Development of a High-Sensitivity Wireless Accelerometer for Structural Health Monitoring
Zhu, Li; Fu, Yuguang; Chow, Raymond; Spencer, Billie F.; Park, Jong Woong; Mechitov, Kirill
2018-01-01
Structural health monitoring (SHM) is playing an increasingly important role in ensuring the safety of structures. A shift of SHM research away from traditional wired methods toward the use of wireless smart sensors (WSS) has been motivated by the attractive features of wireless smart sensor networks (WSSN). The progress achieved in Micro Electro-Mechanical System (MEMS) technologies and wireless data transmission, has extended the effectiveness and range of applicability of WSSNs. One of the most common sensors employed in SHM strategies is the accelerometer; however, most accelerometers in WSS nodes have inadequate resolution for measurement of the typical accelerations found in many SHM applications. In this study, a high-resolution and low-noise tri-axial digital MEMS accelerometer is incorporated in a next-generation WSS platform, the Xnode. In addition to meeting the acceleration sensing demands of large-scale civil infrastructure applications, this new WSS node provides powerful hardware and a robust software framework to enable edge computing that can deliver actionable information. Hardware and software integration challenges are presented, and the associate resolutions are discussed. The performance of the wireless accelerometer is demonstrated experimentally through comparison with high-sensitivity wired accelerometers. This new high-sensitivity wireless accelerometer will extend the use of WSSN to a broader class of SHM applications. PMID:29342102
Development of a High-Sensitivity Wireless Accelerometer for Structural Health Monitoring.
Zhu, Li; Fu, Yuguang; Chow, Raymond; Spencer, Billie F; Park, Jong Woong; Mechitov, Kirill
2018-01-17
Structural health monitoring (SHM) is playing an increasingly important role in ensuring the safety of structures. A shift of SHM research away from traditional wired methods toward the use of wireless smart sensors (WSS) has been motivated by the attractive features of wireless smart sensor networks (WSSN). The progress achieved in Micro Electro-Mechanical System (MEMS) technologies and wireless data transmission, has extended the effectiveness and range of applicability of WSSNs. One of the most common sensors employed in SHM strategies is the accelerometer; however, most accelerometers in WSS nodes have inadequate resolution for measurement of the typical accelerations found in many SHM applications. In this study, a high-resolution and low-noise tri-axial digital MEMS accelerometer is incorporated in a next-generation WSS platform, the Xnode. In addition to meeting the acceleration sensing demands of large-scale civil infrastructure applications, this new WSS node provides powerful hardware and a robust software framework to enable edge computing that can deliver actionable information. Hardware and software integration challenges are presented, and the associate resolutions are discussed. The performance of the wireless accelerometer is demonstrated experimentally through comparison with high-sensitivity wired accelerometers. This new high-sensitivity wireless accelerometer will extend the use of WSSN to a broader class of SHM applications.
NASA Astrophysics Data System (ADS)
Lu, Qianbo; Bai, Jian; Wang, Kaiwei; Lou, Shuqi; Jiao, Xufen; Han, Dandan
2016-10-01
Cross-sensitivity is a crucial parameter since it detrimentally affect the performance of an accelerometer, especially for a high resolution accelerometer. In this paper, a suite of analytical and finite-elements-method (FEM) models for characterizing the mechanism and features of the cross-sensitivity of a single-axis MOEMS accelerometer composed of a diffraction grating and a micromachined mechanical sensing chip are presented, which have not been systematically investigated yet. The mechanism and phenomena of the cross-sensitivity of this type MOEMS accelerometer based on diffraction grating differ quite a lot from the traditional ones owing to the identical sensing principle. By analyzing the models, some ameliorations and the modified design are put forward to suppress the cross-sensitivity. The modified design, achieved by double sides etching on a specific double-substrate-layer silicon-on-insulator (SOI) wafer, is validated to have a far smaller cross-sensitivity compared with the design previously reported in the literature. Moreover, this design can suppress the cross-sensitivity dramatically without compromising the acceleration sensitivity and resolution.
Tian, W; Wu, S C; Zhou, Z B; Qu, S B; Bai, Y Z; Luo, J
2012-09-01
High precision accelerometer plays an important role in space scientific and technical applications. A quartz-flexure accelerometer operating in low frequency range, having a resolution of better than 1 ng/Hz(1/2), has been designed based on advanced capacitive sensing and electrostatic control technologies. A high precision capacitance displacement transducer with a resolution of better than 2 × 10(-6) pF/Hz(1/2) above 0.1 Hz, is used to measure the motion of the proof mass, and the mechanical stiffness of the spring oscillator is compensated by adjusting the voltage between the proof mass and the electrodes to induce a proper negative electrostatic stiffness, which increases the mechanical sensitivity and also suppresses the position measurement noise down to 3 × 10(-10) g/Hz(1/2) at 0.1 Hz. A high resolution analog-to-digital converter is used to directly readout the feedback voltage applied on the electrodes in order to suppress the action noise to 4 × 10(-10) g/Hz(1/2) at 0.1 Hz. A prototype of the quartz-flexure accelerometer has been developed and tested, and the preliminary experimental result shows that its resolution comes to about 8 ng/Hz(1/2) at 0.1 Hz, which is mainly limited by its mechanical thermal noise due to low quality factor.
Investigation of Electrostatic Accelerometer in HUST for Space Science Missions
NASA Astrophysics Data System (ADS)
Bai, Yanzheng; Hu, Ming; Li, Gui; Liu, Li; Qu, Shaobo; Wu, Shuchao; Zhou, Zebing
2014-05-01
High-precision electrostatic accelerometers are significant payload in CHAMP, GRACE and GOCE gravity missions to measure the non-gravitational forces. In our group, space electrostatic accelerometer and inertial sensor based on the capacitive sensors and electrostatic control technique has been investigated for space science research in China such as testing of equivalence principle (TEPO), searching non-Newtonian force in micrometer range, satellite Earth's field recovery and so on. In our group, a capacitive position sensor with a resolution of 10-7pF/Hz1/2 and the μV/Hz1/2 level electrostatic actuator are developed. The fiber torsion pendulum facility is adopt to measure the parameters of the electrostatic controlled inertial sensor such as the resolution, and the electrostatic stiffness, the cross couple between different DOFs. Meanwhile, high voltage suspension and free fall methods are applied to verify the function of electrostatic accelerometer. Last, the engineering model of electrostatic accelerometer has been developed and tested successfully in space and preliminary results are present.
Mechanical design of a single-axis monolithic accelerometer for advanced seismic attenuation systems
NASA Astrophysics Data System (ADS)
Bertolini, Alessandro; DeSalvo, Riccardo; Fidecaro, Francesco; Francesconi, Mario; Marka, Szabolcs; Sannibale, Virginio; Simonetti, Duccio; Takamori, Akiteru; Tariq, Hareem
2006-01-01
The design and mechanics for a new very-low noise low frequency horizontal accelerometer is presented. The sensor has been designed to be integrated in an advanced seismic isolation system for interferometric gravitational wave detectors. The motion of a small monolithic folded-pendulum (FP) is monitored by a high resolution capacitance displacement sensor; a feedback force actuator keeps the mass at the equilibrium position. The feedback signal is proportional to the ground acceleration in the frequency range 0-150 Hz. The very high mechanical quality factor, Q≃3000 at a resonant frequency of 0.5 Hz, reduces the Brownian motion of the proof mass of the accelerometer below the resolution of the displacement sensor. This scheme enables the accelerometer to detect the inertial displacement of a platform with a root-mean-square noise less than 1 nm, integrated over the frequency band from 0.01 to 150 Hz. The FP geometry, combined with the monolithic design, allows the accelerometer to be extremely directional. A vertical-horizontal coupling ranging better than 10-3 has been achieved. A detailed account of the design and construction of the accelerometer is reported here. The instrument is fully ultra-high vacuum compatible and has been tested and approved for integration in seismic attenuation system of japanese TAMA 300 gravitational wave detector. The monolithic design also makes the accelerometer suitable for cryogenic operation.
Design and implementation of a micromechanical silicon resonant accelerometer.
Huang, Libin; Yang, Hui; Gao, Yang; Zhao, Liye; Liang, Jinxing
2013-11-19
The micromechanical silicon resonant accelerometer has attracted considerable attention in the research and development of high-precision MEMS accelerometers because of its output of quasi-digital signals, high sensitivity, high resolution, wide dynamic range, anti-interference capacity and good stability. Because of the mismatching thermal expansion coefficients of silicon and glass, the micromechanical silicon resonant accelerometer based on the Silicon on Glass (SOG) technique is deeply affected by the temperature during the fabrication, packaging and use processes. The thermal stress caused by temperature changes directly affects the frequency output of the accelerometer. Based on the working principle of the micromechanical resonant accelerometer, a special accelerometer structure that reduces the temperature influence on the accelerometer is designed. The accelerometer can greatly reduce the thermal stress caused by high temperatures in the process of fabrication and packaging. Currently, the closed-loop drive circuit is devised based on a phase-locked loop. The unloaded resonant frequencies of the prototype of the micromechanical silicon resonant accelerometer are approximately 31.4 kHz and 31.5 kHz. The scale factor is 66.24003 Hz/g. The scale factor stability is 14.886 ppm, the scale factor repeatability is 23 ppm, the bias stability is 23 μg, the bias repeatability is 170 μg, and the bias temperature coefficient is 0.0734 Hz/°C.
Design and Implementation of a Micromechanical Silicon Resonant Accelerometer
Huang, Libin; Yang, Hui; Gao, Yang; Zhao, Liye; Liang, Jinxing
2013-01-01
The micromechanical silicon resonant accelerometer has attracted considerable attention in the research and development of high-precision MEMS accelerometers because of its output of quasi-digital signals, high sensitivity, high resolution, wide dynamic range, anti-interference capacity and good stability. Because of the mismatching thermal expansion coefficients of silicon and glass, the micromechanical silicon resonant accelerometer based on the Silicon on Glass (SOG) technique is deeply affected by the temperature during the fabrication, packaging and use processes. The thermal stress caused by temperature changes directly affects the frequency output of the accelerometer. Based on the working principle of the micromechanical resonant accelerometer, a special accelerometer structure that reduces the temperature influence on the accelerometer is designed. The accelerometer can greatly reduce the thermal stress caused by high temperatures in the process of fabrication and packaging. Currently, the closed-loop drive circuit is devised based on a phase-locked loop. The unloaded resonant frequencies of the prototype of the micromechanical silicon resonant accelerometer are approximately 31.4 kHz and 31.5 kHz. The scale factor is 66.24003 Hz/g. The scale factor stability is 14.886 ppm, the scale factor repeatability is 23 ppm, the bias stability is 23 μg, the bias repeatability is 170 μg, and the bias temperature coefficient is 0.0734 Hz/°C. PMID:24256978
MEMS SoC: observer-based coplanar gyro-free inertial measurement unit
NASA Astrophysics Data System (ADS)
Chen, Tsung-Lin; Park, Sungsu
2005-09-01
This paper presents a novel design of a coplanar gyro-free inertial measurement unit (IMU) that consists of seven to nine single-axis linear accelerometers, and it can be utilized to perform the six DOF measurements for an object in motion. Unlike other gyro-fee IMUs, this design uses redundant accelerometers and state estimation techniques to facilitate the in situ and mass fabrication for the employed accelerometers. The alignment error from positioning accelerometers onto a measurement unit and the fabrication cost of an IMU can greatly be reduced. The outputs of the proposed design are three linear accelerations and three angular velocities. As compared to other gyro-free IMUs, the proposed design uses less integral operation and thus improves its sensing resolution and drifting problem. The sensing resolution of a gyro-free IMU depends on the sensing resolution of the employed accelerometers as well as the size of the measurement unit. Simulation results indicate that the sensing resolution of the proposed design is 2° s-1 for the angular velocity and 10 μg for the linear acceleration when nine single-axis accelerometers, each with 10 μg sensing resolution, are deployed on a 4 inch diameter disc. Also, thanks to the iterative EKF algorithm, the angle estimation error is within 10-3 deg at 2 s.
NASA Technical Reports Server (NTRS)
Blanchard, R. C.; Hinson, E. W.; Nicholson, J. Y.
1988-01-01
Indirect or inferred values of atmospheric density encountered by the Shuttle Orbiter during reentry have been calculated from acceleration measurements made by the High Resolution Accelerometer Package (HiRAP) and the Orbiter Inertial Measurement Unit (IMU) liner accelerometers. The atmospheric density data developed from this study represent a significant gain with respect to the body of data collected to date by various techniques in the altitude range of 60 to 160 km. The data are unique in that they cover a very wide horizontal range during each flight and provide insight into the actual density variations encountered along the reentry flight path. The data, which were collected over about 3 years, are also characterized by variations in solar activity, geomagnetic index, and local solar time. Comparison of the flight-derived densities with various atmospheric models have been made, and analyses have attempted to characterize the data and to show correlation with selected physical variables.
The High Resolution Accelerometer Package (HiRAP) flight experiment summary for the first 10 flights
NASA Technical Reports Server (NTRS)
Blanchard, Robert C.; Larman, K. T.; Barrett, M.
1992-01-01
The High Resolution Accelerometer Package (HiRAP) instrument is a triaxial, orthogonal system of gas damped accelerometers with a resolution of 1 x 10(exp -6) g (1 micro-g). The purpose of HiRAP is to measure the low frequency component of the total acceleration along the orbiter vehicle (OV) body axes while the OV descends through the rarefied flow flight regime. Two HiRAP instruments have flown on a total of 10 Space Transport System (STS) missions. The aerodynamic component of the acceleration measurements was separated from the total acceleration. Instrument bias and orbiter mechanical system acceleration effects were incorporated into one bulk bias. The bulk bias was subtracted from the acceleration measurements to produce aerodynamic descent data sets for all 10 flights. The aerodynamic acceleration data sets were input to an aerodynamic coefficient model. The aerodynamic acceleration data and coefficient model were used to estimate the atmospheric density for the altitude range of 140 to 60 km and a downrange distance of 600 km. For 8 of 10 flights results from this model agree with expected results. For the results that do not agree with expected results, a variety of error sources have been explored.
The modulation and demodulation module of a high resolution MOEMS accelerometer
NASA Astrophysics Data System (ADS)
Jiao, Xufen; Bai, Jian; Lu, Qianbo; Lou, Shuqi
2016-02-01
A MOEMS accelerometer with high precision based on grating interferometer is demonstrated in this paper. In order to increase the signal-to-noise ratio (SNR) and accuracy, a specific modulator and an orthogonal phase-lock demodulator are proposed. Phase modulation is introduced to this accelerometer by applying a sinusoidal signal to a piezoelectric translator (PZT) amounted to the accelerometer. Phase demodulation module consists of a circuit design and a digital design. In the circuit design, the modulated light intensity signal is converted to a voltage signal and processed. In the digital part, the demodulator is mainly composed of a Band Pass Filter, two Phase-Sensitive Detectors, a phase shifter, and two Low Pass Filters based on virtual instrument. Simulation results indicate that this approach can decrease the noise greatly, and the SNR of this demodulator is 50dB and the relative error is less than 4%.
Zheng, Panpan; Liu, Jinquan; Li, Zhu; Liu, Huafeng
2017-01-01
Encoder-like micro area-changed capacitive transducers are advantageous in terms of their better linearity and larger dynamic range compared to gap-changed capacitive transducers. Such transducers have been widely applied in rectilinear and rotational position sensors, lab-on-a-chip applications and bio-sensors. However, a complete model accounting for both the parasitic capacitance and fringe effect in area-changed capacitive transducers has not yet been developed. This paper presents a complete model for this type of transducer applied to a high-resolution micro accelerometer that was verified by both simulations and experiments. A novel optimization method involving the insertion of photosensitive polyimide was used to reduce the parasitic capacitance, and the capacitor spacing was decreased to overcome the fringe effect. The sensitivity of the optimized transducer was approximately 46 pF/mm, which was nearly 40 times higher than that of our previous transducer. The displacement detection resolution was measured as 50 pm/√Hz at 0.1 Hz using a precise capacitance detection circuit. Then, the transducer was applied to a sandwich in-plane micro accelerometer, and the measured level of the accelerometer was approximately 30 ng/√Hz at 1Hz. The earthquake that occurred in Taiwan was also detected during a continuous gravity measurement. PMID:28930176
Fabrication and characterization of monolithic piezoresistive high-g three-axis accelerometer
NASA Astrophysics Data System (ADS)
Jung, Han-Il; Kwon, Dae-Sung; Kim, Jongbaeg
2017-12-01
We report piezoresistive high-g three-axis accelerometer with a single proof mass suspended by thin eight beams. This eight-beam design allows load-sharing at high-g preventing structural breakage, as well as the symmetric arrangement of piezoresistors. The device chip size is 1.4 mm × 1.4 mm × 0.51 mm. Experimental results show that the sensitivity in X-, Y- and Z-axes are 0.2433, 0.1308 and 0.3068 mV/g/V under 5 V applied and the resolutions are 24.2, 29.9 and 25.4 g, respectively.
High-precision and low-cost vibration generator for low-frequency calibration system
NASA Astrophysics Data System (ADS)
Li, Rui-Jun; Lei, Ying-Jun; Zhang, Lian-Sheng; Chang, Zhen-Xin; Fan, Kuang-Chao; Cheng, Zhen-Ying; Hu, Peng-Hao
2018-03-01
Low-frequency vibration is one of the harmful factors that affect the accuracy of micro-/nano-measuring machines because its amplitude is significantly small and it is very difficult to avoid. In this paper, a low-cost and high-precision vibration generator was developed to calibrate an optical accelerometer, which is self-designed to detect low-frequency vibration. A piezoelectric actuator is used as vibration exciter, a leaf spring made of beryllium copper is used as an elastic component, and a high-resolution, low-thermal-drift eddy current sensor is applied to investigate the vibrator’s performance. Experimental results demonstrate that the vibration generator can achieve steady output displacement with frequency range from 0.6 Hz to 50 Hz, an analytical displacement resolution of 3.1 nm and an acceleration range from 3.72 mm s-2 to 1935.41 mm s-2 with a relative standard deviation less than 1.79%. The effectiveness of the high-precision and low-cost vibration generator was verified by calibrating our optical accelerometer.
Using accelerometers to determine the calling behavior of tagged baleen whales.
Goldbogen, J A; Stimpert, A K; DeRuiter, S L; Calambokidis, J; Friedlaender, A S; Schorr, G S; Moretti, D J; Tyack, P L; Southall, B L
2014-07-15
Low-frequency acoustic signals generated by baleen whales can propagate over vast distances, making the assignment of calls to specific individuals problematic. Here, we report the novel use of acoustic recording tags equipped with high-resolution accelerometers to detect vibrations from the surface of two tagged fin whales that directly match the timing of recorded acoustic signals. A tag deployed on a buoy in the vicinity of calling fin whales and a recording from a tag that had just fallen off a whale were able to detect calls acoustically but did not record corresponding accelerometer signals that were measured on calling individuals. Across the hundreds of calls measured on two tagged fin whales, the accelerometer response was generally anisotropic across all three axes, appeared to depend on tag placement and increased with the level of received sound. These data demonstrate that high-sample rate accelerometry can provide important insights into the acoustic behavior of baleen whales that communicate at low frequencies. This method helps identify vocalizing whales, which in turn enables the quantification of call rates, a fundamental component of models used to estimate baleen whale abundance and distribution from passive acoustic monitoring. © 2014. Published by The Company of Biologists Ltd.
NASA Technical Reports Server (NTRS)
Thompson, J. M.; Russell, J. W.; Blanchard, R. C.
1987-01-01
This report presents a process for extracting the aerodynamic accelerations of the Shuttle Orbiter Vehicle from the High Resolution Accelerometer Package (HiRAP) flight data during reentry. The methods for obtaining low-level aerodynamic accelerations, principally in the rarefied flow regime, are applied to 10 Orbiter flights. The extraction process is presented using data obtained from Space Transportation System Flight 32 (Mission 61-C) as a typical example. This process involves correcting the HiRAP measurements for the effects of temperature bias and instrument offset from the Orbiter center of gravity, and removing acceleration data during times they are affected by thruster firings. The corrected data are then made continuous and smooth and are further enhanced by refining the temperature bias correction and removing effects of the auxiliary power unit actuation. The resulting data are the current best estimate of the Orbiter aerodynamic accelerations during reentry and will be used for further analyses of the Orbiter aerodynamics and the upper atmosphere characteristics.
Precision gravity measurement utilizing Accelerex vibrating beam accelerometer technology
NASA Astrophysics Data System (ADS)
Norling, Brian L.
Tests run using Sundstrand vibrating beam accelerometers to sense microgravity are described. Lunar-solar tidal effects were used as a highly predictable signal which varies by approximately 200 billionths of the full-scale gravitation level. Test runs of 48-h duration were used to evaluate stability, resolution, and noise. Test results on the Accelerex accelerometer show accuracies suitable for precision applications such as gravity mapping and gravity density logging. The test results indicate that Accelerex technology, even with an instrument design and signal processing approach not optimized for microgravity measurement, can achieve 48-nano-g (1 sigma) or better accuracy over a 48-h period. This value includes contributions from instrument noise and random walk, combined bias and scale factor drift, and thermal modeling errors as well as external contributions from sampling noise, test equipment inaccuracies, electrical noise, and cultural noise induced acceleration.
NASA Astrophysics Data System (ADS)
Geng, J.; Bock, Y.; Melgar, D.; Hasse, J.; Crowell, B. W.
2013-12-01
High-rate GPS can play an important role in earthquake early warning (EEW) systems for large (>M6) events by providing permanent displacements immediately as they are achieved, to be used in source inversions that can be repeatedly updated as more information becomes available. This is most valuable to implement at a site very near the potential source rupture, where broadband seismometers are likely to clip, and accelerometer data cannot be objectively integrated to produce reliable displacements in real time. At present, more than 525 real-time GPS stations have been established in western North America, which are being integrated into EEW systems. Our analysis technique relies on a tightly-coupled combination of GPS and accelerometer data, an extension of precise point positioning with ambiguity resolution (PPP-AR). We operate a PPP service based on North American stations available through the IGS and UNAVCO/PBO. The service provides real-time satellite clock and fractional-cycle bias products that allow us to position individual client stations in the zone of deformation. The service reference stations are chosen to be further than 200 km from the primary zones of tectonic deformation in the western U.S. to avoid contamination of the satellite products during a large seismic event. At client stations, accelerometer data are applied as tight constraints on the positions between epochs in PPP-AR, which improves cycle-slip repair and rapid ambiguity resolution after GPS outages. Furthermore, we estimate site displacements, seismic velocities, and coseismic ground tilts to facilitate the analysis of ground motion characteristics and the inversion for source mechanisms. The seismogeodetic displacement and velocity waveforms preserves the detection of P wave arrivals, and provides P-wave arrival displacement that is key new information for EEW. Our innovative solution method for coseismic tilts mitigates an error source that has continually plagued strong motion data analysis, and has a resolution of about 0.01 degrees. At present, there are few collocations of GPS and accelerometers in western North America (the exception being the BARD network in northern California) so we have developed a cost-effective way to upgrade existing real-time GPS stations with low-cost MEMS accelerometers; fifteen PBO and SCIGN stations in southern California have already been upgraded. We demonstrate our method of recovering broadband displacement and tilt waveforms using 13 experiments from the single-axis George E. Brown Jr. Network for Earthquake Engineering Simulation Large High-Performance Outdoor Shake Table at the University of California San Diego. Then we apply the method to data from the 2010 Mw 7.2 El Mayor-Cucapah earthquake and the 2011 Mw 9.0 Tohoku-oki earthquake to illustrate the improvement over standard base-line correction acceleration techniques and to demonstrate the order of magnitude of tilt errors present in typical observations.
Achieving High Resolution Measurements Within Limited Bandwidth Via Sensor Data Compression
2013-06-01
MIDAS , high-g accelerometer 16. SECURITY CLASSIFICATION OF: 17. LIMITATION OF ABSTRACT UU 18. NUMBER OF PAGES 16 19a. NAME OF...instrumentation boards are a miniaturization of the Multifunctional Instrumentation and Data Acquisition System ( MIDAS ) designed by ARL and detailed in several...technical reports (1). The original MIDAS has a diameter of 1.4 inches and height of 1.6 inches. This miniaturization for a 30mm round is
Design, Simulation and Fabrication of Triaxial MEMS High Shock Accelerometer.
Zhang, Zhenhai; Shi, Zhiguo; Yang, Zhan; Xie, Zhihong; Zhang, Donghong; Cai, De; Li, Kejie; Shen, Yajing
2015-04-01
On the basis of analyzing the disadvantage of other structural accelerometer, three-axis high g MEMS piezoresistive accelerometer was put forward in order to apply to the high-shock test field. The accelerometer's structure and working principle were discussed in details. The simulation results show that three-axis high shock MEMS accelerometer can bear high shock. After bearing high shock impact in high-shock shooting test, three-axis high shock MEMS accelerometer can obtain the intact metrical information of the penetration process and still guarantee the accurate precision of measurement in high shock load range, so we can not only analyze the law of stress wave spreading and the penetration rule of the penetration process of the body of the missile, but also furnish the testing technology of the burst point controlling. The accelerometer has far-ranging application in recording the typical data that projectile penetrating hard target and furnish both technology guarantees for penetration rule and defend engineering.
Shi, Yunbo; Yang, Zhicai; Ma, Zongmin; Cao, Huiliang; Kou, Zhiwei; Zhi, Dan; Chen, Yanxiang; Feng, Hengzhen; Liu, Jun
2016-01-01
Despite its extreme significance, dynamic linearity measurement for high-g accelerometers has not been discussed experimentally in previous research. In this study, we developed a novel method using a dual-warhead Hopkinson bar to measure the dynamic linearity of a high-g acceleration sensor with a laser interference impact experiment. First, we theoretically determined that dynamic linearity is a performance indicator that can be used to assess the quality merits of high-g accelerometers and is the basis of the frequency response. We also found that the dynamic linearity of the dual-warhead Hopkinson bar without an accelerometer is 2.5% experimentally. Further, we verify that dynamic linearity of the accelerometer is 3.88% after calibrating the Hopkinson bar with the accelerometer. The results confirm the reliability and feasibility of measuring dynamic linearity for high-g accelerometers using this method. PMID:27338383
Quasi-Static Calibration Method of a High-g Accelerometer
Wang, Yan; Fan, Jinbiao; Zu, Jing; Xu, Peng
2017-01-01
To solve the problem of resonance during quasi-static calibration of high-g accelerometers, we deduce the relationship between the minimum excitation pulse width and the resonant frequency of the calibrated accelerometer according to the second-order mathematical model of the accelerometer, and improve the quasi-static calibration theory. We establish a quasi-static calibration testing system, which uses a gas gun to generate high-g acceleration signals, and apply a laser interferometer to reproduce the impact acceleration. These signals are used to drive the calibrated accelerometer. By comparing the excitation acceleration signal and the output responses of the calibrated accelerometer to the excitation signals, the impact sensitivity of the calibrated accelerometer is obtained. As indicated by the calibration test results, this calibration system produces excitation acceleration signals with a pulse width of less than 1000 μs, and realize the quasi-static calibration of high-g accelerometers with a resonant frequency above 20 kHz when the calibration error was 3%. PMID:28230743
Acoustic Sensing of Ocean Turbulence
1991-12-01
quantities and of fast varying quantities, requiring high spatial resolution, fast response sensors and stable observation platforms. A classical approach to...with this type of sensor . Moum et.al. [Ref.l0] performed upper ocean observations with this instrument where they were able to 60 characterize the fine...platform orientation using the 3 axis accelerometer as tiltmeters . E. NON-ACOUSTIC DATA The non-acoustic channels on the CDV package are: 3 component
NASA Technical Reports Server (NTRS)
Yazdi, N.; Najafi, K.
2000-01-01
This paper reports an all-silicon fully symmetrical z-axis micro-g accelerometer that is fabricated on a single-silicon wafer using a combined surface and bulk fabrication process. The microaccelerometer has high device sensitivity, low noise, and low/controllable damping that are the key factors for attaining micro g and sub-micro g resolution in capacitive accelerometers. The microfabrication process produces a large proof mass by using the whole wafer thickness and a large sense capacitance by utilizing a thin sacrificial layer. The sense/feedback electrodes are formed by a deposited 2-3 microns polysilicon film with embedded 25-35 microns-thick vertical stiffeners. These electrodes, while thin, are made very stiff by the thick embedded stiffeners so that force rebalancing of the proof mass becomes possible. The polysilicon electrodes are patterned to create damping holes. The microaccelerometers are batch-fabricated, packaged, and tested successfully. A device with a 2-mm x 1-mm proof mass and a full bridge support has a measured sensitivity of 2 pF/g. The measured sensitivity of a 4-mm x 1-mm accelerometer with a cantilever support is 19.4 pF/g. The calculated noise floor of these devices at atmosphere are 0.23 micro g/sqrt(Hz) and 0.16 micro g/sqrt(Hz), respectively.
Low-Cost Interrogation Technique for Dynamic Measurements with FBG-Based Devices.
Díaz, Camilo A R; Leitão, Cátia; Marques, Carlos A; Domingues, M Fátima; Alberto, Nélia; Pontes, Maria José; Frizera, Anselmo; Ribeiro, Moisés R N; André, Paulo S B; Antunes, Paulo F C
2017-10-23
Fiber Bragg gratings are widely used optical fiber sensors for measuring temperature and/or mechanical strain. Nevertheless, the high cost of the interrogation systems is the most important drawback for their large commercial application. In this work, an in-line Fabry-Perot interferometer based edge filter is explored in the interrogation of fiber Bragg grating dynamic measurements up to 5 kHz. Two devices an accelerometer and an arterial pulse wave probe were interrogated with the developed approach and the results were compared with a commercial interrogation monitor. The data obtained with the edge filter are in agreement with the commercial device, with a maximum RMSE of 0.05 being able to meet the requirements of the measurements. Resolutions of 3.6 pm and 2.4 pm were obtained, using the optical accelerometer and the arterial pulse wave probe, respectively.
Precision Orbit Derived Atmospheric Density: Development and Performance
NASA Astrophysics Data System (ADS)
McLaughlin, C.; Hiatt, A.; Lechtenberg, T.; Fattig, E.; Mehta, P.
2012-09-01
Precision orbit ephemerides (POE) are used to estimate atmospheric density along the orbits of CHAMP (Challenging Minisatellite Payload) and GRACE (Gravity Recovery and Climate Experiment). The densities are calibrated against accelerometer derived densities and considering ballistic coefficient estimation results. The 14-hour density solutions are stitched together using a linear weighted blending technique to obtain continuous solutions over the entire mission life of CHAMP and through 2011 for GRACE. POE derived densities outperform the High Accuracy Satellite Drag Model (HASDM), Jacchia 71 model, and NRLMSISE-2000 model densities when comparing cross correlation and RMS with accelerometer derived densities. Drag is the largest error source for estimating and predicting orbits for low Earth orbit satellites. This is one of the major areas that should be addressed to improve overall space surveillance capabilities; in particular, catalog maintenance. Generally, density is the largest error source in satellite drag calculations and current empirical density models such as Jacchia 71 and NRLMSISE-2000 have significant errors. Dynamic calibration of the atmosphere (DCA) has provided measurable improvements to the empirical density models and accelerometer derived densities of extremely high precision are available for a few satellites. However, DCA generally relies on observations of limited accuracy and accelerometer derived densities are extremely limited in terms of measurement coverage at any given time. The goal of this research is to provide an additional data source using satellites that have precision orbits available using Global Positioning System measurements and/or satellite laser ranging. These measurements strike a balance between the global coverage provided by DCA and the precise measurements of accelerometers. The temporal resolution of the POE derived density estimates is around 20-30 minutes, which is significantly worse than that of accelerometer derived density estimates. However, major variations in density are observed in the POE derived densities. These POE derived densities in combination with other data sources can be assimilated into physics based general circulation models of the thermosphere and ionosphere with the possibility of providing improved density forecasts for satellite drag analysis. POE derived density estimates were initially developed using CHAMP and GRACE data so comparisons could be made with accelerometer derived density estimates. This paper presents the results of the most extensive calibration of POE derived densities compared to accelerometer derived densities and provides the reasoning for selecting certain parameters in the estimation process. The factors taken into account for these selections are the cross correlation and RMS performance compared to the accelerometer derived densities and the output of the ballistic coefficient estimation that occurs simultaneously with the density estimation. This paper also presents the complete data set of CHAMP and GRACE results and shows that the POE derived densities match the accelerometer densities better than empirical models or DCA. This paves the way to expand the POE derived densities to include other satellites with quality GPS and/or satellite laser ranging observations.
Development of a Transient Thrust Stand with Sub-Millisecond Resolution
NASA Astrophysics Data System (ADS)
Spells, Corbin Fraser
The transient thrust stand has been developed to offer 0.1 ms time resolved thrust measurements for the characterization of mono-propellant thrusters for spacecraft applications. Results demonstrated that the system was capable of obtaining dynamic thrust profiles within 5 % and 0.1 ms. Measuring and improving the thrust performance of mono-propellant thrusters will require 1 ms time resolved forces to observe shot-to-shot variations, oscillations, and minimum impulse bits. To date, no thrust stand is capable of measuring up to 22 N forces with a time response of up to 10 kHz. Calibration forces up to 22 N with a frequency response greater than 0.1 ms were obtained using voice coil actuators. Steady state and low frequency measurements were obtained using displacement and velocity sensors and were combined with high frequency vibration modes measured using several accelerometers along the thrust stand arm. The system uses a predictor-based subspace algorithm to obtain a high order state space model of the thrust stand capable of defining the high frequency vibration modes. The high frequency vibration modes are necessary to provide the time response of 0.1 ms. Thruster forces are estimated using an augmented Kalman filter to combine sensor traces from four accelerometers, a velocity sensor, and displacement transducer. Combining low frequency displacement data with high frequency acceleration measurements provides accurate force data across a broad time domain. The transient thrust stand uses a torsional pendulum configuration to minimize influence from external vibration and achieve high force resolution independent of thruster weight.
Instrument for Analysis of Greenland's Glacier Mills
NASA Technical Reports Server (NTRS)
Behar, Alberto E.; Matthews, Jaret B.; Tran, Hung B.; Steffen, Konrad; McGrath, Dan; Phillips, Thomas; Elliot, Andrew; OHern, Sean; Lutz, Colin; Martin, Sujita;
2010-01-01
A new instrument is used to study the inner workings of Greenland s glacier mills by riding the currents inside a glacier s moulin. The West Greenland Moulin Explorer instrument was deployed into a tubular shaft to autonomously record temperature, pressure, 3D acceleration, and location. It is built with a slightly positive buoyancy in order to assist in recovery. The unit is made up of several components. A 3-axis MEMS (microelectromechanical systems) accelerometer with 0.001-g resolution forms the base of the unit. A pressure transducer is added that is capable of withstanding 500 psi (=3.4 MPa), and surviving down to -40 C. An Iridium modem sends out data every 10 minutes. The location is traced by a GPS (Global Positioning System) unit. This GPS unit is also used for recovery after the mission. Power is provided by a high-capacity lithium thionyl chloride D-sized battery. The accelerometer is housed inside a cylindrical, foot-long (=30 cm) polyvinyl chloride (PVC) shell sealed at each end with acrylic. The pressure transducer is attached to one of these lids and a MEMS accelerometer to the other, recording 100 samples per second per axis.
Jasmine Ware,; Rode, Karyn D.; Pagano, Anthony M.; Bromaghin, Jeffrey F.; Robbins, Charles T.; Joy Erlenbach,; Shannon Jensen,; Amy Cutting,; Nicole Nicassio-Hiskey,; Amy Hash,; Owen, Megan A.; Heiko Jansen,
2015-01-01
Activity sensors are often included in wildlife transmitters and can provide information on the behavior and activity patterns of animals remotely. However, interpreting activity-sensor data relative to animal behavior can be difficult if animals cannot be continuously observed. In this study, we examined the performance of a mercury tip-switch and a tri-axial accelerometer housed in collars to determine whether sensor data can be accurately classified as resting and active behaviors and whether data are comparable for the 2 sensor types. Five captive bears (3 polar [Ursus maritimus] and 2 brown [U. arctos horribilis]) were fitted with a collar specially designed to internally house the sensors. The bears’ behaviors were recorded, classified, and then compared with sensor readings. A separate tri-axial accelerometer that sampled continuously at a higher frequency and provided raw acceleration values from 3 axes was also mounted on the collar to compare with the lower resolution sensors. Both accelerometers more accurately identified resting and active behaviors at time intervals ranging from 1 minute to 1 hour (≥91.1% accuracy) compared with the mercury tip-switch (range = 75.5–86.3%). However, mercury tip-switch accuracy improved when sampled at longer intervals (e.g., 30–60 min). Data from the lower resolution accelerometer, but not the mercury tip-switch, accurately predicted the percentage of time spent resting during an hour. Although the number of bears available for this study was small, our results suggest that these activity sensors can remotely identify resting versus active behaviors across most time intervals. We recommend that investigators consider both study objectives and the variation in accuracy of classifying resting and active behaviors reported here when determining sampling interval.
Low-Cost Interrogation Technique for Dynamic Measurements with FBG-Based Devices
Domingues, M. Fátima; Alberto, Nélia; Pontes, Maria José; Ribeiro, Moisés R. N.; André, Paulo S. B.; Antunes, Paulo F. C.
2017-01-01
Fiber Bragg gratings are widely used optical fiber sensors for measuring temperature and/or mechanical strain. Nevertheless, the high cost of the interrogation systems is the most important drawback for their large commercial application. In this work, an in-line Fabry–Perot interferometer based edge filter is explored in the interrogation of fiber Bragg grating dynamic measurements up to 5 kHz. Two devices an accelerometer and an arterial pulse wave probe were interrogated with the developed approach and the results were compared with a commercial interrogation monitor. The data obtained with the edge filter are in agreement with the commercial device, with a maximum RMSE of 0.05 being able to meet the requirements of the measurements. Resolutions of 3.6 pm and 2.4 pm were obtained, using the optical accelerometer and the arterial pulse wave probe, respectively. PMID:29065518
The microgravity environment of the Space Shuttle Columbia payload bay during STS-32
NASA Technical Reports Server (NTRS)
Dunbar, Bonnie J.; Giesecke, Robert L.; Thomas, Donald A.
1991-01-01
Over 11 hours of three-axis microgravity accelerometer data were successfully measured in the payload bay of Space Shuttle Columbia as part of the Microgravity Disturbances Experiment on STS-32. These data were measured using the High Resolution Accelerometer Package and the Aerodynamic Coefficient Identification Package which were mounted on the Orbiter keel in the aft payload bay. Data were recorded during specific mission events such as Orbiter quiescent periods, crew exercise on the treadmill, and numerous Orbiter engine burns. Orbiter background levels were measured in the 10(exp -5) G range, treadmill operations in the 10(exp -3) G range, and the Orbiter engine burns in the 10(exp -2) G range. Induced acceleration levels resulting from the SYNCOM satellite deploy were in the 10 (exp -2) G range, and operations during the pre-entry Flight Control System checkout were in the 10(exp -2) to 10(exp -1) G range.
A Subnano-g Electrostatic Force-Rebalanced Flexure Accelerometer for Gravity Gradient Instruments.
Yan, Shitao; Xie, Yafei; Zhang, Mengqi; Deng, Zhongguang; Tu, Liangcheng
2017-11-18
A subnano-g electrostatic force-rebalanced flexure accelerometer is designed for the rotating accelerometer gravity gradient instrument. This accelerometer has a large proof mass, which is supported inversely by two pairs of parallel leaf springs and is centered between two fixed capacitor plates. This novel design enables the proof mass to move exactly along the sensitive direction and exhibits a high rejection ratio at its cross-axis directions. Benefiting from large proof mass, high vacuum packaging, and air-tight sealing, the thermal Brownian noise of the accelerometer is lowered down to less than 0.2 ng / Hz with a quality factor of 15 and a natural resonant frequency of about 7.4 Hz . The accelerometer's designed measurement range is about ±1 mg. Based on the correlation analysis between a commercial triaxial seismometer and our accelerometer, the demonstrated self-noise of our accelerometers is reduced to lower than 0.3 ng / Hz over the frequency ranging from 0.2 to 2 Hz, which meets the requirement of the rotating accelerometer gravity gradiometer.
Characterizing performance of ultra-sensitive accelerometers
NASA Technical Reports Server (NTRS)
Sebesta, Henry
1990-01-01
An overview is given of methodology and test results pertaining to the characterization of ultra sensitive accelerometers. Two issues are of primary concern. The terminology ultra sensitive accelerometer is used to imply instruments whose noise floors and resolution are at the state of the art. Hence, the typical approach of verifying an instrument's performance by measuring it with a yet higher quality instrument (or standard) is not practical. Secondly, it is difficult to find or create an environment with sufficiently low background acceleration. The typical laboratory acceleration levels will be at several orders of magnitude above the noise floor of the most sensitive accelerometers. Furthermore, this background must be treated as unknown since the best instrument available is the one to be tested. A test methodology was developed in which two or more like instruments are subjected to the same but unknown background acceleration. Appropriately selected spectral analysis techniques were used to separate the sensors' output spectra into coherent components and incoherent components. The coherent part corresponds to the background acceleration being measured by the sensors being tested. The incoherent part is attributed to sensor noise and data acquisition and processing noise. The method works well for estimating noise floors that are 40 to 50 dB below the motion applied to the test accelerometers. The accelerometers being tested are intended for use as feedback sensors in a system to actively stabilize an inertial guidance component test platform.
Tool enables proper mating of accelerometer and cable connector
NASA Technical Reports Server (NTRS)
Steed, C. N.
1966-01-01
Tool supports accelerometer in axial alignment with an accelerometer cable connector and permits tightening of the accelerometer to the cable connector with a torque wrench. This is done without damaging the components or permitting them to work loose under sustained, high-level vibrations.
Bulk Micromachined 6H-SiC High-g Piezoresistive Accelerometer Fabricated and Tested
NASA Technical Reports Server (NTRS)
Okojie, Robert S.
2002-01-01
High-g accelerometers are needed in certain applications, such as in the study and analysis of high-g impact landings and projectiles. Also, these accelerometers must survive the high electromagnetic fields associated with the all-electric vehicle technology needed for aerospace applications. The choice of SiC is largely due to its excellent thermomechanical properties over conventional silicon-based accelerometers, whose material properties inhibit applicability in high electromagnetic radiation and high temperatures (>150 C) unless more complex and sometimes costly packaging schemes are adopted. This work was the outcome of a NASA Glenn Research Center summer internship program, in collaboration with Cornell University and the Munitions Directorate of the U.S. Air Force in Eglin, Florida. It aimed to provide the enabling technology infrastructure (modeling, fabrication, and validation) for the implementation of SiC accelerometers designed specifically for harsh environments.
Lucas-Cuevas, Angel Gabriel; Encarnación-Martínez, Alberto; Camacho-García, Andrés; Llana-Belloch, Salvador; Pérez-Soriano, Pedro
2017-09-01
Tibial accelerations have been associated with a number of running injuries. However, studies attaching the tibial accelerometer on the proximal section are as numerous as those attaching the accelerometer on the distal section. This study aimed to investigate whether accelerometer location influences acceleration parameters commonly reported in running literature. To fulfil this purpose, 30 athletes ran at 2.22, 2.78 and 3.33 m · s -1 with three accelerometers attached with double-sided tape and tightened to the participants' tolerance on the forehead, the proximal section of the tibia and the distal section of the tibia. Time-domain (peak acceleration, shock attenuation) and frequency-domain parameters (peak frequency, peak power, signal magnitude and shock attenuation in both the low and high frequency ranges) were calculated for each of the tibial locations. The distal accelerometer registered greater tibial acceleration peak and shock attenuation compared to the proximal accelerometer. With respect to the frequency-domain analysis, the distal accelerometer provided greater values of all the low-frequency parameters, whereas no difference was observed for the high-frequency parameters. These findings suggest that the location of the tibial accelerometer does influence the acceleration signal parameters, and thus, researchers should carefully consider the location they choose to place the accelerometer so that equivalent comparisons across studies can be made.
Validation of a method to measure the vector fidelity of triaxial vector sensors
NASA Astrophysics Data System (ADS)
De Freitas, J. M.
2018-06-01
A method to measure the misalignment angles and vector fidelity of a mutually orthogonal arrangement of triaxial accelerometers has been validated by introducing known misalignments into the measurement procedure. The method is based on the excitation of all three accelerometers in equal measure and the determination of the second order responsivity tensor as a metric. The sensor axis misalignment angles measured using a sensor rotation technique as a reference were 1.49° ± 0.05°, 0.63° ± 0.02°, and 0.78° ± 0.04°. The resolution of the new approach against the reference was 0.03° with an accuracy of 0.2° and maximum deviation of 0.4°. An ellipticity tensor β that characterises the extent to which a triaxial system preserves the input polarisation state purity was introduced. In a careful laboratory arrangement, up to 98% input polarisation state purity was shown to be maintained. It is recommended that documentation on commercial and research grade high-precision triaxial sensor systems should give the responsivity matrix . This technique will improve the range of vector fidelity measurement tools for triaxial accelerometers and other vector sensors such as magnetometers, gyroscopes and acoustic vector sensors.
NASA Astrophysics Data System (ADS)
Calabia, Andres; Jin, Shuanggen
2017-02-01
The thermospheric mass density variations and the thermosphere-ionosphere coupling during geomagnetic storms are not clear due to lack of observables and large uncertainty in the models. Although accelerometers on-board Low-Orbit-Earth (LEO) satellites can measure non-gravitational accelerations and derive thermospheric mass density variations with unprecedented details, their measurements are not always available (e.g., for the March 2013 geomagnetic storm). In order to cover accelerometer data gaps of Gravity Recovery and Climate Experiment (GRACE), we estimate thermospheric mass densities from numerical derivation of GRACE determined precise orbit ephemeris (POE) for the period 2011-2016. Our results show good correlation with accelerometer-based mass densities, and a better estimation than the NRLMSISE00 empirical model. Furthermore, we statistically analyze the differences to accelerometer-based densities, and study the March 2013 geomagnetic storm response. The thermospheric density enhancements at the polar regions on 17 March 2013 are clearly represented by POE-based measurements. Although our results show density variations better correlate with Dst and k-derived geomagnetic indices, the auroral electroject activity index AE as well as the merging electric field Em picture better agreement at high latitude for the March 2013 geomagnetic storm. On the other side, low-latitude variations are better represented with the Dst index. With the increasing resolution and accuracy of Precise Orbit Determination (POD) products and LEO satellites, the straightforward technique of determining non-gravitational accelerations and thermospheric mass densities through numerical differentiation of POE promises potentially good applications for the upper atmosphere research community.
A Subnano-g Electrostatic Force-Rebalanced Flexure Accelerometer for Gravity Gradient Instruments
Yan, Shitao; Xie, Yafei; Zhang, Mengqi; Deng, Zhongguang
2017-01-01
A subnano-g electrostatic force-rebalanced flexure accelerometer is designed for the rotating accelerometer gravity gradient instrument. This accelerometer has a large proof mass, which is supported inversely by two pairs of parallel leaf springs and is centered between two fixed capacitor plates. This novel design enables the proof mass to move exactly along the sensitive direction and exhibits a high rejection ratio at its cross-axis directions. Benefiting from large proof mass, high vacuum packaging, and air-tight sealing, the thermal Brownian noise of the accelerometer is lowered down to less than 0.2 ng/Hz with a quality factor of 15 and a natural resonant frequency of about 7.4 Hz. The accelerometer’s designed measurement range is about ±1 mg. Based on the correlation analysis between a commercial triaxial seismometer and our accelerometer, the demonstrated self-noise of our accelerometers is reduced to lower than 0.3 ng/Hz over the frequency ranging from 0.2 to 2 Hz, which meets the requirement of the rotating accelerometer gravity gradiometer. PMID:29156587
Wearable Accelerometers in High Performance Jet Aircraft.
Rice, G Merrill; VanBrunt, Thomas B; Snider, Dallas H; Hoyt, Robert E
2016-02-01
Wearable accelerometers have become ubiquitous in the fields of exercise physiology and ambulatory hospital settings. However, these devices have yet to be validated in extreme operational environments. The objective of this study was to correlate the gravitational forces (G forces) detected by wearable accelerometers with the G forces detected by high performance aircraft. We compared the in-flight G forces detected by the two commercially available portable accelerometers to the F/A-18 Carrier Aircraft Inertial Navigation System (CAINS-2) during 20 flights performed by the Navy's Flight Demonstration Squadron (Blue Angels). Postflight questionnaires were also used to assess the perception of distractibility during flight. Of the 20 flights analyzed, 10 complete in-flight comparisons were made, accounting for 25,700 s of correlation between the CAINS-2 and the two tested accelerometers. Both accelerometers had strong correlations with that of the F/A-18 Gz axis, averaging r = 0.92 and r = 0.93, respectively, over 10 flights. Comparison of both portable accelerometer's average vector magnitude to each other yielded an average correlation of r = 0.93. Both accelerometers were found to be minimally distracting. These results suggest the use of wearable accelerometers is a valid means of detecting G forces during high performance aircraft flight. Future studies using this surrogate method of detecting accelerative forces combined with physiological information may yield valuable in-flight normative data that heretofore has been technically difficult to obtain and hence holds the promise of opening the door for a new golden age of aeromedical research.
Kumamoto, Etsuko; Takahashi, Akihiro; Matsuoka, Yuichiro; Morita, Yoshinori; Kutsumi, Hiromu; Azuma, Takeshi; Kuroda, Kagayaki
2013-01-01
The MR-endoscope system can perform magnetic resonance (MR) imaging during endoscopy and show the images obtained by using endoscope and MR. The MR-endoscope system can acquire a high-spatial resolution MR image with an intraluminal radiofrequency (RF) coil, and the navigation system shows the scope's location and orientation inside the human body and indicates MR images with a scope view. In order to conveniently perform an endoscopy and MR procedure, the design of the user interface is very important because it provides useful information. In this study, we propose a navigation system using a wireless accelerometer-based controller with Bluetooth technology and a navigation technique to set the intraluminal RF coil using the navigation system. The feasibility of using this wireless controller in the MR shield room was validated via phantom examinations of the influence on MR procedures and navigation accuracy. In vitro examinations using an isolated porcine stomach demonstrated the effectiveness of the navigation technique using a wireless remote-control device.
Miniaturized accelerometer made with ZnO nanowires
NASA Astrophysics Data System (ADS)
Song, Sangho; Kim, Jeong Woong; Kim, Hyun Chan; Yun, Youngmin; Kim, Jaehwan
2017-04-01
Miniaturized accelerometer is required in many applications, such as, robotics, haptic devices, gyroscopes, simulators and mobile devices. ZnO is an essential semiconductor material with wide direct band gap, thermal stability and piezoelectricity. Especially, well aligned ZnO nanowire is appropriate for piezoelectric applications since it can produce high electrical signal under mechanical load. To miniaturize accelerometer, an aligned ZnO nanowire is adopted to implement active piezoelectric layer of the accelerometer and copper is chosen for the head mass. To grow ZnO nanowire on the copper head mass, hydrothermal synthesis is conducted and the effect of ZnO nanowire length on the accelerometer performance is investigated. Refresh hydrothermal synthesis can increase the length of ZnO nanowire. The performance of the fabricated ZnO accelerometers is compared with a commercial accelerometer. Sensitivity and linearity of the fabricated accelerometers are investigated.
Theoretical Analysis of an Optical Accelerometer Based on Resonant Optical Tunneling Effect.
Jian, Aoqun; Wei, Chongguang; Guo, Lifang; Hu, Jie; Tang, Jun; Liu, Jun; Zhang, Xuming; Sang, Shengbo
2017-02-17
Acceleration is a significant parameter for monitoring the status of a given objects. This paper presents a novel linear acceleration sensor that functions via a unique physical mechanism, the resonant optical tunneling effect (ROTE). The accelerometer consists of a fixed frame, two elastic cantilevers, and a major cylindrical mass comprised of a resonant cavity that is separated by two air tunneling gaps in the middle. The performance of the proposed sensor was analyzed with a simplified mathematical model, and simulated using finite element modeling. The simulation results showed that the optical Q factor and the sensitivity of the accelerometer reach up to 8.857 × 10⁷ and 9 pm/g, respectively. The linear measurement range of the device is ±130 g. The work bandwidth obtained is located in 10-1500 Hz. The results of this study provide useful guidelines to improve measurement range and resolution of integrated optical acceleration sensors.
Theoretical Analysis of an Optical Accelerometer Based on Resonant Optical Tunneling Effect
Jian, Aoqun; Wei, Chongguang; Guo, Lifang; Hu, Jie; Tang, Jun; Liu, Jun; Zhang, Xuming; Sang, Shengbo
2017-01-01
Acceleration is a significant parameter for monitoring the status of a given objects. This paper presents a novel linear acceleration sensor that functions via a unique physical mechanism, the resonant optical tunneling effect (ROTE). The accelerometer consists of a fixed frame, two elastic cantilevers, and a major cylindrical mass comprised of a resonant cavity that is separated by two air tunneling gaps in the middle. The performance of the proposed sensor was analyzed with a simplified mathematical model, and simulated using finite element modeling. The simulation results showed that the optical Q factor and the sensitivity of the accelerometer reach up to 8.857 × 107 and 9 pm/g, respectively. The linear measurement range of the device is ±130 g. The work bandwidth obtained is located in 10–1500 Hz. The results of this study provide useful guidelines to improve measurement range and resolution of integrated optical acceleration sensors. PMID:28218642
International Space Station Increment-2 Microgravity Environment Summary Report
NASA Technical Reports Server (NTRS)
Jules, Kenol; Hrovat, Kenneth; Kelly, Eric; McPherson, Kevin; Reckart, Timothy
2002-01-01
This summary report presents the results of some of the processed acceleration data, collected aboard the International Space Station during the period of May to August 2001, the Increment-2 phase of the station. Two accelerometer systems were used to measure the acceleration levels during activities that took place during the Increment-2 segment. However, not all of the activities were analyzed for this report due to time constraints, lack of precise information regarding some payload operations and other station activities. The National Aeronautics and Space Administration sponsors the Microgravity Acceleration Measurement System and the Space Acceleration Microgravity System to support microgravity science experiments, which require microgravity acceleration measurements. On April 19, 2001, both the Microgravity Acceleration Measurement System and the Space Acceleration Measurement System units were launched on STS-100 from the Kennedy Space Center for installation on the International Space Station. The Microgravity Acceleration Measurement System unit was flown to the station in support of science experiments requiring quasi-steady acceleration measurements, while the Space Acceleration Measurement System unit was flown to support experiments requiring vibratory acceleration measurement. Both acceleration systems are also used in support of vehicle microgravity requirements verification. The International Space Station Increment-2 reduced gravity environment analysis presented in this report uses acceleration data collected by both sets of accelerometer systems: 1) The Microgravity Acceleration Measurement System, which consists of two sensors: the Orbital Acceleration Research Experiment Sensor Subsystem, a low frequency range sensor (up to 1 Hz), is used to characterize the quasi-steady environment for payloads and the vehicle, and the High Resolution Accelerometer Package, which is used to characterize the vibratory environment up to 100 Hz. 2) The Space Acceleration Measurement System, which is a high frequency sensor, measures vibratory acceleration data in the range of 0.01 to 300 Hz. This summary report presents analysis of some selected quasisteady and vibratory activities measured by these accelerometers during Increment-2 from May to August 20, 2001.
International Space Station Increment-3 Microgravity Environment Summary Report
NASA Technical Reports Server (NTRS)
Jules, Kenol; Hrovat, Kenneth; Kelly, Eric; McPherson, Kevin; Reckart, Timothy; Grodsinksy, Carlos
2002-01-01
This summary report presents the results of some of the processed acceleration data measured aboard the International Space Station during the period of August to December 2001. Two accelerometer systems were used to measure the acceleration levels for the activities that took place during Increment-3. However, not all of the activities were analyzed for this report due to time constraint and lack of precise timeline information regarding some payload operations and station activities. The National Aeronautics and Space Administration sponsors the Microgravity Acceleration Measurement System and the Space Acceleration Microgravity System to support microgravity science experiments which require microgravity acceleration measurements. On April 19, 2001, both the Microgravity Acceleration Measurement System and the Space Acceleration Measurement System units were launched on STS-100 from the Kennedy Space Center for installation on the International Space Station. The Microgravity Acceleration Measurement System unit was flown to the station in support of science experiments requiring quasi-steady acceleration measurements, while the Space Acceleration Measurement System unit was flown to support experiments requiring vibratory acceleration measurement. Both acceleration systems are also used in support of the vehicle microgravity requirements verification. The International Space Station Increment-3 reduced gravity environment analysis presented in this report uses acceleration data collected by both sets of accelerometer systems: (1) The Microgravity Acceleration Measurement System, which consists of two sensors: the Orbital Acceleration Research Experiment Sensor Subsystem, a low frequency range sensor (up to 1 Hz), is used to characterize the quasi-steady environment for payloads and vehicle, and the High Resolution Accelerometer Package, which is used to characterize the vibratory environment up to 100 Hz. (2) The Space Acceleration Measurement System, which is a high frequency sensor, measures vibratory acceleration data in the range of 0.01 to 400 Hz. This summary report presents analysis of some selected quasi-steady and vibratory activities measured by these accelerometers during Increment-3 from August to December, 2001.
Interest of the MICROSTAR Accelerometer to improve the GRASP Mission.
NASA Astrophysics Data System (ADS)
Perrot, E.; Lebat, V.; Foulon, B.; Christophe, B.; Liorzou, F.; Huynh, P. A.
2015-12-01
The Geodetic Reference Antenna in Space (GRASP) is a micro satellite mission concept proposed by JPL to improve the definition of the Terrestrial Reference Frame (TRF). GRASP collocates GPS, SLR, VLBI, and DORIS sensors on a dedicated spacecraft in order to establish precise and stable ties between the key geodetic techniques used to define and disseminate the TRF. GRASP also offers a space-based reference antenna for the present and future Global Navigation Satellite Systems (GNSS). By taking advantage of the new testing possibilities offer by the catapult facility at the ZARM drop tower, the ONERA's space accelerometer team proposes an up-dated version, called MICROSTAR, of its ultra sensitive electrostatic accelerometers which have contributed to the success of the last Earth's gravity missions GRACE and GOCE. Built around a cubic proof-mass, it provides the 3 linear accelerations with a resolution better than 10-11 ms-2/Hz1/2 into a measurement bandwidth between 10-3 Hz and 0.1 Hz and the 3 angular accelerations about its 3 orthogonal axes with 5´10-10 rad.s-2/Hz1/2 resolution. Integrated at the centre of mass of the satellite, MICROSTAR improves the Precise Orbit Determination (POD) by accurate measurement of the non-gravitational force acting on the satellite. It offers also the possibility to calibrate the change in the position of the satellite center of mass with an accuracy better than 100 μm as demonstrated in the GRACE mission. Assuming a sufficiently rigid structure between the antennas and the accelerometer, its data can participate to reach the mission objective of 1 mm precision for the TRF position.
NASA Astrophysics Data System (ADS)
Doornbos, E.; Bruinsma, S.; Conde, M.; Forbes, J. M.
2013-12-01
Observations made by the European Space Agency (ESA) Gravity field and Ocean Circulation Explorer (GOCE) satellite have enabled the production of a spin-off product of high resolution and high accuracy data on thermosphere density, derived from aerodynamic analysis of acceleration measurements. In this regard, the mission follows in the footsteps of the earlier accelerometer-carrying gravity missions CHAMP and GRACE. The extremely high accuracy and redundancy of the six accelerometers carried by GOCE in its gravity gradiometer instrument has provided new insights on the performance and calibration of these instruments. Housekeeping data on the activation of the GOCE drag free control thruster, made available by ESA has made the production of the thermosphere data possible. The long duration low altitude of GOCE, enabled by its drag free control system, has ensured the presence of very large aerodynamic accelerations throughout its lifetime. This has been beneficial for the accurate derivation of data on the wind speed encountered by the satellite. We have compared the GOCE density observations with data from CHAMP and GRACE. The crosswind data has been compared with CHAMP observations, as well as ground-based observations, made using Scanning Doppler Imagers in Alaska. Models of the thermosphere can provide a bigger, global picture, required as a background in the interpretation of the local space- and ground-based measurements. The comparison of these different sources of information on thermosphere density and wind, each with their own strengths and weaknesses, can provide scientific insight, as well as inputs for further refinement of the processing algorithms and models that are part of the various techniques. Density and crosswind data derived from GOCE (dusk-dawn) and CHAMP (midnight-noon) satellite accelerometer data, superimposed over HWM07 modelled horizontal wind vectors.
Processing of Swarm Accelerometer Data into Thermospheric Neutral Densities
NASA Astrophysics Data System (ADS)
Doornbos, E.; Siemes, C.; Encarnacao, J.; Peřestý, R.; Grunwaldt, L.; Kraus, J.; Holmdahl Olsen, P. E.; van den IJssel, J.; Flury, J.; Apelbaum, G.
2015-12-01
The Swarm satellites were launched on 22 November 2013 and carry accelerometers and GPS receivers as part of their scientific payload. The GPS receivers are not only used for locating the position and time of the magnetic measurements, but also for determining non-gravitational forces like drag and radiation pressure acting on the spacecraft. The accelerometers measure these forces directly, at much finer resolution than the GPS receivers, from which thermospheric neutral densities and potentially winds can be derived. Unfortunately, the acceleration measurements suffer from a variety of disturbances, the most prominent being slow temperature-induced bias variations and sudden bias changes. These disturbances have caused a significant delay of the accelerometer data release. In this presentation, we describe the new three-stage processing that is required for transforming the disturbed acceleration measurements into scientifically valuable thermospheric neutral densities. In the first stage, the sudden bias changes in the acceleration measurements are removed using a dedicated software tool. The second stage is the calibration of the accelerometer measurements against the non-gravitational accelerations derived from the GPS receiver, which includes the correction for the slow temperature-induced bias variations. The third stage consists of transforming the corrected and calibrated accelerations into thermospheric neutral densities. We describe the methods used in each stage, highlight the difficulties encountered, and comment on the quality of the thermospheric neutral density data set, which covers the geomagnetic storm on 17 March 2015.
Using commodity accelerometers and gyroscopes to improve speed and accuracy of JanusVF
NASA Astrophysics Data System (ADS)
Hutson, Malcolm; Reiners, Dirk
2010-01-01
Several critical limitations exist in the currently available commercial tracking technologies for fully-enclosed virtual reality (VR) systems. While several 6DOF solutions can be adapted to work in fully-enclosed spaces, they still include elements of hardware that can interfere with the user's visual experience. JanusVF introduced a tracking solution for fully-enclosed VR displays that achieves comparable performance to available commercial solutions but without artifacts that can obscure the user's view. JanusVF employs a small, high-resolution camera that is worn on the user's head, but faces backwards. The VR rendering software draws specific fiducial markers with known size and absolute position inside the VR scene behind the user but in view of the camera. These fiducials are tracked by ARToolkitPlus and integrated by a single-constraint-at-a-time (SCAAT) filter to update the head pose. In this paper we investigate the addition of low-cost accelerometers and gyroscopes such as those in Nintendo Wii remotes, the Wii Motion Plus, and the Sony Sixaxis controller to improve the precision and accuracy of JanusVF. Several enthusiast projects have implemented these units as basic trackers or for gesture recognition, but none so far have created true 6DOF trackers using only the accelerometers and gyroscopes. Our original experiments were repeated after adding the low-cost inertial sensors, showing considerable improvements and noise reduction.
International Space Station Increment-4/5 Microgravity Environment Summary Report
NASA Technical Reports Server (NTRS)
Jules, Kenol; Hrovat, Kenneth; Kelly, Eric; McPherson, Kevin; Reckart, Timothy
2003-01-01
This summary report presents the results of some of the processed acceleration data measured aboard the International Space Station during the period of December 2001 to December 2002. Unlike the past two ISS Increment reports, which were increment specific, this summary report covers two increments: Increments 4 and 5, hereafter referred to as Increment-4/5. Two accelerometer systems were used to measure the acceleration levels for the activities that took place during Increment-4/5. Due to time constraint and lack of precise timeline information regarding some payload operations and station activities, not a11 of the activities were analyzed for this report. The National Aeronautics and Space Administration sponsors the Microgravity Acceleration Measurement System and the Space Acceleration Microgravity System to support microgravity science experiments which require microgravity acceleration measurements. On April 19, 2001, both the Microgravity Acceleration Measurement System and the Space Acceleration Measurement System units were launched on STS-100 from the Kennedy Space Center for installation on the International Space Station. The Microgravity Acceleration Measurement System supports science experiments requiring quasi-steady acceleration measurements, while the Space Acceleration Measurement System unit supports experiments requiring vibratory acceleration measurement. The International Space Station Increment-4/5 reduced gravity environment analysis presented in this report uses acceleration data collected by both sets of accelerometer systems: The Microgravity Acceleration Measurement System, which consists of two sensors: the low-frequency Orbital Acceleration Research Experiment Sensor Subsystem and the higher frequency High Resolution Accelerometer Package. The low frequency sensor measures up to 1 Hz, but is routinely trimmean filtered to yield much lower frequency acceleration data up to 0.01 Hz. This filtered data can be mapped to arbitrary locations for characterizing the quasi-steady environment for payloads and the vehicle. The high frequency sensor is used to characterize the vibratory environment up to 100 Hz at a single measurement location. The Space Acceleration Measurement System, which deploys high frequency sensors, measures vibratory acceleration data in the range of 0.01 to 400 Hz at multiple measurement locations. This summary report presents analysis of some selected quasi-steady and vibratory activities measured by these accelerometers during Increment- 4/5 from December 2001 to December 2002.
The Community Seismic Network: Enabling Observations Through Citizen Science Participation
NASA Astrophysics Data System (ADS)
Kohler, M. D.; Clayton, R. W.; Heaton, T. H.; Bunn, J.; Guy, R.; Massari, A.; Chandy, K. M.
2017-12-01
The Community Seismic Network is a dense accelerometer array deployed in the greater Los Angeles area and represents the future of densely instrumented urban cities where localized vibration measurements are collected continuously throughout the free-field and built environment. The hardware takes advantage of developments in the semiconductor industry in the form of inexpensive MEMS accelerometers that are each coupled with a single board computer. The data processing and archival architecture borrows from developments in cloud computing and network connectedness. The ability to deploy densely in the free field and in upper stories of mid/high-rise buildings is enabled by community hosts for sensor locations. To this end, CSN has partnered with the Los Angeles Unified School District (LAUSD), the NASA-Jet Propulsion Laboratory (JPL), and commercial and civic building owners to host sensors. At these sites, site amplification estimates from RMS noise measurements illustrate the lateral variation in amplification over length scales of 100 m or less, that correlate with gradients in the local geology such as sedimentary basins that abut crystalline rock foothills. This is complemented by high-resolution, shallow seismic velocity models obtained using an H/V method. In addition, noise statistics are used to determine the reliability of sites for ShakeMap and earthquake early warning data. The LAUSD and JPL deployments are examples of how situational awareness and centralized warning products such as ShakeMap and ShakeCast are enabled by citizen science participation. Several buildings have been instrumented with at least one triaxial accelerometer per floor, providing measurements for real-time structural health monitoring through local, customized displays. For real-time and post-event evaluation, the free-field and built environment CSN data and products illustrate the feasibility of order-of-magnitude higher spatial resolution mapping compared to what is currently possible with traditional, regional seismic networks. The JPL experiment in particular represents a miniature prototype for city-wide earthquake monitoring that combines free-field measurements for ground shaking intensities, with mid-rise building response through advanced fragility curve computations.
A high and low noise model for strong motion accelerometers
NASA Astrophysics Data System (ADS)
Clinton, J. F.; Cauzzi, C.; Olivieri, M.
2010-12-01
We present reference noise models for high-quality strong motion accelerometer installations. We use continuous accelerometer data acquired by the Swiss Seismological Service (SED) since 2006 and other international high-quality accelerometer network data to derive very broadband (50Hz-100s) high and low noise models. The proposed noise models are compared to the Peterson (1993) low and high noise models designed for broadband seismometers; the datalogger self-noise; background noise levels at existing Swiss strong motion stations; and typical earthquake signals recorded in Switzerland and worldwide. The standard strong motion station operated by the SED consists of a Kinemetrics Episensor (2g clip level; flat acceleration response from 200 Hz to DC; <155dB dynamic range) coupled with a 24-bit Nanometrics Taurus datalogger. The proposed noise models are based on power spectral density (PSD) noise levels for each strong motion station computed via PQLX (McNamara and Buland, 2004) from several years of continuous recording. The 'Accelerometer Low Noise Model', ALNM, is dominated by instrument noise from the sensor and datalogger. The 'Accelerometer High Noise Model', AHNM, reflects 1) at high frequencies the acceptable site noise in urban areas, 2) at mid-periods the peak microseismal energy, as determined by the Peterson High Noise Model and 3) at long periods the maximum noise observed from well insulated sensor / datalogger systems placed in vault quality sites. At all frequencies, there is at least one order of magnitude between the ALNM and the AHNM; at high frequencies (> 1Hz) this extends to 2 orders of magnitude. This study provides remarkable confirmation of the capability of modern strong motion accelerometers to record low-amplitude ground motions with seismic observation quality. In particular, an accelerometric station operating at the ALNM is capable of recording the full spectrum of near source earthquakes, out to 100 km, down to M2. Of particular interest for the SED, this study provides acceptable noise limits for candidate sites for the on-going Strong Motion Network modernisation.
Principle research on a single mass piezoelectric six-degrees-of-freedom accelerometer.
Liu, Jun; Li, Min; Qin, Lan; Liu, Jingcheng
2013-08-16
A signal mass piezoelectric six-degrees-of-freedom (six-DOF) accelerometer is put forward in response to the need for health monitoring of the dynamic vibration characteristics of high grade digitally controlled machine tools. The operating principle of the piezoelectric six-degrees-of-freedom accelerometer is analyzed, and its structure model is constructed. The numerical simulation model (finite element model) of the six axis accelerometer is established. Piezoelectric quartz is chosen for the acceleration sensing element and conversion element, and its static sensitivity, static coupling interference and dynamic natural frequency, dynamic cross coupling are analyzed by ANSYS software. Research results show that the piezoelectric six-DOF accelerometer has advantages of simple and rational structure, correct sensing principle and mathematic model, good linearity, high rigidity, and theoretical natural frequency is more than 25 kHz, no nonlinear cross coupling and no complex decoupling work.
Principle Research on a Single Mass Piezoelectric Six-Degrees-of-Freedom Accelerometer
Liu, Jun; Li, Min; Qin, Lan; Liu, Jingcheng
2013-01-01
A signal mass piezoelectric six-degrees-of-freedom (six-DOF) accelerometer is put forward in response to the need for health monitoring of the dynamic vibration characteristics of high grade digitally controlled machine tools. The operating principle of the piezoelectric six-degrees-of-freedom accelerometer is analyzed, and its structure model is constructed. The numerical simulation model (finite element model) of the six axis accelerometer is established. Piezoelectric quartz is chosen for the acceleration sensing element and conversion element, and its static sensitivity, static coupling interference and dynamic natural frequency, dynamic cross coupling are analyzed by ANSYS software. Research results show that the piezoelectric six-DOF accelerometer has advantages of simple and rational structure, correct sensing principle and mathematic model, good linearity, high rigidity, and theoretical natural frequency is more than 25 kHz, no nonlinear cross coupling and no complex decoupling work. PMID:23959243
NASA Astrophysics Data System (ADS)
Nakayama, M.; Kawakata, H.; Hirano, S.; Doi, I.; Takahashi, N.
2016-12-01
Transmitted waves at high frequencies attenuate strongly through highly porous media such as shallow ground, although the waves enable us to investigate physical properties of the media with high-spatial resolutions. Nakayama et al. (2015, AGU) tried to investigate the spatio-temporal variations in physical properties of a highly porous sand soil during water injection in laboratory. Accelerometers installed in the sand soil received only the signals of no higher than 0.5 kHz, although they used rectangular waveforms as input signals. The wavelength corresponding to 0.5 kHz is about 400 mm because the measured wave velocity is about 200 m/s. The wavelength is comparable to the path lengths of the transmitted waves, so that it cannot be discussed how the temporal variations in physical properties depend on the paths. In this study, we try to transmit waves with wavelengths much shorter than a sand soil and path lengths through a highly porous sand soil. We make a sand soil (750 mm long, 300 mm wide, and 300 mm high) with porosity about 40%. We install a shaker as a wave source at a deep part in the sand soil. In addition, we install accelerometers, pore pressure gauges, and electrodes at different depths. We inject tap water into the sand soil from the bottom, and record transmitted waves together with pore pressure and electrode voltage until the sand soil becomes saturated. Note that we adopt sweep signals (0.1-10 kHz) as the source so that the shaker can generate high frequency waves more strongly than rectangular signals. Accelerometers receive the signals at least up to 5 kHz during the experiment (Figure 1). The wavelength corresponding to 5 kHz is about 40 mm. In conclusion, we succeed in detecting transmitted waves propagating through the highly porous sand soil whose path lengths are about ten times their wave lengths. Acknowledgment: We are grateful to Takayoshi Kishida for supporting the experiment. This work is supported by JSPS KAKENHI Grant Numbers JP15H02996 and 26750135.
NASA Technical Reports Server (NTRS)
Moskowitz, Milton E.; Hrovat, Kenneth; Tschen, Peter; McPherson, Kevin; Nati, Maurizio; Reckart, Timothy A.
1998-01-01
The microgravity environment of the Space Shuttle Columbia was measured during the STS-83 and STS-94 flights of the Microgravity Science Laboratory (MSL-1) mission using four different accelerometer systems: the Orbital Acceleration Research Experiment (OARE), the Space Acceleration Measurement System (SAMS), the Microgravity Measurement Assembly (MMA), and the Quasi-Steady Acceleration Measurement (QSAM) system. All four accelerometer systems provided investigators with acceleration measurements downlinked in near-real-time. Data from each system was recorded for post-mission analysis. The OARE measured the Shuttle's acceleration with high resolution in the quasi-steady frequency regime below about 0.1 Hz. The SAMS provided investigators with higher frequency acceleration measurements up to 25 Hz. The QSAM and MMA systems provided investigators with quasi-steady and higher frequency (up to 100 Hz) acceleration measurements, respectively. The microgravity environment related to various Orbiter maneuvers, crew activities, and experiment operations as measured by the OARE and MMA is presented and interpreted in section 8 of this report.
NASA Astrophysics Data System (ADS)
Husker, A. L.; Dominguez, L. A.; Becerril, A.; Espejo, L.; Cochran, E. S.
2014-12-01
Low cost MEMS accelerometers are becoming increasingly higher resolution making them useful in strong motion studies. Here we present a building response analysis in the lakebed zone of the Valley of Mexico. The Valley of Mexico represents one of the highest seismic risk locations in the world and incorporates Mexico City and part of Mexico State. More than 20 million people live there and it is the political and economic center of Mexico. In addition the valley has very high site effects with amplifications 100 - 500 times that of sites outside of the basin (Singh et al., 1988; Singh et al., 1995). We instrumented a 21-story building with MEMS accelerometers as part of the Quake Catcher Network or Red Atrapa Sismos as it is called in Mexico. The building known as the Centro Cultural de Tlateloco is located in an important historical and political area as well as a zone with some of the highest amplifications in the Valley of Mexico that had some of the worst destruction after the 1985 M8.1 Michoacan earthquake. During the earthquake most of the buildings that failed were between 7 - 18 stories tall. The peak accelerations near Tlateloco were at periods of 2 seconds. Since the earthquake the building has been retrofitted with N-S crossing supports to help withstand another earthquake. We present the measurements of frequencies and amplifications between floors for the length of the building.
Densities inferred from ESA's Venus Express aerobraking campaign at 130 km altitude
NASA Astrophysics Data System (ADS)
Bruinsma, Sean; Marty, Jean-Charles; Svedhem, Håkan; Williams, Adam; Mueller-Wodarg, Ingo
2015-04-01
In June-July 2014, ESA performed a planned aerobraking campaign with Venus Express to measure neutral densities above 130 km in Venus' atmosphere by means of the engineering accelerometers. To that purpose, the orbit perigee was lowered to approximately 130 km in order to enhance the atmospheric drag effect to the highest tolerable levels for the spacecraft; the accelerometer resolution and precision were not sufficient at higher altitudes. This campaign was requested as part of the Venus Express Atmospheric Drag Experiment (VExADE). A total of 18 orbits (i.e. days) were processed using the attitude quaternions to correctly orient the spacecraft bus and solar arrays in inertial space, which is necessary to accurately compute the exposed surface in the ram direction. The accelerometer data provide good measurements approximately from 130-140 km altitude; the length of the profiles is about 85 seconds, and they are on the early morning side (LST=4.5) at high northern latitude (70°N-82°N). The densities are a factor 2-3 larger than Hedin's VTS-3 thermosphere model, which is consistent with earlier results obtained via classical precise orbit determination at higher altitudes. Wavelike structures with amplitudes of 20% and more are detected, with wavelengths of about 100-500 km. We cannot entirely rule out that these waves are caused by the spacecraft or due to some unknown instrumental effect, but we estimate this probability to be very low.
NASA Ultra-Sensitive Miniature Accelerometer
NASA Technical Reports Server (NTRS)
Zavracky, Paul M.; Hartley, Frank T.
1994-01-01
Using micro-machined silicon technology, an ultra-sensitive miniature acce.,rometer can be constructed which meets the requirements for microgravity experiments in the space environment.Such an accelerometer will have a full scale sensitivity of 1C2 g a resolution of lC8 g, low cross axis sensitivity, and low temperature sensitivity. Mass of the device is approximately five grams and its footprint is 2 cm x 2 cm. Innovative features of the accelerometer, which are patented, are: electrostatic caging to withstand handling shock up to 150 g, in-situ calibration, in situ performance characterization, and both static and dynamic compensation. The transducer operates on a force balance principle wherein the displacement of the proof mass is monitored by measuring tunneling electron current flow between a conductive tip, and a fixed platen. The four major parts of the accelerometer are tip die, incorporating the tunneling tip and four field plates for controlling pitch and roll of the proof mass; two proof mass dies, attached to the surrounding frame by sets of four leg" springs; and a force plate die. The four parts are fuse-bonded into a complete assembly. External electrical connections are made at bond pads on the front surface of the force plate die. Materials and processes used in the construction of the transducer are compatible with volume production.
Accelerometer Data Analysis and Presentation Techniques
NASA Technical Reports Server (NTRS)
Rogers, Melissa J. B.; Hrovat, Kenneth; McPherson, Kevin; Moskowitz, Milton E.; Reckart, Timothy
1997-01-01
The NASA Lewis Research Center's Principal Investigator Microgravity Services project analyzes Orbital Acceleration Research Experiment and Space Acceleration Measurement System data for principal investigators of microgravity experiments. Principal investigators need a thorough understanding of data analysis techniques so that they can request appropriate analyses to best interpret accelerometer data. Accelerometer data sampling and filtering is introduced along with the related topics of resolution and aliasing. Specific information about the Orbital Acceleration Research Experiment and Space Acceleration Measurement System data sampling and filtering is given. Time domain data analysis techniques are discussed and example environment interpretations are made using plots of acceleration versus time, interval average acceleration versus time, interval root-mean-square acceleration versus time, trimmean acceleration versus time, quasi-steady three dimensional histograms, and prediction of quasi-steady levels at different locations. An introduction to Fourier transform theory and windowing is provided along with specific analysis techniques and data interpretations. The frequency domain analyses discussed are power spectral density versus frequency, cumulative root-mean-square acceleration versus frequency, root-mean-square acceleration versus frequency, one-third octave band root-mean-square acceleration versus frequency, and power spectral density versus frequency versus time (spectrogram). Instructions for accessing NASA Lewis Research Center accelerometer data and related information using the internet are provided.
Validity and Reliability of Accelerometers in Patients With COPD: A SYSTEMATIC REVIEW.
Gore, Shweta; Blackwood, Jennifer; Guyette, Mary; Alsalaheen, Bara
2018-05-01
Reduced physical activity is associated with poor prognosis in chronic obstructive pulmonary disease (COPD). Accelerometers have greatly improved quantification of physical activity by providing information on step counts, body positions, energy expenditure, and magnitude of force. The purpose of this systematic review was to compare the validity and reliability of accelerometers used in patients with COPD. An electronic database search of MEDLINE and CINAHL was performed. Study quality was assessed with the Strengthening the Reporting of Observational Studies in Epidemiology checklist while methodological quality was assessed using the modified Quality Appraisal Tool for Reliability Studies. The search yielded 5392 studies; 25 met inclusion criteria. The SenseWear Pro armband reported high criterion validity under controlled conditions (r = 0.75-0.93) and high reliability (ICC = 0.84-0.86) for step counts. The DynaPort MiniMod demonstrated highest concurrent validity for step count using both video and manual methods. Validity of the SenseWear Pro armband varied between studies especially in free-living conditions, slower walking speeds, and with addition of weights during gait. A high degree of variability was found in the outcomes used and statistical analyses performed between studies, indicating a need for further studies to measure reliability and validity of accelerometers in COPD. The SenseWear Pro armband is the most commonly used accelerometer in COPD, but measurement properties are limited by gait speed variability and assistive device use. DynaPort MiniMod and Stepwatch accelerometers demonstrated high validity in patients with COPD but lack reliability data.
Implementation of an iPhone as a wireless accelerometer for quantifying gait characteristics.
Lemoyne, Robert; Mastroianni, Timothy; Cozza, Michael; Coroian, Cristian; Grundfest, Warren
2010-01-01
The capacity to quantify and evaluate gait beyond the general confines of a clinical environment under effectively autonomous conditions may alleviate rampant strain on limited and highly specialized medical resources. An iPhone consists of a three dimensional accelerometer subsystem with highly robust and scalable software applications. With the synthesis of the integral iPhone features, an iPhone application, which constitutes a wireless accelerometer system for gait quantification and analysis, has been tested and evaluated in an autonomous environment. The acquired gait cycle data was transmitted wireless and through email for subsequent post-processing in a location remote to the location where the experiment was conducted. The iPhone application functioning as a wireless accelerometer for the acquisition of gait characteristics has demonstrated sufficient accuracy and consistency.
NASA Technical Reports Server (NTRS)
Jules, Kenol; Hrovat, Kenneth; Kelly, Eric; Reckart, Timothy
2006-01-01
This summary report presents the analysis results of some of the processed acceleration data measured aboard the International Space Station during the period of November 2002 to April 2004. Two accelerometer systems were used to measure the acceleration levels for the activities that took place during Increment-6/8. However, not all of the activities during that period were analyzed in order to keep the size of the report manageable. The National Aeronautics and Space Administration sponsors the Microgravity Acceleration Measurement System and the Space Acceleration Measurement System to support microgravity science experiments that require microgravity acceleration measurements. On April 19, 2001, both the Microgravity Acceleration Measurement System and the Space Acceleration Measurement System units were launched on STS-100 from the Kennedy Space Center for installation on the International Space Station. The Microgravity Acceleration Measurement System unit was flown to the station in support of science experiments requiring quasi-steady acceleration measurements, while the Space Acceleration Measurement System unit was flown to support experiments requiring vibratory acceleration measurement. Both acceleration systems are also used in support of the vehicle microgravity requirements verification as well as in support of the International Space Station support cadre. The International Space Station Increment-6/8 reduced gravity environment analysis presented in this report uses acceleration data collected by both sets of accelerometer systems: 1. The Microgravity Acceleration Measurement System, which consists of two sensors: the Orbital Acceleration Research Experiment Sensor Subsystem, a low frequency range sensor (up to 1 Hz), is used to characterize the quasi-steady environment for payloads and vehicle, and the High Resolution Accelerometer Package, which is used to characterize the vibratory environment up to 100 Hz. 2. The Space Acceleration Measurement System measures vibratory acceleration data in the range of 0.01 to 400 Hz. This summary report presents analysis of some selected quasi-steady and vibratory activities measured by these accelerometers during Increment-6/8 from November 2002 to April 2004.
Signals and Noises Acting On The Accelerometer Mounted In The Mpo (mercury Planetary Orbiter).
NASA Astrophysics Data System (ADS)
Iafolla, V.; Fiorenza, E.; Lucchesi, D.; Milyukov, V.; Nozzoli, S.
The RadioScience experiments proposed for the BepiClombo ESA CORNERSTONE are aiming at performing planetary measurements such as: the rotation state of Mer- cury, the global structure of its gravity field and the local gravitational anomalies, but also to test some aspects of the General Relativity, to an unprecedented level of accu- racy. A high sensitivity accelerometer will measure the inertial acceleration acting on the MPO; these data, together with tracking data are used to evaluate the purely gravi- tational trajectory of the MPO, by transforming it to a virtual drag-free satellite system. At the Istituto di Fisica dello Spazio Interplanetario (IFSI) a high sensitive accelerom- eter named ISA (Italian Spring Accelerometer)* and considered for this mission has been studied. The main problems concerning the use of the accelerometer are related to the high dynamics necessary to follow the variation of the acceleration signals, with accuracy equal to 10^-9 g/sqr(Hz), and very high at the MPO orbital period and due to thermal noise introduced at the sidereal period of Mercury. The description of the accelerometer will be presented, with particular attention to the thermal problems and to the analysis regarding the choice of the mounting position on the MPO. *Project funded by the Italian Space Agency (ASI).
Monolithically integrated tri-axis shock accelerometers with MHz-level high resonant-frequency
NASA Astrophysics Data System (ADS)
Zou, Hongshuo; Wang, Jiachou; Chen, Fang; Bao, Haifei; Jiao, Ding; Zhang, Kun; Song, Zhaohui; Li, Xinxin
2017-07-01
This paper reports a novel monolithically integrated tri-axis high-shock accelerometer with high resonant-frequency for the detection of a broad frequency-band shock signal. For the first time, a resonant-frequency as high as about 1.4 MHz is designed for all the x-, y- and z-axis accelerometers of the integrated tri-axis sensor. In order to achieve a wide frequency-band detection performance, all the three sensing structures are designed into an axially compressed/stretched tiny-beam sensing scheme, where the p + -doped tiny-beams are connected into a Wheatstone bridge for piezoresistive output. By using ordinary (1 1 1) silicon wafer (i.e. non-SOI wafer), a single-wafer based fabrication technique is developed to monolithically integrate the three sensing structures for the tri-axis sensor. Testing results under high-shock acceleration show that each of the integrated three-axis accelerometers exhibit about 1.4 MHz resonant-frequency and 0.2-0.4 µV/V/g sensitivity. The achieved high frequencies for all the three sensing units make the tri-axis sensor promising in high fidelity 3D high-shock detection applications.
The development of an intermediate-duration tag to characterize the diving behavior of large whales.
Mate, Bruce R; Irvine, Ladd M; Palacios, Daniel M
2017-01-01
The development of high-resolution archival tag technologies has revolutionized our understanding of diving behavior in marine taxa such as sharks, turtles, and seals during their wide-ranging movements. However, similar applications for large whales have lagged behind due to the difficulty of keeping tags on the animals for extended periods of time. Here, we present a novel configuration of a transdermally attached biologging device called the Advanced Dive Behavior (ADB) tag. The ADB tag contains sensors that record hydrostatic pressure, three-axis accelerometers, magnetometers, water temperature, and light level, all sampled at 1 Hz. The ADB tag also collects Fastloc GPS locations and can send dive summary data through Service Argos, while staying attached to a whale for typical periods of 3-7 weeks before releasing for recovery and subsequent data download. ADB tags were deployed on sperm whales ( Physeter macrocephalus; N = 46), blue whales ( Balaenoptera musculus; N = 8), and fin whales ( B. physalus; N = 5) from 2007 to 2015, resulting in attachment durations from 0 to 49.6 days, and recording 31 to 2,539 GPS locations and 27 to 2,918 dives per deployment. Archived dive profiles matched well with published dive shapes of each species from short-term records. For blue and fin whales, feeding lunges were detected using peaks in accelerometer data and matched corresponding vertical excursions in the depth record. In sperm whales, rapid orientation changes in the accelerometer data, often during the bottom phase of dives, were likely related to prey pursuit, representing a relative measure of foraging effort. Sperm whales were documented repeatedly diving to, and likely foraging along, the seafloor. Data from the temperature sensor described the vertical structure of the water column in all three species, extending from the surface to depths >1,600 m. In addition to providing information needed to construct multiweek time budgets, the ADB tag is well suited to studying the effects of anthropogenic sound on whales by allowing for pre- and post-exposure monitoring of the whale's dive behavior. This tag begins to bridge the gap between existing long-duration but low-data throughput tags, and short-duration, high-resolution data loggers.
Prototype Earthquake Early Warning System for Areas of Highest Seismic Risk in the Western U.S.
NASA Astrophysics Data System (ADS)
Bock, Y.; Geng, J.; Goldberg, D.; Saunders, J. K.; Haase, J. S.; Squibb, M. B.; Melgar, D.; Crowell, B. W.; Clayton, R. W.; Yu, E.; Walls, C. P.; Mann, D.; Mencin, D.; Mattioli, G. S.
2015-12-01
We report on a prototype earthquake early warning system for the Western U.S. based on GNSS (GPS+GLONASS) observations, and where available collocated GNSS and accelerometer data (seismogeodesy). We estimate with latency of 2-3 seconds GNSS displacement waveforms from more than 120 stations, focusing on the southern segment of the San Andreas fault, the Hayward and Rodgers Creek faults and Cascadia. The displacements are estimated using precise point positioning with ambiguity resolution (PPP-AR), which provides for efficient processing of hundreds of "clients" within the region of interest with respect to a reference frame well outside the expected zone of deformation. The GNSS displacements are useful for alleviating magnitude saturation concerns, rapid earthquake magnitude estimation using peak ground displacements, CMT solutions and finite fault slip models. However, GNSS alone is insufficient for strict earthquake early warning (i.e., P wave detection). Therefore, we employ a self-contained seismogeodetic technique, where collocations of GNSS and accelerometer instruments are available, to estimate real-time displacement and velocity waveforms using PPP-AR with accelerometers (PPP-ARA). Using the velocity waveforms we can detect the P wave arrival for earthquakes of interest (>M 5.5), estimate a hypocenter, S wave propagation, and earthquake magnitude using Pd scaling relationships within seconds. Currently we are gearing up to receive observatory-grade accelerometer data from the CISN. We have deployed 25 inexpensive MEMS accelerometers at existing GNSS stations. The SIO Geodetic Modules that control the flow of the GNSS and accelerometer data are being upgraded with in situ PPP-ARA and P wave picking. In situ processing allows us to use the data at the highest sampling rate of the GNSS receiver (10 Hz or higher), in combination with the 100 Hz accelerometer data. Adding the GLONASS data allows for increased precision in the vertical, an important factor in P wave detection, and by reducing outliers, increasing the number of visible satellites and significantly reducing the time required for reinitialization of phase ambiguities. We plan to make our displacement and velocity waveforms available to the USGS ShakeAlert system and others in Earthworm format.
Montoye, Alexander H K; Pivarnik, James M; Mudd, Lanay M; Biswas, Subir; Pfeiffer, Karin A
2016-01-01
Recent evidence suggests that physical activity (PA) and sedentary behavior (SB) exert independent effects on health. Therefore, measurement methods that can accurately assess both constructs are needed. To compare the accuracy of accelerometers placed on the hip, thigh, and wrists, coupled with machine learning models, for measurement of PA intensity category (SB, light-intensity PA [LPA], and moderate- to vigorous-intensity PA [MVPA]) and breaks in SB. Forty young adults (21 female; age 22.0 ± 4.2 years) participated in a 90-minute semi-structured protocol, performing 13 activities (three sedentary, 10 non-sedentary) for 3-10 minutes each. Participants chose activity order, duration, and intensity. Direct observation (DO) was used as a criterion measure of PA intensity category, and transitions from SB to a non-sedentary activity were breaks in SB. Participants wore four accelerometers (right hip, right thigh, and both wrists), and a machine learning model was created for each accelerometer to predict PA intensity category. Sensitivity and specificity for PA intensity category classification were calculated and compared across accelerometers using repeated measures analysis of variance, and the number of breaks in SB was compared using repeated measures analysis of variance. Sensitivity and specificity values for the thigh-worn accelerometer were higher than for wrist- or hip-worn accelerometers, > 99% for all PA intensity categories. Sensitivity and specificity for the hip-worn accelerometer were 87-95% and 93-97%. The left wrist-worn accelerometer had sensitivities and specificities of > 97% for SB and LPA and 91-95% for MVPA, whereas the right wrist-worn accelerometer had sensitivities and specificities of 93-99% for SB and LPA but 67-84% for MVPA. The thigh-worn accelerometer had high accuracy for breaks in SB; all other accelerometers overestimated breaks in SB. Coupled with machine learning modeling, the thigh-worn accelerometer should be considered when objectively assessing PA and SB.
Atomic References for Measuring Small Accelerations
NASA Technical Reports Server (NTRS)
Maleki, Lute; Yu, Nan
2009-01-01
Accelerometer systems that would combine the best features of both conventional (e.g., mechanical) accelerometers and atom interferometer accelerometers (AIAs) have been proposed. These systems are intended mainly for use in scientific research aboard spacecraft but may also be useful on Earth in special military, geological, and civil-engineering applications. Conventional accelerometers can be sensitive, can have high dynamic range, and can have high frequency response, but they lack accuracy and long-term stability. AIAs have low frequency response, but they offer high sensitivity, and high accuracy for measuring small accelerations. In a system according to the proposal, a conventional accelerometer would be used to perform short-term measurements of higher-frequency components of acceleration, while an AIA would be used to provide consistent calibration of, and correction of errors in, the measurements of the conventional accelerometer in the lower-frequency range over the long term. A brief description of an AIA is prerequisite to a meaningful description of a system according to the proposal. An AIA includes a retroreflector next to one end of a cell that contains a cold cloud of atoms in an ultrahigh vacuum. The atoms in the cloud are in free fall. The retroreflector is mounted on the object, the acceleration of which is to be measured. Raman laser beams are directed through the cell from the end opposite the retroreflector, then pass back through the cell after striking the retroreflector. The Raman laser beams together with the cold atoms measure the relative acceleration, through the readout of the AIA, between the cold atoms and the retroreflector.
Research and Development of Electrostatic Accelerometers for Space Science Missions at HUST.
Bai, Yanzheng; Li, Zhuxi; Hu, Ming; Liu, Li; Qu, Shaobo; Tan, Dingyin; Tu, Haibo; Wu, Shuchao; Yin, Hang; Li, Hongyin; Zhou, Zebing
2017-08-23
High-precision electrostatic accelerometers have achieved remarkable success in satellite Earth gravity field recovery missions. Ultralow-noise inertial sensors play important roles in space gravitational wave detection missions such as the Laser Interferometer Space Antenna (LISA) mission, and key technologies have been verified in the LISA Pathfinder mission. Meanwhile, at Huazhong University of Science and Technology (HUST, China), a space accelerometer and inertial sensor based on capacitive sensors and the electrostatic control technique have also been studied and developed independently for more than 16 years. In this paper, we review the operational principle, application, and requirements of the electrostatic accelerometer and inertial sensor in different space missions. The development and progress of a space electrostatic accelerometer at HUST, including ground investigation and space verification are presented.
Research and Development of Electrostatic Accelerometers for Space Science Missions at HUST
Bai, Yanzheng; Li, Zhuxi; Hu, Ming; Liu, Li; Qu, Shaobo; Tan, Dingyin; Tu, Haibo; Wu, Shuchao; Yin, Hang; Li, Hongyin; Zhou, Zebing
2017-01-01
High-precision electrostatic accelerometers have achieved remarkable success in satellite Earth gravity field recovery missions. Ultralow-noise inertial sensors play important roles in space gravitational wave detection missions such as the Laser Interferometer Space Antenna (LISA) mission, and key technologies have been verified in the LISA Pathfinder mission. Meanwhile, at Huazhong University of Science and Technology (HUST, China), a space accelerometer and inertial sensor based on capacitive sensors and the electrostatic control technique have also been studied and developed independently for more than 16 years. In this paper, we review the operational principle, application, and requirements of the electrostatic accelerometer and inertial sensor in different space missions. The development and progress of a space electrostatic accelerometer at HUST, including ground investigation and space verification are presented. PMID:28832538
A review of micromachined thermal accelerometers
NASA Astrophysics Data System (ADS)
Mukherjee, Rahul; Basu, Joydeep; Mandal, Pradip; Guha, Prasanta Kumar
2017-12-01
A thermal convection based micro-electromechanical accelerometer is a relatively new kind of acceleration sensor that does not require a solid proof mass, yielding unique benefits like high shock survival rating, low production cost, and integrability with CMOS integrated circuit technology. This article provides a comprehensive survey of the research, development, and current trends in the field of thermal acceleration sensors, with detailed enumeration on the theory, operation, modeling, and numerical simulation of such devices. Different reported varieties and structures of thermal accelerometers have been reviewed highlighting key design, implementation, and performance aspects. Materials and technologies used for fabrication of such sensors have also been discussed. Further, the advantages and challenges for thermal accelerometers vis-à-vis other prominent accelerometer types have been presented, followed by an overview of associated signal conditioning circuitry and potential applications.
Pänkäälä, Mikko; Paasio, Ari
2014-01-01
Both respiratory and cardiac motions reduce the quality and consistency of medical imaging specifically in nuclear medicine imaging. Motion artifacts can be eliminated by gating the image acquisition based on the respiratory phase and cardiac contractions throughout the medical imaging procedure. Electrocardiography (ECG), 3-axis accelerometer, and respiration belt data were processed and analyzed from ten healthy volunteers. Seismocardiography (SCG) is a noninvasive accelerometer-based method that measures accelerations caused by respiration and myocardial movements. This study was conducted to investigate the feasibility of the accelerometer-based method in dual gating technique. The SCG provides accelerometer-derived respiratory (ADR) data and accurate information about quiescent phases within the cardiac cycle. The correct information about the status of ventricles and atria helps us to create an improved estimate for quiescent phases within a cardiac cycle. The correlation of ADR signals with the reference respiration belt was investigated using Pearson correlation. High linear correlation was observed between accelerometer-based measurement and reference measurement methods (ECG and Respiration belt). Above all, due to the simplicity of the proposed method, the technique has high potential to be applied in dual gating in clinical cardiac positron emission tomography (PET) to obtain motion-free images in the future. PMID:25120563
Advanced application flight experiment breadboard pulse compression radar altimeter program
NASA Technical Reports Server (NTRS)
1976-01-01
Design, development and performance of the pulse compression radar altimeter is described. The high resolution breadboard system is designed to operate from an aircraft at 10 Kft above the ocean and to accurately measure altitude, sea wave height and sea reflectivity. The minicomputer controlled Ku band system provides six basic variables and an extensive digital recording capability for experimentation purposes. Signal bandwidths of 360 MHz are obtained using a reflective array compression line. Stretch processing is used to achieve 1000:1 pulse compression. The system range command LSB is 0.62 ns or 9.25 cm. A second order altitude tracker, aided by accelerometer inputs is implemented in the system software. During flight tests the system demonstrated an altitude resolution capability of 2.1 cm and sea wave height estimation accuracy of 10%. The altitude measurement performance exceeds that of the Skylab and GEOS-C predecessors by approximately an order of magnitude.
A Miniature High-Sensitivity Braodband Accelerometer Based on Electron Tunneling Transducers
NASA Technical Reports Server (NTRS)
Rockstad, H.; Kenny, T.; Reynolds, J.; Kaiser, W.; Gabrielson, T.
1993-01-01
This paper describes the successful fabrication and demonstration of a new dual-element micromachined silicon tunnel accelerometer that extends the operational bandwidth beyond the resonant frequency of the proof mass.
NASA Astrophysics Data System (ADS)
Teo, Adrian J. T.; Li, Holden; Tan, Say Hwa; Yoon, Yong-Jin
2017-06-01
Optical MEMS devices provide fast detection, electromagnetic resilience and high sensitivity. Using this technology, an optical gratings based accelerometer design concept was developed for seismic motion detection purposes that provides miniaturization, high manufacturability, low costs and high sensitivity. Detailed in-house fabrication procedures of a double-sided deep reactive ion etching (DRIE) on a silicon-on-insulator (SOI) wafer for a micro opto electro mechanical system (MOEMS) device are presented and discussed. Experimental results obtained show that the conceptual device successfully captured motion similar to a commercial accelerometer with an average sensitivity of 13.6 mV G-1, and a highest recorded sensitivity of 44.1 mV G-1. A noise level of 13.5 mV was detected due to experimental setup limitations. This is the first MOEMS accelerometer developed using double-sided DRIE on SOI wafer for the application of seismic motion detection, and is a breakthrough technology platform to open up options for lower cost MOEMS devices.
Drift Mode Accelerometry for Spaceborne Gravity Measurements
NASA Astrophysics Data System (ADS)
Conklin, J. W.; Shelley, R.; Chilton, A.; Olatunde, T.; Ciani, G.; Mueller, G.
2014-12-01
A drift mode accelerometer is a precision instrument for spacecraft that overcomes much of the acceleration noise and readout dynamic range limitations of traditional electrostatic accelerometers. It has the potential of achieving acceleration noise performance similar to that of drag-free systems over a restricted frequency band without the need for external drag-free control or continuous spacecraft propulsion. Like traditional accelerometers, the drift mode accelerometer contains a high-density test mass surrounded by an electrode housing, which can control and sense all six degrees of freedom of the test mass. Unlike traditional accelerometers, the suspension system is operated with a low duty cycle so that the limiting suspension force noise only acts over brief, known time intervals, which can be accounted for in the data analysis. The readout is performed using a laser interferometer which is immune to the dynamic range limitations of even the best voltage references typically used to determine the inertial acceleration of electrostatic accelerometers. This presentation describes operation and performance modeling for such a device with respect to a low Earth orbiting satellite geodesy mission. Methods for testing the drift mode accelerometer with the University of Florida precision torsion pendulum will also be discussed.
Can mobile phones used in strong motion seismology?
NASA Astrophysics Data System (ADS)
D'Alessandro, Antonino; D'Anna, Giuseppe
2013-04-01
Micro Electro-Mechanical Systems (MEMS) accelerometers are electromechanical devices able to measure static or dynamic accelerations. In the 1990s MEMS accelerometers revolutionized the automotive-airbag system industry and are currently widely used in laptops, game controllers and mobile phones. Nowadays MEMS accelerometers seems provide adequate sensitivity, noise level and dynamic range to be applicable to earthquake strong motion acquisition. The current use of 3 axes MEMS accelerometers in mobile phone maybe provide a new means to easy increase the number of observations when a strong earthquake occurs. However, before utilize the signals recorded by a mobile phone equipped with a 3 axes MEMS accelerometer for any scientific porpoise, it is fundamental to verify that the signal collected provide reliable records of ground motion. For this reason we have investigated the suitability of the iPhone 5 mobile phone (one of the most popular mobile phone in the world) for strong motion acquisition. It is provided by several MEMS devise like a three-axis gyroscope, a three-axis electronic compass and a the LIS331DLH three-axis accelerometer. The LIS331DLH sensor is a low-cost high performance three axes linear accelerometer, with 16 bit digital output, produced by STMicroelectronics Inc. We have tested the LIS331DLH MEMS accelerometer using a vibrating table and the EpiSensor FBA ES-T as reference sensor. In our experiments the reference sensor was rigidly co-mounted with the LIS331DHL MEMS sensor on the vibrating table. We assessment the MEMS accelerometer in the frequency range 0.2-20 Hz, typical range of interesting in strong motion seismology and earthquake engineering. We generate both constant and damped sine waves with central frequency starting from 0.2 Hz until 20 Hz with step of 0.2 Hz. For each frequency analyzed we generate sine waves with mean amplitude 50, 100, 200, 400, 800 and 1600 mg0. For damped sine waves we generate waveforms with initial amplitude of 2 g0. Our tests show as, in the frequency and amplitude range analyzed (0.2-20 Hz, 10-2000 mg0), the LIS331DLH MEMS accelerometer have excellent frequency and phase response, comparable with that of some standard FBA accelerometer used in strong motion seismology. However, we found that the signal recorded by the LIS331DLH MEMS accelerometer slightly underestimates the real acceleration (of about 2.5%). This suggests that may be important to calibrate a MEMS sensor before using it in scientific applications. A drawback of the LIS331DLH MEMS accelerometer is its low sensitivity. This is an important limitation of all the low cost MEMS accelerometers; therefore nowadays they are desirable to use only in strong motion seismology. However, the rapid development of this technology will lead in the coming years to the development of high sensitivity and low noise digital MEMS sensors that may be replace the current seismic accelerometer used in seismology. Actually, the real main advantage of these sensors is their common use in the mobile phones.
Design and validation of a high-voltage levitation circuit for electrostatic accelerometers
DOE Office of Scientific and Technical Information (OSTI.GOV)
Li, G.; Wu, S. C.; Zhou, Z. B.
2013-12-15
A simple high-voltage circuit with a voltage range of 0 to 900 V and an open-loop bandwidth of 11 kHz is realized by using an operational amplifier and a MOSFET combination. The circuit is used for the levitation of a test mass of 71 g, suspended below the top-electrodes with a gap distance of 57 μm, so that the performance of an electrostatic accelerometer can be tested on the ground. The translation noise of the accelerometer, limited by seismic noise, is about 4 × 10{sup −8} m/s{sup 2}/Hz{sup 1/2} at 0.1 Hz, while the high-voltage coupling noise is one-order ofmore » magnitude lower.« less
NASA Astrophysics Data System (ADS)
Lechtenberg, Travis; McLaughlin, Craig A.; Locke, Travis; Krishna, Dhaval Mysore
2013-01-01
paper examines atmospheric density estimated using precision orbit ephemerides (POE) from the CHAMP and GRACE satellites during short periods of greater atmospheric density variability. The results of the calibration of CHAMP densities derived using POEs with those derived using accelerometers are examined for three different types of density perturbations, [traveling atmospheric disturbances (TADs), geomagnetic cusp phenomena, and midnight density maxima] in order to determine the temporal resolution of POE solutions. In addition, the densities are compared to High-Accuracy Satellite Drag Model (HASDM) densities to compare temporal resolution for both types of corrections. The resolution for these models of thermospheric density was found to be inadequate to sufficiently characterize the short-term density variations examined here. Also examined in this paper is the effect of differing density estimation schemes by propagating an initial orbit state forward in time and examining induced errors. The propagated POE-derived densities incurred errors of a smaller magnitude than the empirical models and errors on the same scale or better than those incurred using the HASDM model.
Mapping GRACE Accelerometer Error
NASA Astrophysics Data System (ADS)
Sakumura, C.; Harvey, N.; McCullough, C. M.; Bandikova, T.; Kruizinga, G. L. H.
2017-12-01
After more than fifteen years in orbit, instrument noise, and accelerometer noise in particular, remains one of the limiting error sources for the NASA/DLR Gravity Recovery and Climate Experiment mission. The recent V03 Level-1 reprocessing campaign used a Kalman filter approach to produce a high fidelity, smooth attitude solution fusing star camera and angular acceleration data. This process provided an unprecedented method for analysis and error estimation of each instrument. The accelerometer exhibited signal aliasing, differential scale factors between electrode plates, and magnetic effects. By applying the noise model developed for the angular acceleration data to the linear measurements, we explore the magnitude and geophysical pattern of gravity field error due to the electrostatic accelerometer.
NASA Astrophysics Data System (ADS)
Douch, Karim; Panet, Isabelle; Foulon, Bernard; Christophe, Bruno; Pajot-Métivier, Gwendoline; Diament, Michel
2014-05-01
Satellite missions such as CHAMP, GRACE and GOCE have led to an unprecedented improvement of global gravity field models during the past decade. However, for many applications these global models are not sufficiently accurate when dealing with wavelengths shorter than 100 km. This is all the more true in areas where gravity data are scarce and uneven as for instance in the poorly covered land-sea transition area. We suggest here, in line with spatial gravity gradiometry, airborne gravity gradiometry as a convenient way to amplify the sensitivity to short wavelengths and to cover homogeneously coastal region. Moreover, the directionality of the gravity gradients gives new information on the geometry of the gravity field and therefore of the causative bodies. In this respect, we analyze here the performances of a new airborne electrostatic acceleration gradiometer, GREMLIT, which permits along with ancillary measurements to determine the horizontal gradients of the horizontal components of the gravitational field in the instrumental frame. GREMLIT is composed of a compact assembly of 4 planar electrostatic accelerometers inheriting from technologies developed by ONERA for spatial accelerometers. After an overview of the functionals of the gravity field that are of interest for coastal oceanography, passive navigation and hydrocarbon exploration, we present the corresponding required precision and resolution. Then, we investigate the influence of the different parameters of the survey, such as altitude or cross-track distance, on the resolution and precision of the final measurements. To do so, we design numerical simulations of airborne survey performed with GREMLIT and compute the total error budget on the gravity gradients. Based on this error analysis, we infer by a method of error propagation the uncertainty on the different functionals of the gravity potential used for each application. This finally enables us to conclude on the requirements for a high resolution mapping of the gravity field in coastal areas.
Coker-Bolt, Patty; Downey, Ryan J; Connolly, Jacqueline; Hoover, Reagin; Shelton, Daniel; Seo, Na Jin
2017-01-01
The aim of this pilot study was to determine the feasibility and use accelerometers before, during, and after a camp-based constraint-induced movement therapy (CIMT) program for children with hemiplegic cerebral palsy. A pre-test post-test design was used for 12 children with CP (mean = 4.9 yrs) who completed a 30-hour camp-based CIMT program. The accelerometer data were collected using ActiGraph GT9X Link. Children wore accelerometers on both wrists one day before and after the camp and on the affected limb during each camp day. Three developmental assessments were administered pre-post CIMT program. Accelerometers were successfully worn before, during, and directly after the CIMT program to collect upper limb data. Affected upper limb accelerometer activity significantly increased during the CIMT camp compared to baseline (p< 0.05). Significant improvements were seen in all twelve children on all assessments of affected upper limb function (p< 0.05) measuring capacity and quality of affected upper limb functioning. Accelerometers can be worn during high intensity pediatric CIMT programs to collect data about affected upper limb function. Further study is required to determine the relationship between accelerometer data, measure of motor capacity, and real-world performance post-CIMT.
Thermospheric density and wind retrieval from Swarm observations
NASA Astrophysics Data System (ADS)
Visser, Pieter; Doornbos, Eelco; van den IJssel, Jose; Teixeira da Encarnação, João
2013-11-01
The three-satellite ESA Swarm mission aims at mapping the Earth's global geomagnetic field at unprecedented spatial and temporal resolution and precision. Swarm also aims at observing thermospheric density and possibly horizontal winds. Precise orbit determination (POD) and Thermospheric Density and Wind (TDW) chains form part of the Swarm Constellation and Application Facility (SCARF), which will provide the so-called Level 2 products. The POD and TDW chains generate the orbit, accelerometer calibration, and thermospheric density and wind Level 2 products. The POD and TDW chains have been tested with data from the CHAMP and GRACE missions, indicating that a 3D orbit precision of about 10 cm can be reached. In addition, POD allows to determine daily accelerometer bias and scale factor values with a precision of around 10-15 nm/s2 and 0.01-0.02, respectively, for the flight direction. With these accelerometer calibration parameter values, derived thermospheric density is consistent at the 9-11% level (standard deviation) with values predicted by models (taking into account that model values are 20-30% higher). The retrieval of crosswinds forms part of the processing chain, but will be challenging. The Swarm observations will be used for further developing and improving density and wind retrieval algorithms.
Microelectromechanical systems (MEMS) sensors based on lead zirconate titanate (PZT) films
NASA Astrophysics Data System (ADS)
Wang, Li-Peng
2001-12-01
In this thesis, modeling, fabrication and testing of microelectromechanical systems (MEMS) accelerometers based on piezoelectric lead zirconate titanate (PZT) films are investigated. Three different types of structures, cantilever beam, trampoline, and annular diaphragm, are studied. It demonstrates the high-performance, miniaturate, mass-production-compatible, and potentially circuitry-integratable piezoelectric-type PZT MEMS devices. Theoretical models of the cantilever-beam and trampoline accelerometers are derived via structural dynamics and the constitutive equations of piezoelectricity. The time-dependent transverse vibration equations, mode shapes, resonant frequencies, and sensitivities of the accelerometers are calculated through the models. Optimization of the silicon and PZT thickness is achieved with considering the effects of the structural dynamics, the material properties, and manufacturability for different accelerometer specifications. This work is the first demonstration of the fabrication of bulk-micromachined accelerometers combining a deep-trench reactive ion etching (DRIE) release strategy and thick piezoelectric PZT films deposited using a sol-gel method. Processing challenges which are overcome included materials compatibility, metallization, processing of thick layers, double-side processing, deep-trench silicon etching, post-etch cleaning and process integration. In addition, the processed PZT films are characterized by dielectric, ferroelectric (polarization electric-field hysteresis), and piezoelectric measurements and no adverse effects are found. Dynamic frequency response and impedance resonance measurements are performed to ascertain the performance of the MEMS accelerometers. The results show high sensitivities and broad frequency ranges of the piezoelectric-type PZT MEMS accelerometers; the sensitivities range from 0.1 to 7.6 pC/g for resonant frequencies ranging from 44.3 kHz to 3.7 kHz. The sensitivities were compared to theoretical values and a reasonable agreement (˜36% difference) is obtained.
Reversible rigid coupling apparatus and method for borehole seismic transducers
Owen, Thomas E.; Parra, Jorge O.
1992-01-01
An apparatus and method of high resolution reverse vertical seismic profile (VSP) measurements is shown. By encapsulating the seismic detector and heaters in a meltable substance (such as wax), the seismic detector can be removably secured in a borehole in a manner capable of measuring high resolution signals in the 100 to 1000 hertz range and higher. The meltable substance is selected to match the overall density of the detector package with the underground formation, yet still have relatively low melting point and rigid enough to transmit vibrations to accelerometers in the seismic detector. To minimize voids in the meltable substance upon solidification, the meltable substance is selected for minimum shrinkage, yet still having the other desirable characteristics. Heaters are arranged in the meltable substance in such a manner to allow the lowermost portion of the meltable substance to cool and solidify first. Solidification continues upwards from bottom-to-top until the top of the meltable substance is solidified and the seismic detector is ready for use. To remove, the heaters melt the meltable substance and the detector package is pulled from the borehole.
Area-variable capacitive microaccelerometer with force-balancing electrodes
NASA Astrophysics Data System (ADS)
Ha, Byeoungju; Lee, Byeungleul; Sung, Sangkyung; Choi, Sangon; Shinn, Meenam; Oh, Yong-Soo; Song, Ci M.
1997-11-01
A surface micromachined accelerometer which senses an inertial motion with an area variation and a force balancing electrodes is developed. The grid-type planar mass of a 7 micrometers thick polysilicon is supported by four thin beams and suspended above a silicon substrate with a 1.5 micrometers air gap. The motion sensing electrodes are formed on the substrate. The sensor is designed as an interdigital rib structure that has a differential capacitor arrangement. The moveable electrodes are mounted on the mass and the pairs of the stationary electrodes are patterned on the substrate. In the accelerometer that has comb-type movable electrodes, the mechanical stress and the electrical pulling effects between a moveable electrodes and the fixed electrodes occur. However this grid-type structure can have a large area variation in a small area relatively without stress and pulling, high sensitivity can be achieved. In order to improve the dynamic rang and a linearity, a pair of comb shape force-balancing electrodes are implemented on both sides of the mass. The force-balancing electrodes are made of the same layer as the mass and anchored on a silicon substrate. When acceleration is applied in the lateral direction, the difference of capacitance results from the area variation between the two capacitors and is measured using a charge amplifier. As AC coupled complimentary pick- off signals are applied in paris of stationary electrodes, the undesirable effects due to temperature and electrical noise are reduced effectively. The accelerometer has a sensitivity of 28mV/g and a bandwidth of DC-120Hz. A resolution of 3mg and a non-linearity of 1.3 percent is achieved for a measurement range of +/- 9 g.
Drift mode accelerometry for spaceborne gravity measurements
NASA Astrophysics Data System (ADS)
Conklin, John W.
2015-11-01
A drift mode accelerometer is a precision instrument for spacecraft that overcomes much of the acceleration noise and readout dynamic range limitations of traditional electrostatic accelerometers. It has the potential of achieving acceleration noise performance similar to that of drag-free systems over a restricted frequency band without the need for external drag-free control or continuous spacecraft propulsion. Like traditional accelerometers, the drift mode accelerometer contains a high-density test mass surrounded by an electrode housing, which can control and sense all six degrees of freedom of the test mass. Unlike traditional accelerometers, the suspension system is operated with a low duty cycle so that the limiting suspension force noise only acts over brief, known time intervals, which can be neglected in the data analysis. The readout is performed using a laser interferometer which is immune to the dynamic range limitations of even the best voltage references typically used to determine the inertial acceleration of electrostatic accelerometers. The drift mode accelerometer is a novel offshoot of the like-named operational mode of the LISA Pathfinder spacecraft, in which its test mass suspension system is cycled on and off to estimate the acceleration noise associated with the front-end electronics. This paper presents the concept of a drift mode accelerometer, describes the operation of such a device, develops models for its performance with respect to non-drag-free satellite geodesy and gravitational wave missions, and discusses plans for testing the performance of a prototype sensor in the laboratory using torsion pendula.
NASA Astrophysics Data System (ADS)
Zuwei, Zhang; Zhiyu, Wen; Jing, Hu
2012-04-01
The design and simulation of a novel microoptoelectromechanical system (MOEMS) accelerometer based on Raman—Nath diffraction are presented. The device is planned to be fabricated by microelectromechanical system technology and has a different sensing principle than the other reported MOEMS accelerometers. The fundamental theories and principles of the device are discussed in detail, a 3D finite element simulation of the flexural plate wave delay line oscillator is provided, and the operation frequency around 40 MHz is calculated. Finally, a lecture experiment is performed to demonstrate the feasibility of the device. This novel accelerometer is proposed to have the advantages of high sensitivity and anti-radiation, and has great potential for various applications.
ISLES: Probing Extra Dimensions Using a Superconducting Accelerometer
NASA Technical Reports Server (NTRS)
Paik, Ho Jung; Moody, M. Vol; Prieto-Gortcheva, Violeta A.
2003-01-01
In string theories, extra dimensions must be compactified. The possibility that gravity can have large radii of compactification leads to a violation of the inverse square law at submillimeter distances. The objective of ISLES is to perform a null test of Newton s law in space with a resolution of one part in 10(exp 5) or better at 100 microns. The experiment will be cooled to less than or equal to 2 K, which permits superconducting magnetic levitation of the test masses. To minimize Newtonian errors, ISLES employs a near null source, a circular disk of large diameter-to-thickness ratio. Two test masses, also disk-shaped, are suspended on the two sides of the source mass at a nominal distance of 100 microns. The signal is detected by a superconducting differential accelerometer. A ground test apparatus is under construction.
A low-cost CMOS-MEMS piezoresistive accelerometer with large proof mass.
Khir, Mohd Haris Md; Qu, Peng; Qu, Hongwei
2011-01-01
This paper reports a low-cost, high-sensitivity CMOS-MEMS piezoresistive accelerometer with large proof mass. In the device fabricated using ON Semiconductor 0.5 μm CMOS technology, an inherent CMOS polysilicon thin film is utilized as the piezoresistive sensing material. A full Wheatstone bridge was constructed through easy wiring allowed by the three metal layers in the 0.5 μm CMOS technology. The device fabrication process consisted of a standard CMOS process for sensor configuration, and a deep reactive ion etching (DRIE) based post-CMOS microfabrication for MEMS structure release. A bulk single-crystal silicon (SCS) substrate is included in the proof mass to increase sensor sensitivity. In device design and analysis, the self heating of the polysilicon piezoresistors and its effect to the sensor performance is also discussed. With a low operating power of 1.5 mW, the accelerometer demonstrates a sensitivity of 0.077 mV/g prior to any amplification. Dynamic tests have been conducted with a high-end commercial calibrating accelerometer as reference.
An ultra-sensitive wearable accelerometer for continuous heart and lung sound monitoring.
Hu, Yating; Xu, Yong
2012-01-01
This paper presents a chest-worn accelerometer with high sensitivity for continuous cardio-respiratory sound monitoring. The accelerometer is based on an asymmetrical gapped cantilever which is composed of a bottom mechanical layer and a top piezoelectric layer separated by a gap. This novel structure helps to increase the sensitivity by orders of magnitude compared with conventional cantilever based accelerometers. The prototype with a resonant frequency of 1100Hz and a total weight of 5 gram is designed, constructed and characterized. The size of the prototype sensor is 35mm×18mm×7.8mm (l×w×t). A built-in charge amplifier is used to amplify the output voltage of the sensor. A sensitivity of 86V/g and a noise floor of 40ng/√Hz are obtained. Preliminary tests for recording both cardiac and respiratory signals are carried out on human body and the new sensor exhibits better performance compared with a high-end electronic stethoscope.
A Simple Accelerometer Calibrator
NASA Astrophysics Data System (ADS)
Salam, R. A.; Islamy, M. R. F.; Munir, M. M.; Latief, H.; Irsyam, M.; Khairurrijal
2016-08-01
High possibility of earthquake could lead to the high number of victims caused by it. It also can cause other hazards such as tsunami, landslide, etc. In that case it requires a system that can examine the earthquake occurrence. Some possible system to detect earthquake is by creating a vibration sensor system using accelerometer. However, the output of the system is usually put in the form of acceleration data. Therefore, a calibrator system for accelerometer to sense the vibration is needed. In this study, a simple accelerometer calibrator has been developed using 12 V DC motor, optocoupler, Liquid Crystal Display (LCD) and AVR 328 microcontroller as controller system. The system uses the Pulse Wave Modulation (PWM) form microcontroller to control the motor rotational speed as response to vibration frequency. The frequency of vibration was read by optocoupler and then those data was used as feedback to the system. The results show that the systems could control the rotational speed and the vibration frequencies in accordance with the defined PWM.
Gupta, Nidhi; Christiansen, Caroline Stordal; Hanisch, Christiana; Bay, Hans; Burr, Hermann; Holtermann, Andreas
2017-01-01
Objectives To investigate the differences between a questionnaire-based and accelerometer-based sitting time, and develop a model for improving the accuracy of questionnaire-based sitting time for predicting accelerometer-based sitting time. Methods 183 workers in a cross-sectional study reported sitting time per day using a single question during the measurement period, and wore 2 Actigraph GT3X+ accelerometers on the thigh and trunk for 1–4 working days to determine their actual sitting time per day using the validated Acti4 software. Least squares regression models were fitted with questionnaire-based siting time and other self-reported predictors to predict accelerometer-based sitting time. Results Questionnaire-based and accelerometer-based average sitting times were ≈272 and ≈476 min/day, respectively. A low Pearson correlation (r=0.32), high mean bias (204.1 min) and wide limits of agreement (549.8 to −139.7 min) between questionnaire-based and accelerometer-based sitting time were found. The prediction model based on questionnaire-based sitting explained 10% of the variance in accelerometer-based sitting time. Inclusion of 9 self-reported predictors in the model increased the explained variance to 41%, with 10% optimism using a resampling bootstrap validation. Based on a split validation analysis, the developed prediction model on ≈75% of the workers (n=132) reduced the mean and the SD of the difference between questionnaire-based and accelerometer-based sitting time by 64% and 42%, respectively, in the remaining 25% of the workers. Conclusions This study indicates that questionnaire-based sitting time has low validity and that a prediction model can be one solution to materially improve the precision of questionnaire-based sitting time. PMID:28093433
Buchheit, Martin; Gray, Andrew; Morin, Jean-Benoit
2015-01-01
The aim of the present study was to examine the ability of a GPS-imbedded accelerometer to assess stride variables and vertical stiffness (K), which are directly related to neuromuscular fatigue during field-based high-intensity runs. The ability to detect stride imbalances was also examined. A team sport player performed a series of 30-s runs on an instrumented treadmill (6 runs at 10, 17 and 24 km·h-1) with or without his right ankle taped (aimed at creating a stride imbalance), while wearing on his back a commercially-available GPS unit with an embedded 100-Hz tri-axial accelerometer. Contact (CT) and flying (FT) time, and K were computed from both treadmill and accelerometers (Athletic Data Innovations) data. The agreement between treadmill (criterion measure) and accelerometer-derived data was examined. We also compared the ability of the different systems to detect the stride imbalance. Biases were small (CT and K) and moderate (FT). The typical error of the estimate was trivial (CT), small (K) and moderate (FT), with nearly perfect (CT and K) and large (FT) correlations for treadmill vs. accelerometer. The tape induced very large increase in the right - left foot ∆ in CT, FT and K measured by the treadmill. The tape effect on CT and K ∆ measured with the accelerometers were also very large, but of lower magnitude than with the treadmill. The tape effect on accelerometer-derived ∆ FT was unclear. Present data highlight the potential of a GPS-embedded accelerometer to assess CT and K during ground running. Key points GPS-embedded tri-axial accelerometers may be used to assess contact time and vertical stiffness during ground running. These preliminary results open new perspective for the field monitoring of neuromuscular fatigue and performance in run-based sports PMID:26664264
NASA Astrophysics Data System (ADS)
Pradels, Grégory
Considering the scientific objectives of the MICROSCOPE space mission, very weak accelerations have to be controlled and measured in orbit. Accelerometers, similar in the concept to the MICROSCOPE instrument, have already characterised the vibration environment on board a satellite at low altitude as well as the fluctuation of drag : analysis of the data provided by the CHAMP mission accelerometer have been performed. By modelling the expected acceleration signals applied on the MICROSCOPE instrument in orbit, the developed analytic model of the mission measurement has shown the interest and the requirements for the instrument calibration. Because of the on-ground seismic perturbations, the instrument cannot be calibrated in laboratory and an in-orbit procedure has to be defined. The proposed approach exploits the drag-free system of the satellite and the sensitivity of the accelerometers. Results obtained from the dedicated simulator of the mission are presented. The goal of the CNES-ESA MICROSCOPE space mission is the test of one of the most famous principle in physics, the Equivalence Principle (EP), basement of General Relativity and which fixes the universality of free fall of all bodies in same gravity field. In the establishment of new theory for Grand Unification, evidence of an EP violation may occur from 10-14 for relative ratio of inertial and gravitational mass between two different materials. The verification by experiment of this theoretical expectation becomes then fundamental. The MICROSCOPE mission is also a technological challenge of a dedicated differential accelerometer able to measure, on board a satellite, very weak accelerations acting on two proof masses made of different materials. In the case of a pure inertial orbit, this specific instrument measures the differential acceleration due to the non uniform Earth gravitational field. With the support of a Drag free system, that reduces the amplitude of the non-gravitational forces applied on the satellite, a spectral density of 10-12 m/s^2/Hz is expected in the frequency range around 10-3 Hz. Then, an accuracy of a few 10-15 m/s^2 can be reached after an integration over 1 day in presence of the 8 m/s^2 Earth gravity field, leading to the EP test with a two orders of magnitude better accuracy than the current laboratory tests. The two ultra sensitive accelerometers, used in combination to build the instrument, are derived from the one flying in the CHAMP space mission which offers for the first time a very fine measurement (10-9 m/s^2/Hz resolution) of the non-gravitational forces applied on a satellite at altitude lower than 500 km. The temporal and spectral analyses confirm the specified intrinsic parameters of the instrument as the bias, the noise level or the thermal sensitivity. A time-frequency analysis provides the first look on disturbances that might occur on this type of satellite : mechanical vibrations after thruster firings, peaks of different amplitudes due to Earth's shadow crossings or effects of the satellite thermal control. A specific and adaptive filter has been developed to reject these perturbations out of the geodesic measurements. After this treatment, the data show some very interesting behaviours as the evolution of the drag with the rotation of the orbit of the satellite. These results are of great interest for the future projects like MICROSCOPE, LISA the space gravity wave antenna developed by NASA and ESA or GOCE the ESA gradiometric solid Earth mission. The MICROSCOPE mission requires not only high resolution for the accelerometers but also fine matching of the parameters because the eventual EP violation signal is detected in the instrument output comparison. The analytic model of the mission measurement demonstrates the necessity of the evaluation of the instrument sensitivity, alignment and coupling with a minimum accuracy of 3 10-4, depending on the relative test mass position, the orbital pointing mode of the satellite, the performance of the drag-free and the attitude control system. This calibration phase is necessary to reject the common mode of the forces applied on the satellite out of the differential measurement. However, the level of the on-ground perturbations in laboratory induced by human activity and seismic noise limits the possibility of a pre- launched calibration. Then, a specific in-orbit procedure has to be defined. The proposed solution consists in exciting the satellite along or about well defined axes with the support of the Drag Free system. Taking into account the measurement range and the resolution of the differential accelerometers, the Drag Free system operation and the electrical thruster performance, the observability of all instrument parameters has been demonstrated with the required accuracy. Different tests of the method are performed with a software dedicated simulator. With an estimation of the Earth's gravitational field and the non-gravitational forces applied to the satellite along the orbit, computed by the "Observatoire de la Côte d'Azur", the validity of this calibration method has been checked for nominal conditions of the satellite operation. The introduction of disturbances like the one observed on the measurements of the CHAMP mission confirms the possibility of an in-orbit calibration with the required accuracy and with the support of the specific filter mentioned below. The MICROSCOPE space mission is of high interest for fundamental physics and exploits for the fist time the combination of a Drag Free system with very high sensitive accelerometer. This system is already selected for other scientific missions like the geodesic mission GOCE which objectives is to map the gravity gradient of the Earth with an accuracy of 4 mEötvös/Hz.
An Accelerometer as an Alternative to a Force Plate for the Step-Up-and-Over Test.
Bailey, Christopher A; Costigan, Patrick A
2015-12-01
The step-up-and-over test has been used successfully to examine knee function after knee injury. Knee function is quantified using the following variables extracted from force plate data: the maximal force exerted during the lift, the maximal impact force at landing, and the total time to complete the step. For various reasons, including space and cost, it is unlikely that all clinicians will have access to a force plate. The purpose of the study was to determine if the step-up-and-over test could be simplified by using an accelerometer. The step-up-and-over test was performed by 17 healthy young adults while being measured with both a force plate and a 3-axis accelerometer mounted at the low back. Results showed that the accelerometer and force plate measures were strongly correlated for all 3 variables (r = .90-.98, Ps < .001) and that the accelerometer values for the lift and impact indices were 6-7% higher (Ps < .01) and occurred 0.07-0.1 s later than the force plate (Ps < .05). The accelerometer returned values highly correlated to those from a force plate. Compared with a force plate, a wireless, 3-axis accelerometer is a less expensive and more portable system with which to measure the step-up-and-over test.
Hesketh, Kathryn R; Evenson, Kelly R; Stroo, Marissa; Clancy, Shayna M; Østbye, Truls; Benjamin-Neelon, Sara E
2018-06-01
Physical activity in pregnancy and postpartum is beneficial to mothers and infants. To advance knowledge of objective physical activity measurement during these periods, this study compares hip to wrist accelerometer compliance; assesses convergent validity (correlation) between hip- and wrist-worn accelerometry; and assesses change in physical activity from pregnancy to postpartum. We recruited women during pregnancy ( n = 100; 2014-2015), asking them to wear hip and wrist accelerometers for 7 days during Trimester 2 (T2), Trimester 3 (T3), and 3-, 6-, 9- and 12-months postpartum. We assessed average wear-time and correlations (axis-specific counts/minute, vector magnitude counts/day and step counts/day) at T2, T3, and postpartum. Compliance was higher for wrist-worn accelerometers. Hip and wrist accelerometers showed moderate to high correlations (Pearson's r 0.59 to 0.84). Hip-measured sedentary and active time differed little between T2 and T3. Moderate-to-vigorous physical activity decreased at T3 and remained low postpartum. Light physical activity increased and sedentary time decreased throughout the postpartum period. Wrist accelerometers may be preferable during pregnancy and appear comparable to hip accelerometers. As physical activity declines during later pregnancy and may not rebound post birth, support for re-engaging in physical activity earlier in the postpartum period may benefit women.
Lee, Sang Cheol; Hong, Sung Kyung
2016-12-11
This paper presents an algorithm for velocity-aided attitude estimation for helicopter aircraft using a microelectromechanical system inertial-measurement unit. In general, high- performance gyroscopes are used for estimating the attitude of a helicopter, but this type of sensor is very expensive. When designing a cost-effective attitude system, attitude can be estimated by fusing a low cost accelerometer and a gyro, but the disadvantage of this method is its relatively low accuracy. The accelerometer output includes a component that occurs primarily as the aircraft turns, as well as the gravitational acceleration. When estimating attitude, the accelerometer measurement terms other than gravitational ones can be considered as disturbances. Therefore, errors increase in accordance with the flight dynamics. The proposed algorithm is designed for using velocity as an aid for high accuracy at low cost. It effectively eliminates the disturbances of accelerometer measurements using the airspeed. The algorithm was verified using helicopter experimental data. The algorithm performance was confirmed through a comparison with an attitude estimate obtained from an attitude heading reference system based on a high accuracy optic gyro, which was employed as core attitude equipment in the helicopter.
Lee, Sang Cheol; Hong, Sung Kyung
2016-01-01
This paper presents an algorithm for velocity-aided attitude estimation for helicopter aircraft using a microelectromechanical system inertial-measurement unit. In general, high- performance gyroscopes are used for estimating the attitude of a helicopter, but this type of sensor is very expensive. When designing a cost-effective attitude system, attitude can be estimated by fusing a low cost accelerometer and a gyro, but the disadvantage of this method is its relatively low accuracy. The accelerometer output includes a component that occurs primarily as the aircraft turns, as well as the gravitational acceleration. When estimating attitude, the accelerometer measurement terms other than gravitational ones can be considered as disturbances. Therefore, errors increase in accordance with the flight dynamics. The proposed algorithm is designed for using velocity as an aid for high accuracy at low cost. It effectively eliminates the disturbances of accelerometer measurements using the airspeed. The algorithm was verified using helicopter experimental data. The algorithm performance was confirmed through a comparison with an attitude estimate obtained from an attitude heading reference system based on a high accuracy optic gyro, which was employed as core attitude equipment in the helicopter. PMID:27973429
Measurement Model and Precision Analysis of Accelerometers for Maglev Vibration Isolation Platforms.
Wu, Qianqian; Yue, Honghao; Liu, Rongqiang; Zhang, Xiaoyou; Ding, Liang; Liang, Tian; Deng, Zongquan
2015-08-14
High precision measurement of acceleration levels is required to allow active control for vibration isolation platforms. It is necessary to propose an accelerometer configuration measurement model that yields such a high measuring precision. In this paper, an accelerometer configuration to improve measurement accuracy is proposed. The corresponding calculation formulas of the angular acceleration were derived through theoretical analysis. A method is presented to minimize angular acceleration noise based on analysis of the root mean square noise of the angular acceleration. Moreover, the influence of installation position errors and accelerometer orientation errors on the calculation precision of the angular acceleration is studied. Comparisons of the output differences between the proposed configuration and the previous planar triangle configuration under the same installation errors are conducted by simulation. The simulation results show that installation errors have a relatively small impact on the calculation accuracy of the proposed configuration. To further verify the high calculation precision of the proposed configuration, experiments are carried out for both the proposed configuration and the planar triangle configuration. On the basis of the results of simulations and experiments, it can be concluded that the proposed configuration has higher angular acceleration calculation precision and can be applied to different platforms.
Measurement Model and Precision Analysis of Accelerometers for Maglev Vibration Isolation Platforms
Wu, Qianqian; Yue, Honghao; Liu, Rongqiang; Zhang, Xiaoyou; Ding, Liang; Liang, Tian; Deng, Zongquan
2015-01-01
High precision measurement of acceleration levels is required to allow active control for vibration isolation platforms. It is necessary to propose an accelerometer configuration measurement model that yields such a high measuring precision. In this paper, an accelerometer configuration to improve measurement accuracy is proposed. The corresponding calculation formulas of the angular acceleration were derived through theoretical analysis. A method is presented to minimize angular acceleration noise based on analysis of the root mean square noise of the angular acceleration. Moreover, the influence of installation position errors and accelerometer orientation errors on the calculation precision of the angular acceleration is studied. Comparisons of the output differences between the proposed configuration and the previous planar triangle configuration under the same installation errors are conducted by simulation. The simulation results show that installation errors have a relatively small impact on the calculation accuracy of the proposed configuration. To further verify the high calculation precision of the proposed configuration, experiments are carried out for both the proposed configuration and the planar triangle configuration. On the basis of the results of simulations and experiments, it can be concluded that the proposed configuration has higher angular acceleration calculation precision and can be applied to different platforms. PMID:26287203
NASA Astrophysics Data System (ADS)
Zimakov, L. G.; Raczka, J.; Barrientos, S. E.
2016-12-01
We will discuss and show the results obtained from an integrated SeismoGeodetic System, model SG160-09, installed in the Chile (Chilean National Network), Italy (University of Naples Network), and California. The SG160-09 provides the user high rate GNSS and accelerometer data, full epoch-by-epoch measurement integrity and the ability to create combined GNSS and accelerometer high-rate (200Hz) displacement time series in real-time. The SG160-09 combines seismic recording with GNSS geodetic measurement in a single compact, ruggedized case. The system includes a low-power, 220-channel GNSS receiver powered by the latest Trimble-precise Maxwell™6 technology and supports tracking GPS, GLONASS and Galileo signals. The receiver incorporates on-board GNSS point positioning using Real-Time Precise Point Positioning (PPP) technology with satellite clock and orbit corrections delivered over IP networks. The seismic recording includes an ANSS Class A, force balance accelerometer with the latest, low power, 24-bit A/D converter, producing high-resolution seismic data. The SG160-09 processor acquires and packetizes both seismic and geodetic data and transmits it to the central station using an advanced, error-correction protocol providing data integrity between the field and the processing center. The SG160-09 has been installed in three seismic stations in different geographic locations with different Trimble global reference stations coverage The hardware includes the SG160-09 system, external Zephyr Geodetic-2 GNSS antenna, both radio and high-speed Internet communication media. Both acceleration and displacement data was transmitted in real-time to the centralized Data Acquisition Centers for real-time data processing. Command/Control of the field station and real-time GNSS position correction are provided via the Pivot platform. Data from the SG160-09 system was used for seismic event characterization along with data from traditional seismic and geodetic stations installed in the network. Our presentation will focus on the key improvements of the network installation with the SG160-09 system, RTX correction accuracy obtained from Trimble Global RTX tracking network, rapid data transmission, and real-time data processing for strong seismic events and aftershock characterization.
NASA Astrophysics Data System (ADS)
Marlton, Graeme; Harrison, Giles; Nicoll, Keri; Williams, Paul
2017-04-01
This work describes the instrument development, characterisation and data analysis from 51 radiosondes specially equipped with accelerometers to measure atmospheric turbulence. Turbulence is hazardous to aircraft as it cannot be observed in advance. It is estimated that turbulence costs the airline industry millions of US dollars a year through damage to aircraft and injuries to passengers and crew. To avoid turbulence pilots and passengers rely on Clear Air Turbulence forecasts, which have limited skill. One limitation in this area is lack of quantitative unbiased observations. The main source of turbulence observations is from commercial airline pilot reports, which are subjective, biased by the size of aircraft and pilot experience. This work seeks to improve understanding of turbulence through a standardised method of turbulence observations amenable throughout the troposphere. A sensing package has been developed to measure the acceleration of the radiosonde as it swings in response to turbulent agitation of its carrier balloon. The accelerometer radiosonde has been compared against multiple turbulence remote sensing methods to characterise its measurements including calibration with Doppler lidar eddy dissipation rate in the boundary layer. A further relationship has been found by comparison with the spectral width of a Mesospheric, Stratospheric and Tropospheric (MST) radar. From the full dataset of accelerometer sonde ascents a standard deviation of 5 m s-2 is defined as a threshold for significant turbulence. The dataset spans turbulence generated in meteorological phenomena such as jet streams, clouds and in the presence of convection. The analysis revealed that 77% of observed turbulence could be explained by the aforementioned phenomena. In jet streams, turbulence generation was often caused by horizontal processes such as deformation. In convection, turbulence is found to form when CAPE >150 J kg-1. Deeper clouds were found to be more turbulent due to the increased intensity of in-cloud processes. The accelerometer data were used to verify the skill of turbulence diagnostics, in order to assess which diagnostics are best at forecasting turbulence. It was found using a Receiver Operating Characteristics curve analysis that turbulence diagnostics calculated using ECMWF high resolution data that featured wind speed, deformation and relative vorticity advection predicted turbulence best with area under curve values of 0.7,0.66 and 0.62 respectively. This work provides a new, safe and inexpensive method to retrieve in-situ information about the turbulent structure of the atmosphere. It can inform the aviation industry through identifying turbulence generation regions and assess which predictive diagnostics are the most skilful.
Adaptive Observations At Ncep: Past, Present, and Future
NASA Astrophysics Data System (ADS)
Toth, Z.; Szunyogh, I.; Bishop, C.; Majumdar, S.; Moskaitis, J.; Lord, S.
The RadioScience experiments proposed for the BepiClombo ESA CORNERSTONE are aiming at performing planetary measurements such as: the rotation state of Mer- cury, the global structure of its gravity field and the local gravitational anomalies, but also to test some aspects of the General Relativity, to an unprecedented level of accu- racy. A high sensitivity accelerometer will measure the inertial acceleration acting on the MPO; these data, together with tracking data are used to evaluate the purely gravi- tational trajectory of the MPO, by transforming it to a virtual drag-free satellite system. At the Istituto di Fisica dello Spazio Interplanetario (IFSI) a high sensitive accelerom- eter named ISA (Italian Spring Accelerometer)* and considered for this mission has been studied. The main problems concerning the use of the accelerometer are related to the high dynamics necessary to follow the variation of the acceleration signals, with accuracy equal to 10^-9 g/sqr(Hz), and very high at the MPO orbital period and due to thermal noise introduced at the sidereal period of Mercury. The description of the accelerometer will be presented, with particular attention to the thermal problems and to the analysis regarding the choice of the mounting position on the MPO. *Project funded by the Italian Space Agency (ASI).
NASA Astrophysics Data System (ADS)
Vielberg, Kristin; Forootan, Ehsan; Lück, Christina; Löcher, Anno; Kusche, Jürgen; Börger, Klaus
2018-05-01
Ultra-sensitive space-borne accelerometers on board of low Earth orbit (LEO) satellites are used to measure non-gravitational forces acting on the surface of these satellites. These forces consist of the Earth radiation pressure, the solar radiation pressure and the atmospheric drag, where the first two are caused by the radiation emitted from the Earth and the Sun, respectively, and the latter is related to the thermospheric density. On-board accelerometer measurements contain systematic errors, which need to be mitigated by applying a calibration before their use in gravity recovery or thermospheric neutral density estimations. Therefore, we improve, apply and compare three calibration procedures: (1) a multi-step numerical estimation approach, which is based on the numerical differentiation of the kinematic orbits of LEO satellites; (2) a calibration of accelerometer observations within the dynamic precise orbit determination procedure and (3) a comparison of observed to modeled forces acting on the surface of LEO satellites. Here, accelerometer measurements obtained by the Gravity Recovery And Climate Experiment (GRACE) are used. Time series of bias and scale factor derived from the three calibration procedures are found to be different in timescales of a few days to months. Results are more similar (statistically significant) when considering longer timescales, from which the results of approach (1) and (2) show better agreement to those of approach (3) during medium and high solar activity. Calibrated accelerometer observations are then applied to estimate thermospheric neutral densities. Differences between accelerometer-based density estimations and those from empirical neutral density models, e.g., NRLMSISE-00, are observed to be significant during quiet periods, on average 22 % of the simulated densities (during low solar activity), and up to 28 % during high solar activity. Therefore, daily corrections are estimated for neutral densities derived from NRLMSISE-00. Our results indicate that these corrections improve model-based density simulations in order to provide density estimates at locations outside the vicinity of the GRACE satellites, in particular during the period of high solar/magnetic activity, e.g., during the St. Patrick's Day storm on 17 March 2015.
Bexelius, Christin; Sandin, Sven; Trolle Lagerros, Ylva; Litton, Jan-Eric; Löf, Marie
2011-09-25
Physical activity promotes health and longevity. Further elaboration of the role of physical activity for human health in epidemiological studies on large samples requires accurate methods that are easy to use, cheap, and possible to repeat. The use of telecommunication technologies such as cell phones is highly interesting in this respect. In an earlier report, we showed that physical activity level (PAL) assessed using a cell phone procedure agreed well with corresponding estimates obtained using the doubly labeled water method. However, our earlier study indicated high within-subject variation in relation to between-subject variations in PAL using cell phones, but we could not assess if this was a true variation of PAL or an artifact of the cell phone technique. Our objective was to compare within- and between-subject variations in PAL by means of cell phones with corresponding estimates using an accelerometer. In addition, we compared the agreement of daily PAL values obtained using the cell phone questionnaire with corresponding data obtained using an accelerometer. PAL was measured both with the cell phone questionnaire and with a triaxial accelerometer daily during a 2-week study period in 21 healthy Swedish women (20 to 45 years of age and BMI from 17.7 kg/m² to 33.6 kg/m²). The results were evaluated by fitting linear mixed effect models and descriptive statistics and graphs. With the accelerometer, 57% (95% confidence interval [CI] 40%-66%) of the variation was within subjects, while with the cell phone, within-subject variation was 76% (95% CI 59%-83%). The day-to-day variations in PAL observed using the cell phone questions agreed well with the corresponding accelerometer results. Both the cell phone questionnaire and the accelerometer showed high within-subject variations. Furthermore, day-to-day variations in PAL within subjects assessed using the cell phone agreed well with corresponding accelerometer values. Consequently, our cell phone questionnaire is a promising tool for assessing levels of physical activity. The tool may be useful for large-scale prospective studies.
Superconducting Rebalance Accelerometer
NASA Technical Reports Server (NTRS)
Torti, R. P.; Gerver, M.; Leary, K. J.; Jagannathan, S.; Dozer, D. M.
1996-01-01
A multi-axis accelerometer which utilizes a magnetically-suspended, high-TC proof mass is under development. The design and performance of a single axis device which is stabilized actively in the axial direction but which utilizes ring magnets for passive radial stabilization is discussed. The design of a full six degree-of-freedom device version is also described.
A Low-Cost CMOS-MEMS Piezoresistive Accelerometer with Large Proof Mass
Khir, Mohd Haris Md; Qu, Peng; Qu, Hongwei
2011-01-01
This paper reports a low-cost, high-sensitivity CMOS-MEMS piezoresistive accelerometer with large proof mass. In the device fabricated using ON Semiconductor 0.5 μm CMOS technology, an inherent CMOS polysilicon thin film is utilized as the piezoresistive sensing material. A full Wheatstone bridge was constructed through easy wiring allowed by the three metal layers in the 0.5 μm CMOS technology. The device fabrication process consisted of a standard CMOS process for sensor configuration, and a deep reactive ion etching (DRIE) based post-CMOS microfabrication for MEMS structure release. A bulk single-crystal silicon (SCS) substrate is included in the proof mass to increase sensor sensitivity. In device design and analysis, the self heating of the polysilicon piezoresistors and its effect to the sensor performance is also discussed. With a low operating power of 1.5 mW, the accelerometer demonstrates a sensitivity of 0.077 mV/g prior to any amplification. Dynamic tests have been conducted with a high-end commercial calibrating accelerometer as reference. PMID:22164052
NASA Astrophysics Data System (ADS)
Teves, André da Costa; Lima, Cícero Ribeiro de; Passaro, Angelo; Silva, Emílio Carlos Nelli
2017-03-01
Electrostatic or capacitive accelerometers are among the highest volume microelectromechanical systems (MEMS) products nowadays. The design of such devices is a complex task, since they depend on many performance requirements, which are often conflicting. Therefore, optimization techniques are often used in the design stage of these MEMS devices. Because of problems with reliability, the technology of MEMS is not yet well established. Thus, in this work, size optimization is combined with the reliability-based design optimization (RBDO) method to improve the performance of accelerometers. To account for uncertainties in the dimensions and material properties of these devices, the first order reliability method is applied to calculate the probabilities involved in the RBDO formulation. Practical examples of bulk-type capacitive accelerometer designs are presented and discussed to evaluate the potential of the implemented RBDO solver.
Three-axis accelerometer package for slimhole and microhole seismic monitoring and surveys
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hunter, S.L.; Harben, P.E.
1997-01-07
The development of microdrilling technology, nominally defined as drilling technology for 1-in.-diameter boreholes, shows potential for reducing the cost of drilling monitoring wells. A major question that arises in drilling microholes is if downhole logging and monitoring in general--and downhole seismic surveying in particular--can be conducted in such small holes since the inner working diameter of such a seismic tool could be as small as 0.31 in. A downhole three-component accelerometer package that fits within a 031-in. inner diameter tube has been designed, built, and tested. The package consists of three orthogonally mounted Entran EGA-125-5g piezoresistive silicon micromachined accelerometers withmore » temperature compensation circuitry, downhole amplification, and line drivers mounted in a thin-walled aluminum tube. Accelerometers are commercially available in much smaller package sizes than conventional geophones, but the noise floor is significantly higher than that for the geophones. Cross-well tests using small explosives showed good signal-to-noise ratio in the recorded waveform at various receiver depths with a 1,50-ft source-receiver well separation. For some active downhole surveys, the accelerometer unit would clearly be adequate. It can be reasonably assumed, however, that for less energetic sources and for greater well separations, the high accelerometer noise floor is not acceptable. By expanding the inner working diameter of a microhole seismic tool to 0.5 in., other commercial accelerometers can be used with substantially lower noise floors.« less
Self Diagnostic Accelerometer Ground Testing on a C-17 Aircraft Engine
NASA Technical Reports Server (NTRS)
Tokars, Roger P.; Lekki, John D.
2013-01-01
The self diagnostic accelerometer (SDA) developed by the NASA Glenn Research Center was tested for the first time in an aircraft engine environment as part of the Vehicle Integrated Propulsion Research (VIPR) program. The VIPR program includes testing multiple critical flight sensor technologies. One such sensor, the accelerometer, measures vibrations to detect faults in the engine. In order to rely upon the accelerometer, the health of the accelerometer must be ensured. Sensor system malfunction is a significant contributor to propulsion in flight shutdowns (IFSD) which can lead to aircraft accidents when the issue is compounded with an inappropriate crew response. The development of the SDA is important for both reducing the IFSD rate, and hence reducing the rate at which this component failure type can put an aircraft in jeopardy, and also as a critical enabling technology for future automated malfunction diagnostic systems. The SDA is a sensor system designed to actively determine the accelerometer structural health and attachment condition, in addition to making vibration measurements. The SDA uses a signal conditioning unit that sends an electrical chirp to the accelerometer and recognizes changes in the response due to changes in the accelerometer health and attachment condition. In an effort toward demonstrating the SDAs flight worthiness and robustness, multiple SDAs were mounted and tested on a C-17 aircraft engine. The engine test conditions varied from engine off, to idle, to maximum power. The two SDA attachment conditions used were fully tight and loose. The newly developed SDA health algorithm described herein uses cross correlation pattern recognition to discriminate a healthy from a faulty SDA. The VIPR test results demonstrate for the first time the robustness of the SDA in an engine environment characterized by high vibration levels.
Self diagnostic accelerometer ground testing on a C-17 aircraft engine
NASA Astrophysics Data System (ADS)
Tokars, Roger P.; Lekki, John D.
The self diagnostic accelerometer (SDA) developed by the NASA Glenn Research Center was tested for the first time in an aircraft engine environment as part of the Vehicle Integrated Propulsion Research (VIPR) program. The VIPR program includes testing multiple critical flight sensor technologies. One such sensor, the accelerometer, measures vibrations to detect faults in the engine. In order to rely upon the accelerometer, the health of the accelerometer must be ensured. Sensor system malfunction is a significant contributor to propulsion in flight shutdowns (IFSD) which can lead to aircraft accidents when the issue is compounded with an inappropriate crew response. The development of the SDA is important for both reducing the IFSD rate, and hence reducing the rate at which this component failure type can put an aircraft in jeopardy, and also as a critical enabling technology for future automated malfunction diagnostic systems. The SDA is a sensor system designed to actively determine the accelerometer structural health and attachment condition, in addition to making vibration measurements. The SDA uses a signal conditioning unit that sends an electrical chirp to the accelerometer and recognizes changes in the response due to changes in the accelerometer health and attachment condition. In an effort toward demonstrating the SDA's flight worthiness and robustness, multiple SDAs were mounted and tested on a C-17 aircraft engine. The engine test conditions varied from engine off, to idle, to maximum power. The two SDA attachment conditions used were fully tight and loose. The newly developed SDA health algorithm described herein uses cross correlation pattern recognition to discriminate a healthy from a faulty SDA. The VIPR test results demonstrate for the first time the robustness of the SDA in an engine environment characterized by high vibration levels.
Gupta, Nidhi; Christiansen, Caroline Stordal; Hanisch, Christiana; Bay, Hans; Burr, Hermann; Holtermann, Andreas
2017-01-16
To investigate the differences between a questionnaire-based and accelerometer-based sitting time, and develop a model for improving the accuracy of questionnaire-based sitting time for predicting accelerometer-based sitting time. 183 workers in a cross-sectional study reported sitting time per day using a single question during the measurement period, and wore 2 Actigraph GT3X+ accelerometers on the thigh and trunk for 1-4 working days to determine their actual sitting time per day using the validated Acti4 software. Least squares regression models were fitted with questionnaire-based siting time and other self-reported predictors to predict accelerometer-based sitting time. Questionnaire-based and accelerometer-based average sitting times were ≈272 and ≈476 min/day, respectively. A low Pearson correlation (r=0.32), high mean bias (204.1 min) and wide limits of agreement (549.8 to -139.7 min) between questionnaire-based and accelerometer-based sitting time were found. The prediction model based on questionnaire-based sitting explained 10% of the variance in accelerometer-based sitting time. Inclusion of 9 self-reported predictors in the model increased the explained variance to 41%, with 10% optimism using a resampling bootstrap validation. Based on a split validation analysis, the developed prediction model on ≈75% of the workers (n=132) reduced the mean and the SD of the difference between questionnaire-based and accelerometer-based sitting time by 64% and 42%, respectively, in the remaining 25% of the workers. This study indicates that questionnaire-based sitting time has low validity and that a prediction model can be one solution to materially improve the precision of questionnaire-based sitting time. Published by the BMJ Publishing Group Limited. For permission to use (where not already granted under a licence) please go to http://www.bmj.com/company/products-services/rights-and-licensing/.
Huang, Yongmei; Deng, Chao; Ren, Wei; Wu, Qiongyan
2017-01-01
In the CCD-based fine tracking optical system (FTOS), the whole disturbance suppression ability (DSA) is the product of the inner loop and outer position loop. Traditionally, high sampling fiber-optic gyroscopes (FOGs) are added to the platform to stabilize the line-of-sight (LOS). However, because of the FOGs’ high cost and relatively big volume relative to the back narrow space of small rotating mirrors, we attempt in this work to utilize a cheaper and smaller micro-electro-mechanical system (MEMS) accelerometer to build the inner loop, replacing the FOG. Unfortunately, since accelerometers are susceptible to the low-frequency noise, according to the classical way of using accelerometers, the crucial low-frequency DSA of the system is insufficient. To solve this problem, in this paper, we propose an approach based on MEMS accelerometers combining disturbance observer (DOB) with triple-loop control (TLC) in which the composite velocity loop is built by acceleration integration and corrected by CCD. The DOB is firstly used to reform the platform, greatly improving the medium-frequency DSA. Then the composite velocity loop exchanges a part of medium-frequency performance for the low-frequency DSA. A detailed analysis and experiments verify the proposed method has a better DSA than the traditional way and could totally substitute FOG in the LOS stabilization. PMID:29149050
Kiesewetter, Pierre; Milani, Thomas L.
2018-01-01
Previous studies have used accelerometers with various operating ranges (ORs) when measuring biomechanical parameters. However, it is still unclear whether ORs influence the accuracy of running parameters, and whether the different stiffnesses of footwear midsoles influence this accuracy. The purpose of the present study was to systematically investigate the influence of OR on the accuracy of stride length, running velocity, and on peak tibial acceleration. Twenty-one recreational heel strike runners ran on a 15-m indoor track at self-selected running speeds in three footwear conditions (low to high midsole stiffness). Runners were equipped with an inertial measurement unit (IMU) affixed to the heel cup of the right shoe and with a uniaxial accelerometer at the right tibia. Accelerometers (at the tibia and included in the IMU) with a high OR of ±70 g were used as the reference and the data were cut at ±32, ±16, and at ±8 g in post-processing, before calculating parameters. The results show that the OR influenced the outcomes of all investigated parameters, which were not influenced by tested footwear conditions. The lower ORs were associated with an underestimation error for all biomechanical parameters, which increased noticeably with a decreasing OR. It can be concluded that accelerometers with a minimum OR of ±32 g should be used to avoid inaccurate measurements. PMID:29303986
GPS-Based Reduced Dynamic Orbit Determination Using Accelerometer Data
NASA Technical Reports Server (NTRS)
VanHelleputte, Tom; Visser, Pieter
2007-01-01
Currently two gravity field satellite missions, CHAMP and GRACE, are equipped with high sensitivity electrostatic accelerometers, measuring the non-conservative forces acting on the spacecraft in three orthogonal directions. During the gravity field recovery these measurements help to separate gravitational and non-gravitational contributions in the observed orbit perturbations. For precise orbit determination purposes all these missions have a dual-frequency GPS receiver on board. The reduced dynamic technique combines the dense and accurate GPS observations with physical models of the forces acting on the spacecraft, complemented by empirical accelerations, which are stochastic parameters adjusted in the orbit determination process. When the spacecraft carries an accelerometer, these measured accelerations can be used to replace the models of the non-conservative forces, such as air drag and solar radiation pressure. This approach is implemented in a batch least-squares estimator of the GPS High Precision Orbit Determination Software Tools (GHOST), developed at DLR/GSOC and DEOS. It is extensively tested with data of the CHAMP and GRACE satellites. As accelerometer observations typically can be affected by an unknown scale factor and bias in each measurement direction, they require calibration during processing. Therefore the estimated state vector is augmented with six parameters: a scale and bias factor for the three axes. In order to converge efficiently to a good solution, reasonable a priori values for the bias factor are necessary. These are calculated by combining the mean value of the accelerometer observations with the mean value of the non-conservative force models and empirical accelerations, estimated when using these models. When replacing the non-conservative force models with accelerometer observations and still estimating empirical accelerations, a good orbit precision is achieved. 100 days of GRACE B data processing results in a mean orbit fit of a few centimeters with respect to high-quality JPL reference orbits. This shows a slightly better consistency compared to the case when using force models. A purely dynamic orbit, without estimating empirical accelerations thus only adjusting six state parameters and the bias and scale factors, gives an orbit fit for the GRACE B test case below the decimeter level. The in orbit calibrated accelerometer observations can be used to validate the modelled accelerations and estimated empirical accelerations computed with the GHOST tools. In along track direction they show the best resemblance, with a mean correlation coefficient of 93% for the same period. In radial and normal direction the correlation is smaller. During days of high solar activity the benefit of using accelerometer observations is clearly visible. The observations during these days show fluctuations which the modelled and empirical accelerations can not follow.
Towards Integrated Marmara Strong Motion Network
NASA Astrophysics Data System (ADS)
Durukal, E.; Erdik, M.; Safak, E.; Ansal, A.; Ozel, O.; Alcik, H.; Mert, A.; Kafadar, N.; Korkmaz, A.; Kurtulus, A.
2009-04-01
Istanbul has a 65% chance of having a magnitude 7 or above earthquake within the next 30 years. As part of the preparations for the future earthquake, strong motion networks have been installed in and around Istanbul. The Marmara Strong Motion Network, operated by the Department of Earthquake Engineering of Kandilli Observatory and Earthquake Research Institute, encompasses permanent systems outlined below. It is envisaged that the networks will be run by a single entity responsible for technical management and maintanence, as well as for data management, archiving and dissemination through dedicated web-based interfaces. • Istanbul Earthquake Rapid Response and Early Warning System - IERREWS (one hundred 18-bit accelerometers for rapid response; ten 24-bit accelerometers for early warning) • IGDAŞ Gas Shutoff Network (100 accelerometers to be installed in 2010 and integrated with IERREWS) • Structural Monitoring Arrays - Fatih Sultan Mehmet Suspension Bridge (1200m-long suspension bridge across the Bosphorus, five 3-component accelerometers + GPS sensors) - Hagia Sophia Array (1500-year-old historical edifice, 9 accelerometers) - Süleymaniye Mosque Array (450-year-old historical edifice,9 accelerometers) - Fatih Mosque Array (237-year-old historical edifice, 9 accelerometers) - Kanyon Building Array (high-rise office building, 5 accelerometers) - Isbank Tower Array (high-rise office building, 5 accelerometers) - ENRON Array (power generation facility, 4 acelerometers) - Mihrimah Sultan Mosque Array (450-year-old historical edifice,9 accelerometers + tiltmeters, to be installed in 2009) - Sultanahmet Mosque Array, (390-year-old historical edifice, 9 accelerometers + tiltmeters, to be installed in 2009) • Special Arrays - Atakoy Vertical Array (four 3-component accelerometers at 25, 50, 75, and 150 m depths) - Marmara Tube Tunnel (1400 m long submerged tunnel, 128 ch. accelerometric data, 24 ch. strain data, to be installed in 2010) - Air-Force Academy Array (72 ch. dense accelerometric array to be installed in 2010) - Gemlik Array (a dense basin array of 8 stations, to be installed in 2010) The objectives of these systems and networks are: (1) to produce rapid earthquake intensity, damage and loss assessment information after an earthquake (in the case of IERREWS), (2) to monitor conditions of structural systems, (3) to develop real-time data processing, analysis, and damage detection and location tools (in the case of structural networks) after an extreme event, (4) to assess spatial properties of strong ground motion and ground strain, and to characterise basin response (in the case of special arrays), (5) to investigate site response and wave propagation (in the case of vertical array). Ground motion data obtained from these strong motion networks have and are being used for investigations of attenuation, spatial variation (coherence), simulation benchmarking, source modeling, site response, seismic microzonation, system identification and structural model verification and structural health control. In addition to the systems and networks outlined above there are two temporary networks: KIMNET - a dense urban noise and microtremor network consisting of 50 broadband stations expected to be operational in mid 2009, and SOSEWIN - a 20-station, self-organizing structural integrated array at Ataköy in Istanbul.
The Impact of Accelerometers on Physical Activity and Weight Loss: A Systematic Review
Goode, Adam P.; Hall, Katherine S.; Batch, Bryan C.; Huffman, Kim M.; Hastings, S. Nicole; Allen, Kelli D.; Shaw, Ryan J.; Kanach, Frances A.; McDuffie, Jennifer R.; Kosinski, Andrzej S.; Williams, John W.; Gierisch, Jennifer M.
2016-01-01
Background Regular physical activity is important for improving and maintaining health, but sedentary behavior is difficult to change. Providing objective, real-time feedback on physical activity with wearable motion-sensing technologies (activity monitors) may be a promising, scalable strategy to increase physical activity or decrease weight. Purpose We synthesized the literature on the use of wearable activity monitors for improving physical activity and weight-related outcomes and evaluated moderating factors that may have an impact on effectiveness. Methods We searched five databases from January 2000 to January 2015 for peer-reviewed, English-language randomized controlled trials among adults. Random-effects models were used to produce standardized mean differences (SMDs) for physical activity outcomes and mean differences (MDs) for weight outcomes. Heterogeneity was measured with I2. Results Fourteen trials (2,972 total participants) met eligibility criteria; accelerometers were used in all trials. Twelve trials examined accelerometer interventions for increasing physical activity. A small significant effect was found for increasing physical activity (SMD 0.26; 95% CI 0.04 to 0.49; I2=64.7%). Intervention duration was the only moderator found to significantly explain high heterogeneity for physical activity. Eleven trials examined effects of accelerometer interventions on weight. Pooled estimates showed a small significant effect for weight loss (MD −1.65 kg; 95% CI −3.03 to −0.28; I2=81%), and no moderators were significant. Conclusions Accelerometers demonstrated small positive effects on physical activity and weight loss. The small sample sizes with moderate to high heterogeneity in the current studies limit the conclusions that may be drawn. Future studies should focus on how best to integrate accelerometers with other strategies to increase physical activity and weight loss. PMID:27565168
Aerodynamic coefficient identification package dynamic data accuracy determinations: Lessons learned
NASA Technical Reports Server (NTRS)
Heck, M. L.; Findlay, J. T.; Compton, H. R.
1983-01-01
The errors in the dynamic data output from the Aerodynamic Coefficient Identification Packages (ACIP) flown on Shuttle flights 1, 3, 4, and 5 were determined using the output from the Inertial Measurement Units (IMU). A weighted least-squares batch algorithm was empolyed. Using an averaging technique, signal detection was enhanced; this allowed improved calibration solutions. Global errors as large as 0.04 deg/sec for the ACIP gyros, 30 mg for linear accelerometers, and 0.5 deg/sec squared in the angular accelerometer channels were detected and removed with a combination is bias, scale factor, misalignment, and g-sensitive calibration constants. No attempt was made to minimize local ACIP dynamic data deviations representing sensed high-frequency vibration or instrument noise. Resulting 1sigma calibrated ACIP global accuracies were within 0.003 eg/sec, 1.0 mg, and 0.05 deg/sec squared for the gyros, linear accelerometers, and angular accelerometers, respectively.
The use of a cubesat to validate technological bricks in space
NASA Astrophysics Data System (ADS)
Rakotonimbahy, E.; Vives, S.; Dohlen, K.; Savini, G.; Iafolla, V.
2017-11-01
In the framework of the FP7 program FISICA (Far Infrared Space Interferometer Critical Assessment), we are developing a cubesat platform which will be used for the validation in space of two technological bricks relevant for FIRI. The first brick is a high-precision accelerometer which could be used in a future space mission as fundamental element for the dynamic control loop of the interferometer. The second brick is a miniaturized version of an imaging multi-aperture telescope. Ultimately, such an instrument could be composed of numerous space-born mirror segments flying in precise formation on baselines of hundreds or thousands of meters, providing high-resolution glimpses of distant worlds. We are proposing to build a very first space-born demonstrator of such an instrument which will fit into the limited resources of one cubesat. In this paper, we will describe the detailed design of the cubesat hosting the two payloads.
Pope, K.E.
1958-11-25
A device, commonly known as an accelerometer, is described which may be utllized for measuring acceleratlon with high sensitivity and accuracy tbroughout a relatively wlde range of values. In general, the accelerometer consists of an assembly, including an electric motor stator and a mass element located away from the axis of rotation of the stator, rotatably mounted on a support, and an electric motor rotor positioned within the stator and rotatable thereln. An electrlcal switching circuit controlled by the movement of the stator lntermittently energizes the rotor winding and retards move ment of the stator, and a centrifugal switch is rotatable with the rotor to operate upon attainment of a predetermined rotor rotational velocity.
Medium-high frequency FBG accelerometer with integrative matrix structure.
Dai, Yutang; Yin, Guanglin; Liu, Bin; Xu, Gang; Karanja, Joseph Muna
2015-04-10
To meet the requirements for medium-high frequency vibration monitoring, a new type fiber Bragg grating (FBG) accelerometer with an integrative matrix structure is proposed. Two symmetrical flexible gemels are used as elastic elements, which drive respective inertial mass moving reversely when exciting vibration exists, leading to doubling the wavelength shift of the FBG. The mechanics model and a numerical method are presented in this paper, by which the influence of the structural parameters on the sensitivity and eigenfrequency is discussed. Sensitivity higher than 200 pm/g and an eigenfrequency larger than 3000 Hz can be realized separately, but both cannot be achieved simultaneously. Aiming for a broader measuring frequency range, a prototype accelerometer with an eigenfrequency near 3000 Hz is designed, and results from a shake table test are also demonstrated.
1982-03-04
AL. 84 MAR 82 UNCLASSIFIED RFGL-ERP-774 F/G 22/3, N ’IN ~11 IP LA M °3 MICROCOP MWoWNo TEST CHART MICROCOPY RESOLUTION TEST CHART M ATO MF OF SO MBS...V 0 . To refine the solution a new V = x Vy& VOZ ) is used to calculate a new p. This new p is then used to calculate new velocities. The process is
Self-Reported Versus Accelerometer-Assessed Daily Physical Activity in Childhood Obesity Treatment.
Schnurr, Theresia M; Bech, Bianca; Nielsen, Tenna R H; Andersen, Ida G; Hjorth, Mads F; Aadahl, Mette; Fonvig, Cilius E; Hansen, Torben; Holm, Jens-Christian
2017-08-01
We investigated the relationship between interview-based subjective ratings of physical activity (PA) engagement and accelerometer-assessed objectively measured PA in children and adolescents with overweight or obesity. A total of 92 children and adolescents (40 males, 52 females) with BMI ≥ 90th percentile for sex and age, aged 5-17 years had valid GT3X + accelerometer-assessed PA and interview-assessed self-reported information on PA engagement at the time of enrollment in a multidisciplinary outpatient tertiary treatment for childhood obesity. Accelerometer-derived mean overall PA and time spent in moderate to vigorous physical intensity were generated, applying cut-offs based on Vector Magnitude settings as defined by Romanzini et al. (2014), and a physical activity score (PAS) based on self-reported data. Overall, a higher self-reported PAS was correlated with higher accelerometer-assessed daily total PA levels ( r = 0.34, p < .01) and children who reported a high PAS were more physically active compared with children who reported a low PAS. There was a fair level of agreement between self-reported PAS and accelerometer-assessed PA (Kappa agreement = 0.23; 95% CI = [0.03, 0.43]; p = .01). PAS, derived from self-report, may be a useful instrument for evaluating PA at a group level among children and adolescents enrolled in multidisciplinary obesity treatment.
Evaluation of two-dimensional accelerometers to monitor behavior of beef calves after castration.
White, Brad J; Coetzee, Johann F; Renter, David G; Babcock, Abram H; Thomson, Daniel U; Andresen, Daniel
2008-08-01
To determine the accuracy of accelerometers for measuring behavior changes in calves and to determine differences in beef calf behavior from before to after castration. 3 healthy Holstein calves and 12 healthy beef calves. 2-dimensional accelerometers were placed on 3 calves, and data were logged simultaneous to video recording of animal behavior. Resulting data were used to generate and validate predictive models to classify posture (standing or lying) and type of activity (standing in place, walking, eating, getting up, lying awake, or lying sleeping). The algorithms developed were used to conduct a prospective trial to compare calf behavior in the first 24 hours after castration (n = 6) with behavior of noncastrated control calves (6) and with presurgical readings from the same castrated calves. On the basis of the analysis of the 2-dimensional accelerometer signal, posture was classified with a high degree of accuracy (98.3%) and the specific activity was estimated with a reasonably low misclassification rate (23.5%). Use of the system to compare behavior after castration revealed that castrated calves spent a significantly larger amount of time standing (82.2%), compared with presurgical readings (46.2%). 2-dimensional accelerometers provided accurate classification of posture and reasonable classification of activity. Applying the system in a castration trial illustrated the usefulness of accelerometers for measuring behavioral changes in individual calves.
Physical activity classification with dynamic discriminative methods.
Ray, Evan L; Sasaki, Jeffer E; Freedson, Patty S; Staudenmayer, John
2018-06-19
A person's physical activity has important health implications, so it is important to be able to measure aspects of physical activity objectively. One approach to doing that is to use data from an accelerometer to classify physical activity according to activity type (e.g., lying down, sitting, standing, or walking) or intensity (e.g., sedentary, light, moderate, or vigorous). This can be formulated as a labeled classification problem, where the model relates a feature vector summarizing the accelerometer signal in a window of time to the activity type or intensity in that window. These data exhibit two key characteristics: (1) the activity classes in different time windows are not independent, and (2) the accelerometer features have moderately high dimension and follow complex distributions. Through a simulation study and applications to three datasets, we demonstrate that a model's classification performance is related to how it addresses these aspects of the data. Dynamic methods that account for temporal dependence achieve better performance than static methods that do not. Generative methods that explicitly model the distribution of the accelerometer signal features do not perform as well as methods that take a discriminative approach to establishing the relationship between the accelerometer signal and the activity class. Specifically, Conditional Random Fields consistently have better performance than commonly employed methods that ignore temporal dependence or attempt to model the accelerometer features. © 2018, The International Biometric Society.
Fabrication of a Miniaturized ZnO Nanowire Accelerometer and Its Performance Tests
Kim, Hyun Chan; Song, Sangho; Kim, Jaehwan
2016-01-01
This paper reports a miniaturized piezoelectric accelerometer suitable for a small haptic actuator array. The accelerometer is made with zinc oxide (ZnO) nanowire (NW) grown on a copper wafer by a hydrothermal process. The size of the accelerometer is 1.5 × 1.5 mm2, thus fitting the 1.8 × 1.8 mm2 haptic actuator array cell. The detailed fabrication process of the miniaturized accelerometer is illustrated. Performance evaluation of the fabricated accelerometer is conducted by comparing it with a commercial piezoelectric accelerometer. The output current of the fabricated accelerometer increases linearly with the acceleration. The miniaturized ZnO NW accelerometer is feasible for acceleration measurement of small and lightweight devices. PMID:27649184
Micromachined Fluid Inertial Sensors
Liu, Shiqiang; Zhu, Rong
2017-01-01
Micromachined fluid inertial sensors are an important class of inertial sensors, which mainly includes thermal accelerometers and fluid gyroscopes, which have now been developed since the end of the last century for about 20 years. Compared with conventional silicon or quartz inertial sensors, the fluid inertial sensors use a fluid instead of a solid proof mass as the moving and sensitive element, and thus offer advantages of simple structures, low cost, high shock resistance, and large measurement ranges while the sensitivity and bandwidth are not competitive. Many studies and various designs have been reported in the past two decades. This review firstly introduces the working principles of fluid inertial sensors, followed by the relevant research developments. The micromachined thermal accelerometers based on thermal convection have developed maturely and become commercialized. However, the micromachined fluid gyroscopes, which are based on jet flow or thermal flow, are less mature. The key issues and technologies of the thermal accelerometers, mainly including bandwidth, temperature compensation, monolithic integration of tri-axis accelerometers and strategies for high production yields are also summarized and discussed. For the micromachined fluid gyroscopes, improving integration and sensitivity, reducing thermal errors and cross coupling errors are the issues of most concern. PMID:28216569
Gravity wave and tidal structures between 60 and 140 km inferred from space shuttle reentry data
NASA Technical Reports Server (NTRS)
Fritts, David C.; Wang, Ding-Yi; Blanchard, Robert C.
1993-01-01
This study presents an analysis of density measurements made using high-resolution accelerometers aboard several space shuttles at altitudes from 60 to 140 km during reentry into the earth's atmosphere. The observed density fluctuations are interpreted in terms of gravity waves and tides and provide evidence of the importance of such motions well into the thermosphere. Height profiles of fractional density variance reveal that wave amplitudes increase at a rate consistent with observations at lower levels up to about 90 km. The rate of amplitude growth decreases at greater heights, however, and appears to cease above about 110 km. Wave amplitudes are nevertheless large at these heights and suggest that gravity waves may play an important role in forcing of the lower thermosphere.
Micromachined low frequency rocking accelerometer with capacitive pickoff
Lee, Abraham P.; Simon, Jonathon N.; McConaghy, Charles F.
2001-01-01
A micro electro mechanical sensor that uses capacitive readout electronics. The sensor involves a micromachined low frequency rocking accelerometer with capacitive pickoff fabricated by deep reactive ion etching. The accelerometer includes a central silicon proof mass, is suspended by a thin polysilicon tether, and has a moving electrode (capacitor plate or interdigitated fingers) located at each end the proof mass. During movement (acceleration), the tethered mass moves relative to the surrounding packaging, for example, and this defection is measured capacitively by a plate capacitor or interdigitated finger capacitor, having the cooperating fixed electrode (capacitor plate or interdigitated fingers) positioned on the packaging, for example. The micromachined rocking accelerometer has a low frequency (<500 Hz), high sensitivity (.mu.G), with minimal power usage. The capacitors are connected to a power supply (battery) and to sensor interface electronics, which may include an analog to digital (A/D) converter, logic, RF communication link, antenna, etc. The sensor (accelerometer) may be, for example, packaged along with the interface electronics and a communication system in a 2".times.2".times.2" cube. The proof mass may be asymmetric or symmetric. Additional actuating capacitive plates may be used for feedback control which gives a greater dynamic range.
Determination of thermally induced effects and design guidelines of optomechanical accelerometers
NASA Astrophysics Data System (ADS)
Lu, Qianbo; Bai, Jian; Wang, Kaiwei; Jiao, Xufen; Han, Dandan; Chen, Peiwen; Liu, Dong; Yang, Yongying; Yang, Guoguang
2017-11-01
Thermal effects, including thermally induced deformation and warm up time, are ubiquitous problems for sensors, especially for inertial measurement units such as accelerometers. Optomechanical accelerometers, which contain light sources that can be regarded as heat sources, involve a different thermal phenomenon in terms of their specific optical readout, and the phenomenon has not been investigated systematically. This paper proposes a model to evaluate the temperature difference, rise time and thermally induced deformation of optomechanical accelerometers, and then constructs design guidelines which can diminish these thermal effects without compromising other mechanical performances, based on the analysis of the interplay of thermal and mechanical performances. In the model, the irradiation of the micromachined structure of a laser source is considered a dominant factor. The experimental data obtained using a prototype of an optomechanical accelerometer approximately confirm the validity of the model for the rise time and response tendency. Moreover, design guidelines that adopt suspensions with a flat cross-section and a short length are demonstrated with reference to the analysis. The guidelines can reduce the thermally induced deformation and rise time or achieve higher mechanical performances with similar thermal effects, which paves the way for the design of temperature-tolerant and robust, high-performance devices.
Detecting free-living steps and walking bouts: validating an algorithm for macro gait analysis.
Hickey, Aodhán; Del Din, Silvia; Rochester, Lynn; Godfrey, Alan
2017-01-01
Research suggests wearables and not instrumented walkways are better suited to quantify gait outcomes in clinic and free-living environments, providing a more comprehensive overview of walking due to continuous monitoring. Numerous validation studies in controlled settings exist, but few have examined the validity of wearables and associated algorithms for identifying and quantifying step counts and walking bouts in uncontrolled (free-living) environments. Studies which have examined free-living step and bout count validity found limited agreement due to variations in walking speed, changing terrain or task. Here we present a gait segmentation algorithm to define free-living step count and walking bouts from an open-source, high-resolution, accelerometer-based wearable (AX3, Axivity). Ten healthy participants (20-33 years) wore two portable gait measurement systems; a wearable accelerometer on the lower-back and a wearable body-mounted camera (GoPro HERO) on the chest, for 1 h on two separate occasions (24 h apart) during free-living activities. Step count and walking bouts were derived for both measurement systems and compared. For all participants during a total of almost 20 h of uncontrolled and unscripted free-living activity data, excellent relative (rho ⩾ 0.941) and absolute (ICC (2,1) ⩾ 0.975) agreement with no presence of bias were identified for step count compared to the camera (gold standard reference). Walking bout identification showed excellent relative (rho ⩾ 0.909) and absolute agreement (ICC (2,1) ⩾ 0.941) but demonstrated significant bias. The algorithm employed for identifying and quantifying steps and bouts from a single wearable accelerometer worn on the lower-back has been demonstrated to be valid and could be used for pragmatic gait analysis in prolonged uncontrolled free-living environments.
Integrating Low-Cost Mems Accelerometer Mini-Arrays (mama) in Earthquake Early Warning Systems
NASA Astrophysics Data System (ADS)
Nof, R. N.; Chung, A. I.; Rademacher, H.; Allen, R. M.
2016-12-01
Current operational Earthquake Early Warning Systems (EEWS) acquire data with networks of single seismic stations, and compute source parameters assuming earthquakes to be point sources. For large events, the point-source assumption leads to an underestimation of magnitude, and the use of single stations leads to large uncertainties in the locations of events outside the network. We propose the use of mini-arrays to improve EEWS. Mini-arrays have the potential to: (a) estimate reliable hypocentral locations by beam forming (FK-analysis) techniques; (b) characterize the rupture dimensions and account for finite-source effects, leading to more reliable estimates for large magnitudes. Previously, the high price of multiple seismometers has made creating arrays cost-prohibitive. However, we propose setting up mini-arrays of a new seismometer based on low-cost (<$150), high-performance MEMS accelerometer around conventional seismic stations. The expected benefits of such an approach include decreasing alert-times, improving real-time shaking predictions and mitigating false alarms. We use low-resolution 14-bit Quake Catcher Network (QCN) data collected during Rapid Aftershock Mobilization Program (RAMP) in Christchurch, NZ following the M7.1 Darfield earthquake in September 2010. As the QCN network was so dense, we were able to use small sub-array of up to ten sensors spread along a maximum area of 1.7x2.2 km2 to demonstrate our approach and to solve for the BAZ of two events (Mw4.7 and Mw5.1) with less than ±10° error. We will also present the new 24-bit device details, benchmarks, and real-time measurements.
Physical Activity Assessment with the ActiGraph GT3X and Doubly Labeled Water.
Chomistek, Andrea K; Yuan, Changzheng; Matthews, Charles E; Troiano, Richard P; Bowles, Heather R; Rood, Jennifer; Barnett, Junaidah B; Willett, Walter C; Rimm, Eric B; Bassett, David R
2017-09-01
To compare the degree to which four accelerometer metrics-total activity counts per day (TAC per day), steps per day (steps per day), physical activity energy expenditure (PAEE) (kcal·kg·d), and moderate- to vigorous-intensity physical activity (MVPA) (min·d)-were correlated with PAEE measured by doubly labeled water (DLW). Additionally, accelerometer metrics based on vertical axis counts and triaxial counts were compared. This analysis included 684 women and 611 men age 43 to 83 yr. Participants wore the Actigraph GT3X on the hip for 7 d twice during the study and the average of the two measurements was used. Each participant also completed one DLW measurement, with a subset having a repeat. PAEE was estimated by subtracting resting metabolic rate and the thermic effect of food from total daily energy expenditure estimated by DLW. Partial Spearman correlations were used to estimate associations between PAEE and each accelerometer metric. Correlations between the accelerometer metrics and DLW-determined PAEE were higher for triaxial counts than vertical axis counts. After adjusting for weight, age, accelerometer wear time, and fat free mass, the correlation between TAC per day based on triaxial counts and DLW-determined PAEE was 0.44 in women and 0.41 in men. Correlations for steps per day and accelerometer-estimated PAEE with DLW-determined PAEE were similar. After adjustment for within-person variation in DLW-determined PAEE, the correlations for TAC per day increased to 0.61 and 0.49, respectively. Correlations between MVPA and DLW-determined PAEE were lower, particularly for modified bouts of ≥10 min. Accelerometer measures that represent total activity volume, including TAC per day, steps per day, and PAEE, were more highly correlated with DLW-determined PAEE than MVPA using traditional thresholds and should be considered by researchers seeking to reduce accelerometer data to a single metric.
Manios, Y; Androutsos, O; Moschonis, G; Birbilis, M; Maragkopoulou, K; Giannopoulou, A; Argyri, E; Kourlaba, G
2013-10-01
The aim of this paper was to evaluate the criterion validity of the Physical Activity Questionnaire for Schoolchildren (PAQ-S). The current study is a subcohort of the Healthy Growth Study, a large-scale cross-sectional study. 202 schoolchildren aged 9-13 years from Greece completed the PAQ-S and wore an accelerometer for 4 consecutive days. Time spent moderate (MPA), moderate to vigorous (MVPA) and vigorous (VPA) physical activity was calculated based on PAQ-S and accelerometer data. The average time spent on MPA and MVPA as derived from PAQ-S and from accelerometers were significantly moderately correlated (r=0.462, P<0.001 and r=0.483, P<0.001, respectively). No significant correlation was detected between PAQ-S and accelerometer-measured time spent performing VPA (rho=0.150, P=0.057). Intraclass Correlation Coefficient (ICC) indicated a moderate agreement between PAQ-S and accelerometer in estimating MPA (ICC=0.592, P<0.001) and MVPA (ICC=0.581, P<0.001). Bland-Altman analysis revealed a small mean difference (the "bias"), between the two methods, in estimating MPA, although this difference was found to be significantly higher than zero ("bias"=27.4% of the accelerometer-measured mean score, P=0.006). On the other hand, Bland-Altman analysis revealed a large mean difference in estimating MVPA and VPA ("bias"=84.2% and 357% of the accelerometer-measured mean score for MVPA and VPA, respectively and P<0.001). The high correlation coefficient between the average and difference values between all physical activity scores derived from accelerometers and PAQ-S, indicate a systematic overestimation of physical activity time with increasing physical activity for PAQ-S. The validity of PAQ-S for the estimation of MPA and MVPA was found to be slightly similar self-reported measures for schoolchildren. Therefore, this questionnaire could be used as a tool for physical activity assessment in large population studies.
Superconducting techniques for gravity survey and inertial navigation
NASA Technical Reports Server (NTRS)
Chan, H. A.; Moody, M. V.; Paik, H. J.; Parke, J. W.
1985-01-01
A three-axis gravity gradiometer is developed, in which the magnetic fields produced by persistent currents are modulated by motions of superconducting proof masses. The common-acceleration-induced errors are compensated for by a six-axis superconducting accelerometer with a single magnetically levitated proof mass, linear acceleration resolution of 4 x 10 to the -12th m/(s exp 2 Hz exp 1/2), and angular acceleration resolution of 3 x 10 to the -11th rad/(s exp 2 Hz exp 1/2). The testing of a prototype gradiometer revealed that the environment-induced noise limits the noise floor to 7 x 10 to the -10th/(s exp 2 Hz exp 1/2).
Fiber Optic Strain Sensor for Planetary Gear Diagnostics
NASA Technical Reports Server (NTRS)
Kiddy, Jason S.; Lewicki, David G.; LaBerge, Kelsen E.; Ehinger, Ryan T.; Fetty, Jason
2011-01-01
This paper presents a new sensing approach for helicopter damage detection in the planetary stage of a helicopter transmission based on a fiber optic strain sensor array. Complete helicopter transmission damage detection has proven itself a difficult task due to the complex geometry of the planetary reduction stage. The crowded and complex nature of the gearbox interior does not allow for attachment of sensors within the rotating frame. Hence, traditional vibration-based diagnostics are instead based on measurements from externally mounted sensors, typically accelerometers, fixed to the gearbox exterior. However, this type of sensor is susceptible to a number of external disturbances that can corrupt the data, leading to false positives or missed detection of potentially catastrophic faults. Fiber optic strain sensors represent an appealing alternative to the accelerometer. Their small size and multiplexibility allows for potentially greater sensing resolution and accuracy, as well as redundancy, when employed as an array of sensors. The work presented in this paper is focused on the detection of gear damage in the planetary stage of a helicopter transmission using a fiber optic strain sensor band. The sensor band includes an array of 13 strain sensors, and is mounted on the ring gear of a Bell Helicopter OH-58C transmission. Data collected from the sensor array is compared to accelerometer data, and the damage detection results are presented
Quantitative Accelerated Life Testing of MEMS Accelerometers
Bâzu, Marius; Gălăţeanu, Lucian; Ilian, Virgil Emil; Loicq, Jerome; Habraken, Serge; Collette, Jean-Paul
2007-01-01
Quantitative Accelerated Life Testing (QALT) is a solution for assessing the reliability of Micro Electro Mechanical Systems (MEMS). A procedure for QALT is shown in this paper and an attempt to assess the reliability level for a batch of MEMS accelerometers is reported. The testing plan is application-driven and contains combined tests: thermal (high temperature) and mechanical stress. Two variants of mechanical stress are used: vibration (at a fixed frequency) and tilting. Original equipment for testing at tilting and high temperature is used. Tilting is appropriate as application-driven stress, because the tilt movement is a natural environment for devices used for automotive and aerospace applications. Also, tilting is used by MEMS accelerometers for anti-theft systems. The test results demonstrated the excellent reliability of the studied devices, the failure rate in the “worst case” being smaller than 10-7h-1. PMID:28903265
NASA Technical Reports Server (NTRS)
Zoladz, T.; Earhart, E.; Fiorucci, T.
1995-01-01
Utilizing high-frequency data from a highly instrumented rotor assembly, seeded bearing defect signatures are characterized using both conventional linear approaches, such as power spectral density analysis, and recently developed nonlinear techniques such as bicoherence analysis. Traditional low-frequency (less than 20 kHz) analysis and high-frequency envelope analysis of both accelerometer and acoustic emission data are used to recover characteristic bearing distress information buried deeply in acquired data. The successful coupling of newly developed nonlinear signal analysis with recovered wideband envelope data from accelerometers and acoustic emission sensors is the innovative focus of this research.
Mayorga-Vega, Daniel; Martínez-Baena, Alejandro; Viciana, Jesús
2018-09-01
Physical education has been highlighted as an important environment for physical activity promotion, however, to our knowledge there are no previous studies examining the contribution of physical education to daily accelerometer-measured physical activity and non sedentary behaviour. The purpose was to compare the accelerometer-measured physical activity and sedentary behaviour between physical education, non-physical education and weekend days in adolescents. Of the 394 students from a Spanish high school that were invited to participate, 158 students (83 boys and 75 girls) aged 13-16 years were analyzed (wear time ≥ 600 min). Participants' physical activity and sedentary behaviour were objectively-measured by GT3X+ accelerometers during physical education (one session), non-physical education and weekend days. Results indicated that overall adolescents had statistically significant greater physical activity levels and lower values of sedentary behaviour on physical education days than on non-physical education and weekend days (e.g., moderate-to-vigorous physical activity = 71, 54 and 57 min; sedentary = 710, 740 and 723 min) (p < 0.05). Physical education contributes significantly to reducing students' daily physical inactivity and sedentary behaviour. Increasing the number of physical education classes seems to be an effective strategy to reduce the high current prevalence of physical inactivity and sedentary behaviour in adolescence.
Wang, Yiwei; Nickel, Barry; Rutishauser, Matthew; Bryce, Caleb M; Williams, Terrie M; Elkaim, Gabriel; Wilmers, Christopher C
2015-01-01
Accelerometers are useful tools for biologists seeking to gain a deeper understanding of the daily behavior of cryptic species. We describe how we used GPS and tri-axial accelerometer (sampling at 64 Hz) collars to monitor behaviors of free-ranging pumas (Puma concolor), which are difficult or impossible to observe in the wild. We attached collars to twelve pumas in the Santa Cruz Mountains, CA from 2010-2012. By implementing Random Forest models, we classified behaviors in wild pumas based on training data from observations and measurements of captive puma behavior. We applied these models to accelerometer data collected from wild pumas and identified mobile and non-mobile behaviors in captive animals with an accuracy rate greater than 96%. Accuracy remained above 95% even after downsampling our accelerometer data to 16 Hz. We were further able to predict low-acceleration movement behavior (e.g. walking) and high-acceleration movement behavior (e.g. running) with 93.8% and 92% accuracy, respectively. We had difficulty predicting non-movement behaviors such as feeding and grooming due to the small size of our training dataset. Lastly, we used model-predicted and field-verified predation events to quantify acceleration characteristics of puma attacks on large prey. These results demonstrate that accelerometers are useful tools for classifying the behaviors of cryptic medium and large-sized terrestrial mammals in their natural habitats and can help scientists gain deeper insight into their fine-scale behavioral patterns. We also show how accelerometer measurements can provide novel insights on the energetics and predation behavior of wild animals. Lastly we discuss the conservation implications of identifying these behavioral patterns in free-ranging species as natural and anthropogenic landscape features influence animal energy allocation and habitat use.
Extracting Time-Accurate Acceleration Vectors From Nontrivial Accelerometer Arrangements.
Franck, Jennifer A; Blume, Janet; Crisco, Joseph J; Franck, Christian
2015-09-01
Sports-related concussions are of significant concern in many impact sports, and their detection relies on accurate measurements of the head kinematics during impact. Among the most prevalent recording technologies are videography, and more recently, the use of single-axis accelerometers mounted in a helmet, such as the HIT system. Successful extraction of the linear and angular impact accelerations depends on an accurate analysis methodology governed by the equations of motion. Current algorithms are able to estimate the magnitude of acceleration and hit location, but make assumptions about the hit orientation and are often limited in the position and/or orientation of the accelerometers. The newly formulated algorithm presented in this manuscript accurately extracts the full linear and rotational acceleration vectors from a broad arrangement of six single-axis accelerometers directly from the governing set of kinematic equations. The new formulation linearizes the nonlinear centripetal acceleration term with a finite-difference approximation and provides a fast and accurate solution for all six components of acceleration over long time periods (>250 ms). The approximation of the nonlinear centripetal acceleration term provides an accurate computation of the rotational velocity as a function of time and allows for reconstruction of a multiple-impact signal. Furthermore, the algorithm determines the impact location and orientation and can distinguish between glancing, high rotational velocity impacts, or direct impacts through the center of mass. Results are shown for ten simulated impact locations on a headform geometry computed with three different accelerometer configurations in varying degrees of signal noise. Since the algorithm does not require simplifications of the actual impacted geometry, the impact vector, or a specific arrangement of accelerometer orientations, it can be easily applied to many impact investigations in which accurate kinematics need to be extracted from single-axis accelerometer data.
Adaptive Structures Programs for the Strategic Defense Initiative Organization
1992-01-01
Advanced Control Technology Experiment ( ACTEX ) Modular Control Patch High Frequency Passive Damping Strut Development Optional PZT Passive...on this space test bed in FY95. The Advanced Control Technology Experiment ( ACTEX ) will demonstrate many of the adaptive structures technologies...Accelerometer Bi-ax Accelerometer Smart Strut Figure 7. Schematic of Advanced Control Technology Experiment ( ACTEX ) 6-28-91-2M 1-6-92-5M PZ Stack
NASA Astrophysics Data System (ADS)
Zimakov, Leonid; Jackson, Michael; Passmore, Paul; Raczka, Jared; Alvarez, Marcos; Barrientos, Sergio
2015-04-01
We will discuss and show the results obtained from an integrated SeismoGeodetic System, model SG160-09, installed in the Chilean National Network. The SG160-09 provides the user high rate GNSS and accelerometer data, full epoch-by-epoch measurement integrity and, using the Trimble Pivot™ SeismoGeodetic App, the ability to create combined GNSS and accelerometer high-rate (200Hz) displacement time series in real-time. The SG160-09 combines seismic recording with GNSS geodetic measurement in a single compact, ruggedized package. The system includes a low-power, 220-channel GNSS receiver powered by the latest Trimble-precise Maxwell™6 technology and supports tracking GPS, GLONASS and Galileo signals. The receiver incorporates on-board GNSS point positioning using Real-Time Precise Point Positioning (PPP) technology with satellite clock and orbit corrections delivered over IP networks. The seismic recording element includes an ANSS Class A, force balance triaxial accelerometer with the latest, low power, 24-bit A/D converter, which produces high-resolution seismic data. The SG160-09 processor acquires and packetizes both seismic and geodetic data and transmits it to the central station using an advanced, error-correction protocol with back fill capability providing data integrity between the field and the processing center. The SG160-09 has been installed in the seismic station close to the area of the Iquique earthquake of April 1, 2014, in northern Chile, a seismically prone area at the current time. The hardware includes the SG160-09 system, external Zephyr Geodetic-2 GNSS antenna, and high-speed Internet communication media. Both acceleration and displacement data was transmitted in real-time to the National Seismological Center in Santiago for real-time data processing using Earthworm / Early Bird software. Command/Control of the field station and real-time GNSS position correction are provided via the Pivot software suite. Data from the SG160-09 system was used for seismic event characterization along with data from traditional stand-alone broadband seismic and geodetic stations installed in the network. Our presentation will focus on the key improvements of the network installation with the SG160-09 system, rapid data transmission, and real-time data processing for strong seismic events and aftershock characterization as well as advanced features of the SG160-09 for Earthquake and Tsunami Early Warning system.
Improved Signal Processing Technique Leads to More Robust Self Diagnostic Accelerometer System
NASA Technical Reports Server (NTRS)
Tokars, Roger; Lekki, John; Jaros, Dave; Riggs, Terrence; Evans, Kenneth P.
2010-01-01
The self diagnostic accelerometer (SDA) is a sensor system designed to actively monitor the health of an accelerometer. In this case an accelerometer is considered healthy if it can be determined that it is operating correctly and its measurements may be relied upon. The SDA system accomplishes this by actively monitoring the accelerometer for a variety of failure conditions including accelerometer structural damage, an electrical open circuit, and most importantly accelerometer detachment. In recent testing of the SDA system in emulated engine operating conditions it has been found that a more robust signal processing technique was necessary. An improved accelerometer diagnostic technique and test results of the SDA system utilizing this technique are presented here. Furthermore, the real time, autonomous capability of the SDA system to concurrently compensate for effects from real operating conditions such as temperature changes and mechanical noise, while monitoring the condition of the accelerometer health and attachment, will be demonstrated.
García-Massó, X; Serra-Añó, P; Gonzalez, L M; Ye-Lin, Y; Prats-Boluda, G; Garcia-Casado, J
2015-10-01
This was a cross-sectional study. The main objective of this study was to develop and test classification algorithms based on machine learning using accelerometers to identify the activity type performed by manual wheelchair users with spinal cord injury (SCI). The study was conducted in the Physical Therapy department and the Physical Education and Sports department of the University of Valencia. A total of 20 volunteers were asked to perform 10 physical activities, lying down, body transfers, moving items, mopping, working on a computer, watching TV, arm-ergometer exercises, passive propulsion, slow propulsion and fast propulsion, while fitted with four accelerometers placed on both wrists, chest and waist. The activities were grouped into five categories: sedentary, locomotion, housework, body transfers and moderate physical activity. Different machine learning algorithms were used to develop individual and group activity classifiers from the acceleration data for different combinations of number and position of the accelerometers. We found that although the accuracy of the classifiers for individual activities was moderate (55-72%), with higher values for a greater number of accelerometers, grouped activities were correctly classified in a high percentage of cases (83.2-93.6%). With only two accelerometers and the quadratic discriminant analysis algorithm we achieved a reasonably accurate group activity recognition system (>90%). Such a system with the minimum of intervention would be a valuable tool for studying physical activity in individuals with SCI.
Canale, L; Laborieux, A; Mogane, A Aroul; Jubin, L; Comtet, J; Lainé, A; Bocquet, L; Siria, A; Niguès, A
2018-08-31
Atomic force microscopy (AFM) allows us to reconstruct the topography of surfaces with resolution in the nanometer range. The exceptional resolution attainable with the AFM makes this instrument a key tool in nanoscience and technology. The core of a standard AFM set-up relies on the detection of the change of the mechanical motion of a micro-oscillator when approaching the sample to image. This is despite the fact that AFM is nowadays a very common instrument for both fundamental and applied research. The fabrication of the micrometric scale mechanical oscillator is still a very complicated and expensive task requiring dedicated platforms. Being able to perform AFM with a macroscopic oscillator would make the instrument more versatile and accessible for an even larger spectrum of applications and audience. Here, we present atomic force imaging with a centimetric oscillator, an aluminum tuning fork of centimeter size as a sensor on which an accelerometer is glued on one prong to measure the oscillations. We show that it is possible to perform topographic images of nanometric resolution with a gram tuning fork. In addition to the stunning sensitivity, we show the high versatility of such an oscillator by imaging both in air and liquid. The set-up proposed here can be extended to numerous experiments where the probe has to be heavy and/or very complex, and so too the environment.
Hicks, Olivia; Burthe, Sarah; Daunt, Francis; Butler, Adam; Bishop, Charles; Green, Jonathan A
2017-05-15
Two main techniques have dominated the field of ecological energetics: the heart rate and doubly labelled water methods. Although well established, they are not without their weaknesses, namely expense, intrusiveness and lack of temporal resolution. A new technique has been developed using accelerometers; it uses the overall dynamic body acceleration (ODBA) of an animal as a calibrated proxy for energy expenditure. This method provides high-resolution data without the need for surgery. Significant relationships exist between the rate of oxygen consumption ( V̇ O 2 ) and ODBA in controlled conditions across a number of taxa; however, it is not known whether ODBA represents a robust proxy for energy expenditure consistently in all natural behaviours and there have been specific questions over its validity during diving, in diving endotherms. Here, we simultaneously deployed accelerometers and heart rate loggers in a wild population of European shags ( Phalacrocorax aristotelis ). Existing calibration relationships were then used to make behaviour-specific estimates of energy expenditure for each of these two techniques. Compared with heart rate-derived estimates, the ODBA method predicts energy expenditure well during flight and diving behaviour, but overestimates the cost of resting behaviour. We then combined these two datasets to generate a new calibration relationship between ODBA and V̇ O 2 that accounts for this by being informed by heart rate-derived estimates. Across behaviours we found a good relationship between ODBA and V̇ O 2 Within individual behaviours, we found useable relationships between ODBA and V̇ O 2 for flight and resting, and a poor relationship during diving. The error associated with these new calibration relationships mostly originates from the previous heart rate calibration rather than the error associated with the ODBA method. The equations provide tools for understanding how energy constrains ecology across the complex behaviour of free-living diving birds. © 2017. Published by The Company of Biologists Ltd.
Evaluation of the MyWellness Key accelerometer.
Herrmann, S D; Hart, T L; Lee, C D; Ainsworth, B E
2011-02-01
to examine the concurrent validity of the Technogym MyWellness Key accelerometer against objective and subjective physical activity (PA) measures. randomised, cross-sectional design with two phases. The laboratory phase compared the MyWellness Key with the ActiGraph GT1M and the Yamax SW200 Digiwalker pedometer during graded treadmill walking, increasing speed each minute. The free-living phase compared the MyWellness Key with the ActiGraph, Digiwalker, Bouchard Activity cord (BAR) and Global Physical Activity Questionnaire (GPAQ) for seven continuous days. Data were analysed using Spearman rank-order correlation coefficients for all comparisons. laboratory and free-living phases. sixteen participants randomly stratified from 41 eligible respondents by sex (n=8 men; n=8 women) and PA levels (n=4 low, n=8 middle and n=4 high active). there was a strong association between the MyWellness Key and the ActiGraph accelerometer during controlled graded treadmill walking (r=0.91, p<0.01) and in free-living settings (r=0.73-0.76 for light to vigorous PA, respectively, p<0.01). No associations were observed between the MyWellness Key and the BAR and GPAQ (p>0.05). the MyWellness Key has a high concurrent validity with the ActiGraph accelerometer to detect PA in both controlled laboratory and free-living settings.
Khan, Adil Mehmood; Lee, Young-Koo; Lee, Sungyoung; Kim, Tae-Seong
2010-12-01
Mobility is a good indicator of health status and thus objective mobility data could be used to assess the health status of elderly patients. Accelerometry has emerged as an effective means for long-term physical activity monitoring in the elderly. However, the output of an accelerometer varies at different positions on a subject's body, even for the same activity, resulting in high within-class variance. Existing accelerometer-based activity recognition systems thus require firm attachment of the sensor to a subject's body. This requirement makes them impractical for long-term activity monitoring during unsupervised free-living as it forces subjects into a fixed life pattern and impede their daily activities. Therefore, we introduce a novel single-triaxial-accelerometer-based activity recognition system that reduces the high within-class variance significantly and allows subjects to carry the sensor freely in any pocket without its firm attachment. We validated our system using seven activities: resting (lying/sitting/standing), walking, walking-upstairs, walking-downstairs, running, cycling, and vacuuming, recorded from five positions: chest pocket, front left trousers pocket, front right trousers pocket, rear trousers pocket, and inner jacket pocket. Its simplicity, ability to perform activities unimpeded, and an average recognition accuracy of 94% make our system a practical solution for continuous long-term activity monitoring in the elderly.
Identifying walking trips from GPS and accelerometer data in adolescent females
Rodriguez, Daniel; Cho, GH; Elder, John; Conway, Terry; Evenson, Kelly R; Ghosh-Dastidar, Bonnie; Shay, Elizabeth; Cohen, Deborah A; Veblen-Mortenson, Sarah; Pickrell, Julie; Lytle, Leslie
2013-01-01
Background Studies that have combined accelerometers and global positioning systems (GPS) to identify walking have done so in carefully controlled conditions. This study tested algorithms for identifying walking trips from accelerometer and GPS data in free-living conditions. The study also assessed the accuracy of the locations where walking occurred compared to what participants reported in a diary. Methods A convenience sample of high school females was recruited (N=42) in 2007. Participants wore a GPS unit and an accelerometer, and recorded their out-of-school travel for six days. Split-sample validation was used to examine agreement in the daily and total number of walking trips with Kappa statistics and count regression models, while agreement in locations visited by walking was examined with geographic information systems. Results Agreement varied based on the parameters of the algorithm, with algorithms exhibiting moderate to substantial agreement with self-reported daily (Kappa = 0.33–0.48) and weekly (Kappa = 0.41–0.64) walking trips. Comparison of reported locations reached by walking and GPS data suggest that reported locations are accurate. Conclusions The use of GPS and accelerometers is promising for assessing the number of walking trips and the walking locations of adolescent females. PMID:21934163
Application of a tri-axial accelerometer to estimate jump frequency in volleyball.
Jarning, Jon M; Mok, Kam-Ming; Hansen, Bjørge H; Bahr, Roald
2015-03-01
Patellar tendinopathy is prevalent among athletes, and most likely associated with a high jumping load. If methods for estimating jump frequency were available, this could potentially assist in understanding and preventing this condition. The objective of this study was to explore the possibility of using peak vertical acceleration (PVA) or peak resultant acceleration (PRA) measured by an accelerometer to estimate jump frequency. Twelve male elite volleyball players (22.5 ± 1.6 yrs) performed a training protocol consisting of seven typical motion patterns, including jumping and non-jumping movements. Accelerometer data from the trial were obtained using a tri-axial accelerometer. In addition, we collected video data from the trial. Jump-float serving and spike jumping could not be distinguished from non-jumping movements using differences in PVA or PRA. Furthermore, there were substantial inter-participant differences in both the PVA and the PRA within and across movement types (p < 0.05). These findings suggest that neither PVA nor PRA measured by a tri-axial accelerometer is an applicable method for estimating jump frequency in volleyball. A method for acquiring real-time estimates of jump frequency remains to be verified. However, there are several alternative approaches, and further investigations are needed.
High Sensitive Precise 3D Accelerometer for Solar System Exploration with Unmanned Spacecrafts
NASA Astrophysics Data System (ADS)
Savenko, Y. V.; Demyanenko, P. O.; Zinkovskiy, Y. F.
Solutions of several space and geophysical tasks require creating high sensitive precise accelerometers with sensitivity in order of 10 -13 g. These several tasks are following: inertial navigation of the Earth and Space; gravimetry nearby the Earth and into Space; geology; geophysics; seismology etc. Accelerometers (gravimeters and gradientmeters) with required sensitivity are not available now. The best accelerometers in the world have sensitivity worth on 4-5 orders. It has been developed a new class of fiber-optical sensors (FOS) with light pulse modulation. These sensors have super high threshold sensitivity and wide (up to 10 orders) dynamic range, and can be used as a base for creating of measurement units of physical values as 3D superhigh sensitive precise accelerometers of linear accelerations that is suitable for highest requirements. The principle of operation of the FOS is organically combined with a digital signal processing. It allows decreasing hardware of the accelerometer due to using a usual air-borne or space-borne computer; correcting the influence of natural, design, technological drawbacks of FOS on measured results; neutralising the influence of extraordinary situations available during using of FOS; decreasing the influence of internal and external destabilising factors (as for FOS), such as oscillation of environment temperature, instability of pendulum cycle frequency of sensitive element of the accelerometer etc. We were conducted a quantitative estimation of precise opportunities of analogue FOS in structure of fiber optical measuring devices (FOMD) for elementary FOMD with analogue FOS built on modern element basis of fiber optics (FO), at following assumptions: absolute parameter stability of devices of FOS measuring path; single transmission band of registration path; maximum possible inserted in optical fiber (OF) a radiated power. Even at such idealized assumptions, a calculated value in limit reached minimum inaccuracy of measuring, by analogue FOS, has been ˜ 10-4 %. Substantially accessible values are yet worse on 2-3 order. The reason of poor precise performances of measurers on the basis of analogue FOS is metrologically poor quality of a stream of optical radiation carrying out role of the carrier and receptor of the information. It is a high level of photon noise and a small blanket intensity level. First reason reflects the fact of discreteness of flow of high-energy photons, and it is consequence of second one - smallness, on absolute value, of inserted power into OF from available radiation sources (RS). Works on improvement of FO elements are carrying out. Certainly, it will be created RS allow to insert enough of power into standard OF. But simple increasing of optical flow power in measuring path of FOS will not be able to decide radically the problem of increasing of measuring prices: with raising of power in proportion of square root of its value there is raising a power of photon noises - 1000-times increase of power promises only 30-times increase of measuring precise; insertion into OF more large power (˜ 1 W for standard silicon OF) causes an appearance of non-linear effects in it, which destroying an operating principle of analogue FOS. Thus, it is needed to constatate impossibility of building, at that time, measurers of analogue FOS, concurated with traditional (electrical) measurers on measuring precise. At that all, advantages of FO, as basis of building of FO MD requires to find ways for decision of these problems. Analysis of problem of sensitivity of usual (analogue) FOS has brought us to conclusion about necessity of reviewing of principles of information signal forming in FOS and principles its next electronic processing. For radical increasing of accuracy of measurements with using FOS it is necessary to refuse analogue modulation of optical flow and to transfer to discreet its modulations, entering thus in optical flow new, non-optical, parameters, which will serve as recipients of the information. It allows to save up all advantages of FOS (carrier of information, as earlier, remains an optical flow), but problem of accuracy of measurements now will not be more connected with problem of measurement of low power intensity of optical flow - it is transferred from area of optical measurements in other, non-optical area, where there is no this problem, or it had been solved duly. It had been developed a new class of FOS with pulse modulation of radiation flow intensity at the Department of Design and Production of Redioelectronic Systems of National Technical University of Ukraine ``Kiev Polytechnic Institute''. PFOS have benefit differ from usual analogue FOS on high threshold sensitivity and wide dynamic range of measured values. As example there are described design and performances of proposed 3D accelerometer. High precision of accelerometer measurements on PFOS is provided by following: possibility of high precision measurements of time intervals, which serve as informative parameters in output pulse signal of PFOS; possibility of creating a high quality quartz oscillating system, which serves as sensitive element of PFOS; insensitiveness of metrological performances of the accelerometer to any parameter instabilities (time, temperature, etc.) of optical and electrical elements in measuring path of PFOS; digital processing of PFOS signal practically excludes processing errors; principle insensitiveness of PFOS to electromagnetic noises of any nature and any intensity; possibility of direct correction of measuring results, during their processing, for taking into account and excluding undesirable influences of any destabilizing factors are acting on PFOS. Quasi stationary approach The developed 3D accelerometer on PFOS of extra low accelerations has unique technical performances, that confirms our conclusions about potentially high metrological abilities of pulse FOS. It has the following performances (calculated): threshold sensitivity is (10 -9 ldots 10 -13) g (threshold is determine by customer with determination of sizes of sensor and electronic processing unit); dynamic range is 10 7 ldots 10 9 ; frequency range is 0 ldots 10 Hz; mass is 50 grams; size: length is 120 mm and diameter is 20 mm In addition, that it can be used as accelerometer properly, on its base it is possible to create the strapdown inertial systems (SIS) for spacecraft. Flight control is carried out in accordance to flight programe of spacecraft without support connection with external reference objects. These SIS allow: - direct control over changes of orbital parameter or flight track, caused by action of extra low but long time external force factors (braking action of planet atmosphere remains, sun wind pressure, etc.) on spacecraft; - checking correction of orbital parameters (spacecraft track) by including of low power spaceborne engine; The developed accelerometer can be also used as high sensitive gravimeter for geophysical investigations and geological explorations - anywhere, where it is required to measure extra low deviation of terrestrial gravity value. High sensitivity of described accelerometers allows to create, on its base, gradientometers of real system for investigation of Planet gravity field heterogeneity from spacecraft orbit. This opens possibilities of practical solution of number important tasks of Planet physics.
NASA Astrophysics Data System (ADS)
Yang, Yongchao; Dorn, Charles; Mancini, Tyler; Talken, Zachary; Nagarajaiah, Satish; Kenyon, Garrett; Farrar, Charles; Mascareñas, David
2017-03-01
Enhancing the spatial and temporal resolution of vibration measurements and modal analysis could significantly benefit dynamic modelling, analysis, and health monitoring of structures. For example, spatially high-density mode shapes are critical for accurate vibration-based damage localization. In experimental or operational modal analysis, higher (frequency) modes, which may be outside the frequency range of the measurement, contain local structural features that can improve damage localization as well as the construction and updating of the modal-based dynamic model of the structure. In general, the resolution of vibration measurements can be increased by enhanced hardware. Traditional vibration measurement sensors such as accelerometers have high-frequency sampling capacity; however, they are discrete point-wise sensors only providing sparse, low spatial sensing resolution measurements, while dense deployment to achieve high spatial resolution is expensive and results in the mass-loading effect and modification of structure's surface. Non-contact measurement methods such as scanning laser vibrometers provide high spatial and temporal resolution sensing capacity; however, they make measurements sequentially that requires considerable acquisition time. As an alternative non-contact method, digital video cameras are relatively low-cost, agile, and provide high spatial resolution, simultaneous, measurements. Combined with vision based algorithms (e.g., image correlation or template matching, optical flow, etc.), video camera based measurements have been successfully used for experimental and operational vibration measurement and subsequent modal analysis. However, the sampling frequency of most affordable digital cameras is limited to 30-60 Hz, while high-speed cameras for higher frequency vibration measurements are extremely costly. This work develops a computational algorithm capable of performing vibration measurement at a uniform sampling frequency lower than what is required by the Shannon-Nyquist sampling theorem for output-only modal analysis. In particular, the spatio-temporal uncoupling property of the modal expansion of structural vibration responses enables a direct modal decoupling of the temporally-aliased vibration measurements by existing output-only modal analysis methods, yielding (full-field) mode shapes estimation directly. Then the signal aliasing properties in modal analysis is exploited to estimate the modal frequencies and damping ratios. The proposed method is validated by laboratory experiments where output-only modal identification is conducted on temporally-aliased acceleration responses and particularly the temporally-aliased video measurements of bench-scale structures, including a three-story building structure and a cantilever beam.
NASA Technical Reports Server (NTRS)
Chai, Dean; Queen, Steve; Placanica, Sam
2015-01-01
NASA's Magnetospheric Multi-Scale (MMS) mission successfully launched on March 13, 2015 (UTC) consists of four identically instrumented spin-stabilized observatories that function as a constellation to study magnetic reconnection in space. The need to maintain sufficiently accurate spatial and temporal formation resolution of the observatories must be balanced against the logistical constraints of executing overly-frequent maneuvers on a small fleet of spacecraft. These two considerations make for an extremely challenging maneuver design problem. This paper focuses on the design elements of a 6-DOF spacecraft attitude control and maneuvering system capable of delivering the high-precision adjustments required by the constellation designers---specifically, the design, implementation, and on-orbit performance of the closed-loop formation-class maneuvers that include initialization, maintenance, and re-sizing. The maneuvering control system flown on MMS utilizes a micro-gravity resolution accelerometer sampled at a high rate in order to achieve closed-loop velocity tracking of an inertial target with arc-minute directional and millimeter-per-second magnitude accuracy. This paper summarizes the techniques used for correcting bias drift, sensor-head offsets, and centripetal aliasing in the acceleration measurements. It also discusses the on-board pre-maneuver calibration and compensation algorithms as well as the implementation of the post-maneuver attitude adjustments.
NASA Technical Reports Server (NTRS)
Chai, Dean J.; Queen, Steven Z.; Placanica, Samuel J.
2015-01-01
NASAs Magnetospheric Multiscale (MMS) mission successfully launched on March 13,2015 (UTC) consists of four identically instrumented spin-stabilized observatories that function as a constellation to study magnetic reconnection in space. The need to maintain sufficiently accurate spatial and temporal formation resolution of the observatories must be balanced against the logistical constraints of executing overly-frequent maneuvers on a small fleet of spacecraft. These two considerations make for an extremely challenging maneuver design problem. This paper focuses on the design elements of a 6-DOF spacecraft attitude control and maneuvering system capable of delivering the high-precision adjustments required by the constellation designers specifically, the design, implementation, and on-orbit performance of the closed-loop formation-class maneuvers that include initialization, maintenance, and re-sizing. The maneuvering control system flown on MMS utilizes a micro-gravity resolution accelerometer sampled at a high rate in order to achieve closed-loop velocity tracking of an inertial target with arc-minute directional and millimeter-per second magnitude accuracy. This paper summarizes the techniques used for correcting bias drift, sensor-head offsets, and centripetal aliasing in the acceleration measurements. It also discusses the on-board pre-maneuver calibration and compensation algorithms as well as the implementation of the post-maneuver attitude adjustments.
Nang, Ei Ei Khaing; Gitau Ngunjiri, Susan Ayuko; Wu, Yi; Salim, Agus; Tai, E Shyong; Lee, Jeannette; Van Dam, Rob M
2011-10-13
Physical activity patterns of a population remain mostly assessed by the questionnaires. However, few physical activity questionnaires have been validated in Asian populations. We previously utilized a combination of different questionnaires to assess leisure time, transportation, occupational and household physical activity in the Singapore Prospective Study Program (SP2). The International Physical Activity Questionnaire (IPAQ) has been developed for a similar purpose. In this study, we compared estimates from these two questionnaires with an objective measure of physical activity in a multi-ethnic Asian population. Physical activity was measured in 152 Chinese, Malay and Asian Indian adults using an accelerometer over five consecutive days, including a weekend. Participants completed both the physical activity questionnaire in SP2 (SP2PAQ) and IPAQ long form. 43 subjects underwent a second set of measurements on average 6 months later to assess reproducibility of the questionnaires and the accelerometer measurements. Spearman correlations were used to evaluate validity and reproducibility and correlations for validity were corrected for within-person variation of accelerometer measurements. Agreement between the questionnaires and the accelerometer measurements was also evaluated using Bland Altman plots. The corrected correlation with accelerometer estimates of energy expenditure from physical activity was better for the SP2PAQ (vigorous activity: r = 0.73; moderate activity: r = 0.27) than for the IPAQ (vigorous activity: r = 0.31; moderate activity: r = 0.15). For moderate activity, the corrected correlation between SP2PAQ and the accelerometer was higher for Chinese (r = 0.38) and Malays (r = 0.57) than for Indians (r = -0.09). Both questionnaires overestimated energy expenditure from physical activity to a greater extent at higher levels of physical activity than at lower levels of physical activity. The reproducibility for moderate activity (accelerometer: r = 0.68; IPAQ: r = 0.58; SP2PAQ: r = 0.55) and vigorous activity (accelerometer: 0.52; IPAQ: r = 0.38; SP2PAQ: r = 0.75) was moderate to high for all instruments. The agreement between IPAQ and accelerometer measurements of energy expenditure from physical activity was poor in our Asian study population. The SP2PAQ showed good validity and reproducibility for vigorous activity, but performed less well for moderate activity particularly in Indians. Further effort is needed to develop questionnaires that better capture moderate activity in Asian populations.
NASA Astrophysics Data System (ADS)
Aono, T.; Kazama, A.; Okada, R.; Iwasaki, T.; Isono, Y.
2018-03-01
We developed a eutectic-based wafer-level-packaging (WLP) technique for piezoresistive micro-electromechanical systems (MEMS) accelerometers on the basis of molecular dynamics analyses and shear tests of WLP accelerometers. The bonding conditions were experimentally and analytically determined to realize a high shear strength without solder material atoms diffusing to adhesion layers. Molecular dynamics (MD) simulations and energy dispersive x-ray (EDX) spectrometry done after the shear tests clarified the eutectic reaction of the solder materials used in this research. Energy relaxation calculations in MD showed that the diffusion of solder material atoms into the adhesive layer was promoted at a higher temperature. Tensile creep MD simulations also suggested that the local potential energy in a solder material model determined the fracture points of the model. These numerical results were supported by the shear tests and EDX analyses for WLP accelerometers. Consequently, a bonding load of 9.8 kN and temperature of 300 °C were found to be rational conditions because the shear strength was sufficient to endure the polishing process after the WLP process and there was little diffusion of solder material atoms to the adhesion layer. Also, eutectic-bonding-based WLP was effective for controlling the attenuation of the accelerometers by determining the thickness of electroplated solder materials that played the role of a cavity between the accelerometers and lids. If the gap distance between the two was less than 6.2 µm, the signal gains for x- and z-axis acceleration were less than 20 dB even at the resonance frequency due to air-damping.
Wang, Chao; Chen, Peijie; Zhuang, Jie
2013-12-01
The psychometric profiles of the widely used International Physical Activity Questionnaire-Short Form (IPAQ-SF) in Chinese youth have not been reported. The purpose of this study was to examine the validity and reliability of the IPAQ-SF using a sample of Chinese youth. One thousand and twenty-one youth (M(age) = 14.26 +/- 1.63 years, 52.8% boys) from 11 cities in China wore accelerometers for 7 consecutive days and completed the IPAQ-SF on the 8th day to recall their physical activity (PA) during accelerometer-wearing days. A subsample of 92 youth (M(age) = 15.90 +/- 1.35 years, 46.7% boys) completed the IPAQ-SF again a week later to recall their PA during accelerometer-wearing days. Differences in PA estimated by the IPAQ-SF and accelerometer were examined by paired-sample t test. Spearman correlation coefficients were used to examine the correlation between the IPAQ-SF and accelerometer. Test-retest reliability of the IPAQ-SF was determined by the intraclass correlation coefficient (ICC). Compared with accelerometer, the IPAQ-SF overestimated sedentary time, moderate PA (MPA), vigorous PA (VPA), and moderate-to-vigorous PA (MVPA). Correlations between PA (total PA, MPA, VPA, and MVPA) and sedentary time measured by 2 instruments ranged from "none" to "low" (p = .08-.31). Test-retest ICC of the IPAQ-SF ranged from "moderate" to "high" (ICC = .43-.83), except for sitting in boys (ICC = .06), sitting for the whole sample (ICC = .32), and VPA in girls (ICC = .35). The IPAQ-SF was not a valid instrument for measuring PA and sedentary behavior in Chinese youth.
Song, Sangho; Kim, Hyun Chan; Kim, Jung Woong; Kim, Debora
2017-01-01
Miniaturized accelerometers are necessary for evaluating the performance of small devices, such as haptics, robotics and simulators. In this study, we fabricated miniaturized accelerometers using well-aligned ZnO nanowires. The layer of ZnO nanowires is used for active piezoelectric layer of the accelerometer, and copper was chosen as a head mass. Seedless and refresh hydrothermal synthesis methods were conducted to grow ZnO nanowires on the copper substrate and the effect of ZnO nanowire length on the accelerometer performance was investigated. The refresh hydrothermal synthesis exhibits longer ZnO nanowires, 12 µm, than the seedless hydrothermal synthesis, 6 µm. Performance of the fabricated accelerometers was verified by comparing with a commercial accelerometer. The sensitivity of the fabricated accelerometer by the refresh hydrothermal synthesis is shown to be 37.7 pA g−1, which is about 30 times larger than the previous result. PMID:28989760
Tie, Junbo; Cao, Juliang; Chang, Lubing; Cai, Shaokun; Wu, Meiping; Lian, Junxiang
2018-03-16
Compensation of gravity disturbance can improve the precision of inertial navigation, but the effect of compensation will decrease due to the accelerometer bias, and estimation of the accelerometer bias is a crucial issue in gravity disturbance compensation. This paper first investigates the effect of accelerometer bias on gravity disturbance compensation, and the situation in which the accelerometer bias should be estimated is established. The accelerometer bias is estimated from the gravity vector measurement, and a model of measurement noise in gravity vector measurement is built. Based on this model, accelerometer bias is separated from the gravity vector measurement error by the method of least squares. Horizontal gravity disturbances are calculated through EGM2008 spherical harmonic model to build the simulation scene, and the simulation results indicate that precise estimations of the accelerometer bias can be obtained with the proposed method.
Cao, Juliang; Cai, Shaokun; Wu, Meiping; Lian, Junxiang
2018-01-01
Compensation of gravity disturbance can improve the precision of inertial navigation, but the effect of compensation will decrease due to the accelerometer bias, and estimation of the accelerometer bias is a crucial issue in gravity disturbance compensation. This paper first investigates the effect of accelerometer bias on gravity disturbance compensation, and the situation in which the accelerometer bias should be estimated is established. The accelerometer bias is estimated from the gravity vector measurement, and a model of measurement noise in gravity vector measurement is built. Based on this model, accelerometer bias is separated from the gravity vector measurement error by the method of least squares. Horizontal gravity disturbances are calculated through EGM2008 spherical harmonic model to build the simulation scene, and the simulation results indicate that precise estimations of the accelerometer bias can be obtained with the proposed method. PMID:29547552
Seyed Moosavi, Seyed Mohsen; Moaveni, Bijan; Moshiri, Behzad; Arvan, Mohammad Reza
2018-02-27
The present study designed skewed redundant accelerometers for a Measurement While Drilling (MWD) tool and executed auto-calibration, fault diagnosis and isolation of accelerometers in this tool. The optimal structure includes four accelerometers was selected and designed precisely in accordance with the physical shape of the existing MWD tool. A new four-accelerometer structure was designed, implemented and installed on the current system, replacing the conventional orthogonal structure. Auto-calibration operation of skewed redundant accelerometers and all combinations of three accelerometers have been done. Consequently, biases, scale factors, and misalignment factors of accelerometers have been successfully estimated. By defecting the sensors in the new optimal skewed redundant structure, the fault was detected using the proposed FDI method and the faulty sensor was diagnosed and isolated. The results indicate that the system can continue to operate with at least three correct sensors.
Seyed Moosavi, Seyed Mohsen; Moshiri, Behzad; Arvan, Mohammad Reza
2018-01-01
The present study designed skewed redundant accelerometers for a Measurement While Drilling (MWD) tool and executed auto-calibration, fault diagnosis and isolation of accelerometers in this tool. The optimal structure includes four accelerometers was selected and designed precisely in accordance with the physical shape of the existing MWD tool. A new four-accelerometer structure was designed, implemented and installed on the current system, replacing the conventional orthogonal structure. Auto-calibration operation of skewed redundant accelerometers and all combinations of three accelerometers have been done. Consequently, biases, scale factors, and misalignment factors of accelerometers have been successfully estimated. By defecting the sensors in the new optimal skewed redundant structure, the fault was detected using the proposed FDI method and the faulty sensor was diagnosed and isolated. The results indicate that the system can continue to operate with at least three correct sensors. PMID:29495434
Programmable differential capacitance-to-voltage converter for MEMS accelerometers
NASA Astrophysics Data System (ADS)
Royo, G.; Sánchez-Azqueta, C.; Gimeno, C.; Aldea, C.; Celma, S.
2017-05-01
Capacitive MEMS sensors exhibit an excellent noise performance, high sensitivity and low power consumption. They offer a huge range of applications, being the accelerometer one of its main uses. In this work, we present the design of a capacitance-to-voltage converter in CMOS technology to measure the acceleration from the capacitance variations. It is based on a low-power, fully-differential transimpedance amplifier with low input impedance and a very low input noise.
A Small Range Six-Axis Accelerometer Designed with High Sensitivity DCB Elastic Element
Sun, Zhibo; Liu, Jinhao; Yu, Chunzhan; Zheng, Yili
2016-01-01
This paper describes a small range six-axis accelerometer (the measurement range of the sensor is ±g) with high sensitivity DCB (Double Cantilever Beam) elastic element. This sensor is developed based on a parallel mechanism because of the reliability. The accuracy of sensors is affected by its sensitivity characteristics. To improve the sensitivity, a DCB structure is applied as the elastic element. Through dynamic analysis, the dynamic model of the accelerometer is established using the Lagrange equation, and the mass matrix and stiffness matrix are obtained by a partial derivative calculation and a conservative congruence transformation, respectively. By simplifying the structure of the accelerometer, a model of the free vibration is achieved, and the parameters of the sensor are designed based on the model. Through stiffness analysis of the DCB structure, the deflection curve of the beam is calculated. Compared with the result obtained using a finite element analysis simulation in ANSYS Workbench, the coincidence rate of the maximum deflection is 89.0% along the x-axis, 88.3% along the y-axis and 87.5% along the z-axis. Through strain analysis of the DCB elastic element, the sensitivity of the beam is obtained. According to the experimental result, the accuracy of the theoretical analysis is found to be 90.4% along the x-axis, 74.9% along the y-axis and 78.9% along the z-axis. The measurement errors of linear accelerations ax, ay and az in the experiments are 2.6%, 0.6% and 1.31%, respectively. The experiments prove that accelerometer with DCB elastic element performs great sensitive and precision characteristics. PMID:27657089
INSIGHT (interaction of low-orbiting satellites with the surrounding ionosphere and thermosphere)
NASA Astrophysics Data System (ADS)
Schlicht, Anja; Reussner, Elisabeth; Lühr, Hermann; Stolle, Claudia; Xiong, Chao; Schmidt, Michael; Blossfeld, Mathis; Erdogan, Eren; Pancetta, Francesca; Flury, Jakob
2016-04-01
In the framework of the DFG special program "Dynamic Earth" the project INSIGHT, started in September 2015, is studying the interactions between the ionosphere and thermosphere as well as the role of the satellites and their instruments in observing the space environment. Accelerometers on low-Earth orbiters (LEOs) are flown to separate non-gravitational forces acting on the satellite from influences of gravitational effects. Amongst others these instruments provide valuable information for improving our understanding of thermospheric properties like densities and winds. An unexpected result, for example, is the clear evidence of geomagnetic field control on the neutral upper atmosphere. The charged particles of the ionosphere act as mediators between the magnetic field and the thermosphere. In the framework of INSIGHT the climatology of the thermosphere will be established and the coupling between the ionosphere and thermosphere is studied. There are indications that the accelerometers are influenced by systematic errors not identified up to now. For GRACE it is one of the discussed reasons, why this mission so far did not reach the baseline accuracy. Beutler et al. 2010 discussed the limited use of the GRACE accelerometer measurements in comparison to stochastic pulses in gravity field recovery. Analysis of the accelerometer measurements show many structures in the high frequency region which can be traced back to switching processes of electric circuits in the spacecraft, like heater and magnetic torquer switching, or so called twangs, which can be associated with discharging of non-conducting surfaces of the satellite. As all observed signals have the same time dependency a common origin is very likely, namely the coupling of time variable electric currents into the accelerometer signal. In GOCE gravity field gradients non-gravitational signatures around the magnetic poles are found indicating that even at lower frequencies problems occur. INSIGHT will identify systematic errors in the accelerometer measurements and establish an algorithm to separate these errors from real accelerations with the analysis of satellite rotations on GOCE. A transfer to other accelerometer missions will be studied. Accelerometer missions are characterized by satellites of a complex geometry and surface structure making it necessary to take their shape and surface interactions into account. On the other hand accelerometers have to be calibrated in space as biases and bias drifts are inherent. These two facts make it difficult to scale thermospheric densities. To overcome this problem a high precision orbit determination of satellites of simpler structure is more suitable. In the framework of INSIGHT a multi-satellite solution of satellite laser ranging (SLR) measurements is aimed for absolute density determination of the thermosphere. Besides, due to the coupling processes between the ionosphere and thermosphere it shall be studied how ionospheric target quantities such as the electron density can be used to improve thermospheric density modeling. This presentation provides the overall structure of the project INSIGHT as well as first results.
New Insights into Activity Patterns in Children, Found Using Functional Data Analyses.
Goldsmith, Jeff; Liu, Xinyue; Jacobson, Judith S; Rundle, Andrew
2016-09-01
Continuous monitoring of activity using accelerometers and other wearable devices provides objective, unbiased measurement of physical activity in minute-by-minute or finer resolutions. Accelerometers have already been widely deployed in studies of healthy aging, recovery of function after heart surgery, and other outcomes. Although common analyses of accelerometer data focus on single summary variables, such as the total or average activity count, there is growing interest in the determinants of diurnal profiles of activity. We use tools from functional data analysis (FDA), an area with an established statistical literature, to treat complete 24-h diurnal profiles as outcomes in a regression model. We illustrate the use of such models by analyzing data collected in New York City from 420 children participating in a Head Start program. Covariates of interest include season, sex, body mass index z-score, presence of an asthma diagnosis, and mother's birthplace. The FDA model finds several meaningful associations between several covariates and diurnal profiles of activity. In some cases, including shifted activity patterns for children of foreign-born mothers and time-specific effects of asthma on activity, these associations exist for covariates that are not associated with average activity count. FDA provides a useful statistical framework for settings in which the effect of covariates on the timing of activity is of interest. The use of similar models in other applications should be considered, and we make code public to facilitate this process.
Strong Motion Seismograph Based On MEMS Accelerometer
NASA Astrophysics Data System (ADS)
Teng, Y.; Hu, X.
2013-12-01
The MEMS strong motion seismograph we developed used the modularization method to design its software and hardware.It can fit various needs in different application situation.The hardware of the instrument is composed of a MEMS accelerometer,a control processor system,a data-storage system,a wired real-time data transmission system by IP network,a wireless data transmission module by 3G broadband,a GPS calibration module and power supply system with a large-volumn lithium battery in it. Among it,the seismograph's sensor adopted a three-axis with 14-bit high resolution and digital output MEMS accelerometer.Its noise level just reach about 99μg/√Hz and ×2g to ×8g dynamically selectable full-scale.Its output data rates from 1.56Hz to 800Hz. Its maximum current consumption is merely 165μA,and the device is so small that it is available in a 3mm×3mm×1mm QFN package. Furthermore,there is access to both low pass filtered data as well as high pass filtered data,which minimizes the data analysis required for earthquake signal detection. So,the data post-processing can be simplified. Controlling process system adopts a 32-bit low power consumption embedded ARM9 processor-S3C2440 and is based on the Linux operation system.The processor's operating clock at 400MHz.The controlling system's main memory is a 64MB SDRAM with a 256MB flash-memory.Besides,an external high-capacity SD card data memory can be easily added.So the system can meet the requirements for data acquisition,data processing,data transmission,data storage,and so on. Both wired and wireless network can satisfy remote real-time monitoring, data transmission,system maintenance,status monitoring or updating software.Linux was embedded and multi-layer designed conception was used.The code, including sensor hardware driver,the data acquisition,earthquake setting out and so on,was written on medium layer.The hardware driver consist of IIC-Bus interface driver, IO driver and asynchronous notification driver. The application program layer mainly concludes: earthquake parameter module, local database managing module, data transmission module, remote monitoring, FTP service and so on. The application layer adopted multi-thread process. The whole strong motion seismograph was encapsulated in a small aluminum box, which size is 80mm×120mm×55mm. The inner battery can work continuesly more than 24 hours. The MEMS accelerograph uses modular design for its software part and hardware part. It has remote software update function and can meet the following needs: a) Auto picking up the earthquake event; saving the data on wave-event files and hours files; It may be used for monitoring strong earthquake, explosion, bridge and house health. b) Auto calculate the earthquake parameters, and transferring those parameters by 3G wireless broadband network. This kind of seismograph has characteristics of low cost, easy installation. They can be concentrated in the urban region or areas need to specially care. We can set up a ground motion parameters quick report sensor network while large earthquake break out. Then high-resolution-fine shake-map can be easily produced for the need of emergency rescue. c) By loading P-wave detection program modules, it can be used for earthquake early warning for large earthquakes; d) Can easily construct a high-density layout seismic monitoring network owning remote control and modern intelligent earthquake sensor.
Chen, Kuan-Fu; Wu, Hui-Hsin; Lin, Chien-Hung; Lin, Cheng-Huang
2013-08-30
The use of an accelerometer for detecting inorganic gases in gas chromatography (GC) is described. A milli-whistle was connected to the outlet of the GC capillary and was used instead of a classical GC detector. When the GC carrier gases and the sample gases pass through the milli-whistle, a sound is produced, leading to vibrational changes, which can be recorded using an accelerometer. Inorganic gases, including SO2, N2 and CO2, which are released from traditional Chinese firework-rockets at relatively high levels as the result of burning the propellant and explosive material inside could be rapidly determined using the GC/whistle-accelerometer system. The method described herein is safe, the instrumentation is compact and has potential to be modified so as to be portable for use in the field. It also can be used in conjunction with FID (flame ionization detector) or TCD (thermal conductivity detector), in which either no response for FID (CO2, N2, NO2, SO2, etc.) or helium gas is needed for TCD, respectively. Copyright © 2013 Elsevier B.V. All rights reserved.
Implantable biaxial piezoresistive accelerometer for sensorimotor control.
Zou, Qiang; Tan, Wei; Sok Kim, Eun; Singh, Jasspreet; Loeb, Gerald E
2004-01-01
This paper describes the design, fabrication and test results of a novel biaxial piezoresistive accelerometer and its incorporation into a miniature neuromuscular stimulator called a BION. Because of its highly symmetric twin mass structure, the X and Z axis acceleration can be measured at the same time and the cross axis sensitivity can be minimized by proper piezoresistor design. The X and Z axis sensitivities of the biaxial accelerometer are 0.10 mV/g/V and 1.40 mV/g/V, respectively, which are further increased to 0.65 mV/g/V and 2.40 mV/g/V, respectively, with extra silicon mass added to the proof mass. The cross-axis sensitivity is less than 3.3% among X, Y and Z-axis. An orientation tracking method for human segments by measuring every joint angle is also discussed in this paper. Joint angles can be obtained by processing the outputs of a pair of biaxial accelerometers (placed very close to the joint axis on the adjacent limb links), without having to integrate acceleration or velocity signals, thereby avoiding errors due to offsets and drift.
Community Seismic Network (CSN)
NASA Astrophysics Data System (ADS)
Clayton, R. W.; Heaton, T. H.; Kohler, M. D.; Chandy, M.; Krause, A.
2010-12-01
In collaboration with computer science and earthquake engineering, we are developing a dense network of low-cost accelerometers that send their data via the Internet to a cloud-based center. The goal is to make block-by-block measurements of ground shaking in urban areas, which will provide emergency response information in the case of large earthquakes, and an unprecedented high-frequency seismic array to study structure and the earthquake process with moderate shaking. When deployed in high-rise buildings they can be used to monitor the state of health of the structure. The sensors are capable of a resolution of approximately 80 micro-g, connect via USB ports to desktop computers, and cost about $100 each. The network will adapt to its environment by using network-wide machine learning to adjust the picking sensitivity. We are also looking into using other motion sensing devices such as cell phones. For a pilot project, we plan to deploy more than 1000 sensors in the greater Pasadena area. The system is easily adaptable to other seismically vulnerable urban areas.
Self-Reported Versus Accelerometer-Measured Physical Activity and Biomarkers Among NHANES Youth.
Belcher, Britni R; Moser, Richard P; Dodd, Kevin W; Atienza, Audie A; Ballard-Barbash, Rachel; Berrigan, David
2015-05-01
Discrepancies in self-report and accelerometer-measured moderate-to-vigorous physical activity (MVPA) may influence relationships with obesity-related biomarkers in youth. Data came from 2003-2006 National Health and Nutrition Examination Surveys (NHANES) for 2174 youth ages 12 to 19. Biomarkers were: body mass index (BMI, kg/m2), BMI percentile, height and waist circumference (WC, cm), triceps and subscapular skinfolds (mm), systolic & diastolic blood pressure (BP, mmHg), high-density lipoprotein (HDL, mg/dL), total cholesterol (mg/dL), triglycerides (mg/dL), insulin (μU/ml), C-reactive protein (mg/dL), and glycohemoglobin (%). In separate sex-stratified models, each biomarker was regressed on accelerometer variables [mean MVPA (min/day), nonsedentary counts, and MVPA bouts (mean min/day)] and self-reported MVPA. Covariates were age, race/ethnicity, SES, physical limitations, and asthma. In boys, correlations between self-report and accelerometer MVPA were stronger (boys: r = 0.14-0.21; girls: r = 0.07-0.11; P < .010) and there were significant associations with BMI, WC, triceps skinfold, and SBP and accelerometer MVPA (P < .01). In girls, there were no significant associations between biomarkers and any measures of physical activity. Physical activity measures should be selected based on the outcome of interest and study population; however, associations between PA and these biomarkers appear to be weak regardless of the measure used.
Krogh, Magnus Reinsfelt; Nghiem, Giang M; Halvorsen, Per Steinar; Elle, Ole Jakob; Grymyr, Ole-Johannes; Hoff, Lars; Remme, Espen W
2017-05-01
A miniaturized accelerometer fixed to the heart can be used for monitoring of cardiac function. However, an accelerometer cannot differentiate between acceleration caused by motion and acceleration due to gravity. The accuracy of motion measurements is therefore dependent on how well the gravity component can be estimated and filtered from the measured signal. In this study we propose a new method for estimating the gravity, based on strapdown inertial navigation, using a combined accelerometer and gyro. The gyro was used to estimate the orientation of the gravity field and thereby remove it. We compared this method with two previously proposed gravity filtering methods in three experimental models using: (1) in silico computer simulated heart motion; (2) robot mimicked heart motion; and (3) in vivo measured motion on the heart in an animal model. The new method correlated excellently with the reference (r 2 > 0.93) and had a deviation from reference peak systolic displacement (6.3 ± 3.9 mm) below 0.2 ± 0.5 mm for the robot experiment model. The new method performed significantly better than the two previously proposed methods (p < 0.001). The results show that the proposed method using gyro can measure cardiac motion with high accuracy and performs better than existing methods for filtering the gravity component from the accelerometer signal.
Compact Circuit Preprocesses Accelerometer Output
NASA Technical Reports Server (NTRS)
Bozeman, Richard J., Jr.
1993-01-01
Compact electronic circuit transfers dc power to, and preprocesses ac output of, accelerometer and associated preamplifier. Incorporated into accelerometer case during initial fabrication or retrofit onto commercial accelerometer. Made of commercial integrated circuits and other conventional components; made smaller by use of micrologic and surface-mount technology.
Self-noise models of five commercial strong-motion accelerometers
Ringler, Adam; Evans, John R.; Hutt, Charles R.
2015-01-01
To better characterize the noise of a number of commonly deployed accelerometers in a standardized way, we conducted noise measurements on five different models of strong‐motion accelerometers. Our study was limited to traditional accelerometers (Fig. 1) and is in no way exhaustive.
New Matching Method for Accelerometers in Gravity Gradiometer
Wei, Hongwei; Wu, Meiping; Cao, Juliang
2017-01-01
The gravity gradiometer is widely used in mineral prospecting, including in the exploration of mineral, oil and gas deposits. The mismatch of accelerometers adversely affects the measuring precision of rotating accelerometer-based gravity gradiometers. Several strategies have been investigated to address the imbalance of accelerometers in gradiometers. These strategies, however, complicate gradiometer structures because feedback loops and re-designed accelerometers are needed in these strategies. In this paper, we present a novel matching method, which is based on a new configuration of accelerometers in a gravity gradiometer. In the new configuration, an angle was introduced between the measurement direction of the accelerometer and the spin direction. With the introduced angle, accelerometers could measure the centrifugal acceleration generated by the rotating disc. Matching was realized by updating the scale factors of the accelerometers with the help of centrifugal acceleration. Further simulation computations showed that after adopting the new matching method, signal-to-noise ratio improved from −41 dB to 22 dB. Compared with other matching methods, our method is more flexible and costs less. The matching accuracy of this new method is similar to that of other methods. Our method provides a new idea for matching methods in gravity gradiometer measurement. PMID:28757584
Launcher Dynamic Data Acquisition
2012-07-31
K PR Pressure PR Pressure PR Accelerometer PR Accelerometer PR Accelerometer PR Pressure PR Pressure IEPE Microphone IEPE ...transducers, displacement potentiometers, or Integrated Electronics Piezoelectric ( IEPE ) microphones and accelerometers. The characteristics of these...Engineering Units HCl hydrogen chloride HVAC heating ventilation and cooling Hz hertz IEC International Electrotechnical Commission IEPE
NASA Astrophysics Data System (ADS)
Warren, Christopher; Niezrecki, Christopher; Avitabile, Peter; Pingle, Pawan
2011-08-01
Today, accelerometers and laser Doppler vibrometers are widely accepted as valid measurement tools for structural dynamic measurements. However, limitations of these transducers prevent the accurate measurement of some phenomena. For example, accelerometers typically measure motion at a limited number of discrete points and can mass load a structure. Scanning laser vibrometers have a very wide frequency range and can measure many points without mass-loading, but are sensitive to large displacements and can have lengthy acquisition times due to sequential measurements. Image-based stereo-photogrammetry techniques provide additional measurement capabilities that compliment the current array of measurement systems by providing an alternative that favors high-displacement and low-frequency vibrations typically difficult to measure with accelerometers and laser vibrometers. Within this paper, digital image correlation, three-dimensional (3D) point-tracking, 3D laser vibrometry, and accelerometer measurements are all used to measure the dynamics of a structure to compare each of the techniques. Each approach has its benefits and drawbacks, so comparative measurements are made using these approaches to show some of the strengths and weaknesses of each technique. Additionally, the displacements determined using 3D point-tracking are used to calculate frequency response functions, from which mode shapes are extracted. The image-based frequency response functions (FRFs) are compared to those obtained by collocated accelerometers. Extracted mode shapes are then compared to those of a previously validated finite element model (FEM) of the test structure and are shown to have excellent agreement between the FEM and the conventional measurement approaches when compared using the Modal Assurance Criterion (MAC) and Pseudo-Orthogonality Check (POC).
Calibration and comparison of accelerometer cut points in preschool children.
van Cauwenberghe, Eveline; Labarque, Valery; Trost, Stewart G; de Bourdeaudhuij, Ilse; Cardon, Greet
2011-06-01
The present study aimed to develop accelerometer cut points to classify physical activities (PA) by intensity in preschoolers and to investigate discrepancies in PA levels when applying various accelerometer cut points. To calibrate the accelerometer, 18 preschoolers (5.8 ± 0.4 years) performed eleven structured activities and one free play session while wearing a GT1M ActiGraph accelerometer using 15 s epochs. The structured activities were chosen based on the direct observation system Children's Activity Rating Scale (CARS) while the criterion measure of PA intensity during free play was provided using a second-by-second observation protocol (modified CARS). Receiver Operating Characteristic (ROC) curve analyses were used to determine the accelerometer cut points. To examine the classification differences, accelerometer data of four consecutive days from 114 preschoolers (5.5 ± 0.3 years) were classified by intensity according to previously published and the newly developed accelerometer cut points. Differences in predicted PA levels were evaluated using repeated measures ANOVA and Chi Square test. Cut points were identified at 373 counts/15 s for light (sensitivity: 86%; specificity: 91%; Area under ROC curve: 0.95), 585 counts/15 s for moderate (87%; 82%; 0.91) and 881 counts/15 s for vigorous PA (88%; 91%; 0.94). Further, applying various accelerometer cut points to the same data resulted in statistically and biologically significant differences in PA. Accelerometer cut points were developed with good discriminatory power for differentiating between PA levels in preschoolers and the choice of accelerometer cut points can result in large discrepancies.
Assessment of Differing Definitions of Accelerometer Nonwear Time
ERIC Educational Resources Information Center
Evenson, Kelly R.; Terry, James W., Jr.
2009-01-01
Measuring physical activity with objective tools, such as accelerometers, is becoming more common. Accelerometers measure acceleration multiple times within a given frequency and summarize this as a count over a pre-specified time period or epoch. The resultant count represents acceleration over the epoch length. Accelerometers eliminate biases…
Loyen, Anne; Clarke-Cornwell, Alexandra M; Anderssen, Sigmund A; Hagströmer, Maria; Sardinha, Luís B; Sundquist, Kristina; Ekelund, Ulf; Steene-Johannessen, Jostein; Baptista, Fátima; Hansen, Bjørge H; Wijndaele, Katrien; Brage, Søren; Lakerveld, Jeroen; Brug, Johannes; van der Ploeg, Hidde P
2017-07-01
The objective of this study was to pool, harmonise and re-analyse national accelerometer data from adults in four European countries in order to describe population levels of sedentary time and physical inactivity. Five cross-sectional studies were included from England, Portugal, Norway and Sweden. ActiGraph accelerometer count data were centrally processed using the same algorithms. Multivariable logistic regression analyses were conducted to study the associations of sedentary time and physical inactivity with sex, age, weight status and educational level, in both the pooled sample and the separate study samples. Data from 9509 participants were used. On average, participants were sedentary for 530 min/day, and accumulated 36 min/day of moderate to vigorous intensity physical activity. Twenty-three percent accumulated more than 10 h of sedentary time/day, and 72% did not meet the physical activity recommendations. Nine percent of all participants were classified as high sedentary and low active. Participants from Norway showed the highest levels of sedentary time, while participants from England were the least physically active. Age and weight status were positively associated with sedentary time and not meeting the physical activity recommendations. Men and higher-educated people were more likely to be highly sedentary, while women and lower-educated people were more likely to be inactive. We found high levels of sedentary time and physical inactivity in four European countries. Older people and obese people were most likely to display these behaviours and thus deserve special attention in interventions and policy planning. In order to monitor these behaviours, accelerometer-based cross-European surveillance is recommended.
A Self-Diagnostic System for the M6 Accelerometer
NASA Technical Reports Server (NTRS)
Flanagan, Patrick M.; Lekki, John
2001-01-01
The design of a Self-Diagnostic (SD) accelerometer system for the Space Shuttle Main Engine is presented. This retrofit system connects diagnostic electronic hardware and software to the current M6 accelerometer system. This paper discusses the general operation of the M6 accelerometer SD system and procedures for developing and evaluating the SD system. Signal processing techniques using M6 accelerometer diagnostic data are explained. Test results include diagnostic data responding to changing ambient temperature, mounting torque and base mounting impedance.
NASA Technical Reports Server (NTRS)
August, R. R.
1981-01-01
Low-cost, rugged lightweight accelerometer has been developed that converts mechanical motion into digitized optical outputs and is immune to electromagnetic and electrostatic interferences. Instrument can be placed in hostile environment, such as engine under test, and output led out through miscellany of electrical fields, high temperatures, etc., by optic fiber cables to benign environment of test panel. There, digitized optical signals can be converted to electrical signals for use in standard electrical equipment or used directly in optical devices, such as optical digital computer.
A biomimetic accelerometer inspired by the cricket's clavate hair
Droogendijk, H.; de Boer, M. J.; Sanders, R. G. P.; Krijnen, G. J. M.
2014-01-01
Crickets use so-called clavate hairs to sense (gravitational) acceleration to obtain information on their orientation. Inspired by this clavate hair system, a one-axis biomimetic accelerometer has been developed and fabricated using surface micromachining and SU-8 lithography. An analytical model is presented for the design of the accelerometer, and guidelines are derived to reduce responsivity due to flow-induced contributions to the accelerometer's output. Measurements show that this microelectromechanical systems (MEMS) hair-based accelerometer has a resonance frequency of 320 Hz, a detection threshold of 0.10 ms−2 and a dynamic range of more than 35 dB. The accelerometer exhibits a clear directional response to external accelerations and a low responsivity to airflow. Further, the accelerometer's physical limits with respect to noise levels are addressed and the possibility for short-term adaptation of the sensor to the environment is discussed. PMID:24920115
Kantomaa, Marko T.; Tikanmäki, Marjaana; Kankaanpää, Anna; Vääräsmäki, Marja; Sipola-Leppänen, Marika; Ekelund, Ulf; Hakonen, Harto; Järvelin, Marjo-Riitta; Kajantie, Eero; Tammelin, Tuija H.
2016-01-01
This study examined the association of education level with objectively measured physical activity and sedentary time in young adults. Data from the Finnish ESTER study (2009–2011) (n = 538) was used to examine the association between educational attainment and different subcomponents of physical activity and sedentary time measured using hip-worn accelerometers (ActiGraph GT1M) for seven consecutive days. Overall physical activity, moderate-to-vigorous physical activity (MVPA), light-intensity physical activity and sedentary time were calculated separately for weekdays and weekend days. A latent profile analysis was conducted to identify the different profiles of sedentary time and the subcomponents of physical activity. The educational differences in accelerometer-measured physical activity and sedentary time varied according to the subcomponents of physical activity, and between weekdays and weekend days. A high education level was associated with high MVPA during weekdays and weekend days in both sexes, high sedentary time during weekdays in both sexes, and a low amount of light-intensity physical activity during weekdays in males and during weekdays and weekend days in females. The results indicate different challenges related to unhealthy behaviours in young adults with low and high education: low education is associated with a lack of MVPA, whereas high education is associated with a lack of light-intensity physical activity and high sedentary time especially during weekdays. PMID:27403958
An evaluation of a UAV guidance system with consumer grade GPS receivers
NASA Astrophysics Data System (ADS)
Rosenberg, Abigail Stella
Remote sensing has been demonstrated an important tool in agricultural and natural resource management and research applications, however there are limitations that exist with traditional platforms (i.e., hand held sensors, linear moves, vehicle mounted, airplanes, remotely piloted vehicles (RPVs), unmanned aerial vehicles (UAVs) and satellites). Rapid technological advances in electronics, computers, software applications, and the aerospace industry have dramatically reduced the cost and increased the availability of remote sensing technologies. Remote sensing imagery vary in spectral, spatial, and temporal resolutions and are available from numerous providers. Appendix A presented results of a test project that acquired high-resolution aerial photography with a RPV to map the boundary of a 0.42 km2 fire area. The project mapped the boundaries of the fire area from a mosaic of the aerial images collected and compared this with ground-based measurements. The project achieved a 92.4% correlation between the aerial assessment and the ground truth data. Appendix B used multi-objective analysis to quantitatively assess the tradeoffs between different sensor platform attributes to identify the best overall technology. Experts were surveyed to identify the best overall technology at three different pixel sizes. Appendix C evaluated the positional accuracy of a relatively low cost UAV designed for high resolution remote sensing of small areas in order to determine the positional accuracy of sensor readings. The study evaluated the accuracy and uncertainty of a UAV flight route with respect to the programmed waypoints and of the UAV's GPS position, respectively. In addition, the potential displacement of sensor data was evaluated based on (1) GPS measurements on board the aircraft and (2) the autopilot's circuit board with 3-axis gyros and accelerometers (i.e., roll, pitch, and yaw). The accuracies were estimated based on a 95% confidence interval or similar methods. The accuracy achieved in the second and third manuscripts demonstrates that reasonably priced, high resolution remote sensing via RPVs and UAVs is practical for agriculture and natural resource professionals.
Dual Accelerometer Usage Strategy for Onboard Space Navigation
NASA Technical Reports Server (NTRS)
Zanetti, Renato; D'Souza, Chris
2012-01-01
This work introduces a dual accelerometer usage strategy for onboard space navigation. In the proposed algorithm the accelerometer is used to propagate the state when its value exceeds a threshold and it is used to estimate its errors otherwise. Numerical examples and comparison to other accelerometer usage schemes are presented to validate the proposed approach.
NASA Astrophysics Data System (ADS)
Niskanen, Arto J.; Tuononen, Ari J.
2014-05-01
The tyre-road contact area was studied visually by means of a high-speed camera and three accelerometers fixed to the inner liner of the tyre carcass. Both methods show a distorted contact area in wet conditions, but interesting differences appeared. First, the contact area in full aquaplaning seems strongly distorted on a glass plate when subjected to visual inspection, while the accelerometers indicate a more even hydrodynamic aquaplaning contact length (CL) across the tyre width. Secondly, the acceleration sensors predict the clear shortening of the CL of the tyre before the critical aquaplaning speed. It can be concluded that the visual contact area and shape are heavily dependent on the transparency of the liquid and smoothness of the glass. Meanwhile, the tyre sensors can provide a CL estimate on any road surface imaginable.
NASA Astrophysics Data System (ADS)
Han, Dandan; Bai, Jian; Lu, Qianbo; Lou, Shuqi; Jiao, Xufen; Yang, Guoguang
2016-08-01
There is a temperature drift of an accelerometer attributed to the temperature variation, which would adversely influence the output performance. In this paper, a quantitative analysis of the temperature effect and the temperature compensation of a MOEMS accelerometer, which is composed of a grating interferometric cavity and a micromachined sensing chip, are proposed. A finite-element-method (FEM) approach is applied in this work to simulate the deformation of the sensing chip of the MOEMS accelerometer at different temperature from -20°C to 70°C. The deformation results in the variation of the distance between the grating and the sensing chip of the MOEMS accelerometer, modulating the output intensities finally. A static temperature model is set up to describe the temperature characteristics of the accelerometer through the simulation results and the temperature compensation is put forward based on the temperature model, which can improve the output performance of the accelerometer. This model is permitted to estimate the temperature effect of this type accelerometer, which contains a micromachined sensing chip. Comparison of the output intensities with and without temperature compensation indicates that the temperature compensation can improve the stability of the output intensities of the MOEMS accelerometer based on a grating interferometric cavity.
Using tri-axial accelerometers to identify wild polar bear behaviors
Pagano, Anthony M.; Rode, Karyn D.; Cutting, A.; Owen, M.A.; Jensen, S.; Ware, J.V.; Robbins, C.T.; Durner, George M.; Atwood, Todd C.; Obbard, M.E.; Middel, K.R.; Thiemann, G.W.; Williams, T.M.
2017-01-01
Tri-axial accelerometers have been used to remotely identify the behaviors of a wide range of taxa. Assigning behaviors to accelerometer data often involves the use of captive animals or surrogate species, as their accelerometer signatures are generally assumed to be similar to those of their wild counterparts. However, this has rarely been tested. Validated accelerometer data are needed for polar bears Ursus maritimus to understand how habitat conditions may influence behavior and energy demands. We used accelerometer and water conductivity data to remotely distinguish 10 polar bear behaviors. We calibrated accelerometer and conductivity data collected from collars with behaviors observed from video-recorded captive polar bears and brown bears U. arctos, and with video from camera collars deployed on free-ranging polar bears on sea ice and on land. We used random forest models to predict behaviors and found strong ability to discriminate the most common wild polar bear behaviors using a combination of accelerometer and conductivity sensor data from captive or wild polar bears. In contrast, models using data from captive brown bears failed to reliably distinguish most active behaviors in wild polar bears. Our ability to discriminate behavior was greatest when species- and habitat-specific data from wild individuals were used to train models. Data from captive individuals may be suitable for calibrating accelerometers, but may provide reduced ability to discriminate some behaviors. The accelerometer calibrations developed here provide a method to quantify polar bear behaviors to evaluate the impacts of declines in Arctic sea ice.
Optimal accelerometer placement on a robot arm for pose estimation
NASA Astrophysics Data System (ADS)
Wijayasinghe, Indika B.; Sanford, Joseph D.; Abubakar, Shamsudeen; Saadatzi, Mohammad Nasser; Das, Sumit K.; Popa, Dan O.
2017-05-01
The performance of robots to carry out tasks depends in part on the sensor information they can utilize. Usually, robots are fitted with angle joint encoders that are used to estimate the position and orientation (or the pose) of its end-effector. However, there are numerous situations, such as in legged locomotion, mobile manipulation, or prosthetics, where such joint sensors may not be present at every, or any joint. In this paper we study the use of inertial sensors, in particular accelerometers, placed on the robot that can be used to estimate the robot pose. Studying accelerometer placement on a robot involves many parameters that affect the performance of the intended positioning task. Parameters such as the number of accelerometers, their size, geometric placement and Signal-to-Noise Ratio (SNR) are included in our study of their effects for robot pose estimation. Due to the ubiquitous availability of inexpensive accelerometers, we investigated pose estimation gains resulting from using increasingly large numbers of sensors. Monte-Carlo simulations are performed with a two-link robot arm to obtain the expected value of an estimation error metric for different accelerometer configurations, which are then compared for optimization. Results show that, with a fixed SNR model, the pose estimation error decreases with increasing number of accelerometers, whereas for a SNR model that scales inversely to the accelerometer footprint, the pose estimation error increases with the number of accelerometers. It is also shown that the optimal placement of the accelerometers depends on the method used for pose estimation. The findings suggest that an integration-based method favors placement of accelerometers at the extremities of the robot links, whereas a kinematic-constraints-based method favors a more uniformly distributed placement along the robot links.
Comparison of Physical Activity Adult Questionnaire results with accelerometer data.
Garriguet, Didier; Tremblay, Sylvain; Colley, Rachel C
2015-07-01
Discrepancies between self-reported and objectively measured physical activity are well-known. For the purpose of validation, this study compares a new self-reported physical activity questionnaire with an existing one and with accelerometer data. Data collected at one site of the Canadian Health Measures Survey in 2013 were used for this validation study. The International Physical Activity Questionnaire (IPAQ) was administered to respondents during the household interview, and the new Physical Activity for Adults Questionnaire (PAAQ) was administered during a subsequent visit to a mobile examination centre (MEC). At the MEC, respondents were given an accelerometer to wear for seven days. The analysis pertains to 112 respondents aged 18 to 79 who wore the accelerometer for 10 or more hours on at least four days. Moderate-to-vigorous physical activity (MVPA) measured by accelerometer had higher correlation with data from the PAAQ (r = 0.44) than with data from the IPAQ (r = 0.20). The differences between accelerometer and PAAQ data were greater based on accelerometer-measured physical activity accumulated in 10-minute bouts (30-minute difference in MVPA) than on all minutes (9-minute difference). The percentages of respondents meeting the Canadian Physical Activity Guidelines were 90% based on self-reported IPAQ minutes, 70% based on all accelerometer MVPA minutes, 29% based on accelerometer MVPA minutes accumulated in 10-minute bouts, and 61% based on self-reported PAAQ minutes. The PAAQ demonstrated reasonable validity against the accelerometer criterion. Based on correlations and absolute differences between daily minutes of MVPA and the percentages of respondents meeting the Canadian Physical Activity Guidelines, PAAQ results were closer to accelerometer data than were the IPAQ results for the study sample and previous Statistics Canada self-reported questionnaire findings.
Accelerometer-based measures in physical activity surveillance: current practices and issues.
Pedišić, Željko; Bauman, Adrian
2015-02-01
Self-reports of physical activity (PA) have been the mainstay of measurement in most non-communicable disease (NCD) surveillance systems. To these, other measures are added to summate to a comprehensive PA surveillance system. Recently, some national NCD surveillance systems have started using accelerometers as a measure of PA. The purpose of this paper was specifically to appraise the suitability and role of accelerometers for population-level PA surveillance. A thorough literature search was conducted to examine aspects of the generalisability, reliability, validity, comprehensiveness and between-study comparability of accelerometer estimates, and to gauge the simplicity, cost-effectiveness, adaptability and sustainability of their use in NCD surveillance. Accelerometer data collected in PA surveillance systems may not provide estimates that are generalisable to the target population. Accelerometer-based estimates have adequate reliability for PA surveillance, but there are still several issues associated with their validity. Accelerometer-based prevalence estimates are largely dependent on the investigators' choice of intensity cut-off points. Maintaining standardised accelerometer data collections in long-term PA surveillance systems is difficult, which may cause discontinuity in time-trend data. The use of accelerometers does not necessarily produce useful between-study and international comparisons due to lack of standardisation of data collection and processing methods. To conclude, it appears that accelerometers still have limitations regarding generalisability, validity, comprehensiveness, simplicity, affordability, adaptability, between-study comparability and sustainability. Therefore, given the current evidence, it seems that the widespread adoption of accelerometers specifically for large-scale PA surveillance systems may be premature. Published by the BMJ Publishing Group Limited. For permission to use (where not already granted under a licence) please go to http://group.bmj.com/group/rights-licensing/permissions.
Physical activity classification using the GENEA wrist-worn accelerometer.
Zhang, Shaoyan; Rowlands, Alex V; Murray, Peter; Hurst, Tina L
2012-04-01
Most accelerometer-based activity monitors are worn on the waist or lower back for assessment of habitual physical activity. Output is in arbitrary counts that can be classified by activity intensity according to published thresholds. The purpose of this study was to develop methods to classify physical activities into walking, running, household, or sedentary activities based on raw acceleration data from the GENEA (Gravity Estimator of Normal Everyday Activity) and compare classification accuracy from a wrist-worn GENEA with a waist-worn GENEA. Sixty participants (age = 49.4 ± 6.5 yr, body mass index = 24.6 ± 3.4 kg·m⁻²) completed an ordered series of 10-12 semistructured activities in the laboratory and outdoor environment. Throughout, three GENEA accelerometers were worn: one at the waist, one on the left wrist, and one on the right wrist. Acceleration data were collected at 80 Hz. Features obtained from both fast Fourier transform and wavelet decomposition were extracted, and machine learning algorithms were used to classify four types of daily activities including sedentary, household, walking, and running activities. The computational results demonstrated that the algorithm we developed can accurately classify certain types of daily activities, with high overall classification accuracy for both waist-worn GENEA (0.99) and wrist-worn GENEA (right wrist = 0.97, left wrist = 0.96). We have successfully developed algorithms suitable for use with wrist-worn accelerometers for detecting certain types of physical activities; the performance is comparable to waist-worn accelerometers for assessment of physical activity.
Measuring atmospheric density using GPS-LEO tracking data
NASA Astrophysics Data System (ADS)
Kuang, D.; Desai, S.; Sibthorpe, A.; Pi, X.
2014-01-01
We present a method to estimate the total neutral atmospheric density from precise orbit determination of Low Earth Orbit (LEO) satellites. We derive the total atmospheric density by determining the drag force acting on the LEOs through centimeter-level reduced-dynamic precise orbit determination (POD) using onboard Global Positioning System (GPS) tracking data. The precision of the estimated drag accelerations is assessed using various metrics, including differences between estimated along-track accelerations from consecutive 30-h POD solutions which overlap by 6 h, comparison of the resulting accelerations with accelerometer measurements, and comparison against an existing atmospheric density model, DTM-2000. We apply the method to GPS tracking data from CHAMP, GRACE, SAC-C, Jason-2, TerraSAR-X and COSMIC satellites, spanning 12 years (2001-2012) and covering orbital heights from 400 km to 1300 km. Errors in the estimates, including those introduced by deficiencies in other modeled forces (such as solar radiation pressure and Earth radiation pressure), are evaluated and the signal and noise levels for each satellite are analyzed. The estimated density data from CHAMP, GRACE, SAC-C and TerraSAR-X are identified as having high signal and low noise levels. These data all have high correlations with anominal atmospheric density model and show common features in relative residuals with respect to the nominal model in related parameter space. On the contrary, the estimated density data from COSMIC and Jason-2 show errors larger than the actual signal at corresponding altitudes thus having little practical value for this study. The results demonstrate that this method is applicable to data from a variety of missions and can provide useful total neutral density measurements for atmospheric study up to altitude as high as 715 km, with precision and resolution between those derived from traditional special orbital perturbation analysis and those obtained from onboard accelerometers.
Microgravity Level Measurement of the Beijing Drop Tower Using a Sensitive Accelerometer
Liu, T. Y.; Wu, Q. P.; Sun, B. Q.; Han, F. T.
2016-01-01
Drop tower is the most common ground-based facility to provide microgravity environment and widely used in many science experiments. A differential space accelerometer has been proposed to test the spin-gravity interaction between rotating extended bodies onboard a drag-free satellite. In order to assist design and test of this inertial sensor in a series of ground- based pre-flight experiments, it is very important to know accurately the residual acceleration of drop towers. In this report, a sensitive instrument for this purpose was built with a high-performance servo quartz accelerometer, and the dedicated interface electronics design providing small full-scale range and high sensitivity, up to 136.8 V/g0. The residual acceleration at the Beijing drop tower was measured using two different drop capsules. The experimental result shows that the microgravity level of the free-falling double capsule is better than 2 × 10−4g0 (Earth’s gravity). The measured data in this report provides critical microgravity information for design of the following ground experiments. PMID:27530726
Farahmand, Farid; Khadivi, Kevin O.; Rodrigues, Joel J. P. C.
2009-01-01
The utility of a novel, high-precision, non-intrusive, wireless, accelerometer-based patient orientation monitoring system (APOMS) in determining orientation change in patients undergoing radiation treatment is reported here. Using this system a small wireless accelerometer sensor is placed on a patient’s skin, broadcasting its orientation to the receiving station connected to a PC in the control area. A threshold-based algorithm is developed to identify the exact amount of the patient’s head orientation change. Through real-time measurements, an audible alarm can alert the radiation therapist if the user-defined orientation threshold is violated. Our results indicate that, in spite of its low-cost and simplicity, the APOMS is highly sensitive and offers accurate measurements. Furthermore, the APOMS is patient friendly, vendor neutral, and requires minimal user training. The versatile architecture of the APOMS makes it potentially suitable for variety of applications, including study of correlation between external and internal markers during Image-Guided Radiation Therapy (IGRT), with no major changes in hardware setup or algorithm. PMID:22423196
LeMoyne, Robert; Tomycz, Nestor; Mastroianni, Timothy; McCandless, Cyrus; Cozza, Michael; Peduto, David
2015-01-01
Essential tremor (ET) is a highly prevalent movement disorder. Patients with ET exhibit a complex progressive and disabling tremor, and medical management often fails. Deep brain stimulation (DBS) has been successfully applied to this disorder, however there has been no quantifiable way to measure tremor severity or treatment efficacy in this patient population. The quantified amelioration of kinetic tremor via DBS is herein demonstrated through the application of a smartphone (iPhone) as a wireless accelerometer platform. The recorded acceleration signal can be obtained at a setting of the subject's convenience and conveyed by wireless transmission through the Internet for post-processing anywhere in the world. Further post-processing of the acceleration signal can be classified through a machine learning application, such as the support vector machine. Preliminary application of deep brain stimulation with a smartphone for acquisition of a feature set and machine learning for classification has been successfully applied. The support vector machine achieved 100% classification between deep brain stimulation in `on' and `off' mode based on the recording of an accelerometer signal through a smartphone as a wireless accelerometer platform.
Kosse, Nienke M; Caljouw, Simone; Vervoort, Danique; Vuillerme, Nicolas; Lamoth, Claudine J C
2015-08-01
Accelerometer-based assessments can identify elderly with an increased fall risk and monitor interventions. Smart devices, like the iPod Touch, with built-in accelerometers are promising for clinical gait and posture assessments due to easy use and cost-effectiveness. The aim of the present study was to establish the validity and reliability of the iPod Touch for gait and posture assessment. Sixty healthy participants (aged 18-75 years) were measured with an iPod Touch and stand-alone accelerometer while they walked under single- and dual-task conditions, and while standing in parallel and semi-tandem stance with eyes open, eyes closed and when performing a dual task. Cross-correlation values (CCV) showed high correspondence of anterior-posterior and medio-lateral signal patterns (CCV's ≥ 0.88). Validity of gait parameters (foot contacts, index of harmonicity, and amplitude variability) and standing posture parameters [root mean square of accelerations, median power frequency (MPF) and sway area] as indicated by intra-class correlation (ICC) was high (ICC = 0.85-0.99) and test-retest reliability was good (ICC = 0.81-0.97), except for MPF (ICC = 0.59-0.87). Overall, the iPod Touch obtained valid and reliable measures of gait and postural control in healthy adults of all ages under different conditions. Additionally, smart devices have the potential to be used for clinical gait and posture assessments.
Tightly Coupled Inertial Navigation System/Global Positioning System (TCMIG)
NASA Technical Reports Server (NTRS)
Watson, Michael D.; Jackson, Kurt (Technical Monitor)
2002-01-01
Many NASA applications planned for execution later this decade are seeking high performance, miniaturized, low power Inertial Management Units (IMU). Much research has gone into Micro-Electro-Mechanical System (MEMS) over the past decade as a solution to these needs. While MEMS devices have proven to provide high accuracy acceleration measurements, they have not yet proven to have the accuracy required by many NASA missions in rotational measurements. Therefore, a new solution has been formulated integrating the best of all IMU technologies to address these mid-term needs in the form of a Tightly Coupled Micro Inertial Navigation System (INS)/Global Positioning System (GPS) (TCMIG). The TCMIG consists of an INS and a GPS tightly coupled by a Kalman filter executing on an embedded Field Programmable Gate Array (FPGA) processor. The INS consists of a highly integrated Interferometric Fiber Optic Gyroscope (IFOG) and a MEMS accelerometer. The IFOG utilizes a tightly wound fiber coil to reduce volume and the high level of integration and advanced optical components to reduce power. The MEMS accelerometer utilizes a newly developed deep etch process to increase the proof mass and yield a highly accurate accelerometer. The GPS receiver consists of a low power miniaturized version of the Blackjack receiver. Such an IMU configuration is ideal to meet the mid-term needs of the NASA Science Enterprises and the new launch vehicles being developed for the Space Launch Initiative (SLI).
Vähä-Ypyä, Henri; Vasankari, Tommi; Husu, Pauliina; Suni, Jaana; Sievänen, Harri
2015-01-01
Accelerometers are increasingly used for objective assessment of physical activity. However, because of lack of the proprietary analysis algorithms, direct comparisons between accelerometer brands are difficult. In this study, we propose and evaluate open source methods for commensurate assessment of raw accelerometer data irrespective of the brand. Twenty-one participants carried simultaneously three different tri-axial accelerometers on their waist during five different sedentary activities and five different intensity levels of bipedal movement from slow walking to running. Several time and frequency domain traits were calculated from the measured raw data, and their performance in classifying the activities was compared. Of the several traits, the mean amplitude deviation (MAD) provided consistently the best performance in separating the sedentary activities and different speeds of bipedal movement from each other. Most importantly, the universal cut-off limits based on MAD classified sedentary activities and different intensity levels of walking and running equally well for all three accelerometer brands and reached at least 97% sensitivity and specificity in each case. Irrespective of the accelerometer brand, a simply calculable MAD with universal cut-off limits provides a universal method to evaluate physical activity and sedentary behaviour using raw accelerometer data. A broader application of the present approach is expected to render different accelerometer studies directly comparable with each other. © 2014 Scandinavian Society of Clinical Physiology and Nuclear Medicine. Published by John Wiley & Sons Ltd.
Self Diagnostic Accelerometer Testing on the C-17 Aircraft
NASA Technical Reports Server (NTRS)
Tokars, Roger P.; Lekki, John D.
2013-01-01
The self diagnostic accelerometer (SDA) developed by the NASA Glenn Research Center was tested for the first time in an aircraft engine environment as part of the Vehicle Integrated Propulsion Research (VIPR) program. The VIPR program includes testing multiple critical flight sensor technologies. One such sensor, the accelerometer, measures vibrations to detect faults in the engine. In order to rely upon the accelerometer, the health of the accelerometer must be ensured. The SDA is a sensor system designed to actively determine the accelerometer structural health and attachment condition, in addition to vibration measurements. The SDA uses a signal conditioning unit that sends an electrical chirp to the accelerometer and recognizes changes in the response due to changes in the accelerometer health and attachment condition. To demonstrate the SDAs flight worthiness and robustness, multiple SDAs were mounted and tested on a C-17 aircraft engine. The engine test conditions varied from engine off, to idle, to maximum power. The SDA attachment conditions were varied from fully tight to loose. The newly developed SDA health algorithm described herein uses cross correlation pattern recognition to discriminate a healthy from a faulty SDA. The VIPR test results demonstrate for the first.
A brief test of the Hewlett-Packard MEMS seismic accelerometer
Homeijer, Brian D.; Milligan, Donald J.; Hutt, Charles R.
2014-01-01
Testing was performed on a prototype of Hewlett-Packard (HP) Micro-Electro-Mechanical Systems (MEMS) seismic accelerometer at the U.S. Geological Survey’s Albuquerque Seismological Laboratory. This prototype was built using discrete electronic components. The self-noise level was measured during low seismic background conditions and found to be 9.8 ng/√Hz at periods below 0.2 s (frequencies above 5 Hz). The six-second microseism noise was also discernible. The HP MEMS accelerometer was compared to a Geotech Model GS-13 reference seismometer during seismic noise and signal levels well above the self-noise of the accelerometer. Matching power spectral densities (corrected for accelerometer and seismometer responses to represent true ground motion) indicated that the HP MEMS accelerometer has a flat (constant) response to acceleration from 0.0125 Hz to at least 62.5 Hz. Tilt calibrations of the HP MEMS accelerometer verified that the flat response to acceleration extends to 0 Hz. Future development of the HP MEMS accelerometer includes replacing the discreet electronic boards with a low power application-specific integrated circuit (ASIC) and increasing the dynamic range of the sensor to detect strong motion signals above one gravitational acceleration, while maintaining the self-noise observed during these tests.
Vibration sensing in smart machine rotors using internal MEMS accelerometers
NASA Astrophysics Data System (ADS)
Jiménez, Samuel; Cole, Matthew O. T.; Keogh, Patrick S.
2016-09-01
This paper presents a novel topology for enhanced vibration sensing in which wireless MEMS accelerometers embedded within a hollow rotor measure vibration in a synchronously rotating frame of reference. Theoretical relations between rotor-embedded accelerometer signals and the vibration of the rotor in an inertial reference frame are derived. It is thereby shown that functionality as a virtual stator-mounted displacement transducer can be achieved through appropriate signal processing. Experimental tests on a prototype rotor confirm that both magnitude and phase information of synchronous vibration can be measured directly without additional stator-mounted key-phasor sensors. Displacement amplitudes calculated from accelerometer signals will become erroneous at low rotational speeds due to accelerometer zero-g offsets, hence a corrective procedure is introduced. Impact tests are also undertaken to examine the ability of the internal accelerometers to measure transient vibration. A further capability is demonstrated, whereby the accelerometer signals are used to measure rotational speed of the rotor by analysing the signal component due to gravity. The study highlights the extended functionality afforded by internal accelerometers and demonstrates the feasibility of internal sensor topologies, which can provide improved observability of rotor vibration at externally inaccessible rotor locations.
Accelerometer-Measured Physical Activity and Mortality in Women Aged 63 to 99.
LaMonte, Michael J; Buchner, David M; Rillamas-Sun, Eileen; Di, Chongzhi; Evenson, Kelley R; Bellettiere, John; Lewis, Cora E; Lee, I-Min; Tinker, Lesly F; Seguin, Rebecca; Zaslovsky, Oleg; Eaton, Charles B; Stefanick, Marcia L; LaCroix, Andrea Z
2018-05-01
To prospectively examine associations between accelerometer-measured physical activity (PA) and mortality in older women, with an emphasis on light-intensity PA. Prospective cohort study with baseline data collection between March 2012 and April 2014. Women's Health Initiative cohort in the United States. Community-dwelling women aged 63 to 99 (N = 6,382). Minutes per day of usual PA measured using hip-worn triaxial accelerometers, physical functioning measured using the Short Physical Performance Battery, mortality follow-up for a mean 3.1 years through September 2016 (450 deaths). When adjusted for accelerometer wear time, age, race-ethnicity, education, smoking, alcohol, self-rated health, and comorbidities, relative risks (95% confidence intervals) for all-cause mortality across PA tertiles were 1.00 (referent), 0.86 (0.69, 1.08), 0.80 (0.62, 1.03) trend P = .07, for low light; 1.00, 0.57 (0.45, 0.71), 0.47 (0.35, 0.61) trend P < .001, for high light; and, 1.00, 0.63 (0.50, 0.79), 0.42 (0.30, 0.57) trend P < .001, for moderate-to-vigorous PA (MVPA). Associations remained significant for high light-intensity PA and MVPA (P < .001) after further adjustment for physical function. Each 30-min/d increment in light-intensity (low and high combined) PA and MVPA was associated, on average, with multivariable relative risk reductions of 12% and 39%, respectively (P < .01). After further simultaneous adjusting for light intensity and MVPA, the inverse associations remained significant (light-intensity PA: RR = 0.93, 95% CI = 0.89-0.97; MVPA: RR = 0.67, 95% CI = 0.58-0.78). These relative risks did not differ between subgroups for age or race and ethnicity (interaction, P ≥ .14, all). When measured using accelerometers, light-intensity and MVPA are associated with lower mortality in older women. These findings suggest that replacing sedentary time with light-intensity PA is a public health strategy that could benefit an aging society and warrants further investigation. © 2017, Copyright the Authors Journal compilation © 2017, The American Geriatrics Society.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Yang, Yongchao; Dorn, Charles; Mancini, Tyler
Enhancing the spatial and temporal resolution of vibration measurements and modal analysis could significantly benefit dynamic modelling, analysis, and health monitoring of structures. For example, spatially high-density mode shapes are critical for accurate vibration-based damage localization. In experimental or operational modal analysis, higher (frequency) modes, which may be outside the frequency range of the measurement, contain local structural features that can improve damage localization as well as the construction and updating of the modal-based dynamic model of the structure. In general, the resolution of vibration measurements can be increased by enhanced hardware. Traditional vibration measurement sensors such as accelerometers havemore » high-frequency sampling capacity; however, they are discrete point-wise sensors only providing sparse, low spatial sensing resolution measurements, while dense deployment to achieve high spatial resolution is expensive and results in the mass-loading effect and modification of structure's surface. Non-contact measurement methods such as scanning laser vibrometers provide high spatial and temporal resolution sensing capacity; however, they make measurements sequentially that requires considerable acquisition time. As an alternative non-contact method, digital video cameras are relatively low-cost, agile, and provide high spatial resolution, simultaneous, measurements. Combined with vision based algorithms (e.g., image correlation or template matching, optical flow, etc.), video camera based measurements have been successfully used for experimental and operational vibration measurement and subsequent modal analysis. However, the sampling frequency of most affordable digital cameras is limited to 30–60 Hz, while high-speed cameras for higher frequency vibration measurements are extremely costly. This work develops a computational algorithm capable of performing vibration measurement at a uniform sampling frequency lower than what is required by the Shannon-Nyquist sampling theorem for output-only modal analysis. In particular, the spatio-temporal uncoupling property of the modal expansion of structural vibration responses enables a direct modal decoupling of the temporally-aliased vibration measurements by existing output-only modal analysis methods, yielding (full-field) mode shapes estimation directly. Then the signal aliasing properties in modal analysis is exploited to estimate the modal frequencies and damping ratios. Furthermore, the proposed method is validated by laboratory experiments where output-only modal identification is conducted on temporally-aliased acceleration responses and particularly the temporally-aliased video measurements of bench-scale structures, including a three-story building structure and a cantilever beam.« less
Yang, Yongchao; Dorn, Charles; Mancini, Tyler; ...
2016-12-05
Enhancing the spatial and temporal resolution of vibration measurements and modal analysis could significantly benefit dynamic modelling, analysis, and health monitoring of structures. For example, spatially high-density mode shapes are critical for accurate vibration-based damage localization. In experimental or operational modal analysis, higher (frequency) modes, which may be outside the frequency range of the measurement, contain local structural features that can improve damage localization as well as the construction and updating of the modal-based dynamic model of the structure. In general, the resolution of vibration measurements can be increased by enhanced hardware. Traditional vibration measurement sensors such as accelerometers havemore » high-frequency sampling capacity; however, they are discrete point-wise sensors only providing sparse, low spatial sensing resolution measurements, while dense deployment to achieve high spatial resolution is expensive and results in the mass-loading effect and modification of structure's surface. Non-contact measurement methods such as scanning laser vibrometers provide high spatial and temporal resolution sensing capacity; however, they make measurements sequentially that requires considerable acquisition time. As an alternative non-contact method, digital video cameras are relatively low-cost, agile, and provide high spatial resolution, simultaneous, measurements. Combined with vision based algorithms (e.g., image correlation or template matching, optical flow, etc.), video camera based measurements have been successfully used for experimental and operational vibration measurement and subsequent modal analysis. However, the sampling frequency of most affordable digital cameras is limited to 30–60 Hz, while high-speed cameras for higher frequency vibration measurements are extremely costly. This work develops a computational algorithm capable of performing vibration measurement at a uniform sampling frequency lower than what is required by the Shannon-Nyquist sampling theorem for output-only modal analysis. In particular, the spatio-temporal uncoupling property of the modal expansion of structural vibration responses enables a direct modal decoupling of the temporally-aliased vibration measurements by existing output-only modal analysis methods, yielding (full-field) mode shapes estimation directly. Then the signal aliasing properties in modal analysis is exploited to estimate the modal frequencies and damping ratios. Furthermore, the proposed method is validated by laboratory experiments where output-only modal identification is conducted on temporally-aliased acceleration responses and particularly the temporally-aliased video measurements of bench-scale structures, including a three-story building structure and a cantilever beam.« less
Using the GOCE star trackers for validating the calibration of its accelerometers
NASA Astrophysics Data System (ADS)
Visser, P. N. A. M.
2017-12-01
A method for validating the calibration parameters of the six accelerometers on board the Gravity field and steady-state Ocean Circulation Explorer (GOCE) from star tracker observations that was originally tested by an end-to-end simulation, has been updated and applied to real data from GOCE. It is shown that the method provides estimates of scale factors for all three axes of the six GOCE accelerometers that are consistent at a level significantly better than 0.01 compared to the a priori calibrated value of 1. In addition, relative accelerometer biases and drift terms were estimated consistent with values obtained by precise orbit determination, where the first GOCE accelerometer served as reference. The calibration results clearly reveal the different behavior of the sensitive and less-sensitive accelerometer axes.
Koo, Gunhee; Kim, Kiyoung; Chung, Jun Yeon; Choi, Jaemook; Kwon, Nam-Yeol; Kang, Doo-Young; Sohn, Hoon
2017-11-28
A displacement measurement system fusing a low cost real-time kinematic global positioning system (RTK-GPS) receiver and a force feedback accelerometer is proposed for infrastructure monitoring. The proposed system is composed of a sensor module, a base module and a computation module. The sensor module consists of a RTK-GPS rover and a force feedback accelerometer, and is installed on a target structure like conventional RTK-GPS sensors. The base module is placed on a rigid ground away from the target structure similar to conventional RTK-GPS bases, and transmits observation messages to the sensor module. Then, the initial acceleration, velocity and displacement responses measured by the sensor module are transmitted to the computation module located at a central monitoring facility. Finally, high precision and high sampling rate displacement, velocity, and acceleration are estimated by fusing the acceleration from the accelerometer, the velocity from the GPS rover, and the displacement from RTK-GPS. Note that the proposed displacement measurement system can measure 3-axis acceleration, velocity as well as displacement in real time. In terms of displacement, the proposed measurement system can estimate dynamic and pseudo-static displacement with a root-mean-square error of 2 mm and a sampling rate of up to 100 Hz. The performance of the proposed system is validated under sinusoidal, random and steady-state vibrations. Field tests were performed on the Yeongjong Grand Bridge and Yi Sun-sin Bridge in Korea, and the Xihoumen Bridge in China to compare the performance of the proposed system with a commercial RTK-GPS sensor and other data fusion techniques.
NASA Astrophysics Data System (ADS)
Scalise, L.; Casacanditella, L.; Santolini, C.; Martarelli, M.; Tomasini, E. P.
2014-05-01
The transmission of mechanical vibrations from tools to human subjects is known to be potentially dangerous for the circulatory and neurological systems. It is also known that such damages are strictly depending on the intensity and the frequency range of the vibrational signals transferred to the different anatomical districts. In this paper, very high impulsive signals, generated during a shooting by a rifle, will be studied, being such signals characterised by a very high acceleration amplitude as well as high frequency range. In this paper, it will be presented an experimental setup aimed to collect experimental data relative to the transmission of the vibration signals from the rifle to the shoulder of subject during the shooting action. In particular the transmissibility of acceleration signals, as well as of the velocity signals, between the rifle stock and the subject's back shoulder will be measured using two piezoelectric accelerometers and a single point laser Doppler vibrometer (LDV). Tests have been carried out in a shooting lab where a professional shooter has conducted the experiments, using different experimental configurations: two different types of stocks and two kinds of bullets with different weights were considered. Two uniaxial accelerometers were fixed on the stock of the weapon and on the back of the shoulder of the shooter respectively. Vibration from the back shoulder was also measured by means of a LDV simultaneously. A comparison of the measured results will be presented and the pros and cons of the use of contact and non-contact transducers will be discussed taking into account the possible sources of the measurement uncertainty as unwanted sensor vibrations for the accelerometer.
Uniaxial angular accelerometers
NASA Astrophysics Data System (ADS)
Seleznev, A. V.; Shvab, I. A.
1985-05-01
The basic mechanical components of an angular accelerometer are the sensor, the damper, and the transducer. Penumatic dampers are simplest in construction, but the viscosity of air is very low and, therefore, dampers with special purpose oils having a high temperature stability (synthetic silicon or organosilicon oils) are most widely used. The most common types of viscous dampers are lamellar with meshed opposed arrays of fixed and movable vanes in the dashpot, piston dampers regulated by an adjustable-length capillary tube, and dampers with paddle wheel in closed tank. Another type of damper is an impact-inertial one with large masses absorbing the rotational energy upon collision with the sensor. Conventional measuring elements are resistive, capacitive, electromagnetic, photoelectric, and penumatic or hydraulic. Novel types of angular accelerometers are based on inertia of gas jets, electron beams, and ion beams, the piezoelectric effect in p-n junctions of diode and transistors, the electrokinetic effect in fluids, and cryogenic suspension of the sensor.
A Study into the Method of Precise Orbit Determination of a HEO Orbiter by GPS and Accelerometer
NASA Technical Reports Server (NTRS)
Ikenaga, Toshinori; Hashida, Yoshi; Unwin, Martin
2007-01-01
In the present day, orbit determination by Global Positioning System (GPS) is not unusual. Especially for low-cost small satellites, position determination by an on-board GPS receiver provides a cheap, reliable and precise method. However, the original purpose of GPS is for ground users, so the transmissions from all of the GPS satellites are directed toward the Earth s surface. Hence there are some restrictions for users above the GPS constellation to detect those signals. On the other hand, a desire for precise orbit determination for users in orbits higher than GPS constellation exists. For example, the next Japanese Very Long Baseline Interferometry (VLBI) mission "ASTRO-G" is trying to determine its orbit in an accuracy of a few centimeters at apogee. The use of GPS is essential for such ultra accurate orbit determination. This study aims to construct a method for precise orbit determination for such high orbit users, especially in High Elliptical Orbits (HEOs). There are several approaches for this objective. In this study, a hybrid method with GPS and an accelerometer is chosen. Basically, while the position cannot be determined by an on-board GPS receiver or other Range and Range Rate (RARR) method, all we can do to estimate the user satellite s position is to propagate the orbit along with the force model, which is not perfectly correct. However if it has an accelerometer (ACC), the coefficients of the air drag and the solar radiation pressure applied to the user satellite can be updated and then the propagation along with the "updated" force model can improve the fitting accuracy of the user satellite s orbit. In this study, it is assumed to use an accelerometer available in the present market. The effects by a bias error of an accelerometer will also be discussed in this paper.
2011-03-01
b b are additive accelerometer and gyro noises and w b abias and wbbbias are accelerometer bias and gyro bias noises. These will described in further...order accelerometer bias time constant and w b abias is the additive accelerometer bias noise, and ḃb = − 1 τb bb +wbbbias (2.43) where τb is the first
Zdravevski, Eftim; Risteska Stojkoska, Biljana; Standl, Marie; Schulz, Holger
2017-01-01
Assessment of health benefits associated with physical activity depend on the activity duration, intensity and frequency, therefore their correct identification is very valuable and important in epidemiological and clinical studies. The aims of this study are: to develop an algorithm for automatic identification of intended jogging periods; and to assess whether the identification performance is improved when using two accelerometers at the hip and ankle, compared to when using only one at either position. The study used diarized jogging periods and the corresponding accelerometer data from thirty-nine, 15-year-old adolescents, collected under field conditions, as part of the GINIplus study. The data was obtained from two accelerometers placed at the hip and ankle. Automated feature engineering technique was performed to extract features from the raw accelerometer readings and to select a subset of the most significant features. Four machine learning algorithms were used for classification: Logistic regression, Support Vector Machines, Random Forest and Extremely Randomized Trees. Classification was performed using only data from the hip accelerometer, using only data from ankle accelerometer and using data from both accelerometers. The reported jogging periods were verified by visual inspection and used as golden standard. After the feature selection and tuning of the classification algorithms, all options provided a classification accuracy of at least 0.99, independent of the applied segmentation strategy with sliding windows of either 60s or 180s. The best matching ratio, i.e. the length of correctly identified jogging periods related to the total time including the missed ones, was up to 0.875. It could be additionally improved up to 0.967 by application of post-classification rules, which considered the duration of breaks and jogging periods. There was no obvious benefit of using two accelerometers, rather almost the same performance could be achieved from either accelerometer position. Machine learning techniques can be used for automatic activity recognition, as they provide very accurate activity recognition, significantly more accurate than when keeping a diary. Identification of jogging periods in adolescents can be performed using only one accelerometer. Performance-wise there is no significant benefit from using accelerometers on both locations.
Innerd, Paul; Harrison, Rory; Coulson, Morc
2018-04-23
Physical activity and sedentary behaviour are difficult to assess in overweight and obese adults. However, the use of open-source, raw accelerometer data analysis could overcome this. This study compared raw accelerometer and questionnaire-assessed moderate-to-vigorous physical activity (MVPA), walking and sedentary behaviour in normal, overweight and obese adults, and determined the effect of using different methods to categorise overweight and obesity, namely body mass index (BMI), bioelectrical impedance analysis (BIA) and waist-to-hip ratio (WHR). One hundred twenty adults, aged 24-60 years, wore a raw, tri-axial accelerometer (Actigraph GT3X+), for 3 days and completed a physical activity questionnaire (IPAQ-S). We used open-source accelerometer analyses to estimate MVPA, walking and sedentary behaviour from a single raw accelerometer signal. Accelerometer and questionnaire-assessed measures were compared in normal, overweight and obese adults categorised using BMI, BIA and WHR. Relationships between accelerometer and questionnaire-assessed MVPA (Rs = 0.30 to 0.48) and walking (Rs = 0.43 to 0.58) were stronger in normal and overweight groups whilst sedentary behaviour were modest (Rs = 0.22 to 0.38) in normal, overweight and obese groups. The use of WHR resulted in stronger agreement between the questionnaire and accelerometer than BMI and BIA. Finally, accelerometer data showed stronger associations with BMI, BIA and WHR (Rs = 0.40 to 0.77) than questionnaire data (Rs = 0.24 to 0.37). Open-source, raw accelerometer data analysis can be used to estimate MVPA, walking and sedentary behaviour from a single acceleration signal in normal, overweight and obese adults. Our data supports the use of WHR to categorise overweight and obese adults. This evidence helps researchers obtain more accurate measures of physical activity and sedentary behaviour in overweight and obese populations.
NASA Technical Reports Server (NTRS)
Heck, M. L.; Findlay, J. T.; Compton, H. R.
1983-01-01
The Aerodynamic Coefficient Identification Package (ACIP) is an instrument consisting of body mounted linear accelerometers, rate gyros, and angular accelerometers for measuring the Space Shuttle vehicular dynamics. The high rate recorded data are utilized for postflight aerodynamic coefficient extraction studies. Although consistent with pre-mission accuracies specified by the manufacturer, the ACIP data were found to contain detectable levels of systematic error, primarily bias, as well as scale factor, static misalignment, and temperature dependent errors. This paper summarizes the technique whereby the systematic ACIP error sources were detected, identified, and calibrated with the use of recorded dynamic data from the low rate, highly accurate Inertial Measurement Units.
Comparison of self-reported versus accelerometer-measured physical activity.
Dyrstad, Sindre M; Hansen, Bjørge H; Holme, Ingar M; Anderssen, Sigmund A
2014-01-01
The International Physical Activity Questionnaire (IPAQ) is one of the most widely used questionnaires to assess physical activity (PA). Validation studies for the IPAQ have been executed, but still there is a need for studies comparing absolute values between IPAQ and accelerometer in large population studies. To compare PA and sedentary time from the self-administered, short version of the IPAQ with data from ActiGraph accelerometer in a large national sample. A total of 1751 adults (19-84 yr) wore an accelerometer (ActiGraph GT1M) for seven consecutive days and completed the IPAQ-Short Form. Sedentary time, total PA, and time spent in moderate to vigorous activity were compared in relation to sex, age, and education. Men and women reported, on average, 131 min·d (SE = 4 min·d) less sedentary time compared with the accelerometer measurements. The difference between self-reported and measured sedentary time and vigorous-intensity PA was greatest among men with a lower education level and for men 65 yr and older. Although men reported 47% more moderate to vigorous physical activity (MVPA) compared with women, there were no differences between sexes in accelerometer-determined MVPA. Accelerometer-determined moderate PA was reduced from 110 to 42 min·d (62%) when analyzed in blocks of 10 min (P < 0.0001) compared with 1-min blocks. The main correlation coefficients between self-reported variables and accelerometer measures of physical activity were between 0.20 and 0.46. The participants report through IPAQ-Short Form more vigorous PA and less sedentary time compared with the accelerometer. The difference between self-reported and accelerometer-measured MVPA increased with higher activity and intensity levels. Associations between the methods were affected by sex, age, and education, but not body mass index.
A feasibility study of damage detection in beams using high-speed camera (Conference Presentation)
NASA Astrophysics Data System (ADS)
Wan, Chao; Yuan, Fuh-Gwo
2017-04-01
In this paper a method for damage detection in beam structures using high-speed camera is presented. Traditional methods of damage detection in structures typically involve contact (i.e., piezoelectric sensor or accelerometer) or non-contact sensors (i.e., laser vibrometer) which can be costly and time consuming to inspect an entire structure. With the popularity of the digital camera and the development of computer vision technology, video cameras offer a viable capability of measurement including higher spatial resolution, remote sensing and low-cost. In the study, a damage detection method based on the high-speed camera was proposed. The system setup comprises a high-speed camera and a line-laser which can capture the out-of-plane displacement of a cantilever beam. The cantilever beam with an artificial crack was excited and the vibration process was recorded by the camera. A methodology called motion magnification, which can amplify subtle motions in a video is used for modal identification of the beam. A finite element model was used for validation of the proposed method. Suggestions for applications of this methodology and challenges in future work will be discussed.
2014-06-01
Low-Frequency Foam Insulator (LOFFI) Accelerometer Mount Characterization Results and Analysis for Phase I (FY2013) by Andrew Drysdale...Proving Ground, MD 21005-5068 ARL-TR-6977 June 2014 Low-Frequency Foam Insulator (LOFFI) Accelerometer Mount Characterization Results...4. TITLE AND SUBTITLE Low-Frequency Foam Insulator (LOFFI) Accelerometer Mount Characterization Results and Analysis for Phase I (FY2013) 5a
Structural health monitoring using a hybrid network of self-powered accelerometer and strain sensors
NASA Astrophysics Data System (ADS)
Alavi, Amir H.; Hasni, Hassene; Jiao, Pengcheng; Lajnef, Nizar
2017-04-01
This paper presents a structural damage identification approach based on the analysis of the data from a hybrid network of self-powered accelerometer and strain sensors. Numerical and experimental studies are conducted on a plate with bolted connections to verify the method. Piezoelectric ceramic Lead Zirconate Titanate (PZT)-5A ceramic discs and PZT-5H bimorph accelerometers are placed on the surface of the plate to measure the voltage changes due to damage progression. Damage is defined by loosening or removing one bolt at a time from the plate. The results show that the PZT accelerometers provide a fairly more consistent behavior than the PZT strain sensors. While some of the PZT strain sensors are not sensitive to the changes of the boundary condition, the bimorph accelerometers capture the mode changes from undamaged to missing bolt conditions. The results corresponding to the strain sensors are better indicator to the location of damage compared to the accelerometers. The characteristics of the overall structure can be monitored with even one accelerometer. On the other hand, several PZT strain sensors might be needed to localize the damage.
Palm, Peter; Gupta, Nidhi; Forsman, Mikael; Skotte, Jørgen; Nordquist, Tobias; Holtermann, Andreas
2018-06-26
Regarding prevention of neck and shoulder pain (NSP), unsupported arm elevation is one factor that should be taken into account when performing work risk assessment. Triaxial accelerometers can be used to measure arm elevation over several days but it is not possible to differentiate between supported and unsupported arm elevation from accelerometers only. Supported arm elevation is more likely to exist during sitting than standing. The aim of the study was to evaluate the use of whole workday measurements of arm elevation with accelerometers to assess potentially harmful work exposure of arm elevation, by comparing arm elevation at work with arm elevation during leisure, in a population with diverse work tasks, and to assess how the exposure parameters were modified when upper arm elevation during sitting time was excluded. The participants, 197 workers belonging to 12 occupational groups with diverse work tasks, wore triaxial accelerometers on the dominant arm, hip, and back for 1-4 days to measure arm elevation and periods of sitting. None of the groups were found to have higher exposure to arm elevation during work compared to leisure. Even though some occupations where known to have work tasks that forced them to work with elevated arms to a large extent. A high proportion of arm elevation derived from sitting time, especially so during leisure. When arm elevation during sitting time was excluded from the analysis, arm elevation was significantly higher at work than during leisure among construction workers, garbage collectors, manufacturing workers, and domestic cleaners. Together this illustrates that it is not suitable to use whole workday measurments of arm elevation with accelerometer as a sole information source when assessing the risk for NSP due to arm elevation. Information on body posture can provide relevant contextual information in exposure assessments when it is known that the potential harmful exposure is performed in standing or walking.
Accelerometer-determined physical activity level among government employees in Penang, Malaysia.
Hazizi, A S; Aina, Mardiah B; Mohd, Nasir M T; Zaitun, Y; Hamid, Jan J M; Tabata, I
2012-04-01
A cross-sectional study was carried out to investigate accelerometer-determined physical activity level of 233 Malay government employees (104 men, 129 women) working in the Federal Government Building Penang, Malaysia. Body weight, height, waist and hip circumference, body fat percentage and blood pressure were measured for each respondent. All the respondents were asked to wear an accelerometer for 3 days. Body mass index (BMI) and waist-hip ratio (WHR) were calculated using a standard formulas. Fasting blood sample was obtained to determine the lipid profile and glucose levels of the respondents. Based on the accelerometer-determined physical activity level, almost 65% of the respondents were categorised as sedentary. Approximately 50.2% of the respondents were overweight or obese. There were negative but significant relationships between body mass index (BMI) (r = -0.353, p < 0.05), body fat percentage (r = -0.394, p < 0.05), waist circumference (WC) (r = -0.198, p < 0.05) and physical activity level. Sedentary individuals had a higher risk than moderate to active individuals of having a BMI more than or equal to 25 kg/m2 (OR = 2.80, 95% CI 1.55-5.05), an-risk classified WC (OR = 1.79, 95% CI 1.01-3.20), and a body fat percentage classified as unhealthy (OR = 3.01, 95% CI 1.41-6.44). The results of this study suggest that accelerometer-determined physical activity level is a significant factor associated with obesity in this study. The high prevalence of physical inactivity and obesity found among respondents of this study indicate a need for implementing intervention programmes among this population.
Tanha, Tina; Tornberg, Åsa; Dencker, Magnus; Wollmer, Per
2013-10-31
Very few validation studies have been performed between different generations of the commonly used Actigraph accelerometers. We compared daily physical activity data generated from the old generation Actigraph model 7164 with the new generation Actigraph GT1M accelerometer in 15 young females for eight consecutive days. We also investigated if different wear time thresholds had any impact on the findings. Minutes per day of moderate and vigorous physical activity (MVPA), vigorous physical activity (VPA) and very vigorous physical activity (VVPA) were calculated. Moreover, minutes of sedentary pursuits per day were calculated. There were significant (P < 0.05) differences between the Actigraph 7164 and the GT1M concerning MVPA (61 ± 21vs. 56 ± 23 min/day), VPA (12 ± 8 vs. 9 ± 3 min/day) and VVPA (3.2 ± 3.0 vs. 0.3 ± 1.1 min/day). The different wear time thresholds had little impact on minutes per day in different intensities. Median minutes of sedentary pursuits per day ranged from 159 to 438 minutes depending on which wear time threshold was used (i.e. 10, 30 or 60 minutes), whereas very small differences were observed between the two different models. Data from the old generation Actigraph 7164 and the new generation Actigraph GT1M accelerometers differ, where the Actigraph GT1M generates lower minutes spent in free living physical activity. Median minutes of sedentary pursuits per day are highly dependent on which wear time threshold that is used, and not by accelerometer model.
Herbolsheimer, Florian; Riepe, Matthias W; Peter, Richard
2018-02-21
Numerous studies have reported weak or moderate correlations between self-reported and accelerometer-assessed physical activity. One explanation is that self-reported physical activity might be biased by demographic, cognitive or other factors. Cognitive function is one factor that could be associated with either overreporting or underreporting of daily physical activity. Difficulties in remembering past physical activities might result in recall bias. Thus, the current study examines whether the cognitive function is associated with differences between self-reported and accelerometer-assessed physical activity. Cross-sectional data from the population-based Activity and Function in the Elderly in Ulm study (ActiFE) were used. A total of 1172 community-dwelling older adults (aged 65-90 years) wore a uniaxial accelerometer (activPAL unit) for a week. Additionally, self-reported physical activity was assessed using the LASA Physical Activity Questionnaire (LAPAQ). Cognitive function was measured with four items (immediate memory, delayed memory, recognition memory, and semantic fluency) from the Consortium to Establish a Registry for Alzheimer's Disease Total Score (CERAD-TS). Mean differences of self-reported and accelerometer-assessed physical activity (MPA) were associated with cognitive function in men (r s = -.12, p = .002) but not in women. Sex-stratified multiple linear regression analyses showed that MPA declined with high cognitive function in men (β = -.13; p = .015). Results suggest that self-reported physical activity should be interpreted with caution in older populations, as cognitive function was one factor that explained the differences between objective and subjective physical activity measurements.
DOT National Transportation Integrated Search
1973-07-01
A miniature piezoresistive mouthpiece rotational accelerometer has been developed to measure the angular acceleration of a head during a simulated vehicle crash. Corrections have been electronically applied to the rotational accelerometer to reduce i...
Ground Vibration Attenuation Measurement using Triaxial and Single Axis Accelerometers
NASA Astrophysics Data System (ADS)
Mohammad, A. H.; Yusoff, N. A.; Madun, A.; Tajudin, S. A. A.; Zahari, M. N. H.; Chik, T. N. T.; Rahman, N. A.; Annuar, Y. M. N.
2018-04-01
Peak Particle Velocity is one of the important term to show the level of the vibration amplitude especially traveling wave by distance. Vibration measurement using triaxial accelerometer is needed to obtain accurate value of PPV however limited by the size and the available channel of the data acquisition module for detailed measurement. In this paper, an attempt to estimate accurate PPV has been made by using only a triaxial accelerometer together with multiple single axis accelerometer for the ground vibration measurement. A field test was conducted on soft ground using nine single axis accelerometers and a triaxial accelerometer installed at nine receiver location R1 to R9. Based from the obtained result, the method shows convincing similarity between actual PPV with the calculated PPV with error ratio 0.97. With the design method, vibration measurement equipment size can be reduced with fewer channel required.
Summary report of mission acceleration measurements for Spacehab-01, STS-57 launched 21 June 1993
NASA Technical Reports Server (NTRS)
Finley, Brian; Grodsinsky, Carlos; Delombard, Richard
1994-01-01
The maiden voyage of the commercial Spacehab laboratory module onboard the STS-57 mission was integrated with several accelerometer packages, one of which was the Space Acceleration Measurement System (SAMS). The June 21st 1993, launch was the seventh successful mission for the Office of Life and Microgravity Sciences and Application's (OLMSA) SAMS unit. This flight was also complemented by a second accelerometer system. The Three Dimensional Microgravity Accelerometer (3-DMA), a Code C funded acceleration measurement system, offering an on-orbit residual calibration as a reference for the unit's four triaxial accelerometers. The SAMS accelerometer unit utilized three remote triaxial sensor heads mounted on the forward Spacehab module bulkhead and on one centrally located experiment locker door. These triaxial heads had filter cut-offs set to 5, 50, and 1000 Hz. The mission also included other experiment specific accelerometer packages in various locations.
Systems and Methods for Determining Inertial Navigation System Faults
NASA Technical Reports Server (NTRS)
Bharadwaj, Raj Mohan (Inventor); Bageshwar, Vibhor L. (Inventor); Kim, Kyusung (Inventor)
2017-01-01
An inertial navigation system (INS) includes a primary inertial navigation system (INS) unit configured to receive accelerometer measurements from an accelerometer and angular velocity measurements from a gyroscope. The primary INS unit is further configured to receive global navigation satellite system (GNSS) signals from a GNSS sensor and to determine a first set of kinematic state vectors based on the accelerometer measurements, the angular velocity measurements, and the GNSS signals. The INS further includes a secondary INS unit configured to receive the accelerometer measurements and the angular velocity measurements and to determine a second set of kinematic state vectors of the vehicle based on the accelerometer measurements and the angular velocity measurements. A health management system is configured to compare the first set of kinematic state vectors and the second set of kinematic state vectors to determine faults associated with the accelerometer or the gyroscope based on the comparison.
Kinnunen, Tarja I; Tennant, Peter W G; McParlin, Catherine; Poston, Lucilla; Robson, Stephen C; Bell, Ruth
2011-06-27
Inexpensive, reliable objective methods are needed to measure physical activity (PA) in large scale trials. This study compared the number of pedometer step counts with accelerometer data in pregnant women in free-living conditions to assess agreement between these measures. Pregnant women (n = 58) with body mass index ≥25 kg/m(2) at median 13 weeks' gestation wore a GT1M Actigraph accelerometer and a Yamax Digi-Walker CW-701 pedometer for four consecutive days. The Spearman rank correlation coefficients were determined between pedometer step counts and various accelerometer measures of PA. Total agreement between accelerometer and pedometer step counts was evaluated by determining the 95% limits of agreement estimated using a regression-based method. Agreement between the monitors in categorising participants as active or inactive was assessed by determining Kappa. Pedometer step counts correlated moderately (r = 0.36 to 0.54) with most accelerometer measures of PA. Overall step counts recorded by the pedometer and the accelerometer were not significantly different (medians 5961 vs. 5687 steps/day, p = 0.37). However, the 95% limits of agreement ranged from -2690 to 2656 steps/day for the mean step count value (6026 steps/day) and changed substantially over the range of values. Agreement between the monitors in categorising participants to active and inactive varied from moderate to good depending on the criteria adopted. Despite statistically significant correlations and similar median step counts, the overall agreement between pedometer and accelerometer step counts was poor and varied with activity level. Pedometer and accelerometer steps cannot be used interchangeably in overweight and obese pregnant women.
Detection of falls using accelerometers and mobile phone technology.
Lee, Raymond Y W; Carlisle, Alison J
2011-11-01
to study the sensitivity and specificity of fall detection using mobile phone technology. an experimental investigation using motion signals detected by the mobile phone. the research was conducted in a laboratory setting, and 18 healthy adults (12 males and 6 females; age = 29 ± 8.7 years) were recruited. each participant was requested to perform three trials of four different types of simulated falls (forwards, backwards, lateral left and lateral right) and eight other everyday activities (sit-to-stand, stand-to-sit, level walking, walking up- and downstairs, answering the phone, picking up an object and getting up from supine). Acceleration was measured using two devices, a mobile phone and an independent accelerometer attached to the waist of the participants. Bland-Altman analysis shows a higher degree of agreement between the data recorded by the two devices. Using individual upper and lower detection thresholds, the specificity and sensitivity for mobile phone were 0.81 and 0.77, respectively, and for external accelerometer they were 0.82 and 0.96, respectively. fall detection using a mobile phone is a feasible and highly attractive technology for older adults, especially those living alone. It may be best achieved with an accelerometer attached to the waist, which transmits signals wirelessly to a phone.
Citizen sensors for SHM: use of accelerometer data from smartphones.
Feng, Maria; Fukuda, Yoshio; Mizuta, Masato; Ozer, Ekin
2015-01-29
Ubiquitous smartphones have created a significant opportunity to form a low-cost wireless Citizen Sensor network and produce big data for monitoring structural integrity and safety under operational and extreme loads. Such data are particularly useful for rapid assessment of structural damage in a large urban setting after a major event such as an earthquake. This study explores the utilization of smartphone accelerometers for measuring structural vibration, from which structural health and post-event damage can be diagnosed. Widely available smartphones are tested under sinusoidal wave excitations with frequencies in the range relevant to civil engineering structures. Large-scale seismic shaking table tests, observing input ground motion and response of a structural model, are carried out to evaluate the accuracy of smartphone accelerometers under operational, white-noise and earthquake excitations of different intensity. Finally, the smartphone accelerometers are tested on a dynamically loaded bridge. The extensive experiments show satisfactory agreements between the reference and smartphone sensor measurements in both time and frequency domains, demonstrating the capability of the smartphone sensors to measure structural responses ranging from low-amplitude ambient vibration to high-amplitude seismic response. Encouraged by the results of this study, the authors are developing a citizen-engaging and data-analytics crowdsourcing platform towards a smartphone-based Citizen Sensor network for structural health monitoring and post-event damage assessment applications.
Ehlers, Diane K; Huberty, Jennifer; Buman, Matthew; Hooker, Steven; Todd, Michael; de Vreede, Gert-Jan
2016-03-01
Commercially available mobile and Internet technologies present a promising opportunity to feasibly conduct ecological momentary assessment (EMA). The purpose of this study was to describe a novel EMA protocol administered on middle-aged women's smartphones via text messaging and mobile Internet. Women (N = 9; mean age = 46.2 ± 8.2 y) received 35 text message prompts to a mobile survey assessing activity, self-worth, and self-efficacy over 14 days. Prompts were scheduled and surveys were administered using commercial, Internet-based programs. Prompting was tailored to each woman's daily wake/sleep schedule. Women concurrently wore a wrist-worn accelerometer. Feasibility was assessed via survey completion, accelerometer wear, participant feedback, and researcher notes. Of 315 prompted surveys, 287 responses were valid (91.1%). Average completion time was 1.52 ± 1.03 minutes. One participant's activity data were excluded due to accelerometer malfunction, resulting in complete data from 8 participants (n = 252 [80.0%] valid observations). Women reported the survey was easily and quickly read/completed. However, most thought the accelerometer was inconvenient. High completion rates and perceived usability suggest capitalizing on widely available technology and tailoring prompting schedules may optimize EMA in middle-aged women. However, researchers may need to carefully select objective monitors to maintain data validity while limiting participant burden.
Display-And-Alarm Circuit For Accelerometer
NASA Technical Reports Server (NTRS)
Bozeman, Richard J., Jr.
1995-01-01
Compact accelerometer assembly consists of commercial accelerometer retrofit with display-and-alarm circuit. Provides simple means for technician attending machine to monitor vibrations. Also simpifies automatic safety shutdown by providing local alarm or shutdown signal when vibration exceeds preset level.
Risteska Stojkoska, Biljana; Standl, Marie; Schulz, Holger
2017-01-01
Background Assessment of health benefits associated with physical activity depend on the activity duration, intensity and frequency, therefore their correct identification is very valuable and important in epidemiological and clinical studies. The aims of this study are: to develop an algorithm for automatic identification of intended jogging periods; and to assess whether the identification performance is improved when using two accelerometers at the hip and ankle, compared to when using only one at either position. Methods The study used diarized jogging periods and the corresponding accelerometer data from thirty-nine, 15-year-old adolescents, collected under field conditions, as part of the GINIplus study. The data was obtained from two accelerometers placed at the hip and ankle. Automated feature engineering technique was performed to extract features from the raw accelerometer readings and to select a subset of the most significant features. Four machine learning algorithms were used for classification: Logistic regression, Support Vector Machines, Random Forest and Extremely Randomized Trees. Classification was performed using only data from the hip accelerometer, using only data from ankle accelerometer and using data from both accelerometers. Results The reported jogging periods were verified by visual inspection and used as golden standard. After the feature selection and tuning of the classification algorithms, all options provided a classification accuracy of at least 0.99, independent of the applied segmentation strategy with sliding windows of either 60s or 180s. The best matching ratio, i.e. the length of correctly identified jogging periods related to the total time including the missed ones, was up to 0.875. It could be additionally improved up to 0.967 by application of post-classification rules, which considered the duration of breaks and jogging periods. There was no obvious benefit of using two accelerometers, rather almost the same performance could be achieved from either accelerometer position. Conclusions Machine learning techniques can be used for automatic activity recognition, as they provide very accurate activity recognition, significantly more accurate than when keeping a diary. Identification of jogging periods in adolescents can be performed using only one accelerometer. Performance-wise there is no significant benefit from using accelerometers on both locations. PMID:28880923
Montoye, Alexander H K; Begum, Munni; Henning, Zachary; Pfeiffer, Karin A
2017-02-01
This study had three purposes, all related to evaluating energy expenditure (EE) prediction accuracy from body-worn accelerometers: (1) compare linear regression to linear mixed models, (2) compare linear models to artificial neural network models, and (3) compare accuracy of accelerometers placed on the hip, thigh, and wrists. Forty individuals performed 13 activities in a 90 min semi-structured, laboratory-based protocol. Participants wore accelerometers on the right hip, right thigh, and both wrists and a portable metabolic analyzer (EE criterion). Four EE prediction models were developed for each accelerometer: linear regression, linear mixed, and two ANN models. EE prediction accuracy was assessed using correlations, root mean square error (RMSE), and bias and was compared across models and accelerometers using repeated-measures analysis of variance. For all accelerometer placements, there were no significant differences for correlations or RMSE between linear regression and linear mixed models (correlations: r = 0.71-0.88, RMSE: 1.11-1.61 METs; p > 0.05). For the thigh-worn accelerometer, there were no differences in correlations or RMSE between linear and ANN models (ANN-correlations: r = 0.89, RMSE: 1.07-1.08 METs. Linear models-correlations: r = 0.88, RMSE: 1.10-1.11 METs; p > 0.05). Conversely, one ANN had higher correlations and lower RMSE than both linear models for the hip (ANN-correlation: r = 0.88, RMSE: 1.12 METs. Linear models-correlations: r = 0.86, RMSE: 1.18-1.19 METs; p < 0.05), and both ANNs had higher correlations and lower RMSE than both linear models for the wrist-worn accelerometers (ANN-correlations: r = 0.82-0.84, RMSE: 1.26-1.32 METs. Linear models-correlations: r = 0.71-0.73, RMSE: 1.55-1.61 METs; p < 0.01). For studies using wrist-worn accelerometers, machine learning models offer a significant improvement in EE prediction accuracy over linear models. Conversely, linear models showed similar EE prediction accuracy to machine learning models for hip- and thigh-worn accelerometers and may be viable alternative modeling techniques for EE prediction for hip- or thigh-worn accelerometers.
Lightweight, Miniature Inertial Measurement System
NASA Technical Reports Server (NTRS)
Tang, Liang; Crassidis, Agamemnon
2012-01-01
A miniature, lighter-weight, and highly accurate inertial navigation system (INS) is coupled with GPS receivers to provide stable and highly accurate positioning, attitude, and inertial measurements while being subjected to highly dynamic maneuvers. In contrast to conventional methods that use extensive, groundbased, real-time tracking and control units that are expensive, large, and require excessive amounts of power to operate, this method focuses on the development of an estimator that makes use of a low-cost, miniature accelerometer array fused with traditional measurement systems and GPS. Through the use of a position tracking estimation algorithm, onboard accelerometers are numerically integrated and transformed using attitude information to obtain an estimate of position in the inertial frame. Position and velocity estimates are subject to drift due to accelerometer sensor bias and high vibration over time, and so require the integration with GPS information using a Kalman filter to provide highly accurate and reliable inertial tracking estimations. The method implemented here uses the local gravitational field vector. Upon determining the location of the local gravitational field vector relative to two consecutive sensors, the orientation of the device may then be estimated, and the attitude determined. Improved attitude estimates further enhance the inertial position estimates. The device can be powered either by batteries, or by the power source onboard its target platforms. A DB9 port provides the I/O to external systems, and the device is designed to be mounted in a waterproof case for all-weather conditions.
System Wide Joint Position Sensor Fault Tolerance in Robot Systems Using Cartesian Accelerometers
NASA Technical Reports Server (NTRS)
Aldridge, Hal A.; Juang, Jer-Nan
1997-01-01
Joint position sensors are necessary for most robot control systems. A single position sensor failure in a normal robot system can greatly degrade performance. This paper presents a method to obtain position information from Cartesian accelerometers without integration. Depending on the number and location of the accelerometers. the proposed system can tolerate the loss of multiple position sensors. A solution technique suitable for real-time implementation is presented. Simulations were conducted using 5 triaxial accelerometers to recover from the loss of up to 4 joint position sensors on a 7 degree of freedom robot moving in general three dimensional space. The simulations show good estimation performance using non-ideal accelerometer measurements.
Rodríguez-Lelis, Jose Maria; Mata, Dagoberto Tolosa; Vargas-Treviño, Marciano; Navarro-Torres, Jose; Piña-Piña, Gilberto; Abundez-Pliego, Arturo
2010-08-01
In the present work, based on high frequency wavelet analysis of dynamic signals of mechanical systems, a multiple-resolution wavelet analysis is carried out, to the signal obtained from an accelerometer mounted on the structure of a hip prosthesis wearing test device. The prostheses employed had a femoral head made of aluminum oxide and the acetabular cup of ultra-high-molecular-weight polyethylene. The first two aluminum oxide femoral heads were coated with diamond-like carbon and a third one was tested without coating and used as a reference. The coating was carried out by triboadhesion. Tests results showed that maximum vibration amplitude reached after 32 hr for the coated prostheses was 0.2 g. The noncoated prosthesis amplitude presented was 0.75 g in the same time interval. These values were attributed to wear damage on the surface of the prostheses, indicating that thin film DLC coating caused an increase of stiffness on the surface and therefore an increase in wear resistance approximately of 314%.
A low-noise MEMS accelerometer for unattended ground sensor applications
NASA Astrophysics Data System (ADS)
Speller, Kevin E.; Yu, Duli
2004-09-01
A low-noise micro-machined servo accelerometer has been developed for use in Unattended Ground Sensors (UGS). Compared to conventional coil-and-magnet based velocity transducers, this Micro-Electro-Mechanical System (MEMS) accelerometer offers several key benefits for battlefield monitoring. Many UGS require a compass to determine deployment orientation with respect to magnetic North. This orientation information is critical for determining the bearing of incoming signals. Conventional sensors with sensing technology based on a permanent magnet can cause interference with a compass when used in close proximity. This problem is solved with a MEMS accelerometer which does not require any magnetic materials. Frequency information below 10 Hz is valuable for identification of signal sources. Conventional seismometers used in UGS are typically limited in frequency response from 20 to 200 Hz. The MEMS accelerometer has a flat frequency response from DC to 5 kHz. The wider spectrum of signals received improves detection, classification and monitoring on the battlefield. The DC-coupled output of the MEMS accelerometer also has the added benefit of providing tilt orientation data for the deployed UGS. Other performance parameters of the MEMS accelerometer that are important to UGS such as size, weight, shock survivability, phase response, distortion, and cross-axis rejection will be discussed. Additionally, field test data from human footsteps recorded with the MEMS accelerometer will be presented.
An Investigation into Quantifying Micron-G Changes in a Gravitational Field of 1G
NASA Technical Reports Server (NTRS)
Gauthier, Richard R.; Gilbert, John A.
1997-01-01
This project called for the development of an accelerometer designed to be used in conjunction with gravity shielding experiments. The device had to measure local gravitational changes on the order of a few micro-G's (micron-G) with a spatial resolution greater than one measurement per ten square centimeters. Measurements had to be made at a minimum rate of two per second. Tasks included the design, development and demonstration of a prototype. The deliverable consisted of three copies of this final report. The study resulted in the development of a Transversely Suspended Accelerometer (TSA) which met all of the technical specifications. Different generations of the device were demonstrated to NASA/MSFC personnel as they were developed. The final prototype is available for further demonstration and future use. The study draws attention to the fact that the magnetic fields required to produce gravitational shielding may result in apparent decreases in the weights of suspended objects on the order of those attributed to the effect itself. This observation reinforces the need to quantify the influences of the magnetic field on any measurement device used to study gravitational shielding. This task was accomplished for the TSA.
Lee, Youngbum; Kim, Jinkwon; Son, Muntak; Lee, Myoungho
2007-01-01
This research implements wireless accelerometer sensor module and algorithm to determine wearer's posture, activity and fall. Wireless accelerometer sensor module uses ADXL202, 2-axis accelerometer sensor (Analog Device). And using wireless RF module, this module measures accelerometer signal and shows the signal at ;Acceloger' viewer program in PC. ADL algorithm determines posture, activity and fall that activity is determined by AC component of accelerometer signal and posture is determined by DC component of accelerometer signal. Those activity and posture include standing, sitting, lying, walking, running, etc. By the experiment for 30 subjects, the performance of implemented algorithm was assessed, and detection rate for postures, motions and subjects was calculated. Lastly, using wireless sensor network in experimental space, subject's postures, motions and fall monitoring system was implemented. By the simulation experiment for 30 subjects, 4 kinds of activity, 3 times, fall detection rate was calculated. In conclusion, this system can be application to patients and elders for activity monitoring and fall detection and also sports athletes' exercise measurement and pattern analysis. And it can be expected to common person's exercise training and just plaything for entertainment.
NASA Astrophysics Data System (ADS)
Cochran, E. S.; Lawrence, J. F.; Christensen, C. M.; Chung, A. I.; Neighbors, C.; Saltzman, J.
2010-12-01
The Quake-Catcher Network (QCN) involves the community in strong motion data collection by utilizing volunteer computing techniques and low-cost MEMS accelerometers. Volunteer computing provides a mechanism to expand strong-motion seismology with minimal infrastructure costs, while promoting community participation in science. Micro-Electro-Mechanical Systems (MEMS) triaxial accelerometers can be attached to a desktop computer via USB and are internal to many laptops. Preliminary shake table tests show the MEMS accelerometers can record high-quality seismic data with instrument response similar to research-grade strong-motion sensors. QCN began distributing sensors and software to K-12 schools and the general public in April 2008 and has grown to roughly 1500 stations worldwide. We also recently tested whether sensors could be quickly deployed as part of a Rapid Aftershock Mobilization Program (RAMP) following the 2010 M8.8 Maule, Chile earthquake. Volunteers are recruited through media reports, web-based sensor request forms, as well as social networking sites. Using data collected to date, we examine whether a distributed sensing network can provide valuable seismic data for earthquake detection and characterization while promoting community participation in earthquake science. We utilize client-side triggering algorithms to determine when significant ground shaking occurs and this metadata is sent to the main QCN server. On average, trigger metadata are received within 1-10 seconds from the observation of a trigger; the larger data latencies are correlated with greater server-station distances. When triggers are detected, we determine if the triggers correlate to others in the network using spatial and temporal clustering of incoming trigger information. If a minimum number of triggers are detected then a QCN-event is declared and an initial earthquake location and magnitude is estimated. Initial analysis suggests that the estimated locations and magnitudes are similar to those reported in regional and global catalogs. As the network expands, it will become increasingly important to provide volunteers access to the data they collect, both to encourage continued participation in the network and to improve community engagement in scientific discourse related to seismic hazard. In the future, we hope to provide access to both images and raw data from seismograms in formats accessible to the general public through existing seismic data archives (e.g. IRIS, SCSN) and/or through the QCN project website. While encouraging community participation in seismic data collection, we can extend the capabilities of existing seismic networks to rapidly detect and characterize strong motion events. In addition, the dense waveform observations may provide high-resolution ground shaking information to improve source imaging and seismic risk assessment.
NASA Astrophysics Data System (ADS)
Jackson, Michael; Passmore, Paul; Zimakov, Leonid; Raczka, Jared
2014-05-01
One of the fundamental requirements of an Earthquake Early Warning (EEW) system (and other mission critical applications) is to quickly detect and process the information from the strong motion event, i.e. event detection and location, magnitude estimation, and the peak ground motion estimation at the defined targeted site, thus allowing the civil protection authorities to provide pre-programmed emergency response actions: Slow down or stop rapid transit trains and high-speed trains; shutoff of gas pipelines and chemical facilities; stop elevators at the nearest floor; send alarms to hospitals, schools and other civil institutions. An important question associated with the EEW system is: can we measure displacements in real time with sufficient accuracy? Scientific GNSS networks are moving towards a model of real-time data acquisition, storage integrity, and real-time position and displacement calculations. This new paradigm allows the integration of real-time, high-rate GNSS displacement information with acceleration and velocity data to create very high-rate displacement records. The mating of these two instruments allows the creation of a new, very high-rate (200 Hz) displacement observable that has the full-scale displacement characteristics of GNSS and high-precision dynamic motions of seismic technologies. It is envisioned that these new observables can be used for earthquake early warning studies and other mission critical applications, such as volcano monitoring, building, bridge and dam monitoring systems. REF TEK a Division of Trimble has developed the integrated GNSS/Accelerograph system, model 160-09SG, which consists of REF TEK's fourth generation electronics, a 147-01 high-resolution ANSS Class A accelerometer, and Trimble GNSS receiver and antenna capable of real time, on board Precise Point Positioning (PPP) techniques with satellite clock and orbit corrections delivered to the receiver directly via L-band satellite communications. The test we conducted with the 160-09SG Recorder is focused on the characteristics of GNSS and seismic sensors in high dynamic environments, including historic earthquakes replicated on a shake table, over a range of displacements and frequencies. The main goals of the field tests are to explore the optimum integration of these sensors from a filtering perspective including simple harmonic impulses over varying frequencies and amplitudes and under the dynamic conditions of various earthquake scenarios.
Rectilinear accelerometer possesses self- calibration feature
NASA Technical Reports Server (NTRS)
Henderson, R. B.
1966-01-01
Rectilinear accelerometer operates from an ac source with a phase-sensitive ac voltage output proportional to the applied accelerations. The unit includes an independent circuit for self-test which provides a sensor output simulating an acceleration applied to the sensitive axis of the accelerometer.
Feature selection for elderly faller classification based on wearable sensors.
Howcroft, Jennifer; Kofman, Jonathan; Lemaire, Edward D
2017-05-30
Wearable sensors can be used to derive numerous gait pattern features for elderly fall risk and faller classification; however, an appropriate feature set is required to avoid high computational costs and the inclusion of irrelevant features. The objectives of this study were to identify and evaluate smaller feature sets for faller classification from large feature sets derived from wearable accelerometer and pressure-sensing insole gait data. A convenience sample of 100 older adults (75.5 ± 6.7 years; 76 non-fallers, 24 fallers based on 6 month retrospective fall occurrence) walked 7.62 m while wearing pressure-sensing insoles and tri-axial accelerometers at the head, pelvis, left and right shanks. Feature selection was performed using correlation-based feature selection (CFS), fast correlation based filter (FCBF), and Relief-F algorithms. Faller classification was performed using multi-layer perceptron neural network, naïve Bayesian, and support vector machine classifiers, with 75:25 single stratified holdout and repeated random sampling. The best performing model was a support vector machine with 78% accuracy, 26% sensitivity, 95% specificity, 0.36 F1 score, and 0.31 MCC and one posterior pelvis accelerometer input feature (left acceleration standard deviation). The second best model achieved better sensitivity (44%) and used a support vector machine with 74% accuracy, 83% specificity, 0.44 F1 score, and 0.29 MCC. This model had ten input features: maximum, mean and standard deviation posterior acceleration; maximum, mean and standard deviation anterior acceleration; mean superior acceleration; and three impulse features. The best multi-sensor model sensitivity (56%) was achieved using posterior pelvis and both shank accelerometers and a naïve Bayesian classifier. The best single-sensor model sensitivity (41%) was achieved using the posterior pelvis accelerometer and a naïve Bayesian classifier. Feature selection provided models with smaller feature sets and improved faller classification compared to faller classification without feature selection. CFS and FCBF provided the best feature subset (one posterior pelvis accelerometer feature) for faller classification. However, better sensitivity was achieved by the second best model based on a Relief-F feature subset with three pressure-sensing insole features and seven head accelerometer features. Feature selection should be considered as an important step in faller classification using wearable sensors.
Elhakeem, Ahmed; Hannam, Kimberly; Deere, Kevin C; Hartley, April; Clark, Emma M; Moss, Charlotte; Edwards, Mark H; Dennison, Elaine; Gaysin, Tim; Kuh, Diana; Wong, Andrew; Fox, Kenneth R; Cooper, Cyrus; Cooper, Rachel; Tobias, Jon H
2017-12-01
High impact physical activity (PA) is thought to benefit bone. We examined associations of lifetime walking and weight bearing exercise with accelerometer-measured high impact and overall PA in later life. Data were from 848 participants (66.2% female, mean age = 72.4 years) from the Cohort for Skeletal Health in Bristol and Avon, Hertfordshire Cohort Study and MRC National Survey of Health and Development. Acceleration peaks from seven-day hip-worn accelerometer recordings were used to derive counts of high impact and overall PA. Walking and weight bearing exercise up to age 18, between 18-29, 30-49 and since age 50 were recalled using questionnaires. Responses in each age category were dichotomised and cumulative scores derived. Linear regression was used for analysis. Greater lifetime walking was related to higher overall, but not high impact PA, whereas greater lifetime weight bearing exercise was related to higher overall and high impact PA. For example, fully-adjusted differences in log-overall and log-high impact PA respectively for highest versus lowest lifetime scores were: walking [0.224 (0.087, 0.362) and 0.239 (- 0.058, 0.536)], and weight bearing exercise [0.754 (0.432, 1.076) and 0.587 (0.270, 0.904)]. For both walking and weight bearing exercise, associations were strongest in the 'since age 50' category. Those reporting the most walking and weight bearing exercise since age 50 had highest overall and high impact PA, e.g. fully-adjusted difference in log-high impact PA versus least walking and weight bearing exercise = 0.588 (0.226, 0.951). Promoting walking and weight bearing exercise from midlife may help increase potentially osteogenic PA levels in later life.
Acoustic emission studies of large advanced composite rocket motor cases.
NASA Technical Reports Server (NTRS)
Robinson, E. Y.
1973-01-01
Acoustic emission (AE) patterns were measured during pressure testing of advanced composite rocket motor cases made of boron/epoxy and graphite/epoxy. Both accelerometers and high frequency AE transducers were used, and both frequency spectrum and amplitude distribution were studied. The AE patterns suggest that precursor emission might be used in certain cases to anticipate failure. The technique of hold-cycle AE monitoring was also evaluated and could become a valuable decision gate for test continuation/termination. Data presented show similarity of accelerometers and AE transducer responses despite the different frequency response, and suggest that structural AE phenomena are broadband.
Lithium tri borate (LiB3O5) embedded polymer electret for mechanical sensing application
NASA Astrophysics Data System (ADS)
Murugan, S.; Praveen, E.; Prasad, M. V. N.; Jayakumar, K.
2017-05-01
Lithium tri borate (LiB3O5) particles were synthesized by precipitation assisted high temperature solid state reaction. The particles were embedded in chitosan polymer and used as an electret. This electret was characterized for the suitability as a sensing element in vibration accelerometer. It is observed that LiB3O5 embedded electret exhibiting piezoelectric property. The electret is also giving an isolation of > 999 MΩ at 100 Vdc, 250 Vdc, 500 Vdc and 1kVdc confirms compatible for intrinsically safe sensing alternative in vibration accelerometer.
2011-01-01
Background Inexpensive, reliable objective methods are needed to measure physical activity (PA) in large scale trials. This study compared the number of pedometer step counts with accelerometer data in pregnant women in free-living conditions to assess agreement between these measures. Methods Pregnant women (n = 58) with body mass index ≥25 kg/m2 at median 13 weeks' gestation wore a GT1M Actigraph accelerometer and a Yamax Digi-Walker CW-701 pedometer for four consecutive days. The Spearman rank correlation coefficients were determined between pedometer step counts and various accelerometer measures of PA. Total agreement between accelerometer and pedometer step counts was evaluated by determining the 95% limits of agreement estimated using a regression-based method. Agreement between the monitors in categorising participants as active or inactive was assessed by determining Kappa. Results Pedometer step counts correlated moderately (r = 0.36 to 0.54) with most accelerometer measures of PA. Overall step counts recorded by the pedometer and the accelerometer were not significantly different (medians 5961 vs. 5687 steps/day, p = 0.37). However, the 95% limits of agreement ranged from -2690 to 2656 steps/day for the mean step count value (6026 steps/day) and changed substantially over the range of values. Agreement between the monitors in categorising participants to active and inactive varied from moderate to good depending on the criteria adopted. Conclusions Despite statistically significant correlations and similar median step counts, the overall agreement between pedometer and accelerometer step counts was poor and varied with activity level. Pedometer and accelerometer steps cannot be used interchangeably in overweight and obese pregnant women. PMID:21703033
Raiber, Lilian; Christensen, Rebecca A G; Jamnik, Veronica K; Kuk, Jennifer L
2017-01-01
The objective of this study was to explore whether accelerometer thresholds that are adjusted to account for differences in body mass influence discrepancies between self-report and accelerometer-measured physical activity (PA) volume for individuals with overweight and obesity. We analyzed 6164 adults from the National Health and Nutrition Examination Survey between 2003-2006. Established accelerometer thresholds were adjusted to account for differences in body mass to produce a similar energy expenditure (EE) rate as individuals with normal weight. Moderate-, vigorous-, and moderate- to vigorous-intensity PA (MVPA) durations were measured using established and adjusted accelerometer thresholds and compared with self-report. Durations of self-report were longer than accelerometer-measured MVPA using established thresholds (normal weight: 57.8 ± 2.4 vs 9.0 ± 0.5 min/day, overweight: 56.1 ± 2.7 vs 7.4 ± 0.5 min/day, and obesity: 46.5 ± 2.2 vs 3.7 ± 0.3 min/day). Durations of subjective and objective PA were negatively associated with body mass index (BMI) (P < 0.05). Using adjusted thresholds increased MVPA durations, and reduced discrepancies between accelerometer and self-report measures for overweight and obese groups by 6.0 ± 0.3 min/day and 17.7 ± 0.8 min/day, respectively (P < 0.05). Using accelerometer thresholds that represent equal EE rates across BMI categories reduced the discrepancies between durations of subjective and objective PA for overweight and obese groups. However, accelerometer-measured PA generally remained shorter than durations of self-report within all BMI categories. Further research may be necessary to improve analytical approaches when using objective measures of PA for individuals with overweight or obesity.
Hip and Wrist Accelerometer Algorithms for Free-Living Behavior Classification.
Ellis, Katherine; Kerr, Jacqueline; Godbole, Suneeta; Staudenmayer, John; Lanckriet, Gert
2016-05-01
Accelerometers are a valuable tool for objective measurement of physical activity (PA). Wrist-worn devices may improve compliance over standard hip placement, but more research is needed to evaluate their validity for measuring PA in free-living settings. Traditional cut-point methods for accelerometers can be inaccurate and need testing in free living with wrist-worn devices. In this study, we developed and tested the performance of machine learning (ML) algorithms for classifying PA types from both hip and wrist accelerometer data. Forty overweight or obese women (mean age = 55.2 ± 15.3 yr; BMI = 32.0 ± 3.7) wore two ActiGraph GT3X+ accelerometers (right hip, nondominant wrist; ActiGraph, Pensacola, FL) for seven free-living days. Wearable cameras captured ground truth activity labels. A classifier consisting of a random forest and hidden Markov model classified the accelerometer data into four activities (sitting, standing, walking/running, and riding in a vehicle). Free-living wrist and hip ML classifiers were compared with each other, with traditional accelerometer cut points, and with an algorithm developed in a laboratory setting. The ML classifier obtained average values of 89.4% and 84.6% balanced accuracy over the four activities using the hip and wrist accelerometer, respectively. In our data set with average values of 28.4 min of walking or running per day, the ML classifier predicted average values of 28.5 and 24.5 min of walking or running using the hip and wrist accelerometer, respectively. Intensity-based cut points and the laboratory algorithm significantly underestimated walking minutes. Our results demonstrate the superior performance of our PA-type classification algorithm, particularly in comparison with traditional cut points. Although the hip algorithm performed better, additional compliance achieved with wrist devices might justify using a slightly lower performing algorithm.
Ziebart, Christina; Giangregorio, Lora M; Gibbs, Jenna C; Levine, Iris C; Tung, James; Laing, Andrew C
2017-06-14
A wide variety of accelerometer systems, with differing sensor characteristics, are used to detect impact loading during physical activities. The study examined the effects of system characteristics on measured peak impact loading during a variety of activities by comparing outputs from three separate accelerometer systems, and by assessing the influence of simulated reductions in operating range and sampling rate. Twelve healthy young adults performed seven tasks (vertical jump, box drop, heel drop, and bilateral single leg and lateral jumps) while simultaneously wearing three tri-axial accelerometers including a criterion standard laboratory-grade unit (Endevco 7267A) and two systems primarily used for activity-monitoring (ActiGraph GT3X+, GCDC X6-2mini). Peak acceleration (gmax) was compared across accelerometers, and errors resulting from down-sampling (from 640 to 100Hz) and range-limiting (to ±6g) the criterion standard output were characterized. The Actigraph activity-monitoring accelerometer underestimated gmax by an average of 30.2%; underestimation by the X6-2mini was not significant. Underestimation error was greater for tasks with greater impact magnitudes. gmax was underestimated when the criterion standard signal was down-sampled (by an average of 11%), range limited (by 11%), and by combined down-sampling and range-limiting (by 18%). These effects explained 89% of the variance in gmax error for the Actigraph system. This study illustrates that both the type and intensity of activity should be considered when selecting an accelerometer for characterizing impact events. In addition, caution may be warranted when comparing impact magnitudes from studies that use different accelerometers, and when comparing accelerometer outputs to osteogenic impact thresholds proposed in literature. Crown Copyright © 2017. Published by Elsevier Ltd. All rights reserved.
Application of deconvolution interferometry with both Hi-net and KiK-net data
NASA Astrophysics Data System (ADS)
Nakata, N.
2013-12-01
Application of deconvolution interferometry to wavefields observed by KiK-net, a strong-motion recording network in Japan, is useful for estimating wave velocities and S-wave splitting in the near surface. Using this technique, for example, Nakata and Snieder (2011, 2012) found changed in velocities caused by Tohoku-Oki earthquake in Japan. At the location of the borehole accelerometer of each KiK-net station, a velocity sensor is also installed as a part of a high-sensitivity seismograph network (Hi-net). I present a technique that uses both Hi-net and KiK-net records for computing deconvolution interferometry. The deconvolved waveform obtained from the combination of Hi-net and KiK-net data is similar to the waveform computed from KiK-net data only, which indicates that one can use Hi-net wavefields for deconvolution interferometry. Because Hi-net records have a high signal-to-noise ratio (S/N) and high dynamic resolution, the S/N and the quality of amplitude and phase of deconvolved waveforms can be improved with Hi-net data. These advantages are especially important for short-time moving-window seismic interferometry and deconvolution interferometry using later coda waves.
Contributions to the problem of piezoelectric accelerometer calibration. [using lock-in voltmeter
NASA Technical Reports Server (NTRS)
Jakab, I.; Bordas, A.
1974-01-01
After discussing the principal calibration methods for piezoelectric accelerometers, an experimental setup for accelerometer calibration by the reciprocity method is described It is shown how the use of a lock-in voltmeter eliminates errors due to viscous damping and electrical loading.
Murphy, Susan L
2009-02-01
Accelerometers are being increasingly used in studies of physical activity (PA) among older adults, however the use of these monitors requires some specialized knowledge and up-to-date information on technological innovations. The purpose of this review article is to provide researchers with a guide to some commonly-used accelerometers in order to better design and conduct PA research with older adults. A literature search was conducted to obtain all available literature on commonly-used accelerometers in older adult samples with specific attention to articles discussing research design. The use of accelerometers in older adults requires a basic understanding of the type being used, rationale for their placement, and attention to calibration when needed. The updated technology in some monitors should make study conduct less difficult, however comparison studies of the newer versus the older generation models will be needed. Careful considerations for design and conduct of accelerometer research as outlined in this review should help to enhance the quality and comparability of future research studies.
NASA Astrophysics Data System (ADS)
Bartoli, Claire; Hermawanto, Denny
2017-01-01
The results of a Pilot Study EURAMET.AUV.V-P1 between LNE (France) and RCM-LIPI (Indonesia) are reported. This bilateral comparison of sinusoidal vibration was organized after the implementation of various improvements at RCM-LIPI following a previous (unpublished) comparison that had revealed discrepancies in their results at frequencies above 5 kHz. The results of this Pilot Study, using the same accelerometers as the earlier comparison, demonstrate that the discrepancies at high frequencies have been resolved. For both the back-to-back and the single-ended accelerometers tested, the sensitivities of the RCM-LIPI and the LNE over the frequency range from 10 Hz to 10 kHz now agree within their declared uncertainties. Main text To reach the main text of this paper, click on Final Report. The final report has been peer-reviewed and approved for publication by the CCAUV.
Analysis of Movement, Orientation and Rotation-Based Sensing for Phone Placement Recognition
Durmaz Incel, Ozlem
2015-01-01
Phone placement, i.e., where the phone is carried/stored, is an important source of information for context-aware applications. Extracting information from the integrated smart phone sensors, such as motion, light and proximity, is a common technique for phone placement detection. In this paper, the efficiency of an accelerometer-only solution is explored, and it is investigated whether the phone position can be detected with high accuracy by analyzing the movement, orientation and rotation changes. The impact of these changes on the performance is analyzed individually and both in combination to explore which features are more efficient, whether they should be fused and, if yes, how they should be fused. Using three different datasets, collected from 35 people from eight different positions, the performance of different classification algorithms is explored. It is shown that while utilizing only motion information can achieve accuracies around 70%, this ratio increases up to 85% by utilizing information also from orientation and rotation changes. The performance of an accelerometer-only solution is compared to solutions where linear acceleration, gyroscope and magnetic field sensors are used, and it is shown that the accelerometer-only solution performs as well as utilizing other sensing information. Hence, it is not necessary to use extra sensing information where battery power consumption may increase. Additionally, I explore the impact of the performed activities on position recognition and show that the accelerometer-only solution can achieve 80% recognition accuracy with stationary activities where movement data are very limited. Finally, other phone placement problems, such as in-pocket and on-body detections, are also investigated, and higher accuracies, ranging from 88% to 93%, are reported, with an accelerometer-only solution. PMID:26445046
Analysis of Movement, Orientation and Rotation-Based Sensing for Phone Placement Recognition.
Incel, Ozlem Durmaz
2015-10-05
Phone placement, i.e., where the phone is carried/stored, is an important source of information for context-aware applications. Extracting information from the integrated smart phone sensors, such as motion, light and proximity, is a common technique for phone placement detection. In this paper, the efficiency of an accelerometer-only solution is explored, and it is investigated whether the phone position can be detected with high accuracy by analyzing the movement, orientation and rotation changes. The impact of these changes on the performance is analyzed individually and both in combination to explore which features are more efficient, whether they should be fused and, if yes, how they should be fused. Using three different datasets, collected from 35 people from eight different positions, the performance of different classification algorithms is explored. It is shown that while utilizing only motion information can achieve accuracies around 70%, this ratio increases up to 85% by utilizing information also from orientation and rotation changes. The performance of an accelerometer-only solution is compared to solutions where linear acceleration, gyroscope and magnetic field sensors are used, and it is shown that the accelerometer-only solution performs as well as utilizing other sensing information. Hence, it is not necessary to use extra sensing information where battery power consumption may increase. Additionally, I explore the impact of the performed activities on position recognition and show that the accelerometer-only solution can achieve 80% recognition accuracy with stationary activities where movement data are very limited. Finally, other phone placement problems, such as in-pocket and on-body detections, are also investigated, and higher accuracies, ranging from 88% to 93%, are reported, with an accelerometer-only solution.
C-arm rotation encoding with accelerometers.
Grzeda, Victor; Fichtinger, Gabor
2010-07-01
Fluoroscopic C-arms are being incorporated in computer-assisted interventions in increasing number. For these applications to work, the relative poses of imaging must be known. To find the pose, tracking methods such as optical cameras, electromagnetic trackers, and radiographic fiducials have been used-all hampered by significant shortcomings. We propose to recover the rotational pose of the C-arm using the angle-sensing ability of accelerometers, by exploiting the capability of the accelerometer to measure tilt angles. By affixing the accelerometer to a C-arm, the accelerometer tracks the C-arm pose during rotations of the C-arm. To demonstrate this concept, a C-arm analogue was constructed with a webcam device affixed to the C-arm model to mimic X-ray imaging. Then, measuring the offset between the accelerometer angle readings to the webcam pose angle, an angle correction equation (ACE) was created to properly tracking the C-arm rotational pose. Several tests were performed on the webcam C-arm model using the ACEs to tracking the primary and secondary angle rotations of the model. We evaluated the capability of linear and polynomial ACEs to tracking the webcam C-arm pose angle for different rotational scenarios. The test results showed that the accelerometer could track the pose of the webcam C-arm model with an accuracy of less than 1.0 degree. The accelerometer was successful in sensing the C-arm's rotation with clinically adequate accuracy in the C-arm webcam model.
NASA Astrophysics Data System (ADS)
Jia, Jingqing; Feng, Shuo; Liu, Wei
2015-06-01
Optimal sensor placement (OSP) technique is a vital part of the field of structural health monitoring (SHM). Triaxial accelerometers have been widely used in the SHM of large-scale structures in recent years. Triaxial accelerometers must be placed in such a way that all of the important dynamic information is obtained. At the same time, the sensor configuration must be optimal, so that the test resources are conserved. The recommended practice is to select proper degrees of freedom (DOF) based upon several criteria and the triaxial accelerometers are placed at the nodes corresponding to these DOFs. This results in non-optimal placement of many accelerometers. A ‘triaxial accelerometer monkey algorithm’ (TAMA) is presented in this paper to solve OSP problems of triaxial accelerometers. The EFI3 measurement theory is modified and involved in the objective function to make it more adaptable in the OSP technique of triaxial accelerometers. A method of calculating the threshold value based on probability theory is proposed to improve the healthy rate of monkeys in a troop generation process. Meanwhile, the processes of harmony ladder climb and scanning watch jump are proposed and given in detail. Finally, Xinghai NO.1 Bridge in Dalian is implemented to demonstrate the effectiveness of TAMA. The final results obtained by TAMA are compared with those of the original monkey algorithm and EFI3 measurement, which show that TAMA can improve computational efficiency and get a better sensor configuration.
Aerodynamic force measurement on a large-scale model in a short duration test facility
NASA Astrophysics Data System (ADS)
Tanno, H.; Kodera, M.; Komuro, T.; Sato, K.; Takahasi, M.; Itoh, K.
2005-03-01
A force measurement technique has been developed for large-scale aerodynamic models with a short test time. The technique is based on direct acceleration measurements, with miniature accelerometers mounted on a test model suspended by wires. Measuring acceleration at two different locations, the technique can eliminate oscillations from natural vibration of the model. The technique was used for drag force measurements on a 3m long supersonic combustor model in the HIEST free-piston driven shock tunnel. A time resolution of 350μs is guaranteed during measurements, whose resolution is enough for ms order test time in HIEST. To evaluate measurement reliability and accuracy, measured values were compared with results from a three-dimensional Navier-Stokes numerical simulation. The difference between measured values and numerical simulation values was less than 5%. We conclude that this measurement technique is sufficiently reliable for measuring aerodynamic force within test durations of 1ms.
Modeling activity patterns of wildlife using time-series analysis.
Zhang, Jindong; Hull, Vanessa; Ouyang, Zhiyun; He, Liang; Connor, Thomas; Yang, Hongbo; Huang, Jinyan; Zhou, Shiqiang; Zhang, Zejun; Zhou, Caiquan; Zhang, Hemin; Liu, Jianguo
2017-04-01
The study of wildlife activity patterns is an effective approach to understanding fundamental ecological and evolutionary processes. However, traditional statistical approaches used to conduct quantitative analysis have thus far had limited success in revealing underlying mechanisms driving activity patterns. Here, we combine wavelet analysis, a type of frequency-based time-series analysis, with high-resolution activity data from accelerometers embedded in GPS collars to explore the effects of internal states (e.g., pregnancy) and external factors (e.g., seasonal dynamics of resources and weather) on activity patterns of the endangered giant panda ( Ailuropoda melanoleuca ). Giant pandas exhibited higher frequency cycles during the winter when resources (e.g., water and forage) were relatively poor, as well as during spring, which includes the giant panda's mating season. During the summer and autumn when resources were abundant, pandas exhibited a regular activity pattern with activity peaks every 24 hr. A pregnant individual showed distinct differences in her activity pattern from other giant pandas for several months following parturition. These results indicate that animals adjust activity cycles to adapt to seasonal variation of the resources and unique physiological periods. Wavelet coherency analysis also verified the synchronization of giant panda activity level with air temperature and solar radiation at the 24-hr band. Our study also shows that wavelet analysis is an effective tool for analyzing high-resolution activity pattern data and its relationship to internal and external states, an approach that has the potential to inform wildlife conservation and management across species.
Use of MEMs and optical sensors for closed loop heliostat control
NASA Astrophysics Data System (ADS)
Harper, Paul Julian; Dreijer, Janto; Malan, Karel; Larmuth, James; Gauche, Paul
2016-05-01
The Helio 100 project at STERG (Stellenbosch Solar Thermal Research Group) aims to help reduce the cost of Concentrated Solar Thermal plants by deploying large numbers of small (1x2 m) low cost heliostats. One of the methods employed to reduce the cost of the heliostat field is to have a field that requires no site preparation (grading, leveling, vegetation clearance) and no expensive foundations or concrete pouring for each individual heliostat base. This implies that the heliostat pod frames and vertical mounts might be slightly out of vertical, and the normal method of dead reckoning using accurately surveyed and aligned heliostat bases cannot be used. This paper describes a combination of MEMs and optical sensors on the back of the heliostat, that together with a simple machine learning approach, give accurate and reproducible azimuth and elevation information for the heliostat plane. Initial experiments were done with an android phone mounted on the back of a heliostat as it was a readily available platform combining accelerometers' and camera into one programmable package. It was found quite easy to determine the pointing angle of the heliostat to within 1 milliradian using the rear facing camera and correlating known heliostat angles with target image features on the ground. We also tested the accuracy at various image resolutions by halving the image size successively till the feature detection failed. This showed that even a VGA (640x480) resolution image could give mean errors of 1.5 milliradian. The optical technique is exceedingly simple and does not use any camera calibration, angular reconstruction or knowledge of heliostat drive geometry. We also tested the ability of the 3d accelerometers to determine angle, but this was coarser than the camera and only accurate to around 10 milliradians.
Comparisons of thermospheric density data sets and models
NASA Astrophysics Data System (ADS)
Doornbos, Eelco; van Helleputte, Tom; Emmert, John; Drob, Douglas; Bowman, Bruce R.; Pilinski, Marcin
During the past decade, continuous long-term data sets of thermospheric density have become available to researchers. These data sets have been derived from accelerometer measurements made by the CHAMP and GRACE satellites and from Space Surveillance Network (SSN) tracking data and related Two-Line Element (TLE) sets. These data have already resulted in a large number of publications on physical interpretation and improvement of empirical density modelling. This study compares four different density data sets and two empirical density models, for the period 2002-2009. These data sources are the CHAMP (1) and GRACE (2) accelerometer measurements, the long-term database of densities derived from TLE data (3), the High Accuracy Satellite Drag Model (4) run by Air Force Space Command, calibrated using SSN data, and the NRLMSISE-00 (5) and Jacchia-Bowman 2008 (6) empirical models. In describing these data sets and models, specific attention is given to differences in the geo-metrical and aerodynamic satellite modelling, applied in the conversion from drag to density measurements, which are main sources of density biases. The differences in temporal and spa-tial resolution of the density data sources are also described and taken into account. With these aspects in mind, statistics of density comparisons have been computed, both as a function of solar and geomagnetic activity levels, and as a function of latitude and local solar time. These statistics give a detailed view of the relative accuracy of the different data sets and of the biases between them. The differences are analysed with the aim at providing rough error bars on the data and models and pinpointing issues which could receive attention in future iterations of data processing algorithms and in future model development.
High-Quality Seismic Observations of Sonic Booms
NASA Technical Reports Server (NTRS)
Wurman, Gilead; Haering, Edward A., Jr.; Price, Michael J.
2011-01-01
The SonicBREWS project (Sonic Boom Resistant Earthquake Warning Systems) is a collaborative effort between Seismic Warning Systems, Inc. and NASA Dryden Flight Research Center. This project aims to evaluate the effects of sonic booms on Earthquake Warning Systems in order to prevent such systems from experiencing false alarms due to sonic booms. The airspace above the Antelope Valley, California includes the High Altitude Supersonic Corridor and the Black Mountain Supersonic Corridor. These corridors are among the few places in the US where supersonic flight is permitted, and sonic booms are commonplace in the Antelope Valley. One result of this project is a rich dataset of high-quality accelerometer records of sonic booms which can shed light on the interaction between these atmospheric phenomena and the solid earth. Nearly 100 sonic booms were recorded with low-noise triaxial MEMS accelerometers recording 1000 samples per second. The sonic booms had peak overpressures ranging up to approximately 10 psf and were recorded in three flight series in 2010 and 2011. Each boom was recorded with up to four accelerometers in various array configurations up to 100 meter baseline lengths, both in the built environment and the free field. All sonic booms were also recorded by nearby microphones. We present the results of the project in terms of the potential for sonic-boom-induced false alarms in Earthquake Warning Systems, and highlight some of the interesting features of the dataset.
Design of an accurate wireless data logger for vibration analysis with Android interface.
Blanco, J R; Menéndez, J; Ferrero, F J; Campo, J C; Valledor, M
2016-12-01
In this work a new accurate wireless data logger using the Android interface was developed to monitor vibrations at low-cost. The new data logger is completely autonomous and extremely reduced in size. This instrument enables data collection wirelessly and the ability to display it on any tablet or smartphone with operating system Android. The prototype allows the monitoring of any industrial system with minimal investment in material and installation costs. The data logger is capable of making 12.8 kSPS enough to sample up to 5 kHz signals. The basic specification of the data logger includes a high resolution 1-axis piezoelectric accelerometer with a working range of ±30 G. In addition to the acceleration measurements, temperature can also be recorded. The data logger was tested during a 6-month period in industrial environments. The details of the specific hardware and software design are described. The proposed technology can be easily transferred to many other areas of industrial monitoring.
Sensitive ultrasonic vibrometer for very low frequency applications.
Cretin, B; Vairac, P; Jachez, N; Pergaud, J
2007-08-01
Ultrasonic measurement of distance is a well-known low cost method but only a few vibrometers have been developed because sensitivity, spatial resolution, and bandwidth are not high or wide enough for standard laboratory applications. Nevertheless, compared to optical vibrometers, two interesting properties should be considered: very low frequency noise (0.1 Hz to 1 kHz) is reduced and the long wavelength enables rough surfaces to be investigated. Moreover, the ultrasonic probe is a differential sensor, without being a mechanical load for the vibrating structure as usual accelerometers based on contacting transducers are. The main specificity of the presented probe is its ultralow noise electronics including a 3/2 order phase locked loop which extracts the phase modulation related to the amplitude of the detected vibration. This article presents the main useful physical aspects and details of the actual probe. The given application is the measurement of the vibration of an isolated optical bench excited at very low frequency with an electromagnetic transducer.
NASA Technical Reports Server (NTRS)
Lekki, John; Tokars, Roger; Jaros, Dave; Riggs, M. Terrence; Evans, Kenneth P.; Gyekenyesi, Andrew
2009-01-01
A self diagnostic accelerometer system has been shown to be sensitive to multiple failure modes of charge mode accelerometers. These failures include sensor structural damage, an electrical open circuit and most importantly sensor detachment. In this paper, experimental work that was performed to determine the capabilities of a self diagnostic accelerometer system while operating in the presence of various levels of mechanical noise, emulating real world conditions, is presented. The results show that the system can successfully conduct a self diagnostic routine under these conditions.
Weikert, Madeline; Suh, Yoojin; Lane, Abbi; Sandroff, Brian; Dlugonski, Deirdre; Fernhall, Bo; Motl, Robert W
2012-06-01
Accelerometers are seemingly a criterion standard of real-life walking mobility and this is supported by assumptions and empirical data. This application would be strengthened by including objective measures of walking mobility along with a matched control sample for verifying specificity versus generality in accelerometer output. We compared associations among accelerometer output, walking mobility, and physical activity between persons with multiple sclerosis (MS) and controls without a neurological disorder. Sixty-six persons (33 MS, 33 matched controls) completed a battery of questionnaires, performed the six-minute walk (6MW) and timed-up-and-go (TUG), and wore an accelerometer for a 7-day period. After this period, participants completed the Godin Leisure-Time Exercise Questionnaire (GLTEQ) and International Physical Activity Questionnaire (IPAQ). Accelerometer output was significantly correlated with only mobility measures (6MW, ρ=.78; TUG, ρ=-.68) in MS, whereas it correlated with both mobility (6MW, ρ=.58; TUG, ρ=-.49) and physical activity (GLTEQ, ρ=.56; IPAQ, ρ=.53) measures in controls. Regression analysis indicated that only 6MW explained variance in accelerometer output in MS (β=.65, R(2)=.43). These findings support the possibility that accelerometers primarily and specifically measure real-life walking mobility, not physical activity, in persons with MS. Copyright © 2011 IPEM. Published by Elsevier Ltd. All rights reserved.
Meinert, Ilka; Brown, Niklas; Alt, Wilfried
2016-01-01
Achilles tendon injuries are known to commonly occur in runners. During running repeated impacts are transferred in axial direction along the lower leg, therefore possibly affecting the oscillation behavior of the Achilles tendon. The purpose of the present study was to explore the effects of different footwear modifications and different ground conditions (over ground versus treadmill) on oscillations at the Achilles tendon. Oscillations were measured in 20 male runners using two tri-axial accelerometers. Participants ran in three different shoe types on a treadmill and over ground. Data analysis was limited to stance phase and performed in time and frequency space. Statistical comparison was conducted between oscillations in vertical and horizontal direction, between running shoes and between ground conditions (treadmill versus over ground running). Differences in the oscillation behavior could be detected between measurement directions with peak accelerations in the vertical being lower than those in the horizontal direction, p < 0.01. Peak accelerations occurred earlier at the distal accelerometer than at the proximal one, p < 0.01. Average normalized power differed between running shoes (p < 0.01) with harder damping material resulting in higher power values. Little to no power attenuation was found between the two accelerometers. Oscillation behavior of the Achilles tendon is not influenced by ground condition. Differences in shoe configurations may lead to variations in running technique and impact forces and therefore result in alterations of the vibration behavior at the Achilles tendon. The absence of power attenuation may have been caused by either a short distance between the two accelerometers or high stiffness of the tendon. High stiffness of the tendon will lead to complete transmission of the signal along the Achilles tendon and therefore no attenuation occurs.
Meinert, Ilka; Brown, Niklas; Alt, Wilfried
2016-01-01
Background Achilles tendon injuries are known to commonly occur in runners. During running repeated impacts are transferred in axial direction along the lower leg, therefore possibly affecting the oscillation behavior of the Achilles tendon. The purpose of the present study was to explore the effects of different footwear modifications and different ground conditions (over ground versus treadmill) on oscillations at the Achilles tendon. Methods Oscillations were measured in 20 male runners using two tri-axial accelerometers. Participants ran in three different shoe types on a treadmill and over ground. Data analysis was limited to stance phase and performed in time and frequency space. Statistical comparison was conducted between oscillations in vertical and horizontal direction, between running shoes and between ground conditions (treadmill versus over ground running). Results Differences in the oscillation behavior could be detected between measurement directions with peak accelerations in the vertical being lower than those in the horizontal direction, p < 0.01. Peak accelerations occurred earlier at the distal accelerometer than at the proximal one, p < 0.01. Average normalized power differed between running shoes (p < 0.01) with harder damping material resulting in higher power values. Little to no power attenuation was found between the two accelerometers. Oscillation behavior of the Achilles tendon is not influenced by ground condition. Conclusion Differences in shoe configurations may lead to variations in running technique and impact forces and therefore result in alterations of the vibration behavior at the Achilles tendon. The absence of power attenuation may have been caused by either a short distance between the two accelerometers or high stiffness of the tendon. High stiffness of the tendon will lead to complete transmission of the signal along the Achilles tendon and therefore no attenuation occurs. PMID:27010929
GRACE Accelerometer data transplant
NASA Astrophysics Data System (ADS)
Bandikova, T.; McCullough, C. M.; Kruizinga, G. L. H.
2017-12-01
The Gravity Recovery and Climate Experiment (GRACE) has recently celebrated its 15th anniversary. The aging of the satellites brings along new challenges for both mission operation and science data delivery. Since September 2016, the accelerometer (ACC) onboard GRACE-B has been permanently turned off in order to reduce the battery load. The absence of the information about the non-gravitational forces acting on the spacecraft dramatically decreases the accuracy of the monthly gravity field solutions. The missing GRACE-B accelerometer data, however, can be recovered from the GRACE-A accelerometer measurement with satisfactory accuracy. In the current GRACE data processing, simple ACC data transplant is used which includes only attitude and time correction. The full ACC data transplant, however, requires not only the attitude and time correction, but also modeling of the residual accelerations due to thruster firings, which is the most challenging part. The residual linear accelerations ("thruster spikes") are caused by thruster imperfections such as misalignment of thruster pair, force imbalance or differences in reaction time. The thruster spikes are one of the most dominant high-frequency signals in the ACC measurement. The shape and amplitude of the thruster spikes are unique for each thruster pair, for each firing duration (30 ms - 1000 ms), for each x,y,z component of the ACC linear acceleration, and for each spacecraft. In our approach, the thruster spike model is an analytical function obtained by inverse Laplace transform of the ACC transfer function. The model shape parameters (amplitude, width and time delay) are estimated using Least squares method. The ACC data transplant is validated for days when ACC data from both satellites were available. The fully transplanted data fits the original GRACE-B measurement very well. The full ACC data transplant results in significantly reduced high frequency noise compared to the simple ACC transplant (i.e. without thruster spike modeling). The full ACC data transplant is a promising solution, which will allow GRACE to deliver high quality science data despite the serious problems related to satellite aging.
Citizen Sensors for SHM: Use of Accelerometer Data from Smartphones
Feng, Maria; Fukuda, Yoshio; Mizuta, Masato; Ozer, Ekin
2015-01-01
Ubiquitous smartphones have created a significant opportunity to form a low-cost wireless Citizen Sensor network and produce big data for monitoring structural integrity and safety under operational and extreme loads. Such data are particularly useful for rapid assessment of structural damage in a large urban setting after a major event such as an earthquake. This study explores the utilization of smartphone accelerometers for measuring structural vibration, from which structural health and post-event damage can be diagnosed. Widely available smartphones are tested under sinusoidal wave excitations with frequencies in the range relevant to civil engineering structures. Large-scale seismic shaking table tests, observing input ground motion and response of a structural model, are carried out to evaluate the accuracy of smartphone accelerometers under operational, white-noise and earthquake excitations of different intensity. Finally, the smartphone accelerometers are tested on a dynamically loaded bridge. The extensive experiments show satisfactory agreements between the reference and smartphone sensor measurements in both time and frequency domains, demonstrating the capability of the smartphone sensors to measure structural responses ranging from low-amplitude ambient vibration to high-amplitude seismic response. Encouraged by the results of this study, the authors are developing a citizen-engaging and data-analytics crowdsourcing platform towards a smartphone-based Citizen Sensor network for structural health monitoring and post-event damage assessment applications. PMID:25643056
Quantitative Accelerated Life Testing of MEMS Accelerometers.
Bâzu, Marius; Gălăţeanu, Lucian; Ilian, Virgil Emil; Loicq, Jerome; Habraken, Serge; Collette, Jean-Paul
2007-11-20
Quantitative Accelerated Life Testing (QALT) is a solution for assessing thereliability of Micro Electro Mechanical Systems (MEMS). A procedure for QALT is shownin this paper and an attempt to assess the reliability level for a batch of MEMSaccelerometers is reported. The testing plan is application-driven and contains combinedtests: thermal (high temperature) and mechanical stress. Two variants of mechanical stressare used: vibration (at a fixed frequency) and tilting. Original equipment for testing at tiltingand high temperature is used. Tilting is appropriate as application-driven stress, because thetilt movement is a natural environment for devices used for automotive and aerospaceapplications. Also, tilting is used by MEMS accelerometers for anti-theft systems. The testresults demonstrated the excellent reliability of the studied devices, the failure rate in the"worst case" being smaller than 10 -7 h -1 .
NASA Technical Reports Server (NTRS)
Sharma, Ashok K.; Teverovksy, Alexander; Day, John H. (Technical Monitor)
2000-01-01
Microelectromechanical systems in MEMS is one of the fastest growing technologies in microelectronics, and is of great interest for military and aerospace applications. Accelerometers are the earliest and most developed representatives of MEMS. First demonstrated in 1979, micromachined accelerometers were used in automobile industry for air bag crash- sensing applications since 1990. In 1999, N4EMS accelerometers were used in NASA-JPL Mars Microprobe. The most developed accelerometers for airbag crash- sensing are rated for a full range of +/- 50 G. The range of sensitivity for accelerometers required for military or aerospace applications is much larger, varying from 20,000 G (to measure acceleration during gun and ballistic munition launches), and to 10(exp -6) G, when used as guidance sensors (to measure attitude and position of a spacecraft). The presence of moving parts on the surface of chip is specific to MEMS, and particularly, to accelerometers. This characteristic brings new reliability issues to micromachined accelerometers, including cyclic fatigue cracking of polysilicon cantilevers and springs, mechanical stresses that are caused by packaging and contamination in the internal cavity of the package. Studies of fatigue cracks initiation and growth in polysilicon showed that the fatigue damage may influence MEMS device performance, and the presence of water vapor significantly enhances crack initiation and growth. Environmentally induced failures, particularly, failures due to thermal cycling and mechanical shock are considered as one of major reliability concerns in MEMS. These environmental conditions are also critical for space applications of the parts. For example, the Mars pathfinder mission had experienced 80 mechanical shock events during the pyrotechnic separation processes.
Measurement of Impact Acceleration: Mouthpiece Accelerometer Versus Helmet Accelerometer
Higgins, Michael; Halstead, P. David; Snyder-Mackler, Lynn; Barlow, David
2007-01-01
Context: Instrumented helmets have been used to estimate impact acceleration imparted to the head during helmet impacts. These instrumented helmets may not accurately measure the actual amount of acceleration experienced by the head due to factors such as helmet-to-head fit. Objective: To determine if an accelerometer attached to a mouthpiece (MP) provides a more accurate representation of headform center of gravity (HFCOG) acceleration during impact than does an accelerometer attached to a helmet fitted on the headform. Design: Single-factor research design in which the independent variable was accelerometer position (HFCOG, helmet, MP) and the dependent variables were g and Severity Index (SI). Setting: Independent impact research laboratory. Intervention(s): The helmeted headform was dropped (n = 168) using a National Operating Committee on Standards for Athletic Equipment (NOCSAE) drop system from the standard heights and impact sites according to NOCSAE test standards. Peak g and SI were measured for each accelerometer position during impact. Main Outcome Measures: Upon impact, the peak g and SI were recorded for each accelerometer location. Results: Strong relationships were noted for HFCOG and MP measures, and significant differences were seen between HFCOG and helmet g measures and HFCOG and helmet SI measures. No statistically significant differences were noted between HFCOG and MP g and SI measures. Regression analyses showed a significant relationship between HFCOG and MP measures but not between HFCOG and helmet measures. Conclusions: Upon impact, MP acceleration (g) and SI measurements were closely related to and more accurate in measuring HFCOG g and SI than helmet measurements. The MP accelerometer is a valid method for measuring head acceleration. PMID:17597937
Measurement method of magnetic field for the wire suspended micro-pendulum accelerometer.
Lu, Yongle; Li, Leilei; Hu, Ning; Pan, Yingjun; Ren, Chunhua
2015-04-13
Force producer is one of the core components of a Wire Suspended Micro-Pendulum Accelerometer; and the stability of permanent magnet in the force producer determines the consistency of the acceleration sensor's scale factor. For an assembled accelerometer; direct measurement of magnetic field strength is not a feasible option; as the magnetometer probe cannot be laid inside the micro-space of the sensor. This paper proposed an indirect measurement method of the remnant magnetization of Micro-Pendulum Accelerometer. The measurement is based on the working principle of the accelerometer; using the current output at several different scenarios to resolve the remnant magnetization of the permanent magnet. Iterative Least Squares algorithm was used for the adjustment of the data due to nonlinearity of this problem. The calculated remnant magnetization was 1.035 T. Compared to the true value; the error was less than 0.001 T. The proposed method provides an effective theoretical guidance for measuring the magnetic field of the Wire Suspended Micro-Pendulum Accelerometer; correcting the scale factor and temperature influence coefficients; etc.
NASA Astrophysics Data System (ADS)
Kobayashi, T.; Okada, H.; Masuda, T.; Maeda, R.; Itoh, T.
2010-10-01
A digital output piezoelectric accelerometer is proposed to realize an ultra-low power consumption wireless sensor node. The accelerometer has patterned piezoelectric thin films (piezoelectric plates) electrically connected in series accompanied by CMOS switches at the end of some of the piezoelectric plates. The connected piezoelectric plates amplify the output voltage without the use of amplifiers. The CMOS switches turn on when the output voltage of the piezoelectric plates is higher than the CMOS threshold voltage. The piezoelectric accelerometer converts the acceleration into a number of on-state CMOS switches, which can be called the digital output. The proposed digital output piezoelectric accelerometer, using Pb(Zr, Ti)O3 (PZT) thin films as the piezoelectric material, was fabricated through a microelectromechanical system (MEMS) microfabrication process. The output voltage was found to be amplified by the number of connected piezoelectric plates. The DC output voltage obtained by using an AC to DC conversion circuit is proportional to the number of connections. The results show the potential for realizing the proposed digital output piezoelectric accelerometer.
Huang, Xiangqing; Deng, Zhongguang; Xie, Yafei; Fan, Ji; Hu, Chenyuan
2018-01-01
A method for automatic compensation of misalignment angles during matching the scale factors of two pairs of the accelerometers in developing the rotating accelerometer gravity gradient instrument (GGI) is proposed and demonstrated in this paper. The purpose of automatic scale factor matching of the four accelerometers in GGI is to suppress the common mode acceleration of the moving-based platforms. However, taking the full model equation of the accelerometer into consideration, the other two orthogonal axes which is the pendulous axis and the output axis, will also sense the common mode acceleration and reduce the suppression performance. The coefficients from the two axes to the output are δO and δP respectively, called the misalignment angles. The angle δO, coupling with the acceleration along the pendulous axis perpendicular to the rotational plane, will not be modulated by the rotation and gives little contribution to the scale factors matching. On the other hand, because of coupling with the acceleration along the centripetal direction in the rotating plane, the angle δP would produce a component with 90 degrees phase delay relative to the scale factor component. Hence, the δP component coincides exactly with the sensitive direction of the orthogonal accelerometers. To improve the common mode acceleration rejection, the misalignment angle δP is compensated by injecting a trimming current, which is proportional to the output of an orthogonal accelerometer, into the torque coil of the accelerometer during the scale factor matching. The experimental results show that the common linear acceleration suppression achieved three orders after the scale factors balance and five orders after the misalignment angles compensation, which is almost down to the noise level of the used accelerometers of 1~2 × 10−7 g/√Hz (1 g ≈ 9.8 m/s2). PMID:29670021
Huang, Xiangqing; Deng, Zhongguang; Xie, Yafei; Fan, Ji; Hu, Chenyuan; Tu, Liangcheng
2018-04-18
A method for automatic compensation of misalignment angles during matching the scale factors of two pairs of the accelerometers in developing the rotating accelerometer gravity gradient instrument (GGI) is proposed and demonstrated in this paper. The purpose of automatic scale factor matching of the four accelerometers in GGI is to suppress the common mode acceleration of the moving-based platforms. However, taking the full model equation of the accelerometer into consideration, the other two orthogonal axes which is the pendulous axis and the output axis, will also sense the common mode acceleration and reduce the suppression performance. The coefficients from the two axes to the output are δ O and δ P respectively, called the misalignment angles. The angle δ O , coupling with the acceleration along the pendulous axis perpendicular to the rotational plane, will not be modulated by the rotation and gives little contribution to the scale factors matching. On the other hand, because of coupling with the acceleration along the centripetal direction in the rotating plane, the angle δ P would produce a component with 90 degrees phase delay relative to the scale factor component. Hence, the δ P component coincides exactly with the sensitive direction of the orthogonal accelerometers. To improve the common mode acceleration rejection, the misalignment angle δ P is compensated by injecting a trimming current, which is proportional to the output of an orthogonal accelerometer, into the torque coil of the accelerometer during the scale factor matching. The experimental results show that the common linear acceleration suppression achieved three orders after the scale factors balance and five orders after the misalignment angles compensation, which is almost down to the noise level of the used accelerometers of 1~2 × 10 −7 g/√Hz (1 g ≈ 9.8 m/s²).
Rhudy, Matthew B; Mahoney, Joseph M
2018-04-01
The goal of this work is to compare the differences between various step counting algorithms using both accelerometer and gyroscope measurements from wrist and ankle-mounted sensors. Participants completed four different conditions on a treadmill while wearing an accelerometer and gyroscope on the wrist and the ankle. Three different step counting techniques were applied to the data from each sensor type and mounting location. It was determined that using gyroscope measurements allowed for better performance than the typically used accelerometers, and that ankle-mounted sensors provided better performance than those mounted on the wrist.
The State of the Industry and Research in Airborne Geophysics
NASA Astrophysics Data System (ADS)
Hodges, G.
2007-12-01
Development of airborne geophysical methods has tended to proceed in rushes of energy, when many new systems are developed for the same application simultaneously along many pathways. The tremendous growth of airborne EM through the '50s to '70s was followed by natural selection in the '80s and '90s down to two styles: fixed-wing aircraft with high-powered time domain systems (FTEM) offering depth of exploration but poor spatial resolution, and helicopter-borne frequency-domain systems (HFEM) offering the best resolution but poor depth of exploration. At the end of the '90s there was an incredible spurt of energy toward helicopter time domain development, spurred technological advances in electronics and materials. By 2007 there were 8 systems operational. Perhaps the most daring current research is toward airborne EM systems utilizing ambient EM fields as sources. Magnetic sensors are almost universally cesium-vapor total field sensors (0.01nT sampled at 0.1s). Because the limitation on target detection is ambient, in-band noise, there is little to gain from producing higher-sensitivity meters. Data quality improvements are being sought by measuring horizontal and vertical gradients more accurately. The new wave of research for magnetic surveys is the measurement of vector or tensor magnetic data with directional sensors, generally either fluxgates or SQUIDS. Magnetometers on autonomous aircraft are newly available. Gamma Ray Spectrometry surveys with sodium-iodide crystal detectors give good performance, and the low cost allows for large volumes to make up for the relatively low sensitivity. The last few years have seen development of new systems in which each crystal in the detector array is monitored, calibrated and stabilized individually using natural radiation. Airborne gravity systems available use the LaCoste zero-length pendulum, or orthogonal accelerometers. Separation of gravity from acceleration is generally done with platforms stabilized for both rotation and translation, and measurement of acceleration. Generally, solutions must be a trade-off between sensitivity and spatial resolution, restricting their application to the large structures of oil exploration. Airborne gravity gradiometry (AGG) achieves higher resolution and sensitivity with meters based on the system of accelerometers on spinning disks, implemented as horizontal gradiometers and as full tensor gradiometers. Putting the sensor on a helicopter improved the data S/N. An airship implementation promises to be a near-ideal platform, restricted by the payload limits. Many projects are on-going to develop new gravity gradiometers toward a goal of 1Eotvös sensitivity at 100m wavelength. Hyperspectral imaging measures the reflected light from the surface across a broad spectrum, originally from near-infrared through visible, but now often including thermal infrared. The research challenges for systems have been to stabilize the system sensitivities, correct for varying ambient light levels reflectance, and improve resolution without degrading signal strength. Data processing requires the determination of the mineral reflectance spectra that best fit the spectrum of each pixel, when each pixel will probably contain many minerals, or be partly covered by vegetation.
NASA Astrophysics Data System (ADS)
Villinger, H. W.; Gennerich, H.-H.; Fabian, M.
2009-04-01
The geophysical parameters of pressure, tilt, acceleration and temperature at the Logatchev Hydrothermal Vent Field (LHF) which is located in 3050m water depth at about 15Ë N at the Mid-Atlantic Ridge, were monitored with high resolution for more than two and a half years, from May 2005 until December 2007. An autonomously operating Ocean Bottom Pressure Station (OBP; resolution of 80 Pa in the first year, improved to 8 Pa afterwards, sampling period of 2 minutes in the first year, increased to 2 seconds afterwards) and a programmable Ocean Bottom Tiltmeter (OBT; resolution 1 rad, sampling period 6 seconds) measured local ocean-floor point motions derived from tilt and absolute pressure. In addition, vertical acceleration was measured using a MEMS accelerometer (resolution 10-5 m/s2, sampling rate 1.33 Hz) within the housing of the OBT. Numerous autonomous temperature loggers (resolution 0.001Ë C, sampling period 15 minutes) were installed at prominent places like mussel fields or soil fissures within the LHF. Time series are analyzed using Fourier-Transformation techniques but also using the novel approach called Empirical Mode Decomposition (EMD). Pressure records show a modulated background noise level with increased amplitudes lasting for several days to weeks, and most likely show signals generated by local earthquakes. Bottom water temperature has transients with peak-to-peak-amplitudes of up to 0.1Ë C, which correlate for a number of events directly with earthquake signals. A comparison of pressure, tilt, acceleration and temperature data events shows that all four records are correlated. For a few of those events a direct causal link can be firmly established. The study is funded by the Deutsche Forschungsgemeinschaft (DFG) and part of Priority Program 1144 ("From Mantle to Ocean: Energy-, Material- and Life-cycles at Spreading Axes").
Accelerometer telemetry system
NASA Technical Reports Server (NTRS)
Konigsberg, E. (Inventor)
1976-01-01
An accelerometer telemetry system incorporated in a finger ring is used for monitoring the motor responses of a subject. The system includes an accelerometer, battery, and transmitter and provides information to a remote receiver regarding hand movements of a subject wearing the ring, without the constraints of wires. Possible applications include the detection of fatigue from the hand movements of the wearer.
ERIC Educational Resources Information Center
Callaway, Andrew J.; Cobb, Jon E.
2012-01-01
Where as video cameras are a reliable and established technology for the measurement of kinematic parameters, accelerometers are increasingly being employed for this type of measurement due to their ease of use, performance, and comparatively low cost. However, the majority of accelerometer-based studies involve a single channel due to the…
ERIC Educational Resources Information Center
Floro, Josh N.; Dunton, Genevieve F.; Delfino, Ralph J.
2009-01-01
Convergent validity of accelerometer and electronic diary physical activity data was assessed in children with asthma. Sixty-two participants, ages 9-18 years, wore an accelerometer and reported their physical activity level in quarter-hour segments every 2 hr using the Ambulatory Diary Assessment (ADA). Moderate validity was found between…
Oreskovic, Nicolas M; Blossom, Jeff; Field, Alison E; Chiang, Sylvia R; Winickoff, Jonathan P; Kleinman, Ronald E
2012-05-01
National trends indicate that children and adolescents are not achieving sufficient levels of physical activity. Combining global positioning system (GPS) technology with accelerometers has the potential to provide an objective determination in locations where youth engage in physical activity. The aim of this study was to identify the optimal methods for collecting combined accelerometer and GPS data in youth, to best locate where children spend time and are physically active. A convenience sample of 24 mid-school children in Massachusetts was included. Accelerometers and GPS units were used to quantify and locate childhood physical activity over 5 weekdays and 2 weekend days. Accelerometer and GPS data were joined by time and mapped with a geographical information system (GIS) using ArcGIS software. Data were collected in winter, spring, summer in 2009-2010, collecting a total of 26,406 matched datapoints overall. Matched data yield was low (19.1% total), regardless of season (winter, 12.8%; spring, 30.1%; summer, 14.3%). Teacher-provided, pre-charged equipment yielded the most matched (30.1%; range: 10.1-52.3%) and greatest average days (6.1 days) of data. Across all seasons, children spent most of their time at home. Outdoor use patterns appeared to vary by season, with street use increasing in spring, and park and playground use increasing in summer. Children spent equal amounts of physical activity time at home and walking in the streets. Overall, the various methods for combining GPS and accelerometer data provided similarly low amounts of combined data. No combined GPS and accelerometer data collection method proved superior in every data return category, but use of GIS to map joined accelerometer and GPS data can demarcate childhood physical activity locations.
McGarty, Arlene M; Penpraze, Victoria; Melville, Craig A
2014-05-01
Many methodological questions and issues surround the use of accelerometers as a measure of physical activity during field-based research. To ensure overall research quality and the accuracy of results, methodological decisions should be based on study research questions. This paper aims to systematically review accelerometer use during field-based research in children and adolescents with intellectual disabilities. Medline, Embase, Cochrane Library, Web of Knowledge, PsycINFO, PubMed, and a thesis database (up to May 2013) were searched to identify relevant articles. Articles which used accelerometry-based monitors, quantified activity levels, and included ambulatory children and adolescents (≤ 18 years) with intellectual disabilities were included. Based on best practice guidelines, a form was developed to extract data based on 17 research components of accelerometer use. The search identified 429 articles. Ten full-text articles met the criteria and were included in the review. Many shortcomings in accelerometer use were identified, with the percentage of review criteria met ranging from 12% to 47%. Various methods of accelerometer use were reported, with most use decisions not based on population-specific research. However, a lack of measurement research, e.g., calibration/validation, for children and adolescents with intellectual disabilities is limiting the ability of field-based researchers to make to the most appropriate accelerometer use decisions. The methods of accelerometer use employed can have significant effects on the quality and validity of results produced, which researchers should be more aware of. To allow informed use decisions, there should be a greater focus on measurement research related to children and adolescents with intellectual disabilities. Copyright © 2014 Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Zheng, Shijie; Zhu, Yinian; Krishnaswamy, Sridhar
2012-04-01
Fiber-optic accelerometers have attracted great attention in recent years due to the fact that they have many advantages over electrical counterparts because all-fiber accelerometers have the capabilities for multiplexing to reduce cabling and to transmit signals over a long distance. They are also immune to electromagnetic interference. We propose and develop a compact and robust photonic crystal fiber (PCF) Mach-Zehnder interferometer (MZI) that can be implemented as an accelerometer for measurements of vibration and displacement. To excite core mode to couple out with cladding modes, two long-period gratings (LPGs) with identical transmission spectra are needed to be written in an endless single-mode PCF using a CO2 laser. The first LPG can couple a part of core mode to several cladding modes. After the light beams travel at different speeds over a certain length of the core and cladding, the cladding modes will be recoupled back to the core when they meet the second LPG, resulting in interference between the core mode and cladding modes. Dynamic strain is introduced to the PCF-MZI fiber segment that is bonded onto a spring-mass system. The shift of interference fringe can be measured by a photodetector, and the transformed analog voltage signal is proportional to the acceleration of the sensor head. Based on simulations of the PCF-MZI accelerometer, we can get a sensitivity of ~ 0.08 nm/g which is comparable with fiber Bragg grating (FBG) accelerometers. The proposed accelerometer has a capability of temperature insensitivity; therefore, no thermal-compensation scheme is required. Experimental results indicate that the PCF-MZI accelerometer may be a good candidate sensor for applications in civil engineering infrastructure and aeronautical platforms.
Validation of accelerometer wear and nonwear time classification algorithm.
Choi, Leena; Liu, Zhouwen; Matthews, Charles E; Buchowski, Maciej S
2011-02-01
the use of movement monitors (accelerometers) for measuring physical activity (PA) in intervention and population-based studies is becoming a standard methodology for the objective measurement of sedentary and active behaviors and for the validation of subjective PA self-reports. A vital step in PA measurement is the classification of daily time into accelerometer wear and nonwear intervals using its recordings (counts) and an accelerometer-specific algorithm. the purpose of this study was to validate and improve a commonly used algorithm for classifying accelerometer wear and nonwear time intervals using objective movement data obtained in the whole-room indirect calorimeter. we conducted a validation study of a wear or nonwear automatic algorithm using data obtained from 49 adults and 76 youth wearing accelerometers during a strictly monitored 24-h stay in a room calorimeter. The accelerometer wear and nonwear time classified by the algorithm was compared with actual wearing time. Potential improvements to the algorithm were examined using the minimum classification error as an optimization target. the recommended elements in the new algorithm are as follows: 1) zero-count threshold during a nonwear time interval, 2) 90-min time window for consecutive zero or nonzero counts, and 3) allowance of 2-min interval of nonzero counts with the upstream or downstream 30-min consecutive zero-count window for detection of artifactual movements. Compared with the true wearing status, improvements to the algorithm decreased nonwear time misclassification during the waking and the 24-h periods (all P values < 0.001). the accelerometer wear or nonwear time algorithm improvements may lead to more accurate estimation of time spent in sedentary and active behaviors.
Roscoe, Clare M P; James, Rob S; Duncan, Michael J
2017-08-01
This study sought to validate cut-points for use of wrist-worn GENEActiv accelerometer data, to analyse preschool children's (4 to 5 year olds) physical activity (PA) levels via calibration with oxygen consumption values (VO 2 ). This was a laboratory-based calibration study. Twenty-one preschool children, aged 4.7 ± 0.5 years old, completed six activities (ranging from lying supine to running) whilst wearing the GENEActiv accelerometers at two locations (left and right wrist), these being the participants' non-dominant and dominant wrist, and a Cortex face mask for gas analysis. VO 2 data was used for the assessment of criterion validity. Location specific activity intensity cut-points were established via receiver operator characteristic curve (ROC) analysis. The GENEActiv accelerometers, irrespective of their location, accurately discriminated between all PA intensities (sedentary, light, and moderate and above), with the dominant wrist monitor providing a slightly more precise discrimination at light PA and the non-dominant at the sedentary behaviour and moderate and above intensity levels (area under the curve (AUC) for non-dominant = 0.749-0.993, compared to AUC dominant = 0.760-0.988). This study establishes wrist-worn physical activity cut-points for the GENEActiv accelerometer in preschoolers. What is Known: • GENEActiv accelerometers have been validated as a PA measurement tool in adolescents and adults. • No study to date has validated the GENEActiv accelerometers in preschoolers. What is New: • Cut-points were determined for the wrist-worn GENEActiv accelerometer in preschoolers. • These cut-points can be used in future research to help classify and increase preschoolers' compliance rates with PA.
O'Neil, Margaret E; Fragala-Pinkham, Maria; Lennon, Nancy; George, Ameeka; Forman, Jeffrey; Trost, Stewart G
2016-01-01
Physical therapy for youth with cerebral palsy (CP) who are ambulatory includes interventions to increase functional mobility and participation in physical activity (PA). Thus, reliable and valid measures are needed to document PA in youth with CP. The purpose of this study was to evaluate the inter-instrument reliability and concurrent validity of 3 accelerometer-based motion sensors with indirect calorimetry as the criterion for measuring PA intensity in youth with CP. Fifty-seven youth with CP (mean age=12.5 years, SD=3.3; 51% female; 49.1% with spastic hemiplegia) participated. Inclusion criteria were: aged 6 to 20 years, ambulatory, Gross Motor Function Classification System (GMFCS) levels I through III, able to follow directions, and able to complete the full PA protocol. Protocol activities included standardized activity trials with increasing PA intensity (resting, writing, household chores, active video games, and walking at 3 self-selected speeds), as measured by weight-relative oxygen uptake (in mL/kg/min). During each trial, participants wore bilateral accelerometers on the upper arms, waist/hip, and ankle and a portable indirect calorimeter. Intraclass coefficient correlations (ICCs) were calculated to evaluate inter-instrument reliability (left-to-right accelerometer placement). Spearman correlations were used to examine concurrent validity between accelerometer output (activity and step counts) and indirect calorimetry. Friedman analyses of variance with post hoc pair-wise analyses were conducted to examine the validity of accelerometers to discriminate PA intensity across activity trials. All accelerometers exhibited excellent inter-instrument reliability (ICC=.94-.99) and good concurrent validity (rho=.70-.85). All accelerometers discriminated PA intensity across most activity trials. This PA protocol consisted of controlled activity trials. Accelerometers provide valid and reliable measures of PA intensity among youth with CP. © 2016 American Physical Therapy Association.
System for estimating fatigue damage
DOE Office of Scientific and Technical Information (OSTI.GOV)
LeMonds, Jeffrey; Guzzo, Judith Ann; Liu, Shaopeng
In one aspect, a system for estimating fatigue damage in a riser string is provided. The system includes a plurality of accelerometers which can be deployed along a riser string and a communications link to transmit accelerometer data from the plurality of accelerometers to one or more data processors in real time. With data from a limited number of accelerometers located at sensor locations, the system estimates an optimized current profile along the entire length of the riser including riser locations where no accelerometer is present. The optimized current profile is then used to estimate damage rates to individual risermore » components and to update a total accumulated damage to individual riser components. The number of sensor locations is small relative to the length of a deepwater riser string, and a riser string several miles long can be reliably monitored along its entire length by fewer than twenty sensor locations.« less
Geomorphic and hydrologic study of peak-flow management on the Cedar River, Washington
Magirl, Christopher S.; Gendaszek, Andrew S.; Czuba, Christiana R.; Konrad, Christopher P.; Marineau, Mathieu D.
2012-01-01
Assessing the linkages between high-flow events, geomorphic response, and effects on stream ecology is critical to river management. High flows on the gravel-bedded Cedar River in Washington are important to the geomorphic function of the river; however, high flows can deleteriously affect salmon embryos incubating in streambed gravels. A geomorphic analysis of the Cedar River showed evidence of historical changes in river form over time and quantified the effects of anthropogenic alterations to the river corridor. Field measurements with accelerometer scour monitors buried in the streambed provided insight into the depth and timing of streambed scour during high-flow events. Combined with a two-dimensional hydrodynamic model, the recorded accelerometer disturbances allowed the prediction of streambed disturbance at the burial depth of Chinook and sockeye salmon egg pockets for different peak discharges. Insight gained from these analyses led to the development of suggested monitoring metrics for an ongoing geomorphic monitoring program on the Cedar River.
NASA Astrophysics Data System (ADS)
Wang, Dai-Hua; Jia, Ping-Gang
2013-05-01
The principle of a fiber optic Fabry-Perot (F-P) accelerometer (FOFPA) system using the laser emission frequency modulated phase generated carrier (FMPGC) demodulation scheme is first described and experimentally demonstrated. The F-P cavity, which is constituted by placing the end face of a gradient-index lens in parallel with the reflector on the inertial mass, directly translates the inertial mass's displacement generated by the measured acceleration into phase shifts of the interference output from the F-P cavity. An FMPGC demodulation scheme based on the arctangent (Arctan) algorithm is adapted to demodulate the phase shifts. The sensing model for the FOFPA system using the FMPGC-Arctan demodulation scheme is established and the sensing characteristics are theoretically analyzed. On these bases, the FOFPA is designed and fabricated and a prototyping system is built and tested. The results indicate that: (1) the nonlinearity of the FOFPA system using the FMPGC-Arctan demodulation scheme is less than 0.58%, (2) the resonant frequency, on-axial sensitivity, and resolution are 393 Hz, 13.11 rad/g, and 450 μ, respectively, and (3) the maximum deviation of the phase sensitivity of the FOFPA within the temperature range of 30 to 80°C is 0.49 dB re 1 rad/g.
Tracking Positions and Attitudes of Mars Rovers
NASA Technical Reports Server (NTRS)
Ali, Khaled; vanelli, Charles; Biesiadecki, Jeffrey; Martin, Alejandro San; Maimone, Mark; Cheng, Yang; Alexander, James
2006-01-01
The Surface Attitude Position and Pointing (SAPP) software, which runs on computers aboard the Mars Exploration Rovers, tracks the positions and attitudes of the rovers on the surface of Mars. Each rover acquires data on attitude from a combination of accelerometer readings and images of the Sun acquired autonomously, using a pointable camera to search the sky for the Sun. Depending on the nature of movement commanded remotely by operators on Earth, the software propagates attitude and position by use of either (1) accelerometer and gyroscope readings or (2) gyroscope readings and wheel odometry. Where necessary, visual odometry is performed on images to fine-tune the position updates, particularly on high-wheel-slip terrain. The attitude data are used by other software and ground-based personnel for pointing a high-gain antenna, planning and execution of driving, and positioning and aiming scientific instruments.
Silicon microengineering for accelerometers
NASA Astrophysics Data System (ADS)
Satchell, D. W.
Silicon microengineering enables the excellent mechanical properties of silicon to be combined with electronic ones to produce accelerometers of good performance, small size and low cost. The design and fabrication of two types of analogue accelerometer, using this technique, are described. One employs implanted strain gauges to give a dc output, while the other has a strain-sensitive resonant structure which gives a varying frequency signal.
USDA-ARS?s Scientific Manuscript database
We know of no studies comparing parent-reported sleep with accelerometer-estimated sleep in their relation to paediatric adiposity. We examined: (i) the reliability of mother-reported sleep compared with accelerometer-estimated sleep; and (ii) the relationship between both sleep measures and child a...
Actogram analysis of free-flying migratory birds: new perspectives based on acceleration logging.
Bäckman, Johan; Andersson, Arne; Pedersen, Lykke; Sjöberg, Sissel; Tøttrup, Anders P; Alerstam, Thomas
2017-07-01
The use of accelerometers has become an important part of biologging techniques for large-sized birds with accelerometer data providing information about flight mode, wing-beat pattern, behaviour and energy expenditure. Such data show that birds using much energy-saving soaring/gliding flight like frigatebirds and swifts can stay airborne without landing for several months. Successful accelerometer studies have recently been conducted also for free-flying small songbirds during their entire annual cycle. Here we review the principles and possibilities for accelerometer studies in bird migration. We use the first annual actograms (for red-backed shrike Lanius collurio) to explore new analyses and insights that become possible with accelerometer data. Actogram data allow precise estimates of numbers of flights, flight durations as well as departure/landing times during the annual cycle. Annual and diurnal rhythms of migratory flights, as well as prolonged nocturnal flights across desert barriers are illustrated. The shifting balance between flight, rest and different intensities of activity throughout the year as revealed by actogram data can be used to analyse exertion levels during different phases of the life cycle. Accelerometer recording of the annual activity patterns of individual birds will open up a new dimension in bird migration research.
NASA Technical Reports Server (NTRS)
Blanchard, R. C.; Walberg, G. D.
1980-01-01
Results of an investigation to determine the full scale drag coefficient in the high speed, low density regime of the Viking lander capsule 1 entry vehicle are presented. The principal flight data used in the study were from onboard pressure, mass spectrometer, and accelerometer instrumentation. The hypersonic continuum flow drag coefficient was unambiguously obtained from pressure and accelerometer data; the free molecule flow drag coefficient was indirectly estimated from accelerometer and mass spectrometer data; the slip flow drag coefficient variation was obtained from an appropriate scaling of existing experimental sphere data. Comparison of the flight derived drag hypersonic continuum flow regime except for Reynolds numbers from 1000 to 100,000, for which an unaccountable difference between flight and ground test data of about 8% existed. The flight derived drag coefficients in the free molecule flow regime were considerably larger than those previously calculated with classical theory. The general character of the previously determined temperature profile was not changed appreciably by the results of this investigation; however, a slightly more symmetrical temperature variation at the highest altitudes was obtained.
Microscope in orbit calibration procedure for a test of the equivalence principle at 10(-15).
Pradels, G; Touboul, P
2003-01-01
The scientific objectives of the MICROSCOPE space mission impose a very fine calibration of the on-board accelerometers. However the required performance cannot be achieved on ground because of the presence of high disturbing sources. On-board the CHAMP satellite, accelerometers similar in the concept to the MICROSCOPE instrument, have already flown and analysis of the provided data then allowed to characterise the vibration environment at low altitude as well as the fluctuation of the drag. The requirements of the in-orbit calibration procedure for the MICROSCOPE instrument are demonstrated by modelling the expected applied acceleration signals with the developed analytic model of the mission. The proposed approach exploits the drag-free system of the satellite and the sensitivity of the accelerometers. A specific simulator of the attitude control system of the satellite has been developed and tests of the proposed solution are performed using nominal conditions or disturbing conditions as observed during the CHAMP mission. c2003 International Astronautical Federation. Published by Elsevier Science Ldt. All rights reserved.
High performance, accelerometer-based control of the Mini-MAST structure at Langley Research Center
NASA Technical Reports Server (NTRS)
Collins, Emmanuel G., Jr.; King, James A.; Phillips, Douglas J.; Hyland, David C.
1991-01-01
Many large space system concepts will require active vibration control to satisfy critical performance requirements such as line of sight pointing accuracy and constraints on rms surface roughness. In order for these concepts to become operational, it is imperative that the benefits of active vibration control be shown to be practical in ground based experiments. The results of an experiment shows the successful application of the Maximum Entropy/Optimal Projection control design methodology to active vibration control for a flexible structure. The testbed is the Mini-Mast structure at NASA-Langley and has features dynamically traceable to future space systems. To maximize traceability to real flight systems, the controllers were designed and implemented using sensors (four accelerometers and one rate gyro) that are actually mounted to the structure. Ground mounted displacement sensors that could greatly ease the control design task were available but were used only for performance evaluation. The use of the accelerometers increased the potential of destabilizing the system due to spillover effects and motivated the use of precompensation strategy to achieve sufficient compensator roll-off.
High performance, accelerometer-based control of the Mini-MAST structure
NASA Technical Reports Server (NTRS)
Collins, Emmanuel G., Jr.; King, James A.; Phillips, Douglas J.; Hyland, David C.
1992-01-01
Many large space system concepts will require active vibration control to satisfy critical performance requirements such as line of sight pointing accuracy and constraints on rms surface roughness. In order for these concepts to become operational, it is imperative that the benefits of active vibration control be shown to be practical in ground based experiments. The results of an experiment shows the successful application of the Maximum Entropy/Optical Projection control design methodology to active vibration control for a flexible structure. The testbed is the Mini-Mast structure at NASA-Langley and has features dynamically traceable to future space systems. To maximize traceability to real flight systems, the controllers were designed and implemented using sensors (four accelerometers and one rate gyro) that are actually mounted to the structure. Ground mounted displacement sensors that could greatly ease the control design task were available but were used only for performance evaluation. The use of the accelerometers increased the potential of destabilizing the system due to spillover effects and motivated the use of precompensation strategy to achieve sufficient compensator roll-off.
Sheikhaleh, Arash; Abedi, Kambiz; Jafari, Kian; Gholamzadeh, Reza
2016-11-10
In this paper, we propose what we believe is a novel sensitive micro-optoelectromechanical systems (MOEMS) accelerometer based on intensity modulation by using a one-dimensional photonic crystal. The optical sensing system of the proposed structure includes an air-dielectric multilayer photonic bandgap material, a laser diode (LD) light source, a typical photodiode (1550 nm) and a set of integrated optical waveguides. The proposed sensor provides several advantages, such as a relatively wide measurement range, good linearity in the whole measurement range, integration capability, negligible cross-axis sensitivity, high reliability, and low air-damping coefficient, which results in a wider frequency bandwidth for a fixed resonance frequency. Simulation results show that the functional characteristics of the sensor are as follows: a mechanical sensitivity of 119.21 nm/g, a linear measurement range of ±38g and a resonance frequency of 1444 Hz. Thanks to the above-mentioned characteristics, the proposed MOEMS accelerometer is suitable for a wide spectrum of applications, ranging from consumer electronics to aerospace and inertial navigation.
A Differential Resonant Accelerometer with Low Cross-Interference and Temperature Drift
Li, Bo; Zhao, Yulong; Li, Cun; Cheng, Rongjun; Sun, Dengqiang; Wang, Songli
2017-01-01
Presented in this paper is a high-performance resonant accelerometer with low cross-interference, low temperature drift and digital output. The sensor consists of two quartz double-ended tuning forks (DETFs) and a silicon substrate. A new differential silicon substrate is proposed to reduce the temperature drift and cross-interference from the undesirable direction significantly. The natural frequency of the quartz DETF is theoretically calculated, and then the axial stress on the vibration beams is verified through finite element method (FEM) under a 100 g acceleration which is loaded on x-axis, y-axis and z-axis, respectively. Moreover, sensor chip is wire-bonded to a printed circuit board (PCB) which contains two identical oscillating circuits. In addition, a steel shell is selected to package the sensor for experiments. Benefiting from the distinctive configuration of the differential structure, the accelerometer characteristics such as temperature drift and cross-interface are improved. The experimental results demonstrate that the cross-interference is lower than 0.03% and the temperature drift is about 18.16 ppm/°C. PMID:28106798
Validity of the global physical activity questionnaire (GPAQ) in Bangladesh.
Mumu, Shirin Jahan; Ali, Liaquat; Barnett, Anthony; Merom, Dafna
2017-08-10
Feasible and cost-effective as well as population specific instruments for monitoring physical activity (PA) levels are needed for the management and prevention of non-communicable diseases. The WHO-endorsed Global Physical Activity Questionnaire (GPAQ) has been widely used in developing countries, but the evidence base for its validity, particularly for rural populations, is still limited. The aim of the study was to validate GPAQ among rural and urban residents in Bangladesh. A total of 162 healthy participants of both genders aged 18-60 years were recruited from Satia village (n = 97) and Dhaka City (n = 65). Participants were invited to take part in the study and were asked to wear an accelerometer (GT3X) for 7 days, after which they were invited to answer the GPAQ in a face to face interview. Valid accelerometer data (i.e., ≥10 h of wear times over ≥3 days) were received from 155 participants (rural = 94, urban = 61). The mean age was 35 (SD = ±9) years, 55% were females and 19% of the participants had no schooling, which was higher in the rural area (21% vs 17%). The mean ± SD steps/day was 9998 ± 3936 (8658 ± 2788 and 12,063 ± 4534 for rural and urban respectively, p = 0.0001) and the mean ± SD daily moderate-to-vigorous physical activity (MVPA) was 58 ± 30 min (51 ± 26 for rural and 69 ± 34 for the urban, p = 0.001) for accelerometer. In case of GPAQ, rural residents reported significantly higher moderate work related PA (MET-minutes/week: 600 vs. 360 p = 0.02). Spearman correlation coefficients between GPAQ total MVPA MET-min/day and accelerometer MVPA min/day, counts per minute (CPM) or steps counts/day were acceptable for urban residents (rho: 0.46, 0.55 and 0.63, respectively; p < 0.01) but poor for rural residents. The overall correlation between the GPAQ and accelerometer for sitting was low (rho: 0.23; p < 0.001). GPAQ-Accelerometer correlation for MVPA was higher for females (rho: 0.42), ≤35 age group (rho: 0.31) and those with higher education attainment (rho: 0.48). The Bland-Altman plots illustrated bias towards over estimation of GPAQ MVPA with increased activity levels for urban and rural residents. GPAQ is an acceptable measure for physical activity surveillance in Bangladesh particularly for urban residents, women and people with high education. Given waist worn accelerometers do not capture the typical PA in rural context, further study using a physical activity diary and a combination of multiple sensors (e.g., wrist, ankle and waist worn accelerometers) to capture all movement is warranted among rural population with purposive sampling of all education levels.
Calibration of Swarm accelerometer data by GPS positioning and linear temperature correction
NASA Astrophysics Data System (ADS)
Bezděk, Aleš; Sebera, Josef; Klokočník, Jaroslav
2018-07-01
Swarm, a mission of the European Space Agency, consists of three satellites orbiting the Earth since November 2013. In addition to the instrumentation aimed at fulfilling the mission's main goal, which is the observation of Earth's magnetic field, each satellite carries a geodetic quality GPS receiver and an accelerometer. Initially put in a 500-km altitude, all Swarm spacecraft slowly decay due to the action of atmospheric drag. Atmospheric particles and radiation forces impinge on the satellite's surface and thus create the main part of the nongravitational force, which together with satellite-induced thrusts can be measured by space accelerometers. Unfortunately, the Swarm accelerometer data are heavily disturbed by the varying onboard temperature. We calibrate the accelerometer data against a calibration standard derived from observed GPS positions, while making use of the models to represent the forces of gravity origin. We show that this procedure can be extended to incorporate the temperature signal. The obtained calibrated accelerations are validated in several different ways; namely by (i) physically modelled nongravitational forces, by (ii) intercomparison of calibrated accelerometer data from two Swarm satellites flying side-by-side, and by (iii) good agreement of our calibrated signals with those released by ESA, obtained via a different approach for reducing temperature effects. Finally, the presented method is applied to the Swarm C accelerometer data set covering almost two years (July 2014-April 2016), which ESA recently released to scientific users.
A calibration protocol for population-specific accelerometer cut-points in children.
Mackintosh, Kelly A; Fairclough, Stuart J; Stratton, Gareth; Ridgers, Nicola D
2012-01-01
To test a field-based protocol using intermittent activities representative of children's physical activity behaviours, to generate behaviourally valid, population-specific accelerometer cut-points for sedentary behaviour, moderate, and vigorous physical activity. Twenty-eight children (46% boys) aged 10-11 years wore a hip-mounted uniaxial GT1M ActiGraph and engaged in 6 activities representative of children's play. A validated direct observation protocol was used as the criterion measure of physical activity. Receiver Operating Characteristics (ROC) curve analyses were conducted with four semi-structured activities to determine the accelerometer cut-points. To examine classification differences, cut-points were cross-validated with free-play and DVD viewing activities. Cut-points of ≤ 372, >2160 and >4806 counts • min(-1) representing sedentary, moderate and vigorous intensity thresholds, respectively, provided the optimal balance between the related needs for sensitivity (accurately detecting activity) and specificity (limiting misclassification of the activity). Cross-validation data demonstrated that these values yielded the best overall kappa scores (0.97; 0.71; 0.62), and a high classification agreement (98.6%; 89.0%; 87.2%), respectively. Specificity values of 96-97% showed that the developed cut-points accurately detected physical activity, and sensitivity values (89-99%) indicated that minutes of activity were seldom incorrectly classified as inactivity. The development of an inexpensive and replicable field-based protocol to generate behaviourally valid and population-specific accelerometer cut-points may improve the classification of physical activity levels in children, which could enhance subsequent intervention and observational studies.
Using Smartphones to Detect Earthquakes
NASA Astrophysics Data System (ADS)
Kong, Q.; Allen, R. M.
2012-12-01
We are using the accelerometers in smartphones to record earthquakes. In the future, these smartphones may work as a supplement network to the current traditional network for scientific research and real-time applications. Given the potential number of smartphones, and small separation of sensors, this new type of seismic dataset has significant potential provides that the signal can be separated from the noise. We developed an application for android phones to record the acceleration in real time. These records can be saved on the local phone or transmitted back to a server in real time. The accelerometers in the phones were evaluated by comparing performance with a high quality accelerometer while located on controlled shake tables for a variety of tests. The results show that the accelerometer in the smartphone can reproduce the characteristic of the shaking very well, even the phone left freely on the shake table. The nature of these datasets is also quite different from traditional networks due to the fact that smartphones are moving around with their owners. Therefore, we must distinguish earthquake signals from other daily use. In addition to the shake table tests that accumulated earthquake records, we also recorded different human activities such as running, walking, driving etc. An artificial neural network based approach was developed to distinguish these different records. It shows a 99.7% successful rate of distinguishing earthquakes from the other typical human activities in our database. We are now at the stage ready to develop the basic infrastructure for a smartphone seismic network.
NASA Astrophysics Data System (ADS)
Lebat, V.; Foulon, B.; Christophe, B.
2013-12-01
The GRACE FO mission, led by the JPL (Jet Propulsion Laboratory), is an Earth-orbiting gravity mission, continuation of the GRACE mission, that will produce an accurate model of the Earth's gravity field variation providing global climatic data during five year at least. The mission involves two satellites in a loosely controlled tandem formation, with a micro-wave link measuring the inter-satellites distance variation. Non-uniformities in the distribution of the Earth's mass cause the distance between the two satellites to vary. This variation is measured to recover gravity, after subtracting the non-gravitational contributors, as the residual drag. ONERA (the French Aerospace Lab) is developing, manufacturing and testing electrostatic accelerometers measuring this residual drag applied on the satellites. The accelerometer is composed of two main parts: the Sensor Unit (including the Sensor Unit Mechanics and the Front-End Electronic Unit) and the Interface Control Unit. In the Accelerometer Core, located in the Sensor Unit Mechanics, the proof mass is levitated and maintained in a center of an electrode cage by electrostatic forces. Thus, any drag acceleration applied on the satellite involves a variation on the servo-controlled electrostatic suspension of the mass. The voltage on the electrodes providing this electrostatic force is the measurement output of the accelerometer. The impact of the accelerometer defaults (geometry, electronic and parasitic forces) leads to bias, misalignment and scale factor error, non-linearity and noise. Some of these accelerometer defaults are characterized by tests with micro-gravity pendulum bench and with drops in ZARM catapult. Besides, a thermal stability is needed for the accelerometer core and front-end electronics to avoid bias and scale factor variation, and reached by a thermal box designed by Astrium, spacecraft manufacturer. The accelerometers are designed to endure the launch vibrations and the thermal environment at ground and in orbit. As the measure must be accurate, no sliding of the core must appear in regard of the accelerometer external reference. To ensure the thermal core stability, the electrode cage of the core is made of glass material (ULE), which is very critical, in particular due to the free motion of the proof-mass during the launch. To assess the design of the accelerometer in particular the critical parts of the core, specific analysis is realized to ensure mechanical behavior. The design of electrostatic accelerometer of the GRACE Follow-On mission benefits of the GRACE heritage, GOCE launched in 2009 and MICROSCOPE which will be launched in 2016, including some improvement to improve the performance, in particular the thermal sensitivity of the measurements. The Preliminary Design Review of electronics was achieved successfully on July 2013, and the PDR of the whole instrument is forecasted on November 2013. The integration of the Engineering Model will begin on October 2013 and its status will be presented.
Mechatronic design of haptic forceps for robotic surgery.
Rizun, P; Gunn, D; Cox, B; Sutherland, G
2006-12-01
Haptic feedback increases operator performance and comfort during telerobotic manipulation. Feedback of grasping pressure is critical in many microsurgical tasks, yet no haptic interface for surgical tools is commercially available. Literature on the psychophysics of touch was reviewed to define the spectrum of human touch perception and the fidelity requirements of an ideal haptic interface. Mechanical design and control literature was reviewed to translate the psychophysical requirements to engineering specification. High-fidelity haptic forceps were then developed through an iterative process between engineering and surgery. The forceps are a modular device that integrate with a haptic hand controller to add force feedback for tool actuation in telerobotic or virtual surgery. Their overall length is 153 mm and their mass is 125 g. A contact-free voice coil actuator generates force feedback at frequencies up to 800 Hz. Maximum force output is 6 N (2N continuous) and the force resolution is 4 mN. The forceps employ a contact-free magnetic position sensor as well as micro-machined accelerometers to measure opening/closing acceleration. Position resolution is 0.6 microm with 1.3 microm RMS noise. The forceps can simulate stiffness greater than 20N/mm or impedances smaller than 15 g with no noticeable haptic artifacts or friction. As telerobotic surgery evolves, haptics will play an increasingly important role. Copyright 2006 John Wiley & Sons, Ltd.
Improved Correction System for Vibration Sensitive Inertial Angle of Attack Measurement Devices
NASA Technical Reports Server (NTRS)
Crawford, Bradley L.; Finley, Tom D.
2000-01-01
Inertial angle of attack (AoA) devices currently in use at NASA Langley Research Center (LaRC) are subject to inaccuracies due to centrifugal accelerations caused by model dynamics, also known as sting whip. Recent literature suggests that these errors can be as high as 0.25 deg. With the current AoA accuracy target at LaRC being 0.01 deg., there is a dire need for improvement. With other errors in the inertial system (temperature, rectification, resolution, etc.) having been reduced to acceptable levels, a system is currently being developed at LaRC to measure and correct for the sting-whip-induced errors. By using miniaturized piezoelectric accelerometers and magnetohydrodynamic rate sensors, not only can the total centrifugal acceleration be measured, but yaw and pitch dynamics in the tunnel can also be characterized. These corrections can be used to determine a tunnel's past performance and can also indicate where efforts need to be concentrated to reduce these dynamics. Included in this paper are data on individual sensors, laboratory testing techniques, package evaluation, and wind tunnel test results on a High Speed Research (HSR) model in the Langley 16-Foot Transonic Wind Tunnel.
Fused smart sensor network for multi-axis forward kinematics estimation in industrial robots.
Rodriguez-Donate, Carlos; Osornio-Rios, Roque Alfredo; Rivera-Guillen, Jesus Rooney; Romero-Troncoso, Rene de Jesus
2011-01-01
Flexible manipulator robots have a wide industrial application. Robot performance requires sensing its position and orientation adequately, known as forward kinematics. Commercially available, motion controllers use high-resolution optical encoders to sense the position of each joint which cannot detect some mechanical deformations that decrease the accuracy of the robot position and orientation. To overcome those problems, several sensor fusion methods have been proposed but at expenses of high-computational load, which avoids the online measurement of the joint's angular position and the online forward kinematics estimation. The contribution of this work is to propose a fused smart sensor network to estimate the forward kinematics of an industrial robot. The developed smart processor uses Kalman filters to filter and to fuse the information of the sensor network. Two primary sensors are used: an optical encoder, and a 3-axis accelerometer. In order to obtain the position and orientation of each joint online a field-programmable gate array (FPGA) is used in the hardware implementation taking advantage of the parallel computation capabilities and reconfigurability of this device. With the aim of evaluating the smart sensor network performance, three real-operation-oriented paths are executed and monitored in a 6-degree of freedom robot.
Detecting Human Activity Using Acoustic, Seismic, Accelerometer, Video, and E-field Sensors
2011-09-01
Detecting Human Activity using Acoustic, Seismic, Accelerometer, Video, and E-field Sensors by Sarah H. Walker and Geoffrey H. Goldman...Adelphi, MD 20783-1197 ARL-TR-5729 September 2011 Detecting Human Activity using Acoustic, Seismic, Accelerometer, Video, and E-field Sensors...DD-MM-YYYY) September 2011 2. REPORT TYPE 3. DATES COVERED (From - To) 4. TITLE AND SUBTITLE Detecting Human Activity using Acoustic
Physical Activity and Adiposity Markers at Older Ages: Accelerometer Vs Questionnaire Data
Sabia, Séverine; Cogranne, Pol; van Hees, Vincent T.; Bell, Joshua A.; Elbaz, Alexis; Kivimaki, Mika; Singh-Manoux, Archana
2015-01-01
Objective Physical activity is critically important for successful aging, but its effect on adiposity markers at older ages is unclear as much of the evidence comes from self-reported data on physical activity. We assessed the associations of questionnaire-assessed and accelerometer-assessed physical activity with adiposity markers in older adults. Design/Setting/Participants This was a cross-sectional study on 3940 participants (age range 60-83 years) of the Whitehall II study who completed a 20-item physical activity questionnaire and wore a wrist-mounted accelerometer for 9 days in 2012 and 2013. Measurements Total physical activity was estimated using metabolic equivalent hours/week for the questionnaire and mean acceleration for the accelerometer. Time spent in moderate-and-vigorous physical activity (MVPA) was also assessed by questionnaire and accelerometer. Adiposity assessment included body mass index, waist circumference, and fat mass index. Fat mass index was calculated as fat mass/height² (kg/m²), with fat mass estimated using bioimpedance. Results Greater total physical activity was associated with lower adiposity for all adiposity markers in a dose-response manner. In men, the strength of this association was 2.4 to 2.8 times stronger with the accelerometer than with questionnaire data. In women, it was 1.9 to 2.3 times stronger. For MVPA, questionnaire data in men suggested no further benefit for adiposity markers past 1 hour/week of activity. This was not the case for accelerometer-assessed MVPA where, for example, compared with men undertaking <1 hour/week of accelerometer-assessed MVPA, waist circumference was 3.06 (95% confidence interval 2.06–4.06) cm lower in those performing MVPA 1–2.5 hours/week, 4.69 (3.47–5.91) cm lower in those undertaking 2.5–4 hours/week, and 7.11 (5.93–8.29) cm lower in those performing ≥4 hours/week. Conclusions The association of physical activity with adiposity markers in older adults was stronger when physical activity was assessed by accelerometer compared with questionnaire, suggesting that physical activity might be more important for adiposity than previously estimated. PMID:25752539
Layne, Charles S; Parker, Nathan H; Soltero, Erica G; Rosales Chavez, José; O'Connor, Daniel P; Gallagher, Martina R; Lee, Rebecca E
2015-09-18
Continuous monitoring technologies such as accelerometers and pedometers are the gold standard for physical activity (PA) measurement. However, inconsistencies in use, analysis, and reporting limit the understanding of dose-response relationships involving PA and the ability to make comparisons across studies and population subgroups. These issues are particularly detrimental to the study of PA across different ethnicities with different PA habits. This systematic review examined the inclusion of published guidelines involving data collection, processing, and reporting among articles using accelerometers or pedometers in Hispanic or Latino populations. English (PubMed; EbscoHost) and Spanish (SCIELO; Biblioteca Virtual en Salud) articles published between 2000 and 2013 using accelerometers or pedometers to measure PA among Hispanics or Latinos were identified through systematic literature searches. Of the 253 abstracts which were initially reviewed, 57 met eligibility criteria (44 accelerometer, 13 pedometer). Articles were coded and reviewed to evaluate compliance with recommended guidelines (N = 20), and the percentage of accelerometer and pedometer articles following each guideline were computed and reported. On average, 57.1 % of accelerometer and 62.2 % of pedometer articles reported each recommended guideline for data collection. Device manufacturer and model were reported most frequently, and provision of instructions for device wear in Spanish was reported least frequently. On average, 29.6 % of accelerometer articles reported each guideline for data processing. Definitions of an acceptable day for inclusion in analyses were reported most frequently, and definitions of an acceptable hour for inclusion in analyses were reported least frequently. On average, 18.8 % of accelerometer and 85.7 % of pedometer articles included each guideline for data reporting. Accelerometer articles most frequently included average number of valid days and least frequently included percentage of wear time. Inclusion of standard collection and reporting procedures in studies using continuous monitoring devices in Hispanic or Latino population is generally low. Lack of reporting consistency in continuous monitoring studies limits researchers' ability to compare studies or draw meaningful conclusions concerning amounts, quality, and benefits of PA among Hispanic or Latino populations. Reporting data collection, computation, and decision-making standards should be required. Improved interpretability would allow practitioners and researchers to apply scientific findings to promote PA.
Salisbury, Joseph P; Keshav, Neha U; Sossong, Anthony D
2018-01-01
Background Lightweight and portable devices that objectively measure concussion-related impairments could improve injury detection and critical decision-making in contact sports and the military, where brain injuries commonly occur but remain underreported. Current standard assessments often rely heavily on subjective methods such as symptom self-reporting. Head-mounted wearables, such as smartglasses, provide an emerging platform for consideration that could deliver the range of assessments necessary to develop a rapid and objective screen for brain injury. Standing balance assessment, one parameter that may inform a concussion diagnosis, could theoretically be performed quantitatively using current off-the-shelf smartglasses with an internal accelerometer. However, the validity of balance measurement using smartglasses has not been investigated. Objective This study aimed to perform preliminary validation of a smartglasses-based balance accelerometer measure (BAM) compared with the well-described and characterized waist-based BAM. Methods Forty-two healthy individuals (26 male, 16 female; mean age 23.8 [SD 5.2] years) participated in the study. Following the BAM protocol, each subject performed 2 trials of 6 balance stances while accelerometer and gyroscope data were recorded from smartglasses (Glass Explorer Edition). Test-retest reliability and correlation were determined relative to waist-based BAM as used in the National Institutes of Health’s Standing Balance Toolbox. Results Balance measurements obtained using a head-mounted wearable were highly correlated with those obtained through a waist-mounted accelerometer (Spearman rho, ρ=.85). Test-retest reliability was high (intraclass correlation coefficient, ICC2,1=0.85, 95% CI 0.81-0.88) and in good agreement with waist balance measurements (ICC2,1=0.84, 95% CI 0.80-0.88). Considering the normalized path length magnitude across all 3 axes improved interdevice correlation (ρ=.90) while maintaining test-retest reliability (ICC2,1=0.87, 95% CI 0.83-0.90). All subjects successfully completed the study, demonstrating the feasibility of using a head-mounted wearable to assess balance in a healthy population. Conclusions Balance measurements derived from the smartglasses-based accelerometer were consistent with those obtained using a waist-mounted accelerometer. Additional research is necessary to determine to what extent smartglasses-based accelerometry measures can detect balance dysfunction associated with concussion. However, given the potential for smartglasses to perform additional concussion-related assessments in an integrated, wearable platform, continued development and validation of a smartglasses-based balance assessment is warranted. This approach could lead to a wearable platform for real-time assessment of concussion-related impairments that could be further augmented with telemedicine capabilities to integrate professional clinical guidance. Smartglasses may be superior to fully immersive virtual reality headsets for this application, given their lighter weight and reduced likelihood of potential safety concerns. PMID:29362210
Iafolla, V; Lefevre, C; Fiorenza, E; Santoli, F; Nozzoli, S; Magnafico, C; Lucente, M; Lucchesi, D; Peron, R; Shapiro, I I; Glashow, S; Lorenzini, E C
2014-01-01
A cryogenic differential accelerometer has been developed to test the weak equivalence principle to a few parts in 10(15) within the framework of the general relativity accuracy test in an Einstein elevator experiment. The prototype sensor was designed to identify, address, and solve the major issues associated with various aspects of the experiment. This paper illustrates the measurements conducted on this prototype sensor to attain a high quality factor (Q ∼ 10(5)) at low frequencies (<20 Hz). Such a value is necessary for reducing the Brownian noise to match the target acceleration noise of 10(-14) g/√Hz, hence providing the desired experimental accuracy.
NASA Astrophysics Data System (ADS)
Barone, F.; Giordano, G.
2017-04-01
In this paper we present monolithic implementations of tunable mechanical seismometers and accelerometers (horizontal, vertical and angular) based on the UNISA Folded Pendulum configuration, protected by three international patents and commercially available. Typical characteristics are measurement band 10-7 / 1kHz, sensitivity down to ≍ 10-15 m/ √ Hz, directivity > 104, weight < 1.5 kg, dimensions < 10 cm, coupled to a large insensitivity to environmental noises and capability of operating in ultra high vacuum and cryogenic environments. Typical applications of this class of sensors are in the field of earthquake engineering, seismology, geophysics, civil engineering (buildings, bridges, dams, etc.), space (inertial guide).
Measuring moderate-intensity walking in older adults using the ActiGraph accelerometer.
Barnett, Anthony; van den Hoek, Daniel; Barnett, David; Cerin, Ester
2016-12-08
Accelerometry is the method of choice for objectively assessing physical activity in older adults. Many studies have used an accelerometer count cut point corresponding to 3 metabolic equivalents (METs) derived in young adults during treadmill walking and running with a resting metabolic rate (RMR) assumed at 3.5 mL · kg -1 · min -1 (corresponding to 1 MET). RMR is lower in older adults; therefore, their 3 MET level occurs at a lower absolute energy expenditure making the cut point derived from young adults inappropriate for this population. The few studies determining older adult specific moderate-to-vigorous intensity physical activity (MVPA) cut points had methodological limitations, such as not measuring RMR and using treadmill walking. This study determined a MVPA hip-worn accelerometer cut point for older adults using measured RMR and overground walking. Following determination of RMR, 45 older adults (mean age 70.2 ± 7 years, range 60-87.6 years) undertook an outdoor, overground walking protocol with accelerometer count and energy expenditure determined at five walking speeds. Mean RMR was 2.8 ± 0.6 mL · kg -1 · min -1 . The MVPA cut points (95% CI) determined using linear mixed models were: vertical axis 1013 (734, 1292) counts · min -1 ; vector magnitude 1924 (1657, 2192) counts · min -1 ; and walking speed 2.5 (2.2, 2.8) km · hr -1 . High levels of inter-individual variability in cut points were found. These MVPA accelerometer and speed cut points for walking, the most popular physical activity in older adults, were lower than those for younger adults. Using cut points determined in younger adults for older adult population studies is likely to underestimate time spent engaged in MVPA. In addition, prescription of walking speed based on the adult cut point is likely to result in older adults working at a higher intensity than intended.
NASA Astrophysics Data System (ADS)
McBride, William R.; McBride, Daniel R.
2016-08-01
The Daniel K. Inouye Solar Telescope (DKIST) will be the largest solar telescope in the world, with a 4-meter off-axis primary mirror and 16 meter rotating Coudé laboratory within the telescope pier. The off-axis design requires a mount similar to an 8-meter on-axis telescope. Both the telescope mount and the Coudé laboratory utilize a roller bearing technology in place of the more commonly used hydrostatic bearings. The telescope enclosure utilizes a crawler mechanism for the altitude axis. As these mechanisms have not previously been used in a telescope, understanding the vibration characteristics and the potential impact on the telescope image is important. This paper presents the methodology used to perform jitter measurements of the enclosure and the mount bearings and servo system in a high-noise environment utilizing seismic accelerometers and high dynamic-range data acquisition equipment, along with digital signal processing (DSP) techniques. Data acquisition and signal processing were implemented in MATLAB. In the factory acceptance testing of the telescope mount, multiple accelerometers were strategically located to capture the six axes-of-motion of the primary and secondary mirror dummies. The optical sensitivity analysis was used to map these mirror mount displacements and rotations into units of image motion on the focal plane. Similarly, tests were done with the Coudé rotator, treating the entire rotating instrument lab as a rigid body. Testing was performed by recording accelerometer data while the telescope control system performed tracking operations typical of various observing scenarios. The analysis of the accelerometer data utilized noise-averaging fast Fourier transform (FFT) routines, spectrograms, and periodograms. To achieve adequate dynamic range at frequencies as low as 3Hz, the use of special filters and advanced windowing functions were necessary. Numerous identical automated tests were compared to identify and select the data sets with the lowest level of external interference. Similar testing was performed on the telescope enclosure during the factory test campaign. The vibration of the enclosure altitude and azimuth mechanisms were characterized. This paper details jitter tests using accelerometers placed in locations that allowed the motion of the assemblies to be measured while the control system performed various moves typical of on-sky observations. The measurements were converted into the rigid body motion of the structures and mapped into image motion using the telescope's optical sensitivity analysis.
Micromachined force-balance feedback accelerometer with optical displacement detection
Nielson, Gregory N.; Langlois, Eric; Baker, Michael; Okandan, Murat; Anderson, Robert
2014-07-22
An accelerometer includes a proof mass and a frame that are formed in a handle layer of a silicon-on-an-insulator (SOI). The proof mass is separated from the frame by a back-side trench that defines a boundary of the proof mass. The accelerometer also includes a reflector coupled to a top surface of the proof mass. An optical detector is located above the reflector at the device side. The accelerometer further includes at least one suspension spring. The suspension spring has a handle anchor that extends downwards from the device side to the handle layer to mechanically support upward and downward movement of the proof mass relative to a top surface of the proof mass.
Hybridizing matter-wave and classical accelerometers
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lautier, J.; Volodimer, L.; Hardin, T.
2014-10-06
We demonstrate a hybrid accelerometer that benefits from the advantages of both conventional and atomic sensors in terms of bandwidth (DC to 430 Hz) and long term stability. First, the use of a real time correction of the atom interferometer phase by the signal from the classical accelerometer enables to run it at best performance without any isolation platform. Second, a servo-lock of the DC component of the conventional sensor output signal by the atomic one realizes a hybrid sensor. This method paves the way for applications in geophysics and in inertial navigation as it overcomes the main limitation of atomicmore » accelerometers, namely, the dead times between consecutive measurements.« less
High frequency modal identification on noisy high-speed camera data
NASA Astrophysics Data System (ADS)
Javh, Jaka; Slavič, Janko; Boltežar, Miha
2018-01-01
Vibration measurements using optical full-field systems based on high-speed footage are typically heavily burdened by noise, as the displacement amplitudes of the vibrating structures are often very small (in the range of micrometers, depending on the structure). The modal information is troublesome to measure as the structure's response is close to, or below, the noise level of the camera-based measurement system. This paper demonstrates modal parameter identification for such noisy measurements. It is shown that by using the Least-Squares Complex-Frequency method combined with the Least-Squares Frequency-Domain method, identification at high-frequencies is still possible. By additionally incorporating a more precise sensor to identify the eigenvalues, a hybrid accelerometer/high-speed camera mode shape identification is possible even below the noise floor. An accelerometer measurement is used to identify the eigenvalues, while the camera measurement is used to produce the full-field mode shapes close to 10 kHz. The identified modal parameters improve the quality of the measured modal data and serve as a reduced model of the structure's dynamics.
Pagels, Peter; Boldemann, Cecilia; Raustorp, Anders
2011-01-01
To compare pedometer steps with accelerometer counts and to analyse minutes of engagement in light, moderate and vigorous physical activity in 3- to 5-year-old children during preschool time. Physical activity was recorded during preschool time for five consecutive days in 55 three- to five-year-old children. The children wore a Yamax SW200 pedometer and an Actigraph GTIM Monitor. The average time spent at preschool was 7.22 h/day with an average step of 7313 (±3042). Steps during preschool time increased with increasing age. The overall correlation between mean step counts and mean accelerometer counts (r = 0.67, p < 0.001), as well as time in light to vigorous activity (r = 0.76, p < 0.001), were moderately high. Step counts and moderate to vigorous physical activity minutes were poorly correlated in 3 years old (r = 0.19, p < 0.191) and moderately correlated (r = 0.50, p < 0.001) for children 4 to 5 years old. Correlation between the preschool children's pedometer-determined step counts and total engagement in physical activity during preschool time was moderately high. Children's step counts at preschool were low, and the time spent in moderate and vigorous physical activity at preschool was very short. © 2010 The Author(s)/Journal Compilation © 2010 Foundation Acta Paediatrica.
MEMS-based sensing and algorithm development for fall detection and gait analysis
NASA Astrophysics Data System (ADS)
Gupta, Piyush; Ramirez, Gabriel; Lie, Donald Y. C.; Dallas, Tim; Banister, Ron E.; Dentino, Andrew
2010-02-01
Falls by the elderly are highly detrimental to health, frequently resulting in injury, high medical costs, and even death. Using a MEMS-based sensing system, algorithms are being developed for detecting falls and monitoring the gait of elderly and disabled persons. In this study, wireless sensors utilize Zigbee protocols were incorporated into planar shoe insoles and a waist mounted device. The insole contains four sensors to measure pressure applied by the foot. A MEMS based tri-axial accelerometer is embedded in the insert and a second one is utilized by the waist mounted device. The primary fall detection algorithm is derived from the waist accelerometer. The differential acceleration is calculated from samples received in 1.5s time intervals. This differential acceleration provides the quantification via an energy index. From this index one may ascertain different gait and identify fall events. Once a pre-determined index threshold is exceeded, the algorithm will classify an event as a fall or a stumble. The secondary algorithm is derived from frequency analysis techniques. The analysis consists of wavelet transforms conducted on the waist accelerometer data. The insole pressure data is then used to underline discrepancies in the transforms, providing more accurate data for classifying gait and/or detecting falls. The range of the transform amplitude in the fourth iteration of a Daubechies-6 transform was found sufficient to detect and classify fall events.
Zhang, Qian; Wang, Lei; Liu, Zengjun; Zhang, Yiming
2016-09-19
The calibration of an inertial measurement unit (IMU) is a key technique to improve the preciseness of the inertial navigation system (INS) for missile, especially for the calibration of accelerometer scale factor. Traditional calibration method is generally based on the high accuracy turntable, however, it leads to expensive costs and the calibration results are not suitable to the actual operating environment. In the wake of developments in multi-axis rotational INS (RINS) with optical inertial sensors, self-calibration is utilized as an effective way to calibrate IMU on missile and the calibration results are more accurate in practical application. However, the introduction of multi-axis RINS causes additional calibration errors, including non-orthogonality errors of mechanical processing and non-horizontal errors of operating environment, it means that the multi-axis gimbals could not be regarded as a high accuracy turntable. As for its application on missiles, in this paper, after analyzing the relationship between the calibration error of accelerometer scale factor and non-orthogonality and non-horizontal angles, an innovative calibration procedure using the signals of fiber optic gyro and photoelectric encoder is proposed. The laboratory and vehicle experiment results validate the theory and prove that the proposed method relaxes the orthogonality requirement of rotation axes and eliminates the strict application condition of the system.
Determination of shuttle orbiter center of gravity from flight measurements
NASA Technical Reports Server (NTRS)
Hinson, E. W.; Nicholson, J. Y.; Blanchard, R. C.
1991-01-01
Flight measurements of pitch, yaw, and roll rates and the resultant rotationally induced linear accelerations during three orbital maneuvers on Shuttle mission space transportation system (STS) 61-C were used to calculate the actual orbiter center-of-gravity location. The calculation technique reduces error due to lack of absolute calibration of the accelerometer measurements and compensates for accelerometer temperature bias and for the effects of gravity gradient. Accuracy of the technique was found to be limited by the nonrandom and asymmetrical distribution of orbiter structural vibration at the accelerometer mounting location. Fourier analysis of the vibration was performed to obtain the power spectral density profiles which show magnitudes in excess of 10(exp 4) ug (sup 2)/Hz for the actual vibration and over 500 ug (sup 2)/Hz for the filtered accelerometer measurements. The data from this analysis provide a characterization of the Shuttle acceleration environment which may be useful in future studies related to accelerometer system application and zero-g investigations or processes.
A microelectromechanical accelerometer fabricated using printed circuit processing techniques
NASA Astrophysics Data System (ADS)
Rogers, J. E.; Ramadoss, R.; Ozmun, P. M.; Dean, R. N.
2008-01-01
A microelectromechanical systems (MEMS) capacitive-type accelerometer fabricated using printed circuit processing techniques is presented. A Kapton polymide film is used as the structural layer for fabricating the MEMS accelerometer. The accelerometer proof mass along with four suspension beams is defined in the Kapton polyimide film. The proof mass is suspended above a Teflon substrate using a spacer. The deflection of the proof mass is detected using a pair of capacitive sensing electrodes. The top electrode of the accelerometer is defined on the top surface of the Kapton film. The bottom electrode is defined in the metallization on the Teflon substrate. The initial gap height is determined by the distance between the bottom electrode and the Kapton film. For an applied external acceleration (normal to the proof mass), the proof mass deflects toward or away from the fixed bottom electrode due to inertial force. This deflection causes either a decrease or increase in the air-gap height thereby either increasing or decreasing the capacitance between the top and the bottom electrodes. An example PCB MEMS accelerometer with a square proof mass of membrane area 6.4 mm × 6.4 mm is reported. The measured resonant frequency is 375 Hz and the Q-factor in air is 0.52.
Sabato, Alessandro; Feng, Maria Q.
2014-01-01
Recent advances in the Micro Electro-Mechanical System (MEMS) technology have made wireless MEMS accelerometers an attractive tool for Structural Health Monitoring (SHM) of civil engineering structures. To date, sensors' low sensitivity and accuracy—especially at very low frequencies—have imposed serious limitations for their application in monitoring large-sized structures. Conventionally, the MEMS sensor's analog signals are converted to digital signals before radio-frequency (RF) wireless transmission. The conversion can cause a low sensitivity to the important low-frequency and low-amplitude signals. To overcome this difficulty, the authors have developed a MEMS accelerometer system, which converts the sensor output voltage to a frequency-modulated signal before RF transmission. This is achieved by using a Voltage to Frequency Conversion (V/F) instead of the conventional Analog to Digital Conversion (ADC). In this paper, a prototype MEMS accelerometer system is presented, which consists of a transmitter and receiver circuit boards. The former is equipped with a MEMS accelerometer, a V/F converter and a wireless RF transmitter, while the latter contains an RF receiver and a F/V converter for demodulating the signal. The efficacy of the MEMS accelerometer system in measuring low-frequency and low-amplitude dynamic responses is demonstrated through extensive laboratory tests and experiments on a flow-loop pipeline. PMID:25198003
Sabato, Alessandro; Feng, Maria Q
2014-09-05
Recent advances in the Micro Electro-Mechanical System (MEMS) technology have made wireless MEMS accelerometers an attractive tool for Structural Health Monitoring (SHM) of civil engineering structures. To date, sensors' low sensitivity and accuracy--especially at very low frequencies--have imposed serious limitations for their application in monitoring large-sized structures. Conventionally, the MEMS sensor's analog signals are converted to digital signals before radio-frequency (RF) wireless transmission. The conversion can cause a low sensitivity to the important low-frequency and low-amplitude signals. To overcome this difficulty, the authors have developed a MEMS accelerometer system, which converts the sensor output voltage to a frequency-modulated signal before RF transmission. This is achieved by using a Voltage to Frequency Conversion (V/F) instead of the conventional Analog to Digital Conversion (ADC). In this paper, a prototype MEMS accelerometer system is presented, which consists of a transmitter and receiver circuit boards. The former is equipped with a MEMS accelerometer, a V/F converter and a wireless RF transmitter, while the latter contains an RF receiver and a F/V converter for demodulating the signal. The efficacy of the MEMS accelerometer system in measuring low-frequency and low-amplitude dynamic responses is demonstrated through extensive laboratory tests and experiments on a flow-loop pipeline.
Accelerometer-based step initiation control for gait-assist neuroprostheses.
Foglyano, Kevin M; Schnellenberger, John R; Kobetic, Rudi; Lombardo, Lisa; Pinault, Gilles; Selkirk, Stephen; Makowski, Nathaniel S; Triolo, Ronald J
2016-01-01
Electrical activation of paralyzed musculature can generate or augment joint movements required for walking after central nervous system trauma. Proper timing of stimulation relative to residual volitional control is critical to usefully affecting ambulation. This study evaluates three-dimensional accelerometers and customized algorithms to detect the intent to step from voluntary movements to trigger stimulation during walking in individuals with significantly different etiologies, mobility limitations, manual dexterities, and walking aids. Three individuals with poststroke hemiplegia or partial spinal cord injury exhibiting varying gait deficits were implanted with multichannel pulse generators to provide joint motions at the hip, knee, and ankle. An accelerometer integrated into the external control unit was used to detect heel strike or walker movement, and wireless accelerometers were used to detect crutch strike. Algorithms were developed for each sensor location to detect intent to step to progress through individualized stimulation patterns. Testing these algorithms produced detection accuracies of at least 90% on both level ground and uneven terrain. All participants use their accelerometer-triggered implanted gait systems in the community; the validation/system testing was completed in the hospital. The results demonstrated that safe, reliable, and convenient accelerometer-based step initiation can be achieved regardless of specific gait deficits, manual dexterities, and walking aids.
Shadyab, Aladdin H.; Macera, Caroline A.; Shaffer, Richard A.; Jain, Sonia; Gallo, Linda C.; LaMonte, Michael J.; Reiner, Alexander P.; Kooperberg, Charles; Carty, Cara L.; Di, Chongzhi; Manini, Todd M.; Hou, Lifang; LaCroix, Andrea Z.
2017-01-01
Abstract Few studies have assessed the association of sedentary time with leukocyte telomere length (LTL). In a cross-sectional study conducted in 2012–2013, we examined associations of accelerometer-measured and self-reported sedentary time with LTL in a sample of 1,481 older white and African-American women from the Women's Health Initiative and determined whether associations varied by level of moderate- to vigorous-intensity physical activity (MVPA). The association between sedentary time and LTL was evaluated using multiple linear regression models. Women were aged 79.2 (standard deviation, 6.7) years, on average. Self-reported sedentary time was not associated with LTL. In a model adjusting for demographic characteristics, lifestyle behaviors, and health-related factors, among women at or below the median level of accelerometer-measured MVPA, those in the highest quartile of accelerometer-measured sedentary time had significantly shorter LTL than those in the lowest quartile, with an average difference of 170 base pairs (95% confidence interval: 4, 340). Accelerometer-measured sedentary time was not associated with LTL in women above the median level of MVPA. Findings suggest that, on the basis of accelerometer measurements, higher sedentary time may be associated with shorter LTL among less physically active women. PMID:28100466
Lee, Paul H
2015-02-01
Accelerometers are gaining popularity for measuring physical activity, but there are many different ways to process accelerometer data. A sensitivity analysis was conducted to study the effect of varying accelerometer data processing protocols on estimating the association between PA level and socio-demographic characteristics using the National Health and Nutrition Examination Survey (NHANES) accelerometer data. The NHANES waves 2003-2004 and 2005-2006 accelerometer data (n=14,072) were used to investigate the effect of changing the accelerometer non-wearing time and valid day definitions on the demographic composition of the filtered datasets and the association between physical activity (PA) and socio-demographic characteristics (sex, age, race, educational level, marital status). Under different filtering rules (minimum number of valid day and definition of non-wear time), the demographic characteristics of the final sample varied. The proportion of participants aged 20-29 decreased from 18.9% to 15.8% when the minimum number of valid days required increased from 1 to 4 (p for trend<0.001), whereas that for aged ≥70 years increased from 18.9% to 20.6% (p for trend<0.001). Furthermore, with different filters, the effect of these demographic variables and PA varied, with some variables being significant under certain filtering rules but becoming insignificant under some other rules. The sensitivity analysis showed that the significance of the association between socio-demographic variables and PA could be varied with the definition of non-wearing time and minimum number of valid days. Copyright © 2014 Elsevier B.V. All rights reserved.
Artificial neural networks to predict activity type and energy expenditure in youth.
Trost, Stewart G; Wong, Weng-Keen; Pfeiffer, Karen A; Zheng, Yonglei
2012-09-01
Previous studies have demonstrated that pattern recognition approaches to accelerometer data reduction are feasible and moderately accurate in classifying activity type in children. Whether pattern recognition techniques can be used to provide valid estimates of physical activity (PA) energy expenditure in youth remains unexplored in the research literature. The objective of this study is to develop and test artificial neural networks (ANNs) to predict PA type and energy expenditure (PAEE) from processed accelerometer data collected in children and adolescents. One hundred participants between the ages of 5 and 15 yr completed 12 activity trials that were categorized into five PA types: sedentary, walking, running, light-intensity household activities or games, and moderate-to-vigorous-intensity games or sports. During each trial, participants wore an ActiGraph GT1M on the right hip, and VO2 was measured using the Oxycon Mobile (Viasys Healthcare, Yorba Linda, CA) portable metabolic system. ANNs to predict PA type and PAEE (METs) were developed using the following features: 10th, 25th, 50th, 75th, and 90th percentiles and the lag one autocorrelation. To determine the highest time resolution achievable, we extracted features from 10-, 15-, 20-, 30-, and 60-s windows. Accuracy was assessed by calculating the percentage of windows correctly classified and root mean square error (RMSE). As window size increased from 10 to 60 s, accuracy for the PA-type ANN increased from 81.3% to 88.4%. RMSE for the MET prediction ANN decreased from 1.1 METs to 0.9 METs. At any given window size, RMSE values for the MET prediction ANN were 30-40% lower than the conventional regression-based approaches. ANNs can be used to predict both PA type and PAEE in children and adolescents using count data from a single waist mounted accelerometer.
The use of MP3 recorders to log data from equine hoof mounted accelerometers.
Parsons, K J; Wilson, A M
2006-11-01
MP3 recorders are readily available, small, lightweight and low cost, providing the potential for logging analogue hoof mounted accelerometer signals for the characterisation of equine locomotion. These, however, require testing in practice. To test whether 1) multiple MP3 recorders can maintain synchronisation, giving the ability to synchronise independent recorders for the logging of multiple limbs simultaneously; and 2) features of a foot mounted accelerometer signal attributable to foot-on and foot-off can be accurately identified from horse foot mounted accelerometers logged directly into an MP3 recorder. Three experiments were performed: 1) Maintenance of synchronisation was assessed by counting the number of samples recorded by each of 4 MP3 recorders while mounted on a trotting horse and over 2 consecutive 30 min periods in 8 recorders on a bench. 2) Foot-on and foot-off times obtained from manual transcription of MP3 logged data and directly logged accelerometer signal were compared. 3) MP3/accelerometer acquisition units were used to log accelerometer signals from racehorses during extended training sessions. Mean absolute error of synchronisation between MP3 recorders was 10 samples per million (compared to mean number of samples, range 1-32 samples per million). Error accumulation showed a linear correlation with time. Features attributable to foot on and foot off were equally identifiable from the MP3 recorded signal over a range of equine gaits. Multiple MP3 recorders can be synchronised and used as a relatively cheap, robust, reliable and accurate logging system when combined with an accelerometer and external battery for the specific application of the measurement of stride timing variables across the range of equine gaits during field locomotion. Footfall timings can be used to identify intervals between the fore and hind contacts, the identification of diagonal advanced placement and to calculate stride timing variables (stance time, protraction time and stride time). These parameters are invaluable for the characterisation and assessment of equine locomotion.
Satellite borne gravity gradiometer study
NASA Technical Reports Server (NTRS)
Metzger, E.; Jircitano, A.; Affleck, C.
1976-01-01
Gravity gradiometry is recognized to be a very difficult instrumentation problem because extremely small differential acceleration levels have to be measured, 0.1 EU corresponds to an acceleration of 10 to the minus 11th power g at two points 1 meter apart. A feasibility model of a gravity gradiometer is being developed for airborne applications using four modified versions of the proven Model VII accelerometers mounted on a slowly rotating fixture. Gravity gradients are being measured to 1.07 EU in a vertical rotation axis orientation. Equally significant are the outstanding operational characteristics such as fast reaction time, low temperature coefficients and high degree of bias stability over long periods of time. The rotating accelerometer gravity gradiometer approach and its present status is discussed and it is the foundation for the orbital gravity gradiometer analyzed. The performance levels achieved in a 1 g environment of the earth and under relatively high seismic disturbances, lend the orbital gravity gradiometer a high confidence level of success.
Dunton, Genevieve Fridlund; Dzubur, Eldin; Intille, Stephen
2016-06-01
Objective physical activity monitors (eg, accelerometers) have high rates of nonwear and do not provide contextual information about behavior. This study tested performance and value of a mobile phone app that combined objective and real-time self-report methods to measure physical activity using sensor-informed context-sensitive ecological momentary assessment (CS-EMA). The app was programmed to prompt CS-EMA surveys immediately after 3 types of events detected by the mobile phone's built-in motion sensor: (1) Activity (ie, mobile phone movement), (2) No-Activity (ie, mobile phone nonmovement), and (3) No-Data (ie, mobile phone or app powered off). In addition, the app triggered random (ie, signal-contingent) ecological momentary assessment (R-EMA) prompts (up to 7 per day). A sample of 39 ethnically diverse high school students in the United States (aged 14-18, 54% female) tested the app over 14 continuous days during nonschool time. Both CS-EMA and R-EMA prompts assessed activity type (eg, reading or doing homework, eating or drinking, sports or exercising) and contextual characteristics of the activity (eg, location, social company, purpose). Activity was also measured with a waist-worn Actigraph accelerometer. The average CS-EMA + R-EMA prompt compliance and survey completion rates were 80.5% and 98.5%, respectively. More moderate-to-vigorous intensity physical activity was recorded by the waist-worn accelerometer in the 30 minutes before CS-EMA activity prompts (M=5.84 minutes) than CS-EMA No-Activity (M=1.11 minutes) and CS-EMA No-Data (M=0.76 minute) prompts (P's<.001). Participants were almost 5 times as likely to report going somewhere (ie, active or motorized transit) in the 30 minutes before CS-EMA Activity than R-EMA prompts (odds ratio=4.91, 95% confidence interval=2.16-11.12). Mobile phone apps using motion sensor-informed CS-EMA are acceptable among high school students and may be used to augment objective physical activity data collected from traditional waist-worn accelerometers.
Dzubur, Eldin; Intille, Stephen
2016-01-01
Background Objective physical activity monitors (eg, accelerometers) have high rates of nonwear and do not provide contextual information about behavior. Objective This study tested performance and value of a mobile phone app that combined objective and real-time self-report methods to measure physical activity using sensor-informed context-sensitive ecological momentary assessment (CS-EMA). Methods The app was programmed to prompt CS-EMA surveys immediately after 3 types of events detected by the mobile phone’s built-in motion sensor: (1) Activity (ie, mobile phone movement), (2) No-Activity (ie, mobile phone nonmovement), and (3) No-Data (ie, mobile phone or app powered off). In addition, the app triggered random (ie, signal-contingent) ecological momentary assessment (R-EMA) prompts (up to 7 per day). A sample of 39 ethnically diverse high school students in the United States (aged 14-18, 54% female) tested the app over 14 continuous days during nonschool time. Both CS-EMA and R-EMA prompts assessed activity type (eg, reading or doing homework, eating or drinking, sports or exercising) and contextual characteristics of the activity (eg, location, social company, purpose). Activity was also measured with a waist-worn Actigraph accelerometer. Results The average CS-EMA + R-EMA prompt compliance and survey completion rates were 80.5% and 98.5%, respectively. More moderate-to-vigorous intensity physical activity was recorded by the waist-worn accelerometer in the 30 minutes before CS-EMA activity prompts (M=5.84 minutes) than CS-EMA No-Activity (M=1.11 minutes) and CS-EMA No-Data (M=0.76 minute) prompts (P’s<.001). Participants were almost 5 times as likely to report going somewhere (ie, active or motorized transit) in the 30 minutes before CS-EMA Activity than R-EMA prompts (odds ratio=4.91, 95% confidence interval=2.16-11.12). Conclusions Mobile phone apps using motion sensor–informed CS-EMA are acceptable among high school students and may be used to augment objective physical activity data collected from traditional waist-worn accelerometers. PMID:27251313
Classification of occupational activity categories using accelerometry: NHANES 2003-2004.
Steeves, Jeremy A; Tudor-Locke, Catrine; Murphy, Rachel A; King, George A; Fitzhugh, Eugene C; Harris, Tamara B
2015-06-30
An individual's occupational activity (OA) may contribute significantly to daily physical activity (PA) and sedentary behavior (SB). However, there is little consensus about which occupational categories involve high OA or low OA, and the majority of categories are unclassifiable with current methods. The purpose of this study was to present population estimates of accelerometer-derived PA and SB variables for adults (n = 1112, 20-60 years) working the 40 occupational categories collected during the 2003-2004 National Health and Nutrition Examination Survey (NHANES). ActiGraph accelerometer-derived total activity counts/day (TAC), activity counts/minute, and proportion of wear time spent in moderate-to-vigorous PA [MVPA], lifestyle, and light PA organized by occupational category were ranked in ascending order and SB was ranked in descending order. Summing the ranks of the six accelerometer-derived variables generated a summary score for each occupational category, which was re-ranked in ascending order. Higher rankings indicated higher levels of OA, lower rankings indicated lower levels of OA. Tertiles of the summary score were used to establish three mutually exclusive accelerometer-determined OA groupings: high OA, intermediate OA, and low OA. According to their summary score, 'farm and nursery workers' were classified as high OA and 'secretaries, stenographers, and typists' were classified as low OA. Consistent with previous research, some low OA occupational categories (e.g., 'engineers, architects, and scientists', 'technicians and related support occupations', 'management related occupations', 'executives, administrators, and managers', 'protective services', and 'writers, artists, entertainers, and athletes') associated with higher education and income had relatively greater amounts of MVPA compared to other low OA occupational categories, likely due to the greater percentage of men in those occupations and/or the influence of higher levels of leisure time PA. Men had more TAC, activity counts/minute and time in MVPA, but similar proportions of SB compared to women in all three OA groupings. Objectively measured PA allowed for a more precise estimate of the amount of PA and SB associated with different occupations and facilitated systematic classification of the 40 different occupational categories into three distinct OA groupings. This information provides new opportunities to explore the relationship between OA and health outcomes.
NASA Astrophysics Data System (ADS)
O'Toole, A.; Peña Arellano, F. E.; Rodionov, A. V.; Shaner, M.; Sobacchi, E.; Dergachev, V.; DeSalvo, R.; Asadoor, M.; Bhawal, A.; Gong, P.; Kim, C.; Lottarini, A.; Minenkov, Y.; Murphy, C.
2014-07-01
A compact tilt accelerometer with high sensitivity at low frequency was designed to provide low frequency corrections for the feedback signal of the Advanced Laser Interferometer Gravitational Wave Observatory active seismic attenuation system. It has been developed using a Tungsten Carbide ceramic knife-edge hinge designed to avoid the mechanical 1/f noise believed to be intrinsic in polycrystalline metallic flexures. Design and construction details are presented; prototype data acquisition and control limitations are discussed. The instrument's characterization reported here shows that the hinge is compatible with being metal-hysteresis-free, and therefore also free of the 1/f noise generated by the dislocation Self-Organized Criticality in the metal. A tiltmeter of this kind will be effective to separate the ground tilt component from the signal of horizontal low frequency seismometers, and to correct the ill effects of microseismic tilt in advanced seismic attenuation systems.
DOE Office of Scientific and Technical Information (OSTI.GOV)
O’Toole, A., E-mail: amandajotoole@gmail.com, E-mail: riccardo.desalvo@gmail.com; Peña Arellano, F. E.; Rodionov, A. V.
2014-07-15
A compact tilt accelerometer with high sensitivity at low frequency was designed to provide low frequency corrections for the feedback signal of the Advanced Laser Interferometer Gravitational Wave Observatory active seismic attenuation system. It has been developed using a Tungsten Carbide ceramic knife-edge hinge designed to avoid the mechanical 1/f noise believed to be intrinsic in polycrystalline metallic flexures. Design and construction details are presented; prototype data acquisition and control limitations are discussed. The instrument's characterization reported here shows that the hinge is compatible with being metal-hysteresis-free, and therefore also free of the 1/f noise generated by the dislocation Self-Organizedmore » Criticality in the metal. A tiltmeter of this kind will be effective to separate the ground tilt component from the signal of horizontal low frequency seismometers, and to correct the ill effects of microseismic tilt in advanced seismic attenuation systems.« less
Vibration condition measure instrument of motor using MEMS accelerometer
NASA Astrophysics Data System (ADS)
Chen, Jun
2018-04-01
In this work, a novel vibration condition measure instrument of motor using a digital micro accelerometer is proposed. In order to reduce the random noise found in the data, the sensor modeling is established and also the Kalman filter (KMF) is developed. According to these data from KMF, the maximum vibration displacement is calculated by the integration algorithm with the DC bias removed. The high performance micro controller unit (MCU) is used in the implementation of controller. By the IIC digital interface port, the data are transmitted from sensor to controller. The hardware circuits of the sensor and micro controller are designed and tested. With the computational formula of maximum displacement and FFT, the high precession results of displacement and frequency are gotten. Finally, the paper presents various experimental results to prove that this instrument is suitable for application in electrical motor vibration measurement.
Simple and robust resistive dual-axis accelerometer using a liquid metal droplet
NASA Astrophysics Data System (ADS)
Huh, Myoung; Won, Dong-Joon; Kim, Joong Gil; Kim, Joonwon
2017-12-01
This paper presents a novel dual-axis accelerometer that consists of a liquid metal droplet in a cone-shaped channel and an electrode layer with four Nichrome electrodes. The sensor uses the advantages of the liquid metal droplet (i.e., high surface tension, electrical conductivity, high density, and deformability). The cone-shaped channel imposes a restoring force on the liquid metal droplet. We conducted simulation tests to determine the appropriate design specifications of the cone-shaped channel. Surface modifications to the channel enhanced the nonwetting performance of the liquid metal droplet. The performances of the sensor were analyzed by a tilting test. When the acceleration was applied along the axial direction, the device showed 6 kΩ/g of sensitivity and negligible crosstalk between the X- and Y-axes. In a diagonal direction test, the device showed 4 kΩ/g of sensitivity.
NASA Astrophysics Data System (ADS)
Perrot, Eddy; Christophe, Bruno; Foulon, Bernard; Boulanger, Damien; Liorzou, Françoise; Lebat, Vincent
2013-04-01
The GRACE FO mission, led by the JPL (Jet Propulsion Laboratory), is an Earth-orbiting gravity mission, continuation of the GRACE mission, that will produce an accurate model of the Earth's gravity field variation providing global climatic data during five year at least. The mission involves two satellites in a loosely controlled tandem formation, with a micro-wave link measuring the inter-satellites distance variation. Non-uniformities in the distribution of the Earth's mass cause the distance between the two satellites to vary. This variation is measured to recover gravity, after substracting the non-gravitational contributors, as the residual drag. ONERA (the French Aerospace Lab) is developing and manufacturing electrostatic accelerometers measuring this residual drag applied on the satellites. The accelerometer is composed of two main parts: the Sensor Unit (including the Sensor Unit Mechanics and the Front-End Electronic Unit) and the Interface Control Unit. In the Accelerometer Core, located in the Sensor Unit Mechanics, the proof mass is levitated and maintained in a center of an electrode cage by electrostatic forces. Thus, any drag acceleration applied on the satellite involves a variation on the servo-controlled electrostatic suspension of the mass. The voltage on the electrodes providing this electrostatic force is the measurement output of the accelerometer. The impact of the accelerometer defaults (geometry, electronic and parasitic forces) leads to bias, misalignment and scale factor error, non-linearity and noise. Some of these accelerometer defaults are characterized by tests with micro-gravity pendulum bench and with drops in ZARM catapult. Besides, a thermal stability is needed for the accelerometer core and front-end electronics to avoid bias and scale factor variation. To reach this stability, the sensor unit is enclosed in a thermal box designed by Astrium, spacecraft manufacturer. The accelerometers are designed to endure mechanical excitation especially due to launching vibrations. As the measure must be accurate, no displacements or sliding must appear during excitations. The electrode cage is made of glass material (ULE), which is very critical, in particular due to the free motion of the proof-mass during the launch. Specific analysis on this part is realized to ensure mechanical behavior. The design of electrostatic accelerometer of the GRACE Follow-On mission benefits of the GRACE heritage, GOCE launched in 2009 and MICROSCOPE which will be launched in 2016, including some improvement to win in performance, in particular the thermal sensitivity of the measurements.
Sleep Estimates Using Microelectromechanical Systems (MEMS)
te Lindert, Bart H. W.; Van Someren, Eus J. W.
2013-01-01
Study Objectives: Although currently more affordable than polysomnography, actigraphic sleep estimates have disadvantages. Brand-specific differences in data reduction impede pooling of data in large-scale cohorts and may not fully exploit movement information. Sleep estimate reliability might improve by advanced analyses of three-axial, linear accelerometry data sampled at a high rate, which is now feasible using microelectromechanical systems (MEMS). However, it might take some time before these analyses become available. To provide ongoing studies with backward compatibility while already switching from actigraphy to MEMS accelerometry, we designed and validated a method to transform accelerometry data into the traditional actigraphic movement counts, thus allowing for the use of validated algorithms to estimate sleep parameters. Design: Simultaneous actigraphy and MEMS-accelerometry recording. Setting: Home, unrestrained. Participants: Fifteen healthy adults (23-36 y, 10 males, 5 females). Interventions: None. Measurements: Actigraphic movement counts/15-sec and 50-Hz digitized MEMS-accelerometry. Analyses: Passing-Bablok regression optimized transformation of MEMS-accelerometry signals to movement counts. Kappa statistics calculated agreement between individual epochs scored as wake or sleep. Bland-Altman plots evaluated reliability of common sleep variables both between and within actigraphs and MEMS-accelerometers. Results: Agreement between epochs was almost perfect at the low, medium, and high threshold (kappa = 0.87 ± 0.05, 0.85 ± 0.06, and 0.83 ± 0.07). Sleep parameter agreement was better between two MEMS-accelerometers or a MEMS-accelerometer and an actigraph than between two actigraphs. Conclusions: The algorithm allows for continuity of outcome parameters in ongoing actigraphy studies that consider switching to MEMS-accelerometers. Its implementation makes backward compatibility feasible, while collecting raw data that, in time, could provide better sleep estimates and promote cross-study data pooling. Citation: te Lindert BHW; Van Someren EJW. Sleep estimates using microelectromechanical systems (MEMS). SLEEP 2013;36(5):781-789. PMID:23633761
Matthews, Charles E; Keadle, Sarah Kozey; Troiano, Richard P; Kahle, Lisa; Koster, Annemarie; Brychta, Robert; Van Domelen, Dane; Caserotti, Paolo; Chen, Kong Y; Harris, Tamara B; Berrigan, David
2016-11-01
Moderate-to-vigorous-intensity physical activity is recommended to maintain and improve health, but the mortality benefits of light activity and risk for sedentary time remain uncertain. Using accelerometer-based measures, we 1) described the mortality dose-response for sedentary time and light- and moderate-to-vigorous-intensity activity using restricted cubic splines, and 2) estimated the mortality benefits associated with replacing sedentary time with physical activity, accounting for total activity. US adults (n = 4840) from NHANES (2003-2006) wore an accelerometer for ≤7 d and were followed prospectively for mortality. Proportional hazards models were used to estimate adjusted HRs and 95% CIs for mortality associations with time spent sedentary and in light- and moderate-to-vigorous-intensity physical activity. Splines were used to graphically present behavior-mortality relation. Isotemporal models estimated replacement associations for sedentary time, and separate models were fit for low- (<5.8 h total activity/d) and high-active participants to account for nonlinear associations. Over a mean of 6.6 y, 700 deaths occurred. Compared with less-sedentary adults (6 sedentary h/d), those who spent 10 sedentary h/d had 29% greater risk (HR: 1.29; 95% CI: 1.1, 1.5). Compared with those who did less light activity (3 h/d), those who did 5 h of light activity/d had 23% lower risk (HR: 0.77; 95% CI: 0.6, 1.0). There was no association with mortality for sedentary time or light or moderate-to-vigorous activity in highly active adults. In less-active adults, replacing 1 h of sedentary time with either light- or moderate-to-vigorous-intensity activity was associated with 18% and 42% lower mortality, respectively. Health promotion efforts for physical activity have mostly focused on moderate-to-vigorous activity. However, our findings derived from accelerometer-based measurements suggest that increasing light-intensity activity and reducing sedentary time are also important, particularly for inactive adults. © 2016 American Society for Nutrition.
Martinez Manzanera, Octavio; Elting, Jan Willem; van der Hoeven, Johannes H.; Maurits, Natasha M.
2016-01-01
In the clinic, tremor is diagnosed during a time-limited process in which patients are observed and the characteristics of tremor are visually assessed. For some tremor disorders, a more detailed analysis of these characteristics is needed. Accelerometry and electromyography can be used to obtain a better insight into tremor. Typically, routine clinical assessment of accelerometry and electromyography data involves visual inspection by clinicians and occasionally computational analysis to obtain objective characteristics of tremor. However, for some tremor disorders these characteristics may be different during daily activity. This variability in presentation between the clinic and daily life makes a differential diagnosis more difficult. A long-term recording of tremor by accelerometry and/or electromyography in the home environment could help to give a better insight into the tremor disorder. However, an evaluation of such recordings using routine clinical standards would take too much time. We evaluated a range of techniques that automatically detect tremor segments in accelerometer data, as accelerometer data is more easily obtained in the home environment than electromyography data. Time can be saved if clinicians only have to evaluate the tremor characteristics of segments that have been automatically detected in longer daily activity recordings. We tested four non-parametric methods and five parametric methods on clinical accelerometer data from 14 patients with different tremor disorders. The consensus between two clinicians regarding the presence or absence of tremor on 3943 segments of accelerometer data was employed as reference. The nine methods were tested against this reference to identify their optimal parameters. Non-parametric methods generally performed better than parametric methods on our dataset when optimal parameters were used. However, one parametric method, employing the high frequency content of the tremor bandwidth under consideration (High Freq) performed similarly to non-parametric methods, but had the highest recall values, suggesting that this method could be employed for automatic tremor detection. PMID:27258018
NASA Astrophysics Data System (ADS)
Geng, J.; Bock, Y.; Reuveni, Y.
2014-12-01
Earthquake early warning (EEW) is a time-critical system and typically relies on seismic instruments in the area around the source to detect P waves (or S waves) and rapidly issue alerts. Thanks to the rapid development of real-time Global Navigation Satellite Systems (GNSS), a good number of sensors have been deployed in seismic zones, such as the western U.S. where over 600 GPS stations are collecting 1-Hz high-rate data along the Cascadia subduction zone, San Francisco Bay area, San Andreas fault, etc. GNSS sensors complement the seismic sensors by recording the static offsets while seismic data provide highly-precise higher frequency motions. An optimal combination of GNSS and accelerometer data (seismogeodesy) has advantages compared to GNSS-only or seismic-only methods and provides seismic velocity and displacement waveforms that are precise enough to detect P wave arrivals, in particular in the near source region. Robust real-time GNSS and seismogeodetic analysis is challenging because it requires a period of initialization and continuous phase ambiguity resolution. One of the limiting factors is unmodeled atmospheric effects, both of tropospheric and ionospheric origin. One mitigation approach is to introduce atmospheric corrections into precise point positioning with ambiguity resolution (PPP-AR) of clients/stations within the monitored regions. NOAA generates hourly predictions of zenith troposphere delays at an accuracy of a few centimeters, and 15-minute slant ionospheric delays of a few TECU (Total Electron Content Unit) accuracy from both geodetic and meteorological data collected at hundreds of stations across the U.S. The Scripps Orbit and Permanent Array Center (SOPAC) is experimenting with a regional ionosphere grid using a few hundred stations in southern California, and the International GNSS Service (IGS) routinely estimates a Global Ionosphere Map using over 100 GNSS stations. With these troposphere and ionosphere data as additional observations, we can shorten the initialization period and improve the ambiguity resolution efficiency of PPP-AR. We demonstrate this with data collected by a cluster of Real-Time Earthquake Analysis for Disaster mItigation (READI) network stations in southern California operated by UNAVCO/PBO and SOPAC.
Different grades MEMS accelerometers error characteristics
NASA Astrophysics Data System (ADS)
Pachwicewicz, M.; Weremczuk, J.
2017-08-01
The paper presents calibration effects of two different MEMS accelerometers of different price and quality grades and discusses different accelerometers errors types. The calibration for error determining is provided by reference centrifugal measurements. The design and measurement errors of the centrifuge are discussed as well. It is shown that error characteristics of the sensors are very different and it is not possible to use simple calibration methods presented in the literature in both cases.
Acceleration Recorder and Playback Module
NASA Technical Reports Server (NTRS)
Bozeman, Richard J., Jr. (Inventor)
1996-01-01
The present invention is directed to methods and apparatus relating to an accelerometer electrical signal recorder and playback module. The recorder module may be manufactured in lightweight configuration and includes analog memory components to store data. Signal conditioning circuitry is incorporated into the module so that signals may be connected directly from the accelerometer to the recorder module. A battery pack may be included for powering both the module and the accelerometer. Timing circuitry is included to control the time duration within which data is recorded or played back so as to avoid overloading the analog memory components. Multiple accelerometer signal recordings may be taken simultaneously without analog to digital circuits, multiplexing circuitry or software to compensate for the effects of multiplexing the signals.
Acceleration recorder and playback module
NASA Astrophysics Data System (ADS)
Bozeman, Richard J., Jr.
1994-11-01
The present invention is directed to methods and apparatus relating to an accelerometer electrical signal recorder and playback module. The recorder module may be manufactured in lightweight configuration and includes analog memory components to store data. Signal conditioning circuitry is incorporated into the module so that signals may be connected directly from the accelerometer to the recorder module. A battery pack may be included for powering both the module and the accelerometer. Timing circuitry is included to control the time duration within which data is recorded or played back so as to avoid overloading the analog memory components. Multiple accelerometer signal recordings may be taken simultaneously without analog to digital circuits, multiplexing circuitry or software to compensate for the effects of multiplexing the signals.
Acceleration recorder and playback module
NASA Astrophysics Data System (ADS)
Bozeman, Richard J., Jr.
1992-09-01
The present invention is directed to methods and apparatus relating to an accelerometer electrical signal recorder and playback module. The recorder module may be manufactured in lightweight configuration and includes analog memory components to store data. Signal conditioning circuitry is incorporated into the module so that signals may be connected directly from the accelerometer to the recorder module. A battery pack may be included for powering both the module and the accelerometer. Timing circuitry is included to control the time duration within which data is recorded or played back so as to avoid overloading the analog memory components. Multiple accelerometer signal recordings may be taken simultaneously without analog to digital circuits, multiplexing circuitry or software to compensate for the effects of multiplexing the signals.
Acceleration recorder and playback module
NASA Technical Reports Server (NTRS)
Bozeman, Richard J., Jr. (Inventor)
1994-01-01
The present invention is directed to methods and apparatus relating to an accelerometer electrical signal recorder and playback module. The recorder module may be manufactured in lightweight configuration and includes analog memory components to store data. Signal conditioning circuitry is incorporated into the module so that signals may be connected directly from the accelerometer to the recorder module. A battery pack may be included for powering both the module and the accelerometer. Timing circuitry is included to control the time duration within which data is recorded or played back so as to avoid overloading the analog memory components. Multiple accelerometer signal recordings may be taken simultaneously without analog to digital circuits, multiplexing circuitry or software to compensate for the effects of multiplexing the signals.
Method and apparatus for measuring the mass flow rate of a fluid
Evans, Robert P.; Wilkins, S. Curtis; Goodrich, Lorenzo D.; Blotter, Jonathan D.
2002-01-01
A non invasive method and apparatus is provided to measure the mass flow rate of a multi-phase fluid. An accelerometer is attached to a pipe carrying a multi-phase fluid. Flow related measurements in pipes are sensitive to random velocity fluctuations whose magnitude is proportional to the mean mass flow rate. An analysis of the signal produced by the accelerometer shows a relationship between the mass flow of a fluid and the noise component of the signal of an accelerometer. The noise signal, as defined by the standard deviation of the accelerometer signal allows the method and apparatus of the present invention to non-intrusively measure the mass flow rate of a multi-phase fluid.
Simultaneous processing of photographic and accelerator array data from sled impact experiment
NASA Astrophysics Data System (ADS)
Ash, M. E.
1982-12-01
A Quaternion-Kalman filter model is derived to simultaneously analyze accelerometer array and photographic data from sled impact experiments. Formulas are given for the quaternion representation of rotations, the propagation of dynamical states and their partial derivatives, the observables and their partial derivatives, and the Kalman filter update of the state given the observables. The observables are accelerometer and tachometer velocity data of the sled relative to the track, linear accelerometer array and photographic data of the subject relative to the sled, and ideal angular accelerometer data. The quaternion constraints enter through perfect constraint observations and normalization after a state update. Lateral and fore-aft impact tests are analyzed with FORTRAN IV software written using the formulas of this report.
Description of the three axis low-g accelerometer package
NASA Technical Reports Server (NTRS)
Amalavage, A. J.; Fikes, E. H.; Berry, E. H.
1978-01-01
The three axis low-g accelerometer package designed for use on the Space Processing Application Rocket (SPAR) Program is described. The package consists of the following major sections: (1) three Kearfott model 2412 accelerometers mounted in an orthogonal triad configuration on a temperature controlled, thermally isolated cube, (2) the accelerometer servoelectronics (printed circuit cards PC-6 through PC-12), and (3) the signal conditioner (printed circuit cards PC-15 and PC-16). The measurement range is 0 + or - 0.031 g with a quantization of 1.1 x 10 to the 7th power g. The package was flown successfully on six SPAR launches with the Black Brant booster. These flights provide approximately 300 s of free fall or zero-g environment.
Ben Mansour, Khaireddine; Rezzoug, Nasser; Gorce, Philippe
2015-10-01
The purpose of this paper was to determine which types of inertial sensors and which advocated locations should be used for reliable and accurate gait event detection and temporal parameter assessment in normal adults. In addition, we aimed to remove the ambiguity found in the literature of the definition of the initial contact (IC) from the lumbar accelerometer. Acceleration and angular velocity data was gathered from the lumbar region and the distal edge of each shank. This data was evaluated in comparison to an instrumented treadmill and an optoelectronic system during five treadmill speed sessions. The lumbar accelerometer showed that the peak of the anteroposterior component was the most accurate for IC detection. Similarly, the valley that followed the peak of the vertical component was the most precise for terminal contact (TC) detection. Results based on ANOVA and Tukey tests showed that the set of inertial methods was suitable for temporal gait assessment and gait event detection in able-bodied subjects. For gait event detection, an exception was found with the shank accelerometer. The tool was suitable for temporal parameters assessment, despite the high root mean square error on the detection of IC (RMSEIC) and TC (RMSETC). The shank gyroscope was found to be as accurate as the kinematic method since the statistical tests revealed no significant difference between the two techniques for the RMSE off all gait events and temporal parameters. The lumbar and shank accelerometers were the most accurate alternative to the shank gyroscope for gait event detection and temporal parameters assessment, respectively. Copyright © 2015. Published by Elsevier B.V.
Reliability of segmental accelerations measured using a new wireless gait analysis system.
Kavanagh, Justin J; Morrison, Steven; James, Daniel A; Barrett, Rod
2006-01-01
The purpose of this study was to determine the inter- and intra-examiner reliability, and stride-to-stride reliability, of an accelerometer-based gait analysis system which measured 3D accelerations of the upper and lower body during self-selected slow, preferred and fast walking speeds. Eight subjects attended two testing sessions in which accelerometers were attached to the head, neck, lower trunk, and right shank. In the initial testing session, two different examiners attached the accelerometers and performed the same testing procedures. A single examiner repeated the procedure in a subsequent testing session. All data were collected using a new wireless gait analysis system, which features near real-time data transmission via a Bluetooth network. Reliability for each testing condition (4 locations, 3 directions, 3 speeds) was quantified using a waveform similarity statistic known as the coefficient of multiple determination (CMD). CMD's ranged from 0.60 to 0.98 across all test conditions and were not significantly different for inter-examiner (0.86), intra-examiner (0.87), and stride-to-stride reliability (0.86). The highest repeatability for the effect of location, direction and walking speed were for the shank segment (0.94), the vertical direction (0.91) and the fast walking speed (0.91), respectively. Overall, these results indicate that a high degree of waveform repeatability was obtained using a new gait system under test-retest conditions involving single and dual examiners. Furthermore, differences in acceleration waveform repeatability associated with the reapplication of accelerometers were small in relation to normal motor variability.
Sarker, Hrishov; Anderson, Laura N; Borkhoff, Cornelia M; Abreo, Kathleen; Tremblay, Mark S; Lebovic, Gerald; Maguire, Jonathon L; Parkin, Patricia C; Birken, Catherine S
2015-11-30
It is unknown if young children's parent-reported physical activity and sedentary time are correlated with direct measures. The study objectives were to compare parent-reported physical and sedentary activity versus directly measured accelerometer data in early childhood. From 2013 to 2014, 117 healthy children less than 6 years of age were recruited to wear Actical accelerometers for 7 days. Accelerometer data and questionnaires were available on 87 children (74%). Average daily physical activity was defined as the sum of activity ≥100 counts per minute, and sedentary time as the sum of activity <100 counts per minute during waking hours. Parents reported daily physical activity (unstructured free play in and out of school, and organized activities) and selected sedentary behaviors (screen time, stroller time, time in motor vehicle). Spearman correlation coefficients and Bland-Altman plots were used to assess the validity of parent-reported measures compared to accelerometer data. Total physical activity was significantly greater when measured by accelerometer than parent-report; the median difference was 131 min/day (p < 0.001). Parent-reported child physical activity was weak to moderately correlated with directly measured total physical activity (r = 0.39, 95% CI 0.19, 0.56). The correlations between types of physical activity (unstructured free play in and outside of school/daycare, and organized structured activity) and accelerometer were r = 0.30 (95% CI 0.09, 0.49); r = 0.42 (95% CI 0.23, 0.58); r = 0.26 (95% CI 0.05, 0.46), respectively. There was no correlation between parent-reported and accelerometer-measured total sedentary time in children (r = 0.10, 95% CI -0.12, 0.33). When the results were stratified by age group (<18, 18-47, and 48-70 months of age) no statistically significant correlations were observed and some inverse associations were observed. The correlation between parent-report of young children's physical activity and accelerometer-measured activity was weak to moderate depending on type of activity and age group. Parent-report of children's sedentary time was not correlated with accelerometer-measured sedentary time. Additional validation studies are needed to determine if parent-reported measures of physical activity and sedentary time are valid among children less than 6 years of age and across these young age groups.
NASA Astrophysics Data System (ADS)
Olinde, L.; Johnson, J. P.
2013-12-01
By monitoring the transport timing and distances of tracer grains in a steep mountains stream, we collected data that can constrain numerical bedload transport models considered for these systems. We captured bedload activity during a weeks-spanning snowmelt period in Reynolds Creek, Idaho by deploying Radio Frequency Identification (RFID) and accelerometer embedded tracers with in-stream stationary RFID antennas. During transport events, RFID dataloggers recorded the times when tracers passed over stationary antennas. The accelerometer tracers also logged x, y, z-axis accelerations every 10 minutes to identify times of motion and rest. After snowmelt flows receded, we found tracers with mobile antennas and surveyed their positions. We know the timing and tracer locations when accelerometer tracers were initially entrained, passed stationary antennas, and were finally deposited at the surveyed locations. The fraction of moving accelerometers over time correlates well with discharge. Comparisons of the transported tracer fraction between rising and falling limbs over multiple flood peaks suggest that some degree of clockwise hysteresis persisted during the snowmelt period. Additionally, we apply accelerometer transport durations and displacement distances to calculate virtual velocities over full tracer path lengths and over lengths between initial locations to stationary antennas as well as between stationary antennas to final positions. The accelerometer-based virtual velocities are significantly faster than those estimated from traditional tracer methods that estimate bedload transport durations by assuming threshold flow conditions. We also subsample the motion data to calculate how virtual velocities change over the measurement intervals. Regressions of these relations are in turn used to extrapolate virtual velocities at smaller sampling timescales. Minimum hop lengths are also evaluated for each accelerometer tracer. Finally, flow conditions during the snowmelt hydrograph are modeled over the 11 kilometers of surveyed stream by utilizing 1m airborne LiDAR and HEC-GeoRAS. Cross-sectional HEC-RAS results are used to estimate the spatial distribution of longitudinal shear velocities over the observed discharges. At final accelerometer tracer positions, we analyze the HEC-RAS generated flow conditions for each disentrainment discharge magnitude. The techniques developed here have the potential to link individual grain characteristics during floods to a range of time and length scales.
NASA Astrophysics Data System (ADS)
O'Reilly, T. C.; Kieft, B.; Chaffey, M. R.; Wolfson-Schwehr, M.; Herlien, R.; Bird, L.; Klimov, D.; Paull, C. K.; Gwiazda, R.; Lundsten, E. M.; Anderson, K.; Caress, D. W.; Sumner, E. J.; Simmons, S.; Parsons, D. R.; Talling, P.; Rosenberger, K. J.; Xu, J.; Maier, K. L.; Gales, J. A.
2017-12-01
The Monterey Coordinated Canyon Experiment (CCE) deployed an array of instruments along the Monterey Canyon floor to characterize the structure, velocity and frequency of sediment flows. CCE utilized novel technologies developed at MBARI to capture sediment flow data in unprecedented detail. 1. The Seafloor Instrument Node (SIN) at 1850 meters depth housed 3 ADCPs at 3 different frequencies, CTD, current meter, oxygen optode, fluorometer/backscatter sensor, and logged data at 10 second intervals or faster. The SIN included an acoustic modem for communication with shore through a Wave Glider relay, and provided high-resolution measurements of three flow events during three successive deployments over 1.5 years. 2. Beachball-sized Benthic Event Detectors (BEDs) were deployed on or under the seafloor to measure the characteristics of sediment density flows. Each BED recorded data from a pressure sensor and a 3-axis accelerometer and gyro to characterize motions during transport events (e.g. tumble vs rotation). An acoustic modem capable of operating through more than a meter of sediment enabled communications with a ship or autonomous surface vehicle. Multiple BEDs were deployed at various depths in the canyon during CCE, detecting and measuring many transport events; one BED moved 9 km down canyon in 50 minutes during one event. 3. Wave Glider Hot Spot (HS), equipped with acoustic and RF modems, acted as data relay between SIN, BEDs and shore, and acoustically located BEDs after sediment density flows.. In some cases HS relayed BED motion data to shore within a few hours of the event. HS provided an acoustic console to the SIN, allowing shore-based users to check SIN health and status, perform maintenance, etc. 4. Mapping operations were conducted 4 times at the SIN site to quantify depositional and erosional patterns, utilizing a prototype ultra-high-resolution mapping system on the ROV Doc Ricketts. The system consists of a 400-kHz Reson 7125 multibeam sonar, a 3DatDepth SL1 subsea LiIDAR, two stereo color cameras, and a Kearfott SeaDevil INS. At a survey altitude of 3 m above the bed, the mapping system provides 5-cm resolution multibeam bathymetry, 1-cm resolution lidar bathymetry, and 2-mm resolution photomosaics. We will describe the design and full capabilities of these novel systems.
NASA Technical Reports Server (NTRS)
Findlay, J. T.; Kelly, G. M.; Troutman, P. A.
1984-01-01
A perturbation model to the Marshall Space Flight Center (MSFC) Global Reference Atmosphere Model (GRAM) was developed for use in the Aeroassist Orbital Transfer Vehicle (AOTV) trajectory and analysis. The model reflects NASA Space Shuttle experience over the first twelve entry flights. The GRAM was selected over the Air Force 1978 Reference Model because of its more general formulation and wider use throughout NASA. The add-on model, a simple scaling with altitude to reflect density structure encountered by the Shuttle Orbiter was selected principally to simplify implementation. Perturbations, by season, can be utilized to minimize the number of required simulations, however, exact Shuttle flight history can be exercised using the same model if desired. Such a perturbation model, though not meteorologically motivated, enables inclusion of High Resolution Accelerometer Package (HiRAP) results in the thermosphere. Provision is made to incorporate differing perturbations during the AOTV entry and exit phases of the aero-asist maneuver to account for trajectory displacement (geographic) along the ground track.
A Smartphone-Based Driver Safety Monitoring System Using Data Fusion
Lee, Boon-Giin; Chung, Wan-Young
2012-01-01
This paper proposes a method for monitoring driver safety levels using a data fusion approach based on several discrete data types: eye features, bio-signal variation, in-vehicle temperature, and vehicle speed. The driver safety monitoring system was developed in practice in the form of an application for an Android-based smartphone device, where measuring safety-related data requires no extra monetary expenditure or equipment. Moreover, the system provides high resolution and flexibility. The safety monitoring process involves the fusion of attributes gathered from different sensors, including video, electrocardiography, photoplethysmography, temperature, and a three-axis accelerometer, that are assigned as input variables to an inference analysis framework. A Fuzzy Bayesian framework is designed to indicate the driver’s capability level and is updated continuously in real-time. The sensory data are transmitted via Bluetooth communication to the smartphone device. A fake incoming call warning service alerts the driver if his or her safety level is suspiciously compromised. Realistic testing of the system demonstrates the practical benefits of multiple features and their fusion in providing a more authentic and effective driver safety monitoring. PMID:23247416
NASA Astrophysics Data System (ADS)
Kogut, Janusz P.; Tekieli, Marcin
2018-04-01
Non-contact video measurement methods are used to extend the capabilities of standard measurement systems, based on strain gauges or accelerometers. In most cases, they are able to provide more accurate information about the material or construction being tested than traditional sensors, while maintaining a high resolution and measurement stability. With the use of optical methods, it is possible to generate a full field of displacement on the surface of the test sample. The displacement value is the basic (primary) value determined using optical methods, and it is possible to determine the size of the derivative in the form of a sample deformation. This paper presents the application of a non-contact optical method to investigate the deformation of coarse soil material. For this type of soil, it is particularly difficult to obtain basic strength parameters. The use of a non-contact optical method, followed by a digital image correlation (DIC) study of the sample obtained during the tests, effectively completes the description of the behaviour of this type of material.
Polechoński, Jacek; Mynarski, Władysław; Nawrocka, Agnieszka
2015-11-01
[Purpose] The objective of this study was to evaluate the usefulness of pedometry and accelerometry in the measurement of the energy expenditures in Nordic walking and conventional walking as diagnostic parameters. [Subjects and Methods] The study included 20 female students (age, 24 ± 2.3 years). The study used three types of measuring devices, namely a heart rate monitor (Polar S610i), a Caltrac accelerometer, and a pedometer (Yamax SW-800). The walking pace at the level of 110 steps/min was determined by using a metronome. [Results] The students who walked with poles covered a distance of 1,000 m at a speed 36.3 sec faster and with 65.5 fewer steps than in conventional walking. Correlation analysis revealed a moderate interrelationship between the results obtained with a pedometer and those obtained with an accelerometer during Nordic walking (r = 0.55) and a high correlation during conventional walking (r = 0.85). [Conclusion] A pedometer and Caltrac accelerometer should not be used as alternative measurement instruments in the comparison of energy expenditure in Nordic walking.
Polechoński, Jacek; Mynarski, Władysław; Nawrocka, Agnieszka
2015-01-01
[Purpose] The objective of this study was to evaluate the usefulness of pedometry and accelerometry in the measurement of the energy expenditures in Nordic walking and conventional walking as diagnostic parameters. [Subjects and Methods] The study included 20 female students (age, 24 ± 2.3 years). The study used three types of measuring devices, namely a heart rate monitor (Polar S610i), a Caltrac accelerometer, and a pedometer (Yamax SW-800). The walking pace at the level of 110 steps/min was determined by using a metronome. [Results] The students who walked with poles covered a distance of 1,000 m at a speed 36.3 sec faster and with 65.5 fewer steps than in conventional walking. Correlation analysis revealed a moderate interrelationship between the results obtained with a pedometer and those obtained with an accelerometer during Nordic walking (r = 0.55) and a high correlation during conventional walking (r = 0.85). [Conclusion] A pedometer and Caltrac accelerometer should not be used as alternative measurement instruments in the comparison of energy expenditure in Nordic walking. PMID:26696730
Kruisdijk, Frank; Deenik, Jeroen; Tenback, Diederik; Tak, Erwin; Beekman, Aart-Jan; van Harten, Peter; Hopman-Rock, Marijke; Hendriksen, Ingrid
2017-08-01
Sedentary behaviour and lack of physical activity threatens health. Research concerning these behaviours of inpatients with severe mental illness is limited but urgently needed to reveal prevalence and magnitude. In total, 184 inpatients (men n =108, women n =76, mean age 57,4, 20% first generation antipsychotics, 40% second generation antipsychotics, 43% antidepressants, mean years hospitalisation 13 years), with severe mental illness of a Dutch psychiatric hospital wore an accelerometer for five days to objectively measure total activity counts per hour and percentages in sedentary behaviour, light intensity physical activity and moderate to vigorous physical activity. Accelerometer data were compared with data of 54 healthy ward employees. Patients showed significantly less activity counts per hour compared to employees (p=0.02), although the differences were small (d=0.32). Patients were sedentary during 84% of the wear time (50min/h), spend 10% in light intensity physical activity and 6% in moderate to vigorous physical activity. Age was the only significant predictor, predicting less total activity counts/h in higher ages. Decreasing sedentary behaviour and improving physical activity in this population should be a high priority in clinical practice. Copyright © 2017 Elsevier Ireland Ltd. All rights reserved.
Posatskiy, A O; Chau, T
2012-04-01
Mechanomyography (MMG) is an important kinesiological tool and potential communication pathway for individuals with disabilities. However, MMG is highly susceptible to contamination by motion artifact due to limb movement. A better understanding of the nature of this contamination and its effects on different sensing methods is required to inform robust MMG sensor design. Therefore, in this study, we recorded MMG from the extensor carpi ulnaris of six able-bodied participants using three different co-located condenser microphone and accelerometer pairings. Contractions at 30% MVC were recorded with and without a shaker-induced single-frequency forearm motion artifact delivered via a custom test rig. Using a signal-to-signal-plus-noise-ratio and the adaptive Neyman curve-based statistic, we found that microphone-derived MMG spectra were significantly less influenced by motion artifact than corresponding accelerometer-derived spectra (p⩽0.05). However, non-vanishing motion artifact harmonics were present in both spectra, suggesting that simple bandpass filtering may not remove artifact influences permeating into typical MMG bands of interest. Our results suggest that condenser microphones are preferred for MMG recordings when the mitigation of motion artifact effects is important. Copyright © 2011. Published by Elsevier Ltd.
A Novel MEMS Gyro North Finder Design Based on the Rotation Modulation Technique
Zhang, Yongjian; Zhou, Bin; Song, Mingliang; Hou, Bo; Xing, Haifeng; Zhang, Rong
2017-01-01
Gyro north finders have been widely used in maneuvering weapon orientation, oil drilling and other areas. This paper proposes a novel Micro-Electro-Mechanical System (MEMS) gyroscope north finder based on the rotation modulation (RM) technique. Two rotation modulation modes (static and dynamic modulation) are applied. Compared to the traditional gyro north finders, only one single MEMS gyroscope and one MEMS accelerometer are needed, reducing the total cost since high-precision gyroscopes and accelerometers are the most expensive components in gyro north finders. To reduce the volume and enhance the reliability, wireless power and wireless data transmission technique are introduced into the rotation modulation system for the first time. To enhance the system robustness, the robust least square method (RLSM) and robust Kalman filter (RKF) are applied in the static and dynamic north finding methods, respectively. Experimental characterization resulted in a static accuracy of 0.66° and a dynamic repeatability accuracy of 1°, respectively, confirming the excellent potential of the novel north finding system. The proposed single gyro and single accelerometer north finding scheme is universal, and can be an important reference to both scientific research and industrial applications. PMID:28452936
Fiber Optic Laser Accelerometer
2007-11-06
embodiment of a fiber laser accelerometer 10. The fiber laser accelerometer 10 includes a fiber laser 12. Fiber laser 12 can be either a Fabry - Perot type...cavity fiber laser or a distributed feedback fiber laser. In a 4 Attorney Docket No. 97966 Fabry - Perot type fiber laser, the laser cavity is a length...type of signal. A receiver 26 receives the phase shifted signal. Receiver 26 is capable of demodulating and detecting the signal from the fiber laser by
Godfrey, A; Culhane, K M; Lyons, G M
2007-10-01
The aim of this study was to assess the accuracy of the 'activPAL Professional' physical activity logger by comparing its output to that of a proven discrete accelerometer-based activity monitor during extended measurements on healthy subjects while performing activities of daily living (ADL). Ten healthy adults, with unrestricted mobility, wore both the activPAL and the discrete dual accelerometer (Analog Devices ADXL202)-based activity monitor that recorded in synchronization with each other. The accelerometer derived data were then compared to that generated by the activPAL and a complete statistical and error analysis was performed using a Matlab program. This program determined trunk and thigh inclination angles to distinguish between sitting/lying, standing and stepping for the discrete accelerometer device and amount of time spent on each activity. Analysis was performed on a second-by-second basis and then categorized at 15s intervals in direct comparison with the activPAL generated data. Of the total time monitored (approximately 60 h) the detection accuracies for static and dynamic activities were approximately 98%. In a population of healthy adults, the data obtained from the activPAL Professional physical activity logger for both static and dynamic activities showed a close match to a proven discrete accelerometer data with an offset of approximately 2% between the two systems.
NASA Astrophysics Data System (ADS)
Iafolla, V.; Lucchesi, D.; Fiorenza, E.; Lefevre, C.; Lucente, M.; Magnafico, C.; Peron, R.; Santoli, F.; Nozzoli, S.; Argada, A.
2012-04-01
The Italian Spring Accelerometer (ISA) has been selected by ESA to fly onboard the Mercury Planetary Orbiter (MPO) of the BepiColombo space mission. Mercury's exploration represents one of the most important challenges of modern planetary sciences and the mission aims to reach a much better understanding of the internal structure and composition of the planet, which in turn are needed for a deeper comprehension of the formation of the terrestrial planets, hence of that of our solar system. Moreover, because of its proximity to the Sun, Mercury represents a unique opportunity to test Einstein's theory for the gravitational interaction with respect to other proposed theories of gravitation. The BepiColombo Radio Science Experiments (RSE) are devoted to reach the above ambitious goals and the measurements of the onboard accelerometer are necessary to remove (a posteriori) the very complex to model, strong and subtle, non-gravitational accelerations due to the very strong radiation environment around Mercury. We focus on the accelerometer characteristics and performance, on the functional tests that are necessary for its implementation onboard the MPO and in the procedures that are necessary for the reduction of the accelerometer measurements in order to be used in the context of the RSE. We finally introduce the description of the accelerometer proof-masses non linearities, their impact in the measurements and the way to handle such effects.
NASA Technical Reports Server (NTRS)
Lewicki, David George; Lambert, Nicholas A.; Wagoner, Robert S.
2015-01-01
The diagnostics capability of micro-electro-mechanical systems (MEMS) based rotating accelerometer sensors in detecting gear tooth crack failures in helicopter main-rotor transmissions was evaluated. MEMS sensors were installed on a pre-notched OH-58C spiral-bevel pinion gear. Endurance tests were performed and the gear was run to tooth fracture failure. Results from the MEMS sensor were compared to conventional accelerometers mounted on the transmission housing. Most of the four stationary accelerometers mounted on the gear box housing and most of the CI's used gave indications of failure at the end of the test. The MEMS system performed well and lasted the entire test. All MEMS accelerometers gave an indication of failure at the end of the test. The MEMS systems performed as well, if not better, than the stationary accelerometers mounted on the gear box housing with regards to gear tooth fault detection. For both the MEMS sensors and stationary sensors, the fault detection time was not much sooner than the actual tooth fracture time. The MEMS sensor spectrum data showed large first order shaft frequency sidebands due to the measurement rotating frame of reference. The method of constructing a pseudo tach signal from periodic characteristics of the vibration data was successful in deriving a TSA signal without an actual tach and proved as an effective way to improve fault detection for the MEMS.
Li, Hongyin; Bai, Yanzheng; Hu, Ming; Luo, Yingxin; Zhou, Zebing
2016-12-23
The state-of-the-art accelerometer technology has been widely applied in space missions. The performance of the next generation accelerometer in future geodesic satellites is pushed to 8 × 10 - 13 m / s 2 / H z 1 / 2 , which is close to the hardware fundamental limit. According to the instrument noise budget, the geodesic test mass must be kept in the center of the accelerometer within the bounds of 56 pm / Hz 1 / 2 by the feedback controller. The unprecedented control requirements and necessity for the integration of calibration functions calls for a new type of control scheme with more flexibility and robustness. A novel digital controller design for the next generation electrostatic accelerometers based on disturbance observation and rejection with the well-studied Embedded Model Control (EMC) methodology is presented. The parameters are optimized automatically using a non-smooth optimization toolbox and setting a weighted H-infinity norm as the target. The precise frequency performance requirement of the accelerometer is well met during the batch auto-tuning, and a series of controllers for multiple working modes is generated. Simulation results show that the novel controller could obtain not only better disturbance rejection performance than the traditional Proportional Integral Derivative (PID) controllers, but also new instrument functions, including: easier tuning procedure, separation of measurement and control bandwidth and smooth control parameter switching.
Electret accelerometers: physics and dynamic characterization.
Hillenbrand, J; Haberzettl, S; Motz, T; Sessler, G M
2011-06-01
Electret microphones are produced in numbers that significantly exceed those for all other microphone types. This is due to the fact that air-borne electret sensors are of simple and low-cost design but have very good acoustical properties. In contrast, most of the discrete structure-borne sound sensors (or accelerometers) are based on the piezoelectric effect. In the present work, capacitive accelerometers utilizing the electret principle were constructed, built, and characterized. These electret accelerometers comprise a metallic seismic mass, covered by an electret film, a ring of a soft cellular polymer supplying the restoring force, and a metallic backplate. These components replace membrane, spacer, and back electrode, respectively, of the electret microphone. An adjustable static pressure to the seismic mass is generated by two metal springs. The dynamic characterization of the accelerometers was carried out by using an electrodynamic shaker and an external charge or voltage amplifier. Sensors with various seismic masses, air gap distances, and electret voltages were investigated. Charge sensitivities from 10 to 40 pC/g, voltage sensitivities from 600 to 2000 mV/g, and resonance frequencies from 3 to 1.5 kHz were measured. A model describing both the charge and the voltage sensitivity is presented. Good agreement of experimental and calculated values is found. The experimental results show that sensitive, lightweight, and inexpensive electret accelerometers can be built. © 2011 Acoustical Society of America
Oguma, Yuko; Osawa, Yusuke; Takayama, Michiyo; Abe, Yukiko; Tanaka, Shigeho; Lee, I-Min; Arai, Yasumichi
2017-04-01
To date, there is no physical activity (PA) questionnaire with convergent and construct validity for the oldest-old. The aim of the current study was to investigate the validity of questionnaire-assessed PA in comparison with objective measures determined by uniaxial and triaxial accelerometers and physical performance measures in the oldest-old. Participants were 155 elderly (mean age 90 years) who were examined at the university and agreed to wear an accelerometer for 7 days in the 3-year-follow-up survey of the Tokyo Oldest-Old Survey of Total Health. Fifty-nine participants wore a uniaxial and triaxial accelerometer simultaneously. Self-rated walking, exercise, and household PA were measured using a modified Zutphen PA Questionnaire (PAQ). Several physical performance tests were done, and the associations among PAQ, accelerometer-assessed PA, and physical performances were compared by Spearman's correlation coefficients. Significant, low to moderate correlations between PA measures were seen on questionnaire and accelerometer assessments (ρ = 0.19 to 0.34). Questionnaireassessed PA measure were correlated with a range of lower extremity performance (ρ = 0.21 to 0.29). This PAQ demonstrated convergent and construct validity. Our findings suggest that the PAQ can reasonably be used in this oldest-old population to rank their PA level.
Li, Hongyin; Bai, Yanzheng; Hu, Ming; Luo, Yingxin; Zhou, Zebing
2016-01-01
The state-of-the-art accelerometer technology has been widely applied in space missions. The performance of the next generation accelerometer in future geodesic satellites is pushed to 8×10−13m/s2/Hz1/2, which is close to the hardware fundamental limit. According to the instrument noise budget, the geodesic test mass must be kept in the center of the accelerometer within the bounds of 56 pm/Hz1/2 by the feedback controller. The unprecedented control requirements and necessity for the integration of calibration functions calls for a new type of control scheme with more flexibility and robustness. A novel digital controller design for the next generation electrostatic accelerometers based on disturbance observation and rejection with the well-studied Embedded Model Control (EMC) methodology is presented. The parameters are optimized automatically using a non-smooth optimization toolbox and setting a weighted H-infinity norm as the target. The precise frequency performance requirement of the accelerometer is well met during the batch auto-tuning, and a series of controllers for multiple working modes is generated. Simulation results show that the novel controller could obtain not only better disturbance rejection performance than the traditional Proportional Integral Derivative (PID) controllers, but also new instrument functions, including: easier tuning procedure, separation of measurement and control bandwidth and smooth control parameter switching. PMID:28025534
Physical inactivity, neurological disability, and cardiorespiratory fitness in multiple sclerosis.
Motl, R W; Goldman, M
2011-02-01
We examined the associations among physical activity, neurological disability, and cardiorespiratory fitness in two studies of individuals with multiple sclerosis (MS). Study 1 included 25 women with relapsing-remitting MS (RRMS) who undertook an incremental exercise test for measuring peak oxygen (VO₂(peak) ) consumption, wore an accelerometer during a 7-day period, and completed the Godin Leisure-Time Exercise Questionnaire (GLTEQ). Study 2 was a follow-up of Study 1 and included 24 women with RRMS who completed the self-reported Expanded Disability Status Scale (EDSS), undertook an incremental exercise test, wore an accelerometer during a 7-day period, and completed the GLTEQ. Study 1 indicated that VO₂(peak) was significantly correlated with accelerometer counts (pr = 0.69) and GLTEQ scores (pr = 0.63) even after controlling for age and MS duration. Study 2 indicated that VO₂(peak) was significantly correlated with accelerometer counts (pr = 0.50), GLTEQ scores (pr = 0.59), and EDSS scores (pr = -0.43) even after controlling for age and MS duration; there was a moderate partial correlation between accelerometer counts and EDSS scores (pr = -0.43). Multiple linear regression analysis indicated that both accelerometer counts (β = 0.32) and EDSS scores (β = -0.40) had statistically significant associations with VO₂(peak). The findings indicate that physical inactivity and neurological disability might represent independent risk factors for reduced levels of cardiorespiratory fitness in this population. © 2010 John Wiley & Sons A/S.
Application of Accelerometer Data to Mars Odyssey Aerobraking and Atmospheric Modeling
NASA Technical Reports Server (NTRS)
Tolson, R. H.; Keating, G. M.; George, B. E.; Escalera, P. E.; Werner, M. R.; Dwyer, A. M.; Hanna, J. L.
2002-01-01
Aerobraking was an enabling technology for the Mars Odyssey mission even though it involved risk due primarily to the variability of the Mars upper atmosphere. Consequently, numerous analyses based on various data types were performed during operations to reduce these risk and among these data were measurements from spacecraft accelerometers. This paper reports on the use of accelerometer data for determining atmospheric density during Odyssey aerobraking operations. Acceleration was measured along three orthogonal axes, although only data from the component along the axis nominally into the flow was used during operations. For a one second count time, the RMS noise level varied from 0.07 to 0.5 mm/s2 permitting density recovery to between 0.15 and 1.1 kg per cu km or about 2% of the mean density at periapsis during aerobraking. Accelerometer data were analyzed in near real time to provide estimates of density at periapsis, maximum density, density scale height, latitudinal gradient, longitudinal wave variations and location of the polar vortex. Summaries are given of the aerobraking phase of the mission, the accelerometer data analysis methods and operational procedures, some applications to determining thermospheric properties, and some remaining issues on interpretation of the data. Pre-flight estimates of natural variability based on Mars Global Surveyor accelerometer measurements proved reliable in the mid-latitudes, but overestimated the variability inside the polar vortex.
NASA Astrophysics Data System (ADS)
Pan, Shengshan; Zhao, Xuefeng; Zhao, Hailiang; Mao, Jian
2015-04-01
Based on the vibration testing principle, and taking the local vibration of steel tube at the interface separation area as the study object, a real-time monitoring and the damage detection method of the interface separation of concrete-filled steel tube by accelerometer array through quantitative transient self-excitation is proposed. The accelerometers are arranged on the steel tube area with or without void respectively, and the signals of accelerometers are collected at the same time and compared under different transient excitation points. The results show that compared with the signal of compact area, the peak value of accelerometer signal at void area increases and attenuation speed slows down obviously, and the spectrum peaks of the void area are much more and disordered and the amplitude increases obviously. whether the input point of transient excitation is on void area or not is irrelevant with qualitative identification results. So the qualitative identification of the interface separation of concrete-filled steel tube based on the signal of acceleration transducer is feasible and valid.
Gyroscope-reduced inertial navigation system for flight vehicle motion estimation
NASA Astrophysics Data System (ADS)
Wang, Xin; Xiao, Lu
2017-01-01
In this paper, a novel configuration of strategically distributed accelerometer sensors with the aid of one gyro to infer a flight vehicle's angular motion is presented. The MEMS accelerometer and gyro sensors are integrated to form a gyroscope-reduced inertial measurement unit (GR-IMU). The motivation for gyro aided accelerometers array is to have direct measurements of angular rates, which is an improvement to the traditional gyroscope-free inertial system that employs only direct measurements of specific force. Some technical issues regarding error calibration in accelerometers and gyro in GR-IMU are put forward. The GR-IMU based inertial navigation system can be used to find a complete attitude solution for flight vehicle motion estimation. Results of numerical simulation are given to illustrate the effectiveness of the proposed configuration. The gyroscope-reduced inertial navigation system based on distributed accelerometer sensors can be developed into a cost effective solution for a fast reaction, MEMS based motion capture system. Future work will include the aid from external navigation references (e.g. GPS) to improve long time mission performance.
Benevicius, Vincas; Ostasevicius, Vytautas; Gaidys, Rimvydas
2013-08-22
Due to their small size, low weight, low cost and low energy consumption, MEMS accelerometers have achieved great commercial success in recent decades. The aim of this research work is to identify a MEMS accelerometer structure for human body dynamics measurements. Photogrammetry was used in order to measure possible maximum accelerations of human body parts and the bandwidth of the digital acceleration signal. As the primary structure the capacitive accelerometer configuration is chosen in such a way that sensing part measures on all three axes as it is 3D accelerometer and sensitivity on each axis is equal. Hill climbing optimization was used to find the structure parameters. Proof-mass displacements were simulated for all the acceleration range that was given by the optimization problem constraints. The final model was constructed in Comsol Multiphysics. Eigenfrequencies were calculated and model's response was found, when vibration stand displacement data was fed into the model as the base excitation law. Model output comparison with experimental data was conducted for all excitation frequencies used during the experiments.
Chu, Dahlon D.; Thelen, Jr., Donald C.; Campbell, David V.
2001-01-01
A digital feedback control circuit is disclosed for use in an accelerometer (e.g. a microelectromechanical accelerometer). The digital feedback control circuit, which periodically re-centers a proof mass in response to a sensed acceleration, is based on a sigma-delta (.SIGMA..DELTA.) configuration that includes a notch filter (e.g. a digital switched-capacitor filter) for rejecting signals due to mechanical resonances of the proof mass and further includes a comparator (e.g. a three-level comparator). The comparator generates one of three possible feedback states, with two of the feedback states acting to re-center the proof mass when that is needed, and with a third feedback state being an "idle" state which does not act to move the proof mass when no re-centering is needed. Additionally, the digital feedback control system includes an auto-zero trim capability for calibration of the accelerometer for accurate sensing of acceleration. The digital feedback control circuit can be fabricated using complementary metal-oxide semiconductor (CMOS) technology, bi-CMOS technology or bipolar technology and used in single- and dual-proof-mass accelerometers.
Ground Based Investigation of Electrostatic Accelerometer in HUST
NASA Astrophysics Data System (ADS)
Bai, Y.; Zhou, Z.
2013-12-01
High-precision electrostatic accelerometers with six degrees of freedom (DOF) acceleration measurement were successfully used in CHAMP, GRACE and GOCE missions which to measure the Earth's gravity field. In our group, space inertial sensor based on the capacitance transducer and electrostatic control technique has been investigated for test of equivalence principle (TEPO), searching non-Newtonian force in micrometer range, and satellite Earth's field recovery. The significant techniques of capacitive position sensor with the noise level at 2×10-7pF/Hz1/2 and the μV/Hz1/2 level electrostatic actuator are carried out and all the six servo loop controls by using a discrete PID algorithm are realized in a FPGA device. For testing on ground, in order to compensate one g earth's gravity, the fiber torsion pendulum facility is adopt to measure the parameters of the electrostatic controlled inertial sensor such as the resolution, and the electrostatic stiffness, the cross couple between different DOFs. A short distance and a simple double capsule equipment the valid duration about 0.5 second is set up in our lab for the free fall tests of the engineering model which can directly verify the function of six DOF control. Meanwhile, high voltage suspension method is also realized and preliminary results show that the horizontal axis of acceleration noise is about 10-8m/s2/Hz1/2 level which limited mainly by the seismic noise. Reference: [1] Fen Gao, Ze-Bing Zhou, Jun Luo, Feasibility for Testing the Equivalence Principle with Optical Readout in Space, Chin. Phys. Lett. 28(8) (2011) 080401. [2] Z. Zhu, Z. B. Zhou, L. Cai, Y. Z. Bai, J. Luo, Electrostatic gravity gradiometer design for the advanced GOCE mission, Adv. Sp. Res. 51 (2013) 2269-2276. [3] Z B Zhou, L Liu, H B Tu, Y Z Bai, J Luo, Seismic noise limit for ground-based performance measurements of an inertial sensor using a torsion balance, Class. Quantum Grav. 27 (2010) 175012. [4] H B Tu, Y Z Bai, Z B Zhou, L Liu, L Cai, and J Luo, Performance measurements of an inertial sensor with a two-stage controlled torsion pendulum, Class Quantum. Grav. 27 (2010) 205016.
Future Drag Measurements from Venus Express
NASA Astrophysics Data System (ADS)
Keating, Gerald; Mueller-Wodarg, Ingo; Forbes, Jeffrey M.; Yelle, Roger; Bruinsma, Sean; Withers, Paul; Lopez-Valverde, Miguel Angel; Theriot, Res. Assoc. Michael; Bougher, Stephen
Beginning in July 2008 during the Venus Express Extended Mission, the European Space Agency will dramatically drop orbital periapsis from near 250km to near 180km above the Venus North Polar Region. This will allow orbital decay measurements of atmospheric densities to be made near the Venus North Pole by the VExADE (Venus Express Atmospheric Drag Experiment) whose team leader is Ingo Mueller-Wodarg. VExADE consists of two parts VExADE-ODA (Orbital Drag Analysis from radio tracking data) and VExADE-ACC (Accelerometer in situ atmospheric density measurements). Previous orbital decay measurements of the Venus thermosphere were obtained by Pioneer Venus from the 1970's into the 1990's and from Magellan in the 1990's. The major difference is that the Venus Express will provide measurements in the North Polar Region on the day and night sides, while the earlier measurements were obtained primarily near the equator. The periapsis will drift upwards in altitude similar to the earlier spacecraft and then be commanded down to its lower original values. This cycle in altitude will allow estimates of vertical structure and thus thermospheric temperatures in addition to atmospheric densities. The periapsis may eventually be lowered even further so that accelerometers can more accurately obtain density measurements of the polar atmosphere as a function of altitude, latitude, longitude, local solar time, pressure, Ls, solar activity, and solar wind on each pass. Bias in accelerometer measurements will be determined and corrected for by accelerometer measurements obtained above the discernable atmosphere on each pass. The second experiment, VExADE-ACC, is similar to the accelerometer experiments aboard Mars Global Surveyor, Mars Odyssey, and Mars Reconnaissance Orbiter that carried similar accelerometers in orbit around Mars. The risk involved in the orbital decay and accelerometer measurements is minimal. We have not lost any spacecraft orbiting Venus or Mars due to unexpected thermospheric drag effects over the last 30 years. The Venus Express drag experiments will allow a global empirical model of the thermosphere to emerge. This new model will be a substantial improvement over the Venus International Reference Atmosphere, which was based principally on near equatorial measurements. General Circulation Models (GCM's) and other models will be generated that are in fair accord with the empirical models. The experiment may help us understand, on a global scale, tides, winds, gravity waves, planetary waves and the damping of waves. Comparisons will be made between low and high latitude results; between the middle and upper atmosphere; and with other instruments that provide information from current and previous measurements. The character of the sharp temperature gradient near the day/night terminator needs to be studied at all latitudes. The cryosphere we discovered on the nightside needs to be studied at high latitudes. The vortex dipole over the North Pole surrounded by a colder "collar" needs to be analyzed to identify how wave activity extends into the polar thermosphere. We have already discovered super-rotation in the equatorial thermosphere, but we need to study 4-day super-rotation at higher latitudes to obtain a global picture of the thermosphere. The observed global cooling from radiative effects of 15 micron excitation of CO2 by atomic oxygen should improve our understanding of global thermospheric cooling on Earth and Mars as well.
In-flight estimation of center of gravity position using all-accelerometers.
Al-Rawashdeh, Yazan Mohammad; Elshafei, Moustafa; Al-Malki, Mohammad Fahad
2014-09-19
Changing the position of the Center of Gravity (CoG) for an aerial vehicle is a challenging part in navigation, and control of such vehicles. In this paper, an all-accelerometers-based inertial measurement unit is presented, with a proposed method for on-line estimation of the position of the CoG. The accelerometers' readings are used to find and correct the vehicle's angular velocity and acceleration using an Extended Kalman Filter. Next, the accelerometers' readings along with the estimated angular velocity and acceleration are used in an identification scheme to estimate the position of the CoG and the vehicle's linear acceleration. The estimated position of the CoG and motion measurements can then be used to update the control rules to achieve better trim conditions for the air vehicle.
Song, Wen; Ade, Carl; Broxterman, Ryan; Barstow, Thomas; Nelson, Thomas; Warren, Steve
2012-01-01
Accelerometer data provide useful information about subject activity in many different application scenarios. For this study, single-accelerometer data were acquired from subjects participating in field tests that mimic tasks that astronauts might encounter in reduced gravity environments. The primary goal of this effort was to apply classification algorithms that could identify these tasks based on features present in their corresponding accelerometer data, where the end goal is to establish methods to unobtrusively gauge subject well-being based on sensors that reside in their local environment. In this initial analysis, six different activities that involve leg movement are classified. The k-Nearest Neighbors (kNN) algorithm was found to be the most effective, with an overall classification success rate of 90.8%.
Accelerometer Measurements in the Amusement Park.
ERIC Educational Resources Information Center
Reno, Charles; Speers, Robert R.
1995-01-01
Describes the use of the Texas Instruments' calculator-based laboratory (CBL) and Vernier accelerometer for measuring the vector sum of the gravitational field and the acceleration of amusement park rides. (JRH)
Salisbury, Joseph P; Keshav, Neha U; Sossong, Anthony D; Sahin, Ned T
2018-01-23
Lightweight and portable devices that objectively measure concussion-related impairments could improve injury detection and critical decision-making in contact sports and the military, where brain injuries commonly occur but remain underreported. Current standard assessments often rely heavily on subjective methods such as symptom self-reporting. Head-mounted wearables, such as smartglasses, provide an emerging platform for consideration that could deliver the range of assessments necessary to develop a rapid and objective screen for brain injury. Standing balance assessment, one parameter that may inform a concussion diagnosis, could theoretically be performed quantitatively using current off-the-shelf smartglasses with an internal accelerometer. However, the validity of balance measurement using smartglasses has not been investigated. This study aimed to perform preliminary validation of a smartglasses-based balance accelerometer measure (BAM) compared with the well-described and characterized waist-based BAM. Forty-two healthy individuals (26 male, 16 female; mean age 23.8 [SD 5.2] years) participated in the study. Following the BAM protocol, each subject performed 2 trials of 6 balance stances while accelerometer and gyroscope data were recorded from smartglasses (Glass Explorer Edition). Test-retest reliability and correlation were determined relative to waist-based BAM as used in the National Institutes of Health's Standing Balance Toolbox. Balance measurements obtained using a head-mounted wearable were highly correlated with those obtained through a waist-mounted accelerometer (Spearman rho, ρ=.85). Test-retest reliability was high (intraclass correlation coefficient, ICC 2,1 =0.85, 95% CI 0.81-0.88) and in good agreement with waist balance measurements (ICC 2,1 =0.84, 95% CI 0.80-0.88). Considering the normalized path length magnitude across all 3 axes improved interdevice correlation (ρ=.90) while maintaining test-retest reliability (ICC 2,1 =0.87, 95% CI 0.83-0.90). All subjects successfully completed the study, demonstrating the feasibility of using a head-mounted wearable to assess balance in a healthy population. Balance measurements derived from the smartglasses-based accelerometer were consistent with those obtained using a waist-mounted accelerometer. Additional research is necessary to determine to what extent smartglasses-based accelerometry measures can detect balance dysfunction associated with concussion. However, given the potential for smartglasses to perform additional concussion-related assessments in an integrated, wearable platform, continued development and validation of a smartglasses-based balance assessment is warranted. This approach could lead to a wearable platform for real-time assessment of concussion-related impairments that could be further augmented with telemedicine capabilities to integrate professional clinical guidance. Smartglasses may be superior to fully immersive virtual reality headsets for this application, given their lighter weight and reduced likelihood of potential safety concerns. ©Joseph P Salisbury, Neha U Keshav, Anthony D Sossong, Ned T Sahin. Originally published in JMIR Mhealth and Uhealth (http://mhealth.jmir.org), 23.01.2018.
2012-10-01
were collected at 500 Hz. In addition, for the ST1 tests only, positional data were collected using the Optotrak at 200 Hz. Acceleration was measured...the accelerometer in order to characterize the skin-accelerometer system. Optotrak position data were measured during ST1 using markers on the spinous...particular, we have analyzed transmissibility at T3 and L4, corresponding to where the accelerometers were placed, and using the Optotrak data at
DOE Office of Scientific and Technical Information (OSTI.GOV)
Yang, Xiaoning; Patton, Howard John; Chen, Ting
2016-03-25
This report offers predictions for the SPE-5 ground-motion and accelerometer array sites. These predictions pertain to the waveform and spectral amplitude at certain geophone sites using Denny&Johnson source model and a source model derived from SPE data; waveform, peak velocity and peak acceleration at accelerometer sites using the SPE source model and the finite-difference simulation with LLNL 3D velocity model; and the SPE-5 moment and corner frequency.
Further developments in orbit ephemeris derived neutral density
NASA Astrophysics Data System (ADS)
Locke, Travis
There are a number of non-conservative forces acting on a satellite in low Earth orbit. The one which is the most dominant and also contains the most uncertainty is atmospheric drag. Atmospheric drag is directly proportional to atmospheric density, and the existing atmospheric density models do not accurately model the variations in atmospheric density. In this research, precision orbit ephemerides (POE) are used as input measurements in an optimal orbit determination scheme in order to estimate corrections to existing atmospheric density models. These estimated corrections improve the estimates of the drag experienced by a satellite and therefore provide an improvement in orbit determination and prediction as well as a better overall understanding of the Earth's upper atmosphere. The optimal orbit determination scheme used in this work includes using POE data as measurements in a sequential filter/smoother process using the Orbit Determination Tool Kit (ODTK) software. The POE derived density estimates are validated by comparing them with the densities derived from accelerometers on board the Challenging Minisatellite Payload (CHAMP) and the Gravity Recovery and Climate Experiment (GRACE). These accelerometer derived density data sets for both CHAMP and GRACE are available from Sean Bruinsma of the Centre National d'Etudes Spatiales (CNES). The trend in the variation of atmospheric density is compared quantitatively by calculating the cross correlation (CC) between the POE derived density values and the accelerometer derived density values while the magnitudes of the two data sets are compared by calculating the root mean square (RMS) values between the two. There are certain high frequency density variations that are observed in the accelerometer derived density data but not in the POE derived density data or any of the baseline density models. These high frequency density variations are typically small in magnitude compared to the overall day-night variation. However during certain time periods, such as when the satellite is near the terminator, the variations are on the same order of magnitude as the diurnal variations. These variations can also be especially prevalent during geomagnetic storms and near the polar cusps. One of the goals of this work is to see what affect these unmodeled high frequency variations have on orbit propagation. In order to see this effect, the orbits of CHAMP and GRACE are propagated during certain time periods using different sources of density data as input measurements (accelerometer, POE, HASDM, and Jacchia 1971). The resulting orbit propagations are all compared to the propagation using the accelerometer derived density data which is used as truth. The RMS and the maximum difference between the different propagations are analyzed in order to see what effect the unmodeled density variations have on orbit propagation. These results are also binned by solar and geomagnetic activity level. The primary input into the orbit determination scheme used to produce the POE derived density estimates is a precision orbit ephemeris file. This file contains position and velocity in-formation for the satellite based on GPS and SLR measurements. The values contained in these files are estimated values and therefore contain some level of error, typically thought to be around the 5-10 cm level. The other primary focus of this work is to evaluate the effect of adding different levels of noise (0.1 m, 0.5 m, 1 m, 10 m, and 100 m) to this raw ephemeris data file before it is input into the orbit determination scheme. The resulting POE derived density estimates for each level of noise are then compared with the accelerometer derived densities by computing the CC and RMS values between the data sets. These results are also binned by solar and geomagnetic activity level.
Dynamically tuned vibratory micromechanical gyroscope accelerometer
NASA Astrophysics Data System (ADS)
Lee, Byeungleul; Oh, Yong-Soo; Park, Kyu-Yeon; Ha, Byeoungju; Ko, Younil; Kim, Jeong-gon; Kang, Seokjin; Choi, Sangon; Song, Ci M.
1997-11-01
A comb driving vibratory micro-gyroscope, which utilizes the dynamically tunable resonant modes for a higher rate- sensitivity without an accelerational error, has been developed and analyzed. The surface micromachining technology is used to fabricate the gyroscope having a vibrating part of 400 X 600 micrometers with 6 mask process, and the poly-silicon structural layer is deposited by LPCVD at 625 degrees C. The gyroscope and the interface electronics housed in a hermetically sealed vacuum package for low vibrational damping condition. This gyroscope is designed to be driven in parallel to the substrate by electrostatic forces and subject to coriolis forces along vertically, with a folded beam structure. In this scheme, the resonant frequency of the driving mode is located below than that of the sensing mode, so it is possible to adjust the sensing mode with a negative stiffness effect by applying inter-plate voltage to tune the vibration modes for a higher rate-sensitivity. Unfortunately, this micromechanical vibratory gyroscope is also sensitive to vertical acceleration force, especially in the case of a low stiffness of the vibrating structure for detecting a very small coriolis force. In this study, we distinguished the rate output and the accelerational error by phase sensitivity synchronous demodulator and devised a feedback loop to maintain resonant frequency of the vertical sensing mode by varying the inter-plate tuning voltage according to the accelerational output. Therefore, this gyroscope has a high rate-sensitivity without an acceleration error, and also can be used for a resonant accelerometer. This gyroscope was tested on the rotational rate table at the separation of 50(Hz) resonant frequencies by dynamically tuning feedback loop. Also self-sustained oscillating loop is used to apply dc 2(V) + ac 30(mVpk) driving voltage to the drive electrodes. The characteristics of the gyroscope at 0.1 (deg/sec) resolution, 50 (Hz) bandwidth, and 1.3 (mV/deg/sec) sensitivity.
Accelerometer Method and Apparatus for Integral Display and Control Functions
NASA Technical Reports Server (NTRS)
Bozeman, Richard J., Jr. (Inventor)
1996-01-01
Method and apparatus for detecting mechanical vibrations and outputting a signal in response thereto. Art accelerometer package having integral display and control functions is suitable for mounting upon the machinery to be monitored. Display circuitry provides signals to a bar graph display which may be used to monitor machine conditions over a period of time. Control switches may be set which correspond to elements in the bar graph to provide an alert if vibration signals increase in amplitude over a selected trip point. The circuitry is shock mounted within the accelerometer housing. The method provides for outputting a broadband analog accelerometer signal, integrating this signal to produce a velocity signal, integrating and calibrating the velocity signal before application to a display driver, and selecting a trip point at which a digitally compatible output signal is generated.
In-Flight Estimation of Center of Gravity Position Using All-Accelerometers
Al-Rawashdeh, Yazan Mohammad; Elshafei, Moustafa; Al-Malki, Mohammad Fahad
2014-01-01
Changing the position of the Center of Gravity (CoG) for an aerial vehicle is a challenging part in navigation, and control of such vehicles. In this paper, an all-accelerometers-based inertial measurement unit is presented, with a proposed method for on-line estimation of the position of the CoG. The accelerometers' readings are used to find and correct the vehicle's angular velocity and acceleration using an Extended Kalman Filter. Next, the accelerometers' readings along with the estimated angular velocity and acceleration are used in an identification scheme to estimate the position of the CoG and the vehicle's linear acceleration. The estimated position of the CoG and motion measurements can then be used to update the control rules to achieve better trim conditions for the air vehicle. PMID:25244585
Accelerometer Method and Apparatus for Integral Display and Control Functions
NASA Technical Reports Server (NTRS)
Bozeman, Richard J., Jr. (Inventor)
1998-01-01
Method and apparatus for detecting mechanical vibrations and outputting a signal in response thereto is discussed. An accelerometer package having integral display and control functions is suitable for mounting upon the machinery to be monitored. Display circuitry provides signals to a bar graph display which may be used to monitor machine conditions over a period of time. Control switches may be set which correspond to elements in the bar graph to provide an alert if vibration signals increase in amplitude over a selected trip point. The circuitry is shock mounted within the accelerometer housing. The method provides for outputting a broadband analog accelerometer signal, integrating this signal to produce a velocity signal, integrating and calibrating the velocity signal before application to a display driver, and selecting a trip point at which a digitally compatible output signal is generated.
Physical activity correlates with neurological impairment and disability in multiple sclerosis.
Motl, Robert W; Snook, Erin M; Wynn, Daniel R; Vollmer, Timothy
2008-06-01
This study examined the correlation of physical activity with neurological impairment and disability in persons with multiple sclerosis (MS). Eighty individuals with MS wore an accelerometer for 7 days and completed the Symptom Inventory (SI), Performance Scales (PS), and Expanded Disability Status Scale. There were large negative correlations between the accelerometer and SI (r = -0.56; rho = -0.58) and Expanded Disability Status Scale (r = -0.60; rho = -0.69) and a moderate negative correlation between the accelerometer and PS (r = -0.39; rho = -0.48) indicating that physical activity was associated with reduced neurological impairment and disability. Such findings provide a preliminary basis for using an accelerometer and the SI and PS as outcome measures in large-scale prospective and experimental examinations of the effect of physical activity behavior on disability and dependence in MS.
Terrestrial Applications of a Nano-g Accelerometer
NASA Technical Reports Server (NTRS)
Hartley, Frank T.
1996-01-01
The ultra-sensitive accelerometer, developed for NASA to monitor the microgravity environments of Space Shuttle, five orbiters and Space Station, needed to measure accelerations up to 10 mg with an absolute accuracy of 10 nano-g (10(exp -8)g) for at least two orbits (10(exp 4) seconds) to resolve accelerations associated with orbital drag. Also, the accelerometers needed to have less than 10(exp -9) F.S. off-axis sensitivity; to be thermally and magnetically inert; to be immune to quiescent shock, and to have an in-situ calibration capability. Multi-axis compact seismometers, designs that have twelve decades of dynamic range will be described. Density profilometers, precision gradiometers, gyros and vibration isolation designs and applications will be discussed. Finally, examples of transformations of the accelerometer into sensitive anemometers and imaging spectrometers will be presented.
Time Periods of Unusual Density Behavior Observed by GRACE and CHAMP
NASA Astrophysics Data System (ADS)
McLaughlin, C. A.; Fattig, E.; Mysore Krishna, D.; Locke, T.; Mehta, P. M.
2011-12-01
Time periods of low cross correlation between precision orbit ephemeris (POE) derived density and accelerometer density for CHAMP and GRACE are examined. In particular, the cross correlation for GRACE dropped from typical values near 0.9 to much lower values and then returned to typical over the time period of late October to late December of 2005. This time period includes a maneuver where GRACE-A and GRACE-B swapped positions. However, the drop in cross correlation begins and reaches its low point before the maneuvers begin. In addition, the densities were found using GRACE-A, but GRACE-B did most of the maneuvering. The time period is characterized by high frequency variations in accelerometer density of the same magnitude as the daylight to eclipse variations over the course of an orbit. However, the daylight to eclipse variations are particularly small during this time period because the orbit plane is near the terminator. Additionally, the difference between the accelerometer and POE derived densities are not unusually large during this time period. This implies the variations are not unusual, just more significant when the orbit plane is near terminator. Cyclical variations in correlation of the POE derived densities with accelerometer derived densities are seen for both GRACE and CHAMP, but the magnitude of the variations are much larger for GRACE, possibly because of the higher altitude of GRACE. The cycles seem to be phased so that low correlations occur with low beta angle when the orbit plane is near the terminator. The low correlation is possibly caused by the lower amplitude of the daylight to eclipse signal making higher frequency variations relatively more important. However, another possible explanation is terminator waves in density that propagate to the thermosphere from lower in the atmosphere. These waves have been observed in CHAMP accelerometer data and global circulation model simulations. Further investigation is needed to see if the variations correspond to terminator waves or if they represent typical high frequency signal from another source that is more apparent when the orbit plane is near the terminator. 1. C. A. McLaughlin, E. Fattig, D. Mysore Krishna, and P. M. Mehta, "Time Periods of Anomalous Density for GRACE and CHAMP," AAS/AIAA Astrodynamics Specialists Conference, AAS 11-613, Girdwood, AK, August 2011. 2. C. A. McLaughlin, A. Hiatt, and T. Lechtenberg, "Calibrating Precision Orbit Derived Total Density," Journal of Spacecraft and Rockets, Vol. 48, No. 1, January-February 2011, pp. 166-174.
Improving Hip-Worn Accelerometer Estimates of Sitting Using Machine Learning Methods.
Kerr, Jacqueline; Carlson, Jordan; Godbole, Suneeta; Cadmus-Bertram, Lisa; Bellettiere, John; Hartman, Sheri
2018-02-13
To improve estimates of sitting time from hip worn accelerometers used in large cohort studies by employing machine learning methods developed on free living activPAL data. Thirty breast cancer survivors concurrently wore a hip worn accelerometer and a thigh worn activPAL for 7 days. A random forest classifier, trained on the activPAL data, was employed to detect sitting, standing and sit-stand transitions in 5 second windows in the hip worn accelerometer. The classifier estimates were compared to the standard accelerometer cut point and significant differences across different bout lengths were investigated using mixed effect models. Overall, the algorithm predicted the postures with moderate accuracy (stepping 77%, standing 63%, sitting 67%, sit to stand 52% and stand to sit 51%). Daily level analyses indicated that errors in transition estimates were only occurring during sitting bouts of 2 minutes or less. The standard cut point was significantly different from the activPAL across all bout lengths, overestimating short bouts and underestimating long bouts. This is among the first algorithms for sitting and standing for hip worn accelerometer data to be trained from entirely free living activPAL data. The new algorithm detected prolonged sitting which has been shown to be most detrimental to health. Further validation and training in larger cohorts is warranted.This is an open access article distributed under the Creative Commons Attribution License 4.0 (CCBY), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
Gatti, Anthony A; Stratford, Paul W; Brenneman, Elora C; Maly, Monica R
2016-01-01
Accelerometers provide a measure of step-count. Reliability and validity of step-count and pedal-revolution count measurements by the GT3X+ accelerometer, placed at different anatomical locations, is absent in the literature. The purpose of this study was to investigate the reliability and validity of step and pedal-revolution counts produced by the GT3X+ placed at different anatomical locations during running and bicycling. Twenty-two healthy adults (14 men and 8 women) completed running and bicycling activity bouts (5 minutes each) while wearing 6 accelerometers: 2 each at the waist, thigh and shank. Accelerometer and video data were collected during activity. Excellent reliability and validity were found for measurements taken from accelerometers mounted at the waist and shank during running (Reliability: intraclass correlation (ICC) ≥ 0.99; standard error of measurement (SEM) ≤1.0 steps; Pearson ≥ 0.99) and at the thigh and shank during bicycling (Reliability: ICC ≥ 0.99; SEM ≤1.0 revolutions; Pearson ≥ 0.99). Excellent reliability was found between measurements taken at the waist and shank during running (ICC ≥ 0.98; SEM ≤1.6 steps) and between measurements taken at the thigh and shank during bicycling (ICC ≥ 0.99; SEM ≤1.0 revolutions). These data suggest that the GT3X+ can be used for measuring step-count during running and pedal-revolution count during bicycling. Only shank placement is recommended for both activities.
Rääsk, Triin; Mäestu, Jarek; Lätt, Evelin; Jürimäe, Jaak; Jürimäe, Toivo; Vainik, Uku; Konstabel, Kenn
2017-01-01
Self-report measures of physical activity (PA) are easy to use and popular but their reliability is often questioned. Therefore, the general aim of the present study was to investigate the association of PA questionnaires with accelerometer derived PA, in a sample of adolescent boys. In total, 191 pubertal boys (mean age 14.0 years) completed three self-report questionnaires and wore an accelerometer (ActiGraph GT1M) for 7 consecutive days. The PA questionnaires were: International Physical Activity Questionnaire-Short Form (IPAQ-SF), Tartu Physical Activity Questionnaire (TPAQ), and the Inactivity subscale from Domain-Specific Impulsivity (DSI) scale. All three questionnaires were significantly correlated with accelerometer derived MVPA: the correlations were 0.31 for the IPAQ-SF MVPA, 0.34 for the TPAQ MVPA and -0.29 for the DSI Inactivity scale. Nevertheless, none of the questionnaires can be used as a reliable individual-level estimate of MVPA in male adolescents. The boys underreported their MVPA in IPAQ-SF as compared to accelerometer-derived MVPA (respective averages 43 and 56 minutes); underreporting was more marked in active boys with average daily MVPA at least 60 minutes, and was not significant in less active boys. Conversely, MVPA index from TPAQ overestimated the MVPA in less active boys but underestimated it in more active boys. The sedentary time reported in IPAQ-SF was an underestimate as compared to accelerometer-derived sedentary time (averages 519 and 545 minutes, respectively).
Real-time signal processing of accelerometer data for wearable medical patient monitoring devices.
Van Wieringen, Matt; Eklund, J
2008-01-01
Elderly and other people who live at home but required some physical assistance to do so are often more susceptible injury causing falls in and around their place of residence. In the event that a fall does occur, as a direct result of a previous medical condition or the fall itself, these people are typically less likely to be able to seek timely medical help without assistance. The goal of this research is to develop a wearable sensor device that uses an accelerometer for monitoring the movement of the person to detect falls after they have occurred in order to enable timely medical assistance. The data coming from the accelerometer is processed in real-time in the device and sent to a remote monitoring station where operators can attempt to make contact with the person and/or notify medical personnel of the situation. The ADXL330 accelerometer is contained within a Nintendo WiiMote controller, which forms the basis of the wearable medical sensor. The accelerometer data can then be sent via Bluetooth connection and processed by a local gateway processor. If a fall is detected, the gateway will then contact a remote monitoring station, on a cellular network, for example, via satellite, and/or through a hardwired phone or Internet connection. To detect the occurrence of ta fall, the accelerometer data is passed through a matched filter and the data is compared to benchmark analysis data that will define the conditions that represents the occurrence of a fall.
Image-based dynamic deformation monitoring of civil engineering structures from long ranges
NASA Astrophysics Data System (ADS)
Ehrhart, Matthias; Lienhart, Werner
2015-02-01
In this paper, we report on the vibration and displacement monitoring of civil engineering structures using a state of the art image assisted total station (IATS) and passive target markings. By utilizing the telescope camera of the total station, it is possible to capture video streams in real time with 10fps and an angular resolution of approximately 2″/px. Due to the high angular resolution resulting from the 30x optical magnification of the telescope, large distances to the object to be monitored are possible. The laser distance measurement unit integrated in the total station allows to precisely set the camera's focus position and to relate the angular quantities gained from image processing to units of length. To accurately measure the vibrations and displacements of civil engineering structures, we use circular target markings rigidly attached to the object. The computation of the targets' centers is performed by a least squares adjustment of an ellipse according to the Gauß-Helmert model from which the parameters of the ellipse and their standard deviations are derived. In laboratory experiments, we show that movements can be detected with an accuracy of better than 0.2mm for single frames and distances up to 30m. For static applications, where many video frames can be averaged, accuracies of better than 0.05mm are possible. In a field test on a life-size footbridge, we compare the vibrations measured by the IATS to reference values derived from accelerometer measurements.
Allen, Martin; Nathan, Andrea; Lowe, John; Janda, Monika
2018-01-01
Background Skin cancer is the most prevalent cancer in Australia. Skin cancer prevention programs aim to reduce sun exposure and increase sun protection behaviors. Effectiveness is usually assessed through self-report. Objective It was the aim of this study to test the acceptance and validity of a newly developed ultraviolet radiation (UVR) exposure app, designed to reduce the data collection burden to research participants. Physical activity data was collected because a strong focus on sun avoidance may result in unhealthy reductions in physical activity. This paper provides lessons learned from collecting data from participants using paper diaries, a mobile app, dosimeters, and accelerometers for measuring end-points of UVR exposure and physical activity. Methods Two participant groups were recruited through social and traditional media campaigns 1) Group A—UVR Diaries and 2) Group B—Physical Activity. In Group A, nineteen participants wore an UVR dosimeter wristwatch (University of Canterbury, New Zealand) when outside for 7 days. They also recorded their sun exposure and physical activity levels using both 1) the UVR diary app and 2) a paper UVR diary. In Group B, 55 participants wore an accelerometer (Actigraph, Pensacola, FL, USA) for 14 days and completed the UVR diary app. Data from the UVR diary app were compared with UVR dosimeter wristwatch, accelerometer, and paper UVR diary data. Cohen kappa coefficient score was used to determine if there was agreement between categorical variables for different UVR data collection methods and Spearman rank correlation coefficient was used to determine agreement between continuous accelerometer data and app-collected self-report physical activity. Results The mean age of participants in Groups A (n=19) and B (n=55) was 29.3 and 25.4 years, and 63% (12/19) and 75% (41/55) were females, respectively. Self-reported sun exposure data in the UVR app correlated highly with UVR dosimetry (κ=0.83, 95% CI 0.64-1.00, P<.001). Correlation between self-reported UVR app and accelerometer-collected moderate to vigorous physical activity data was low (ρ=0.23, P=.10), while agreement for low-intensity physical activity was significantly different (ρ=-0.49, P<.001). Seventy-nine percent of participants preferred the app over the paper diary for daily self-report of UVR exposure and physical activity. Conclusions This feasibility study highlights self-report using an UVR app can reliably collect personal UVR exposure, but further improvements are required before the app can also be used to collect physical activity data. PMID:29666044
Wright, Brianna M; Ford, John K B; Ellis, Graeme M; Deecke, Volker B; Shapiro, Ari Daniel; Battaile, Brian C; Trites, Andrew W
2017-01-01
We sought to quantitatively describe the fine-scale foraging behavior of northern resident killer whales ( Orcinus orca ), a population of fish-eating killer whales that feeds almost exclusively on Pacific salmon ( Oncorhynchus spp.). To reconstruct the underwater movements of these specialist predators, we deployed 34 biologging Dtags on 32 individuals and collected high-resolution, three-dimensional accelerometry and acoustic data. We used the resulting dive paths to compare killer whale foraging behavior to the distributions of different salmonid prey species. Understanding the foraging movements of these threatened predators is important from a conservation standpoint, since prey availability has been identified as a limiting factor in their population dynamics and recovery. Three-dimensional dive tracks indicated that foraging ( N = 701) and non-foraging dives ( N = 10,618) were kinematically distinct (Wilks' lambda: λ 16 = 0.321, P < 0.001). While foraging, killer whales dove deeper, remained submerged longer, swam faster, increased their dive path tortuosity, and rolled their bodies to a greater extent than during other activities. Maximum foraging dive depths reflected the deeper vertical distribution of Chinook (compared to other salmonids) and the tendency of Pacific salmon to evade predators by diving steeply. Kinematic characteristics of prey pursuit by resident killer whales also revealed several other escape strategies employed by salmon attempting to avoid predation, including increased swimming speeds and evasive maneuvering. High-resolution dive tracks reconstructed using data collected by multi-sensor accelerometer tags found that movements by resident killer whales relate significantly to the vertical distributions and escape responses of their primary prey, Pacific salmon.
The Effect of Sonic Booms on Earthquake Warning Systems
NASA Technical Reports Server (NTRS)
Wurman, Gilead; Haering, Edward A, Jr.; Price, Michael J.
2011-01-01
Several aerospace companies are designing quiet supersonic business jets for service over the United States. These aircraft have the potential to increase the occurrence of mild sonic booms across the country. This leads to interest among earthquake warning (EQW) developers and the general seismological community in characterizing the effect of sonic booms on seismic sensors in the field, their potential impact on EQW systems, and means of discriminating their signatures from those of earthquakes. The SonicBREWS project (Sonic Boom Resistant Earthquake Warning Systems) is a collaborative effort between Seismic Warning Systems, Inc. (SWS) and NASA Dryden Flight Research Center. This project aims to evaluate the effects of sonic booms on EQW sensors. The study consists of exposing high-sample-rate (1000 sps) triaxial accelerometers to sonic booms with overpressures ranging from 10 to 600 Pa in the free field and the built environment. The accelerometers record the coupling of the sonic boom to the ground and surrounding structures, while microphones record the acoustic wave above ground near the sensor. Sonic booms are broadband signals with more high-frequency content than earthquakes. Even a 1000 sps accelerometer will produce a significantly aliased record. Thus the observed peak ground velocity is strongly dependent on the sampling rate, and increases as the sampling rate is reduced. At 1000 sps we observe ground velocities that exceed those of P-waves from ML 3 earthquakes at local distances, suggesting that sonic booms are not negligible for EQW applications. We present the results of several experiments conducted under SonicBREWS showing the effects of typical-case low amplitude sonic booms and worst-case high amplitude booms. We show the effects of various sensor placements and sensor array geometries. Finally, we suggest possible avenues for discriminating sonic booms from earthquakes for the purposes of EQW.
Video and accelerometer-based motion analysis for automated surgical skills assessment.
Zia, Aneeq; Sharma, Yachna; Bettadapura, Vinay; Sarin, Eric L; Essa, Irfan
2018-03-01
Basic surgical skills of suturing and knot tying are an essential part of medical training. Having an automated system for surgical skills assessment could help save experts time and improve training efficiency. There have been some recent attempts at automated surgical skills assessment using either video analysis or acceleration data. In this paper, we present a novel approach for automated assessment of OSATS-like surgical skills and provide an analysis of different features on multi-modal data (video and accelerometer data). We conduct a large study for basic surgical skill assessment on a dataset that contained video and accelerometer data for suturing and knot-tying tasks. We introduce "entropy-based" features-approximate entropy and cross-approximate entropy, which quantify the amount of predictability and regularity of fluctuations in time series data. The proposed features are compared to existing methods of Sequential Motion Texture, Discrete Cosine Transform and Discrete Fourier Transform, for surgical skills assessment. We report average performance of different features across all applicable OSATS-like criteria for suturing and knot-tying tasks. Our analysis shows that the proposed entropy-based features outperform previous state-of-the-art methods using video data, achieving average classification accuracies of 95.1 and 92.2% for suturing and knot tying, respectively. For accelerometer data, our method performs better for suturing achieving 86.8% average accuracy. We also show that fusion of video and acceleration features can improve overall performance for skill assessment. Automated surgical skills assessment can be achieved with high accuracy using the proposed entropy features. Such a system can significantly improve the efficiency of surgical training in medical schools and teaching hospitals.
Activity recognition using a single accelerometer placed at the wrist or ankle.
Mannini, Andrea; Intille, Stephen S; Rosenberger, Mary; Sabatini, Angelo M; Haskell, William
2013-11-01
Large physical activity surveillance projects such as the UK Biobank and NHANES are using wrist-worn accelerometer-based activity monitors that collect raw data. The goal is to increase wear time by asking subjects to wear the monitors on the wrist instead of the hip, and then to use information in the raw signal to improve activity type and intensity estimation. The purposes of this work was to obtain an algorithm to process wrist and ankle raw data and to classify behavior into four broad activity classes: ambulation, cycling, sedentary, and other activities. Participants (N = 33) wearing accelerometers on the wrist and ankle performed 26 daily activities. The accelerometer data were collected, cleaned, and preprocessed to extract features that characterize 2-, 4-, and 12.8-s data windows. Feature vectors encoding information about frequency and intensity of motion extracted from analysis of the raw signal were used with a support vector machine classifier to identify a subject's activity. Results were compared with categories classified by a human observer. Algorithms were validated using a leave-one-subject-out strategy. The computational complexity of each processing step was also evaluated. With 12.8-s windows, the proposed strategy showed high classification accuracies for ankle data (95.0%) that decreased to 84.7% for wrist data. Shorter (4 s) windows only minimally decreased performances of the algorithm on the wrist to 84.2%. A classification algorithm using 13 features shows good classification into the four classes given the complexity of the activities in the original data set. The algorithm is computationally efficient and could be implemented in real time on mobile devices with only 4-s latency.
Howie, Erin K; Straker, Leon M
2016-10-01
The purpose of this brief review was to describe the missingness, from both attrition and non-compliance, during physical activity randomized controlled trials among children which have used accelerometers to measure physical activity. Systematic review. Using a previously published search strategy, an updated search of the literature was performed in the MEDLINE database for articles published from 1996 to February 2015 identifying physical activity RCTs in children (ages 2-18) measuring physical activity using accelerometers. Rates of attrition and non-compliance were extracted from identified articles. Twenty-three independent studies provided complete attrition and non-compliance data and were included. The mean attrition rate was 11.5% (SD 10.1%, range 0-30.9%). The mean accelerometer non-compliance rate at baseline was 22.7% (SD 16.4%, range 1.7-67.8%) and 29.6% (SD 19.4%, range 3.3-70.1%) at follow-up. The mean total study missingness was 37.4% (SD 20.2%, range 3.3-75.4%) and ranged from 3.3% to 75.4%. There was large variation in how missingness was accounted for between studies. There were no statistically significant differences in missingness between study characteristics including sample size, participant age, intervention setting, duration of follow-up, whether physical activity was the primary outcome, and weartime compliance criteria. Missingness is common among randomized controlled trials using accelerometry in children and is currently handled inconsistently. Researchers must plan for high levels of missingness in study design and account for missingness in reporting and analyses of trial outcomes. Copyright © 2016 Sports Medicine Australia. Published by Elsevier Ltd. All rights reserved.
Validity and reliability of the Fitbit Zip as a measure of preschool children’s step count
Sharp, Catherine A; Mackintosh, Kelly A; Erjavec, Mihela; Pascoe, Duncan M; Horne, Pauline J
2017-01-01
Objectives Validation of physical activity measurement tools is essential to determine the relationship between physical activity and health in preschool children, but research to date has not focused on this priority. The aims of this study were to ascertain inter-rater reliability of observer step count, and interdevice reliability and validity of Fitbit Zip accelerometer step counts in preschool children. Methods Fifty-six children aged 3–4 years (29 girls) recruited from 10 nurseries in North Wales, UK, wore two Fitbit Zip accelerometers while performing a timed walking task in their childcare settings. Accelerometers were worn in secure pockets inside a custom-made tabard. Video recordings enabled two observers to independently code the number of steps performed in 3 min by each child during the walking task. Intraclass correlations (ICCs), concordance correlation coefficients, Bland-Altman plots and absolute per cent error were calculated to assess the reliability and validity of the consumer-grade device. Results An excellent ICC was found between the two observer codings (ICC=1.00) and the two Fitbit Zips (ICC=0.91). Concordance between the Fitbit Zips and observer counts was also high (r=0.77), with an acceptable absolute per cent error (6%–7%). Bland-Altman analyses identified a bias for Fitbit 1 of 22.8±19.1 steps with limits of agreement between −14.7 and 60.2 steps, and a bias for Fitbit 2 of 25.2±23.2 steps with limits of agreement between −20.2 and 70.5 steps. Conclusions Fitbit Zip accelerometers are a reliable and valid method of recording preschool children’s step count in a childcare setting. PMID:29081984
NASA Astrophysics Data System (ADS)
Sarrafi, Aral; Mao, Zhu; Niezrecki, Christopher; Poozesh, Peyman
2018-05-01
Vibration-based Structural Health Monitoring (SHM) techniques are among the most common approaches for structural damage identification. The presence of damage in structures may be identified by monitoring the changes in dynamic behavior subject to external loading, and is typically performed by using experimental modal analysis (EMA) or operational modal analysis (OMA). These tools for SHM normally require a limited number of physically attached transducers (e.g. accelerometers) in order to record the response of the structure for further analysis. Signal conditioners, wires, wireless receivers and a data acquisition system (DAQ) are also typical components of traditional sensing systems used in vibration-based SHM. However, instrumentation of lightweight structures with contact sensors such as accelerometers may induce mass-loading effects, and for large-scale structures, the instrumentation is labor intensive and time consuming. Achieving high spatial measurement resolution for a large-scale structure is not always feasible while working with traditional contact sensors, and there is also the potential for a lack of reliability associated with fixed contact sensors in outliving the life-span of the host structure. Among the state-of-the-art non-contact measurements, digital video cameras are able to rapidly collect high-density spatial information from structures remotely. In this paper, the subtle motions from recorded video (i.e. a sequence of images) are extracted by means of Phase-based Motion Estimation (PME) and the extracted information is used to conduct damage identification on a 2.3-m long Skystream® wind turbine blade (WTB). The PME and phased-based motion magnification approach estimates the structural motion from the captured sequence of images for both a baseline and damaged test cases on a wind turbine blade. Operational deflection shapes of the test articles are also quantified and compared for the baseline and damaged states. In addition, having proper lighting while working with high-speed cameras can be an issue, therefore image enhancement and contrast manipulation has also been performed to enhance the raw images. Ultimately, the extracted resonant frequencies and operational deflection shapes are used to detect the presence of damage, demonstrating the feasibility of implementing non-contact video measurements to perform realistic structural damage detection.
Guan, W; Meng, X F; Dong, X M
2014-12-01
Rectification error is a critical characteristic of inertial accelerometers. Accelerometers working in operational situations are stimulated by composite inputs, including constant acceleration and vibration, from multiple directions. However, traditional methods for evaluating rectification error only use one-dimensional vibration. In this paper, a double turntable centrifuge (DTC) was utilized to produce the constant acceleration and vibration simultaneously and we tested the rectification error due to the composite accelerations. At first, we deduced the expression of the rectification error with the output of the DTC and a static model of the single-axis pendulous accelerometer under test. Theoretical investigation and analysis were carried out in accordance with the rectification error model. Then a detailed experimental procedure and testing results were described. We measured the rectification error with various constant accelerations at different frequencies and amplitudes of the vibration. The experimental results showed the distinguished characteristics of the rectification error caused by the composite accelerations. The linear relation between the constant acceleration and the rectification error was proved. The experimental procedure and results presented in this context can be referenced for the investigation of the characteristics of accelerometer with multiple inputs.
Camber Angle Inspection for Vehicle Wheel Alignments
Young, Jieh-Shian; Hsu, Hong-Yi; Chuang, Chih-Yuan
2017-01-01
This paper introduces an alternative approach to the camber angle measurement for vehicle wheel alignment. Instead of current commercial approaches that apply computation vision techniques, this study aims at realizing a micro-control-unit (MCU)-based camber inspection system with a 3-axis accelerometer. We analyze the precision of the inspection system for the axis misalignments of the accelerometer. The results show that the axes of the accelerometer can be aligned to the axes of the camber inspection system imperfectly. The calibrations that can amend these axis misalignments between the camber inspection system and the accelerometer are also originally proposed since misalignments will usually happen in fabrications of the inspection systems. During camber angle measurements, the x-axis or z-axis of the camber inspection system and the wheel need not be perfectly aligned in the proposed approach. We accomplished two typical authentic camber angle measurements. The results show that the proposed approach is applicable with a precision of ±0.015∘ and therefore facilitates the camber measurement process without downgrading the precision by employing an appropriate 3-axis accelerometer. In addition, the measured results of camber angles can be transmitted via the medium such as RS232, Bluetooth, and Wi-Fi. PMID:28165365
NASA Astrophysics Data System (ADS)
Lu, Qianbo; Bai, Jian; Wang, Kaiwei; Lou, Shuqi; Jiao, Xufen; Han, Dandan; Yang, Guoguang
2016-08-01
The ultrahigh static displacement-acceleration sensitivity of a mechanical sensing chip is essential primarily for an ultrasensitive accelerometer. In this paper, an optimal design to implement to a single-axis MOEMS accelerometer consisting of a grating interferometry cavity and a micromachined sensing chip is presented. The micromachined sensing chip is composed of a proof mass along with its mechanical cantilever suspension and substrate. The dimensional parameters of the sensing chip, including the length, width, thickness and position of the cantilevers are evaluated and optimized both analytically and by finite-element-method (FEM) simulation to yield an unprecedented acceleration-displacement sensitivity. Compared with one of the most sensitive single-axis MOEMS accelerometers reported in the literature, the optimal mechanical design can yield a profound sensitivity improvement with an equal footprint area, specifically, 200% improvement in displacement-acceleration sensitivity with moderate resonant frequency and dynamic range. The modified design was microfabricated, packaged with the grating interferometry cavity and tested. The experimental results demonstrate that the MOEMS accelerometer with modified design can achieve the acceleration-displacement sensitivity of about 150μm/g and acceleration sensitivity of greater than 1500V/g, which validates the effectiveness of the optimal design.
Increasing physician activity with treadmill desks.
Thompson, Warren G; Koepp, Gabriel A; Levine, James A
2014-01-01
Prolonged sitting has been shown to increase mortality and obesity. We sought to determine whether physicians would use a treadmill desk, increase their daily physical activity and lose weight. 20 overweight and obese physicians aged 25 to 70 with Body Mass Index > 25. Participants used a treadmill desk, a triaxial accelerometer, and received exercise counseling in a randomized, cross-over trial over 24 weeks. Group 1 received exercise counseling, accelerometer feedback, and a treadmill desk for 12 weeks and then accelerometer only for 12 weeks. Group 2 received an accelerometer without feedback for 12 weeks followed by exercise counseling, accelerometer feedback, and the treadmill desk for 12 weeks. Daily physical activity increased while using the treadmill desk compared to not using the desk by 197 kcal per day (p=0.003). The difference in weight during the two 12 week periods was 1.85 kg (p=0.03). Percent body fat was 1.9% lower while using the treadmill desk (p=0.02). There were no differences in metabolic or well-being measures. This study suggests that physicians will use a treadmill desk, that it does increase their activity, and that it may help with weight loss. Further studies are warranted.
NASA Astrophysics Data System (ADS)
Jean, Yoomin; Meyer, Ulrich; Arnold, Daniel; Bentel, Katrin; Jäggi, Adrian
2017-04-01
The monthly global gravity field solutions derived using the measurements from the GRACE (Gravity Recovery and Climate Experiment) satellites have been continuously improved by the processing centers. One of the improvements in the processing method is a more detailed calibration of the on-board accelerometers in the GRACE satellites. The accelerometer data calibration is usually restricted to the scale factors and biases. It has been assumed that the three different axes are perfectly orthogonal in the GRACE science reference frame. Recently, it was shown by Klinger and Mayer-Gürr (2016) that a fully-populated scale matrix considering the non-orthogonality of the axes and the misalignment of the GRACE science reference frame and the GRACE accelerometer frame improves the quality of the C20 coefficient in the GRACE monthly gravity field solutions. We investigate the effect of the more detailed calibration of the GRACE accelerometer data on the C20 coefficient in the case of the AIUB (Astronomical Institute of the University of Bern) processing method using the Celestial Mechanics Approach. We also investigate the effect of the new calibration parameters on the stochastic parameters in the Celestial Mechanics Approach.
Physically-Based Reduced Order Modelling of a Uni-Axial Polysilicon MEMS Accelerometer
Ghisi, Aldo; Mariani, Stefano; Corigliano, Alberto; Zerbini, Sarah
2012-01-01
In this paper, the mechanical response of a commercial off-the-shelf, uni-axial polysilicon MEMS accelerometer subject to drops is numerically investigated. To speed up the calculations, a simplified physically-based (beams and plate), two degrees of freedom model of the movable parts of the sensor is adopted. The capability and the accuracy of the model are assessed against three-dimensional finite element simulations, and against outcomes of experiments on instrumented samples. It is shown that the reduced order model provides accurate outcomes as for the system dynamics. To also get rather accurate results in terms of stress fields within regions that are prone to fail upon high-g shocks, a correction factor is proposed by accounting for the local stress amplification induced by re-entrant corners. PMID:23202031
Attitude and position estimation on the Mars Exploration Rovers
NASA Technical Reports Server (NTRS)
Ali, Khaled S.; Vanelli, C. Anthony; Biesiadecki, Jeffrey J.; Maimone, Mark W.; Yang Cheng, A.; San Martin, Miguel; Alexander, James W.
2005-01-01
NASA/JPL 's Mars Exploration Rovers acquire their attitude upon command and autonomously propagate their attitude and position. The rovers use accelerometers and images of the sun to acquire attitude, autonomously searching the sky for the sun with a pointable camera. To propagate the attitude and position the rovers use either accelerometer and gyro readings or gyro readings and wheel odometiy, depending on the nature of the movement ground operators are commanding. Where necessary, visual odometry is performed on images to fine tune the position updates, particularly in high slip environments. The capability also exists for visual odometry attitude updates. This paper describes the techniques used by the rovers to acquire and maintain attitude and position knowledge, the accuracy which is obtainable, and lessons learned after more than one year in operation.
Test of the Equivalence Principle in an Einstein Elevator
NASA Technical Reports Server (NTRS)
Shapiro, Irwin I.; Lorenzini, E. C.; Glashow, S.; Cosmo, M. L.; Cheimets, P.; Finkelstein, N.; Schneps, M.; Iafolla, V.; Nozzoli, S.
2003-01-01
The laboratory activity consisted in the construction of a laboratory prototype of a differential accelerometer. The laboratory prototype has been used to conduct key tests on the differential instrument. We demonstrated the ability to damp quickly transient oscillations by utilizing a resistive load in the feedback loops and then removing that load to reestablish a high quality factor of the detector. A rotating divide with tilt control was also built. This device was utilized to impart (through the Earth's gravity) common-mode perturbations to the differential accelerometer. These calibration disturbances have been used to trim the acceleration outputs of the individual proof masses in order to obtain a common-mode rejection factor better than 10(exp -4) in a sufficiently large frequency band centered at the spin frequency.
The vertical accelerometer, a new instrument for air navigation
NASA Technical Reports Server (NTRS)
Laboccetta, Letterio
1923-01-01
This report endeavors to show the possibility of determining the rate of acceleration and the advantage of having such an accelerometer in addition to other aviation instruments. Most of the discussions concern balloons.
Fused Smart Sensor Network for Multi-Axis Forward Kinematics Estimation in Industrial Robots
Rodriguez-Donate, Carlos; Osornio-Rios, Roque Alfredo; Rivera-Guillen, Jesus Rooney; de Jesus Romero-Troncoso, Rene
2011-01-01
Flexible manipulator robots have a wide industrial application. Robot performance requires sensing its position and orientation adequately, known as forward kinematics. Commercially available, motion controllers use high-resolution optical encoders to sense the position of each joint which cannot detect some mechanical deformations that decrease the accuracy of the robot position and orientation. To overcome those problems, several sensor fusion methods have been proposed but at expenses of high-computational load, which avoids the online measurement of the joint’s angular position and the online forward kinematics estimation. The contribution of this work is to propose a fused smart sensor network to estimate the forward kinematics of an industrial robot. The developed smart processor uses Kalman filters to filter and to fuse the information of the sensor network. Two primary sensors are used: an optical encoder, and a 3-axis accelerometer. In order to obtain the position and orientation of each joint online a field-programmable gate array (FPGA) is used in the hardware implementation taking advantage of the parallel computation capabilities and reconfigurability of this device. With the aim of evaluating the smart sensor network performance, three real-operation-oriented paths are executed and monitored in a 6-degree of freedom robot. PMID:22163850
Analysis of pendulum period with an iPod touch/iPhone
NASA Astrophysics Data System (ADS)
Briggle, Justin
2013-05-01
We describe the use of Apple’s iPod touch/iPhone, acting as the pendulum bob, as a means of measuring pendulum period, making use of the device’s three-axis digital accelerometer and the freely available SPARKvue app from PASCO scientific. The method can be readily incorporated into an introductory physics laboratory experiment. Moreover, the principles described may be carried out with any number of smartphone devices containing an integrated accelerometer and paired with an appropriate application for collecting and sending accelerometer data as a comma-separated value file.
Choi, Young-Chul; Park, Jin-Ho; Choi, Kyoung-Sik
2011-01-01
In a nuclear power plant, a loose part monitoring system (LPMS) provides information on the location and the mass of a loosened or detached metal impacted onto the inner surface of the primary pressure boundary. Typically, accelerometers are mounted on the surface of a reactor vessel to localize the impact location caused by the impact of metallic substances on the reactor system. However, in some cases, the number of accelerometers is not sufficient to estimate the impact location precisely. In such a case, one of useful methods is to utilize other types of sensor that can measure the vibration of the reactor structure. For example, acoustic emission (AE) sensors are installed on the reactor structure to detect leakage or cracks on the primary pressure boundary. However, accelerometers and AE sensors have a different frequency range. The frequency of interest of AE sensors is higher than that of accelerometers. In this paper, we propose a method of impact source localization by using both accelerometer signals and AE signals, simultaneously. The main concept of impact location estimation is based on the arrival time difference of the impact stress wave between different sensor locations. However, it is difficult to find the arrival time difference between sensors, because the primary frequency ranges of accelerometers and AE sensors are different. To overcome the problem, we used phase delays of an envelope of impact signals. This is because the impact signals from the accelerometer and the AE sensor are similar in the whole shape (envelope). To verify the proposed method, we have performed experiments for a reactor mock-up model and a real nuclear power plant. The experimental results demonstrate that we can enhance the reliability and precision of the impact source localization. Therefore, if the proposed method is applied to a nuclear power plant, we can obtain the effect of additional installed sensors. Crown Copyright © 2010. Published by Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Perrot, Eddy; Boulanger, Damien; Christophe, Bruno; Foulon, Bernard; Liorzou, Françoise; Lebat, Vincent
2014-05-01
The GRACE FO mission, led by the JPL (Jet Propulsion Laboratory), is an Earth-orbiting gravity mission, continuation of the GRACE mission, that will produce an accurate model of the Earth's gravity field variation providing global climatic data during five year at least. The mission involves two satellites in a loosely controlled tandem formation, with a micro-wave link, and optionally a laser link, measuring the inter-satellites distance variation. Non-uniformities in the distribution of the Earth's mass cause the distance between the two satellites to vary. This variation is measured to recover gravity, after subtracting the non-gravitational contributors, as the residual drag. ONERA (the French Aerospace Lab) is developing, manufacturing and testing electrostatic accelerometers measuring this residual drag applied on the satellites. The accelerometer is composed of two main parts: the Sensor Unit (including the Sensor Unit Mechanics - SUM - and the Front-End Electronic Unit - FEEU) and the Interface Control Unit. In the Accelerometer Core, located in the Sensor Unit Mechanics, the proof mass is levitated and maintained in a center of an electrode cage by electrostatic forces. Thus, any drag acceleration applied on the satellite involves a variation on the servo-controlled electrostatic suspension of the mass. The voltage on the electrodes providing this electrostatic force is the measurement output of the accelerometer. The Preliminary Design Review was achieved successfully on November 2013. The FEEU Engineering Model is under test. Preliminary results on electronic unit will be compared with the expected performance. The integration of the SUM Engineering Model and the first ground levitation of the proof-mass will be presented. The impact of the accelerometer defaults (geometry, electronic and parasitic forces) leads to bias, misalignment and scale factor error, non-linearity and noise. Some of these accelerometer defaults are characterized by tests with micro-gravity pendulum bench and with drops in ZARM catapult. The post-processing needed to achieve the performance, in particular with regards to the temperature stability, will be explained.
Yeung, Joyce; Davies, Robin; Gao, Fang; Perkins, Gavin D
2014-04-01
This study aims to compare the effect of three CPR prompt and feedback devices on quality of chest compressions amongst healthcare providers. A single blinded, randomised controlled trial compared a pressure sensor/metronome device (CPREzy), an accelerometer device (Phillips Q-CPR) and simple metronome on the quality of chest compressions on a manikin by trained rescuers. The primary outcome was compression depth. Secondary outcomes were compression rate, proportion of chest compressions with inadequate depth, incomplete release and user satisfaction. The pressure sensor device improved compression depth (37.24-43.64 mm, p=0.02), the accelerometer device decreased chest compression depth (37.38-33.19 mm, p=0.04) whilst the metronome had no effect (39.88 mm vs. 40.64 mm, p=0.802). Compression rate fell with all devices (pressure sensor device 114.68-98.84 min(-1), p=0.001, accelerometer 112.04-102.92 min(-1), p=0.072 and metronome 108.24 min(-1) vs. 99.36 min(-1), p=0.009). The pressure sensor feedback device reduced the proportion of compressions with inadequate depth (0.52 vs. 0.24, p=0.013) whilst the accelerometer device and metronome did not have a statistically significant effect. Incomplete release of compressions was common, but unaffected by the CPR feedback devices. Users preferred the accelerometer and metronome devices over the pressure sensor device. A post hoc study showed that de-activating the voice prompt on the accelerometer device prevented the deterioration in compression quality seen in the main study. CPR feedback devices vary in their ability to improve performance. In this study the pressure sensor device improved compression depth, whilst the accelerometer device reduced it and metronome had no effect. Copyright © 2014 Elsevier Ireland Ltd. All rights reserved.
Strath, Scott J; Kate, Rohit J; Keenan, Kevin G; Welch, Whitney A; Swartz, Ann M
2016-01-01
To develop and test time series single site and multi-site placement models, we used wrist, hip and ankle processed accelerometer data to estimate energy cost and type of physical activity in adults. Ninety-nine subjects in three age groups (18–39, 40–64, 65 + years) performed 11 activities while wearing three triaxial accelereometers: one each on the non-dominant wrist, hip, and ankle. During each activity net oxygen cost (METs) was assessed. The time series of accelerometer signals were represented in terms of uniformly discretized values called bins. Support Vector Machine was used for activity classification with bins and every pair of bins used as features. Bagged decision tree regression was used for net metabolic cost prediction. To evaluate model performance we employed the jackknife leave-one-out cross validation method. Single accelerometer and multi-accelerometer site model estimates across and within age group revealed similar accuracy, with a bias range of −0.03 to 0.01 METs, bias percent of −0.8 to 0.3%, and a rMSE range of 0.81–1.04 METs. Multi-site accelerometer location models improved activity type classification over single site location models from a low of 69.3% to a maximum of 92.8% accuracy. For each accelerometer site location model, or combined site location model, percent accuracy classification decreased as a function of age group, or when young age groups models were generalized to older age groups. Specific age group models on average performed better than when all age groups were combined. A time series computation show promising results for predicting energy cost and activity type. Differences in prediction across age group, a lack of generalizability across age groups, and that age group specific models perform better than when all ages are combined needs to be considered as analytic calibration procedures to detect energy cost and type are further developed. PMID:26449155
NASA Astrophysics Data System (ADS)
Perrot, Eddy; Boulanger, Damien; Christophe, Bruno; Foulon, Bernard; Liorzou, Françoise; Lebat, Vincent; Huynh, Phuong-Anh
2015-04-01
The GRACE FO mission, led by the JPL (Jet Propulsion Laboratory), is an Earth-orbiting gravity mission, continuation of the GRACE mission, which will produce an accurate model of the Earth's gravity field variation providing global climatic data during five years at least. The mission involves two satellites in a loosely controlled tandem formation, with a micro-wave link measuring the inter-satellites distance variation. Earth's mass distribution non-uniformities cause variations of the inter-satellite distance. This variation is measured to recover gravity, after subtracting the non-gravitational contributors, as the residual drag. ONERA (the French Aerospace Lab) is developing, manufacturing and testing electrostatic accelerometers measuring this residual drag applied on the satellites. The accelerometer is composed of two main parts: the Sensor Unit (including the Sensor Unit Mechanics - SUM - and the Front-End Electronic Unit - FEEU) and the Interface Control Unit - ICU. In the Accelerometer Core, located in the Sensor Unit Mechanics, the proof mass is levitated and maintained at the center of an electrode cage by electrostatic forces. Thus, any drag acceleration applied on the satellite involves a variation on the servo-controlled electrostatic suspension of the mass. The voltage on the electrodes providing this electrostatic force is the measurement output of the accelerometer. The impact of the accelerometer defaults (geometry, electronic and parasitic forces) leads to bias, misalignment and scale factor error, non-linearity and noise. Some of these accelerometer defaults are characterized by tests with micro-gravity pendulum bench on ground and with drops in ZARM catapult. The Critical Design Review was achieved successfully on September 2014. The Engineering Model (EM) was integrated and tested successfully, with ground levitation, drops, Electromagnetic Compatibility and thermal vacuum. The integration of the first Flight Model has begun on December 2014 and will be achieved on January 2015. The results of the Engineering Model tests and the status of the Flight Models will be presented.
NASA Astrophysics Data System (ADS)
Perrot, E.; Boulanger, D.; Christophe, B.; Foulon, B.; Lebat, V.; Huynh, P. A.; Liorzou, F.
2015-12-01
The GRACE FO mission, led by the JPL (Jet Propulsion Laboratory), is an Earth-orbiting gravity mission, continuation of the GRACE mission, which will produce an accurate model of the Earth's gravity field variation providing global climatic data during five years at least. The mission involves two satellites in a loosely controlled tandem formation, with a micro-wave link measuring the inter-satellites distance variation. Earth's mass distribution non-uniformities cause variations of the inter-satellite distance. This variation is measured to recover gravity, after subtracting the non-gravitational contributors, as the residual drag. ONERA (the French Aerospace Lab) is developing, manufacturing and testing electrostatic accelerometers measuring this residual drag applied on the satellites. The accelerometer is composed of two main parts: the Sensor Unit (including the Sensor Unit Mechanics - SUM - and the Front-End Electronic Unit - FEEU) and the Interface Control Unit - ICU. In the Accelerometer Core, located in the Sensor Unit Mechanics, the proof mass is levitated and maintained at the center of an electrode cage by electrostatic forces. Thus, any drag acceleration applied on the satellite involves a variation on the servo-controlled electrostatic suspension of the mass. The voltage on the electrodes providing this electrostatic force is the output measurement of the accelerometer. The impact of the accelerometer defaults (geometry, electronic and parasitic forces) leads to bias, misalignment and scale factor error, non-linearity and noise. Some of these accelerometer defaults are characterized by tests with micro-gravity pendulum bench on ground and with drops in ZARM catapult. The Critical Design Review was achieved successfully on September 2014. The Engineering Model (EM) was integrated and tested successfully, with ground levitation, drops, Electromagnetic Compatibility and thermal vacuum. The integration of the two Flight Models was done on July 2015. The tests will be achieved from July to November 2015. The results of the Engineering Model and Flight Models tests will be presented.
Hannam, K; Deere, K C; Hartley, A; Clark, E M; Coulson, J; Ireland, A; Moss, C; Edwards, M H; Dennison, E; Gaysin, T; Cooper, R; Wong, A; McPhee, J S; Cooper, C; Kuh, D; Tobias, J H
2017-03-01
This observational study assessed vertical impacts experienced in older adults as part of their day-to-day physical activity using accelerometry and questionnaire data. Population-based older adults experienced very limited high-impact activity. The accelerometry method utilised appeared to be valid based on comparisons between different cohorts and with self-reported activity. We aimed to validate a novel method for evaluating day-to-day higher impact weight-bearing physical activity (PA) in older adults, thought to be important in protecting against osteoporosis, by comparing results between four cohorts varying in age and activity levels, and with self-reported PA levels. Participants were from three population-based cohorts, MRC National Survey of Health and Development (NSHD), Hertfordshire Cohort Study (HCS) and Cohort for Skeletal Health in Bristol and Avon (COSHIBA), and the Master Athlete Cohort (MAC). Y-axis peaks (reflecting the vertical when an individual is upright) from a triaxial accelerometer (sampling frequency 50 Hz, range 0-16 g) worn at the waist for 7 days were classified as low (0.5-1.0 g), medium (1.0-1.5 g) or higher (≥1.5 g) impacts. There were a median of 90, 41 and 39 higher impacts/week in NSHD (age 69.5), COSHIBA (age 76.8) and HCS (age 78.5) participants, respectively (total n = 1512). In contrast, MAC participants (age 68.5) had a median of 14,322 higher impacts/week. In the three population cohorts combined, based on comparison of beta coefficients, moderate-high-impact activities as assessed by PA questionnaire were suggestive of stronger association with higher impacts from accelerometers (0.25 [0.17, 0.34]), compared with medium (0.18 [0.09, 0.27]) and low impacts (0.13 [0.07,0.19]) (beta coefficient, with 95 % CI). Likewise in MAC, reported moderate-high-impact activities showed a stronger association with higher impacts (0.26 [0.14, 0.37]), compared with medium (0.14 [0.05, 0.22]) and low impacts (0.03 [-0.02, 0.08]). Our new accelerometer method appears to provide valid measures of higher vertical impacts in older adults. Results obtained from the three population-based cohorts indicate that older adults generally experience very limited higher impact weight-bearing PA.
Introducing a modular activity monitoring system.
Reiss, Attila; Stricker, Didier
2011-01-01
In this paper, the idea of a modular activity monitoring system is introduced. By using different combinations of the system's three modules, different functionality becomes available: 1) a coarse intensity estimation of physical activities 2) different features based on HR-data and 3) the recognition of basic activities and postures. 3D-accelerometers--placed on lower arm, chest and foot--and a heart rate monitor were used as sensors. A dataset with 8 subjects and 14 different activities was recorded to evaluate the performance of the system. The overall performance on the intensity estimation task, relying on the chest-worn accelerometer and the HR-monitor, was 94.37%. The overall performance on the activity recognition task, using all three accelerometer placements and the HR-monitor, was 90.65%. This paper also gives an analysis of the importance of different accelerometer placements and the importance of a HR-monitor for both tasks.
Xu, Yu; Zhao, Libo; Jiang, Zhuangde; Ding, Jianjun; Peng, Niancai; Zhao, Yulong
2016-01-01
For improving the tradeoff between the sensitivity and the resonant frequency of piezoresistive accelerometers, the dependency between the stress of the piezoresistor and the displacement of the structure is taken into consideration in this paper. In order to weaken the dependency, a novel structure with suspended piezoresistive beams (SPBs) is designed, and a theoretical model is established for calculating the location of SPBs, the stress of SPBs and the resonant frequency of the whole structure. Finite element method (FEM) simulations, comparative simulations and experiments are carried out to verify the good agreement with the theoretical model. It is demonstrated that increasing the sensitivity greatly without sacrificing the resonant frequency is possible in the piezoresistive accelerometer design. Therefore, the proposed structure with SPBs is potentially a novel option for improving the tradeoff between the sensitivity and the resonant frequency of piezoresistive accelerometers. PMID:26861343
Xu, Yu; Zhao, Libo; Jiang, Zhuangde; Ding, Jianjun; Peng, Niancai; Zhao, Yulong
2016-02-06
For improving the tradeoff between the sensitivity and the resonant frequency of piezoresistive accelerometers, the dependency between the stress of the piezoresistor and the displacement of the structure is taken into consideration in this paper. In order to weaken the dependency, a novel structure with suspended piezoresistive beams (SPBs) is designed, and a theoretical model is established for calculating the location of SPBs, the stress of SPBs and the resonant frequency of the whole structure. Finite element method (FEM) simulations, comparative simulations and experiments are carried out to verify the good agreement with the theoretical model. It is demonstrated that increasing the sensitivity greatly without sacrificing the resonant frequency is possible in the piezoresistive accelerometer design. Therefore, the proposed structure with SPBs is potentially a novel option for improving the tradeoff between the sensitivity and the resonant frequency of piezoresistive accelerometers.
Quantifying functional mobility progress for chronic disease management.
Boyle, Justin; Karunanithi, Mohan; Wark, Tim; Chan, Wilbur; Colavitti, Christine
2006-01-01
A method for quantifying improvements in functional mobility is presented based on patient-worn accelerometer devices. For patients with cardiovascular, respiratory, or other chronic disease, increasing the amount of functional mobility is a large component of rehabilitation programs. We have conducted an observational trial on the use of accelerometers for quantifying mobility improvements in a small group of chronic disease patients (n=15, 48 - 86 yrs). Cognitive impairments precluded complex instrumentation of patients, and movement data was obtained from a single 2-axis accelerometer device worn at the hip. In our trial, movement data collected from accelerometer devices was classified into Lying vs Sitting/Standing vs Walking/Activity movements. This classification enabled the amount of walking to be quantified and graphically presented to clinicians and carers for feedback on exercise efficacy. Presenting long term trends in this data to patients also provides valuable feedback for self managed care and assisting with compliance.
Horner, Fleur; Bilzon, James L; Rayson, Mark; Blacker, Sam; Richmond, Victoria; Carter, James; Wright, Anthony; Nevill, Alan
2013-01-01
This study developed a multivariate model to predict free-living energy expenditure (EE) in independent military cohorts. Two hundred and eighty-eight individuals (20.6 ± 3.9 years, 67.9 ± 12.0 kg, 1.71 ± 0.10 m) from 10 cohorts wore accelerometers during observation periods of 7 or 10 days. Accelerometer counts (PAC) were recorded at 1-minute epochs. Total energy expenditure (TEE) and physical activity energy expenditure (PAEE) were derived using the doubly labelled water technique. Data were reduced to n = 155 based on wear-time. Associations between PAC and EE were assessed using allometric modelling. Models were derived using multiple log-linear regression analysis and gender differences assessed using analysis of covariance. In all models PAC, height and body mass were related to TEE (P < 0.01). For models predicting TEE (r (2) = 0.65, SE = 462 kcal · d(-1) (13.0%)), PAC explained 4% of the variance. For models predicting PAEE (r (2) = 0.41, SE = 490 kcal · d(-1) (32.0%)), PAC accounted for 6% of the variance. Accelerometry increases the accuracy of EE estimation in military populations. However, the unique nature of military life means accurate prediction of individual free-living EE is highly dependent on anthropometric measurements.
The Relationship Between Time of Day of Physical Activity and Obesity in Older Women.
Chomistek, Andrea K; Shiroma, Eric J; Lee, I-Min
2016-04-01
Physical activity is important for maintaining healthy weight. The time of day when exercise is performed-a highly discretionary aspect of behavior-may impact weight control, but evidence is limited. Thus, we examined the association between the timing of physical activity and obesity risk in women. A cross-sectional analysis was conducted among 7157 Women's Health Study participants who participated in an ancillary study begun in 2011 that is measuring physical activity using accelerometers. The exposure was percentage of total accelerometer counts accumulated before 12:00 noon and the outcome was obesity. Mean (±SD) BMI among participants was 26.1 (±4.9) kg/m2 and 1322 women were obese. The mean activity counts per day was 203,870 (±95,811) of which a mean 47.1% (±11.5%) were recorded in the morning. In multivariable-adjusted models, women who recorded < 39% (lowest quartile) of accelerometer counts before 12:00 noon had a 26% higher odds of being obese, compared with those recording ≥ 54% (highest quartile) of counts before noon (Ptrend = 0.02). These study findings-that women who are less active during morning hours may be at higher risk of obesity-if confirmed can provide a novel strategy to help combat the important health problem of obesity.
Acceptability and Feasibility of Physical Activity Assessment Methods for an Appalachian Population
Tarasenko, Yelena N.; Howell, Britteny M.; Studts, Christina R.; Strath, Scott J.; Schoenberg, Nancy E.
2015-01-01
Nowhere is improving understanding and accurate assessment of physical activity more important for disease prevention and health promotion than among health disparities populations such as those residing in rural and Appalachian regions. To enhance accurate assessment of physical activity and potentially improve intervention capacity, we conducted a mixed-methods study examining the acceptability and feasibility of self-report physical activity questionnaires, pedometers, and accelerometers among rural Appalachian children, adolescents, and adults. Most participants reported positive experiences with all three physical activity assessment tools. Several acceptability ratings differed by age group and by sex within each age group. With very few exceptions, no significant differences in acceptability were found by race, education, employment status, health status, BMI categories, income levels, or insurance status within age groups or overall. Several factors may impact the choice of the physical activity assessment method, including target population age, equipment cost, researcher burden, and potential influence on physical activity levels. Children and adolescents appear to have more constraints on when they can wear pedometers and accelerometers. While pedometers are inexpensive and convenient, they may influence physical activity levels, rather than simply measure them. Accelerometers, while less influential on behavior, consume extensive resources, including high purchase costs and researcher burden. PMID:25608476
Stress, social support and cardiovascular activity over the working day.
Steptoe, A
2000-09-01
The influence of stress on ambulatory blood pressure monitored over the working day, and the potential buffering effect of social support, was assessed in 104 school teachers (37 men and 67 women). Blood pressure and heart rate were measured every 20 min and energy expenditure was assessed using accelerometers. Participants rated the degree of stress they were experiencing at the time of each measurement on a seven-point scale. Episodes of both high and low stress during the working day were reported by 62 participants. They were divided by median split into high and low social support groups on the Interpersonal Support Evaluation List. After controlling for body mass and concomitant energy expenditure, high stress was associated with increased systolic blood pressure, diastolic blood pressure and heart rate. However, the impact of stress was buffered by social support, with no significant increase in blood pressure or heart rate with stress in the high support group. The accelerometers were also shown effectively to discriminate between blood pressure readings taken in the seated and standing positions in terms of energy expenditure. The results corroborate laboratory studies, in showing that social support buffers the impact of episodic stress on cardiovascular activity under naturalistic conditions during the working day.
Rodríguez-Muñoz, Sheila; Corella, Cristina; Abarca-Sos, Alberto; Zaragoza, Javier
2017-12-01
Physical activity (PA) in university students has not been analyzed with specific questionnaires tailored to this population. Therefore, the purpose of this study was to analyze the validity of three PA questionnaires developed on other populations comparing with accelerometer values: counts and moderate to vigorous PA (MVPA) calculated with uniaxial and triaxial cut points. One hundred and forty-five university students (of whom, 92 women) from Spain wore an accelerometer GT3X or GTX+ to collect PA data of 7 full days. Three questionnaires, Physical Activity Questionnaire for Adults (PAQ-AD), Assessment of Physical Activity Questionnaire (APALQ), and the International Physical Activity Questionnaire Short Form (IPAQ-SF) were administrated jointly with the collection of accelerometer values. Finally, after the application of inclusion criteria, data from 95 participants (62 women) with a mean age of 21.96±2.33 years were analyzed to compare the instruments measures. The correlational analysis showed that PAQ-AD (0.44-0.56) and IPAQ-SF (0.26-0.69) questionnaires were significantly related to accelerometers scores: counts, uniaxial MVPA and triaxial MVPA. Conversely, APALQ displayed no significant relations for males with accelerometers scores for MVPA created with both cut points. PAQ-AD and IPAQ-SF questionnaires have shown adequate validity to use with Spanish university students. The use of counts to validate self-report data in order to reduce the variability display by MVPA created with different cut points is discussed. Finally, validated instruments to measure PA in university students will allow implementation of strategies for PA promotion based on reliable data.
Reliability and validity of gait analysis by android-based smartphone.
Nishiguchi, Shu; Yamada, Minoru; Nagai, Koutatsu; Mori, Shuhei; Kajiwara, Yuu; Sonoda, Takuya; Yoshimura, Kazuya; Yoshitomi, Hiroyuki; Ito, Hiromu; Okamoto, Kazuya; Ito, Tatsuaki; Muto, Shinyo; Ishihara, Tatsuya; Aoyama, Tomoki
2012-05-01
Smartphones are very common devices in daily life that have a built-in tri-axial accelerometer. Similar to previously developed accelerometers, smartphones can be used to assess gait patterns. However, few gait analyses have been performed using smartphones, and their reliability and validity have not been evaluated yet. The purpose of this study was to evaluate the reliability and validity of a smartphone accelerometer. Thirty healthy young adults participated in this study. They walked 20 m at their preferred speeds, and their trunk accelerations were measured using a smartphone and a tri-axial accelerometer that was secured over the L3 spinous process. We developed a gait analysis application and installed it in the smartphone to measure the acceleration. After signal processing, we calculated the gait parameters of each measurement terminal: peak frequency (PF), root mean square (RMS), autocorrelation peak (AC), and coefficient of variance (CV) of the acceleration peak intervals. Remarkable consistency was observed in the test-retest reliability of all the gait parameter results obtained by the smartphone (p<0.001). All the gait parameter results obtained by the smartphone showed statistically significant and considerable correlations with the same parameter results obtained by the tri-axial accelerometer (PF r=0.99, RMS r=0.89, AC r=0.85, CV r=0.82; p<0.01). Our study indicates that the smartphone with gait analysis application used in this study has the capacity to quantify gait parameters with a degree of accuracy that is comparable to that of the tri-axial accelerometer.
Verbestel, Vera; De Henauw, Stefaan; Bammann, Karin; Barba, Gianvincenzo; Hadjigeorgiou, Charalambos; Eiben, Gabriele; Konstabel, Kenn; Kovács, Eva; Pitsiladis, Yannis; Reisch, Lucia; Santaliestra-Pasías, Alba M; Maes, Lea; De Bourdeaudhuij, Ilse
2015-04-01
The aim of the present study was to investigate if context-specific measures of parental-reported physical activity and sedentary behaviour are associated with objectively measured physical activity and sedentary time in children. Cross-sectional study. Seven European countries taking part in the IDEFICS (Identification and Prevention of Dietary- and Lifestyle-induced Health Effects in Children and Infants) study. Data were analysed from 2-9-year-old children (n 5982) who provided both parental-reported and accelerometer-derived physical activity/sedentary behaviour measures. Parents reported their children's daily screen-time, weekly sports participation and daily outdoor playtime by means of the Outdoor Playtime Checklist (OPC) and Outdoor Playtime Recall Questions (OPRQ). Sports participation, OPC- and OPRQ-derived outdoor play were positively associated with accelerometer-derived physical activity. Television viewing and computer use were positively associated with accelerometer-derived sedentary time. All parental-reported measures that were significantly associated with accelerometer outcomes explained only a minor part of the variance in accelerometer-derived physical activity or sedentary time. Parental-reported measures of physical activity and sedentary behaviour are not useful as a proxy for 2-9-year-old children's physical activity and sedentary time. Findings do not preclude the use of context-specific measures but imply that conclusions should be limited to the context-specific behaviours that are actually measured. Depending on the aim of the study, future research should carefully consider the choice of measurements, including the use of subjective or objective measures of the behaviour of interest or a combination of both.
Influence of speed and step frequency during walking and running on motion sensor output.
Rowlands, Ann V; Stone, Michelle R; Eston, Roger G
2007-04-01
Studies have reported strong linear relationships between accelerometer output and walking/running speeds up to 10 km x h(-1). However, ActiGraph uniaxial accelerometer counts plateau at higher speeds. The aim of this study was to determine the relationships of triaxial accelerometry, uniaxial accelerometry, and pedometry with speed and step frequency (SF) across a range of walking and running speeds. Nine male runners wore two ActiGraph uniaxial accelerometers, two RT3 triaxial accelerometers (all set at a 1-s epoch), and two Yamax pedometers. Each participant walked for 60 s at 4 and 6 km x h(-1), ran for 60 s at 10, 12, 14, 16, and 18 km x h(-1), and ran for 30 s at 20, 22, 24, and 26 km x h(-1). Step frequency was recorded by a visual count. ActiGraph counts peaked at 10 km x h(-10 (2.5-3.0 Hz SF) and declined thereafter (r=0.02, P>0.05). After correction for frequency-dependent filtering, output plateaued at 10 km x h(-1) but did not decline (r=0.77, P<0.05). Similarly, RT3 vertical counts plateaued at speeds > 10 km x h(-1) (r=0.86, P<0.01). RT3 vector magnitude and anteroposterior and mediolateral counts maintained a linear relationship with speed (r>0.96, P<0.001). Step frequency assessed by pedometry compared well with actual step frequency up to 20 km x h(-1) (approximately 3.5 Hz) but then underestimated actual steps (Yamax r=0.97; ActiGraph pedometer r=0.88, both P<0.001). Increasing underestimation of activity by the ActiGraph as speed increases is related to frequency-dependent filtering and assessment of acceleration in the vertical plane only. RT3 vector magnitude was strongly related to speed, reflecting the predominance of horizontal acceleration at higher speeds. These results indicate that high-intensity activity is underestimated by the ActiGraph, even after correction for frequency-dependent filtering, but not by the RT3. Pedometer output is highly correlated with step frequency.
NASA Astrophysics Data System (ADS)
Various papers on the mechanical technology of inertial devices are presented. The topics addressed include: development of a directional gyroscope for remotely piloted vehicles and similar applications; a two-degree-of-freedom gyroscope with frictionless inner and outer gimbal pickoffs; oscillogyro design, manufacture, and performance; development of miniature two-axis rate gyroscope; mechanical design aspects of the electrostatically suspended gyroscope; role of gas-lubricated bearings in current and future sensors; development of a new microporous retainer material for precision ball bearings; design study for a high-stability, large-centrifuge test bed; evaluation of a two-axis rate gyro; operating principles of a two-axis angular rate transducer; and nutation frequency analysis. Also considered are: triaxial laser gyro; mechanical design considerations for a ring laser gyro dither mechanism; environmental considerations in the design of fiberoptic gyroscopes; manufacturing aspects of some critical high-precision mechanical components of inertial devices; dynamics and control of a gyroscopic force measurement system; high precision and high performance motion systems; use of multiple acceleration references to obtain high precision centrifuge data at low cost; gyro testing and evaluation at the Communications Research Centre; review of the mechanical design and development of a high-performance accelerometer; and silicon microengineering for accelerometers.
Occupant Motion Sensors : Rotational Accelerometer Development
DOT National Transportation Integrated Search
1972-04-01
A miniature mouthpiece rotational accelerometer has been developed to measure the angular acceleration of a head during vehicle crash or impact conditions. The device has been tested in the laboratory using a shake table and in the field using dummie...
Jones, G R; Brandon, C; Gill, D P
2017-07-01
Winter weather conditions may negatively influence participation of older adults in daily physical activity (PA). Assess the influence of winter meteorological variables, day-time peak ambient temperature, windchill, humidity, and snow accumulation on the ground to accelerometer measured PA values in older adults. 50 community-dwelling older adults (77.4±4.7yrs; range 71-89; 12 females) living in Southwestern Ontario (Latitude 42.9°N Longitude 81.2° W) Canada, wore a waist-borne accelerometer during active waking hours (12h) for 7 consecutive days between February and April 2007. Hourly temperature, windchill, humidity, and snowfall accumulation were obtained from meteorological records and time locked to hourly accelerometer PA values. Regression analysis revealed significant relationships between time of day, ambient daytime high temperature and a humidity for participation in PA. Windchill temperature added no additional influence over PA acclamation already influenced by ambient day-time temperature and the observed variability in PA patterns relative to snow accumulation over the study period was too great to warrant its inclusion in the model. Most PA was completed in the morning hours and increased as the winter month's transitioned to spring (February through April). An equation was developed to adjust for winter weather conditions using temperature, humidity and time of day. Accurate PA assessment during the winter months must account for the ambient daytime high temperatures, humidity, and time of day. These older adults were more physically active during the morning hours and became more active as the winter season transitioned to spring. Copyright © 2017 Elsevier B.V. All rights reserved.
Standard semiconductor packaging for high-reliability low-cost MEMS applications
NASA Astrophysics Data System (ADS)
Harney, Kieran P.
2005-01-01
Microelectronic packaging technology has evolved over the years in response to the needs of IC technology. The fundamental purpose of the package is to provide protection for the silicon chip and to provide electrical connection to the circuit board. Major change has been witnessed in packaging and today wafer level packaging technology has further revolutionized the industry. MEMS (Micro Electro Mechanical Systems) technology has created new challenges for packaging that do not exist in standard ICs. However, the fundamental objective of MEMS packaging is the same as traditional ICs, the low cost and reliable presentation of the MEMS chip to the next level interconnect. Inertial MEMS is one of the best examples of the successful commercialization of MEMS technology. The adoption of MEMS accelerometers for automotive airbag applications has created a high volume market that demands the highest reliability at low cost. The suppliers to these markets have responded by exploiting standard semiconductor packaging infrastructures. However, there are special packaging needs for MEMS that cannot be ignored. New applications for inertial MEMS devices are emerging in the consumer space that adds the imperative of small size to the need for reliability and low cost. These trends are not unique to MEMS accelerometers. For any MEMS technology to be successful the packaging must provide the basic reliability and interconnection functions, adding the least possible cost to the product. This paper will discuss the evolution of MEMS packaging in the accelerometer industry and identify the main issues that needed to be addressed to enable the successful commercialization of the technology in the automotive and consumer markets.
Standard semiconductor packaging for high-reliability low-cost MEMS applications
NASA Astrophysics Data System (ADS)
Harney, Kieran P.
2004-12-01
Microelectronic packaging technology has evolved over the years in response to the needs of IC technology. The fundamental purpose of the package is to provide protection for the silicon chip and to provide electrical connection to the circuit board. Major change has been witnessed in packaging and today wafer level packaging technology has further revolutionized the industry. MEMS (Micro Electro Mechanical Systems) technology has created new challenges for packaging that do not exist in standard ICs. However, the fundamental objective of MEMS packaging is the same as traditional ICs, the low cost and reliable presentation of the MEMS chip to the next level interconnect. Inertial MEMS is one of the best examples of the successful commercialization of MEMS technology. The adoption of MEMS accelerometers for automotive airbag applications has created a high volume market that demands the highest reliability at low cost. The suppliers to these markets have responded by exploiting standard semiconductor packaging infrastructures. However, there are special packaging needs for MEMS that cannot be ignored. New applications for inertial MEMS devices are emerging in the consumer space that adds the imperative of small size to the need for reliability and low cost. These trends are not unique to MEMS accelerometers. For any MEMS technology to be successful the packaging must provide the basic reliability and interconnection functions, adding the least possible cost to the product. This paper will discuss the evolution of MEMS packaging in the accelerometer industry and identify the main issues that needed to be addressed to enable the successful commercialization of the technology in the automotive and consumer markets.
Miniature piezoelectric triaxial accelerometer measures cranial accelerations
NASA Technical Reports Server (NTRS)
Deboo, G. J.; Rogallo, V. L.
1966-01-01
Tiny triaxial accelerometer whose sensing elements are piezoelectric ceramic beams measures human cranial accelerations when a subject is exposed to a centrifuge or other simulators of g environments. This device could be considered for application in dental, medical, and automotive safety research.
Weikert, Madeline; Motl, Robert W; Suh, Yoojin; McAuley, Edward; Wynn, Daniel
2010-03-15
Motion sensors such as accelerometers have been recognized as an ideal measure of physical activity in persons with MS. This study examined the hypothesis that accelerometer movement counts represent a measure of both physical activity and walking mobility in individuals with MS. The sample included 269 individuals with a definite diagnosis of relapsing-remitting MS who completed the Godin Leisure-Time Exercise Questionnaire (GLTEQ), International Physical Activity Questionnaire (IPAQ), Multiple Sclerosis Walking Scale-12 (MSWS-12), Patient Determined Disease Steps (PDDS), and then wore an ActiGraph accelerometer for 7days. The data were analyzed using bivariate correlation and confirmatory factor analysis. The results indicated that (a) the GLTEQ and IPAQ scores were strongly correlated and loaded significantly on a physical activity latent variable, (b) the MSWS-12 and PDDS scores strongly correlated and loaded significantly on a walking mobility latent variable, and (c) the accelerometer movement counts correlated similarly with the scores from the four self-report questionnaires and cross-loaded on both physical activity and walking mobility latent variables. Our data suggest that accelerometers are measuring both physical activity and walking mobility in persons with MS, whereas self-report instruments are measuring either physical activity or walking mobility in this population.
Ramulu, Pradeep Y; Chan, Emilie S; Loyd, Tara L; Ferrucci, Luigi; Friedman, David S
2012-08-01
Measuring physical at home and away from home is essential for assessing health and well-being, and could help design interventions to increase physical activity. Here, we describe how physical activity at home and away from home can be quantified by combining information from cellular network-based tracking devices and accelerometers. Thirty-five working adults wore a cellular network-based tracking device and an accelerometer for 6 consecutive days and logged their travel away from home. Performance of the tracking device was determined using the travel log for reference. Tracking device and accelerometer data were merged to compare physical activity at home and away from home. The tracking device detected 98.6% of all away-from-home excursions, accurately measured time away from home and demonstrated few prolonged signal drop-out periods. Most physical activity took place away from home on weekdays, but not on weekends. Subjects were more physically active per unit of time while away from home, particularly on weekends. Cellular network-based tracking devices represent an alternative to global positioning systems for tracking location, and provide information easily integrated with accelerometers to determine where physical activity takes place. Promoting greater time spent away from home may increase physical activity.
Fraser, Sarah J; Chapman, Justin J; Brown, Wendy J; Whiteford, Harvey A; Burton, Nicola W
2016-05-01
The aim of this study was to assess the feasibility of using questionnaires and accelerometers to measure physical activity and sedentary behavior among inpatient adults with mental illness. Participants completed a physical activity and sitting time questionnaire and wore an accelerometer for 7 consecutive days. Feasibility was assessed in terms of participant engagement, self-reported ease/ difficulty of completing study components, extreme self-report data values and adherence to accelerometer wear time criteria. Ease/difficulty ratings were examined by level of distress. 177 inpatients were invited to the study, 101 completed the questionnaires and 36 provided valid accelerometry data. Participants found it more difficult to complete sitting time and physical activity questionnaires than to wear the accelerometer during waking hours (z = 3.787, P < .001; z = 2.824, P = .005 respectively). No significant differences were found in ease/ difficulty ratings by level of distress for any of the study components. Extreme values for self-reported sitting time were identified in 27% of participants. Inpatient adults with mental illness can engage with self-report and objective methods of measuring physical activity and sedentary behavior. They were initially less willing to participate in objective measurement, which may however be more feasible than self-report measures.
Cyclostationarity approach for monitoring chatter and tool wear in high speed milling
NASA Astrophysics Data System (ADS)
Lamraoui, M.; Thomas, M.; El Badaoui, M.
2014-02-01
Detection of chatter and tool wear is crucial in the machining process and their monitoring is a key issue, for: (1) insuring better surface quality, (2) increasing productivity and (3) protecting both machines and safe workpiece. This paper presents an investigation of chatter and tool wear using the cyclostationary method to process the vibrations signals acquired from high speed milling. Experimental cutting tests were achieved on slot milling operation of aluminum alloy. The experimental set-up is designed for acquisition of accelerometer signals and encoding information picked up from an encoder. The encoder signal is used for re-sampling accelerometers signals in angular domain using a specific algorithm that was developed in LASPI laboratory. The use of cyclostationary on accelerometer signals has been applied for monitoring chatter and tool wear in high speed milling. The cyclostationarity appears on average properties (first order) of signals, on the energetic properties (second order) and it generates spectral lines at cyclic frequencies in spectral correlation. Angular power and kurtosis are used to analyze chatter phenomena. The formation of chatter is characterized by unstable, chaotic motion of the tool and strong anomalous fluctuations of cutting forces. Results show that stable machining generates only very few cyclostationary components of second order while chatter is strongly correlated to cyclostationary components of second order. By machining in the unstable region, chatter results in flat angular kurtosis and flat angular power, such as a pseudo (white) random signal with flat spectrum. Results reveal that spectral correlation and Wigner Ville spectrum or integrated Wigner Ville issued from second-order cyclostationary are an efficient parameter for the early diagnosis of faults in high speed machining, such as chatter, tool wear and bearings, compared to traditional stationary methods. Wigner Ville representation of the residual signal shows that the energy corresponding to the tooth passing decreases when chatter phenomenon occurs. The effect of the tool wear and the number of broken teeth on the excitation of structure resonances appears in Wigner Ville presentation.
NASA Astrophysics Data System (ADS)
Monteiro, Martín; Stari, Cecilia; Cabeza, Cecilia; Marti, Arturo C.
2017-12-01
The spatial dependence of magnetic fields in simple configurations is a common topic in introductory electromagnetism lessons, both in high school and in university courses. In typical experiments, magnetic fields and distances are obtained taking point-by-point values using a Hall sensor and a ruler, respectively. Here, we show how to take advantage of the smartphone capabilities to get simultaneous measures with the built-in accelerometer and magnetometer and to obtain the spatial dependence of magnetic fields. We consider a simple setup consisting of a smartphone mounted on a track whose direction coincides with the axis of a coil. While the smartphone is moving on the track, both the magnetic field and the distance from the center of the coil (integrated numerically from the acceleration values) are simultaneously obtained. This methodology can easily be extended to more complicated setups.
NASA Technical Reports Server (NTRS)
Lee, Shinhak; Ortiz, Gerry G.
2003-01-01
We discuss use of inertial sensors to facilitate deep space optical communications. Implementation of this concept requires accurate and wide bandwidth inertial sensors. In this presentation, the principal concept and algorithm using linear accelerometers will be given along with the simulation and experimental results.
Cooke, Alexandra B; Daskalopoulou, Stella S; Dasgupta, Kaberi
2018-04-01
Accelerometer placement at the wrist is convenient and increasingly adopted despite less accurate physical activity (PA) measurement than with waist placement. Capitalizing on a study that started with wrist placement and shifted to waist placement, we compared associations between PA measures derived from different accelerometer locations with a responsive arterial health indicator, carotid-femoral pulse wave velocity (cfPWV). Cross-sectional study. We previously demonstrated an inverse association between waist-worn pedometer-assessed step counts (Yamax SW-200, 7 days) and cfPWV (-0.20m/s, 95% CI -0.28, -0.12 per 1000 step/day increment) in 366 adults. Participants concurrently wore accelerometers (ActiGraph GT3X+), most at the waist but the first 46 at the wrist. We matched this subgroup with participants from the 'waist accelerometer' group (sex, age, and pedometer-assessed steps/day) and assessed associations with cfPWV (applanation tonometry, Sphygmocor) separately in each subgroup through linear regression models. Compared to the waist group, wrist group participants had higher step counts (mean difference 3980 steps/day; 95% CI 2517, 5443), energy expenditure (967kcal/day, 95% CI 755, 1179), and moderate-to-vigorous-PA (138min; 95% CI 114, 162). Accelerometer-assessed step counts (waist) suggested an association with cfPWV (-0.28m/s, 95% CI -0.58, 0.01); but no relationship was apparent with wrist-assessed steps (0.02m/s, 95% CI -0.24, 0.27). Waist but not wrist ActiGraph PA measures signal associations between PA and cfPWV. We urge researchers to consider the importance of wear location choice on relationships with health indicators. Copyright © 2017 Sports Medicine Australia. Published by Elsevier Ltd. All rights reserved.
Comparability and feasibility of wrist- and hip-worn accelerometers in free-living adolescents.
Scott, Joseph J; Rowlands, Alex V; Cliff, Dylan P; Morgan, Philip J; Plotnikoff, Ronald C; Lubans, David R
2017-12-01
To determine the comparability and feasibility of wrist- and hip-worn accelerometers among free-living adolescents. 89 adolescents (age=13-14years old) from eight secondary schools in New South Wales (NSW), Australia wore wrist-worn GENEActiv and hip-worn ActiGraph (GT3X+) accelerometers simultaneously for seven days and completed an accelerometry behavior questionnaire. Bivariate correlations between the wrist- and hip-worn out-put were used to determine concurrent validity. Paired samples t-test were used to compare minutes per day in moderate-to-vigorous physical activity (MVPA). Group means and paired sample t-tests were used to analyze participants' perceptions of the wrist- and hip-worn monitoring protocols to assist with determining the feasibility. Wrist-worn accelerometry compared favorably with the hip-worn in average activity (r=0.88, p<0.001) and MVPA (r=0.84 p<0.001, mean difference=3.54min/day, SD=12.37). The wrist-worn accelerometer had 50% fewer non-valid days (75 days, 12%) than the hip-worn accelerometer (n=152, 24.4%). Participants reported they liked to wear the device on the wrist (p<0.01), and that it was less uncomfortable (p=0.02) and less embarrassing to wear on the wrist (p<0.01). Furthermore, that they would be more willing to wear the device again on the wrist over the hip (p<0.01). Our findings reveal there is a strong linear relationship between wrist- and hip-worn accelerometer out-put among adolescents in free-living conditions. Adolescent compliance was significantly higher with wrist placement, with participants reporting that it was more comfortable and less embarrassing to wear on the wrist. Copyright © 2017 Sports Medicine Australia. Published by Elsevier Ltd. All rights reserved.
van Hees, Vincent T; Renström, Frida; Wright, Antony; Gradmark, Anna; Catt, Michael; Chen, Kong Y; Löf, Marie; Bluck, Les; Pomeroy, Jeremy; Wareham, Nicholas J; Ekelund, Ulf; Brage, Søren; Franks, Paul W
2011-01-01
Few studies have compared the validity of objective measures of physical activity energy expenditure (PAEE) in pregnant and non-pregnant women. PAEE is commonly estimated with accelerometers attached to the hip or waist, but little is known about the validity and participant acceptability of wrist attachment. The objectives of the current study were to assess the validity of a simple summary measure derived from a wrist-worn accelerometer (GENEA, Unilever Discover, UK) to estimate PAEE in pregnant and non-pregnant women, and to evaluate participant acceptability. Non-pregnant (N = 73) and pregnant (N = 35) Swedish women (aged 20-35 yrs) wore the accelerometer on their wrist for 10 days during which total energy expenditure (TEE) was assessed using doubly-labelled water. PAEE was calculated as 0.9×TEE-REE. British participants (N = 99; aged 22-65 yrs) wore accelerometers on their non-dominant wrist and hip for seven days and were asked to score the acceptability of monitor placement (scored 1 [least] through 10 [most] acceptable). There was no significant correlation between body weight and PAEE. In non-pregnant women, acceleration explained 24% of the variation in PAEE, which decreased to 19% in leave-one-out cross-validation. In pregnant women, acceleration explained 11% of the variation in PAEE, which was not significant in leave-one-out cross-validation. Median (IQR) acceptability of wrist and hip placement was 9(8-10) and 9(7-10), respectively; there was a within-individual difference of 0.47 (p<.001). A simple summary measure derived from a wrist-worn tri-axial accelerometer adds significantly to the prediction of energy expenditure in non-pregnant women and is scored acceptable by participants.
Fukushima, Noritoshi; Kitabayashi, Makiko; Kikuchi, Hiroyuki; Sasai, Hiroyuki; Oka, Koichiro; Nakata, Yoshio; Tanaka, Shigeho; Inoue, Shigeru
2018-05-25
The times spent in sedentary behavior (SB) and moderate-to-vigorous physical activity (MVPA) are independently associated with health outcomes; however, objective data on physical activity levels including SB among different occupations is limited. We compared accelerometer-measured times spent in SB, light-intensity physical activity (LPA), and MVPA, and the patterns associated with prolonged bouts of SB between white- and blue-collar workers. The study population consisted of 102 full-time plant workers (54 white-collar and 48 blue-collar) who wore a triaxial accelerometer during waking hours for 5 working days. Accelerometer-measured activity levels were categorized as SB (≤1.5 metabolic equivalents (METs)), LPA (1.6-2.9 METs), and MVPA (≥3.0 METs). A sedentary bout was defined as consecutive minutes during which the accelerometer registered less than ≤1.5 METs. Accelerometer variables were compared between white- and blue-collar workers through analysis of covariance. During working hours, white-collar workers spent significantly more time in SB and less time in LPA than blue-collar workers (SB: 6.4 h vs. 4.8 h, 73% vs. 55% of total work time; LPA: 1.9 h vs. 3.5 h, 22% vs. 40% of total work time, p<.001), whereas the MVPA time was similar between the groups. White-collar workers spent significantly more SB time in prolonged sedentary bouts (≥30 min) compared to blue-collar workers. During leisure time, the SB, LPA, and MVPA times were similar between the groups. White-collar workers have significantly longer SB times than blue-collar workers during work hours, and do not compensate for their excess SB during work by reducing SB during leisure time.
Reproducibility of Accelerometer-Assessed Physical Activity and Sedentary Time.
Keadle, Sarah Kozey; Shiroma, Eric J; Kamada, Masamitsu; Matthews, Charles E; Harris, Tamara B; Lee, I-Min
2017-04-01
Accelerometers are used increasingly in large epidemiologic studies, but, given logistic and cost constraints, most studies are restricted to a single, 7-day accelerometer monitoring period. It is unknown how well a 7-day accelerometer monitoring period estimates longer-term patterns of behavior, which is critical for interpreting, and potentially improving, disease risk estimates in etiologic studies. A subset of participants from the Women's Health Study (N=209; mean age, 70.6 [SD=5.7] years) completed at least two 7-day accelerometer administrations (ActiGraph GT3X+) within a period of 2-3 years. Monitor output was translated into total counts, steps, and time spent in sedentary, light-intensity, and moderate to vigorous-intensity activity (MVPA) and bouted-MVPA (i.e., 10-minute bouts). For each metric, intraclass correlations (ICCs) and 95% CIs were calculated using linear-mixed models and adjusted for wear time, age, BMI, and season. The data were collected in 2011-2015 and analyzed in 2015-2016. The ICCs ranged from 0.67 (95% CI=0.60, 0.73) for bouted-MVPA to 0.82 (95% CI=0.77, 0.85) for total daily counts and were similar across age, BMI, and for less and more active women. For all metrics, classification accuracy within 1 quartile was >90%. These data provide reassurance that a 7-day accelerometer-assessment protocol provides a reproducible (and practical) measure of physical activity and sedentary time. However, ICCs varied by metric; therefore, future prospective studies of chronic diseases might benefit from existing methods to adjust risk estimates for within-person variability in activity to get a better estimate of the true strength of association. Copyright © 2016 American Journal of Preventive Medicine. All rights reserved.
Igelström, Helena; Emtner, Margareta; Lindberg, Eva; Asenlöf, Pernilla
2013-01-01
There is ambiguity about what measures to use to best identify physical activity and sedentary behavior, and agreement between methods for measuring physical activity and sedentary behavior in people with obstructive sleep apnea syndrome (OSAS) and obesity has not been evaluated. The objective of this study was to examine the level of agreement between an accelerometer and a self-report questionnaire (International Physical Activity Questionnaire [IPAQ]) or a logbook for measuring time spent on moderate to vigorous physical activity and time spent sedentary in people with OSAS and obesity. This prospective study was a psychometric evaluation of agreement between measurement methods. Thirty-nine people who were obese (body mass index: X=36.1 kg/m², SD=4.35) and had moderate to severe OSAS (apnea-hypopnea index of ≥15) were consecutively recruited from a sleep clinic in Sweden. All were treated with continuous positive airway pressure and were waiting for a follow-up sleep evaluation. Agreement between the measurement methods was limited. For physical activity, the mean difference between the accelerometer and the IPAQ was 47 minutes, and the mean difference between the accelerometer and the logbook was 32 minutes. Agreement was limited for sedentary time as well; the mean difference between the accelerometer and the IPAQ was 114 minutes, and the mean difference between the accelerometer and the logbook was 86 minutes. The small sample size may affect the interpretation and generalizability of the results. The results imply that the methods cannot be used interchangeably. A combination of an accelerometer and a daily logbook seems to provide a detailed description of physical activity and sedentary behavior.
Hacker, Elke; Horsham, Caitlin; Allen, Martin; Nathan, Andrea; Lowe, John; Janda, Monika
2018-04-17
Skin cancer is the most prevalent cancer in Australia. Skin cancer prevention programs aim to reduce sun exposure and increase sun protection behaviors. Effectiveness is usually assessed through self-report. It was the aim of this study to test the acceptance and validity of a newly developed ultraviolet radiation (UVR) exposure app, designed to reduce the data collection burden to research participants. Physical activity data was collected because a strong focus on sun avoidance may result in unhealthy reductions in physical activity. This paper provides lessons learned from collecting data from participants using paper diaries, a mobile app, dosimeters, and accelerometers for measuring end-points of UVR exposure and physical activity. Two participant groups were recruited through social and traditional media campaigns 1) Group A-UVR Diaries and 2) Group B-Physical Activity. In Group A, nineteen participants wore an UVR dosimeter wristwatch (University of Canterbury, New Zealand) when outside for 7 days. They also recorded their sun exposure and physical activity levels using both 1) the UVR diary app and 2) a paper UVR diary. In Group B, 55 participants wore an accelerometer (Actigraph, Pensacola, FL, USA) for 14 days and completed the UVR diary app. Data from the UVR diary app were compared with UVR dosimeter wristwatch, accelerometer, and paper UVR diary data. Cohen kappa coefficient score was used to determine if there was agreement between categorical variables for different UVR data collection methods and Spearman rank correlation coefficient was used to determine agreement between continuous accelerometer data and app-collected self-report physical activity. The mean age of participants in Groups A (n=19) and B (n=55) was 29.3 and 25.4 years, and 63% (12/19) and 75% (41/55) were females, respectively. Self-reported sun exposure data in the UVR app correlated highly with UVR dosimetry (κ=0.83, 95% CI 0.64-1.00, P<.001). Correlation between self-reported UVR app and accelerometer-collected moderate to vigorous physical activity data was low (ρ=0.23, P=.10), while agreement for low-intensity physical activity was significantly different (ρ=-0.49, P<.001). Seventy-nine percent of participants preferred the app over the paper diary for daily self-report of UVR exposure and physical activity. This feasibility study highlights self-report using an UVR app can reliably collect personal UVR exposure, but further improvements are required before the app can also be used to collect physical activity data. ©Elke Hacker, Caitlin Horsham, Martin Allen, Andrea Nathan, John Lowe, Monika Janda. Originally published in JMIR Research Protocols (http://www.researchprotocols.org), 17.04.2018.
Development of the German A-4 guidance and control system, 1939 - 1945: A memoir
NASA Technical Reports Server (NTRS)
Steinhoff, E. A.
1977-01-01
The development by 1943 of a fully inertial navigational system for the German A-4 (V-2) missile is detailed. This flight control system used a triple-axis stabilized platform with two longitudinal accelerometers and one lateral accelerometer.
Emerging technologies in microguidance and control
NASA Technical Reports Server (NTRS)
Weinberg, Marc S.
1993-01-01
Employing recent advances in microfabrication, the Charles Stark Draper Laboratory has developed inertial guidance instruments of very small size and low cost. Microfabrication employs the batch processing techniques of solid state electronics, such as photolithography, diffusion, and etching, to carve mechanical parts. Within a few years, microfabricated gyroscopes should perform in the 10 to 100 deg/h range. Microfabricated accelerometers have demonstrated performance in the 50 to 500 microgravity range. These instruments will result in not only the redesign of conventional military products, but also new applications that could not exist without small, inexpensive sensors and computing. Draper's microfabricated accelerometers and gyroscopes will be described and test results summarized. Associated electronics and control issues will also be addressed. Gimballed, vibrating gyroscopes and force rebalance accelerometers constructed from bulk silicon, polysilicon surface-machined tuning fork gyroscopes, and quartz resonant accelerometers and gyroscopes are examined. Draper is pursuing several types of devices for the following reasons: to address wide ranges of performance, to realize construction in a flat pack, and to lessen the risks associated with emerging technologies.
Yue Xu, Selene; Nelson, Sandahl; Kerr, Jacqueline; Godbole, Suneeta; Patterson, Ruth; Merchant, Gina; Abramson, Ian; Staudenmayer, John; Natarajan, Loki
2018-04-01
Physical inactivity is a recognized risk factor for many chronic diseases. Accelerometers are increasingly used as an objective means to measure daily physical activity. One challenge in using these devices is missing data due to device nonwear. We used a well-characterized cohort of 333 overweight postmenopausal breast cancer survivors to examine missing data patterns of accelerometer outputs over the day. Based on these observed missingness patterns, we created psuedo-simulated datasets with realistic missing data patterns. We developed statistical methods to design imputation and variance weighting algorithms to account for missing data effects when fitting regression models. Bias and precision of each method were evaluated and compared. Our results indicated that not accounting for missing data in the analysis yielded unstable estimates in the regression analysis. Incorporating variance weights and/or subject-level imputation improved precision by >50%, compared to ignoring missing data. We recommend that these simple easy-to-implement statistical tools be used to improve analysis of accelerometer data.
The microgravity environment of the Space Shuttle Columbia middeck during STS-32
NASA Technical Reports Server (NTRS)
Dunbar, Bonnie J.; Thomas, Donald A.; Schoess, Jeff N.
1991-01-01
Four hours of three-axis microgravity accelerometer data were successfully measured at the MA9F locker location in the Orbiter middeck of Columbia as part of the Microgravity Disturbances Experiment (MDE) on STS-32. These data were measured using the Honeywell In-Space Accelerometer, a small three-axis accelerometer that was hard-mounted onto the Fluid Experiment Apparatus to record the microgravity environment at the exact location of the MDE. Data were recorded during specific mission events such as Orbiter quiescent periods, crew exercise on the treadmill, and numerous Orbiter engine burns. Orbiter background levels were measured to be in the 3 x 10(exp -5) to 2 x 10(exp -4) G range, treadmill operations in the 6 x 10(exp -4) to 5 x 10(exp -3) G range, and Orbiter engine burns from 4 x 10(exp -3) to in excess of 1 x 10(exp -2) G. These data represent some of the first microgravity accelerometer data ever recorded in the middeck area of the Orbiter.
LeMoyne, Robert; Mastroianni, Timothy; Grundfest, Warren; Nishikawa, Kiisa
2013-01-01
The patellar tendon reflex represents an inherent aspect of the standard neurological evaluation. The features of the reflex response provide initial perspective regarding the status of the nervous system. An iPhone wireless accelerometer application integrated with a potential energy impact pendulum attached to a reflex hammer has been successfully developed, tested, and evaluated for quantifying the patellar tendon reflex. The iPhone functions as a wireless accelerometer platform. The wide coverage range of the iPhone enables the quantification of reflex response samples in rural and remote settings. The iPhone has the capacity to transmit the reflex response acceleration waveform by wireless transmission through email. Automated post-processing of the acceleration waveform provides feature extraction of the maximum acceleration of the reflex response ascertained after evoking the patellar tendon reflex. The iPhone wireless accelerometer application demonstrated the utility of the smartphone as a biomedical device, while providing accurate and consistent quantification of the reflex response.
Evaluation of Thermal Protection Tile Transmissibility for Ground Vibration Test
NASA Technical Reports Server (NTRS)
Chung, Y. T.; Fowler, Samuel B.; Lo, Wenso; Towner, Robert
2005-01-01
Transmissibility analyses and tests were conducted on a composite panel with thermal protection system foams to evaluate the quality of the measured frequency response functions. Both the analysis and the test results indicate that the vehicle dynamic responses are fully transmitted to the accelerometers mounted on the thermal protection system in the normal direction below a certain frequency. In addition, the in-plane motions of the accelerometer mounted on the top surface of the thermal protection system behave more actively than those on the composite panel due to the geometric offset of the accelerometer from the panel in the test set-up. The transmissibility tests and analyses show that the frequency response functions measured from the accelerometers mounted on the TPS will provide accurate vehicle responses below 120 Hz for frequency and mode shape identification. By confirming that accurate dynamic responses below a given frequency can be obtained, this study increases the confidence needed for conducting the modal testing, model correlation, and model updating for a vehicle installed with TPS. '
Attitude Ground System (AGS) For The Magnetospheric Multi-Scale (MMS) Mission
NASA Technical Reports Server (NTRS)
Raymond, Juan C.; Sedlak, Joseph E.; Vint, Babak
2015-01-01
The Magnetospheric Multiscale (MMS) mission is a Solar-Terrestrial Probe mission consisting of four identically instrumented spin-stabilized spacecraft flying in an adjustable pyramid-like formation around the Earth. The formation of the MMS spacecraft allows for three-dimensional study of the phenomenon of magnetic reconnection, which is the primary objective of the mission. The MMS spacecraft were launched early on March 13, 2015 GMT. Due to the challenging and very constricted attitude and orbit requirements for performing the science, as well as the need to maintain the spacecraft formation, multiple ground functionalities were designed to support the mission. These functionalities were incorporated into a ground system known as the Attitude Ground System (AGS). Various AGS configurations have been used widely to support a variety of three-axis-stabilized and spin-stabilized spacecraft missions within the NASA Goddard Space Flight Center (GSFC). The original MMS operational concept required the AGS to perform highly accurate predictions of the effects of environmental disturbances on the spacecraft orientation and to plan the attitude maneuvers necessary to stay within the science attitude tolerance. The orbit adjustment requirements for formation control drove the need also to perform calibrations that have never been done before in support of NASA GSFC missions. The MMS mission required support analysts to provide fast and accurately calibrated values of the inertia tensor, center of mass, and accelerometer bias for each MMS spacecraft. During early design of the AGS functionalities, a Kalman filter for estimating the attitude, body rates, center of mass, and accelerometer bias, using only star tracker and accelerometer measurements, was heavily analyzed. A set of six distinct filters was evaluated and considered for estimating the spacecraft attitude and body rates using star tracker data only. Four of the six filters are closely related and were compared during support of the Time History of Events and Macroscale Interactions during Substorms (THEMIS) and Space Technology-5 (ST-5) missions. These analyses exposed high dependency and sensitivity on the knowledge of the spacecraft inertia tensor for both body rates and accelerometer bias estimation. The conclusion of the analysis led to the design of an inertia tensor calibration technique using only star tracker data. The second most important result of the analysis was the design of two separate Kalman filters to estimate the spacecraft attitude and body rates and the accelerometer bias instead of a single combined filter. In this paper, the calibration results of the mass properties, as well as the performance of the spacecraft attitude and body rates filters using flight data are presented and compared against the mission requirements.
Molina-Viedma, Ángel Jesús; López-Alba, Elías; Felipe-Sesé, Luis; Díaz, Francisco A; Rodríguez-Ahlquist, Javier; Iglesias-Vallejo, Manuel
2018-02-02
In real aircraft structures the comfort and the occupational performance of crewmembers and passengers are affected by the presence of noise. In this sense, special attention is focused on mechanical and material design for isolation and vibration control. Experimental characterization and, in particular, experimental modal analysis, provides information for adequate cabin noise control. Traditional sensors employed in the aircraft industry for this purpose are invasive and provide a low spatial resolution. This paper presents a methodology for experimental modal characterization of a front fuselage full-scale demonstrator using high-speed 3D digital image correlation, which is non-invasive, ensuring that the structural response is unperturbed by the instrumentation mass. Specifically, full-field measurements on the passenger window area were conducted when the structure was excited using an electrodynamic shaker. The spectral analysis of the measured time-domain displacements made it possible to identify natural frequencies and full-field operational deflection shapes. Changes in the modal parameters due to cabin pressurization and the behavior of different local structural modifications were assessed using this methodology. The proposed full-field methodology allowed the characterization of relevant dynamic response patterns, complementing the capabilities provided by accelerometers.
López-Alba, Elías; Felipe-Sesé, Luis; Díaz, Francisco A.; Rodríguez-Ahlquist, Javier; Iglesias-Vallejo, Manuel
2018-01-01
In real aircraft structures the comfort and the occupational performance of crewmembers and passengers are affected by the presence of noise. In this sense, special attention is focused on mechanical and material design for isolation and vibration control. Experimental characterization and, in particular, experimental modal analysis, provides information for adequate cabin noise control. Traditional sensors employed in the aircraft industry for this purpose are invasive and provide a low spatial resolution. This paper presents a methodology for experimental modal characterization of a front fuselage full-scale demonstrator using high-speed 3D digital image correlation, which is non-invasive, ensuring that the structural response is unperturbed by the instrumentation mass. Specifically, full-field measurements on the passenger window area were conducted when the structure was excited using an electrodynamic shaker. The spectral analysis of the measured time-domain displacements made it possible to identify natural frequencies and full-field operational deflection shapes. Changes in the modal parameters due to cabin pressurization and the behavior of different local structural modifications were assessed using this methodology. The proposed full-field methodology allowed the characterization of relevant dynamic response patterns, complementing the capabilities provided by accelerometers. PMID:29393897
NASA Astrophysics Data System (ADS)
Lebat, V.; Boulanger, D.; Christophe, B.; Foulon, B.; Liorzou, F.; Perrot, E.; Huynh, P. A.
2014-12-01
The GRACE FO mission, led by the JPL (Jet Propulsion Laboratory), is an Earth-orbiting gravity mission, continuation of the GRACE mission, which will produce an accurate model of the Earth's gravity field variation providing global climatic data during five years at least. The mission involves two satellites in a loosely controlled tandem formation, with a micro-wave link measuring the inter-satellites distance variation. Earth's mass distribution non-uniformities cause variations of the inter-satellite distance. This variation is measured to recover gravity, after subtracting the non-gravitational contributors, as the residual drag. ONERA (the French Aerospace Lab) is developing, manufacturing and testing electrostatic accelerometers measuring this residual drag applied on the satellites. The accelerometer is composed of two main parts: the Sensor Unit (including the Sensor Unit Mechanics - SUM - and the Front-End Electronic Unit - FEEU) and the Interface Control Unit - ICU. In the Accelerometer Core, located in the Sensor Unit Mechanics, the proof mass is levitated and maintained at the center of an electrode cage by electrostatic forces. Thus, any drag acceleration applied on the satellite involves a variation on the servo-controlled electrostatic suspension of the mass. The voltage on the electrodes providing this electrostatic force is the measurement output of the accelerometer. The impact of the accelerometer defaults (geometry, electronic and parasitic forces) leads to bias, misalignment and scale factor error, non-linearity and noise. Some of these accelerometer defaults are characterized by tests with micro-gravity pendulum bench on ground and with drops in ZARM catapult. The Preliminary Design Review was achieved successfully on November 2013. The Engineering Model (EM) was integrated successfully and is under test, with ground levitation, drops, Electromagnetic Compatibility and thermal vacuum. The complete EM tests will be achieved on October 2014. The Critical Design Review is scheduled at the end of September 2014, and the integration of the first Flight Model will begin on October 2014. The results of the Engineering Model tests and the status of the Flight Models will be presented.
2004-10-12
KENNEDY SPACE CENTER, FLA. - This photo shows the size of the sensors being placed on the wing leading edge of orbiter Discovery. In her hand, United Space Alliance technician Lisa Campbell holds an accelerometer (left), which will eventually be installed on a mounting nut. The sensors are part of the Wing Leading Edge Impact Detection System, a new safety measure added for all future Space Shuttle missions. The system also includes accelerometers that monitor the orbiter's wings for debris impacts during launch and while in orbit. There are 22 temperature sensors and 66 accelerometers on each wing. Sensor data will flow from the wing to the crew compartment, where it will be transmitted to Earth.
NASA Technical Reports Server (NTRS)
2004-01-01
KENNEDY SPACE CENTER, FLA. This photo shows the size of the sensors being placed on the wing leading edge of orbiter Discovery. In her hand, United Space Alliance technician Lisa Campbell holds an accelerometer (left), which will eventually be installed on a mounting nut. The sensors are part of the Wing Leading Edge Impact Detection System, a new safety measure added for all future Space Shuttle missions. The system also includes accelerometers that monitor the orbiter's wings for debris impacts during launch and while in orbit. There are 22 temperature sensors and 66 accelerometers on each wing. Sensor data will flow from the wing to the crew compartment, where it will be transmitted to Earth.
Strategies for Dealing with Missing Accelerometer Data.
Stephens, Samantha; Beyene, Joseph; Tremblay, Mark S; Faulkner, Guy; Pullnayegum, Eleanor; Feldman, Brian M
2018-05-01
Missing data is a universal research problem that can affect studies examining the relationship between physical activity measured with accelerometers and health outcomes. Statistical techniques are available to deal with missing data; however, available techniques have not been synthesized. A scoping review was conducted to summarize the advantages and disadvantages of identified methods of dealing with missing data from accelerometers. Missing data poses a threat to the validity and interpretation of trials using physical activity data from accelerometry. Imputation using multiple imputation techniques is recommended to deal with missing data and improve the validity and interpretation of studies using accelerometry. Copyright © 2018 Elsevier Inc. All rights reserved.
Machine learning methods for classifying human physical activity from on-body accelerometers.
Mannini, Andrea; Sabatini, Angelo Maria
2010-01-01
The use of on-body wearable sensors is widespread in several academic and industrial domains. Of great interest are their applications in ambulatory monitoring and pervasive computing systems; here, some quantitative analysis of human motion and its automatic classification are the main computational tasks to be pursued. In this paper, we discuss how human physical activity can be classified using on-body accelerometers, with a major emphasis devoted to the computational algorithms employed for this purpose. In particular, we motivate our current interest for classifiers based on Hidden Markov Models (HMMs). An example is illustrated and discussed by analysing a dataset of accelerometer time series.
Analysis of accelerations measured during full-scale tank car impact tests
DOT National Transportation Integrated Search
2007-04-01
Tank car impact responses were investigated using accelerometers mounted at various locations on a tank car. Several tests were run with both a full and an empty tank car, and varying the tank car impact speed. The data from the accelerometers went t...
Accelerometer-controlled automatic braking system
NASA Technical Reports Server (NTRS)
Dreher, R. C.; Sleeper, R. K.; Nayadley, J. R., Sr.
1973-01-01
Braking system, which employs angular accelerometer to control wheel braking and results in low level of tire slip, has been developed and tested. Tests indicate that system is feasible for operations on surfaces of different slipperinesses. System restricts tire slip and is capable of adapting to rapidly-changing surface conditions.
USDA-ARS?s Scientific Manuscript database
Given the unique physical activity patterns of preschoolers, wearable electronic devices for quantitative assessment of physical activity require validation in this population. Study objective was to validate uniaxial and triaxial accelerometers in preschoolers. Room calorimetry was performed over 3...
Double resonator cantilever accelerometer
Koehler, Dale R.
1984-01-01
A digital quartz accelerometer includes a pair of spaced double-ended tuning forks fastened at one end to a base and at the other end through a spacer mass. Transverse movement of the resonator members stresses one and compresses the other, providing a differential frequency output which is indicative of acceleration.
Effects of variables upon pyrotechnically induced shock response spectra
NASA Technical Reports Server (NTRS)
Smith, J. L.
1986-01-01
Throughout the aerospace industry, large variations of 50 percent (6 dB) or more are continually noted for linear shaped charge (LSC) generated shock response spectra (SRS) from flight data (from the exact same location on different flights) and from plate tests (side by side measurements on the same test). A research program was developed to investigate causes of these large SRS variations. A series of ball drop calibration tests to verify calibration of accelerometers and a series of plate tests to investigate charge and assembly variables were performed. The resulting data were analyzed to determine if and to what degree manufacturing and assembly variables, distance from the shock source, data acquisition instrumentation, and shock energy propagation affect the SRS. LSC variables consisted of coreload, standoff, and apex angle. The assembly variable was the torque on the LSC holder. Other variables were distance from source of accelerometers, accelerometer mounting methods, and joint effects. Results indicated that LSC variables did not affect SRS as long as the plate was severed. Accelerometers mounted on mounting blocks showed significantly lower levels above 5000 Hz. Lap joints did not affect SRS levels. The test plate was mounted in an almost free-free state; therefore, distance from the source did not affect the SRS. Several varieties and brands of accelerometers were used, and all but one demonstrated very large variations in SRS.
Howie, Erin K; McVeigh, Joanne A; Straker, Leon M
2016-09-01
There are several practical issues when considering the use of hip-worn or wrist-worn accelerometers. This study compared compliance and outcomes between hip- and wrist-worn accelerometers worn simultaneously by children during an active video games intervention. As part of a larger randomized crossover trial, participants (n = 73, age 10 to 12 years) wore 2 Actical accelerometers simultaneously during waking hours for 7 days, on the hip and wrist. Measurements were repeated at 4 timepoints: 1) at baseline, 2) during traditional video games condition, 3) during active video games condition, 4) during no video games condition. Compliance and intervention effects were compared between hip and wrist. There were no statistically significant differences at any timepoint in percentage compliance between hip (77% to 87%) and wrist (79% to 89%). Wrist-measured counts (difference of 64.3 counts per minute, 95% CI 4.4-124.3) and moderate-to-vigorous physical activity (MVPA) (12 min/day, 95% CI 0.3-23.7) were higher during the no video games condition compared with the traditional video games condition. There were no differences in hip-measured counts per minute or MVPA between conditions or sedentary time for hip or wrist. There were no differences in compliance between hip- and wrist-worn accelerometers during an intervention trial, however, intervention findings differed between hip and wrist.
Angular motion estimation using dynamic models in a gyro-free inertial measurement unit.
Edwan, Ezzaldeen; Knedlik, Stefan; Loffeld, Otmar
2012-01-01
In this paper, we summarize the results of using dynamic models borrowed from tracking theory in describing the time evolution of the state vector to have an estimate of the angular motion in a gyro-free inertial measurement unit (GF-IMU). The GF-IMU is a special type inertial measurement unit (IMU) that uses only a set of accelerometers in inferring the angular motion. Using distributed accelerometers, we get an angular information vector (AIV) composed of angular acceleration and quadratic angular velocity terms. We use a Kalman filter approach to estimate the angular velocity vector since it is not expressed explicitly within the AIV. The bias parameters inherent in the accelerometers measurements' produce a biased AIV and hence the AIV bias parameters are estimated within an augmented state vector. Using dynamic models, the appended bias parameters of the AIV become observable and hence we can have unbiased angular motion estimate. Moreover, a good model is required to extract the maximum amount of information from the observation. Observability analysis is done to determine the conditions for having an observable state space model. For higher grades of accelerometers and under relatively higher sampling frequency, the error of accelerometer measurements is dominated by the noise error. Consequently, simulations are conducted on two models, one has bias parameters appended in the state space model and the other is a reduced model without bias parameters.
Angular Motion Estimation Using Dynamic Models in a Gyro-Free Inertial Measurement Unit
Edwan, Ezzaldeen; Knedlik, Stefan; Loffeld, Otmar
2012-01-01
In this paper, we summarize the results of using dynamic models borrowed from tracking theory in describing the time evolution of the state vector to have an estimate of the angular motion in a gyro-free inertial measurement unit (GF-IMU). The GF-IMU is a special type inertial measurement unit (IMU) that uses only a set of accelerometers in inferring the angular motion. Using distributed accelerometers, we get an angular information vector (AIV) composed of angular acceleration and quadratic angular velocity terms. We use a Kalman filter approach to estimate the angular velocity vector since it is not expressed explicitly within the AIV. The bias parameters inherent in the accelerometers measurements' produce a biased AIV and hence the AIV bias parameters are estimated within an augmented state vector. Using dynamic models, the appended bias parameters of the AIV become observable and hence we can have unbiased angular motion estimate. Moreover, a good model is required to extract the maximum amount of information from the observation. Observability analysis is done to determine the conditions for having an observable state space model. For higher grades of accelerometers and under relatively higher sampling frequency, the error of accelerometer measurements is dominated by the noise error. Consequently, simulations are conducted on two models, one has bias parameters appended in the state space model and the other is a reduced model without bias parameters. PMID:22778586
Martínez-Gómez, David; Martínez-de-Haro, Vicente; Pozo, Tamara; Welk, Gregory J; Villagra, Ariel; Calle, Marisa E; Marcos, Ascensión; Veiga, Oscar L
2009-01-01
Questionnaires are feasible instruments to assess physical activity (PA) in large samples. The aim of the current study was to evaluate the reliability and validity of the PAQ-A questionnaire in Spanish adolescents using the measurement of PA by accelerometer as criterion. In a sample of 82 adolescents, aged 12 to 17 years, 1-week PAQ-A test-retest was administered. Reliability was analyzed by the Intraclass Correlation Coefficient (ICC) and the internal consistency by the Cronbach's alpha Coefficient. Two hundred thirty-two adolescents, aged 13-17 years, completed the PAQ-A and wore the ActiGraph GT1M accelerometer during 7-days. The PAQ-A was compared against total PA and moderate to vigorous PA (MVPA) obtained by the accelerometer. Test-retest reliability showed ICC = 0.71 for the final score of PAQ-A. Internal consistency was alpha = 0.65 in the first self-report, alpha = 0.67 in the retest in 82 adolescents sample, and alpha = 0.74 in the 232 adolescents sample. The PAQ-A was moderately correlated with total PA (rho = 0.39) and MVPA (rho= 0.34) assessed by the accelerometer. The PAQ-A obtained significantly moderate correlations in boys but not in girls against the accelerometer. The PAQ-A questionnaire shows an adequate reliability and a reasonable validity for assessing PA in Spanish adolescents.
NASA Technical Reports Server (NTRS)
Cancro, George J.; Tolson, Robert H.; Keating, Gerald M.
1998-01-01
The success of aerobraking by the Mars Global Surveyor (MGS) spacecraft was partly due to the analysis of MGS accelerometer data. Accelerometer data was used to determine the effect of the atmosphere on each orbit, to characterize the nature of the atmosphere, and to predict the atmosphere for future orbits. To interpret the accelerometer data, a data reduction procedure was developed to produce density estimations utilizing inputs from the spacecraft, the Navigation Team, and pre-mission aerothermodynamic studies. This data reduction procedure was based on the calculation of aerodynamic forces from the accelerometer data by considering acceleration due to gravity gradient, solar pressure, angular motion of the MGS, instrument bias, thruster activity, and a vibration component due to the motion of the damaged solar array. Methods were developed to calculate all of the acceleration components including a 4 degree of freedom dynamics model used to gain a greater understanding of the damaged solar array. The total error inherent to the data reduction procedure was calculated as a function of altitude and density considering contributions from ephemeris errors, errors in force coefficient, and instrument errors due to bias and digitization. Comparing the results from this procedure to the data of other MGS Teams has demonstrated that this procedure can quickly and accurately describe the density and vertical structure of the Martian upper atmosphere.
Duncan, Scott; Stewart, Tom; Mackay, Lisa; Neville, Jono; Narayanan, Anantha; Walker, Caroline; Berry, Sarah; Morton, Susan
2018-06-21
To advance the field of time-use epidemiology, a tool capable of monitoring 24 h movement behaviours including sleep, physical activity, and sedentary behaviour is needed. This study explores compliance with a novel dual-accelerometer system for capturing 24 h movement patterns in two free-living samples of children and adults. A total of 103 children aged 8 years and 83 adults aged 20-60 years were recruited. Using a combination of medical dressing and purpose-built foam pouches, participants were fitted with two Axivity AX3 accelerometers—one to the thigh and the other to the lower back—for seven 24 h periods. AX3 accelerometers contain an inbuilt skin temperature sensor that facilitates wear time estimation. The median (IQR) wear time in children was 160 (67) h and 165 (79) h (out of a maximum of 168 h) for back and thigh placement, respectively. Wear time was significantly higher and less variable in adults, with a median (IQR) for back and thigh placement of 168 (1) and 168 (0) h. A greater proportion of adults (71.6%) achieved the maximum number of complete days when compared to children (41.7%). We conclude that a dual-accelerometer protocol using skin attachment methods holds considerable promise for monitoring 24-h movement behaviours in both children and adults.
Lightweight fiber optic microphones and accelerometers
NASA Astrophysics Data System (ADS)
Bucaro, J. A.; Lagakos, N.
2001-06-01
We have designed, fabricated, and tested two lightweight fiber optic sensors for the dynamic measurement of acoustic pressure and acceleration. These sensors, one a microphone and the other an accelerometer, are required for active blanket sound control technology under development in our laboratory. The sensors were designed to perform to certain specifications dictated by our active sound control application and to do so without exhibiting sensitivity to the high electrical voltages expected to be present. Furthermore, the devices had to be small (volumes less than 1.5 cm3) and light (less than 2 g). To achieve these design criteria, we modified and extended fiber optic reflection microphone and fiber microbend displacement device designs reported in the literature. After fabrication, the performances of each sensor type were determined from measurements made in a dynamic pressure calibrator and on a shaker table. The fiber optic microbend accelerometer, which weighs less than 1.8 g, was found to meet all performance goals including 1% linearity, 90 dB dynamic range, and a minimum detectable acceleration of 0.2 mg/√Hz . The fiber optic microphone, which weighs less than 1.3 g, also met all goals including 1% linearity, 85 dB dynamic range, and a minimum detectable acoustic pressure level of 0.016 Pa/√Hz . In addition to our specific use in active sound control, these sensors appear to have application in a variety of other areas.
Fusion of smartphone motion sensors for physical activity recognition.
Shoaib, Muhammad; Bosch, Stephan; Incel, Ozlem Durmaz; Scholten, Hans; Havinga, Paul J M
2014-06-10
For physical activity recognition, smartphone sensors, such as an accelerometer and a gyroscope, are being utilized in many research studies. So far, particularly, the accelerometer has been extensively studied. In a few recent studies, a combination of a gyroscope, a magnetometer (in a supporting role) and an accelerometer (in a lead role) has been used with the aim to improve the recognition performance. How and when are various motion sensors, which are available on a smartphone, best used for better recognition performance, either individually or in combination? This is yet to be explored. In order to investigate this question, in this paper, we explore how these various motion sensors behave in different situations in the activity recognition process. For this purpose, we designed a data collection experiment where ten participants performed seven different activities carrying smart phones at different positions. Based on the analysis of this data set, we show that these sensors, except the magnetometer, are each capable of taking the lead roles individually, depending on the type of activity being recognized, the body position, the used data features and the classification method employed (personalized or generalized). We also show that their combination only improves the overall recognition performance when their individual performances are not very high, so that there is room for performance improvement. We have made our data set and our data collection application publicly available, thereby making our experiments reproducible.
Low-Cost Accelerometers for Physics Experiments
ERIC Educational Resources Information Center
Vannoni, Maurizio; Straulino, Samuele
2007-01-01
The implementation of a modern game-console controller as a data acquisition interface for physics experiments is discussed. The investigated controller is equipped with three perpendicular accelerometers and a built-in infrared camera to evaluate its own relative position. A pendulum experiment is realized as a demonstration of the proposed…
Detection of boundary-layer transitions in wind tunnels
NASA Technical Reports Server (NTRS)
Wood, W. R.; Somers, D. M.
1978-01-01
Accelerometer replaces stethoscope in technique for detection of laminar-to-turbulent boundary-layer transitions on wind-tunnel models. Technique allows measurements above or below atmospheric pressure because human operator is not required within tunnel. Data may be taken from accelerometer, and pressure transducer simultaneously, and delivered to systems for analysis.
Application of Acceleration Sensors in Physiological Experiments
NASA Astrophysics Data System (ADS)
Vavrinský, Erik; Moskal'vá, Daniela; Darříček, Martin; Donoval, Martin; Horínek, František; Popovič, Marían; Miklovič, Peter
2014-09-01
This paper illustrates a promising application of an accelerometer sensor in physiological research, we demonstrated use of accelerometers for monitoring the standard proband physical activity (PA) and also in special applications like respiration and mechanical heart activity, the so-called seismocardiography (SCG) monitoring, physiological activation monitoring and mechanomyography (MMG)
Signal processing of bedload transport impact amplitudes on accelerometer instrumented plates
USDA-ARS?s Scientific Manuscript database
This work was performed to help establish a data processing methodology for relating accelerometer signals caused by impacts of gravel on steel plates to the mass and size of the transported material. Signal processing was performed on impact plate data collected in flume experiments at the Nationa...
NASA Astrophysics Data System (ADS)
Rodes, C. E.; Chillrud, S. N.; Haskell, W. L.; Intille, S. S.; Albinali, F.; Rosenberger, M. E.
2012-09-01
BackgroundMetabolic functions typically increase with human activity, but optimal methods to characterize activity levels for real-time predictions of ventilation volume (l min-1) during exposure assessments have not been available. Could tiny, triaxial accelerometers be incorporated into personal level monitors to define periods of acceptable wearing compliance, and allow the exposures (μg m-3) to be extended to potential doses in μg min-1 kg-1 of body weight? ObjectivesIn a pilot effort, we tested: 1) whether appropriately-processed accelerometer data could be utilized to predict compliance and in linear regressions to predict ventilation volumes in real-time as an on-board component of personal level exposure sensor systems, and 2) whether locating the exposure monitors on the chest in the breathing zone, provided comparable accelerometric data to other locations more typically utilized (waist, thigh, wrist, etc.). MethodsPrototype exposure monitors from RTI International and Columbia University were worn on the chest by a pilot cohort of adults while conducting an array of scripted activities (all <10 METS), spanning common recumbent, sedentary, and ambulatory activity categories. Referee Wocket accelerometers that were placed at various body locations allowed comparison with the chest-located exposure sensor accelerometers. An Oxycon Mobile mask was used to measure oral-nasal ventilation volumes in-situ. For the subset of participants with complete data (n = 22), linear regressions were constructed (processed accelerometric variable versus ventilation rate) for each participant and exposure monitor type, and Pearson correlations computed to compare across scenarios. ResultsTriaxial accelerometer data were demonstrated to be adequately sensitive indicators for predicting exposure monitor wearing compliance. Strong linear correlations (R values from 0.77 to 0.99) were observed for all participants for both exposure sensor accelerometer variables against ventilation volume for recumbent, sedentary, and ambulatory activities with MET values ˜<6. The RTI monitors mean R value of 0.91 was slightly higher than the Columbia monitors mean of 0.86 due to utilizing a 20 Hz data rate instead of a slower 1 Hz rate. A nominal mean regression slope was computed for the RTI system across participants and showed a modest RSD of +/-36.6%. Comparison of the correlation values of the exposure monitors with the Wocket accelerometers at various body locations showed statistically identical regressions for all sensors at alternate hip, ankle, upper arm, thigh, and pocket locations, but not for the Wocket accelerometer located at the dominant side wrist location (R = 0.57; p = 0.016). ConclusionsEven with a modest number of adult volunteers, the consistency and linearity of regression slopes for all subjects were very good with excellent within-person Pearson correlations for the accelerometer versus ventilation volume data. Computing accelerometric standard deviations allowed good sensitivity for compliance assessments even for sedentary activities. These pilot findings supported the hypothesis that a common linear regression is likely to be usable for a wider range of adults to predict ventilation volumes from accelerometry data over a range of low to moderate energy level activities. The predicted volumes would then allow real-time estimates of potential dose, enabling more robust panel studies. The poorer correlation in predicting ventilation rate for an accelerometer located on the wrist suggested that this location should not be considered for predictions of ventilation volume.
Neighborhood Environment, Self-Efficacy, and Physical Activity in Urban Adolescents
ERIC Educational Resources Information Center
Voorhees, Carolyn C.; Yan, Alice F.; Clifton, Kelly J.; Wang, Min Qi
2011-01-01
Objectives: To test the pathways between perceptions of built environment factors and physical activity in urban youth. Methods: Three hundred fifty high school students' perceptions of neighborhood, and barrier self efficacy were measured by a Web survey. Physical activities were assessed using a one-week diary and accelerometers. Results:…
Design and implementation of an intelligent belt system using accelerometer.
Liu, Botong; Wang, Duo; Li, Sha; Nie, Xuhui; Xu, Shan; Jiao, Bingli; Duan, Xiaohui; Huang, Anpeng
2015-01-01
Activity monitor systems are increasing used recently. They are important for athletes and casual users to manage physical activity during daily exercises. In this paper, we use a triaxial accelerometer to design and implement an intelligent belt system, which can detect the user's step and flapping motion. In our system, a wearable intelligent belt is worn on the user's waist to collect activity acceleration signals. We present a step detection algorithm to detect real-time human step, which has high accuracy and low complexity. In our system, an Android App is developed to manage the intelligent belt. We also propose a protocol, which can guarantee data transmission between smartphones and wearable belt effectively and efficiently. In addition, when users flap the belt in emergency, the smartphone will receive alarm signal sending by the belt, and then notifies the emergency contact person, which can be really helpful for users in danger. Our experiment results show our system can detect physical activities with high accuracy (overall accuracy of our algorithm is above 95%) and has an effective alarm subsystem, which is significant for the practical use.