JINS, 2017, 23, 23-33).

  16. Literature review of voice recognition and generation technology for Army helicopter applications

    NASA Astrophysics Data System (ADS)

    Christ, K. A.

    1984-08-01

    This report is a literature review on the topics of voice recognition and generation. Areas covered are: manual versus vocal data input, vocabulary, stress and workload, noise, protective masks, feedback, and voice warning systems. Results of the studies presented in this report indicate that voice data entry has less of an impact on a pilot's flight performance, during low-level flying and other difficult missions, than manual data entry. However, the stress resulting from such missions may cause the pilot's voice to change, reducing the recognition accuracy of the system. The noise present in helicopter cockpits also causes the recognition accuracy to decrease. Noise-cancelling devices are being developed and improved upon to increase the recognition performance in noisy environments. Future research in the fields of voice recognition and generation should be conducted in the areas of stress and workload, vocabulary, and the types of voice generation best suited for the helicopter cockpit. Also, specific tasks should be studied to determine whether voice recognition and generation can be effectively applied.

  17. Kannada character recognition system using neural network

    NASA Astrophysics Data System (ADS)

    Kumar, Suresh D. S.; Kamalapuram, Srinivasa K.; Kumar, Ajay B. R.

    2013-03-01

    Handwriting recognition has been one of the active and challenging research areas in the field of pattern recognition. It has numerous applications which include, reading aid for blind, bank cheques and conversion of any hand written document into structural text form. As there is no sufficient number of works on Indian language character recognition especially Kannada script among 15 major scripts in India. In this paper an attempt is made to recognize handwritten Kannada characters using Feed Forward neural networks. A handwritten Kannada character is resized into 20x30 Pixel. The resized character is used for training the neural network. Once the training process is completed the same character is given as input to the neural network with different set of neurons in hidden layer and their recognition accuracy rate for different Kannada characters has been calculated and compared. The results show that the proposed system yields good recognition accuracy rates comparable to that of other handwritten character recognition systems.

  18. A multi-view face recognition system based on cascade face detector and improved Dlib

    NASA Astrophysics Data System (ADS)

    Zhou, Hongjun; Chen, Pei; Shen, Wei

    2018-03-01

    In this research, we present a framework for multi-view face detect and recognition system based on cascade face detector and improved Dlib. This method is aimed to solve the problems of low efficiency and low accuracy in multi-view face recognition, to build a multi-view face recognition system, and to discover a suitable monitoring scheme. For face detection, the cascade face detector is used to extracted the Haar-like feature from the training samples, and Haar-like feature is used to train a cascade classifier by combining Adaboost algorithm. Next, for face recognition, we proposed an improved distance model based on Dlib to improve the accuracy of multiview face recognition. Furthermore, we applied this proposed method into recognizing face images taken from different viewing directions, including horizontal view, overlooks view, and looking-up view, and researched a suitable monitoring scheme. This method works well for multi-view face recognition, and it is also simulated and tested, showing satisfactory experimental results.

  19. Speech variability effects on recognition accuracy associated with concurrent task performance by pilots

    NASA Technical Reports Server (NTRS)

    Simpson, C. A.

    1985-01-01

    In the present study of the responses of pairs of pilots to aircraft warning classification tasks using an isolated word, speaker-dependent speech recognition system, the induced stress was manipulated by means of different scoring procedures for the classification task and by the inclusion of a competitive manual control task. Both speech patterns and recognition accuracy were analyzed, and recognition errors were recorded by type for an isolated word speaker-dependent system and by an offline technique for a connected word speaker-dependent system. While errors increased with task loading for the isolated word system, there was no such effect for task loading in the case of the connected word system.

  20. Vehicle Color Recognition with Vehicle-Color Saliency Detection and Dual-Orientational Dimensionality Reduction of CNN Deep Features

    NASA Astrophysics Data System (ADS)

    Zhang, Qiang; Li, Jiafeng; Zhuo, Li; Zhang, Hui; Li, Xiaoguang

    2017-12-01

    Color is one of the most stable attributes of vehicles and often used as a valuable cue in some important applications. Various complex environmental factors, such as illumination, weather, noise and etc., result in the visual characteristics of the vehicle color being obvious diversity. Vehicle color recognition in complex environments has been a challenging task. The state-of-the-arts methods roughly take the whole image for color recognition, but many parts of the images such as car windows; wheels and background contain no color information, which will have negative impact on the recognition accuracy. In this paper, a novel vehicle color recognition method using local vehicle-color saliency detection and dual-orientational dimensionality reduction of convolutional neural network (CNN) deep features has been proposed. The novelty of the proposed method includes two parts: (1) a local vehicle-color saliency detection method has been proposed to determine the vehicle color region of the vehicle image and exclude the influence of non-color regions on the recognition accuracy; (2) dual-orientational dimensionality reduction strategy has been designed to greatly reduce the dimensionality of deep features that are learnt from CNN, which will greatly mitigate the storage and computational burden of the subsequent processing, while improving the recognition accuracy. Furthermore, linear support vector machine is adopted as the classifier to train the dimensionality reduced features to obtain the recognition model. The experimental results on public dataset demonstrate that the proposed method can achieve superior recognition performance over the state-of-the-arts methods.

  1. SAM: speech-aware applications in medicine to support structured data entry.

    PubMed Central

    Wormek, A. K.; Ingenerf, J.; Orthner, H. F.

    1997-01-01

    In the last two years, improvement in speech recognition technology has directed the medical community's interest to porting and using such innovations in clinical systems. The acceptance of speech recognition systems in clinical domains increases with recognition speed, large medical vocabulary, high accuracy, continuous speech recognition, and speaker independence. Although some commercial speech engines approach these requirements, the greatest benefit can be achieved in adapting a speech recognizer to a specific medical application. The goals of our work are first, to develop a speech-aware core component which is able to establish connections to speech recognition engines of different vendors. This is realized in SAM. Second, with applications based on SAM we want to support the physician in his/her routine clinical care activities. Within the STAMP project (STAndardized Multimedia report generator in Pathology), we extend SAM by combining a structured data entry approach with speech recognition technology. Another speech-aware application in the field of Diabetes care is connected to a terminology server. The server delivers a controlled vocabulary which can be used for speech recognition. PMID:9357730

  2. Hierarchically Structured Non-Intrusive Sign Language Recognition. Chapter 2

    NASA Technical Reports Server (NTRS)

    Zieren, Jorg; Zieren, Jorg; Kraiss, Karl-Friedrich

    2007-01-01

    This work presents a hierarchically structured approach at the nonintrusive recognition of sign language from a monocular frontal view. Robustness is achieved through sophisticated localization and tracking methods, including a combined EM/CAMSHIFT overlap resolution procedure and the parallel pursuit of multiple hypotheses about hands position and movement. This allows handling of ambiguities and automatically corrects tracking errors. A biomechanical skeleton model and dynamic motion prediction using Kalman filters represents high level knowledge. Classification is performed by Hidden Markov Models. 152 signs from German sign language were recognized with an accuracy of 97.6%.

  3. Monitoring of facial stress during space flight: Optical computer recognition combining discriminative and generative methods

    NASA Astrophysics Data System (ADS)

    Dinges, David F.; Venkataraman, Sundara; McGlinchey, Eleanor L.; Metaxas, Dimitris N.

    2007-02-01

    Astronauts are required to perform mission-critical tasks at a high level of functional capability throughout spaceflight. Stressors can compromise their ability to do so, making early objective detection of neurobehavioral problems in spaceflight a priority. Computer optical approaches offer a completely unobtrusive way to detect distress during critical operations in space flight. A methodology was developed and a study completed to determine whether optical computer recognition algorithms could be used to discriminate facial expressions during stress induced by performance demands. Stress recognition from a facial image sequence is a subject that has not received much attention although it is an important problem for many applications beyond space flight (security, human-computer interaction, etc.). This paper proposes a comprehensive method to detect stress from facial image sequences by using a model-based tracker. The image sequences were captured as subjects underwent a battery of psychological tests under high- and low-stress conditions. A cue integration-based tracking system accurately captured the rigid and non-rigid parameters of different parts of the face (eyebrows, lips). The labeled sequences were used to train the recognition system, which consisted of generative (hidden Markov model) and discriminative (support vector machine) parts that yield results superior to using either approach individually. The current optical algorithm methods performed at a 68% accuracy rate in an experimental study of 60 healthy adults undergoing periods of high-stress versus low-stress performance demands. Accuracy and practical feasibility of the technique is being improved further with automatic multi-resolution selection for the discretization of the mask, and automated face detection and mask initialization algorithms.

  4. [Research of electroencephalography representational emotion recognition based on deep belief networks].

    PubMed

    Yang, Hao; Zhang, Junran; Jiang, Xiaomei; Liu, Fei

    2018-04-01

    In recent years, with the rapid development of machine learning techniques,the deep learning algorithm has been widely used in one-dimensional physiological signal processing. In this paper we used electroencephalography (EEG) signals based on deep belief network (DBN) model in open source frameworks of deep learning to identify emotional state (positive, negative and neutrals), then the results of DBN were compared with support vector machine (SVM). The EEG signals were collected from the subjects who were under different emotional stimuli, and DBN and SVM were adopted to identify the EEG signals with changes of different characteristics and different frequency bands. We found that the average accuracy of differential entropy (DE) feature by DBN is 89.12%±6.54%, which has a better performance than previous research based on the same data set. At the same time, the classification effects of DBN are better than the results from traditional SVM (the average classification accuracy of 84.2%±9.24%) and its accuracy and stability have a better trend. In three experiments with different time points, single subject can achieve the consistent results of classification by using DBN (the mean standard deviation is1.44%), and the experimental results show that the system has steady performance and good repeatability. According to our research, the characteristic of DE has a better classification result than other characteristics. Furthermore, the Beta band and the Gamma band in the emotional recognition model have higher classification accuracy. To sum up, the performances of classifiers have a promotion by using the deep learning algorithm, which has a reference for establishing a more accurate system of emotional recognition. Meanwhile, we can trace through the results of recognition to find out the brain regions and frequency band that are related to the emotions, which can help us to understand the emotional mechanism better. This study has a high academic value and practical significance, so further investigation still needs to be done.

  5. Confidence in Forced-Choice Recognition: What Underlies the Ratings?

    ERIC Educational Resources Information Center

    Zawadzka, Katarzyna; Higham, Philip A.; Hanczakowski, Maciej

    2017-01-01

    Two-alternative forced-choice recognition tests are commonly used to assess recognition accuracy that is uncontaminated by changes in bias. In such tests, participants are asked to endorse the studied item out of 2 presented alternatives. Participants may be further asked to provide confidence judgments for their recognition decisions. It is often…

  6. The Suitability of Cloud-Based Speech Recognition Engines for Language Learning

    ERIC Educational Resources Information Center

    Daniels, Paul; Iwago, Koji

    2017-01-01

    As online automatic speech recognition (ASR) engines become more accurate and more widely implemented with call software, it becomes important to evaluate the effectiveness and the accuracy of these recognition engines using authentic speech samples. This study investigates two of the most prominent cloud-based speech recognition engines--Apple's…

  7. Gesture recognition by instantaneous surface EMG images

    PubMed Central

    Geng, Weidong; Du, Yu; Jin, Wenguang; Wei, Wentao; Hu, Yu; Li, Jiajun

    2016-01-01

    Gesture recognition in non-intrusive muscle-computer interfaces is usually based on windowed descriptive and discriminatory surface electromyography (sEMG) features because the recorded amplitude of a myoelectric signal may rapidly fluctuate between voltages above and below zero. Here, we present that the patterns inside the instantaneous values of high-density sEMG enables gesture recognition to be performed merely with sEMG signals at a specific instant. We introduce the concept of an sEMG image spatially composed from high-density sEMG and verify our findings from a computational perspective with experiments on gesture recognition based on sEMG images with a classification scheme of a deep convolutional network. Without any windowed features, the resultant recognition accuracy of an 8-gesture within-subject test reached 89.3% on a single frame of sEMG image and reached 99.0% using simple majority voting over 40 frames with a 1,000 Hz sampling rate. Experiments on the recognition of 52 gestures of NinaPro database and 27 gestures of CSL-HDEMG database also validated that our approach outperforms state-of-the-arts methods. Our findings are a starting point for the development of more fluid and natural muscle-computer interfaces with very little observational latency. For example, active prostheses and exoskeletons based on high-density electrodes could be controlled with instantaneous responses. PMID:27845347

  8. An Effective 3D Shape Descriptor for Object Recognition with RGB-D Sensors

    PubMed Central

    Liu, Zhong; Zhao, Changchen; Wu, Xingming; Chen, Weihai

    2017-01-01

    RGB-D sensors have been widely used in various areas of computer vision and graphics. A good descriptor will effectively improve the performance of operation. This article further analyzes the recognition performance of shape features extracted from multi-modality source data using RGB-D sensors. A hybrid shape descriptor is proposed as a representation of objects for recognition. We first extracted five 2D shape features from contour-based images and five 3D shape features over point cloud data to capture the global and local shape characteristics of an object. The recognition performance was tested for category recognition and instance recognition. Experimental results show that the proposed shape descriptor outperforms several common global-to-global shape descriptors and is comparable to some partial-to-global shape descriptors that achieved the best accuracies in category and instance recognition. Contribution of partial features and computational complexity were also analyzed. The results indicate that the proposed shape features are strong cues for object recognition and can be combined with other features to boost accuracy. PMID:28245553

  9. Approximated mutual information training for speech recognition using myoelectric signals.

    PubMed

    Guo, Hua J; Chan, A D C

    2006-01-01

    A new training algorithm called the approximated maximum mutual information (AMMI) is proposed to improve the accuracy of myoelectric speech recognition using hidden Markov models (HMMs). Previous studies have demonstrated that automatic speech recognition can be performed using myoelectric signals from articulatory muscles of the face. Classification of facial myoelectric signals can be performed using HMMs that are trained using the maximum likelihood (ML) algorithm; however, this algorithm maximizes the likelihood of the observations in the training sequence, which is not directly associated with optimal classification accuracy. The AMMI training algorithm attempts to maximize the mutual information, thereby training the HMMs to optimize their parameters for discrimination. Our results show that AMMI training consistently reduces the error rates compared to these by the ML training, increasing the accuracy by approximately 3% on average.

  10. Hippocampal activity during recognition memory co-varies with the accuracy and confidence of source memory judgments.

    PubMed

    Yu, Sarah S; Johnson, Jeffrey D; Rugg, Michael D

    2012-06-01

    It has been proposed that the hippocampus selectively supports retrieval of contextual associations, but an alternative view holds that the hippocampus supports strong memories regardless of whether they contain contextual information. We employed a memory test that combined the 'Remember/Know' and source memory procedures, which allowed test items to be segregated both by memory strength (recognition accuracy) and, separately, by the quality of the contextual information that could be retrieved (indexed by the accuracy/confidence of a source memory judgment). As measured by fMRI, retrieval-related hippocampal activity tracked the quality of retrieved contextual information and not memory strength. These findings are consistent with the proposal that the hippocampus supports contextual recollection rather than recognition memory more generally. Copyright © 2011 Wiley Periodicals, Inc.

  11. Judgments of Learning are Influenced by Multiple Cues In Addition to Memory for Past Test Accuracy.

    PubMed

    Hertzog, Christopher; Hines, Jarrod C; Touron, Dayna R

    When people try to learn new information (e.g., in a school setting), they often have multiple opportunities to study the material. One of the most important things to know is whether people adjust their study behavior on the basis of past success so as to increase their overall level of learning (for example, by emphasizing information they have not yet learned). Monitoring their learning is a key part of being able to make those kinds of adjustments. We used a recognition memory task to replicate prior research showing that memory for past test outcomes influences later monitoring, as measured by judgments of learning (JOLs; confidence that the material has been learned), but also to show that subjective confidence in whether the test answer and the amount of time taken to restudy the items also have independent effects on JOLs. We also show that there are individual differences in the effects of test accuracy and test confidence on JOLs, showing that some but not all people use past test experiences to guide monitoring of their new learning. Monitoring learning is therefore a complex process of considering multiple cues, and some people attend to those cues more effectively than others. Improving the quality of monitoring performance and learning could lead to better study behaviors and better learning. An individual's memory of past test performance (MPT) is often cited as the primary cue for judgments of learning (JOLs) following test experience during multi-trial learning tasks (Finn & Metcalfe, 2007; 2008). We used an associative recognition task to evaluate MPT-related phenomena, because performance monitoring, as measured by recognition test confidence judgments (CJs), is fallible and varies in accuracy across persons. The current study used multilevel regression models to show the simultaneous and independent influences of multiple cues on Trial 2 JOLs, in addition to performance accuracy (the typical measure of MPT in cued-recall experiments). These cues include recognition CJs, perceived recognition fluency, and Trial 2 study time allocation (an index of reprocessing fluency). Our results expand the scope of MPT-related phenomena in recognition memory testing to show independent effects of recognition test accuracy and CJs on second-trial JOLs, while also demonstrating individual differences in the effects of these cues on JOLs (as manifested in significant random effects for those regression effects in the model). The effect of study time on second-trial JOLs controlling on other variables, including Trial 1 recognition memory accuracy, also demonstrates that second-trial encoding behavior influence JOLs in addition to MPT.

  12. Classification of facial-emotion expression in the application of psychotherapy using Viola-Jones and Edge-Histogram of Oriented Gradient.

    PubMed

    Candra, Henry; Yuwono, Mitchell; Rifai Chai; Nguyen, Hung T; Su, Steven

    2016-08-01

    Psychotherapy requires appropriate recognition of patient's facial-emotion expression to provide proper treatment in psychotherapy session. To address the needs this paper proposed a facial emotion recognition system using Combination of Viola-Jones detector together with a feature descriptor we term Edge-Histogram of Oriented Gradients (E-HOG). The performance of the proposed method is compared with various feature sources including the face, the eyes, the mouth, as well as both the eyes and the mouth. Seven classes of basic emotions have been successfully identified with 96.4% accuracy using Multi-class Support Vector Machine (SVM). The proposed descriptor E-HOG is much leaner to compute compared to traditional HOG as shown by a significant improvement in processing time as high as 1833.33% (p-value = 2.43E-17) with a slight reduction in accuracy of only 1.17% (p-value = 0.0016).

  13. Automated information-analytical system for thunderstorm monitoring and early warning alarms using modern physical sensors and information technologies with elements of artificial intelligence

    NASA Astrophysics Data System (ADS)

    Boldyreff, Anton S.; Bespalov, Dmitry A.; Adzhiev, Anatoly Kh.

    2017-05-01

    Methods of artificial intelligence are a good solution for weather phenomena forecasting. They allow to process a large amount of diverse data. Recirculation Neural Networks is implemented in the paper for the system of thunderstorm events prediction. Large amounts of experimental data from lightning sensors and electric field mills networks are received and analyzed. The average recognition accuracy of sensor signals is calculated. It is shown that Recirculation Neural Networks is a promising solution in the forecasting of thunderstorms and weather phenomena, characterized by the high efficiency of the recognition elements of the sensor signals, allows to compress images and highlight their characteristic features for subsequent recognition.

  14. Caffeine cravings impair memory and metacognition.

    PubMed

    Palmer, Matthew A; Sauer, James D; Ling, Angus; Riza, Joshua

    2017-10-01

    Cravings for food and other substances can impair cognition. We extended previous research by testing the effects of caffeine cravings on cued-recall and recognition memory tasks, and on the accuracy of judgements of learning (JOLs; predicted future recall) and feeling-of-knowing (FOK; predicted future recognition for items that cannot be recalled). Participants (N = 55) studied word pairs (POND-BOOK) and completed a cued-recall test and a recognition test. Participants made JOLs prior to the cued-recall test and FOK judgements prior to the recognition test. Participants were randomly allocated to a craving or control condition; we manipulated caffeine cravings via a combination of abstinence, cue exposure, and imagery. Cravings impaired memory performance on the cued-recall and recognition tasks. Cravings also impaired resolution (the ability to distinguish items that would be remembered from those that would not) for FOK judgements but not JOLs, and reduced calibration (correspondence between predicted and actual accuracy) for JOLs but not FOK judgements. Additional analysis of the cued-recall data suggested that cravings also reduced participants' ability to monitor the likely accuracy of answers during the cued-recall test. These findings add to prior research demonstrating that memory strength manipulations have systematically different effects on different types of metacognitive judgements.

  15. Motorcycle Start-stop System based on Intelligent Biometric Voice Recognition

    NASA Astrophysics Data System (ADS)

    Winda, A.; E Byan, W. R.; Sofyan; Armansyah; Zariantin, D. L.; Josep, B. G.

    2017-03-01

    Current mechanical key in the motorcycle is prone to bulgary, being stolen or misplaced. Intelligent biometric voice recognition as means to replace this mechanism is proposed as an alternative. The proposed system will decide whether the voice is belong to the user or not and the word utter by the user is ‘On’ or ‘Off’. The decision voice will be sent to Arduino in order to start or stop the engine. The recorded voice is processed in order to get some features which later be used as input to the proposed system. The Mel-Frequency Ceptral Coefficient (MFCC) is adopted as a feature extraction technique. The extracted feature is the used as input to the SVM-based identifier. Experimental results confirm the effectiveness of the proposed intelligent voice recognition and word recognition system. It show that the proposed method produces a good training and testing accuracy, 99.31% and 99.43%, respectively. Moreover, the proposed system shows the performance of false rejection rate (FRR) and false acceptance rate (FAR) accuracy of 0.18% and 17.58%, respectively. In the intelligent word recognition shows that the training and testing accuracy are 100% and 96.3%, respectively.

  16. Logo recognition using alpha-rooted phase correlation in the radon transform domain

    NASA Astrophysics Data System (ADS)

    DelMarco, Stephen

    2009-08-01

    Alpha-rooted phase correlation (ARPC) is a recently-developed variant of classical phase correlation that includes a Fourier domain image enhancement operation. ARPC combines classical phase correlation with alpha-rooting to provide tunable image enhancement. The alpha-rooting parameters may be adjusted to provide a tradeoff between height and width of the ARPC main lobe. A high narrow main lobe peak provides high matching accuracy for aligned images, but reduced matching performance for misaligned logos. A lower, wider peak trades matching accuracy on aligned logos, for improved matching performance on misaligned imagery. Previously, we developed ARPC and used it in the spatial domain for logo recognition as part of an overall automated document analysis problem. However, spatial domain ARPC performance can be sensitive to logo misalignments, including rotational misalignment. In this paper we use ARPC as a match metric in the radon transform domain for logo recognition. In the radon transform domain, rotational misalignments correspond to translations in the radon transform angle parameter. These translations are captured by ARPC, thereby producing rotation-invariant logo matching. In the paper, we first present an overview of ARPC, and then describe the logo matching algorithm. We present numerical performance results demonstrating matching tolerance to rotational misalignments. We demonstrate robustness of the radon transform domain rotation estimation to noise. We present logo verification and recognition performance results using the proposed approach on a public domain logo database. We compare performance results to performance obtained using spatial domain ARPC, and state-of-the-art SURF features, for logos in salt-and-pepper noise.

  17. Texture- and deformability-based surface recognition by tactile image analysis.

    PubMed

    Khasnobish, Anwesha; Pal, Monalisa; Tibarewala, D N; Konar, Amit; Pal, Kunal

    2016-08-01

    Deformability and texture are two unique object characteristics which are essential for appropriate surface recognition by tactile exploration. Tactile sensation is required to be incorporated in artificial arms for rehabilitative and other human-computer interface applications to achieve efficient and human-like manoeuvring. To accomplish the same, surface recognition by tactile data analysis is one of the prerequisites. The aim of this work is to develop effective technique for identification of various surfaces based on deformability and texture by analysing tactile images which are obtained during dynamic exploration of the item by artificial arms whose gripper is fitted with tactile sensors. Tactile data have been acquired, while human beings as well as a robot hand fitted with tactile sensors explored the objects. The tactile images are pre-processed, and relevant features are extracted from the tactile images. These features are provided as input to the variants of support vector machine (SVM), linear discriminant analysis and k-nearest neighbour (kNN) for classification. Based on deformability, six household surfaces are recognized from their corresponding tactile images. Moreover, based on texture five surfaces of daily use are classified. The method adopted in the former two cases has also been applied for deformability- and texture-based recognition of four biomembranes, i.e. membranes prepared from biomaterials which can be used for various applications such as drug delivery and implants. Linear SVM performed best for recognizing surface deformability with an accuracy of 83 % in 82.60 ms, whereas kNN classifier recognizes surfaces of daily use having different textures with an accuracy of 89 % in 54.25 ms and SVM with radial basis function kernel recognizes biomembranes with an accuracy of 78 % in 53.35 ms. The classifiers are observed to generalize well on the unseen test datasets with very high performance to achieve efficient material recognition based on its deformability and texture.

  18. Improving language models for radiology speech recognition.

    PubMed

    Paulett, John M; Langlotz, Curtis P

    2009-02-01

    Speech recognition systems have become increasingly popular as a means to produce radiology reports, for reasons both of efficiency and of cost. However, the suboptimal recognition accuracy of these systems can affect the productivity of the radiologists creating the text reports. We analyzed a database of over two million de-identified radiology reports to determine the strongest determinants of word frequency. Our results showed that body site and imaging modality had a similar influence on the frequency of words and of three-word phrases as did the identity of the speaker. These findings suggest that the accuracy of speech recognition systems could be significantly enhanced by further tailoring their language models to body site and imaging modality, which are readily available at the time of report creation.

  19. Confidence-accuracy calibration in absolute and relative face recognition judgments.

    PubMed

    Weber, Nathan; Brewer, Neil

    2004-09-01

    Confidence-accuracy (CA) calibration was examined for absolute and relative face recognition judgments as well as for recognition judgments from groups of stimuli presented simultaneously or sequentially (i.e., simultaneous or sequential mini-lineups). When the effect of difficulty was controlled, absolute and relative judgments produced negligibly different CA calibration, whereas no significant difference was observed for simultaneous and sequential mini-lineups. Further, the effect of difficulty on CA calibration was equivalent across judgment and mini-lineup types. It is interesting to note that positive (i.e., old) recognition judgments demonstrated strong CA calibration whereas negative (i.e., new) judgments evidenced little or no CA association. Implications for eyewitness identification are discussed. (c) 2004 APA, all rights reserved.

  20. Implementation study of wearable sensors for activity recognition systems.

    PubMed

    Rezaie, Hamed; Ghassemian, Mona

    2015-08-01

    This Letter investigates and reports on a number of activity recognition methods for a wearable sensor system. The authors apply three methods for data transmission, namely 'stream-based', 'feature-based' and 'threshold-based' scenarios to study the accuracy against energy efficiency of transmission and processing power that affects the mote's battery lifetime. They also report on the impact of variation of sampling frequency and data transmission rate on energy consumption of motes for each method. This study leads us to propose a cross-layer optimisation of an activity recognition system for provisioning acceptable levels of accuracy and energy efficiency.

  1. Facial Recognition of Happiness Is Impaired in Musicians with High Music Performance Anxiety.

    PubMed

    Sabino, Alini Daniéli Viana; Camargo, Cristielli M; Chagas, Marcos Hortes N; Osório, Flávia L

    2018-01-01

    Music performance anxiety (MPA) can be defined as a lasting and intense apprehension connected with musical performance in public. Studies suggest that MPA can be regarded as a subtype of social anxiety. Since individuals with social anxiety have deficits in the recognition of facial emotion, we hypothesized that musicians with high levels of MPA would share similar impairments. The aim of this study was to compare parameters of facial emotion recognition (FER) between musicians with high and low MPA. 150 amateur and professional musicians with different musical backgrounds were assessed in respect to their level of MPA and completed a dynamic FER task. The outcomes investigated were accuracy, response time, emotional intensity, and response bias. Musicians with high MPA were less accurate in the recognition of happiness ( p  = 0.04; d  = 0.34), had increased response bias toward fear ( p  = 0.03), and increased response time to facial emotions as a whole ( p  = 0.02; d  = 0.39). Musicians with high MPA displayed FER deficits that were independent of general anxiety levels and possibly of general cognitive capacity. These deficits may favor the maintenance and exacerbation of experiences of anxiety during public performance, since cues of approval, satisfaction, and encouragement are not adequately recognized.

  2. RRAM-based parallel computing architecture using k-nearest neighbor classification for pattern recognition

    NASA Astrophysics Data System (ADS)

    Jiang, Yuning; Kang, Jinfeng; Wang, Xinan

    2017-03-01

    Resistive switching memory (RRAM) is considered as one of the most promising devices for parallel computing solutions that may overcome the von Neumann bottleneck of today’s electronic systems. However, the existing RRAM-based parallel computing architectures suffer from practical problems such as device variations and extra computing circuits. In this work, we propose a novel parallel computing architecture for pattern recognition by implementing k-nearest neighbor classification on metal-oxide RRAM crossbar arrays. Metal-oxide RRAM with gradual RESET behaviors is chosen as both the storage and computing components. The proposed architecture is tested by the MNIST database. High speed (~100 ns per example) and high recognition accuracy (97.05%) are obtained. The influence of several non-ideal device properties is also discussed, and it turns out that the proposed architecture shows great tolerance to device variations. This work paves a new way to achieve RRAM-based parallel computing hardware systems with high performance.

  3. End-to-end system of license plate localization and recognition

    NASA Astrophysics Data System (ADS)

    Zhu, Siyu; Dianat, Sohail; Mestha, Lalit K.

    2015-03-01

    An end-to-end license plate recognition system is proposed. It is composed of preprocessing, detection, segmentation, and character recognition to find and recognize plates from camera-based still images. The system utilizes connected component (CC) properties to quickly extract the license plate region. A two-stage CC filtering is utilized to address both shape and spatial relationship information to produce high precision and to recall values for detection. Floating peak and valleys of projection profiles are used to cut the license plates into individual characters. A turning function-based method is proposed to quickly and accurately recognize each character. It is further accelerated using curvature histogram-based support vector machine. The INFTY dataset is used to train the recognition system, and MediaLab license plate dataset is used for testing. The proposed system achieved 89.45% F-measure for detection and 87.33% accuracy for overall recognition rate which is comparable to current state-of-the-art systems.

  4. Speech recognition for embedded automatic positioner for laparoscope

    NASA Astrophysics Data System (ADS)

    Chen, Xiaodong; Yin, Qingyun; Wang, Yi; Yu, Daoyin

    2014-07-01

    In this paper a novel speech recognition methodology based on Hidden Markov Model (HMM) is proposed for embedded Automatic Positioner for Laparoscope (APL), which includes a fixed point ARM processor as the core. The APL system is designed to assist the doctor in laparoscopic surgery, by implementing the specific doctor's vocal control to the laparoscope. Real-time respond to the voice commands asks for more efficient speech recognition algorithm for the APL. In order to reduce computation cost without significant loss in recognition accuracy, both arithmetic and algorithmic optimizations are applied in the method presented. First, depending on arithmetic optimizations most, a fixed point frontend for speech feature analysis is built according to the ARM processor's character. Then the fast likelihood computation algorithm is used to reduce computational complexity of the HMM-based recognition algorithm. The experimental results show that, the method shortens the recognition time within 0.5s, while the accuracy higher than 99%, demonstrating its ability to achieve real-time vocal control to the APL.

  5. Age differences in accuracy and choosing in eyewitness identification and face recognition.

    PubMed

    Searcy, J H; Bartlett, J C; Memon, A

    1999-05-01

    Studies of aging and face recognition show age-related increases in false recognitions of new faces. To explore implications of this false alarm effect, we had young and senior adults perform (1) three eye-witness identification tasks, using both target present and target absent lineups, and (2) and old/new recognition task in which a study list of faces was followed by a test including old and new faces, along with conjunctions of old faces. Compared with the young, seniors had lower accuracy and higher choosing rates on the lineups, and they also falsely recognized more new faces on the recognition test. However, after screening for perceptual processing deficits, there was no age difference in false recognition of conjunctions, or in discriminating old faces from conjunctions. We conclude that the false alarm effect generalizes to lineup identification, but does not extend to conjunction faces. The findings are consistent with age-related deficits in recollection of context and relative age invariance in perceptual integrative processes underlying the experience of familiarity.

  6. Toward faster and more accurate star sensors using recursive centroiding and star identification

    NASA Astrophysics Data System (ADS)

    Samaan, Malak Anees

    The objective of this research is to study different novel developed techniques for spacecraft attitude determination methods using star tracker sensors. This dissertation addresses various issues on developing improved star tracker software, presents new approaches for better performance of star trackers, and considers applications to realize high precision attitude estimates. Star-sensors are often included in a spacecraft attitude-system instrument suite, where high accuracy pointing capability is required. Novel methods for image processing, camera parameters ground calibration, autonomous star pattern recognition, and recursive star identification are researched and implemented to achieve high accuracy and a high frame rate star tracker that can be used for many space missions. This dissertation presents the methods and algorithms implemented for the one Field of View 'FOV'Star NavI sensor that was tested aboard the STS-107 mission in spring 2003 and the two fields of view StarNavII sensor for the EO-3 spacecraft scheduled for launch in 2007. The results of this research enable advances in spacecraft attitude determination based upon real time star sensing and pattern recognition. Building upon recent developments in image processing, pattern recognition algorithms, focal plane detectors, electro-optics, and microprocessors, the star tracker concept utilized in this research has the following key objectives for spacecraft of the future: lower cost, lower mass and smaller volume, increased robustness to environment-induced aging and instrument response variations, increased adaptability and autonomy via recursive self-calibration and health-monitoring on-orbit. Many of these attributes are consequences of improved algorithms that are derived in this dissertation.

  7. Emotion Recognition from EEG Signals Using Multidimensional Information in EMD Domain.

    PubMed

    Zhuang, Ning; Zeng, Ying; Tong, Li; Zhang, Chi; Zhang, Hanming; Yan, Bin

    2017-01-01

    This paper introduces a method for feature extraction and emotion recognition based on empirical mode decomposition (EMD). By using EMD, EEG signals are decomposed into Intrinsic Mode Functions (IMFs) automatically. Multidimensional information of IMF is utilized as features, the first difference of time series, the first difference of phase, and the normalized energy. The performance of the proposed method is verified on a publicly available emotional database. The results show that the three features are effective for emotion recognition. The role of each IMF is inquired and we find that high frequency component IMF1 has significant effect on different emotional states detection. The informative electrodes based on EMD strategy are analyzed. In addition, the classification accuracy of the proposed method is compared with several classical techniques, including fractal dimension (FD), sample entropy, differential entropy, and discrete wavelet transform (DWT). Experiment results on DEAP datasets demonstrate that our method can improve emotion recognition performance.

  8. Recognition and characterization of networks of water bodies in the Arctic ice-wedge polygonal tundra using high-resolution satellite imagery

    NASA Astrophysics Data System (ADS)

    Skurikhin, A. N.; Gangodagamage, C.; Rowland, J. C.; Wilson, C. J.

    2013-12-01

    Arctic lowland landscapes underlain by permafrost are often characterized by polygon-like patterns such as ice-wedge polygons outlined by networks of ice wedges and complemented with polygon rims, troughs, shallow ponds and thermokarst lakes. Polygonal patterns and corresponding features are relatively easy to recognize in high spatial resolution satellite imagery by a human, but their automated recognition is challenging due to the variability in their spectral appearance, the irregularity of individual trough spacing and orientation within the patterns, and a lack of unique spectral response attributable to troughs with widths commonly between 1 m and 2 m. Accurate identification of fine scale elements of ice-wedge polygonal tundra is important as their imprecise recognition may bias estimates of water, heat and carbon fluxes in large-scale climate models. Our focus is on the problem of identification of Arctic polygonal tundra fine-scale landscape elements (as small as 1 m - 2 m width). The challenge of the considered problem is that while large water bodies (e.g. lakes and rivers) can be recognized based on spectral response, reliable recognition of troughs is more difficult. Troughs do not have unique spectral signature, their appearance is noisy (edges are not strong), their width is small, and they often form connected networks with ponds and lakes, and thus they have overlapping spectral response with other water bodies and surrounding non-water bodies. We present a semi-automated approach to identify and classify Arctic polygonal tundra landscape components across the range of spatial scales, such as troughs, ponds, river- and lake-like objects, using high spatial resolution satellite imagery. The novelty of the approach lies in: (1) the combined use of segmentation and shape-based classification to identify a broad range of water bodies, including troughs, and (2) the use of high-resolution WorldView-2 satellite imagery (with resolution of 0.6 m) for this identification. The approach starts by segmenting water bodies from an image, which are then categorized using shape-based classification. Segmentation uses combination of pan sharpened multispectral bands and is based on the active contours without edges technique. The segmentation is robust to noise and can detect objects with weak boundaries that is important for extraction of troughs. We then categorize the segmented regions via shape based classification. Because segmentation accuracy is the main factor impacting the quality of the shape-based classification, for segmentation accuracy assessment we created reference image using WorldView-2 satellite image of ice-wedge polygonal tundra. Reference image contained manually labelled image regions which cover components of drainage networks, such as troughs, ponds, rivers and lakes. The evaluation has shown that the approach provides a good accuracy of segmentation and reasonable classification results. The overall accuracy of the segmentation is approximately 95%, the segmentation user's and producer's accuracies are approximately 92% and 97% respectively.

  9. Handwritten recognition of Tamil vowels using deep learning

    NASA Astrophysics Data System (ADS)

    Ram Prashanth, N.; Siddarth, B.; Ganesh, Anirudh; Naveen Kumar, Vaegae

    2017-11-01

    We come across a large volume of handwritten texts in our daily lives and handwritten character recognition has long been an important area of research in pattern recognition. The complexity of the task varies among different languages and it so happens largely due to the similarity between characters, distinct shapes and number of characters which are all language-specific properties. There have been numerous works on character recognition of English alphabets and with laudable success, but regional languages have not been dealt with very frequently and with similar accuracies. In this paper, we explored the performance of Deep Belief Networks in the classification of Handwritten Tamil vowels, and conclusively compared the results obtained. The proposed method has shown satisfactory recognition accuracy in light of difficulties faced with regional languages such as similarity between characters and minute nuances that differentiate them. We can further extend this to all the Tamil characters.

  10. Intelligent fault recognition strategy based on adaptive optimized multiple centers

    NASA Astrophysics Data System (ADS)

    Zheng, Bo; Li, Yan-Feng; Huang, Hong-Zhong

    2018-06-01

    For the recognition principle based optimized single center, one important issue is that the data with nonlinear separatrix cannot be recognized accurately. In order to solve this problem, a novel recognition strategy based on adaptive optimized multiple centers is proposed in this paper. This strategy recognizes the data sets with nonlinear separatrix by the multiple centers. Meanwhile, the priority levels are introduced into the multi-objective optimization, including recognition accuracy, the quantity of optimized centers, and distance relationship. According to the characteristics of various data, the priority levels are adjusted to ensure the quantity of optimized centers adaptively and to keep the original accuracy. The proposed method is compared with other methods, including support vector machine (SVM), neural network, and Bayesian classifier. The results demonstrate that the proposed strategy has the same or even better recognition ability on different distribution characteristics of data.

  11. Three-dimensional object recognition using similar triangles and decision trees

    NASA Technical Reports Server (NTRS)

    Spirkovska, Lilly

    1993-01-01

    A system, TRIDEC, that is capable of distinguishing between a set of objects despite changes in the objects' positions in the input field, their size, or their rotational orientation in 3D space is described. TRIDEC combines very simple yet effective features with the classification capabilities of inductive decision tree methods. The feature vector is a list of all similar triangles defined by connecting all combinations of three pixels in a coarse coded 127 x 127 pixel input field. The classification is accomplished by building a decision tree using the information provided from a limited number of translated, scaled, and rotated samples. Simulation results are presented which show that TRIDEC achieves 94 percent recognition accuracy in the 2D invariant object recognition domain and 98 percent recognition accuracy in the 3D invariant object recognition domain after training on only a small sample of transformed views of the objects.

  12. Finger vein recognition based on finger crease location

    NASA Astrophysics Data System (ADS)

    Lu, Zhiying; Ding, Shumeng; Yin, Jing

    2016-07-01

    Finger vein recognition technology has significant advantages over other methods in terms of accuracy, uniqueness, and stability, and it has wide promising applications in the field of biometric recognition. We propose using finger creases to locate and extract an object region. Then we use linear fitting to overcome the problem of finger rotation in the plane. The method of modular adaptive histogram equalization (MAHE) is presented to enhance image contrast and reduce computational cost. To extract the finger vein features, we use a fusion method, which can obtain clear and distinguishable vein patterns under different conditions. We used the Hausdorff average distance algorithm to examine the recognition performance of the system. The experimental results demonstrate that MAHE can better balance the recognition accuracy and the expenditure of time compared with three other methods. Our resulting equal error rate throughout the total procedure was 3.268% in a database of 153 finger vein images.

  13. Automatic detection of swallowing events by acoustical means for applications of monitoring of ingestive behavior.

    PubMed

    Sazonov, Edward S; Makeyev, Oleksandr; Schuckers, Stephanie; Lopez-Meyer, Paulo; Melanson, Edward L; Neuman, Michael R

    2010-03-01

    Our understanding of etiology of obesity and overweight is incomplete due to lack of objective and accurate methods for monitoring of ingestive behavior (MIB) in the free-living population. Our research has shown that frequency of swallowing may serve as a predictor for detecting food intake, differentiating liquids and solids, and estimating ingested mass. This paper proposes and compares two methods of acoustical swallowing detection from sounds contaminated by motion artifacts, speech, and external noise. Methods based on mel-scale Fourier spectrum, wavelet packets, and support vector machines are studied considering the effects of epoch size, level of decomposition, and lagging on classification accuracy. The methodology was tested on a large dataset (64.5 h with a total of 9966 swallows) collected from 20 human subjects with various degrees of adiposity. Average weighted epoch-recognition accuracy for intravisit individual models was 96.8%, which resulted in 84.7% average weighted accuracy in detection of swallowing events. These results suggest high efficiency of the proposed methodology in separation of swallowing sounds from artifacts that originate from respiration, intrinsic speech, head movements, food ingestion, and ambient noise. The recognition accuracy was not related to body mass index, suggesting that the methodology is suitable for obese individuals.

  14. Automatic Detection of Swallowing Events by Acoustical Means for Applications of Monitoring of Ingestive Behavior

    PubMed Central

    Sazonov, Edward S.; Makeyev, Oleksandr; Schuckers, Stephanie; Lopez-Meyer, Paulo; Melanson, Edward L.; Neuman, Michael R.

    2010-01-01

    Our understanding of etiology of obesity and overweight is incomplete due to lack of objective and accurate methods for Monitoring of Ingestive Behavior (MIB) in the free living population. Our research has shown that frequency of swallowing may serve as a predictor for detecting food intake, differentiating liquids and solids, and estimating ingested mass. This paper proposes and compares two methods of acoustical swallowing detection from sounds contaminated by motion artifacts, speech and external noise. Methods based on mel-scale Fourier spectrum, wavelet packets, and support vector machines are studied considering the effects of epoch size, level of decomposition and lagging on classification accuracy. The methodology was tested on a large dataset (64.5 hours with a total of 9,966 swallows) collected from 20 human subjects with various degrees of adiposity. Average weighted epoch recognition accuracy for intra-visit individual models was 96.8% which resulted in 84.7% average weighted accuracy in detection of swallowing events. These results suggest high efficiency of the proposed methodology in separation of swallowing sounds from artifacts that originate from respiration, intrinsic speech, head movements, food ingestion, and ambient noise. The recognition accuracy was not related to body mass index, suggesting that the methodology is suitable for obese individuals. PMID:19789095

  15. Can corrective feedback improve recognition memory?

    PubMed

    Kantner, Justin; Lindsay, D Stephen

    2010-06-01

    An understanding of the effects of corrective feedback on recognition memory can inform both recognition theory and memory training programs, but few published studies have investigated the issue. Although the evidence to date suggests that feedback does not improve recognition accuracy, few studies have directly examined its effect on sensitivity, and fewer have created conditions that facilitate a feedback advantage by encouraging controlled processing at test. In Experiment 1, null effects of feedback were observed following both deep and shallow encoding of categorized study lists. In Experiment 2, feedback robustly influenced response bias by allowing participants to discern highly uneven base rates of old and new items, but sensitivity remained unaffected. In Experiment 3, a false-memory procedure, feedback failed to attenuate false recognition of critical lures. In Experiment 4, participants were unable to use feedback to learn a simple category rule separating old items from new items, despite the fact that feedback was of substantial benefit in a nearly identical categorization task. The recognition system, despite a documented ability to utilize controlled strategic or inferential decision-making processes, appears largely impenetrable to a benefit of corrective feedback.

  16. Recognition of facial expressions and prosodic cues with graded emotional intensities in adults with Asperger syndrome.

    PubMed

    Doi, Hirokazu; Fujisawa, Takashi X; Kanai, Chieko; Ohta, Haruhisa; Yokoi, Hideki; Iwanami, Akira; Kato, Nobumasa; Shinohara, Kazuyuki

    2013-09-01

    This study investigated the ability of adults with Asperger syndrome to recognize emotional categories of facial expressions and emotional prosodies with graded emotional intensities. The individuals with Asperger syndrome showed poorer recognition performance for angry and sad expressions from both facial and vocal information. The group difference in facial expression recognition was prominent for stimuli with low or intermediate emotional intensities. In contrast to this, the individuals with Asperger syndrome exhibited lower recognition accuracy than typically-developed controls mainly for emotional prosody with high emotional intensity. In facial expression recognition, Asperger and control groups showed an inversion effect for all categories. The magnitude of this effect was less in the Asperger group for angry and sad expressions, presumably attributable to reduced recruitment of the configural mode of face processing. The individuals with Asperger syndrome outperformed the control participants in recognizing inverted sad expressions, indicating enhanced processing of local facial information representing sad emotion. These results suggest that the adults with Asperger syndrome rely on modality-specific strategies in emotion recognition from facial expression and prosodic information.

  17. Diagnostic accuracy of a bayesian latent group analysis for the detection of malingering-related poor effort.

    PubMed

    Ortega, Alonso; Labrenz, Stephan; Markowitsch, Hans J; Piefke, Martina

    2013-01-01

    In the last decade, different statistical techniques have been introduced to improve assessment of malingering-related poor effort. In this context, we have recently shown preliminary evidence that a Bayesian latent group model may help to optimize classification accuracy using a simulation research design. In the present study, we conducted two analyses. Firstly, we evaluated how accurately this Bayesian approach can distinguish between participants answering in an honest way (honest response group) and participants feigning cognitive impairment (experimental malingering group). Secondly, we tested the accuracy of our model in the differentiation between patients who had real cognitive deficits (cognitively impaired group) and participants who belonged to the experimental malingering group. All Bayesian analyses were conducted using the raw scores of a visual recognition forced-choice task (2AFC), the Test of Memory Malingering (TOMM, Trial 2), and the Word Memory Test (WMT, primary effort subtests). The first analysis showed 100% accuracy for the Bayesian model in distinguishing participants of both groups with all effort measures. The second analysis showed outstanding overall accuracy of the Bayesian model when estimates were obtained from the 2AFC and the TOMM raw scores. Diagnostic accuracy of the Bayesian model diminished when using the WMT total raw scores. Despite, overall diagnostic accuracy can still be considered excellent. The most plausible explanation for this decrement is the low performance in verbal recognition and fluency tasks of some patients of the cognitively impaired group. Additionally, the Bayesian model provides individual estimates, p(zi |D), of examinees' effort levels. In conclusion, both high classification accuracy levels and Bayesian individual estimates of effort may be very useful for clinicians when assessing for effort in medico-legal settings.

  18. Assessment of accuracy and recognition of three-dimensional computerized forensic craniofacial reconstruction.

    PubMed

    Miranda, Geraldo Elias; Wilkinson, Caroline; Roughley, Mark; Beaini, Thiago Leite; Melani, Rodolfo Francisco Haltenhoff

    2018-01-01

    Facial reconstruction is a technique that aims to reproduce the individual facial characteristics based on interpretation of the skull, with the objective of recognition leading to identification. The aim of this paper was to evaluate the accuracy and recognition level of three-dimensional (3D) computerized forensic craniofacial reconstruction (CCFR) performed in a blind test on open-source software using computed tomography (CT) data from live subjects. Four CCFRs were produced by one of the researchers, who was provided with information concerning the age, sex, and ethnic group of each subject. The CCFRs were produced using Blender® with 3D models obtained from the CT data and templates from the MakeHuman® program. The evaluation of accuracy was carried out in CloudCompare, by geometric comparison of the CCFR to the subject 3D face model (obtained from the CT data). A recognition level was performed using the Picasa® recognition tool with a frontal standardized photography, images of the subject CT face model and the CCFR. Soft-tissue depth and nose, ears and mouth were based on published data, observing Brazilian facial parameters. The results were presented from all the points that form the CCFR model, with an average for each comparison between 63% and 74% with a distance -2.5 ≤ x ≤ 2.5 mm from the skin surface. The average distances were 1.66 to 0.33 mm and greater distances were observed around the eyes, cheeks, mental and zygomatic regions. Two of the four CCFRs were correctly matched by the Picasa® tool. Free software programs are capable of producing 3D CCFRs with plausible levels of accuracy and recognition and therefore indicate their value for use in forensic applications.

  19. Assessment of accuracy and recognition of three-dimensional computerized forensic craniofacial reconstruction

    PubMed Central

    Wilkinson, Caroline; Roughley, Mark; Beaini, Thiago Leite; Melani, Rodolfo Francisco Haltenhoff

    2018-01-01

    Facial reconstruction is a technique that aims to reproduce the individual facial characteristics based on interpretation of the skull, with the objective of recognition leading to identification. The aim of this paper was to evaluate the accuracy and recognition level of three-dimensional (3D) computerized forensic craniofacial reconstruction (CCFR) performed in a blind test on open-source software using computed tomography (CT) data from live subjects. Four CCFRs were produced by one of the researchers, who was provided with information concerning the age, sex, and ethnic group of each subject. The CCFRs were produced using Blender® with 3D models obtained from the CT data and templates from the MakeHuman® program. The evaluation of accuracy was carried out in CloudCompare, by geometric comparison of the CCFR to the subject 3D face model (obtained from the CT data). A recognition level was performed using the Picasa® recognition tool with a frontal standardized photography, images of the subject CT face model and the CCFR. Soft-tissue depth and nose, ears and mouth were based on published data, observing Brazilian facial parameters. The results were presented from all the points that form the CCFR model, with an average for each comparison between 63% and 74% with a distance -2.5 ≤ x ≤ 2.5 mm from the skin surface. The average distances were 1.66 to 0.33 mm and greater distances were observed around the eyes, cheeks, mental and zygomatic regions. Two of the four CCFRs were correctly matched by the Picasa® tool. Free software programs are capable of producing 3D CCFRs with plausible levels of accuracy and recognition and therefore indicate their value for use in forensic applications. PMID:29718983

  20. Real-time speech gisting for ATC applications

    NASA Astrophysics Data System (ADS)

    Dunkelberger, Kirk A.

    1995-06-01

    Command and control within the ATC environment remains primarily voice-based. Hence, automatic real time, speaker independent, continuous speech recognition (CSR) has many obvious applications and implied benefits to the ATC community: automated target tagging, aircraft compliance monitoring, controller training, automatic alarm disabling, display management, and many others. However, while current state-of-the-art CSR systems provide upwards of 98% word accuracy in laboratory environments, recent low-intrusion experiments in the ATCT environments demonstrated less than 70% word accuracy in spite of significant investments in recognizer tuning. Acoustic channel irregularities and controller/pilot grammar verities impact current CSR algorithms at their weakest points. It will be shown herein, however, that real time context- and environment-sensitive gisting can provide key command phrase recognition rates of greater than 95% using the same low-intrusion approach. The combination of real time inexact syntactic pattern recognition techniques and a tight integration of CSR, gisting, and ATC database accessor system components is the key to these high phase recognition rates. A system concept for real time gisting in the ATC context is presented herein. After establishing an application context, discussion presents a minimal CSR technology context then focuses on the gisting mechanism, desirable interfaces into the ATCT database environment, and data and control flow within the prototype system. Results of recent tests for a subset of the functionality are presented together with suggestions for further research.

  1. A Diffusion Model Analysis of Decision Biases Affecting Delayed Recognition of Emotional Stimuli.

    PubMed

    Bowen, Holly J; Spaniol, Julia; Patel, Ronak; Voss, Andreas

    2016-01-01

    Previous empirical work suggests that emotion can influence accuracy and cognitive biases underlying recognition memory, depending on the experimental conditions. The current study examines the effects of arousal and valence on delayed recognition memory using the diffusion model, which allows the separation of two decision biases thought to underlie memory: response bias and memory bias. Memory bias has not been given much attention in the literature but can provide insight into the retrieval dynamics of emotion modulated memory. Participants viewed emotional pictorial stimuli; half were given a recognition test 1-day later and the other half 7-days later. Analyses revealed that emotional valence generally evokes liberal responding, whereas high arousal evokes liberal responding only at a short retention interval. The memory bias analyses indicated that participants experienced greater familiarity with high-arousal compared to low-arousal items and this pattern became more pronounced as study-test lag increased; positive items evoke greater familiarity compared to negative and this pattern remained stable across retention interval. The findings provide insight into the separate contributions of valence and arousal to the cognitive mechanisms underlying delayed emotion modulated memory.

  2. Empathy costs: Negative emotional bias in high empathisers.

    PubMed

    Chikovani, George; Babuadze, Lasha; Iashvili, Nino; Gvalia, Tamar; Surguladze, Simon

    2015-09-30

    Excessive empathy has been associated with compassion fatigue in health professionals and caregivers. We investigated an effect of empathy on emotion processing in 137 healthy individuals of both sexes. We tested a hypothesis that high empathy may underlie increased sensitivity to negative emotion recognition which may interact with gender. Facial emotion stimuli comprised happy, angry, fearful, and sad faces presented at different intensities (mild and prototypical) and different durations (500ms and 2000ms). The parameters of emotion processing were represented by discrimination accuracy, response bias and reaction time. We found that higher empathy was associated with better recognition of all emotions. We also demonstrated that higher empathy was associated with response bias towards sad and fearful faces. The reaction time analysis revealed that higher empathy in females was associated with faster (compared with males) recognition of mildly sad faces of brief duration. We conclude that although empathic abilities were providing for advantages in recognition of all facial emotional expressions, the bias towards emotional negativity may potentially carry a risk for empathic distress. Copyright © 2015 Elsevier Ireland Ltd. All rights reserved.

  3. Recognizing stationary and locomotion activities using combinational of spectral analysis with statistical descriptors features

    NASA Astrophysics Data System (ADS)

    Zainudin, M. N. Shah; Sulaiman, Md Nasir; Mustapha, Norwati; Perumal, Thinagaran

    2017-10-01

    Prior knowledge in pervasive computing recently garnered a lot of attention due to its high demand in various application domains. Human activity recognition (HAR) considered as the applications that are widely explored by the expertise that provides valuable information to the human. Accelerometer sensor-based approach is utilized as devices to undergo the research in HAR since their small in size and this sensor already build-in in the various type of smartphones. However, the existence of high inter-class similarities among the class tends to degrade the recognition performance. Hence, this work presents the method for activity recognition using our proposed features from combinational of spectral analysis with statistical descriptors that able to tackle the issue of differentiating stationary and locomotion activities. The noise signal is filtered using Fourier Transform before it will be extracted using two different groups of features, spectral frequency analysis, and statistical descriptors. Extracted signal later will be classified using random forest ensemble classifier models. The recognition results show the good accuracy performance for stationary and locomotion activities based on USC HAD datasets.

  4. Varying behavior of different window sizes on the classification of static and dynamic physical activities from a single accelerometer.

    PubMed

    Fida, Benish; Bernabucci, Ivan; Bibbo, Daniele; Conforto, Silvia; Schmid, Maurizio

    2015-07-01

    Accuracy of systems able to recognize in real time daily living activities heavily depends on the processing step for signal segmentation. So far, windowing approaches are used to segment data and the window size is usually chosen based on previous studies. However, literature is vague on the investigation of its effect on the obtained activity recognition accuracy, if both short and long duration activities are considered. In this work, we present the impact of window size on the recognition of daily living activities, where transitions between different activities are also taken into account. The study was conducted on nine participants who wore a tri-axial accelerometer on their waist and performed some short (sitting, standing, and transitions between activities) and long (walking, stair descending and stair ascending) duration activities. Five different classifiers were tested, and among the different window sizes, it was found that 1.5 s window size represents the best trade-off in recognition among activities, with an obtained accuracy well above 90%. Differences in recognition accuracy for each activity highlight the utility of developing adaptive segmentation criteria, based on the duration of the activities. Copyright © 2015 IPEM. Published by Elsevier Ltd. All rights reserved.

  5. An Evaluation of PC-Based Optical Character Recognition Systems.

    ERIC Educational Resources Information Center

    Schreier, E. M.; Uslan, M. M.

    1991-01-01

    The review examines six personal computer-based optical character recognition (OCR) systems designed for use by blind and visually impaired people. Considered are OCR components and terms, documentation, scanning and reading, command structure, conversion, unique features, accuracy of recognition, scanning time, speed, and cost. (DB)

  6. Hidden Markov models for character recognition.

    PubMed

    Vlontzos, J A; Kung, S Y

    1992-01-01

    A hierarchical system for character recognition with hidden Markov model knowledge sources which solve both the context sensitivity problem and the character instantiation problem is presented. The system achieves 97-99% accuracy using a two-level architecture and has been implemented using a systolic array, thus permitting real-time (1 ms per character) multifont and multisize printed character recognition as well as handwriting recognition.

  7. Remember-Know and Source Memory Instructions Can Qualitatively Change Old-New Recognition Accuracy: The Modality-Match Effect in Recognition Memory

    ERIC Educational Resources Information Center

    Mulligan, Neil W.; Besken, Miri; Peterson, Daniel

    2010-01-01

    Remember-Know (RK) and source memory tasks were designed to elucidate processes underlying memory retrieval. As part of more complex judgments, both tests produce a measure of old-new recognition, which is typically treated as equivalent to that derived from a standard recognition task. The present study demonstrates, however, that recognition…

  8. On the effectiveness of vocal imitations and verbal descriptions of sounds.

    PubMed

    Lemaitre, Guillaume; Rocchesso, Davide

    2014-02-01

    Describing unidentified sounds with words is a frustrating task and vocally imitating them is often a convenient way to address the issue. This article reports on a study that compared the effectiveness of vocal imitations and verbalizations to communicate different referent sounds. The stimuli included mechanical and synthesized sounds and were selected on the basis of participants' confidence in identifying the cause of the sounds, ranging from easy-to-identify to unidentifiable sounds. The study used a selection of vocal imitations and verbalizations deemed adequate descriptions of the referent sounds. These descriptions were used in a nine-alternative forced-choice experiment: Participants listened to a description and picked one sound from a list of nine possible referent sounds. Results showed that recognition based on verbalizations was maximally effective when the referent sounds were identifiable. Recognition accuracy with verbalizations dropped when identifiability of the sounds decreased. Conversely, recognition accuracy with vocal imitations did not depend on the identifiability of the referent sounds and was as high as with the best verbalizations. This shows that vocal imitations are an effective means of representing and communicating sounds and suggests that they could be used in a number of applications.

  9. A Cutting Pattern Recognition Method for Shearers Based on Improved Ensemble Empirical Mode Decomposition and a Probabilistic Neural Network

    PubMed Central

    Xu, Jing; Wang, Zhongbin; Tan, Chao; Si, Lei; Liu, Xinhua

    2015-01-01

    In order to guarantee the stable operation of shearers and promote construction of an automatic coal mining working face, an online cutting pattern recognition method with high accuracy and speed based on Improved Ensemble Empirical Mode Decomposition (IEEMD) and Probabilistic Neural Network (PNN) is proposed. An industrial microphone is installed on the shearer and the cutting sound is collected as the recognition criterion to overcome the disadvantages of giant size, contact measurement and low identification rate of traditional detectors. To avoid end-point effects and get rid of undesirable intrinsic mode function (IMF) components in the initial signal, IEEMD is conducted on the sound. The end-point continuation based on the practical storage data is performed first to overcome the end-point effect. Next the average correlation coefficient, which is calculated by the correlation of the first IMF with others, is introduced to select essential IMFs. Then the energy and standard deviation of the reminder IMFs are extracted as features and PNN is applied to classify the cutting patterns. Finally, a simulation example, with an accuracy of 92.67%, and an industrial application prove the efficiency and correctness of the proposed method. PMID:26528985

  10. Potential transducers based man-tailored biomimetic sensors for selective recognition of dextromethorphan as an antitussive drug.

    PubMed

    El-Naby, Eman H; Kamel, Ayman H

    2015-09-01

    A biomimetic potentiometric sensor for specific recognition of dextromethorphan (DXM), a drug classified according to the Drug Enforcement Administration (DEA) as a "drug of concern", is designed and characterized. A molecularly imprinted polymer (MIP), with special molecular recognition properties of DXM, was prepared by thermal polymerization in which DXM acted as template molecule, methacrylic acid (MAA) and acrylonitrile (AN) acted as functional monomers in the presence of ethylene glycol dimethacrylate (EGDMA) as crosslinker. The sensors showed a high selectivity and a sensitive response to the template in aqueous system. Electrochemical evaluation of these sensors revealed near-Nernstian response with slopes of 49.6±0.5 and 53.4±0.5 mV decade(-1) with a detection limit of 1.9×10(-6), and 1.0×10(-6) mol L(-1) DXM with MIP/MAA and MIP/AN membrane based sensors, respectively. Significantly improved accuracy, precision, response time, stability, selectivity and sensitivity were offered by these simple and cost-effective potentiometric sensors compared with other standard techniques. The method has the requisite accuracy, sensitivity and precision to assay DXM in pharmaceutical products. Copyright © 2015 Elsevier B.V. All rights reserved.

  11. A voice-input voice-output communication aid for people with severe speech impairment.

    PubMed

    Hawley, Mark S; Cunningham, Stuart P; Green, Phil D; Enderby, Pam; Palmer, Rebecca; Sehgal, Siddharth; O'Neill, Peter

    2013-01-01

    A new form of augmentative and alternative communication (AAC) device for people with severe speech impairment-the voice-input voice-output communication aid (VIVOCA)-is described. The VIVOCA recognizes the disordered speech of the user and builds messages, which are converted into synthetic speech. System development was carried out employing user-centered design and development methods, which identified and refined key requirements for the device. A novel methodology for building small vocabulary, speaker-dependent automatic speech recognizers with reduced amounts of training data, was applied. Experiments showed that this method is successful in generating good recognition performance (mean accuracy 96%) on highly disordered speech, even when recognition perplexity is increased. The selected message-building technique traded off various factors including speed of message construction and range of available message outputs. The VIVOCA was evaluated in a field trial by individuals with moderate to severe dysarthria and confirmed that they can make use of the device to produce intelligible speech output from disordered speech input. The trial highlighted some issues which limit the performance and usability of the device when applied in real usage situations, with mean recognition accuracy of 67% in these circumstances. These limitations will be addressed in future work.

  12. Analysis of Movement, Orientation and Rotation-Based Sensing for Phone Placement Recognition

    PubMed Central

    Durmaz Incel, Ozlem

    2015-01-01

    Phone placement, i.e., where the phone is carried/stored, is an important source of information for context-aware applications. Extracting information from the integrated smart phone sensors, such as motion, light and proximity, is a common technique for phone placement detection. In this paper, the efficiency of an accelerometer-only solution is explored, and it is investigated whether the phone position can be detected with high accuracy by analyzing the movement, orientation and rotation changes. The impact of these changes on the performance is analyzed individually and both in combination to explore which features are more efficient, whether they should be fused and, if yes, how they should be fused. Using three different datasets, collected from 35 people from eight different positions, the performance of different classification algorithms is explored. It is shown that while utilizing only motion information can achieve accuracies around 70%, this ratio increases up to 85% by utilizing information also from orientation and rotation changes. The performance of an accelerometer-only solution is compared to solutions where linear acceleration, gyroscope and magnetic field sensors are used, and it is shown that the accelerometer-only solution performs as well as utilizing other sensing information. Hence, it is not necessary to use extra sensing information where battery power consumption may increase. Additionally, I explore the impact of the performed activities on position recognition and show that the accelerometer-only solution can achieve 80% recognition accuracy with stationary activities where movement data are very limited. Finally, other phone placement problems, such as in-pocket and on-body detections, are also investigated, and higher accuracies, ranging from 88% to 93%, are reported, with an accelerometer-only solution. PMID:26445046

  13. Analysis of Movement, Orientation and Rotation-Based Sensing for Phone Placement Recognition.

    PubMed

    Incel, Ozlem Durmaz

    2015-10-05

    Phone placement, i.e., where the phone is carried/stored, is an important source of information for context-aware applications. Extracting information from the integrated smart phone sensors, such as motion, light and proximity, is a common technique for phone placement detection. In this paper, the efficiency of an accelerometer-only solution is explored, and it is investigated whether the phone position can be detected with high accuracy by analyzing the movement, orientation and rotation changes. The impact of these changes on the performance is analyzed individually and both in combination to explore which features are more efficient, whether they should be fused and, if yes, how they should be fused. Using three different datasets, collected from 35 people from eight different positions, the performance of different classification algorithms is explored. It is shown that while utilizing only motion information can achieve accuracies around 70%, this ratio increases up to 85% by utilizing information also from orientation and rotation changes. The performance of an accelerometer-only solution is compared to solutions where linear acceleration, gyroscope and magnetic field sensors are used, and it is shown that the accelerometer-only solution performs as well as utilizing other sensing information. Hence, it is not necessary to use extra sensing information where battery power consumption may increase. Additionally, I explore the impact of the performed activities on position recognition and show that the accelerometer-only solution can achieve 80% recognition accuracy with stationary activities where movement data are very limited. Finally, other phone placement problems, such as in-pocket and on-body detections, are also investigated, and higher accuracies, ranging from 88% to 93%, are reported, with an accelerometer-only solution.

  14. [Automated Assessment for Bone Age of Left Wrist Joint in Uyghur Teenagers by Deep Learning].

    PubMed

    Hu, T H; Huo, Z; Liu, T A; Wang, F; Wan, L; Wang, M W; Chen, T; Wang, Y H

    2018-02-01

    To realize the automated bone age assessment by applying deep learning to digital radiography (DR) image recognition of left wrist joint in Uyghur teenagers, and explore its practical application value in forensic medicine bone age assessment. The X-ray films of left wrist joint after pretreatment, which were taken from 245 male and 227 female Uyghur nationality teenagers in Uygur Autonomous Region aged from 13.0 to 19.0 years old, were chosen as subjects. And AlexNet was as a regression model of image recognition. From the total samples above, 60% of male and female DR images of left wrist joint were selected as net train set, and 10% of samples were selected as validation set. As test set, the rest 30% were used to obtain the image recognition accuracy with an error range in ±1.0 and ±0.7 age respectively, compared to the real age. The modelling results of deep learning algorithm showed that when the error range was in ±1.0 and ±0.7 age respectively, the accuracy of the net train set was 81.4% and 75.6% in male, and 80.5% and 74.8% in female, respectively. When the error range was in ±1.0 and ±0.7 age respectively, the accuracy of the test set was 79.5% and 71.2% in male, and 79.4% and 66.2% in female, respectively. The combination of bone age research on teenagers' left wrist joint and deep learning, which has high accuracy and good feasibility, can be the research basis of bone age automatic assessment system for the rest joints of body. Copyright© by the Editorial Department of Journal of Forensic Medicine.

  15. Can Changes in Eye Movement Scanning Alter the Age-Related Deficit in Recognition Memory?

    PubMed Central

    Chan, Jessica P. K.; Kamino, Daphne; Binns, Malcolm A.; Ryan, Jennifer D.

    2011-01-01

    Older adults typically exhibit poorer face recognition compared to younger adults. These recognition differences may be due to underlying age-related changes in eye movement scanning. We examined whether older adults’ recognition could be improved by yoking their eye movements to those of younger adults. Participants studied younger and older faces, under free viewing conditions (bases), through a gaze-contingent moving window (own), or a moving window which replayed the eye movements of a base participant (yoked). During the recognition test, participants freely viewed the faces with no viewing restrictions. Own-age recognition biases were observed for older adults in all viewing conditions, suggesting that this effect occurs independently of scanning. Participants in the bases condition had the highest recognition accuracy, and participants in the yoked condition were more accurate than participants in the own condition. Among yoked participants, recognition did not depend on age of the base participant. These results suggest that successful encoding for all participants requires the bottom-up contribution of peripheral information, regardless of the locus of control of the viewer. Although altering the pattern of eye movements did not increase recognition, the amount of sampling of the face during encoding predicted subsequent recognition accuracy for all participants. Increased sampling may confer some advantages for subsequent recognition, particularly for people who have declining memory abilities. PMID:21687460

  16. [Perception of emotional intonation of noisy speech signal with different acoustic parameters by adults of different age and gender].

    PubMed

    Dmitrieva, E S; Gel'man, V Ia

    2011-01-01

    The listener-distinctive features of recognition of different emotional intonations (positive, negative and neutral) of male and female speakers in the presence or absence of background noise were studied in 49 adults aged 20-79 years. In all the listeners noise produced the most pronounced decrease in recognition accuracy for positive emotional intonation ("joy") as compared to other intonations, whereas it did not influence the recognition accuracy of "anger" in 65-79-year-old listeners. The higher emotion recognition rates of a noisy signal were observed for speech emotional intonations expressed by female speakers. Acoustic characteristics of noisy and clear speech signals underlying perception of speech emotional prosody were found for adult listeners of different age and gender.

  17. State Recognition of High Voltage Isolation Switch Based on Background Difference and Iterative Search

    NASA Astrophysics Data System (ADS)

    Xu, Jiayuan; Yu, Chengtao; Bo, Bin; Xue, Yu; Xu, Changfu; Chaminda, P. R. Dushantha; Hu, Chengbo; Peng, Kai

    2018-03-01

    The automatic recognition of the high voltage isolation switch by remote video monitoring is an effective means to ensure the safety of the personnel and the equipment. The existing methods mainly include two ways: improving monitoring accuracy and adopting target detection technology through equipment transformation. Such a method is often applied to specific scenarios, with limited application scope and high cost. To solve this problem, a high voltage isolation switch state recognition method based on background difference and iterative search is proposed in this paper. The initial position of the switch is detected in real time through the background difference method. When the switch starts to open and close, the target tracking algorithm is used to track the motion trajectory of the switch. The opening and closing state of the switch is determined according to the angle variation of the switch tracking point and the center line. The effectiveness of the method is verified by experiments on different switched video frames of switching states. Compared with the traditional methods, this method is more robust and effective.

  18. Emotion recognition through static faces and moving bodies: a comparison between typically developed adults and individuals with high level of autistic traits

    PubMed Central

    Actis-Grosso, Rossana; Bossi, Francesco; Ricciardelli, Paola

    2015-01-01

    We investigated whether the type of stimulus (pictures of static faces vs. body motion) contributes differently to the recognition of emotions. The performance (accuracy and response times) of 25 Low Autistic Traits (LAT group) young adults (21 males) and 20 young adults (16 males) with either High Autistic Traits or with High Functioning Autism Spectrum Disorder (HAT group) was compared in the recognition of four emotions (Happiness, Anger, Fear, and Sadness) either shown in static faces or conveyed by moving body patch-light displays (PLDs). Overall, HAT individuals were as accurate as LAT ones in perceiving emotions both with faces and with PLDs. Moreover, they correctly described non-emotional actions depicted by PLDs, indicating that they perceived the motion conveyed by the PLDs per se. For LAT participants, happiness proved to be the easiest emotion to be recognized: in line with previous studies we found a happy face advantage for faces, which for the first time was also found for bodies (happy body advantage). Furthermore, LAT participants recognized sadness better by static faces and fear by PLDs. This advantage for motion kinematics in the recognition of fear was not present in HAT participants, suggesting that (i) emotion recognition is not generally impaired in HAT individuals, (ii) the cues exploited for emotion recognition by LAT and HAT groups are not always the same. These findings are discussed against the background of emotional processing in typically and atypically developed individuals. PMID:26557101

  19. Emotion recognition through static faces and moving bodies: a comparison between typically developed adults and individuals with high level of autistic traits.

    PubMed

    Actis-Grosso, Rossana; Bossi, Francesco; Ricciardelli, Paola

    2015-01-01

    We investigated whether the type of stimulus (pictures of static faces vs. body motion) contributes differently to the recognition of emotions. The performance (accuracy and response times) of 25 Low Autistic Traits (LAT group) young adults (21 males) and 20 young adults (16 males) with either High Autistic Traits or with High Functioning Autism Spectrum Disorder (HAT group) was compared in the recognition of four emotions (Happiness, Anger, Fear, and Sadness) either shown in static faces or conveyed by moving body patch-light displays (PLDs). Overall, HAT individuals were as accurate as LAT ones in perceiving emotions both with faces and with PLDs. Moreover, they correctly described non-emotional actions depicted by PLDs, indicating that they perceived the motion conveyed by the PLDs per se. For LAT participants, happiness proved to be the easiest emotion to be recognized: in line with previous studies we found a happy face advantage for faces, which for the first time was also found for bodies (happy body advantage). Furthermore, LAT participants recognized sadness better by static faces and fear by PLDs. This advantage for motion kinematics in the recognition of fear was not present in HAT participants, suggesting that (i) emotion recognition is not generally impaired in HAT individuals, (ii) the cues exploited for emotion recognition by LAT and HAT groups are not always the same. These findings are discussed against the background of emotional processing in typically and atypically developed individuals.

  20. Recognition of geriatric popular song repertoire: a comparison of geriatric clients and music therapy students.

    PubMed

    VanWeelden, Kimberly; Cevasco, Andrea M

    2010-01-01

    The purposes of the current study were to determine geriatric clients' recognition of 32 popular songs and songs from musicals by asking whether they: (a) had heard the songs before; (b) could "name the tune" of each song; and (c) list the decade that each song was composed. Additionally, comparisons were made between the geriatric clients' recognition of these songs and by music therapy students' recognition of the same, songs, based on data from an earlier study (VanWeelden, Juchniewicz, & Cevasco, 2008). Results found 90% or more of the geriatric clients had heard 28 of the 32 songs, 80% or more of the graduate students had heard 20 songs, and 80% of the undergraduates had heard 18 songs. The geriatric clients correctly identified 3 songs with 80% or more accuracy, which the graduate students also correctly identified, while the undergraduates identified 2 of the 3 same songs. Geriatric clients identified the decades of 3 songs with 50% or greater accuracy. Neither the undergraduate nor graduate students identified any songs by the correct decade with over 50% accuracy. Further results are discussed.

  1. Voice Recognition: A New Assessment Tool?

    ERIC Educational Resources Information Center

    Jones, Darla

    2005-01-01

    This article presents the results of a study conducted in Anchorage, Alaska, that evaluated the accuracy and efficiency of using voice recognition (VR) technology to collect oral reading fluency data for classroom-based assessments. The primary research question was as follows: Is voice recognition technology a valid and reliable alternative to…

  2. Voice Recognition Software Accuracy with Second Language Speakers of English.

    ERIC Educational Resources Information Center

    Coniam, D.

    1999-01-01

    Explores the potential of the use of voice-recognition technology with second-language speakers of English. Involves the analysis of the output produced by a small group of very competent second-language subjects reading a text into the voice recognition software Dragon Systems "Dragon NaturallySpeaking." (Author/VWL)

  3. Development of Encoding and Decision Processes in Visual Recognition.

    ERIC Educational Resources Information Center

    Newcombe, Nora; MacKenzie, Doris L.

    This experiment examined two processes which might account for developmental increases in accuracy in visual recognition tasks: age-related increases in efficiency of scanning during inspection, and age-related increases in the ability to make decisions systematically during test. Critical details necessary for recognition were highlighted as…

  4. Sources of Interference in Recognition Testing

    ERIC Educational Resources Information Center

    Annis, Jeffrey; Malmberg, Kenneth J.; Criss, Amy H.; Shiffrin, Richard M.

    2013-01-01

    Recognition memory accuracy is harmed by prior testing (a.k.a., output interference [OI]; Tulving & Arbuckle, 1966). In several experiments, we interpolated various tasks between recognition test trials. The stimuli and the tasks were more similar (lexical decision [LD] of words and nonwords) or less similar (gender identification of male and…

  5. Implementation study of wearable sensors for activity recognition systems

    PubMed Central

    Ghassemian, Mona

    2015-01-01

    This Letter investigates and reports on a number of activity recognition methods for a wearable sensor system. The authors apply three methods for data transmission, namely ‘stream-based’, ‘feature-based’ and ‘threshold-based’ scenarios to study the accuracy against energy efficiency of transmission and processing power that affects the mote's battery lifetime. They also report on the impact of variation of sampling frequency and data transmission rate on energy consumption of motes for each method. This study leads us to propose a cross-layer optimisation of an activity recognition system for provisioning acceptable levels of accuracy and energy efficiency. PMID:26609413

  6. An evaluation of information retrieval accuracy with simulated OCR output

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Croft, W.B.; Harding, S.M.; Taghva, K.

    Optical Character Recognition (OCR) is a critical part of many text-based applications. Although some commercial systems use the output from OCR devices to index documents without editing, there is very little quantitative data on the impact of OCR errors on the accuracy of a text retrieval system. Because of the difficulty of constructing test collections to obtain this data, we have carried out evaluation using simulated OCR output on a variety of databases. The results show that high quality OCR devices have little effect on the accuracy of retrieval, but low quality devices used with databases of short documents canmore » result in significant degradation.« less

  7. The relationship between facial emotion recognition and executive functions in first-episode patients with schizophrenia and their siblings.

    PubMed

    Yang, Chengqing; Zhang, Tianhong; Li, Zezhi; Heeramun-Aubeeluck, Anisha; Liu, Na; Huang, Nan; Zhang, Jie; He, Leiying; Li, Hui; Tang, Yingying; Chen, Fazhan; Liu, Fei; Wang, Jijun; Lu, Zheng

    2015-10-08

    Although many studies have examined executive functions and facial emotion recognition in people with schizophrenia, few of them focused on the correlation between them. Furthermore, their relationship in the siblings of patients also remains unclear. The aim of the present study is to examine the correlation between executive functions and facial emotion recognition in patients with first-episode schizophrenia and their siblings. Thirty patients with first-episode schizophrenia, their twenty-six siblings, and thirty healthy controls were enrolled. They completed facial emotion recognition tasks using the Ekman Standard Faces Database, and executive functioning was measured by Wisconsin Card Sorting Test (WCST). Hierarchical regression analysis was applied to assess the correlation between executive functions and facial emotion recognition. Our study found that in siblings, the accuracy in recognizing low degree 'disgust' emotion was negatively correlated with the total correct rate in WCST (r = -0.614, p = 0.023), but was positively correlated with the total error in WCST (r = 0.623, p = 0.020); the accuracy in recognizing 'neutral' emotion was positively correlated with the total error rate in WCST (r = 0.683, p = 0.014) while negatively correlated with the total correct rate in WCST (r = -0.677, p = 0.017). People with schizophrenia showed an impairment in facial emotion recognition when identifying moderate 'happy' facial emotion, the accuracy of which was significantly correlated with the number of completed categories of WCST (R(2) = 0.432, P < .05). There were no correlations between executive functions and facial emotion recognition in the healthy control group. Our study demonstrated that facial emotion recognition impairment correlated with executive function impairment in people with schizophrenia and their unaffected siblings but not in healthy controls.

  8. Aging selectively impairs recollection in recognition memory for pictures: Evidence from modeling and ROC curves

    PubMed Central

    Howard, Marc W.; Bessette-Symons, Brandy; Zhang, Yaofei; Hoyer, William J.

    2006-01-01

    Younger and older adults were tested on recognition memory for pictures. The Yonelinas high threshold (YHT) model, a formal implementation of two-process theory, fit the response distribution data of both younger and older adults significantly better than a normal unequal variance signal detection model. Consistent with this finding, non-linear zROC curves were obtained for both groups. Estimates of recollection from the YHT model were significantly higher for younger than older adults. This deficit was not a consequence of a general decline in memory; older adults showed comparable overall accuracy and in fact a non-significant increase in their familiarity scores. Implications of these results for theories of recognition memory and the mnemonic deficit associated with aging are discussed. PMID:16594795

  9. Accuracy of computer-assisted navigation: significant augmentation by facial recognition software.

    PubMed

    Glicksman, Jordan T; Reger, Christine; Parasher, Arjun K; Kennedy, David W

    2017-09-01

    Over the past 20 years, image guidance navigation has been used with increasing frequency as an adjunct during sinus and skull base surgery. These devices commonly utilize surface registration, where varying pressure of the registration probe and loss of contact with the face during the skin tracing process can lead to registration inaccuracies, and the number of registration points incorporated is necessarily limited. The aim of this study was to evaluate the use of novel facial recognition software for image guidance registration. Consecutive adults undergoing endoscopic sinus surgery (ESS) were prospectively studied. Patients underwent image guidance registration via both conventional surface registration and facial recognition software. The accuracy of both registration processes were measured at the head of the middle turbinate (MTH), middle turbinate axilla (MTA), anterior wall of sphenoid sinus (SS), and nasal tip (NT). Forty-five patients were included in this investigation. Facial recognition was accurate to within a mean of 0.47 mm at the MTH, 0.33 mm at the MTA, 0.39 mm at the SS, and 0.36 mm at the NT. Facial recognition was more accurate than surface registration at the MTH by an average of 0.43 mm (p = 0.002), at the MTA by an average of 0.44 mm (p < 0.001), and at the SS by an average of 0.40 mm (p < 0.001). The integration of facial recognition software did not adversely affect registration time. In this prospective study, automated facial recognition software significantly improved the accuracy of image guidance registration when compared to conventional surface registration. © 2017 ARS-AAOA, LLC.

  10. The Analysis of Burrows Recognition Accuracy in XINJIANG'S Pasture Area Based on Uav Visible Images with Different Spatial Resolution

    NASA Astrophysics Data System (ADS)

    Sun, D.; Zheng, J. H.; Ma, T.; Chen, J. J.; Li, X.

    2018-04-01

    The rodent disaster is one of the main biological disasters in grassland in northern Xinjiang. The eating and digging behaviors will cause the destruction of ground vegetation, which seriously affected the development of animal husbandry and grassland ecological security. UAV low altitude remote sensing, as an emerging technique with high spatial resolution, can effectively recognize the burrows. However, how to select the appropriate spatial resolution to monitor the calamity of the rodent disaster is the first problem we need to pay attention to. The purpose of this study is to explore the optimal spatial scale on identification of the burrows by evaluating the impact of different spatial resolution for the burrows identification accuracy. In this study, we shoot burrows from different flight heights to obtain visible images of different spatial resolution. Then an object-oriented method is used to identify the caves, and we also evaluate the accuracy of the classification. We found that the highest classification accuracy of holes, the average has reached more than 80 %. At the altitude of 24 m and the spatial resolution of 1cm, the accuracy of the classification is the highest We have created a unique and effective way to identify burrows by using UAVs visible images. We draw the following conclusion: the best spatial resolution of burrows recognition is 1 cm using DJI PHANTOM-3 UAV, and the improvement of spatial resolution does not necessarily lead to the improvement of classification accuracy. This study lays the foundation for future research and can be extended to similar studies elsewhere.

  11. Action recognition using mined hierarchical compound features.

    PubMed

    Gilbert, Andrew; Illingworth, John; Bowden, Richard

    2011-05-01

    The field of Action Recognition has seen a large increase in activity in recent years. Much of the progress has been through incorporating ideas from single-frame object recognition and adapting them for temporal-based action recognition. Inspired by the success of interest points in the 2D spatial domain, their 3D (space-time) counterparts typically form the basic components used to describe actions, and in action recognition the features used are often engineered to fire sparsely. This is to ensure that the problem is tractable; however, this can sacrifice recognition accuracy as it cannot be assumed that the optimum features in terms of class discrimination are obtained from this approach. In contrast, we propose to initially use an overcomplete set of simple 2D corners in both space and time. These are grouped spatially and temporally using a hierarchical process, with an increasing search area. At each stage of the hierarchy, the most distinctive and descriptive features are learned efficiently through data mining. This allows large amounts of data to be searched for frequently reoccurring patterns of features. At each level of the hierarchy, the mined compound features become more complex, discriminative, and sparse. This results in fast, accurate recognition with real-time performance on high-resolution video. As the compound features are constructed and selected based upon their ability to discriminate, their speed and accuracy increase at each level of the hierarchy. The approach is tested on four state-of-the-art data sets, the popular KTH data set to provide a comparison with other state-of-the-art approaches, the Multi-KTH data set to illustrate performance at simultaneous multiaction classification, despite no explicit localization information provided during training. Finally, the recent Hollywood and Hollywood2 data sets provide challenging complex actions taken from commercial movie sequences. For all four data sets, the proposed hierarchical approach outperforms all other methods reported thus far in the literature and can achieve real-time operation.

  12. Optimisation of shape kernel and threshold in image-processing motion analysers.

    PubMed

    Pedrocchi, A; Baroni, G; Sada, S; Marcon, E; Pedotti, A; Ferrigno, G

    2001-09-01

    The aim of the work is to optimise the image processing of a motion analyser. This is to improve accuracy, which is crucial for neurophysiological and rehabilitation applications. A new motion analyser, ELITE-S2, for installation on the International Space Station is described, with the focus on image processing. Important improvements are expected in the hardware of ELITE-S2 compared with ELITE and previous versions (ELITE-S and Kinelite). The core algorithm for marker recognition was based on the current ELITE version, using the cross-correlation technique. This technique was based on the matching of the expected marker shape, the so-called kernel, with image features. Optimisation of the kernel parameters was achieved using a genetic algorithm, taking into account noise rejection and accuracy. Optimisation was achieved by performing tests on six highly precise grids (with marker diameters ranging from 1.5 to 4 mm), representing all allowed marker image sizes, and on a noise image. The results of comparing the optimised kernels and the current ELITE version showed a great improvement in marker recognition accuracy, while noise rejection characteristics were preserved. An average increase in marker co-ordinate accuracy of +22% was achieved, corresponding to a mean accuracy of 0.11 pixel in comparison with 0.14 pixel, measured over all grids. An improvement of +37%, corresponding to an improvement from 0.22 pixel to 0.14 pixel, was observed over the grid with the biggest markers.

  13. Familiarity and Recollection Produce Distinct Eye Movement, Pupil and Medial Temporal Lobe Responses when Memory Strength Is Matched

    ERIC Educational Resources Information Center

    Kafkas, Alexandros; Montaldi, Daniela

    2012-01-01

    Two experiments explored eye measures (fixations and pupil response patterns) and brain responses (BOLD) accompanying the recognition of visual object stimuli based on familiarity and recollection. In both experiments, the use of a modified remember/know procedure led to high confidence and matched accuracy levels characterising strong familiarity…

  14. Classifying dysmorphic syndromes by using artificial neural network based hierarchical decision tree.

    PubMed

    Özdemir, Merve Erkınay; Telatar, Ziya; Eroğul, Osman; Tunca, Yusuf

    2018-05-01

    Dysmorphic syndromes have different facial malformations. These malformations are significant to an early diagnosis of dysmorphic syndromes and contain distinctive information for face recognition. In this study we define the certain features of each syndrome by considering facial malformations and classify Fragile X, Hurler, Prader Willi, Down, Wolf Hirschhorn syndromes and healthy groups automatically. The reference points are marked on the face images and ratios between the points' distances are taken into consideration as features. We suggest a neural network based hierarchical decision tree structure in order to classify the syndrome types. We also implement k-nearest neighbor (k-NN) and artificial neural network (ANN) classifiers to compare classification accuracy with our hierarchical decision tree. The classification accuracy is 50, 73 and 86.7% with k-NN, ANN and hierarchical decision tree methods, respectively. Then, the same images are shown to a clinical expert who achieve a recognition rate of 46.7%. We develop an efficient system to recognize different syndrome types automatically in a simple, non-invasive imaging data, which is independent from the patient's age, sex and race at high accuracy. The promising results indicate that our method can be used for pre-diagnosis of the dysmorphic syndromes by clinical experts.

  15. The search for common ground: Part I. Lexical performance by linguistically diverse learners.

    PubMed

    Windsor, Jennifer; Kohnert, Kathryn

    2004-08-01

    This study examines lexical performance by 3 groups of linguistically diverse school-age learners: English-only speakers with primary language impairment (LI), typical English-only speakers (EO), and typical bilingual Spanish-English speakers (BI). The accuracy and response time (RT) of 100 8- to 13-year-old children in word recognition and picture-naming tasks were analyzed. Within each task, stimulus difficulty was manipulated to include very easy stimuli (words that were high frequency/had an early age of acquisition in English) and more difficult stimuli (words of low frequency/late age of acquisition [AOA]). There was no difference among groups in real-word recognition accuracy or RT; all 3 groups showed lower accuracy with low-frequency words. In picture naming, all 3 groups showed a longer RT for words with a late AOA, although AOA had a disproportionate negative impact on BI performance. The EO group was faster and more accurate than both LI and BI groups in conditions with later acquired stimuli. Results are discussed in terms of quantitative differences separating EO children from the other 2 groups and qualitative similarities linking monolingual children with and without LI.

  16. Interface Prostheses With Classifier-Feedback-Based User Training.

    PubMed

    Fang, Yinfeng; Zhou, Dalin; Li, Kairu; Liu, Honghai

    2017-11-01

    It is evident that user training significantly affects performance of pattern-recognition-based myoelectric prosthetic device control. Despite plausible classification accuracy on offline datasets, online accuracy usually suffers from the changes in physiological conditions and electrode displacement. The user ability in generating consistent electromyographic (EMG) patterns can be enhanced via proper user training strategies in order to improve online performance. This study proposes a clustering-feedback strategy that provides real-time feedback to users by means of a visualized online EMG signal input as well as the centroids of the training samples, whose dimensionality is reduced to minimal number by dimension reduction. Clustering feedback provides a criterion that guides users to adjust motion gestures and muscle contraction forces intentionally. The experiment results have demonstrated that hand motion recognition accuracy increases steadily along the progress of the clustering-feedback-based user training, while conventional classifier-feedback methods, i.e., label feedback, hardly achieve any improvement. The result concludes that the use of proper classifier feedback can accelerate the process of user training, and implies prosperous future for the amputees with limited or no experience in pattern-recognition-based prosthetic device manipulation.It is evident that user training significantly affects performance of pattern-recognition-based myoelectric prosthetic device control. Despite plausible classification accuracy on offline datasets, online accuracy usually suffers from the changes in physiological conditions and electrode displacement. The user ability in generating consistent electromyographic (EMG) patterns can be enhanced via proper user training strategies in order to improve online performance. This study proposes a clustering-feedback strategy that provides real-time feedback to users by means of a visualized online EMG signal input as well as the centroids of the training samples, whose dimensionality is reduced to minimal number by dimension reduction. Clustering feedback provides a criterion that guides users to adjust motion gestures and muscle contraction forces intentionally. The experiment results have demonstrated that hand motion recognition accuracy increases steadily along the progress of the clustering-feedback-based user training, while conventional classifier-feedback methods, i.e., label feedback, hardly achieve any improvement. The result concludes that the use of proper classifier feedback can accelerate the process of user training, and implies prosperous future for the amputees with limited or no experience in pattern-recognition-based prosthetic device manipulation.

  17. Effects of Aging and IQ on Item and Associative Memory

    ERIC Educational Resources Information Center

    Ratcliff, Roger; Thapar, Anjali; McKoon, Gail

    2011-01-01

    The effects of aging and IQ on performance were examined in 4 memory tasks: item recognition, associative recognition, cued recall, and free recall. For item and associative recognition, accuracy and the response time (RT) distributions for correct and error responses were explained by Ratcliff's (1978) diffusion model at the level of individual…

  18. Rapid Naming Speed and Chinese Character Recognition

    ERIC Educational Resources Information Center

    Liao, Chen-Huei; Georgiou, George K.; Parrila, Rauno

    2008-01-01

    We examined the relationship between rapid naming speed (RAN) and Chinese character recognition accuracy and fluency. Sixty-three grade 2 and 54 grade 4 Taiwanese children were administered four RAN tasks (colors, digits, Zhu-Yin-Fu-Hao, characters), and two character recognition tasks. RAN tasks accounted for more reading variance in grade 4 than…

  19. Pattern recognition technique

    NASA Technical Reports Server (NTRS)

    Hong, J. P.

    1971-01-01

    Technique operates regardless of pattern rotation, translation or magnification and successfully detects out-of-register patterns. It improves accuracy and reduces cost of various optical character recognition devices and page readers and provides data input to computer.

  20. Oxytocin increases bias, but not accuracy, in face recognition line-ups.

    PubMed

    Bate, Sarah; Bennetts, Rachel; Parris, Benjamin A; Bindemann, Markus; Udale, Robert; Bussunt, Amanda

    2015-07-01

    Previous work indicates that intranasal inhalation of oxytocin improves face recognition skills, raising the possibility that it may be used in security settings. However, it is unclear whether oxytocin directly acts upon the core face-processing system itself or indirectly improves face recognition via affective or social salience mechanisms. In a double-blind procedure, 60 participants received either an oxytocin or placebo nasal spray before completing the One-in-Ten task-a standardized test of unfamiliar face recognition containing target-present and target-absent line-ups. Participants in the oxytocin condition outperformed those in the placebo condition on target-present trials, yet were more likely to make false-positive errors on target-absent trials. Signal detection analyses indicated that oxytocin induced a more liberal response bias, rather than increasing accuracy per se. These findings support a social salience account of the effects of oxytocin on face recognition and indicate that oxytocin may impede face recognition in certain scenarios. © The Author (2014). Published by Oxford University Press. For Permissions, please email: journals.permissions@oup.com.

  1. 3D facial expression recognition using maximum relevance minimum redundancy geometrical features

    NASA Astrophysics Data System (ADS)

    Rabiu, Habibu; Saripan, M. Iqbal; Mashohor, Syamsiah; Marhaban, Mohd Hamiruce

    2012-12-01

    In recent years, facial expression recognition (FER) has become an attractive research area, which besides the fundamental challenges, it poses, finds application in areas, such as human-computer interaction, clinical psychology, lie detection, pain assessment, and neurology. Generally the approaches to FER consist of three main steps: face detection, feature extraction and expression recognition. The recognition accuracy of FER hinges immensely on the relevance of the selected features in representing the target expressions. In this article, we present a person and gender independent 3D facial expression recognition method, using maximum relevance minimum redundancy geometrical features. The aim is to detect a compact set of features that sufficiently represents the most discriminative features between the target classes. Multi-class one-against-one SVM classifier was employed to recognize the seven facial expressions; neutral, happy, sad, angry, fear, disgust, and surprise. The average recognition accuracy of 92.2% was recorded. Furthermore, inter database homogeneity was investigated between two independent databases the BU-3DFE and UPM-3DFE the results showed a strong homogeneity between the two databases.

  2. Extraction of prostatic lumina and automated recognition for prostatic calculus image using PCA-SVM.

    PubMed

    Wang, Zhuocai; Xu, Xiangmin; Ding, Xiaojun; Xiao, Hui; Huang, Yusheng; Liu, Jian; Xing, Xiaofen; Wang, Hua; Liao, D Joshua

    2011-01-01

    Identification of prostatic calculi is an important basis for determining the tissue origin. Computation-assistant diagnosis of prostatic calculi may have promising potential but is currently still less studied. We studied the extraction of prostatic lumina and automated recognition for calculus images. Extraction of lumina from prostate histology images was based on local entropy and Otsu threshold recognition using PCA-SVM and based on the texture features of prostatic calculus. The SVM classifier showed an average time 0.1432 second, an average training accuracy of 100%, an average test accuracy of 93.12%, a sensitivity of 87.74%, and a specificity of 94.82%. We concluded that the algorithm, based on texture features and PCA-SVM, can recognize the concentric structure and visualized features easily. Therefore, this method is effective for the automated recognition of prostatic calculi.

  3. Simulated Prosthetic Vision: The Benefits of Computer-Based Object Recognition and Localization.

    PubMed

    Macé, Marc J-M; Guivarch, Valérian; Denis, Grégoire; Jouffrais, Christophe

    2015-07-01

    Clinical trials with blind patients implanted with a visual neuroprosthesis showed that even the simplest tasks were difficult to perform with the limited vision restored with current implants. Simulated prosthetic vision (SPV) is a powerful tool to investigate the putative functions of the upcoming generations of visual neuroprostheses. Recent studies based on SPV showed that several generations of implants will be required before usable vision is restored. However, none of these studies relied on advanced image processing. High-level image processing could significantly reduce the amount of information required to perform visual tasks and help restore visuomotor behaviors, even with current low-resolution implants. In this study, we simulated a prosthetic vision device based on object localization in the scene. We evaluated the usability of this device for object recognition, localization, and reaching. We showed that a very low number of electrodes (e.g., nine) are sufficient to restore visually guided reaching movements with fair timing (10 s) and high accuracy. In addition, performance, both in terms of accuracy and speed, was comparable with 9 and 100 electrodes. Extraction of high level information (object recognition and localization) from video images could drastically enhance the usability of current visual neuroprosthesis. We suggest that this method-that is, localization of targets of interest in the scene-may restore various visuomotor behaviors. This method could prove functional on current low-resolution implants. The main limitation resides in the reliability of the vision algorithms, which are improving rapidly. Copyright © 2015 International Center for Artificial Organs and Transplantation and Wiley Periodicals, Inc.

  4. A deep convolutional neural network approach to single-particle recognition in cryo-electron microscopy.

    PubMed

    Zhu, Yanan; Ouyang, Qi; Mao, Youdong

    2017-07-21

    Single-particle cryo-electron microscopy (cryo-EM) has become a mainstream tool for the structural determination of biological macromolecular complexes. However, high-resolution cryo-EM reconstruction often requires hundreds of thousands of single-particle images. Particle extraction from experimental micrographs thus can be laborious and presents a major practical bottleneck in cryo-EM structural determination. Existing computational methods for particle picking often use low-resolution templates for particle matching, making them susceptible to reference-dependent bias. It is critical to develop a highly efficient template-free method for the automatic recognition of particle images from cryo-EM micrographs. We developed a deep learning-based algorithmic framework, DeepEM, for single-particle recognition from noisy cryo-EM micrographs, enabling automated particle picking, selection and verification in an integrated fashion. The kernel of DeepEM is built upon a convolutional neural network (CNN) composed of eight layers, which can be recursively trained to be highly "knowledgeable". Our approach exhibits an improved performance and accuracy when tested on the standard KLH dataset. Application of DeepEM to several challenging experimental cryo-EM datasets demonstrated its ability to avoid the selection of un-wanted particles and non-particles even when true particles contain fewer features. The DeepEM methodology, derived from a deep CNN, allows automated particle extraction from raw cryo-EM micrographs in the absence of a template. It demonstrates an improved performance, objectivity and accuracy. Application of this novel method is expected to free the labor involved in single-particle verification, significantly improving the efficiency of cryo-EM data processing.

  5. Automated classification of neurological disorders of gait using spatio-temporal gait parameters.

    PubMed

    Pradhan, Cauchy; Wuehr, Max; Akrami, Farhoud; Neuhaeusser, Maximilian; Huth, Sabrina; Brandt, Thomas; Jahn, Klaus; Schniepp, Roman

    2015-04-01

    Automated pattern recognition systems have been used for accurate identification of neurological conditions as well as the evaluation of the treatment outcomes. This study aims to determine the accuracy of diagnoses of (oto-)neurological gait disorders using different types of automated pattern recognition techniques. Clinically confirmed cases of phobic postural vertigo (N = 30), cerebellar ataxia (N = 30), progressive supranuclear palsy (N = 30), bilateral vestibulopathy (N = 30), as well as healthy subjects (N = 30) were recruited for the study. 8 measurements with 136 variables using a GAITRite(®) sensor carpet were obtained from each subject. Subjects were randomly divided into two groups (training cases and validation cases). Sensitivity and specificity of k-nearest neighbor (KNN), naive-bayes classifier (NB), artificial neural network (ANN), and support vector machine (SVM) in classifying the validation cases were calculated. ANN and SVM had the highest overall sensitivity with 90.6% and 92.0% respectively, followed by NB (76.0%) and KNN (73.3%). SVM and ANN showed high false negative rates for bilateral vestibulopathy cases (20.0% and 26.0%); while KNN and NB had high false negative rates for progressive supranuclear palsy cases (76.7% and 40.0%). Automated pattern recognition systems are able to identify pathological gait patterns and establish clinical diagnosis with good accuracy. SVM and ANN in particular differentiate gait patterns of several distinct oto-neurological disorders of gait with high sensitivity and specificity compared to KNN and NB. Both SVM and ANN appear to be a reliable diagnostic and management tool for disorders of gait. Copyright © 2015 Elsevier Ltd. All rights reserved.

  6. Exogenous temporal cues enhance recognition memory in an object-based manner.

    PubMed

    Ohyama, Junji; Watanabe, Katsumi

    2010-11-01

    Exogenous attention enhances the perception of attended items in both a space-based and an object-based manner. Exogenous attention also improves recognition memory for attended items in the space-based mode. However, it has not been examined whether object-based exogenous attention enhances recognition memory. To address this issue, we examined whether a sudden visual change in a task-irrelevant stimulus (an exogenous cue) would affect participants' recognition memory for items that were serially presented around a cued time. The results showed that recognition accuracy for an item was strongly enhanced when the visual cue occurred at the same location and time as the item (Experiments 1 and 2). The memory enhancement effect occurred when the exogenous visual cue and an item belonged to the same object (Experiments 3 and 4) and even when the cue was counterpredictive of the timing of an item to be asked about (Experiment 5). The present study suggests that an exogenous temporal cue automatically enhances the recognition accuracy for an item that is presented at close temporal proximity to the cue and that recognition memory enhancement occurs in an object-based manner.

  7. Research on the feature extraction and pattern recognition of the distributed optical fiber sensing signal

    NASA Astrophysics Data System (ADS)

    Wang, Bingjie; Sun, Qi; Pi, Shaohua; Wu, Hongyan

    2014-09-01

    In this paper, feature extraction and pattern recognition of the distributed optical fiber sensing signal have been studied. We adopt Mel-Frequency Cepstral Coefficient (MFCC) feature extraction, wavelet packet energy feature extraction and wavelet packet Shannon entropy feature extraction methods to obtain sensing signals (such as speak, wind, thunder and rain signals, etc.) characteristic vectors respectively, and then perform pattern recognition via RBF neural network. Performances of these three feature extraction methods are compared according to the results. We choose MFCC characteristic vector to be 12-dimensional. For wavelet packet feature extraction, signals are decomposed into six layers by Daubechies wavelet packet transform, in which 64 frequency constituents as characteristic vector are respectively extracted. In the process of pattern recognition, the value of diffusion coefficient is introduced to increase the recognition accuracy, while keeping the samples for testing algorithm the same. Recognition results show that wavelet packet Shannon entropy feature extraction method yields the best recognition accuracy which is up to 97%; the performance of 12-dimensional MFCC feature extraction method is less satisfactory; the performance of wavelet packet energy feature extraction method is the worst.

  8. Emotion recognition deficits as predictors of transition in individuals at clinical high risk for schizophrenia: a neurodevelopmental perspective.

    PubMed

    Corcoran, C M; Keilp, J G; Kayser, J; Klim, C; Butler, P D; Bruder, G E; Gur, R C; Javitt, D C

    2015-10-01

    Schizophrenia is characterized by profound and disabling deficits in the ability to recognize emotion in facial expression and tone of voice. Although these deficits are well documented in established schizophrenia using recently validated tasks, their predictive utility in at-risk populations has not been formally evaluated. The Penn Emotion Recognition and Discrimination tasks, and recently developed measures of auditory emotion recognition, were administered to 49 clinical high-risk subjects prospectively followed for 2 years for schizophrenia outcome, and 31 healthy controls, and a developmental cohort of 43 individuals aged 7-26 years. Deficit in emotion recognition in at-risk subjects was compared with deficit in established schizophrenia, and with normal neurocognitive growth curves from childhood to early adulthood. Deficits in emotion recognition significantly distinguished at-risk patients who transitioned to schizophrenia. By contrast, more general neurocognitive measures, such as attention vigilance or processing speed, were non-predictive. The best classification model for schizophrenia onset included both face emotion processing and negative symptoms, with accuracy of 96%, and area under the receiver-operating characteristic curve of 0.99. In a parallel developmental study, emotion recognition abilities were found to reach maturity prior to traditional age of risk for schizophrenia, suggesting they may serve as objective markers of early developmental insult. Profound deficits in emotion recognition exist in at-risk patients prior to schizophrenia onset. They may serve as an index of early developmental insult, and represent an effective target for early identification and remediation. Future studies investigating emotion recognition deficits at both mechanistic and predictive levels are strongly encouraged.

  9. Towards SSVEP-based, portable, responsive Brain-Computer Interface.

    PubMed

    Kaczmarek, Piotr; Salomon, Pawel

    2015-08-01

    A Brain-Computer Interface in motion control application requires high system responsiveness and accuracy. SSVEP interface consisted of 2-8 stimuli and 2 channel EEG amplifier was presented in this paper. The observed stimulus is recognized based on a canonical correlation calculated in 1 second window, ensuring high interface responsiveness. A threshold classifier with hysteresis (T-H) was proposed for recognition purposes. Obtained results suggest that T-H classifier enables to significantly increase classifier performance (resulting in accuracy of 76%, while maintaining average false positive detection rate of stimulus different then observed one between 2-13%, depending on stimulus frequency). It was shown that the parameters of T-H classifier, maximizing true positive rate, can be estimated by gradient-based search since the single maximum was observed. Moreover the preliminary results, performed on a test group (N=4), suggest that for T-H classifier exists a certain set of parameters for which the system accuracy is similar to accuracy obtained for user-trained classifier.

  10. Pose Invariant Face Recognition Based on Hybrid Dominant Frequency Features

    NASA Astrophysics Data System (ADS)

    Wijaya, I. Gede Pasek Suta; Uchimura, Keiichi; Hu, Zhencheng

    Face recognition is one of the most active research areas in pattern recognition, not only because the face is a human biometric characteristics of human being but also because there are many potential applications of the face recognition which range from human-computer interactions to authentication, security, and surveillance. This paper presents an approach to pose invariant human face image recognition. The proposed scheme is based on the analysis of discrete cosine transforms (DCT) and discrete wavelet transforms (DWT) of face images. From both the DCT and DWT domain coefficients, which describe the facial information, we build compact and meaningful features vector, using simple statistical measures and quantization. This feature vector is called as the hybrid dominant frequency features. Then, we apply a combination of the L2 and Lq metric to classify the hybrid dominant frequency features to a person's class. The aim of the proposed system is to overcome the high memory space requirement, the high computational load, and the retraining problems of previous methods. The proposed system is tested using several face databases and the experimental results are compared to a well-known Eigenface method. The proposed method shows good performance, robustness, stability, and accuracy without requiring geometrical normalization. Furthermore, the purposed method has low computational cost, requires little memory space, and can overcome retraining problem.

  11. Effects of emotional and perceptual-motor stress on a voice recognition system's accuracy: An applied investigation

    NASA Astrophysics Data System (ADS)

    Poock, G. K.; Martin, B. J.

    1984-02-01

    This was an applied investigation examining the ability of a speech recognition system to recognize speakers' inputs when the speakers were under different stress levels. Subjects were asked to speak to a voice recognition system under three conditions: (1) normal office environment, (2) emotional stress, and (3) perceptual-motor stress. Results indicate a definite relationship between voice recognition system performance and the type of low stress reference patterns used to achieve recognition.

  12. Location-Enhanced Activity Recognition in Indoor Environments Using Off the Shelf Smart Watch Technology and BLE Beacons.

    PubMed

    Filippoupolitis, Avgoustinos; Oliff, William; Takand, Babak; Loukas, George

    2017-05-27

    Activity recognition in indoor spaces benefits context awareness and improves the efficiency of applications related to personalised health monitoring, building energy management, security and safety. The majority of activity recognition frameworks, however, employ a network of specialised building sensors or a network of body-worn sensors. As this approach suffers with respect to practicality, we propose the use of commercial off-the-shelf devices. In this work, we design and evaluate an activity recognition system composed of a smart watch, which is enhanced with location information coming from Bluetooth Low Energy (BLE) beacons. We evaluate the performance of this approach for a variety of activities performed in an indoor laboratory environment, using four supervised machine learning algorithms. Our experimental results indicate that our location-enhanced activity recognition system is able to reach a classification accuracy ranging from 92% to 100%, while without location information classification accuracy it can drop to as low as 50% in some cases, depending on the window size chosen for data segmentation.

  13. Correlations between psychometric schizotypy, scan path length, fixations on the eyes and face recognition.

    PubMed

    Hills, Peter J; Eaton, Elizabeth; Pake, J Michael

    2016-01-01

    Psychometric schizotypy in the general population correlates negatively with face recognition accuracy, potentially due to deficits in inhibition, social withdrawal, or eye-movement abnormalities. We report an eye-tracking face recognition study in which participants were required to match one of two faces (target and distractor) to a cue face presented immediately before. All faces could be presented with or without paraphernalia (e.g., hats, glasses, facial hair). Results showed that paraphernalia distracted participants, and that the most distracting condition was when the cue and the distractor face had paraphernalia but the target face did not, while there was no correlation between distractibility and participants' scores on the Schizotypal Personality Questionnaire (SPQ). Schizotypy was negatively correlated with proportion of time fixating on the eyes and positively correlated with not fixating on a feature. It was negatively correlated with scan path length and this variable correlated with face recognition accuracy. These results are interpreted as schizotypal traits being associated with a restricted scan path leading to face recognition deficits.

  14. GNSS seismometer: Seismic phase recognition of real-time high-rate GNSS deformation waves

    NASA Astrophysics Data System (ADS)

    Nie, Zhaosheng; Zhang, Rui; Liu, Gang; Jia, Zhige; Wang, Dijin; Zhou, Yu; Lin, Mu

    2016-12-01

    High-rate global navigation satellite systems (GNSS) can potentially be used as seismometers to capture short-period instantaneous dynamic deformation waves from earthquakes. However, the performance and seismic phase recognition of the GNSS seismometer in the real-time mode, which plays an important role in GNSS seismology, are still uncertain. By comparing the results of accuracy and precision of the real-time solution using a shake table test, we found real-time solutions to be consistent with post-processing solutions and independent of sampling rate. In addition, we analyzed the time series of real-time solutions for shake table tests and recent large earthquakes. The results demonstrated that high-rate GNSS have the ability to retrieve most types of seismic waves, including P-, S-, Love, and Rayleigh waves. The main factor limiting its performance in recording seismic phases is the widely used 1-Hz sampling rate. The noise floor also makes recognition of some weak seismic phases difficult. We concluded that the propagation velocities and path of seismic waves, macro characteristics of the high-rate GNSS array, spatial traces of seismic phases, and incorporation of seismographs are all useful in helping to retrieve seismic phases from the high-rate GNSS time series.

  15. Recognition of face and non-face stimuli in autistic spectrum disorder.

    PubMed

    Arkush, Leo; Smith-Collins, Adam P R; Fiorentini, Chiara; Skuse, David H

    2013-12-01

    The ability to remember faces is critical for the development of social competence. From childhood to adulthood, we acquire a high level of expertise in the recognition of facial images, and neural processes become dedicated to sustaining competence. Many people with autism spectrum disorder (ASD) have poor face recognition memory; changes in hairstyle or other non-facial features in an otherwise familiar person affect their recollection skills. The observation implies that they may not use the configuration of the inner face to achieve memory competence, but bolster performance in other ways. We aimed to test this hypothesis by comparing the performance of a group of high-functioning unmedicated adolescents with ASD and a matched control group on a "surprise" face recognition memory task. We compared their memory for unfamiliar faces with their memory for images of houses. To evaluate the role that is played by peripheral cues in assisting recognition memory, we cropped both sets of pictures, retaining only the most salient central features. ASD adolescents had poorer recognition memory for faces than typical controls, but their recognition memory for houses was unimpaired. Cropping images of faces did not disproportionately influence their recall accuracy, relative to controls. House recognition skills (cropped and uncropped) were similar in both groups. In the ASD group only, performance on both sets of task was closely correlated, implying that memory for faces and other complex pictorial stimuli is achieved by domain-general (non-dedicated) cognitive mechanisms. Adolescents with ASD apparently do not use domain-specialized processing of inner facial cues to support face recognition memory. © 2013 International Society for Autism Research, Wiley Periodicals, Inc.

  16. Bringing an Ecological Perspective to the Study of Aging and Recognition of Emotional Facial Expressions: Past, Current, and Future Methods

    PubMed Central

    Isaacowitz, Derek M.; Stanley, Jennifer Tehan

    2011-01-01

    Older adults perform worse on traditional tests of emotion recognition accuracy than do young adults. In this paper, we review descriptive research to date on age differences in emotion recognition from facial expressions, as well as the primary theoretical frameworks that have been offered to explain these patterns. We propose that this is an area of inquiry that would benefit from an ecological approach in which contextual elements are more explicitly considered and reflected in experimental methods. Use of dynamic displays and examination of specific cues to accuracy, for example, may reveal more nuanced age-related patterns and may suggest heretofore unexplored underlying mechanisms. PMID:22125354

  17. High-accuracy and robust face recognition system based on optical parallel correlator using a temporal image sequence

    NASA Astrophysics Data System (ADS)

    Watanabe, Eriko; Ishikawa, Mami; Ohta, Maiko; Kodate, Kashiko

    2005-09-01

    Face recognition is used in a wide range of security systems, such as monitoring credit card use, searching for individuals with street cameras via Internet and maintaining immigration control. There are still many technical subjects under study. For instance, the number of images that can be stored is limited under the current system, and the rate of recognition must be improved to account for photo shots taken at different angles under various conditions. We implemented a fully automatic Fast Face Recognition Optical Correlator (FARCO) system by using a 1000 frame/s optical parallel correlator designed and assembled by us. Operational speed for the 1: N (i.e. matching a pair of images among N, where N refers to the number of images in the database) identification experiment (4000 face images) amounts to less than 1.5 seconds, including the pre/post processing. From trial 1: N identification experiments using FARCO, we acquired low error rates of 2.6% False Reject Rate and 1.3% False Accept Rate. By making the most of the high-speed data-processing capability of this system, much more robustness can be achieved for various recognition conditions when large-category data are registered for a single person. We propose a face recognition algorithm for the FARCO while employing a temporal image sequence of moving images. Applying this algorithm to a natural posture, a two times higher recognition rate scored compared with our conventional system. The system has high potential for future use in a variety of purposes such as search for criminal suspects by use of street and airport video cameras, registration of babies at hospitals or handling of an immeasurable number of images in a database.

  18. The Impact of Age, Background Noise, Semantic Ambiguity, and Hearing Loss on Recognition Memory for Spoken Sentences.

    PubMed

    Koeritzer, Margaret A; Rogers, Chad S; Van Engen, Kristin J; Peelle, Jonathan E

    2018-03-15

    The goal of this study was to determine how background noise, linguistic properties of spoken sentences, and listener abilities (hearing sensitivity and verbal working memory) affect cognitive demand during auditory sentence comprehension. We tested 30 young adults and 30 older adults. Participants heard lists of sentences in quiet and in 8-talker babble at signal-to-noise ratios of +15 dB and +5 dB, which increased acoustic challenge but left the speech largely intelligible. Half of the sentences contained semantically ambiguous words to additionally manipulate cognitive challenge. Following each list, participants performed a visual recognition memory task in which they viewed written sentences and indicated whether they remembered hearing the sentence previously. Recognition memory (indexed by d') was poorer for acoustically challenging sentences, poorer for sentences containing ambiguous words, and differentially poorer for noisy high-ambiguity sentences. Similar patterns were observed for Z-transformed response time data. There were no main effects of age, but age interacted with both acoustic clarity and semantic ambiguity such that older adults' recognition memory was poorer for acoustically degraded high-ambiguity sentences than the young adults'. Within the older adult group, exploratory correlation analyses suggested that poorer hearing ability was associated with poorer recognition memory for sentences in noise, and better verbal working memory was associated with better recognition memory for sentences in noise. Our results demonstrate listeners' reliance on domain-general cognitive processes when listening to acoustically challenging speech, even when speech is highly intelligible. Acoustic challenge and semantic ambiguity both reduce the accuracy of listeners' recognition memory for spoken sentences. https://doi.org/10.23641/asha.5848059.

  19. Varying face occlusion detection and iterative recovery for face recognition

    NASA Astrophysics Data System (ADS)

    Wang, Meng; Hu, Zhengping; Sun, Zhe; Zhao, Shuhuan; Sun, Mei

    2017-05-01

    In most sparse representation methods for face recognition (FR), occlusion problems were usually solved via removing the occlusion part of both query samples and training samples to perform the recognition process. This practice ignores the global feature of facial image and may lead to unsatisfactory results due to the limitation of local features. Considering the aforementioned drawback, we propose a method called varying occlusion detection and iterative recovery for FR. The main contributions of our method are as follows: (1) to detect an accurate occlusion area of facial images, an image processing and intersection-based clustering combination method is used for occlusion FR; (2) according to an accurate occlusion map, the new integrated facial images are recovered iteratively and put into a recognition process; and (3) the effectiveness on recognition accuracy of our method is verified by comparing it with three typical occlusion map detection methods. Experiments show that the proposed method has a highly accurate detection and recovery performance and that it outperforms several similar state-of-the-art methods against partial contiguous occlusion.

  20. The impact of beliefs about face recognition ability on memory retrieval processes in young and older adults.

    PubMed

    Humphries, Joyce E; Flowe, Heather D; Hall, Louise C; Williams, Louise C; Ryder, Hannah L

    2016-01-01

    This study examined whether beliefs about face recognition ability differentially influence memory retrieval in older compared to young adults. Participants evaluated their ability to recognise faces and were also given information about their ability to perceive and recognise faces. The information was ostensibly based on an objective measure of their ability, but in actuality, participants had been randomly assigned the information they received (high ability, low ability or no information control). Following this information, face recognition accuracy for a set of previously studied faces was measured using a remember-know memory paradigm. Older adults rated their ability to recognise faces as poorer compared to young adults. Additionally, negative information about face recognition ability improved only older adults' ability to recognise a previously seen face. Older adults were also found to engage in more familiarity than item-specific processing than young adults, but information about their face recognition ability did not affect face processing style. The role that older adults' memory beliefs have in the meta-cognitive strategies they employ is discussed.

  1. Postprocessing for character recognition using pattern features and linguistic information

    NASA Astrophysics Data System (ADS)

    Yoshikawa, Takatoshi; Okamoto, Masayosi; Horii, Hiroshi

    1993-04-01

    We propose a new method of post-processing for character recognition using pattern features and linguistic information. This method corrects errors in the recognition of handwritten Japanese sentences containing Kanji characters. This post-process method is characterized by having two types of character recognition. Improving the accuracy of the character recognition rate of Japanese characters is made difficult by the large number of characters, and the existence of characters with similar patterns. Therefore, it is not practical for a character recognition system to recognize all characters in detail. First, this post-processing method generates a candidate character table by recognizing the simplest features of characters. Then, it selects words corresponding to the character from the candidate character table by referring to a word and grammar dictionary before selecting suitable words. If the correct character is included in the candidate character table, this process can correct an error, however, if the character is not included, it cannot correct an error. Therefore, if this method can presume a character does not exist in a candidate character table by using linguistic information (word and grammar dictionary). It then can verify a presumed character by character recognition using complex features. When this method is applied to an online character recognition system, the accuracy of character recognition improves 93.5% to 94.7%. This proved to be the case when it was used for the editorials of a Japanese newspaper (Asahi Shinbun).

  2. Face sketch recognition based on edge enhancement via deep learning

    NASA Astrophysics Data System (ADS)

    Xie, Zhenzhu; Yang, Fumeng; Zhang, Yuming; Wu, Congzhong

    2017-11-01

    In this paper,we address the face sketch recognition problem. Firstly, we utilize the eigenface algorithm to convert a sketch image into a synthesized sketch face image. Subsequently, considering the low-level vision problem in synthesized face sketch image .Super resolution reconstruction algorithm based on CNN(convolutional neural network) is employed to improve the visual effect. To be specific, we uses a lightweight super-resolution structure to learn a residual mapping instead of directly mapping the feature maps from the low-level space to high-level patch representations, which making the networks are easier to optimize and have lower computational complexity. Finally, we adopt LDA(Linear Discriminant Analysis) algorithm to realize face sketch recognition on synthesized face image before super resolution and after respectively. Extensive experiments on the face sketch database(CUFS) from CUHK demonstrate that the recognition rate of SVM(Support Vector Machine) algorithm improves from 65% to 69% and the recognition rate of LDA(Linear Discriminant Analysis) algorithm improves from 69% to 75%.What'more,the synthesized face image after super resolution can not only better describer image details such as hair ,nose and mouth etc, but also improve the recognition accuracy effectively.

  3. Recognition of facial emotion and perceived parental bonding styles in healthy volunteers and personality disorder patients.

    PubMed

    Zheng, Leilei; Chai, Hao; Chen, Wanzhen; Yu, Rongrong; He, Wei; Jiang, Zhengyan; Yu, Shaohua; Li, Huichun; Wang, Wei

    2011-12-01

    Early parental bonding experiences play a role in emotion recognition and expression in later adulthood, and patients with personality disorder frequently experience inappropriate parental bonding styles, therefore the aim of the present study was to explore whether parental bonding style is correlated with recognition of facial emotion in personality disorder patients. The Parental Bonding Instrument (PBI) and the Matsumoto and Ekman Japanese and Caucasian Facial Expressions of Emotion (JACFEE) photo set tests were carried out in 289 participants. Patients scored lower on parental Care but higher on parental Freedom Control and Autonomy Denial subscales, and they displayed less accuracy when recognizing contempt, disgust and happiness than the healthy volunteers. In healthy volunteers, maternal Autonomy Denial significantly predicted accuracy when recognizing fear, and maternal Care predicted the accuracy of recognizing sadness. In patients, paternal Care negatively predicted the accuracy of recognizing anger, paternal Freedom Control predicted the perceived intensity of contempt, maternal Care predicted the accuracy of recognizing sadness, and the intensity of disgust. Parenting bonding styles have an impact on the decoding process and sensitivity when recognizing facial emotions, especially in personality disorder patients. © 2011 The Authors. Psychiatry and Clinical Neurosciences © 2011 Japanese Society of Psychiatry and Neurology.

  4. Adult eyewitness memory and compliance: effects of post-event misinformation on memory for a negative event.

    PubMed

    Paz-Alonso, Pedro M; Goodman, Gail S; Ibabe, Izaskun

    2013-01-01

    This study investigated effects of misleading post-event information, delay, and centrality definition on eyewitness memory and suggestibility for a negative event (a vividly filmed murder). Either immediately or 2 weeks after viewing the film, 93 adults read a (misleading or control) narrative about the event and then completed a recognition memory test. Misinformation acceptance was operative, but strong evidence for memory malleability was lacking. Compliance predicted misinformation effects, especially on the delayed test. Although accuracy was generally higher for central than peripheral information, centrality criteria influenced the pattern of results. Self-report of greater distress was associated with better recognition accuracy. The results suggest that use of different centrality definitions may partly explain inconsistencies across studies of memory and suggestibility for central and peripheral information. Moreover, social factors appeared, at least in part, to influence misinformation effects for the highly negative event, especially as memory faded. Implications for eyewitness memory and suggestibility are discussed. Copyright © 2013 John Wiley & Sons, Ltd.

  5. User-Independent Motion State Recognition Using Smartphone Sensors

    PubMed Central

    Gu, Fuqiang; Kealy, Allison; Khoshelham, Kourosh; Shang, Jianga

    2015-01-01

    The recognition of locomotion activities (e.g., walking, running, still) is important for a wide range of applications like indoor positioning, navigation, location-based services, and health monitoring. Recently, there has been a growing interest in activity recognition using accelerometer data. However, when utilizing only acceleration-based features, it is difficult to differentiate varying vertical motion states from horizontal motion states especially when conducting user-independent classification. In this paper, we also make use of the newly emerging barometer built in modern smartphones, and propose a novel feature called pressure derivative from the barometer readings for user motion state recognition, which is proven to be effective for distinguishing vertical motion states and does not depend on specific users’ data. Seven types of motion states are defined and six commonly-used classifiers are compared. In addition, we utilize the motion state history and the characteristics of people’s motion to improve the classification accuracies of those classifiers. Experimental results show that by using the historical information and human’s motion characteristics, we can achieve user-independent motion state classification with an accuracy of up to 90.7%. In addition, we analyze the influence of the window size and smartphone pose on the accuracy. PMID:26690163

  6. User-Independent Motion State Recognition Using Smartphone Sensors.

    PubMed

    Gu, Fuqiang; Kealy, Allison; Khoshelham, Kourosh; Shang, Jianga

    2015-12-04

    The recognition of locomotion activities (e.g., walking, running, still) is important for a wide range of applications like indoor positioning, navigation, location-based services, and health monitoring. Recently, there has been a growing interest in activity recognition using accelerometer data. However, when utilizing only acceleration-based features, it is difficult to differentiate varying vertical motion states from horizontal motion states especially when conducting user-independent classification. In this paper, we also make use of the newly emerging barometer built in modern smartphones, and propose a novel feature called pressure derivative from the barometer readings for user motion state recognition, which is proven to be effective for distinguishing vertical motion states and does not depend on specific users' data. Seven types of motion states are defined and six commonly-used classifiers are compared. In addition, we utilize the motion state history and the characteristics of people's motion to improve the classification accuracies of those classifiers. Experimental results show that by using the historical information and human's motion characteristics, we can achieve user-independent motion state classification with an accuracy of up to 90.7%. In addition, we analyze the influence of the window size and smartphone pose on the accuracy.

  7. Smartphone Location-Independent Physical Activity Recognition Based on Transportation Natural Vibration Analysis.

    PubMed

    Hur, Taeho; Bang, Jaehun; Kim, Dohyeong; Banos, Oresti; Lee, Sungyoung

    2017-04-23

    Activity recognition through smartphones has been proposed for a variety of applications. The orientation of the smartphone has a significant effect on the recognition accuracy; thus, researchers generally propose using features invariant to orientation or displacement to achieve this goal. However, those features reduce the capability of the recognition system to differentiate among some specific commuting activities (e.g., bus and subway) that normally involve similar postures. In this work, we recognize those activities by analyzing the vibrations of the vehicle in which the user is traveling. We extract natural vibration features of buses and subways to distinguish between them and address the confusion that can arise because the activities are both static in terms of user movement. We use the gyroscope to fix the accelerometer to the direction of gravity to achieve an orientation-free use of the sensor. We also propose a correction algorithm to increase the accuracy when used in free living conditions and a battery saving algorithm to consume less power without reducing performance. Our experimental results show that the proposed system can adequately recognize each activity, yielding better accuracy in the detection of bus and subway activities than existing methods.

  8. Smartphone Location-Independent Physical Activity Recognition Based on Transportation Natural Vibration Analysis

    PubMed Central

    Hur, Taeho; Bang, Jaehun; Kim, Dohyeong; Banos, Oresti; Lee, Sungyoung

    2017-01-01

    Activity recognition through smartphones has been proposed for a variety of applications. The orientation of the smartphone has a significant effect on the recognition accuracy; thus, researchers generally propose using features invariant to orientation or displacement to achieve this goal. However, those features reduce the capability of the recognition system to differentiate among some specific commuting activities (e.g., bus and subway) that normally involve similar postures. In this work, we recognize those activities by analyzing the vibrations of the vehicle in which the user is traveling. We extract natural vibration features of buses and subways to distinguish between them and address the confusion that can arise because the activities are both static in terms of user movement. We use the gyroscope to fix the accelerometer to the direction of gravity to achieve an orientation-free use of the sensor. We also propose a correction algorithm to increase the accuracy when used in free living conditions and a battery saving algorithm to consume less power without reducing performance. Our experimental results show that the proposed system can adequately recognize each activity, yielding better accuracy in the detection of bus and subway activities than existing methods. PMID:28441743

  9. The Relationship between Emotion Recognition Ability and Social Skills in Young Children with Autism

    ERIC Educational Resources Information Center

    Williams, Beth T.; Gray, Kylie M.

    2013-01-01

    This study assessed the relationship between emotion recognition ability and social skills in 42 young children with autistic disorder aged 4-7 years. The analyses revealed that accuracy in recognition of sadness, but not happiness, anger or fear, was associated with higher ratings on the Vineland-II Socialization domain, above and beyond the…

  10. Metacognitive Processes in Emotion Recognition: Are They Different in Adults with Asperger's Disorder?

    ERIC Educational Resources Information Center

    Sawyer, Alyssa C. P.; Williamson, Paul; Young, Robyn

    2014-01-01

    Deficits in emotion recognition and social interaction characterize individuals with Asperger's Disorder (AS). Moreover they also appear to be less able to accurately use confidence to gauge their emotion recognition accuracy (i.e., metacognitive monitoring). The aim of this study was to extend this finding by considering both monitoring and…

  11. The Role of Experience and Contact in the Recognition of Faces of Own- and Other-Race Persons.

    ERIC Educational Resources Information Center

    Brigham, John C.; Malpass, Roy S.

    1985-01-01

    Reviews research which has demonstrated an own-race bias in recognition accuracy. Analyzes the impact of differential recognition on the criminal justice system, focusing on the construction of fair lineups and the likelihood of misidentification of innocent persons. Evaluates several explanations to account for this bias and relates findings to…

  12. Speech Recognition in Adults With Cochlear Implants: The Effects of Working Memory, Phonological Sensitivity, and Aging.

    PubMed

    Moberly, Aaron C; Harris, Michael S; Boyce, Lauren; Nittrouer, Susan

    2017-04-14

    Models of speech recognition suggest that "top-down" linguistic and cognitive functions, such as use of phonotactic constraints and working memory, facilitate recognition under conditions of degradation, such as in noise. The question addressed in this study was what happens to these functions when a listener who has experienced years of hearing loss obtains a cochlear implant. Thirty adults with cochlear implants and 30 age-matched controls with age-normal hearing underwent testing of verbal working memory using digit span and serial recall of words. Phonological capacities were assessed using a lexical decision task and nonword repetition. Recognition of words in sentences in speech-shaped noise was measured. Implant users had only slightly poorer working memory accuracy than did controls and only on serial recall of words; however, phonological sensitivity was highly impaired. Working memory did not facilitate speech recognition in noise for either group. Phonological sensitivity predicted sentence recognition for implant users but not for listeners with normal hearing. Clinical speech recognition outcomes for adult implant users relate to the ability of these users to process phonological information. Results suggest that phonological capacities may serve as potential clinical targets through rehabilitative training. Such novel interventions may be particularly helpful for older adult implant users.

  13. Speech Recognition in Adults With Cochlear Implants: The Effects of Working Memory, Phonological Sensitivity, and Aging

    PubMed Central

    Harris, Michael S.; Boyce, Lauren; Nittrouer, Susan

    2017-01-01

    Purpose Models of speech recognition suggest that “top-down” linguistic and cognitive functions, such as use of phonotactic constraints and working memory, facilitate recognition under conditions of degradation, such as in noise. The question addressed in this study was what happens to these functions when a listener who has experienced years of hearing loss obtains a cochlear implant. Method Thirty adults with cochlear implants and 30 age-matched controls with age-normal hearing underwent testing of verbal working memory using digit span and serial recall of words. Phonological capacities were assessed using a lexical decision task and nonword repetition. Recognition of words in sentences in speech-shaped noise was measured. Results Implant users had only slightly poorer working memory accuracy than did controls and only on serial recall of words; however, phonological sensitivity was highly impaired. Working memory did not facilitate speech recognition in noise for either group. Phonological sensitivity predicted sentence recognition for implant users but not for listeners with normal hearing. Conclusion Clinical speech recognition outcomes for adult implant users relate to the ability of these users to process phonological information. Results suggest that phonological capacities may serve as potential clinical targets through rehabilitative training. Such novel interventions may be particularly helpful for older adult implant users. PMID:28384805

  14. A general framework for face reconstruction using single still image based on 2D-to-3D transformation kernel.

    PubMed

    Fooprateepsiri, Rerkchai; Kurutach, Werasak

    2014-03-01

    Face authentication is a biometric classification method that verifies the identity of a user based on image of their face. Accuracy of the authentication is reduced when the pose, illumination and expression of the training face images are different than the testing image. The methods in this paper are designed to improve the accuracy of a features-based face recognition system when the pose between the input images and training images are different. First, an efficient 2D-to-3D integrated face reconstruction approach is introduced to reconstruct a personalized 3D face model from a single frontal face image with neutral expression and normal illumination. Second, realistic virtual faces with different poses are synthesized based on the personalized 3D face to characterize the face subspace. Finally, face recognition is conducted based on these representative virtual faces. Compared with other related works, this framework has the following advantages: (1) only one single frontal face is required for face recognition, which avoids the burdensome enrollment work; and (2) the synthesized face samples provide the capability to conduct recognition under difficult conditions like complex pose, illumination and expression. From the experimental results, we conclude that the proposed method improves the accuracy of face recognition by varying the pose, illumination and expression. Copyright © 2014 Elsevier Ireland Ltd. All rights reserved.

  15. Witnesses' blindness for their own facial recognition decisions: a field study.

    PubMed

    Sagana, Anna; Sauerland, Melanie; Merckelbach, Harald

    2013-01-01

    In a field study, we examined choice blindness for eyewitnesses' facial recognition decisions. Seventy-one pedestrians were engaged in a conversation by two experimenters who pretended to be tourists in the center of a European city. After a short interval, pedestrians were asked to identify the two experimenters from separate simultaneous six-person photo lineups. Following each of the two forced-choice recognition decisions, they were confronted with their selection and asked to motivate their decision. However, for one of the recognition decisions, the chosen lineup member was exchanged with a previously unidentified member. Blindness for this identity manipulation occurred at the rate of 40.8%. Furthermore, the detection rate varied as a function of similarity (high vs. low) between the original choice and the manipulated outcome. Finally, choice manipulations undermined the confidence-accuracy relation for detectors to a greater degree than for blind participants. Stimulus ambiguity is discussed as a moderator of choice blindness. Copyright © 2013 John Wiley & Sons, Ltd.

  16. Image Classification Using Biomimetic Pattern Recognition with Convolutional Neural Networks Features

    PubMed Central

    Huo, Guanying

    2017-01-01

    As a typical deep-learning model, Convolutional Neural Networks (CNNs) can be exploited to automatically extract features from images using the hierarchical structure inspired by mammalian visual system. For image classification tasks, traditional CNN models employ the softmax function for classification. However, owing to the limited capacity of the softmax function, there are some shortcomings of traditional CNN models in image classification. To deal with this problem, a new method combining Biomimetic Pattern Recognition (BPR) with CNNs is proposed for image classification. BPR performs class recognition by a union of geometrical cover sets in a high-dimensional feature space and therefore can overcome some disadvantages of traditional pattern recognition. The proposed method is evaluated on three famous image classification benchmarks, that is, MNIST, AR, and CIFAR-10. The classification accuracies of the proposed method for the three datasets are 99.01%, 98.40%, and 87.11%, respectively, which are much higher in comparison with the other four methods in most cases. PMID:28316614

  17. A Diffusion Model Analysis of Decision Biases Affecting Delayed Recognition of Emotional Stimuli

    PubMed Central

    Bowen, Holly J.; Spaniol, Julia; Patel, Ronak; Voss, Andreas

    2016-01-01

    Previous empirical work suggests that emotion can influence accuracy and cognitive biases underlying recognition memory, depending on the experimental conditions. The current study examines the effects of arousal and valence on delayed recognition memory using the diffusion model, which allows the separation of two decision biases thought to underlie memory: response bias and memory bias. Memory bias has not been given much attention in the literature but can provide insight into the retrieval dynamics of emotion modulated memory. Participants viewed emotional pictorial stimuli; half were given a recognition test 1-day later and the other half 7-days later. Analyses revealed that emotional valence generally evokes liberal responding, whereas high arousal evokes liberal responding only at a short retention interval. The memory bias analyses indicated that participants experienced greater familiarity with high-arousal compared to low-arousal items and this pattern became more pronounced as study-test lag increased; positive items evoke greater familiarity compared to negative and this pattern remained stable across retention interval. The findings provide insight into the separate contributions of valence and arousal to the cognitive mechanisms underlying delayed emotion modulated memory. PMID:26784108

  18. Combining color and shape information for illumination-viewpoint invariant object recognition.

    PubMed

    Diplaros, Aristeidis; Gevers, Theo; Patras, Ioannis

    2006-01-01

    In this paper, we propose a new scheme that merges color- and shape-invariant information for object recognition. To obtain robustness against photometric changes, color-invariant derivatives are computed first. Color invariance is an important aspect of any object recognition scheme, as color changes considerably with the variation in illumination, object pose, and camera viewpoint. These color invariant derivatives are then used to obtain similarity invariant shape descriptors. Shape invariance is equally important as, under a change in camera viewpoint and object pose, the shape of a rigid object undergoes a perspective projection on the image plane. Then, the color and shape invariants are combined in a multidimensional color-shape context which is subsequently used as an index. As the indexing scheme makes use of a color-shape invariant context, it provides a high-discriminative information cue robust against varying imaging conditions. The matching function of the color-shape context allows for fast recognition, even in the presence of object occlusion and cluttering. From the experimental results, it is shown that the method recognizes rigid objects with high accuracy in 3-D complex scenes and is robust against changing illumination, camera viewpoint, object pose, and noise.

  19. Fast Face-Recognition Optical Parallel Correlator Using High Accuracy Correlation Filter

    NASA Astrophysics Data System (ADS)

    Watanabe, Eriko; Kodate, Kashiko

    2005-11-01

    We designed and fabricated a fully automatic fast face recognition optical parallel correlator [E. Watanabe and K. Kodate: Appl. Opt. 44 (2005) 5666] based on the VanderLugt principle. The implementation of an as-yet unattained ultra high-speed system was aided by reconfiguring the system to make it suitable for easier parallel processing, as well as by composing a higher accuracy correlation filter and high-speed ferroelectric liquid crystal-spatial light modulator (FLC-SLM). In running trial experiments using this system (dubbed FARCO), we succeeded in acquiring remarkably low error rates of 1.3% for false match rate (FMR) and 2.6% for false non-match rate (FNMR). Given the results of our experiments, the aim of this paper is to examine methods of designing correlation filters and arranging database image arrays for even faster parallel correlation, underlining the issues of calculation technique, quantization bit rate, pixel size and shift from optical axis. The correlation filter has proved its excellent performance and higher precision than classical correlation and joint transform correlator (JTC). Moreover, arrangement of multi-object reference images leads to 10-channel correlation signals, as sharply marked as those of a single channel. This experiment result demonstrates great potential for achieving the process speed of 10000 face/s.

  20. Extraction of Prostatic Lumina and Automated Recognition for Prostatic Calculus Image Using PCA-SVM

    PubMed Central

    Wang, Zhuocai; Xu, Xiangmin; Ding, Xiaojun; Xiao, Hui; Huang, Yusheng; Liu, Jian; Xing, Xiaofen; Wang, Hua; Liao, D. Joshua

    2011-01-01

    Identification of prostatic calculi is an important basis for determining the tissue origin. Computation-assistant diagnosis of prostatic calculi may have promising potential but is currently still less studied. We studied the extraction of prostatic lumina and automated recognition for calculus images. Extraction of lumina from prostate histology images was based on local entropy and Otsu threshold recognition using PCA-SVM and based on the texture features of prostatic calculus. The SVM classifier showed an average time 0.1432 second, an average training accuracy of 100%, an average test accuracy of 93.12%, a sensitivity of 87.74%, and a specificity of 94.82%. We concluded that the algorithm, based on texture features and PCA-SVM, can recognize the concentric structure and visualized features easily. Therefore, this method is effective for the automated recognition of prostatic calculi. PMID:21461364

  1. Reversing the picture superiority effect: a speed-accuracy trade-off study of recognition memory.

    PubMed

    Boldini, Angela; Russo, Riccardo; Punia, Sahiba; Avons, S E

    2007-01-01

    Speed-accuracy trade-off methods have been used to contrast single- and dual-process accounts of recognition memory. With these procedures, subjects are presented with individual test items and required to make recognition decisions under various time constraints. In three experiments, we presented words and pictures to be intentionally learned; test stimuli were always visually presented words. At test, we manipulated the interval between the presentation of each test stimulus and that of a response signal, thus controlling the amount of time available to retrieve target information. The standard picture superiority effect was significant in long response deadline conditions (i.e., > or = 2,000 msec). Conversely, a significant reverse picture superiority effect emerged at short response-signal deadlines (< 200 msec). The results are congruent with views suggesting that both fast familiarity and slower recollection processes contribute to recognition memory. Alternative accounts are also discussed.

  2. Unaware person recognition from the body when face identification fails.

    PubMed

    Rice, Allyson; Phillips, P Jonathon; Natu, Vaidehi; An, Xiaobo; O'Toole, Alice J

    2013-11-01

    How does one recognize a person when face identification fails? Here, we show that people rely on the body but are unaware of doing so. State-of-the-art face-recognition algorithms were used to select images of people with almost no useful identity information in the face. Recognition of the face alone in these cases was near chance level, but recognition of the person was accurate. Accuracy in identifying the person without the face was identical to that in identifying the whole person. Paradoxically, people reported relying heavily on facial features over noninternal face and body features in making their identity decisions. Eye movements indicated otherwise, with gaze duration and fixations shifting adaptively toward the body and away from the face when the body was a better indicator of identity than the face. This shift occurred with no cost to accuracy or response time. Human identity processing may be partially inaccessible to conscious awareness.

  3. The influence of emotion on keyboard typing: an experimental study using visual stimuli.

    PubMed

    Lee, Po-Ming; Tsui, Wei-Hsuan; Hsiao, Tzu-Chien

    2014-06-20

    Emotion recognition technology plays the essential role of enhancement in Human-Computer Interaction (HCI). In recent years, a novel approach for emotion recognition has been reported, which is by keystroke dynamics. This approach can be considered to be rather desirable in HCI because the data used is rather non-intrusive and easy to obtain. However, there were only limited investigations about the phenomenon itself in previous studies. This study aims to examine the source of variance in keystroke typing patterns caused by emotions. A controlled experiment to collect subjects' keystroke data in different emotional states induced by International Affective Picture System (IAPS) was conducted. Two-way Valence (3) × Arousal (3) ANOVAs were used to examine the collected dataset. The results of the experiment indicate that the effect of emotion is significant (p<.001) in the keystroke duration, keystroke latency, and accuracy rate of the keyboard typing. However, the size of the emotional effect is small, compare to the individual variability. Our findings support the conclusion that the keystroke duration, keystroke latency, and also the accuracy rate of typing, are influenced by emotional states. Notably, the finding about the size of effect suggests that the accuracy rate of the emotion recognition could be further improved if personalized models are utilized. On the other hand, the finding also provides an explanation of why real-world applications which authenticate the identity of users by monitoring keystrokes may not be interfered by the emotional states of users. The experiment was conducted using standard instruments and hence is expected to be highly reproducible.

  4. Comparing supervised learning techniques on the task of physical activity recognition.

    PubMed

    Dalton, A; OLaighin, G

    2013-01-01

    The objective of this study was to compare the performance of base-level and meta-level classifiers on the task of physical activity recognition. Five wireless kinematic sensors were attached to each subject (n = 25) while they completed a range of basic physical activities in a controlled laboratory setting. Subjects were then asked to carry out similar self-annotated physical activities in a random order and in an unsupervised environment. A combination of time-domain and frequency-domain features were extracted from the sensor data including the first four central moments, zero-crossing rate, average magnitude, sensor cross-correlation, sensor auto-correlation, spectral entropy and dominant frequency components. A reduced feature set was generated using a wrapper subset evaluation technique with a linear forward search and this feature set was employed for classifier comparison. The meta-level classifier AdaBoostM1 with C4.5 Graft as its base-level classifier achieved an overall accuracy of 95%. Equal sized datasets of subject independent data and subject dependent data were used to train this classifier and high recognition rates could be achieved without the need for user specific training. Furthermore, it was found that an accuracy of 88% could be achieved using data from the ankle and wrist sensors only.

  5. Bilinear Convolutional Neural Networks for Fine-grained Visual Recognition.

    PubMed

    Lin, Tsung-Yu; RoyChowdhury, Aruni; Maji, Subhransu

    2017-07-04

    We present a simple and effective architecture for fine-grained recognition called Bilinear Convolutional Neural Networks (B-CNNs). These networks represent an image as a pooled outer product of features derived from two CNNs and capture localized feature interactions in a translationally invariant manner. B-CNNs are related to orderless texture representations built on deep features but can be trained in an end-to-end manner. Our most accurate model obtains 84.1%, 79.4%, 84.5% and 91.3% per-image accuracy on the Caltech-UCSD birds [66], NABirds [63], FGVC aircraft [42], and Stanford cars [33] dataset respectively and runs at 30 frames-per-second on a NVIDIA Titan X GPU. We then present a systematic analysis of these networks and show that (1) the bilinear features are highly redundant and can be reduced by an order of magnitude in size without significant loss in accuracy, (2) are also effective for other image classification tasks such as texture and scene recognition, and (3) can be trained from scratch on the ImageNet dataset offering consistent improvements over the baseline architecture. Finally, we present visualizations of these models on various datasets using top activations of neural units and gradient-based inversion techniques. The source code for the complete system is available at http://vis-www.cs.umass.edu/bcnn.

  6. Are Teachers' Implicit Theories of Creativity Related to the Recognition of Their Students' Creativity?

    ERIC Educational Resources Information Center

    Gralewski, Jacek; Karwowski, Maciej

    2018-01-01

    We examine the structure of implicit theories of creativity among Polish high schools teachers and the role those theories play for the accuracy of teachers' assessment of their students' creativity. Latent class analysis revealed the existence of four classes of teachers, whose perception of a creative student differed: two of these classes…

  7. Competitive Deep-Belief Networks for Underwater Acoustic Target Recognition

    PubMed Central

    Shen, Sheng; Yao, Xiaohui; Sheng, Meiping; Wang, Chen

    2018-01-01

    Underwater acoustic target recognition based on ship-radiated noise belongs to the small-sample-size recognition problems. A competitive deep-belief network is proposed to learn features with more discriminative information from labeled and unlabeled samples. The proposed model consists of four stages: (1) A standard restricted Boltzmann machine is pretrained using a large number of unlabeled data to initialize its parameters; (2) the hidden units are grouped according to categories, which provides an initial clustering model for competitive learning; (3) competitive training and back-propagation algorithms are used to update the parameters to accomplish the task of clustering; (4) by applying layer-wise training and supervised fine-tuning, a deep neural network is built to obtain features. Experimental results show that the proposed method can achieve classification accuracy of 90.89%, which is 8.95% higher than the accuracy obtained by the compared methods. In addition, the highest accuracy of our method is obtained with fewer features than other methods. PMID:29570642

  8. Crop species recognition and mensuration in the Sacramento Valley

    NASA Technical Reports Server (NTRS)

    Thomson, F. J.

    1973-01-01

    The goal of the second recognition map was to delineate various crop species in a portion of the Sacramento Valley, and at the same time to determine how accurately each could be classified and measured from ERTS-1 data. The new recognition map, a new and concise display of the old map, and classification and mensuration accuracy data are presented and discussed. The mensuration accuracy, in particular, is affected by the presence of an edge effect one resolution wide surrounding nearly all fields. Points on the edge are misclassified because they contain a mixture of, crop and bare soil. Using a processing technique to estimate the proportions of unresolved objects in this edge region, a much improved mensuration capability will be demonstrated.

  9. Face Recognition Is Affected by Similarity in Spatial Frequency Range to a Greater Degree Than Within-Category Object Recognition

    ERIC Educational Resources Information Center

    Collin, Charles A.; Liu, Chang Hong; Troje, Nikolaus F.; McMullen, Patricia A.; Chaudhuri, Avi

    2004-01-01

    Previous studies have suggested that face identification is more sensitive to variations in spatial frequency content than object recognition, but none have compared how sensitive the 2 processes are to variations in spatial frequency overlap (SFO). The authors tested face and object matching accuracy under varying SFO conditions. Their results…

  10. Facial and prosodic emotion recognition in social anxiety disorder.

    PubMed

    Tseng, Huai-Hsuan; Huang, Yu-Lien; Chen, Jian-Ting; Liang, Kuei-Yu; Lin, Chao-Cheng; Chen, Sue-Huei

    2017-07-01

    Patients with social anxiety disorder (SAD) have a cognitive preference to negatively evaluate emotional information. In particular, the preferential biases in prosodic emotion recognition in SAD have been much less explored. The present study aims to investigate whether SAD patients retain negative evaluation biases across visual and auditory modalities when given sufficient response time to recognise emotions. Thirty-one SAD patients and 31 age- and gender-matched healthy participants completed a culturally suitable non-verbal emotion recognition task and received clinical assessments for social anxiety and depressive symptoms. A repeated measures analysis of variance was conducted to examine group differences in emotion recognition. Compared to healthy participants, SAD patients were significantly less accurate at recognising facial and prosodic emotions, and spent more time on emotion recognition. The differences were mainly driven by the lower accuracy and longer reaction times for recognising fearful emotions in SAD patients. Within the SAD patients, lower accuracy of sad face recognition was associated with higher severity of depressive and social anxiety symptoms, particularly with avoidance symptoms. These findings may represent a cross-modality pattern of avoidance in the later stage of identifying negative emotions in SAD. This pattern may be linked to clinical symptom severity.

  11. Visual communication with Haitian women: a look at pictorial literacy.

    PubMed

    Gustafson, M B

    1986-06-01

    A study of village women in Haiti which presents baseline data from their responses to stylized health education pictures is reported. The study questioned the concept that pictorial messages were accurately recognized and self-explanatory to nonliterate Haitian village women. The investigator, who used a descriptive survey, sought answers to a major and a related question: what do nonliterate Haitian village women recognize in selected health education pictures; and are their differences in picture recognition traceable to the complexity of the pictures. There were 110 women (25 from a mountain village, 25 from a plains village, 25 from a seacoast village, and 35 urban dwellers) who responded to 9 health education pictures. The women ranged in age from 18-80 years of age; 32 (29%) had gone to school for a range of an "unknown time" to 8 years. 47% of those who had gone to school indicated that they could read. The investigator rated the verbatim responses to the pictures for accuracy as: accurate, overinclusive, underinclusive, inaccurate, and do not know. The quantitative analysis of this data revealed that the accuracy levels decreased as the complexity level increased. This is best shown in the 129 (39%) accurate responses in the low level; 6 (1.8%) in the moderate level; and no accurate responses in the high complexity level. An unexpected finding was the highest number of inaccurate responses (n = 83, 25.1%) found in the low complexity level, while the moderate and high levels both showed 36 (10.8%). In addition to the differences in accuracy in picture recognition based on picture complexity, there were significant differences on the chi-square test which confirmed the assertion of the question that picture recognition is traceable to the complexity of the picture. These findings are consistent with the picture complexity studies of Holmes, Jelliffe, and Kwansa.

  12. Voice Identification: Levels-of-Processing and the Relationship between Prior Description Accuracy and Recognition Accuracy.

    ERIC Educational Resources Information Center

    Walter, Todd J.

    A study examined whether a person's ability to accurately identify a voice is influenced by factors similar to those proposed by the Supreme Court for eyewitness identification accuracy. In particular, the Supreme Court has suggested that a person's prior description accuracy of a suspect, degree of attention to a suspect, and confidence in…

  13. Rapid induction of false memory for pictures.

    PubMed

    Weinstein, Yana; Shanks, David R

    2010-07-01

    Recognition of pictures is typically extremely accurate, and it is thus unclear whether the reconstructive nature of memory can yield substantial false recognition of highly individuated stimuli. A procedure for the rapid induction of false memories for distinctive colour photographs is proposed. Participants studied a set of object pictures followed by a list of words naming those objects, but embedded in the list were names of unseen objects. When subsequently shown full colour pictures of these unseen objects, participants consistently claimed that they had seen them, while discriminating with high accuracy between studied pictures and new pictures whose names did not appear in the misleading word list. These false memories can be reported with high confidence as well as the feeling of recollection. This new procedure allows the investigation of factors that influence false memory reports with ecologically valid stimuli and of the similarities and differences between true and false memories.

  14. HOTS: A Hierarchy of Event-Based Time-Surfaces for Pattern Recognition.

    PubMed

    Lagorce, Xavier; Orchard, Garrick; Galluppi, Francesco; Shi, Bertram E; Benosman, Ryad B

    2017-07-01

    This paper describes novel event-based spatio-temporal features called time-surfaces and how they can be used to create a hierarchical event-based pattern recognition architecture. Unlike existing hierarchical architectures for pattern recognition, the presented model relies on a time oriented approach to extract spatio-temporal features from the asynchronously acquired dynamics of a visual scene. These dynamics are acquired using biologically inspired frameless asynchronous event-driven vision sensors. Similarly to cortical structures, subsequent layers in our hierarchy extract increasingly abstract features using increasingly large spatio-temporal windows. The central concept is to use the rich temporal information provided by events to create contexts in the form of time-surfaces which represent the recent temporal activity within a local spatial neighborhood. We demonstrate that this concept can robustly be used at all stages of an event-based hierarchical model. First layer feature units operate on groups of pixels, while subsequent layer feature units operate on the output of lower level feature units. We report results on a previously published 36 class character recognition task and a four class canonical dynamic card pip task, achieving near 100 percent accuracy on each. We introduce a new seven class moving face recognition task, achieving 79 percent accuracy.This paper describes novel event-based spatio-temporal features called time-surfaces and how they can be used to create a hierarchical event-based pattern recognition architecture. Unlike existing hierarchical architectures for pattern recognition, the presented model relies on a time oriented approach to extract spatio-temporal features from the asynchronously acquired dynamics of a visual scene. These dynamics are acquired using biologically inspired frameless asynchronous event-driven vision sensors. Similarly to cortical structures, subsequent layers in our hierarchy extract increasingly abstract features using increasingly large spatio-temporal windows. The central concept is to use the rich temporal information provided by events to create contexts in the form of time-surfaces which represent the recent temporal activity within a local spatial neighborhood. We demonstrate that this concept can robustly be used at all stages of an event-based hierarchical model. First layer feature units operate on groups of pixels, while subsequent layer feature units operate on the output of lower level feature units. We report results on a previously published 36 class character recognition task and a four class canonical dynamic card pip task, achieving near 100 percent accuracy on each. We introduce a new seven class moving face recognition task, achieving 79 percent accuracy.

  15. Multitasking During Degraded Speech Recognition in School-Age Children

    PubMed Central

    Ward, Kristina M.; Brehm, Laurel

    2017-01-01

    Multitasking requires individuals to allocate their cognitive resources across different tasks. The purpose of the current study was to assess school-age children’s multitasking abilities during degraded speech recognition. Children (8 to 12 years old) completed a dual-task paradigm including a sentence recognition (primary) task containing speech that was either unprocessed or noise-band vocoded with 8, 6, or 4 spectral channels and a visual monitoring (secondary) task. Children’s accuracy and reaction time on the visual monitoring task was quantified during the dual-task paradigm in each condition of the primary task and compared with single-task performance. Children experienced dual-task costs in the 6- and 4-channel conditions of the primary speech recognition task with decreased accuracy on the visual monitoring task relative to baseline performance. In all conditions, children’s dual-task performance on the visual monitoring task was strongly predicted by their single-task (baseline) performance on the task. Results suggest that children’s proficiency with the secondary task contributes to the magnitude of dual-task costs while multitasking during degraded speech recognition. PMID:28105890

  16. Location-Enhanced Activity Recognition in Indoor Environments Using Off the Shelf Smart Watch Technology and BLE Beacons

    PubMed Central

    Filippoupolitis, Avgoustinos; Oliff, William; Takand, Babak; Loukas, George

    2017-01-01

    Activity recognition in indoor spaces benefits context awareness and improves the efficiency of applications related to personalised health monitoring, building energy management, security and safety. The majority of activity recognition frameworks, however, employ a network of specialised building sensors or a network of body-worn sensors. As this approach suffers with respect to practicality, we propose the use of commercial off-the-shelf devices. In this work, we design and evaluate an activity recognition system composed of a smart watch, which is enhanced with location information coming from Bluetooth Low Energy (BLE) beacons. We evaluate the performance of this approach for a variety of activities performed in an indoor laboratory environment, using four supervised machine learning algorithms. Our experimental results indicate that our location-enhanced activity recognition system is able to reach a classification accuracy ranging from 92% to 100%, while without location information classification accuracy it can drop to as low as 50% in some cases, depending on the window size chosen for data segmentation. PMID:28555022

  17. Multitasking During Degraded Speech Recognition in School-Age Children.

    PubMed

    Grieco-Calub, Tina M; Ward, Kristina M; Brehm, Laurel

    2017-01-01

    Multitasking requires individuals to allocate their cognitive resources across different tasks. The purpose of the current study was to assess school-age children's multitasking abilities during degraded speech recognition. Children (8 to 12 years old) completed a dual-task paradigm including a sentence recognition (primary) task containing speech that was either unprocessed or noise-band vocoded with 8, 6, or 4 spectral channels and a visual monitoring (secondary) task. Children's accuracy and reaction time on the visual monitoring task was quantified during the dual-task paradigm in each condition of the primary task and compared with single-task performance. Children experienced dual-task costs in the 6- and 4-channel conditions of the primary speech recognition task with decreased accuracy on the visual monitoring task relative to baseline performance. In all conditions, children's dual-task performance on the visual monitoring task was strongly predicted by their single-task (baseline) performance on the task. Results suggest that children's proficiency with the secondary task contributes to the magnitude of dual-task costs while multitasking during degraded speech recognition.

  18. Classifier dependent feature preprocessing methods

    NASA Astrophysics Data System (ADS)

    Rodriguez, Benjamin M., II; Peterson, Gilbert L.

    2008-04-01

    In mobile applications, computational complexity is an issue that limits sophisticated algorithms from being implemented on these devices. This paper provides an initial solution to applying pattern recognition systems on mobile devices by combining existing preprocessing algorithms for recognition. In pattern recognition systems, it is essential to properly apply feature preprocessing tools prior to training classification models in an attempt to reduce computational complexity and improve the overall classification accuracy. The feature preprocessing tools extended for the mobile environment are feature ranking, feature extraction, data preparation and outlier removal. Most desktop systems today are capable of processing a majority of the available classification algorithms without concern of processing while the same is not true on mobile platforms. As an application of pattern recognition for mobile devices, the recognition system targets the problem of steganalysis, determining if an image contains hidden information. The measure of performance shows that feature preprocessing increases the overall steganalysis classification accuracy by an average of 22%. The methods in this paper are tested on a workstation and a Nokia 6620 (Symbian operating system) camera phone with similar results.

  19. Recognition of emotion from body language among patients with unipolar depression

    PubMed Central

    Loi, Felice; Vaidya, Jatin G.; Paradiso, Sergio

    2013-01-01

    Major depression may be associated with abnormal perception of emotions and impairment in social adaptation. Emotion recognition from body language and its possible implications to social adjustment have not been examined in patients with depression. Three groups of participants (51 with depression; 68 with history of depression in remission; and 69 never depressed healthy volunteers) were compared on static and dynamic tasks of emotion recognition from body language. Psychosocial adjustment was assessed using the Social Adjustment Scale Self-Report (SAS-SR). Participants with current depression showed reduced recognition accuracy for happy stimuli across tasks relative to remission and comparison participants. Participants with depression tended to show poorer psychosocial adaptation relative to remission and comparison groups. Correlations between perception accuracy of happiness and scores on the SAS-SR were largely not significant. These results indicate that depression is associated with reduced ability to appraise positive stimuli of emotional body language but emotion recognition performance is not tied to social adjustment. These alterations do not appear to be present in participants in remission suggesting state-like qualities. PMID:23608159

  20. Application of image recognition-based automatic hyphae detection in fungal keratitis.

    PubMed

    Wu, Xuelian; Tao, Yuan; Qiu, Qingchen; Wu, Xinyi

    2018-03-01

    The purpose of this study is to evaluate the accuracy of two methods in diagnosis of fungal keratitis, whereby one method is automatic hyphae detection based on images recognition and the other method is corneal smear. We evaluate the sensitivity and specificity of the method in diagnosis of fungal keratitis, which is automatic hyphae detection based on image recognition. We analyze the consistency of clinical symptoms and the density of hyphae, and perform quantification using the method of automatic hyphae detection based on image recognition. In our study, 56 cases with fungal keratitis (just single eye) and 23 cases with bacterial keratitis were included. All cases underwent the routine inspection of slit lamp biomicroscopy, corneal smear examination, microorganism culture and the assessment of in vivo confocal microscopy images before starting medical treatment. Then, we recognize the hyphae images of in vivo confocal microscopy by using automatic hyphae detection based on image recognition to evaluate its sensitivity and specificity and compare with the method of corneal smear. The next step is to use the index of density to assess the severity of infection, and then find the correlation with the patients' clinical symptoms and evaluate consistency between them. The accuracy of this technology was superior to corneal smear examination (p < 0.05). The sensitivity of the technology of automatic hyphae detection of image recognition was 89.29%, and the specificity was 95.65%. The area under the ROC curve was 0.946. The correlation coefficient between the grading of the severity in the fungal keratitis by the automatic hyphae detection based on image recognition and the clinical grading is 0.87. The technology of automatic hyphae detection based on image recognition was with high sensitivity and specificity, able to identify fungal keratitis, which is better than the method of corneal smear examination. This technology has the advantages when compared with the conventional artificial identification of confocal microscope corneal images, of being accurate, stable and does not rely on human expertise. It was the most useful to the medical experts who are not familiar with fungal keratitis. The technology of automatic hyphae detection based on image recognition can quantify the hyphae density and grade this property. Being noninvasive, it can provide an evaluation criterion to fungal keratitis in a timely, accurate, objective and quantitative manner.

  1. Incongruence Between Observers’ and Observed Facial Muscle Activation Reduces Recognition of Emotional Facial Expressions From Video Stimuli

    PubMed Central

    Wingenbach, Tanja S. H.; Brosnan, Mark; Pfaltz, Monique C.; Plichta, Michael M.; Ashwin, Chris

    2018-01-01

    According to embodied cognition accounts, viewing others’ facial emotion can elicit the respective emotion representation in observers which entails simulations of sensory, motor, and contextual experiences. In line with that, published research found viewing others’ facial emotion to elicit automatic matched facial muscle activation, which was further found to facilitate emotion recognition. Perhaps making congruent facial muscle activity explicit produces an even greater recognition advantage. If there is conflicting sensory information, i.e., incongruent facial muscle activity, this might impede recognition. The effects of actively manipulating facial muscle activity on facial emotion recognition from videos were investigated across three experimental conditions: (a) explicit imitation of viewed facial emotional expressions (stimulus-congruent condition), (b) pen-holding with the lips (stimulus-incongruent condition), and (c) passive viewing (control condition). It was hypothesised that (1) experimental condition (a) and (b) result in greater facial muscle activity than (c), (2) experimental condition (a) increases emotion recognition accuracy from others’ faces compared to (c), (3) experimental condition (b) lowers recognition accuracy for expressions with a salient facial feature in the lower, but not the upper face area, compared to (c). Participants (42 males, 42 females) underwent a facial emotion recognition experiment (ADFES-BIV) while electromyography (EMG) was recorded from five facial muscle sites. The experimental conditions’ order was counter-balanced. Pen-holding caused stimulus-incongruent facial muscle activity for expressions with facial feature saliency in the lower face region, which reduced recognition of lower face region emotions. Explicit imitation caused stimulus-congruent facial muscle activity without modulating recognition. Methodological implications are discussed. PMID:29928240

  2. Incongruence Between Observers' and Observed Facial Muscle Activation Reduces Recognition of Emotional Facial Expressions From Video Stimuli.

    PubMed

    Wingenbach, Tanja S H; Brosnan, Mark; Pfaltz, Monique C; Plichta, Michael M; Ashwin, Chris

    2018-01-01

    According to embodied cognition accounts, viewing others' facial emotion can elicit the respective emotion representation in observers which entails simulations of sensory, motor, and contextual experiences. In line with that, published research found viewing others' facial emotion to elicit automatic matched facial muscle activation, which was further found to facilitate emotion recognition. Perhaps making congruent facial muscle activity explicit produces an even greater recognition advantage. If there is conflicting sensory information, i.e., incongruent facial muscle activity, this might impede recognition. The effects of actively manipulating facial muscle activity on facial emotion recognition from videos were investigated across three experimental conditions: (a) explicit imitation of viewed facial emotional expressions (stimulus-congruent condition), (b) pen-holding with the lips (stimulus-incongruent condition), and (c) passive viewing (control condition). It was hypothesised that (1) experimental condition (a) and (b) result in greater facial muscle activity than (c), (2) experimental condition (a) increases emotion recognition accuracy from others' faces compared to (c), (3) experimental condition (b) lowers recognition accuracy for expressions with a salient facial feature in the lower, but not the upper face area, compared to (c). Participants (42 males, 42 females) underwent a facial emotion recognition experiment (ADFES-BIV) while electromyography (EMG) was recorded from five facial muscle sites. The experimental conditions' order was counter-balanced. Pen-holding caused stimulus-incongruent facial muscle activity for expressions with facial feature saliency in the lower face region, which reduced recognition of lower face region emotions. Explicit imitation caused stimulus-congruent facial muscle activity without modulating recognition. Methodological implications are discussed.

  3. Spatial-frequency cutoff requirements for pattern recognition in central and peripheral vision

    PubMed Central

    Kwon, MiYoung; Legge, Gordon E.

    2011-01-01

    It is well known that object recognition requires spatial frequencies exceeding some critical cutoff value. People with central scotomas who rely on peripheral vision have substantial difficulty with reading and face recognition. Deficiencies of pattern recognition in peripheral vision, might result in higher cutoff requirements, and may contribute to the functional problems of people with central-field loss. Here we asked about differences in spatial-cutoff requirements in central and peripheral vision for letter and face recognition. The stimuli were the 26 letters of the English alphabet and 26 celebrity faces. Each image was blurred using a low-pass filter in the spatial frequency domain. Critical cutoffs (defined as the minimum low-pass filter cutoff yielding 80% accuracy) were obtained by measuring recognition accuracy as a function of cutoff (in cycles per object). Our data showed that critical cutoffs increased from central to peripheral vision by 20% for letter recognition and by 50% for face recognition. We asked whether these differences could be accounted for by central/peripheral differences in the contrast sensitivity function (CSF). We addressed this question by implementing an ideal-observer model which incorporates empirical CSF measurements and tested the model on letter and face recognition. The success of the model indicates that central/peripheral differences in the cutoff requirements for letter and face recognition can be accounted for by the information content of the stimulus limited by the shape of the human CSF, combined with a source of internal noise and followed by an optimal decision rule. PMID:21854800

  4. Effective Prediction of Errors by Non-native Speakers Using Decision Tree for Speech Recognition-Based CALL System

    NASA Astrophysics Data System (ADS)

    Wang, Hongcui; Kawahara, Tatsuya

    CALL (Computer Assisted Language Learning) systems using ASR (Automatic Speech Recognition) for second language learning have received increasing interest recently. However, it still remains a challenge to achieve high speech recognition performance, including accurate detection of erroneous utterances by non-native speakers. Conventionally, possible error patterns, based on linguistic knowledge, are added to the lexicon and language model, or the ASR grammar network. However, this approach easily falls in the trade-off of coverage of errors and the increase of perplexity. To solve the problem, we propose a method based on a decision tree to learn effective prediction of errors made by non-native speakers. An experimental evaluation with a number of foreign students learning Japanese shows that the proposed method can effectively generate an ASR grammar network, given a target sentence, to achieve both better coverage of errors and smaller perplexity, resulting in significant improvement in ASR accuracy.

  5. A modified active appearance model based on an adaptive artificial bee colony.

    PubMed

    Abdulameer, Mohammed Hasan; Sheikh Abdullah, Siti Norul Huda; Othman, Zulaiha Ali

    2014-01-01

    Active appearance model (AAM) is one of the most popular model-based approaches that have been extensively used to extract features by highly accurate modeling of human faces under various physical and environmental circumstances. However, in such active appearance model, fitting the model with original image is a challenging task. State of the art shows that optimization method is applicable to resolve this problem. However, another common problem is applying optimization. Hence, in this paper we propose an AAM based face recognition technique, which is capable of resolving the fitting problem of AAM by introducing a new adaptive ABC algorithm. The adaptation increases the efficiency of fitting as against the conventional ABC algorithm. We have used three datasets: CASIA dataset, property 2.5D face dataset, and UBIRIS v1 images dataset in our experiments. The results have revealed that the proposed face recognition technique has performed effectively, in terms of accuracy of face recognition.

  6. Secure Recognition of Voice-Less Commands Using Videos

    NASA Astrophysics Data System (ADS)

    Yau, Wai Chee; Kumar, Dinesh Kant; Weghorn, Hans

    Interest in voice recognition technologies for internet applications is growing due to the flexibility of speech-based communication. The major drawback with the use of sound for internet access with computers is that the commands will be audible to other people in the vicinity. This paper examines a secure and voice-less method for recognition of speech-based commands using video without evaluating sound signals. The proposed approach represents mouth movements in the video data using 2D spatio-temporal templates (STT). Zernike moments (ZM) are computed from STT and fed into support vector machines (SVM) to be classified into one of the utterances. The experimental results demonstrate that the proposed technique produces a high accuracy of 98% in a phoneme classification task. The proposed technique is demonstrated to be invariant to global variations of illumination level. Such a system is useful for securely interpreting user commands for internet applications on mobile devices.

  7. Shape analysis modeling for character recognition

    NASA Astrophysics Data System (ADS)

    Khan, Nadeem A. M.; Hegt, Hans A.

    1998-10-01

    Optimal shape modeling of character-classes is crucial for achieving high performance on recognition of mixed-font, hand-written or (and) poor quality text. A novel scheme is presented in this regard focusing on constructing such structural models that can be hierarchically examined. These models utilize a certain `well-thought' set of shape primitives. They are simplified enough to ignore the inter- class variations in font-type or writing style yet retaining enough details for discrimination between the samples of the similar classes. Thus the number of models per class required can be kept minimal without sacrificing the recognition accuracy. In this connection a flexible multi- stage matching scheme exploiting the proposed modeling is also described. This leads to a system which is robust against various distortions and degradation including those related to cases of touching and broken characters. Finally, we present some examples and test results as a proof-of- concept demonstrating the validity and the robustness of the approach.

  8. Identity Recognition Algorithm Using Improved Gabor Feature Selection of Gait Energy Image

    NASA Astrophysics Data System (ADS)

    Chao, LIANG; Ling-yao, JIA; Dong-cheng, SHI

    2017-01-01

    This paper describes an effective gait recognition approach based on Gabor features of gait energy image. In this paper, the kernel Fisher analysis combined with kernel matrix is proposed to select dominant features. The nearest neighbor classifier based on whitened cosine distance is used to discriminate different gait patterns. The approach proposed is tested on the CASIA and USF gait databases. The results show that our approach outperforms other state of gait recognition approaches in terms of recognition accuracy and robustness.

  9. High-speed railway real-time localization auxiliary method based on deep neural network

    NASA Astrophysics Data System (ADS)

    Chen, Dongjie; Zhang, Wensheng; Yang, Yang

    2017-11-01

    High-speed railway intelligent monitoring and management system is composed of schedule integration, geographic information, location services, and data mining technology for integration of time and space data. Assistant localization is a significant submodule of the intelligent monitoring system. In practical application, the general access is to capture the image sequences of the components by using a high-definition camera, digital image processing technique and target detection, tracking and even behavior analysis method. In this paper, we present an end-to-end character recognition method based on a deep CNN network called YOLO-toc for high-speed railway pillar plate number. Different from other deep CNNs, YOLO-toc is an end-to-end multi-target detection framework, furthermore, it exhibits a state-of-art performance on real-time detection with a nearly 50fps achieved on GPU (GTX960). Finally, we realize a real-time but high-accuracy pillar plate number recognition system and integrate natural scene OCR into a dedicated classification YOLO-toc model.

  10. A Mis-recognized Medical Vocabulary Correction System for Speech-based Electronic Medical Record

    PubMed Central

    Seo, Hwa Jeong; Kim, Ju Han; Sakabe, Nagamasa

    2002-01-01

    Speech recognition as an input tool for electronic medical record (EMR) enables efficient data entry at the point of care. However, the recognition accuracy for medical vocabulary is much poorer than that for doctor-patient dialogue. We developed a mis-recognized medical vocabulary correction system based on syllable-by-syllable comparison of speech text against medical vocabulary database. Using specialty medical vocabulary, the algorithm detects and corrects mis-recognized medical vocabularies in narrative text. Our preliminary evaluation showed 94% of accuracy in mis-recognized medical vocabulary correction.

  11. Enhanced iris recognition method based on multi-unit iris images

    NASA Astrophysics Data System (ADS)

    Shin, Kwang Yong; Kim, Yeong Gon; Park, Kang Ryoung

    2013-04-01

    For the purpose of biometric person identification, iris recognition uses the unique characteristics of the patterns of the iris; that is, the eye region between the pupil and the sclera. When obtaining an iris image, the iris's image is frequently rotated because of the user's head roll toward the left or right shoulder. As the rotation of the iris image leads to circular shifting of the iris features, the accuracy of iris recognition is degraded. To solve this problem, conventional iris recognition methods use shifting of the iris feature codes to perform the matching. However, this increases the computational complexity and level of false acceptance error. To solve these problems, we propose a novel iris recognition method based on multi-unit iris images. Our method is novel in the following five ways compared with previous methods. First, to detect both eyes, we use Adaboost and a rapid eye detector (RED) based on the iris shape feature and integral imaging. Both eyes are detected using RED in the approximate candidate region that consists of the binocular region, which is determined by the Adaboost detector. Second, we classify the detected eyes into the left and right eyes, because the iris patterns in the left and right eyes in the same person are different, and they are therefore considered as different classes. We can improve the accuracy of iris recognition using this pre-classification of the left and right eyes. Third, by measuring the angle of head roll using the two center positions of the left and right pupils, detected by two circular edge detectors, we obtain the information of the iris rotation angle. Fourth, in order to reduce the error and processing time of iris recognition, adaptive bit-shifting based on the measured iris rotation angle is used in feature matching. Fifth, the recognition accuracy is enhanced by the score fusion of the left and right irises. Experimental results on the iris open database of low-resolution images showed that the averaged equal error rate of iris recognition using the proposed method was 4.3006%, which is lower than that of other methods.

  12. Measuring Reading Performance Informally.

    ERIC Educational Resources Information Center

    Powell, William R.

    To improve the accuracy of the informal reading inventory (IRI), a differential set of criteria is necessary for both word recognition and comprehension scores for different levels and reading conditions. In initial evaluation, word recognition scores should reflect only errors of insertions, omissions, mispronunciations, substitiutions, unkown…

  13. Validation of the Amsterdam Dynamic Facial Expression Set – Bath Intensity Variations (ADFES-BIV): A Set of Videos Expressing Low, Intermediate, and High Intensity Emotions

    PubMed Central

    Wingenbach, Tanja S. H.

    2016-01-01

    Most of the existing sets of facial expressions of emotion contain static photographs. While increasing demand for stimuli with enhanced ecological validity in facial emotion recognition research has led to the development of video stimuli, these typically involve full-blown (apex) expressions. However, variations of intensity in emotional facial expressions occur in real life social interactions, with low intensity expressions of emotions frequently occurring. The current study therefore developed and validated a set of video stimuli portraying three levels of intensity of emotional expressions, from low to high intensity. The videos were adapted from the Amsterdam Dynamic Facial Expression Set (ADFES) and termed the Bath Intensity Variations (ADFES-BIV). A healthy sample of 92 people recruited from the University of Bath community (41 male, 51 female) completed a facial emotion recognition task including expressions of 6 basic emotions (anger, happiness, disgust, fear, surprise, sadness) and 3 complex emotions (contempt, embarrassment, pride) that were expressed at three different intensities of expression and neutral. Accuracy scores (raw and unbiased (Hu) hit rates) were calculated, as well as response times. Accuracy rates above chance level of responding were found for all emotion categories, producing an overall raw hit rate of 69% for the ADFES-BIV. The three intensity levels were validated as distinct categories, with higher accuracies and faster responses to high intensity expressions than intermediate intensity expressions, which had higher accuracies and faster responses than low intensity expressions. To further validate the intensities, a second study with standardised display times was conducted replicating this pattern. The ADFES-BIV has greater ecological validity than many other emotion stimulus sets and allows for versatile applications in emotion research. It can be retrieved free of charge for research purposes from the corresponding author. PMID:26784347

  14. Validation of the Amsterdam Dynamic Facial Expression Set--Bath Intensity Variations (ADFES-BIV): A Set of Videos Expressing Low, Intermediate, and High Intensity Emotions.

    PubMed

    Wingenbach, Tanja S H; Ashwin, Chris; Brosnan, Mark

    2016-01-01

    Most of the existing sets of facial expressions of emotion contain static photographs. While increasing demand for stimuli with enhanced ecological validity in facial emotion recognition research has led to the development of video stimuli, these typically involve full-blown (apex) expressions. However, variations of intensity in emotional facial expressions occur in real life social interactions, with low intensity expressions of emotions frequently occurring. The current study therefore developed and validated a set of video stimuli portraying three levels of intensity of emotional expressions, from low to high intensity. The videos were adapted from the Amsterdam Dynamic Facial Expression Set (ADFES) and termed the Bath Intensity Variations (ADFES-BIV). A healthy sample of 92 people recruited from the University of Bath community (41 male, 51 female) completed a facial emotion recognition task including expressions of 6 basic emotions (anger, happiness, disgust, fear, surprise, sadness) and 3 complex emotions (contempt, embarrassment, pride) that were expressed at three different intensities of expression and neutral. Accuracy scores (raw and unbiased (Hu) hit rates) were calculated, as well as response times. Accuracy rates above chance level of responding were found for all emotion categories, producing an overall raw hit rate of 69% for the ADFES-BIV. The three intensity levels were validated as distinct categories, with higher accuracies and faster responses to high intensity expressions than intermediate intensity expressions, which had higher accuracies and faster responses than low intensity expressions. To further validate the intensities, a second study with standardised display times was conducted replicating this pattern. The ADFES-BIV has greater ecological validity than many other emotion stimulus sets and allows for versatile applications in emotion research. It can be retrieved free of charge for research purposes from the corresponding author.

  15. Multiple confidence estimates as indices of eyewitness memory.

    PubMed

    Sauer, James D; Brewer, Neil; Weber, Nathan

    2008-08-01

    Eyewitness identification decisions are vulnerable to various influences on witnesses' decision criteria that contribute to false identifications of innocent suspects and failures to choose perpetrators. An alternative procedure using confidence estimates to assess the degree of match between novel and previously viewed faces was investigated. Classification algorithms were applied to participants' confidence data to determine when a confidence value or pattern of confidence values indicated a positive response. Experiment 1 compared confidence group classification accuracy with a binary decision control group's accuracy on a standard old-new face recognition task and found superior accuracy for the confidence group for target-absent trials but not for target-present trials. Experiment 2 used a face mini-lineup task and found reduced target-present accuracy offset by large gains in target-absent accuracy. Using a standard lineup paradigm, Experiments 3 and 4 also found improved classification accuracy for target-absent lineups and, with a more sophisticated algorithm, for target-present lineups. This demonstrates the accessibility of evidence for recognition memory decisions and points to a more sensitive index of memory quality than is afforded by binary decisions.

  16. The diagnostic accuracy of Clinical Dehydration Scale in identifying dehydration in children with acute gastroenteritis: a systematic review.

    PubMed

    Falszewska, Anna; Dziechciarz, Piotr; Szajewska, Hania

    2014-10-01

    To systematically update diagnostic accuracy of the Clinical Dehydration Scale (CDS) in clinical recognition of dehydration in children with acute gastroenteritis. Six databases were searched for diagnostic accuracy studies in which population were children aged 1 to 36 months with acute gastroenteritis; index test was the CDS; and reference test was post-illness weight gain. Three studies involving 360 children were included. Limited evidence showed that in high-income countries the CDS provides strong diagnostic accuracy for ruling in moderate and severe (>6%) dehydration (positive likelihood ratio 5.2-6.6), but has limited value for ruling it out (negative likelihood ratio 0.4-0.55). In low-income countries, the CDS has limited value either for ruling moderate or severe dehydration in or out. In both settings, the CDS had limited value for ruling in or out dehydration <3% or dehydration 3% to 6%. The CDS can help assess moderate to severe dehydration in high-income settings. Given the limited data, the evidence should be viewed with caution. © The Author(s) 2014.

  17. Identification of serial number on bank card using recurrent neural network

    NASA Astrophysics Data System (ADS)

    Liu, Li; Huang, Linlin; Xue, Jian

    2018-04-01

    Identification of serial number on bank card has many applications. Due to the different number printing mode, complex background, distortion in shape, etc., it is quite challenging to achieve high identification accuracy. In this paper, we propose a method using Normalization-Cooperated Gradient Feature (NCGF) and Recurrent Neural Network (RNN) based on Long Short-Term Memory (LSTM) for serial number identification. The NCGF maps the gradient direction elements of original image to direction planes such that the RNN with direction planes as input can recognize numbers more accurately. Taking the advantages of NCGF and RNN, we get 90%digit string recognition accuracy.

  18. Culture but not gender modulates amygdala activation during explicit emotion recognition.

    PubMed

    Derntl, Birgit; Habel, Ute; Robinson, Simon; Windischberger, Christian; Kryspin-Exner, Ilse; Gur, Ruben C; Moser, Ewald

    2012-05-29

    Mounting evidence indicates that humans have significant difficulties in understanding emotional expressions from individuals of different ethnic backgrounds, leading to reduced recognition accuracy and stronger amygdala activation. However, the impact of gender on the behavioral and neural reactions during the initial phase of cultural assimilation has not been addressed. Therefore, we investigated 24 Asians students (12 females) and 24 age-matched European students (12 females) during an explicit emotion recognition task, using Caucasian facial expressions only, on a high-field MRI scanner. Analysis of functional data revealed bilateral amygdala activation to emotional expressions in Asian and European subjects. However, in the Asian sample, a stronger response of the amygdala emerged and was paralleled by reduced recognition accuracy, particularly for angry male faces. Moreover, no significant gender difference emerged. We also observed a significant inverse correlation between duration of stay and amygdala activation. In this study we investigated the "alien-effect" as an initial problem during cultural assimilation and examined this effect on a behavioral and neural level. This study has revealed bilateral amygdala activation to emotional expressions in Asian and European females and males. In the Asian sample, a stronger response of the amygdala bilaterally was observed and this was paralleled by reduced performance, especially for anger and disgust depicted by male expressions. However, no gender difference occurred. Taken together, while gender exerts only a subtle effect, culture and duration of stay as well as gender of poser are shown to be relevant factors for emotion processing, influencing not only behavioral but also neural responses in female and male immigrants.

  19. Culture but not gender modulates amygdala activation during explicit emotion recognition

    PubMed Central

    2012-01-01

    Background Mounting evidence indicates that humans have significant difficulties in understanding emotional expressions from individuals of different ethnic backgrounds, leading to reduced recognition accuracy and stronger amygdala activation. However, the impact of gender on the behavioral and neural reactions during the initial phase of cultural assimilation has not been addressed. Therefore, we investigated 24 Asians students (12 females) and 24 age-matched European students (12 females) during an explicit emotion recognition task, using Caucasian facial expressions only, on a high-field MRI scanner. Results Analysis of functional data revealed bilateral amygdala activation to emotional expressions in Asian and European subjects. However, in the Asian sample, a stronger response of the amygdala emerged and was paralleled by reduced recognition accuracy, particularly for angry male faces. Moreover, no significant gender difference emerged. We also observed a significant inverse correlation between duration of stay and amygdala activation. Conclusion In this study we investigated the “alien-effect” as an initial problem during cultural assimilation and examined this effect on a behavioral and neural level. This study has revealed bilateral amygdala activation to emotional expressions in Asian and European females and males. In the Asian sample, a stronger response of the amygdala bilaterally was observed and this was paralleled by reduced performance, especially for anger and disgust depicted by male expressions. However, no gender difference occurred. Taken together, while gender exerts only a subtle effect, culture and duration of stay as well as gender of poser are shown to be relevant factors for emotion processing, influencing not only behavioral but also neural responses in female and male immigrants. PMID:22642400

  20. Oxytocin enhances attentional bias for neutral and positive expression faces in individuals with higher autistic traits.

    PubMed

    Xu, Lei; Ma, Xiaole; Zhao, Weihua; Luo, Lizhu; Yao, Shuxia; Kendrick, Keith M

    2015-12-01

    There is considerable interest in the potential therapeutic role of the neuropeptide oxytocin in altering attentional bias towards emotional social stimuli in psychiatric disorders. However, it is still unclear whether oxytocin primarily influences attention towards positive or negative valence social stimuli. Here in a double-blind, placebo controlled, between subject design experiment in 60 healthy male subjects we have used the highly sensitive dual-target rapid serial visual presentation (RSVP) paradigm to investigate whether intranasal oxytocin (40IU) treatment alters attentional bias for emotional faces. Results show that oxytocin improved recognition accuracy of neutral and happy expression faces presented in the second target position (T2) during the period of reduced attentional capacity following prior presentation of a first neutral face target (T1), but had no effect on recognition of negative expression faces (angry, fearful, sad). Oxytocin also had no effect on recognition of non-social stimuli (digits) in this task. Recognition accuracy for neutral faces at T2 was negatively associated with autism spectrum quotient (ASQ) scores in the placebo group, and oxytocin's facilitatory effects were restricted to a sub-group of subjects with higher ASQ scores. Our results therefore indicate that oxytocin primarily enhances the allocation of attentional resources towards faces expressing neutral or positive emotion and does not influence that towards negative emotion ones or non-social stimuli. This effect of oxytocin is strongest in healthy individuals with higher autistic trait scores, thereby providing further support for its potential therapeutic use in autism spectrum disorder. Copyright © 2015 Elsevier Ltd. All rights reserved.

  1. A Robust and Device-Free System for the Recognition and Classification of Elderly Activities.

    PubMed

    Li, Fangmin; Al-Qaness, Mohammed Abdulaziz Aide; Zhang, Yong; Zhao, Bihai; Luan, Xidao

    2016-12-01

    Human activity recognition, tracking and classification is an essential trend in assisted living systems that can help support elderly people with their daily activities. Traditional activity recognition approaches depend on vision-based or sensor-based techniques. Nowadays, a novel promising technique has obtained more attention, namely device-free human activity recognition that neither requires the target object to wear or carry a device nor install cameras in a perceived area. The device-free technique for activity recognition uses only the signals of common wireless local area network (WLAN) devices available everywhere. In this paper, we present a novel elderly activities recognition system by leveraging the fluctuation of the wireless signals caused by human motion. We present an efficient method to select the correct data from the Channel State Information (CSI) streams that were neglected in previous approaches. We apply a Principle Component Analysis method that exposes the useful information from raw CSI. Thereafter, Forest Decision (FD) is adopted to classify the proposed activities and has gained a high accuracy rate. Extensive experiments have been conducted in an indoor environment to test the feasibility of the proposed system with a total of five volunteer users. The evaluation shows that the proposed system is applicable and robust to electromagnetic noise.

  2. Episodic memory functions in first episode psychosis and clinical high risk individuals.

    PubMed

    Greenland-White, Sarah E; Ragland, J Daniel; Niendam, Tara A; Ferrer, Emilio; Carter, Cameron S

    2017-10-01

    Individuals with schizophrenia have disproportionate memory impairments when encoding relational versus item-specific information, and when using recollection versus familiarity during retrieval. It is unclear whether this pattern is unique to people with chronic schizophrenia, or if it occurs in individuals after a first episode of psychosis (FE), or when at clinical high-risk for psychosis (CHR). We administered the Relational and Item-Specific Memory task (RiSE) to 22 CHR, 101 FE, and 58 typically developing (TD) participants. We examined group differences in item and relational encoding, and familiarity-based and recollection-based retrieval using parametric analysis and structural equation modeling (SEM). Longitudinal data allowed us to examine relations between baseline RiSE performance and change in clinical symptoms at 1-year follow-up in the FE group. Groups did not differ on familiarity. FE and CHR groups were equally impaired on overall recognition accuracy. Although recollection was impaired in both FE and CHR groups following relational encoding, only the FE group had impaired recollection following item encoding. SEM showed atypical relationships between familiarity and recollection, as well as familiarity and item recognition for both the FE and CHR groups. For FE individuals, better baseline recognition accuracy predicted less severe negative symptoms at 1-year follow-up. Impaired relational and recollective memory may reflect neurodevelopmental abnormalities predating conversion to psychosis. These memory deficits appear related to negative symptom changes. In contrast, item specific recollection deficits appear to occur after the development of full psychosis. Familiarity appears to be a relatively preserved memory function across the psychosis spectrum. Copyright © 2017 Elsevier B.V. All rights reserved.

  3. Emotion categorization of body expressions in narrative scenarios

    PubMed Central

    Volkova, Ekaterina P.; Mohler, Betty J.; Dodds, Trevor J.; Tesch, Joachim; Bülthoff, Heinrich H.

    2014-01-01

    Humans can recognize emotions expressed through body motion with high accuracy even when the stimuli are impoverished. However, most of the research on body motion has relied on exaggerated displays of emotions. In this paper we present two experiments where we investigated whether emotional body expressions could be recognized when they were recorded during natural narration. Our actors were free to use their entire body, face, and voice to express emotions, but our resulting visual stimuli used only the upper body motion trajectories in the form of animated stick figures. Observers were asked to perform an emotion recognition task on short motion sequences using a large and balanced set of emotions (amusement, joy, pride, relief, surprise, anger, disgust, fear, sadness, shame, and neutral). Even with only upper body motion available, our results show recognition accuracy significantly above chance level and high consistency rates among observers. In our first experiment, that used more classic emotion induction setup, all emotions were well recognized. In the second study that employed narrations, four basic emotion categories (joy, anger, fear, and sadness), three non-basic emotion categories (amusement, pride, and shame) and the “neutral” category were recognized above chance. Interestingly, especially in the second experiment, observers showed a bias toward anger when recognizing the motion sequences for emotions. We discovered that similarities between motion sequences across the emotions along such properties as mean motion speed, number of peaks in the motion trajectory and mean motion span can explain a large percent of the variation in observers' responses. Overall, our results show that upper body motion is informative for emotion recognition in narrative scenarios. PMID:25071623

  4. Effects of Emotion on Associative Recognition: Valence and Retention Interval Matter

    PubMed Central

    Pierce, Benton H.; Kensinger, Elizabeth A.

    2011-01-01

    In two experiments, we examined the effects of emotional valence and arousal on associative binding. Participants studied negative, positive, and neutral word pairs, followed by an associative recognition test. In Experiment 1, with a short-delayed test, accuracy for intact pairs was equivalent across valences, whereas accuracy for rearranged pairs was lower for negative than for positive and neutral pairs. In Experiment 2, we tested participants after a one-week delay and found that accuracy was greater for intact negative than for intact neutral pairs, whereas rearranged pair accuracy was equivalent across valences. These results suggest that, although negative emotional valence impairs associative binding after a short delay, it may improve binding after a longer delay. The results also suggest that valence, as well as arousal, needs to be considered when examining the effects of emotion on associative memory. PMID:21401233

  5. [Recognition of walking stance phase and swing phase based on moving window].

    PubMed

    Geng, Xiaobo; Yang, Peng; Wang, Xinran; Geng, Yanli; Han, Yu

    2014-04-01

    Wearing transfemoral prosthesis is the only way to complete daily physical activity for amputees. Motion pattern recognition is important for the control of prosthesis, especially in the recognizing swing phase and stance phase. In this paper, it is reported that surface electromyography (sEMG) signal is used in swing and stance phase recognition. sEMG signal of related muscles was sampled by Infiniti of a Canadian company. The sEMG signal was then filtered by weighted filtering window and analyzed by height permitted window. The starting time of stance phase and swing phase is determined through analyzing special muscles. The sEMG signal of rectus femoris was used in stance phase recognition and sEMG signal of tibialis anterior is used in swing phase recognition. In a certain tolerating range, the double windows theory, including weighted filtering window and height permitted window, can reach a high accuracy rate. Through experiments, the real walking consciousness of the people was reflected by sEMG signal of related muscles. Using related muscles to recognize swing and stance phase is reachable. The theory used in this paper is useful for analyzing sEMG signal and actual prosthesis control.

  6. A modern optical character recognition system in a real world clinical setting: some accuracy and feasibility observations.

    PubMed

    Biondich, Paul G; Overhage, J Marc; Dexter, Paul R; Downs, Stephen M; Lemmon, Larry; McDonald, Clement J

    2002-01-01

    Advances in optical character recognition (OCR) software and computer hardware have stimulated a reevaluation of the technology and its ability to capture structured clinical data from preexisting paper forms. In our pilot evaluation, we measured the accuracy and feasibility of capturing vitals data from a pediatric encounter form that has been in use for over twenty years. We found that the software had a digit recognition rate of 92.4% (95% confidence interval: 91.6 to 93.2) overall. More importantly, this system was approximately three times as fast as our existing method of data entry. These preliminary results suggest that with further refinements in the approach and additional development, we may be able to incorporate OCR as another method for capturing structured clinical data.

  7. Alterations in Resting-State Activity Relate to Performance in a Verbal Recognition Task

    PubMed Central

    López Zunini, Rocío A.; Thivierge, Jean-Philippe; Kousaie, Shanna; Sheppard, Christine; Taler, Vanessa

    2013-01-01

    In the brain, resting-state activity refers to non-random patterns of intrinsic activity occurring when participants are not actively engaged in a task. We monitored resting-state activity using electroencephalogram (EEG) both before and after a verbal recognition task. We show a strong positive correlation between accuracy in verbal recognition and pre-task resting-state alpha power at posterior sites. We further characterized this effect by examining resting-state post-task activity. We found marked alterations in resting-state alpha power when comparing pre- and post-task periods, with more pronounced alterations in participants that attained higher task accuracy. These findings support a dynamical view of cognitive processes where patterns of ongoing brain activity can facilitate –or interfere– with optimal task performance. PMID:23785436

  8. The automaticity of emotion recognition.

    PubMed

    Tracy, Jessica L; Robins, Richard W

    2008-02-01

    Evolutionary accounts of emotion typically assume that humans evolved to quickly and efficiently recognize emotion expressions because these expressions convey fitness-enhancing messages. The present research tested this assumption in 2 studies. Specifically, the authors examined (a) how quickly perceivers could recognize expressions of anger, contempt, disgust, embarrassment, fear, happiness, pride, sadness, shame, and surprise; (b) whether accuracy is improved when perceivers deliberate about each expression's meaning (vs. respond as quickly as possible); and (c) whether accurate recognition can occur under cognitive load. Across both studies, perceivers quickly and efficiently (i.e., under cognitive load) recognized most emotion expressions, including the self-conscious emotions of pride, embarrassment, and shame. Deliberation improved accuracy in some cases, but these improvements were relatively small. Discussion focuses on the implications of these findings for the cognitive processes underlying emotion recognition.

  9. Fast cat-eye effect target recognition based on saliency extraction

    NASA Astrophysics Data System (ADS)

    Li, Li; Ren, Jianlin; Wang, Xingbin

    2015-09-01

    Background complexity is a main reason that results in false detection in cat-eye target recognition. Human vision has selective attention property which can help search the salient target from complex unknown scenes quickly and precisely. In the paper, we propose a novel cat-eye effect target recognition method named Multi-channel Saliency Processing before Fusion (MSPF). This method combines traditional cat-eye target recognition with the selective characters of visual attention. Furthermore, parallel processing enables it to achieve fast recognition. Experimental results show that the proposed method performs better in accuracy, robustness and speed compared to other methods.

  10. Deep kernel learning method for SAR image target recognition

    NASA Astrophysics Data System (ADS)

    Chen, Xiuyuan; Peng, Xiyuan; Duan, Ran; Li, Junbao

    2017-10-01

    With the development of deep learning, research on image target recognition has made great progress in recent years. Remote sensing detection urgently requires target recognition for military, geographic, and other scientific research. This paper aims to solve the synthetic aperture radar image target recognition problem by combining deep and kernel learning. The model, which has a multilayer multiple kernel structure, is optimized layer by layer with the parameters of Support Vector Machine and a gradient descent algorithm. This new deep kernel learning method improves accuracy and achieves competitive recognition results compared with other learning methods.

  11. Face recognition by applying wavelet subband representation and kernel associative memory.

    PubMed

    Zhang, Bai-Ling; Zhang, Haihong; Ge, Shuzhi Sam

    2004-01-01

    In this paper, we propose an efficient face recognition scheme which has two features: 1) representation of face images by two-dimensional (2-D) wavelet subband coefficients and 2) recognition by a modular, personalised classification method based on kernel associative memory models. Compared to PCA projections and low resolution "thumb-nail" image representations, wavelet subband coefficients can efficiently capture substantial facial features while keeping computational complexity low. As there are usually very limited samples, we constructed an associative memory (AM) model for each person and proposed to improve the performance of AM models by kernel methods. Specifically, we first applied kernel transforms to each possible training pair of faces sample and then mapped the high-dimensional feature space back to input space. Our scheme using modular autoassociative memory for face recognition is inspired by the same motivation as using autoencoders for optical character recognition (OCR), for which the advantages has been proven. By associative memory, all the prototypical faces of one particular person are used to reconstruct themselves and the reconstruction error for a probe face image is used to decide if the probe face is from the corresponding person. We carried out extensive experiments on three standard face recognition datasets, the FERET data, the XM2VTS data, and the ORL data. Detailed comparisons with earlier published results are provided and our proposed scheme offers better recognition accuracy on all of the face datasets.

  12. SAR target recognition and posture estimation using spatial pyramid pooling within CNN

    NASA Astrophysics Data System (ADS)

    Peng, Lijiang; Liu, Xiaohua; Liu, Ming; Dong, Liquan; Hui, Mei; Zhao, Yuejin

    2018-01-01

    Many convolution neural networks(CNN) architectures have been proposed to strengthen the performance on synthetic aperture radar automatic target recognition (SAR-ATR) and obtained state-of-art results on targets classification on MSTAR database, but few methods concern about the estimation of depression angle and azimuth angle of targets. To get better effect on learning representation of hierarchies of features on both 10-class target classification task and target posture estimation tasks, we propose a new CNN architecture with spatial pyramid pooling(SPP) which can build high hierarchy of features map by dividing the convolved feature maps from finer to coarser levels to aggregate local features of SAR images. Experimental results on MSTAR database show that the proposed architecture can get high recognition accuracy as 99.57% on 10-class target classification task as the most current state-of-art methods, and also get excellent performance on target posture estimation tasks which pays attention to depression angle variety and azimuth angle variety. What's more, the results inspire us the application of deep learning on SAR target posture description.

  13. An observational study of implicit motor imagery using laterality recognition of the hand after stroke.

    PubMed

    Amesz, Sarah; Tessari, Alessia; Ottoboni, Giovanni; Marsden, Jon

    2016-01-01

    To explore the relationship between laterality recognition after stroke and impairments in attention, 3D object rotation and functional ability. Observational cross-sectional study. Acute care teaching hospital. Thirty-two acute and sub-acute people with stroke and 36 healthy, age-matched controls. Laterality recognition, attention and mental rotation of objects. Within the stroke group, the relationship between laterality recognition and functional ability, neglect, hemianopia and dyspraxia were further explored. People with stroke were significantly less accurate (69% vs 80%) and showed delayed reaction times (3.0 vs 1.9 seconds) when determining the laterality of a pictured hand. Deficits either in accuracy or reaction times were seen in 53% of people with stroke. The accuracy of laterality recognition was associated with reduced functional ability (R(2) = 0.21), less accurate mental rotation of objects (R(2) = 0.20) and dyspraxia (p = 0.03). Implicit motor imagery is affected in a significant number of patients after stroke with these deficits related to lesions to the motor networks as well as other deficits seen after stroke. This research provides new insights into how laterality recognition is related to a number of other deficits after stroke, including the mental rotation of 3D objects, attention and dyspraxia. Further research is required to determine if treatment programmes can improve deficits in laterality recognition and impact functional outcomes after stroke.

  14. What's she doing in the kitchen? Context helps when actions are hard to recognize.

    PubMed

    Wurm, Moritz F; Schubotz, Ricarda I

    2017-04-01

    Specific spatial environments are often indicative of where certain actions may take place: In kitchens we prepare food, and in bathrooms we engage in personal hygiene, but not vice versa. In action recognition, contextual cues may constrain an observer's expectations toward actions that are more strongly associated with a particular context than others. Such cues should become particularly helpful when the action itself is difficult to recognize. However, to date only easily identifiable actions were investigated, and the effects of context on recognition were rather interfering than facilitatory. To test whether context also facilitates action recognition, we measured recognition performance of hardly identifiable actions that took place in compatible, incompatible, and neutral contextual settings. Action information was degraded by pixelizing the area of the object manipulation while the room in which the action took place remained fully visible. We found significantly higher accuracy for actions that took place in compatible compared to incompatible and neutral settings, indicating facilitation. Additionally, action recognition was slower in incompatible settings than in compatible and neutral settings, indicating interference. Together, our findings demonstrate that contextual information is effectively exploited during action observation, in particular when visual information about the action itself is sparse. Differential effects on speed and accuracy suggest that contexts modulate action recognition at different levels of processing. Our findings emphasize the importance of contextual information in comprehensive, ecologically valid models of action recognition.

  15. The cross-race effect in face recognition memory by bicultural individuals.

    PubMed

    Marsh, Benjamin U; Pezdek, Kathy; Ozery, Daphna Hausman

    2016-09-01

    Social-cognitive models of the cross-race effect (CRE) generally specify that cross-race faces are automatically categorized as an out-group, and that different encoding processes are then applied to same-race and cross-race faces, resulting in better recognition memory for same-race faces. We examined whether cultural priming moderates the cognitive categorization of cross-race faces. In Experiment 1, monoracial Latino-Americans, considered to have a bicultural self, were primed to focus on either a Latino or American cultural self and then viewed Latino and White faces. Latino-Americans primed as Latino exhibited higher recognition accuracy (A') for Latino than White faces; those primed as American exhibited higher recognition accuracy for White than Latino faces. In Experiment 2, as predicted, prime condition did not moderate the CRE in European-Americans. These results suggest that for monoracial biculturals, priming either of their cultural identities influences the encoding processes applied to same- and cross-race faces, thereby moderating the CRE. Copyright © 2016 Elsevier B.V. All rights reserved.

  16. A practical approach for writer-dependent symbol recognition using a writer-independent symbol recognizer.

    PubMed

    LaViola, Joseph J; Zeleznik, Robert C

    2007-11-01

    We present a practical technique for using a writer-independent recognition engine to improve the accuracy and speed while reducing the training requirements of a writer-dependent symbol recognizer. Our writer-dependent recognizer uses a set of binary classifiers based on the AdaBoost learning algorithm, one for each possible pairwise symbol comparison. Each classifier consists of a set of weak learners, one of which is based on a writer-independent handwriting recognizer. During online recognition, we also use the n-best list of the writer-independent recognizer to prune the set of possible symbols and thus reduce the number of required binary classifications. In this paper, we describe the geometric and statistical features used in our recognizer and our all-pairs classification algorithm. We also present the results of experiments that quantify the effect incorporating a writer-independent recognition engine into a writer-dependent recognizer has on accuracy, speed, and user training time.

  17. Support Vector Machine-based classification of protein folds using the structural properties of amino acid residues and amino acid residue pairs.

    PubMed

    Shamim, Mohammad Tabrez Anwar; Anwaruddin, Mohammad; Nagarajaram, H A

    2007-12-15

    Fold recognition is a key step in the protein structure discovery process, especially when traditional sequence comparison methods fail to yield convincing structural homologies. Although many methods have been developed for protein fold recognition, their accuracies remain low. This can be attributed to insufficient exploitation of fold discriminatory features. We have developed a new method for protein fold recognition using structural information of amino acid residues and amino acid residue pairs. Since protein fold recognition can be treated as a protein fold classification problem, we have developed a Support Vector Machine (SVM) based classifier approach that uses secondary structural state and solvent accessibility state frequencies of amino acids and amino acid pairs as feature vectors. Among the individual properties examined secondary structural state frequencies of amino acids gave an overall accuracy of 65.2% for fold discrimination, which is better than the accuracy by any method reported so far in the literature. Combination of secondary structural state frequencies with solvent accessibility state frequencies of amino acids and amino acid pairs further improved the fold discrimination accuracy to more than 70%, which is approximately 8% higher than the best available method. In this study we have also tested, for the first time, an all-together multi-class method known as Crammer and Singer method for protein fold classification. Our studies reveal that the three multi-class classification methods, namely one versus all, one versus one and Crammer and Singer method, yield similar predictions. Dataset and stand-alone program are available upon request.

  18. Impact of severity of drug use on discrete emotions recognition in polysubstance abusers.

    PubMed

    Fernández-Serrano, María José; Lozano, Oscar; Pérez-García, Miguel; Verdejo-García, Antonio

    2010-06-01

    Neuropsychological studies support the association between severity of drug intake and alterations in specific cognitive domains and neural systems, but there is disproportionately less research on the neuropsychology of emotional alterations associated with addiction. One of the key aspects of adaptive emotional functioning potentially relevant to addiction progression and treatment is the ability to recognize basic emotions in the faces of others. Therefore, the aims of this study were: (i) to examine facial emotion recognition in abstinent polysubstance abusers, and (ii) to explore the association between patterns of quantity and duration of use of several drugs co-abused (including alcohol, cannabis, cocaine, heroin and MDMA) and the ability to identify discrete facial emotional expressions portraying basic emotions. We compared accuracy of emotion recognition of facial expressions portraying six basic emotions (measured with the Ekman Faces Test) between polysubstance abusers (PSA, n=65) and non-drug using comparison individuals (NDCI, n=30), and used regression models to explore the association between quantity and duration of use of the different drugs co-abused and indices of recognition of each of the six emotions, while controlling for relevant socio-demographic and affect-related confounders. Results showed: (i) that PSA had significantly poorer recognition than NDCI for facial expressions of anger, disgust, fear and sadness; (ii) that measures of quantity and duration of drugs used significantly predicted poorer discrete emotions recognition: quantity of cocaine use predicted poorer anger recognition, and duration of cocaine use predicted both poorer anger and fear recognition. Severity of cocaine use also significantly predicted overall recognition accuracy. Copyright (c) 2010 Elsevier Ireland Ltd. All rights reserved.

  19. Formal implementation of a performance evaluation model for the face recognition system.

    PubMed

    Shin, Yong-Nyuo; Kim, Jason; Lee, Yong-Jun; Shin, Woochang; Choi, Jin-Young

    2008-01-01

    Due to usability features, practical applications, and its lack of intrusiveness, face recognition technology, based on information, derived from individuals' facial features, has been attracting considerable attention recently. Reported recognition rates of commercialized face recognition systems cannot be admitted as official recognition rates, as they are based on assumptions that are beneficial to the specific system and face database. Therefore, performance evaluation methods and tools are necessary to objectively measure the accuracy and performance of any face recognition system. In this paper, we propose and formalize a performance evaluation model for the biometric recognition system, implementing an evaluation tool for face recognition systems based on the proposed model. Furthermore, we performed evaluations objectively by providing guidelines for the design and implementation of a performance evaluation system, formalizing the performance test process.

  20. Accelerometer's position independent physical activity recognition system for long-term activity monitoring in the elderly.

    PubMed

    Khan, Adil Mehmood; Lee, Young-Koo; Lee, Sungyoung; Kim, Tae-Seong

    2010-12-01

    Mobility is a good indicator of health status and thus objective mobility data could be used to assess the health status of elderly patients. Accelerometry has emerged as an effective means for long-term physical activity monitoring in the elderly. However, the output of an accelerometer varies at different positions on a subject's body, even for the same activity, resulting in high within-class variance. Existing accelerometer-based activity recognition systems thus require firm attachment of the sensor to a subject's body. This requirement makes them impractical for long-term activity monitoring during unsupervised free-living as it forces subjects into a fixed life pattern and impede their daily activities. Therefore, we introduce a novel single-triaxial-accelerometer-based activity recognition system that reduces the high within-class variance significantly and allows subjects to carry the sensor freely in any pocket without its firm attachment. We validated our system using seven activities: resting (lying/sitting/standing), walking, walking-upstairs, walking-downstairs, running, cycling, and vacuuming, recorded from five positions: chest pocket, front left trousers pocket, front right trousers pocket, rear trousers pocket, and inner jacket pocket. Its simplicity, ability to perform activities unimpeded, and an average recognition accuracy of 94% make our system a practical solution for continuous long-term activity monitoring in the elderly.

  1. Processing of Acoustic Cues in Lexical-Tone Identification by Pediatric Cochlear-Implant Recipients

    PubMed Central

    Peng, Shu-Chen; Lu, Hui-Ping; Lu, Nelson; Lin, Yung-Song; Deroche, Mickael L. D.

    2017-01-01

    Purpose The objective was to investigate acoustic cue processing in lexical-tone recognition by pediatric cochlear-implant (CI) recipients who are native Mandarin speakers. Method Lexical-tone recognition was assessed in pediatric CI recipients and listeners with normal hearing (NH) in 2 tasks. In Task 1, participants identified naturally uttered words that were contrastive in lexical tones. For Task 2, a disyllabic word (yanjing) was manipulated orthogonally, varying in fundamental-frequency (F0) contours and duration patterns. Participants identified each token with the second syllable jing pronounced with Tone 1 (a high level tone) as eyes or with Tone 4 (a high falling tone) as eyeglasses. Results CI participants' recognition accuracy was significantly lower than NH listeners' in Task 1. In Task 2, CI participants' reliance on F0 contours was significantly less than that of NH listeners; their reliance on duration patterns, however, was significantly higher than that of NH listeners. Both CI and NH listeners' performance in Task 1 was significantly correlated with their reliance on F0 contours in Task 2. Conclusion For pediatric CI recipients, lexical-tone recognition using naturally uttered words is primarily related to their reliance on F0 contours, although duration patterns may be used as an additional cue. PMID:28388709

  2. Practical automatic Arabic license plate recognition system

    NASA Astrophysics Data System (ADS)

    Mohammad, Khader; Agaian, Sos; Saleh, Hani

    2011-02-01

    Since 1970's, the need of an automatic license plate recognition system, sometimes referred as Automatic License Plate Recognition system, has been increasing. A license plate recognition system is an automatic system that is able to recognize a license plate number, extracted from image sensors. In specific, Automatic License Plate Recognition systems are being used in conjunction with various transportation systems in application areas such as law enforcement (e.g. speed limit enforcement) and commercial usages such as parking enforcement and automatic toll payment private and public entrances, border control, theft and vandalism control. Vehicle license plate recognition has been intensively studied in many countries. Due to the different types of license plates being used, the requirement of an automatic license plate recognition system is different for each country. [License plate detection using cluster run length smoothing algorithm ].Generally, an automatic license plate localization and recognition system is made up of three modules; license plate localization, character segmentation and optical character recognition modules. This paper presents an Arabic license plate recognition system that is insensitive to character size, font, shape and orientation with extremely high accuracy rate. The proposed system is based on a combination of enhancement, license plate localization, morphological processing, and feature vector extraction using the Haar transform. The performance of the system is fast due to classification of alphabet and numerals based on the license plate organization. Experimental results for license plates of two different Arab countries show an average of 99 % successful license plate localization and recognition in a total of more than 20 different images captured from a complex outdoor environment. The results run times takes less time compared to conventional and many states of art methods.

  3. Command Recognition of Robot with Low Dimension Whole-Body Haptic Sensor

    NASA Astrophysics Data System (ADS)

    Ito, Tatsuya; Tsuji, Toshiaki

    The authors have developed “haptic armor”, a whole-body haptic sensor that has an ability to estimate contact position. Although it is developed for safety assurance of robots in human environment, it can also be used as an interface. This paper proposes a command recognition method based on finger trace information. This paper also discusses some technical issues for improving recognition accuracy of this system.

  4. Anodal tDCS targeting the right orbitofrontal cortex enhances facial expression recognition

    PubMed Central

    Murphy, Jillian M.; Ridley, Nicole J.; Vercammen, Ans

    2015-01-01

    The orbitofrontal cortex (OFC) has been implicated in the capacity to accurately recognise facial expressions. The aim of the current study was to determine if anodal transcranial direct current stimulation (tDCS) targeting the right OFC in healthy adults would enhance facial expression recognition, compared with a sham condition. Across two counterbalanced sessions of tDCS (i.e. anodal and sham), 20 undergraduate participants (18 female) completed a facial expression labelling task comprising angry, disgusted, fearful, happy, sad and neutral expressions, and a control (social judgement) task comprising the same expressions. Responses on the labelling task were scored for accuracy, median reaction time and overall efficiency (i.e. combined accuracy and reaction time). Anodal tDCS targeting the right OFC enhanced facial expression recognition, reflected in greater efficiency and speed of recognition across emotions, relative to the sham condition. In contrast, there was no effect of tDCS to responses on the control task. This is the first study to demonstrate that anodal tDCS targeting the right OFC boosts facial expression recognition. This finding provides a solid foundation for future research to examine the efficacy of this technique as a means to treat facial expression recognition deficits, particularly in individuals with OFC damage or dysfunction. PMID:25971602

  5. Pattern recognition for cache management in distributed medical imaging environments.

    PubMed

    Viana-Ferreira, Carlos; Ribeiro, Luís; Matos, Sérgio; Costa, Carlos

    2016-02-01

    Traditionally, medical imaging repositories have been supported by indoor infrastructures with huge operational costs. This paradigm is changing thanks to cloud outsourcing which not only brings technological advantages but also facilitates inter-institutional workflows. However, communication latency is one main problem in this kind of approaches, since we are dealing with tremendous volumes of data. To minimize the impact of this issue, cache and prefetching are commonly used. The effectiveness of these mechanisms is highly dependent on their capability of accurately selecting the objects that will be needed soon. This paper describes a pattern recognition system based on artificial neural networks with incremental learning to evaluate, from a set of usage pattern, which one fits the user behavior at a given time. The accuracy of the pattern recognition model in distinct training conditions was also evaluated. The solution was tested with a real-world dataset and a synthesized dataset, showing that incremental learning is advantageous. Even with very immature initial models, trained with just 1 week of data samples, the overall accuracy was very similar to the value obtained when using 75% of the long-term data for training the models. Preliminary results demonstrate an effective reduction in communication latency when using the proposed solution to feed a prefetching mechanism. The proposed approach is very interesting for cache replacement and prefetching policies due to the good results obtained since the first deployment moments.

  6. Age-related reduction of the confidence-accuracy relationship in episodic memory: effects of recollection quality and retrieval monitoring.

    PubMed

    Wong, Jessica T; Cramer, Stefanie J; Gallo, David A

    2012-12-01

    We investigated age-related reductions in episodic metamemory accuracy. Participants studied pictures and words in different colors and then took forced-choice recollection tests. These tests required recollection of the earlier presentation color, holding familiarity of the response options constant. Metamemory accuracy was assessed for each participant by comparing recollection test accuracy with corresponding confidence judgments. We found that recollection test accuracy was greater in younger than older adults and also for pictures than font color. Metamemory accuracy tracked each of these recollection differences, as well as individual differences in recollection test accuracy within each age group, suggesting that recollection ability affects metamemory accuracy. Critically, the age-related impairment in metamemory accuracy persisted even when the groups were matched on recollection test accuracy, suggesting that metamemory declines were not entirely due to differences in recollection frequency or quantity, but that differences in recollection quality and/or monitoring also played a role. We also found that age-related impairments in recollection and metamemory accuracy were equivalent for pictures and font colors. This result contrasted with previous false recognition findings, which predicted that older adults would be differentially impaired when monitoring memory for less distinctive memories. These and other results suggest that age-related reductions in metamemory accuracy are not entirely attributable to false recognition effects, but also depend heavily on deficient recollection and/or monitoring of specific details associated with studied stimuli. 2013 APA, all rights reserved

  7. Recognition of finger flexion motion from ultrasound image: a feasibility study.

    PubMed

    Shi, Jun; Guo, Jing-Yi; Hu, Shu-Xian; Zheng, Yong-Ping

    2012-10-01

    Muscle contraction results in structural and morphologic changes of the related muscle. Therefore, finger flexion can be monitored from measurements of these morphologic changes. We used ultrasound imaging to record muscle activities during finger flexion and extracted features to discriminate different fingers' flexions using a support vector machine (SVM). Registration of ultrasound images before and after finger flexion was performed to generate a deformation field, from which angle features and wavelet-based features were extracted. The SVM was then used to classify the motions of different fingers. The experimental results showed that the overall mean recognition accuracy was 94.05% ± 4.10%, with the highest for the thumb (97%) and the lowest for the ring finger (92%) and the mean F value was 0.94 ± 0.02, indicating high accuracy and reliability of this method. The results suggest that the proposed method has the potential to be used as an alternative method of surface electromyography in differentiating the motions of different fingers. Copyright © 2012 World Federation for Ultrasound in Medicine & Biology. Published by Elsevier Inc. All rights reserved.

  8. In-class didactic versus self-directed teaching of the probe-based confocal laser endomicroscopy (pCLE) criteria for Barrett's esophagus.

    PubMed

    Rzouq, Fadi; Vennalaganti, Prashanth; Pakseresht, Kavous; Kanakadandi, Vijay; Parasa, Sravanthi; Mathur, Sharad C; Alsop, Benjamin R; Hornung, Benjamin; Gupta, Neil; Sharma, Prateek

    2016-02-01

    Optimal teaching methods for disease recognition using probe-based confocal laser endomicroscopy (pCLE) have not been developed. Our aim was to compare in-class didactic teaching vs. self-directed teaching of Barrett's neoplasia diagnosis using pCLE. This randomized controlled trial was conducted at a tertiary academic center. Study participants with no prior pCLE experience were randomized to in-class didactic (group 1) or self-directed teaching groups (group 2). For group 1, an expert conducted a classroom teaching session using standardized educational material. Participants in group 2 were provided with the same material on an audio PowerPoint. After initial training, all participants graded an initial set of 20 pCLE videos and reviewed correct responses with the expert (group 1) or on audio PowerPoint (group 2). Finally, all participants completed interpretations of a further 40 videos. Eighteen trainees (8 medical students, 10 gastroenterology trainees) participated in the study. Overall diagnostic accuracy for neoplasia prediction by pCLE was 77 % (95 % confidence interval [CI] 74.0 % - 79.2 %); of predictions made with high confidence (53 %), the accuracy was 85 % (95 %CI 81.8 % - 87.8 %). The overall accuracy and interobserver agreement was significantly higher in group 1 than in group 2 for all predictions (80.4 % vs. 73 %; P = 0.005) and for high confidence predictions (90 % vs. 80 %; P < 0.001). Following feedback (after the initial 20 videos), the overall accuracy improved from 73 % to 79 % (P = 0.04), mainly driven by a significant improvement in group 1 (74 % to 84 %; P < 0.01). Accuracy of prediction significantly improved with time in endoscopy training (72 % students, 77 % FY1, 82 % FY2, and 85 % FY3; P = 0.003). For novice trainees, in-class didactic teaching enables significantly better recognition of the pCLE features of Barrett's esophagus than self-directed teaching. The in-class didactic group had a shorter learning curve and were able to achieve 90 % accuracy for their high confidence predictions. © Georg Thieme Verlag KG Stuttgart · New York.

  9. Appearance-based representative samples refining method for palmprint recognition

    NASA Astrophysics Data System (ADS)

    Wen, Jiajun; Chen, Yan

    2012-07-01

    The sparse representation can deal with the lack of sample problem due to utilizing of all the training samples. However, the discrimination ability will degrade when more training samples are used for representation. We propose a novel appearance-based palmprint recognition method. We aim to find a compromise between the discrimination ability and the lack of sample problem so as to obtain a proper representation scheme. Under the assumption that the test sample can be well represented by a linear combination of a certain number of training samples, we first select the representative training samples according to the contributions of the samples. Then we further refine the training samples by an iteration procedure, excluding the training sample with the least contribution to the test sample for each time. Experiments on PolyU multispectral palmprint database and two-dimensional and three-dimensional palmprint database show that the proposed method outperforms the conventional appearance-based palmprint recognition methods. Moreover, we also explore and find out the principle of the usage for the key parameters in the proposed algorithm, which facilitates to obtain high-recognition accuracy.

  10. Syntactic/semantic techniques for feature description and character recognition

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gonzalez, R.C.

    1983-01-01

    The Pattern Analysis Branch, Mapping, Charting and Geodesy (MC/G) Division, of the Naval Ocean Research and Development Activity (NORDA) has been involved over the past several years in the development of algorithms and techniques for computer recognition of free-form handprinted symbols as they appear on the Defense Mapping Agency (DMA) maps and charts. NORDA has made significant contributions to the automation of MC/G through advancing the state of the art in such information extraction techniques. In particular, new concepts in character (symbol) skeletonization, rugged feature measurements, and expert system-oriented decision logic have allowed the development of a very high performancemore » Handprinted Symbol Recognition (HSR) system for identifying depth soundings from naval smooth sheets (accuracies greater than 99.5%). The study reported in this technical note is part of NORDA's continuing research and development in pattern and shape analysis as it applies to Navy and DMA ocean/environment problems. The issue addressed in this technical note deals with emerging areas of syntactic and semantic techniques in pattern recognition as they might apply to the free-form symbol problem.« less

  11. Hostility and Facial Affect Recognition: Effects of a Cold Pressor Stressor on Accuracy and Cardiovascular Reactivity

    ERIC Educational Resources Information Center

    Herridge, Matt L.; Harrison, David W.; Mollet, Gina A.; Shenal, Brian V.

    2004-01-01

    The effects of hostility and a cold pressor stressor on the accuracy of facial affect perception were examined in the present experiment. A mechanism whereby physiological arousal level is mediated by systems which also mediate accuracy of an individual's interpretation of affective cues is described. Right-handed participants were classified as…

  12. Classification of EEG Signals Based on Pattern Recognition Approach.

    PubMed

    Amin, Hafeez Ullah; Mumtaz, Wajid; Subhani, Ahmad Rauf; Saad, Mohamad Naufal Mohamad; Malik, Aamir Saeed

    2017-01-01

    Feature extraction is an important step in the process of electroencephalogram (EEG) signal classification. The authors propose a "pattern recognition" approach that discriminates EEG signals recorded during different cognitive conditions. Wavelet based feature extraction such as, multi-resolution decompositions into detailed and approximate coefficients as well as relative wavelet energy were computed. Extracted relative wavelet energy features were normalized to zero mean and unit variance and then optimized using Fisher's discriminant ratio (FDR) and principal component analysis (PCA). A high density EEG dataset validated the proposed method (128-channels) by identifying two classifications: (1) EEG signals recorded during complex cognitive tasks using Raven's Advance Progressive Metric (RAPM) test; (2) EEG signals recorded during a baseline task (eyes open). Classifiers such as, K-nearest neighbors (KNN), Support Vector Machine (SVM), Multi-layer Perceptron (MLP), and Naïve Bayes (NB) were then employed. Outcomes yielded 99.11% accuracy via SVM classifier for coefficient approximations (A5) of low frequencies ranging from 0 to 3.90 Hz. Accuracy rates for detailed coefficients were 98.57 and 98.39% for SVM and KNN, respectively; and for detailed coefficients (D5) deriving from the sub-band range (3.90-7.81 Hz). Accuracy rates for MLP and NB classifiers were comparable at 97.11-89.63% and 91.60-81.07% for A5 and D5 coefficients, respectively. In addition, the proposed approach was also applied on public dataset for classification of two cognitive tasks and achieved comparable classification results, i.e., 93.33% accuracy with KNN. The proposed scheme yielded significantly higher classification performances using machine learning classifiers compared to extant quantitative feature extraction. These results suggest the proposed feature extraction method reliably classifies EEG signals recorded during cognitive tasks with a higher degree of accuracy.

  13. Action Recognition in a Crowded Environment

    PubMed Central

    Nieuwenhuis, Judith; Bülthoff, Isabelle; Barraclough, Nick; de la Rosa, Stephan

    2017-01-01

    So far, action recognition has been mainly examined with small point-light human stimuli presented alone within a narrow central area of the observer’s visual field. Yet, we need to recognize the actions of life-size humans viewed alone or surrounded by bystanders, whether they are seen in central or peripheral vision. Here, we examined the mechanisms in central vision and far periphery (40° eccentricity) involved in the recognition of the actions of a life-size actor (target) and their sensitivity to the presence of a crowd surrounding the target. In Experiment 1, we used an action adaptation paradigm to probe whether static or idly moving crowds might interfere with the recognition of a target’s action (hug or clap). We found that this type of crowds whose movements were dissimilar to the target action hardly affected action recognition in central and peripheral vision. In Experiment 2, we examined whether crowd actions that were more similar to the target actions affected action recognition. Indeed, the presence of that crowd diminished adaptation aftereffects in central vision as wells as in the periphery. We replicated Experiment 2 using a recognition task instead of an adaptation paradigm. With this task, we found evidence of decreased action recognition accuracy, but this was significant in peripheral vision only. Our results suggest that the presence of a crowd carrying out actions similar to that of the target affects its recognition. We outline how these results can be understood in terms of high-level crowding effects that operate on action-sensitive perceptual channels. PMID:29308177

  14. ReliefF-Based EEG Sensor Selection Methods for Emotion Recognition.

    PubMed

    Zhang, Jianhai; Chen, Ming; Zhao, Shaokai; Hu, Sanqing; Shi, Zhiguo; Cao, Yu

    2016-09-22

    Electroencephalogram (EEG) signals recorded from sensor electrodes on the scalp can directly detect the brain dynamics in response to different emotional states. Emotion recognition from EEG signals has attracted broad attention, partly due to the rapid development of wearable computing and the needs of a more immersive human-computer interface (HCI) environment. To improve the recognition performance, multi-channel EEG signals are usually used. A large set of EEG sensor channels will add to the computational complexity and cause users inconvenience. ReliefF-based channel selection methods were systematically investigated for EEG-based emotion recognition on a database for emotion analysis using physiological signals (DEAP). Three strategies were employed to select the best channels in classifying four emotional states (joy, fear, sadness and relaxation). Furthermore, support vector machine (SVM) was used as a classifier to validate the performance of the channel selection results. The experimental results showed the effectiveness of our methods and the comparison with the similar strategies, based on the F-score, was given. Strategies to evaluate a channel as a unity gave better performance in channel reduction with an acceptable loss of accuracy. In the third strategy, after adjusting channels' weights according to their contribution to the classification accuracy, the number of channels was reduced to eight with a slight loss of accuracy (58.51% ± 10.05% versus the best classification accuracy 59.13% ± 11.00% using 19 channels). In addition, the study of selecting subject-independent channels, related to emotion processing, was also implemented. The sensors, selected subject-independently from frontal, parietal lobes, have been identified to provide more discriminative information associated with emotion processing, and are distributed symmetrically over the scalp, which is consistent with the existing literature. The results will make a contribution to the realization of a practical EEG-based emotion recognition system.

  15. Exercise recognition for Kinect-based telerehabilitation.

    PubMed

    Antón, D; Goñi, A; Illarramendi, A

    2015-01-01

    An aging population and people's higher survival to diseases and traumas that leave physical consequences are challenging aspects in the context of an efficient health management. This is why telerehabilitation systems are being developed, to allow monitoring and support of physiotherapy sessions at home, which could reduce healthcare costs while also improving the quality of life of the users. Our goal is the development of a Kinect-based algorithm that provides a very accurate real-time monitoring of physical rehabilitation exercises and that also provides a friendly interface oriented both to users and physiotherapists. The two main constituents of our algorithm are the posture classification method and the exercises recognition method. The exercises consist of series of movements. Each movement is composed of an initial posture, a final posture and the angular trajectories of the limbs involved in the movement. The algorithm was designed and tested with datasets of real movements performed by volunteers. We also explain in the paper how we obtained the optimal values for the trade-off values for posture and trajectory recognition. Two relevant aspects of the algorithm were evaluated in our tests, classification accuracy and real-time data processing. We achieved 91.9% accuracy in posture classification and 93.75% accuracy in trajectory recognition. We also checked whether the algorithm was able to process the data in real-time. We found that our algorithm could process more than 20,000 postures per second and all the required trajectory data-series in real-time, which in practice guarantees no perceptible delays. Later on, we carried out two clinical trials with real patients that suffered shoulder disorders. We obtained an exercise monitoring accuracy of 95.16%. We present an exercise recognition algorithm that handles the data provided by Kinect efficiently. The algorithm has been validated in a real scenario where we have verified its suitability. Moreover, we have received a positive feedback from both users and the physiotherapists who took part in the tests.

  16. Recognition and defect detection of dot-matrix text via variation-model based learning

    NASA Astrophysics Data System (ADS)

    Ohyama, Wataru; Suzuki, Koushi; Wakabayashi, Tetsushi

    2017-03-01

    An algorithm for recognition and defect detection of dot-matrix text printed on products is proposed. Extraction and recognition of dot-matrix text contains several difficulties, which are not involved in standard camera-based OCR, that the appearance of dot-matrix characters is corrupted and broken by illumination, complex texture in the background and other standard characters printed on product packages. We propose a dot-matrix text extraction and recognition method which does not require any user interaction. The method employs detected location of corner points and classification score. The result of evaluation experiment using 250 images shows that recall and precision of extraction are 78.60% and 76.03%, respectively. Recognition accuracy of correctly extracted characters is 94.43%. Detecting printing defect of dot-matrix text is also important in the production scene to avoid illegal productions. We also propose a detection method for printing defect of dot-matrix characters. The method constructs a feature vector of which elements are classification scores of each character class and employs support vector machine to classify four types of printing defect. The detection accuracy of the proposed method is 96.68 %.

  17. Transfer learning for bimodal biometrics recognition

    NASA Astrophysics Data System (ADS)

    Dan, Zhiping; Sun, Shuifa; Chen, Yanfei; Gan, Haitao

    2013-10-01

    Biometrics recognition aims to identify and predict new personal identities based on their existing knowledge. As the use of multiple biometric traits of the individual may enables more information to be used for recognition, it has been proved that multi-biometrics can produce higher accuracy than single biometrics. However, a common problem with traditional machine learning is that the training and test data should be in the same feature space, and have the same underlying distribution. If the distributions and features are different between training and future data, the model performance often drops. In this paper, we propose a transfer learning method for face recognition on bimodal biometrics. The training and test samples of bimodal biometric images are composed of the visible light face images and the infrared face images. Our algorithm transfers the knowledge across feature spaces, relaxing the assumption of same feature space as well as same underlying distribution by automatically learning a mapping between two different but somewhat similar face images. According to the experiments in the face images, the results show that the accuracy of face recognition has been greatly improved by the proposed method compared with the other previous methods. It demonstrates the effectiveness and robustness of our method.

  18. 3D automatic anatomy segmentation based on iterative graph-cut-ASM.

    PubMed

    Chen, Xinjian; Bagci, Ulas

    2011-08-01

    This paper studies the feasibility of developing an automatic anatomy segmentation (AAS) system in clinical radiology and demonstrates its operation on clinical 3D images. The AAS system, the authors are developing consists of two main parts: object recognition and object delineation. As for recognition, a hierarchical 3D scale-based multiobject method is used for the multiobject recognition task, which incorporates intensity weighted ball-scale (b-scale) information into the active shape model (ASM). For object delineation, an iterative graph-cut-ASM (IGCASM) algorithm is proposed, which effectively combines the rich statistical shape information embodied in ASM with the globally optimal delineation capability of the GC method. The presented IGCASM algorithm is a 3D generalization of the 2D GC-ASM method that they proposed previously in Chen et al. [Proc. SPIE, 7259, 72590C1-72590C-8 (2009)]. The proposed methods are tested on two datasets comprised of images obtained from 20 patients (10 male and 10 female) of clinical abdominal CT scans, and 11 foot magnetic resonance imaging (MRI) scans. The test is for four organs (liver, left and right kidneys, and spleen) segmentation, five foot bones (calcaneus, tibia, cuboid, talus, and navicular). The recognition and delineation accuracies were evaluated separately. The recognition accuracy was evaluated in terms of translation, rotation, and scale (size) error. The delineation accuracy was evaluated in terms of true and false positive volume fractions (TPVF, FPVF). The efficiency of the delineation method was also evaluated on an Intel Pentium IV PC with a 3.4 GHZ CPU machine. The recognition accuracies in terms of translation, rotation, and scale error over all organs are about 8 mm, 10 degrees and 0.03, and over all foot bones are about 3.5709 mm, 0.35 degrees and 0.025, respectively. The accuracy of delineation over all organs for all subjects as expressed in TPVF and FPVF is 93.01% and 0.22%, and all foot bones for all subjects are 93.75% and 0.28%, respectively. While the delineations for the four organs can be accomplished quite rapidly with average of 78 s, the delineations for the five foot bones can be accomplished with average of 70 s. The experimental results showed the feasibility and efficacy of the proposed automatic anatomy segmentation system: (a) the incorporation of shape priors into the GC framework is feasible in 3D as demonstrated previously for 2D images; (b) our results in 3D confirm the accuracy behavior observed in 2D. The hybrid strategy IGCASM seems to be more robust and accurate than ASM and GC individually; and (c) delineations within body regions and foot bones of clinical importance can be accomplished quite rapidly within 1.5 min.

  19. A cloud shadow detection method combined with cloud height iteration and spectral analysis for Landsat 8 OLI data

    NASA Astrophysics Data System (ADS)

    Sun, Lin; Liu, Xinyan; Yang, Yikun; Chen, TingTing; Wang, Quan; Zhou, Xueying

    2018-04-01

    Although enhanced over prior Landsat instruments, Landsat 8 OLI can obtain very high cloud detection precisions, but for the detection of cloud shadows, it still faces great challenges. Geometry-based cloud shadow detection methods are considered the most effective and are being improved constantly. The Function of Mask (Fmask) cloud shadow detection method is one of the most representative geometry-based methods that has been used for cloud shadow detection with Landsat 8 OLI. However, the Fmask method estimates cloud height employing fixed temperature rates, which are highly uncertain, and errors of large area cloud shadow detection can be caused by errors in estimations of cloud height. This article improves the geometry-based cloud shadow detection method for Landsat OLI from the following two aspects. (1) Cloud height no longer depends on the brightness temperature of the thermal infrared band but uses a possible dynamic range from 200 m to 12,000 m. In this case, cloud shadow is not a specific location but a possible range. Further analysis was carried out in the possible range based on the spectrum to determine cloud shadow location. This effectively avoids the cloud shadow leakage caused by the error in the height determination of a cloud. (2) Object-based and pixel spectral analyses are combined to detect cloud shadows, which can realize cloud shadow detection from two aspects of target scale and pixel scale. Based on the analysis of the spectral differences between the cloud shadow and typical ground objects, the best cloud shadow detection bands of Landsat 8 OLI were determined. The combined use of spectrum and shape can effectively improve the detection precision of cloud shadows produced by thin clouds. Several cloud shadow detection experiments were carried out, and the results were verified by the results of artificial recognition. The results of these experiments indicated that this method can identify cloud shadows in different regions with correct accuracy exceeding 80%, approximately 5% of the areas were wrongly identified, and approximately 10% of the cloud shadow areas were missing. The accuracy of this method is obviously higher than the recognition accuracy of Fmask, which has correct accuracy lower than 60%, and the missing recognition is approximately 40%.

  20. A modern optical character recognition system in a real world clinical setting: some accuracy and feasibility observations.

    PubMed Central

    Biondich, Paul G.; Overhage, J. Marc; Dexter, Paul R.; Downs, Stephen M.; Lemmon, Larry; McDonald, Clement J.

    2002-01-01

    Advances in optical character recognition (OCR) software and computer hardware have stimulated a reevaluation of the technology and its ability to capture structured clinical data from preexisting paper forms. In our pilot evaluation, we measured the accuracy and feasibility of capturing vitals data from a pediatric encounter form that has been in use for over twenty years. We found that the software had a digit recognition rate of 92.4% (95% confidence interval: 91.6 to 93.2) overall. More importantly, this system was approximately three times as fast as our existing method of data entry. These preliminary results suggest that with further refinements in the approach and additional development, we may be able to incorporate OCR as another method for capturing structured clinical data. PMID:12463786

  1. Using Markov Chains and Multi-Objective Optimization for Energy-Efficient Context Recognition.

    PubMed

    Janko, Vito; Luštrek, Mitja

    2017-12-29

    The recognition of the user's context with wearable sensing systems is a common problem in ubiquitous computing. However, the typically small battery of such systems often makes continuous recognition impractical. The strain on the battery can be reduced if the sensor setting is adapted to each context. We propose a method that efficiently finds near-optimal sensor settings for each context. It uses Markov chains to simulate the behavior of the system in different configurations and the multi-objective genetic algorithm to find a set of good non-dominated configurations. The method was evaluated on three real-life datasets and found good trade-offs between the system's energy expenditure and the system's accuracy. One of the solutions, for example, consumed five-times less energy than the default one, while sacrificing only two percentage points of accuracy.

  2. Problems Associated with Statistical Pattern Recognition of Acoustic Emission Signals in a Compact Tension Fatigue Specimen

    NASA Technical Reports Server (NTRS)

    Hinton, Yolanda L.

    1999-01-01

    Acoustic emission (AE) data were acquired during fatigue testing of an aluminum 2024-T4 compact tension specimen using a commercially available AE system. AE signals from crack extension were identified and separated from noise spikes, signals that reflected from the specimen edges, and signals that saturated the instrumentation. A commercially available software package was used to train a statistical pattern recognition system to classify the signals. The software trained a network to recognize signals with a 91-percent accuracy when compared with the researcher's interpretation of the data. Reasons for the discrepancies are examined and it is postulated that additional preprocessing of the AE data to focus on the extensional wave mode and eliminate other effects before training the pattern recognition system will result in increased accuracy.

  3. Tumor recognition in wireless capsule endoscopy images using textural features and SVM-based feature selection.

    PubMed

    Li, Baopu; Meng, Max Q-H

    2012-05-01

    Tumor in digestive tract is a common disease and wireless capsule endoscopy (WCE) is a relatively new technology to examine diseases for digestive tract especially for small intestine. This paper addresses the problem of automatic recognition of tumor for WCE images. Candidate color texture feature that integrates uniform local binary pattern and wavelet is proposed to characterize WCE images. The proposed features are invariant to illumination change and describe multiresolution characteristics of WCE images. Two feature selection approaches based on support vector machine, sequential forward floating selection and recursive feature elimination, are further employed to refine the proposed features for improving the detection accuracy. Extensive experiments validate that the proposed computer-aided diagnosis system achieves a promising tumor recognition accuracy of 92.4% in WCE images on our collected data.

  4. The power of timing: Adding a time-to-completion cutoff to the Word Choice Test and Recognition Memory Test improves classification accuracy.

    PubMed

    Erdodi, Laszlo A; Tyson, Bradley T; Shahein, Ayman G; Lichtenstein, Jonathan D; Abeare, Christopher A; Pelletier, Chantalle L; Zuccato, Brandon G; Kucharski, Brittany; Roth, Robert M

    2017-05-01

    The Recognition Memory Test (RMT) and Word Choice Test (WCT) are structurally similar, but psychometrically different. Previous research demonstrated that adding a time-to-completion cutoff improved the classification accuracy of the RMT. However, the contribution of WCT time-cutoffs to improve the detection of invalid responding has not been investigated. The present study was designed to evaluate the classification accuracy of time-to-completion on the WCT compared to the accuracy score and the RMT. Both tests were administered to 202 adults (M age  = 45.3 years, SD = 16.8; 54.5% female) clinically referred for neuropsychological assessment in counterbalanced order as part of a larger battery of cognitive tests. Participants obtained lower and more variable scores on the RMT (M = 44.1, SD = 7.6) than on the WCT (M = 46.9, SD = 5.7). Similarly, they took longer to complete the recognition trial on the RMT (M = 157.2 s,SD = 71.8) than the WCT (M = 137.2 s, SD = 75.7). The optimal cutoff on the RMT (≤43) produced .60 sensitivity at .87 specificity. The optimal cutoff on the WCT (≤47) produced .57 sensitivity at .87 specificity. Time-cutoffs produced comparable classification accuracies for both RMT (≥192 s; .48 sensitivity at .88 specificity) and WCT (≥171 s; .49 sensitivity at .91 specificity). They also identified an additional 6-10% of the invalid profiles missed by accuracy score cutoffs, while maintaining good specificity (.93-.95). Functional equivalence was reached at accuracy scores ≤43 (RMT) and ≤47 (WCT) or time-to-completion ≥192 s (RMT) and ≥171 s (WCT). Time-to-completion cutoffs are valuable additions to both tests. They can function as independent validity indicators or enhance the sensitivity of accuracy scores without requiring additional measures or extending standard administration time.

  5. Hemispheric Differences in Indexical Specificity Effects in Spoken Word Recognition

    ERIC Educational Resources Information Center

    Gonzalez, Julio; McLennan, Conor T.

    2007-01-01

    Variability in talker identity, one type of indexical variation, has demonstrable effects on the speed and accuracy of spoken word recognition. Furthermore, neuropsychological evidence suggests that indexical and linguistic information may be represented and processed differently in the 2 cerebral hemispheres, and is consistent with findings from…

  6. Influences of Lexical Processing on Reading.

    ERIC Educational Resources Information Center

    Yang, Yu-Fen; Kuo, Hsing-Hsiu

    2003-01-01

    Investigates how early lexical processing (word recognition) could influence reading. Finds that less-proficient readers could not finish the task of word recognition within time limits and their accuracy rates were quite low, whereas the proficient readers processed the physical words immediately and translated them into meanings quickly in order…

  7. Multimedia Security System for Security and Medical Applications

    ERIC Educational Resources Information Center

    Zhou, Yicong

    2010-01-01

    This dissertation introduces a new multimedia security system for the performance of object recognition and multimedia encryption in security and medical applications. The system embeds an enhancement and multimedia encryption process into the traditional recognition system in order to improve the efficiency and accuracy of object detection and…

  8. Emotion recognition based on physiological changes in music listening.

    PubMed

    Kim, Jonghwa; André, Elisabeth

    2008-12-01

    Little attention has been paid so far to physiological signals for emotion recognition compared to audiovisual emotion channels such as facial expression or speech. This paper investigates the potential of physiological signals as reliable channels for emotion recognition. All essential stages of an automatic recognition system are discussed, from the recording of a physiological dataset to a feature-based multiclass classification. In order to collect a physiological dataset from multiple subjects over many weeks, we used a musical induction method which spontaneously leads subjects to real emotional states, without any deliberate lab setting. Four-channel biosensors were used to measure electromyogram, electrocardiogram, skin conductivity and respiration changes. A wide range of physiological features from various analysis domains, including time/frequency, entropy, geometric analysis, subband spectra, multiscale entropy, etc., is proposed in order to find the best emotion-relevant features and to correlate them with emotional states. The best features extracted are specified in detail and their effectiveness is proven by classification results. Classification of four musical emotions (positive/high arousal, negative/high arousal, negative/low arousal, positive/low arousal) is performed by using an extended linear discriminant analysis (pLDA). Furthermore, by exploiting a dichotomic property of the 2D emotion model, we develop a novel scheme of emotion-specific multilevel dichotomous classification (EMDC) and compare its performance with direct multiclass classification using the pLDA. Improved recognition accuracy of 95\\% and 70\\% for subject-dependent and subject-independent classification, respectively, is achieved by using the EMDC scheme.

  9. How well does voice interaction work in space?

    NASA Technical Reports Server (NTRS)

    Morris, Randy B.; Whitmore, Mihriban; Adam, Susan C.

    1993-01-01

    The methods and results of an evaluation of the Voice Navigator software package are discussed. The first phase or ground phase of the study consisted of creating, or training, computer voice files of specific commands. This consisted of repeating each of six commands eight times. The files were then tested for recognition accuracy by the software aboard the microgravity aircraft. During the second phase, both voice training and testing were performed in microgravity. Inflight training was done due to problems encountered in phase one which were believed to be caused by ambient noise levels. Both quantitative and qualitative data were collected. Only one of the commands was found to offer consistently high recognition rates across subjects during the second phase.

  10. An Intelligent Systems Approach to Automated Object Recognition: A Preliminary Study

    USGS Publications Warehouse

    Maddox, Brian G.; Swadley, Casey L.

    2002-01-01

    Attempts at fully automated object recognition systems have met with varying levels of success over the years. However, none of the systems have achieved high enough accuracy rates to be run unattended. One of the reasons for this may be that they are designed from the computer's point of view and rely mainly on image-processing methods. A better solution to this problem may be to make use of modern advances in computational intelligence and distributed processing to try to mimic how the human brain is thought to recognize objects. As humans combine cognitive processes with detection techniques, such a system would combine traditional image-processing techniques with computer-based intelligence to determine the identity of various objects in a scene.

  11. Gender-specific automatic valence recognition of affective olfactory stimulation through the analysis of the electrodermal activity.

    PubMed

    Greco, Alberto; Lanata, Antonio; Valenza, Gaetano; Di Francesco, Fabio; Scilingo, Enzo Pasquale

    2016-08-01

    This study reports on the development of a gender-specific classification system able to discern between two valence levels of smell, through information gathered from electrodermal activity (EDA) dynamics. Specifically, two odorants were administered to 32 healthy volunteers (16 males) while monitoring EDA. CvxEDA model was used to process the EDA signal and extract features from both tonic and phasic components. The feature set was used as input to a K-NN classifier implementing a leave-one-subject-out procedure. Results show strong differences in the accuracy of valence recognition between men (62.5%) and women (78%). We can conclude that affective olfactory stimulation significantly affect EDA dynamics with a highly specific gender dependency.

  12. Power line identification of millimeter wave radar based on PCA-GS-SVM

    NASA Astrophysics Data System (ADS)

    Fang, Fang; Zhang, Guifeng; Cheng, Yansheng

    2017-12-01

    Aiming at the problem that the existing detection method can not effectively solve the security of UAV's ultra low altitude flight caused by power line, a power line recognition method based on grid search (GS) and the principal component analysis and support vector machine (PCA-SVM) is proposed. Firstly, the candidate line of Hough transform is reduced by PCA, and the main feature of candidate line is extracted. Then, upport vector machine (SVM is) optimized by grid search method (GS). Finally, using support vector machine classifier optimized parameters to classify the candidate line. MATLAB simulation results show that this method can effectively identify the power line and noise, and has high recognition accuracy and algorithm efficiency.

  13. Facial Expression Recognition using Multiclass Ensemble Least-Square Support Vector Machine

    NASA Astrophysics Data System (ADS)

    Lawi, Armin; Sya'Rani Machrizzandi, M.

    2018-03-01

    Facial expression is one of behavior characteristics of human-being. The use of biometrics technology system with facial expression characteristics makes it possible to recognize a person’s mood or emotion. The basic components of facial expression analysis system are face detection, face image extraction, facial classification and facial expressions recognition. This paper uses Principal Component Analysis (PCA) algorithm to extract facial features with expression parameters, i.e., happy, sad, neutral, angry, fear, and disgusted. Then Multiclass Ensemble Least-Squares Support Vector Machine (MELS-SVM) is used for the classification process of facial expression. The result of MELS-SVM model obtained from our 185 different expression images of 10 persons showed high accuracy level of 99.998% using RBF kernel.

  14. Comparing an FPGA to a Cell for an Image Processing Application

    NASA Astrophysics Data System (ADS)

    Rakvic, Ryan N.; Ngo, Hau; Broussard, Randy P.; Ives, Robert W.

    2010-12-01

    Modern advancements in configurable hardware, most notably Field-Programmable Gate Arrays (FPGAs), have provided an exciting opportunity to discover the parallel nature of modern image processing algorithms. On the other hand, PlayStation3 (PS3) game consoles contain a multicore heterogeneous processor known as the Cell, which is designed to perform complex image processing algorithms at a high performance. In this research project, our aim is to study the differences in performance of a modern image processing algorithm on these two hardware platforms. In particular, Iris Recognition Systems have recently become an attractive identification method because of their extremely high accuracy. Iris matching, a repeatedly executed portion of a modern iris recognition algorithm, is parallelized on an FPGA system and a Cell processor. We demonstrate a 2.5 times speedup of the parallelized algorithm on the FPGA system when compared to a Cell processor-based version.

  15. Prose memory deficits associated with schizophrenia.

    PubMed

    Lee, Tatia M C; Chan, Michelle W C; Chan, Chetwyn C H; Gao, Junling; Wang, Kai; Chen, Eric Y H

    2006-01-31

    Memory of contextual information is essential to one's quality of living. This study investigated if the different components of prose memory, across three recall conditions: first learning trial immediate recall, fifth learning trial immediate recall, and 30-min delayed recall, are differentially impaired in people with schizophrenia, relative to healthy controls. A total of 39 patients with schizophrenia and 39 matched healthy controls were recruited. Their prose memory, in terms of recall accuracy, temporal sequence, recognition accuracy and false positives, commission of distortions, and rates of learning, forgetting, and retention were tested and compared. After controlling for the level of intelligence and depression, the patients with schizophrenia were found to commit more distortions. Furthermore, they performed poorer on recall accuracy and temporal sequence accuracy only during the first initial immediate recall. On the other hand, the rates of forgetting/retention and recognition accuracy were comparable between the two groups. These findings suggest that people with schizophrenia could be benefited by repeated exposure to the materials to be remembered. These results may have important implications for rehabilitation of verbal declarative memory deficits in schizophrenia.

  16. Recognition physical activities with optimal number of wearable sensors using data mining algorithms and deep belief network.

    PubMed

    Al-Fatlawi, Ali H; Fatlawi, Hayder K; Sai Ho Ling

    2017-07-01

    Daily physical activities monitoring is benefiting the health care field in several ways, in particular with the development of the wearable sensors. This paper adopts effective ways to calculate the optimal number of the necessary sensors and to build a reliable and a high accuracy monitoring system. Three data mining algorithms, namely Decision Tree, Random Forest and PART Algorithm, have been applied for the sensors selection process. Furthermore, the deep belief network (DBN) has been investigated to recognise 33 physical activities effectively. The results indicated that the proposed method is reliable with an overall accuracy of 96.52% and the number of sensors is minimised from nine to six sensors.

  17. Real-time image restoration for iris recognition systems.

    PubMed

    Kang, Byung Jun; Park, Kang Ryoung

    2007-12-01

    In the field of biometrics, it has been reported that iris recognition techniques have shown high levels of accuracy because unique patterns of the human iris, which has very many degrees of freedom, are used. However, because conventional iris cameras have small depth-of-field (DOF) areas, input iris images can easily be blurred, which can lead to lower recognition performance, since iris patterns are transformed by the blurring caused by optical defocusing. To overcome these problems, an autofocusing camera can be used. However, this inevitably increases the cost, size, and complexity of the system. Therefore, we propose a new real-time iris image-restoration method, which can increase the camera's DOF without requiring any additional hardware. This paper presents five novelties as compared to previous works: 1) by excluding eyelash and eyelid regions, it is possible to obtain more accurate focus scores from input iris images; 2) the parameter of the point spread function (PSF) can be estimated in terms of camera optics and measured focus scores; therefore, parameter estimation is more accurate than it has been in previous research; 3) because the PSF parameter can be obtained by using a predetermined equation, iris image restoration can be done in real-time; 4) by using a constrained least square (CLS) restoration filter that considers noise, performance can be greatly enhanced; and 5) restoration accuracy can also be enhanced by estimating the weight value of the noise-regularization term of the CLS filter according to the amount of image blurring. Experimental results showed that iris recognition errors when using the proposed restoration method were greatly reduced as compared to those results achieved without restoration or those achieved using previous iris-restoration methods.

  18. An Extreme Learning Machine-Based Neuromorphic Tactile Sensing System for Texture Recognition.

    PubMed

    Rasouli, Mahdi; Chen, Yi; Basu, Arindam; Kukreja, Sunil L; Thakor, Nitish V

    2018-04-01

    Despite significant advances in computational algorithms and development of tactile sensors, artificial tactile sensing is strikingly less efficient and capable than the human tactile perception. Inspired by efficiency of biological systems, we aim to develop a neuromorphic system for tactile pattern recognition. We particularly target texture recognition as it is one of the most necessary and challenging tasks for artificial sensory systems. Our system consists of a piezoresistive fabric material as the sensor to emulate skin, an interface that produces spike patterns to mimic neural signals from mechanoreceptors, and an extreme learning machine (ELM) chip to analyze spiking activity. Benefiting from intrinsic advantages of biologically inspired event-driven systems and massively parallel and energy-efficient processing capabilities of the ELM chip, the proposed architecture offers a fast and energy-efficient alternative for processing tactile information. Moreover, it provides the opportunity for the development of low-cost tactile modules for large-area applications by integration of sensors and processing circuits. We demonstrate the recognition capability of our system in a texture discrimination task, where it achieves a classification accuracy of 92% for categorization of ten graded textures. Our results confirm that there exists a tradeoff between response time and classification accuracy (and information transfer rate). A faster decision can be achieved at early time steps or by using a shorter time window. This, however, results in deterioration of the classification accuracy and information transfer rate. We further observe that there exists a tradeoff between the classification accuracy and the input spike rate (and thus energy consumption). Our work substantiates the importance of development of efficient sparse codes for encoding sensory data to improve the energy efficiency. These results have a significance for a wide range of wearable, robotic, prosthetic, and industrial applications.

  19. Prediction of activity type in preschool children using machine learning techniques.

    PubMed

    Hagenbuchner, Markus; Cliff, Dylan P; Trost, Stewart G; Van Tuc, Nguyen; Peoples, Gregory E

    2015-07-01

    Recent research has shown that machine learning techniques can accurately predict activity classes from accelerometer data in adolescents and adults. The purpose of this study is to develop and test machine learning models for predicting activity type in preschool-aged children. Participants completed 12 standardised activity trials (TV, reading, tablet game, quiet play, art, treasure hunt, cleaning up, active game, obstacle course, bicycle riding) over two laboratory visits. Eleven children aged 3-6 years (mean age=4.8±0.87; 55% girls) completed the activity trials while wearing an ActiGraph GT3X+ accelerometer on the right hip. Activities were categorised into five activity classes: sedentary activities, light activities, moderate to vigorous activities, walking, and running. A standard feed-forward Artificial Neural Network and a Deep Learning Ensemble Network were trained on features in the accelerometer data used in previous investigations (10th, 25th, 50th, 75th and 90th percentiles and the lag-one autocorrelation). Overall recognition accuracy for the standard feed forward Artificial Neural Network was 69.7%. Recognition accuracy for sedentary activities, light activities and games, moderate-to-vigorous activities, walking, and running was 82%, 79%, 64%, 36% and 46%, respectively. In comparison, overall recognition accuracy for the Deep Learning Ensemble Network was 82.6%. For sedentary activities, light activities and games, moderate-to-vigorous activities, walking, and running recognition accuracy was 84%, 91%, 79%, 73% and 73%, respectively. Ensemble machine learning approaches such as Deep Learning Ensemble Network can accurately predict activity type from accelerometer data in preschool children. Copyright © 2014 Sports Medicine Australia. Published by Elsevier Ltd. All rights reserved.

  20. Automated Identification of River Hydromorphological Features Using UAV High Resolution Aerial Imagery.

    PubMed

    Casado, Monica Rivas; Gonzalez, Rocio Ballesteros; Kriechbaumer, Thomas; Veal, Amanda

    2015-11-04

    European legislation is driving the development of methods for river ecosystem protection in light of concerns over water quality and ecology. Key to their success is the accurate and rapid characterisation of physical features (i.e., hydromorphology) along the river. Image pattern recognition techniques have been successfully used for this purpose. The reliability of the methodology depends on both the quality of the aerial imagery and the pattern recognition technique used. Recent studies have proved the potential of Unmanned Aerial Vehicles (UAVs) to increase the quality of the imagery by capturing high resolution photography. Similarly, Artificial Neural Networks (ANN) have been shown to be a high precision tool for automated recognition of environmental patterns. This paper presents a UAV based framework for the identification of hydromorphological features from high resolution RGB aerial imagery using a novel classification technique based on ANNs. The framework is developed for a 1.4 km river reach along the river Dee in Wales, United Kingdom. For this purpose, a Falcon 8 octocopter was used to gather 2.5 cm resolution imagery. The results show that the accuracy of the framework is above 81%, performing particularly well at recognising vegetation. These results leverage the use of UAVs for environmental policy implementation and demonstrate the potential of ANNs and RGB imagery for high precision river monitoring and river management.

  1. Sex differences in facial emotion recognition across varying expression intensity levels from videos.

    PubMed

    Wingenbach, Tanja S H; Ashwin, Chris; Brosnan, Mark

    2018-01-01

    There has been much research on sex differences in the ability to recognise facial expressions of emotions, with results generally showing a female advantage in reading emotional expressions from the face. However, most of the research to date has used static images and/or 'extreme' examples of facial expressions. Therefore, little is known about how expression intensity and dynamic stimuli might affect the commonly reported female advantage in facial emotion recognition. The current study investigated sex differences in accuracy of response (Hu; unbiased hit rates) and response latencies for emotion recognition using short video stimuli (1sec) of 10 different facial emotion expressions (anger, disgust, fear, sadness, surprise, happiness, contempt, pride, embarrassment, neutral) across three variations in the intensity of the emotional expression (low, intermediate, high) in an adolescent and adult sample (N = 111; 51 male, 60 female) aged between 16 and 45 (M = 22.2, SD = 5.7). Overall, females showed more accurate facial emotion recognition compared to males and were faster in correctly recognising facial emotions. The female advantage in reading expressions from the faces of others was unaffected by expression intensity levels and emotion categories used in the study. The effects were specific to recognition of emotions, as males and females did not differ in the recognition of neutral faces. Together, the results showed a robust sex difference favouring females in facial emotion recognition using video stimuli of a wide range of emotions and expression intensity variations.

  2. Sex differences in facial emotion recognition across varying expression intensity levels from videos

    PubMed Central

    2018-01-01

    There has been much research on sex differences in the ability to recognise facial expressions of emotions, with results generally showing a female advantage in reading emotional expressions from the face. However, most of the research to date has used static images and/or ‘extreme’ examples of facial expressions. Therefore, little is known about how expression intensity and dynamic stimuli might affect the commonly reported female advantage in facial emotion recognition. The current study investigated sex differences in accuracy of response (Hu; unbiased hit rates) and response latencies for emotion recognition using short video stimuli (1sec) of 10 different facial emotion expressions (anger, disgust, fear, sadness, surprise, happiness, contempt, pride, embarrassment, neutral) across three variations in the intensity of the emotional expression (low, intermediate, high) in an adolescent and adult sample (N = 111; 51 male, 60 female) aged between 16 and 45 (M = 22.2, SD = 5.7). Overall, females showed more accurate facial emotion recognition compared to males and were faster in correctly recognising facial emotions. The female advantage in reading expressions from the faces of others was unaffected by expression intensity levels and emotion categories used in the study. The effects were specific to recognition of emotions, as males and females did not differ in the recognition of neutral faces. Together, the results showed a robust sex difference favouring females in facial emotion recognition using video stimuli of a wide range of emotions and expression intensity variations. PMID:29293674

  3. Stress and emotional valence effects on children's versus adolescents' true and false memory.

    PubMed

    Quas, Jodi A; Rush, Elizabeth B; Yim, Ilona S; Edelstein, Robin S; Otgaar, Henry; Smeets, Tom

    2016-01-01

    Despite considerable interest in understanding how stress influences memory accuracy and errors, particularly in children, methodological limitations have made it difficult to examine the effects of stress independent of the effects of the emotional valence of to-be-remembered information in developmental populations. In this study, we manipulated stress levels in 7-8- and 12-14-year-olds and then exposed them to negative, neutral, and positive word lists. Shortly afterward, we tested their recognition memory for the words and false memory for non-presented but related words. Adolescents in the high-stress condition were more accurate than those in the low-stress condition, while children's accuracy did not differ across stress conditions. Also, among adolescents, accuracy and errors were higher for the negative than positive words, while in children, word valence was unrelated to accuracy. Finally, increases in children's and adolescents' cortisol responses, especially in the high-stress condition, were related to greater accuracy but not false memories and only for positive emotional words. Findings suggest that stress at encoding, as well as the emotional content of to-be-remembered information, may influence memory in different ways across development, highlighting the need for greater complexity in existing models of true and false memory formation.

  4. Raman fiber-optical method for colon cancer detection: Cross-validation and outlier identification approach

    NASA Astrophysics Data System (ADS)

    Petersen, D.; Naveed, P.; Ragheb, A.; Niedieker, D.; El-Mashtoly, S. F.; Brechmann, T.; Kötting, C.; Schmiegel, W. H.; Freier, E.; Pox, C.; Gerwert, K.

    2017-06-01

    Endoscopy plays a major role in early recognition of cancer which is not externally accessible and therewith in increasing the survival rate. Raman spectroscopic fiber-optical approaches can help to decrease the impact on the patient, increase objectivity in tissue characterization, reduce expenses and provide a significant time advantage in endoscopy. In gastroenterology an early recognition of malign and precursor lesions is relevant. Instantaneous and precise differentiation between adenomas as precursor lesions for cancer and hyperplastic polyps on the one hand and between high and low-risk alterations on the other hand is important. Raman fiber-optical measurements of colon biopsy samples taken during colonoscopy were carried out during a clinical study, and samples of adenocarcinoma (22), tubular adenomas (141), hyperplastic polyps (79) and normal tissue (101) from 151 patients were analyzed. This allows us to focus on the bioinformatic analysis and to set stage for Raman endoscopic measurements. Since spectral differences between normal and cancerous biopsy samples are small, special care has to be taken in data analysis. Using a leave-one-patient-out cross-validation scheme, three different outlier identification methods were investigated to decrease the influence of systematic errors, like a residual risk in misplacement of the sample and spectral dilution of marker bands (esp. cancerous tissue) and therewith optimize the experimental design. Furthermore other validations methods like leave-one-sample-out and leave-one-spectrum-out cross-validation schemes were compared with leave-one-patient-out cross-validation. High-risk lesions were differentiated from low-risk lesions with a sensitivity of 79%, specificity of 74% and an accuracy of 77%, cancer and normal tissue with a sensitivity of 79%, specificity of 83% and an accuracy of 81%. Additionally applied outlier identification enabled us to improve the recognition of neoplastic biopsy samples.

  5. Confabulation Based Real-time Anomaly Detection for Wide-area Surveillance Using Heterogeneous High Performance Computing Architecture

    DTIC Science & Technology

    2015-06-01

    system accuracy. The AnRAD system was also generalized for the additional application of network intrusion detection . A self-structuring technique...to Host- based Intrusion Detection Systems using Contiguous and Discontiguous System Call Patterns,” IEEE Transactions on Computer, 63(4), pp. 807...square kilometer areas. The anomaly recognition and detection (AnRAD) system was built as a cogent confabulation network . It represented road

  6. Recognizing Biological Motion and Emotions from Point-Light Displays in Autism Spectrum Disorders

    PubMed Central

    Nackaerts, Evelien; Wagemans, Johan; Helsen, Werner; Swinnen, Stephan P.; Wenderoth, Nicole; Alaerts, Kaat

    2012-01-01

    One of the main characteristics of Autism Spectrum Disorder (ASD) are problems with social interaction and communication. Here, we explored ASD-related alterations in ‘reading’ body language of other humans. Accuracy and reaction times were assessed from two observational tasks involving the recognition of ‘biological motion’ and ‘emotions’ from point-light displays (PLDs). Eye movements were recorded during the completion of the tests. Results indicated that typically developed-participants were more accurate than ASD-subjects in recognizing biological motion or emotions from PLDs. No accuracy differences were revealed on two control-tasks (involving the indication of color-changes in the moving point-lights). Group differences in reaction times existed on all tasks, but effect sizes were higher for the biological and emotion recognition tasks. Biological motion recognition abilities were related to a person’s ability to recognize emotions from PLDs. However, ASD-related atypicalities in emotion recognition could not entirely be attributed to more basic deficits in biological motion recognition, suggesting an additional ASD-specific deficit in recognizing the emotional dimension of the point light displays. Eye movements were assessed during the completion of tasks and results indicated that ASD-participants generally produced more saccades and shorter fixation-durations compared to the control-group. However, especially for emotion recognition, these altered eye movements were associated with reductions in task-performance. PMID:22970227

  7. Real-Time (Vision-Based) Road Sign Recognition Using an Artificial Neural Network.

    PubMed

    Islam, Kh Tohidul; Raj, Ram Gopal

    2017-04-13

    Road sign recognition is a driver support function that can be used to notify and warn the driver by showing the restrictions that may be effective on the current stretch of road. Examples for such regulations are 'traffic light ahead' or 'pedestrian crossing' indications. The present investigation targets the recognition of Malaysian road and traffic signs in real-time. Real-time video is taken by a digital camera from a moving vehicle and real world road signs are then extracted using vision-only information. The system is based on two stages, one performs the detection and another one is for recognition. In the first stage, a hybrid color segmentation algorithm has been developed and tested. In the second stage, an introduced robust custom feature extraction method is used for the first time in a road sign recognition approach. Finally, a multilayer artificial neural network (ANN) has been created to recognize and interpret various road signs. It is robust because it has been tested on both standard and non-standard road signs with significant recognition accuracy. This proposed system achieved an average of 99.90% accuracy with 99.90% of sensitivity, 99.90% of specificity, 99.90% of f-measure, and 0.001 of false positive rate (FPR) with 0.3 s computational time. This low FPR can increase the system stability and dependability in real-time applications.

  8. Real-Time (Vision-Based) Road Sign Recognition Using an Artificial Neural Network

    PubMed Central

    Islam, Kh Tohidul; Raj, Ram Gopal

    2017-01-01

    Road sign recognition is a driver support function that can be used to notify and warn the driver by showing the restrictions that may be effective on the current stretch of road. Examples for such regulations are ‘traffic light ahead’ or ‘pedestrian crossing’ indications. The present investigation targets the recognition of Malaysian road and traffic signs in real-time. Real-time video is taken by a digital camera from a moving vehicle and real world road signs are then extracted using vision-only information. The system is based on two stages, one performs the detection and another one is for recognition. In the first stage, a hybrid color segmentation algorithm has been developed and tested. In the second stage, an introduced robust custom feature extraction method is used for the first time in a road sign recognition approach. Finally, a multilayer artificial neural network (ANN) has been created to recognize and interpret various road signs. It is robust because it has been tested on both standard and non-standard road signs with significant recognition accuracy. This proposed system achieved an average of 99.90% accuracy with 99.90% of sensitivity, 99.90% of specificity, 99.90% of f-measure, and 0.001 of false positive rate (FPR) with 0.3 s computational time. This low FPR can increase the system stability and dependability in real-time applications. PMID:28406471

  9. Recognizing biological motion and emotions from point-light displays in autism spectrum disorders.

    PubMed

    Nackaerts, Evelien; Wagemans, Johan; Helsen, Werner; Swinnen, Stephan P; Wenderoth, Nicole; Alaerts, Kaat

    2012-01-01

    One of the main characteristics of Autism Spectrum Disorder (ASD) are problems with social interaction and communication. Here, we explored ASD-related alterations in 'reading' body language of other humans. Accuracy and reaction times were assessed from two observational tasks involving the recognition of 'biological motion' and 'emotions' from point-light displays (PLDs). Eye movements were recorded during the completion of the tests. Results indicated that typically developed-participants were more accurate than ASD-subjects in recognizing biological motion or emotions from PLDs. No accuracy differences were revealed on two control-tasks (involving the indication of color-changes in the moving point-lights). Group differences in reaction times existed on all tasks, but effect sizes were higher for the biological and emotion recognition tasks. Biological motion recognition abilities were related to a person's ability to recognize emotions from PLDs. However, ASD-related atypicalities in emotion recognition could not entirely be attributed to more basic deficits in biological motion recognition, suggesting an additional ASD-specific deficit in recognizing the emotional dimension of the point light displays. Eye movements were assessed during the completion of tasks and results indicated that ASD-participants generally produced more saccades and shorter fixation-durations compared to the control-group. However, especially for emotion recognition, these altered eye movements were associated with reductions in task-performance.

  10. Bridge Displacement Monitoring Method Based on Laser Projection-Sensing Technology

    PubMed Central

    Zhao, Xuefeng; Liu, Hao; Yu, Yan; Xu, Xiaodong; Hu, Weitong; Li, Mingchu; Ou, Jingping

    2015-01-01

    Bridge displacement is the most basic evaluation index of the health status of a bridge structure. The existing measurement methods for bridge displacement basically fail to realize long-term and real-time dynamic monitoring of bridge structures, because of the low degree of automation and the insufficient precision, causing bottlenecks and restriction. To solve this problem, we proposed a bridge displacement monitoring system based on laser projection-sensing technology. First, the laser spot recognition method was studied. Second, the software for the displacement monitoring system was developed. Finally, a series of experiments using this system were conducted, and the results show that such a system has high measurement accuracy and speed. We aim to develop a low-cost, high-accuracy and long-term monitoring method for bridge displacement based on these preliminary efforts. PMID:25871716

  11. Fuzzy Temporal Logic Based Railway Passenger Flow Forecast Model

    PubMed Central

    Dou, Fei; Jia, Limin; Wang, Li; Xu, Jie; Huang, Yakun

    2014-01-01

    Passenger flow forecast is of essential importance to the organization of railway transportation and is one of the most important basics for the decision-making on transportation pattern and train operation planning. Passenger flow of high-speed railway features the quasi-periodic variations in a short time and complex nonlinear fluctuation because of existence of many influencing factors. In this study, a fuzzy temporal logic based passenger flow forecast model (FTLPFFM) is presented based on fuzzy logic relationship recognition techniques that predicts the short-term passenger flow for high-speed railway, and the forecast accuracy is also significantly improved. An applied case that uses the real-world data illustrates the precision and accuracy of FTLPFFM. For this applied case, the proposed model performs better than the k-nearest neighbor (KNN) and autoregressive integrated moving average (ARIMA) models. PMID:25431586

  12. Evolutionary Design of Convolutional Neural Networks for Human Activity Recognition in Sensor-Rich Environments.

    PubMed

    Baldominos, Alejandro; Saez, Yago; Isasi, Pedro

    2018-04-23

    Human activity recognition is a challenging problem for context-aware systems and applications. It is gaining interest due to the ubiquity of different sensor sources, wearable smart objects, ambient sensors, etc. This task is usually approached as a supervised machine learning problem, where a label is to be predicted given some input data, such as the signals retrieved from different sensors. For tackling the human activity recognition problem in sensor network environments, in this paper we propose the use of deep learning (convolutional neural networks) to perform activity recognition using the publicly available OPPORTUNITY dataset. Instead of manually choosing a suitable topology, we will let an evolutionary algorithm design the optimal topology in order to maximize the classification F1 score. After that, we will also explore the performance of committees of the models resulting from the evolutionary process. Results analysis indicates that the proposed model was able to perform activity recognition within a heterogeneous sensor network environment, achieving very high accuracies when tested with new sensor data. Based on all conducted experiments, the proposed neuroevolutionary system has proved to be able to systematically find a classification model which is capable of outperforming previous results reported in the state-of-the-art, showing that this approach is useful and improves upon previously manually-designed architectures.

  13. Two-stage neural-network-based technique for Urdu character two-dimensional shape representation, classification, and recognition

    NASA Astrophysics Data System (ADS)

    Megherbi, Dalila B.; Lodhi, S. M.; Boulenouar, A. J.

    2001-03-01

    This work is in the field of automated document processing. This work addresses the problem of representation and recognition of Urdu characters using Fourier representation and a Neural Network architecture. In particular, we show that a two-stage Neural Network scheme is used here to make classification of 36 Urdu characters into seven sub-classes namely subclasses characterized by seven proposed and defined fuzzy features specifically related to Urdu characters. We show that here Fourier Descriptors and Neural Network provide a remarkably simple way to draw definite conclusions from vague, ambiguous, noisy or imprecise information. In particular, we illustrate the concept of interest regions and describe a framing method that provides a way to make the proposed technique for Urdu characters recognition robust and invariant to scaling and translation. We also show that a given character rotation is dealt with by using the Hotelling transform. This transform is based upon the eigenvalue decomposition of the covariance matrix of an image, providing a method of determining the orientation of the major axis of an object within an image. Finally experimental results are presented to show the power and robustness of the proposed two-stage Neural Network based technique for Urdu character recognition, its fault tolerance, and high recognition accuracy.

  14. Evolutionary Design of Convolutional Neural Networks for Human Activity Recognition in Sensor-Rich Environments

    PubMed Central

    2018-01-01

    Human activity recognition is a challenging problem for context-aware systems and applications. It is gaining interest due to the ubiquity of different sensor sources, wearable smart objects, ambient sensors, etc. This task is usually approached as a supervised machine learning problem, where a label is to be predicted given some input data, such as the signals retrieved from different sensors. For tackling the human activity recognition problem in sensor network environments, in this paper we propose the use of deep learning (convolutional neural networks) to perform activity recognition using the publicly available OPPORTUNITY dataset. Instead of manually choosing a suitable topology, we will let an evolutionary algorithm design the optimal topology in order to maximize the classification F1 score. After that, we will also explore the performance of committees of the models resulting from the evolutionary process. Results analysis indicates that the proposed model was able to perform activity recognition within a heterogeneous sensor network environment, achieving very high accuracies when tested with new sensor data. Based on all conducted experiments, the proposed neuroevolutionary system has proved to be able to systematically find a classification model which is capable of outperforming previous results reported in the state-of-the-art, showing that this approach is useful and improves upon previously manually-designed architectures. PMID:29690587

  15. Neural basis for recognition confidence in younger and older adults.

    PubMed

    Chua, Elizabeth F; Schacter, Daniel L; Sperling, Reisa A

    2009-03-01

    Although several studies have examined the neural basis for age-related changes in objective memory performance, less is known about how the process of memory monitoring changes with aging. The authors used functional magnetic resonance imaging to examine retrospective confidence in memory performance in aging. During low confidence, both younger and older adults showed behavioral evidence that they were guessing during recognition and that they were aware they were guessing when making confidence judgments. Similarly, both younger and older adults showed increased neural activity during low- compared to high-confidence responses in the lateral prefrontal cortex, anterior cingulate cortex, and left intraparietal sulcus. In contrast, older adults showed more high-confidence errors than younger adults. Younger adults showed greater activity for high compared to low confidence in medial temporal lobe structures, but older adults did not show this pattern. Taken together, these findings may suggest that impairments in the confidence-accuracy relationship for memory in older adults, which are often driven by high-confidence errors, may be primarily related to altered neural signals associated with greater activity for high-confidence responses.

  16. Neural basis for recognition confidence in younger and older adults

    PubMed Central

    Chua, Elizabeth F.; Schacter, Daniel L.; Sperling, Reisa A.

    2008-01-01

    Although several studies have examined the neural basis for age-related changes in objective memory performance, less is known about how the process of memory monitoring changes with aging. We used fMRI to examine retrospective confidence in memory performance in aging. During low confidence, both younger and older adults showed behavioral evidence that they were guessing during recognition, and that they were aware they were guessing when making confidence judgments. Similarly, both younger and older adults showed increased neural activity during low compared to high confidence responses in lateral prefrontal cortex, anterior cingulate cortex, and left intraparietal sulcus. In contrast, older adults showed more high confidence errors than younger adults. Younger adults showed greater activity for high compared to low confidence in medial temporal lobe structures, but older adults did not show this pattern. Taken together, these findings may suggest that impairments in the confidence-accuracy relationship for memory in older adults, which are often driven by high confidence errors, may be primarily related to altered neural signals associated with greater activity for high confidence responses. PMID:19290745

  17. Designing informative warning signals: Effects of indicator type, modality, and task demand on recognition speed and accuracy

    PubMed Central

    Stevens, Catherine J.; Brennan, David; Petocz, Agnes; Howell, Clare

    2009-01-01

    An experiment investigated the assumption that natural indicators which exploit existing learned associations between a signal and an event make more effective warnings than previously unlearned symbolic indicators. Signal modality (visual, auditory) and task demand (low, high) were also manipulated. Warning effectiveness was indexed by accuracy and reaction time (RT) recorded during training and dual task test phases. Thirty-six participants were trained to recognize 4 natural and 4 symbolic indicators, either visual or auditory, paired with critical incidents from an aviation context. As hypothesized, accuracy was greater and RT was faster in response to natural indicators during the training phase. This pattern of responding was upheld in test phase conditions with respect to accuracy but observed in RT only in test phase conditions involving high demand and the auditory modality. Using the experiment as a specific example, we argue for the importance of considering the cognitive contribution of the user (viz., prior learned associations) in the warning design process. Drawing on semiotics and cognitive psychology, we highlight the indexical nature of so-called auditory icons or natural indicators and argue that the cogniser is an indispensable element in the tripartite nature of signification. PMID:20523852

  18. Examining the Time Course of Indexical Specificity Effects in Spoken Word Recognition

    ERIC Educational Resources Information Center

    McLennan, Conor T.; Luce, Paul A.

    2005-01-01

    Variability in talker identity and speaking rate, commonly referred to as indexical variation, has demonstrable effects on the speed and accuracy of spoken word recognition. The present study examines the time course of indexical specificity effects to evaluate the hypothesis that such effects occur relatively late in the perceptual processing of…

  19. Test-Induced Priming Impairs Source Monitoring Accuracy in the DRM Procedure

    ERIC Educational Resources Information Center

    Dewhurst, Stephen A.; Knott, Lauren M.; Howe, Mark L.

    2011-01-01

    Three experiments investigated the effects of test-induced priming (TIP) on false recognition in the Deese/Roediger-McDermott procedure (Deese, 1959; Roediger & McDermott, 1995). In Experiment 1, TIP significantly increased false recognition for participants who made old/new decisions at test but not for participants who made remember/know…

  20. Test-Enhanced Learning of Natural Concepts: Effects on Recognition Memory, Classification, and Metacognition

    ERIC Educational Resources Information Center

    Jacoby, Larry L.; Wahlheim, Christopher N.; Coane, Jennifer H.

    2010-01-01

    Three experiments examined testing effects on learning of natural concepts and metacognitive assessments of such learning. Results revealed that testing enhanced recognition memory and classification accuracy for studied and novel exemplars of bird families on immediate and delayed tests. These effects depended on the balance of study and test…

  1. Priming Contour-Deleted Images: Evidence for Immediate Representations in Visual Object Recognition.

    ERIC Educational Resources Information Center

    Biederman, Irving; Cooper, Eric E.

    1991-01-01

    Speed and accuracy of identification of pictures of objects are facilitated by prior viewing. Contributions of image features, convex or concave components, and object models in a repetition priming task were explored in 2 studies involving 96 college students. Results provide evidence of intermediate representations in visual object recognition.…

  2. Effect of Acting Experience on Emotion Expression and Recognition in Voice: Non-Actors Provide Better Stimuli than Expected.

    PubMed

    Jürgens, Rebecca; Grass, Annika; Drolet, Matthis; Fischer, Julia

    Both in the performative arts and in emotion research, professional actors are assumed to be capable of delivering emotions comparable to spontaneous emotional expressions. This study examines the effects of acting training on vocal emotion depiction and recognition. We predicted that professional actors express emotions in a more realistic fashion than non-professional actors. However, professional acting training may lead to a particular speech pattern; this might account for vocal expressions by actors that are less comparable to authentic samples than the ones by non-professional actors. We compared 80 emotional speech tokens from radio interviews with 80 re-enactments by professional and inexperienced actors, respectively. We analyzed recognition accuracies for emotion and authenticity ratings and compared the acoustic structure of the speech tokens. Both play-acted conditions yielded similar recognition accuracies and possessed more variable pitch contours than the spontaneous recordings. However, professional actors exhibited signs of different articulation patterns compared to non-trained speakers. Our results indicate that for emotion research, emotional expressions by professional actors are not better suited than those from non-actors.

  3. How is this child feeling? Preschool-aged children’s ability to recognize emotion in faces and body poses

    PubMed Central

    Parker, Alison E.; Mathis, Erin T.; Kupersmidt, Janis B.

    2016-01-01

    The study examined children’s recognition of emotion from faces and body poses, as well as gender differences in these recognition abilities. Preschool-aged children (N = 55) and their parents and teachers participated in the study. Preschool-aged children completed a web-based measure of emotion recognition skills, which included five tasks (three with faces and two with bodies). Parents and teachers reported on children’s aggressive behaviors and social skills. Children’s emotion accuracy on two of the three facial tasks and one of the body tasks was related to teacher reports of social skills. Some of these relations were moderated by child gender. In particular, the relationships between emotion recognition accuracy and reports of children’s behavior were stronger for boys than girls. Identifying preschool-aged children’s strengths and weaknesses in identification of emotion from faces and body poses may be helpful in guiding interventions with children who have problems with social and behavioral functioning that may be due, in part, to emotional knowledge deficits. Further developmental implications of these findings are discussed. PMID:27057129

  4. Pitch and Plasticity: Insights from the Pitch Matching of Chords by Musicians with Absolute and Relative Pitch

    PubMed Central

    McLachlan, Neil M.; Marco, David J. T.; Wilson, Sarah J.

    2013-01-01

    Absolute pitch (AP) is a form of sound recognition in which musical note names are associated with discrete musical pitch categories. The accuracy of pitch matching by non-AP musicians for chords has recently been shown to depend on stimulus familiarity, pointing to a role of spectral recognition mechanisms in the early stages of pitch processing. Here we show that pitch matching accuracy by AP musicians was also dependent on their familiarity with the chord stimulus. This suggests that the pitch matching abilities of both AP and non-AP musicians for concurrently presented pitches are dependent on initial recognition of the chord. The dual mechanism model of pitch perception previously proposed by the authors suggests that spectral processing associated with sound recognition primes waveform processing to extract stimulus periodicity and refine pitch perception. The findings presented in this paper are consistent with the dual mechanism model of pitch, and in the case of AP musicians, the formation of nominal pitch categories based on both spectral and periodicity information. PMID:24961624

  5. A multidisciplinary study of earth resources imagery of Australia, Antarctica and Papua, New Guinea

    NASA Technical Reports Server (NTRS)

    Fisher, N. H. (Principal Investigator)

    1975-01-01

    The author has identified the following significant results. A thirteen category recognition map was prepared, showing forest, water, grassland, and exposed rock types. Preliminary assessment of classification accuracies showed that water, forest, meadow, and Niobrara shale were the most accurately mapped classes. Unsatisfactory results, were obtained in an attempt to discrimate sparse forest cover over different substrates. As base elevation varied from 7,000 to 13,000 ft, with an atmospheric visibility of 48 km, no changes in water and forest recognition were observed. Granodiorite recognition accuracy decreased monotonically as base elevation increased, even though the training set location was at 10,000 ft elevation. For snow varying in base elevation from 9400 to 8420 ft, recognition decreases from 99% at the 9400 ft training set elevation to 88% at 8420 ft. Calculations of expected radiance at the ERTS sensor from snow reflectance measured at the site and from Turner model calculations of irradiance, transmission and path radiance, reveal that snow signals should not be clipped, assuming that calculations and ERTS calibration constants were correct.

  6. Personalization algorithm for real-time activity recognition using PDA, wireless motion bands, and binary decision tree.

    PubMed

    Pärkkä, Juha; Cluitmans, Luc; Ermes, Miikka

    2010-09-01

    Inactive and sedentary lifestyle is a major problem in many industrialized countries today. Automatic recognition of type of physical activity can be used to show the user the distribution of his daily activities and to motivate him into more active lifestyle. In this study, an automatic activity-recognition system consisting of wireless motion bands and a PDA is evaluated. The system classifies raw sensor data into activity types online. It uses a decision tree classifier, which has low computational cost and low battery consumption. The classifier parameters can be personalized online by performing a short bout of an activity and by telling the system which activity is being performed. Data were collected with seven volunteers during five everyday activities: lying, sitting/standing, walking, running, and cycling. The online system can detect these activities with overall 86.6% accuracy and with 94.0% accuracy after classifier personalization.

  7. Enhancement Of Reading Accuracy By Multiple Data Integration

    NASA Astrophysics Data System (ADS)

    Lee, Kangsuk

    1989-07-01

    In this paper, a multiple sensor integration technique with neural network learning algorithms is presented which can enhance the reading accuracy of the hand-written numerals. Many document reading applications involve hand-written numerals in a predetermined location on a form, and in many cases, critical data is redundantly described. The amount of a personal check is one such case which is written redundantly in numerals and in alphabetical form. Information from two optical character recognition modules, one specialized for digits and one for words, is combined to yield an enhanced recognition of the amount. The combination can be accomplished by a decision tree with "if-then" rules, but by simply fusing two or more sets of sensor data in a single expanded neural net, the same functionality can be expected with a much reduced system cost. Experimental results of fusing two neural nets to enhance overall recognition performance using a controlled data set are presented.

  8. Using Markov Chains and Multi-Objective Optimization for Energy-Efficient Context Recognition †

    PubMed Central

    Janko, Vito

    2017-01-01

    The recognition of the user’s context with wearable sensing systems is a common problem in ubiquitous computing. However, the typically small battery of such systems often makes continuous recognition impractical. The strain on the battery can be reduced if the sensor setting is adapted to each context. We propose a method that efficiently finds near-optimal sensor settings for each context. It uses Markov chains to simulate the behavior of the system in different configurations and the multi-objective genetic algorithm to find a set of good non-dominated configurations. The method was evaluated on three real-life datasets and found good trade-offs between the system’s energy expenditure and the system’s accuracy. One of the solutions, for example, consumed five-times less energy than the default one, while sacrificing only two percentage points of accuracy. PMID:29286301

  9. Selective REM-sleep deprivation does not diminish emotional memory consolidation in young healthy subjects.

    PubMed

    Morgenthaler, Jarste; Wiesner, Christian D; Hinze, Karoline; Abels, Lena C; Prehn-Kristensen, Alexander; Göder, Robert

    2014-01-01

    Sleep enhances memory consolidation and it has been hypothesized that rapid eye movement (REM) sleep in particular facilitates the consolidation of emotional memory. The aim of this study was to investigate this hypothesis using selective REM-sleep deprivation. We used a recognition memory task in which participants were shown negative and neutral pictures. Participants (N=29 healthy medical students) were separated into two groups (undisturbed sleep and selective REM-sleep deprived). Both groups also worked on the memory task in a wake condition. Recognition accuracy was significantly better for negative than for neutral stimuli and better after the sleep than the wake condition. There was, however, no difference in the recognition accuracy (neutral and emotional) between the groups. In summary, our data suggest that REM-sleep deprivation was successful and that the resulting reduction of REM-sleep had no influence on memory consolidation whatsoever.

  10. The relationship between emotion recognition ability and social skills in young children with autism.

    PubMed

    Williams, Beth T; Gray, Kylie M

    2013-11-01

    This study assessed the relationship between emotion recognition ability and social skills in 42 young children with autistic disorder aged 4-7 years. The analyses revealed that accuracy in recognition of sadness, but not happiness, anger or fear, was associated with higher ratings on the Vineland-II Socialization domain, above and beyond the influence of chronological age, cognitive ability and autism symptom severity. These findings extend previous research with adolescents and adults with autism spectrum disorders, suggesting that sadness recognition is also associated with social skills in children with autism.

  11. Scanning probe recognition microscopy investigation of tissue scaffold properties

    PubMed Central

    Fan, Yuan; Chen, Qian; Ayres, Virginia M; Baczewski, Andrew D; Udpa, Lalita; Kumar, Shiva

    2007-01-01

    Scanning probe recognition microscopy is a new scanning probe microscopy technique which enables selective scanning along individual nanofibers within a tissue scaffold. Statistically significant data for multiple properties can be collected by repetitively fine-scanning an identical region of interest. The results of a scanning probe recognition microscopy investigation of the surface roughness and elasticity of a series of tissue scaffolds are presented. Deconvolution and statistical methods were developed and used for data accuracy along curved nanofiber surfaces. Nanofiber features were also independently analyzed using transmission electron microscopy, with results that supported the scanning probe recognition microscopy-based analysis. PMID:18203431

  12. Scanning probe recognition microscopy investigation of tissue scaffold properties.

    PubMed

    Fan, Yuan; Chen, Qian; Ayres, Virginia M; Baczewski, Andrew D; Udpa, Lalita; Kumar, Shiva

    2007-01-01

    Scanning probe recognition microscopy is a new scanning probe microscopy technique which enables selective scanning along individual nanofibers within a tissue scaffold. Statistically significant data for multiple properties can be collected by repetitively fine-scanning an identical region of interest. The results of a scanning probe recognition microscopy investigation of the surface roughness and elasticity of a series of tissue scaffolds are presented. Deconvolution and statistical methods were developed and used for data accuracy along curved nanofiber surfaces. Nanofiber features were also independently analyzed using transmission electron microscopy, with results that supported the scanning probe recognition microscopy-based analysis.

  13. A Modified Active Appearance Model Based on an Adaptive Artificial Bee Colony

    PubMed Central

    Othman, Zulaiha Ali

    2014-01-01

    Active appearance model (AAM) is one of the most popular model-based approaches that have been extensively used to extract features by highly accurate modeling of human faces under various physical and environmental circumstances. However, in such active appearance model, fitting the model with original image is a challenging task. State of the art shows that optimization method is applicable to resolve this problem. However, another common problem is applying optimization. Hence, in this paper we propose an AAM based face recognition technique, which is capable of resolving the fitting problem of AAM by introducing a new adaptive ABC algorithm. The adaptation increases the efficiency of fitting as against the conventional ABC algorithm. We have used three datasets: CASIA dataset, property 2.5D face dataset, and UBIRIS v1 images dataset in our experiments. The results have revealed that the proposed face recognition technique has performed effectively, in terms of accuracy of face recognition. PMID:25165748

  14. Statistical process control using optimized neural networks: a case study.

    PubMed

    Addeh, Jalil; Ebrahimzadeh, Ata; Azarbad, Milad; Ranaee, Vahid

    2014-09-01

    The most common statistical process control (SPC) tools employed for monitoring process changes are control charts. A control chart demonstrates that the process has altered by generating an out-of-control signal. This study investigates the design of an accurate system for the control chart patterns (CCPs) recognition in two aspects. First, an efficient system is introduced that includes two main modules: feature extraction module and classifier module. In the feature extraction module, a proper set of shape features and statistical feature are proposed as the efficient characteristics of the patterns. In the classifier module, several neural networks, such as multilayer perceptron, probabilistic neural network and radial basis function are investigated. Based on an experimental study, the best classifier is chosen in order to recognize the CCPs. Second, a hybrid heuristic recognition system is introduced based on cuckoo optimization algorithm (COA) algorithm to improve the generalization performance of the classifier. The simulation results show that the proposed algorithm has high recognition accuracy. Copyright © 2013 ISA. Published by Elsevier Ltd. All rights reserved.

  15. Face-iris multimodal biometric scheme based on feature level fusion

    NASA Astrophysics Data System (ADS)

    Huo, Guang; Liu, Yuanning; Zhu, Xiaodong; Dong, Hongxing; He, Fei

    2015-11-01

    Unlike score level fusion, feature level fusion demands all the features extracted from unimodal traits with high distinguishability, as well as homogeneity and compatibility, which is difficult to achieve. Therefore, most multimodal biometric research focuses on score level fusion, whereas few investigate feature level fusion. We propose a face-iris recognition method based on feature level fusion. We build a special two-dimensional-Gabor filter bank to extract local texture features from face and iris images, and then transform them by histogram statistics into an energy-orientation variance histogram feature with lower dimensions and higher distinguishability. Finally, through a fusion-recognition strategy based on principal components analysis and support vector machine (FRSPS), feature level fusion and one-to-n identification are accomplished. The experimental results demonstrate that this method can not only effectively extract face and iris features but also provide higher recognition accuracy. Compared with some state-of-the-art fusion methods, the proposed method has a significant performance advantage.

  16. Automated phenotype pattern recognition of zebrafish for high-throughput screening.

    PubMed

    Schutera, Mark; Dickmeis, Thomas; Mione, Marina; Peravali, Ravindra; Marcato, Daniel; Reischl, Markus; Mikut, Ralf; Pylatiuk, Christian

    2016-07-03

    Over the last years, the zebrafish (Danio rerio) has become a key model organism in genetic and chemical screenings. A growing number of experiments and an expanding interest in zebrafish research makes it increasingly essential to automatize the distribution of embryos and larvae into standard microtiter plates or other sample holders for screening, often according to phenotypical features. Until now, such sorting processes have been carried out by manually handling the larvae and manual feature detection. Here, a prototype platform for image acquisition together with a classification software is presented. Zebrafish embryos and larvae and their features such as pigmentation are detected automatically from the image. Zebrafish of 4 different phenotypes can be classified through pattern recognition at 72 h post fertilization (hpf), allowing the software to classify an embryo into 2 distinct phenotypic classes: wild-type versus variant. The zebrafish phenotypes are classified with an accuracy of 79-99% without any user interaction. A description of the prototype platform and of the algorithms for image processing and pattern recognition is presented.

  17. CNNs flag recognition preprocessing scheme based on gray scale stretching and local binary pattern

    NASA Astrophysics Data System (ADS)

    Gong, Qian; Qu, Zhiyi; Hao, Kun

    2017-07-01

    Flag is a rather special recognition target in image recognition because of its non-rigid features with the location, scale and rotation characteristics. The location change can be handled well by the depth learning algorithm Convolutional Neural Networks (CNNs), but the scale and rotation changes are quite a challenge for CNNs. Since it has good rotation and gray scale invariance, the local binary pattern (LBP) is combined with grayscale stretching and CNNs to make LBP and grayscale stretching as CNNs pretreatment, which can not only significantly improve the efficiency of flag recognition, but can also evaluate the recognition effect through ROC, accuracy, MSE and quality factor.

  18. Iris recognition based on robust principal component analysis

    NASA Astrophysics Data System (ADS)

    Karn, Pradeep; He, Xiao Hai; Yang, Shuai; Wu, Xiao Hong

    2014-11-01

    Iris images acquired under different conditions often suffer from blur, occlusion due to eyelids and eyelashes, specular reflection, and other artifacts. Existing iris recognition systems do not perform well on these types of images. To overcome these problems, we propose an iris recognition method based on robust principal component analysis. The proposed method decomposes all training images into a low-rank matrix and a sparse error matrix, where the low-rank matrix is used for feature extraction. The sparsity concentration index approach is then applied to validate the recognition result. Experimental results using CASIA V4 and IIT Delhi V1iris image databases showed that the proposed method achieved competitive performances in both recognition accuracy and computational efficiency.

  19. Compact Representation of High-Dimensional Feature Vectors for Large-Scale Image Recognition and Retrieval.

    PubMed

    Zhang, Yu; Wu, Jianxin; Cai, Jianfei

    2016-05-01

    In large-scale visual recognition and image retrieval tasks, feature vectors, such as Fisher vector (FV) or the vector of locally aggregated descriptors (VLAD), have achieved state-of-the-art results. However, the combination of the large numbers of examples and high-dimensional vectors necessitates dimensionality reduction, in order to reduce its storage and CPU costs to a reasonable range. In spite of the popularity of various feature compression methods, this paper shows that the feature (dimension) selection is a better choice for high-dimensional FV/VLAD than the feature (dimension) compression methods, e.g., product quantization. We show that strong correlation among the feature dimensions in the FV and the VLAD may not exist, which renders feature selection a natural choice. We also show that, many dimensions in FV/VLAD are noise. Throwing them away using feature selection is better than compressing them and useful dimensions altogether using feature compression methods. To choose features, we propose an efficient importance sorting algorithm considering both the supervised and unsupervised cases, for visual recognition and image retrieval, respectively. Combining with the 1-bit quantization, feature selection has achieved both higher accuracy and less computational cost than feature compression methods, such as product quantization, on the FV and the VLAD image representations.

  20. Enhancement of gesture recognition for contactless interface using a personalized classifier in the operating room.

    PubMed

    Cho, Yongwon; Lee, Areum; Park, Jongha; Ko, Bemseok; Kim, Namkug

    2018-07-01

    Contactless operating room (OR) interfaces are important for computer-aided surgery, and have been developed to decrease the risk of contamination during surgical procedures. In this study, we used Leap Motion™, with a personalized automated classifier, to enhance the accuracy of gesture recognition for contactless interfaces. This software was trained and tested on a personal basis that means the training of gesture per a user. We used 30 features including finger and hand data, which were computed, selected, and fed into a multiclass support vector machine (SVM), and Naïve Bayes classifiers and to predict and train five types of gestures including hover, grab, click, one peak, and two peaks. Overall accuracy of the five gestures was 99.58% ± 0.06, and 98.74% ± 3.64 on a personal basis using SVM and Naïve Bayes classifiers, respectively. We compared gesture accuracy across the entire dataset and used SVM and Naïve Bayes classifiers to examine the strength of personal basis training. We developed and enhanced non-contact interfaces with gesture recognition to enhance OR control systems. Copyright © 2018 Elsevier B.V. All rights reserved.

Top