Science.gov

Sample records for high resolution characterization

  1. High Spatial Resolution Commercial Satellite Imaging Product Characterization

    NASA Technical Reports Server (NTRS)

    Ryan, Robert E.; Pagnutti, Mary; Blonski, Slawomir; Ross, Kenton W.; Stnaley, Thomas

    2005-01-01

    NASA Stennis Space Center's Remote Sensing group has been characterizing privately owned high spatial resolution multispectral imaging systems, such as IKONOS, QuickBird, and OrbView-3. Natural and man made targets were used for spatial resolution, radiometric, and geopositional characterizations. Higher spatial resolution also presents significant adjacency effects for accurate reliable radiometry.

  2. High Resolution Sensor for Nuclear Waste Characterization

    SciTech Connect

    Shah, Kanai; Higgins, William; Van Loef, Edgar V

    2006-01-23

    Gamma ray spectrometers are an important tool in the characterization of radioactive waste. Important requirements for gamma ray spectrometers used in this application include good energy resolution, high detection efficiency, compact size, light weight, portability, and low power requirements. None of the available spectrometers satisfy all of these requirements. The goal of the Phase I research was to investigate lanthanum halide and related scintillators for nuclear waste clean-up. LaBr3:Ce remains a very promising scintillator with high light yield and fast response. CeBr3 is attractive because it is very similar to LaBr3:Ce in terms of scintillation properties and also has the advantage of much lower self-radioactivity, which may be important in some applications. CeBr3 also shows slightly higher light yield at higher temperatures than LaBr3 and may be easier to produce with high uniformity in large volume since it does not require any dopants. Among the mixed lanthanum halides, the light yield of LaBrxI3-x:Ce is lower and the difference in crystal structure of the binaries (LaBr3 and LaI3) makes it difficult to grow high quality crystals of the ternary as the iodine concentration is increased. On the other hand, LaBrxCl3-x:Ce provides excellent performance. Its light output is high and it provides fast response. The crystal structures of the two binaries (LaBr3 and LaCl3) are very similar. Overall, its scintillation properties are very similar to those for LaBr3:Ce. While the gamma-ray stopping efficiency of LaBrxCl3-x:Ce is lower than that for LaBr3:Ce (primarily because the density of LaCl3 is lower than that of LaBr3), it may be easier to grow large crystals of LaBrxCl3-x:Ce than LaBr3:Ce since in some instances (for example, CdxZn1-xTe), the ternary compounds provide increased flexibility in the crystal lattice. Among the new dopants, Eu2+ and Pr3+, tried in LaBr3 host crystals, the Eu2+ doped samples exhibited low light output. This was mostly because a

  3. High resolution 3D gas-jet characterization.

    PubMed

    Landgraf, Björn; Schnell, Michael; Sävert, Alexander; Kaluza, Malte C; Spielmann, Christian

    2011-08-01

    We present a tomographic characterization of gas jets employed for high-intensity laser-plasma interaction experiments where the shape can be non-symmetrically. With a Mach-Zehnder interferometer we measured the phase shift for different directions through the neutral density distribution of the gas jet. From the recorded interferograms it is possible to retrieve 3-dimensional neutral density distributions by tomographic reconstruction based on the filtered back projections. We report on criteria for the smallest number of recorded interferograms as well as a comparison with the widely used phase retrieval based on an Abel inversion. As an example for the performance of our approach, we present the characterization of nozzles with rectangular openings or gas jets with shock waves. With our setup we obtained a spatial resolution of less than 60 μm for an Argon density as low as 2 × 10(17) cm(-3).

  4. Development and Characterization of a High Resolution Portable Gamma Spectrometer

    NASA Astrophysics Data System (ADS)

    Ali, Muhammad

    The recent disaster of Fukushima in Japan combined with the high demand to enhance nuclear safety and to minimize personal exposure to radioactive materials has a significant impact on research and development of radiation detection instrumentation. Currently, there is ample effort worldwide in the pursuit of radiation detection to maximize the accuracy and meet international standards in terms of size and specifications to enable radiation protection decision making. Among the requirements is the development of a portable, light-weight gamma-ray isotope identifier to be used by first responders in nuclear accidents as well as for radiation security and identification of illicit material isotopes. From nuclear security perspective, research into advanced screening technologies has become a high priority in all aspects, while for occupational safety, and environmental radiation protection, the regulatory authorities are requiring specific performance of radiation detection and measuring devices. At the applied radiation laboratory of the University of Ontario Institute of Technology, UOIT, the development of a high resolution spectrometer for medium and high energy gamma ray has been conducted. The spectrometer used a newly developed scintillator based on a LaBr3(Ce) crystal. The detector has been modeled using advanced Monte Carlo code (MCNP/X code) for the response function simulation and parameter characterization. The simulation results have been validated by experimental investigations using a wide range of gamma radiation energies. The developed spectrometer has been characterized in terms of resolution and response in different fields. It has also been compared with other crystals such as NaI(TI) and LiI(Eu).

  5. Systematic Characterization of Cyclogenesis in High Resolution Climate Model Simulations

    NASA Astrophysics Data System (ADS)

    Liu, Y.; Rao, P.; Kashinath, K.; Prabhat, M.; O'Brien, T. A.

    2015-12-01

    In this study we develop a systematic methodology to analyze cyclogenesis in high resolution climate model simulations. The motivation for this study is to understand how cyclones develop in simulations with the objective of improving the theoretical foundations of cyclogenesis. We use the toolkit for extreme climate analysis (TECA) [Prabhat et al., ICCS 2012] to detect and track cyclones (TCs) in recent high resolution simulations (25km) of current day and climate change scenarios [Wehner et al, J Climate 2015], as well as reanalyses. We systematically adjust the tracking criteria to identify developing and non-developing TCs. The detection and tracking criteria are based on (i) the local relative vorticity maximum being above a certain value, (ii) the colocation of vorticity maximum, surface pressure minimum and warm core temperature maximum, (iii) surface pressure gradient around the storm center to be above a certain value, and (iv) temperature gradient around the warm core center to be above a certain value. To identify non-developing TCs, we systematically characterize the sensitivity of cyclone detection to these criteria using a principal component analysis on the criteria. First, we composite vorticity, pressure and temperature fields around the start of each cyclone's trajectory. Second, we find the covariance of pairs of thresholded variables, for example, vorticity and pressure gradient. Finally, we construct a cross-correlation matrix with these covariances and find the eigenvectors. The eigenvector corresponding to the largest eigenvalue describes the direction of maximum sensitivity.We simultaneously lower thresholds along the direction of maximum sensitivity, which results in an increase in the number of TC-like systems and trajectory lengths compared to the baseline case. We contrast the behavior of developing and non-developing TCs by constructing multivariate joint PDFs of various environmental conditions along their trajectories. We also compute

  6. High-Resolution Characterization of Intertidal Geomorphology by TLS

    NASA Astrophysics Data System (ADS)

    Guarnieri, A.; Vettore, A.; Marani, M.

    2007-12-01

    Observational fluvial geomorphology has greatly benefited in the last decades from the wide availability of digital terrain data obtained by orthophotos and by means of accurate airborne laser scanner data (LiDAR). On the contrary, the spatially-distributed study of the geomorphology of intertidal areas, such as tidal flats and marshes, remains problematic owing to the small relief characterizing such environments, often of the order of a few tens of centimetres, i.e. comparable to the accuracy of state-of-the-art LiDAR data. Here we present the results of Terrestrial Laser Scanner (TLS) acquisitions performed within a tidal marsh in the Venice lagoon. The survey was performed using a Leica HDS 3000 TLS, characterized by a large Field of View (360 deg H x 270 deg V), a low beam divergence (< 6 mm at 50 m) and a nominal accuracy of 6 mm at 50 m. The acquisition was performed at low tide to avoid interferences due to water on the marsh surface and, to minimize shadowing effects due to the tilting of the laser beam (especially in the channel network), the scanner was mounted on a custom-built tripod 3 m above the marsh surface. The area of the marsh, about 100m x 150m, was fully surveyed by just 2 scans. A total amount of about 3 million points was acquired, with an average measurement density of 200 points/m2. In order to reconstruct the geometry of the marsh, the two scans were co-registered using 8 reflective targets as matching points. Such targets were placed within the area of interest and surveyed with high accuracy (2 mm), while their position in the Italian national grid was determined with a double-frequency GPS receiver, in order to georeference the point clouds within an absolute framework. Post-processing of the very high resolution data obtained shows that the laser returns coming from the low vegetation present (about 0.5-1.0 m high) can be satisfactorily separated from those coming from the marsh surface, allowing the construction of a DSM and a DTM

  7. Performance characterization of a new high resolution PET scintillation detector

    PubMed Central

    Foudray, A M K; Olcott, P D

    2013-01-01

    Performance of a new high resolution PET detection concept is presented. In this new concept, annihilation radiation enters the scintillator detectors edge-on. Each detector module comprises two 8 × 8 LYSO scintillator arrays of 0.91 × 0.91 × 1 mm3 crystals coupled to two position-sensitive avalanche photodiodes (PSAPDs) mounted on a flex circuit. Appropriate crystal segmentation allows the recording of all three spatial coordinates of the interaction(s) simultaneously with submillimeter resolution. We report an average energy resolution of 14.6 ± 1.7% for 511 keV photons at FWHM. Coincident time resolution was determined to be 2.98 ± 0.13 ns FWHM on average. The coincidence point spread function (PSF) has an average FWHM of 0.837 ± 0.049 mm (using a 500 μm spherical source) and is uniform across the arrays. Both PSF and coincident time resolution degrade when Compton interactions are included in the data. Different blurring factors were evaluated theoretically, resulting in a calculated PSF of 0.793 mm, in good agreement with the measured value. PMID:20844332

  8. Design, fabrication and characterization of miniaturized high resolution camera modules

    NASA Astrophysics Data System (ADS)

    Kuehn, M.; Goetz, M.; Mueller, C.; Reinecke, H.

    2014-05-01

    Camera systems become more and more important in everyday life. Some of those systems place special requirements concerning the environmental conditions they are exposed to especially in harsh environment. High temperature and humidity difficult to access areas require individual packaging and joining technologies for the setup of a camera module. Environmental conditions have an influence on optical design and tolerance calculation. In case of high temperatures the different thermal expansion coefficients of the used materials lead to stress in joints, lenses and their fittings. This, in turn, can lead to a loss of adjustment of the mechanical and optical components that have a direct influence on the optical performance of the camera module. The recent work shows the development of miniaturized high resolution camera modules designed for use in harsh environment applications.

  9. Commissioning and Characterization of a Dedicated High-Resolution Breast PET Camera

    DTIC Science & Technology

    2012-07-01

    Characterization of a Dedicated High-Resolution Breast PET Camera 5b. GRANT NUMBER W81XWH-10-1-0393 5c. PROGRAM ELEMENT NUMBER 6. AUTHOR(S) 5d...characterizing a high resolution breast PET camera . We have received about 25% of the modules needed to construct the camera and about 80% of these passed...high voltage biasing circuitry. Energy resolutions of 11.8 +/- 0.3% FWHM at 511 keV are obtained and a coincidence time resolution of 9.8 +/- 0.7 ns

  10. Methods of photoelectrode characterization with high spatial and temporal resolution

    DOE PAGES

    Esposito, Daniel V.; Baxter, Jason B.; John, Jimmy; ...

    2015-06-19

    Here, materials and photoelectrode architectures that are highly efficient, extremely stable, and made from low cost materials are required for commercially viable photoelectrochemical (PEC) water-splitting technology. A key challenge is the heterogeneous nature of real-world materials, which often possess spatial variation in their crystal structure, morphology, and/or composition at the nano-, micro-, or macro-scale. Different structures and compositions can have vastly different properties and can therefore strongly influence the overall performance of the photoelectrode through complex structure–property relationships. A complete understanding of photoelectrode materials would also involve elucidation of processes such as carrier collection and electrochemical charge transfer that occurmore » at very fast time scales. We present herein an overview of a broad suite of experimental and computational tools that can be used to define the structure–property relationships of photoelectrode materials at small dimensions and on fast time scales. A major focus is on in situ scanning-probe measurement (SPM) techniques that possess the ability to measure differences in optical, electronic, catalytic, and physical properties with nano- or micro-scale spatial resolution. In situ ultrafast spectroscopic techniques, used to probe carrier dynamics involved with processes such as carrier generation, recombination, and interfacial charge transport, are also discussed. Complementing all of these experimental techniques are computational atomistic modeling tools, which can be invaluable for interpreting experimental results, aiding in materials discovery, and interrogating PEC processes at length and time scales not currently accessible by experiment. In addition to reviewing the basic capabilities of these experimental and computational techniques, we highlight key opportunities and limitations of applying these tools for the development of PEC materials.« less

  11. Methods of photoelectrode characterization with high spatial and temporal resolution

    SciTech Connect

    Esposito, Daniel V.; Baxter, Jason B.; John, Jimmy; Lewis, Nathan S.; Moffat, Thomas P.; Ogitsu, Tadashi; O'Neil, Glen D.; Pham, Tuan Anh; Talin, A. Alec; Velazquez, Jesus M.; Wood, Brandon C.

    2015-06-19

    Here, materials and photoelectrode architectures that are highly efficient, extremely stable, and made from low cost materials are required for commercially viable photoelectrochemical (PEC) water-splitting technology. A key challenge is the heterogeneous nature of real-world materials, which often possess spatial variation in their crystal structure, morphology, and/or composition at the nano-, micro-, or macro-scale. Different structures and compositions can have vastly different properties and can therefore strongly influence the overall performance of the photoelectrode through complex structure–property relationships. A complete understanding of photoelectrode materials would also involve elucidation of processes such as carrier collection and electrochemical charge transfer that occur at very fast time scales. We present herein an overview of a broad suite of experimental and computational tools that can be used to define the structure–property relationships of photoelectrode materials at small dimensions and on fast time scales. A major focus is on in situ scanning-probe measurement (SPM) techniques that possess the ability to measure differences in optical, electronic, catalytic, and physical properties with nano- or micro-scale spatial resolution. In situ ultrafast spectroscopic techniques, used to probe carrier dynamics involved with processes such as carrier generation, recombination, and interfacial charge transport, are also discussed. Complementing all of these experimental techniques are computational atomistic modeling tools, which can be invaluable for interpreting experimental results, aiding in materials discovery, and interrogating PEC processes at length and time scales not currently accessible by experiment. In addition to reviewing the basic capabilities of these experimental and computational techniques, we highlight key opportunities and limitations of applying these tools for the development of PEC materials.

  12. Design and Characterization of High-Temperature-Resolution Thermometer

    NASA Astrophysics Data System (ADS)

    Shie, Jin Shown; Hwang, Thunter S. D.

    2006-02-01

    Thermochromic liquid crystals (TLCs) can serve as a light valve when it is carefully controlled by temperature. With a photodiode used in light transmissive intensity electric output voltage extraction, there is a progressive increase in output voltage from 19.331 to 35.800°C, and the resolution is 0.0001482°C, which decreases progressively to 0.03086°C. If we design a linear integrated circuit with many very small sections for converting nonlinear extraction voltage to its relative temperature automatically, this system can serve as a thermometer. The whole system can be made portable for radiation temperature measurement.

  13. High-resolution harmonic motion imaging (HR-HMI) for tissue biomechanical property characterization

    PubMed Central

    Ma, Teng; Qian, Xuejun; Chiu, Chi Tat; Yu, Mingyue; Jung, Hayong; Tung, Yao-Sheng; Shung, K. Kirk

    2015-01-01

    Background Elastography, capable of mapping the biomechanical properties of biological tissues, serves as a useful technique for clinicians to perform disease diagnosis and determine stages of many diseases. Many acoustic radiation force (ARF) based elastography, including acoustic radiation force impulse (ARFI) imaging and harmonic motion imaging (HMI), have been developed to remotely assess the elastic properties of tissues. However, due to the lower operating frequencies of these approaches, their spatial resolutions are insufficient for revealing stiffness distribution on small scale applications, such as cancerous tumor margin detection, atherosclerotic plaque composition analysis and ophthalmologic tissue characterization. Though recently developed ARF-based optical coherence elastography (OCE) methods open a new window for the high resolution elastography, shallow imaging depths significantly limit their usefulness in clinics. Methods The aim of this study is to develop a high-resolution HMI method to assess the tissue biomechanical properties with acceptable field of view (FOV) using a 4 MHz ring transducer for efficient excitation and a 40 MHz needle transducer for accurate detection. Under precise alignment of two confocal transducers, the high-resolution HMI system has a lateral resolution of 314 µm and an axial resolution of 
147 µm with an effective FOV of 2 mm in depth. Results The performance of this high resolution imaging system was validated on the agar-based tissue mimicking phantoms with different stiffness distributions. These data demonstrated the imaging system’s improved resolution and sensitivity on differentiating materials with varying stiffness. In addition, ex vivo imaging of a human atherosclerosis coronary artery demonstrated the capability of high resolution HMI in identifying layer-specific structures and characterizing atherosclerotic plaques based on their stiffness differences. Conclusions All together high resolution HMI

  14. High-Resolution Analytical Electron Microscopy Characterization of Corrosion and Cracking at Buried Interfaces

    SciTech Connect

    Bruemmer, Stephen M.; Thomas, Larry E.

    2001-07-01

    Recent results are presented demonstrating the application of cross-sectional analytical transmission electron microscopy (ATEM) to corrosion and cracking in high-temperature water environments. Microstructural, chemical and crystallographic characterization of buried interfaces at near-atomic resolutions is shown to reveal evidence for unexpected local environments, corrosion reactions and material transformations. Information obtained by a wide variety of high-resolution imaging and analysis methods indicates the processes occurring during crack advance and provides insights into the mechanisms controlling environmental degradation.

  15. High resolution characterization of aquifers to improve flow and transport models of highly heterogeneous media

    NASA Astrophysics Data System (ADS)

    Dogan Diker, Mine

    Aquifers are the primary sources of clean drinking water. Pollution in aquifers is one of the most challenging and important environmental problems. It is not only extremely complex to map but also difficult to remediate. Flow and transport of water and pollutants in porous media requires detailed characterization of the properties of the media. The main property which controls the flow and transport is hydraulic conductivity (K), which can be defined as the ability of the media to let the water flow through. Intensive studies to map the distribution of hydraulic conductivity are necessary to model the plume migration. Conventional in-situ aquifer characterization techniques are invasive and lack the necessary high resolution. Therefore, novel methods are required to improve the methods to monitor and simulate the flow and transport through aquifers. This study introduces a combination of novel techniques to provide the necessary information related to porous media. The proposed method was tested at a highly heterogeneous site called the Macro Dispersion Experiment (MADE) site in Mississippi. The MADE site is a very well studied site where several large scale tracer tests were conducted in the 1980s and 1990s. The tracers used for these tests were monitored using more than 300 multi-level sampler (MLS) wells. Concentration measurements showed that the majority of the mass stayed near the injection area, whereas minute concentrations were measured further down-gradient. This behavior is significantly different from the simulations created using models based on the Advection-Dispersion Equation (ADE). This behavior and the inability to explain this using most models has led to a major debate in the hydrologic science community. The hypothesis of this study is that the ADE based models can reproduce simulations of the measured transport when the models are parameterized with sufficient high-resolution hydraulic conductivity data. Two novel high resolution

  16. High-Resolution Solid-State NMR Spectroscopy: Characterization of Polymorphism in Cimetidine, a Pharmaceutical Compound

    ERIC Educational Resources Information Center

    Pacilio, Julia E.; Tokarski, John T.; Quiñones, Rosalynn; Iuliucci, Robbie J.

    2014-01-01

    High-resolution solid-state NMR (SSNMR) spectroscopy has many advantages as a tool to characterize solid-phase material that finds applications in polymer chemistry, nanotechnology, materials science, biomolecular structure determination, and others, including the pharmaceutical industry. The technology associated with achieving high resolution…

  17. High-resolution optical spectrum characterization using optical channel estimation and spectrum stitching technique.

    PubMed

    Jin, Chao; Bao, Yuan; Li, Zhaohui; Gui, Tao; Shang, Haiyan; Feng, Xinhuan; Li, Jianping; Yi, Xingwen; Yu, Changyuan; Li, Guifang; Lu, Chao

    2013-07-01

    A technique is proposed to measure the high-resolution and wide-band characterization of amplitude, phase responses, and polarization property of optical components. This technique combines the optical spectrum stitching and optical channel estimation methods. Two kinds of fiber Bragg grating based Fabry-Perot cavities with ultrafine structures have been characterized based on this technique. By using 1024 point fast Fourier transform and a narrow linewidth, wavelength-tunable laser source, a frequency resolution of ~10 MHz is realized with an optical measurement range beyond 250 GHz.

  18. Measurement Sets and Sites Commonly Used for High Spatial Resolution Image Product Characterization

    NASA Technical Reports Server (NTRS)

    Pagnutti, Mary

    2006-01-01

    Scientists within NASA's Applied Sciences Directorate have developed a well-characterized remote sensing Verification & Validation (V&V) site at the John C. Stennis Space Center (SSC). This site has enabled the in-flight characterization of satellite high spatial resolution remote sensing system products form Space Imaging IKONOS, Digital Globe QuickBird, and ORBIMAGE OrbView, as well as advanced multispectral airborne digital camera products. SSC utilizes engineered geodetic targets, edge targets, radiometric tarps, atmospheric monitoring equipment and their Instrument Validation Laboratory to characterize high spatial resolution remote sensing data products. This presentation describes the SSC characterization capabilities and techniques in the visible through near infrared spectrum and examples of calibration results.

  19. Pulse Rise Time Characterization of a High Pressure Xenon Gamma Detector for use in Resolution Enhancement

    SciTech Connect

    TROYER, G.L.

    2000-08-25

    High pressure xenon ionization chamber detectors are possible alternatives to traditional thallium doped sodium iodide (NaI(Tl)) and hyperpure germanium as gamma spectrometers in certain applications. Xenon detectors incorporating a Frisch grid exhibit energy resolutions comparable to cadmium/zinc/telluride (CZT) (e.g. 2% {at} 662keV) but with far greater sensitive volumes. The Frisch grid reduces the position dependence of the anode pulse risetimes, but it also increases the detector vibration sensitivity, anode capacitance, voltage requirements and mechanical complexity. We have been investigating the possibility of eliminating the grid electrode in high-pressure xenon detectors and preserving the high energy resolution using electronic risetime compensation methods. A two-electrode cylindrical high pressure xenon gamma detector coupled to time-to-amplitude conversion electronics was used to characterize the pulse rise time of deposited gamma photons. Time discrimination was used to characterize the pulse rise time versus photo peak position and resolution. These data were collected to investigate the effect of pulse rise time compensation on resolution and efficiency.

  20. High resolution remote sensing information identification for characterizing uranium mineralization setting in Namibia

    NASA Astrophysics Data System (ADS)

    Zhang, Jie-Lin; Wang, Jun-hu; Zhou, Mi; Huang, Yan-ju; Xuan, Yan-xiu; Wu, Ding

    2011-11-01

    The modern Earth Observation System (EOS) technology takes important role in the uranium geological exploration, and high resolution remote sensing as one of key parts of EOS is vital to characterize spectral and spatial information of uranium mineralization factors. Utilizing satellite high spatial resolution and hyperspectral remote sensing data (QuickBird, Radarsat2, ASTER), field spectral measurement (ASD data) and geological survey, this paper established the spectral identification characteristics of uranium mineralization factors including six different types of alaskite, lower and upper marble of Rössing formation, dolerite, alkali metasomatism, hematization and chloritization in the central zone of Damara Orogen, Namibia. Moreover, adopted the texture information identification technology, the geographical distribution zones of ore-controlling faults and boundaries between the different strata were delineated. Based on above approaches, the remote sensing geological anomaly information and image interpretation signs of uranium mineralization factors were extracted, the metallogenic conditions were evaluated, and the prospective areas have been predicted.

  1. Direct-Push Methods for High-Resolution Characterization of Hydraulic Conductivity (Invited)

    NASA Astrophysics Data System (ADS)

    Butler, J. J.; Dietrich, P.; Knobbe, S.; Bohling, G.; Liu, G.; Reboulet, E. C.

    2009-12-01

    Spatial variations in hydraulic conductivity (K) play a critical role in subsurface transport. A major research challenge has been to develop field methods that allow K information to be obtained at the resolution needed to quantify solute movement in heterogeneous formations, as current state-of-the-practice methods have proven to be of limited effectiveness for this purpose. Direct-push methods have shown much promise for characterizing K in shallow (< 30 m) unconsolidated formations. Over the past decade, methods have progressed from empirical relationships based on parameters from cone penetrometer or electrical conductivity logs to small-diameter pipe variants of the slug test to the new generation of methods that can provide reliable K estimates at a resolution and speed that has not previously been possible. Over the last six years, we have focused on developing and field testing two direct-push tools for high-resolution characterization of K: the direct-push permeameter (DPP) and the direct-push injection logger (DPIL). The DPP is a small-diameter tool with a short cylindrical screen and two pressure transducers set into a direct-push rod. A series of injection tests are performed at a given depth and K is estimated from the test responses. The resulting estimate is a weighted average primarily over the interval between the screen and the farthest transducer. Material outside of that interval has little influence, resulting in significant uncertainty about conditions between test depths. The time required for a test sequence (10-15 minutes in moderate to high-K intervals), coupled with the volumetric averaging of the tool, currently limits DPP resolution to ≈ 0.4 m in most cases. The DPIL consists of a single screened port on a direct-push rod. Water is injected through the screen while the pressure response is monitored behind the screen or at the surface. The injection logging process can be conducted continuously at 0.015-m resolution as the tool is

  2. Ultra-high resolution flat-panel volume CT: fundamental principles, design architecture, and system characterization.

    PubMed

    Gupta, Rajiv; Grasruck, Michael; Suess, Christoph; Bartling, Soenke H; Schmidt, Bernhard; Stierstorfer, Karl; Popescu, Stefan; Brady, Tom; Flohr, Thomas

    2006-06-01

    Digital flat-panel-based volume CT (VCT) represents a unique design capable of ultra-high spatial resolution, direct volumetric imaging, and dynamic CT scanning. This innovation, when fully developed, has the promise of opening a unique window on human anatomy and physiology. For example, the volumetric coverage offered by this technology enables us to observe the perfusion of an entire organ, such as the brain, liver, or kidney, tomographically (e.g., after a transplant or ischemic event). By virtue of its higher resolution, one can directly visualize the trabecular structure of bone. This paper describes the basic design architecture of VCT. Three key technical challenges, viz., scatter correction, dynamic range extension, and temporal resolution improvement, must be addressed for successful implementation of a VCT scanner. How these issues are solved in a VCT prototype and the modifications necessary to enable ultra-high resolution volumetric scanning are described. The fundamental principles of scatter correction and dose reduction are illustrated with the help of an actual prototype. The image quality metrics of this prototype are characterized and compared with a multi-detector CT (MDCT).

  3. High Resolution Computed Tomography

    DTIC Science & Technology

    1992-07-31

    samples. 14. SUBJECTTERMS 15. NUMBER OF PAGES 38 High Resolution, Microfocus , Characterization, X - Ray , Micrography, Computed Tomography (CT), Failure...high resolutions (50 g.tm feature sensitivity) when a small field of view (50 mm) is used [11]. Specially designed detectors and a microfocus X - ray ...Wright Laboratories. Feldkamp [14] at Ford used a microfocus X - ray source and an X - ray image intensifier to develop a system capable of 20 g.m

  4. Characterization of immobilized aqueous quantum dots: Efforts in high-resolution microscopy

    NASA Astrophysics Data System (ADS)

    Young, Amber Lynn

    Semiconductor quantum dots (QDs), particles several nanometers in diameter, exhibit a range of interesting properties that arise as a result of quantum confinement. Among these characteristics is photoluminescence, and unlike traditional fluorophores, the fluorescence emission of QDs is characterized by broad absorption and narrow emission that is a function of the particle diameter. This allows high spatial resolution to be achieved using spectral discrimination of closely spaced QDs. We propose applying QD fluorescence as a tool to sense the local environment of the QD to achieve wide-field sensing at high-resolution. Many factors influence QD fluorescence from the growth parameters and choice of ligand to the local environment of the QD post-fabrication. Nano-materials in the local QD environment influence the spectral or temporal characteristics of the QD fluorescence and detecting these changes enables identification of the location and motion of these nanoparticles with resolution on the order of a few nanometers. We have fabricated aqueous colloidal cadmium telluride QDs, experimenting with the choice of thiol-based ligand to influence the chemistry in post-processing and application. A wide range of tools have been used to characterize the spectral and physical properties of the QDs. We have successfully immobilized QDs on a variety of substrates including glass coverslips, silicon and indium tin oxide coated glass. Immobilization is achieved with even and consistent distributions of QDs on the substrate by using self-assembly of the colloidal particles onto substrates functionalized with N1-(3-Trimethoxysilylpropyl)diethylenetriamine (DETA) silane. Using fluorescence microscopy we have successfully demonstrated the detection of interactions between QDs and other nano-materials including green fluorescent protein and gold seed particles, demonstrating that QDs may, in principle, be used in a wide field microscopy technique to sense nano-materials with high

  5. High-resolution proton nuclear magnetic resonance characterization of seminolipid from bovine spermatozoa.

    PubMed

    Alvarez, J G; Storey, B T; Hemling, M L; Grob, R L

    1990-06-01

    The high-resolution one- and two-dimensional proton nuclear magnetic resonance (1H-NMR) characterization of seminolipid from bovine spermatozoa is presented. The 1H-NMR data was confirmed by gas-liquid chromatography-mass spectrometric analysis of the partially methylated alditol acetates of the sugar unit, mild alkaline methanolysis of the glyceryl ester, mobility on normal phase and diphasic thin-layer chromatography (HPTLC), and fast atom bombardment mass spectrometry (FAB-MS). The structure of the molecule corresponds to 1-O-hexadecyl-2-O-hexadecanoyl-3-O-beta-D-(3'-sulfo)-galactopyranosyl- sn-glycerol.

  6. High resolution I{sub DDQ} characterization and testing -- Practical issues

    SciTech Connect

    Righter, A.W.; Soden, J.M.; Beegle, R.W.

    1996-12-01

    I{sub DDQ} testing has become an important contributor to quality improvement of CMOS ICs. This paper describes high resolution I{sub DDQ} characterization and testing (from the sub-nA to {micro}A level) and outlines test hardware and software issues. The physical basis of I{sub DDQ} is discussed. Methods for statistical analysis of I{sub DDQ} data are examined, as interpretation of the data is often as important as the measurement itself. Applications of these methods to set reasonable test limits for detecting defective product are demonstrated.

  7. RADI's Airborne X-SAR with High Resolution: Performance, Characterization and Verification

    NASA Astrophysics Data System (ADS)

    Shen, T.; Li, J.; Wang, Z. R.; Huang, L.

    2016-11-01

    X-SAR is an airborne multi-mode synthetic aperture radar (SAR) system with high- resolution, interferometer and full-polarization, developed by the Institute of Remote Sensing and Digital Earth (RADI), Chinese Academy of Sciences (CAS), funded by the CAS Large Research Infrastructures. Since 2009, the first developed stage of X-SAR system was successfully implemented to an operational SAR with high resolution (up to 0.5 meter). In May 2013, the imaging verification on flights test was carried out. The data calibration on the laboratory measurements were completed at the end of 2015. Many valuable results of imaging verification and data calibration have emphasized the quantitative microwave measurement capabilities. This paper presents the results of X-SAR system performance, characterization, optimization, and verification as carried out during the flight trials and laboratory measurement. The system performance and calibration parameters are presented such as transmitter amplitude accuracy, phase noise, system gain change with temperature variation, long-term radiometric stability. The imaging verification of the key performance parameters is discussed, including target-response function, target pairs discrimination, image noise and radiometric resolution. The example imagery of radiometric enhanced products for intensity change detection is also described.

  8. Improving dust emission characterization in dust models using dynamic high-resolution geomorphic erodibility map

    NASA Astrophysics Data System (ADS)

    Parajuli, S. P.; Yang, Z.; Kocurek, G.

    2013-12-01

    Dust is known to affect the earth radiation budget, biogeochemical cycle, precipitation, human health and visibility. Despite the increased research effort, dust emission modeling remains challenging because dust emission is affected by complex geomorphological processes. Existing dust models overestimate dust emission and rely on tuning and a static erodibility factor in order to make simulated results comparable to remote sensing and ground-based observations. In most of current models, dust emission is expressed in terms of threshold friction speed, which ultimately depends mainly upon the percentage clay content and soil moisture. Unfortunately, due to the unavailability of accurate and high resolution input data of the clay content and soil moisture, estimated threshold friction speed commonly does not represent the variability in field condition. In this work, we attempt to improve dust emission characterization by developing a high resolution geomorphic map of the Middle East and North Africa (MENA), which is responsible for more than 50% of global dust emission. We develop this geomorphic map by visually examining high resolution satellite images obtained from Google Earth Pro and ESRI base map. Albeit subjective, our technique is more reliable compared to automatic image classification technique because we incorporate knowledge of geological/geographical setting in identifying dust sources. We hypothesize that the erodibility is unique for different geomorphic landforms and that it can be quantified by the correlation between observed wind speed and satellite retrieved aerosol optical depth (AOD). We classify the study area into several key geomorphological categories with respect to their dust emission potential. Then we quantify their dust emission potential using the correlation between observed wind speed and satellite retrieved AOD. The dynamic, high-resolution geomorphic erodibility map thus prepared will help to reduce the uncertainty in current

  9. Molecular Characterization of Nitrogen Containing Organic Compounds in Biomass Burning Aerosols Using High Resolution Mass Spectrometry

    SciTech Connect

    Laskin, Alexander; Smith, Jeffrey S.; Laskin, Julia

    2009-05-13

    Although nitrogen-containing organic compounds (NOC) are important components of atmospheric aerosols, little is known about their chemical compositions. Here we present detailed characterization of the NOC constituents of biomass burning aerosol (BBA) samples using high resolution electrospray ionization mass spectrometry (ESI/MS). Accurate mass measurements combined with MS/MS fragmentation experiments of selected ions were used to assign molecular structures to individual NOC species. Our results indicate that N-heterocyclic alkaloid compounds - species naturally produced by plants and living organisms - comprise a substantial fraction of NOC in BBA samples collected from test burns of five biomass fuels. High abundance of alkaloids in test burns of ponderosa pine - a widespread tree in the western U.S. areas frequently affected by large scale fires - suggests that N-heterocyclic alkaloids in BBA can play a significant role in dry and wet deposition of fixed nitrogen in this region.

  10. Structural and Physicochemical Characterization of Spirulina (Arthrospira maxima) Nanoparticles by High-Resolution Electron Microscopic Techniques.

    PubMed

    Neri-Torres, Elier Ekberg; Chanona-Pérez, Jorge J; Calderón, Hector A; Torres-Figueredo, Neil; Chamorro-Cevallos, German; Calderón-Domínguez, Georgina; Velasco-Bedrán, Hugo

    2016-08-01

    The objective of this work was to obtain Spirulina (Arthrospira maxima) nanoparticles (SNPs) by using high-impact mechanical milling and to characterize them by electron microscopy and spectroscopy techniques. The milling products were analyzed after various processing times (1-4 h), and particle size distribution and number mean size (NMS) were determined by analysis of high-resolution scanning electron microscopic images. The smallest particles are synthesized after 3 h of milling, had an NMS of 55.6±3.6 nm, with 95% of the particles being smaller than 100 nm. High-resolution transmission electron microscopy showed lattice spacing of ~0.27±0.015 nm for SNPs. The corresponding chemical composition was obtained by energy-dispersive X-ray spectroscopy, and showed the presence of Ca, Fe, K, Mg, Na, and Zn. The powder flow properties showed that the powder density was higher when the average nanoparticle size is smaller. They showed free flowability and an increase in their specific surface area (6.89±0.23 m2/g) up to 12-14 times larger than the original material (0.45±0.02 m2/g). Fourier transform infrared spectroscopy suggested that chemical damage related to the milling is not significant.

  11. Three Compact, Robust Chemical Characterization Systems Suited To Sensitive, High Time Resolution Measurements Of Atmospheric Aerosols

    NASA Astrophysics Data System (ADS)

    Barrie, L. A.; Cowin, J. P.; Worsnop, D. R.

    2001-12-01

    In the past decade, the advancement of compact, robust and sensitive instrumentation to measure the chemical characteristics of atmospheric aerosols has lagged behind their physical characterization. There is a need for chemical instrumentation with these three qualities for use on airborne platforms and at infrequently attended ground level surveillance sites. Now chemical techniques are appearing that promise to fill this need. We discuss three chemical characterization systems that are emerging in atmospheric chemistry and climate research applications. These are: (i) the Aerodyne mass spectrometer for real time measurement of particle composition and two post-collection analysis techniques (ii) non-destructive, multi-elemental chemical analysis of size-resolved samples by high spatial resolution synchrotron x-ray and proton beams (S-XRF/PIXE/PESA/STIM) (iii) single particle characterization by automated scanning electron microscopy with energy-dispersed detection of X-rays (SEM/EDX). The key to post-collection analysis is automated aerosol sizing and collection systems and automated chemical analysis systems. Together these techniques provide unique, comprehensive information on the organic and inorganic composition and morphology of particles and yet are easy to deploy in the field. The sensitivity of each technique is high enough to permit the rapid sampling needed to resolve spatial gradients in composition from a moving platform like the Battelle Gulfstream-159 aircraft, traveling at 100m/s.

  12. High Resolution/High Fidelity Seismic Imaging and Parameter Estimation for Geological Structure and Material Characterization

    SciTech Connect

    Ru-Shan Wu; Xiao-Bi Xie

    2008-06-08

    Our proposed work on high resolution/high fidelity seismic imaging focused on three general areas: (1) development of new, more efficient, wave-equation-based propagators and imaging conditions, (2) developments towards amplitude-preserving imaging in the local angle domain, in particular, imaging methods that allow us to estimate the reflection as a function of angle at a layer boundary, and (3) studies of wave inversion for local parameter estimation. In this report we summarize the results and progress we made during the project period. The report is divided into three parts, totaling 10 chapters. The first part is on resolution analysis and its relation to directional illumination analysis. The second part, which is composed of 6 chapters, is on the main theme of our work, the true-reflection imaging. True-reflection imaging is an advanced imaging technology which aims at keeping the image amplitude proportional to the reflection strength of the local reflectors or to obtain the reflection coefficient as function of reflection-angle. There are many factors which may influence the image amplitude, such as geometrical spreading, transmission loss, path absorption, acquisition aperture effect, etc. However, we can group these into two categories: one is the propagator effect (geometric spreading, path losses); the other is the acquisition-aperture effect. We have made significant progress in both categories. We studied the effects of different terms in the true-amplitude one-way propagators, especially the terms including lateral velocity variation of the medium. We also demonstrate the improvements by optimizing the expansion coefficients in different terms. Our research also includes directional illumination analysis for both the one-way propagators and full-wave propagators. We developed the fast acquisition-aperture correction method in the local angle-domain, which is an important element in the true-reflection imaging. Other developments include the super

  13. Characterizing sea ice surface morphology using high-resolution IceBridge data

    NASA Astrophysics Data System (ADS)

    Petty, Alek; Farrell, Sinead; Newman, Thomas; Kurtz, Nathan; Richter-Menge, Jacqueline; Tsamados, Michel; Feltham, Daniel

    2015-04-01

    Sea ice pressure ridges form when ice floes collide while drifting under the combined forces of atmospheric drag, oceanic drag and ice-ice interaction. Sea ice ridges, in-turn, affect the resultant form drag on the sea ice cover and thus impact the fluxes of momentum and heat between the atmosphere and ocean. Here we present initial results of a new sea ice ridge detection approach that utilizes high resolution, three-dimensional ice/snow surface elevation data from the NASA Operation IceBridge Airborne Topographic Mapper (ATM) laser altimeter merged with coincident high-resolution imagery from the Digital Mapping System (DMS). We derive novel information regarding sea ice deformation across a variety of ice types and regimes. Statistical information regarding sea ice ridges (height/frequency/orientation) and floe edges (freeboard height) are presented for several IceBridge flight lines. These novel characterizations of sea ice surface morphology will be used to validate and inform drag parameterizations in state-of-the-art sea ice models. Furthermore, they will advance our ability to quantify uncertainties introduced by pressure ridges in the estimation of sea ice freeboard/thickness from airborne and satellite altimeters.

  14. Characterizing sea ice surface morphology using high-resolution IceBridge data

    NASA Astrophysics Data System (ADS)

    Petty, A.; Farrell, S. L.; Newman, T.; Kurtz, N. T.; Richter-Menge, J.; Tsamados, M.; Feltham, D. L.

    2014-12-01

    Sea ice pressure ridges form when ice floes collide while drifting under the combined forces of atmospheric drag, oceanic drag and ice-ice interaction. Sea ice ridges, in-turn, affect the resultant form drag on the sea ice cover and thus impact the fluxes of momentum and heat between the atmosphere and ocean. Here we present initial results of a new sea ice ridge detection approach that utilizes high resolution, three-dimensional ice/snow surface elevation data from the NASA Operation IceBridge Airborne Topographic Mapper (ATM) laser altimeter merged with coincident high-resolution imagery from the Digital Mapping System (DMS). We derive novel information regarding sea ice deformation across a variety of ice types and regimes. Statistical information regarding sea ice ridges (height/frequency/orientation) and floe edges (freeboard height) are presented for several IceBridge flight lines. These novel characterizations of sea ice surface morphology will be used to validate and inform drag parameterizations in state-of-the-art sea ice models. Furthermore, they will advance our ability to quantify uncertainties introduced by pressure ridges in the estimation of sea ice freeboard/thickness from airborne and satellite altimeters.

  15. High-resolution multi-band imaging for validation and characterization of small Kepler planets

    SciTech Connect

    Everett, Mark E.; Silva, David R.; Barclay, Thomas; Howell, Steve B.; Ciardi, David R.; Horch, Elliott P.; Crepp, Justin R.

    2015-02-01

    High-resolution ground-based optical speckle and near-infrared adaptive optics images are taken to search for stars in close angular proximity to host stars of candidate planets identified by the NASA Kepler Mission. Neighboring stars are a potential source of false positive signals. These stars also blend into Kepler light curves, affecting estimated planet properties, and are important for an understanding of planets in multiple star systems. Deep images with high angular resolution help to validate candidate planets by excluding potential background eclipsing binaries as the source of the transit signals. A study of 18 Kepler Object of Interest stars hosting a total of 28 candidate and validated planets is presented. Validation levels are determined for 18 planets against the likelihood of a false positive from a background eclipsing binary. Most of these are validated at the 99% level or higher, including five newly validated planets in two systems: Kepler-430 and Kepler-431. The stellar properties of the candidate host stars are determined by supplementing existing literature values with new spectroscopic characterizations. Close neighbors of seven of these stars are examined using multi-wavelength photometry to determine their nature and influence on the candidate planet properties. Most of the close neighbors appear to be gravitationally bound secondaries, while a few are best explained as closely co-aligned field stars. Revised planet properties are derived for each candidate and validated planet, including cases where the close neighbors are the potential host stars.

  16. Examination of High Resolution Channel Topography to Determine Suitable Metrics to Characterize Morphological Complexity

    NASA Astrophysics Data System (ADS)

    Stewart, R. L.; Gaeuman, D.

    2015-12-01

    Complex bed morphology is deemed necessary to restore salmonid habitats, yet quantifiable metrics that capture channel complexity have remained elusive. This work utilizes high resolution topographic data from the 40 miles of the Trinity River of northern California to determine a suitable metric for characterizing morphological complexity at the reach scale. The study area is segregated into reaches defined by individual riffle pool units or aggregates of several consecutive units. Potential measures of complexity include rugosity and depth statistics such as standard deviation and interquartile range, yet previous research has shown these metrics are scale dependent and subject to sampling density-based bias. The effect of sampling density on the present analysis has been reduced by underrepresenting the high resolution topographic data as a 3'x 3' raster so that all areas are equally sampled. Standard rugosity, defined as the three-dimensional surface area divided by projected area, has been shown to be dependent on average depth. We therefore define R*, a empirically depth-corrected rugosity metric in which rugosity is corrected using an empirical relationship based on linear regression between the standard rugosity metric and average depth. By removing the dependence on depth using a regression based on the study reach, R* provides a measure reach scale complexity relative to the entire study area. The interquartile range of depths is also depth-dependent, so we defined a non-dimensional metric (IQR*) as the interquartile range dividing by median depth. These are calculated to develop rankings of channel complexity which, are found to closely agree with perceived channel complexity observed in the field. Current efforts combine these measures of morphological complexity with salmonid habitat suitability to evaluate the effects of channel complexity on the various life stages of salmonids. Future work will investigate the downstream sequencing of channel

  17. Characterization of Organic Nitrogen in the Atmosphere Using High Resolution Aerosol Mass Spectrometry

    NASA Astrophysics Data System (ADS)

    Ge, X.; Sun, Y.; Chen, M.; Zhang, Q.

    2015-12-01

    Despite extensive efforts on characterizing organic nitrogen (ON) compounds in atmospheric aerosols and aqueous droplets, knowledge of ON chemistry is still limited, mainly due to its chemical complexity and lack of highly time-resolved measurements. This work is aimed at optimizing the method of using Aerodyne high-resolution time-of-flight aerosol mass spectrometer (HR-AMS) to characterize ON compounds in atmospheric aerosols. Seventy-five pure nitrogen-containing organic compounds covering a variety of functional groups were analyzed with the HR-AMS. Our results show that ON compounds commonly produce NHx+, NOx+, which are usually attributed to inorganic N species such as ammonium and nitrate, and CH2N+ at m/z = 28, which is rarely quantified in ambient aerosol due to large interference from N2+ in the air signal. As a result, using the nitrogen-to-carbon (N/C) calibration factor proposed by Aiken et al. (2008) on average leads to ~ 20% underestimation of N/C in ambient organic aerosol. A new calibration factor of 0.79 is proposed for determining the average N/C in organics. The relative ionization efficiencies (RIEs) of different ON species, on average, are found to be consistent with the default RIE value (1.4) for the total organics. The AMS mass spectral features of various types of ON species (amines, amides, amino acids, etc.) are examined and used for characterizing ON composition in ambient aerosols. Our results indicate that submicron organic aerosol measured during wintertime in Fresno, CA contains significant amounts of amino-compounds whereas more diversified ON species, including N-containing aromatic heterocycle (e.g., imidazoles), are observed in fog waters collected simultaneously. Our findings have important implications for understanding atmospheric ON behaviors via the widespread HR-AMS measurements of ambient aerosols and droplets.

  18. High-resolution computed microtomography for the characterization of a diffusion tensor imaging phantom

    NASA Astrophysics Data System (ADS)

    Kaczmarek, Łukasz; Wejrzanowski, Tomasz; Skibiński, Jakub; Maksimczuk, Michał; Krzyżak, Artur

    2017-03-01

    This paper addresses the issue of the quantitative characterization of the structure of the calibration model (phantom) for b-matrix spatial distribution diffusion tensor imaging (BSD-DTI) scanners. The aim of this study was to verify manufacturing assumptions of the structure of materials, since phantoms are used for BSD-DTI calibration directly after manufacturing. Visualization of the phantoms' structure was achieved through optical microscopy and high-resolution computed microtomography (µCT). Using µCT images, a numerical model of the materials structure was developed for further quantitative analysis. 3D image characterization was performed to determine crucial structural parameters of the phantom: porosity, uniformity and distribution of equivalent diameter of capillary bundles. Additionally calculations of hypothetical flow streamlines were also performed based on the numerical model that was developed. The results obtained in this study can be used in the calibration of DTI-BST measurements. However, it was found that the structure of the phantom exhibits flaws and discrepancies from the assumed geometry which might affect BSD-DTI calibration.

  19. European Extremely Large Telescope Site Characterization. II. High Angular Resolution Parameters

    NASA Astrophysics Data System (ADS)

    Vázquez Ramió, Héctor; Vernin, Jean; Muñoz-Tuñón, Casiana; Sarazin, Marc; Varela, Antonia M.; Trinquet, Hervé; Delgado, José Miguel; Fuensalida, Jesús J.; Reyes, Marcos; Benhida, Abdelmajid; Benkhaldoun, Zouhair; García Lambas, Diego; Hach, Youssef; Lazrek, M.; Lombardi, Gianluca; Navarrete, Julio; Recabarren, Pablo; Renzi, Victor; Sabil, Mohammed; Vrech, Rubén

    2012-08-01

    This is the second article of a series devoted to European Extremely Large Telescope (E-ELT) site characterization. In this article we present the main properties of the parameters involved in high angular resolution observations from the data collected in the site testing campaign of the E-ELT during the design study (DS) phase. Observations were made in 2008 and 2009, in the four sites selected to shelter the future E-ELT (characterized under the ELT-DS contract): Aklim mountain in Morocco, Observatorio del Roque de los Muchachos (ORM) in Spain, Macón range in Argentina, and Cerro Ventarrones in Chile. The same techniques, instruments, and acquisition procedures were taken on each site. A multiple aperture scintillation sensor (MASS) and a differential image motion monitor (DIMM) were installed at each site. Global statistics of the integrated seeing, the free atmosphere seeing, the boundary layer seeing, and the isoplanatic angle were studied for each site, and the results are presented here. In order to estimate other important parameters, such as the coherence time of the wavefront and the overall parameter “coherence étendue,” additional information of vertical profiles of the wind speed was needed. Data were retrieved from the National Oceanic and Atmospheric Administration (NOAA) archive. Ground wind speed was measured by automatic weather stations (AWS). More aspects of the turbulence parameters, such as their seasonal trend, their nightly evolution, and their temporal stability, were also obtained and analyzed.

  20. High resolution space characterization of water vapor from satellite measurements and local area model

    NASA Astrophysics Data System (ADS)

    Montopoli, M.; Marzano, F. S.; Pichelli, E.; Cimini, D.; Ferretti, R.; Bonafoni, S.; Perissin, D.; Rocca, F.; Pierdicca, N.

    2009-04-01

    Synthetic Aperture Radar (SAR) is a well established microwave imaging system from which measurements of surface deformations of the order of centimeters can be derived and than several useful land applications (e.g.: the analysis of progressive tectonic motions, or to the improvement of a Digital Terrain Model) can be provided to the community. Among the main limitations affecting the Interferometric SAR (InSAR) measurements, especially at C and X frequency bands, the atmosphere surely plays a relevant role. When two interferometric SAR images are not simultaneously acquired, the electromagnetic wave received from the SAR sensor, mounted on a satellite platform, after interactions with the ground, may be differently affected by the atmosphere which induces an unwanted component on the received signal. In particular, the random nature of the atmospheric state (i.e.: different humidity, temperature and pressure) between the two acquired SAR observations will have a visible and fatal consequences on the interferometric phase. Among others, the water vapor is an important contributor to the error budget of InSAR data and for this reason its spatial and temporal characterization plays an important role. In this work, the spatial characterization of vertical Integrated Water Vapor (IWV), as seen from various satellite sensors, will be dealt with. Data acquired from Envisat-Meris, and Terra-Modis and Aqua-Modis spectrometer, operating at infrared frequencies at spatial resolution of 0.3, 1 and 1 km respectively, will be compared with simulations derived from MM5 weather forecast model at 1km resolution as well. The InSAR signal from ASAR of Envisat platform and RadarSat is also exploited to derive estimates of differential IWV (dIWV) at very high spatial resolutions (about 100 m). dIWV estimates are analyzed as well and compared together with those derived from previously mentioned spectrometers in terms of correlation structures. The results of the comparisons here

  1. Advanced Characterization of Soil Organic Matter Using Ultra High Resolution Mass Spectrometry

    NASA Astrophysics Data System (ADS)

    Tfaily, M. M.; Chu, R.; Tolic, N.; Roscioli, K.; Robinson, E. R.; Paša-Tolić, L.; Hess, N. J.

    2014-12-01

    The focus on ecosystem stress and climate change is currently relevant as researchers and policymakers strive to understand the feedbacks between soil C dynamics and climate change. Successful development of molecular profiles that link soil microbiology with soil carbon (C) to ascertain soil vulnerability and resilience to climate change would have great impact on assessments of soil ecosystems in response to climate change. Additionally, better understanding of the dynamics of soil organic matter (SOM) plays a central role to climate modeling, and fate and transport of carbon. The use of ultra-high resolution mass spectrometry (UHR MS) has enabled the examination of molecules, directly from mixtures, with ultrahigh mass resolution and sub-ppm mass accuracy. In this study, EMSL's extensive expertise and capabilities in UHR MS proteomics were leveraged to develop extraction protocols for the characterization of carbon compounds in SOM, thereby providing the chemical and structural detail needed to develop mechanistic descriptions of soil carbon flow processes. Our experiments have allowed us to identify thousands of individual compounds in complex soil mixtures with a wide range of C content representing diverse ecosystems within the USA. The yield of the chemical extraction was dependent on (1) the type of solvent used and its polarity, (2) sample-to-solvent ratios and (3) the chemical and physical nature of the samples including their origins. Hexane, a non-polar organic solvent, was efficient in extracting lipid-like compounds regardless of soil origin or organic carbon %. For samples with high organic carbon %, acetonitrile extracted a wide range of compounds characterized with high O/C ratios, identified as polyphenolic compounds that were not observed with methanol extraction. Soils extracted with pyridine showed a similar molecular distribution to those extracted by methanol. Solvent extraction followed by UHR MS is a promising tool to understand the

  2. High Resolution/High Fidelity Seismic Imaging and Parameter Estimation for Geological Structure and Material Characterization

    SciTech Connect

    Ru-Shan Wu, Xiao-Bi Xie, Thorne Lay

    2005-06-06

    In this project, we develop new theories and methods for multi-domain one-way wave-equation based propagators, and apply these techniques to seismic modeling, seismic imaging, seismic illumination and model parameter estimation in 3D complex environments. The major progress of this project includes: (1) The development of the dual-domain wave propagators. We continue to improve the one-way wave-equation based propagators. Our target is making propagators capable of handling more realistic velocity models. A wide-angle propagator for transversely isotropic media with vertically symmetric axis (VTI) has been developed for P-wave modeling and imaging. The resulting propagator is accurate for large velocity perturbations and wide propagation angles. The thin-slab propagator for one-way elastic-wave propagation is further improved. With the introduction of complex velocities, the quality factors Qp and Qs have been incorporated into the thin-slab propagator. The resulting viscoelastic thin-slab propagator can handle elastic-wave propagation in models with intrinsic attenuations. We apply this method to complex models for AVO modeling, random media characterization and frequency-dependent reflectivity simulation. (2) Exploring the Information in the Local Angle Domain. Traditionally, the local angle information can only be extracted using the ray-based method. We develop a wave-equation based technique to process the local angle domain information. The approach can avoid the singularity problem usually linked to the high-frequency asymptotic method. We successfully apply this technique to seismic illumination and the resulting method provides a practical tool for three-dimensional full-volume illumination analysis in complex structures. The directional illumination also provides information for angle-domain imaging corrections. (3) Elastic-Wave Imaging. We develop a multicomponent elastic migration method. The application of the multicomponent one-way elastic propagator

  3. High-resolution mass spectrometry method for the detection, characterization and quantitation of pharmaceuticals in water.

    PubMed

    Pinhancos, Rebeca; Maass, Sara; Ramanathan, Dil M

    2011-11-01

    The presence of pharmaceuticals in drinking water is an emerging environmental concern. In most environmental testing laboratories, LC-MS/MS assays based on selected reaction monitoring are used as part of a battery of tests used to assure water quality. Although LC-MS/MS continues to be the best tool for detecting pharmaceuticals in water, the combined use of hybrid high-resolution mass spectrometry (HRMS) and ultrahigh pressure liquid chromatography (UHPLC) is starting to become a practical tool to study emerging environmental contaminants. The hybrid LTQ-orbitrap mass spectrometer is suitable for integrated quantitative and qualitative bioanalysis because of the following reasons: (1) the ability to collect full-scan HRMS spectra with scan speeds suitable for UHPLC separations, (2) routine measurement of mass with less than 5 ppm mass accuracy, (3) high mass resolving power, and (4) ability to perform on-the-fly polarity switching in the linear ion trap (LTQ). In the present work, we provide data demonstrating the application of UHPLC-LTQ-orbitrap for the detection, characterization and quantification of pharmaceuticals and their metabolites in drinking water.

  4. Characterization of infant mu rhythm immediately before crawling: A high-resolution EEG study.

    PubMed

    Xiao, Ran; Qi, Xiao; Patino, Alejandro; Fagg, Andrew H; Kolobe, Thubi H A; Miller, David P; Ding, Lei

    2017-02-01

    Crawling is an important milestone in infant motor development. However, infants with developmental motor disorders can exhibit delays, or even miss, in the acquisition of crawling skill. And little information is available from the neurodevelopmental domain about the changes in brain function with intervention. The mu rhythm can potentially play a substantial role in understanding human motor development at early ages in infants, as it has in adults. Studies about the mu rhythm in infants were in coarse temporal resolution with longitudinal samples taken months or years apart. Details about the infant mu rhythm at a fine age resolution has not been fully revealed, which leads to contradictory evidence about its formulation and developmental changes of its spectral origins and, therefore, impedes the full understanding of motor brain development before crawling skill acquisition. The present study aims to expand knowledge about the infant mu rhythm and its spatio-spectral pattern shifts along maturation immediately before crawling. With high-density EEG data recorded on a weekly basis and simultaneous characterization of spatio-spectral patterns of the mu rhythm, subtle developmental changes in its spectral peak, frequency range, and scalp topography are revealed. This mu rhythm further indicates a significant correlation to the crawling onset while powers from other frequency bands do not show such correlations. These details of developmental changes about the mu rhythm provide an insight of rapid changes in the human motor cortex in the first year of life. Our results are consistent with previous findings about the peak frequency shifting of the mu rhythm and further depict detailed developmental curves of its frequency ranges and spatial topographies. The infant mu rhythm could potentially be used to assess motor brain deficiencies at early ages and to evaluate intervention effectiveness in children with neuromotor disorders.

  5. Automated metric characterization of urban structure using building decomposition from very high resolution imagery

    NASA Astrophysics Data System (ADS)

    Heinzel, Johannes; Kemper, Thomas

    2015-03-01

    Classification approaches for urban areas are mostly of qualitative and semantic nature. They produce interpreted classes similar to those from land cover and land use classifications. As a complement to those classes, quantitative measures directly derived from the image could lead to a metric characterization of the urban area. While these metrics lack of qualitative interpretation they are able to provide objective measure of the urban structures. Such quantitative measures are especially important in rapidly growing cities since, beside of the growth in area, they can provide structural information for specific areas and detect changes. Rustenburg, which serves as test area for the present study, is amongst the fastest growing cities in South Africa. It reveals a heterogeneous face of housing and building structures reflecting social and/or economic differences often linked to the spatial distribution of industrial and local mining sites. Up to date coverage with aerial photographs is provided by aerial surveys in regular intervals. Also recent satellite systems provide imagery with suitable resolution. Using such set of very high resolution images a fully automated algorithm has been developed which outputs metric classes by systematically combining important measures of building structure. The measurements are gained by decomposition of buildings directly from the imagery and by using methods from mathematical morphology. The decomposed building objects serve as basis for the computation of grid statistics. Finally a systematic combination of the single features leads to combined metrical classes. For the dominant urban structures verification results indicate an overall accuracy of at least 80% on the single feature level and 70% for the combined classes.

  6. High resolution Transmission Electron Microscopy characterization of a milled oxide dispersion strengthened steel powder

    NASA Astrophysics Data System (ADS)

    Loyer-Prost, M.; Merot, J.-S.; Ribis, J.; Le Bouar, Y.; Chaffron, L.; Legendre, F.

    2016-10-01

    Oxide Dispersion Strengthened (ODS) steels are promising materials for generation IV fuel claddings as their dense nano-oxide dispersion provides good creep and irradiation resistance. Even if they have been studied for years, the formation mechanism of these nano-oxides is still unclear. Here we report for the first time a High Resolution Transmission Electron Microscopy and Energy Filtered Transmission Electron Microscopy characterization of an ODS milled powder. It provides clear evidence of the presence of small crystalline nanoclusters (NCs) enriched in titanium directly after milling. Small NCs (<5 nm) have a crystalline structure and seem partly coherent with the matrix. They have an interplanar spacing close to the (011) bcc iron structure. They coexist with larger crystalline spherical precipitates of 15-20 nm in size. Their crystalline structure may be metastable as they are not consistent with any Y-Ti-O or Ti-O structure. Such detailed observations in the as-milled grain powder confirm a mechanism of Y, Ti, O dissolution in the ferritic matrix followed by a NC precipitation during the mechanical alloying process of ODS materials.

  7. Cardiac Characterization of sgca-Null Mice Using High Resolution Echocardiography.

    PubMed

    Fayssoil, Abdallah; Renault, Gilles; Guerchet, Nicolas; Marchiol-Fournigault, Carmen; Fougerousse, Françoise; Richard, Isabelle

    2013-01-01

    Limb-girdle muscular dystrophy 2D (LGMD2D) is an inherited myogenic disorder belonging to the group of muscular dystrophies. Sgca-null mouse is a knock-out model of LGMD2D. Little is known about cardiac phenotype characterization in this model at different ages. We conducted a prospective study to characterize cardiac sgca-null mice phenotype using high resolution Doppler echocardiography at different ages. Conventional echocardiography was performed on anesthetised mice using a Vevo 770 (Visualsonics) with 30 MHz cardiac probe. Wild Type (WT) and sgca-null mice were scanned at 13, 15 and 17 months. From M-mode, we measured interventricular septal (IVS) wall thickness, posterior wall (PW) thickness, and end-left ventricular diameter in systolic and diastolic. From the above parameters, we calculated left ventricular (LV) shortening fraction (SF), LV ejection fraction (EF) and LV mass. At age 13 months, PW diastolic thickness was increased in sgca-null mice (0.89±0.14 mm vs 0.73±0.2 mm; P=0.020) and LV mass was higher in sgca-null mice (LV mass 205.2 mg vs 143 mg; P=0.001). We found also dilation of the LV (LVEDD: 4.84 mm vs 4.29 mm; P=0.019) in sgca-null mice. At age 15 months, dilation of the LV (LVEDD: 4.86 mm vs 4 mm; P=0.05) with an increase of the LV mass (165.7 mg vs 127.12; P=0.03) are found in sgca-null mice. At age 17 months, we found a decrease of the PW thickening (17% vs 30%; P=0.036). This work provides echocardiographic insights for the assessment of pharmaceutical therapies in sgca-null mice.

  8. Cardiac Characterization of sgca-Null Mice Using High Resolution Echocardiography

    PubMed Central

    Fayssoil, Abdallah; Renault, Gilles; Guerchet, Nicolas; Marchiol-Fournigault, Carmen; Fougerousse, Françoise; Richard, Isabelle

    2013-01-01

    Limb-girdle muscular dystrophy 2D (LGMD2D) is an inherited myogenic disorder belonging to the group of muscular dystrophies. Sgca-null mouse is a knock-out model of LGMD2D. Little is known about cardiac phenotype characterization in this model at different ages. We conducted a prospective study to characterize cardiac sgca-null mice phenotype using high resolution Doppler echocardiography at different ages. Conventional echocardiography was performed on anesthetised mice using a Vevo 770 (Visualsonics) with 30 MHz cardiac probe. Wild Type (WT) and sgca-null mice were scanned at 13, 15 and 17 months. From M-mode, we measured interventricular septal (IVS) wall thickness, posterior wall (PW) thickness, and end-left ventricular diameter in systolic and diastolic. From the above parameters, we calculated left ventricular (LV) shortening fraction (SF), LV ejection fraction (EF) and LV mass. At age 13 months, PW diastolic thickness was increased in sgca-null mice (0.89±0.14 mm vs 0.73±0.2 mm; P=0.020) and LV mass was higher in sgca-null mice (LV mass 205.2 mg vs 143 mg; P=0.001). We found also dilation of the LV (LVEDD: 4.84 mm vs 4.29 mm; P=0.019) in sgca-null mice. At age 15 months, dilation of the LV (LVEDD: 4.86 mm vs 4 mm; P=0.05) with an increase of the LV mass (165.7 mg vs 127.12; P=0.03) are found in sgca-null mice. At age 17 months, we found a decrease of the PW thickening (17% vs 30%; P=0.036). This work provides echocardiographic insights for the assessment of pharmaceutical therapies in sgca-null mice. PMID:24416486

  9. Sunglint effects on the characterization of optically active substances in high spatial resolution airborne hyperspectral images

    NASA Astrophysics Data System (ADS)

    Streher, A. S.; Faria Barbosa, C. Clemente; Soares Galvão, L.; Goodman, J. A.; Silva, T. S.

    2013-05-01

    Sunglint, also known as the specular reflection of light from water surfaces, is a component of sensor-received radiance that represents a confounding factor on the characterization of water bodies by remote sensing. In airborne remote sensing images, the effect of sunglint can be minimized by optimizing the flight paths, directing the sensor towards or away from the Sun, and by keeping solar zenith angles between 30° and 60°. However, these guidelines cannot always be applied, often due to the irregular spatial pattern of lakes, estuaries and coastlines. The present study assessed the impact of sunglint on the relationship between the optically active substances (OAS) concentration, in optically complex waters, and the spectral information provided by an airborne high spatial resolution hyperspectral sensor (SpecTIR). The Ibitinga reservoir, located in southeastern Brazil (state of São Paulo), was selected as the study area because of its meandering shape. As a result, there is demanding constant changes in data acquisition geometry to achieve complete coverage, therefore not allowing sunglint conditions to be minimized during image acquisition. Field data collection was carried out on October 23 and 24, 2011. During these two days, 15 water stations along the reservoir were sampled, concurrently with the SpecTIR image acquisition in 357 bands (398-2455 nm) and at 3 m spatial resolution. Chlorophyll, pheophytin, total suspended solids, organic and inorganic suspended solids and colored dissolved matter were determined in laboratory. The images were corrected for the atmospheric effects using the Fast Line-of-sight Atmospheric Analysis of Spectral Hypercubes (FLAASH) algorithm and then geometrically corrected. In order to evaluate the sunglint effects on the OAS characterization, the images were corrected for such effects using the deglint algorithm from Goodman et al. (2008). The SpecTIR 662-nm band reflectance was selected to be correlated to the OAS due to

  10. Initial characterization of a BGO-photodiode detector for high resolution positron emission tomography

    SciTech Connect

    Derenzo, S.E.

    1983-11-01

    Spatial resolution in positron emission tomography is currently limited by the resolution of the detectors. This work presents the initial characterization of a detector design using small bismuth germanate (BGO) crystals individually coupled to silicon photodiodes (SPDs) for crystal identification, and coupled in groups to phototubes (PMTs) for coincidence timing. A 3 mm x 3 mm x 3 mm BGO crystal coupled only to an SPD can achieve a 511 keV photopeak resolution of 8.7% FWHM at -150/sup 0/C, using a pulse peaking time of 10 ..mu..s. When two 3 mm x 3 mm x 15 mm BGO crystals are coupled individually to SPDs and also coupled to a common 14 mm diam PMT, the SPDs detect the 511 keV photopeak with a resolution of 30% FWHM at -76/sup 0/C. In coincidence with an opposing 3 mm wide BGO crystal, the SPDs are able to identify the crystal of interaction with good signal-to-noise ratio, and the detector pair resolution is 2 mm FWHM. 32 references, 7 figures, 3 tables.

  11. Coupling high spatial and spectral resolution with high contrast imaging to characterize exoplanets with a hypertelescope

    NASA Astrophysics Data System (ADS)

    Patru, F.

    2010-10-01

    A hypertelescope can provide direct snapshot images by using a large optical stellar interferometer, an efficient cophasing system and a pupil densifier to combine the beams. With an appropriate array configuration, the pupil densification optimizes the imaging properties by concentrating most of the light in the central interference peak, allowing stellar coronography for planet finding and characterization. A concept proposed in the framework of the VLTI (Lardiere 2005) can be extrapolated to future large interferometric arrays. The optical scheme consists on a reconfiguration with single-mode fibers and an amplitude apodization of the entrance pupil, and an extinction of the on-axis star by using a phase or amplitude mask located on the central interference peak of the image and a Lyot-stop in the relayed pupil plan. Then the pupil can be rearranged to its original configuration in order to restore the entire field. Moreover, a known planet outside the field of view can be recentered by introducing static staircase pistons between the beams with internal delay-lines. Finally, the photons of the planet are reimaged in a focal plane coupled with a spectrometer. We discuss here on the technical design and performance of such kind of device to enhance the exoplanet imaging capabilites of a large interferometer.

  12. Characterization of Biogeochemical Variability in a Tidal Estuary Using High Resolution Optical Measurements

    NASA Astrophysics Data System (ADS)

    Chang, G.; Jones, C.; Martin, T.

    2015-12-01

    The Berry's Creek Study Area (BCSA) is a tidal estuary located in New Jersey. Several chemicals of potential concern (COPCs) are present in the BCSA waterway and marshes, including mercury, methyl mercury, and polychlorinated biphenyls. Concentrations of COPCs and suspended solids in the BCSA vary temporally and spatially due to tidal variability, freshwater flow events, and interaction of marsh, waterway, and sediment bed materials. This system-wide variability confounds evaluation of COPC sources and transport mechanisms when using conventional laboratory-based analysis of discrete water column samples. Therefore, an optically-based biogeochemical monitoring program was conducted using near-continuous measurements of optical properties and an optical-biogeochemical partial least-squares regression model pioneered by B. Bergamaschi (USGS) and colleagues. The objective of the study was to characterize COPC concentration dynamics in the BCSA water column and relate the analysis to sediment bed processes. Optical-biogeochemical model results indicated that, in general, measured optical properties were sufficient for predicting COPC concentrations to within 10% of the accuracy of laboratory-based analytical measurements. The continuous, high temporal resolution time series of COPC concentrations determined by the optical-biogeochemical model enabled evaluation of the sediment bed dynamics and variability of COPCs in the surface water of the BCSA. Results indicate that tidally-induced resuspension of waterway sediment bed particulates is the primary mechanism for transport of COPCs to surface water. Waterway-marsh tidal exchange shows a net mass flux of particulate COPCs from waterway to marsh, indicating that particulate COPCs are retained and accumulate in the marshes with relatively little net export of dissolved COPCs from the marshes to the waterway.

  13. In-Depth Glycoproteomic Characterization of γ-Conglutin by High-Resolution Accurate Mass Spectrometry

    PubMed Central

    Schiarea, Silvia; Arnoldi, Lolita; Fanelli, Roberto; De Combarieu, Eric; Chiabrando, Chiara

    2013-01-01

    The molecular characterization of bioactive food components is necessary for understanding the mechanisms of their beneficial or detrimental effects on human health. This study focused on γ-conglutin, a well-known lupin seed N-glycoprotein with health-promoting properties and controversial allergenic potential. Given the importance of N-glycosylation for the functional and structural characteristics of proteins, we studied the purified protein by a mass spectrometry-based glycoproteomic approach able to identify the structure, micro-heterogeneity and attachment site of the bound N-glycan(s), and to provide extensive coverage of the protein sequence. The peptide/N-glycopeptide mixtures generated by enzymatic digestion (with or without N-deglycosylation) were analyzed by high-resolution accurate mass liquid chromatography–multi-stage mass spectrometry. The four main micro-heterogeneous variants of the single N-glycan bound to γ-conglutin were identified as Man2(Xyl) (Fuc) GlcNAc2, Man3(Xyl) (Fuc) GlcNAc2, GlcNAcMan3(Xyl) (Fuc) GlcNAc2 and GlcNAc 2Man3(Xyl) (Fuc) GlcNAc2. These carry both core β1,2-xylose and core α1-3-fucose (well known Cross-Reactive Carbohydrate Determinants), but corresponding fucose-free variants were also identified as minor components. The N-glycan was proven to reside on Asn131, one of the two potential N-glycosylation sites. The extensive coverage of the γ-conglutin amino acid sequence suggested three alternative N-termini of the small subunit, that were later confirmed by direct-infusion Orbitrap mass spectrometry analysis of the intact subunit. PMID:24069245

  14. Characterization of laboratory analogs of interstellar/cometary organic residues using very high resolution mass spectrometry

    NASA Astrophysics Data System (ADS)

    Danger, G.; Orthous-Daunay, F.-R.; de Marcellus, P.; Modica, P.; Vuitton, V.; Duvernay, F.; Flandinet, L.; Le Sergeant d'Hendecourt, L.; Thissen, R.; Chiavassa, T.

    2013-10-01

    Studying the chemical composition of organic matter in astrophysical environments is an important means to improve our understanding of its origin and evolution. This organic matter evolves from molecular clouds to protoplanetary disks, and as a final destination, takes part in the formation of many objects of our solar system, such as primitive chondritic material, planetesimals and finally planets. In this contribution, we perform experimental simulations based on the VUV irradiation and warming-up of primitive interstellar ice analogs (CH3OH:NH3:H2O), and characterize, for the first time, the resulting refractory residue, using very high resolution mass spectrometry (VHRMS) with an LTQ-orbitrap-XL instrument. An electrospray source allows ionizing all the molecules having proton donor or acceptor chemical functions, while limiting as much as possible their damages. Thus, this method provides the analysis of the whole ionizable molecules making up the residue. The analysis of the spectra shows that these residues contain a large number of molecules formed of CHNO elements, including macromolecular entities beyond 4000 Da. The average elemental composition of the residue is of H/C = 1.5, N/C = 0.4, O/C = 0.4. These first results are tentatively compared to VHRMS analyses of the soluble organic matter (SOM) present in the Murchison’s meteorite, a primitive chondrite of the CM class. The molecular richness observed can be considered as the “first step” of the complex abiotic organic matter in extraterrestrial media. This initial matter, that may be rather universal, could then evolve toward more processed materials in parent bodies, such as comets and asteroids, materials that are then observed and subsequently analyzed in meteorites found on Earth. In addition to providing some insight on the mixture complexity, VHRMS allows for the search of specific molecules. For instance, hexamethylenetetramine (HMT) and some of its derivatives are identified in these

  15. Fabrication and characterization of ultra-high resolution multilayer-coated blazed gratings

    SciTech Connect

    Voronov,, Dmitriy; Anderson, Erik; Cambie, Rossana; Dhuey, Scott; Gullikson, Eric; Salmassi, Farhad; Yashchuk, Tony; Padmore, Howard

    2011-07-26

    Multilayer coated blazed gratings with high groove density are the most promising candidate for ultra-high resolution soft x-ray spectroscopy. They combine the ability of blazed gratings to concentrate almost all diffraction energy in a desired high diffraction order with high reflectance soft x-ray multilayers. However in order to realize this potential, the grating fabrication process should provide a near perfect groove profile with an extremely smooth surface of the blazed facets. Here we report on successful fabrication and testing of ultra-dense saw-tooth substrates with 5,000 and 10,000 lines/mm.

  16. High Resolution Characterization of Engineered Nanomaterial Dispersions in Complex Media Using Tunable Resistive Pulse Sensing Technology

    PubMed Central

    2015-01-01

    In vitro toxicity assessment of engineered nanomaterials (ENM), the most common testing platform for ENM, requires prior ENM dispersion, stabilization, and characterization in cell culture media. Dispersion inefficiencies and active aggregation of particles often result in polydisperse and multimodal particle size distributions. Accurate characterization of important properties of such polydisperse distributions (size distribution, effective density, charge, mobility, aggregation kinetics, etc.) is critical for understanding differences in the effective dose delivered to cells as a function of time and dispersion conditions, as well as for nano–bio interactions. Here we have investigated the utility of tunable nanopore resistive pulse sensing (TRPS) technology for characterization of four industry relevant ENMs (oxidized single-walled carbon nanohorns, carbon black, cerium oxide and nickel nanoparticles) in cell culture media containing serum. Harvard dispersion and dosimetry platform was used for preparing ENM dispersions and estimating delivered dose to cells based on dispersion characterization input from dynamic light scattering (DLS) and TRPS. The slopes of cell death vs administered and delivered ENM dose were then derived and compared. We investigated the impact of serum protein content, ENM concentration, and cell medium on the size distributions. The TRPS technology offers higher resolution and sensitivity compared to DLS and unique insights into ENM size distribution and concentration, as well as particle behavior and morphology in complex media. The in vitro dose–response slopes changed significantly for certain nanomaterials when delivered dose to cells was taken into consideration, highlighting the importance of accurate dispersion and dosimetry in in vitro nanotoxicology. PMID:25093451

  17. High resolution microstructure characterization of the interface between cold sprayed Al coating and Mg alloy substrate

    NASA Astrophysics Data System (ADS)

    Wang, Qiang; Qiu, Dong; Xiong, Yuming; Birbilis, Nick; Zhang, Ming-Xing

    2014-01-01

    High-resolution transmission electron microscopy (HR-TEM) has validated the intimate metallurgical (atomic) bond formed along the interface of a cold-sprayed Al coating upon an Mg-alloy (AZ91) substrate. The compressive impact led to the formation of nanostructured layers of about 300-500 nm into the substrate. A highly distorted lattice structure with the inclusion of small amorphous zones was observed at the periphery of the particle/substrate interface, as a result of adiabatic shear plastic deformation at a high strain rate.

  18. Characterization of Al2O3 in High-Strength Mo Alloy Sheets by High-Resolution Transmission Electron Microscopy.

    PubMed

    Zhou, Yucheng; Gao, Yimin; Wei, Shizhong; Hu, Yajie

    2016-02-01

    A novel type of alumina (Al2O3)-doped molybdenum (Mo) alloy sheet was prepared by a hydrothermal method and a subsequent powder metallurgy process. Then the characterization of α-Al2O3 was investigated using high-resolution transmission electron microscopy as the research focus. The tensile strength of the Al2O3-doped Mo sheet is 43-85% higher than that of the pure Mo sheet, a very obvious reinforcement effect. The sub-micron and nanometer-scale Al2O3 particles can increase the recrystallization temperature by hindering grain boundary migration and improve the tensile strength by effectively blocking the motion of the dislocations. The Al2O3 particles have a good bond with the Mo matrix and there exists an amorphous transition layer at the interface between Al2O3 particles and the Mo matrix in the as-rolled sheet. The sub-structure of α-Al2O3 is characterized by a number of nanograins in the $\\left[ {2\\bar{2}1} \\right]$ direction. Lastly, a new computer-based method for indexing diffraction patterns of the hexagonal system is introduced, with 16 types of diffraction patterns of α-Al2O3 indexed.

  19. Characterization of spatially resolved high resolution x-ray spectrometers for high energy density physics and light source experiments

    SciTech Connect

    Hill, K. W. Bitter, M.; Delgado-Aparacio, L.; Efthimion, P.; Pablant, N. A.; Lu, J.; Beiersdorfer, P.; Chen, H.; Magee, E.

    2014-11-15

    A high resolution 1D imaging x-ray spectrometer concept comprising a spherically bent crystal and a 2D pixelated detector is being optimized for diagnostics of small sources such as high energy density physics (HEDP) and synchrotron radiation or x-ray free electron laser experiments. This instrument is used on tokamak experiments for Doppler measurements of ion temperature and plasma flow velocity profiles. Laboratory measurements demonstrate a resolving power, E/ΔE of order 10 000 and spatial resolution better than 10 μm. Initial tests of the high resolution instrument on HEDP plasmas are being performed.

  20. Commissioning and Characterization of a Dedicated High-Resolution Breast PET Camera

    DTIC Science & Technology

    2014-02-01

    project consists of many detector modules formed by coupling pairs of high resolution scintillation crystal arrays to position sensitive avalanche ...modules that each contain 2 position sensitive avalanche photodiodes (PSAPDs) coupled to 8×8 array of 1×1×1 mm3 LYSO crystals. The two PSAPDs are...evaluation of a large area posi- tion sensitive avalanche photodiode coupled to an LSO crystal array as a function of temper- ature and bias voltage J. Inst 7

  1. High-resolution characterization of chemical heterogeneity in an alluvial aquifer

    USGS Publications Warehouse

    Schulmeister, M.K.; Healey, J.M.; Butler, J.J.; McCall, G.W.; Birk, S.

    2002-01-01

    The high-resolution capabilities of direct push technology were exploited to develop new insights into the hydrochemistry at the margin of an alluvial aquifer. Hydrostratigraphic controls on groundwater flow and contaminant loading were revealed through the combined use of direct push electrical conductivity (EC) logging and geochemical profiling. Vertical and lateral variations in groundwater chemistry were consistent with sedimentary features indicated by EC logs, and were supported by a conceptual model of recharge along the flood plain margin.

  2. High-resolution characterization of chemical heterogeneity in an alluvial aquifer

    USGS Publications Warehouse

    Schulmeister, M.K.; Healey, J.M.; McCall, G.W.; Birk, S.; Butler, J.J.

    2002-01-01

    The high-resolution capabilities of direct-push technology were exploited to develop new insights into the hydrochemistry at the margin of an alluvial aquifer. Hydrostratigraphic controls on groundwater flow and contaminant loading were revealed through the combined use of direct-push electrical conductivity (EC) logging and geochemical profiling. Vertical and lateral variations in groundwater chemistry were consistent with sedimentary features indicated by EC logs, and supported a conceptual model of recharge along the floodplain margin.

  3. Characterizing Aerosol Distributions and Optical Properties Using the NASA Langley High Spectral Resolution Lidar

    SciTech Connect

    Hostetler, Chris; Ferrare, Richard

    2013-02-14

    The objective of this project was to provide vertically and horizontally resolved data on aerosol optical properties to assess and ultimately improve how models represent these aerosol properties and their impacts on atmospheric radiation. The approach was to deploy the NASA Langley Airborne High Spectral Resolution Lidar (HSRL) and other synergistic remote sensors on DOE Atmospheric Science Research (ASR) sponsored airborne field campaigns and synergistic field campaigns sponsored by other agencies to remotely measure aerosol backscattering, extinction, and optical thickness profiles. Synergistic sensors included a nadir-viewing digital camera for context imagery, and, later in the project, the NASA Goddard Institute for Space Studies (GISS) Research Scanning Polarimeter (RSP). The information from the remote sensing instruments was used to map the horizontal and vertical distribution of aerosol properties and type. The retrieved lidar parameters include profiles of aerosol extinction, backscatter, depolarization, and optical depth. Products produced in subsequent analyses included aerosol mixed layer height, aerosol type, and the partition of aerosol optical depth by type. The lidar products provided vertical context for in situ and remote sensing measurements from other airborne and ground-based platforms employed in the field campaigns and was used to assess the predictions of transport models. Also, the measurements provide a data base for future evaluation of techniques to combine active (lidar) and passive (polarimeter) measurements in advanced retrieval schemes to remotely characterize aerosol microphysical properties. The project was initiated as a 3-year project starting 1 January 2005. It was later awarded continuation funding for another 3 years (i.e., through 31 December 2010) followed by a 1-year no-cost extension (through 31 December 2011). This project supported logistical and flight costs of the NASA sensors on a dedicated aircraft, the subsequent

  4. High resolution neodymium characterization along the Mediterranean Sea margins: implications for ɛNd modeling.

    NASA Astrophysics Data System (ADS)

    Ayache, Mohamed; Dutay, Jean-claude; Arsouze, Thomas; Jeandel, Catherine; Revillon, Sidonie

    2016-04-01

    An extensive compilation of published neodymium (Nd) concentrations and isotopic compositions (ɛNd) was realized in order to establish a new database and a map (using a high resolution geological map of the area) of the distribution of these parameters for all the Mediterranean margins. Data were extracted from different kinds of samples: river solid discharge deposited on the shelf, sedimentary material collected on the margin or geological material outcropping above or close to a margin. Additional analyses of surface sediments were done, in order to improve this dataset in key areas (e.g Sicilian strait). The Mediterranean margin Nd isotopic signatures vary from non-radiogenic values around the Gulf of Lions, (ɛNd values -11) to radiogenic values around the Aegean and the Levantine sub-basins up to +6. Using a high resolution regional oceanic model (1/12° of horizontal resolution), ɛNd distribution was simulated for the first time in the Mediterranean Sea. The high resolution of the model provides the opportunity to study in more details the processes governing the Nd isotope distribution in the marine environment. This work highlights that a significant interannual variability of ɛNd distribution in seawater could occur. In particular, important hydrological events such as the Eastern Mediterranean Transient (EMT), associated with deep water formed in the Aegean sub-basin, could induce a shift in Nd IC at intermediate depths that could be noticeable in the Western part of the basin. This highlights that the temporal and geographical variations of ɛNd could represent an interesting insight of Nd as a quasi-conservative tracer of water masses in the Mediterranean Sea, in particular in the context of paleo-oceanographic applications, i.e. to explore if EMT-type signatures occurred in the past (Roether et al., 2014, Gacic et al., 2011).

  5. Characterization of Topography and Vegetation Structure using Dual-wavelength LIDAR and High-Resolution Stereo Imagery

    NASA Astrophysics Data System (ADS)

    Leigh, H. W.; Magruder, L. A.; Neuenschwander, A. L.

    2015-12-01

    This study examines the utility of co-collected, dual-wavelength, full-waveform LIDAR and high resolution stereo imagery to improve characterizations of topography and vegetation over two survey sites near Monterey, CA. Extraction of waveform features, such as total waveform energy, canopy energy distribution, and foliage penetration metrics are computed along the laser line-of-sight and along the vertical axis of synthesized "pseudowaveforms." The pseudowaveform technique is a novel method that allows for direct comparisons between green (532nm) and near IR (1064nm) waveforms, despite variations in sampling. Comparisons between wavelengths allows for detailed characterization of vegetation structure and distribution not possible with single-wavelength LIDAR. Additionally, point clouds derived from stereo imagery are fused with LIDAR point clouds to increase resolution and improve accuracy of bare earth digital elevation models, further augmenting characterization of tree height and structure.

  6. Modeling defect cluster evolution in irradiated structural materials: Focus on comparing to high-resolution experimental characterization studies

    SciTech Connect

    Wirth, Brian D.; Hu, Xunxiang; Kohnert, Aaron; Xu, Donghua

    2015-03-02

    Exposure of metallic structural materials to irradiation environments results in significant microstructural evolution, property changes, and performance degradation, which limits the extended operation of current generation light water reactors and restricts the design of advanced fission and fusion reactors. Further, it is well recognized that these irradiation effects are a classic example of inherently multiscale phenomena and that the mix of radiation-induced features formed and the corresponding property degradation depend on a wide range of material and irradiation variables. This inherently multiscale evolution emphasizes the importance of closely integrating models with high-resolution experimental characterization of the evolving radiation-damaged microstructure. Lastly, this article provides a review of recent models of the defect microstructure evolution in irradiated body-centered cubic materials, which provide good agreement with experimental measurements, and presents some outstanding challenges, which will require coordinated high-resolution characterization and modeling to resolve.

  7. Modeling defect cluster evolution in irradiated structural materials: Focus on comparing to high-resolution experimental characterization studies

    DOE PAGES

    Wirth, Brian D.; Hu, Xunxiang; Kohnert, Aaron; ...

    2015-03-02

    Exposure of metallic structural materials to irradiation environments results in significant microstructural evolution, property changes, and performance degradation, which limits the extended operation of current generation light water reactors and restricts the design of advanced fission and fusion reactors. Further, it is well recognized that these irradiation effects are a classic example of inherently multiscale phenomena and that the mix of radiation-induced features formed and the corresponding property degradation depend on a wide range of material and irradiation variables. This inherently multiscale evolution emphasizes the importance of closely integrating models with high-resolution experimental characterization of the evolving radiation-damaged microstructure. Lastly,more » this article provides a review of recent models of the defect microstructure evolution in irradiated body-centered cubic materials, which provide good agreement with experimental measurements, and presents some outstanding challenges, which will require coordinated high-resolution characterization and modeling to resolve.« less

  8. Turbulence velocity profiling for high sensitivity and vertical-resolution atmospheric characterization with Stereo-SCIDAR

    NASA Astrophysics Data System (ADS)

    Osborn, J.; Butterley, T.; Townson, M. J.; Reeves, A. P.; Morris, T. J.; Wilson, R. W.

    2017-02-01

    As telescopes become larger, into the era of ˜40 m Extremely Large Telescopes, the high-resolution vertical profile of the optical turbulence strength is critical for the validation, optimization and operation of optical systems. The velocity of atmospheric optical turbulence is an important parameter for several applications including astronomical adaptive optics systems. Here, we compare the vertical profile of the velocity of the atmospheric wind above La Palma by means of a comparison of Stereo-SCIntillation Detection And Ranging (Stereo-SCIDAR) with the Global Forecast System models and nearby balloon-borne radiosondes. We use these data to validate the automated optical turbulence velocity identification from the Stereo-SCIDAR instrument mounted on the 2.5 m Isaac Newton Telescope, La Palma. By comparing these data we infer that the turbulence velocity and the wind velocity are consistent and that the automated turbulence velocity identification of the Stereo-SCIDAR is precise. The turbulence velocities can be used to increase the sensitivity of the turbulence strength profiles, as weaker turbulence that may be misinterpreted as noise can be detected with a velocity vector. The turbulence velocities can also be used to increase the altitude resolution of a detected layer, as the altitude of the velocity vectors can be identified to a greater precision than the native resolution of the system. We also show examples of complex velocity structure within a turbulent layer caused by wind shear at the interface of atmospheric zones.

  9. High resolution morphology and electrical characterization of aged Li-ion battery cathode.

    PubMed

    Ramdon, Sanjay; Bhushan, Bharat

    2012-08-15

    Understanding the changes that take place in an aged Lithium-ion (Li-ion) battery cathode is vital to improving battery storage capabilities. High resolution imaging using an atomic force microscope (AFM) and current measurement capabilities are used to determine the difference in surface morphology as well as conductance between unaged and aged cathode. Upon aging, agglomeration of LiFePO(4) particles with nanocrystalline deposits is observed and the samples show lower conductance and hence increased resistance. The data identifies potential degradation mechanisms which reduce the conductivity of the cathode leading to poor cycling performance of the battery.

  10. High resolution DEM from Tandem-X interferometry: an accurate tool to characterize volcanic activity

    NASA Astrophysics Data System (ADS)

    Albino, Fabien; Kervyn, Francois

    2013-04-01

    Tandem-X mission was launched by the German agency (DLR) in June 2010. It is a new generation high resolution SAR sensor mainly dedicated to topographic applications. For the purpose of our researches focused on the study of the volcano-tectonic activity in the Kivu Rift area, a set of Tandem-X bistatic radar images were used to produce a high resolution InSAR DEM of the Virunga Volcanic Province (VVP). The VVP is part of the Western branch of the African rift, situated at the boundary between D.R. Congo, Rwanda and Uganda. It has two highly active volcanoes, Nyiragongo and Nyamulagira. A first task concerns the quantitative assessment of the vertical accuracy that can be achieved with these new data. The new DEMs are compared to other space borne datasets (SRTM, ASTER) but also to field measurements given by differential GPS. Multi-temporal radar acquisitions allow us to produce several DEM of the same area. This appeared to be very useful in the context of an active volcanic context where new geomorphological features (faults, fissures, volcanic cones and lava flows) appear continuously through time. For example, since the year 2000, time of the SRTM acquisition, we had one eruption at Nyiragongo (2002) and six eruptions at Nyamulagira (2001, 2002, 2004, 2006, 2010 and 2011) which all induce large changes in the landscape with the emplacement of new lava fields and scoria cones. From our repetitive Tandem-X DEM production, we have a tool to identify and also quantify in term of size and volume all the topographic changes relative to this past volcanic activity. These parameters are high value information to improve the understanding of the Virunga volcanoes; the accurate estimation of erupted volume and knowledge of structural features associated to past eruptions are key parameters to understand the volcanic system, to ameliorate the hazard assessment, and finally contribute to risk mitigation in a densely populated area.

  11. Spectral Analysis for Characterizing Landslide-Prone Terrain Using High Resolution Topographic Data

    NASA Astrophysics Data System (ADS)

    Booth, A. M.; Mackey, B.; Roering, J.; McKean, J.; Perron, T.

    2007-12-01

    Analyses of surface features in landslide-prone terrain can provide insight into spatial and temporal patterns of mass movement as well as landslide mechanics. Traditional analyses involving topographic maps, air photos, and field observations are often subjective and limited by time constraints, vegetative cover, and low-resolution topographic data. Various statistical measures of surface roughness developed and automated in recent years have improved landslide detection and characterization, but an objective, comprehensive technique remains elusive. Here, we apply a two-dimensional discrete Fourier transform (DFT) to 1m resolution LiDAR data from the Eel River catchment in northern California to analyze the spatial extent and internal structure of large earthflows prevalent throughout this region. The 2D DFT provides information about the spatial frequency, amplitude, periodicity, and orientation of topographic features, such as headscarps, lateral levees, and compressional folds, through a range of spatial scales. To highlight patterns in the meter-scale roughness typical of earthflows, we implement a moving window algorithm that computes the DFT periodogram for a window of specified width at each point in the DEM. By filtering the resulting spectral power matrices according to spatial frequency and/or orientation, we can identify several key features of earthflows. Parallel levees and gullies of ~10m width typically characterize the boundaries of an earthflow's main body, whereas sharp scarps of similar scale typify the boundary at the head of the flow. The spectral power of elements in periodograms oriented perpendicular to these boundaries tends to be orders of magnitude greater than in other portions of the terrain. Blocky, hummocky terrain within the earthflow has a unique spectral signature when the DFT periodogram is filtered to include spatial frequencies of comparable scale. In addition, we use the DFT in our moving window algorithm to generate one

  12. Characterization of the surface charge distribution on kaolinite particles using high resolution atomic force microscopy

    NASA Astrophysics Data System (ADS)

    Kumar, Naveen; Zhao, Cunlu; Klaassen, Aram; van den Ende, Dirk; Mugele, Frieder; Siretanu, Igor

    2016-02-01

    Most solid surfaces, in particular clay minerals and rock surfaces, acquire a surface charge upon exposure to an aqueous environment due to adsorption and/or desorption of ionic species. Macroscopic techniques such as titration and electrokinetic measurements are commonly used to determine the surface charge and ζ -potential of these surfaces. However, because of the macroscopic averaging character these techniques cannot do justice to the role of local heterogeneities on the surfaces. In this work, we use dynamic atomic force microscopy (AFM) to determine the distribution of surface charge on the two (gibbsite-like and silica-like) basal planes of kaolinite nanoparticles immersed in aqueous electrolyte with a lateral resolution of approximately 30 nm. The surface charge density is extracted from force-distance curves using DLVO theory in combination with surface complexation modeling. While the gibbsite-like and the silica-like facet display on average positive and negative surface charge values as expected, our measurements reveal lateral variations of more than a factor of two on seemingly atomically smooth terraces, even if high resolution AFM images clearly reveal the atomic lattice on the surface. These results suggest that simple surface complexation models of clays that attribute a unique surface chemistry and hence homogeneous surface charge densities to basal planes may miss important aspects of real clay surfaces.

  13. High spatial resolution PEELS characterization of FeAl nanograins prepared by mechanical alloying

    SciTech Connect

    Valdre, G. |; Botton, G.A.; Brown, L.M.

    1999-05-28

    The authors investigate the nanograin ``chemical`` structure in a nanostructured material of possible industrial application (Fe-Al system) prepared by conventional mechanical alloying via ball milling in argon atmosphere. They restrict themselves to the structural and nanochemical behavior of ball-milled nanocrystalline Fe-Al powders with atomic composition Fe{sub 3}Al, corresponding to a well-known intermetallic compound of the Fe-Al system. Scanning transmission electron microscopy (STEM) equipped with a parallel detection electron energy loss spectrometer (PEELS) has provided an insight on the ``chemical`` structure of both nanograins and their surface at a spatial resolution of better than 1 nm. The energy loss near edge structure of the Al L loss reveals that the Al coordination is similar to a B2 compound and the oxidation of the powder during processing may play a significant role in the stabilization of the intermetallic phases. Conventional transmission electron microscopy (TEM) was used for the structural characterization of the material after the ball milling; powder X-ray diffraction (XRD) aided the investigation.

  14. Characterization of intermittency and statistical properties of high-resolution rainfall observations across a topographic transect in Northwest Mexico

    NASA Astrophysics Data System (ADS)

    Mascaro, G.; Vivoni, E. R.; Gochis, D. J.; Watts, C. J.; Rodriguez, J. C.

    2013-12-01

    In northwest Mexico, the statistical properties of rainfall at high temporal resolution (up to 1 min) have been poorly characterized, mainly due to a lack of observations. Under a combined effort of US and Mexican institutions initiated during the North American Monsoon-Soil Moisture Experiment in 2004 (NAME-SMEX04), a network of 8 tipping-bucket rain gauges were installed across a topographic transect in the Sierra Los Locos basin of Sonora, Mexico. The transect spans a distance of ~14 km and an elevation difference of 748 m, thus including valley, mid-elevation and ridge sites where rainfall generation mechanisms in the summer and winter seasons are potentially affected by orography. In this study, we used the data collected during the period of 2007-2010 to characterize the rainfall statistical properties in a wide range of time scales (1 min to ~45 days) and analyzed how these properties change as a function of elevation, the gauge separation distance, and the summer and winter seasons. We found that the total summer (winter) rainfall decreases (increases) with elevation, and that rainfall has a clear diurnal cycle in the summertime, with a peak around 9 pm at all gauges. The correlation structure across the transect indicates that: (i) when times series are aggregated at a resolution greater than 3 hours, the correlation distance is greater than the maximum separation distance (~14 km), while it dramatically decreases for lower time resolutions (e.g., it is ~1.5 km when the resolution is 10 min). Consistent with other semiarid regions, spectral and scale invariance analyses show the presence of different scaling regimes, which are associated to single convective events and larger stratiform systems, with different intermittency properties dependent on the rainfall season. Results of this work are useful for the interpretation of storm generation mechanisms and hydrologic response in the region, as well as for the calibration of high-resolution, stochastic

  15. Characterizing a high resolution color display performance using a Prichard photometer

    NASA Astrophysics Data System (ADS)

    Kaur, Balvinder; Olson, Jeff T.; Hixson, Jonathan G.; Richardson, Philip I.; Flug, Eric A.

    2015-05-01

    Measuring the performance of a cathode ray tube (CRT) or liquid crystal display (LCD) is necessary to enable end-to-end system modeling and characterization of currently used high performance analog imaging systems, such as 2nd Generation FLIR systems. If the display is color, the performance measurements are made more difficult because of the underlying structure of the color pixel as compared to a monochrome pixel. Out of the various characteristics of interest, we focus on determining the gamma value of a display. Gamma quantifies the non-linear response between the input gray scale and the displayed luminance. If the displayed image can be corrected for the display's gamma, an accurate scene can be presented or characterized for laboratory measurements such as MRT (Minimum Resolvable Temperature) and CTF (Contrast Threshold Function). In this paper, we present a method to determine the gamma to characterize a color display using the Prichard 1980A photometer. Gamma corrections were applied to the test images for validating the accuracy of the computed gamma value. The method presented here is a simple one easily implemented employing a Prichard photometer.

  16. Characterization of dust emission from alluvial sources using aircraft observations and high-resolution modeling

    NASA Astrophysics Data System (ADS)

    Schepanski, Kerstin; Flamant, Cyrille; Chaboureau, Jean-Pierre; Kocha, Cecile; Banks, Jamie; Brindley, Helen; Lavaysse, Christophe; Marnas, Fabien; Pelon, Jacques; Tulet, Pierre

    2013-04-01

    We investigate mineral dust emission from alluvial sediments within the upland region in northern Mauritania in the vicinity of a decaying nocturnal low-level jet (LLJ). For the first time, the impact of valleys that are embedded in a rather homogeneous surrounding is investigated with regard to their role as dust source. Measures for local atmospheric dust burden were retrieved from airborne observations, satellite observations, and model simulations and analyzed in order to provide complementary information at different horizontal scales. Observations by the LNG backscatter lidar system flying aboard the SAFIRE Falcon 20 aircraft were taken along five parallel flight legs perpendicular to the orientation of the main valley system dominating the topography of the study area. Results from a comparison of lidar-derived extinction coefficients with topography and aerial photographs confirm the relevance of (1) alluvial sediments at the valley bottoms as a dust source, and (2) the break-down of the nocturnal LLJ as a trigger for dust emission in this region. An evaluation of the AROME regional model, forecasting dust at high resolution (5 km grid), points towards an underrepresentation of alluvial dust sources in this region. This is also evident from simulations by the MesoNH research model. Although MesoNH simulations show higher dust loadings than AROME which are more comparable to the observations, both models understimate the dust concentrations within the boundary layer compared to lidar observations. A sensitivity study on the impact of horizontal grid spacing (5 km versus 1 km) highlights the importance of spatial resolution on simulated dust loadings.

  17. Rock Mass Characterization by High-Resolution Sonic and GSI Borehole Logging

    NASA Astrophysics Data System (ADS)

    Agliardi, F.; Sapigni, M.; Crosta, G. B.

    2016-11-01

    We investigate the relationships between the in situ P-wave velocity (Vp) of rock masses, measured by borehole acoustic logging, and their Geological Strength Index (GSI), to support a reliable assessment of equivalent continuum rock mass properties at depth. We quantified both Vp and GSI in three deep boreholes drilled in a crystalline core complex of the central Italian Alps. The boreholes were driven up to 400 m in depth and provided high-quality drill cores in gneiss, schist and metasedimentary rocks with variable lithology. Geological and geomechanical logging was carried out for over 800 m of cores, and acoustic logging was performed for more than 600 m of borehole length. High-resolution core logging in terms of GSI was obtained using an original quantitative approach. Candidate empirical correlation functions linking Vp and GSI were tested by a two-step statistical analysis of the experimental dataset, including outlier removal and nonlinear regression analysis. We propose a sigmoid Vp-GSI equation valid over a depth range between 100 and 400 m. This accounts for extremely variable lithological, weathering and rock mass damage conditions, complementing existing shallow-depth approaches and showing potential for practical applications in different engineering settings.

  18. Structural characterization of a degradation product of rocuronium using nanoelectrospray-high resolution mass spectrometry.

    PubMed

    Wegener, Olaf; Harms, Guido; Volmer, Dietrich A; Hayen, Heiko

    2015-09-01

    Rocuronium bromide is a non-depolarizing neuromuscular blocking agent that causes rapid muscle relaxation after intravenous injection. Regulatory authorities for registration of pharmaceuticals for human use require the evaluation of the stability of active compounds under various stress conditions. Forced degradation of rocuronium bromide was performed under hydrolytic, thermal, photolytic, and oxidative settings. HPLC-UV/vis analysis revealed an unknown degradation product under oxidative conditions (1% H2 O2 , reflux for 1 h). Investigation of the respective HPLC fraction by high resolution mass spectrometry indicated a formal loss of CH2 and an addition of one oxygen atom to the intact drug molecule. Additional multistage mass spectrometric structural elucidation experiments aided by complementary information from analysis of the intact drug and known rocuronium-related compounds showed that the morpholine moiety was unstable under oxidative stress. The data demonstrated that the morpholine ring was opened and transformed to an N-ethanoyl-formamide group. The structure was supported by appropriate mechanistic explanations.

  19. High-resolution NMR characterization of low abundance oligomers of amyloid-β without purification.

    PubMed

    Kotler, Samuel A; Brender, Jeffrey R; Vivekanandan, Subramanian; Suzuki, Yuta; Yamamoto, Kazutoshi; Monette, Martine; Krishnamoorthy, Janarthanan; Walsh, Patrick; Cauble, Meagan; Holl, Mark M Banaszak; Marsh, E Neil G; Ramamoorthy, Ayyalusamy

    2015-07-03

    Alzheimer's disease is characterized by the misfolding and self-assembly of the amyloidogenic protein amyloid-β (Aβ). The aggregation of Aβ leads to diverse oligomeric states, each of which may be potential targets for intervention. Obtaining insight into Aβ oligomers at the atomic level has been a major challenge to most techniques. Here, we use magic angle spinning recoupling (1)H-(1)H NMR experiments to overcome many of these limitations. Using (1)H-(1)H dipolar couplings as a NMR spectral filter to remove both high and low molecular weight species, we provide atomic-level characterization of a non-fibrillar aggregation product of the Aβ1-40 peptide using non-frozen samples without isotopic labeling. Importantly, this spectral filter allows the detection of the specific oligomer signal without a separate purification procedure. In comparison to other solid-state NMR techniques, the experiment is extraordinarily selective and sensitive. A resolved 2D spectra could be acquired of a small population of oligomers (6 micrograms, 7% of the total) amongst a much larger population of monomers and fibers (93% of the total). By coupling real-time (1)H-(1)H NMR experiments with other biophysical measurements, we show that a stable, primarily disordered Aβ1-40 oligomer 5-15 nm in diameter can form and coexist in parallel with the well-known cross-β-sheet fibrils.

  20. High-resolution NMR characterization of low abundance oligomers of amyloid-β without purification

    NASA Astrophysics Data System (ADS)

    Kotler, Samuel A.; Brender, Jeffrey R.; Vivekanandan, Subramanian; Suzuki, Yuta; Yamamoto, Kazutoshi; Monette, Martine; Krishnamoorthy, Janarthanan; Walsh, Patrick; Cauble, Meagan; Holl, Mark M. Banaszak; Marsh, E. Neil. G.; Ramamoorthy, Ayyalusamy

    2015-07-01

    Alzheimer’s disease is characterized by the misfolding and self-assembly of the amyloidogenic protein amyloid-β (Aβ). The aggregation of Aβ leads to diverse oligomeric states, each of which may be potential targets for intervention. Obtaining insight into Aβ oligomers at the atomic level has been a major challenge to most techniques. Here, we use magic angle spinning recoupling 1H-1H NMR experiments to overcome many of these limitations. Using 1H-1H dipolar couplings as a NMR spectral filter to remove both high and low molecular weight species, we provide atomic-level characterization of a non-fibrillar aggregation product of the Aβ1-40 peptide using non-frozen samples without isotopic labeling. Importantly, this spectral filter allows the detection of the specific oligomer signal without a separate purification procedure. In comparison to other solid-state NMR techniques, the experiment is extraordinarily selective and sensitive. A resolved 2D spectra could be acquired of a small population of oligomers (6 micrograms, 7% of the total) amongst a much larger population of monomers and fibers (93% of the total). By coupling real-time 1H-1H NMR experiments with other biophysical measurements, we show that a stable, primarily disordered Aβ1-40 oligomer 5-15 nm in diameter can form and coexist in parallel with the well-known cross-β-sheet fibrils.

  1. Detection and characterization of Io's atmosphere from high-resolution 4-μm spectroscopy

    NASA Astrophysics Data System (ADS)

    Lellouch, E.; Ali-Dib, M.; Jessup, K.-L.; Smette, A.; Käufl, H.-U.; Marchis, F.

    2015-06-01

    We report on high-resolution and spatially-resolved spectra of Io in the 4.0 μm region, recorded with the VLT/CRIRES instrument in 2008 and 2010, which provide the first detection of the ν1 + ν3 band of SO2 in Io's atmosphere. Data are analyzed to constrain the latitudinal, longitudinal, and diurnal distribution of Io's SO2 atmosphere as well as its characteristic temperature. Equatorial SO2 column densities clearly show longitudinal asymmetry, but with a maximum of ∼1.5 × 1017 cm-2 at central meridian longitude L = 200-220 and a minimum of ∼3 × 1016 cm-2 at L = 285-300, the longitudinal pattern somewhat differs from earlier inferences from Ly α and thermal IR measurements. Within the accuracy of the measurements, no evolution of the atmospheric density from mid-2008 to mid-2010 can be distinguished. The decrease of the SO2 column density towards high latitudes is apparent, and the typical latitudinal extent of the atmosphere found to be ±40° at half-maximum. The data show moderate diurnal variations of the equatorial atmosphere, which is evidence for a partially sublimation-supported atmospheric component. Compared to local noon, factor of 2 lower densities are observed ∼40° before and ∼80° after noon. Best-fit gas temperatures range from 150 to 220 K, with a weighted mean value of 170 ± 20 K, which should represent the column-weighted mean kinetic temperature of Io's atmosphere. Finally, although the data include clear thermal emission due to Pillan (in outburst in July 2008) and Loki, no detectable enhancements in the SO2 atmosphere above these volcanic regions are found, with an upper limit of 4 × 1016 cm-2 at Pillan and 1 × 1017 cm-2 at Loki.

  2. Automatic detection and agronomic characterization of olive groves using high-resolution imagery and LIDAR data

    NASA Astrophysics Data System (ADS)

    Caruso, T.; Rühl, J.; Sciortino, R.; Marra, F. P.; La Scalia, G.

    2014-10-01

    The Common Agricultural Policy of the European Union grants subsidies for olive production. Areas of intensified olive farming will be of major importance for the increasing demand for oil production of the next decades, and countries with a high ratio of intensively and super-intensively managed olive groves will be more competitive than others, since they are able to reduce production costs. It can be estimated that about 25-40% of the Sicilian oliviculture must be defined as "marginal". Modern olive cultivation systems, which permit the mechanization of pruning and harvest operations, are limited. Agronomists, landscape planners, policy decision-makers and other professionals have a growing need for accurate and cost-effective information on land use in general and agronomic parameters in the particular. The availability of high spatial resolution imagery has enabled researchers to propose analysis tools on agricultural parcel and tree level. In our study, we test the performance of WorldView-2 imagery relative to the detection of olive groves and the delineation of olive tree crowns, using an object-oriented approach of image classification in combined use with LIDAR data. We selected two sites, which differ in their environmental conditions and in their agronomic parameters of olive grove cultivation. The main advantage of the proposed methodology is the low necessary quantity of data input and its automatibility. However, it should be applied in other study areas to test if the good results of accuracy assessment can be confirmed. Data extracted by the proposed methodology can be used as input data for decision-making support systems for olive grove management.

  3. Very long haplotype tracts characterized at high resolution from HLA homozygous cell lines

    PubMed Central

    Norman, Paul J.; Norberg, Steve; Nemat-Gorgani, Neda; Royce, Thomas; Hollenbach, Jill A.; Won, Melissa Shults; Guethlein, Lisbeth A.; Gunderson, Kevin L.; Ronaghi, Mostafa; Parham, Peter

    2015-01-01

    The HLA region of chromosome 6 contains the most polymorphic genes in humans. Spanning ~5Mbp the densely packed region encompasses approximately 175 expressed genes including the highly polymorphic HLA class I and II loci. Most of the other genes and functional elements are also polymorphic, and many of them are directly implicated in immune function or immune-related disease. For these reasons this complex genomic region is subject to intense scrutiny by researchers with the common goal of aiding further understanding and diagnoses of multiple immune-related diseases and syndromes. To aid assay development and characterization of the classical loci, a panel of cell lines partially or fully homozygous for HLA class I and II was assembled over time by the International Histocompatibility Working Group (IHWG). Containing a minimum of 88 unique HLA haplotypes, we show this panel represents a significant proportion of European HLA allelic and haplotype diversity (60–95%). Using a high-density whole genome array that includes 13,331 HLA region SNPs, we analyzed 99 IHWG cells to map the coordinates of the homozygous tracts at a fine scale. The mean homozygous tract length within chromosome 6 from these individuals is 21Mbp. Within HLA the mean haplotype length is 4.3Mbp, and 65% of the cell lines were shown to be homozygous throughout the entire region. In addition, four cell lines are homozygous throughout the complex KIR region of chromosome 19 (~250kbp). The data we describe will provide a valuable resource for characterizing haplotypes, designing and refining imputation algorithms and developing assay controls. PMID:26198775

  4. Very long haplotype tracts characterized at high resolution from HLA homozygous cell lines.

    PubMed

    Norman, Paul J; Norberg, Steve J; Nemat-Gorgani, Neda; Royce, Thomas; Hollenbach, Jill A; Shults Won, Melissa; Guethlein, Lisbeth A; Gunderson, Kevin L; Ronaghi, Mostafa; Parham, Peter

    2015-09-01

    The HLA region of chromosome 6 contains the most polymorphic genes in humans. Spanning ~5 Mbp the densely packed region encompasses approximately 175 expressed genes including the highly polymorphic HLA class I and II loci. Most of the other genes and functional elements are also polymorphic, and many of them are directly implicated in immune function or immune-related disease. For these reasons, this complex genomic region is subject to intense scrutiny by researchers with the common goal of aiding further understanding and diagnoses of multiple immune-related diseases and syndromes. To aid assay development and characterization of the classical loci, a panel of cell lines partially or fully homozygous for HLA class I and II was assembled over time by the International Histocompatibility Working Group (IHWG). Containing a minimum of 88 unique HLA haplotypes, we show that this panel represents a significant proportion of European HLA allelic and haplotype diversity (60-95 %). Using a high-density whole genome array that includes 13,331 HLA region SNPs, we analyzed 99 IHWG cells to map the coordinates of the homozygous tracts at a fine scale. The mean homozygous tract length within chromosome 6 from these individuals is 21 Mbp. Within HLA, the mean haplotype length is 4.3 Mbp, and 65 % of the cell lines were shown to be homozygous throughout the entire region. In addition, four cell lines are homozygous throughout the complex KIR region of chromosome 19 (~250 kbp). The data we describe will provide a valuable resource for characterizing haplotypes, designing and refining imputation algorithms and developing assay controls.

  5. Through-the-wall high-resolution imaging of a human and experimental characterization of the transmission of wall materials

    NASA Astrophysics Data System (ADS)

    Nilsson, S.; Jänis, A.; Gustafsson, M.; Kjellgren, J.; Sume, Ain

    2008-10-01

    This paper describes the research efforts made at the Swedish Defence Research Agency (FOI) concerning through-the-wall imaging radar, as well as fundamental characterization of various wall materials. These activities are a part of two FOI-projects concerning security sensors in the aspects of Military Operations in Urban Terrain (MOUT) and Homeland Defence. Through-the-wall high resolution imaging of a human between 28-40 GHz has been performed at FOI. The UWB radar that was used is normally a member of the instrumentation of the FOI outdoor RCS test range Lilla Gåra. The armed test person was standing behind different kinds of walls. The radar images were generated by stepping the turntable in azimuth and elevation. The angular resolution in the near-field was improved by refocusing the parabolic antennas, which in combination with the large bandwidth (12 GHz) gave extremely high resolution radar images. A 3D visualization of the person even exposed the handgun tucked into one hip pocket. A qualitative comparison between the experimental results and simulation results (physical optics-based method) will also be presented. The second part of this paper describes results from activities at FOI concerning material characterization in the 2-110 GHz region. The transmission of building, packing and clothing materials has been experimentally determined. The wide-band measurements in free space were carried out with a scalar network analyzer. In this paper results from these characterizations will be presented. Furthermore, an experimental investigation will be reported of how the transmission properties for some moisted materials change as a function of water content and frequency. We will also show experimental results of how the transmission properties of a pine panel are affected when the surface is coated with a thin surface layer of water.

  6. Characterization of rock thermal conductivity by high-resolution optical scanning

    USGS Publications Warehouse

    Popov, Y.A.; Pribnow, D.F.C.; Sass, J.H.; Williams, C.F.; Burkhardt, H.

    1999-01-01

    We compared thress laboratory methods for thermal conductivity measurements: divided-bar, line-source and optical scanning. These methods are widely used in geothermal and petrophysical studies, particularly as applied to research on cores from deep scientific boreholes. The relatively new optical scanning method has recently been perfected and applied to geophysical problems. A comparison among these methods for determining the thermal conductivity tensor for anisotropic rocks is based on a representative collection of 80 crystalline rock samples from the KTB continental deep borehole (Germany). Despite substantial thermal inhomogeneity of rock thermal conductivity (up to 40-50% variation) and high anisotropy (with ratios of principal values attaining 2 and more), the results of measurements agree very well among the different methods. The discrepancy for measurements along the foliation is negligible (<1%). The component of thermal conductivity normal to the foliation reveals somewhat larger differences (3-4%). Optical scanning allowed us to characterize the thermal inhomogeneity of rocks and to identify a three-dimensional anisotropy in thermal conductivity of some gneiss samples. The merits of optical scanning include minor random errors (1.6%), the ability to record the variation of thermal conductivity along the sample, the ability to sample deeply using a slow scanning rate, freedom from constraints for sample size and shape, and quality of mechanical treatment of the sample surface, a contactless mode of measurement, high speed of operation, and the ability to measure on a cylindrical sample surface. More traditional methods remain superior for characterizing bulk conductivity at elevated temperature.Three laboratory methods including divided-bar, line-source and optical scanning are widely applied in geothermal and petrophysical studies. In this study, these three methods were compared for determining the thermal conductivity tensor for anisotropic rocks

  7. Comprehensive Characterization of Atmospheric Organic Carbon using Multiple High-Resolution Mass Spectrometric Instruments

    NASA Astrophysics Data System (ADS)

    Kroll, J. H.; Hunter, J. F.; Isaacman-VanWertz, G. A.

    2015-12-01

    Accurate modeling of major atmospheric chemical processes (oxidant cycling, aerosol formation, etc.) requires understanding the identity, chemistry, and lifecycle (emission, reaction, and deposition) of atmospheric organic species. Such an understanding is generally limited by the wide diversity in chemical structure, properties, and reactivity of atmospheric organics, posing major challenges in detection and quantification. However the last several years have seen the development of several new techniques for the measurement of a wide range of carbon-containing compounds, including low-volatility, oxidized species that have traditionally been difficult to measure. Many of these new techniques are based on high-resolution mass spectrometry, enabling the unambiguous identification of individual ions, and hence the elemental ratios and carbon oxidation state of the organic species; most also provide information on volatility and/or carbon number distributions of the molecular species. While a single instrument can generally measure only species of a particular class (occupying a localized region of "chemical space"), here we show that the combined measurements from multiple instruments can provide a comprehensive picture of the chemical composition of the entire organic mixture. From these combined measurements, the organic species can be described not only in terms of organic carbon mass but also in terms of distributions of key ensemble properties (such as oxidation state and volatility), and thus can be used to populate and constrain the various reduced-dimensionality chemical spaces that have been put forth as frameworks for describing atmospheric organic chemistry. We apply this general measurement approach both to field data, providing information on ambient organic species, and to laboratory (chamber) studies, providing insight into the chemical transformations that organic species undergo upon atmospheric oxidation.

  8. Characterization of organic aerosols in Beijing using an aerodyne high-resolution aerosol mass spectrometer

    NASA Astrophysics Data System (ADS)

    Zhang, Junke; Wang, Yuesi; Huang, Xiaojuan; Liu, Zirui; Ji, Dongsheng; Sun, Yang

    2015-06-01

    Fine particle of organic aerosol (OA), mostly arising from pollution, are abundant in Beijing. To achieve a better understanding of the difference in OA in summer and autumn, a high-resolution time-of-flight aerosol mass spectrometer (HR-ToF-AMS, Aerodyne Research Inc., USA) was deployed in urban Beijing in August and October 2012. The mean OA mass concentration in autumn was 30±30 μg m-3, which was higher than in summer (13±6.9 μg m-3). The elemental analysis found that OA was more aged in summer (oxygen-to-carbon (O/C) ratios were 0.41 and 0.32 for summer and autumn, respectively). Positive matrix factorization (PMF) analysis identified three and five components in summer and autumn, respectively. In summer, an oxygenated OA (OOA), a cooking-emission-related OA (COA), and a hydrocarbon-like OA (HOA) were indentified. Meanwhile, the OOA was separated into LV-OOA (low-volatility OOA) and SV-OOA (semi-volatile OOA); and in autumn, a nitrogen-containing OA (NOA) was also found. The SOA (secondary OA) was always the most important OA component, accounting for 55% of the OA in the two seasons. Back trajectory clustering analysis found that the origin of the air masses was more complex in summer. Southerly air masses in both seasons were associated with the highest OA loading, while northerly air masses were associated with the lowest OA loading. A preliminary study of OA components, especially the POA (primary OA), in different periods found that the HOA and COA all decreased during the National Day holiday period, and HOA decreased at weekends compared with weekdays.

  9. Characterization of a high resolution and high sensitivity pre-clinical PET scanner with 3D event reconstruction

    NASA Astrophysics Data System (ADS)

    Rissi, M.; Bolle, E.; Völgyes, D.; Bjaalie, J. G.; Dorholt, O.; Hines, K. E.; Røhne, O.; Skretting, A.; Stapnes, S.

    2012-12-01

    COMPET is a preclinical PET scanner aiming towards a high sensitivity, a high resolution and MRI compatibility by implementing a novel detector geometry. In this approach, long scintillating LYSO crystals are used to absorb the γ-rays. To determine the point of interaction (POI) between γ-ray and crystal, the light exiting the crystals on one of the long sides is collected with wavelength shifters (WLS) perpendicularly arranged to the crystals. This concept has two main advantages: (1) The parallax error is reduced to a minimum and is equal for the whole field of view (FOV). (2) The POI and its energy deposit is known in all three dimension with a high resolution, allowing for the reconstruction of Compton scattered γ-rays. Point (1) leads to a uniform point source resolution (PSR) distribution over the whole FOV, and also allows to place the detector close to the object being imaged. Both points (1) and (2) lead to an increased sensitivity and allow for both high resolution and sensitivity at the same time, while keeping a low number of readout channels. In total, COMPET incorporates 1080 readout channels (600 crystals, 480 WLS). It has an axial FOV of 80 mm and adjustable bore opening between 30 mm and 80 mm. It consists of four modules with five layers each. Simulations show a PSR of below 1 mm in the transaxial plane and a sensitivity of up to 16% in the center of the FOV. The readout is based on time over threshold signals, sampled with an FPGA, which allows for the measurement of high event rates at the order of mega-counts per seconds. Its compact design and compatibility to high magnetic fields will allow to use it as an insert for an already existing MRI scanner. A first semi-layer with 12 WLS and 10 LYSO crystal was built and connected to the COMPET readout system. Coincidence data between this module and a tagger crystal using a small Ge-68 and a 60 MBq F-18 source was taken.

  10. High-Resolution Autoradiography

    NASA Technical Reports Server (NTRS)

    Towe, George C; Gomberg, Henry J; Freemen, J W

    1955-01-01

    This investigation was made to adapt wet-process autoradiography to metallurgical samples to obtain high resolution of segregated radioactive elements in microstructures. Results are confined to development of the technique, which was perfected to a resolution of less than 10 microns. The radioactive samples included carbon-14 carburized iron and steel, nickel-63 electroplated samples, a powder product containing nickel-63, and tungsten-185 in N-155 alloy.

  11. Ultra high resolution tomography

    SciTech Connect

    Haddad, W.S.

    1994-11-15

    Recent work and results on ultra high resolution three dimensional imaging with soft x-rays will be presented. This work is aimed at determining microscopic three dimensional structure of biological and material specimens. Three dimensional reconstructed images of a microscopic test object will be presented; the reconstruction has a resolution on the order of 1000 A in all three dimensions. Preliminary work with biological samples will also be shown, and the experimental and numerical methods used will be discussed.

  12. Scanning Photovoltage Technique for High Resolution Non-Destructive Characterization of Semiconductor Wafers.

    DTIC Science & Technology

    1985-10-01

    41 Fmenti I 13-255-5309 AA~ L lvfP FORM 1473,84 MlAR 83 APR edition may 3e use jintii emnausved. SECURITY CLASSIFICATION OF THIS All orier edicions ...radiation hard- ness. In particular, the GaAs industry that fabricates both digital and micro- wave integrated circuits requires defect mapping...scanning is provided by a piezoelectric x-y stage with a resolution of 0.5 microns. A digital controller is used to coordinate the motion of these two x-y

  13. Quantitative carbon detector (QCD) for calibration-free, high-resolution characterization of complex mixtures.

    PubMed

    Maduskar, Saurabh; Teixeira, Andrew R; Paulsen, Alex D; Krumm, Christoph; Mountziaris, T J; Fan, Wei; Dauenhauer, Paul J

    2015-01-21

    Current research of complex chemical systems, including biomass pyrolysis, petroleum refining, and wastewater remediation requires analysis of large analyte mixtures (>100 compounds). Quantification of each carbon-containing analyte by existing methods (flame ionization detection) requires extensive identification and calibration. In this work, we describe an integrated microreactor system called the Quantitative Carbon Detector (QCD) for use with current gas chromatography techniques for calibration-free quantitation of analyte mixtures. Combined heating, catalytic combustion, methanation and gas co-reactant mixing within a single modular reactor fully converts all analytes to methane (>99.9%) within a thermodynamic operable regime. Residence time distribution of the QCD reveals negligible loss in chromatographic resolution consistent with fine separation of complex mixtures including cellulose pyrolysis products.

  14. Molecular characterization of phytoplankton dissolved organic matter (DOM) and sulfur components using high resolution Orbitrap mass spectrometry.

    PubMed

    Mangal, Vaughn; Stock, Naomi L; Guéguen, Celine

    2016-03-01

    Orbitrap high resolution mass spectrometry (HRMS) with electrospray ionization in both positive and negative polarity was conducted on Suwannee River fulvic acid (SRFA), Pony Lake fulvic acid (PLFA) standards, and dissolved organic matter (DOM) released by freshwater phytoplankton (Scenedesmus obliquus, Euglena mutabilis, and Euglena gracilis). Three-dimensional van Krevelen diagrams expressing various oxygenation states of sulfur molecules and abundance plots of sulfur-containing species were constructed. Orbitrap HRMS analysis of SRFA found a high density of peaks in the lignin region (77 %) and low density of protein material (6.53 %), whereas for PLFA, 25 % of the total peaks were lignin related compared to 56 % of peaks in protein regions, comparable with other HRMS studies. Phytoplankton-derived DOM of S. obliquus, E. mutabilis, and E. gracilis was dominated by protein molecules at respective percentages of 36, 46, and 49 %, and is consistent with previous experiments examining phytoplankton-derived DOM composition. The normalized percentage of SO-containing compounds was determined among the three phytoplankton to be 56 % for Scenedesmus, 54 % for E. mutabilis, and 47 % for E. gracilis, suggesting variation between sulfur content in phytoplankton-derived DOM and differences in metal binding capacities. These results suggest the level of resolution by Orbitrap mass spectrometry is sufficient for preliminary characterization of phytoplankton DOM at an affordable cost relative to other HRMS techniques.

  15. Tunable Semicrystalline Thin Film Cellulose Substrate for High-Resolution, In-Situ AFM Characterization of Enzymatic Cellulose Degradation.

    PubMed

    Ganner, Thomas; Roŝker, Stephanie; Eibinger, Manuel; Kraxner, Johanna; Sattelkow, Jürgen; Rattenberger, Johannes; Fitzek, Harald; Chernev, Boril; Grogger, Werner; Nidetzky, Bernd; Plank, Harald

    2015-12-23

    In the field of enzymatic cellulose degradation, fundamental interactions between different enzymes and polymorphic cellulose materials are of essential importance but still not understood in full detail. One technology with the potential of direct visualization of such bioprocesses is atomic force microscopy (AFM) due to its capability of real-time in situ investigations with spatial resolutions down to the molecular scale. To exploit the full capabilities of this technology and unravel fundamental enzyme-cellulose bioprocesses, appropriate cellulose substrates are decisive. In this study, we introduce a semicrystalline-thin-film-cellulose (SCFTC) substrate which fulfills the strong demands on such ideal cellulose substrates by means of (1) tunable polymorphism via variable contents of homogeneously sized cellulose nanocrystals embedded in an amorphous cellulose matrix; (2) nanoflat surface topology for high-resolution and high-speed AFM; and (3) fast, simple, and reproducible fabrication. The study starts with a detailed description of SCTFC preparation protocols including an in-depth material characterization. In the second part, we demonstrate the suitability of SCTFC substrates for enzymatic degradation studies by combined, individual, and sequential exposure to TrCel6A/TrCel7A cellulases (Trichoderma reesei) to visualize synergistic effects down to the nanoscale.

  16. High resolution drift chambers

    SciTech Connect

    Va'vra, J.

    1985-07-01

    High precision drift chambers capable of achieving less than or equal to 50 ..mu..m resolutions are discussed. In particular, we compare so called cool and hot gases, various charge collection geometries, several timing techniques and we also discuss some systematic problems. We also present what we would consider an ''ultimate'' design of the vertex chamber. 50 refs., 36 figs., 6 tabs.

  17. High-resolution headlamp

    NASA Astrophysics Data System (ADS)

    Gut, Carsten; Cristea, Iulia; Neumann, Cornelius

    2016-04-01

    The following article shall describe how human vision by night can be influenced. At first, front lighting systems that are already available on the market will be described, followed by their analysis with respect to the positive effects on traffic safety. Furthermore, how traffic safety by night can be increased since the introduction of high resolution headlamps shall be discussed.

  18. High-resolution, high-sensitivity, ground-based solar spectropolarimetry with a new fast imaging polarimeter. I. Prototype characterization

    NASA Astrophysics Data System (ADS)

    Iglesias, F. A.; Feller, A.; Nagaraju, K.; Solanki, S. K.

    2016-05-01

    Context. Remote sensing of weak and small-scale solar magnetic fields is of utmost relevance when attempting to respond to a number of important open questions in solar physics. This requires the acquisition of spectropolarimetric data with high spatial resolution (~10-1 arcsec) and low noise (10-3 to 10-5 of the continuum intensity). The main limitations to obtain these measurements from the ground, are the degradation of the image resolution produced by atmospheric seeing and the seeing-induced crosstalk (SIC). Aims: We introduce the prototype of the Fast Solar Polarimeter (FSP), a new ground-based, high-cadence polarimeter that tackles the above-mentioned limitations by producing data that are optimally suited for the application of post-facto image restoration, and by operating at a modulation frequency of 100 Hz to reduce SIC. Methods: We describe the instrument in depth, including the fast pnCCD camera employed, the achromatic modulator package, the main calibration steps, the effects of the modulation frequency on the levels of seeing-induced spurious signals, and the effect of the camera properties on the image restoration quality. Results: The pnCCD camera reaches 400 fps while keeping a high duty cycle (98.6%) and very low noise (4.94 e- rms). The modulator is optimized to have high (>80%) total polarimetric efficiency in the visible spectral range. This allows FSP to acquire 100 photon-noise-limited, full-Stokes measurements per second. We found that the seeing induced signals that are present in narrow-band, non-modulated, quiet-sun measurements are (a) lower than the noise (7 × 10-5) after integrating 7.66 min, (b) lower than the noise (2.3 × 10-4) after integrating 1.16 min and (c) slightly above the noise (4 × 10-3) after restoring case (b) by means of a multi-object multi-frame blind deconvolution. In addition, we demonstrate that by using only narrow-band images (with low S/N of 13.9) of an active region, we can obtain one complete set of high

  19. Sub-urban landscape characterization by very high-resolution X-band COSMO-Skymed SAR images: first results

    NASA Astrophysics Data System (ADS)

    Del Frate, Fabio; Loschiavo, Domenico; Pratola, Chiara; Schiavon, Giovanni; Solimini, Domenico

    2010-10-01

    The very-high spatial resolution provided by COSMO-Skymed products, also considering the concurrent TerraSAR-X mission, opens new challenges in the field of SAR image processing for remote sensing applications, maybe comparable to those represented by the first optical commercial satellites at the beginning of last decade. The Tor Vergata-Frascati test site, where extensive ground-truth data are available, was imaged by the COSMO constellation at two different days in summer 2010. This enabled first investigations on the potential of this type of imagery in providing a characterization of sub-urban areas by exploitation of both amplitude and phase information contained in the radar return. In particular this paper deals with the set-up of preliminary chains of automatic processing based on Multi-Layer Perceptron neural networks for pixel based analysis. Also some comments concerning the retrieval of information on the vertical properties of a single building are reported.

  20. Characterizing particulate matter emissions from vehicles: chassis-dynamometer tests using a High-Resolution Aerosol Mass Spectrometer

    NASA Astrophysics Data System (ADS)

    Collier, S.; Zhang, Q.; Forestieri, S.; Kleeman, M.; Cappa, C. D.; Kuwayama, T.

    2012-12-01

    During September of 2011 a suite of real-time instruments was used to sample vehicle emissions at the California Air Resources Board Haagen-Schmidt facility in El Monte, CA. A representative fleet of 8 spark ignition gasoline vehicles, a diesel passenger vehicle, a gasoline direct-injection vehicle and an ultra-low emissions vehicle were tested on a chassis dynamometer. The emissions were sampled into the facility's standard CVS tunnel and diluted to atmospherically relevant levels (5-30 μg/m3) while controlling other factors such as relative humidity or background black carbon particulate loading concentrations. An Aerodyne High Resolution Time-of-Flight Aerosol Mass Spectrometer (HR-ToF-MS) was among the real-time instruments used and sampled vehicle emissions at 10 second time resolution in order to characterize the non-refractory organic and inorganic particulate matter (PM). PM composition and concentration were tracked throughout the cold start driving cycle which included periods of fast acceleration and high velocity cruise control, meant to recreate typical commuter driving behavior. Variations in inorganic and organic PM composition for a given vehicle throughout the driving cycle as well as for various vehicles with differing emissions loading were characterized. Differences in PM composition for a given vehicle whose emissions are being exposed to differing experimental conditions such as varying relative humidity will also be reported. In conjunction with measurements from a Multi Wavelength Photoacoustic Black Carbon Spectrometer (MWPA-BC) and real-time gas measurements from the CARB facility, we determine the real-time emission ratios of primary organic aerosols (POA) with respect to BC and common combustion gas phase pollutants and compared to different vehicle driving conditions. The results of these tests offer the vehicle emissions community a first time glimpse at the real-time behavior of vehicle PM emissions for a variety of conditions and

  1. Strain-level characterization of nonstarter lactic acid bacteria in Norvegia cheese by high-resolution melt analysis.

    PubMed

    Porcellato, D; Østlie, H M; Liland, K H; Rudi, K; Isaksson, T; Skeie, S B

    2012-09-01

    The nonstarter lactic acid bacteria (NSLAB) constitute an important microbial group found during cheese ripening and they are thought to be fundamental to the quality of cheese. Rapid and accurate diagnostic tests for NSLAB are important for cheese quality control and in understanding the cheese ripening process. Here, we present a novel rapid approach for strain-level characterization through combined 16S rRNA gene and repetitive sequence-based high-resolution melt analysis (HRM). The approach was demonstrated through the characterization of 94 isolates from Norvegia, a Gouda-type cheese. The HRM profiles of the V1 and V3 variable regions of the 16S rRNA gene of the isolates were compared with the HRM profiles of 13 reference strains. The HRM profile comparison of the V1 and V3 regions of the 16S rRNA gene allowed discrimination of isolates and reference strains. Among the cheese isolates, Lactobacillus casei/paracasei (62 isolates) and Lactobacillus plantarum/Lactobacillus pentosus (27 isolates) were the dominant species, whereas Lactobacillus curvatus/Lactobacillus sakei were found occasionally (5 isolates). The HRM profiling of repetitive sequence-based PCR using the (GTG)(5) primer was developed for strain-level characterization. The clustering analysis of the HRM profiles showed high discriminatory power, similar to that of cluster analysis based on the gel method. In conclusion, the HRM approach in this study may be applied as a fast, accurate, and reproducible method for characterization of the NSLAB microflora in cheese and may be applicable to other microbial environments following selective plate culturing.

  2. High resolution data acquisition

    DOEpatents

    Thornton, G.W.; Fuller, K.R.

    1993-04-06

    A high resolution event interval timing system measures short time intervals such as occur in high energy physics or laser ranging. Timing is provided from a clock, pulse train, and analog circuitry for generating a triangular wave synchronously with the pulse train (as seen in diagram on patent). The triangular wave has an amplitude and slope functionally related to the time elapsed during each clock pulse in the train. A converter forms a first digital value of the amplitude and slope of the triangle wave at the start of the event interval and a second digital value of the amplitude and slope of the triangle wave at the end of the event interval. A counter counts the clock pulse train during the interval to form a gross event interval time. A computer then combines the gross event interval time and the first and second digital values to output a high resolution value for the event interval.

  3. High resolution data acquisition

    DOEpatents

    Thornton, Glenn W.; Fuller, Kenneth R.

    1993-01-01

    A high resolution event interval timing system measures short time intervals such as occur in high energy physics or laser ranging. Timing is provided from a clock (38) pulse train (37) and analog circuitry (44) for generating a triangular wave (46) synchronously with the pulse train (37). The triangular wave (46) has an amplitude and slope functionally related to the time elapsed during each clock pulse in the train. A converter (18, 32) forms a first digital value of the amplitude and slope of the triangle wave at the start of the event interval and a second digital value of the amplitude and slope of the triangle wave at the end of the event interval. A counter (26) counts the clock pulse train (37) during the interval to form a gross event interval time. A computer (52) then combines the gross event interval time and the first and second digital values to output a high resolution value for the event interval.

  4. Requirements on high resolution detectors

    SciTech Connect

    Koch, A.

    1997-02-01

    For a number of microtomography applications X-ray detectors with a spatial resolution of 1 {mu}m are required. This high spatial resolution will influence and degrade other parameters of secondary importance like detective quantum efficiency (DQE), dynamic range, linearity and frame rate. This note summarizes the most important arguments, for and against those detector systems which could be considered. This article discusses the mutual dependencies between the various figures which characterize a detector, and tries to give some ideas on how to proceed in order to improve present technology.

  5. Characterizing the AB Doradus moving group via high-resolution spectroscopy and kinematic traceback

    SciTech Connect

    McCarthy, Kyle; Wilhelm, Ronald J.

    2014-10-01

    We present a detailed analysis of 10 proposed F and G members of the nearby, young moving group AB Doradus (ABD). Our sample was obtained using the 2.7 m telescope at the McDonald Observatory with the coude echelle spectrograph, achieving R ∼ 60,000 and signal-to-noise ratio ∼200. We derive spectroscopic T {sub eff}, log(g), [Fe/H], and microturbulance (v{sub t} ) using a bootstrap method of the TGVIT software resulting in typical errors of 33K in T {sub eff}, 0.08 dex in log(g), 0.03 dex in [Fe/H], and 0.13 km s{sup –1} in v{sub t} . Characterization of the ABD sample is performed in three ways: (1) chemical homogeneity, (2) kinematic traceback, and (3) isochrone fitting. We find the average metal abundance is [M/H] = –0.03 ± 0.06 with a traceback age of 125 Myr. Our stars were fit to three different evolutionary models and we found that the best match to our ABD sample is the YREC [M/H] = –0.1 model. In our sample of 10 stars, we identify 1 star that is a probable non-member, 3 enigmatic stars, and 6 stars with confirmed membership. We also present a list of chemically coherent stars from this study and the Barenfeld et al. study.

  6. Structural characterization and gas reactions of small metal particles by high-resolution TEM and TED

    NASA Technical Reports Server (NTRS)

    Heinemann, K.

    1985-01-01

    The interaction of 100 and 200 keV electron beams with amorphous alumina, titania, and aluminum nitride substrates and nanometer-size palladium particulate deposits was investigated for the two extreme cases of (1) large-area electron-beam flash-heating and (2) small-area high-intensity electron-beam irradiation. The former simulates a short-term heating effect with minimum electron irradiation exposure, the latter simulates high-dosage irradiation with minimum heating effect. All alumina and titania samples responded to the flash-heating treatment with significant recrystallization. However, the size, crystal structure, shape, and orientation of the grains depended on the type and thickness of the films and the thickness of the Pd deposit. High-dosage electron irradiation also readily crystallized the alumina substrate films but did not affect the titania films. The alumina recrystallization products were usually either all in the alpha phase, or they were a mixture of small grains in a number of low-temperature phases including gamma, delta, kappa, beta, theta-alumina. Palladium deposits reacted heavily with the alumina substrates during either treatment, but they were very little effected when supported on titania. Both treatments had the same, less prominent localized crystallization effect on aluminum nitride films.

  7. High-resolution mapping and genetic characterization of the Lazy-2 gravitropic mutant of tomato

    NASA Technical Reports Server (NTRS)

    Behringer, F. J.; Lomax, T. L.

    1999-01-01

    Mutation of the Lazy-2 (Lz-2) gene in tomato (Lycopersicon esculentum mill.) produces a phytochrome-dependent reversal of shoot gravitropism, providing a unique genetic resource for investigating how signals from light modulate gravitropism. We mapped the Lz-2 gene using RFLPs and a PCR-based technique to assess the feasibility of positional cloning. Analysis of a 1338 plant backcross population between L. esculentum and L. pennellii placed Lz-2 within a 1.2 cM interval on chromosome 5, 0.4 cM from TG504-CT201A interval. The inabililty to resolve these markers indicates that Lz-2 resides in a centromeric region in which recombination is highly suppressed. Lazy-2 is tightly linked to but does not encode the gene for ACC4, an enzyme involved in ethylene biosynthesis. We also observed that Lz-2 is partially dominant under certain conditions and stages of development.

  8. Characterization of impurities of HIV NNRTI Doravirine by UHPLC-high resolution MS and tandem MS analysis.

    PubMed

    Zhang, Li-Kang; Yang, Ross; Sheng, Huaming; Helmy, Roy; Zheng, Jinjian; Cao, Yang; Gauthier, Donald R

    2016-10-01

    World Health Organization estimates that 34 million individuals globally are living with Human Immunodeficiency Virus (HIV). Doravirine is a non-nucleoside reverse transcriptase inhibitors (NNRTI) being evaluated by Merck for the treatment of HIV-1 infection. Drug regulation authorities require the purity of a pharmaceutical to be fully defined. This is important to ensure that the pharmacological and toxicological effects are truly those of the drug substances and not because of the impurities. Thus, understanding the drug impurity profiles is critical to the safety and potency assessment of the drug candidate for clinical trials. The impurity characterization can also provide useful information for critical assessment of pharmaceutical processes. Advances in mass spectrometry instrumentation and methods allow the identification of impurities in pharmaceuticals with a minimum of sample material and increased sensitivity. In this study, a rapid and sensitive method was developed for the structural determination of the major impurities of doravirine. The study utilizes ultra performance liquid chromatography-high-resolution-tandem mass spectrometry (UHPLC-HRMS/MS) techniques to perform structure elucidation of the unknown structures. This approach has significant impact on impurity structural elucidation, and a total of five trace-level impurities of doravirine were characterized using the developed method. Copyright © 2016 John Wiley & Sons, Ltd.

  9. Chemical Characterization of Crude Petroleum Using Nanospray Desorption Electrospray Ionization Coupled with High-Resolution Mass Spectrometry

    SciTech Connect

    Eckert, Peter A.; Roach, Patrick J.; Laskin, Alexander; Laskin, Julia

    2012-02-07

    Nanospray desorption electrospray ionization (nano-DESI) combined with high-resolution mass spectrometry was used for the first time for the analysis of liquid petroleum crude oil samples. The analysis was performed in both positive and negative ionization modes using three solvents one of which (acetonitrile/toluene mixture) is commonly used in petroleomics studies while two other polar solvents (acetonitrile/water and methanol/water mixtures) are generally not compatible with petroleum characterization using mass spectrometry. The results demonstrate that nano-DESI analysis efficiently ionizes petroleum constituents soluble in a particular solvent. When acetonitrile/toluene is used as a solvent, nano-DESI generates electrospray-like spectra. In contrast, strikingly different spectra were obtained using acetonitrile/water and methanol/water. Comparison with the literature data indicates that these solvents selectively extract water-soluble constituents of the crude oil. Water-soluble compounds are predominantly observed as sodium adducts in nano-DESI spectra indicating that addition of sodium to the solvent may be a viable approach for efficient ionization of water-soluble crude oil constituents. Nano-DESI enables rapid screening of different classes of compounds in crude oil samples using solvents that are rarely used for petroleum characterization.

  10. Characterization of high resolution CMOS monolithic active pixel detector in SOI technology

    NASA Astrophysics Data System (ADS)

    Ahmed, M. I.; Arai, Y.; Glab, S.; Idzik, M.; Kapusta, P.; Miyoshi, T.; Takeda, A.; Turala, M.

    2015-05-01

    Novel CMOS monolithic pixel detectors designed at KEK and fabricated at Lapis Semiconductor in 0.2 μm Silicon-on-Insulator (SOI) technology are presented. A thin layer of silicon oxide separates high and low resistivity silicon layers, allowing for optimization of design of detector and readout parts. Shallow wells buried under the oxide in the detector part screen the entire pixel electronics from electrical field applied to the detector. Several integration type SOI pixel detectors have been developed with pixel sizes 8-20 μm. The general features of 14 × 14 μm2 detectors designed on different wafers (CZ-n, FZ-n and FZ-p) were measured and compared. The detector performance was studied under irradiation with visible and infra-red laser, and also X-ray ionizing source. Using X-rays from an Am-241 source the noise of readout electronics was measured at different working conditions, showing the ENC in the range of 88-120 e-. The pixel current was calculated from average DC pedestal shift while varying the pixel integration time. The operation of the detector was studied under partial and full depletion conditions. The effects of temperature and detector bias voltage on noise and leakage current were studied. Characteristics of an ADC integrated in the front-end chip are also presented.

  11. Characterization of REE-Bearing Minerals and Synthetic Materials Using High Resolution Ultraviolet to Near-Infrared Reflectance Spectroscopy

    NASA Astrophysics Data System (ADS)

    Hoefen, T. M.; Livo, K. E.; Giles, S. A.; Lowers, H. A.; Swayze, G. A.; Taylor, C. D.; Verplanck, P. L.; Emsbo, P.; Koenig, A.; Mccafferty, A. E.

    2014-12-01

    Diagnostic crystal field 4fn-4fn transition features in the ultraviolet (UV) to near-infrared (NIR) region of the electromagnetic spectrum have been observed in many common rare earth element (REE)-bearing minerals. The partial filling of the 4f electron shell combined with a shielding effect caused by the fully filled 5s25p6-electron shells, which weaken any effects from external magnetic or electric fields on the electrons, makes rare earth ions unique. The narrow absorption features occur as a result of parity forbidden transitions and crystal field splitting of the trivalent REEs, and since they are well shielded, only subtle wavelengths shifts are seen in their spectral features. Synthetic single REE phosphates, carbonates, oxides, hydroxides and glasses have been measured in the lab to help identify absorption band positions that are characteristic of each REE as they occur in different minerals. Because spectral resolution is critical to identifying shifts in the absorption band positions, these materials have been measured on several different high resolution spectrometers. Using a combination of Ocean Optics USB 2000+ UV-VIS, USB2000+ VIS-NIR and ASD FS 4 spectrometers we have characterized REE-bearing materials from 0.2 to 2.5 microns with a spectral resolution of ~2 nm between 0.2 and 1.0 microns and 11 to 12 nm between 1.0 and 2.5 microns. Results to date suggest that wavelength shifts and variations in the degree of crystal field splitting allow spectral differentiation between REE-bearing minerals. To support these results, a comprehensive suite of marine phosphates, paleo-beach placers, IOCG deposits, alkaline to peralkaline igneous complexes, pegmatites associated with alkaline magmas and carbonatite intrusives, have been measured and included in our database. Core, rock chips, billets, sediment samples and grab samples were manually scanned to identify the most intense or spectrally different REE features. While REE-bearing minerals have been

  12. Pulmonary fibrosis: tissue characterization using late-enhanced MRI compared with unenhanced anatomic high-resolution CT

    PubMed Central

    Lavelle, Lisa P.; Brady, Darragh; McEvoy, Sinead; Murphy, David; Gibney, Brian; Gallagher, Annika; Butler, Marcus; Shortt, Fionnula; McMullen, Marie; Fabre, Aurelie; Lynch, David A.; Keane, Michael P.; Dodd, Jonathan D.

    2017-01-01

    PURPOSE We aimed to prospectively evaluate anatomic chest computed tomography (CT) with tissue characterization late gadolinium-enhanced magnetic resonance imaging (MRI) in the evaluation of pulmonary fibrosis (PF). METHODS Twenty patients with idiopathic pulmonary fibrosis (IPF) and twelve control patients underwent late-enhanced MRI and high-resolution CT. Tissue characterization of PF was depicted using a segmented inversion-recovery turbo low-angle shot MRI sequence. Pulmonary arterial blood pool nulling was achieved by nulling main pulmonary artery signal. Images were read in random order by a blinded reader for presence and extent of overall PF (reticulation and honeycombing) at five anatomic levels. Overall extent of IPF was estimated to the nearest 5% as well as an evaluation of the ratios of IPF made up of reticulation and honeycombing. Overall grade of severity was dependent on the extent of reticulation and honeycombing. RESULTS No control patient exhibited contrast enhancement on lung late-enhanced MRI. All IPF patients were identified with late-enhanced MRI. Mean signal intensity of the late-enhanced fibrotic lung was 31.8±10.6 vs. 10.5±1.6 for normal lung regions, P < 0.001, resulting in a percent elevation in signal intensity from PF of 204.8%±90.6 compared with the signal intensity of normal lung. The mean contrast-to-noise ratio was 22.8±10.7. Late-enhanced MRI correlated significantly with chest CT for the extent of PF (R=0.78, P = 0.001) but not for reticulation, honeycombing, or coarseness of reticulation or honeycombing. CONCLUSION Tissue characterization of IPF is possible using inversion recovery sequence thoracic MRI. PMID:28067202

  13. Comprehensive Characterization of Glycosylation and Hydroxylation of Basement Membrane Collagen IV by High-Resolution Mass Spectrometry.

    PubMed

    Basak, Trayambak; Vega-Montoto, Lorenzo; Zimmerman, Lisa J; Tabb, David L; Hudson, Billy G; Vanacore, Roberto M

    2016-01-04

    Collagen IV is the main structural protein that provides a scaffold for assembly of basement membrane proteins. Posttranslational modifications such as hydroxylation of proline and lysine and glycosylation of lysine are essential for the functioning of collagen IV triple-helical molecules. These modifications are highly abundant posing a difficult challenge for in-depth characterization of collagen IV using conventional proteomics approaches. Herein, we implemented an integrated pipeline combining high-resolution mass spectrometry with different fragmentation techniques and an optimized bioinformatics workflow to study posttranslational modifications in mouse collagen IV. We achieved 82% sequence coverage for the α1 chain, mapping 39 glycosylated hydroxylysine, 148 4-hydroxyproline, and seven 3-hydroxyproline residues. Further, we employed our pipeline to map the modifications on human collagen IV and achieved 85% sequence coverage for the α1 chain, mapping 35 glycosylated hydroxylysine, 163 4-hydroxyproline, and 14 3-hydroxyproline residues. Although lysine glycosylation heterogeneity was observed in both mouse and human, 21 conserved sites were identified. Likewise, five 3-hydroxyproline residues were conserved between mouse and human, suggesting that these modification sites are important for collagen IV function. Collectively, these are the first comprehensive maps of hydroxylation and glycosylation sites in collagen IV, which lay the foundation for dissecting the key role of these modifications in health and disease.

  14. High-resolution thermogravimetric analysis for rapid characterization of biomass composition and selection of shrub willow varieties.

    PubMed

    Serapiglia, Michelle J; Cameron, Kimberly D; Stipanovic, Arthur J; Smart, Lawrence B

    2008-03-01

    The cultivation of shrub willow (Salix spp.) bioenergy crops is being commercialized in North America, as it has been in Europe for many years. Considering the high genetic diversity and ease of hybridization, there is great potential for genetic improvement of shrub willow through traditional breeding. The State University of New York-College of Environmental Science and Forestry has an extensive breeding program for the genetic improvement of shrub willow for biomass production and for other environmental applications. Since 1998, breeding efforts have produced more than 200 families resulting in more than 5,000 progeny. The goal for this project was to utilize a rapid, low-cost method for the compositional analysis of willow biomass to aid in the selection of willow clones for improved conversion efficiency. A select group of willow clones was analyzed using high-resolution thermogravimetric analysis (HR-TGA), and significant differences in biomass composition were observed. Differences among and within families produced through controlled pollinations were observed, as well as differences by age at time of sampling. These results suggest that HR-TGA has a great promise as a tool for rapid biomass characterization.

  15. Using High-Resolution, Regional-Scale Data to Characterize Floating Aquatic Nuisance Vegetation in Coastal Louisiana Navigation Channels

    DTIC Science & Technology

    2014-01-01

    waterway that is completely blocked to navigation by water hyacinth (Eichhornia crassipes) is shown in Figure 3. Where imagery showed no occurrence...that is completely blocked to navigation by water hyacinth and would be classified as "severe" in this study. Figure 4. Example of a waterway that...Resampling of high-resolution (2 m or less) imagery showed that fringing populations of water hyacinth could be equally well detected at 5-m resolution

  16. Characterization of the submesoscale energy cascade in the Alboran Sea thermocline from spectral analysis of high-resolution MCS data

    NASA Astrophysics Data System (ADS)

    Sallares, Valenti; Mojica, Jhon F.; Biescas, Berta; Klaeschen, Dirk; Gràcia, Eulàlia

    2016-06-01

    Part of the kinetic energy that maintains ocean circulation cascades down to small scales until it is dissipated through mixing. While most steps of this downward energy cascade are well understood, an observational gap exists at horizontal scales of 103-101 m that prevents characterizing a key step in the chain: the transition from anisotropic internal wave motions to isotropic turbulence. Here we show that this observational gap can be covered using high-resolution multichannel seismic (HR-MCS) data. Spectral analysis of acoustic reflectors imaged in the Alboran Sea thermocline shows that this transition is likely caused by shear instabilities. In particular, we show that the averaged horizontal wave number spectra of the reflectors vertical displacements display three subranges that reproduce theoretical spectral slopes of internal waves (λx > 100 m), Kelvin-Helmholtz-type shear instabilities (100 m > λx > 33 m), and turbulence (λx < 33 m), indicating that the whole chain of events is occurring continuously and simultaneously in the surveyed area.

  17. Cold-seep habitat mapping: High-resolution spatial characterization of the Blake Ridge Diapir seep field

    NASA Astrophysics Data System (ADS)

    Wagner, Jamie K. S.; McEntee, Molly H.; Brothers, Laura L.; German, Christopher R.; Kaiser, Carl L.; Yoerger, Dana R.; Van Dover, Cindy Lee

    2013-08-01

    Relationships among seep community biomass, diversity, and physiographic controls such as underlying geology are not well understood. Previous efforts to constrain these relationships at the Blake Ridge Diapir were limited to observations from piloted deep-submergence vehicles. In August 2012, the autonomous underwater vehicle (AUV) Sentry collected geophysical and photographic data over a 0.131 km2 area at the Blake Ridge Diapir seeps. A nested survey approach was used that began with a regional or reconnaissance-style survey using sub-bottom mapping systems to locate and identify seeps and underlying conduits. This survey was followed by AUV-mounted sidescan sonar and multibeam echosounder systems mapping on a mesoscale to characterize the seabed physiography. At the most detailed survey level, digital photographic imaging was used to resolve sub-meter characteristics of the biology. Four pockmarks (25-70 m diameter) were documented, each supporting chemosynthetic communities. Concentric zonation of mussels and clams suggests the influence of chemical gradients on megafaunal distribution. Data collection and analytical techniques used here yield high-resolution habitat maps that can serve as baselines to constrain temporal evolution of seafloor seeps, and to inform ecological niche modeling and resource management.

  18. Characterization of carbonaceous meteoritic fragments found in Antarctica by high-resolution Raman spectroscopy and SEM/EDS

    NASA Astrophysics Data System (ADS)

    Dall Asen, Analia; Baer, Brandon; Mittelstaedt, Jake; Gerton, Jordan; Bromley, Benjamin; Kenyon, Scott

    2016-03-01

    Carbonaceous chondritic meteorites are composed mainly of chondrules (micro/millimeter-sized inclusions) surrounding by a matrix of microparticles, and are considered the most primitive surviving materials from the early Solar System. Understanding their properties and history may provide clues to the formation of planets from micron-size dust grains in the Solar nebula. Our approach is to study the structure and composition of carbonaceous chondrites with high-resolution micro-Raman spectroscopy, scanning electron microscopy and energy dispersive X-ray spectroscopy. These techniques enable us to capture details on a wide range of spatial scales, from micrometers to millimeters. Here we provide the first analysis of a set of meteorite fragments from Antarctica (MIL 07002 and ALH 84028), mapping elemental and molecular abundances, as well as large-scale morphological features. We present characterizations of individual chondrules and the surrounding matrix, and we consider on how our findings reflect physical processes believed to be operating during the early stages of planet formation.

  19. Cold-seep habitat mapping: high-resolution spatial characterization of the Blake Ridge Diapir seep field

    USGS Publications Warehouse

    Wagner, Jamie K.S.; McEntee, Molly H.; Brothers, Laura L.; German, Christopher R.; Kaiser, Carl L.; Yoerger, Dana R.; Van Dover, Cindy Lee

    2013-01-01

    Relationships among seep community biomass, diversity, and physiographic controls such as underlying geology are not well understood. Previous efforts to constrain these relationships at the Blake Ridge Diapir were limited to observations from piloted deep-submergence vehicles. In August 2012, the autonomous underwater vehicle (AUV) Sentry collected geophysical and photographic data over a 0.131 km2 area at the Blake Ridge Diapir seeps. A nested survey approach was used that began with a regional or reconnaissance-style survey using sub-bottom mapping systems to locate and identify seeps and underlying conduits. This survey was followed by AUV-mounted sidescan sonar and multibeam echosounder systems mapping on a mesoscale to characterize the seabed physiography. At the most detailed survey level, digital photographic imaging was used to resolve sub-meter characteristics of the biology. Four pockmarks (25–70 m diameter) were documented, each supporting chemosynthetic communities. Concentric zonation of mussels and clams suggests the influence of chemical gradients on megafaunal distribution. Data collection and analytical techniques used here yield high-resolution habitat maps that can serve as baselines to constrain temporal evolution of seafloor seeps, and to inform ecological niche modeling and resource management.

  20. High-resolution characterization of the diffusion of light chemical elements in metallic components by scanning microwave microscopy

    NASA Astrophysics Data System (ADS)

    Optasanu, Virgil; Bourillot, Eric; Vitry, Pauline; Plassard, Cédric; Beaurenaut, Laure; Jacquinot, Pierre; Herbst, Frédéric; Berger, Pascal; Lesniewska, Eric; Montessin, Tony

    2014-11-01

    An original sub-surface, high spatial resolution tomographic technique based on scanning microwave microscopy (SMM) is used to visualize in-depth materials with different chemical compositions. A significant phase difference in SMM between aluminum and chromium buried patterns has been observed. Moreover this technique was used to characterize a solid solution of a light chemical element (oxygen) in a metal lattice (zirconium). The large solubility of the oxygen in zirconium leads to modifications of the properties of the solid solution that can be measured by the phase shift signal in the SMM technique. The signal obtained in cross-section of an oxidized Zr sample shows the excellent agreement between phase shift profiles measured at different depths. Such a profile can reveal the length of diffusion of the oxygen in zirconium under the surface. The comparison with the oxygen concentration measured by nuclear reaction analysis shows excellent agreement in terms of length of diffusion and spatial distribution of the oxygen. A rapid calibration shows a linear dependence between the phase shift and the oxygen concentration. The SMM method opens up new possibilities for indirect measurements of the oxygen concentration dissolved in the metal lattice.

  1. In-situ 3D high-spatial resolution aquifer characterization with hydraulic parameter distribution at decameter scale

    NASA Astrophysics Data System (ADS)

    Hu, R.; Brauchler, R.; Hu, L.; Qiu, P.

    2015-12-01

    Currently, a major challenge in aquifer characterization is the determination of hydraulic parameters with high-spatial resolution. Since the mid-90's, various working groups have developed numerical evaluation approaches for hydraulic tomography: the inversion of hydraulic tests that have been recorded using tomographic arrangements. The practical application is often associated with long test times, complex evaluations, and prolonged computation times. In our study, a hydraulic tomographical data set consisted of 450 drawdown curves produced by a series of short term pumping tests conducted over 4 working days. Data was collected by two scientists without a technical staff. The tests were performed at the test site "Stegemühle", Göttingen, Germany in a confined sand and gravel aquifer with a thickness of 2-3 m. For the inversion, an approach has been used, which is based on the transformation of the groundwater flow equation into a form of Eikonal equation (Vasco et al., 2000). Utilizing this approach, the hydraulic data can be inverted using an Eikonal solver e.g. SIRT. This Eikonal solver is considerably computationally efficient and allows hundreds of draw down curves to be inverted on a standard laptop within minutes. Following the methodology described in Brauchler et al. 2013, 3D distribution of diffusivity and specific storage were directly reconstructed, and subsequently their product: the hydraulic conductivity. This study exemplifies that the required data can be recorded and analyzed efficiently in the field, which is a vital precondition for the in-situ field aquifer characterization with hydraulic tomography. Literature Vasco, D.W., Keers, H., Karasaki, K. (2000) Estimation of reservoir properties using transient pressure data: An asymptotic approach. Water Resour. Res. 36(12), 3447-3465 Brauchler, R., Hu, R., Hu, L., Jimenéz, S., Bayer, P., Ptak, T. (2013) Rapid field application of hydraulic tomography for resolving aquifer heterogeneity in

  2. Integration of high-resolution field-based thermal data with synoptic spaceborne thermal data for surface characterization

    NASA Astrophysics Data System (ADS)

    Byrnes, J. M.

    2012-12-01

    High spatial- (~0.03 m/pixel) and temporal- (30 s or better) resolution thermal data collected in the field with a FLIR broadband (7.5-14 μm) thermal imaging camera is integrated with a day-night pair of thermal datasets acquired by the Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER) instrument (90 m/pixel) in order to address the question of the extent to which linear (a.k.a. checkerboard) mixing of blocks and fines can be distinguished from minor/moderate mantling of fines over blocks? This thermophysical effect is important for characterizing surfaces on the Earth and other planetary bodies because if it is not addressed, it can result in errors in deconvolution of thermal infrared data. Additionally, the ability to recognize mantling of rocks with relatively fine-grained material is important for characterizing a range of geologic processes that may modify a surface, including fluvial, aeolian, and hill slope processes. For this study, the Amboy Crater cinder cone and lava flow field (~ 70 sq. km in the Mojave Desert, southern California) is analyzed primarily because (1) it displays both well-exposed and mantled volcanic surfaces with low vegetation, and (2) volcanic surface units such as those displayed at Amboy Crater are widespread on the surfaces of rocky planetary bodies. Apparent thermal inertia is calculated for the flow field from ASTER data both with and without the FLIR ground data to quantify the improvement derived from integrating the datasets. In order to analyze the FLIR data, a new methodology for automated co-registration of calibrated data frames has been developed (required due to field conditions during data acquisition). Preliminary analysis indicates that the diurnal range measured with the FLIR instrument is not accurately represented in the ASTER data and significantly affects interpretations of surface characteristics, including block size distribution and extent of mantling.

  3. High resolution characterization of northwest Mediterranean coastal waters thermal regimes: To better understand responses of benthic communities to climate change

    NASA Astrophysics Data System (ADS)

    Bensoussan, Nathaniel; Romano, Jean-Claude; Harmelin, Jean-Georges; Garrabou, Joaquim

    2010-04-01

    In the North West Mediterranean (NWM), mass mortality events (MME) of long-lived benthic species that have occurred over the last two decades have been related to regional warming trend. Gaining robust data sets on thermal regimes is critical to assess conditions to which species have adapted, detect extreme events and critically evaluate biological impacts. High resolution temperature ( T) time series obtained during 1999-2006 from 5 to 40 m depth at four contrasted sites of the NWM were analyzed: Area Marina Protegida de les Illes Medes (NE Spain), Riou (Marseilles, France), Parc National de Port-Cros (France), and Réserve Naturelle de Scandola (Corsica, France). The seasonal pattern showed winter T around 11-13 °C, and summer T mainly around 22-24 °C near surface to 18-20 °C at depth. Stratification dynamics showed recurrent downwellings (>40 m) at Medes, frequent observation (1/3rd of the summer) of deep and cold upwelled waters at Riou, while Scandola exhibited stable summer stratification and highest suprathermoclinal T. Port-Cros showed an intermediate regime that oscillated between Riou and Scandola depending on the occurrence of northern winds. Data distribution study permitted to identify and to characterize 3 large scale positive anomalies concomitant with the mass mortality outbreaks of summers 1999, 2003 and 2006. The analysis of biological surveys on gorgonian populations showed significant impacts during the 3 years with temperature anomalies. Besides the degree of impact showed inter-annual differences which could be related to different T conditions concomitant to mortality events, from slight increase in T extreme of only 1-2 °C over short duration, to lengthened more classical summer conditions. Our results therefore support the hypothesis that shallow NWM populations of long-lived benthic species are living near their upper thermal thresholds. Given actual trends and projections in NWM, the repetition of new MMEs in the next decades is

  4. Molecular-level characterization of crude oil compounds combining reversed-phase high-performance liquid chromatography with off-line high-resolution mass spectrometry

    USGS Publications Warehouse

    Sim, Arum; Cho, Yunju; Kim, Daae; Witt, Matthias; Birdwell, Justin E.; Kim, Byung Ju; Kim, Sunghwan

    2014-01-01

    A reversed-phase separation technique was developed in a previous study (Loegel et al., 2012) and successfully applied to the de-asphalted fraction of crude oil. However, to the best of our knowledge, the molecular-level characterization of oil fractions obtained by reversed-phase high-performance liquid chromatography (HPLC) coupled with high-resolution mass spectrometry (MS) has not yet been reported. A detailed characterization of the oil fractions prepared by reversed-phase HPLC was performed in this study. HPLC fractionation was carried out on conventional crude oil and an oil shale pyrolysate. The analyses of the fractions showed that the carbon number of alkyl chains and the double bond equivalent (DBE) value were the major factors determining elution order. The compounds with larger DBE (presumably more condensed aromatic structures) and smaller carbon number (presumably compounds with short side chains) were eluted earlier but those compounds with lower DBE values (presumably less aromatic structures) and higher carbon number (presumably compounds with longer alkyl chains) eluted later in the chromatograms. This separation behavior is in good agreement with that expected from the principles of reversed-phase separation. The data presented in this study show that reversed-phase chromatography is effective in separating crude oil compounds and can be combined with ultrahigh-resolution MS data to better understand natural oils and oil shale pyrolysates.

  5. High Resolution PDF Measurements on Ag Nanoparticles

    SciTech Connect

    Rocha, Tulio C. R.; Martin, Chris; Kycia, Stefan; Zanchet, Daniela

    2009-01-29

    The quantitative analysis of structural defects in Ag nanoparticles was addressed in this work. We performed atomic scale structural characterization by a combination of x-ray diffraction (XRD) using the Pair Distribution Function analysis (PDF) and High Resolution Transmission Electron Microscopy (HRTEM). The XRD measurements were performed using an innovative instrumentation setup to provide high resolution PDF patterns.

  6. High resolution hypernuclear spectroscopy

    SciTech Connect

    F. Garibaldi

    2005-02-01

    Hypernuclear spectroscopy provides fundamental information for understanding the effective ?-Nucleon interaction. Jefferson Laboratory experiment E94-107 was designed to perform high resolution hypernuclear spectroscopy by electroproduction of strangeness in four 1p-shell nuclei: 12C, 9Be, 16O, and 7Li. The first part of the experiment on 12C and 9Be has been performed in January and April-May 2004 in Hall A at Jefferson Lab. Significant modifications were made to the standard Hall A apparatus for this challenging experiment: two septum magnets and a RICH detector have been added to get reasonable counting rates and excellent particle identification, as required for the experiment. A description of the apparatus and the preliminary analysis results are presented here.

  7. High resolution ultrasonic densitometer

    SciTech Connect

    Dress, W.B.

    1983-01-01

    The velocity of torsional stress pulses in an ultrasonic waveguide of non-circular cross section is affected by the temperature and density of the surrounding medium. Measurement of the transit times of acoustic echoes from the ends of a sensor section are interpreted as level, density, and temperature of the fluid environment surrounding that section. This paper examines methods of making these measurements to obtain high resolution, temperature-corrected absolute and relative density and level determinations of the fluid. Possible applications include on-line process monitoring, a hand-held density probe for battery charge state indication, and precise inventory control for such diverse fluids as uranium salt solutions in accountability storage and gasoline in service station storage tanks.

  8. High-resolution gas chromatography/mas spectrometry method for characterization and quantitative analysis of ginkgolic acids in ginkgo biloba plants, extracts, and dietary supplements

    Technology Transfer Automated Retrieval System (TEKTRAN)

    A high resolution GC/MS with Selected Ion Monitor (SIM) method focusing on the characterization and quantitative analysis of ginkgolic acids (GAs) in Ginkgo biloba L. plant materials, extracts and commercial products was developed and validated. The method involved sample extraction with (1:1) meth...

  9. High Resolution Laboratory Spectroscopy

    NASA Astrophysics Data System (ADS)

    Brünken, S.; Schlemmer, S.

    2016-05-01

    In this short review we will highlight some of the recent advancements in the field of high-resolution laboratory spectroscopy that meet the needs dictated by the advent of highly sensitive and broadband telescopes like ALMA and SOFIA. Among these is the development of broadband techniques for the study of complex organic molecules, like fast scanning conventional absorption spectroscopy based on multiplier chains, chirped pulse instrumentation, or the use of synchrotron facilities. Of similar importance is the extension of the accessible frequency range to THz frequencies, where many light hydrides have their ground state rotational transitions. Another key experimental challenge is the production of sufficiently high number densities of refractory and transient species in the laboratory, where discharges have proven to be efficient sources that can also be coupled to molecular jets. For ionic molecular species sensitive action spectroscopic schemes have recently been developed to overcome some of the limitations of conventional absorption spectroscopy. Throughout this review examples demonstrating the strong interplay between laboratory and observational studies will be given.

  10. High Resolution Doppler Imager

    NASA Technical Reports Server (NTRS)

    Hays, Paul B.

    1999-01-01

    This report summarizes the accomplishments of the High Resolution Doppler Imager (HRDI) on UARS spacecraft during the period 4/l/96 - 3/31/99. During this period, HRDI operation, data processing, and data analysis continued, and there was a high level of vitality in the HRDI project. The HRDI has been collecting data from the stratosphere, mesosphere, and lower thermosphere since instrument activation on October 1, 1991. The HRDI team has stressed three areas since operations commenced: 1) operation of the instrument in a manner which maximizes the quality and versatility of the collected data; 2) algorithm development and validation to produce a high-quality data product; and 3) scientific studies, primarily of the dynamics of the middle atmosphere. There has been no significant degradation in the HRDI instrument since operations began nearly 8 years ago. HRDI operations are fairly routine, although we have continued to look for ways to improve the quality of the scientific product, either by improving existing modes, or by designing new ones. The HRDI instrument has been programmed to collect data for new scientific studies, such as measurements of fluorescence from plants, measuring cloud top heights, and lower atmosphere H2O.

  11. High-Resolution Flow Logging for Hydraulic Characterization of Boreholes and Aquifer Flow Zones at Contaminated Bedrock Sites

    NASA Astrophysics Data System (ADS)

    Williams, J. H.; Johnson, C. D.; Paillet, F. L.

    2004-05-01

    In the past, flow logging was largely restricted to the application of spinner flowmeters to determine flow-zone contributions in large-diameter production wells screened in highly transmissive aquifers. Development and refinement of tool-measurement technology, field methods, and analysis techniques has greatly extended and enhanced flow logging to include the hydraulic characterization of boreholes and aquifer flow zones at contaminated bedrock sites. State-of-the-art in flow logging will be reviewed, and its application to bedrock-contamination investigations will be presented. In open bedrock boreholes, vertical flows are measured with high-resolution flowmeters equipped with flexible rubber-disk diverters fitted to the nominal borehole diameters to concentrate flow through the measurement throat of the tools. Heat-pulse flowmeters measure flows in the range of 0.05 to 5 liters per minute, and electromagnetic flowmeters measure flows in the range of 0.3 to 30 liters per minute. Under ambient and low-rate stressed (either extraction or injection) conditions, stationary flowmeter measurements are collected in competent sections of the borehole between fracture zones identified on borehole-wall images. Continuous flow, fluid-resistivity, and temperature logs are collected under both sets of conditions while trolling with a combination electromagnetic flowmeter and fluid tool. Electromagnetic flowmeters are used with underfit diverters to measure flow rates greater than 30 liters per minute and suppress effects of diameter variations while trolling. A series of corrections are applied to the flow-log data to account for the zero-flow response, bypass, trolling, and borehole-diameter biases and effects. The flow logs are quantitatively analyzed by matching simulated flows computed with a numerical model to measured flows by varying the hydraulic properties (transmissivity and hydraulic head) of the flow zones. Several case studies will be presented that demonstrate

  12. High resolution time interval meter

    DOEpatents

    Martin, A.D.

    1986-05-09

    Method and apparatus are provided for measuring the time interval between two events to a higher resolution than reliability available from conventional circuits and component. An internal clock pulse is provided at a frequency compatible with conventional component operating frequencies for reliable operation. Lumped constant delay circuits are provided for generating outputs at delay intervals corresponding to the desired high resolution. An initiation START pulse is input to generate first high resolution data. A termination STOP pulse is input to generate second high resolution data. Internal counters count at the low frequency internal clock pulse rate between the START and STOP pulses. The first and second high resolution data are logically combined to directly provide high resolution data to one counter and correct the count in the low resolution counter to obtain a high resolution time interval measurement.

  13. Characterization of Shrimp Oil from Pandalus borealis by High Performance Liquid Chromatography and High Resolution Mass Spectrometry

    PubMed Central

    Jiao, Guangling; Hui, Joseph P. M.; Burton, Ian W.; Thibault, Marie-Hélène; Pelletier, Claude; Boudreau, Josée; Tchoukanova, Nadia; Subramanian, Balaji; Djaoued, Yahia; Ewart, Stephen; Gagnon, Jacques; Ewart, Kathryn Vanya; Zhang, Junzeng

    2015-01-01

    Northern shrimp (Pandalus borealis) oil, which is rich in omega-3 fatty acids, was recovered from the cooking water of shrimp processing facilities. The oil contains significant amounts of omega-3 fatty acids in triglyceride form, along with substantial long-chain monounsaturated fatty acids (MUFAs). It also features natural isomeric forms of astaxanthin, a nutritional carotenoid, which gives the oil a brilliant red color. As part of our efforts in developing value added products from waste streams of the seafood processing industry, we present in this paper a comprehensive characterization of the triacylglycerols (TAGs) and astaxanthin esters that predominate in the shrimp oil by using HPLC-HRMS and MS/MS, as well as 13C-NMR. This approach, in combination with FAME analysis, offers direct characterization of fatty acid molecules in their intact forms, including the distribution of regioisomers in TAGs. The information is important for the standardization and quality control, as well as for differentiation of composition features of shrimp oil, which could be sold as an ingredient in health supplements and functional foods. PMID:26096274

  14. CHARACTERIZATION OF NON-DERIVATIZED PLANT CELL WALLS USING HIGH-RESOLUTION SOLUTION-STATE NMR SPECTROSCOPY

    Technology Transfer Automated Retrieval System (TEKTRAN)

    A recently described plant cell wall dissolution system has been logically modified to utilize perdeuterated solvents to allow direct in-nmr-tube dissolution and high-resolution solution-state NMR of the whole cell wall without derivatization. Finely ground cell wall material dissolves in a solvent ...

  15. Intratumoral Agreement of High-Resolution Magic Angle Spinning Magnetic Resonance Spectroscopic Profiles in the Metabolic Characterization of Breast Cancer

    PubMed Central

    Park, Vivian Youngjean; Yoon, Dahye; Koo, Ja Seung; Kim, Eun-Kyung; Kim, Seung Il; Choi, Ji Soo; Park, Seho; Park, Hyung Seok; Kim, Suhkmann; Kim, Min Jung

    2016-01-01

    Abstract High-resolution magic angle spinning (HR-MAS) magnetic resonance (MR) spectroscopy data may serve as a biomarker for breast cancer, with only a small volume of tissue sample required for assessment. However, previous studies utilized only a single tissue sample from each patient. The aim of this study was to investigate whether intratumoral location and biospecimen type affected the metabolic characterization of breast cancer assessed by HR-MAS MR spectroscopy This prospective study was approved by the institutional review board and informed consent was obtained. Preoperative core-needle biopsies (CNBs), central, and peripheral surgical tumor specimens were prospectively collected under ultrasound (US) guidance in 31 patients with invasive breast cancer. Specimens were assessed with HR-MAS MR spectroscopy. The reliability of metabolite concentrations was evaluated and multivariate analysis was performed according to intratumoral location and biospecimen type. There was a moderate or higher agreement between the relative concentrations of 94.3% (33 of 35) of metabolites in the center and periphery, 80.0% (28 of 35) of metabolites in the CNB and central surgical specimens, and 82.9% (29 of 35) of metabolites between all 3 specimen types. However, there was no significant agreement between the concentrations of phosphocholine (PC) and phosphoethanolamine (PE) in the center and periphery. The concentrations of several metabolites (adipate, arginine, fumarate, glutamate, PC, and PE) had no significant agreement between the CNB and central surgical specimens. In conclusion, most HR-MAS MR spectroscopic data do not differ based on intratumoral location or biospecimen type. However, some metabolites may be affected by specimen-related variables, and caution is recommended in decision-making based solely on metabolite concentrations, particularly PC and PE. Further validation through future studies is needed for the clinical implementation of these biomarkers based

  16. Performance characterization of a pressure-tuned wide-angle Michelson interferometric spectral filter for high spectral resolution lidar

    NASA Astrophysics Data System (ADS)

    Seaman, Shane T.; Cook, Anthony L.; Scola, Salvatore J.; Hostetler, Chris A.; Miller, Ian; Welch, Wayne

    2015-09-01

    High Spectral Resolution Lidar (HSRL) is typically realized using an absorption filter to separate molecular returns from particulate returns. NASA Langley Research Center (LaRC) has designed and built a Pressure-Tuned Wide-Angle Michelson Interferometer (PTWAMI) as an alternate means to separate the two types of atmospheric returns. While absorption filters only work at certain wavelengths and suffer from low photon efficiency due to light absorption, an interferometric spectral filter can be designed for any wavelength and transmits nearly all incident photons. The interferometers developed at LaRC employ an air spacer in one arm, and a solid glass spacer in the other. Field widening is achieved by specific design and selection of the lengths and refractive indices of these two arms. The principal challenge in using such an interferometer as a spectral filter for HSRL aboard aircraft is that variations in glass temperature and air pressure cause changes in the interferometer's optical path difference. Therefore, a tuning mechanism is needed to actively accommodate for these changes. The pressure-tuning mechanism employed here relies on changing the pressure in an enclosed, air-filled arm of the interferometer to change the arm's optical path length. However, tuning using pressure will not adjust for tilt, mirror warpage, or thermally induced wavefront error, so the structural, thermal, and optical behavior of the device must be well understood and optimized in the design and manufacturing process. The PTWAMI has been characterized for particulate transmission ratio, wavefront error, and tilt, and shows acceptable performance for use in an HSRL instrument.

  17. Multiplex Real-Time PCR Assay with High-Resolution Melting Analysis for Characterization of Antimicrobial Resistance in Neisseria gonorrhoeae

    PubMed Central

    Donà, Valentina; Kasraian, Sara; Lupo, Agnese; Guilarte, Yuvia N.; Hauser, Christoph; Furrer, Hansjakob; Unemo, Magnus; Low, Nicola

    2016-01-01

    Resistance to antibiotics used against Neisseria gonorrhoeae infections is a major public health concern. Antimicrobial resistance (AMR) testing relies on time-consuming culture-based methods. Development of rapid molecular tests for detection of AMR determinants could provide valuable tools for surveillance and epidemiological studies and for informing individual case management. We developed a fast (<1.5-h) SYBR green-based real-time PCR method with high-resolution melting (HRM) analysis. One triplex and three duplex reactions included two sequences for N. gonorrhoeae identification and seven determinants of resistance to extended-spectrum cephalosporins (ESCs), azithromycin, ciprofloxacin, and spectinomycin. The method was validated by testing 39 previously fully characterized N. gonorrhoeae strains, 19 commensal Neisseria species strains, and an additional panel of 193 gonococcal isolates. Results were compared with results of culture-based AMR determination. The assay correctly identified N. gonorrhoeae and the presence or absence of the seven AMR determinants. There was some cross-reactivity with nongonococcal Neisseria species, and the detection limit was 103 to 104 genomic DNA (gDNA) copies/reaction. Overall, the platform accurately detected resistance to ciprofloxacin (sensitivity and specificity, 100%), ceftriaxone (sensitivity, 100%; specificity, 90%), cefixime (sensitivity, 92%; specificity, 94%), azithromycin (sensitivity and specificity, 100%), and spectinomycin (sensitivity and specificity, 100%). In conclusion, our methodology accurately detects mutations that generate resistance to antibiotics used to treat gonorrhea. Low assay sensitivity prevents direct diagnostic testing of clinical specimens, but this method can be used to screen collections of gonococcal isolates for AMR more quickly than current culture-based AMR testing. PMID:27225407

  18. Multiplex Real-Time PCR Assay with High-Resolution Melting Analysis for Characterization of Antimicrobial Resistance in Neisseria gonorrhoeae.

    PubMed

    Donà, Valentina; Kasraian, Sara; Lupo, Agnese; Guilarte, Yuvia N; Hauser, Christoph; Furrer, Hansjakob; Unemo, Magnus; Low, Nicola; Endimiani, Andrea

    2016-08-01

    Resistance to antibiotics used against Neisseria gonorrhoeae infections is a major public health concern. Antimicrobial resistance (AMR) testing relies on time-consuming culture-based methods. Development of rapid molecular tests for detection of AMR determinants could provide valuable tools for surveillance and epidemiological studies and for informing individual case management. We developed a fast (<1.5-h) SYBR green-based real-time PCR method with high-resolution melting (HRM) analysis. One triplex and three duplex reactions included two sequences for N. gonorrhoeae identification and seven determinants of resistance to extended-spectrum cephalosporins (ESCs), azithromycin, ciprofloxacin, and spectinomycin. The method was validated by testing 39 previously fully characterized N. gonorrhoeae strains, 19 commensal Neisseria species strains, and an additional panel of 193 gonococcal isolates. Results were compared with results of culture-based AMR determination. The assay correctly identified N. gonorrhoeae and the presence or absence of the seven AMR determinants. There was some cross-reactivity with nongonococcal Neisseria species, and the detection limit was 10(3) to 10(4) genomic DNA (gDNA) copies/reaction. Overall, the platform accurately detected resistance to ciprofloxacin (sensitivity and specificity, 100%), ceftriaxone (sensitivity, 100%; specificity, 90%), cefixime (sensitivity, 92%; specificity, 94%), azithromycin (sensitivity and specificity, 100%), and spectinomycin (sensitivity and specificity, 100%). In conclusion, our methodology accurately detects mutations that generate resistance to antibiotics used to treat gonorrhea. Low assay sensitivity prevents direct diagnostic testing of clinical specimens, but this method can be used to screen collections of gonococcal isolates for AMR more quickly than current culture-based AMR testing.

  19. High resolution transmission electron microscopy characterization of fcc --> 9R transformation in nanocrystalline palladium films due to hydriding

    NASA Astrophysics Data System (ADS)

    Amin-Ahmadi, Behnam; Idrissi, Hosni; Delmelle, Renaud; Pardoen, Thomas; Proost, Joris; Schryvers, Dominique

    2013-02-01

    Sputtered nanocrystalline palladium thin films with nanoscale growth twins have been subjected to hydriding cycles. The evolution of the twin boundaries has been investigated using high resolution transmission electron microscopy. Surprisingly, the ∑3{112} incoherent twin boundaries dissociate after hydriding into two phase boundaries bounding a 9R phase. This phase which corresponds to single stacking faults located every three {111} planes in the fcc Pd structure was not expected because of the high stacking fault energy of Pd. This observation is connected to the influence of the Hydrogen on the stacking fault energy of palladium and the high compressive stresses building up during hydriding.

  20. Characterization of the Neuhauserwald Quaternary valley, northern Switzerland, using high-resolution seismic-reflection and seismic-refraction imaging

    NASA Astrophysics Data System (ADS)

    Reiser, Fabienne; Schmelzbach, Cedric; Horstmeyer, Heinrich; Sollberger, David; Rabenstein, Lasse; Maurer, Hansruedi; Robertsson, Johan

    2014-05-01

    The Swiss Molasse basin is largely covered by Quaternary sediments which have a thickness ranging from a few meters to several hundred meters. These glacial, glaciofluvial, and glaciolacustrine sedimentary deposits are of high interest for a number of reasons; for example, they contain a large part of Switzerland's underground freshwater supplies, and resolving their structure and deposition processes is important to reconstruct the climate history. Furthermore, this usually thin, but highly heterogeneous near-surface cover can have a significant deleterious effect on subsurface imaging by regional-scale seismic-reflection surveying. The study presented here was motivated by the observation of a hithertofore unknown Quaternary valley observed on recently acquired regional-scale seismic-reflection data. To characterize the depth and internal structure of the Neuhauserwald Quaternary valley, two high-resolution seismic-reflection/refraction datasets were acquired. The approximately 900 m long line 1 runs parallel to the valley axis, whereas the ~ 700 m long line 3 is oriented perpendicular to it. A borehole on line 1 provides lithological information and seismic velocities for the upper 150 m, which were determined by means of a check-shot experiment. The lithological sequence consists of alternating sand and gravel units over lacustrine silty sands. Mesozoic limestones are found at 128 m depth below surface. The final processed seismic reflection images show reflections down to around 200 ms traveltime (~ 130 m). The first-arrival traveltime tomography models show a distinct velocity increase from around 500 m/s at the surface to around 4000 m/s at about 150 m depth. For line 1, velocity variations between 500 m/s and 2000 m/s indicate vertical and lateral changes within the valley infill. The depth to the high-velocity basement, however, is only poorly constrained by a few rays in the refraction tomogram resulting from the paucity of long-offset traveltime picks

  1. Structural Characterization of the 216-Z-9 Crib Prior to Decontamination and Demolition Using Robot Crawler and High Resolution Photography

    SciTech Connect

    Hopkins, A.; Sutter, C.; Klos, D.B.; Teal, J.A.; Oates, L.; Bond, F.W.; Mattlin, E.; Clarke, S.

    2008-07-01

    The Department of Energy, Richland Operations Office is preparing to conduct a Comprehensive Environmental Response, Compensation, and Liability Act (CERCLA) removal action for the decontamination and demolition of the above-grade mining structures and equipment at the 216-Z-9 Crib. An investigation of the condition of the mining complex was initiated to determine constraints necessary for safely conducting the removal of the buildings. While crib headspace chemical analysis and nondestructive analysis of the interior of the buildings was completed to address radiological contamination concerns, the primary concern regarding the removal of the above-grade structures located on the crib cover involves determining the loading capacity and structural integrity of the crib cover slab. Additional concerns included headspace gases and radionuclide contamination. Until the structural analysis was completed, loading limits on the crib cover had been restricted. Photographic documentation revealed the loss of protective tiles and acid resistant coating from the underside of the cover raising a question of concrete stability. The investigation relied heavily on the use of high resolution photography with high intensity lighting for photographic documentation of the underside of the crib cover, followed by structural analysis of the documentation by a team of qualified engineers. Deployment of a robot crawler with attached camera and positioning of a fixed camera were integral to this structural characterization effort. Results of the photographic documentation were of sufficient quality to allow for bounding decisions to be made regarding the loading of the crib cover while performing the demolition of the mining structures (glovebox, excavator, bucket) and the associated buildings. The 216-Z-9 Crib, also known as the 216 Z-9 Recuplex CAW (CA column waste) Waste Disposal Cavern, the Z-9 Trench and the Z-9 Crib was constructed as an engineered trench with an open area beneath

  2. Characterization of Organic Nitrate Formation in Limonene Secondary Organic Aerosol using High-Resolution Chemical Ionization Mass Spectrometry

    NASA Astrophysics Data System (ADS)

    Faxon, Cameron; Hammes, Julia; Peng, Jianfei; Hallquist, Mattias; Pathak, Ravi

    2016-04-01

    Previous work has shown that organic nitrates (RONO2) are prevalent in the boundary layer, and can contribute significantly to secondary organic aerosol formation. Monoterpenes, including limonene, have been shown to be precursors for the formation of these organic nitrates. Limonene has two double bonds, either of which may be oxidized by NO3 or O3. This leads to the generation of products that can subsequently condense or partition into the particle phase, producing secondary organic aerosol. In order to further elucidate the particle and gas phase product distribution of organic nitrates forming from the reactions of limonene and the nitrate radical (NO3), a series of experiments were performed in the Gothenburg Flow Reactor for Oxidation Studies at Low Temperatures (G-FROST), described by previous work. N2O5 was used as the source for NO3 and NO2, and a characterized diffusion source was used to introduce limonene into the flow reactor. All experiments were conducted in the absence of light, and the concentration of limonene was increased step-wise throughout each experiment to modify the ratio of N2O5to limonene. The experiments were conducted such that both limonene- and N2O5-limited regimes were present. Gas and particle phase products were measured using an iodide High-Resolution Time-of-Flight Mass Spectrometer (HR-ToF-CIMS) coupled to a Filter Inlet for Gases and AEROsols (FIGAERO, and particle size and SOA mass concentrations were derived using a Scanning Mobility Particle Sizer (SMPS). CIMS measurement techniques have previously been employed for the measurement of organic nitrate products of such compounds using multiple reagent ions. The use of this instrumentation allowed for the identification of chemical formulas for gas and particle phase species. The findings from the experiments will be presented in terms of the relative gas-particle partitioning of major products and the effects of N2O5/limonene ratios on product distributions. Additionally, a

  3. Bioprospecting of microalgae: Proper extraction followed by high performance liquid chromatographic-high resolution mass spectrometric fingerprinting as key tools for successful metabolom characterization.

    PubMed

    Stranska-Zachariasova, Milena; Kastanek, Petr; Dzuman, Zbynek; Rubert, Josep; Godula, Michal; Hajslova, Jana

    2016-03-15

    Currently, the interest in microalgae as a source of biologically active components exploitable as supplementary ingredients to food/feed or in cosmetics continues to increase. Existing research mainly aims to focus on revealing and recovering the rare, cost competitive components of the algae metabolom. Because these components could be of very different physicochemical character, a universal approach for their isolation and characterization should be developed. This study demonstrates the systematic development of the extraction strategy that represents one of the key challenges in effective algae bioprospecting, which predefines their further industrial application. By using of Trachydiscus minutus as a model microalgae biomass, following procedures were tested and critically evaluated in order to develop the generic procedure for microalgae bioprospecting: (i) various ways of mechanical disintegration of algae cells enabling maximum extraction efficiency, (ii) the use of a wide range of extraction solvents/solvent mixtures suitable for optimal extraction yields of polar, medium-polar, and non-polar compounds, (iii) the use of consecutive extractions as a fractionation approach. Within the study, targeted screening of selected compounds representing broad range of polarities was realized by ultra-high performance liquid chromatography coupled with high resolution tandem mass spectrometric detection (UHPLC-HRMS/MS), to assess the effectiveness of undertaken isolation steps. As a result, simple and high-throughput extraction-fractionation strategy based on consecutive extraction with water-aqueous methanol-hexane/isopropanol was developed. Moreover, to demonstrate the potential of the UHPLC-HRMS/MS for the retrospective non-target screening and compounds identification, the collected mass spectra have been evaluated to characterize the pattern of extracted metabolites. Attention was focused on medium-/non-polar extracts and characterization of lipid species

  4. High Resolution Formaldehyde Photochemistry

    NASA Astrophysics Data System (ADS)

    Ernest, C. T.; Bauer, D.; Hynes, A. J.

    2010-12-01

    Formaldehyde (HCHO) is the most abundant and most important organic carbonyl compound in the atmosphere. The sources of formaldehyde are the oxidation of methane, isoprene, acetone, and other volatile organic compounds (VOCs); fossil fuel combustion; and biomass burning. The dominant loss mechanism for formaldehyde is photolysis which occurs via two pathways: (R1) HCHO + hv → HCO + H (R2) HCHO + hv → H2 + CO The first pathway (R1) is referred to as the radical channel, while the second pathway (R2) is referred to as the molecular channel. The products of both pathways play a significant role in atmospheric chemistry. The CO that is produced in the molecular channel undergoes further oxidation to produce CO2. Under atmospheric conditions, the H atom and formyl radical that are produced in the radical channel undergo rapid reactions with O2 to produce the hydroperoxyl radical (HO2) via (R3) and (R4). (R3) HCO + O2 → HO2 + CO (R4) H + O2 → HO2 Thus, for every photon absorbed, the photolysis of formaldehyde can contribute one CO2 molecule to the global greenhouse budget or two HO2 radicals to the tropospheric HOx (OH + HO2) cycle. The HO2 radicals produced during formaldehyde photolysis have also been implicated in the formation of photochemical smog. The HO2 radicals act as radical chain carriers and convert NO to NO2, which ultimately results in the catalytic production of O3. Constraining the yield of HO2 produced via HCHO photolysis is essential for improving tropospheric chemistry models. In this study, both the absorption cross section and the quantum yield of the radical channel (R1) were measured at high resolution over the tropospherically relevant wavelength range 304-330 nm. For the cross section measurements a narrow linewidth Nd:YAG pumped dye laser was used with a multi-pass cell. Partial pressures of HCHO were kept below 0.3 torr. Simultaneous measurement of OH LIF in a flame allowed absolute calibration of the wavelength scale. Pressure

  5. Experimentally characterizing the electronic structures of f-electron systems using advanced high resolution Fourier transform microwave spectroscopies

    SciTech Connect

    Cooke, Stephen, A

    2013-02-03

    We aim to (i) provide data that directly addresses the fundamental roles of actinide valence electrons in chemical bonding, and (ii) serve to provide prototypical data for the heavy element computational chemistry community. These goals will be achieved through the first pure rotational spectroscopic measurements on prototypical systems at ultra-high resolution. These systems encompass low oxidation state uranium and thorium compounds including, but not limited to, UX and ThX, X = F, Cl, Br, I, and UY and ThY, Y = O, S, and other simple U and Th-containing compounds. Our primary experimental tools involve time-domain rotational spectroscopy achieving line widths and resolutions of a few kHz.

  6. Characterization of a custom-built RF coil for a high-resolution phase-contrast magnetic resonance velocimeter

    NASA Astrophysics Data System (ADS)

    Yang, Byungkuen; Cho, Jee-Hyun; Song, Simon

    2016-11-01

    For the use of clinical purpose magnetic resonance velocimeter (MRV) is a versatile flow visualization technique in that it allows opaque flow, complex geometry, no use of tracer particles and facile fast non-invasive measurements of 3 dimensional and 3 component velocity vectors. However, the spatial resolution of a commercial MR machine is lower than optics-based techniques like PIV. On the other hand, the use of MRV for clinical purposes like cardiovascular flow visualization requires accurate measurements or estimations on wall shear stress (WSS) with a high spatial resolution. We developed a custom-built solenoid RF coil for phase-contrast (PC) MRV to improve its resolution. We compared signal-to-noise ratio, WSS estimations, partial volume effects near wall between the custom RF coil and a commercial coil. Also, a Hagen-Poiseuille flow was analyzed with the custom RF coil. This work was supported by the National Research Foundation of Korea (NRF) Grant funded by the Korea government (MSIP) (No. 2016R1A2B3009541).

  7. High resolution telescope

    DOEpatents

    Massie, Norbert A.; Oster, Yale

    1992-01-01

    A large effective-aperture, low-cost optical telescope with diffraction-limited resolution enables ground-based observation of near-earth space objects. The telescope has a non-redundant, thinned-aperture array in a center-mount, single-structure space frame. It employs speckle interferometric imaging to achieve diffraction-limited resolution. The signal-to-noise ratio problem is mitigated by moving the wavelength of operation to the near-IR, and the image is sensed by a Silicon CCD. The steerable, single-structure array presents a constant pupil. The center-mount, radar-like mount enables low-earth orbit space objects to be tracked as well as increases stiffness of the space frame. In the preferred embodiment, the array has elemental telescopes with subaperture of 2.1 m in a circle-of-nine configuration. The telescope array has an effective aperture of 12 m which provides a diffraction-limited resolution of 0.02 arc seconds. Pathlength matching of the telescope array is maintained by an electro-optical system employing laser metrology. Speckle imaging relaxes pathlength matching tolerance by one order of magnitude as compared to phased arrays. Many features of the telescope contribute to substantial reduction in costs. These include eliminating the conventional protective dome and reducing on-site construction activites. The cost of the telescope scales with the first power of the aperture rather than its third power as in conventional telescopes.

  8. High-Resolution Mass Spectrometers

    NASA Astrophysics Data System (ADS)

    Marshall, Alan G.; Hendrickson, Christopher L.

    2008-07-01

    Over the past decade, mass spectrometry has been revolutionized by access to instruments of increasingly high mass-resolving power. For small molecules up to ˜400 Da (e.g., drugs, metabolites, and various natural organic mixtures ranging from foods to petroleum), it is possible to determine elemental compositions (CcHhNnOoSsPp…) of thousands of chemical components simultaneously from accurate mass measurements (the same can be done up to 1000 Da if additional information is included). At higher mass, it becomes possible to identify proteins (including posttranslational modifications) from proteolytic peptides, as well as lipids, glycoconjugates, and other biological components. At even higher mass (˜100,000 Da or higher), it is possible to characterize posttranslational modifications of intact proteins and to map the binding surfaces of large biomolecule complexes. Here we review the principles and techniques of the highest-resolution analytical mass spectrometers (time-of-flight and Fourier transform ion cyclotron resonance and orbitrap mass analyzers) and describe some representative high-resolution applications.

  9. Plasma-assisted synthesis and high-resolution characterization of anisotropic elemental and bimetallic core-shell magnetic nanoparticles.

    PubMed

    Hennes, M; Lotnyk, A; Mayr, S G

    2014-01-01

    Magnetically anisotropic as well as magnetic core-shell nanoparticles (CS-NPs) with controllable properties are highly desirable in a broad range of applications. With this background, a setup for the synthesis of heterostructured magnetic core-shell nanoparticles, which relies on (optionally pulsed) DC plasma gas condensation has been developed. We demonstrate the synthesis of elemental nickel nanoparticles with highly tunable sizes and shapes and Ni@Cu CS-NPs with an average shell thickness of 10 nm as determined with scanning electron microscopy, high-resolution transmission electron microscopy and energy-dispersive X-ray spectroscopy measurements. An analytical model that relies on classical kinetic gas theory is used to describe the deposition of Cu shell atoms on top of existing Ni cores. Its predictive power and possible implications for the growth of heterostructured NP in gas condensation processes are discussed.

  10. High-resolution neodymium characterization along the Mediterranean margins and modelling of ɛNd distribution in the Mediterranean basins

    NASA Astrophysics Data System (ADS)

    Ayache, Mohamed; Dutay, Jean-Claude; Arsouze, Thomas; Révillon, Sidonie; Beuvier, Jonathan; Jeandel, Catherine

    2016-09-01

    An extensive compilation of published neodymium (Nd) concentrations and isotopic compositions (Nd IC) was realized in order to establish a new database and a map (using a high-resolution geological map of the area) of the distribution of these parameters for all the Mediterranean margins. Data were extracted from different kinds of samples: river solid discharge deposited on the shelf, sedimentary material collected on the margin or geological material outcropping above or close to a margin. Additional analyses of surface sediments were done in order to improve this data set in key areas (e.g. Sicilian strait). The Mediterranean margin Nd isotopic signatures vary from non-radiogenic values around the Gulf of Lion, (ɛNd values ˜ -11) to radiogenic values around the Aegean and the Levantine sub-basins up to +6. Using a high-resolution regional oceanic model (1/12° of horizontal-resolution), ɛNd distribution was simulated for the first time in the Mediterranean Sea. The high resolution of the model provides a unique opportunity to represent a realistic thermohaline circulation in the basin and thus apprehend the processes governing the Nd isotope distribution in the marine environment. Results are consistent with the preceding conclusions on boundary exchange (BE) as an important process in the Nd oceanic cycle. Nevertheless this approach simulates a too-radiogenic value in the Mediterranean Sea; this bias will likely be corrected once the dust and river inputs will be included in the model. This work highlights that a significant interannual variability of ɛNd distribution in seawater could occur. In particular, important hydrological events such as the Eastern Mediterranean Transient (EMT), associated with deep water formed in the Aegean sub-basin, could induce a shift in ɛNd at deep/intermediate depths that could be noticeable in the eastern part of the basin. This underlines that the temporal and geographical variations of ɛNd could represent an interesting

  11. Enceladus Icy Jet Analyzer (ENIJA) : Search for life with a high resolution TOF-MS for in situ characterization of high dust density regions

    NASA Astrophysics Data System (ADS)

    Srama, R.; Postberg, F.; Henkel, H.; Klopfer, T.; Li, Y.; Simolka, J.; Bugiel, S.; Kempf, S.; Hillier, J.; Khawaja, N.; Trieloff, M.; Abel, B.; Moragas-Klostermeyer, G.; Strack, H.; Schmidt, J.; Soja, R.; Sternovsky, Z.; Spohn, T.

    2015-10-01

    ENIJA was developed to search for the prebiotic molecules and biogenic key compounds like amino acids in the plumes of Saturn's moon Enceladus. ENIJA records time-of-flight mass spectra in the range between 1 and 2000 u produced by high-velocity impacts of individual grains onto a metal target. The spectrometer has a measurement mode for cations or anions formed upon impact, with concurrent determination of the mass of the detected grains. Detection of elemental and molecular species over such a wide mass range permits clear characterization of particle chemistry, simultaneously covering individual ions like H+, C-, Oand complex organics with masses of many hundred u. ENIJA is sensitive to water ice, minerals, metals, organic particles, and mixtures of these components. The instrument is based on the principle of impact ionization and optimized for the analysis of high dust fluxes and number densities as typically occur during Enceladus plume crossings or in cometary comae. The mass resolution is m/dm > 970 for typical plume particles in the size range 0.01 to 100 μm. The instrument mass and peak power is 3.5 kg and 14.2 W, respectively. The instrument is part of the model payload for the mission "Enceladus Life Finder" (ELF).

  12. High spatial resolution, high energy synchrotron x-ray diffraction characterization of residual strains and stresses in laser shock peened Inconel 718SPF alloy

    NASA Astrophysics Data System (ADS)

    Gill, Amrinder S.; Zhou, Zhong; Lienert, Ulrich; Almer, Jonathan; Lahrman, David F.; Mannava, S. R.; Qian, Dong; Vasudevan, Vijay K.

    2012-04-01

    Laser shock peening (LSP) is an advanced surface enhancement technique used to enhance the fatigue strength of metal parts by imparting deep compressive residual stresses. In the present study, LSP was performed on IN718 SPF alloy, a fine grained nickel-based superalloy, with three different power densities and depth resolved residual strain and stress characterization was conducted using high energy synchrotron x-ray diffraction in beam line 1-ID-C at the Advanced Photon Source at the Argonne National laboratory. A fine probe size and conical slits were used to non-destructively obtain data from specific gauge volumes in the samples, allowing for high-resolution strain measurements. The results show that LSP introduces deep compressive residual stresses and the magnitude and depth of these stresses depend on the energy density of the laser. The LSP induced residual stresses were also simulated using three-dimensional nonlinear finite element analysis, with employment of the Johnson-Cook model for describing the nonlinear materials constitutive behavior. Good agreement between the experimental and simulated data was obtained. These various results are presented and discussed.

  13. Lipidomics profiling by high-resolution LC-MS and high-energy collisional dissociation fragmentation: focus on characterization of mitochondrial cardiolipins and monolysocardiolipins.

    PubMed

    Bird, Susan S; Marur, Vasant R; Sniatynski, Matthew J; Greenberg, Heather K; Kristal, Bruce S

    2011-02-01

    A liquid chromatography-mass spectrometry (LC-MS) method was used for separation of lipid classes as well as both qualitative and semiquantitative detection of individual lipids in biological samples. Data were acquired using high-resolution full-scan MS and high-energy collisional dissociation (HCD) all ion fragmentation. The method was evaluated for efficient separation and detection in both positive and negative ionization mode using standards spanning six lipid classes. Platform linearity and robustness, related to the mitochondrial lipid cardiolipin (CL), were assessed using extracted ion chromatograms with mass tolerance windows of 5 ppm or less from full scan exact mass measurements. The platform CL limit of detection was determined to be 5 pmol (0.9 μM) on the column, with mass accuracy <1.5 ppm, retention time coefficients of variation (CV) < 0.5%, and area CV < 13%. This mass accuracy was critical to the identification of unknown CL species in mitochondria samples, through the elimination of false positives. In addition to detection and relative quantitation of CL species in mitochondria, CL structures were characterized through the use of alternating HCD scans at different energies to produce diagnostic fragmentations on all ions in the analysis. The developed lipid profiling method was applied to mitochondrial samples from an animal study related to the linkages between diet, mitochondrial function, and disease. The analysis identified 28 unique CL species and two monolysocardiolipin species that are often associated with mitochondrial stress and dysfunction.

  14. Joint Stochastic Inversion of Pre-Stack 3D Seismic Data and Well Logs for High Resolution Hydrocarbon Reservoir Characterization

    NASA Astrophysics Data System (ADS)

    Torres-Verdin, C.

    2007-05-01

    This paper describes the successful implementation of a new 3D AVA stochastic inversion algorithm to quantitatively integrate pre-stack seismic amplitude data and well logs. The stochastic inversion algorithm is used to characterize flow units of a deepwater reservoir located in the central Gulf of Mexico. Conventional fluid/lithology sensitivity analysis indicates that the shale/sand interface represented by the top of the hydrocarbon-bearing turbidite deposits generates typical Class III AVA responses. On the other hand, layer- dependent Biot-Gassmann analysis shows significant sensitivity of the P-wave velocity and density to fluid substitution. Accordingly, AVA stochastic inversion, which combines the advantages of AVA analysis with those of geostatistical inversion, provided quantitative information about the lateral continuity of the turbidite reservoirs based on the interpretation of inverted acoustic properties (P-velocity, S-velocity, density), and lithotype (sand- shale) distributions. The quantitative use of rock/fluid information through AVA seismic amplitude data, coupled with the implementation of co-simulation via lithotype-dependent multidimensional joint probability distributions of acoustic/petrophysical properties, yields accurate 3D models of petrophysical properties such as porosity and permeability. Finally, by fully integrating pre-stack seismic amplitude data and well logs, the vertical resolution of inverted products is higher than that of deterministic inversions methods.

  15. High-resolution slug testing.

    PubMed

    Zemansky, G M; McElwee, C D

    2005-01-01

    The hydraulic conductivity (K) variation has important ramifications for ground water flow and the transport of contaminants in ground water. The delineation of the nature of that variation can be critical to complete characterization of a site and the planning of effective and efficient remedial measures. Site-specific features (such as high-conductivity zones) need to be quantified. Our alluvial field site in the Kansas River valley exhibits spatial variability, very high conductivities, and nonlinear behavior for slug tests in the sand and gravel aquifer. High-resolution, multilevel slug tests have been performed in a number of wells that are fully screened. A general nonlinear model based on the Navier-Stokes equation, nonlinear frictional loss, non-Darcian flow, acceleration effects, radius changes in the wellbore, and a Hvorslev model for the aquifer has been used to analyze the data, employing an automated processing system that runs within the Excel spreadsheet program. It is concluded that slug tests can provide the necessary data to identify the nature of both horizontal and vertical K variation in an aquifer and that improved delineation or higher resolution of K structure is possible with shorter test intervals. The gradation into zones of higher conductivity is sharper than seen previously, and the maximum conductivity observed is greater than previously measured. However, data from this project indicate that well development, the presence of fines, and the antecedent history of the well are important interrelated factors in regard to slug-test response and can prevent obtaining consistent results in some cases.

  16. Time-Resolved Molecular Characterization of Limonene/Ozone Aerosol using High-Resolution Electrospray Ionization Mass Spectrometry

    SciTech Connect

    Bateman, Adam P.; Nizkorodov, Serguei; Laskin, Julia; Laskin, Alexander

    2009-09-09

    Molecular composition of limonene/O3 secondary organic aerosol (SOA) was investigated using high-resolution electrospray ionization mass spectrometry (HR-ESI-MS) as a function of reaction time. SOA was generated by ozonation of D-limonene in a reaction chamber and sampled at different time intervals using a cascade impactor. The SOA samples were extracted into acetonitrile and analyzed using a HR-ESI-MS instrument with a resolving power of 100,000 (m/Δm). The resulting mass spectra provided detailed information about the extent of oxidation inferred from the O:C ratios, double bond equivalency (DBE) factors, and aromaticity indexes (AI) in hundreds of identified individual SOA species.

  17. High Resolution Orientation Imaging Microscopy

    DTIC Science & Technology

    2012-05-02

    Functions, ICCES 2010, Las Vegas. 17. David Fullwood, Brent Adams, Mike Miles, Stuart Rogers, Ali Khosravani, Raj Mishra, Design for Ductility : Defect... Pseudo -Symmetries by High Resolution EBSD Methods, MS&T. 2009: Pittsburgh. 27. Oliver Johnson, Calvin Gardner, David Fullwood, Brent Adams, George...applied to strain measurements ................................... 6 2.3 Recovery of Lattice Tetragonality and Pseudo -Symmetry Resolution

  18. Characterization of micro- and nanocapsules for self-healing anti-corrosion coatings by high-resolution SEM with coupled transmission mode and EDX.

    PubMed

    Hodoroaba, V-D; Akcakayiran, D; Grigoriev, D O; Shchukin, D G

    2014-04-21

    The observation of morphological details down to the nanometer range of the outer surface of micro-, submicro- and nanoparticles in a high-resolution scanning electron microscope (SEM) was extended with in-depth observation by enabling the transmission mode in the SEM, i.e. TSEM. The micro- and nanocapsules characterized in this study were fabricated as depots for protective agents to be embedded in innovative self-healing coatings. By combining the two imaging modes (upper and in-depth observation) complementing each other a better characterisation by a more comprehensive interpretation of the "consistency" of the challenging specimens, e.g. including details "hidden" beyond the surface or the real specimen shape at all, has been attained. Furthermore, the preparation of the quasi electron transparent samples onto thin supporting foils enables also elemental imaging by energy dispersive X-ray spectroscopy (EDX) with high spatial resolution. Valuable information on the elemental distribution in individual micro-, submicro- and even nanocapsules completes the "3D" high resolution morphological characterization at the same multimodal SEM/TSEM/EDX system.

  19. Characterization of the spatial resolution of different high-frequency imaging systems using a novel anechoic-sphere phantom

    PubMed Central

    Filoux, Erwan; Mamou, Jonathan; Aristizábal, Orlando; Ketterling, Jeffrey A.

    2011-01-01

    The spatial resolution of high-frequency ultrasound (HFU, >20 MHz) imaging systems is usually determined using wires perpendicular to the beam. Recently, two tissue-mimicking phantoms (TMPs) were developed to estimate the three-dimensional (3D) resolution. Each of the TMPs consist of nine, 1 cm wide slabs of tissue-mimicking material containing randomly distributed anechoic spheres. All anechoic spheres in one slab have the same dimensions, and their diameter is increased from 0.1 mm in the first slab to 1.09 mm in the last. The scattering background for one set of slabs was fabricated using 3.5 µm glass beads, while those of the second set were 6.4 µm. The ability of a HFU system to detect these spheres against a speckle background provides a realistic estimation of its 3D spatial resolution. In the present study, these TMPs were used with HFU systems using single-element transducers, linear arrays and annular arrays. The TMPs were immersed in water and each slab was scanned using a VisualSonics™ Vevo 770 and Vevo 2100, and a custom HFU system based on a 5-element annular array. The annular array had a nominal center frequency of 40 MHz, a focal length of 12 mm, and a total aperture of 6 mm. A synthetic-focusing algorithm was used to form images with an increased depth-of-field. The penetration depth was increased by using a linear-chirp signal spanning 15 to 65 MHz over 4 µs. Results obtained with the custom system were compared to those of the Vevo systems (40 MHz probes RMV-704 and MS-550D) in terms of sphere detection, i.e., 3D spatial resolution, and contrast-to-noise ratio (CNR). Resulting B-mode images indicated that only the linear-array transducer failed to clearly resolve the 0.2 mm spheres, which showed that the 3D spatial resolution of the single-element and annular-array transducers was superior to that of the linear array. The single-element transducer could only detect these spheres over a narrow 1.5 mm depth-of-field, while the annular array

  20. The periodic focusing ion funnel: theory, design, and experimental characterization by high-resolution ion mobility-mass spectrometry.

    PubMed

    Fort, Kyle L; Silveira, Joshua A; Russell, David H

    2013-10-15

    Simulation-based development and experimental characterization of a DC-only ion funnel is described herein. Radial ion confinement is achieved via periodic focusing whereby a collisionally dampened effective potential is generated in the inertial frame of an ion traversing the device with appreciable velocity. The new device, termed a periodic focusing ion funnel (PF IF), provides an efficient alternative to the rf ion funnel providing high ion transmission with fewer electrodes, simplified electrical circuitry, and reduced power supply requirements. The utility of the PF IF for structural ion mobility-mass spectrometry (IM-MS) studies is demonstrated using model peptide ions (bradykinin, gramicidin S, and trpzip 1).

  1. Demonstration of a Novel, Integrated, Multi-Scale Procedure for High-Resolution 3D Reservoir Characterization and Improved CO2-EOR/Sequestration Management, SACROC Unit

    SciTech Connect

    Scott R. Reeves

    2007-09-30

    The primary goal of this project was to demonstrate a new and novel approach for high resolution, 3D reservoir characterization that can enable better management of CO{sub 2} enhanced oil recovery (EOR) projects and, looking to the future, carbon sequestration projects. The approach adopted has been the subject of previous research by the DOE and others, and relies primarily upon data-mining and advanced pattern recognition approaches. This approach honors all reservoir characterization data collected, but accepts that our understanding of how these measurements relate to the information of most interest, such as how porosity and permeability vary over a reservoir volume, is imperfect. Ideally the data needed for such an approach includes surface seismic to provide the greatest amount of data over the entire reservoir volume of interest, crosswell seismic to fill the resolution gap between surface seismic and wellbore-scale measurements, geophysical well logs to provide the vertical resolution sought, and core data to provide the tie to the information of most interest. These data are combined via a series of one or more relational models to enable, in its most successful application, the prediction of porosity and permeability on a vertical resolution similar to logs at each surface seismic trace location. In this project, the procedure was applied to the giant (and highly complex) SACROC unit of the Permian basin in West Texas, one of the world's largest CO{sub 2}-EOR projects and a potentially world-class geologic sequestration site. Due to operational scheduling considerations on the part of the operator of the field, the crosswell data was not obtained during the period of project performance (it is currently being collected however as part of another DOE project). This compromised the utility of the surface seismic data for the project due to the resolution gap between it and the geophysical well logs. An alternative approach was adopted that utilized a

  2. High-Resolution Mass Spectrometry and Molecular Characterization of Aqueous Photochemistry Products of Common Types of Secondary Organic Aerosols

    SciTech Connect

    Romonosky, Dian E.; Laskin, Alexander; Laskin, Julia; Nizkorodov, Sergey

    2015-03-19

    A significant fraction of atmospheric organic compounds is predominantly found in condensed phases, such as aerosol particles and cloud droplets. Many of these compounds are photolabile and can degrade through direct photolysis or indirect photooxidation processes on time scales that are comparable to the typical lifetimes of aqueous droplets (hours) and particles (days). This paper presents a systematic investigation of the molecular level composition and the extent of aqueous photochemical processing in different types of secondary organic aerosol (SOA) from biogenic and anthropogenic precursors including α-pinene, β-pinene, β-myrcene, d- limonene, α-humulene, 1,3,5-trimethylbenzene, and guaiacol, oxidized by ozone (to simulate a remote atmosphere) or by OH in the presence of NOx (to simulate an urban atmosphere). Chamber- and flow tube-generated SOA samples were collected, extracted in a methanol/water solution, and photolyzed for 1 h under identical irradiation conditions. In these experiments, the irradiation was equivalent to about 3-8 h of exposure to the sun in its zenith. The molecular level composition of the dissolved SOA was probed before and after photolysis with direct-infusion electrospray ionization high-resolution mass spectrometry (ESI-HR-MS). The mass spectra of unphotolyzed SOA generated by ozone oxidation of monoterpenes showed qualitatively similar features, and contained largely overlapping subsets of identified compounds. The mass spectra of OH/NOx generated SOA had more unique visual appearance, and indicated a lower extent of products overlap. Furthermore, the fraction of nitrogen containing species (organonitrates and nitroaromatics) was highly sensitive to the SOA precursor. These observations suggest that attribution of high-resolution mass spectra in field SOA samples to specific SOA precursors should be more straightforward under OH/NOx oxidation conditions compared to the ozone driven oxidation. Comparison of the SOA constituents

  3. High-resolution mass spectrometry and molecular characterization of aqueous photochemistry products of common types of secondary organic aerosols.

    PubMed

    Romonosky, Dian E; Laskin, Alexander; Laskin, Julia; Nizkorodov, Sergey A

    2015-03-19

    This work presents a systematic investigation of the molecular level composition and the extent of aqueous photochemical processing in different types of secondary organic aerosol (SOA) from biogenic and anthropogenic precursors including α-pinene, β-pinene, β-myrcene, d-limonene, α-humulene, 1,3,5-trimethylbenzene, and guaiacol, oxidized by ozone (to simulate a remote atmosphere) or by OH in the presence of NOx (to simulate an urban atmosphere). Chamber- and flow-tube-generated SOA samples were collected, extracted in a methanol/water solution, and photolyzed for 1 h under identical irradiation conditions. In these experiments, the irradiation was equivalent to about 3-8 h of exposure to the sun in its zenith. The molecular level composition of the dissolved SOA was probed before and after photolysis with direct-infusion electrospray ionization high-resolution mass spectrometry (ESI-HR-MS). The mass spectra of unphotolyzed SOA generated by ozone oxidation of monoterpenes showed qualitatively similar features and contained largely overlapping subsets of identified compounds. The mass spectra of OH/NOx-generated SOA had more unique visual appearance and indicated a lower extent of product overlap. Furthermore, the fraction of nitrogen-containing species (organonitrates and nitroaromatics) was highly sensitive to the SOA precursor. These observations suggest that attribution of high-resolution mass spectra in field SOA samples to specific SOA precursors should be more straightforward under OH/NOx oxidation conditions compared to the ozone-driven oxidation. Comparison of the SOA constituents before and after photolysis showed the tendency to reduce the average number of atoms in the SOA compounds without a significant effect on the overall O/C and H/C ratios. SOA prepared by OH/NOx photooxidation of 1,3,5-trimethylbenzene and guaiacol were more resilient to photolysis despite being the most light-absorbing. The composition of SOA prepared by ozonolysis of

  4. High Resolution Spectral Analysis

    DTIC Science & Technology

    2006-10-25

    filter - bank (one input many outputs) is then selected with a bandpass characteristic over the frequency range of interest. It consists of a dynamical...tailored to, disturbance isolation of a targeting system (e.g., laser) using input from a distributed array of 4 CHAPTER 1. ABSTRACT sensors. High...outstanding paper award from the IEEE Control Systems Society in 2003, and a U.S. patent [41] which was based on this and subsequent work. We mention that

  5. High-Resolution Autoradiography

    DTIC Science & Technology

    1955-01-01

    Laboratory, Cleveland, Ohio WALTER C. WILLIAMS, B. S., Chief, High-Speed Flight Station, Edwards, Calif. HIItIU-ItE•,OL.I’TION Al’TIlT.AI) iIO (ltAIIII 3 Of )4r...comparison was made betw,,ia wvet-prociss autoraffio- eraluate this autoradiographic technique, several types of radio - graphs and autoradiographs...apart. heterogeneous system. The radiation emitted by the radio - Wet-process autoradiography, as developed in 1949 by Dr. active elements acts on a

  6. Development of a lab-scale, high-resolution, tube-generated X-ray computed-tomography system for three-dimensional (3D) materials characterization

    SciTech Connect

    Mertens, J.C.E. Williams, J.J. Chawla, Nikhilesh

    2014-06-01

    The design and construction of a modular high resolution X-ray computed tomography (XCT) system is highlighted in this paper. The design approach is detailed for meeting a specified set of instrument performance goals tailored towards experimental versatility and high resolution imaging. The XCT tool is unique in the detector and X-ray source design configuration, enabling control in the balance between detection efficiency and spatial resolution. The system package is also unique: The sample manipulation approach implemented enables a wide gamut of in situ experimentation to analyze structure evolution under applied stimulus, by optimizing scan conditions through a high degree of controllability. The component selection and design process is detailed: Incorporated components are specified, custom designs are shared, and the approach for their integration into a fully functional XCT scanner is provided. Custom designs discussed include the dual-target X-ray source cradle which maintains position and trajectory of the beam between the two X-ray target configurations with respect to a scintillator mounting and positioning assembly and the imaging sensor, as well as a novel large-format X-ray detector with enhanced adaptability. The instrument is discussed from an operational point of view, including the details of data acquisition and processing implemented for 3D imaging via micro-CT. The performance of the instrument is demonstrated on a silica-glass particle/hydroxyl-terminated-polybutadiene (HTPB) matrix binder PBX simulant. Post-scan data processing, specifically segmentation of the sample's relevant microstructure from the 3D reconstruction, is provided to demonstrate the utility of the instrument. - Highlights: • Custom built X-ray tomography system for microstructural characterization • Detector design for maximizing polychromatic X-ray detection efficiency • X-ray design offered for maximizing X-ray flux with respect to imaging resolution • Novel lab

  7. Enhanced High Resolution RBS System

    NASA Astrophysics Data System (ADS)

    Pollock, Thomas J.; Hass, James A.; Klody, George M.

    2011-06-01

    Improvements in full spectrum resolution with the second NEC high resolution RBS system are summarized. Results for 50 Å TiN/HfO films on Si yielding energy resolution on the order of 1 keV are also presented. Detector enhancements include improved pulse processing electronics, upgraded shielding for the MCP/RAE detector, and reduced noise generated from pumping. Energy resolution measurements on spectra front edge coupled with calculations using 0.4mStr solid angle show that beam energy spread at 400 KeV from the Pelletron® accelerator is less than 100 eV. To improve user throughput, magnet control has been added to the automatic data collection. Depth profiles derived from experimental data are discussed. For the thin films profiled, depth resolutions were on the Angstrom level with the non-linear energy/channel conversions ranging from 100 to 200 eV.

  8. Enhanced High Resolution RBS System

    SciTech Connect

    Pollock, Thomas J.; Hass, James A.; Klody, George M.

    2011-06-01

    Improvements in full spectrum resolution with the second NEC high resolution RBS system are summarized. Results for 50 A ring TiN/HfO films on Si yielding energy resolution on the order of 1 keV are also presented. Detector enhancements include improved pulse processing electronics, upgraded shielding for the MCP/RAE detector, and reduced noise generated from pumping. Energy resolution measurements on spectra front edge coupled with calculations using 0.4mStr solid angle show that beam energy spread at 400 KeV from the Pelletron registered accelerator is less than 100 eV. To improve user throughput, magnet control has been added to the automatic data collection. Depth profiles derived from experimental data are discussed. For the thin films profiled, depth resolutions were on the Angstrom level with the non-linear energy/channel conversions ranging from 100 to 200 eV.

  9. Medium Spatial Resolution Satellite Characterization

    NASA Technical Reports Server (NTRS)

    Stensaas, Greg

    2007-01-01

    This project provides characterization and calibration of aerial and satellite systems in support of quality acquisition and understanding of remote sensing data, and verifies and validates the associated data products with respect to ground and and atmospheric truth so that accurate value-added science can be performed. The project also provides assessment of new remote sensing technologies.

  10. High Resolution Doppler Lidar

    NASA Technical Reports Server (NTRS)

    1996-01-01

    This Grant supported the development of an incoherent lidar system to measure winds and aerosols in the lower atmosphere. During this period the following activities occurred: (1) an active feedback system was developed to improve the laser frequency stability; (2) a detailed forward model of the instrument was developed to take into account many subtle effects, such as detector non-linearity; (3) a non-linear least squares inversion method was developed to recover the Doppler shift and aerosol backscatter without requiring assumptions about the molecular component of the signal; (4) a study was done of the effects of systematic errors due to multiple etalon misalignment. It was discovered that even for small offsets and high aerosol loadings, the wind determination can be biased by as much as 1 m/s. The forward model and inversion process were modified to account for this effect; and (5) the lidar measurements were validated using rawinsonde balloon measurements. The measurements were found to be in agreement within 1-2 m/s.

  11. High resolution digital delay timer

    DOEpatents

    Martin, Albert D.

    1988-01-01

    Method and apparatus are provided for generating an output pulse following a trigger pulse at a time delay interval preset with a resolution which is high relative to a low resolution available from supplied clock pulses. A first lumped constant delay (20) provides a first output signal (24) at predetermined interpolation intervals corresponding to the desired high resolution time interval. Latching circuits (26, 28) latch the high resolution data (24) to form a first synchronizing data set (60). A selected time interval has been preset to internal counters (142, 146, 154) and corrected for circuit propagation delay times having the same order of magnitude as the desired high resolution. Internal system clock pulses (32, 34) count down the counters to generate an internal pulse delayed by an interval which is functionally related to the preset time interval. A second LCD (184) corrects the internal signal with the high resolution time delay. A second internal pulse is then applied to a third LCD (74) to generate a second set of synchronizing data (76) which is complementary with the first set of synchronizing data (60) for presentation to logic circuits (64). The logic circuits (64) further delay the internal output signal (72) to obtain a proper phase relationship of an output signal (80) with the internal pulses (32, 34). The final delayed output signal (80) thereafter enables the output pulse generator (82) to produce the desired output pulse (84) at the preset time delay interval following input of the trigger pulse (10, 12).

  12. Characterizing Arctic sea ice topography and atmospheric form drag using high-resolution IceBridge data

    NASA Astrophysics Data System (ADS)

    Petty, A.; Tsamados, M.; Kurtz, N. T.; Farrell, S. L.; Newman, T.; Harbeck, J.; Feltham, D. L.; Richter-Menge, J.

    2015-12-01

    Here we present a detailed analysis of Arctic sea ice topography using high resolution, three-dimensional surface elevation data from the NASA Operation IceBridge Airborne Topographic Mapper (ATM) laser altimeter. We derive novel ice topography statistics from 2009-2014 across both first-year and multiyear ice regimes - including the height, area coverage, orientation and spacing of distinct surface features. The sea ice topography exhibits strong spatial variability, including increased surface feature (e.g. pressure ridge) height and area coverage within the multi-year ice regions. The ice topography also shows a strong coastal dependency, with the feature height and area coverage increasing as a function of proximity to the nearest coastline, especially north of Greenland and the Canadian Archipelago. The ice topography data have also been used to explicitly calculate atmospheric drag coefficients over Arctic sea ice; utilizing existing relationships regarding ridge geometry and their impact on form drag. The results are being used to calibrate the recent drag parameterization scheme included in the sea ice model CICE.

  13. Comprehensive genome characterization of solitary fibrous tumors using high-resolution array-based comparative genomic hybridization.

    PubMed

    Bertucci, François; Bouvier-Labit, Corinne; Finetti, Pascal; Adélaïde, José; Metellus, Philippe; Mokhtari, Karima; Decouvelaere, Anne-Valérie; Miquel, Catherine; Jouvet, Anne; Figarella-Branger, Dominique; Pedeutour, Florence; Chaffanet, Max; Birnbaum, Daniel

    2013-02-01

    Solitary fibrous tumors (SFTs) are rare spindle cell tumors with limited therapeutic options. Their molecular basis is poorly known. No consistent cytogenetic abnormality has been reported. We used high-resolution whole-genome array-based comparative genomic hybridization (Agilent 244K oligonucleotide chips) to profile 47 samples, meningeal in >75% of cases. Few copy number aberrations (CNAs) were observed. Sixty-eight percent of samples did not show any gene CNA after exclusion of probes located in regions with referenced copy number variation (CNV). Only low-level CNAs were observed. The genomic profiles were very homogeneous among samples. No molecular class was revealed by clustering of DNA copy numbers. All cases displayed a "simplex" profile. No recurrent CNA was identified. Imbalances occurring in >20%, such as the gain of 8p11.23-11.22 region, contained known CNVs. The 13q14.11-13q31.1 region (lost in 4% of cases) was the largest altered region and contained the lowest percentage of genes with referenced CNVs. A total of 425 genes without CNV showed copy number transition in at least one sample, but only but only 1 in at least 10% of samples. The genomic profiles of meningeal and extra-meningeal cases did not show any differences.

  14. The criticality of high-resolution N-linked carbohydrate assays and detailed characterization of antibody effector function in the context of biosimilar development.

    PubMed

    Brady, Lowell J; Velayudhan, Jyoti; Visone, Devi B; Daugherty, Ken C; Bartron, Jeff L; Coon, Michael; Cornwall, Cabot; Hinckley, Peter J; Connell-Crowley, Lisa

    2015-01-01

    Accurate measurement and functional characterization of antibody Fc domain N-linked glycans is critical to successful biosimilar development. Here, we describe the application of methods to accurately quantify and characterize the N-linked glycans of 2 IgG1 biosimilars with effector function activity, and show the potential pitfalls of using assays with insufficient resolution. Accurate glycan assessment was combined with glycan enrichment using lectin chromatography or production with glycosylation inhibitors to produce enriched pools of key glycan species for subsequent assessment in cell-based antibody-dependent cell-mediated cytotoxicity and complement-dependent cytotoxicity effector function assays. This work highlights the challenges of developing high-quality biosimilar candidates and the need for modern biotechnology capabilities. These results show that high-quality analytics, combined with sensitive cell-based assays to study in vivo mechanisms of action, is an essential part of biosimilar development.

  15. Characterization of Nitrogen-Containing Species in Coal and Petroleum-Derived Products by Ammonia Chemical Ionization-High Resolution Mass Spectrometry

    SciTech Connect

    Veloski, Garret A.; Lynn, Ronald J.; Sprecher, Richard F.

    1997-01-01

    A coal-derived light distillate and a petroleum-derived residuum have been studied by high resolution mass spectrometry using both low-pressure ammonia chemical ionization and low-voltage electron impact ionization. A mass calibration mixture for use with ammonia chemical ionization has been developed. Selective ionization of the basic nitrogen-containing compounds by ammonia chemical ionization and compound type characterization of the resulting quasi-molecular species has been demonstrated. Several homologous series of nitrogen-containing compounds were identified in a basic extract by electron impact ionization and compared with quasimolecular analogs identified by ammonia chemical ionization.

  16. High-resolution infrared imaging

    NASA Astrophysics Data System (ADS)

    Falco, Charles M.

    2010-08-01

    The hands and mind of an artist are intimately involved in the creative process of image formation, intrinsically making paintings significantly more complex than photographs to analyze. In spite of this difficulty, several years ago the artist David Hockney and I identified optical evidence within a number of paintings that demonstrated artists began using optical projections as early as c1425 - nearly 175 years before Galileo - as aids for producing portions of their images. In the course of our work, Hockney and I developed insights that I have been applying to a new approach to computerized image analysis. Recently I developed and characterized a portable high resolution infrared for capturing additional information from paintings. Because many pigments are semi-transparent in the IR, in a number of cases IR photographs ("reflectograms") have revealed marks made by the artists that had been hidden under paint ever since they were made. I have used this IR camera to capture photographs ("reflectograms") of hundreds of paintings in over a dozen museums on three continents and, in some cases, these reflectograms have provided new insights into decisions the artists made in creating the final images that we see in the visible.

  17. High-resolution instrumentation radar

    NASA Astrophysics Data System (ADS)

    Dydbal, Robert B.; Hurlbut, Keith H.; Mori, Tsutomu T.

    1987-03-01

    An instrumentation radar that uses a chirp waveform to achieve high-range resolution is described. High-range-resolution instrumentation radars evaluate the target response to operational waveforms used in high-performance radars and/or obtain a display of the individual target scattering mechanisms to better understand the scattering process. This particular radar was efficiently constructed from a combination of commercially available components and in-house fabricated circuitry. This instrumentation radar operates at X-band and achieves a 4.9-in-range resolution. A key feature of the radar is the combination of amplitude weighting with a high degree of waveform fidelity to achieve a very good range sidelobe performance. This range sidelobe performance is important to avoid masking lower level target returns in the range sidelobes of higher target returns.

  18. Characterization of Siberia Larch Forest from Palsar L-Band Radar and Landsat Vcf Data Trained by High-Resolution Stereo and Field Data

    NASA Astrophysics Data System (ADS)

    Ranson, J.; Sun, G.; Montesano, P. M.; Cook, B. D.

    2014-12-01

    Larch (Larix spp.) dominant forests occupy about 70% of the permafrost areas in Siberia. Improved understanding of the fate of the larch forests in the face of climate change requires a concerted long term research effort to detect and quantify ecosystem responses. Satellite data analysis offers much improved information on changes in the forest-tundra transitional zone and on forest structure in this area. The LANDSAT data and radar data such as ALOS/PALSAR provide extensive coverage at high resolution (30m pixel). In this study, the utilization of these data for regional canopy height and biomass mapping was examined. The major challenge for characterization of forest in a remote area such as Siberia is the lack of adequate number of training and validation data. The results of using GLAS waveform data to extend field measurements which has been successful in other ecosystems were found to be poor because most of the waveforms were acquired when the deciduous larch tree had no needles. In this study, the stereo optical data from high resolution spaceborne imagery (HRSI) were used to a generate canopy height model (CHM) by identifying both tree top and ground surface in these sparse forests. The regression models between the field measured canopy height, biomass and the stereo CHM were developed and the field data were extended to the forested areas within the entire stereo images, providing more data for training and validation. We compare the mapping results from two methods. One uses GLAS waveform data and the other uses high resolution stereo imagery to extrapolate field measurements. Results demonstrate the potential and limitations using high resolution stereo imagery to provide training information of sparse larch forest in Siberia.

  19. High-resolution instrumentation radar

    NASA Astrophysics Data System (ADS)

    Dybdal, Robert B.; Hurlbut, Keith H.; Mori, Tsutomu T.

    1986-09-01

    The development of an instrumentation radar that uses a chirp waveform to achieve high range resolution is described. Such range resolution capability is required for two reasons: (1) to evaluate the response of targets to the operational waveforms used in high-performance radars; and (2) to obtain a means of separating the individual mechanisms that comprise the target scattering response to better understand the scattering process. This particular radar was efficiently constructed from a combination of commercially available components and in-house-fabricated circuitry. This instrumentation radar operates at X-band and achieves a 4.9-in. range resolution. A key feature of the radar is its ability to combine amplitude weighting with a high degree of waveform fidelity, with the result being very good range sidelobe performance.

  20. Application of high-resolution 2D-3C seismic for characterization of the perspective Jurassic shale play in Central Poland

    NASA Astrophysics Data System (ADS)

    Cyz, M.; Malinowski, M.; Krzywiec, P.; Mulińska, M.; Słonka, Ł.

    2016-10-01

    Here we show the application of broadband (4-120 Hz) 2D-3C seismic for characterization of the perspective Jurassic shale play in Central Poland. Data were acquired along a network of 250 km 2D profiles using single-point, densely spaced receivers (digital 3C sensors) and acquisition was focused on providing both high-resolution and broadband seismic that would enable structural imaging and quantitative interpretation of the key stratigraphic horizons in the Mesozoic sedimentary cover. Such acquisition parameters resulted in good quality data and allowed for more flexibility during processing, e.g., unaliased F-K filtering or digital group forming for ground-roll removal. Processing was oriented to preserve relative amplitudes and the broadband character of the dataset as the input for future quantitative interpretation. We obtained a high-resolution stratigraphic image of the target Upper Jurassic (Upper Kimmeridgian-Tithonian) sequence as well as overall structural portrait of this part of Mid-Polish Trough characterized by strong imprint of the salt tectonics. Lateral continuity of particular stratigraphic sequences has been determined and a more precise structural context for deposition and present-day structure of the Upper Kimmeridgian-Tithonian has been established.

  1. ION COMPOSITION ELUCIDATION (ICE): A HIGH RESOLUTION MASS SPECTROMETRIC TECHNIQUE FOR CHARACTERIZATION AND IDENTIFICATION OF ORGANIC COMPOUNDS

    EPA Science Inventory

    Identifying compounds found in the environment without knowledge of their origin is a very difficult analytical problem. Comparison of the low resolution mass spectrum of a compound with those in the NIST or Wiley mass spectral libraries can provide a tentative identification whe...

  2. Performance characterization of high quantum efficiency metal package photomultiplier tubes for time-of-flight and high-resolution PET applications

    SciTech Connect

    Ko, Guen Bae; Lee, Jae Sung

    2015-01-15

    Purpose: Metal package photomultiplier tubes (PMTs) with a metal channel dynode structure have several advanced features for devising such time-of-flight (TOF) and high spatial resolution positron emission tomography (PET) detectors, thanks to their high packing density, large effective area ratio, fast time response, and position encoding capability. Here, we report on an investigation of new metal package PMTs with high quantum efficiency (QE) for high-resolution PET and TOF PET detector modules. Methods: The latest metal package PMT, the Hamamatsu R11265 series, is served with two kinds of photocathodes that have higher quantum efficiency than normal bialkali (typical QE ≈ 25%), super bialkali (SBA; QE ≈ 35%), and ultra bialkali (UBA; QE ≈ 43%). In this study, the authors evaluated the performance of the new PMTs with SBA and UBA photocathodes as a PET detector by coupling various crystal arrays. They also investigated the performance improvements of high QE, focusing in particular on a block detector coupled with a lutetium-based scintillator. A single 4 × 4 × 10 mm{sup 3} LYSO, a 7 × 7 array of 3 × 3 × 20 mm{sup 3} LGSO, a 9 × 9 array of 1.2 × 1.2 × 10 mm{sup 3} LYSO, and a 6 × 6 array of 1.5 × 1.5 × 7 mm{sup 3} LuYAP were used for evaluation. All coincidence data were acquired with a DRS4 based fast digitizer. Results: This new PMT shows promising crystal positioning accuracy, energy and time discrimination performance for TOF, and high-resolution PET applications. The authors also found that a metal channel PMT with SBA was enough for both TOF and high-resolution application, although UBA gave a minor improvement to time resolution. However, significant performance improvement was observed in relative low light output crystals (LuYAP) coupled with UBA. Conclusions: The results of this study will be of value as a useful reference to select PMTs for high-performance PET detectors.

  3. Advanced solvent based methods for molecular characterization of soil organic matter by high-resolution mass spectrometry

    SciTech Connect

    Tfaily, Malak M.; Chu, Rosalie K.; Tolic, Nikola; Roscioli, Kristyn M.; Anderton, Christopher R.; Pasa-Tolic, Ljiljana; Robinson, Errol W.; Hess, Nancy J.

    2015-05-19

    Soil organic matter (SOM) a complex, heterogeneous mixture of above and belowground plant litter and animal and microbial residues at various degrees of decomposition, is a key reservoir for carbon (C) and nutrient biogeochemical cycling in soil based ecosystems. A limited understanding of the molecular composition of SOM limits the ability to routinely decipher chemical processes within soil and predict accurately how terrestrial carbon fluxes will response to changing climatic conditions and land use. To elucidate the molecular-level structure of SOM, we selectively extracted a broad range of intact SOM compounds by a combination of different organic solvents from soils with a wide range of C content. Our use of Electrospray ionization (ESI) coupled with Fourier transform ion cyclotron resonance mass spectrometry (FTICR MS) and a suite of solvents with varying polarity significantly expands the inventory of the types of organic molecules present in soils. Specifically, we found that hexane is selective for lipid-like compounds with very low O:C ratios; water was selective for carbohydrates with high O:C ratios; acetonitrile preferentially extracts lignin, condensed structures, and tannin poly phenolic compounds with O:C > 0.5; methanol has higher selectivity towards compounds characterized with low O:C < 0.5; and hexane, MeOH, ACN and water solvents increase the number and types of organic molecules extracted from soil for a broader range of chemically diverse soil types. Our study of SOM molecules by ESI-FTICR MS revealed new insight into the molecular-level complexity of organics contained in soils.

  4. Intraligand Charge Transfer in Pt(qol)(2). Characterization of Electronic States by High-Resolution Shpol'skii Spectroscopy.

    PubMed

    Donges, Dirk; Nagle, Jeffrey K.; Yersin, Hartmut

    1997-07-02

    Pt(qol)(2) (qol(-) = 8-quinolinolato-O,N) is investigated in the Shpol'skii matrices n-heptane, n-octane-h(18), n-octane-d(18), n-nonane, and n-decane, respectively. For the first time, highly resolved triplet phosphorescence as well as triplet and singlet excitation spectra are obtained at T = 1.2 K by site-selective spectroscopy. This permits the detailed characterization of the low-lying singlet and triplet states which are assigned to result mainly from intraligand charge transfer (ILCT) transitions. The electronic origin corresponding to the (3)ILCT lies at 15 426 cm(-)(1) (FWHM approximately 3 cm(-)(1)) exhibiting a zero-field splitting smaller than 1 cm(-)(1), which shows that the metal d-orbital contribution to the (3)ILCT is small. At T = 1.2 K, the three triplet sublevels emit independently due to slow spin-lattice relaxation (slr) processes. Therefore, the phosphorescence decays triexponentially with components of 4.5, 13, and 60 &mgr;s. Interestingly, two of the sublevels can be excited selectively, which leads to a distinct spin polarization manifested by a biexponential decay. At T = 20 K, the decay becomes monoexponential with tau = 10 &mgr;s due to a fast slr between the triplet sublevels. From the Zeeman splitting of the (3)ILCT the g-factor is determined to be 2.0 as expected for a relatively pure spin triplet. The (1)ILCT has its electronic origin at 18 767 cm(-)(1) and exhibits a homogeneous line width of about 12 cm(-)(1). This feature allows us to estimate a singlet-triplet intersystem crossing rate of about 2 x 10(12) s(-)(1). This relatively large rate compared to values found for closed shell metal M(qol)(n)() compounds displays the importance of spin-orbit coupling induced by the heavy metal ion. Moreover, this small admixture leads to the relatively short emission decay times. All spectra show highly resolved vibrational satellite structures. These patterns provide information about vibrational energies (which are in good accordance with

  5. Advanced very high resolution radiometer

    NASA Technical Reports Server (NTRS)

    1976-01-01

    The advanced very high resolution radiometer development program is considered. The program covered the design, construction, and test of a breadboard model, engineering model, protoflight model, mechanical structural model, and a life test model. Special bench test and calibration equipment was also developed for use on the program.

  6. High resolution optical DNA mapping

    NASA Astrophysics Data System (ADS)

    Baday, Murat

    Many types of diseases including cancer and autism are associated with copy-number variations in the genome. Most of these variations could not be identified with existing sequencing and optical DNA mapping methods. We have developed Multi-color Super-resolution technique, with potential for high throughput and low cost, which can allow us to recognize more of these variations. Our technique has made 10--fold improvement in the resolution of optical DNA mapping. Using a 180 kb BAC clone as a model system, we resolved dense patterns from 108 fluorescent labels of two different colors representing two different sequence-motifs. Overall, a detailed DNA map with 100 bp resolution was achieved, which has the potential to reveal detailed information about genetic variance and to facilitate medical diagnosis of genetic disease.

  7. High angular resolution at LBT

    NASA Astrophysics Data System (ADS)

    Conrad, A.; Arcidiacono, C.; Bertero, M.; Boccacci, P.; Davies, A. G.; Defrere, D.; de Kleer, K.; De Pater, I.; Hinz, P.; Hofmann, K. H.; La Camera, A.; Leisenring, J.; Kürster, M.; Rathbun, J. A.; Schertl, D.; Skemer, A.; Skrutskie, M.; Spencer, J. R.; Veillet, C.; Weigelt, G.; Woodward, C. E.

    2015-12-01

    High angular resolution from ground-based observatories stands as a key technology for advancing planetary science. In the window between the angular resolution achievable with 8-10 meter class telescopes, and the 23-to-40 meter giants of the future, LBT provides a glimpse of what the next generation of instruments providing higher angular resolution will provide. We present first ever resolved images of an Io eruption site taken from the ground, images of Io's Loki Patera taken with Fizeau imaging at the 22.8 meter LBT [Conrad, et al., AJ, 2015]. We will also present preliminary analysis of two data sets acquired during the 2015 opposition: L-band fringes at Kurdalagon and an occultation of Loki and Pele by Europa (see figure). The light curves from this occultation will yield an order of magnitude improvement in spatial resolution along the path of ingress and egress. We will conclude by providing an overview of the overall benefit of recent and future advances in angular resolution for planetary science.

  8. Harmful Algal Bloom Characterization at Ultra-High Spatial and Temporal Resolution Using Small Unmanned Aircraft Systems

    PubMed Central

    Van der Merwe, Deon; Price, Kevin P.

    2015-01-01

    Harmful algal blooms (HABs) degrade water quality and produce toxins. The spatial distribution of HAbs may change rapidly due to variations wind, water currents, and population dynamics. Risk assessments, based on traditional sampling methods, are hampered by the sparseness of water sample data points, and delays between sampling and the availability of results. There is a need for local risk assessment and risk management at the spatial and temporal resolution relevant to local human and animal interactions at specific sites and times. Small, unmanned aircraft systems can gather color-infrared reflectance data at appropriate spatial and temporal resolutions, with full control over data collection timing, and short intervals between data gathering and result availability. Data can be interpreted qualitatively, or by generating a blue normalized difference vegetation index (BNDVI) that is correlated with cyanobacterial biomass densities at the water surface, as estimated using a buoyant packed cell volume (BPCV). Correlations between BNDVI and BPCV follow a logarithmic model, with r2-values under field conditions from 0.77 to 0.87. These methods provide valuable information that is complimentary to risk assessment data derived from traditional risk assessment methods, and could help to improve risk management at the local level. PMID:25826055

  9. The characterization of soil properties in in-situ conditions to develop "soil management/mapping units" using high-resolution remotely sensed data sets

    NASA Astrophysics Data System (ADS)

    Morris, D. Keith

    The intent of this research was to assess the possible use of high resolution remotely sensed hyperspectral and multispectral data to characterize soil types, specifically focusing on organic matter content, in an associative manner with the results obtained from traditional Order 1 and Order 2 soil surveys. A chi-square analysis indicated a strong association between soil type and organic matter content. A Cramer's V analysis (of a supervised classification) indicated a stronger relationship between the Order 1 and organic matter. However, when an unsupervised classification scheme was applied to the aerial imagery, again using Cramer's analysis, the Order 2 out-performed the Order 1. This superior performance was due in part to the grouping of multi-band spectral response patterns into statistically separable clusters. A One-Way ANOVA analysis indicated that all soils were significantly different in the Order 2 survey for both the hyperspectral and the multispectral data sets. However, the Order 1 results show the ITD sensor more successfully grouping the darker soils than did the ATLAS which grouped the lighter soils. A linear discriminate analysis (LDA) demonstrates that the computer classification of images more successfully assessed the Order 2 survey than the Order 1. Again it is worth noting that the LDA also grouped the soils in a similar manner as did the ANOVA in that the ITD sensor grouped the darker soils and the ATLAS sensor grouped the lighter soils. This sensor preference is another significant secondary finding of this study. Despite the subjective nature of the soil mapping exercise and the use of un-calibrated data sets, high resolution imagery was able to differentiate different soil mapping scales. Even though associations were relatively low statistically, this study supports the hypothesis that high resolution imagery, although limited by its two-dimensional capabilities, can be effectively used as a predictive tool, although with the current

  10. High-Resolution Mineralogical Characterization and Biogeochemical Modeling of Uranium Reduction Pathways at the NABIR Field-Research Center

    SciTech Connect

    David R. Veblen; Chen Zhu; Lee Krumholz; Claudine Stirling; Emma-Kate Potter; Alex N. Halliday

    2004-03-17

    The effectiveness and feasibility of bioremediation at the field scale cannot be fully assessed until the mechanisms of immobilization and U speciation in the solid matrix are resolved. However, characterization of the immobilized U and its valence states is extremely difficult, because microbially mediated mineral precipitates are generally nanometer (nm)-sized, poorly crystalline, or amorphous. We are developing combined field emission gun--scanning electron microscopy (FEG-SEM, at Indiana University) and FEG transmission electron microscopy (TEM, at Hopkins) to detect and isolate uranium containing phases; (1) method developments for TEM sample preparations and parallel electron energy loss spectroscopy (EELS) determination of uranium valence; and (2) to determine the speciation, fate, reactivity, valence states of immobilized uranium, using the state-of-the-art 300-kV, FEG-TEM. We have obtained preliminary results on contaminated sediments from Area 3 at the Oak Ridge Field Research Center (FRC). TEM results show that the sediments contain numerous minerals, including quartz, mica/clay (muscovite and/or illite), rutile, ilmenite, zircon, and an Al-Sr-Ce-Ca phosphate mineral, none of which contain uranium above the EDS detection limit. Substantial U (up to {approx}2 wt.%) is, however, clearly associated with two materials: (1) the Fe oxyhydroxide and (2) clots of a chemically complex material that is likely a mixture of several nm-scale phases. The Fe oxyhydroxide was identified as goethite from its polycrystalline SAED pattern and EDS analysis showing it to be very Fe-rich; the aggregate also displays one of several morphologies that are common for goethite. U is strongly sorbed to goethite in the FRC sediment, and the ubiquitous association with phosphorous suggests that complexes containing both U and P may play an important role in that sorption. Results from bulk analysis and SEM had previously demonstrated the association of U with Fe and thus suggested

  11. High resolution characterization of modifications in fused silica after exposure to low fluence 355 nm laser at different repetition frequencies.

    PubMed

    Li, C H; Ju, X; Jiang, X D; Huang, J; Zhou, X D; Zheng, Z; Wu, W D; Zheng, W G; Li, Z X; Wang, B Y; Yu, X H

    2011-03-28

    We report on the characterization of modifications in fused silica after exposure to low fluence (2 J/cm2) 355 nm laser at repetition frequencies of 1 Hz, 5 Hz and 10 Hz. Synchrotron based XRF spectroscopy is employed to study concentration variation of metal inclusions in the surface layer. Positron annihilation lifetime spectroscopy is used to probe atomic size defects variation in bulk silica. FT-IR is used to characterize changes of bond length and angle of Si-O-Si covalent bond of irradiated silica. Compared to the basic frequency, the big loss of cerium and iron concentration, the size enlargement of vacancy cluster and the decrease of Si-O-Si covalent bond length after 10 Hz laser irradiation are illustrated by our data. These tiny modifications provide important data to investigate laser damage mechanism.

  12. Detection and characterization of metabolites in biological matrices using mass defect filtering of liquid chromatography/high resolution mass spectrometry data.

    PubMed

    Zhu, Mingshe; Ma, Li; Zhang, Donglu; Ray, Kenneth; Zhao, Weiping; Humphreys, W Griffith; Skiles, Gary; Sanders, Mark; Zhang, Haiying

    2006-10-01

    An improved mass defect filter (MDF) method employing both drug and core structure filter templates was applied to the processing of high resolution liquid chromatography/mass spectrometry (LC/MS) data for the detection and structural characterization of oxidative metabolites with mass defects similar to or significantly different from those of the parent drugs. The effectiveness of this approach was investigated using nefazodone as a model compound, which is known to undergo multiple common and uncommon oxidative reactions. Through the selective removal of all ions that fall outside of the preset filter windows, the MDF process facilitated the detection of all 14 nefazodone metabolites presented in human liver microsomes in the MDF-filtered chromatograms. The capability of the MDF approach to remove endogenous interferences from more complex biological matrices was examined by analyzing omeprazole metabolites in human plasma. The unprocessed mass chromatogram showed no distinct indication of metabolite peaks; however, after MDF processing, the metabolite peaks were easily identified in the chromatogram. Compared with precursor ion scan and neutral loss scan techniques, the MDF approach was shown to be more effective for the detection of metabolites in a complex matrix. The comprehensive metabolite detection capability of the MDF approach, together with accurate mass determination, makes high resolution LC/MS a useful tool for the screening and identification of both common and uncommon drug metabolites.

  13. Customized MFM probes with high lateral resolution

    PubMed Central

    Jaafar, Miriam; Berganza, Eider; Asenjo, Agustina

    2016-01-01

    Summary Magnetic force microscopy (MFM) is a widely used technique for magnetic imaging. Besides its advantages such as the high spatial resolution and the easy use in the characterization of relevant applied materials, the main handicaps of the technique are the lack of control over the tip stray field and poor lateral resolution when working under standard conditions. In this work, we present a convenient route to prepare high-performance MFM probes with sub-10 nm (sub-25 nm) topographic (magnetic) lateral resolution by following an easy and quick low-cost approach. This allows one to not only customize the tip stray field, avoiding tip-induced changes in the sample magnetization, but also to optimize MFM imaging in vacuum (or liquid media) by choosing tips mounted on hard (or soft) cantilevers, a technology that is currently not available on the market. PMID:27547625

  14. Customized MFM probes with high lateral resolution.

    PubMed

    Iglesias-Freire, Óscar; Jaafar, Miriam; Berganza, Eider; Asenjo, Agustina

    2016-01-01

    Magnetic force microscopy (MFM) is a widely used technique for magnetic imaging. Besides its advantages such as the high spatial resolution and the easy use in the characterization of relevant applied materials, the main handicaps of the technique are the lack of control over the tip stray field and poor lateral resolution when working under standard conditions. In this work, we present a convenient route to prepare high-performance MFM probes with sub-10 nm (sub-25 nm) topographic (magnetic) lateral resolution by following an easy and quick low-cost approach. This allows one to not only customize the tip stray field, avoiding tip-induced changes in the sample magnetization, but also to optimize MFM imaging in vacuum (or liquid media) by choosing tips mounted on hard (or soft) cantilevers, a technology that is currently not available on the market.

  15. HRSC: High resolution stereo camera

    USGS Publications Warehouse

    Neukum, G.; Jaumann, R.; Basilevsky, A.T.; Dumke, A.; Van Gasselt, S.; Giese, B.; Hauber, E.; Head, J. W.; Heipke, C.; Hoekzema, N.; Hoffmann, H.; Greeley, R.; Gwinner, K.; Kirk, R.; Markiewicz, W.; McCord, T.B.; Michael, G.; Muller, Jan-Peter; Murray, J.B.; Oberst, J.; Pinet, P.; Pischel, R.; Roatsch, T.; Scholten, F.; Willner, K.

    2009-01-01

    The High Resolution Stereo Camera (HRSC) on Mars Express has delivered a wealth of image data, amounting to over 2.5 TB from the start of the mapping phase in January 2004 to September 2008. In that time, more than a third of Mars was covered at a resolution of 10-20 m/pixel in stereo and colour. After five years in orbit, HRSC is still in excellent shape, and it could continue to operate for many more years. HRSC has proven its ability to close the gap between the low-resolution Viking image data and the high-resolution Mars Orbiter Camera images, leading to a global picture of the geological evolution of Mars that is now much clearer than ever before. Derived highest-resolution terrain model data have closed major gaps and provided an unprecedented insight into the shape of the surface, which is paramount not only for surface analysis and geological interpretation, but also for combination with and analysis of data from other instruments, as well as in planning for future missions. This chapter presents the scientific output from data analysis and highlevel data processing, complemented by a summary of how the experiment is conducted by the HRSC team members working in geoscience, atmospheric science, photogrammetry and spectrophotometry. Many of these contributions have been or will be published in peer-reviewed journals and special issues. They form a cross-section of the scientific output, either by summarising the new geoscientific picture of Mars provided by HRSC or by detailing some of the topics of data analysis concerning photogrammetry, cartography and spectral data analysis.

  16. High resolution tomographic instrument development

    SciTech Connect

    Not Available

    1992-08-01

    Our recent work has concentrated on the development of high-resolution PET instrumentation reflecting in part the growing importance of PET in nuclear medicine imaging. We have developed a number of positron imaging instruments and have the distinction that every instrument has been placed in operation and has had an extensive history of application for basic research and clinical study. The present program is a logical continuation of these earlier successes. PCR-I, a single ring positron tomograph was the first demonstration of analog coding using BGO. It employed 4 mm detectors and is currently being used for a wide range of biological studies. These are of immense importance in guiding the direction for future instruments. In particular, PCR-II, a volume sensitive positron tomograph with 3 mm spatial resolution has benefited greatly from the studies using PCR-I. PCR-II is currently in the final stages of assembly and testing and will shortly be placed in operation for imaging phantoms, animals and ultimately humans. Perhaps the most important finding resulting from our previous study is that resolution and sensitivity must be carefully balanced to achieve a practical high resolution system. PCR-II has been designed to have the detection characteristics required to achieve 3 mm resolution in human brain under practical imaging situations. The development of algorithms by the group headed by Dr. Chesler is based on a long history of prior study including his joint work with Drs. Pelc and Reiderer and Stearns. This body of expertise will be applied to the processing of data from PCR-II when it becomes operational.

  17. High resolution tomographic instrument development

    SciTech Connect

    Not Available

    1992-01-01

    Our recent work has concentrated on the development of high-resolution PET instrumentation reflecting in part the growing importance of PET in nuclear medicine imaging. We have developed a number of positron imaging instruments and have the distinction that every instrument has been placed in operation and has had an extensive history of application for basic research and clinical study. The present program is a logical continuation of these earlier successes. PCR-I, a single ring positron tomograph was the first demonstration of analog coding using BGO. It employed 4 mm detectors and is currently being used for a wide range of biological studies. These are of immense importance in guiding the direction for future instruments. In particular, PCR-II, a volume sensitive positron tomograph with 3 mm spatial resolution has benefited greatly from the studies using PCR-I. PCR-II is currently in the final stages of assembly and testing and will shortly be placed in operation for imaging phantoms, animals and ultimately humans. Perhaps the most important finding resulting from our previous study is that resolution and sensitivity must be carefully balanced to achieve a practical high resolution system. PCR-II has been designed to have the detection characteristics required to achieve 3 mm resolution in human brain under practical imaging situations. The development of algorithms by the group headed by Dr. Chesler is based on a long history of prior study including his joint work with Drs. Pelc and Reiderer and Stearns. This body of expertise will be applied to the processing of data from PCR-II when it becomes operational.

  18. High resolution tomographic instrument development

    NASA Astrophysics Data System (ADS)

    Our recent work has concentrated on the development of high-resolution PET instrumentation reflecting in part the growing importance of PET in nuclear medicine imaging. We have developed a number of positron imaging instruments and have the distinction that every instrument has been placed in operation and has had an extensive history of application for basic research and clinical study. The present program is a logical continuation of these earlier successes. PCR-I, a single ring positron tomograph was the first demonstration of analog coding using BGO. It employed 4 mm detectors and is currently being used for a wide range of biological studies. These are of immense importance in guiding the direction for future instruments. In particular, PCR-II, a volume sensitive positron tomograph with 3 mm spatial resolution has benefitted greatly from the studies using PCR-I. PCR-II is currently in the final stages of assembly and testing and will shortly be placed in operation for imaging phantoms, animals and ultimately humans. Perhaps the most important finding resulting from our previous study is that resolution and sensitivity must be carefully balanced to achieve a practical high resolution system. PCR-II has been designed to have the detection characteristics required to achieve 3 mm resolution in human brain under practical imaging situations. The development of algorithms by the group headed by Dr. Chesler is based on a long history of prior study including his joint work with Drs. Pelc and Reiderer and Stearns. This body of expertise will be applied to the processing of data from PCR-II when it becomes operational.

  19. Direct infusion electrospray ionization-ion mobility high resolution mass spectrometry (DIESI-IM-HRMS) for rapid characterization of potential bioprocess streams.

    PubMed

    Munisamy, Sharon M; Chambliss, C Kevin; Becker, Christopher

    2012-07-01

    Direct infusion electrospray ionization - ion mobility - high resolution mass spectrometry (DIESI-IM-HRMS) has been utilized as a rapid technique for the characterization of total molecular composition in "whole-sample" biomass hydrolysates and extracts. IM-HRMS data reveal a broad molecular weight distribution of sample components (up to 1100 m/z) and provide trendline isolation of feedstock components from those introduced "in process." Chemical formulas were obtained from HRMS exact mass measurements (with typical mass error less than 5 ppm) and were consistent with structural carbohydrates and other lignocellulosic degradation products. Analyte assignments are supported via IM-MS collision-cross-section measurements and trendline analysis (e.g., all carbohydrate oligomers identified in a corn stover hydrolysate were found to fall within 6% of an average trendline). These data represent the first report of collision cross sections for several negatively charged carbohydrates and other acidic species occurring natively in biomass hydrolysates.

  20. Advanced Reservoir Characterization and Development through High-Resolution 3C3D Seismic and Horizontal Drilling: Eva South Marrow Sand Unit, Texas County, Oklahoma

    SciTech Connect

    Wheeler,David M.; Miller, William A.; Wilson, Travis C.

    2002-03-11

    The Eva South Morrow Sand Unit is located in western Texas County, Oklahoma. The field produces from an upper Morrow sandstone, termed the Eva sandstone, deposited in a transgressive valley-fill sequence. The field is defined as a combination structural stratigraphic trap; the reservoir lies in a convex up -dip bend in the valley and is truncated on the west side by the Teepee Creek fault. Although the field has been a successful waterflood since 1993, reservoir heterogeneity and compartmentalization has impeded overall sweep efficiency. A 4.25 square mile high-resolution, three component three-dimensional (3C3D) seismic survey was acquired in order to improve reservoir characterization and pinpoint the optimal location of a new horizontal producing well, the ESU 13-H.

  1. Experimental and ab initio characterization of HC3N(+) vibronic structure. II. High-resolution VUV PFI-ZEKE spectroscopy.

    PubMed

    Gans, Bérenger; Lamarre, Nicolas; Broquier, Michel; Liévin, Jacques; Boyé-Péronne, Séverine

    2016-12-21

    Vacuum-ultraviolet pulsed-field-ionization zero-kinetic-energy photoelectron spectra of X(+)Π2←XΣ+1 and B(+)Π2←XΣ+1 transitions of the HC3(14)N and HC3(15)N isotopologues of cyanoacetylene have been recorded. The resolution of the photoelectron spectra allowed us to resolve the vibrational structures and the spin-orbit splittings in the cation. Accurate values of the adiabatic ionization potentials of the two isotopologues (EI/hc(HC3(14)N)=93 909(2) cm(-1) and EI/hc(HC3(15)N)=93 912(2) cm(-1)), the vibrational frequencies of the ν2, ν6, and ν7 vibrational modes, and the spin-orbit coupling constant (ASO = -44(2) cm(-1)) of the X(+)Π2 cationic ground state have been derived from the measurements. Using ab initio calculations, the unexpected structure of the B(+)Π2←XΣ+1 transition is tentatively attributed to a conical intersection between the A(+) and B(+) electronic states of the cation.

  2. Experimental and ab initio characterization of HC3N+ vibronic structure. II. High-resolution VUV PFI-ZEKE spectroscopy

    NASA Astrophysics Data System (ADS)

    Gans, Bérenger; Lamarre, Nicolas; Broquier, Michel; Liévin, Jacques; Boyé-Péronne, Séverine

    2016-12-01

    Vacuum-ultraviolet pulsed-field-ionization zero-kinetic-energy photoelectron spectra of X+2Π ←X +1Σ and B+2Π ←X +1Σ transitions of the HC314N and HC315N isotopologues of cyanoacetylene have been recorded. The resolution of the photoelectron spectra allowed us to resolve the vibrational structures and the spin-orbit splittings in the cation. Accurate values of the adiabatic ionization potentials of the two isotopologues (EI/h c (HC314N ) =93 909 (2 ) cm-1 and EI/h c (HC315N ) =93 912 (2 ) cm-1), the vibrational frequencies of the ν2, ν6, and ν7 vibrational modes, and the spin-orbit coupling constant (ASO = -44(2) cm-1) of the X+2Π cationic ground state have been derived from the measurements. Using ab initio calculations, the unexpected structure of the B+2Π ←X +1Σ transition is tentatively attributed to a conical intersection between the A+ and B+ electronic states of the cation.

  3. Growth and characterization of potassium strontium iodide: A new high light yield scintillator with 2.4% energy resolution

    NASA Astrophysics Data System (ADS)

    Stand, L.; Zhuravleva, M.; Lindsey, A.; Melcher, C. L.

    2015-04-01

    A new ternary metal halide scintillator, potassium strontium iodide, activated with divalent europium (KSr2I5:Eu) has been discovered. This material has a monoclinic crystal structure with a density of 4.39 g/cm3. Differential scanning calorimetry indicates a congruent melting point of 470 °C and suggests that this compound has no solid-solid phase transitions. As is the case with most metal halides, the material is hygroscopic, and it has some internal radioactivity due to the presence of 40K. Single crystals of KSr2I5 doped with 4% Eu2+ were grown in evacuated quartz ampoules via the Bridgman technique. The X-ray excited emission spectrum consisted of a single peak at ~445 nm due to the 5d-4f transition in Eu2+. The measured light yield is ~94,000 photons/MeV with an energy resolution of 2.4% at 662 keV. The crystal has an excellent proportionality response over a wide range of energies from 14 keV to 1275 keV.

  4. Characterizing Sedimentary Responses to Coastal Faulting Using High-Resolution Geochronology and Sedimentology: East Matagorda Peninsula, Texas

    NASA Astrophysics Data System (ADS)

    Wolfe, P.; Yeager, K. M.; Feagin, R. A.; Brunner, C. A.; Schindler, K. J.

    2013-12-01

    The structural framework of the northern Gulf of Mexico coastal zone is characterized by numerous growth fault systems. Neotectonic processes in coastal marshes in this region have been shown to be important drivers of relative sea-level rise as well as having significant influence on marsh accretion processes. An apparent historical acceleration of movement along some of these coastal faults is believed to be largely a result of the regional onset and intensification of subsurface fluid withdrawal from the 1930's to the present. One active growth fault breached the surface of East Matagorda Peninsula, Texas as early as the 1960's and displacement there is ongoing, leading to significant wetland losses over the past several decades. To characterize the Holocene behavior of this fault and the consequent sedimentary responses, a suite of fallout radionuclides (7Be, 137Cs, 210Pb) and radiocarbon (14C), supplemented by sedimentological data have been used to determine sediment mixing depths, rates of sediment accumulation, and sediment geochronology. These tools allow for testing of the hypothesis that the fault at Matagorda has been recently reactivated, leading to surficial deformation and alteration of sediment accumulation processes, particularly on the downthrown side of the fault. Correlation of time-equivalent stratigraphic boundaries reveals a maximum total Holocene fault offset of ~1 meter. Determination of fault slip rates from these values reveals a linear trend of displacement as a function of distance along the fault trace with maximum slip occurring to the southwest (seaward) and minimum slip to the northeast. Mean fallout radionuclide-derived sediment accumulation rates for the past ~100 years are relatively uniform across the fault trace. However, rates from the downthrown station nearest to the fault trace display a dramatic increase over the last 30 years. This increase is likely a response to fault-induced increased accommodation space on the

  5. End-Use Load and Consumer Assessment Program: Characterizing residential thermal performance from high resolution end-use data

    SciTech Connect

    Miller, N.E.; Pearson, E.W.; Stokes, G.M.; Pratt, R.G.; Williamson, M.A.

    1991-01-01

    The Bonneville Power Administration (Bonneville) began the End-Use Load and Consumer Assessment Program (ELCAP) in 1983. Prior to beginning the ELCAP, there was an abundance of information regarding total power consumption for residential structures in the Pacific Northwest and limited information regarding power consumption by various end uses. The purpose of ELCAP is to collect actual end-use load data from both residential and commercial buildings in the region. This report presents the methodology used in several statistical modeling studies carried out on the ELCAP data between 1986 and 1989. These studies involve the thermal characterization of homes and comparisons of building techniques and conservation measures by residential and commercial consumers within the Bonneville service area of the Pacific Northwest. Each data gathering technique was successful in extracting a specific set of consumer-related energy use information. The analytical techniques used in these studies are compiled in this methodology report and are to be used in conjunction with Volume 2 -- Analysis. This should facilitate ease of reference use during future analyses. It is anticipated that the data gathered on participating consumers could potentially be used to aid in decisions regarding the management of the Northwest's electrical energy resources. 7 refs., 6 figs., 2 tabs.

  6. High Resolution Thermometry for EXACT

    NASA Technical Reports Server (NTRS)

    Panek, J. S.; Nash, A. E.; Larson, M.; Mulders, N.

    2000-01-01

    High Resolution Thermometers (HRTs) based on SQUID detection of the magnetization of a paramagnetic salt or a metal alloy has been commonly used for sub-nano Kelvin temperature resolution in low temperature physics experiments. The main applications to date have been for temperature ranges near the lambda point of He-4 (2.177 K). These thermometers made use of materials such as Cu(NH4)2Br4 *2H2O, GdCl3, or PdFe. None of these materials are suitable for EXACT, which will explore the region of the He-3/He-4 tricritical point at 0.87 K. The experiment requirements and properties of several candidate paramagnetic materials will be presented, as well as preliminary test results.

  7. CHARACTERIZATION OR IDENTIFICATION OF ORGANIC COMPOUNDS BY ION COMPOSITION ELUCIDATION (ICE) USING GAS CHROMATOGRAPHY/HIGH RESOLUTION MASS SPECTROMETRY

    EPA Science Inventory

    Only a small fraction of the compounds found in contaminated sites and water supplies is found in mass spectral libraries or has known toxicological effects. The EPA lists 2800 high production volume chemicals. These compounds, byproducts, and degradation products might be found ...

  8. MTF characterization in 2D and 3D for a high resolution, large field of view flat panel imager for cone beam CT

    NASA Astrophysics Data System (ADS)

    Shah, Jainil; Mann, Steve D.; Tornai, Martin P.; Richmond, Michelle; Zentai, George

    2014-03-01

    The 2D and 3D modulation transfer functions (MTFs) of a custom made, large 40x30cm2 area, 600- micron CsI-TFT based flat panel imager having 127-micron pixellation, along with the micro-fiber scintillator structure, were characterized in detail using various techniques. The larger area detector yields a reconstructed FOV of 25cm diameter with an 80cm SID in CT mode. The MTFs were determined with 1x1 (intrinsic) binning. The 2D MTFs were determined using a 50.8 micron tungsten wire and a solid lead edge, and the 3D MTF was measured using a custom made phantom consisting of three nearly orthogonal 50.8 micron tungsten wires suspended in an acrylic cubic frame. The 2D projection data was reconstructed using an iterative OSC algorithm using 16 subsets and 5 iterations. As additional verification of the resolution, along with scatter, the Catphan® phantom was also imaged and reconstructed with identical parameters. The measured 2D MTF was ~4% using the wire technique and ~1% using the edge technique at the 3.94 lp/mm Nyquist cut-off frequency. The average 3D MTF measured along the wires was ~8% at the Nyquist. At 50% MTF, the resolutions were 1.2 and 2.1 lp/mm in 2D and 3D, respectively. In the Catphan® phantom, the 1.7 lp/mm bars were easily observed. Lastly, the 3D MTF measured on the three wires has an observed 5.9% RMSD, indicating that the resolution of the imaging system is uniform and spatially independent. This high performance detector is integrated into a dedicated breast SPECT-CT imaging system.

  9. Constructing a WISE High Resolution Galaxy Atlas

    NASA Technical Reports Server (NTRS)

    Jarrett, T. H.; Masci, F.; Tsai, C. W.; Petty, S.; Cluver, M.; Assef, Roberto J.; Benford, D.; Blain, A.; Bridge, C.; Donoso, E.; Eisenhardt, P.; Fowler, J.; Koribalski, B.; Lake, S.; Neill, James D.; Seibert, M.; Stanford, S.; Wright, E.

    2012-01-01

    After eight months of continuous observations, the Wide-field Infrared Survey Explorer (WISE) mapped the entire sky at 3.4 micron, 4.6 micron, 12 micron, and 22 micron. We have begun a dedicated WISE High Resolution Galaxy Atlas project to fully characterize large, nearby galaxies and produce a legacy image atlas and source catalog. Here we summarize the deconvolution techniques used to significantly improve the spatial resolution of WISE imaging, specifically designed to study the internal anatomy of nearby galaxies. As a case study, we present results for the galaxy NGC 1566, comparing the WISE enhanced-resolution image processing to that of Spitzer, Galaxy Evolution Explorer, and ground-based imaging. This is the first paper in a two-part series; results for a larger sample of nearby galaxies are presented in the second paper.

  10. Constructing a WISE High Resolution Galaxy Atlas

    NASA Astrophysics Data System (ADS)

    Jarrett, T. H.; Masci, F.; Tsai, C. W.; Petty, S.; Cluver, M.; Assef, Roberto J.; Benford, D.; Blain, A.; Bridge, C.; Donoso, E.; Eisenhardt, P.; Fowler, J.; Koribalski, B.; Lake, S.; Neill, James D.; Seibert, M.; Sheth, K.; Stanford, S.; Wright, E.

    2012-08-01

    After eight months of continuous observations, the Wide-field Infrared Survey Explorer (WISE) mapped the entire sky at 3.4 μm, 4.6 μm, 12 μm, and 22 μm. We have begun a dedicated WISE High Resolution Galaxy Atlas project to fully characterize large, nearby galaxies and produce a legacy image atlas and source catalog. Here we summarize the deconvolution techniques used to significantly improve the spatial resolution of WISE imaging, specifically designed to study the internal anatomy of nearby galaxies. As a case study, we present results for the galaxy NGC 1566, comparing the WISE enhanced-resolution image processing to that of Spitzer, Galaxy Evolution Explorer, and ground-based imaging. This is the first paper in a two-part series; results for a larger sample of nearby galaxies are presented in the second paper.

  11. Use of a High-Resolution 3D Laser Scanner for Minefield Surface Modeling and Terrain Characterization: Temperate Region

    DTIC Science & Technology

    2005-08-01

    understanding of background phenomenology with respect to minefields (Jackson et al. 2005). Background The highly accurate and dense point data (or point clouds ) captured...coordinates, each having an associated RGB color and intensity value. The sophisticated design of the scanner enables point clouds to be captured that Named...scanned point clouds that are derived from consecutive scans at the same scanner location. The ScanWorlds were aligned together to form a referenced

  12. Use of a High-Resolution 3D Laser Scanner for Minefield Surface Modeling and Terrain Characterization: Temperature Region

    DTIC Science & Technology

    2005-08-01

    al. 2005). Background The highly accurate and dense point data (or point clouds ) captured by terrestrial 3D laser scanners, such as the Leica...intensity value. The sophisticated design of the scanner enables point clouds to be captured that 1...additional analyses. A ScanWorld can be defined as a collection of scanned point clouds that are derived from consecutive scans at the same scanner

  13. Fine-tuned characterization at the solid/solution interface of organotin compounds grafted onto cross-linked polystyrene by using high-resolution MAS NMR spectroscopy.

    PubMed

    Martins, José C; Mercier, Frédéric A G; Vandervelden, Alexander; Biesemans, Monique; Wieruszeski, Jean-Michel; Humpfer, Eberhard; Willem, Rudolph; Lippens, Guy

    2002-08-02

    The structural characterization of organotin compounds that are grafted onto insoluble cross-linked polymers has necessarily been limited to elemental analysis, infrared spectroscopy, and in a few instances, solid-state NMR spectroscopy. This important bottleneck in the development of such grafted systems has been addressed by using high-resolution magic angle spinning (hr-MAS) NMR spectroscopy. The great potential of this technique is demonstrated through the structural characterization of diphenylbutyl-(3,4) and dichlorobutylstannanes (5,6), grafted onto divinylbenzene cross-linked polystyrene by means of a suitable linker (1, 2). First, conditions suitable for the application of hr-MAS NMR spectroscopy were identified by characterizing the (1)H resonance line widths of the grafted organotin moiety following swelling of the functionalized beads in eight representative solvents. The presence of clearly identifiable tin coupling patterns in both the 1D (13)C and 2D (1)H-(13)C HSQC spectra, and the incorporation of (119)Sn chemical shift and connectivity information from hr-MAS 1D (119)Sn and 2D (1)H-(119)Sn HMQC spectra, provide an unprecedented level of characterization of grafted organotins directly at the solid/liquid interface. In addition, the use of hr-MAS (119)Sn NMR for reaction monitoring, impurity detection, and quantification and assessment of the extent of coordination reveals its promise as a novel tool for the investigation of polymer-grafted organotin compounds. The approach described here should be sufficiently general for extension to a variety of other nuclei of interest in polymer-supported organometallic chemistry.

  14. SU-C-BRE-04: Microbeam-Radiation-Therapy (MRT): Characterizing a Novel MRT Device Using High Resolution 3D Dosimetry

    SciTech Connect

    Li, Q; Juang, T; Bache, S; Chang, S; Oldham, M

    2014-06-15

    Purpose: The feasibility of MRT has recently been demonstrated utilizing a new technology of Carbon-Nano-Tube(CNT) field emission x-ray sources.This approach can deliver very high dose(10's of Gy) in narrow stripes(sub-mm) of radiation which enables the study of novel radiation treatment approaches. Here we investigate the application of highresolution (50um isotropic) PRESAGE/Optical-CT 3D dosimetry techniques to characterize the radiation delivered in this extremely dosimetrically challenging scenario. Methods: The CNT field emission x-ray source irradiator comprises of a linear cathode array and a novel collimator alignment system. This allows a precise delivery of high-energy small beams up to 160 kVp. A cylindrical dosimeter (∼2.2cm in height ∼2.5cm in diameter) was irradiated by CNT MRT delivering 3 strips of radiation with a nominal entrance dose of 32 Gy.A second dosimeter was irradiated with similar entrance dose, with a regular x-ray irradiator collimated to microscopical strip-beams. 50um (isotropic) 3D dosimetry was performed using an in-house optical-CT system designed and optimized for high resolution imaging (including a stray light deconvolution correction).The percentage depth dose (PDD), peak-to-valley ratio (PVR) and beam width (FWHM) data were obtained and analyzed in both cases. Results: High resolution 3D images were successfully achieved with the prototype system, enabling extraction of PDD and dose profiles. The PDDs for the CNT irradiation showed pronounced attenuation, but less build-up effect than that from the multibeam irradiation. The beam spacing between the three strips has an average value of 0.9mm while that for the 13 strips is 1.5 mm at a depth of 16.5 mm. The stray light corrected image shows line profiles with reduced noise and consistent PVR values. Conclusion: MRT dosimetry is extremely challenging due to the ultra small fields involved.This preliminary application of a novel, ultra-high resolution, optical-CT 3D

  15. A High-Resolution Dynamic Approach to Identifying and Characterizing Slow Slip and Subduction Locking Processes in Cascadia

    NASA Astrophysics Data System (ADS)

    Dimitrova, L. L.; Haines, A. J.; Wallace, L. M.; Bartlow, N. M.

    2014-12-01

    Slow slip events (SSEs) in Cascadia occur at ~30-50 km depth, every 10-19 months, and typically involve slip of a few cm, producing surface displacements on the order of a few mm up to ~1cm. There is a well-known association between tremor and SSEs; however, there are more frequent tremor episodes that are not clearly associated with geodetically detected SSEs (Wech and Creager 2011). This motivates the question: Are there smaller SSE signals that we are currently not recognizing geodetically? Most existing methods to investigate transient deformation with continuous GPS (cGPS) data employ kinematic, smoothed approaches to fit the cGPS data, limiting SSE identification and characterization.Recently, Haines et al. (submitted) showed that Vertical Derivatives of Horizontal Stress (VDoHS) rates, calculated from GPS data by solving the force balance equations at the Earth's surface, represent the most inclusive and spatially compact surface expressions of subsurface deformation sources: VDoHS rate vectors are tightly localized above the sources and point in the direction of push or pull. We adapt this approach, previously applied to campaign GPS data in New Zealand (e.g., Dimitrova et al. 2013), to daily cGPS time series from Cascadia and compare our results with those from the Network Inversion Filter (NIF) for 2009 (Bartlow et al. 2011). In both NIF and VDoHS rate inversions, the main 2009 SSE pulse reaches a peak slip value and splits into northern and southern sections. However, our inversion shows that the SSE started prior to July 27-28, compared to August 6-7 from the NIF results. Furthermore, we detect a smaller (~1 mm surface displacement) event from June 29-July 7 in southern Cascadia, which had not been identified previously.VDoHS rates also reveal the boundaries between the locked and unlocked portions of the megathrust, and we can track how this varies throughout the SSE cycle. Above the locked interface, the pull of the subducted plate generates shear

  16. High resolution time interval counter

    DOEpatents

    Condreva, K.J.

    1994-07-26

    A high resolution counter circuit measures the time interval between the occurrence of an initial and a subsequent electrical pulse to two nanoseconds resolution using an eight megahertz clock. The circuit includes a main counter for receiving electrical pulses and generating a binary word--a measure of the number of eight megahertz clock pulses occurring between the signals. A pair of first and second pulse stretchers receive the signal and generate a pair of output signals whose widths are approximately sixty-four times the time between the receipt of the signals by the respective pulse stretchers and the receipt by the respective pulse stretchers of a second subsequent clock pulse. Output signals are thereafter supplied to a pair of start and stop counters operable to generate a pair of binary output words representative of the measure of the width of the pulses to a resolution of two nanoseconds. Errors associated with the pulse stretchers are corrected by providing calibration data to both stretcher circuits, and recording start and stop counter values. Stretched initial and subsequent signals are combined with autocalibration data and supplied to an arithmetic logic unit to determine the time interval in nanoseconds between the pair of electrical pulses being measured. 3 figs.

  17. High resolution time interval counter

    DOEpatents

    Condreva, Kenneth J.

    1994-01-01

    A high resolution counter circuit measures the time interval between the occurrence of an initial and a subsequent electrical pulse to two nanoseconds resolution using an eight megahertz clock. The circuit includes a main counter for receiving electrical pulses and generating a binary word--a measure of the number of eight megahertz clock pulses occurring between the signals. A pair of first and second pulse stretchers receive the signal and generate a pair of output signals whose widths are approximately sixty-four times the time between the receipt of the signals by the respective pulse stretchers and the receipt by the respective pulse stretchers of a second subsequent clock pulse. Output signals are thereafter supplied to a pair of start and stop counters operable to generate a pair of binary output words representative of the measure of the width of the pulses to a resolution of two nanoseconds. Errors associated with the pulse stretchers are corrected by providing calibration data to both stretcher circuits, and recording start and stop counter values. Stretched initial and subsequent signals are combined with autocalibration data and supplied to an arithmetic logic unit to determine the time interval in nanoseconds between the pair of electrical pulses being measured.

  18. High Resolution Scanning Reflectarray Antenna

    NASA Technical Reports Server (NTRS)

    Romanofsky, Robert R. (Inventor); Miranda, Felix A. (Inventor)

    2000-01-01

    The present invention provides a High Resolution Scanning Reflectarray Antenna (HRSRA) for the purpose of tracking ground terminals and space craft communication applications. The present invention provides an alternative to using gimbaled parabolic dish antennas and direct radiating phased arrays. When compared to a gimbaled parabolic dish, the HRSRA offers the advantages of vibration free steering without incurring appreciable cost or prime power penalties. In addition, it offers full beam steering at a fraction of the cost of direct radiating arrays and is more efficient.

  19. High-resolution multiphoton cryomicroscopy.

    PubMed

    König, Karsten; Uchugonova, Aisada; Breunig, Hans Georg

    2014-03-15

    An ultracompact high-resolution multiphoton cryomicroscope with a femtosecond near infrared fiber laser has been utilized to study the cellular autofluorescence during freezing and thawing of cells. Cooling resulted in an increase of the intracellular fluorescence intensity followed by morphological modifications at temperatures below -10 °C, depending on the application of the cryoprotectant DMSO and the cooling rate. Furthermore, fluorescence lifetime imaging revealed an increase of the mean lifetime with a decrease in temperature. Non-destructive, label-free optical biopsies of biomaterial in ice can be obtained with sub-20 mW mean powers.

  20. High resolution time interval counter

    NASA Technical Reports Server (NTRS)

    Zhang, Victor S.; Davis, Dick D.; Lombardi, Michael A.

    1995-01-01

    In recent years, we have developed two types of high resolution, multi-channel time interval counters. In the NIST two-way time transfer MODEM application, the counter is designed for operating primarily in the interrupt-driven mode, with 3 start channels and 3 stop channels. The intended start and stop signals are 1 PPS, although other frequencies can also be applied to start and stop the count. The time interval counters used in the NIST Frequency Measurement and Analysis System are implemented with 7 start channels and 7 stop channels. Four of the 7 start channels are devoted to the frequencies of 1 MHz, 5 MHz or 10 MHz, while triggering signals to all other start and stop channels can range from 1 PPS to 100 kHz. Time interval interpolation plays a key role in achieving the high resolution time interval measurements for both counters. With a 10 MHz time base, both counters demonstrate a single-shot resolution of better than 40 ps, and a stability of better than 5 x 10(exp -12) (sigma(sub chi)(tau)) after self test of 1000 seconds). The maximum rate of time interval measurements (with no dead time) is 1.0 kHz for the counter used in the MODEM application and is 2.0 kHz for the counter used in the Frequency Measurement and Analysis System. The counters are implemented as plug-in units for an AT-compatible personal computer. This configuration provides an efficient way of using a computer not only to control and operate the counters, but also to store and process measured data.

  1. A simple, high efficiency, high resolution spectropolarimeter

    NASA Astrophysics Data System (ADS)

    Barden, Samuel C.

    2012-09-01

    A simple concept is described that uses volume phase holographic gratings as polarizing dispersers for a high efficiency, high resolution spectropolarimeter. Although the idea has previously been mentioned in the literature as possible, such a concept has not been explored in detail. Performance analysis is presented for a VPHG spectropolarimeter concept that could be utilized for both solar and night-time astronomy. Instrumental peak efficiency can approach 100% with spectral dispersions permitting R~200,000 spectral resolution with diffraction limited telescopes. The instrument has 3-channels: two dispersed image planes with orthogonal polarization and an undispersed image plane. The concept has a range of versatility where it could be configured (with appropriate half-wave plates) for slit-fed spectroscopy or without slits for snapshot/hyperspectral/tomographic spectroscopic imaging. Multiplex gratings could also be used for the simultaneous recording of two separate spectral bands or multiple instruments could be daisy chained with beam splitters for further spectral coverage.

  2. Ultra-high resolution AMOLED

    NASA Astrophysics Data System (ADS)

    Wacyk, Ihor; Prache, Olivier; Ghosh, Amal

    2011-06-01

    AMOLED microdisplays continue to show improvement in resolution and optical performance, enhancing their appeal for a broad range of near-eye applications such as night vision, simulation and training, situational awareness, augmented reality, medical imaging, and mobile video entertainment and gaming. eMagin's latest development of an HDTV+ resolution technology integrates an OLED pixel of 3.2 × 9.6 microns in size on a 0.18 micron CMOS backplane to deliver significant new functionality as well as the capability to implement a 1920×1200 microdisplay in a 0.86" diagonal area. In addition to the conventional matrix addressing circuitry, the HDTV+ display includes a very lowpower, low-voltage-differential-signaling (LVDS) serialized interface to minimize cable and connector size as well as electromagnetic emissions (EMI), an on-chip set of look-up-tables for digital gamma correction, and a novel pulsewidth- modulation (PWM) scheme that together with the standard analog control provides a total dimming range of 0.05cd/m2 to 2000cd/m2 in the monochrome version. The PWM function also enables an impulse drive mode of operation that significantly reduces motion artifacts in high speed scene changes. An internal 10-bit DAC ensures that a full 256 gamma-corrected gray levels are available across the entire dimming range, resulting in a measured dynamic range exceeding 20-bits. This device has been successfully tested for operation at frame rates ranging from 30Hz up to 85Hz. This paper describes the operational features and detailed optical and electrical test results for the new AMOLED WUXGA resolution microdisplay.

  3. Multicomponent, 3-D, and High-Resolution 2-D Seismic Characterization of Gas Hydrate Study Sites in the Gulf of Mexico

    NASA Astrophysics Data System (ADS)

    Haines, S. S.; Hart, P. E.; Ruppel, C. D.; Collett, T. S.; Shedd, W.; Lee, M. W.; Miller, J.

    2012-12-01

    High saturations of gas hydrates have been identified within coarse-grained sediments in the Green Canyon 955 and Walker Ridge 313 lease blocks of the deepwater northern Gulf of Mexico. The thickness, lateral extent, and hydrate saturations in these deposits are constrained by geological and geophysical data and state-of-the-art logging-while-drilling information obtained in multiple boreholes at each site during a 2009 expedition. Presently lacking are multicomponent seismic data that can provide a thorough understanding of the in-situ compressional and shear seismic properties of the hydrate-bearing sediments. Such data may represent an important tool for future characterization of gas hydrate resources. To address this data gap, the U.S. Geological Survey, the U.S. Department of Energy, and the Bureau of Ocean Energy Management will collaborate on a 20-day research expedition to acquire wide-angle ocean bottom seismometer and high-resolution vertical incidence 2-D seismic data at the study sites. In preparation for this mid-2013 expedition, we have analyzed existing industry 3-D seismic data, along with numerically modeled multicomponent data. The 3-D seismic data allow us to identify and rank specific survey targets and can be combined with the numerical modeling results to determine optimal survey line orientation and acquisition parameters. Together, these data also provide a more thorough understanding of the gas hydrate systems at these two sites.

  4. High-resolution gas chromatography/mass spectrometry method for characterization and quantitative analysis of ginkgolic acids in Ginkgo biloba plants, extracts, and dietary supplements.

    PubMed

    Wang, Mei; Zhao, Jianping; Avula, Bharathi; Wang, Yan-Hong; Avonto, Cristina; Chittiboyina, Amar G; Wylie, Philip L; Parcher, Jon F; Khan, Ikhlas A

    2014-12-17

    A high-resolution gas chromatography/mass spectrometry (GC/MS) with selected ion monitor method focusing on the characterization and quantitative analysis of ginkgolic acids (GAs) in Ginkgo biloba L. plant materials, extracts, and commercial products was developed and validated. The method involved sample extraction with (1:1) methanol and 10% formic acid, liquid-liquid extraction with n-hexane, and derivatization with trimethylsulfonium hydroxide (TMSH). Separation of two saturated (C13:0 and C15:0) and six unsaturated ginkgolic acid methyl esters with different positional double bonds (C15:1 Δ8 and Δ10, C17:1 Δ8, Δ10, and Δ12, and C17:2) was achieved on a very polar (88% cyanopropyl) aryl-polysiloxane HP-88 capillary GC column. The double bond positions in the GAs were determined by ozonolysis. The developed GC/MS method was validated according to ICH guidelines, and the quantitation results were verified by comparison with a standard high-performance liquid chromatography method. Nineteen G. biloba authenticated and commercial plant samples and 21 dietary supplements purported to contain G. biloba leaf extracts were analyzed. Finally, the presence of the marker compounds, terpene trilactones and flavonol glycosides for Ginkgo biloba in the dietary supplements was determined by UHPLC/MS and used to confirm the presence of G. biloba leaf extracts in all of the botanical dietary supplements.

  5. High resolution imaging at Palomar

    NASA Technical Reports Server (NTRS)

    Kulkarni, Shrinivas R.

    1992-01-01

    For the last two years we have embarked on a program of understanding the ultimate limits of ground-based optical imaging. We have designed and fabricated a camera specifically for high resolution imaging. This camera has now been pressed into service at the prime focus of the Hale 5 m telescope. We have concentrated on two techniques: the Non-Redundant Masking (NRM) and Weigelt's Fully Filled Aperture (FFA) method. The former is the optical analog of radio interferometry and the latter is a higher order extension of the Labeyrie autocorrelation method. As in radio Very Long Baseline Interferometry (VLBI), both these techniques essentially measure the closure phase and, hence, true image construction is possible. We have successfully imaged binary stars and asteroids with angular resolution approaching the diffraction limit of the telescope and image quality approaching that of a typical radio VLBI map. In addition, we have carried out analytical and simulation studies to determine the ultimate limits of ground-based optical imaging, the limits of space-based interferometric imaging, and investigated the details of imaging tradeoffs of beam combination in optical interferometers.

  6. High-resolution interferometric spectrophotopolarimetry

    NASA Technical Reports Server (NTRS)

    Fymat, A. L.

    1981-01-01

    Spectrophotopolarimetric capability can be added to a laboratory interferometer-spectrometer by use of a specially designed module described herein. With the instrument so augmented, high-resolution spectra can be obtained of the Stokes parameters of the reference beam and the beams diffusely reflected or transmitted by a sample medium of interest. For any such beam, the exponential Fourier transforms of the two interferograms obtained with a polarizer-analyzer oriented along the 0 deg and the 90 deg directions provide the spectra of I and Q, separately. Within experimental (and numerical) noise, this I spectrum should be the same as the one obtained with the polarizer removed. The remaining Stokes parameters U and V are obtained with a third interferogram recorded with the polarizer along the 45 deg direction. The complete theory of this instrument is described including the detailed analysis of the polarization-interferograms it provides.

  7. High-resolution land topography

    NASA Astrophysics Data System (ADS)

    Massonnet, Didier; Elachi, Charles

    2006-11-01

    After a description of the background, methods of production and some scientific uses of high-resolution land topography, we present the current status and the prospect of radar interferometry, regarded as one of the best techniques for obtaining the most global and the most accurate topographic maps. After introducing briefly the theoretical aspects of radar interferometry - principles, limits of operation and various capabilities -, we will focus on the topographic applications that resulted in an almost global topographic map of the earth: the SRTM map. After introducing the Interferometric Cartwheel system, we will build on its expected performances to discuss the scientific prospects of refining a global topographic map to sub-metric accuracy. We also show how other fields of sciences such as hydrology may benefit from the products generated by interferometric radar systems. To cite this article: D. Massonnet, C. Elachi, C. R. Geoscience 338 (2006).

  8. Recognition and characterization of networks of water bodies in the Arctic ice-wedge polygonal tundra using high-resolution satellite imagery

    NASA Astrophysics Data System (ADS)

    Skurikhin, A. N.; Gangodagamage, C.; Rowland, J. C.; Wilson, C. J.

    2013-12-01

    Arctic lowland landscapes underlain by permafrost are often characterized by polygon-like patterns such as ice-wedge polygons outlined by networks of ice wedges and complemented with polygon rims, troughs, shallow ponds and thermokarst lakes. Polygonal patterns and corresponding features are relatively easy to recognize in high spatial resolution satellite imagery by a human, but their automated recognition is challenging due to the variability in their spectral appearance, the irregularity of individual trough spacing and orientation within the patterns, and a lack of unique spectral response attributable to troughs with widths commonly between 1 m and 2 m. Accurate identification of fine scale elements of ice-wedge polygonal tundra is important as their imprecise recognition may bias estimates of water, heat and carbon fluxes in large-scale climate models. Our focus is on the problem of identification of Arctic polygonal tundra fine-scale landscape elements (as small as 1 m - 2 m width). The challenge of the considered problem is that while large water bodies (e.g. lakes and rivers) can be recognized based on spectral response, reliable recognition of troughs is more difficult. Troughs do not have unique spectral signature, their appearance is noisy (edges are not strong), their width is small, and they often form connected networks with ponds and lakes, and thus they have overlapping spectral response with other water bodies and surrounding non-water bodies. We present a semi-automated approach to identify and classify Arctic polygonal tundra landscape components across the range of spatial scales, such as troughs, ponds, river- and lake-like objects, using high spatial resolution satellite imagery. The novelty of the approach lies in: (1) the combined use of segmentation and shape-based classification to identify a broad range of water bodies, including troughs, and (2) the use of high-resolution WorldView-2 satellite imagery (with resolution of 0.6 m) for this

  9. Multidimensional High-Resolution Magic Angle Spinning and Solution-State NMR Characterization of 13C-labeled Plant Metabolites and Lignocellulose

    PubMed Central

    Mori, Tetsuya; Tsuboi, Yuuri; Ishida, Nobuhiro; Nishikubo, Nobuyuki; Demura, Taku; Kikuchi, Jun

    2015-01-01

    Lignocellulose, which includes mainly cellulose, hemicellulose, and lignin, is a potential resource for the production of chemicals and for other applications. For effective production of materials derived from biomass, it is important to characterize the metabolites and polymeric components of the biomass. Nuclear magnetic resonance (NMR) spectroscopy has been used to identify biomass components; however, the NMR spectra of metabolites and lignocellulose components are ambiguously assigned in many cases due to overlapping chemical shift peaks. Using our 13C-labeling technique in higher plants such as poplar samples, we demonstrated that overlapping peaks could be resolved by three-dimensional NMR experiments to more accurately assign chemical shifts compared with two-dimensional NMR measurements. Metabolites of the 13C-poplar were measured by high-resolution magic angle spinning NMR spectroscopy, which allows sample analysis without solvent extraction, while lignocellulose components of the 13C-poplar dissolved in dimethylsulfoxide/pyridine solvent were analyzed by solution-state NMR techniques. Using these methods, we were able to unambiguously assign chemical shifts of small and macromolecular components in 13C-poplar samples. Furthermore, using samples of less than 5 mg, we could differentiate between two kinds of genes that were overexpressed in poplar samples, which produced clearly modified plant cell wall components. PMID:26143886

  10. Enhanced characterization of oil sands acid-extractable organics fractions using electrospray ionization-high-resolution mass spectrometry and synchronous fluorescence spectroscopy.

    PubMed

    Bauer, Anthony E; Frank, Richard A; Headley, John V; Peru, Kerry M; Hewitt, L Mark; Dixon, D George

    2015-05-01

    The open pit oil sands mining operations north of Fort McMurray, Alberta, Canada, are accumulating tailings waste at a rate approximately equal to 4.9 million m(3) /d. Naphthenic acids are among the most toxic components within tailings to aquatic life, but structural components have largely remained unidentified. In the present study, electrospray ionization high-resolution mass spectrometry (ESI-HRMS) and synchronous fluorescence spectroscopy (SFS) were used to characterize fractions derived from the distillation of an acid-extractable organics (AEO) mixture isolated from oil sands process-affected water (OSPW). Mean molecular weights of each fraction, and their relative proportions to the whole AEO extract, were as follows: fraction 1: 237 Da, 8.3%; fraction 2: 240 Da, 23.8%; fraction 3: 257 Da, 26.7%; fraction 4: 308 Da, 18.9%; fraction 5: 355 Da, 10.0%. With increasing mean molecular weight of the AEO fractions, a concurrent increase occurred in the relative abundance of nitrogen-, sulfur-, and oxygen-containing ions, double-bond equivalents, and degree of aromaticity. Structures present in the higher-molecular-weight fractions (fraction 4 and fraction 5) suggested the presence of heteroatoms, dicarboxyl and dihydroxy groups, and organic acid compounds with the potential to function as estrogens. Because organic acid compositions become dominated by more recalcitrant, higher-molecular-weight acids during natural degradation, these findings are important in the context of oil sands tailings pond water remediation.

  11. Characterization of Soft Contact Lens Edge Fitting Using Ultra-High Resolution and Ultra-Long Scan Depth Optical Coherence Tomography

    PubMed Central

    Shen, Meixiao; Cui, Lele; Riley, Colleen; Wang, Michael R.

    2011-01-01

    Purpose. To characterize the edge fitting of soft contact lenses using ultra-high resolution optical coherence tomography (UHR-OCT) and ultra-long scan depth optical coherence tomography (UL-OCT). Methods. A total of 20 participants (11 men, 9 women; mean age, 32.3 years) were recruited. Four different types of soft contact lenses were randomly fitted to both eyes of each subject on two separate visits. After 30 minutes, the horizontal meridians of the corneal center, midperiphery, and limbus were imaged by UHR-OCT. UL-OCT imaged each lens in vitro and the ocular surface of a physical model eye. Results. Angle-edged lenses had significantly less conjunctival buildup than did round-edged lenses (P = 0.008). Limbal post-lens tear film gaps were present in 42% of the eyes, with the round-edged lenses having the most at 68%. Similarly, post-lens tear film gaps at the corneal mid-periphery were present in 47% of all eyes, with the round-edged lens having the most at 75%. Mismatches between the lens and the ocular surface were simulated based on UL-OCT images of the in vitro lenses and the model eye. The existence of tear film gaps and touching points were predicted in the simulation. Conclusions. The soft contact lens edge fitting was characterized by the conjunctival buildup and tear film gaps. Different types of contact lenses presented different levels of conjunctival buildup as well as different frequencies of tear film gaps. The findings by UHR-OCT were predicted in the simulation by UL-OCT. The application of these new technologies may open new ways of designing lenses and evaluating their fit. PMID:21372023

  12. Analysis and Characterization of Dissolved Organic Matter in Ice Cores as Indicators of Past Environmental Conditions Using High Resolution FTICR-MS

    NASA Astrophysics Data System (ADS)

    Boschi, V.; Grannas, A. M.; Willoughby, A. S.; Catanzano, V.; Hatcher, P.

    2015-12-01

    With rapid changes in global temperatures, research aimed at better understanding past climatic events in order to predict future trends is an area of growing importance. Carbonaceous gases stored in ice cores are known to correlate with temperature change and provide evidence of such events. However, more complex forms of carbon preserved in ice cores such as dissolved organic matter (DOM) can provide additional information relating to changes in environmental conditions over time. The examination of ice core samples presents unique challenges including detection of ultra-low concentrations of organic material and extremely limited sample amounts. In this study, solid phase extraction techniques combined with ultra-high resolution electrospray ionization Fourier transform ion cyclotron resonance mass spectrometry (ESI FTICR-MS) were utilized to successfully extract, concentrate and analyze the low concentrations of DOM in only 100 mL of ice core samples originating from various regions of Antarctica and Greenland. We characterize the DOM composition in each sample by evaluating elemental ratios, molecular formula distribution (CHO, CHON, CHOS and CHNOS) and compound class composition (lignin, tannin, lipid, condensed aromatic, protein and unsaturated hydrocarbon content). Upon characterization, we identified molecular trends in ice core DOM chemistry that correlated with past climatic events in addition to observing possible photochemical and microbial influences affecting DOM chemistry. Considering these samples range in age from 350-1175 years old, thus being formed during the Medieval Warm Period and Little Ice Age, we observed that DOM properties reflected anticipated changes in composition as influenced by warming and cooling events occurring during that time period.

  13. Characterizing the lifetime and occurrence of stratospheric-tropospheric exchange events in the rocky mountain region using high-resolution ozone measurements

    NASA Astrophysics Data System (ADS)

    Sullivan, John T.; McGee, Thomas J.; Thompson, Anne M.; Pierce, R. Bradley; Sumnicht, Grant K.; Twigg, Laurence W.; Eloranta, Edwin; Hoff, Raymond M.

    2015-12-01

    The evolution of a Stratospheric-Tropospheric Exchange (STE) event from 4 to 8 August 2014 at Fort Collins, Colorado, is described. The event is characterized with observations from the Goddard Space Flight Center TROPospheric OZone (TROPOZ) Differential Absorption Lidar, the University of Wisconsin High Spectral Resolution Lidar, and multiple ozonesondes during NASA's Deriving Information on Surface Conditions from Column and Vertically Resolved Observations Relevant to Air Quality and the Front Range Air Pollution and Photochemistry Experiment (FRAPPE) campaigns. Based on the extended TROPOZ observations throughout the entire campaign, it was found that STE events have largely contributed to an additional 10-30 ppbv of ozone at Fort Collins. Additional measurements of ozone and relative humidity from the Atmospheric Infrared Sounder are characterize the transport of the intrusion. The Real-time Air Quality Modeling System simulated ozone agrees well with the TROPOZ ozone concentrations and altitude during the STE event. To extend the analysis into other seasons and years, the modeled ozone to potential vorticity ratio is used as a tracer for stratospheric air residing below the tropopause. It is found that at Fort Collins, CO, and depending on season from 2012 to 2014, between 18 and 31% of tropospheric ozone corresponds to stratospheric air. A relationship to determine the lifetime of stratospheric air below the tropopause is derived using the simulated ratio tracer. Results indicate that throughout summer 2014, 43% of stratospheric air resided below the tropopause for less than 12 h. However, nearly 39% persisted below the tropopause for 12-48 h and likely penetrated deeper in the troposphere.

  14. Glacier surface melt characterization and trend analysis (1992-2011) in the Russian High Arctic from combined resolution-enhanced scatterometer and passive microwave data

    NASA Astrophysics Data System (ADS)

    Zhao, M.; Ramage, J. M.; Semmens, K. A.

    2012-12-01

    Global warming has been pronounced in the remote glacierized archipelagoes (Severnaya Zemlya, Novaya Zemlya and Franz Josef Land) of the Russian High Arctic (RHA) and its effect on the low altitude, high latitude small ice caps needs examination. The timing and spatial variability of snow melt onset, duration and intensity are key factors influencing mass balance and the ice marginal hydrological system as well as important indicators of glacial response to anthropogenic and natural forcings. Characterization and trend analysis of RHA glacier melt behaviors provide insight about assessing the mass loss rate under recent Arctic climate change. However, due to the harsh environment, long term records of glaciological data for RHA are limited, necessitating the application of remotely sensed data to accomplish the research. The high sensitivity to liquid water and the ability to penetrate non-precipitating clouds enables microwave remote sensing to detect glacier surface melt. The appearance of melt water in snow dramatically decreases the returned scatterometer radar signal from active microwave sensors and sharply augments passive microwave emission. Based on this feature, we combined resolution-enhanced ERS-1/2 C-band (1992-2000), QuickSCAT Ku-band (2000-2009), ASCAT C-band (2009-2011) scatterometer data and SSMI 37 GHz (1995-2007) vertically polarized passive microwave products from Brigham Young University and analyzed glacier surface melt trends from 1992 to 2011 with a spatial resolution downscaled to 4.45km. We concatenated scatterometer derived melt behaviors by overlapping years and refined the results based on passive microwave data. Cross-validation shows that melt timing to be consistent between the active and passive sensors. Trend analysis (α < 0.005) reveals that the average glacier surface melt onset date occurs earlier by approximately 0.85 days/year in Severnaya Zemlya which outpaced the mean advancing rate in the pan-Arctic. Surrounded by ocean

  15. Computer synthesis of high resolution electron micrographs

    NASA Technical Reports Server (NTRS)

    Nathan, R.

    1976-01-01

    Specimen damage, spherical aberration, low contrast and noisy sensors combine to prevent direct atomic viewing in a conventional electron microscope. The paper describes two methods for obtaining ultra-high resolution in biological specimens under the electron microscope. The first method assumes the physical limits of the electron objective lens and uses a series of dark field images of biological crystals to obtain direct information on the phases of the Fourier diffraction maxima; this information is used in an appropriate computer to synthesize a large aperture lens for a 1-A resolution. The second method assumes there is sufficient amplitude scatter from images recorded in focus which can be utilized with a sensitive densitometer and computer contrast stretching to yield fine structure image details. Cancer virus characterization is discussed as an illustrative example. Numerous photographs supplement the text.

  16. High Resolution Science with High Redshift Galaxies

    NASA Astrophysics Data System (ADS)

    Windhorst, R.

    I will first review high resolution science that has been done with the Hubble Space Telescope on high redshift galaxies Next I will review the capabilities of the 6 5 meter James Webb Space Telescope JWST which is an optimized infrared telescope that can deploy automatically in space slated for launch to a halo L2 orbit in 2013 I will outline how the JWST can go about measuring First Light Reionization and Galaxy Assembly building on lessons learned from the Hubble Space Telescope I will show what more nearby galaxies observed in their restframe UV--optical light may look like to JWST at high redshifts Last I will summarize the Generation-X mission concept for an X-ray telescope designed to study the very early universe with 1000-times greater sensitivity than current facilities Gen-X will study the first generations of stars and black holes in the epoch z 10-20 the evolution of black holes and galaxies from high z to the present the chemical evolution of the universe and the properties of matter under extreme conditions This requires an effective area of 100 m 2 at 1 keV an angular resolution of 0 1 HPD over 0 1-10 keV

  17. High Resolution Measurement of the Glycolytic Rate

    PubMed Central

    Bittner, Carla X.; Loaiza, Anitsi; Ruminot, Iván; Larenas, Valeria; Sotelo-Hitschfeld, Tamara; Gutiérrez, Robin; Córdova, Alex; Valdebenito, Rocío; Frommer, Wolf B.; Barros, L. Felipe

    2010-01-01

    The glycolytic rate is sensitive to physiological activity, hormones, stress, aging, and malignant transformation. Standard techniques to measure the glycolytic rate are based on radioactive isotopes, are not able to resolve single cells and have poor temporal resolution, limitations that hamper the study of energy metabolism in the brain and other organs. A new method is described in this article, which makes use of a recently developed FRET glucose nanosensor to measure the rate of glycolysis in single cells with high temporal resolution. Used in cultured astrocytes, the method showed for the first time that glycolysis can be activated within seconds by a combination of glutamate and K+, supporting a role for astrocytes in neurometabolic and neurovascular coupling in the brain. It was also possible to make a direct comparison of metabolism in neurons and astrocytes lying in close proximity, paving the way to a high-resolution characterization of brain energy metabolism. Single-cell glycolytic rates were also measured in fibroblasts, adipocytes, myoblasts, and tumor cells, showing higher rates for undifferentiated cells and significant metabolic heterogeneity within cell types. This method should facilitate the investigation of tissue metabolism at the single-cell level and is readily adaptable for high-throughput analysis. PMID:20890447

  18. Characterization of submicron aerosols during a serious pollution month in Beijing (2013) using an aerodyne high-resolution aerosol mass spectrometer

    NASA Astrophysics Data System (ADS)

    Zhang, J. K.; Sun, Y.; Liu, Z. R.; Ji, D. S.; Hu, B.; Liu, Q.; Wang, Y. S.

    2013-07-01

    In January 2013, Beijing experienced several serious haze events. To achieve a better understanding of the characteristics, sources and processes of aerosols during this month, an Aerodyne High-Resolution Time-of-Flight Aerosol Mass Spectrometer (HR-ToF-AMS) was deployed at an urban site between 1 January and 1 February 2013 to obtain the size-resolved chemical composition of non-refractory submicron particles (NR-PM1). During this period, the mean measured NR-PM1 mass concentration was 87.4 μg m-3 and was composed of organics (49.8%), sulfate (21.4%), nitrate (14.6%), ammonium (10.4%), and chloride (3.8%). Moreover, inorganic matter, such as sulfate and nitrate comprised an increasing fraction of the NR-PM1 load as NR-PM1 loading increased, denoting their key roles in particulate pollution during this month. The average size distributions of the species were all dominated by an accumulation mode peaking at approximately 600 nm in vacuum aerodynamic diameter and organics characterized by an additional smaller size (∼200 nm). Elemental analyses showed that the average O/C, H/C, and N/C (molar ratio) of organic matter were 0.34, 1.44 and 0.015, respectively, corresponding to an OM/OC ratio (mass ratio of organic matter to organic carbon) of 1.60. Positive matrix factorization (PMF) analyses of the high-resolution organic mass spectral dataset differentiated the organic aerosol into four components, i.e., oxygenated organic aerosols (OOA), cooking-related (COA), nitrogen-containing (NOA) and hydrocarbon-like (HOA), which on average accounted for 40.0, 23.4, 18.1 and 18.5% of the total organic mass, respectively. Back trajectory clustering analyses indicated that the WNW air masses were associated with the highest NR-PM1 pollution during the campaign. Aerosol particles in southern air masses were especially rich in inorganic and oxidized organic species, whereas northern air masses contained a large fraction of primary species.

  19. High-throughput characterization of sediment organic matter by pyrolysis-gas chromatography/mass spectrometry and multivariate curve resolution: A promising analytical tool in (paleo)limnology.

    PubMed

    Tolu, Julie; Gerber, Lorenz; Boily, Jean-François; Bindler, Richard

    2015-06-23

    Molecular-level chemical information about organic matter (OM) in sediments helps to establish the sources of OM and the prevalent degradation/diagenetic processes, both essential for understanding the cycling of carbon (C) and of the elements associated with OM (toxic trace metals and nutrients) in lake ecosystems. Ideally, analytical methods for characterizing OM should allow high sample throughput, consume small amounts of sample and yield relevant chemical information, which are essential for multidisciplinary, high-temporal resolution and/or large spatial scale investigations. We have developed a high-throughput analytical method based on pyrolysis-gas chromatography/mass spectrometry and automated data processing to characterize sedimentary OM in sediments. Our method consumes 200 μg of freeze-dried and ground sediment sample. Pyrolysis was performed at 450°C, which was found to avoid degradation of specific biomarkers (e.g., lignin compounds, fresh carbohydrates/cellulose) compared to 650°C, which is in the range of temperatures commonly applied for environmental samples. The optimization was conducted using the top ten sediment samples of an annually resolved sediment record (containing 16-18% and 1.3-1.9% of total carbon and nitrogen, respectively). Several hundred pyrolytic compound peaks were detected of which over 200 were identified, which represent different classes of organic compounds (i.e., n-alkanes, n-alkenes, 2-ketones, carboxylic acids, carbohydrates, proteins, other N compounds, (methoxy)phenols, (poly)aromatics, chlorophyll and steroids/hopanoids). Technical reproducibility measured as relative standard deviation of the identified peaks in triplicate analyses was 5.5±4.3%, with 90% of the RSD values within 10% and 98% within 15%. Finally, a multivariate calibration model was calculated between the pyrolytic degradation compounds and the sediment depth (i.e., sediment age), which is a function of degradation processes and changes in OM

  20. Assessment of vulnerability in karst aquifers using a quantitative integrated numerical model: catchment characterization and high resolution monitoring - Application to semi-arid regions- Lebanon.

    NASA Astrophysics Data System (ADS)

    Doummar, Joanna; Aoun, Michel; Andari, Fouad

    2016-04-01

    Karst aquifers are highly heterogeneous and characterized by a duality of recharge (concentrated; fast versus diffuse; slow) and a duality of flow which directly influences groundwater flow and spring responses. Given this heterogeneity in flow and infiltration, karst aquifers do not always obey standard hydraulic laws. Therefore the assessment of their vulnerability reveals to be challenging. Studies have shown that vulnerability of aquifers is highly governed by recharge to groundwater. On the other hand specific parameters appear to play a major role in the spatial and temporal distribution of infiltration on a karst system, thus greatly influencing the discharge rates observed at a karst spring, and consequently the vulnerability of a spring. This heterogeneity can only be depicted using an integrated numerical model to quantify recharge spatially and assess the spatial and temporal vulnerability of a catchment for contamination. In the framework of a three-year PEER NSF/USAID funded project, the vulnerability of a karst catchment in Lebanon is assessed quantitatively using a numerical approach. The aim of the project is also to refine actual evapotranspiration rates and spatial recharge distribution in a semi arid environment. For this purpose, a monitoring network was installed since July 2014 on two different pilot karst catchment (drained by Qachqouch Spring and Assal Spring) to collect high resolution data to be used in an integrated catchment numerical model with MIKE SHE, DHI including climate, unsaturated zone, and saturated zone. Catchment characterization essential for the model included geological mapping and karst features (e.g., dolines) survey as they contribute to fast flow. Tracer experiments were performed under different flow conditions (snow melt and low flow) to delineate the catchment area, reveal groundwater velocities and response to snowmelt events. An assessment of spring response after precipitation events allowed the estimation of the

  1. High Resolution Frequency Swept Imaging.

    DTIC Science & Technology

    1983-09-30

    recording configuration similar to that of a lensless Fourier transform hologram, the resolution and spacial sampling requirement from the recording...a lensless Fourier Transform hologram, the resolution requirements from the recording device are greatly !.4 + ’+:::,,,. :,;,,,,o...n X-Ray Crytallography and Electron Microscopy By Reduction to Two-Dimensional Holographic Implementation", Trans. Amr. Crytallographic Assoc., Vol

  2. Evaluation of Advanced Bionics high resolution mode.

    PubMed

    Buechner, Andreas; Frohne-Buechner, Carolin; Gaertner, Lutz; Lesinski-Schiedat, Anke; Battmer, Rolf-Dieter; Lenarz, Thomas

    2006-07-01

    The objective of this paper is to evaluate the advantages of the Advanced Bionic high resolution mode for speech perception, through a retrospective analysis. Forty-five adult subjects were selected who had a minimum experience of three months' standard mode (mean of 10 months) before switching to high resolution mode. Speech perception was tested in standard mode immediately before fitting with high resolution mode, and again after a maximum of six months high resolution mode usage (mean of two months). A significant improvement was found, between 11 and 17%, depending on the test material. The standard mode preference does not give any indication about the improvement when switching to high resolution. Users who are converted within any study achieve a higher performance improvement than those converted in the clinical routine. This analysis proves the significant benefits of high resolution mode for users, and also indicates the need for guidelines for individual optimization of parameter settings in a high resolution mode program.

  3. High resolution optoelectronic retinal prosthesis

    NASA Astrophysics Data System (ADS)

    Loudin, Jim; Dinyari, Rostam; Huie, Phil; Butterwick, Alex; Peumans, Peter; Palanker, Daniel

    2009-02-01

    Electronic retinal prostheses seek to restore sight in patients with retinal degeneration by delivering pulsed electric currents to retinal neurons via an array of microelectrodes. Most implants use inductive or optical transmission of information and power to an intraocular receiver, with decoded signals subsequently distributed to retinal electrodes through an intraocular cable. Surgical complexity could be minimized by an "integrated" prosthesis, in which both power and data are delivered directly to the stimulating array without any discrete components or cables. We present here an integrated retinal prosthesis system based on a photodiode array implant. Video frames are processed and imaged onto the retinal implant by a video goggle projection system operating at near-infrared wavelengths (~ 900 nm). Photodiodes convert light into pulsed electric current, with charge injection maximized by specially optimized series photodiode circuits. Prostheses of three different pixel densities (16 pix/mm2, 64 pix/mm2, and 256 pix/mm2) have been designed, simulated, and prototyped. Retinal tissue response to subretinal implants made of various materials has been investigated in RCS rats. The resulting prosthesis can provide sufficient charge injection for high resolution retinal stimulation without the need for implantation of any bulky discrete elements such as coils or tethers. In addition, since every pixel functions independently, pixel arrays may be placed separately in the subretinal space, providing visual stimulation to a larger field of view.

  4. High resolution auditory perception system

    NASA Astrophysics Data System (ADS)

    Alam, Iftekhar; Ghatol, Ashok

    2005-04-01

    Blindness is a sensory disability which is difficult to treat but can to some extent be helped by artificial aids. The paper describes the design aspects of a high resolution auditory perception system, which is designed on the principle of air sonar with binaural perception. This system is a vision substitution aid for enabling blind persons. The blind person wears ultrasonic eyeglasses which has ultrasonic sensor array embedded on it. The system has been designed to operate in multiresolution modes. The ultrasonic sound from the transmitter array is reflected back by the objects, falling in the beam of the array and is received. The received signal is converted to a sound signal, which is presented stereophonically for auditory perception. A detailed study has been done as the background work required for the system implementation; the appropriate range analysis procedure, analysis of space-time signals, the acoustic sensors study, amplification methods and study of the removal of noise using filters. Finally the system implementation including both the hardware and the software part of it has been described. Experimental results on actual blind subjects and inferences obtained during the study have also been included.

  5. High Resolution, High Frame Rate Video Technology

    NASA Technical Reports Server (NTRS)

    1990-01-01

    Papers and working group summaries presented at the High Resolution, High Frame Rate Video (HHV) Workshop are compiled. HHV system is intended for future use on the Space Shuttle and Space Station Freedom. The Workshop was held for the dual purpose of: (1) allowing potential scientific users to assess the utility of the proposed system for monitoring microgravity science experiments; and (2) letting technical experts from industry recommend improvements to the proposed near-term HHV system. The following topics are covered: (1) State of the art in the video system performance; (2) Development plan for the HHV system; (3) Advanced technology for image gathering, coding, and processing; (4) Data compression applied to HHV; (5) Data transmission networks; and (6) Results of the users' requirements survey conducted by NASA.

  6. Planetary Atmospheres at High Resolution

    NASA Astrophysics Data System (ADS)

    Gurwell, M.; Butler, B.; Moullet, A.

    2013-10-01

    The long millimeter through submillimeter bands are particularly well suited for studying the wide variety of planetary atmospheres in our solar system. Temperatures ranging from a few 10s to hundreds of degrees, coupled with typically high densities (relative to the ISM) mean that thermal ‘continuum’ emission can be strong and molecular rotational transitions can be well-populated. Large bodies (Jovian and terrestrial planets) can be reasonably well studied by current interferometers such as the Submillimeter Array, IRAM Plateau de Bure Interferometer, and Combined Array for Research in Millimeter-wave Astronomy, yet many smaller bodies with atmospheres can only be crudely studied, primarily due to lack of sensitivity on baselines long enough to well resolve the object. Newly powerful interferometers such as the Atacama Large Millimeter/Submillimeter Array will usher in a new era of planetary atmospheric exploration. The vast sensitivity and spatial resolution of these arrays will increase our ability to image all bodies with extremely fine fidelity (due to the large number of antennas), and for study of smaller objects by resolving their disks into many pixels while providing the sensitivity necessary to detect narrow and/or weak line emission. New science topics will range from detailed mapping of HDO, ClO, and sulfur species in the mesosphere of Venus and PH3 and H2S in the upper tropospheres of the gas and ice giants, high SNR mapping of winds on Mars, Neptune and Titan, down to spectroscopic imaging of volcanic eruptions within the tenuous atmosphere on Io, resolved imaging of CO and other species in the atmosphere of Pluto, and even potentially detection of gases within the plumes of Enceladus.

  7. High resolution Raman lidar measurements for the characterization of the water vapour inflow in the frame of the Hydrological Cycle in the Mediterranean Experiment

    NASA Astrophysics Data System (ADS)

    Di Girolamo, Paolo; Cacciani, Marco; Stelitano, Dario; Summa, Donato

    2013-04-01

    The University of BASILicata Raman Lidar system (BASIL) was deployed in Candillargues (Southern France, Lat: 43°37' N, Long: 4° 4' E) in the frame of the Hydrological Cycle in the Mediterranean Experiment - HyMeX. Within this experiment a major field campaign (Special Observation Period 1-SOP1, September to November 2012) took place over the Northwestern Mediterranean Sea and its surrounding coastal regions in France, Italy and Spain, with a specific focus on the study of heavy precipitation and flash-flood events. During HyMeX-SOP1, BASIL operated between 5 September and 5 November 2012, collecting more than 600 hours of measurements, distributed over 51 measurement days and 19 intensive observation periods (IOPs). The major feature of BASIL is represented by its capability to perform high-resolution and accurate measurements of atmospheric temperature and water vapour, both in daytime and night-time, based on the application of the rotational and vibrational Raman lidar techniques in the UV (Di Girolamo et al., 2004, 2006, 2009). This makes it an ideal tool for the characterization of the water vapour inflow in Southern France, which is important piece of information to improve the comprehension and forecasting capabilities of heavy precipitations in the Northwestern Mediterranean basin. Preliminary measurements from this field deployment will be illustrated and discussed at the Conference. These measurements allow to monitor and characterize the marine atmospheric flow that transport moist and conditionaly unstable air towards the coasts, which is feeding into the HPE events in Southern France. Measurements from BASIL can also be used to better characterize Planetary Boundary Layer moisture transport mechanisms from the surface to deep-convection systems. Besides temperature and water vapour, BASIL also provides measurements of the particle (aerosol/cloud) backscattering coefficient at 355, 532 and 1064 nm, of the particle extinction coefficient at 355 and 532

  8. Bottom Characterization with High Resolution Sonar Data and Geochemical Analyses of an Uninvestigated Cone in Lagoa das Furnas on São Miguel Island, Azores Archipelago

    NASA Astrophysics Data System (ADS)

    Andersson, T.

    2015-12-01

    Lagoa das Furnas is a crater lake located in an area exposed to geohazards from earthquakes and volcanic activity on the island São Miguel in the Azores Archipelago. The Furnas volcanic center has a long history of earthquakes and volcanic activity. The area is relatively well studied except for the lake floor. Therefore, a high resolution geophysical and geological mapping survey was conducted at Lagoa das Furnas. Sidescan sonar was used to map the surface of the lake floor and single beam sonar was used to acquire sub-bottom profiles. In addition to the geophysical mapping, sediment surface sampling and core drilling were carried out followed by geochemical analyses of the retrieved material. The mapped data permitted a characterization of the floor of Lagoa das Furnas and revealed several volcanic features including fumarolic activity and a previously uninvestigated volcanic cone in the southern part of the lake. In order to unravel the origin of this cone several methods were applied, including analyses of tephra and minerals collected from the cone itself and from nearby deposits of two known eruptions, Furnas I and Furnas 1630. Sedimentological, petrological, geochemical and geochronological studies of pyroclastic deposits from the cone suggest a subaqueous eruption linked to the Furnas 1630 eruption. The chemistry of glass and crystal fragments sampled from the cone suggests that it is composed of more evolved magma than that of the main Furnas 1630, implying that the lake cone is likely a product of the last eruptional phase. According to historical records, two of three lakes were lost due the Furnas 1630 eruption. The results of this study show that the remaining lake is most likely Lagoa das Furnas, which consequently must have existed before the 1630 eruption.

  9. High-Resolution Harmonics Ultrasound Imaging for Non-Invasive Characterization of Wound Healing in a Pre-Clinical Swine Model

    PubMed Central

    Mathew-Steiner, Shomita S.; Dixith, Sriteja; Vanzant, Daniel; Kim, Jayne; Dickerson, Jennifer L.; Datta, Soma; Powell, Heather; Roy, Sashwati; Bergdall, Valerie; Sen, Chandan K.

    2015-01-01

    This work represents the first study employing non-invasive high-resolution harmonic ultrasound imaging to longitudinally characterize skin wound healing. Burn wounds (day 0-42), on the dorsum of a domestic Yorkshire white pig were studied non-invasively using tandem digital planimetry, laser speckle imaging and dual mode (B and Doppler) ultrasound imaging. Wound depth, as measured by B-mode imaging, progressively increased until day 21 and decreased thereafter. Initially, blood flow at the wound edge increased up to day 14 and subsequently regressed to baseline levels by day 21, when the wound was more than 90% closed. Coinciding with regression of blood flow at the wound edge, there was an increase in blood flow in the wound bed. This was observed to regress by day 42. Such changes in wound angiogenesis were corroborated histologically. Gated Doppler imaging quantitated the pulse pressure of the primary feeder artery supplying the wound site. This pulse pressure markedly increased with a bimodal pattern following wounding connecting it to the induction of wound angiogenesis. Finally, ultrasound elastography measured tissue stiffness and visualized growth of new tissue over time. These studies have elegantly captured the physiological sequence of events during the process of wound healing, much of which is anticipated based on certain dynamics in play, to provide the framework for future studies on molecular mechanisms driving these processes. We conclude that the tandem use of non-invasive imaging technologies has the power to provide unprecedented insight into the dynamics of the healing skin tissue. PMID:25799513

  10. Multiple single-point imaging (mSPI) as a tool for capturing and characterizing MR signals and repetitive signal disturbances with high temporal resolution: the MRI scanner as a high-speed camera.

    PubMed

    Bakker, Chris J G; van Gorp, Jetse S; Verwoerd, Jan L; Westra, Albert H; Bouwman, Job G; Zijlstra, Frank; Seevinck, Peter R

    2013-09-01

    In this paper we aim to lay down and demonstrate the use of multiple single-point imaging (mSPI) as a tool for capturing and characterizing steady-state MR signals and repetitive disturbances thereof with high temporal resolution. To achieve this goal, various 2D mSPI sequences were derived from the nearest standard 3D imaging sequences by (i) replacing the excitation of a 3D slab by the excitation of a 2D slice orthogonal to the read axis, (ii) setting the readout gradient to zero, and (iii) leaving out the inverse Fourier transform in the read direction. The thus created mSPI sequences, albeit slow with regard to the spatial encoding part, were shown to result into a series of densely spaced 2D single-point images in the time domain enabling monitoring of the evolution of the magnetization with a high temporal resolution and without interference from any encoding gradients. The high-speed capabilities of mSPI were demonstrated by capturing and characterizing the free induction decays and spin echoes of substances with long T2s (>30 ms) and long and short T2*s (4 - >30 ms) and by monitoring the perturbation of the transverse magnetization by, respectively, a titanium cylinder, representing a static disturbance; a pulsed magnetic field gradient, representing a stimulus inherent to a conventional MRI experiment; and a pulsed electric current, representing an external stimulus. The results of the study indicate the potential of mSPI for assessing the evolution of the magnetization and, when properly synchronized with the acquisition, repeatable disturbances thereof with a temporal resolution that is ultimately limited by the bandwidth of the receiver, but in practice governed by the SNR of the experiment and the magnitude of the disturbance. Potential applications of mSPI can be envisaged in research areas that are concerned with MR signal behavior, MR system performance and MR evaluation of magnetically evoked responses.

  11. Characterization of submicron particles influenced by mixed biogenic and anthropogenic emissions using high-resolution aerosol mass spectrometry: results from CARES

    SciTech Connect

    Setyan, Ari; Zhang, Qi; Merkel, M.; Knighton, Walter B.; Sun, Y.; Song, Chen; Shilling, John E.; Onasch, Timothy B.; Herndon, Scott C.; Worsnop, Douglas R.; Fast, Jerome D.; Zaveri, Rahul A.; Berg, Larry K.; Wiedensohler, A.; Flowers, B. A.; Dubey, Manvendra K.; Subramanian, R.

    2012-09-11

    The Carbonaceous Aerosols and Radiative Effects Study (CARES) took place in the Sacramento Valley of California in summer 2010. We present results obtained at Cool, CA, the T1 site of the project ({approx}40 km downwind of urban emissions from Sacramento), where we deployed an Aerodyne high resolution time-of-flight aerosol mass spectrometer (HR-ToF-AMS) in parallel with complementary instrumentation to characterize the sources and processes of submicron particles (PM1). Cool is located at the foothill of the Sierra Nevada Mountains, where intense biogenic emissions are periodically mixed with urban outflow transported by daytime southwesterly winds from the Sacramento metropolitan area. The particle mass loading was low (3.0 {micro}gm{sup -3} on average) and dominated by organics (80% of the PM1 mass) followed by sulfate (9.9 %). Organics and sulfate appeared to be externally mixed, as suggested by their different time series (r2 = 0.13) and size distributions. Sulfate showed a bimodal distribution with a droplet mode peaking at {approx}400nm in vacuum aerodynamic diameter (Dva), and a condensation mode at {approx}150 nm, while organics generally displayed a broad distribution in 60-600nm (Dva). New particle formation and growth events were observed almost every day, emphasizing the roles of organics and sulfate in new particle growth, especially that of organics. The organic aerosol (OA) had a nominal formula of C{sub 1}H{sub 1.38}N{sub 0.004}O{sub 0.44}, thus an average organic mass-to-carbon (OM/OC) ratio of 1.70. Two different oxygenated OA (OOA, 90% of total OA mass) and a hydrocarbon-like OA (HOA, 10 %) were identified by Positive matrix factorization (PMF) of the high resolution mass spectra. The more oxidized MO-OOA (O/C = 0.54) corresponded to secondary OA (SOA) primarily influenced by biogenic emissions, while the less oxidized LO-OOA (O/C = 0.42) corresponded to SOA associated with urban transport. The HOA factor corresponded to primary emissions mainly

  12. Passive High Resolution RF Imaging

    DTIC Science & Technology

    2006-05-02

    sensing applications: 1. Imaging with potential resolution of meters sq. 1.1 Forests areas controlling 1.2 Foliage mass evaluation 1.3...from TOPCON. Currently, work is in progress to study and customise the software and satellite position extraction from the receiver. 6. BRIEF

  13. Rapid High Spatial Resolution Chemical Characterization of Soil Structure to Illuminate Nutrient Distribution Mechanisms Related to Carbon Cycling Using Laser Ablation Aerosol Mass Spectrometry

    NASA Astrophysics Data System (ADS)

    Hicks, R. K.; Alexander, M. L. L.; Newburn, M. K.

    2015-12-01

    Soils contain approximately half of Earth's terrestrial carbon. As such, it is important to understand the factors that control the cycling of this soil organic carbon between the land and the atmosphere. Models that attribute the persistence of soil organic carbon to the intrinsic properties of the molecules themselves are inconsistent with recent observations— for example, materials that are more thermodynamically stable have been found to have a shorter lifetime in soils than ones that are less stable, and vice versa. A new explanation has therefore been posited that invokes ecosystem properties as a whole, and not just intrinsic molecular properties, as the kinetic factor controlling soil carbon dynamics. Because soil dynamics occur on a small scale, techniques with high spatial resolution are required for their study. Existing techniques such as TOF-SIMS require preparation of the sample and introduction into a high vacuum system, and do not address the need to examine large numbers of sample systems without perturbation of chemical and physical properties. To address this analytical challenge, we have coupled a laser ablation (LA) module to an Aerodyne aerosol mass spectrometer (AMS), thereby enabling sample introduction and subsequent measurement of small amounts of soil organic matter by the laser ablation aerosol mass spectrometer (LA-AMS). Due to the adjustable laser beam width, the LA-AMS can probe spot sizes ranging from 1-150 μm in diameter, liberating from 10-100 ng/pulse. With a detection limit of 1 pM, the AMS allows for chemical characterization of the ablated material in terms of elemental ratios, compound classes, and TOC/TOM ratios. Furthermore, the LA-AMS is capable of rapid, in-situ sampling under ambient conditions, thereby eliminating the need for sample processing or transport before analysis. Here, we will present the first results from systematic studies aimed at validating the LA-AMS method as well as results from initial measurements

  14. High-resolution phylogenetic microbial community profiling

    SciTech Connect

    Singer, Esther; Coleman-Derr, Devin; Bowman, Brett; Schwientek, Patrick; Clum, Alicia; Copeland, Alex; Ciobanu, Doina; Cheng, Jan-Fang; Gies, Esther; Hallam, Steve; Tringe, Susannah; Woyke, Tanja

    2014-03-17

    The representation of bacterial and archaeal genome sequences is strongly biased towards cultivated organisms, which belong to merely four phylogenetic groups. Functional information and inter-phylum level relationships are still largely underexplored for candidate phyla, which are often referred to as microbial dark matter. Furthermore, a large portion of the 16S rRNA gene records in the GenBank database are labeled as environmental samples and unclassified, which is in part due to low read accuracy, potential chimeric sequences produced during PCR amplifications and the low resolution of short amplicons. In order to improve the phylogenetic classification of novel species and advance our knowledge of the ecosystem function of uncultivated microorganisms, high-throughput full length 16S rRNA gene sequencing methodologies with reduced biases are needed. We evaluated the performance of PacBio single-molecule real-time (SMRT) sequencing in high-resolution phylogenetic microbial community profiling. For this purpose, we compared PacBio and Illumina metagenomic shotgun and 16S rRNA gene sequencing of a mock community as well as of an environmental sample from Sakinaw Lake, British Columbia. Sakinaw Lake is known to contain a large age of microbial species from candidate phyla. Sequencing results show that community structure based on PacBio shotgun and 16S rRNA gene sequences is highly similar in both the mock and the environmental communities. Resolution power and community representation accuracy from SMRT sequencing data appeared to be independent of GC content of microbial genomes and was higher when compared to Illumina-based metagenome shotgun and 16S rRNA gene (iTag) sequences, e.g. full-length sequencing resolved all 23 OTUs in the mock community, while iTags did not resolve closely related species. SMRT sequencing hence offers various potential benefits when characterizing uncharted microbial communities.

  15. Development of High Spectral Resolution Technique for Registration Quasielastic Light Scattering Spectra Including Rayleigh and Brillouin Scattering as a Diagnostic Tool in Materials Characterization

    DTIC Science & Technology

    2007-11-02

    develop and build an optical device, fitted to a Fabry - Perot interferometer, to perform high-resolution quasieleastic light scattering spectroscopy...scattering spectra based on the use of a scanning by gas pressure Fabry - Perot interferometer coupled to the double grating monochromator...8a. Technical Progress We have designed and built new special metallic box with two optical windows for the Fabry - Perot interferometer and fine

  16. High Spectral Resolution Lidar: System Calibration

    NASA Astrophysics Data System (ADS)

    Vivek Vivekanandan, J.; Morley, Bruce; Spuler, Scott; Eloranta, Edwin

    2015-04-01

    One of the unique features of the high spectral resolution lidar (HSRL) is simultaneous measurements of backscatter and extinction of atmosphere. It separates molecular scattering from aerosol and cloud particle backscatter based on their Doppler spectrum width. Scattering from aerosol and cloud particle are referred as Mie scattering. Molecular or Rayleigh scattering is used as a reference for estimating aerosol extinction and backscatter cross-section. Absolute accuracy of the backscattered signals and their separation into Rayleigh and Mie scattering depends on spectral purity of the transmitted signals, accurate measurement of transmit power, and precise performance of filters. Internal calibration is used to characterize optical subsystems Descriptions of high spectral resolution lidar system and its measurement technique can be found in Eloronta (2005) and Hair et al.(2001). Four photon counting detectors are used to measure the backscatter from the combined Rayleigh and molecular scattering (high and low gain), molecular scattering and cross-polarized signal. All of the detectors are sensitive to crosstalk or leakage through the optical filters used to separate the received signals and special data files are used to remove these effects as much as possible. Received signals are normalized with respect to the combined channel response to Mie and Rayleigh scattering. The laser transmit frequency is continually monitored and tuned to the 1109 Iodine absorption line. Aerosol backscatter cross-section is measured by referencing the aerosol return signal to the molecular return signal. Extinction measurements are calculated based on the differences between the expected (theoretical) and actual change in the molecular return. In this paper an overview of calibration of the HSRL is presented. References: Eloranta, E. W., High Spectral Resolution Lidar in Lidar: Range-Resolved Optical Remote Sensing of the Atmosphere, Klaus Weitkamp editor, Springer Series in Optical

  17. High-Resolution Structure of the Histidine-Containing Phosphocarrier Protein (HPr) from Staphylococcus aureus and Characterization of Its Interaction with the Bifunctional HPr Kinase/Phosphorylase

    PubMed Central

    Maurer, Till; Meier, Sebastian; Kachel, Norman; Munte, Claudia Elisabeth; Hasenbein, Sonja; Koch, Brigitte; Hengstenberg, Wolfgang; Kalbitzer, Hans Robert

    2004-01-01

    A high-resolution structure of the histidine-containing phosphocarrier protein (HPr) from Staphylococcus aureus was obtained by heteronuclear multidimensional nuclear magnetic resonance (NMR) spectroscopy on the basis of 1,766 structural restraints. Twenty-three hydrogen bonds in HPr could be directly detected by polarization transfer from the amide nitrogen to the carbonyl carbon involved in the hydrogen bond. Differential line broadening was used to characterize the interaction of HPr with the HPr kinase/phosphorylase (HPrK/P) of Staphylococcus xylosus, which is responsible for phosphorylation-dephosphorylation of the hydroxyl group of the regulatory serine residue at position 46. The dissociation constant Kd was determined to be 0.10 ± 0.02 mM at 303 K from the NMR data, assuming independent binding. The data are consistent with a stoichiometry of 1 HPr molecule per HPrK/P monomer in solution. Using transversal relaxation optimized spectroscopy-heteronuclear single quantum correlation, we mapped the interaction site of the two proteins in the 330-kDa complex. As expected, it covers the region around Ser46 and the small helix b following this residue. In addition, HPrK/P also binds to the second phosphorylation site of HPr at position 15. This interaction may be essential for the recognition of the phosphorylation state of His15 and the phosphorylation-dependent regulation of the kinase/phosphorylase activity. In accordance with this observation, the recently published X-ray structure of the HPr/HPrK core protein complex from Lactobacillus casei shows interactions with the two phosphorylation sites. However, the NMR data also suggest differences for the full-length protein from S. xylosus: there are no indications for an interaction with the residues preceding the regulatory Ser46 residue (Thr41 to Lys45) in the protein of S. xylosus. In contrast, it seems to interact with the C-terminal helix of HPr in solution, an interaction which is not observed for the

  18. High energy resolution plastic scintillator

    NASA Astrophysics Data System (ADS)

    van Loef, Edgar V.; Feng, Patrick; Markosyan, Gary; Shirwadkar, Urmila; Doty, Patrick; Shah, Kanai S.

    2016-09-01

    In this paper we present results on a novel tin-loaded plastic scintillator. We will show that this particular plastic scintillator has a light output similar to that of BGO, a fast scintillation decay (< 10 ns), exhibits good neutron/gamma PSD with a Figure-of-Merit of 1.3 at 2.5 MeVee cut-off energy, and excellent energy resolution of about 12% (FWHM) at 662 keV. Under X-ray excitation, the radioluminescence spectrum exhibits a broad band between 350 and 500 nm peaking at 420 nm which is well-matched to bialkali photomultiplier tubes and UV-enhanced photodiodes.

  19. High Spectral Resolution Lidar Data

    DOE Data Explorer

    Eloranta, Ed

    2004-12-01

    The HSRL provided calibrated vertical profiles of optical depth, backscatter cross section and depoloarization at a wavelength of 532 nm. Profiles were acquired at 2.5 second intervals with 7.5 meter resolution. Profiles extended from an altitude of 100 m to 30 km in clear air. The lidar penetrated to a maximum optical depth of ~ 4 under cloudy conditions. Our data contributed directly to the aims of the M-PACE experiment, providing calibrated optical depth and optical backscatter measurements which were not available from any other instrument.

  20. High resolution scintillation detector with semiconductor readout

    DOEpatents

    Levin, Craig S.; Hoffman, Edward J.

    2000-01-01

    A novel high resolution scintillation detector array for use in radiation imaging such as high resolution Positron Emission Tomography (PET) which comprises one or more parallelepiped crystals with at least one long surface of each crystal being in intimate contact with a semiconductor photodetector such that photons generated within each crystal by gamma radiation passing therethrough is detected by the photodetector paired therewith.

  1. High-resolution noncontact atomic force microscopy.

    PubMed

    Pérez, Rubén; García, Ricardo; Schwarz, Udo

    2009-07-01

    original papers authored by many of the leading groups in the field with the goal of providing a well-balanced overview on the state-of-the-art in this rapidly evolving field. These papers, many of which are based on notable presentations given during the Madrid conference, feature highlights such as (1) the development of sophisticated force spectroscopy procedures that are able to map the complete 3D tip-sample force field on different surfaces; (2) the considerable resolution improvement of Kelvin probe force microscopy (reaching, in some cases, the atomic scale), which is accompanied by a thorough, quantitative understanding of the contrast observed; (3) the perfecting of atomic resolution imaging on insulating substrates, which helps reshape our microscopic understanding of surface properties and chemical activity of these surfaces; (4) the description of instrumental and methodological developments that pave the way to the atomic-scale characterization of magnetic and electronic properties of nanostructures, and last but not least (5) the extension of dynamic imaging modes to high-resolution operation in liquids, ultimately achieving atomic resolution. The latter developments are already having a significant impact in the highly competitive field of biological imaging under physiological conditions. This special issue of Nanotechnology would not have been possible without the highly professional support from Nina Couzin, Amy Harvey, Alex Wotherspoon and the entire Nanotechnology team at IOP Publishing. We are thankful for their help in pushing this project forward. We also thank the authors who have contributed their excellent original articles to this issue, the referees whose comments have helped make the issue an accurate portrait of this rapidly moving field, and the entire NC-AFM community that continues to drive NC-AFM to new horizons.

  2. Wavefront metrology for high resolution optical systems

    NASA Astrophysics Data System (ADS)

    Miyakawa, Ryan H.

    Next generation extreme ultraviolet (EUV) optical systems are moving to higher resolution optics to accommodate smaller length scales targeted by the semiconductor industry. As the numerical apertures (NA) of the optics become larger, it becomes increasingly difficult to characterize aberrations due to experimental challenges associated with high-resolution spatial filters and geometrical effects caused by large incident angles of the test wavefront. This dissertation focuses on two methods of wavefront metrology for high resolution optical systems. The first method, lateral shearing interferometry (LSI), is a self-referencing interferometry where the test wavefront is incident on a low spatial frequency grating, and the resulting interference between the diffracted orders is used to reconstruct the wavefront aberrations. LSI has many advantages over other interferometric tests such as phase-shifting point diffraction interferometry (PS/PDI) due to its experimental simplicity, stability, relaxed coherence requirements, and its ability to scale to high numerical apertures. While LSI has historically been a qualitative test, this dissertation presents a novel quantitative investigation of the LSI interferogram. The analysis reveals the existence of systematic aberrations due to the nonlinear angular response from the diffraction grating that compromises the accuracy of LSI at medium to high NAs. In the medium NA regime (0.15 < NA < 0.35), a holographic model is presented that derives the systematic aberrations in closed form, which demonstrates an astigmatism term that scales as the square of the grating defocus. In the high NA regime (0.35 < NA), a geometrical model is introduced that describes the aberrations as a system of transcendental equations that can be solved numerically. The characterization and removal of these systematic errors is a necessary step that unlocks LSI as a viable candidate for high NA EUV optical testing. The second method is a novel image

  3. High Resolution Globe of Jupiter

    NASA Technical Reports Server (NTRS)

    2001-01-01

    This true-color simulated view of Jupiter is composed of 4 images taken by NASA's Cassini spacecraft on December 7, 2000. To illustrate what Jupiter would have looked like if the cameras had a field-of-view large enough to capture the entire planet, the cylindrical map was projected onto a globe. The resolution is about 144 kilometers (89 miles) per pixel. Jupiter's moon Europa is casting the shadow on the planet.

    Cassini is a cooperative mission of NASA, the European Space Agency and the Italian Space Agency. JPL, a division of the California Institute of Technology in Pasadena, manages Cassini for NASA's Office of Space Science, Washington, D.C.

  4. High Resolution Powder Diffraction and Structure Determination

    SciTech Connect

    Cox, D. E.

    1999-04-23

    It is clear that high-resolution synchrotrons X-ray powder diffraction is a very powerful and convenient tool for material characterization and structure determination. Most investigations to date have been carried out under ambient conditions and have focused on structure solution and refinement. The application of high-resolution techniques to increasingly complex structures will certainly represent an important part of future studies, and it has been seen how ab initio solution of structures with perhaps 100 atoms in the asymmetric unit is within the realms of possibility. However, the ease with which temperature-dependence measurements can be made combined with improvements in the technology of position-sensitive detectors will undoubtedly stimulate precise in situ structural studies of phase transitions and related phenomena. One challenge in this area will be to develop high-resolution techniques for ultra-high pressure investigations in diamond anvil cells. This will require highly focused beams and very precise collimation in front of the cell down to dimensions of 50 {micro}m or less. Anomalous scattering offers many interesting possibilities as well. As a means of enhancing scattering contrast it has applications not only to the determination of cation distribution in mixed systems such as the superconducting oxides discussed in Section 9.5.3, but also to the location of specific cations in partially occupied sites, such as the extra-framework positions in zeolites, for example. Another possible application is to provide phasing information for ab initio structure solution. Finally, the precise determination of f as a function of energy through an absorption edge can provide useful information about cation oxidation states, particularly in conjunction with XANES data. In contrast to many experiments at a synchrotron facility, powder diffraction is a relatively simple and user-friendly technique, and most of the procedures and software for data analysis

  5. Flare Data in High Temporal Resolution

    NASA Astrophysics Data System (ADS)

    Kaparová, J.

    Analysis of the September 23, 1998 flare H? spectra and filtergrams is presented. Spectra were obtained using multichannel flare spectrograph (MFS) at the Astronomical Institute in Ond?ejov, Czech Republic, having a temporal resolution of 25 frames/s and a spatial resolution of ?1? decreased by seeing to 3? - 5?. High temporal resolution was firstly used for detecting of the chromosphere response to the pulse beam heating.

  6. A characterization of intermediate-scale spread F structure from four years of high-resolution C/NOFS satellite data

    NASA Astrophysics Data System (ADS)

    Rino, Charles L.; Carrano, Charles S.; Groves, Keith M.; Roddy, Patrick A.

    2016-06-01

    Power law spectra have been invoked to interpret equatorial scintillation data for decades. Published analyses of intensity and phase scintillation data typically report power law spectra of the form q-p with 2.4 < p < 2.6. However, in situ rocket and satellite measurements of equatorial spread F have shown evidence of spectra with two power law components. Strong scatter simulations and recent theoretical results have shown that two-component power law spectra can reconcile simultaneous equatorial scintillation observations from VHF to S-Band. The Communication/Navigation Outage Forecasting System (C/NOFS) satellite Planar Langmuir Probe generated a multiyear high-resolution sampling of equatorial spread F, but published analyses to date have reported only single-component power laws over scales from tens of kilometers to 70 m. This paper summarizes the analysis of high-resolution C/NOFS data collected over the four year period 2011 to 2014. Following an earlier investigation of several months of C/NOFS data by the authors of this paper, the extended data set revealed a pattern of occurrence of two-component spectra in the most highly disturbed data sets. The results confirm a known inverse correlation between turbulent strength and spectral index. The new results are interpreted as an equatorial spread F life cycle pattern with two-component spectra in the early development phase giving way to single-component spectra in the decay phase.

  7. High-Resolution Data for a Low-Resolution World

    SciTech Connect

    Brady, Brendan Williams

    2016-05-10

    In the past 15 years, the upper section of Cañon de Valle has been severely altered by wildfires and subsequent runoff events. Loss of root structures on high-angle slopes results in debris flow and sediment accumulation in the narrow canyon bottom. The original intent of the study described here was to better understand the changes occurring in watershed soil elevations over the course of several post-fire years. An elevation dataset from 5 years post-Cerro Grande fire was compared to high-resolution LiDAR data from 14 years post-Cerro Grande fire (also 3 years post-Las Conchas fire). The following analysis was motivated by a problematic comparison of these datasets of unlike resolution, and therefore focuses on what the data reveals of itself. The objective of this study is to highlight the effects vegetation can have on remote sensing data that intends to read ground surface elevation.

  8. Estimation of PSD Shifts for High-Resolution Metrology of Thickness Micro-Changes with Possible Applications in Vessel Walls and Biological Membrane Characterization

    PubMed Central

    Ramos, Antonio; Bazán, Ivonne; Negreira, Carlos; Brum, Javier; Gómez, Tomás; Calás, Héctor; Ruiz, Abelardo; de la Rosa, José Manuel

    2012-01-01

    Achieving accurate measurements of inflammation levels in tissues or thickness changes in biological membranes (e.g., amniotic sac, parietal pleura) and thin biological walls (e.g., blood vessels) from outside the human body, is a promising research line in the medical area. It would provide a technical basis to study the options for early diagnosis of some serious diseases such as hypertension, atherosclerosis or tuberculosis. Nevertheless, achieving the aim of non-invasive measurement of those scarcely-accessible parameters on patient internal tissues, currently presents many difficulties. The use of high-frequency ultrasonic transducer systems appears to offer a possible solution. Previous studies using conventional ultrasonic imaging have shown this, but the spatial resolution was not sufficient so as to permit a thickness evaluation with clinical significance, which requires an accuracy of a few microns. In this paper a broadband ultrasonic technique, that was recently developed by the authors to address other non-invasive medical detection problems (by integrating a piezoelectric transducer into a spectral measuring system), is extended to our new objective; the aim is its application to the thickness measurement of sub-millimeter membranes or layers made of materials similar to some biological tissues (phantoms). The modeling and design rules of such a transducer system are described, and various methods of estimating overtones location in the power spectral density (PSD) are quantitatively assessed with transducer signals acquired using piezoelectric systems and also generated from a multi-echo model. Their effects on the potential resolution of the proposed thickness measuring tool, and their capability to provide accuracies around the micron are studied in detail. Comparisons are made with typical tools for extracting spatial parameters in laminar samples from echo-waveforms acquired with ultrasonic transducers. Results of this advanced measurement

  9. Effects of Sandimmune Neoral on Collagen-Induced Arthritis in DA Rats: Characterization by High Resolution Three-Dimensional Magnetic Resonance Imaging and by Histology

    NASA Astrophysics Data System (ADS)

    Beckmann, Nicolau; Bruttel, Konrad; Schuurman, Henk; Mir, Anis

    1998-03-01

    In the present work the time course of collagen-induced arthritis and the effect of Sandimmune Neoral in this model of arthritis were followed in the rat over an extended period of time (70 days) using high resolution three-dimensional (3D) magnetic resonance imaging (MRI). High resolution 3D gradient-echo (TR = 100 ms; TE = 3.8 ms) images with a voxel size of 94 × 81 × 60 μm3were acquired from the hind paw of DA rats (n= 21) at various time points after injection of type II bovine collagen into the tail. Eleven rats were treated with Neoral (15 mg/kg/day p.o. together with vehicle) for 42 days starting at day 14 after collagen injection. The remaining controls received vehicle. Pathomorphological changes associated with the collagen-induced arthritic process, e.g., increase of joint space and cartilage and bone erosion, could be observedin vivoin the control group. In contrast, no changes in the joint architecture were detected in Neoral-treated animals. Indeed, Neoral showed strong anti-inflammatory effects and marked protection against cartilage and bone destruction in this model. Qualitative information derived from the MR images correlated significantly with histological findings.

  10. A micron resolution optical scanner for characterization of silicon detectors

    SciTech Connect

    Shukla, R. A.; Dugad, S. R. Gopal, A. V.; Gupta, S. K.; Prabhu, S. S.; Garde, C. S.

    2014-02-15

    The emergence of high position resolution (∼10 μm) silicon detectors in recent times have highlighted the urgent need for the development of new automated optical scanners of micron level resolution suited for characterizing microscopic features of these detectors. More specifically, for the newly developed silicon photo-multipliers (SiPM) that are compact, possessing excellent photon detection efficiency with gain comparable to photo-multiplier tube. In a short time, since their invention the SiPMs are already being widely used in several high-energy physics and astrophysics experiments as the photon readout element. The SiPM is a high quantum efficiency, multi-pixel photon counting detector with fast timing and high gain. The presence of a wide variety of photo sensitive silicon detectors with high spatial resolution requires their performance evaluation to be carried out by photon beams of very compact spot size. We have designed a high resolution optical scanner that provides a monochromatic focused beam on a target plane. The transverse size of the beam was measured by the knife-edge method to be 1.7 μm at 1 − σ level. Since the beam size was an order of magnitude smaller than the typical feature size of silicon detectors, this optical scanner can be used for selective excitation of these detectors. The design and operational details of the optical scanner, high precision programmed movement of target plane (0.1 μm) integrated with general purpose data acquisition system developed for recording static and transient response photo sensitive silicon detector are reported in this paper. Entire functionality of scanner is validated by using it for selective excitation of individual pixels in a SiPM and identifying response of active and dead regions within SiPM. Results from these studies are presented in this paper.

  11. A micron resolution optical scanner for characterization of silicon detectors.

    PubMed

    Shukla, R A; Dugad, S R; Garde, C S; Gopal, A V; Gupta, S K; Prabhu, S S

    2014-02-01

    The emergence of high position resolution (∼10 μm) silicon detectors in recent times have highlighted the urgent need for the development of new automated optical scanners of micron level resolution suited for characterizing microscopic features of these detectors. More specifically, for the newly developed silicon photo-multipliers (SiPM) that are compact, possessing excellent photon detection efficiency with gain comparable to photo-multiplier tube. In a short time, since their invention the SiPMs are already being widely used in several high-energy physics and astrophysics experiments as the photon readout element. The SiPM is a high quantum efficiency, multi-pixel photon counting detector with fast timing and high gain. The presence of a wide variety of photo sensitive silicon detectors with high spatial resolution requires their performance evaluation to be carried out by photon beams of very compact spot size. We have designed a high resolution optical scanner that provides a monochromatic focused beam on a target plane. The transverse size of the beam was measured by the knife-edge method to be 1.7 μm at 1 - σ level. Since the beam size was an order of magnitude smaller than the typical feature size of silicon detectors, this optical scanner can be used for selective excitation of these detectors. The design and operational details of the optical scanner, high precision programmed movement of target plane (0.1 μm) integrated with general purpose data acquisition system developed for recording static and transient response photo sensitive silicon detector are reported in this paper. Entire functionality of scanner is validated by using it for selective excitation of individual pixels in a SiPM and identifying response of active and dead regions within SiPM. Results from these studies are presented in this paper.

  12. Sensitivity study of reliable, high-throughput resolution metricsfor photoresists

    SciTech Connect

    Anderson, Christopher N.; Naulleau, Patrick P.

    2007-07-30

    The resolution of chemically amplified resists is becoming an increasing concern, especially for lithography in the extreme ultraviolet (EUV) regime. Large-scale screening and performance-based down-selection is currently underway to identify resist platforms that can support shrinking feature sizes. Resist screening efforts, however, are hampered by the absence of reliable resolution metrics that can objectively quantify resist resolution in a high-throughput fashion. Here we examine two high-throughput metrics for resist resolution determination. After summarizing their details and justifying their utility, we characterize the sensitivity of both metrics to two of the main experimental uncertainties associated with lithographic exposure tools, namely: limited focus control and limited knowledge of optical aberrations. For an implementation at EUV wavelengths, we report aberration and focus limited error bars in extracted resolution of {approx} 1.25 nm RMS for both metrics making them attractive candidates for future screening and down-selection efforts.

  13. NOAA's Use of High-Resolution Imagery

    NASA Technical Reports Server (NTRS)

    Hund, Erik

    2007-01-01

    NOAA's use of high-resolution imagery consists of: a) Shoreline mapping and nautical chart revision; b) Coastal land cover mapping; c) Benthic habitat mapping; d) Disaster response; and e) Imagery collection and support for coastal programs.

  14. High-Resolution X-Ray Telescopes

    NASA Technical Reports Server (NTRS)

    ODell, Stephen L.; Brissenden, Roger J.; Davis, William; Elsner, Ronald F.; Elvis, Martin; Freeman, Mark; Gaetz, Terry; Gorenstein, Paul; Gubarev, Mikhail V.

    2010-01-01

    Fundamental needs for future x-ray telescopes: a) Sharp images => excellent angular resolution. b) High throughput => large aperture areas. Generation-X optics technical challenges: a) High resolution => precision mirrors & alignment. b) Large apertures => lots of lightweight mirrors. Innovation needed for technical readiness: a) 4 top-level error terms contribute to image size. b) There are approaches to controlling those errors. Innovation needed for manufacturing readiness. Programmatic issues are comparably challenging.

  15. Characterization of x-ray imaging crystal spectrometer for high-resolution spatially-resolved x-ray Thomson scattering measurements in shock-compressed experiments

    NASA Astrophysics Data System (ADS)

    Lu, J.; Hill, K. W.; Bitter, M.; Pablant, N. A.; Delgado-Aparicio, L. F.; Efthimion, P. C.; Lee, H. J.; Zastrau, U.

    2017-01-01

    We have proposed, designed and built a dual-channel x-ray imaging crystal spectrometer (XICS) for spectrally- and spatially-resolved x-ray Thomson scattering (XRTS) measurements in the Matter in Extreme Conditions (MEC) end station at the Linac Coherent Light Source (LCLS). This spectrometer employs two spherically-bent germanium (Ge) 220 crystals, which are combined to form a large aperture dispersive element with a spectral bandwidth of 300 eV that enables both the elastic and inelastic x-ray scattering peaks to be simultaneously measured. The apparatus and its characterization are described. A resolving power of 1900 was demonstrated and a spatial resolution of 12 μm was achieved in calibration tests. For XRTS measurements, a narrow-bandwidth (ΔE/E<0.003) LCLS x-ray free electron laser (XFEL) beam at 5.07 keV was used to probe a dense carbon plasma produced in shock-compressed samples of different forms of carbon. Preliminary results of the scattering experiments from Pyrolytic Graphite samples that illustrate the utility of the instrument are presented.

  16. Chemical characterization of particle emissions from controlled burns of biomass fuels using a high resolution time-of-flight aerosol mass spectrometer

    NASA Astrophysics Data System (ADS)

    Qi, L.; Hosseini, S.; Jung, H.; Yokelson, B.; Weise, D.; Cocker, D., III; Huang, Y.

    2012-03-01

    A total of forty-nine burns were conducted at the Missoula Fire Sciences Lab consisting of nine fuel types; i.e., chamise scrub oak, ceanothus, maritime chaparral, coastal sage scrub, California sage brush, Manzanita, oak savanna, oak woodland and masticated mesquite. This paper focuses on the chemical characterization of fine particle emissions collected for flaming, mixed and smoldering phases using a HR ToF-AMS. The evolution of OM/OC, H/C, O/C and N/C from fire ignition to extinction was measured to capture the transient and integrated chemical composition of the non-refractory portion of bulk particles. Real time elemental ratios and empirical formulas derived with respect to modified combustion efficiency (MCE) are reported. For each fuel, the hydrogen fragment ions dominate the unit mass resolution (UMR) mass spectra with no specific fragment ions attributable to an individual ecological combination. An interference ion in the UMR m/z 73, a fragment normally attributed to levoglucosan, is noted. Therefore, the results imply that C2H4O2+ (m/z 60.021) plus C3H5O2+ (m/z 73.029) are more sufficient to estimate the contribution of levoglucosan. The results did not show significant variations of levoglucosan content in the organic particle with the overall average contribution fraction ranging from 0.74% for coastal sage to 1.93% for chamise.

  17. Characterizing a switching reagent ion chemical ionization high resolution time of flight mass spectrometer: Standard additions, External calibrations, and Inlet response during SOAS

    NASA Astrophysics Data System (ADS)

    Brophy, P.; Farmer, D.

    2013-12-01

    A high-resolution time of flight chemical ionization mass spectrometer (HRToF-CIMS) with switching reagent ion source and low pressure, gas-phase inlet was deployed during the 2013 Southern Oxidant and Aerosol Study (SOAS) in Brent, Alabama. Acetate chemistry was employed for the detection of small acids and iodine chemistry for the detection of peroxy acids. Switching between the two ion sources was found to be possible on less than ten minute time scales with minimal artifacts observed. Online calibrations for formic acid on both the acetate and iodine sources were performed every hour using both standard addition techniques as well as external standard calibrations; offline formic acid calibrations were also conducted. Inlet responses were investigated though a number of experiments finding that the inlet has minimal hysteresis and rapid response times.

  18. Using digital image processing to characterize the Campbell-Stokes sunshine recorder and to derive high-temporal resolution direct solar irradiance

    NASA Astrophysics Data System (ADS)

    Sanchez-Romero, A.; González, J. A.; Calbó, J.; Sanchez-Lorenzo, A.

    2014-09-01

    The Campbell-Stokes sunshine recorder (CSSR) has been one of the most commonly used instruments for measuring sunshine duration (SD) through the burn length of a given CSSR card. Many authors have used SD to obtain information about cloudiness and solar radiation (by using Ångström-Prescott type formulas). Contrarily, the burn width has not been used systematically. In principle, the burn width increases for increasing direct beam irradiance. The aim of this research is to show the relationship between burn width and direct solar irradiance (DSI), and to prove whether this relationship depends on the type of CSSR and burning card. A semi-automatic method based on image processing of digital scanned images of burnt cards is presented. With this method, the temporal evolution of the burn width with 1 min resolution can be obtained. From this, SD is easily calculated and compared with the traditional (i.e. visual) determination. The method tends to slightly overestimate SD but the thresholds that are used in the image processing could be adjusted to obtain an unbiased estimation. Regarding the burn width, results show that there is a high correlation between two different models of CSSRs, as well as a strong relationship between burn widths and DSI at a high-temporal resolution. Thus, for example, hourly DSI may be estimated from the burn width with higher accuracy than based on burn length (for one of the CSSR, relative root mean squared error 24 and 30% respectively; mean bias error -0.6 and -30.0 W m-2 respectively). The method offers a practical way to exploit long-term sets of CSSR cards to create long time series of DSI. Since DSI is affected by atmospheric aerosol content, CSSR records may also become a proxy measurement for turbidity and atmospheric aerosol loading.

  19. Using digital image processing to characterize the Campbell-Stokes sunshine recorder and to derive high-temporal resolution direct solar irradiance

    NASA Astrophysics Data System (ADS)

    Sanchez-Romero, A.; González, J. A.; Calbó, J.; Sanchez-Lorenzo, A.

    2015-01-01

    The Campbell-Stokes sunshine recorder (CSSR) has been one of the most commonly used instruments for measuring sunshine duration (SD) through the burn length of a given CSSR card. Many authors have used SD to obtain information about cloudiness and solar radiation (by using Ångström-Prescott type formulas), but the burn width has not been used systematically. In principle, the burn width increases for increasing direct beam irradiance. The aim of this research is to show the relationship between burn width and direct solar irradiance (DSI) and to prove whether this relationship depends on the type of CSSR and burning card. A method of analysis based on image processing of digital scanned images of burned cards is used. With this method, the temporal evolution of the burn width with 1 min resolution can be obtained. From this, SD is easily calculated and compared with the traditional (i.e., visual) determination. The method tends to slightly overestimate SD, but the thresholds that are used in the image processing could be adjusted to obtain an improved estimation. Regarding the burn width, experimental results show that there is a high correlation between two different models of CSSRs, as well as a strong relationship between burn widths and DSI at a high-temporal resolution. Thus, for example, hourly DSI may be estimated from the burn width with higher accuracy than based on burn length (for one of the CSSR, relative root mean squared error is 24 and 30%, respectively; mean bias error is -0.6 and -30.0 W m-2, respectively). The method offers a practical way to exploit long-term sets of CSSR cards to create long time series of DSI. Since DSI is affected by atmospheric aerosol content, CSSR records may also become a proxy measurement for turbidity and atmospheric aerosol loading.

  20. High spectral resolution reflectance spectroscopy of minerals

    NASA Technical Reports Server (NTRS)

    Clark, Roger N.; King, Trude V. V.; Klejwa, Matthew; Swayze, Gregg A.; Vergo, Norma

    1990-01-01

    The reflectance spectra of minerals are studied as a function of spectral resolution in the range from 0.2 to 3.0 microns. Selected absorption bands were studied at resolving powers as high as 2240. At resolving powers of approximately 1000, many OH-bearing minerals show diagnostic sharp absorptions at the resolution limit. At low resolution, some minerals may not be distinguishable, but as the resolution is increased, most can be easily identified. As the resolution is increased, many minerals show fine structure, particularly in the OH-stretching overtone region near 1.4 micron. The fine structure can enhance the ability to discriminate between minerals, and in some cases the fine structure can be used to determine elemental composition.

  1. Performance Characterization of a Switchable Acoustic Resolution and Optical Resolution Photoacoustic Microscopy System.

    PubMed

    Moothanchery, Mohesh; Pramanik, Manojit

    2017-02-12

    Photoacoustic microscopy (PAM) is a scalable bioimaging modality; one can choose low acoustic resolution with deep penetration depth or high optical resolution with shallow imaging depth. High spatial resolution and deep penetration depth is rather difficult to achieve using a single system. Here we report a switchable acoustic resolution and optical resolution photoacoustic microscopy (AR-OR-PAM) system in a single imaging system capable of both high resolution and low resolution on the same sample. Lateral resolution of 4.2 µm (with ~1.4 mm imaging depth) and lateral resolution of 45 μm (with ~7.6 mm imaging depth) was successfully demonstrated using a switchable system. In vivo blood vasculature imaging was also performed for its biological application.

  2. Performance Characterization of a Switchable Acoustic Resolution and Optical Resolution Photoacoustic Microscopy System

    PubMed Central

    Moothanchery, Mohesh; Pramanik, Manojit

    2017-01-01

    Photoacoustic microscopy (PAM) is a scalable bioimaging modality; one can choose low acoustic resolution with deep penetration depth or high optical resolution with shallow imaging depth. High spatial resolution and deep penetration depth is rather difficult to achieve using a single system. Here we report a switchable acoustic resolution and optical resolution photoacoustic microscopy (AR-OR-PAM) system in a single imaging system capable of both high resolution and low resolution on the same sample. Lateral resolution of 4.2 µm (with ~1.4 mm imaging depth) and lateral resolution of 45 μm (with ~7.6 mm imaging depth) was successfully demonstrated using a switchable system. In vivo blood vasculature imaging was also performed for its biological application. PMID:28208676

  3. High resolution SAR applications and instrument design

    NASA Technical Reports Server (NTRS)

    Dionisio, C.; Torre, A.

    1993-01-01

    The Synthetic Aperture Radar (SAR) has viewed, in the last two years, a huge increment of interest from many preset and potential users. The good spatial resolution associated to the all weather capability lead to considering SAR not only a scientific instrument but a tool for verifying and controlling the daily human relationships with the Earth Environment. New missions were identified for SAR as spatial resolution became lower than three meters: disasters, pollution, ships traffic, volcanic eruptions, earthquake effect are only a few of the possible objects which can be effectively detected, controlled and monitored by SAR mounted on satellites. High resolution radar design constraints and dimensioning are discussed.

  4. Invariant high resolution optical skin imaging

    NASA Astrophysics Data System (ADS)

    Murali, Supraja; Rolland, Jannick

    2007-02-01

    Optical Coherence Microscopy (OCM) is a bio-medical low coherence interferometric imaging technique that has become a topic of active research because of its ability to provide accurate, non-invasive cross-sectional images of biological tissue with much greater resolution than the current common technique ultrasound. OCM is a derivative of Optical Coherence Tomography (OCT) that enables greater resolution imposed by the implementation of an optical confocal design involving high numerical aperture (NA) focusing in the sample. The primary setback of OCM, however is the depth dependence of the lateral resolution obtained that arises from the smaller depth of focus of the high NA beam. We propose to overcome this limitation using a dynamic focusing lens design that can achieve quasi-invariant lateral resolution up to 1.5mm depth of skin tissue.

  5. Molecular Characterization of Organosulfates in Organic Aerosols from Shanghai and Los Angeles Urban Areas by Nanospray-Desorption Electrospray Ionization High-Resolution Mass Spectrometry

    SciTech Connect

    Tao, Shikang; Lu, Xiaohui; Levac, Nicole; Bateman, Adam P.; Nguyen, Tran B.; Bones, David L.; Nizkorodov, Sergey A.; Laskin, Julia; Laskin, Alexander; Yang, Xin

    2014-09-16

    Aerosol samples collected in the urban areas of Shanghai and Los Angeles were analyzed by nanospray-desorption electrospray ionization mass spectrometry (nano-DESI MS) with high mass resolution (m/Δm=100,000). Solvent mixtures of acetonitrile/water and acetonitrile/toluene were used to extract and ionize polar and non-polar compounds, respectively. A diverse mixture of oxygenated hydrocarbons, organosulfates, organonitrates, and organics with reduced nitrogen were detected in the Los Angeles sample. Majority of the organics in the Shanghai sample were detected as organosulfates. The dominant organosulfates in the two samples have distinctly different molecular characteristics. Specifically, organosulfates in the Los Angeles sample were dominated by isoprene- or monoterpene-derived products, while organosulfates of yet unknown origin in the Shanghai sample had distinctive characteristics of long aliphatic carbon chains and low degree of oxidation and unsaturation. The use of acetonitrile/toluene solvent facilitated identification of this type of organosulfates, suggesting they could be missed in previous studies relying on sample extraction using common polar solvents. The high molecular weight and low degree of unsaturation and oxidization of the organosulfates detected in the Shanghai sample suggest that they may act as surfactants, and plausibly affect the surface tension and hygroscopicity of the atmospheric particulate matter. We propose that direct esterification of carbonyl or hydroxyl compounds by sulfates or sulfuric acid in liquid phase could be the formation pathway of these special organosulfates. Finally, long-chain alkanes from vehicle emissions might be their precursors.

  6. Screening and characterization of reactive compounds with in vitro peptide-trapping and liquid chromatography/high-resolution accurate mass spectrometry.

    PubMed

    Wei, Cong; Chupak, Louis S; Philip, Thomas; Johnson, Benjamin M; Gentles, Robert; Drexler, Dieter M

    2014-02-01

    The present study describes a novel methodology for the detection of reactive compounds using in vitro peptide-trapping and liquid chromatography-high-resolution accurate mass spectrometry (LC-HRMS). Compounds that contain electrophilic groups can covalently bind to nucleophilic moieties in proteins and form adducts. Such adducts are thought to be associated with drug-mediated toxicity and therefore represent potential liabilities in drug discovery programs. In addition, reactive compounds identified in biological screening can be associated with data that can be misinterpreted if the reactive nature of the compound is not appreciated. In this work, to facilitate the triage of hits from high-throughput screening (HTS), a novel assay was developed to monitor the formation of covalent peptide adducts by compounds suspected to be chemically reactive. The assay consists of in vitro incubations of test compounds (under conditions of physiological pH) with synthetically prepared peptides presenting a variety of nucleophilic moieties such as cysteine, lysine, histidine, arginine, serine, and tyrosine. Reaction mixtures were analyzed using full-scan LC-HRMS, the data were interrogated using postacquisition data mining, and modified amino acids were identified by subsequent LC-HRMS/mass spectrometry. The study demonstrated that in vitro nucleophilic peptide trapping followed by LC-HRMS analysis is a useful approach for screening of intrinsically reactive compounds identified from HTS exercises, which are then removed from follow-up processes, thus obviating the generation of data from biochemical activity assays.

  7. High-resolution adaptive optics findings in talc retinopathy.

    PubMed

    Soliman, Mohamed K; Sarwar, Salman; Hanout, Mostafa; Sadiq, Mohammad A; Agarwal, Aniruddha; Gulati, Vikas; Nguyen, Quan Dong; Sepah, Yasir J

    2015-01-01

    Talc retinopathy is a recognized ocular condition characterized by the presence of small, yellow, glistening crystals found inside small retinal vessels and within different retinal layers. These crystals can be associated with retinal vascular occlusion and ischemia. Different diagnostic modalities have been used previously to characterize the retinal lesions in talc retinopathy. Adaptive optics, a high resolution imaging technique, is used to evaluate the location, appearance and distribution of talc crystals in a case of talc retinopathy.

  8. High spatial resolution probes for neurobiology applications

    NASA Astrophysics Data System (ADS)

    Gunning, D. E.; Kenney, C. J.; Litke, A. M.; Mathieson, K.

    2009-06-01

    Position-sensitive biological neural networks, such as the brain and the retina, require position-sensitive detection methods to identify, map and study their behavior. Traditionally, planar microelectrodes have been employed to record the cell's electrical activity with device limitations arising from the electrode's 2-D nature. Described here is the development and characterization of an array of electrically conductive micro-needles aimed at addressing the limitations of planar electrodes. The capability of this array to penetrate neural tissue improves the electrode-cell electrical interface and allows more complicated 3-D networks of neurons, such as those found in brain slices, to be studied. State-of-the-art semiconductor fabrication techniques were used to etch and passivate conformally the metal coat and fill high aspect ratio holes in silicon. These are subsequently transformed into needles with conductive tips. This process has enabled the fabrication of arrays of unprecedented dimensions: 61 hexagonally close-packed electrodes, ˜200 μm tall with 60 μm spacing. Electroplating the tungsten tips with platinum ensure suitable impedance values (˜600 kΩ at 1 kHz) for the recording of neuronal signals. Without compromising spatial resolution of the neuronal recordings, this array adds a new and exciting dimension to the study of biological neural networks.

  9. Characterization of model-data mismatch of CO2 concentrations due to misrepresentation of mixing layer height in high resolution WRF-VPRM simulations

    NASA Astrophysics Data System (ADS)

    Kretschmer, Roberto; Gerbig, Christoph; Ahmadov, Ravan; Pillay, Dhanya K.; Karstens, Ute; Chen, Huilin

    2010-05-01

    Estimating surface-atmosphere exchange of greenhouse gases at regional scales is important for understanding feedbacks between climate and the carbon cycle, but also for verifying climate change mitigation such as emission reductions or carbon sequestration. One way to quantify greenhouse gas budgets on regional scales is to use atmospheric mixing ratio measurements in combination with high resolution inverse modeling tools. An important aspect of this top-down approach is that mismatches between observations and model results for mixing ratios are not solely due to uncertainties in surface-atmosphere exchange fluxes that are targeted by the inversion, but also due to errors in the transport models used for inverse modeling. One of the dominant uncertainties in this context is related to vertical mixing associated with turbulence near the surface, which causes trace gases to be mixed within the atmospheric mixing layer. The mixing height, up to which trace gases emitted from the surface get vertically mixed within about an hour, provides a good diagnostic to assess vertical mixing. Uncertainties of mixing heights (zi) as represented in the transport model can result in uncertainties of CO2 mixing ratios of several ppm during summertime, much larger than measurement uncertainties. The goal of our study is to systematically quantify and reduce these uncertainties in a high resolution model by using observation based estimates of zi. We make use of the WRF-VPRM modeling framework, which couples the Weather Research & Forecasting (WRF) transport model with the diagnostic biosphere Vegetation Photosynthesis and Respiration Model (VPRM) at high horizontal resolution (10 km) over Europe. To asses the influence of differences in simulated vertical mixing we set up our model with two different PBL schemes. We used a model independent method to derive the mixing layer heights from both runs for the month of August 2006 during day time. Simulated zi were also compared against

  10. High resolution X-ray scattering measurements

    NASA Technical Reports Server (NTRS)

    Zombeck, M. V.; Braeuninger, H.; Ondrusch, A.; Predehl, P.

    1982-01-01

    The results of high angular resolution grazing incidence scattering measurements of highly polished, coated optical flats in the X-ray spectral range of 1.5 to 6.4 keV are reported. The interpretation of these results in terms of surface microtopography is presented and the implications for grazing incidence X-ray imaging are discussed.

  11. High spectral resolution reflectance spectroscopy of minerals

    USGS Publications Warehouse

    Clark, R.N.; King, T.V.V.; Klejwa, M.; Swayze, G.A.; Vergo, N.

    1990-01-01

    The reflectance spectra of minerals are studied as a function of spectral resolution in the range from 0.2 to 3.0 ??m. Selected absorption bands were studied at resolving powers (??/????) as high as 2240. At resolving powers of approximately 1000, many OH-bearing minerals show diagnostic sharp absorptions at the resolution limit. At low resolution, some minerals may not be distinguishable, but as the resolution is increased, most can be easily identified. As the resolution is increased, many minerals show fine structure, particularly in the OH-stretching overtone region near 1.4 ??m. The fine structure can enhance the ability to discriminate between minerals, and in some cases the fine structure can be used to determine elemental composition. The study shows that high-resolution reflectance spectroscopy of minerals may prove to be a very important tool in the laboratory, in the field using field-portable spectrometers, from aircraft, and from satellites looking at Earth or other planetary surfaces. -from Authors

  12. Solar system events at high spatial resolution

    SciTech Connect

    Baines, K H; Gavel, D T; Getz, A M; Gibbartd, S G; MacIntosh, B; Max, C E; McKay, C P; Young, E F; de Pater, I

    1999-02-19

    Until relatively recent advances in technology, astronomical observations from the ground were limited in image resolution by the blurring effects of earth's atmosphere. The blur extent, ranging typically from 0.5 to 2 seconds of arc at the best astronomical sights, precluded ground-based observations of the details of the solar system's moons, asteroids, and outermost planets. With the maturing of a high resolution image processing technique called speckle imaging the resolution limitation of the atmosphere can now be largely overcome. Over the past three years they have used speckle imaging to observe Titan, a moon of Saturn with an atmospheric density comparable to Earth's, Io, the volcanically active innermost moon of Jupiter, and Neptune, a gas giant outer planet which has continually changing planet-encircling storms. These observations were made at the world's largest telescope, the Keck telescope in Hawaii and represent the highest resolution infrared images of these objects ever taken.

  13. Characterization, Localization, Essentiality, and High-Resolution Crystal Structure of Glucosamine 6-Phosphate N-Acetyltransferase from Trypanosoma brucei ▿ ‡ §

    PubMed Central

    Mariño, Karina; Güther, M. Lucia Sampaio; Wernimont, Amy K.; Qiu, Wei; Hui, Raymond; Ferguson, Michael A. J.

    2011-01-01

    A gene predicted to encode Trypanosoma brucei glucosamine 6-phosphate N-acetyltransferase (TbGNA1; EC 2.3.1.4) was cloned and expressed in Escherichia coli. The recombinant protein was enzymatically active, and its high-resolution crystal structure was obtained at 1.86 Å. Endogenous TbGNA1 protein was localized to the peroxisome-like microbody, the glycosome. A bloodstream-form T. brucei GNA1 conditional null mutant was constructed and shown to be unable to sustain growth in vitro under nonpermissive conditions, demonstrating that there are no metabolic or nutritional routes to UDP-GlcNAc other than via GlcNAc-6-phosphate. Analysis of the protein glycosylation phenotype of the TbGNA1 mutant under nonpermissive conditions revealed that poly-N-acetyllactosamine structures were greatly reduced in the parasite and that the glycosylation profile of the principal parasite surface coat component, the variant surface glycoprotein (VSG), was modified. The significance of results and the potential of TbGNA1 as a novel drug target for African sleeping sickness are discussed. PMID:21531872

  14. Primary sites of ozone-induced perturbations of photosynthesis in leaves: identification and characterization in Phaseolus vulgaris using high resolution chlorophyll fluorescence imaging.

    PubMed

    Leipner, J; Oxborough, K; Baker, N R

    2001-08-01

    High resolution imaging of chlorophyll a fluorescence was used to identify the sites at which ozone initially induces perturbations of photosynthesis in leaves of Phaseolus vulgaris. Leaves were exposed to 250 and 500 nmol mol(-1) ozone at a photosynthetically active photon flux density of 300 micromol m(-2) s(-1) for 3 h. Images of fluorescence parameters indicated that large decreases in both the maximum and operating quantum efficiencies of photosystem II had occurred in cells adjacent to stomata in the upper, but not lower, leaf surfaces. However, this treatment did not produce any significant changes in the maximum or operating quantum efficiencies of photosystem II in the leaves when estimated from fluorescence parameters measured with a conventional, integrating fluorometer. The localized decreases in photosystem II photochemical efficiencies were accompanied by an increase in the minimal fluorescence level, which is indicative of photoinactivation of photosystem II complexes and a decrease in stomatal conductance. Perturbations of photochemical efficiencies were not observed in cells associated with all of the stomata on the upper leaf surface or within cells distant from the upper leaf surface. It is concluded that ozone penetrates the leaf through stomata and initially damages only cells close to stomatal pores.

  15. Characterization of Genetic Diversity of Bacillus anthracis in France by Using High-Resolution Melting Assays and Multilocus Variable-Number Tandem-Repeat Analysis ▿ †

    PubMed Central

    Derzelle, S.; Laroche, S.; Le Flèche, P.; Hauck, Y.; Thierry, S.; Vergnaud, G.; Madani, N.

    2011-01-01

    Using high-resolution melting (HRM) analysis, we developed a cost-effective method to genotype a set of 13 phylogenetically informative single-nucleotide polymorphisms (SNPs) within the genome of Bacillus anthracis. SNP discrimination assays were performed in monoplex or duplex and applied to 100 B. anthracis isolates collected in France from 1953 to 2009 and a few reference strains. HRM provided a reliable and cheap alternative to subtype B. anthracis into one of the 12 major sublineages or subgroups. All strains could be correctly positioned on the canonical SNP (canSNP) phylogenetic tree, except the divergent Pasteur vaccine strain ATCC 4229. We detected the cooccurrence of three canSNP subgroups in France. The dominant B.Br.CNEVA sublineage was found to be prevalent in the Alps, the Pyrenees, the Auvergne region, and the Saône-et-Loire department. Strains affiliated with the A.Br.008/009 subgroup were observed throughout most of the country. The minor A.Br.001/002 subgroup was restricted to northeastern France. Multiple-locus variable-number tandem-repeat analysis using 24 markers further resolved French strains into 60 unique profiles and identified some regional patterns. Diversity found within the A.Br.008/009 and B.Br.CNEVA subgroups suggests that these represent old, ecologically established clades in France. Phylogenetic relationships with strains from other parts of the world are discussed. PMID:21998431

  16. Characterization of the Rod-Pinch Diode at 2 to 4 Mv as a High-Resolution Source for Flash Radiography

    NASA Astrophysics Data System (ADS)

    Commisso, R. J.; Young, F. C.; Bayol, F.; Allen, R. J.; Boller, J. R.; Charre, P.; Cooperstein, G.; Garrigues, A.; Gonzales, C.; Mosher, D.; Pompier, F.; Swanekamp, S. B.; Vezinet, R.

    2002-12-01

    The ASTERIX generator is used to evaluatate the rod-pinch electron-beam diode as an intense source of x-rays for high-resolution, pulsed (30- to 40-ns FWHM) radiography at peak diode voltages of voltages of 2.4 to 4.4 MV and peak diode currents of 55 to 135 kA. At 4 MV, tungsten anode rods of 1-mm or 2-mm diameter produce on-axis doses at 1 meter of 16 rad(Si) or 20 rad(Si), respectively. The on-axis source diameter based on the full-width at half-maximum (FWHM) of the line-spread-function (LSF) is 0.9 ± 0.1 mm for a 1-mm diameter rod and 1.4 ± 0.1 mm for a 2-mm diam rod, independent of voltage. The LANL source diameter is nearly twice the FWHM. The measured rod-pinch current is reproduced with a diode model that includes ions and accounts for anode and cathode plasma expansion. A composite diode with a large diameter carbon-rod anode followed by a smaller-diameter tungsten-tip converter shows promise for applications where a small central source feature is desired.

  17. Structural Characterization and Gas Reactions of Small Metal Particles by High Resolution In-situ TEM and TED. [Transmission Electron Microscopy and Transmission Electron Diffraction

    NASA Technical Reports Server (NTRS)

    Heinemann, K.

    1985-01-01

    A commercial electron microscope with flat-plate upper pole piece configuration of the objective lens and top entry specimen introduction was modified to obtain 5 x 10 to the minus 10th power mbar pressure at the site of the specimen while maintaining the convenience of a specimen airlock system that allows operation in the 10 to the 10th power mbar range within 15 minutes after specimen change. The specimen chamber contains three wire evaporation sources, a specimen heater, and facilities for oxygen or hydrogen plasma treatment to clean as-introduced specimens. Evacuation is achieved by dural differential pumping, with fine entrance and exit apertures for the electron beam. With the microscope operating at .000001 mbar, the first differential pumping stage features a high-speed cryopump operating in a stainless steel chamber that can be mildly baked and reaches 1 x 10 to the minus 8th power mbar. The second stage, containing the evaporation sources and a custom ionization gauge within 10 cm from the specimen, is a rigorously uncompromised all-metal uhv-system that is bakable to above 200 C throughout and is pumped with an 80-liter ion pump. Design operating pressures and image quality (resolution of metal particles smaller than 1 nm in size) was achieved.

  18. Rapid characterization of lithium ion battery electrolytes and thermal aging products by low-temperature plasma ambient ionization high-resolution mass spectrometry.

    PubMed

    Vortmann, Britta; Nowak, Sascha; Engelhard, Carsten

    2013-03-19

    Lithium ion batteries (LIBs) are key components for portable electronic devices that are used around the world. However, thermal decomposition products in the battery reduce its lifetime, and decomposition processes are still not understood. In this study, a rapid method for in situ analysis and reaction monitoring in LIB electrolytes is presented based on high-resolution mass spectrometry (HR-MS) with low-temperature plasma probe (LTP) ambient desorption/ionization for the first time. This proof-of-principle study demonstrates the capabilities of ambient mass spectrometry in battery research. LTP-HR-MS is ideally suited for qualitative analysis in the ambient environment because it allows direct sample analysis independent of the sample size, geometry, and structure. Further, it is environmental friendly because it eliminates the need of organic solvents that are typically used in separation techniques coupled to mass spectrometry. Accurate mass measurements were used to identify the time-/condition-dependent formation of electrolyte decomposition compounds. A LIB model electrolyte containing ethylene carbonate and dimethyl carbonate was analyzed before and after controlled thermal stress and over the course of several weeks. Major decomposition products identified include difluorophosphoric acid, monofluorophosphoric acid methyl ester, monofluorophosphoric acid dimethyl ester, and hexafluorophosphate. Solvents (i.e., dimethyl carbonate) were partly consumed via an esterification pathway. LTP-HR-MS is considered to be an attractive method for fundamental LIB studies.

  19. High-Resolution PET Detector. Final report

    SciTech Connect

    Karp, Joel

    2014-03-26

    The objective of this project was to develop an understanding of the limits of performance for a high resolution PET detector using an approach based on continuous scintillation crystals rather than pixelated crystals. The overall goal was to design a high-resolution detector, which requires both high spatial resolution and high sensitivity for 511 keV gammas. Continuous scintillation detectors (Anger cameras) have been used extensively for both single-photon and PET scanners, however, these instruments were based on NaI(Tl) scintillators using relatively large, individual photo-multipliers. In this project we investigated the potential of this type of detector technology to achieve higher spatial resolution through the use of improved scintillator materials and photo-sensors, and modification of the detector surface to optimize the light response function.We achieved an average spatial resolution of 3-mm for a 25-mm thick, LYSO continuous detector using a maximum likelihood position algorithm and shallow slots cut into the entrance surface.

  20. High Spatial Resolution Thermal Satellite Technologies

    NASA Technical Reports Server (NTRS)

    Ryan, Robert

    2003-01-01

    This document in the form of viewslides, reviews various low-cost alternatives to high spatial resolution thermal satellite technologies. There exists no follow-on to Landsat 7 or ASTER high spatial resolution thermal systems. This document reviews the results of the investigation in to the use of new technologies to create a low-cost useful alternative. Three suggested technologies are examined. 1. Conventional microbolometer pushbroom modes offers potential for low cost Landsat Data Continuity Mission (LDCM) thermal or ASTER capability with at least 60-120 ground sampling distance (GSD). 2. Backscanning could produce MultiSpectral Thermal Imager performance without cooled detectors. 3. Cooled detector could produce hyperspectral thermal class system or extremely high spatial resolution class instrument.

  1. Characterization of biomass burning emissions from cooking fires, peat, crop residue, and other fuels with high-resolution proton-transfer-reaction time-of-flight mass spectrometry

    NASA Astrophysics Data System (ADS)

    Stockwell, C. E.; Veres, P. R.; Williams, J.; Yokelson, R. J.

    2015-01-01

    We deployed a high-resolution proton-transfer-reaction time-of-flight mass spectrometer (PTR-TOF-MS) to measure biomass-burning emissions from peat, crop residue, cooking fires, and many other fire types during the fourth Fire Lab at Missoula Experiment (FLAME-4) laboratory campaign. A combination of gas standard calibrations and composition sensitive, mass-dependent calibration curves was applied to quantify gas-phase non-methane organic compounds (NMOCs) observed in the complex mixture of fire emissions. We used several approaches to assign the best identities to most major "exact masses", including many high molecular mass species. Using these methods, approximately 80-96% of the total NMOC mass detected by the PTR-TOF-MS and Fourier transform infrared (FTIR) spectroscopy was positively or tentatively identified for major fuel types. We report data for many rarely measured or previously unmeasured emissions in several compound classes including aromatic hydrocarbons, phenolic compounds, and furans; many of these are suspected secondary organic aerosol precursors. A large set of new emission factors (EFs) for a range of globally significant biomass fuels is presented. Measurements show that oxygenated NMOCs accounted for the largest fraction of emissions of all compound classes. In a brief study of various traditional and advanced cooking methods, the EFs for these emissions groups were greatest for open three-stone cooking in comparison to their more advanced counterparts. Several little-studied nitrogen-containing organic compounds were detected from many fuel types, that together accounted for 0.1-8.7% of the fuel nitrogen, and some may play a role in new particle formation.

  2. Microtopographic characterization of ice-wedge polygon landscape in Barrow, Alaska: a digital map of troughs, rims, centers derived from high resolution (0.25 m) LiDAR data

    SciTech Connect

    Gangodagamage, Chandana; Wullschleger, Stan

    2014-07-03

    The dataset represents microtopographic characterization of the ice-wedge polygon landscape in Barrow, Alaska. Three microtopographic features are delineated using 0.25 m high resolution digital elevation dataset derived from LiDAR. The troughs, rims, and centers are the three categories in this classification scheme. The polygon troughs are the surface expression of the ice-wedges that are in lower elevations than the interior polygon. The elevated shoulders of the polygon interior immediately adjacent to the polygon troughs are the polygon rims for the low center polygons. In case of high center polygons, these features are the topographic highs. In this classification scheme, both topographic highs and rims are considered as polygon rims. The next version of the dataset will include more refined classification scheme including separate classes for rims ad topographic highs. The interior part of the polygon just adjacent to the polygon rims are the polygon centers.

  3. Spatial Resolution Characterization for AWiFS Multispectral Images

    NASA Technical Reports Server (NTRS)

    Blonski, Slawomir; Ryan, Robert E.; Pagnutti, Mary; Stanley, Thomas

    2006-01-01

    Within the framework of the Joint Agency Commercial Imagery Evaluation program, the National Aeronautics and Space Administration, the National Geospatial-Intelligence Agency, and the U.S. Geological Survey cooperate in the characterization of high-to-moderate-resolution commercial imagery of mutual interest. One of the systems involved in this effort is the Advanced Wide Field Sensor (AWiFS) onboard the Indian Remote Sensing (IRS) Reourcesat-1 satellite, IRS-P6. Spatial resolution of the AWiFS multispectral images was characterized by estimating the value of the system Modulation Transfer Function (MTF) at the Nyquist spatial frequency. The Nyquist frequency is defined as half the sampling frequency, and the sampling frequency is equal to the inverse of the ground sample distance. The MTF was calculated as a ratio of the Fourier transform of a profile across an AWiFS image of the Lake Pontchartrain Causeway Bridge and the Fourier transform of a profile across an idealized model of the bridge for each spectral band evaluated. The mean MTF value for the AWiFS imagery evaluated was estimated to be 0.1.

  4. A Very High Spatial Resolution Detector for Small Animal PET

    SciTech Connect

    Kanai Shah, M.S.

    2007-03-06

    Positron Emission Tomography (PET) is an in vivo analog of autoradiography and has the potential to become a powerful new tool in imaging biological processes in small laboratory animals. PET imaging of small animals can provide unique information that can help in advancement of human disease models as well as drug development. Clinical PET scanners used for human imaging are bulky, expensive and do not have adequate spatial resolution for small animal studies. Hence, dedicated, low cost instruments are required for conducting small animal studies with higher spatial resolution than what is currently achieved with clinical as well as dedicated small animal PET scanners. The goal of the proposed project is to investigate a new all solid-state detector design for small animal PET imaging. Exceptionally high spatial resolution, good timing resolution, and excellent energy resolution are expected from the proposed detector design. The Phase I project was aimed at demonstrating the feasibility of producing high performance solid-state detectors that provide high sensitivity, spatial resolution, and timing characteristics. Energy resolution characteristics of the new detector were also investigated. The goal of the Phase II project is to advance the promising solid-state detector technology for small animal PET and determine its full potential. Detectors modules will be built and characterized and finally, a bench-top small animal PET system will be assembled and evaluated.

  5. A high-resolution tungstate membrane label

    SciTech Connect

    Hainfeld, J.F.; Quaite, F.E. ); Lipka, J.J. )

    1990-01-01

    A new class of membrane labels was synthesized which contain a tungstate cluster (having 11 tungsten atoms) and an aliphatic organo-tin moiety with various chain lengths (C{sub 4}, C{sub 8}, C{sub 12}, C{sub 18}, C{sub 22}). These molecules were found to insert into synthetic phospholipid vesicles and biological membranes (human red blood cell membranes). The tungstate clusters can be individually visualized in the high resolution STEM or seen en mass in thin-sectioned labeled membranes in the CTEM. These new labels should provide a means for direct high-resolution imaging of lipid-phase systems.

  6. A High Resolution Scale-of-four

    DOE R&D Accomplishments Database

    Fitch, V.

    1949-08-25

    A high resolution scale-of-four has been developed to be used in conjunction with the nuclear particle detection devices in applications where the counting rate is unusually high. Specifically, it is intended to precede the commercially available medium resolution scaling circuits and so decrease the resolving time of the counting system. The circuit will function reliably on continuously recurring pulses separated by less than 0.1 microseconds. It will resolve two pulses (occurring at a moderate repetition rate) which are spaced at 0.04 microseconds. A five-volt input signal is sufficient to actuate the device.

  7. High-resolution electrohydrodynamic jet printing.

    PubMed

    Park, Jang-Ung; Hardy, Matt; Kang, Seong Jun; Barton, Kira; Adair, Kurt; Mukhopadhyay, Deep Kishore; Lee, Chang Young; Strano, Michael S; Alleyne, Andrew G; Georgiadis, John G; Ferreira, Placid M; Rogers, John A

    2007-10-01

    Efforts to adapt and extend graphic arts printing techniques for demanding device applications in electronics, biotechnology and microelectromechanical systems have grown rapidly in recent years. Here, we describe the use of electrohydrodynamically induced fluid flows through fine microcapillary nozzles for jet printing of patterns and functional devices with submicrometre resolution. Key aspects of the physics of this approach, which has some features in common with related but comparatively low-resolution techniques for graphic arts, are revealed through direct high-speed imaging of the droplet formation processes. Printing of complex patterns of inks, ranging from insulating and conducting polymers, to solution suspensions of silicon nanoparticles and rods, to single-walled carbon nanotubes, using integrated computer-controlled printer systems illustrates some of the capabilities. High-resolution printed metal interconnects, electrodes and probing pads for representative circuit patterns and functional transistors with critical dimensions as small as 1 mum demonstrate potential applications in printed electronics.

  8. High-resolution electrohydrodynamic jet printing

    NASA Astrophysics Data System (ADS)

    Park, Jang-Ung; Hardy, Matt; Kang, Seong Jun; Barton, Kira; Adair, Kurt; Mukhopadhyay, Deep Kishore; Lee, Chang Young; Strano, Michael S.; Alleyne, Andrew G.; Georgiadis, John G.; Ferreira, Placid M.; Rogers, John A.

    2007-10-01

    Efforts to adapt and extend graphic arts printing techniques for demanding device applications in electronics, biotechnology and microelectromechanical systems have grown rapidly in recent years. Here, we describe the use of electrohydrodynamically induced fluid flows through fine microcapillary nozzles for jet printing of patterns and functional devices with submicrometre resolution. Key aspects of the physics of this approach, which has some features in common with related but comparatively low-resolution techniques for graphic arts, are revealed through direct high-speed imaging of the droplet formation processes. Printing of complex patterns of inks, ranging from insulating and conducting polymers, to solution suspensions of silicon nanoparticles and rods, to single-walled carbon nanotubes, using integrated computer-controlled printer systems illustrates some of the capabilities. High-resolution printed metal interconnects, electrodes and probing pads for representative circuit patterns and functional transistors with critical dimensions as small as 1μm demonstrate potential applications in printed electronics.

  9. Heterogeneous oxidation products of branched and linear unsaturated hydrocarbons as characterized by two-dimensional gas chromatography with high-resolution time-of-flight mass spectrometry

    NASA Astrophysics Data System (ADS)

    Nah, T.; Zhang, H.; Worton, D. R.; Ruehl, C. R.; Goldstein, A. H.; Leone, S. R.; Wilson, K. R.

    2013-12-01

    Previous research has shown that molecular structure (e.g. degree of branching) can influence reaction rates and mechanisms in heterogeneous hydrocarbon oxidation. In this study, we provide new insights into the influence of molecular structure on product formation chemistry in the OH-initiated oxidation of unsaturated hydrocarbon aerosols. Submicron aerosol particles composed of either squalene (branched alkene) or linolenic acid (linear unsaturated fatty acid) were oxidized by OH radicals in the presence and absence of oxygen in a photochemical flow reactor. Oxidation products are collected on filters and analyzed using two-dimensional gas chromatography, with high-resolution time-of-flight mass spectrometric detection utilizing vacuum ultraviolet photoionization and electron impact ionization. The oxidation products were separated, identified, and quantified. We observed that in the absence of oxygen, the OH oxidation of squalene aerosol mainly leads to the formation of functionalization products with one alcohol functional group. These functionalization products are found to be a result of intermolecular hydrogen atom abstraction by the hydroxyalkyl radical (i.e. chain propagation) and are consistent with previously measured squalene effective uptake coefficients that are observed to be larger than one. Reaction pathways that cleave C-C bonds are observed to be strongly suppressed when oxygen is absent, but become more prevalent when oxygen is present in the oxidation of squalene aerosol. In contrast, the presence of oxygen generally does not influence the formation of functionalization and fragmentation products in the OH oxidation of linolenic acid aerosols. These results provide new molecular and mechanistic insights into the reaction pathways in the OH-initiated oxidation of branched and linear unsaturated hydrocarbon aerosols.

  10. COMPARISON BETWEEN SEDATION AND GENERAL ANESTHESIA FOR HIGH RESOLUTION COMPUTED TOMOGRAPHIC CHARACTERIZATION OF CANINE IDIOPATHIC PULMONARY FIBROSIS IN WEST HIGHLAND WHITE TERRIERS.

    PubMed

    Roels, Elodie; Couvreur, Thierry; Farnir, Frédéric; Clercx, Cécile; Verschakelen, Johny; Bolen, Géraldine

    2017-02-23

    Canine idiopathic pulmonary fibrosis is a progressive interstitial lung disease mainly affecting West Highland white terriers. Thoracic high-resolution computed tomographic (T-HRCT) findings for Canine idiopathic pulmonary fibrosis acquired under general anesthesia have been described previously. However, the use of general anesthesia may be contraindicated for some affected dogs. Sedation may allow improved speed and safety, but it is unknown whether sedation would yield similar results in identification and grading of Canine idiopathic pulmonary fibrosis lesions. The aim of this prospective, observational, method-comparison, case-control study was to compare findings from T-HRCT images acquired under sedation versus general anesthesia for West Highland white terriers affected with Canine idiopathic pulmonary fibrosis (n = 11) and age-matched controls (n = 9), using the glossary of terms of the Fleischner Society and a scoring system. Ground-glass opacity was identified in all affected West Highland white terriers for both sedation and general anesthesia acquisitions, although the Ground-glass opacity extent varied significantly between the two acquisitions (P < 0.001). Ground-glass opacity was the sole lesion observed in control dogs (n = 6), but was less extensive compared with affected West Highland white terriers. Identification and grading of a mosaic attenuation pattern differed significantly between acquisitions (P < 0.001). Identification of lesions such as consolidations, nodules, parenchymal and subpleural bands, bronchial wall thickening, and bronchiectasis did not differ between acquisitions. The present study demonstrated that T-HRCT obtained under sedation may provide different information than T-HRCT obtained under general anesthesia for identification and grading of some Canine idiopathic pulmonary fibrosis lesions, but not all of them. These differences should be taken into consideration when general anesthesia is contraindicated and sedation is

  11. High resolution clear native electrophoresis is a good alternative to blue native electrophoresis for the characterization of the Escherichia coli membrane complexes.

    PubMed

    Diéguez-Casal, Ernesto; Freixeiro, Paula; Costoya, Liliana; Criado, M Teresa; Ferreirós, Carlos; Sánchez, Sandra

    2014-07-01

    Blue native electrophoresis (BNE) has become the most popular method for the global analysis of membrane protein complexes. Although it has been shown to be very useful for that purpose, it can produce the dissociation of complexes with weak interactions and, due to the use of Coomassie Brilliant Blue, does not allow the subsequent application of fluorimetric and/or enzymatic techniques. Recently, we have successfully used the high resolution clear native electrophoresis (hrCNE) for the analysis of Neisseria meningitidis outer membrane porin complexes. The aim of this study was to determine the composition of the complexome of the Escherichia coli envelope by using hrCNE and to compare our results with those previously obtained using BNE. The bidimensional electrophoresis approaches used, hrCN/hrCNE and hrCN/SDS-PAGE, coupled to mass spectrometry allowed a detailed analysis of the complexome of E. coli membranes. For the first time, the three subunits of the formate dehydrogenase FDH-O were identified forming a single complex and hrCNE also allowed the identification of both the HflK and HflC proteins as components of the HflA complex. This technique also allowed us to suggest a relationship between OmpF and DLDH and, although OmpA is considered to be monomeric in vivo, we found this protein structured as homodimers. Thus hrCNE provides a good tool for future analyses of bacterial membrane proteins and complexes and is an important alternative to the commonly used BNE.

  12. In vitro characterization of potential CYP- and UGT-derived metabolites of the psychoactive drug 25B-NBOMe using LC-high resolution MS.

    PubMed

    Boumrah, Yacine; Humbert, Luc; Phanithavong, Melodie; Khimeche, Kamel; Dahmani, Abdallah; Allorge, Delphine

    2016-02-01

    One of the main challenges posed by the emergence of new psychoactive substances is their identification in human biological samples. Trying to detect the parent drug could lead to false-negative results when the delay between consumption and sampling has been too long. The identification of their metabolites could then improve their detection window in biological matrices. Oxidative metabolism by cytochromes P450 and glucuronidation are two major detoxification pathways in humans. In order to characterize possible CYP- and UGT-dependent metabolites of the 2-(4-bromo-2,5-dimethoxy-phenyl)-N-[(2-methoxyphenyl)methyl]ethanamine (25B-NBOMe), a synthetic psychoactive drug, analyses of human liver microsome (HLM) incubates were performed using an ultra-high performance liquid chromatography system coupled with a quadrupole-time of flight mass spectrometry detector (UHPLC-Q-TOF/MS). On-line analyses were performed using a Waters OASIS HLB column (30 x 2.1 mm, 20 µm) for the automatic sample loading and a Waters ACQUITY HSS C18 column (150 x 2 mm, 1.8 µm) for the chromatographic separation. Twenty-one metabolites, consisting of 12 CYP-derived and 9 UGT-derived metabolites, were identified. O-Desmethyl metabolites were the most abundant compounds after the phase I process, which appears to be in accordance with data from previously published NBOMe-intoxication case reports. Although other important metabolic transformations, such as sulfation, acetylation, methylation or glutathione conjugation, were not studied and artefactual metabolites might have been produced during the HLM incubation process, the record of all the metabolite MS spectra in our library should enable us to characterize relevant metabolites of 25B-NBOMe and allow us to detect 25B-MBOMe users.

  13. Characterization of flux-grown Trace-element-doped titanite using the high-mass-resolution ion microprobe (SHRIMP-RG)

    USGS Publications Warehouse

    Mazdab, F.K.

    2009-01-01

    Crystals of titanite can be readily grown under ambient pressure from a mixture of CaO, TiO2 and SiO2 in the presence of molten sodium tetraborate. The crystals produced are euhedral and prismatic, lustrous and transparent, and up to 5 mm in length. Titanite obtained by this method contains approximately 4300 ppm Na and 220 ppm B contributed from the flux. In addition to dopant-free material, titanite containing trace alkali and alkaline earth metals (K, Sr, Ba), transition metals (Sc, Cr, Ni, Y, Zr, Nb, Hf and Ta), rare-earth elements (REE), actinides (Th, U) and p-block elements (F, S, Cl, Ge, Sn and Pb) have been prepared using the same procedure. Back-scattered electron (BSE) imaging accompanied by ion-microprobe (SHRIMP-RG) analysis confirms significant incorporation of selected trace-elements at structural sites. Regardless of some zonation, the large size of the crystals and broad regions of chemical homogeneity make these crystals useful as experimental starting material, and as matrix-matched trace-element standards for a variety of microbeam analytical techniques where amorphous titanite glass, heterogeneous natural titanite or a non-titanite standard may be less than satisfactory. Trace-element-doped synthetic crystals can also provide a convenient proxy for a better understanding of trace-element incorporation in natural titanite. Comparisons with igneous, authigenic and high-temperature metasomatic titanite are examined. The use of high-mass-resolution SIMS also demonstrates the analytical challenges inherent to any in situ mass-spectrometry-based analysis of titanite, owing to the production of difficult-to-resolve molecular interferences. These interferences are dominated by Ca-Ca, Ca-Ti and Ti-Ti dimers that are significant in the mass range of 80-100, affecting all isotopes of Sr and Zr, as well as 89Y and 93Nb. Methods do exist for the evaluation of interferences by these dimers and of polyatomic interferences on the LREE.

  14. High-resolution two dimensional advective transport

    USGS Publications Warehouse

    Smith, P.E.; Larock, B.E.

    1989-01-01

    The paper describes a two-dimensional high-resolution scheme for advective transport that is based on a Eulerian-Lagrangian method with a flux limiter. The scheme is applied to the problem of pure-advection of a rotated Gaussian hill and shown to preserve the monotonicity property of the governing conservation law.

  15. A High-Resolution Stopwatch for Cents

    ERIC Educational Resources Information Center

    Gingl, Z.; Kopasz, K.

    2011-01-01

    A very low-cost, easy-to-make stopwatch is presented to support various experiments in mechanics. The high-resolution stopwatch is based on two photodetectors connected directly to the microphone input of a sound card. Dedicated free open-source software has been developed and made available to download. The efficiency is demonstrated by a free…

  16. Sparse and accurate high resolution SAR imaging

    NASA Astrophysics Data System (ADS)

    Vu, Duc; Zhao, Kexin; Rowe, William; Li, Jian

    2012-05-01

    We investigate the usage of an adaptive method, the Iterative Adaptive Approach (IAA), in combination with a maximum a posteriori (MAP) estimate to reconstruct high resolution SAR images that are both sparse and accurate. IAA is a nonparametric weighted least squares algorithm that is robust and user parameter-free. IAA has been shown to reconstruct SAR images with excellent side lobes suppression and high resolution enhancement. We first reconstruct the SAR images using IAA, and then we enforce sparsity by using MAP with a sparsity inducing prior. By coupling these two methods, we can produce a sparse and accurate high resolution image that are conducive for feature extractions and target classification applications. In addition, we show how IAA can be made computationally efficient without sacrificing accuracies, a desirable property for SAR applications where the size of the problems is quite large. We demonstrate the success of our approach using the Air Force Research Lab's "Gotcha Volumetric SAR Data Set Version 1.0" challenge dataset. Via the widely used FFT, individual vehicles contained in the scene are barely recognizable due to the poor resolution and high side lobe nature of FFT. However with our approach clear edges, boundaries, and textures of the vehicles are obtained.

  17. A Portable, High Resolution, Surface Measurement Device

    NASA Technical Reports Server (NTRS)

    Ihlefeld, Curtis M.; Burns, Bradley M.; Youngquist, Robert C.

    2012-01-01

    A high resolution, portable, surface measurement device has been demonstrated to provide micron-resolution topographical plots. This device was specifically developed to allow in-situ measurements of defects on the Space Shuttle Orbiter windows, but is versatile enough to be used on a wide variety of surfaces. This paper discusses the choice of an optical sensor and then the decisions required to convert a lab bench optical measurement device into an ergonomic portable system. The necessary trade-offs between performance and portability are presented along with a description of the device developed to measure Orbiter window defects.

  18. Detectors for high resolution dynamic pet

    SciTech Connect

    Derenzo, S.E.; Budinger, T.F.; Huesman, R.H.

    1983-05-01

    This report reviews the motivation for high spatial resolution in dynamic positron emission tomography of the head and the technical problems in realizing this objective. We present recent progress in using small silicon photodiodes to measure the energy deposited by 511 keV photons in small BGO crystals with an energy resolution of 9.4% full-width at half-maximum. In conjunction with a suitable phototube coupled to a group of crystals, the photodiode signal to noise ratio is sufficient for the identification of individual crystals both for conventional and time-of-flight positron tomography.

  19. High-Resolution Traction Force Microscopy

    PubMed Central

    Plotnikov, Sergey V.; Sabass, Benedikt; Schwarz, Ulrich S.; Waterman, Clare M.

    2015-01-01

    Cellular forces generated by the actomyosin cytoskeleton and transmitted to the extracellular matrix (ECM) through discrete, integrin-based protein assemblies, that is, focal adhesions, are critical to developmental morphogenesis and tissue homeostasis, as well as disease progression in cancer. However, quantitative mapping of these forces has been difficult since there has been no experimental technique to visualize nanonewton forces at submicrometer spatial resolution. Here, we provide detailed protocols for measuring cellular forces exerted on two-dimensional elastic substrates with a high-resolution traction force microscopy (TFM) method. We describe fabrication of polyacrylamide substrates labeled with multiple colors of fiducial markers, functionalization of the substrates with ECM proteins, setting up the experiment, and imaging procedures. In addition, we provide the theoretical background of traction reconstruction and experimental considerations important to design a high-resolution TFM experiment. We describe the implementation of a new algorithm for processing of images of fiducial markers that are taken below the surface of the substrate, which significantly improves data quality. We demonstrate the application of the algorithm and explain how to choose a regularization parameter for suppression of the measurement error. A brief discussion of different ways to visualize and analyze the results serves to illustrate possible uses of high-resolution TFM in biomedical research. PMID:24974038

  20. High resolution schemes for hyperbolic conservation laws

    NASA Technical Reports Server (NTRS)

    Harten, A.

    1983-01-01

    A class of new explicit second order accurate finite difference schemes for the computation of weak solutions of hyperbolic conservation laws is presented. These highly nonlinear schemes are obtained by applying a nonoscillatory first order accurate scheme to an appropriately modified flux function. The so-derived second order accurate schemes achieve high resolution while preserving the robustness of the original nonoscillatory first order accurate scheme. Numerical experiments are presented to demonstrate the performance of these new schemes.

  1. Detection and characterization of Leishmania (Leishmania) and Leishmania (Viannia) by SYBR green-based real-time PCR and high resolution melt analysis targeting kinetoplast minicircle DNA.

    PubMed

    Ceccarelli, Marcello; Galluzzi, Luca; Migliazzo, Antonella; Magnani, Mauro

    2014-01-01

    Leishmaniasis is a neglected disease with a broad clinical spectrum which includes asymptomatic infection. A thorough diagnosis, able to distinguish and quantify Leishmania parasites in a clinical sample, constitutes a key step in choosing an appropriate therapy, making an accurate prognosis and performing epidemiological studies. Several molecular techniques have been shown to be effective in the diagnosis of leishmaniasis. In particular, a number of PCR methods have been developed on various target DNA sequences including kinetoplast minicircle constant regions. The first aim of this study was to develop a SYBR green-based qPCR assay for Leishmania (Leishmania) infantum detection and quantification, using kinetoplast minicircle constant region as target. To this end, two assays were compared: the first used previously published primer pairs (qPCR1), whereas the second used a nested primer pairs generating a shorter PCR product (qPCR2). The second aim of this study was to evaluate the possibility to discriminate among subgenera Leishmania (Leishmania) and Leishmania (Viannia) using the qPCR2 assay followed by melting or High Resolution Melt (HRM) analysis. Both assays used in this study showed good sensitivity and specificity, and a good correlation with standard IFAT methods in 62 canine clinical samples. However, the qPCR2 assay allowed to discriminate between Leishmania (Leishmania) and Leishmania (Viannia) subgenera through melting or HRM analysis. In addition to developing assays, we investigated the number and genetic variability of kinetoplast minicircles in the Leishmania (L.) infantum WHO international reference strain (MHOM/TN/80/IPT1), highlighting the presence of minicircle subclasses and sequence heterogeneity. Specifically, the kinetoplast minicircle number per cell was estimated to be 26,566±1,192, while the subclass of minicircles amplifiable by qPCR2 was estimated to be 1,263±115. This heterogeneity, also observed in canine clinical samples

  2. Molecular Characterization of Peatland-derived Dissolved Organic Matter Using Ultra-high Resolution Mass Spectrometry and Tetramethylammonium Hydroxide (TMAH) Thermochemolysis

    NASA Astrophysics Data System (ADS)

    Ridley, L. M.; Koch, B. P.; Flerus, R.; Cowie, G. L.; Abbott, G. D.; Schmitt-Kopplin, P.

    2011-12-01

    Peatlands represent a key carbon reservoir, containing around a third of the global terrestrial carbon pool and contributing significantly to riverine organic carbon fluxes. Despite this, little is known about the molecular transformations which occur when peatland-derived organic matter enters riverine or estuarine conditions. Electrospray ionisation Fourier transform ion cyclotron resonance mass spectrometry (FT-ICR-MS) was used to characterize the molecular composition of peatland-derived dissolved organic matter (DOM). The molecular information obtained from this technique was further supplemented by TMAH thermochemolysis gas chromatography mass spectrometry, providing a detailed investigation of this important reservoir of organic matter. This molecular perspective can provide information on degradation processes, carbon cycling and the fate of peatland organic matter with changing climatic conditions. Four samples, representing contrasting stores of DOM within a peatland system (Cors Fochno, Wales) were chosen for analysis: i) a surface porewater sample from the top 30cm of the peat profile; ii) a sample from a mid-depth (150cm), low hydraulic conductivity zone of peat which displays high concentrations of dissolved organic carbon (70mg/L DOC); iii) a deep (600cm) porewater; iv) runoff water, representing the DOM that leaves the peatland system to enter a drainage channel flowing into the nearby estuary. The FT-ICR mass spectra obtained from the mid-depth DOM were dominated by a small number of closely related organic compounds, having very high intensity peaks representing relatively unsaturated and low oxygen content molecular formulae (0.3high H/C ratios (>1.5) and some

  3. Superconducting High Resolution Fast-Neutron Spectrometers

    SciTech Connect

    Hau, Ionel Dragos

    2006-01-01

    Superconducting high resolution fast-neutron calorimetric spectrometers based on 6LiF and TiB{sub 2} absorbers have been developed. These novel cryogenic spectrometers measure the temperature rise produced in exothermal (n, α) reactions with fast neutrons in 6Li and 10B-loaded materials with heat capacity C operating at temperatures T close to 0.1 K. Temperature variations on the order of 0.5 mK are measured with a Mo/Cu thin film multilayer operated in the transition region between its superconducting and its normal state. The advantage of calorimetry for high resolution spectroscopy is due to the small phonon excitation energies kBT on the order of μeV that serve as signal carriers, resulting in an energy resolution ΔE ~ (kBT2C)1/2, which can be well below 10 keV. An energy resolution of 5.5 keV has been obtained with a Mo/Cu superconducting sensor and a TiB2 absorber using thermal neutrons from a 252Cf neutron source. This resolution is sufficient to observe the effect of recoil nuclei broadening in neutron spectra, which has been related to the lifetime of the first excited state in 7Li. Fast-neutron spectra obtained with a 6Li-enriched LiF absorber show an energy resolution of 16 keV FWHM, and a response in agreement with the 6Li(n, α)3H reaction cross section and Monte Carlo simulations for energies up to several MeV. The energy resolution of order of a few keV makes this novel instrument applicable to fast-neutron transmission spectroscopy based on the unique elemental signature provided by the neutron absorption and scattering resonances. The optimization of the energy resolution based on analytical and numerical models of the detector response is discussed in the context of these applications.

  4. High resolution beamforming for small aperture arrays

    NASA Astrophysics Data System (ADS)

    Clark, Chris; Null, Tom; Wagstaff, Ronald A.

    2003-04-01

    Achieving fine resolution bearing estimates for multiple sources using acoustic arrays with small apertures, in number of wavelengths, is a difficult challenge. It requires both large signal-to-noise ratio (SNR) gains and very narrow beam responses. High resolution beamforming for small aperture arrays is accomplished by exploiting acoustical fluctuations. Acoustical fluctuations in the atmosphere are caused by wind turbulence along the propagation path, air turbulence at the sensor, source/receiver motion, unsteady source level, and fine scale temperature variations. Similar environmental and source dependent phenomena cause fluctuations in other propagation media, e.g., undersea, optics, infrared. Amplitude fluctuations are exploited to deconvolve the beam response functions from the beamformed data of small arrays to achieve high spatial resolution, i.e., fine bearing resolution, and substantial SNR gain. Results are presented for a six microphone low-frequency array with an aperture of less than three wavelengths. [Work supported by U.S. Army Armament Research Development and Engineering Center.

  5. Use of Declassified High-Resolution Imagery and Coincident Data Sets for Characterizing the Changing Arctic Ice Cover, and Collaboration with SIZRS

    DTIC Science & Technology

    2015-09-30

    resolution visible band imagery for understanding physical processes of the Arctic Ocean sea ice cover. OBJECTIVES Literal Image Derived...to provide records of sea ice concentration, ice edge location, melt pond coverage, floe size distribution and general surface conditions, for...development of the derived geophysical information from LIDPs. A moderate effort to explore the potential use of LIDPs for Arctic sea ice science was

  6. Human enamel structure studied by high resolution electron microscopy

    SciTech Connect

    Wen, S.L. )

    1989-01-01

    Human enamel structural features are characterized by high resolution electron microscopy. The human enamel consists of polycrystals with a structure similar to Ca10(PO4)6(OH)2. This article describes the structural features of human enamel crystal at atomic and nanometer level. Besides the structural description, a great number of high resolution images are included. Research into the carious process in human enamel is very important for human beings. This article firstly describes the initiation of caries in enamel crystal at atomic and unit-cell level and secondly describes the further steps of caries with structural and chemical demineralization. The demineralization in fact, is the origin of caries in human enamel. The remineralization of carious areas in human enamel has drawn more and more attention as its potential application is realized. This process has been revealed by high resolution electron microscopy in detail in this article. On the other hand, the radiation effects on the structure of human enamel are also characterized by high resolution electron microscopy. In order to reveal this phenomenon clearly, a great number of electron micrographs have been shown, and a physical mechanism is proposed. 26 references.

  7. High-Resolution US of Rheumatologic Diseases.

    PubMed

    Taljanovic, Mihra S; Melville, David M; Gimber, Lana H; Scalcione, Luke R; Miller, Margaret D; Kwoh, C Kent; Klauser, Andrea S

    2015-01-01

    For the past 15 years, high-resolution ultrasonography (US) is being routinely and increasingly used for initial evaluation and treatment follow-up of rheumatologic diseases. This imaging technique is performed by using high-frequency linear transducers and has proved to be a powerful diagnostic tool in evaluation of articular erosions, simple and complex joint and bursal effusions, tendon sheath effusions, and synovitis, with results comparable to those of magnetic resonance imaging, excluding detection of bone marrow edema. Crystal deposition diseases including gouty arthropathy and calcium pyrophosphate deposition disease (CPPD) have characteristic appearances at US, enabling differentiation between these two diseases and from inflammatory arthropathies. Enthesopathy, which frequently accompanies psoriatic and reactive arthritis, also has a characteristic appearance at high-resolution US, distinguishing these two entities from other inflammatory and metabolic arthropathies. The presence of Doppler signal in examined joints, bursae, and tendon sheaths indicates active synovitis. Microbubble echo contrast agents augment detection of tissue vascularity and may act in the future as a drug delivery vehicle. Frequently, joint, tendon sheath, and bursal fluid aspirations and therapeutic injections are performed under US guidance. The authors describe the high-resolution US technique including gray-scale, color or power Doppler, and contrast agent-enhanced US that is used in evaluation of rheumatologic diseases of the wrist and hand and the ankle and foot in their routine clinical practice. This article demonstrates imaging findings of normal joints, rheumatoid arthritis, gouty arthritis, CPPD, psoriatic and reactive arthritis, and osteoarthritis.

  8. High Resolution Coherent Three-Dimensional Spectroscopy of Iodine

    NASA Astrophysics Data System (ADS)

    House, Zuri R.; Wells, Thresa A.; Chen, Peter C.; Strangfeld, Benjamin R.

    2013-06-01

    The heavy congestion found in many one-dimensional spectra can make it difficult to study many transitions. A new coherent three-dimensional spectroscopic technique has been developed to eliminate the kind of congestion commonly seen in high resolution electronic spectra. The molecule used for this test was Iodine. A well-characterized transition (X to B) was used to determine which four wave mixing process or processes were responsible for the peaks in the resulting multidimensional spectrum. The resolution of several peaks that overlap in a coherent 2D spectrum can be accomplished by using a higher dimensional (3D) spectroscopic method. This talk will discuss strategies for finding spectroscopic constants using this high resolution coherent 3D spectroscopic method.

  9. Proceedings of the 2004 High Spatial Resolution Commercial Imagery Workshop

    NASA Technical Reports Server (NTRS)

    2006-01-01

    Topics covered include: NASA Applied Sciences Program; USGS Land Remote Sensing: Overview; QuickBird System Status and Product Overview; ORBIMAGE Overview; IKONOS 2004 Calibration and Validation Status; OrbView-3 Spatial Characterization; On-Orbit Modulation Transfer Function (MTF) Measurement of QuickBird; Spatial Resolution Characterization for QuickBird Image Products 2003-2004 Season; Image Quality Evaluation of QuickBird Super Resolution and Revisit of IKONOS: Civil and Commercial Application Project (CCAP); On-Orbit System MTF Measurement; QuickBird Post Launch Geopositional Characterization Update; OrbView-3 Geometric Calibration and Geopositional Accuracy; Geopositional Statistical Methods; QuickBird and OrbView-3 Geopositional Accuracy Assessment; Initial On-Orbit Spatial Resolution Characterization of OrbView-3 Panchromatic Images; Laboratory Measurement of Bidirectional Reflectance of Radiometric Tarps; Stennis Space Center Verification and Validation Capabilities; Joint Agency Commercial Imagery Evaluation (JACIE) Team; Adjacency Effects in High Resolution Imagery; Effect of Pulse Width vs. GSD on MTF Estimation; Camera and Sensor Calibration at the USGS; QuickBird Geometric Verification; Comparison of MODTRAN to Heritage-based Results in Vicarious Calibration at University of Arizona; Using Remotely Sensed Imagery to Determine Impervious Surface in Sioux Falls, South Dakota; Estimating Sub-Pixel Proportions of Sagebrush with a Regression Tree; How Do YOU Use the National Land Cover Dataset?; The National Map Hazards Data Distribution System; Recording a Troubled World; What Does This-Have to Do with This?; When Can a Picture Save a Thousand Homes?; InSAR Studies of Alaska Volcanoes; Earth Observing-1 (EO-1) Data Products; Improving Access to the USGS Aerial Film Collections: High Resolution Scanners; Improving Access to the USGS Aerial Film Collections: Phoenix Digitizing System Product Distribution; System and Product Characterization: Issues Approach

  10. High-resolution flurescence spectroscopy in immunoanalysis

    SciTech Connect

    Grubor, Nenad M.

    2005-01-01

    The work presented in this dissertation combines highly sensitive and selective fluorescence line-narrowing spectroscopy (FLNS) detection with various modes of immunoanalytical techniques. It has been shown that FLNS is capable of directly probing molecules immunocomplexed with antibodies, eliminating analytical ambiguities that may arise from interferences that accompany traditional immunochemical techniques. Moreover, the utilization of highly cross-reactive antibodies for highly specific analyte determination has been demonstrated. Finally, they demonstrate the first example of the spectral resolution of diastereomeric analytes based on their interaction with a cross-reactive antibody.

  11. High-Resolution Broadband Spectral Interferometry

    SciTech Connect

    Erskine, D J; Edelstein, J

    2002-08-09

    We demonstrate solar spectra from a novel interferometric method for compact broadband high-resolution spectroscopy. The spectral interferometer (SI) is a hybrid instrument that uses a spectrometer to externally disperse the output of a fixed-delay interferometer. It also has been called an externally dispersed interferometer (EDI). The interferometer can be used with linear spectrometers for imaging spectroscopy or with echelle spectrometers for very broad-band coverage. EDI's heterodyning technique enhances the spectrometer's response to high spectral-density features, increasing the effective resolution by factors of several while retaining its bandwidth. The method is extremely robust to instrumental insults such as focal spot size or displacement. The EDI uses no moving parts, such as purely interferometric FTS spectrometers, and can cover a much wider simultaneous bandpass than other internally dispersed interferometers (e.g. HHS or SHS).

  12. High resolution, large area, high energy x-ray tomography

    SciTech Connect

    Trebes, J.E.; Dolan, K.W.; Haddad, W.S.; Haskins, J.J.; Lerche, R.A.; Logan, C.M.; Perkins, D.E.; Schneberk, D.J.; Rikard, R.D.

    1997-08-01

    An x-ray tomography system is being developed for high resolution inspection of large objects. The goal is to achieve 25 micron resolution over object sizes that are tens of centimeters in extent. Typical objects will be metal in composition and therefore high energy, few MeV x-rays will be required. A proof-of-principle system with a limited field of view has been developed. Preliminary results are presented.

  13. Protein-DNA binding in high-resolution

    PubMed Central

    Mahony, Shaun; Pugh, B. Franklin

    2015-01-01

    Recent advances in experimental and computational methodologies are enabling ultra-high resolution genome-wide profiles of protein-DNA binding events. For example, the ChIP-exo protocol precisely characterizes protein-DNA crosslinking patterns by combining chromatin immunoprecipitation (ChIP) with 5′ → 3′ exonuclease digestion. Similarly, deeply sequenced chromatin accessibility assays (e.g. DNase-seq and ATACseq) enable the detection of protected footprints at protein-DNA binding sites. With these techniques and others, we have the potential to characterize the individual nucleotides that interact with transcription factors, nucleosomes, RNA polymerases, and other regulatory proteins in a particular cellular context. In this review, we explain the experimental assays and computational analysis methods that enable high-resolution profiling of protein-DNA binding events. We discuss the challenges and opportunities associated with such approaches. PMID:26038153

  14. A high-resolution anatomical rat atlas

    PubMed Central

    Bai, Xueling; Yu, Li; Liu, Qian; Zhang, Jie; Li, Anan; Han, Dao; Luo, Qingming; Gong, Hui

    2006-01-01

    This paper reports the availability of a high-resolution atlas of the adult rat. The atlas is composed of 9475 cryosectional images captured in 4600 × 2580 × 24-bit TIFF format, constructed using serial cryosection-milling techniques. Cryosection images were segmented, labelled and reconstructed into three-dimensional (3D) computerized models. These images, 3D models, technical details, relevant software and further information are available at our website, http://vchibp.vicp.net/vch/mice/. PMID:17062027

  15. High spatial resolution passive microwave sounding systems

    NASA Technical Reports Server (NTRS)

    Staelin, D. H.; Rosenkranz, P. W.; Bonanni, P. G.; Gasiewski, A. W.

    1986-01-01

    Two extensive series of flights aboard the ER-2 aircraft were conducted with the MIT 118 GHz imaging spectrometer together with a 53.6 GHz nadir channel and a TV camera record of the mission. Other microwave sensors, including a 183 GHz imaging spectrometer were flown simultaneously by other research groups. Work also continued on evaluating the impact of high-resolution passive microwave soundings upon numerical weather prediction models.

  16. Stellar Tools for High Resolution Population Synthesis

    NASA Astrophysics Data System (ADS)

    Chávez, M.; Bertone, E.; Rodríguez-Merino, L.; Buzzoni, A.

    2005-12-01

    We present preliminary results of the application of a new stellar library of high-resolution synthetic spectra (based upon ATLAS9 and SYNTHE codes developed by R. L. Kurucz) in the calculation of the ultraviolet-optical spectral energy distribution of simple stellar populations (SSPs). For this purpose, the library has been coupled with Buzzoni's population synthesis code. Part of this paper is also devoted to illustrate quantitatively the extent to which synthetic stellar libraries represent real stars.

  17. A High Resolution Ammunition Resupply Model.

    DTIC Science & Technology

    1982-03-01

    Transportation Assets .. . . . . . . . 111 b. Maximization of Shipping Space . . . . . 112 c. Adjustments Due to Priority Requisitions. 112 3. RESUPPLY...planned logistics module was expanded to a full stand-alone, high resolution model. Supplementary objectives were established in order to achieve the...each variable, and replication of the process described by these variables in order to achieve an expected value outcome. Using this technique, the

  18. High resolution image measurements of nuclear tracks

    NASA Technical Reports Server (NTRS)

    Shirk, E. K.; Price, P. B.

    1980-01-01

    The striking clarity and high contrast of the mouths of tracks etched in CR-39 plastic detectors allow automatic measurement of track parameters to be made with simple image-recognition equipment. Using a commercially available Vidicon camera system with a microprocessor-controlled digitizer, resolution for normally incident C-12 and N-14 ions at 32 MeV/amu equivalent to a 14sigma separation of adjacent charges was demonstrated.

  19. High-resolution, high-pressure NMR studies of proteins.

    PubMed Central

    Jonas, J; Ballard, L; Nash, D

    1998-01-01

    Advanced high-resolution NMR spectroscopy, including two-dimensional NMR techniques, combined with high pressure capability, represents a powerful new tool in the study of proteins. This contribution is organized in the following way. First, the specialized instrumentation needed for high-pressure NMR experiments is discussed, with specific emphasis on the design features and performance characteristics of a high-sensitivity, high-resolution, variable-temperature NMR probe operating at 500 MHz and at pressures of up to 500 MPa. An overview of several recent studies using 1D and 2D high-resolution, high-pressure NMR spectroscopy to investigate the pressure-induced reversible unfolding and pressure-assisted cold denaturation of lysozyme, ribonuclease A, and ubiquitin is presented. Specifically, the relationship between the residual secondary structure of pressure-assisted, cold-denatured states and the structure of early folding intermediates is discussed. PMID:9649405

  20. CrIS High Resolution Hyperspectral Radiances

    NASA Astrophysics Data System (ADS)

    Hepplewhite, C. L.; Strow, L. L.; Motteler, H.; Desouza-Machado, S. G.; Tobin, D. C.; Martin, G.; Gumley, L.

    2014-12-01

    The CrIS hyperspectral sounder flying on Suomi-NPPpresently has reduced spectral resolution in the mid-wave andshort-wave spectral bands due to truncation of the interferograms inorbit. CrIS has occasionally downlinked full interferograms for thesebands (0.8 cm max path, or 0.625 cm-1 point spacing) for a feworbits up to a full day. Starting Oct.1, 2014 CrIS will be commandedto download full interferograms continuously for the remainder of themission, although NOAA will not immediately produce high-spectralresolution Sensor Data Records (SDRs). Although the originalmotivation for operating in high-resolution mode was improved spectralcalibration, these new data will also improve (1) vertical sensitivityto water vapor, and (2) greatly increase the CrIS sensitivity tocarbon monoxide. This should improve (1) NWP data assimilation ofwater vapor and (2) provide long-term continuity of carbon monoxideretrievals begun with MOPITT on EOS-TERRA and AIRS on EOS-AQUA. Wehave developed a SDR algorithm to produce calibrated high-spectralresolution radiances which includes several improvements to theexisting CrIS SDR algorithm, and will present validation of thesehigh-spectral resolution radiances using a variety of techniques,including bias evaluation versus NWP model data and inter-comparisonsto AIRS and IASI using simultaneous nadir overpasses (SNOs). Theauthors are presently working to implement this algorithm for NASASuomi NPP Program production of Earth System Data Records.

  1. High-Resolution Mapping in Manus Basin

    NASA Astrophysics Data System (ADS)

    Roman, C. N.; Ferrini, V. L.

    2006-12-01

    Near-bottom seafloor mapping with precisely navigated deep submergence vehicles has become increasingly common in a range of oceanographic settings. Recent mapping efforts at deep-water hydrothermal vent sites have resulted in high-resolution (sub-meter) bathymetry datasets that can be used to identify morphological features associated with volcanic, tectonic, and hydrothermal processes. The resolution of these maps, and our ability to accurately quantify the complex morphologic details of hydrothermal structures has been limited by a number of variables including navigational accuracy, sonar settings (e.g. acoustic wavelength, sonar orientation, ping rate), survey parameters (e.g. altitude, speed), data density, and data processing techniques (e.g. gridding algorithms). We present the results of two near-bottom surveys conducted in August 2006 at the PACMANUS (Papua New Guinea-Australia-Canada Manus) hydrothermal field in the eastern Manus Basin of the Bismarck Sea, south of New Ireland, Papua New Guinea. Data were simultaneously acquired with two high-resolution multibeam sonar systems mounted on the Remote Operated Vehicle (ROV) Jason 2. A Simrad SM2000 (200 kHz) multibeam system was mounted in down-looking mode, and an Imagenex DeltaT (675 kHz) multibeam system was mounted on the brow of the vehicle in a forward-looking orientation. Surveys were conducted in parallel survey lines at 15 m altitude (15 m line spacing), and the can be used to generate sub-meter resolution maps of the seafloor. The maps were assembled using a terrain registration algorithm designed to minimize the affects of navigation error. Together, these sonars provide a complementary dataset that allows us to better quantify the 3-dimensional morphological characteristics of complex hydrothermal vent structures. This information can be used to more accurately estimate the volume of hydrothermal deposits, and render a more complete environmental picture that is less hindered by occlusions and

  2. Wide-field, high-resolution Fourier ptychographic microscopy

    PubMed Central

    Zheng, Guoan; Horstmeyer, Roarke; Yang, Changhuei

    2014-01-01

    In this article, we report an imaging method, termed Fourier ptychographic microscopy (FPM), which iteratively stitches together a number of variably illuminated, low-resolution intensity images in Fourier space to produce a wide-field, high-resolution complex sample image. By adopting a wavefront correction strategy, the FPM method can also correct for aberrations and digitally extend a microscope’s depth-of-focus beyond the physical limitations of its optics. As a demonstration, we built a microscope prototype with a resolution of 0.78 μm, a field-of-view of ~120 mm2, and a resolution-invariant depth-of-focus of 0.3 mm (characterized at 632 nm). Gigapixel colour images of histology slides verify FPM’s successful operation. The reported imaging procedure transforms the general challenge of high-throughput, high-resolution microscopy from one that is coupled to the physical limitations of the system’s optics to one that is solvable through computation. PMID:25243016

  3. Ultra-high resolution DNA structures.

    PubMed

    Wang, A H; Robinson, H; Gao, Y G

    1999-01-01

    This paper describes the progress in our efforts at producing ultra-high resolution (< 0.8 A) DNA structures using advanced cryo-crystallography and synchrotron. Our work is aimed at providing reliable geometric (bond length and bond angle), electronic and motional information of DNA molecules in different conformational contexts. These highly-reliable, new structures will be the basis for constructing better DNA force-field parameters, which will benefit the structural refinement of DNA, protein-DNA complexes, and ligand-DNA complexes.

  4. Moderate resolution spectrophotometry of high redshift quasars

    NASA Technical Reports Server (NTRS)

    Schneider, Donald P.; Schmidt, Maarten; Gunn, James E.

    1991-01-01

    A uniform set of photometry and high signal-to-noise moderate resolution spectroscopy of 33 quasars with redshifts larger than 3.1 is presented. The sample consists of 17 newly discovered quasars (two with redshifts in excess of 4.4) and 16 sources drawn from the literature. The objects in this sample have r magnitudes between 17.4 and 21.4; their luminosities range from -28.8 to -24.9. Three of the 33 objects are broad absorption line quasars. A number of possible high redshift damped Ly-alpha systems were found.

  5. Binary Cepheids From High-Angular Resolution

    NASA Astrophysics Data System (ADS)

    Gallenne, A.; Mérand, A.; Kervella, P.

    2015-12-01

    Optical interferometry is the only technique giving access to milli-arcsecond (mas) spatial resolution. This is a powerful and unique tool to detect the close orbiting companions of Cepheids, and offers an unique opportunity to make progress in resolving the Cepheid mass discrepancy. Our goal in studying binary Cepheids is to measure the astrometric position of the high-contrast companion, and then combine them with spectroscopic measurements to derive the orbital elements, distances, and dynamical masses. In the course of this program, we developed a new tool, CANDID, to search for high-contrast companions and set detection limits from interferometric observations

  6. High Time Resolution Studies with the GBT

    NASA Astrophysics Data System (ADS)

    Lewandowska, Natalia; Lynch, Ryan S.

    2017-01-01

    The detection of neutron stars 49 years ago has created many new and independent branches of research. In 1967, fast rotating neutron stars, or pulsars, became the first objects of this kind to be discovered at radio wavelengths -- more than 30years after their theoretical prediction.In spite of numerous studies throughout the years, the mechanism of the observed radio emission of pulsars is still not understood. Recent technological developments allow observations of pulsars with time resolutions extending into the nanoseconds range, providing a unique insight into the momentary state of a pulsar.Radio giant pulses are known to occur non-periodically in certain phase ranges, exhibit much higher peak flux densities than regular pulses, and to have pulse widths ranging from the micro- to nanoseconds. Their characteristics make them suitable for high time resolution studies. We present the first high time resolution observations of the original millisecond pulsar PSR B1937+21 carried out with the Robert C. Byrd Green Bank Radio Telescope.

  7. High Resolution Laser Spectroscopy of Rhenium Carbide

    NASA Astrophysics Data System (ADS)

    Adam, Allan G.; Hall, Ryan M.; Linton, Colan; Tokaryk, Dennis

    2014-06-01

    The first spectroscopic study of rhenium carbide, ReC, has been performed using both low and high resolution techniques to collect rotationally resolved electronic spectra from 420 to 500nm. Laser-induced fluorescence (LIF), and dispersed fluorescence (DF) techniques were employed. ReC was formed in our laser ablation molecular jet apparatus by ablating a rhenium target rod in the presence of 1% methane in helium. The low resolution spectrum identified four bands of an electronic system belonging to ReC, three of which have been studied so far. Extensive hyperfine structure composed of six hyperfine components was observed in the high resolution spectrum, as well as a clear distinction between the 187ReC and 185ReC isotopologues. The data seems consistent with a ^4Π - ^4Σ- transition, as was predicted before experimentation. Dispersed fluorescence spectra allowed us to determine the ground state vibrational frequency (ωe"=994.4 ± 0.3 wn), and to identify a low-lying electronically excited state at Te"=1118.4 ± 0.4 wn with a vibrational frequency of ωe"=984 ± 2 wn. Personal communication, F. Grein, University of New Brunswick

  8. High-resolution phylogenetic microbial community profiling

    PubMed Central

    Singer, Esther; Bushnell, Brian; Coleman-Derr, Devin; Bowman, Brett; Bowers, Robert M; Levy, Asaf; Gies, Esther A; Cheng, Jan-Fang; Copeland, Alex; Klenk, Hans-Peter; Hallam, Steven J; Hugenholtz, Philip; Tringe, Susannah G; Woyke, Tanja

    2016-01-01

    Over the past decade, high-throughput short-read 16S rRNA gene amplicon sequencing has eclipsed clone-dependent long-read Sanger sequencing for microbial community profiling. The transition to new technologies has provided more quantitative information at the expense of taxonomic resolution with implications for inferring metabolic traits in various ecosystems. We applied single-molecule real-time sequencing for microbial community profiling, generating full-length 16S rRNA gene sequences at high throughput, which we propose to name PhyloTags. We benchmarked and validated this approach using a defined microbial community. When further applied to samples from the water column of meromictic Sakinaw Lake, we show that while community structures at the phylum level are comparable between PhyloTags and Illumina V4 16S rRNA gene sequences (iTags), variance increases with community complexity at greater water depths. PhyloTags moreover allowed less ambiguous classification. Last, a platform-independent comparison of PhyloTags and in silico generated partial 16S rRNA gene sequences demonstrated significant differences in community structure and phylogenetic resolution across multiple taxonomic levels, including a severe underestimation in the abundance of specific microbial genera involved in nitrogen and methane cycling across the Lake's water column. Thus, PhyloTags provide a reliable adjunct or alternative to cost-effective iTags, enabling more accurate phylogenetic resolution of microbial communities and predictions on their metabolic potential. PMID:26859772

  9. A high resolution ultraviolet Shuttle glow spectrograph

    NASA Technical Reports Server (NTRS)

    Carruthers, George R.

    1993-01-01

    The High Resolution Shuttle Glow Spectrograph-B (HRSGS-B) is a small payload being developed by the Naval Research Laboratory. It is intended for study of shuttle surface glow in the 180-400 nm near- and middle-ultraviolet wavelength range, with a spectral resolution of 0.2 nm. It will search for, among other possible features, the band systems of excited NO which result from surface-catalyzed combination of N and O. It may also detect O2 Hertzberg bands and N2 Vegard-Kaplan bands resulting from surface recombination. This wavelength range also includes possible N2+ and OH emissions. The HRSGS-B will be housed in a Get Away Special canister, mounted in the shuttle orbiter payload bay, and will observe the glow on the tail of the orbiter.

  10. High resolution patterning of silica aerogels

    SciTech Connect

    Bertino, M.F.; Hund, J.F.; Sosa, J.; Zhang, G.; Sotiriou-Leventis, C.; Leventis, N.; Tokuhiro, A.T.; Terry, J.

    2008-10-30

    Three-dimensional metallic structures are fabricated with high spatial resolution in silica aerogels. In our method, silica hydrogels are prepared with a standard base-catalyzed route, and exchanged with an aqueous solution typically containing Ag{sup +} ions (1 M) and 2-propanol (0.2 M). The metal ions are reduced photolytically with a table-top ultraviolet lamp, or radiolytically, with a focused X-ray beam. We fabricated dots and lines as small as 30 x 70 {micro}m, protruding for several mm into the bulk of the materials. The hydrogels are eventually supercritically dried to yield aerogels, without any measurable change in the shape and spatial resolution of the lithographed structures. Transmission electron microscopy shows that illuminated regions are composed by Ag clusters with a size of several {micro}m, separated by thin layers of silica.

  11. High resolution mapping of martian neutron albedo

    NASA Astrophysics Data System (ADS)

    Sanin, A.

    It is known from data of High Energy Neutron Detector (HEND) on Mars Odyssey that there is very large regional variation of leakage flux of epithermal neutrons on the surface of Mars. The factor of regional variations is about 10 for mapping with linear resolution of about 200-300 km. Two circumpolar depressions of epithermal neutrons emission were found above latitudes of 50 - 60, which correspond to Northern and Southern permafrost regions with very high (up to 50 wt%) content of water ice. Also, according to the HEND mapping data, there are two opposite equatorial regions Arabia Terra and Memnonia, which contain about 10 wt% of water under the top layer of dry soil with a column density of about 30 g/cm2. The surface resolution of orbital data about 300 km is determined by natural collimation of neutrons in the subsurface and in the atmosphere. For a territory larger than this size, the average content of water could be estimated by the large area approximation. In this case the comparison is performed between the average counts of neutrons over the territory and predicted counts for the planet with the same model of the entire surface. The content of water is found, as the best fitting parameter of this model. For local spots of depression with much smaller sizes this procedure underestimates the content of water. Thus, according this approximation, the spot with largest depression in the Arabia Terra at 10-12 N and 30-32 E contains at least 16 wt% of water, but in reality this value could be much larger. The content of water at this spot will be obtained with better spatial resolution by so-called inverse projection procedure. This model-dependent procedure allows to test water content for areas much smaller than the size of HEND surface resolution. The results of water content according to this procedure will be presented for the Arabia spot with the greatest depression of epithermal neutrons.

  12. Spatial Resolution Characterization for AWiFS Multispectral Images

    NASA Technical Reports Server (NTRS)

    Blonski, Slawomir; Ryan, Robert E.; Pagnutti, Mary; Stanley, Thomas

    2007-01-01

    This viewgraph presentation describes the spatial resolution of the AWiFS multispectral images characterized by an estimation of the Modulation Transfer Function (MTF) at Nyquist frequency. The contents include: 1) MTF Analysis; 2) Target Analysis; 3) "Pulse Target"; 4) "Pulse" Method; 5) Target Images; 6) Bridge Profiles; 7) MTF Calculation; 8) MTF Results; and 9) Results Summary.

  13. Unsupervised Feature Learning for High-Resolution Satellite Image Classification

    SciTech Connect

    Cheriyadat, Anil M

    2013-01-01

    The rich data provided by high-resolution satellite imagery allow us to directly model geospatial neighborhoods by understanding their spatial and structural patterns. In this paper we explore an unsupervised feature learning approach to model geospatial neighborhoods for classification purposes. While pixel and object based classification approaches are widely used for satellite image analysis, often these approaches exploit the high-fidelity image data in a limited way. In this paper we extract low-level features to characterize the local neighborhood patterns. We exploit the unlabeled feature measurements in a novel way to learn a set of basis functions to derive new features. The derived sparse feature representation obtained by encoding the measured features in terms of the learned basis function set yields superior classification performance. We applied our technique on two challenging image datasets: ORNL dataset representing one-meter spatial resolution satellite imagery representing five land-use categories and, UCMERCED dataset consisting of 21 different categories representing sub-meter resolution overhead imagery. Our results are highly promising and, in the case of UCMERCED dataset we outperform the best results obtained for this dataset. We show that our feature extraction and learning methods are highly effective in developing a detection system that can be used to automatically scan large-scale high-resolution satellite imagery for detecting large-facility.

  14. High-resolution imaging with AEOS

    NASA Astrophysics Data System (ADS)

    Patience, Jennifer; Macintosh, Bruce A.; Max, Claire E.

    2001-12-01

    The U.S. Air Force Advanced Electro-Optical System (AEOS) which includes a 941 actuator adaptive optics system on a 3.7 m telescope has recently been made available for astronomical programs. Operating at a wavelength of 750 nm, the diffraction-limited angular resolution of the system is 0'.04; currently, the magnitude limit is V approximately 7 mag. At the distances of nearby open clusters, diffraction- limited images should resolve companions with separations as small as 4 - 6 AU - comparable to the Sun-Jupiter distance. The ability to study such close separations is critical, since most companions are expected to have separations in the few AU to tens of AU range. With the exceptional angular resolution of the current AEOS setup, but restricted target magnitude range, we are conducting a companion search of a large, well-defined sample of bright early-type stars in nearby open clusters and in the field. Our data set will both characterize this relatively new adaptive optics system and answer questions in binary star formation and stellar X- ray activity. We will discuss our experience using AEOS, the data analysis involved, and our initial results.

  15. High resolution hyperspectral imaging with a high throughput virtual slit

    NASA Astrophysics Data System (ADS)

    Gooding, Edward A.; Gunn, Thomas; Cenko, Andrew T.; Hajian, Arsen R.

    2016-05-01

    Hyperspectral imaging (HSI) device users often require both high spectral resolution, on the order of 1 nm, and high light-gathering power. A wide entrance slit assures reasonable étendue but degrades spectral resolution. Spectrometers built using High Throughput Virtual Slit™ (HTVS) technology optimize both parameters simultaneously. Two remote sensing use cases that require high spectral resolution are discussed. First, detection of atmospheric gases with intrinsically narrow absorption lines, such as hydrocarbon vapors or combustion exhaust gases such as NOx and CO2. Detecting exhaust gas species with high precision has become increasingly important in the light of recent events in the automobile industry. Second, distinguishing reflected daylight from emission spectra in the visible and NIR (VNIR) regions is most easily accomplished using the Fraunhofer absorption lines in solar spectra. While ground reflectance spectral features in the VNIR are generally quite broad, the Fraunhofer lines are narrow and provide a signature of intrinsic vs. extrinsic illumination. The High Throughput Virtual Slit enables higher spectral resolution than is achievable with conventional spectrometers by manipulating the beam profile in pupil space. By reshaping the instrument pupil with reflective optics, HTVS-equipped instruments create a tall, narrow image profile at the exit focal plane, typically delivering 5X or better the spectral resolution achievable with a conventional design.

  16. Towards high-resolution ptychographic x-ray diffraction microscopy

    SciTech Connect

    Takahashi, Yukio; Suzuki, Akihiro; Yamauchi, Kazuto; Zettsu, Nobuyuki; Kohmura, Yoshiki; Ishikawa, Tetsuya; Senba, Yasunori; Ohashi, Haruhiko

    2011-06-01

    Ptychographic x-ray diffraction microscopy is a lensless imaging technique with a large field of view and high spatial resolution, which is also useful for characterizing the wavefront of an x-ray probe. The performance of this technique is degraded by positioning errors due to the drift between the sample and illumination optics. We propose an experimental approach for correcting the positioning errors and demonstrate success by two-dimensionally reconstructing both the wavefront of the focused x-ray beam and the complex transmissivity of the weakly scattering objects at the pixel resolution of better than 10 nm in the field of view larger than 5 {mu}m. This method is applicable to not only the observation of organelles inside cells or nano-mesoscale structures buried within bulk materials but also the characterization of probe for single-shot imaging with x-ray free electron lasers.

  17. Structural characterization of hydrated poly(aspartic acid) sodium and poly(aspartic acid) sodium/poly(vinyl alcohol) blends by high-resolution solid-state 23Na NMR

    NASA Astrophysics Data System (ADS)

    Wang, P.; Ando, I.

    1999-09-01

    The structure of hydrated poly(aspartic acid) sodium (PAANa) and in blended PAANa, which was blended with poly(vinyl alcohol) (PVA), is characterized by means of high-resolution solid-state 23Na NMR. There are two peaks in dried pure PAANa, which are assigned to associated ions (about -16 ppm) and isolated ions or end group ions of PAANa (7.2 ppm), respectively. With an increase in hydration, the 23Na chemical shifts of these two peaks are changed to tend toward 0 ppm, and the line width at half the height of the 23Na resonance decreases. In contrast, in the blended samples, the 23Na resonance shapes and chemical shift values are significantly changed depending on the ratio of the PAANa/PVA blends and the temperature. On the basis of these experimental results, the structure of the blends was elucidated.

  18. Structural Characterization of Missense Mutations Using High Resolution Mass Spectrometry: A Case Study of the Parkinson's-Related Protein, DJ-1

    NASA Astrophysics Data System (ADS)

    Ben-Nissan, Gili; Chotiner, Almog; Tarnavsky, Mark; Sharon, Michal

    2016-06-01

    Missense mutations that lead to the expression of mutant proteins carrying single amino acid substitutions are the cause of numerous diseases. Unlike gene lesions, insertions, deletions, nonsense mutations, or modified RNA splicing, which affect the length of a polypeptide, or determine whether a polypeptide is translated at all, missense mutations exert more subtle effects on protein structure, which are often difficult to evaluate. Here, we took advantage of the spectral resolution afforded by the EMR Orbitrap platform, to generate a mass spectrometry-based approach relying on simultaneous measurements of the wild-type protein and the missense variants. This approach not only considerably shortens the analysis time due to the concurrent acquisition but, more importantly, enables direct comparisons between the wild-type protein and the variants, allowing identification of even subtle structural changes. We demonstrate our approach using the Parkinson's-associated protein, DJ-1. Together with the wild-type protein, we examined two missense mutants, DJ-1A104T and DJ-1D149A, which lead to early-onset familial Parkinson's disease. Gas-phase, thermal, and chemical stability assays indicate clear alterations in the conformational stability of the two mutants: the structural stability of DJ-1D149A is reduced, whereas that of DJ-1A104T is enhanced. Overall, we anticipate that the methodology presented here will be applicable to numerous other missense mutants, promoting the structural investigations of multiple variants of the same protein.

  19. Employing high-resolution materials characterization to understand the effects of Pd nanoparticle structure on their activity as catalysts for olefin hydrogenation.

    PubMed

    Knecht, Marc R; Pacardo, Dennis B

    2010-06-01

    Recent developments in nanotechnology have led to the production of new materials with a wide array of applications, particularly in catalysis. Because of their small size, nanoparticles have a maximized surface-to-volume ratio, thus making them attractive targets for use as catalytic structures; however, the number of analytical techniques available to fully characterize materials on such a size scale is quite limited. As a result, a complete understanding of the entire nanoparticle structure remains unclear, especially when considering the active structural motif from which the specific activity arises. Metallic Pd materials have been widely studied due to their immense potential as catalysts for reactions such as olefin hydrogenation and C-C bond synthesis. These materials require surface passivants to act as ligands and stabilize the nanoparticles against aggregation and bulk formation. These ligands have the added value to function as gates that selectively allow reagents to reach the active surface of the Pd nanoparticles for chemical turnover. This accounts for the observed selectivities of the catalysts with the corresponding changes in the turnover frequency values. Here we present a broad overview of recent advances in the use of Pd nanoparticles for the industrially important hydrogenation reaction with a focus on characterizing and understanding the base structural effects that give rise to the catalytic activity.

  20. Characterization of smoke plume emissions and dynamics from prescribed and wildland fires using high-resolution field observations and a coupled fire-atmosphere model

    NASA Astrophysics Data System (ADS)

    Yedinak, Kara M.

    Smoke plumes associated with wildland fires are difficult to characterize due to the non-linear behavior of the variables involved. Plume chemistry is largely modeled using emission factors to represent the relative trace gas and aerosol species emitted. Plume dynamics are modeled based on assumptions of plume vertical distribution and atmospheric dispersion. In the studies presented here, near and in-source measurements of emissions from prescribed burns are used to characterize the variability of emission factors from low-intensity fires. Emissions factors were found to be in the same range as those from other, similar studies in the literature and it appears that the emission factors may be sensitive to small differences in surface conditions such as fuel moisture, surface wind speed, and the ratio of live to dead fuels. We also used two coupled fire atmosphere models, which utilize the Weather Research and Forecasting (WRF) model called WRF-Fire and WRF-Sfire, to investigate the role that atmospheric stability plays in influencing plume rise as well as developing a technique for assessing plume rise and the vertical distribution of pollutants in regional air quality models. Plume heights, as well as rate of growth of the fire, were found to be sensitive to atmospheric stability while fire rate of spread was not. The plume center-of-mass technique was demonstrated to work well but has slightly low estimates compared to observations.

  1. The EUV dayglow at high spectral resolution

    SciTech Connect

    Morrison, M.D.; Bowers, C.W.; Feldman, P.D. ); Meier, R.R. )

    1990-04-01

    Rocket observations of the dayglow spectrum of the terrestrial atmosphere between 840 {angstrom} and 1860 {angstrom} at 2 {angstrom} resolution were obtained with a sounding rocket payload flown on January 17, 1985. Additionally, spectra were also obtained using a 0.125-m focal length scanning Ebert-Fastie monochromator covering the wavelength interval of 1150-1550 {angstrom} at 7 {angstrom} resolution on this flight and on a sounding rocket flight on August 29, 1983, under similar viewing geometries and solar zenith angles. Three bands of the N{sub 2} c{prime}{sub 4} system are seen clearly resolved in the dayglow. Analysis of high-resolution N{sub 2} Lyman-Birge-Hopfield data shows no anomalous vibrational distribution as has been reported from other observations. The altitude profiles of the observed O and N{sub 2} emissions demonstrate that the MSIS-83 model O and N{sub 2} densities are appropriate for the conditions of both the 1983 and 1985 rocket flights. A reduction of a factor of 2 in the model O{sub 2} density is required for both flights to reproduce the low-altitude atomic oxygen emission profiles. The volume excitation rates calculated using the Hinteregger et al. (1981) SC{number sign}21REFW solar reference spectrum and the photoelectron flux model of Strickland and Meier (1982) need to be scaled upward by a factor of 1.4 for both fights to match the observations.

  2. A High-Resolution Multitechniques Approach to Characterize Bio-Organo-Mineral Associations Within Rock Samples: Tracking Biological vs Abiotic Processes? Towards a Better Understanding of the Deep Carbon Cycle.

    NASA Astrophysics Data System (ADS)

    Pisapia, C.

    2015-12-01

    Among all elements, carbon plays one of the major roles for the sustainability of life on Earth. Past considerations of the carbon cycle have mainly focused on surface processes occurring at the atmosphere, oceans and shallow crustal environments. By contrast, little is known about the Deep Carbon cycle whereas both geochemical and biological processes may induce organic carbon production and/or consumption at depth. Indeed, the nowadays-recognized capability of geochemical processes such as serpentinization to generate abiotic organic compounds as well as the existence of a potentially important intraterrestrial life raises questions about the limit of biotic/abiotic carbon on Earth's deep interior and how it impacts global biogeochemical cycles. It is then mandatory to increase our knowledge on the nature and extent of carbon reservoirs along with their sources, sinks and fluxes in the subsurface. This implies to be able to finely characterize organomineral associations within crustal rocks although it might be hampered by the scarceness and heterogeneous micrometric spatial distribution of organic molecules in natural rocks. We then developed an in situ analytical strategy based on the combination of high-resolution techniques to track organic molecules at the pore level in natural rocks and to determine their biological or abiotic origin. We associated classical high-resolution techniques and synchrotron-based imaging techniques in order to characterize their nature and localization (SEM/TEM, coupled CLSM/Raman spectroscopy, Tof-SIMS) along with their 3D-distribution relatively to mineral phases (S-FTIR, S-DeepUV, XANES, Biphoton microscopy). The effectiveness of this approach to shed light on the speciation and nature of carbon in subsurface environments will be illustrated through the study of (i) subsurface ecosystems and abiotic organic carbon within ultramafic rocks of the oceanic lithosphere as putative analogs for the nature and functioning of primitive

  3. High-Resolution Land Use and Land Cover Mapping

    USGS Publications Warehouse

    ,

    1999-01-01

    As the Nation?s population grows, quantifying, monitoring, and managing land use becomes increasingly important. The U.S. Geological Survey (USGS) has a long heritage of leadership and innovation in land use and land cover (LULC) mapping that has been the model both nationally and internationally for over 20 years. At present, the USGS is producing high-resolution LULC data for several watershed and urban areas within the United States. This high-resolution LULC mapping is part of an ongoing USGS Land Cover Characterization Program (LCCP). The four components of the LCCP are global (1:2,000,000-scale), national (1:100,000-scale), urban (1:24,000-scale), and special projects (various scales and time periods). Within the urban and special project components, the USGS Rocky Mountain Mapping Center (RMMC) is collecting historical as well as contemporary high-resolution LULC data. RMMC?s high-resolution LULC mapping builds on the heritage and success of previous USGS LULC programs and provides LULC information to meet user requirements.

  4. A novel technique combining high-resolution synchrotron x-ray microtomography and x-ray diffraction for characterization of micro particulates

    NASA Astrophysics Data System (ADS)

    Merrifield, David R.; Ramachandran, Vasuki; Roberts, Kevin J.; Armour, Wesley; Axford, Danny; Basham, Mark; Connolley, Thomas; Evans, Gwyndaf; McAuley, Katherine E.; Owen, Robin L.; Sandy, James

    2011-11-01

    The processing of solids, such as crystals, is strongly influenced by the surface properties of the material. In recent years the pharmaceutical industry has shown great interest in identifying, or chemically speciating, the molecular components of crystal faces. Formerly, characterization of the molecular identity of crystal faces was restricted to the study of large single crystals. This would have been primarily for structure determination as part of the drug registration process. Diamond Light Source in Oxfordshire is a new synchrotron facility in the UK, having 18 operational beamlines with 4 more in the construction phase. Beamlines at this medium energy light source enable the study of micron-sized objects in great detail. It is well known that x-ray microtomography (XMT) can be used to investigate the external morphology of a crystal whereas x-ray diffraction (XRD) is used to study the molecular orientation, structure and packing within the crystal. The objective of this research is to assess the feasibility of, and thereby develop a new methodology for, characterizing the molecular identity of a particular face of a crystalline particle at a scale of scrutiny of 20-50 µm by combining these two powerful techniques. This work demonstrates the application of XMT and XRD to investigate respectively the shape and crystalline phase/orientation of relevant test crystals. This research has applications in the pharmaceutical industry in that when the exact molecular nature of a particular face is known, the important physico-pharmaceutical properties stemming from that can be better understood. Some initial data are presented and discussed.

  5. High resolution atomic force microscopy of double-stranded RNA

    NASA Astrophysics Data System (ADS)

    Ares, Pablo; Fuentes-Perez, Maria Eugenia; Herrero-Galán, Elías; Valpuesta, José M.; Gil, Adriana; Gomez-Herrero, Julio; Moreno-Herrero, Fernando

    2016-06-01

    Double-stranded (ds) RNA mediates the suppression of specific gene expression, it is the genetic material of a number of viruses, and a key activator of the innate immune response against viral infections. The ever increasing list of roles played by dsRNA in the cell and its potential biotechnological applications over the last decade has raised an interest for the characterization of its mechanical properties and structure, and that includes approaches using Atomic Force Microscopy (AFM) and other single-molecule techniques. Recent reports have resolved the structure of dsDNA with AFM at unprecedented resolution. However, an equivalent study with dsRNA is still lacking. Here, we have visualized the double helix of dsRNA under near-physiological conditions and at sufficient resolution to resolve the A-form sub-helical pitch periodicity. We have employed different high-sensitive force-detection methods and obtained images with similar spatial resolution. Therefore, we show here that the limiting factors for high-resolution AFM imaging of soft materials in liquid medium are, rather than the imaging mode, the force between the tip and the sample and the sharpness of the tip apex.Double-stranded (ds) RNA mediates the suppression of specific gene expression, it is the genetic material of a number of viruses, and a key activator of the innate immune response against viral infections. The ever increasing list of roles played by dsRNA in the cell and its potential biotechnological applications over the last decade has raised an interest for the characterization of its mechanical properties and structure, and that includes approaches using Atomic Force Microscopy (AFM) and other single-molecule techniques. Recent reports have resolved the structure of dsDNA with AFM at unprecedented resolution. However, an equivalent study with dsRNA is still lacking. Here, we have visualized the double helix of dsRNA under near-physiological conditions and at sufficient resolution to

  6. High resolution thermal denaturation of mammalian DNAs.

    PubMed Central

    Guttmann, T; Vítek, A; Pivec, L

    1977-01-01

    High resolution melting profiles of different mammalian DNAs are presented. Melting curves of various mammalian DNAs were compared with respect to the degree of asymmetry, first moment, transition breath and Tmi of individual subtransitions. Quantitative comparison of the shape of all melting curves was made. Correlation between phylogenetical relations among mammals and shape of the melting profiles of their DNAs was demonstrated. The difference between multi-component heterogeneity of mammalian DNAs found by optical melting analysis and sedimentation in CsCl-netropsin density gradient is also discussed. PMID:840642

  7. High resolution extremity CT for biomechanics modeling

    SciTech Connect

    Ashby, A.E.; Brand, H.; Hollerbach, K.; Logan, C.M.; Martz, H.E.

    1995-09-23

    With the advent of ever more powerful computing and finite element analysis (FEA) capabilities, the bone and joint geometry detail available from either commercial surface definitions or from medical CT scans is inadequate. For dynamic FEA modeling of joints, precise articular contours are necessary to get appropriate contact definition. In this project, a fresh cadaver extremity was suspended in parafin in a lucite cylinder and then scanned with an industrial CT system to generate a high resolution data set for use in biomechanics modeling.

  8. High resolution millimeter-wave imaging sensor

    NASA Technical Reports Server (NTRS)

    Wilson, W. J.; Howard, R. J.; Parks, G. S.

    1985-01-01

    A scanning 3-mm radiometer is described that has been built for use on a small aircraft to produce real time high resolution images of the ground when atmospheric conditions such as smoke, dust, and clouds make IR and visual sensors unusable. The sensor can be used for a variety of remote sensing applications such as measurements of snow cover and snow water equivalent, precipitation mapping, vegetation type and extent, surface moisture and temperature, and surface thermal inertia. The advantages of millimeter waves for cloud penetration and the ability to observe different physical phenomena make this system an attractive supplement to visible and IR remote sensing systems.

  9. A CARS solution with high temporal resolution

    NASA Astrophysics Data System (ADS)

    Lurquin, Vanessa; Hay, William C.; Landwehr, Stefanie; Krishnamachari, Vishnu

    2010-02-01

    Confocal and multiphoton microscopy are powerful fluorescence techniques for morphological and dynamics studies of labeled elements. For non-fluorescent components, CARS (Coherent Anti-Stokes Raman Scattering) microscopy can be used for imaging various elements of cells such as lipids, proteins, DNA, etc. This technique is based on the intrinsic vibrational properties of the molecules. Leica Microsystems has combined CARS technology with its TCS SP5 II confocal microscope to provide several advantages for CARS imaging. The Leica TCS SP5 II combines two technologies in one system: a conventional scanner for maximum resolution and a resonant scanner for high time resolution. For CARS microscopy, two picosecond near-infrared lasers are tightly overlapped spatially and temporally and sent directly into the confocal system. The conventional scanner can be used for morphological studies and the resonant scanner for following dynamic processes of unstained living cells. The fast scanner has several advantages over other solutions. First, the sectioning is truly confocal and does not suffer from spatial leakage. Second, the high speed (29 images/sec @ 512×512 pixels) provides fast data acquisition at video rates, allowing studies at the sub-cellular level. In summary, CARS microscopy combined with the tandem scanner makes the Leica TCS SP5 II a powerful tool for multi-modal and three-dimensional imaging of chemical and biological samples. We will present our solution and show results from recent studies with the Leica instrument to illustrate the high flexibility of our system.

  10. High resolution detection system of capillary electrophoresis

    NASA Astrophysics Data System (ADS)

    Wang, Jie; Wang, Li Qiang; Shi, Yan; Zheng, Hua; Lu, Zu Kang

    2007-12-01

    The capillary electrophoresis (CE) with laser induced fluorescence detection (LIFD) system was founded according to confocal theory. The 3-D adjustment of the exciting and collecting optical paths was realized. The photomultiplier tube (PMT) is used and the signals are processed by a software designed by ourselves. Under computer control, high voltage is applied to appropriate reservoirs and to inject and separate DNA samples respectively. Two fluorescent dyes Thiazole Orange (TO) and SYBR Green I were contrasted. With both of the dyes, high signals-to-noise images were obtained with the CE-LIFD system. The single-bases can be distinguished from the electrophoretogram and high resolution of DNA sample separation was obtained.

  11. Molecular Characterization and Reactivity of Dissolved Organic Matter by High Resolution Nanospray Ionization Fourier Transform-Ion Cyclotron Resonance Mass Spectrometry (FTICR-MS)

    NASA Astrophysics Data System (ADS)

    Sleighter, R. L.; Hatcher, S. A.; Hatcher, P. G.

    2006-12-01

    The ultrahigh resolving power of FTICR-MS allows for the intense characterization of dissolved organic matter (DOM). DOM is the largest reactive component of the global carbon cycle, and an improved understanding of its composition is necessary to determine the transport and eventual fate of pollutants. The seasonal and spatial variations in DOM composition are investigated by taking surface water samples from five different sampling sites, four times a year. Water sampling begins at the Dismal Swamp in North Carolina, continues north up the Elizabeth River to the Chesapeake Bay, and concludes approximately ten miles off the coast in the Atlantic Ocean. DOM was extracted from the water samples using C18 extraction disks and were prepared in 50:50 methanol:water. Ammonium hydroxide was added prior to nanospray in order to solubilize the DOM as well as to increase the ionization efficiency. The samples were continuously infused into the Apollo II ion source with an Advion TriVersa NanoMate system of a Bruker 12 Tesla Apex QE FTICR-MS with resolving powers exceeding 400,000. All samples were analyzed in negative ion mode and were externally and internally calibrated prior to data analysis. Our DOM mass spectra consist of a multitude of peaks spanning the range of 200-850 m/z. Complexity is apparent from the detection of up to 20 peaks per nominal mass at nearly every mass throughout that range. A molecular formula calculator generated molecular formula matches from which van Krevelen plots were constructed for characterization purposes. A wide range of molecules were observed each containing oxygen, sulfur and nitrogen functional groups. We utilize the van Krevelen diagram to assist in clustering the molecules according to their functional group compositions. To test the hypothesis that formation of adducts to DOM serve to protect peptides from bacterial degradation, microcosm experiments were performed with a small isotopically enriched peptide, GGGR. This peptide

  12. Characterization and high resolution mapping of soil hydrogeophysical properties from ground penetrating radar and electromagnetic induction data in a vineyard in southern France

    NASA Astrophysics Data System (ADS)

    Andre, F.; van Durmen, R.; Saussez, S.; van Leeuwen, C.; Moghadas, D.; Delvaux, B.; Vereecken, H.; Sebastien, L.

    2010-12-01

    Soil and climate are acknowledged to greatly affect vine growth and grape berry composition through their strong influence on vine water status. Over a limited area, climatic factors may be considered as rather homogeneous for a given vintage while soil characteristics may vary strongly over short distances. Therefore, detailed characterization of soil hydrogeophysical properties is of prime importance for the definition of optimal vineyard practices. In that respect, ground penetrating radar (GPR) and electromagnetic induction (EMI) are effective geophysical techniques for fast and non-invasive determination of shallow subsurface properties through the measurement of soil dielectric permittivity and electrical conductivity. Given contrasted sensitivities of GPR and EMI to soil electrical properties, combining measurements from both techniques allows to merge complementary information, thereby leading to more accurate quantitative characterisation of soil. Classical GPR and EMI data processing techniques for soil properties characterisation rely on strongly simplifying assumptions in the modelling of electromagnetic phenomena, leading to significant errors on the estimates and accounting for only a part of the data information content. We developed generalized multi-offset full-waveform approaches for modelling off-ground and on-ground GPR and EMI signals. GPR and EMI systems are modelled using sets of infinitesimal electric and magnetic dipoles, allowing us to properly describe the distribution of the scattered field when the subsurface is located in the near-field of the antenna. The antenna model is coupled with a three-dimensional Green’s function, corresponding to a specific solution of the Maxwell’s equations for wave propagation or diffusion in multilayered media. The approaches were applied in a vineyard in south of France (Saint-Emilion) over a 30-ha area characterized by strong spatial variations of soil types. Around 1 million GPR waveforms and 73

  13. Efficient Compression of High Resolution Climate Data

    NASA Astrophysics Data System (ADS)

    Yin, J.; Schuchardt, K. L.

    2011-12-01

    resolution climate data can be massive. Those data can consume a huge amount of disk space for storage, incur significant overhead for outputting data during simulation, introduce high latency for visualization and analysis, and may even make interactive visualization and analysis impossible given the limit of the data that a conventional cluster can handle. These problems can be alleviated by with effective and efficient data compression techniques. Even though HDF5 format supports compression, previous work has mainly focused on employ traditional general purpose compression schemes such as dictionary coder and block sorting based compression scheme. Those compression schemes mainly focus on encoding repeated byte sequences efficiently and are not well suitable for compressing climate data consist mainly of distinguished float point numbers. We plan to select and customize our compression schemes according to the characteristics of high-resolution climate data. One observation on high resolution climate data is that as the resolution become higher, values of various climate variables such as temperature and pressure, become closer in nearby cells. This provides excellent opportunities for predication-based compression schemes. We have performed a preliminary estimation of compression ratios of a very simple minded predication-based compression ratio in which we compute the difference between current float point number with previous float point number and then encoding the exponent and significance part of the float point number with entropy-based compression scheme. Our results show that we can achieve higher compression ratios between 2 and 3 in lossless compression, which is significantly higher than traditional compression algorithms. We have also developed lossy compression with our techniques. We can achive orders of magnitude data reduction while ensure error bounds. Moreover, our compression scheme is much more efficient and introduces much less overhead

  14. Limiting liability via high resolution image processing

    SciTech Connect

    Greenwade, L.E.; Overlin, T.K.

    1996-12-31

    The utilization of high resolution image processing allows forensic analysts and visualization scientists to assist detectives by enhancing field photographs, and by providing the tools and training to increase the quality and usability of field photos. Through the use of digitized photographs and computerized enhancement software, field evidence can be obtained and processed as `evidence ready`, even in poor lighting and shadowed conditions or darkened rooms. These images, which are most often unusable when taken with standard camera equipment, can be shot in the worst of photographic condition and be processed as usable evidence. Visualization scientists have taken the use of digital photographic image processing and moved the process of crime scene photos into the technology age. The use of high resolution technology will assist law enforcement in making better use of crime scene photography and positive identification of prints. Valuable court room and investigation time can be saved and better served by this accurate, performance based process. Inconclusive evidence does not lead to convictions. Enhancement of the photographic capability helps solve one major problem with crime scene photos, that if taken with standard equipment and without the benefit of enhancement software would be inconclusive, thus allowing guilty parties to be set free due to lack of evidence.

  15. High Resolution BPM for Linear Colliders

    SciTech Connect

    Simon, C.; Chel, S.; Luong, M.; Napoly, O.; Novo, J.; Roudier, D.; Rouviere, N.

    2006-11-20

    A high resolution Beam Position Monitor (BPM) is necessary for the beam-based alignment systems of high energy and low emittance electron linacs. Such a monitor is developed in the framework of the European CARE/SRF programme, in a close collaboration between DESY and CEA/DSM/DAPNIA. This monitor is a radiofrequency re-entrant cavity, which can be used either at room or cryogenic temperature, in an environment where dust particle contamination has to be avoided, such as superconducting cavities in a cryomodule. A first prototype of a re-entrant BPM has already delivered measurements at 2K. inside the first cryomodule (ACC1) on the TESLA Test Facility 2 (TTF2). The performances of this BPM are analyzed both experimentally and theoretically, and the limitations of this existing system clearly identified. A new cavity and new electronics have been designed in order to improve the position resolution down to 1 {mu}m and the damping time down to 10 ns.

  16. High-resolution light microscopy of nanoforms

    NASA Astrophysics Data System (ADS)

    Vodyanoy, Vitaly; Pustovyy, Oleg; Vainrub, Arnold

    2007-09-01

    We developed a high resolution light imaging system. Diffraction gratings with 100 nm width lines as well as less than 100 nm size features of different-shaped objects are clearly visible on a calibrated microscope test slide (Vainrub et al., Optics Letters, 2006, 31, 2855). The two-point resolution increase results from a known narrowing of the central diffraction peak for the annular aperture. Better visibility and advanced contrast of the smallest features in the image are due to enhancement of high spatial frequencies in the optical transfer function. The imaging system is portable, low energy, and battery operated. It has been adapted to use in both transmitting and reflecting light. It is particularly applicable for motile nanoform systems where structure and functions can be depicted in real time. We have isolated micrometer and submicrometer particles, termed proteons, from human and animal blood. Proteons form by reversible seeded aggregation of proteins around proteon nucleating centers (PNCs). PNCs are comprised of 1-2nm metallic nanoclusters containing 40-300 atoms. Proteons are capable of spontaneous assembling into higher nanoform systems assuming structure of complicated topology. The arrangement of complex proteon system mimics the structure of a small biological cell. It has structures that imitate membrane and nucleolus or nuclei. Some of these nanoforms are motile. They interact and divide. Complex nanoform systems can spontaneously reduce to simple proteons. The physical properties of these nanoforms could shed some light on the properties of early life forms or forms at extreme conditions.

  17. High resolution guided wave pipe inspection

    NASA Astrophysics Data System (ADS)

    Velichko, Alexander; Wilcox, Paul D.

    2009-03-01

    Commercial guided wave inspection systems provide rapid screening of pipes, but limited sizing capability for small defects. However, accurate detection and sizing of small defects is essential for assessing the integrity of inaccessible pipe regions where guided waves provide the only possible inspection mechanism. In this paper an array-based approach is presented that allows guided waves to be focused on both transmission and reception to produce a high resolution image of a length of pipe. In the image, it is shown that a signal to coherent noise ratio of over 40 dB with respect to the reflected signal from a free end of pipe can be obtained, even taking into account typical levels of experimental uncertainty in terms of transducer positioning, wave velocity etc. The combination of an image with high resolution and a 40 dB dynamic range enables the detection of very small defects. It also allows the in-plane shape of defects over a certain size to be observed directly. Simulations are used to estimate the detection and sizing capability of the system for crack-like defects. Results are presented from a prototype system that uses EMATs to fully focus pipe guided wave modes on both transmission and reception in a 12 inch diameter stainless steel pipe. The 40 dB signal to coherent noise ratio is obtained experimentally and a 2 mm diameter (0.08 wavelengths) half-thickness hole is shown to be detectable.

  18. High Resolution Spectroscopy to Support Atmospheric Measurements

    NASA Technical Reports Server (NTRS)

    Benner, D. Chris; Venkataraman, Malathy Devi

    2000-01-01

    The major research activities performed during the cooperative agreement enhanced our spectroscopic knowledge of molecules of atmospheric interest such as carbon dioxide, water vapor, ozone, methane, and carbon monoxide, to name a few. Measurements were made using the NASA Langley Tunable Diode Laser Spectrometer System (TDL) and several Fourier Transform Spectrometer Systems (FTS) around the globe. The results from these studies made remarkable improvements in the line positions and intensities for several molecules, particularly ozone and carbon dioxide in the 2 to 17-micrometer spectral region. Measurements of pressure broadening and pressure induced line shift coefficients and the temperature dependence of pressure broadening and pressure induced line shift coefficients for infrared transitions of ozone, methane, and water vapor were also performed. Results from these studies have been used for retrievals of stratospheric gas concentration profiles from data collected by several Upper Atmospheric Research satellite (UARS) infrared instruments as well as in the analysis of high resolution atmospheric spectra such as those acquired by space-based, ground-based, and various balloon-and aircraft-borne experiments. Our results made significant contributions in several updates of the HITRAN (HIgh resolution TRANsmission) spectral line parameters database. This database enjoys worldwide recognition in research involving diversified scientific fields.

  19. High Resolution Spectroscopy to Support Atmospheric Measurements

    NASA Technical Reports Server (NTRS)

    Benner, D. Chris; Venkataraman, Malathy Devi

    2000-01-01

    The major research activities performed during the cooperative agreement enhanced our spectroscopic knowledge of molecules of atmospheric interest such as carbon dioxide, water vapor, ozone, methane, and carbon monoxide, to name a few. Measurements were made using the NASA Langley Tunable Diode Laser Spectrometer System (TDL) and several Fourier Transform Spectrometer Systems (FTS) around the globe. The results from these studies made remarkable improvements in the line positions and intensities for several molecules, particularly ozone and carbon dioxide in the 2 to 17-micrometer spectral region. Measurements of pressure broadening and pressure induced line shift coefficients and the temperature dependence of pressure broadening and pressure induced line shift coefficients for infrared transitions of ozone, methane, and water vapor were also performed. Results from these studies have been used for retrievals of stratospheric gas concentration profiles from data collected by several Upper Atmospheric Research satellite (UARS) infrared instruments as well as in the analysis of high resolution atmospheric spectra such as those acquired by space-based, ground-based, and various balloon- and aircraft-borne experiments. Our results made significant contributions in several updates of the HITRAN (HIgh resolution TRANsmission) spectral line parameters database. This database enjoys worldwide recognition in research involving diversified scientific fields.

  20. High Resolution Spectroscopy to Support Atmospheric Measurements

    NASA Technical Reports Server (NTRS)

    Venkataraman, Malathy Devi

    2003-01-01

    Spectroscopic parameters (such as line position, intensity, broadening and shifting coefficients and their temperature dependences, line mixing coefficients etc.) for various molecular species of atmospheric interest are determined. In order to achieve these results, infrared spectra of several molecular bands are obtained using high-resolution recording instruments such as tunable diode laser spectrometer and Fourier transform spectrometers. Using sophisticated analysis routines (Multispectrum nonlinear least squares technique) these high-resolution infrared spectra are processed to determine the various spectral line parameters that are cited above. Spectra were taken using the McMath-Pierce Fourier transform spectrometer (FTS) at the National Solar Observatory on Kitt Peak, Arizona as well as the Bruker FTS at the Pacific Northwest National Laboratory (PNNL) at Richland, Washington. Most of the spectra are acquired not only at room temperature, but also at several different cold temperatures. This procedure is necessary to study the variation of the spectral line parameters as a function of temperature in order to simulate the Earth's and other planetary atmospheric environments. Depending upon the strength or weakness of the various bands recorded and analyzed, the length(s) of the absorption cells in which the gas samples under study are kept varied from a few centimeters up to several meters and the sample temperatures varied from approximately +30 C to -63 C. Research on several infrared bands of various molecular species and their isotopomers are undertaken. Those studies are briefly described.

  1. High-Resolution Scintimammography: A Pilot Study

    SciTech Connect

    Rachel F. Brem; Joelle M. Schoonjans; Douglas A. Kieper; Stan Majewski; Steven Goodman; Cahid Civelek

    2002-07-01

    This study evaluated a novel high-resolution breast-specific gamma camera (HRBGC) for the detection of suggestive breast lesions. Methods: Fifty patients (with 58 breast lesions) for whom a scintimammogram was clinically indicated were prospectively evaluated with a general-purpose gamma camera and a novel HRBGC prototype. The results of conventional and high-resolution nuclear studies were prospectively classified as negative (normal or benign) or positive (suggestive or malignant) by 2 radiologists who were unaware of the mammographic and histologic results. All of the included lesions were confirmed by pathology. Results: There were 30 benign and 28 malignant lesions. The sensitivity for detection of breast cancer was 64.3% (18/28) with the conventional camera and 78.6% (22/28) with the HRBGC. The specificity with both systems was 93.3% (28/30). For the 18 nonpalpable lesions, sensitivity was 55.5% (10/18) and 72.2% (13/18) with the general-purpose camera and the HRBGC, respectively. For lesions 1 cm, 7 of 15 were detected with the general-purpose camera and 10 of 15 with the HRBGC. Four lesions (median size, 8.5 mm) were detected only with the HRBGC and were missed by the conventional camera. Conclusion: Evaluation of indeterminate breast lesions with an HRBGC results in improved sensitivity for the detection of cancer, with greater improvement shown for nonpalpable and 1-cm lesions.

  2. High Resolution Camera for Mapping Titan Surface

    NASA Technical Reports Server (NTRS)

    Reinhardt, Bianca

    2011-01-01

    Titan, Saturn's largest moon, has a dense atmosphere and is the only object besides Earth to have stable liquids at its surface. The Cassini/Huygens mission has revealed the extraordinary breadth of geological processes shaping its surface. Further study requires high resolution imaging of the surface, which is restrained by light absorption by methane and scattering from aerosols. The Visual and Infrared Mapping Spectrometer (VIMS) onboard the Cassini spacecraft has demonstrated that Titan's surface can be observed within several windows in the near infrared, allowing us to process several regions in order to create a geological map and to determine the morphology. Specular reflections monitored on the lakes of the North Pole show little scattering at 5 microns, which, combined with the present study of Titan's northern pole area, refutes the paradigm that only radar can achieve high resolution mapping of the surface. The present data allowed us to monitor the evolution of lakes, to identify additional lakes at the Northern Pole, to examine Titan's hypothesis of non-synchronous rotation and to analyze the albedo of the North Pole surface. Future missions to Titan could carry a camera with 5 micron detectors and a carbon fiber radiator for weight reduction.

  3. High-Resolution Protein Structure Determination by Serial Femtosecond Crystallography

    PubMed Central

    Boutet, Sébastien; Lomb, Lukas; Williams, Garth J.; Barends, Thomas R. M.; Aquila, Andrew; Doak, R. Bruce; Weierstall, Uwe; DePonte, Daniel P.; Steinbrener, Jan; Shoeman, Robert L.; Messerschmidt, Marc; Barty, Anton; White, Thomas A.; Kassemeyer, Stephan; Kirian, Richard A.; Seibert, M. Marvin; Montanez, Paul A.; Kenney, Chris; Herbst, Ryan; Hart, Philip; Pines, Jack; Haller, Gunther; Gruner, Sol M.; Philipp, Hugh T.; Tate, Mark W.; Hromalik, Marianne; Koerner, Lucas J.; van Bakel, Niels; Morse, John; Ghonsalves, Wilfred; Arnlund, David; Bogan, Michael J.; Caleman, Carl; Fromme, Raimund; Hampton, Christina Y.; Hunter, Mark S.; Johansson, Linda C.; Katona, Gergely; Kupitz, Christopher; Liang, Mengning; Martin, Andrew V.; Nass, Karol; Redecke, Lars; Stellato, Francesco; Timneanu, Nicusor; Wang, Dingjie; Zatsepin, Nadia A.; Schafer, Donald; Defever, James; Neutze, Richard; Fromme, Petra; Spence, John C. H.; Chapman, Henry N.; Schlichting, Ilme

    2013-01-01

    Structure determination of proteins and other macromolecules has historically required the growth of high-quality crystals sufficiently large to diffract x-rays efficiently while withstanding radiation damage. We applied serial femtosecond crystallography (SFX) using an x-ray free-electron laser (XFEL) to obtain high-resolution structural information from microcrystals (less than 1 micrometer by 1 micrometer by 3 micrometers) of the well-characterized model protein lysozyme. The agreement with synchrotron data demonstrates the immediate relevance of SFX for analyzing the structure of the large group of difficult-to-crystallize molecules. PMID:22653729

  4. High-resolution protein structure determination by serial femtosecond crystallography.

    PubMed

    Boutet, Sébastien; Lomb, Lukas; Williams, Garth J; Barends, Thomas R M; Aquila, Andrew; Doak, R Bruce; Weierstall, Uwe; DePonte, Daniel P; Steinbrener, Jan; Shoeman, Robert L; Messerschmidt, Marc; Barty, Anton; White, Thomas A; Kassemeyer, Stephan; Kirian, Richard A; Seibert, M Marvin; Montanez, Paul A; Kenney, Chris; Herbst, Ryan; Hart, Philip; Pines, Jack; Haller, Gunther; Gruner, Sol M; Philipp, Hugh T; Tate, Mark W; Hromalik, Marianne; Koerner, Lucas J; van Bakel, Niels; Morse, John; Ghonsalves, Wilfred; Arnlund, David; Bogan, Michael J; Caleman, Carl; Fromme, Raimund; Hampton, Christina Y; Hunter, Mark S; Johansson, Linda C; Katona, Gergely; Kupitz, Christopher; Liang, Mengning; Martin, Andrew V; Nass, Karol; Redecke, Lars; Stellato, Francesco; Timneanu, Nicusor; Wang, Dingjie; Zatsepin, Nadia A; Schafer, Donald; Defever, James; Neutze, Richard; Fromme, Petra; Spence, John C H; Chapman, Henry N; Schlichting, Ilme

    2012-07-20

    Structure determination of proteins and other macromolecules has historically required the growth of high-quality crystals sufficiently large to diffract x-rays efficiently while withstanding radiation damage. We applied serial femtosecond crystallography (SFX) using an x-ray free-electron laser (XFEL) to obtain high-resolution structural information from microcrystals (less than 1 micrometer by 1 micrometer by 3 micrometers) of the well-characterized model protein lysozyme. The agreement with synchrotron data demonstrates the immediate relevance of SFX for analyzing the structure of the large group of difficult-to-crystallize molecules.

  5. High resolution study of magnetic ordering at absolute zero.

    PubMed

    Lee, M; Husmann, A; Rosenbaum, T F; Aeppli, G

    2004-05-07

    High resolution pressure measurements in the zero-temperature limit provide a unique opportunity to study the behavior of strongly interacting, itinerant electrons with coupled spin and charge degrees of freedom. Approaching the precision that has become the hallmark of experiments on classical critical phenomena, we characterize the quantum critical behavior of the model, elemental antiferromagnet chromium, lightly doped with vanadium. We resolve the sharp doubling of the Hall coefficient at the quantum critical point and trace the dominating effects of quantum fluctuations up to surprisingly high temperatures.

  6. Ultra-high resolution computed tomography imaging

    DOEpatents

    Paulus, Michael J.; Sari-Sarraf, Hamed; Tobin, Jr., Kenneth William; Gleason, Shaun S.; Thomas, Jr., Clarence E.

    2002-01-01

    A method for ultra-high resolution computed tomography imaging, comprising the steps of: focusing a high energy particle beam, for example x-rays or gamma-rays, onto a target object; acquiring a 2-dimensional projection data set representative of the target object; generating a corrected projection data set by applying a deconvolution algorithm, having an experimentally determined a transfer function, to the 2-dimensional data set; storing the corrected projection data set; incrementally rotating the target object through an angle of approximately 180.degree., and after each the incremental rotation, repeating the radiating, acquiring, generating and storing steps; and, after the rotating step, applying a cone-beam algorithm, for example a modified tomographic reconstruction algorithm, to the corrected projection data sets to generate a 3-dimensional image. The size of the spot focus of the beam is reduced to not greater than approximately 1 micron, and even to not greater than approximately 0.5 microns.

  7. High resolution wavefront measurement of aspheric optics

    NASA Astrophysics Data System (ADS)

    Erichsen, I.; Krey, S.; Heinisch, J.; Ruprecht, A.; Dumitrescu, E.

    2008-08-01

    With the recently emerged large volume production of miniature aspheric lenses for a wide range of applications, a new fast fully automatic high resolution wavefront measurement instrument has been developed. The Shack-Hartmann based system with reproducibility better than 0.05 waves is able to measure highly aspheric optics and allows for real time comparison with design data. Integrated advanced analysis tools such as calculation of Zernike coefficients, 2D-Modulation Transfer Function (MTF), Point Spread Function (PSF), Strehl-Ratio and the measurement of effective focal length (EFL) as well as flange focal length (FFL) allow for the direct verification of lens properties and can be used in a development as well as in a production environment.

  8. Venus gravity - A high-resolution map

    NASA Technical Reports Server (NTRS)

    Reasenberg, R. D.; Goldberg, Z. M.; Macneil, P. E.; Shapiro, I. I.

    1981-01-01

    The Doppler data from the radio tracking of the Pioneer Venus Orbiter (PVO) have been used in a two-stage analysis to develop a high-resolution map of the gravitational potential of Venus, represented by a central mass and a surface mass density. The two-stage procedure invokes a Kalman filter-smoother to determine the orbit of the spacecraft, and a stabilized linear inverter to estimate the surface mass density. The resultant gravity map is highly correlated with the topographic map derived from the PVO radar altimeter data. However, the magnitudes of the gravity variations are smaller than would be expected if the topography were uncompensated, indicating that at least partial compensation has taken place.

  9. The High Resolution Infrared Spectrum of HCl().

    PubMed

    Doménech, J L; Drouin, B J; Cernicharo, J; Herrero, V J; Tanarro, I

    2016-12-20

    The chloroniumyl cation, HCl(+), has been recently identified in space from Herschel's spectra. A joint analysis of extensive vis-UV spectroscopy emission data together with a few high-resolution and high-accuracy millimiter-wave data provided the necessary rest frequencies to support the astronomical identification. Nevertheless, the analysis did not include any infrared (IR) vibration-rotation data. Furthermore, with the end of the Herschel mission, infrared observations from the ground may be one of the few available means to further study this ion in space. In this work, we provide a set of accurate rovibrational transition wavenumbers as well as a new and improved global fit of vis-UV, IR and millimiter-wave spectroscopy laboratory data, that will aid in future studies of this molecule.

  10. High resolution imaging of live mitochondria.

    PubMed

    Jakobs, Stefan

    2006-01-01

    Classically, mitochondria have been studied by biochemical, genetic and electron microscopic approaches. In the last two decades, it became evident that mitochondria are highly dynamic organelles that are frequently dividing and fusing, changing size and shape and traveling long distances throughout the life of a cell. The study of the complex structural changes of mitochondria in vivo became possible with the advent of fluorescent labeling techniques in combination with live cell imaging microscopy. This review aims to provide an overview on novel fluorescent markers that are used in combination with mitochondrial fusion assays and various live cell microscopy techniques to study mitochondrial dynamics. In particular, approaches to study the movement of mitochondrial proteins and novel imaging techniques (FRET imaging-, 4Pi- and STED-microscopy) that provide high spatial resolution are considered.

  11. The High Resolution Infrared Spectrum of HCl+

    PubMed Central

    Drouin, B. J.; Cernicharo, J.; Herrero, V. J.; Tanarro, I.

    2017-01-01

    The chloroniumyl cation, HCl+, has been recently identified in space from Herschel’s spectra. A joint analysis of extensive vis-UV spectroscopy emission data together with a few high-resolution and high-accuracy millimiter-wave data provided the necessary rest frequencies to support the astronomical identification. Nevertheless, the analysis did not include any infrared (IR) vibration-rotation data. Furthermore, with the end of the Herschel mission, infrared observations from the ground may be one of the few available means to further study this ion in space. In this work, we provide a set of accurate rovibrational transition wavenumbers as well as a new and improved global fit of vis-UV, IR and millimiter-wave spectroscopy laboratory data, that will aid in future studies of this molecule. PMID:28261442

  12. Stars and their Environments at High-Resolution with IGRINS

    NASA Astrophysics Data System (ADS)

    Mace, Gregory; Jaffe, Daniel; Kaplan, Kyle; Kidder, Benjamin; Oh, Heeyoung; Sneden, Christopher; Afşar, Melike

    2016-06-01

    TheImmersion Grating Infrared Spectrometer (IGRINS) is a revolutionary instrument that exploits broad spectral coverage at high-resolution in the near-infrared. There are no moving parts in IGRINS and its high-throughput white-pupil design maximizes sensitivity. IGRINS on the 2.7 meter Harlan J. Smith Telescope at McDonald Observatory is nearly as sensitive as CRIRES at the 8 meter Very Large Telescope. However, IGRINS at R=45,000 has more than 30 times the spectral grasp of CRIRES. The use of an immersion grating facilitates a compact cryostat while providing simultaneous H and K band observations with complete wavelength coverage from 1.45 - 2.45 microns. Here we discuss details of instrument performance and summarize the application of IGRINS to stellar characterization, star formation in regions like Taurus and Ophiuchus, the interstellar medium, and photodissociation regions. IGRINS has the largest spectral grasp of any high-resolution, near-infrared spectrograph, allowing us to study star formation and evolution in unprecedented detail. With its fixed format and high sensitivity, IGRINS is a great survey instrument for star clusters, high signal-to-noise (SNR>300) studies of field stars, and for mapping the interstellar medium. As a prototype for GMTNIRS on the Giant Magellan Telescope, IGRINS represents the future of high-resolution spectroscopy. In the future IGRINS will be deployed to numerous facilities and will remain a versatile instrument for the community while producing a rich archive of uniform spectra.

  13. Characterization of Local Carrier Dynamics in AlN and AlGaN Films using High Spatial- and Time-resolution Cathodoluminescence Spectroscopy

    DTIC Science & Technology

    2012-10-12

    identified, as the radiative lifetime (R) for a free excitonic polariton emission is as short as 10 ps at 7 K and 180 ps at 300 K, which are the... polariton emission of high-quality AlN to identify its extremely radiative nature. Next we show the results for various quality AlN to reveal that point...can be partially explained consider- ing the formation of exciton- polaritons [27,28]. Right after excitation, electrons and holes loose their excess

  14. A new strategy for improved secondary screening and lead optimization using high-resolution SPR characterization of compound-target interactions.

    PubMed

    Huber, Walter

    2005-01-01

    Biophysical label-free assays such as those based on SPR are essential tools in generating high-quality data on affinity, kinetic, mechanistic and thermodynamic aspects of interactions between target proteins and potential drug candidates. Here we show examples of the integration of SPR with bioinformatic approaches and mutation studies in the early drug discovery process. We call this combination 'structure-based biophysical analysis'. Binding sites are identified on target proteins using information that is either extracted from three-dimensional structural analysis (X-ray crystallography or NMR), or derived from a pharmacore model based on known binders. The binding site information is used for in silico screening of a large substance library (e.g. available chemical directory), providing virtual hits. The three-dimensional structure is also used for the design of mutants where the binding site has been impaired. The wild-type target and the impaired mutant are then immobilized on different spots of the sensor chip and the interactions of compounds with the wild-type and mutant are compared in order to identify selective binders for the binding site of the target protein. This method can be used as a cost-effective alternative to high-throughput screening methods in cases when detailed binding site information is available. Here, we present three examples of how this technique can be applied to provide invaluable data during different phases of the drug discovery process.

  15. High-resolution nanoprobe X-ray fluorescence characterization of heterogeneous calcium and heavy metal distributions in alkali-activated fly ash.

    PubMed

    Provis, John L; Rose, Volker; Bernal, Susan A; van Deventer, Jannie S J

    2009-10-06

    The nanoscale distribution of elements within fly ash and the aluminosilicate gel products of its alkaline activation ("fly ash geopolymers") are analyzed by means of synchrotron X-ray fluorescence using a hard X-ray Nanoprobe instrument. The distribution of calcium within a hydroxide-activated (fly ash/KOH solution) geopolymer gel is seen to be highly heterogeneous, with these data providing for the first time direct evidence of the formation of discrete high-calcium particles within the binder structure of a geopolymer synthesized from a low-calcium (<2 wt % as oxides) fly ash. The silicate-activated (fly ash/potassium silicate solution) sample, by contrast, shows a much more homogeneous geopolymer gel binder structure surrounding the unreacted fly ash particles. This has important implications for the understanding of calcium chemistry within aluminosilicate geopolymer gel phases. Additionally, chromium and iron are seen to be very closely correlated within the structures of both fly ash and the geopolymer product and remain within the regions of the geopolymer which can be identified as unreacted fly ash particles. Given that the potential for chromium release has been one of the queries surrounding the widespread utilization of construction materials derived from fly ash, the observation that this element appears to be localized within the fly ash rather than dispersed throughout the gel binder indicates that it is unlikely to be released problematically into the environment.

  16. High-resolution three-dimensional scanning transmission electron microscopy characterization of oxide-nitride-oxide layer interfaces in Si-based semiconductors using computed tomography.

    PubMed

    Sadayama, Shoji; Sekiguchi, Hiromi; Bright, Alexander; Suzuki, Naohisa; Yamada, Kazuhiro; Kaneko, Kenji

    2011-01-01

    Oxide-nitride-oxide (ONO) layer structures are widely used for charge storage in flash memory devices. The ONO layer interfaces should be as flat as possible, so measurement of the nanoscale roughness of those interfaces is needed. In this study, quantification of an ONO film from a commercially available flash memory device was carried out with a pillar-shaped specimen using scanning transmission electron microscopy (STEM) and computed tomography. The ONO area contained only low Z- and low STEM-contrast materials, which makes high-quality reconstruction difficult. The optimum three-dimensional reconstruction was achieved with an STEM annular dark-field detector inner collection angle of 32 mrad, a sample tilt range from -78° to +78° and 25 iterations for the simultaneous iterative reconstruction technique.

  17. High-resolution colorimetric imaging of paintings

    NASA Astrophysics Data System (ADS)

    Martinez, Kirk; Cupitt, John; Saunders, David R.

    1993-05-01

    With the aim of providing a digital electronic replacement for conventional photography of paintings, a scanner has been constructed based on a 3000 X 2300 pel resolution camera which is moved precisely over a 1 meter square area. Successive patches are assembled to form a mosaic which covers the whole area at c. 20 pels/mm resolution, which is sufficient to resolve the surface textures, particularly craquelure. To provide high color accuracy, a set of seven broad-band interference filters are used to cover the visible spectrum. A calibration procedure based upon a least-mean-squares fit to the color of patches from a Macbeth Colorchecker chart yields an average color accuracy of better than 3 units in the CMC uniform color space. This work was mainly carried out as part of the VASARI project funded by the European Commission's ESPRIT program, involving companies and galleries from around Europe. The system is being used to record images for conservation research, for archival purposes and to assist in computer-aided learning in the field of art history. The paper will describe the overall system design, including the selection of the various hardware components and the design of controlling software. The theoretical basis for the color calibration methodology is described as well as the software for its practical implementation. The mosaic assembly procedure and some of the associated image processing routines developed are described. Preliminary results from the research will be presented.

  18. High Resolution Radar Measurements of Snow Avalanches

    NASA Astrophysics Data System (ADS)

    McElwaine, Jim; Sovilla, Betty; Vriend, Nathalie; Brennan, Paul; Ash, Matt; Keylock, Chris

    2013-04-01

    Geophysical mass flows, such as snow avalanches, are a major hazard in mountainous areas and have a significant impact on the infrastructure, economy and tourism of such regions. Obtaining a thorough understanding of the dynamics of snow avalanches is crucial for risk assessment and the design of defensive structures. However, because the underlying physics is poorly understood there are significant uncertainties concerning current models, which are poorly validated due to a lack of high resolution data. Direct observations of the denser core of a large avalanche are particularly difficult, since it is frequently obscured by the dilute powder cloud. We have developed and installed a phased array FMCW radar system that penetrates the powder cloud and directly images the dense core with a resolution of around 1 m at 50 Hz over the entire slope. We present data from recent avalanches at Vallee de la Sionne that show a wealth of internal structure and allow the tracking of individual fronts, roll waves and surges down the slope for the first time. We also show good agreement between the radar results and existing measurement systems that record data at particular points on the avalanche track.

  19. High Resolution Radar Measurements of Snow Avalanches

    NASA Astrophysics Data System (ADS)

    McElwaine, J. N.; Vriend, N. M.; Sovilla, B.; Keylock, C. J.; Brennan, P.; Ash, M.

    2012-12-01

    Geophysical mass flows, such as snow avalanches, are a major hazard in mountainous areas and have a significant impact on the infrastructure, economy and tourism of such regions. Obtaining a thorough understanding of the dynamics of snow avalanches is crucial for risk assessment and the design of defensive structures. However, because the underlying physics is poorly understood there are significant uncertainties concerning current models, which are poorly validated due to a lack of high resolution data. Direct observations of the denser core of a large avalanche are particularly difficult, since it is frequently obscured by the dilute powder cloud. We have developed and installed a phased array FMCW radar system that penetrates the powder cloud and directly images the dense core with a resolution of around 1 m at 50 Hz over the entire slope. We present data from recent avalanches at Vallée de la Sionne that show a wealth of internal structure and allow the tracking of individual fronts, roll waves and surges down the slope for the first time. We also show good agreement between the radar results and existing measurement systems that record data at particular points on the avalanche track.

  20. Pyramidal fractal dimension for high resolution images.

    PubMed

    Mayrhofer-Reinhartshuber, Michael; Ahammer, Helmut

    2016-07-01

    Fractal analysis (FA) should be able to yield reliable and fast results for high-resolution digital images to be applicable in fields that require immediate outcomes. Triggered by an efficient implementation of FA for binary images, we present three new approaches for fractal dimension (D) estimation of images that utilize image pyramids, namely, the pyramid triangular prism, the pyramid gradient, and the pyramid differences method (PTPM, PGM, PDM). We evaluated the performance of the three new and five standard techniques when applied to images with sizes up to 8192 × 8192 pixels. By using artificial fractal images created by three different generator models as ground truth, we determined the scale ranges with minimum deviations between estimation and theory. All pyramidal methods (PM) resulted in reasonable D values for images of all generator models. Especially, for images with sizes ≥1024×1024 pixels, the PMs are superior to the investigated standard approaches in terms of accuracy and computation time. A measure for the possibility to differentiate images with different intrinsic D values did show not only that the PMs are well suited for all investigated image sizes, and preferable to standard methods especially for larger images, but also that results of standard D estimation techniques are strongly influenced by the image size. Fastest results were obtained with the PDM and PGM, followed by the PTPM. In terms of absolute D values best performing standard methods were magnitudes slower than the PMs. Concluding, the new PMs yield high quality results in short computation times and are therefore eligible methods for fast FA of high-resolution images.

  1. ALMA Debuts High-Resolution Results

    NASA Astrophysics Data System (ADS)

    Kohler, Susanna

    2015-07-01

    through space as it orbits the Sun. The resolution of these images — enough to study the shape and even some surface features of the asteroid! — are unprecedented for this wavelength. HL Tau is a young star surrounded by a protoplanetary disk. ALMA's detailed observations of this region revealed remarkable structure within the disk: a series of light and dark concentric rings indicative of planets caught in the act of forming. Studying this system will help us understand how multi-planet solar systems like our own form and evolve. The star-forming galaxy SDP.81 — located so far away that the light we see was emitted when the Universe was only 15% of its current age — is gravitationally-lensed into a cosmic arc, due to the convenient placement of a nearby foreground galaxy. The combination of the lucky alignment and ALMA's high resolution grant us a spectacularly detailed view of this distant galaxy, allowing us to study its actual shape and the motion within it. The observations from ALMA's first test of its long baseline demonstrate that ALMA is capable of doing the transformational science it promised. As we gear up for the next cycle of observations, it's clear that exciting times are ahead! Citation: ALMA ship et al. 2015 ApJ 808 L1, L2, L3 and L4. Focus on the ALMA Long Baseline Campaign

  2. Clementine High Resolution Camera Mosaicking Project

    NASA Technical Reports Server (NTRS)

    1998-01-01

    This report constitutes the final report for NASA Contract NASW-5054. This project processed Clementine I high resolution images of the Moon, mosaicked these images together, and created a 22-disk set of compact disk read-only memory (CD-ROM) volumes. The mosaics were produced through semi-automated registration and calibration of the high resolution (HiRes) camera's data against the geometrically and photometrically controlled Ultraviolet/Visible (UV/Vis) Basemap Mosaic produced by the US Geological Survey (USGS). The HiRes mosaics were compiled from non-uniformity corrected, 750 nanometer ("D") filter high resolution nadir-looking observations. The images were spatially warped using the sinusoidal equal-area projection at a scale of 20 m/pixel for sub-polar mosaics (below 80 deg. latitude) and using the stereographic projection at a scale of 30 m/pixel for polar mosaics. Only images with emission angles less than approximately 50 were used. Images from non-mapping cross-track slews, which tended to have large SPICE errors, were generally omitted. The locations of the resulting image population were found to be offset from the UV/Vis basemap by up to 13 km (0.4 deg.). Geometric control was taken from the 100 m/pixel global and 150 m/pixel polar USGS Clementine Basemap Mosaics compiled from the 750 nm Ultraviolet/Visible Clementine imaging system. Radiometric calibration was achieved by removing the image nonuniformity dominated by the HiRes system's light intensifier. Also provided are offset and scale factors, achieved by a fit of the HiRes data to the corresponding photometrically calibrated UV/Vis basemap, that approximately transform the 8-bit HiRes data to photometric units. The sub-polar mosaics are divided into tiles that cover approximately 1.75 deg. of latitude and span the longitude range of the mosaicked frames. Images from a given orbit are map projected using the orbit's nominal central latitude. Polar mosaics are tiled into squares 2250 pixels on a

  3. SU-E-T-163: Characterization of a Novel High Resolution 1D Silicon Monolithic Array for Small Field Commissioning and Quality Assurance

    SciTech Connect

    Bisello, F; McGlade, J; Wang, P; Kralik, J; Kosterin, P; Mooij, R; Solberg, T; Menichelli, D; Celi, J

    2015-06-15

    Purpose: To study the suitability of a novel 1D silicon monolithic array for dosimetry of small radiation fields and for QA of high dose gradient treatment modalities (IMRT and SBRT). Methods: A 1D array composed of 4 monolithic silicon modules of 64 mm length and 1 mm pixel pitch was developed by IBA Dosimetry. Measurements were carried out for 6MV and 15MV photons on two commercial different linacs (TrueBeam and Clinac iX, Varian Medical Systems, Palo Alto, CA) and for a CyberKnife G4 (Accuray Inc., Sunnyvale, CA). The 1D array was used to measure output factors (OF), profiles and off axis correction factors (OACF) for the Iris CyberKnife variable collimator (5–60 mm). In addition, dose profiles (at the isocenter plane) were measured for multiple IMRT and SBRT treatment plans and compared with those obtained using EDR2radiographic film (Carestream Health, Rochester NY), a commercial 2D diode array and with the dose distribution calculated using a commercial TPS (Eclipse, Varian Medical Systems, Palo Alto, CA). Results: Due to the small pixel pitch of the detector, IMRT and SBRT plan profiles deviate from film measurements by less than 2%. Similarly, the 1D array exhibits better performance than the 2D diode array due to the larger (7 mm) pitch of that device. Iris collimator OFs measured using the 1D silicon array are in good agreement with the commissioning values obtained using a commercial stereotactic diode as well as with published data. Maximum deviations are < 3% for the smallest field (5 and 7.5mm) and below 1% for all other dimensions. Conclusion: We have demonstrated good performances of the array for commissioning of small photon fields and in patient QA, compared with diodes and film typically used in these clinical applications. The technology compares favorably with existing commercial solutions The presenting author is founded by a Marie Curie Early Initial Training Network Fellowship of the European Communitys Seventh Framework Programme under

  4. Potential High Resolution Dosimeters For MRT

    NASA Astrophysics Data System (ADS)

    Bräuer-Krisch, E.; Rosenfeld, A.; Lerch, M.; Petasecca, M.; Akselrod, M.; Sykora, J.; Bartz, J.; Ptaszkiewicz, M.; Olko, P.; Berg, A.; Wieland, M.; Doran, S.; Brochard, T.; Kamlowski, A.; Cellere, G.; Paccagnella, A.; Siegbahn, E. A.; Prezado, Y.; Martinez-Rovira, I.; Bravin, A.; Dusseau, L.; Berkvens, P.

    2010-07-01

    Microbeam Radiation Therapy (MRT) uses highly collimated, quasi-parallel arrays of X-ray microbeams of 50-600 keV, produced by 2nd and 3rd generation synchrotron sources, such as the National Synchrotron Light Source (NSLS) in the U.S., and the European Synchrotron Radiation Facility (ESRF) in France, respectively. High dose rates are necessary to deliver therapeutic doses in microscopic volumes, to avoid spreading of the microbeams by cardiosynchronous movement of the tissues. A small beam divergence and a filtered white beam spectrum in the energy range between 30 and 250 keV results in the advantage of steep dose gradients with a sharper penumbra than that produced in conventional radiotherapy. MRT research over the past 20 years has allowed a vast number of results from preclinical trials on different animal models, including mice, rats, piglets and rabbits. Microbeams in the range between 10 and 100 micron width show an unprecedented sparing of normal radiosensitive tissues as well as preferential damage to malignant tumor tissues. Typically, MRT uses arrays of narrow (˜25-100 micron-wide) microplanar beams separated by wider (100-400 microns centre-to-centre, c-t-c) microplanar spaces. We note that thicker microbeams of 0.1-0.68 mm used by investigators at the NSLS are still called microbeams, although some invesigators in the community prefer to call them minibeams. This report, however, limits it discussion to 25-100 μm microbeams. Peak entrance doses of several hundreds of Gy are surprisingly well tolerated by normal tissues. High resolution dosimetry has been developed over the last two decades, but typical dose ranges are adapted to dose delivery in conventional Radiation Therapy (RT). Spatial resolution in the sub-millimetric range has been achieved, which is currently required for quality assurance measurements in Gamma-knife RT. Most typical commercially available detectors are not suitable for MRT applications at a dose rate of 16000 Gy/s, micron

  5. Improved methods for high resolution electron microscopy

    SciTech Connect

    Taylor, J.R.

    1987-04-01

    Existing methods of making support films for high resolution transmission electron microscopy are investigated and novel methods are developed. Existing methods of fabricating fenestrated, metal reinforced specimen supports (microgrids) are evaluated for their potential to reduce beam induced movement of monolamellar crystals of C/sub 44/H/sub 90/ paraffin supported on thin carbon films. Improved methods of producing hydrophobic carbon films by vacuum evaporation, and improved methods of depositing well ordered monolamellar paraffin crystals on carbon films are developed. A novel technique for vacuum evaporation of metals is described which is used to reinforce microgrids. A technique is also developed to bond thin carbon films to microgrids with a polymer bonding agent. Unique biochemical methods are described to accomplish site specific covalent modification of membrane proteins. Protocols are given which covalently convert the carboxy terminus of papain cleaved bacteriorhodopsin to a free thiol. 53 refs., 19 figs., 1 tab.

  6. High resolution derivative spectra in remote sensing

    NASA Technical Reports Server (NTRS)

    Demetriades-Shah, Tanvir H.; Steven, Michael D.; Clark, Jeremy A.

    1990-01-01

    The use of derivative spectra is an established technique in analytical chemistry for the elimination of background signals and for resolving overlapping spectral features. Application of this technique for tackling analogous problems such as interference from soil background reflectance in the remote sensing of vegetation or for resolving complex spectra of several target species within individual pixels in remote sensing is proposed. Methods for generating derivatives of high spectral resolution data are reviewed. Results of experiments to test the use of derivatives for monitoring chlorosis in vegetation show that derivative spectral indices are superior to conventional broad-band spectral indices such as the near-infrared/red reflectance ratio. Conventional broad-band indices are sensitive to both leaf cover as well as leaf color. New derivative spectral indices which were able to monitor chlorosis unambiguously were identified. Potential areas for the application of this technique in remote sensing are considered.

  7. Potential High Resolution Dosimeters For MRT

    SciTech Connect

    Braeuer-Krisch, E.; Brochard, T.; Prezado, Y.; Bravin, A.; Berkvens, P.; Rosenfeld, A.; Lerch, M.; Petasecca, M.; Akselrod, M.; Sykora, J.; Bartz, J.; Ptaszkiewicz, M.; Olko, P.; Berg, A.; Wieland, M.; Doran, S.; Kamlowski, A.; Cellere, G.

    2010-07-23

    Microbeam Radiation Therapy (MRT) uses highly collimated, quasi-parallel arrays of X-ray microbeams of 50-600 keV, produced by 2nd and 3rd generation synchrotron sources, such as the National Synchrotron Light Source (NSLS) in the U.S., and the European Synchrotron Radiation Facility (ESRF) in France, respectively. High dose rates are necessary to deliver therapeutic doses in microscopic volumes, to avoid spreading of the microbeams by cardiosynchronous movement of the tissues. A small beam divergence and a filtered white beam spectrum in the energy range between 30 and 250 keV results in the advantage of steep dose gradients with a sharper penumbra than that produced in conventional radiotherapy. MRT research over the past 20 years has allowed a vast number of results from preclinical trials on different animal models, including mice, rats, piglets and rabbits. Microbeams in the range between 10 and 100 micron width show an unprecedented sparing of normal radiosensitive tissues as well as preferential damage to malignant tumor tissues. Typically, MRT uses arrays of narrow ({approx}25-100 micron-wide) microplanar beams separated by wider (100-400 microns centre-to-centre, c-t-c) microplanar spaces. We note that thicker microbeams of 0.1-0.68 mm used by investigators at the NSLS are still called microbeams, although some invesigators in the community prefer to call them minibeams. This report, however, limits it discussion to 25-100 {mu}m microbeams. Peak entrance doses of several hundreds of Gy are surprisingly well tolerated by normal tissues. High resolution dosimetry has been developed over the last two decades, but typical dose ranges are adapted to dose delivery in conventional Radiation Therapy (RT). Spatial resolution in the sub-millimetric range has been achieved, which is currently required for quality assurance measurements in Gamma-knife RT. Most typical commercially available detectors are not suitable for MRT applications at a dose rate of 16000 Gy

  8. Improved methods for high resolution electron microscopy

    NASA Astrophysics Data System (ADS)

    Taylor, J. R.

    1987-04-01

    Existing methods of making support films for high resolution transmission electron microscopy are investigated and novel methods are developed. Existing methods of fabricating fenestrated, metal reinforced specimen supports (microgrids) are evaluated for their potential to reduce beam induced movement of monolamellar crystals of C44H90 paraffin supported on thin carbon films. Improved methods of producing hydrophobic carbon films by vacuum evaporation, and improved methods of depositing well ordered monolamellar paraffin crystals on carbon films are developed. A novel technique for vacuum evaporation of metals is described which is used to reinforce microgrids. A technique is also developed to bond thin carbon films to microgrids with a polymer bonding agent. Unique biochemical methods are described to accomplish site specific covalent modification of membrane proteins. Protocols are given which covalently convert the carboxy terminus of papain cleaved bacteriorhodopsin to a free thiol.

  9. Classification of High Spatial Resolution, Hyperspectral ...

    EPA Pesticide Factsheets

    EPA announced the availability of the final report,High Spatial Resolution, Hyperspectral Remote Sensing Imagery of the Little Miami River Watershed in Southwest Ohio, USA . This report and associated land use/land cover (LULC) coverage is the result of a collaborative effort among an interdisciplinary team of scientists with the U.S. Environmental Protection Agency's (U.S. EPA's) Office of Research and Development in Cincinnati, Ohio. A primary goal of this project is to enhance the use of geography and spatial analytic tools in risk assessment, and to improve the scientific basis for risk management decisions affecting drinking water and water quality. The land use/land cover classification is derived from 82 flight lines of Compact Airborne Spectrographic Imager (CASI) hyperspectral imagery acquired from July 24 through August 9, 2002 via fixed-wing aircraft.

  10. High-Resolution Anamorphic SPECT Imaging

    PubMed Central

    Durko, Heather L.; Barrett, Harrison H.; Furenlid, Lars R.

    2015-01-01

    We have developed a gamma-ray imaging system that combines a high-resolution silicon detector with two sets of movable, half-keel-edged copper-tungsten blades configured as crossed slits. These apertures can be positioned independently between the object and detector, producing an anamorphic image in which the axial and transaxial magnifications are not constrained to be equal. The detector is a 60 mm × 60 mm, one-millimeter-thick, one-megapixel silicon double-sided strip detector with a strip pitch of 59 μm. The flexible nature of this system allows the application of adaptive imaging techniques. We present system details; calibration, acquisition, and reconstruction methods; and imaging results. PMID:26160983

  11. High-resolution Martian atmosphere modeling

    NASA Technical Reports Server (NTRS)

    Egan, W. G.; Fischbein, W. L.; Smith, L. L.; Hilgeman, T.

    1980-01-01

    A multilayer radiative transfer, high-spectral-resolution infrared model of the lower atmosphere of Mars has been constructed to assess the effect of scattering on line profiles. The model takes into accout aerosol scattering and absorption and includes a line-by-line treatment of scattering and absorption by CO2 and H2O. The aerosol complex indices of refraction used were those measured on montmorillonite and basalt chosen on the basis of Mars ir data from the NASA Lear Airborne Observatory. The particle sizes and distribution were estimated using Viking data. The molecular line treatment employs the AFGL line parameters and Voigt profiles. The modeling results indicate that the line profiles are only slightly affected by normal aerosol scattering and absorption, but the effect could be appreciable for heavy loading. The technique described permits a quantitative approach to assessing and correcting for the effect of aerosols on lineshapes in planetary atmospheres.

  12. High resolution CT of Meckel's cave.

    PubMed

    Chui, M; Tucker, W; Hudson, A; Bayer, N

    1985-01-01

    High resolution CT of the parasellar region was carried out in 50 patients studied for suspected pituitary microadenoma, but who showed normal pituitary gland or microadenoma on CT. This control group of patients all showed an ellipsoid low-density area in the posterior parasellar region. Knowledge of the gross anatomy and correlation with metrizamide cisternography suggest that the low density region represents Meckel's cave, rather than just the trigeminal ganglion alone. Though there is considerable variation in the size of Meckel's cave in different patients as well as the two sides of the same patient, the rather constant ellipsoid configuration of the cave in normal subjects will aid in diagnosing small pathological lesions, thereby obviating more invasive cisternography via the transovale or lumbar route. Patients with "idiopathic" tic douloureux do not show a Meckel's cave significantly different from the control group.

  13. High Spatial Resolution Spectroscopy of Semiconductor Nanostructures

    NASA Astrophysics Data System (ADS)

    Harris, Timothy D.; Gershoni, David; Pfeiffer, Loren N.

    1996-03-01

    Several recent reports employing high spatial resolution have revealed the dominance of exciton localization in the low temperature luminescence of semiconductor quantum structures.^[1-3] Understanding this localization is of critical importance for the reliable studies of low dimensional structures such as quantum wells, quantum wires and quantum dots. We report on low temperature and high spatial resolution photoluminescence and photoluminescence excitation studies of cleaved edge overgrown (CEO) single quantum wires. These samples permit the direct and unambiguous comparison between the optical properties of a (100) oriented quantum well, a (110) oriented quantum well, and the quantum wire which is formed at their intersection. Using low temperature near field optical spectroscopy, and a novel diffraction limited far field apparatus, we determine the carrier diffusion length dependence on pump wavelength and sample temperature in both the 2d systems and the genuinely 1D wire system. We also measure the absorption strength of the 1D system and find it to be a factor of 3 stronger than the absorption of the associated 2D systems.^[2] Using low temperature near field optical spectroscopy, and a novel diffraction limited far field apparatus, we also determine the carrier diffusion length dependence on pump wavelength and sample temperature. ^[1] H. F. Hess, E. Betzig, T. D. Harris, L. N. Pfeiffer, and K. W. West, Science 264, 1740 (1994). ^[2] T. D. Harris, D. Gershoni, R. D. Grober, L. Pfeiffer, K. West, and N. Chand, Appl. Phys. Lett, in press (1996) ^[3] D. Gammon, E. S. Snow, and D. S. Katzer, Appl. Phys. Lett. 67, 2391 (1995)

  14. High resolution films for bone regeneration evaluation.

    PubMed

    Jammal, María V; Territoriale, Erika B; Abate, Carlos M; Missana, Liliana R

    2010-01-01

    Diagnostic imaging techniques (DIxT) seem to be a useful tool for evaluating bone formation in both human and animal models. There is little evidence on the use of Soft X-Rays (sXR) with high-resolution films for studying the healing process in critical bone size defects (CSD). The aim of this study was to evaluate the ability of soft X-Ray - High Resolution Films (sXR) to distinguish bone regeneration in CSDs. A CSD was created in each of 16 Wistar rat calvariae. The animals were euthanized at 1, 3 and 6 weeks after surgery. The samples were submitted to cXR (conventional X-rays), sXR techniques and histological procedures (HP). Bone formation was observed at CSD edges at all periods of time. At 6 week there was also new bone in the central area. The CSD was not fully regenerated after any period of time. Histometric results were 0.16%; 0.75% and 0.89% new bone formed at weeks 1, 3 and 6 respectively; radiometric results at cXR were 0% in all samples. Evaluation of sXR shows 0.4%; 0.50% and 3.64% bone at weeks 1, 3 and 6. Mean and Standard Deviation were calculated. The data were submitted to statistical analysis using the Pearson product-moment correlation coefficient test. The r value was 0.581. Under these experimental conditions, sXR was found to be a suitable method for detecting new bone formation, based on the positive correlation between sXR and HP during the bone healing process of CSDs in rat calvaria. Furthermore, the sXR technique allowed us to obtain samples with appropriate spatial orientation.

  15. High Resolution Spectroscopy to Support Atmospheric Measurements

    NASA Technical Reports Server (NTRS)

    Venkataraman, Malathy Devi

    2006-01-01

    The major research activities performed during the cooperative agreement enhanced our spectroscopic knowledge of molecules of atmospheric interest such as H2O (water vapor), O3 (ozone), HCN (hydrogen cyanide), CH4 (methane), NO2 (nitrogen dioxide) and CO (carbon monoxide). The data required for the analyses were obtained from two different Fourier Transform Spectrometers (FTS); one of which is located at the National Solar Observatory (NSO) on Kitt Peak, Arizona and the other instrument is located at the Pacific Northwest National Laboratories (PNNL) at Richland, Washington. The data were analyzed using a modified multispectrum nonlinear least squares fitting algorithm developed by Dr. D. Chris Benner of the College of William and Mary. The results from these studies made significant improvements in the line positons and intensities for these molecules. The measurements of pressure broadening and pressure induced line shift coefficients and the temperature dependence of pressure broadening and pressure induced shift coefficients for hundreds of infrared transitions of HCN, CO3 CH4 and H2O were also performed during this period. Results from these studies have been used for retrievals of stratospheric gas concentration profiles from data collected by several Upper Atmospheric Research Satellite (UARS) infrared instruments as well as in the analysis of high resolution atmospheric spectra such as those acquired by space-based, ground-based, and various balloon- and aircraft-borne experiments. Our results made significant contributions in several updates of the HITRAN (HIgh resolution TRANsmission) spectral line parameters database. This database enjoys worldwide recognition in research involving diversified scientific fields. The research conducted during the period 2003-2006 has resulted in publications given in this paper. In addition to Journal publications, several oral and poster presentations were given at various Scientific conferences within the United States

  16. Modeling Spatial Dependencies in High-Resolution Overhead Imagery

    SciTech Connect

    Cheriyadat, Anil M; Bright, Eddie A; Vatsavai, Raju

    2011-01-01

    Human settlement regions with different physical and socio-economic attributes exhibit unique spatial characteristics that are often illustrated in high-resolution overhead imageries. For example- size, shape and spatial arrangements of man-made structures are key attributes that vary with respect to the socioeconomic profile of the neighborhood. Successfully modeling these attributes is crucial in developing advanced image understanding systems for interpreting complex aerial scenes. In this paper we present three different approaches to model the spatial context in the overhead imagery. First, we show that the frequency domain of the image can be used to model the spatial context [1]. The shape of the spectral energy contours characterize the scene context and can be exploited as global features. Secondly, we explore a discriminative framework based on the Conditional Random Fields (CRF) [2] to model the spatial context in the overhead imagery. The features derived from the edge orientation distribution calculated for a neighborhood and the associated class labels are used as input features to model the spatial context. Our third approach is based on grouping spatially connected pixels based on the low-level edge primitives to form support-regions [3]. The statistical parameters generated from the support-region feature distributions characterize different geospatial neighborhoods. We apply our approaches on high-resolution overhead imageries. We show that proposed approaches characterize the spatial context in overhead imageries.

  17. A high-resolution strain-gauge nanolaser

    PubMed Central

    Choi, Jae-Hyuck; No, You-Shin; So, Jae-Pil; Lee, Jung Min; Kim, Kyoung-Ho; Hwang, Min-Soo; Kwon, Soon-Hong; Park, Hong-Gyu

    2016-01-01

    Interest in mechanical compliance has been motivated by the development of flexible electronics and mechanosensors. In particular, studies and characterization of structural deformation at the fundamental scale can offer opportunities to improve the device sensitivity and spatiotemporal response; however, the development of precise measurement tools with the appropriate resolution remains a challenge. Here we report a flexible and stretchable photonic crystal nanolaser whose spectral and modal behaviours are sensitive to nanoscale structural alterations. Reversible spectral tuning of ∼26 nm in lasing wavelength, with a sub-nanometre resolution of less than ∼0.6 nm, is demonstrated in response to applied strain ranging from −10 to 12%. Instantaneous visualization of the sign of the strain is also characterized by exploring the structural and corresponding modal symmetry. Furthermore, our high-resolution strain-gauge nanolaser functions as a stable and deterministic strain-based pH sensor in an opto-fluidic system, which may be useful for further analysis of chemical/biological systems. PMID:27175544

  18. Toward high-resolution optoelectronic retinal prosthesis

    NASA Astrophysics Data System (ADS)

    Palanker, Daniel; Huie, Philip; Vankov, Alexander; Asher, Alon; Baccus, Steven

    2005-04-01

    It has been already demonstrated that electrical stimulation of retina can produce visual percepts in blind patients suffering from macular degeneration and retinitis pigmentosa. Current retinal implants provide very low resolution (just a few electrodes), while several thousand pixels are required for functional restoration of sight. We present a design of the optoelectronic retinal prosthetic system that can activate a retinal stimulating array with pixel density up to 2,500 pix/mm2 (geometrically corresponding to a visual acuity of 20/80), and allows for natural eye scanning rather than scanning with a head-mounted camera. The system operates similarly to "virtual reality" imaging devices used in military and medical applications. An image from a video camera is projected by a goggle-mounted infrared LED-LCD display onto the retina, activating an array of powered photodiodes in the retinal implant. Such a system provides a broad field of vision by allowing for natural eye scanning. The goggles are transparent to visible light, thus allowing for simultaneous utilization of remaining natural vision along with prosthetic stimulation. Optical control of the implant allows for simple adjustment of image processing algorithms and for learning. A major prerequisite for high resolution stimulation is the proximity of neural cells to the stimulation sites. This can be achieved with sub-retinal implants constructed in a manner that directs migration of retinal cells to target areas. Two basic implant geometries are described: perforated membranes and protruding electrode arrays. Possibility of the tactile neural stimulation is also examined.

  19. Quantitative characterization of endothelial cell morphologies depending on shear stress in different blood vessels of domestic pigs using a focused ion beam and high resolution scanning electron microscopy (FIB-SEM).

    PubMed

    Pham, Tam Thanh; Maenz, Stefan; Lüdecke, Claudia; Schmerbauch, Christoph; Settmacher, Utz; Jandt, Klaus D; Bossert, Jörg; Zanow, Jürgen

    2015-04-01

    Microstructured surfaces mimicking the endothelial cell (EC) morphology is a new approach to improve the blood compatibility of synthetic vascular grafts. The ECs are capable of changing their shapes depending on different shear conditions. However, the quantitative correlation between EC morphology and shear stress has not yet been investigated statistically. The aim of this study was to quantitatively investigate the morphology of ECs in dependence on the shear stress. Blood flow rates in different types of natural blood vessels (carotid, renal, hepatic and iliac arteries) originated from domestic pigs were first measured in vivo to calculate the shear stresses. The EC morphologies were quantitatively characterized ex vivo by imaging with high resolution scanning electron microscopy (SEM) and cross-sectioning of the cells using a state-of-the-art focused ion beam (FIB). The relationships between EC geometrical parameters and shear stress were statistically analyzed and found to be exponential. ECs under high shear stress conditions had a longer length and narrower width, i.e. a higher aspect ratio, while the cell height was smaller compared to low shear conditions. Based on these results, suitable and valid geometrical parameters of microstructures mimicking EC can be derived for various shear conditions in synthetic vascular grafts to optimize blood compatibility.

  20. High Resolution Image Reconstruction from Projection of Low Resolution Images DIffering in Subpixel Shifts

    NASA Technical Reports Server (NTRS)

    Mareboyana, Manohar; Le Moigne-Stewart, Jacqueline; Bennett, Jerome

    2016-01-01

    In this paper, we demonstrate a simple algorithm that projects low resolution (LR) images differing in subpixel shifts on a high resolution (HR) also called super resolution (SR) grid. The algorithm is very effective in accuracy as well as time efficiency. A number of spatial interpolation techniques using nearest neighbor, inverse-distance weighted averages, Radial Basis Functions (RBF) etc. used in projection yield comparable results. For best accuracy of reconstructing SR image by a factor of two requires four LR images differing in four independent subpixel shifts. The algorithm has two steps: i) registration of low resolution images and (ii) shifting the low resolution images to align with reference image and projecting them on high resolution grid based on the shifts of each low resolution image using different interpolation techniques. Experiments are conducted by simulating low resolution images by subpixel shifts and subsampling of original high resolution image and the reconstructing the high resolution images from the simulated low resolution images. The results of accuracy of reconstruction are compared by using mean squared error measure between original high resolution image and reconstructed image. The algorithm was tested on remote sensing images and found to outperform previously proposed techniques such as Iterative Back Projection algorithm (IBP), Maximum Likelihood (ML), and Maximum a posterior (MAP) algorithms. The algorithm is robust and is not overly sensitive to the registration inaccuracies.

  1. Methylenedioxy designer drugs: mass spectrometric characterization of their glutathione conjugates by means of liquid chromatography-high-resolution mass spectrometry/mass spectrometry and studies on their glutathionyl transferase inhibition potency.

    PubMed

    Meyer, Markus R; Richter, Lilian H J; Maurer, Hans H

    2014-04-25

    Methylenedioxy designer drugs of abuse such as 3,4-methylenedioxymethamphetamine (MDMA) can be selectively toxic to serotonergic neurons and glutathione (GSH) adducts have been implicated in its neurotoxicity. The catecholic demethylenyl metabolites of MDMA, 3,4-dihydroxymethamphetamine and 3,4-dihydroxyamphetamine, are metabolically oxidized to the corresponding ortho-quinones, which are highly reactive intermediates. These intermediates can then be conjugated with GSH preventing cellular damage. Furthermore, glutathionyl transferase (GST) activity was described to be irreversibly inhibited by the catechols dopamine, α-methyldopa and their GSH conjugates. Therefore, the aims of the present work were the detection and characterization of GSH conjugates of ten methylenedioxy drugs of abuse and their phase I metabolites as well as to assess their inhibition potency on GST activity. The substrates were incubated using human placental GST with or without preincubation by cytochrome P450 enzymes preparations. GST inhibition was tested using chlorodinitrobenzene GSH conjugation as marker reaction. GSH conjugates were analyzed and characterized using LC-high-resolution-MS/MS. For confirmation of postulated fragmentation patterns, formation of GSH conjugates of selected deuterated analogs (deuterated analogue approach, DAA) of the investigated drugs was explored. For the methylenedioxy amphetamines the following steps could be identified: conjugation of the parent compounds at position 2, 5, 6, of the demethylenyl metabolites at position 2 and 5, and of the further deaminated demethylenyl metabolites at position 2. For the β-keto-phenylalkylamine and pyrrolidinophenone, conjugation of the demethylenyl metabolites and of the deaminated demethylenyl metabolites at position 2 could be identified. The DAA allowed the differentiation of the 2 and 5/6 isomers by confirmation of the postulated mass spectral fragments. Finally, the tested drugs and phase I metabolites showed no

  2. High Resolution Airborne Shallow Water Mapping

    NASA Astrophysics Data System (ADS)

    Steinbacher, F.; Pfennigbauer, M.; Aufleger, M.; Ullrich, A.

    2012-07-01

    In order to meet the requirements of the European Water Framework Directive (EU-WFD), authorities face the problem of repeatedly performing area-wide surveying of all kinds of inland waters. Especially for mid-sized or small rivers this is a considerable challenge imposing insurmountable logistical efforts and costs. It is therefore investigated if large-scale surveying of a river system on an operational basis is feasible by employing airborne hydrographic laser scanning. In cooperation with the Bavarian Water Authority (WWA Weilheim) a pilot project was initiated by the Unit of Hydraulic Engineering at the University of Innsbruck and RIEGL Laser Measurement Systems exploiting the possibilities of a new LIDAR measurement system with high spatial resolution and high measurement rate to capture about 70 km of riverbed and foreland for the river Loisach in Bavaria/Germany and the estuary and parts of the shoreline (about 40km in length) of lake Ammersee. The entire area surveyed was referenced to classic terrestrial cross-section surveys with the aim to derive products for the monitoring and managing needs of the inland water bodies forced by the EU-WFD. The survey was performed in July 2011 by helicopter and airplane and took 3 days in total. In addition, high resolution areal images were taken to provide an optical reference, offering a wide range of possibilities on further research, monitoring, and managing responsibilities. The operating altitude was about 500 m to maintain eye-safety, even for the aided eye, the airspeed was about 55 kts for the helicopter and 75 kts for the aircraft. The helicopter was used in the alpine regions while the fixed wing aircraft was used in the plains and the urban area, using appropriate scan rates to receive evenly distributed point clouds. The resulting point density ranged from 10 to 25 points per square meter. By carefully selecting days with optimum water quality, satisfactory penetration down to the river bed was achieved

  3. High resolution low frequency ultrasonic tomography.

    PubMed

    Lasaygues, P; Lefebvre, J P; Mensah, S

    1997-10-01

    Ultrasonic reflection tomography results from a linearization of the inverse acoustic scattering problem, named the inverse Born approximation. The goal of ultrasonic reflection tomography is to obtain reflectivity images from backscattered measurements. This is a Fourier synthesis problem and the first step is to correctly cover the frequency space of the object. For this inverse problem, we use the classical algorithm of tomographic reconstruction by summation of filtered backprojections. In practice, only a limited number of views are available with our mechanical rig, typically 180, and the frequency bandwidth of the pulses is very limited, typically one octave. The resolving power of the system is them limited by the bandwidth of the pulse. Low and high frequencies can be restored by use of a deconvolution algorithm that enhances resolution. We used a deconvolution technique based on the Papoulis method. The advantage of this technique is conservation of the overall frequency information content of the signals. The enhancement procedure was tested by imaging a square aluminium rod with a cross-section less than the wavelength. In this application, the central frequency of the transducer was 250 kHz so that the central wavelength was 6 mm whereas the cross-section of the rod was 4 mm. Although the Born approximation was not theoretically valid in this case (high contrast), a good reconstruction was obtained.

  4. Ultrathin high-resolution flexographic printing using nanoporous stamps

    PubMed Central

    Kim, Sanha; Sojoudi, Hossein; Zhao, Hangbo; Mariappan, Dhanushkodi; McKinley, Gareth H.; Gleason, Karen K.; Hart, A. John

    2016-01-01

    Since its invention in ancient times, relief printing, commonly called flexography, has been used to mass-produce artifacts ranging from decorative graphics to printed media. Now, higher-resolution flexography is essential to manufacturing low-cost, large-area printed electronics. However, because of contact-mediated liquid instabilities and spreading, the resolution of flexographic printing using elastomeric stamps is limited to tens of micrometers. We introduce engineered nanoporous microstructures, comprising polymer-coated aligned carbon nanotubes (CNTs), as a next-generation stamp material. We design and engineer the highly porous microstructures to be wetted by colloidal inks and to transfer a thin layer to a target substrate upon brief contact. We demonstrate printing of diverse micrometer-scale patterns of a variety of functional nanoparticle inks, including Ag, ZnO, WO3, and CdSe/ZnS, onto both rigid and compliant substrates. The printed patterns have highly uniform nanoscale thickness (5 to 50 nm) and match the stamp features with high fidelity (edge roughness, ~0.2 μm). We derive conditions for uniform printing based on nanoscale contact mechanics, characterize printed Ag lines and transparent conductors, and achieve continuous printing at a speed of 0.2 m/s. The latter represents a combination of resolution and throughput that far surpasses industrial printing technologies. PMID:27957542

  5. Ultrathin high-resolution flexographic printing using nanoporous stamps.

    PubMed

    Kim, Sanha; Sojoudi, Hossein; Zhao, Hangbo; Mariappan, Dhanushkodi; McKinley, Gareth H; Gleason, Karen K; Hart, A John

    2016-12-01

    Since its invention in ancient times, relief printing, commonly called flexography, has been used to mass-produce artifacts ranging from decorative graphics to printed media. Now, higher-resolution flexography is essential to manufacturing low-cost, large-area printed electronics. However, because of contact-mediated liquid instabilities and spreading, the resolution of flexographic printing using elastomeric stamps is limited to tens of micrometers. We introduce engineered nanoporous microstructures, comprising polymer-coated aligned carbon nanotubes (CNTs), as a next-generation stamp material. We design and engineer the highly porous microstructures to be wetted by colloidal inks and to transfer a thin layer to a target substrate upon brief contact. We demonstrate printing of diverse micrometer-scale patterns of a variety of functional nanoparticle inks, including Ag, ZnO, WO3, and CdSe/ZnS, onto both rigid and compliant substrates. The printed patterns have highly uniform nanoscale thickness (5 to 50 nm) and match the stamp features with high fidelity (edge roughness, ~0.2 μm). We derive conditions for uniform printing based on nanoscale contact mechanics, characterize printed Ag lines and transparent conductors, and achieve continuous printing at a speed of 0.2 m/s. The latter represents a combination of resolution and throughput that far surpasses industrial printing technologies.

  6. Thin polymer etalon arrays for high-resolution photoacoustic imaging

    PubMed Central

    Hou, Yang; Huang, Sheng-Wen; Ashkenazi, Shai; Witte, Russell; O’Donnell, Matthew

    2009-01-01

    Thin polymer etalons are demonstrated as high-frequency ultrasound sensors for three-dimensional (3-D) high-resolution photoacoustic imaging. The etalon, a Fabry-Perot optical resonator, consists of a thin polymer slab sandwiched between two gold layers. It is probed with a scanning continuous-wave (CW) laser for ultrasound array detection. Detection bandwidth of a 20-μm-diam array element exceeds 50 MHz, and the ultrasound sensitivity is comparable to polyvinylidene fluoride (PVDF) equivalents of similar size. In a typical photoacoustic imaging setup, a pulsed laser beam illuminates the imaging target, where optical energy is absorbed and acoustic waves are generated through the thermoelastic effect. An ultrasound detection array is formed by scanning the probing laser beam on the etalon surface in either a 1-D or a 2-D configuration, which produces 2-D or 3-D images, respectively. Axial and lateral resolutions have been demonstrated to be better than 20 μm. Detailed characterizations of the optical and acoustical properties of the etalon, as well as photoacoustic imaging results, suggest that thin polymer etalon arrays can be used as ultrasound detectors for 3-D high-resolution photoacoustic imaging applications. PMID:19123679

  7. High-resolution high-performance liquid chromatography with electrospray ionization mass spectrometry and tandem mass spectrometry characterization of a new isoform of human salivary acidic proline-rich proteins named Roma-Boston Ser22(Phos) → Phe variant

    PubMed Central

    Iavarone, Federica; D’Alessandro, Alfredo; Tian, Na; Cabras, Tiziana; Messana, Irene; Helmerhorst, Eva J.; Oppenheim, Frank G.; Castagnola, Massimo

    2015-01-01

    During a survey of human saliva by a top-down reversed-phase high-performance liquid chromatography with electrospray ionization mass spectrometry approach, two proteins eluting at 27.4 and 28.4 min, with average masses of 15 494 ± 1 and 11 142 ± 1 Da, were detected in a subject from Boston. The Δmass value (4352 Da) of the two proteins was similar to the difference in mass values between intact (150 amino acids, [a.a.]) and truncated acidic proline-rich proteins (aPRPs; 106 a.a.) suggesting an a.a. substitution in the first 106 residues resulting in a strong reduction in polarity, since under the same experimental conditions aPRPs eluted at ~22.5 min (intact) and 23.5 min (truncated forms). Manual inspection of the high-resolution high-performance liquid chromatography with electrospray ionization tandem mass spectra of the truncated isoform showed the replacement of the phosphorylated Ser-22 in PRP-3 with a Phe residue. Inspection of the tandem mass spectra of the intact isoform confirmed the substitution, which is allowed by the code transition TCT→TTT and is in agreement with the dramatic increase in elution time. The isoform was also detected in two other subjects, one from Boston (unrelated to the previous) and one from Rome. For this reason we propose to name this variant PRP-1 (PRP-3) RB (Roma-Boston) Ser22(phos)→Phe. PMID:24771659

  8. Feasibility study of an avalanche photodiode readout for a high resolution PET with nsec time resolution

    SciTech Connect

    Schmelz, C.; Ziegler, S.; Bradbury, S.M.; Holl, I.; Lorenz, E.; Renker, D.

    1995-08-01

    A feasibility study for a high resolution positron emission tomograph, based on 9.5 x 4 x 4 mm{sup 3} LSO crystals viewed by 3 mm diameter avalanche photodiodes, has been carried out. Using a Na{sup 22} source the authors determined a spatial resolution of 2.3 {+-} 0.1 mm, an energy resolution around 15 % and a time resolution of 2.6 nsec. Possible configurations for larger scale tests and a tomograph are given.

  9. The High Time Resolution Radio Sky

    NASA Astrophysics Data System (ADS)

    Thornton, D.

    2013-11-01

    Pulsars are laboratories for extreme physics unachievable on Earth. As individual sources and possible orbital companions can be used to study magnetospheric, emission, and superfluid physics, general relativistic effects, and stellar and binary evolution. As populations they exhibit a wide range of sub-types, with parameters varying by many orders of magnitude signifying fundamental differences in their evolutionary history and potential uses. There are currently around 2200 known pulsars in the Milky Way, the Magellanic clouds, and globular clusters, most of which have been discovered with radio survey observations. These observations, as well as being suitable for detecting the repeating signals from pulsars, are well suited for identifying other transient astronomical radio bursts that last just a few milliseconds that either singular in nature, or rarely repeating. Prior to the work of this thesis non-repeating radio transients at extragalactic distances had possibly been discovered, however with just one example status a real astronomical sources was in doubt. Finding more of these sources was a vital to proving they were real and to open up the universe for millisecond-duration radio astronomy. The High Time Resolution Universe survey uses the multibeam receiver on the 64-m Parkes radio telescope to search the whole visible sky for pulsars and transients. The temporal and spectral resolution of the receiver and the digital back-end enable the detection of relatively faint, and distant radio sources. From the Parkes telescope a large portion of the Galactic plane can be seen, a rich hunting ground for radio pulsars of all types, while previously poorly surveyed regions away from the Galactic plane are also covered. I have made a number of pulsar discoveries in the survey, including some rare systems. These include PSR J1226-6208, a possible double neutron star system in a remarkably circular orbit, PSR J1431-471 which is being eclipsed by its companion with

  10. Partial homogeneity based high-resolution nuclear magnetic resonance spectra under inhomogeneous magnetic fields

    SciTech Connect

    Wei, Zhiliang; Lin, Liangjie; Lin, Yanqin E-mail: chenz@xmu.edu.cn; Chen, Zhong E-mail: chenz@xmu.edu.cn; Chen, Youhe

    2014-09-29

    In nuclear magnetic resonance (NMR) technique, it is of great necessity and importance to obtain high-resolution spectra, especially under inhomogeneous magnetic fields. In this study, a method based on partial homogeneity is proposed for retrieving high-resolution one-dimensional NMR spectra under inhomogeneous fields. Signals from series of small voxels, which characterize high resolution due to small sizes, are recorded simultaneously. Then, an inhomogeneity correction algorithm is developed based on pattern recognition to correct the influence brought by field inhomogeneity automatically, thus yielding high-resolution information. Experiments on chemical solutions and fish spawn were carried out to demonstrate the performance of the proposed method. The proposed method serves as a single radiofrequency pulse high-resolution NMR spectroscopy under inhomogeneous fields and may provide an alternative of obtaining high-resolution spectra of in vivo living systems or chemical-reaction systems, where performances of conventional techniques are usually degenerated by field inhomogeneity.

  11. High-resolution imaging using endoscopic holography

    NASA Astrophysics Data System (ADS)

    Bjelkhagen, Hans I.

    1990-08-01

    Endoscopic holography or endoholography combines the features of endoscopy and holography. The purpose of endoholographic imaging is to provide the physician with a unique means of extending diagnosis by providing a life-like record of tissue. Endoholographic recording will provide means for microscopic examination of tissue and in some cases may obviate the need to excise specimens for biopsy. In this method holograms which have the unique properties of three-dimensionality large focal depth and high resolution are made with a newly designed endoscope. The endoscope uses a single-mode optical fiber for illumination and single-beam reflection holograms are recorded in close contact with the tissue at the distal end of the endoscope. The holograms are viewed under a microscope. By using the proper combinations of dyes for staining specific tissue types with various wavelengths of laser illumination increased contrast on the cellular level can be obtained. Using dyes such as rose bengal in combination with the 514. 5 nm line of an argon ion laser and trypan blue or methylene blue with the 647. 1 nm line of a krypton ion laser holograms of the stained colon of a dog showed the architecture of the colon''s columnar epithelial cells. It is hoped through chronological study using this method in-vivo an increased understanding of the etiology and pathology of diseases such as Crohn''s diseases colitis proctitis and several different forms of cancer will help to their control. 1.

  12. Holographic high-resolution endoscopic image recording

    NASA Astrophysics Data System (ADS)

    Bjelkhagen, Hans I.

    1991-03-01

    Endoscopic holography or endoholography combines the features of endoscopy and holography. The purpose of endoholographic imaging is to provide the physician with a unique means of extending diagnosis by providing a life-like record of tissue. Endoholographic recording will provide means for microscopic examination of tissue and in some cases may obviate the need to excise specimens for biopsy. In this method holograms which have the unique properties of three-dimensionality large focal depth and high resolution are made with a newly designed endoscope. The endoscope uses a single-mode optical fiber for illumination and single-beam reflection holograms are recorded in close contact with the tissue at the distal end of the endoscope. The holograms are viewed under a microscope. By using the proper combinations of dyes for staining specific tissue types with various wavelengths of laser illumination increased contrast on the cellular level can be obtained. Using dyes such as rose bengal in combination with the 514. 5 nm line of an argon ion laser and trypan blue or methylene blue with the 647. 1 nm line of a krypton ion laser holograms of the stained colon of a dog showed the architecture of the colon''s columnar epithelial cells. It is hoped through chronological study using this method in-vivo an increased understanding of the etiology and pathology of diseases such as Crohn''s diseases colitis proctitis and several different forms of cancer will help

  13. High vertical resolution crosswell seismic imaging

    DOEpatents

    Lazaratos, Spyridon K.

    1999-12-07

    A method for producing high vertical resolution seismic images from crosswell data is disclosed. In accordance with one aspect of the disclosure, a set of vertically spaced, generally horizontally extending continuous layers and associated nodes are defined within a region between two boreholes. The specific number of nodes is selected such that the value of a particular characteristic of the subterranean region at each of the nodes is one which can be determined from the seismic data. Once values are established at the nodes, values of the particular characteristic are assigned to positions between the node points of each layer based on the values at node within that layer and without regard to the values at node points within any other layer. A seismic map is produced using the node values and the assigned values therebetween. In accordance with another aspect of the disclosure, an approximate model of the region is established using direct arrival traveltime data. Thereafter, the approximate model is adjusted using reflected arrival data. In accordance with still another aspect of the disclosure, correction is provided for well deviation. An associated technique which provides improvements in ray tracing is also disclosed.

  14. High resolution EUV monochromator/spectrometer

    DOEpatents

    Koike, Masako

    1996-01-01

    This invention is related to a monochromator which employs a spherical mirror, a traveling plane mirror with simultaneous rotation, and a varied spacing plane grating. The divergent beam from the entrance slit is converged by the spherical mirror located at the various positions in the monochromator depending of the inventive system. To provide the meaningful diffraction efficiencies and to reduce unwanted higher order lights, the deviation angle subtending the incidence and diffraction beams for the plane grating is varied with the position of the traveling plane mirror with simultaneous rotation located in the front or back of the plane grating with wavelength scanning. The outgoing beam from the monochromator goes through the fixed exit slit and has same beam direction regardless of the scanning wavelength. The combination of properly designed motions of the plane mirror and novel varied-spacing parameters of the inventive plane grating corrects the aberrations and focuses the monochromatic spectral image on the exit slit, enabling measurements at high spectral resolution.

  15. Titania High-Resolution Color Composite

    NASA Technical Reports Server (NTRS)

    1986-01-01

    This high-resolution color composite of Titania was made from Voyager 2 images taken Jan. 24, 1986, as the spacecraft neared its closest approach to Uranus. Voyager's narrow-angle camera acquired this image of Titania, one of the large moons of Uranus, through the violet and clear filters. The spacecraft was about 500,000 kilometers (300,000 miles) away; the picture shows details about 9 km (6 mi) in size. Titania has a diameter of about 1,600 km (1,000 mi). In addition to many scars due to impacts, Titania displays evidence of other geologic activity at some point in its history. The large, trenchlike feature near the terminator (day-night boundary) at middle right suggests at least one episode of tectonic activity. Another, basinlike structure near the upper right is evidence of an ancient period of heavy impact activity. The neutral gray color of Titania is characteristic of the Uranian satellites as a whole. The Voyager project is managed for NASA by the Jet Propulsion Laboratory.

  16. The High Resolution Tropospheric Ozone Residual

    NASA Technical Reports Server (NTRS)

    Schoeberl, Mark R.

    2006-01-01

    The co-flight of the MLS stratospheric limb sounder and the Ozone Monitoring Instrument (OMI) provides the capability of computing the Tropospheric Ozone Residual (TOR) in much greater detail [Ziemke et al., 2006]. Using forward trajectory calculations of MLS ozone measurements combined with OMI column ozone we have developed a high horizontal resolution tropospheric ozone residual (HTOR) which can provide even more detail than the standard TOR product. HTOR is especially useful for extra-tropical studies of tropospheric ozone transport. We find that both the Pacific pollution corridor (East Asia to Alaska) and the Atlantic pollution corridor (North America east coast to Europe) are also preferred locations for strat-trop folds leading to systematic overestimates of pollution amounts. In fact, fold events appear to dominate extra-tropical Northern Hemisphere day-to-day maps of HTOR. Model estimates of the tropospheric column are in reasonable agreement with the HTOR amounts when offsets due to different tropopause height calculations are taken into consideration.

  17. Europa Ice Cliffs-High Resolution

    NASA Technical Reports Server (NTRS)

    1998-01-01

    This view of the Conamara Chaos region on Jupiter's moon Europa shows cliffs along the edges of high-standing ice plates. The washboard texture of the older terrain has been broken into plates which are separated by material with a jumbled texture. The cliffs themselves are rough and broadly scalloped, and smooth debris shed from the cliff faces is piled along the base. For scale, the height of the cliffs and size of the scalloped indentations are comparable to the famous cliff face of Mount Rushmore in South Dakota.

    This image was taken on December 16, 1997 at a range of 900 kilometers (540 miles) by the solid state imaging system (camera) on NASA's Galileo spacecraft. North is to the top right of the picture, and the sun illuminates the surface from the east. This image, centered at approximately 8 degrees north latitude and 273 degrees west longitude, covers an area approximately 1.5 kilometers by 4 kilometers (0.9 miles by 2.4 miles). The resolution is 9 meters (30 feet) per picture element.

    The Jet Propulsion Laboratory, Pasadena, CA manages the Galileo mission for NASA's Office of Space Science, Washington, DC. JPL is an operating division of California Institute of Technology (Caltech).

    This image and other images and data received from Galileo are posted on the World Wide Web, on the Galileo mission home page at URL http://www.jpl.nasa.gov/ galileo.

  18. The High Resolution Tropospheric Ozone Residual

    NASA Astrophysics Data System (ADS)

    Schoeberl, M. R.; Ziemke, J.; Bhartia, P.; Froidevaux, L.; Levelt, P.

    2006-12-01

    The co-flight of the MLS stratospheric limb sounder and the Ozone Monitoring Instrument (OMI) provides the capability of computing the Tropospheric Ozone Residual (TOR) in much greater detail [Ziemke et al., 2006]. Using forward trajectory calculations of MLS ozone measurements combined with OMI column ozone we have developed a high horizontal resolution tropospheric ozone residual (HTOR) which can provide even more detail than the standard TOR product. HTOR is especially useful for extra-tropical studies of tropospheric ozone transport. We find that both the Pacific pollution corridor (East Asia to Alaska) and the Atlantic pollution corridor (North America east coast to Europe) are also preferred locations for strat-trop folds leading to systematic over-estimates of pollution amounts. In fact, fold events appear to dominate extra-tropical Northern Hemisphere day-to-day maps of HTOR. Model estimates of the tropospheric column are in reasonable agreement with the HTOR amounts when offsets due to different tropopause height calculations are taken into consideration.

  19. High resolution EUV monochromator/spectrometer

    DOEpatents

    Koike, Masako

    1996-06-18

    This invention is related to a monochromator which employs a spherical mirror, a traveling plane mirror with simultaneous rotation, and a varied spacing plane grating. The divergent beam from the entrance slit is converged by the spherical mirror located at the various positions in the monochromator depending of the inventive system. To provide the meaningful diffraction efficiencies and to reduce unwanted higher order lights, the deviation angle subtending the incidence and diffraction beams for the plane grating is varied with the position of the traveling plane mirror with simultaneous rotation located in the front or back of the plane grating with wavelength scanning. The outgoing beam from the monochromator goes through the fixed exit slit and has same beam direction regardless of the scanning wavelength. The combination of properly designed motions of the plane mirror and novel varied-spacing parameters of the inventive plane grating corrects the aberrations and focuses the monochromatic spectral image on the exit slit, enabling measurements at high spectral resolution. 10 figs.

  20. Optical spectroscopy combined with high-resolution magnetic resonance imaging for digestive wall assessment: endoluminal bimodal probe conception and characterization in vitro, on organic sample and in vivo on a rabbit

    NASA Astrophysics Data System (ADS)

    Ramgolam, Anoop; Sablong, Raphaël; Lafarge, Lionel; Saint-Jalmes, Hervé; Beuf, Olivier

    2011-11-01

    Colorectal cancer is a major health issue worldwide. Conventional white light endoscopy (WLE) coupled to histology is considered as the gold standard today and is the most widespread technique used for colorectal cancer diagnosis. However, during the early stages, colorectal cancer is very often characterized by flat adenomas which develop just underneath the mucosal surface. The use of WLE, which is heavily based on the detection of morphological changes, becomes quite delicate due to subtle or quasi-invisible morphological changes of the colonic lining. Several techniques are currently being investigated in the scope of providing new tools that would allow such a diagnostic or assist actual techniques in so doing. We hereby present a novel technique where high spatial resolution MRI is combined with autofluorescence and reflectance spectroscopy in a bimodal endoluminal probe to extract morphological data and biochemical information, respectively. The design and conception of the endoluminal probe are detailed and the promising preliminary results obtained in vitro (home-built phantom containing eosin and rhodamine B), on an organic sample (the kiwi fruit) and in vivo on a rabbit are presented and discussed.

  1. Identification and characterization of new Fusarium masked mycotoxins, T2 and HT2 glycosyl derivatives, in naturally contaminated wheat and oats by liquid chromatography-high-resolution mass spectrometry.

    PubMed

    Lattanzio, Veronica M T; Visconti, Angelo; Haidukowski, Miriam; Pascale, Michelangelo

    2012-04-01

    The presence of glucoside derivatives of T-2 and HT-2 toxins (type A trichothecene mycotoxins) in naturally contaminated wheat and oats is reported for the first time. The use of advanced high-resolution mass spectrometry based on Orbitrap technology allowed to obtain molecular structure details by measuring exact masses of main characteristic fragments, with mass accuracy lower than 2.8 ppm (absolute value). A monoglucoside derivative of T-2 toxin and two monoglucoside derivatives of HT-2 toxin were identified and characterized. The analysis of their fragmentation patterns provided evidence for glucosylation at C-3 position for T-2 toxin and at C-3 or C-4 position for HT-2 toxin. A screening for the presence of these new masked forms of mycotoxins was carried out on a set of naturally contaminated wheat and oats samples. On the basis of peak area ratio between glucoside derivatives and free T-2 and HT-2 toxins, the presence of glucoside derivatives was more likely in wheat than in oats samples. The present work confirms the widespread occurrence of trichothecene glucosides in cereal grains naturally contaminated with the relevant unconjugated toxins, thus suggesting the importance of developing suitable analytical methods for their detection. Besides toxicity studies, tracking down these new masked forms of trichothecenes along the food/feed chain would enable to collect information on their relevance in human/animal exposure to mycotoxin risk.

  2. High-resolution ophthalmic imaging system

    DOEpatents

    Olivier, Scot S.; Carrano, Carmen J.

    2007-12-04

    A system for providing an improved resolution retina image comprising an imaging camera for capturing a retina image and a computer system operatively connected to the imaging camera, the computer producing short exposures of the retina image and providing speckle processing of the short exposures to provide the improved resolution retina image. The system comprises the steps of capturing a retina image, producing short exposures of the retina image, and speckle processing the short exposures of the retina image to provide the improved resolution retina image.

  3. High resolution in galaxy photometry and imaging

    NASA Astrophysics Data System (ADS)

    Nieto, J.-L.; Lelievre, G.

    Techniques for increasing the resolution of ground-based photometric observations of galaxies are discussed. The theoretical limitations on resolution and their implications for choosing telescope size at a given site considered, with an emphasis on the importance of the Fried (1966) parameter r0. The techniques recommended are shortening exposure time, selection of the highest-resolution images, and a posteriori digital image processing (as opposed to active-mirror image stabilization or the cine-CCD system of Fort et al., 1984). The value of the increased resolution (by a factor of 2) achieved at Pic du Midi observatory for studies of detailed structure in extragalactic objects, for determining the distance to galaxies, and for probing the central cores of galaxies is indicated.

  4. Characterizing intestinal strictures with acoustic resolution photoacoustic microscopy

    NASA Astrophysics Data System (ADS)

    Lei, Hao; Xu, Guan; Liu, Shengchun; Johnson, Laura A.; Moons, David S.; Higgins, Peter D. R.; Rice, Michael D.; Ni, Jun; Wang, Xueding

    2016-03-01

    Crohn's disease (CD) is an autoimmune disease, which may cause obstructing intestinal strictures due to inflammation, fibrosis (deposition of collagen), or a combination of both. Identifying the different stages of the disease progression is still challenging. In this work, we indicated the feasibility of non-invasively characterizing intestinal strictures using photoacoustic imaging (PAI), utilizing the uniquely optical absorption of hemoglobin and collagen. Surgically removed human intestinal stricture specimens were investigated with a prototype PAI system. 2D PA images with acoustic resolution at wavelength 532, 1210 and 1310 nm were formulated, and furthermore, the PA histochemical components images which show the microscopic distributions of histochemical components were solved. Imaging experiments on surgically removed human intestinal specimens has demonstrated the solved PA images were significantly different associated with the presence of fibrosis, which could be applied to characterize the intestinal strictures for given specimens.

  5. Climate Simulations with a Variable-Resolution GCM: Stretched Cubed-Sphere High Resolution Atmospheric Model

    NASA Astrophysics Data System (ADS)

    Tu, C. Y.; Harris, L.; Lin, S. J.

    2014-12-01

    Variable-resolution GCM with enhanced resolution over the region of interest is an adaptive approach to self-consistent interactions between global and regional phenomena. A stretched cubed-sphere High Resolution Atmosphere Model (HiRAM) is constructed using the Geophysical Fluid Dynamics Laboratory (GFDL) finite-volume dynamical core. The horizontal grid spacing in the stretched cubed-sphere is smoothly transformed from the center of highest-resolution region to the center of coarsest-resolution region. Three 30-yr AMIP type simulations were performed in this study; one C384 uniformed cubed-sphere grid, and two stretched cubed-sphere grid with stretching factor 2.5. Two stretched-grid experiments further set the center of highest-resolution region in Taiwan (C384R2.5TW) and Oklahoma City (C384R2.5OKC), respectively. The horizontal resolution in this C384R2.5 stretched grid ranges from 10km to 65km. Three climate simulations were compared against re-analysis data to understand the effect of horizontal resolution on both the simulated global climate and regional features. The global mean climatology in stretched-grid AMIP simulations shows no unrealistic drift comparing to the uniform-grid simulation and observation. Regional orographic precipitation is better simulated in the high-resolution region. High resolution also shows improvement in typhoon/hurricane simulation. In western Pacific basin, high resolution improves simulated typhoon intensity. For weak and moderate typhoons, there is no strong trend with enhancing resolution. But for strong typhoon, there is high correlation between enhancing resolution with typhoon intensity. By comparing simulations with IBTrACS (International Best Track Archieve for Climate Stewardship) in different basins, HiRAM demonstrates the reduction of simulated typhoon/hurricane numbers with enhancement of horizontal resolution.

  6. ALMA: Millimeter/submillimeter Astronomy at high sensitivity and resolution

    NASA Astrophysics Data System (ADS)

    Wootten, Alwyn; Corder, Stuartt Alan; Iono, Daisuke; Testi, Leonardo

    2015-08-01

    Vigorous and transformative investigation of the millimeter/submillimeter sky at high sensitivity and high resolution has benefitted from the recent completion of the Atacama Large Millimeter/submillimeter Array (ALMA), an effort of 22 countries. ALMA, a versatile interferometric telescope at 5000m elevation in the Atacama Desert of northern Chile, is comprised of sixty-six precision telescopes which may be arrayed over a 16 km extent on the high Chajnantor plain. Owing to its large collecting area of over 6600m^2 and its commodious spectral grasp of 8 GHz of spectrum in dual polarizations within an 84-950 GHz range, ALMA provides astronomers with vastly improved spectroscopic sensitivity. Spatial resolutions of 30 milliarcsec were demonstrated recently, revealing rings within the HL Tau protoplanetary disk, the rotating structure of the asteroid Juno and the molecular structure of the z~3 lensed galaxy SDP.81. The astrometric accuracy even at this early stage of deployment is better than 3 milliarcsec, providing improved ephemerides for the encounter of the New Horizons spacecraft with the Pluto-Charon system. Very long baseline capability is expected to bring microarcsecond imaging to a worldwide array anchored by ALMA with potential for imaging nearby Black Holes on the scales of their Event Horizons.ALMA's huge collecting area has enabled detection of lines of C, N and CO and continuum for characterization of massive complexes near the Era of Recombination. ALMA's sensitivity and resolution have enabledmeasurement of molecular emission through cosmic time from numerous molecules characterizing galactic star-forming regions and tracing their kinematics near active nuclei, starbursts, interacting clouds and quiescent disks. ALMA's sensitivity, resolution and spectral grasp have enabled it to image molecules and dust characterizing circumstellar disks and embedded bodies in protostellar, transition and debris stages of development.ALMA is a partnership of ESO

  7. Single sensor processing to obtain high resolution color component signals

    NASA Technical Reports Server (NTRS)

    Glenn, William E. (Inventor)

    2010-01-01

    A method for generating color video signals representative of color images of a scene includes the following steps: focusing light from the scene on an electronic image sensor via a filter having a tri-color filter pattern; producing, from outputs of the sensor, first and second relatively low resolution luminance signals; producing, from outputs of the sensor, a relatively high resolution luminance signal; producing, from a ratio of the relatively high resolution luminance signal to the first relatively low resolution luminance signal, a high band luminance component signal; producing, from outputs of the sensor, relatively low resolution color component signals; and combining each of the relatively low resolution color component signals with the high band luminance component signal to obtain relatively high resolution color component signals.

  8. Large Scale, High Resolution, Mantle Dynamics Modeling

    NASA Astrophysics Data System (ADS)

    Geenen, T.; Berg, A. V.; Spakman, W.

    2007-12-01

    To model the geodynamic evolution of plate convergence, subduction and collision and to allow for a connection to various types of observational data, geophysical, geodetical and geological, we developed a 4D (space-time) numerical mantle convection code. The model is based on a spherical 3D Eulerian fem model, with quadratic elements, on top of which we constructed a 3D Lagrangian particle in cell(PIC) method. We use the PIC method to transport material properties and to incorporate a viscoelastic rheology. Since capturing small scale processes associated with localization phenomena require a high resolution, we spend a considerable effort on implementing solvers suitable to solve for models with over 100 million degrees of freedom. We implemented Additive Schwartz type ILU based methods in combination with a Krylov solver, GMRES. However we found that for problems with over 500 thousend degrees of freedom the convergence of the solver degraded severely. This observation is known from the literature [Saad, 2003] and results from the local character of the ILU preconditioner resulting in a poor approximation of the inverse of A for large A. The size of A for which ILU is no longer usable depends on the condition of A and on the amount of fill in allowed for the ILU preconditioner. We found that for our problems with over 5×105 degrees of freedom convergence became to slow to solve the system within an acceptable amount of walltime, one minute, even when allowing for considerable amount of fill in. We also implemented MUMPS and found good scaling results for problems up to 107 degrees of freedom for up to 32 CPU¡¯s. For problems with over 100 million degrees of freedom we implemented Algebraic Multigrid type methods (AMG) from the ML library [Sala, 2006]. Since multigrid methods are most effective for single parameter problems, we rebuild our model to use the SIMPLE method in the Stokes solver [Patankar, 1980]. We present scaling results from these solvers for 3D

  9. MULTIPULSE - high resolution and high power in one TDEM system

    NASA Astrophysics Data System (ADS)

    Chen, Tianyou; Hodges, Greg; Miles, Philip

    2015-09-01

    An airborne time domain electromagnetic (TEM) system with high resolution and great depth of exploration is desired for geological mapping as well as for mineral exploration. The MULTIPULSE technology enables an airborne TEM system to transmit a high power pulse (a half-sine, for instance) and one or multiple low power pulse(s) (trapezoid or square) within a half-cycle. The high power pulse ensures good depth of exploration and the low power pulse allows a fast transmitter current turn off and earlier off-time measurement thus providing higher frequency signals, which allows higher near-surface resolution and better sensitivity to weak conductors. The power spectrum of the MULTIPULSE waveform comprising a half-sine and a trapezoid pulse clearly shows increased power in the higher frequency range (> ~2.3 kHz) compared to that of a single half-sine waveform. The addition of the low power trapezoid pulse extends the range of the sensitivity 10-fold towards the weak conductors, expanding the geological conductivity range of a system and increasing the scope of its applications. The MULTIPULSE technology can be applied to standard single-pulse airborne TEM systems on both helicopter and fixed-wing. We field tested the HELITEM MULTIPULSE system over a wire-loop in Iroquois Falls, demonstrating the different sensitivity of the high and low power pulses to the overburden and the wire-loop. We also tested both HELITEM and GEOTEM MULTIPULSE systems over a layered oil sand geologic setting in Fort McMurray, Alberta, Canada. The results show comparable shallow geologic resolution of the MULTIPULSE to that of the RESOLVE system while maintaining superior depth of exploration, confirming the increased geological conductivity range of a system employing MULTIPULSE compared to the standard single-pulse systems.

  10. Large Field, High Resolution Full-Field Optical Coherence Tomography

    PubMed Central

    Assayag, Osnath; Antoine, Martine; Sigal-Zafrani, Brigitte; Riben, Michael; Harms, Fabrice; Burcheri, Adriano; Grieve, Kate; Dalimier, Eugénie; Le Conte de Poly, Bertrand; Boccara, Claude

    2014-01-01

    We present a benchmark pilot study in which high-resolution Full-Field Optical Coherence Tomography (FF-OCT) was used to image human breast tissue and is evaluated to assess its ability to aid the pathologist’s management of intra-operative diagnoses. FF-OCT imaging safety was investigated and agreement between FF-OCT and routinely prepared histopathological images was evaluated. The compact setup used for this study provides 1 µm3 resolution and 200 µm imaging depth, and a 2.25 cm2 specimen is scanned in about 7 minutes. 75 breast specimens were imaged from 22 patients (21 women, 1 man) with a mean age of 58 (range: 25-83). Pathologists blind diagnosed normal/benign or malignant tissue based on FF-OCT images alone, diagnosis from histopathology followed for comparison. The contrast in the FF-OCT images is generated by intrinsic tissue scattering properties, meaning that no tissue staining or preparation is required. Major architectural features and tissue structures of benign breast tissue, including adipocytes, fibrous stroma, lobules and ducts were characterized. Subsequently, features resulting from pathological modification were characterized and a diagnosis decision tree was developed. Using FF-OCT images, two breast pathologists were able to distinguish normal/benign tissue from lesional with a sensitivity of 94% and 90%, and specificity of 75% and 79% respectively. PMID:24000981

  11. Pioneering high angular resolution at GTC: FRIDA

    NASA Astrophysics Data System (ADS)

    Prieto, M. A.

    2017-03-01

    FRIDA imager and integral-field spectrograph will provide the GTC community with the first diffraction-limited angular resolutions of a 10 m telescope: 25 - 40 mas in the 1 - 2.5 um range. These angular resolutions are a factor 15 improvement with respect to those of current and/or planned instruments for GTC, factor 1.5 superior to that of JWST. In this talk I will develop on science paths for FRIDA, with natural and laser guide star that illustrate the potential and unique capabilities of GTCAO+FRIDA till the arrival of the ELTs.

  12. Fast access to reduced-resolution subsamples of high-resolution images

    NASA Astrophysics Data System (ADS)

    Isaacson, Joel S.

    1991-08-01

    Frequently, displaying a digital image requires reducing the volume of data contained in a high-resolution image. This reduction can be performed by sub- sampling pixels from the high resolution image. Some examples of systems that need fast access to reduced resolution images are: modern digital prepress production; flight simulators; terrestrial planetary and astronomical imaging systems. On standard workstations, a lower resolution image cannot be read without essentially reading the whole high-resolution image. This paper demonstrates a method that allows fast access to lower scale resolution images. The method has the following characteristics. The proposed storage format greatly lessens the time needed to read a low-resolution image typically by an order of magnitude. The storage format supports efficient reading of multiple scale reduced resolutions. The image file size remains the same as in current formats. No penalty is imposed by using this new format for any operation that uses the image at full resolution. Additionally, an efficient method for rotating images in this format is demonstrated that is many times faster than methods currently employed. The last section gives benchmarks that demonstrate the utility of this format for reading an image at low resolution.

  13. High spectral resolution image of Barnacle Bill

    NASA Technical Reports Server (NTRS)

    1997-01-01

    The rover Sojourner's first target for measurement by the Alpha-Proton-Xray Spectrometer (APXS) was the rock named Barnacle Bill, located close to the ramp down which the rover made its egress from the lander. The full spectral capability of the Imager for Mars Pathfinder (IMP), consisting of 13 wavelength filters, was used to characterize the rock's surface. The measured area is relatively dark, and is shown in blue. Nearby on the rock surface, soil material is trapped in pits (shown in red).

    Mars Pathfinder is the second in NASA's Discovery program of low-cost spacecraft with highly focused science goals. The Jet Propulsion Laboratory, Pasadena, CA, developed and manages the Mars Pathfinder mission for NASA's Office of Space Science, Washington, D.C. The Imager for Mars Pathfinder (IMP) was developed by the University of Arizona Lunar and Planetary Laboratory under contract to JPL. Peter Smith is the Principal Investigator. JPL is an operating division of the California Institute of Technology (Caltech).

  14. High resolution, high rate x-ray spectrometer

    DOEpatents

    Goulding, F.S.; Landis, D.A.

    1983-07-14

    It is an object of the invention to provide a pulse processing system for use with detected signals of a wide dynamic range which is capable of very high counting rates, with high throughput, with excellent energy resolution and a high signal-to-noise ratio. It is a further object to provide a pulse processing system wherein the fast channel resolving time is quite short and substantially independent of the energy of the detected signals. Another object is to provide a pulse processing system having a pile-up rejector circuit which will allow the maximum number of non-interfering pulses to be passed to the output. It is also an object of the invention to provide new methods for generating substantially symmetrically triangular pulses for use in both the main and fast channels of a pulse processing system.

  15. High temperature materials characterization

    NASA Technical Reports Server (NTRS)

    Workman, Gary L.

    1990-01-01

    A lab facility for measuring elastic moduli up to 1700 C was constructed and delivered. It was shown that the ultrasonic method can be used to determine elastic constants of materials from room temperature to their melting points. The ease in coupling high frequency acoustic energy is still a difficult task. Even now, new coupling materials and higher power ultrasonic pulsers are being suggested. The surface was only scratched in terms of showing the full capabilities of either technique used, especially since there is such a large learning curve in developing proper methodologies to take measurements into the high temperature region. The laser acoustic system does not seem to have sufficient precision at this time to replace the normal buffer rod methodology.

  16. High Resolution Velocity Structure in Eastern Turkey

    NASA Astrophysics Data System (ADS)

    Pasyanos, M. E.; Gok, R.; Zor, E.; Walter, W. R.

    2004-12-01

    We investigate the crust and upper mantle structure of eastern Turkey where the Anatolian, Arabian and Eurasian Plates meet, forming a complex tectonic regime. The Bitlis suture is a continental collision zone between the Anatolian plateau and the Arabian plate. Broadband data available through the Eastern Turkey Seismic Experiment (ETSE) provide a unique opportunity for studying the high resolution velocity structure of the region. Zor et al. (2003) found an average 46 km thick crust in the Anatolian plateau using a six-layered grid search inversion of the ETSE receiver functions. Receiver functions are sensitive to the velocity contrast of interfaces and the relative travel time of converted and reverberated waves between those interfaces. The interpretation of receiver functions alone, however, may result in an apparent depth-velocity trade-off [Ammon et al., 1990]. In order to improve upon this velocity model, we have combined the receiver functions with surface wave data using the joint inversion method of Julia et al. (2000). In this technique, the two sets of observations are combined into a single algebraic equation and each data set is weighted by an estimate of the uncertainty in the observations. The receiver functions are calculated using an iterative time-domain deconvolution technique. We also consider azimuthal changes in the receiver functions and have stacked them into different groups accordingly. We are improving our surface wave model by making Love and Rayleigh dispersion measurements at the ETSE stations and incorporating them into a regional group velocity model for periods between 10 and 100 seconds. Preliminary results indicate a strong trend in the long period group velocities toward the northeast, indicating slow upper mantle velocities in the area consistent with Pn, Sn and receiver function results. Starting models used for the joint inversions include both a 1-D model from a 12-ton dam shot recorded by ETSE [Gurbuz et al., 2004] and

  17. High Resolution Velocity Structure in Eastern Turkey

    SciTech Connect

    Pasyanos, M; Gok, R; Zor, E; Walter, W

    2004-09-03

    We investigate the crustal and upper mantle structure of eastern Turkey where the Anatolian, Arabian and Eurasian Plates meet and form a complex tectonic structure. The Bitlis suture is a continental collision zone between the Anatolian plateau and the Arabian plate. Broadband data available through the Eastern Turkey Seismic Experiment (ETSE) provided a unique opportunity for studying the high resolution velocity structure. Zor et al. found an average 46 km thick crust in Anatolian plateau using six-layered grid search inversion of the ETSE receiver functions. Receiver functions are sensitive to the velocity contrast of interfaces and the relative travel time of converted and reverberated waves between those interfaces. The interpretation of receiver function alone with many-layered parameterization may result in an apparent depth-velocity tradeoff. In order to improve previous velocity model, we employed the joint inversion method with many layered parameterization of Julia et al. (2000) to the ETSE receiver functions. In this technique, the receiver function and surface-wave observations are combined into a single algebraic equation and each data set is weighted by an estimate of the uncertainty in the observations. We consider azimuthal changes of receiver functions and have stacked them into different groups. We calculated the receiver functions using iterative time-domain deconvolution technique and surface wave group velocity dispersion curves between 10-100 sec. We are making surface wave dispersion measurements at the ETSE stations and have incorporated them into a regional group velocity model. Preliminary results indicate a strong trend in the long period group velocity in the northeast. This indicates slow upper mantle velocities in the region consistent with Pn, Sn and receiver function results. We started with both the 1-D model that is obtained with the 12 tones dam explosion shot data recorded by ETSE network and the existing receiver function

  18. High Resolution Surface Science at Mars

    NASA Technical Reports Server (NTRS)

    Bailey, Zachary J.; Tamppari, Leslie K.; Lock, Robert E.; Sturm, Erick J.

    2013-01-01

    The proposed mission would place a 2.4 m telescope in orbit around Mars with two focal plane instruments to obtain the highest resolution images and spectral maps of the surface to date (3-10x better than current). This investigation would make major contributions to all of the Mars Program Goals: life, climate, geology and preparation for human presence.

  19. High resolution functional photoacoustic tomography of breast cancer

    SciTech Connect

    Li, Xiaoqi; Yao, Lei; Xi, Lei; Jiang, Huabei; Heldermon, Coy D.

    2015-09-15

    Purpose: To evaluate the feasibility of functional photoacoustic tomography (fPAT) for high resolution detection and characterization of breast cancer and to demonstrate for the first time quantitative hemoglobin concentration and oxygen saturation images of breasts that were formed with model-based reconstruction of tomographic photoacoustic data. Methods: The study was HIPAA compliant and was approved by the university institutional review board. Written informed consents were obtained from all the participants. Ten cases, including six cancer and four healthy (mean age = 50 yr; age range = 41–66 yr), were examined. Functional images of breast tissue including absolute total hemoglobin concentration (Hb{sub T}) and oxygen saturation (StO{sub 2}%) were obtained by fPAT and cross validated with magnetic resonance imaging (MRI) readings and/or histopathology. Results: Hb{sub T} and StO{sub 2}% maps from all six pathology-confirmed cancer cases (60%) show clear detection of tumor, while MR images indicate clear detection of tumor for five of six cancer cases; one small tumor was read as near-complete-resolution by MRI. The average Hb{sub T} and StO{sub 2}% value of suspicious lesion area for the cancer cases was 61.6 ± 18.9 μM/l and 67.5% ± 5.2% compared to 25.6 ± 7.4 μM/l and 65.2% ± 3.8% for background normal tissue. Conclusions: fPAT has the potential to be a significant add-on in breast cancer detection and characterization as it provides submillimeter resolution functional images of breast lesions.

  20. High-resolution sea wind hindcasts over the Mediterranean area

    NASA Astrophysics Data System (ADS)

    Menendez, M.; García-Díez, M.; Fita, L.; Fernández, J.; Méndez, F. J.; Gutiérrez, J. M.

    2014-04-01

    The goal of this study is to develop a high-resolution atmospheric hindcast over the Mediterranean area using the WRF-ARW model, focusing on offshore surface wind fields. In order to choose the most adequate model configuration, the study provides details on the calibration of the experimental saet-up through a sensitivity test considering the October-December 2001 period (the 2001 super-storm event in the West Mediterranean). A daily forecast outperforms the spectral technique of previous products and the boundary data from ERA-Interim reanalysis produces the most accurate estimates in terms of wind variability and hour-to-hour correspondence. According to the sensitivity test, two data sets of wind hindcast are produced: the SeaWind I (30-km horizontal resolution for a period of 60 years) and the SeaWind II (15-km horizontal resolution for 20 years). The validation of the resulting surface winds is undertaken considering two offshore observational datasets. On the one hand, hourly surface buoy stations are used to validate wind time series at specific locations; on the other hand, wind altimeter satellite observations are considered for spatial validation in the whole Mediterranean Sea. The results obtained from this validation process show a very good agreement with observations for the southern Europe region. Finally, SeaWind I and II are used to characterize offshore wind fields in the Mediterranean Sea. The statistical structure of sea surface wind is analyzed and the agreement with Weibull probability distribution is discussed. In addition, wind persistence and extreme wind speed (50 year return period) are characterized and relevant areas of wind power generation are described by estimating wind energy quantities.

  1. Theoretical performance analysis for CMOS based high resolution detectors.

    PubMed

    Jain, Amit; Bednarek, Daniel R; Rudin, Stephen

    2013-03-06

    High resolution imaging capabilities are essential for accurately guiding successful endovascular interventional procedures. Present x-ray imaging detectors are not always adequate due to their inherent limitations. The newly-developed high-resolution micro-angiographic fluoroscope (MAF-CCD) detector has demonstrated excellent clinical image quality; however, further improvement in performance and physical design may be possible using CMOS sensors. We have thus calculated the theoretical performance of two proposed CMOS detectors which may be used as a successor to the MAF. The proposed detectors have a 300 μm thick HL-type CsI phosphor, a 50 μm-pixel CMOS sensor with and without a variable gain light image intensifier (LII), and are designated MAF-CMOS-LII and MAF-CMOS, respectively. For the performance evaluation, linear cascade modeling was used. The detector imaging chains were divided into individual stages characterized by one of the basic processes (quantum gain, binomial selection, stochastic and deterministic blurring, additive noise). Ranges of readout noise and exposure were used to calculate the detectors' MTF and DQE. The MAF-CMOS showed slightly better MTF than the MAF-CMOS-LII, but the MAF-CMOS-LII showed far better DQE, especially for lower exposures. The proposed detectors can have improved MTF and DQE compared with the present high resolution MAF detector. The performance of the MAF-CMOS is excellent for the angiography exposure range; however it is limited at fluoroscopic levels due to additive instrumentation noise. The MAF-CMOS-LII, having the advantage of the variable LII gain, can overcome the noise limitation and hence may perform exceptionally for the full range of required exposures; however, it is more complex and hence more expensive.

  2. Final Technical Report for Interagency Agreement No. DE-SC0005453 “Characterizing Aerosol Distributions, Types, and Optical and Microphysical Properties using the NASA Airborne High Spectral Resolution Lidar (HSRL) and the Research Scanning Polarimeter (RSP)”

    SciTech Connect

    Hostetler, Chris; Ferrare, Richard

    2015-01-13

    Measurements of the vertical profile of atmospheric aerosols and aerosol optical and microphysical characteristics are required to: 1) determine aerosol direct and indirect radiative forcing, 2) compute radiative flux and heating rate profiles, 3) assess model simulations of aerosol distributions and types, and 4) establish the ability of surface and space-based remote sensors to measure the indirect effect. Consequently the ASR program calls for a combination of remote sensing and in situ measurements to determine aerosol properties and aerosol influences on clouds and radiation. As part of our previous DOE ASP project, we deployed the NASA Langley airborne High Spectral Resolution Lidar (HSRL) on the NASA B200 King Air aircraft during major field experiments in 2006 (MILAGRO and MaxTEX), 2007 (CHAPS), 2009 (RACORO), and 2010 (CalNex and CARES). The HSRL provided measurements of aerosol extinction (532 nm), backscatter (532 and 1064 nm), and depolarization (532 and 1064 nm). These measurements were typically made in close temporal and spatial coincidence with measurements made from DOE-funded and other participating aircraft and ground sites. On the RACORO, CARES, and CalNEX missions, we also deployed the NASA Goddard Institute for Space Studies (GISS) Research Scanning Polarimeter (RSP). RSP provided intensity and degree of linear polarization over a broad spectral and angular range enabling column-average retrievals of aerosol optical and microphysical properties. Under this project, we analyzed observations and model results from RACORO, CARES, and CalNex and accomplished the following objectives. 1. Identified aerosol types, characterize the vertical distribution of the aerosol types, and partition aerosol optical depth by type, for CARES and CalNex using HSRL data as we have done for previous missions. 2. Investigated aerosol microphysical and macrophysical properties using the RSP. 3. Used the aerosol backscatter and extinction profiles measured by the HSRL

  3. High Resolution non-Markovianity in NMR

    PubMed Central

    Bernardes, Nadja K.; Peterson, John P. S.; Sarthour, Roberto S.; Souza, Alexandre M.; Monken, C. H.; Roditi, Itzhak; Oliveira, Ivan S.; Santos, Marcelo F.

    2016-01-01

    Memoryless time evolutions are ubiquitous in nature but often correspond to a resolution-induced approximation, i.e. there are correlations in time whose effects are undetectable. Recent advances in the dynamical control of small quantum systems provide the ideal scenario to probe some of these effects. Here we experimentally demonstrate the precise induction of memory effects on the evolution of a quantum coin (qubit) by correlations engineered in its environment. In particular, we design a collisional model in Nuclear Magnetic Resonance (NMR) and precisely control the strength of the effects by changing the degree of correlation in the environment and its time of interaction with the qubit. We also show how these effects can be hidden by the limited resolution of the measurements performed on the qubit. The experiment reinforces NMR as a test bed for the study of open quantum systems and the simulation of their classical counterparts. PMID:27669652

  4. Quantum interpolation for high-resolution sensing.

    PubMed

    Ajoy, Ashok; Liu, Yi-Xiang; Saha, Kasturi; Marseglia, Luca; Jaskula, Jean-Christophe; Bissbort, Ulf; Cappellaro, Paola

    2017-02-28

    Recent advances in engineering and control of nanoscale quantum sensors have opened new paradigms in precision metrology. Unfortunately, hardware restrictions often limit the sensor performance. In nanoscale magnetic resonance probes, for instance, finite sampling times greatly limit the achievable sensitivity and spectral resolution. Here we introduce a technique for coherent quantum interpolation that can overcome these problems. Using a quantum sensor associated with the nitrogen vacancy center in diamond, we experimentally demonstrate that quantum interpolation can achieve spectroscopy of classical magnetic fields and individual quantum spins with orders of magnitude finer frequency resolution than conventionally possible. Not only is quantum interpolation an enabling technique to extract structural and chemical information from single biomolecules, but it can be directly applied to other quantum systems for superresolution quantum spectroscopy.

  5. High Resolution non-Markovianity in NMR

    NASA Astrophysics Data System (ADS)

    Bernardes, Nadja K.; Peterson, John P. S.; Sarthour, Roberto S.; Souza, Alexandre M.; Monken, C. H.; Roditi, Itzhak; Oliveira, Ivan S.; Santos, Marcelo F.

    2016-09-01

    Memoryless time evolutions are ubiquitous in nature but often correspond to a resolution-induced approximation, i.e. there are correlations in time whose effects are undetectable. Recent advances in the dynamical control of small quantum systems provide the ideal scenario to probe some of these effects. Here we experimentally demonstrate the precise induction of memory effects on the evolution of a quantum coin (qubit) by correlations engineered in its environment. In particular, we design a collisional model in Nuclear Magnetic Resonance (NMR) and precisely control the strength of the effects by changing the degree of correlation in the environment and its time of interaction with the qubit. We also show how these effects can be hidden by the limited resolution of the measurements performed on the qubit. The experiment reinforces NMR as a test bed for the study of open quantum systems and the simulation of their classical counterparts.

  6. Ultra-high resolution electron microscopy

    NASA Astrophysics Data System (ADS)

    Oxley, Mark P.; Lupini, Andrew R.; Pennycook, Stephen J.

    2017-02-01

    The last two decades have seen dramatic advances in the resolution of the electron microscope brought about by the successful correction of lens aberrations that previously limited resolution for most of its history. We briefly review these advances, the achievement of sub-Ångstrom resolution and the ability to identify individual atoms, their bonding configurations and even their dynamics and diffusion pathways. We then present a review of the basic physics of electron scattering, lens aberrations and their correction, and an approximate imaging theory for thin crystals which provides physical insight into the various different imaging modes. Then we proceed to describe a more exact imaging theory starting from Yoshioka’s formulation and covering full image simulation methods using Bloch waves, the multislice formulation and the frozen phonon/quantum excitation of phonons models. Delocalization of inelastic scattering has become an important limiting factor at atomic resolution. We therefore discuss this issue extensively, showing how the full-width-half-maximum is the appropriate measure for predicting image contrast, but the diameter containing 50% of the excitation is an important measure of the range of the interaction. These two measures can differ by a factor of 5, are not a simple function of binding energy, and full image simulations are required to match to experiment. The Z-dependence of annular dark field images is also discussed extensively, both for single atoms and for crystals, and we show that temporal incoherence must be included accurately if atomic species are to be identified through matching experimental intensities to simulations. Finally we mention a few promising directions for future investigation.

  7. Ultra-high resolution electron microscopy

    DOE PAGES

    Oxley, Mark P.; Lupini, Andrew R.; Pennycook, Stephen J.

    2016-12-23

    The last two decades have seen dramatic advances in the resolution of the electron microscope brought about by the successful correction of lens aberrations that previously limited resolution for most of its history. Here we briefly review these advances, the achievement of sub-Ångstrom resolution and the ability to identify individual atoms, their bonding configurations and even their dynamics and diffusion pathways. We then present a review of the basic physics of electron scattering, lens aberrations and their correction, and an approximate imaging theory for thin crystals which provides physical insight into the various different imaging modes. Then we proceed tomore » describe a more exact imaging theory starting from Yoshioka’s formulation and covering full image simulation methods using Bloch waves, the multislice formulation and the frozen phonon/quantum excitation of phonons models. Delocalization of inelastic scattering has become an important limiting factor at atomic resolution. We therefore discuss this issue extensively, showing how the full-width-half-maximum is the appropriate measure for predicting image contrast, but the diameter containing 50% of the excitation is an important measure of the range of the interaction. These two measures can differ by a factor of 5, are not a simple function of binding energy, and full image simulations are required to match to experiment. The Z-dependence of annular dark field images is also discussed extensively, both for single atoms and for crystals, and we show that temporal incoherence must be included accurately if atomic species are to be identified through matching experimental intensities to simulations. Finally we mention a few promising directions for future investigation.« less

  8. Ultra-high resolution electron microscopy

    SciTech Connect

    Oxley, Mark P.; Lupini, Andrew R.; Pennycook, Stephen J.

    2016-12-23

    The last two decades have seen dramatic advances in the resolution of the electron microscope brought about by the successful correction of lens aberrations that previously limited resolution for most of its history. Here we briefly review these advances, the achievement of sub-Ångstrom resolution and the ability to identify individual atoms, their bonding configurations and even their dynamics and diffusion pathways. We then present a review of the basic physics of electron scattering, lens aberrations and their correction, and an approximate imaging theory for thin crystals which provides physical insight into the various different imaging modes. Then we proceed to describe a more exact imaging theory starting from Yoshioka’s formulation and covering full image simulation methods using Bloch waves, the multislice formulation and the frozen phonon/quantum excitation of phonons models. Delocalization of inelastic scattering has become an important limiting factor at atomic resolution. We therefore discuss this issue extensively, showing how the full-width-half-maximum is the appropriate measure for predicting image contrast, but the diameter containing 50% of the excitation is an important measure of the range of the interaction. These two measures can differ by a factor of 5, are not a simple function of binding energy, and full image simulations are required to match to experiment. The Z-dependence of annular dark field images is also discussed extensively, both for single atoms and for crystals, and we show that temporal incoherence must be included accurately if atomic species are to be identified through matching experimental intensities to simulations. Finally we mention a few promising directions for future investigation.

  9. Recent Progress in High-Resolution Observations

    NASA Astrophysics Data System (ADS)

    Berger, T. E.; Title, A. M.

    2004-12-01

    We review recent optical observations of the solar photosphere and chromosphere with an emphasis on those observations that attain spatial resolution values below 0.25 arcsec. Results from the Dutch Open Telescope (DOT) on La Palma, the Dunn Solar Telescope (DST) on Sacramento Peak, and the Vacuum Tower Telescope (VTT) on Tenerife are reviewed. Particular emphasis is placed on results from the newly commissioned Swedish 1-meter Solar Telescope (SST) on La Palma following our successful campaigns at this instrument in 2002 and 2003. The SST with adaptive optics can now achieve 0.0 arcsec resolution imaging of the Sun in multiple simultaneous wavelengths. Scientific findings on the structure of sunspot penumbrae and lightbridges, small-scale magnetic elements, and faculae at the limb are reviewed. The Lockheed Solar Optical Universal Polarimeter (SOUP) birefringent tunable filter at the SST produced 0.16 arcsec resolution magnetograms in the summer of 2003 that have shed new light on the structure and dynamics of small-scale magnetic fields in the solar photosphere.

  10. Characterization of volatile and semi-volatile compounds in green and fermented leaves of Bergenia crassifolia L. by gas chromatography-mass spectrometry and ID-CUBE direct analysis in real time-high resolution mass spectrometry.

    PubMed

    Chernetsova, Elena S; Shikov, Alexander N; Crawford, Elizabeth A; Grashorn, Sebastian; Laakso, I; Pozharitskaya, Olga N; Makarov, Valery G; Hiltunen, Raimo; Galambosi, Bertalan; Morlock, Gertrud E

    2014-01-01

    Chemical compositions of volatile and semi-volatile components in green and fermented leaves of Bergenia crassifolia L. were studied. Leaf components were identified using gas chromatography with low resolution mass spectrometry and direct analysis in real time (DART) high resolution mass spectrometry with an ID-CUBE ion source. Phytol, nerolidol, geraniol, linalool, alpha-bisabolol, alpha-bisabololoxide B, alpha-cadinol, delta-cadinene, alpha-terpineol and several other marker compounds of special interest were defined, for which the process of fermentation significantly changed their content in the leaves. Low resolution El GC-MS and ID-CUBE DART-HRMS were found to be complementary methods, as they provide different information, helpful to increase the confidence of identification.

  11. Photometric correction of VIR high space resolution data of Ceres

    NASA Astrophysics Data System (ADS)

    Longobardo, Andrea; Palomba, Ernesto; De Sanctis, Maria Cristina; Ciarniello, Mauro; Tosi, Federico; Giacomo Carrozzo, Filippo; Capria, Maria Teresa; Zambon, Francesca; Raponi, Andrea; Ammannito, Eleonora; Zinzi, Angelo; Raymond, Carol; Russell, Christopher T.; VIR-Dawn Team

    2016-10-01

    NASA's Dawn spacecraft [1] has been orbiting Ceres since early 2015. The mission is divided into five stages, characterized by different spacecraft altitudes corresponding to different space resolutions, i.e. Approach (CSA), Rotational Characterization (CSR), Survey (CSS), High Altitude Mapping Orbit (HAMO), and Low Altitude Mapping Orbit (LAMO).Ceres is a dark body (i.e. average albedo at 1.2 um is 0.08 [2]), hence photometric correction is much more important than for brighter asteroids (e.g. S-type and achondritric). Indeed, the negligible role of multiple scattering increases the reflectance dependence on phase angle.A photometric correction of VIR data at low spatial resolution (i.e. CSA, CSR, CSS) has already been applied with different methodologies (e.g. [2], [3]), These techniques highlight a reflectance and band depths dependency on the phase angle which is homogeneous on the entire surface in agreement with C-type taxonomy.However, with increasing spatial resolution (i.e. HAMO and LAMO data), the retrieval of a unique set of parameters for the photometric correction is no longer sufficient to obtain reliable albedo/band depth maps. In this work, a new photometric correction is obtained and applied to all the high resolution VIR data of Ceres, taking into account the reflectance variations observed at small scales. The developed algorithm will be implemented on the MATISSE tool [4] in order to be visualized on the Ceres shape model.Finally, an interpretation of the obtained phase functions is given in terms of optical and physical properties of the Ceres regolith.AcknowledgementsVIR was funded and coordinated by the Italian Space Agency, and built by SELEX ES, with the scientific leadership of IAPS-INAF, Rome, Italy, and is operated by IAPS-INAF, Rome, Italy. Support of the Dawn Science, Instrument, and Operation Teams is gratefully acknowledged.References[1] Russell, C. T. et al., 2012, Science 336, 686[2] Longobardo A., et al., 2016, LPSC, 2239

  12. Using high-resolution displays for high-resolution cardiac data.

    PubMed

    Goodyer, Christopher; Hodrien, John; Wood, Jason; Kohl, Peter; Brodlie, Ken

    2009-07-13

    The ability to perform fast, accurate, high-resolution visualization is fundamental to improving our understanding of anatomical data. As the volumes of data increase from improvements in scanning technology, the methods applied to visualization must evolve. In this paper, we address the interactive display of data from high-resolution magnetic resonance imaging scanning of a rabbit heart and subsequent histological imaging. We describe a visualization environment involving a tiled liquid crystal display panel display wall and associated software, which provides an interactive and intuitive user interface. The oView software is an OpenGL application that is written for the VR Juggler environment. This environment abstracts displays and devices away from the application itself, aiding portability between different systems, from desktop PCs to multi-tiled display walls. Portability between display walls has been demonstrated through its use on walls at the universities of both Leeds and Oxford. We discuss important factors to be considered for interactive two-dimensional display of large three-dimensional datasets, including the use of intuitive input devices and level of detail aspects.

  13. High-resolution fully vectorial scanning Kerr magnetometer.

    PubMed

    Flajšman, Lukáš; Urbánek, Michal; Křižáková, Viola; Vaňatka, Marek; Turčan, Igor; Šikola, Tomáš

    2016-05-01

    We report on the development of a high-resolution scanning magnetometer, which fully exploits the vectorial nature of the magneto-optical Kerr effect. The three-dimensional nature of magnetization is at the basis of many micromagnetic phenomena and from these data, we can fully characterize magnetization processes of nanostructures in static and dynamic regimes. Our scanning Kerr magnetometer uses a high numerical aperture microscope objective where the incident light beam can