Science.gov

Sample records for high resolution diffraction

  1. High Resolution Powder Diffraction and Structure Determination

    SciTech Connect

    Cox, D. E.

    1999-04-23

    It is clear that high-resolution synchrotrons X-ray powder diffraction is a very powerful and convenient tool for material characterization and structure determination. Most investigations to date have been carried out under ambient conditions and have focused on structure solution and refinement. The application of high-resolution techniques to increasingly complex structures will certainly represent an important part of future studies, and it has been seen how ab initio solution of structures with perhaps 100 atoms in the asymmetric unit is within the realms of possibility. However, the ease with which temperature-dependence measurements can be made combined with improvements in the technology of position-sensitive detectors will undoubtedly stimulate precise in situ structural studies of phase transitions and related phenomena. One challenge in this area will be to develop high-resolution techniques for ultra-high pressure investigations in diamond anvil cells. This will require highly focused beams and very precise collimation in front of the cell down to dimensions of 50 {micro}m or less. Anomalous scattering offers many interesting possibilities as well. As a means of enhancing scattering contrast it has applications not only to the determination of cation distribution in mixed systems such as the superconducting oxides discussed in Section 9.5.3, but also to the location of specific cations in partially occupied sites, such as the extra-framework positions in zeolites, for example. Another possible application is to provide phasing information for ab initio structure solution. Finally, the precise determination of f as a function of energy through an absorption edge can provide useful information about cation oxidation states, particularly in conjunction with XANES data. In contrast to many experiments at a synchrotron facility, powder diffraction is a relatively simple and user-friendly technique, and most of the procedures and software for data analysis

  2. Microbeam High Angular Resolution Diffraction Applied to Optoelectronic Devices

    SciTech Connect

    Kazimirov, A.; Bilderback, D. H.; Sirenko, A. A.; Cai, Z.-H.; Lai, B.

    2007-01-19

    Collimating perfect crystal optics in a combination with the X-ray focusing optics has been applied to perform high angular resolution microbeam diffraction and scattering experiments on micron-size optoelectronic devices produced by modern semiconductor technology. At CHESS, we used capillary optics and perfect Si/Ge crystal(s) arrangement to perform X-ray standing waves, high angular-resolution diffraction and high resolution reciprocal space mapping analysis. At the APS, 2ID-D microscope beamline, we employed a phase zone plate producing a beam with the size of 240 nm in the horizontal plane and 350 nm in the vertical (diffraction) plane and a perfect Si (004) analyzer crystal to perform diffraction analysis of selectively grown InGaAsP and InGaAlAs-based waveguides with arc sec angular resolution.

  3. Microbeam X-Ray Standing Wave and High Resolution Diffraction

    SciTech Connect

    Kazimirov, A.; Bilderback, D.H.; Huang, R.; Sirenko, A.

    2004-05-12

    Post-focusing collimating optics are introduced as a tool to condition X-ray microbeams for the use in high-resolution X-ray diffraction and scattering techniques. As an example, a one-bounce imaging capillary and miniature Si(004) channel-cut crystal were used to produce a microbeam with 10 {mu}m size and an ultimate angular resolution of 2.5 arc sec. This beam was used to measure the strain in semiconductor microstructures by using X-ray high resolution diffraction and standing wave techniques to {delta}d/d < 5x10-4.

  4. Compact high-resolution Littrow conical diffraction spectrometer.

    PubMed

    Yang, Qinghua

    2016-06-20

    This paper presents a compact high-resolution Littrow conical diffraction spectrometer (LCDS) that includes an echelle grating for horizontally dispersing the incident light beam into several high diffraction orders, a prism for vertically separating the overlapping diffraction orders, and a shared focusing lens used for both the incident and dispersed beams. The unique design of the optics enables the LCDS to give high dispersion on the detector without requiring a large field of view and, therefore, to achieve the benefits of high spectral resolution and compactness. The use of the Littrow conical diffraction coupled with the shared focusing lens makes the LCDS more compact. The formulas of the footprint of the dispersed spectra are derived, and the numerical simulation is given. The design calculations for application of the LCDS to an optical coherence tomography system are illustrated by an example.

  5. The High Resolution Powder Diffraction Beam Line at ESRF

    PubMed Central

    Fitch, A. N.

    2004-01-01

    The optical design and performance of the high-resolution powder diffraction beam line BM16 at ESRF are discussed and illustrated. Some recent studies carried out on BM16 are described, including crystal structure solution and refinement, anomalous scattering, in situ measurements, residual strain in engineering components, investigation of microstructure, and grazing-incidence diffraction from surface layers. The beam line is built on a bending magnet, and operates in the energy range from 5 keV to 40 keV. After the move to an undulator source in 2002, it will benefit from an extented energy range up to 60 keV and increased flux and resolution. It is anticipated that enhancements to the data quality will be achieved, leading to the solution of larger crystal structures, and improvements in the accuracy of refined structures. The systematic exploitation of anisotropic thermal expansion will help reduce the effects of peak overlap in the analysis of powder diffraction data. PMID:27366602

  6. High-resolution diffraction grating interferometric transducer of linear displacements

    NASA Astrophysics Data System (ADS)

    Shang, Ping; Xia, Haojie; Fei, Yetai

    2016-01-01

    A high-resolution transducer of linear displacements is presented. The system is based on semiconductor laser illumination and a diffraction grating applied as a length master. The theory of the optical method is formulated using Doppler description. The relationship model among the interference strips, measurement errors, grating deflection around the X, Y and Z axes and translation along the Z axis is built. The grating interference strips' direction and space is not changed with movement along the X (direction of grating movement), Y (direction of grating line), Z axis, and the direction and space has a great effect when rotating around the X axis. Moreover the space is little affected by deflection around the Z axis however the direction is changed dramatically. In addition, the strips' position shifted rightward or downwards respectively for deflection around the X or Y axis. Because the emitted beams are separated on the grating plane, the tilt around the X axis error of the stage during motion will lead to the optical path difference of the two beams resulting in phase shift. This study investigates the influence of the tilt around the X axis error. Experiments show that after yaw error compensation, the high-resolution diffraction grating interferometric transducer readings can be significantly improved. The error can be reduced from +/-80 nm to +/-30 nm in maximum.

  7. The Collection of High-Resolution Electron Diffraction Data

    PubMed Central

    Gonen, Tamir

    2013-01-01

    A number of atomic-resolution structures of membrane proteins (better than 3Å resolution) have been determined recently by electron crystallography. While this technique was established more than 40 years ago, it is still in its infancy with regard to the two-dimensional (2D) crystallization, data collection, data analysis, and protein structure determination. In terms of data collection, electron crystallography encompasses both image acquisition and electron diffraction data collection. Other chapters in this volume outline protocols for image collection and analysis. This chapter, however, outlines detailed protocols for data collection by electron diffraction. These include microscope setup, electron diffraction data collection, and troubleshooting. PMID:23132060

  8. Precision glass molding of high-resolution diffractive optical elements

    NASA Astrophysics Data System (ADS)

    Prater, Karin; Dukwen, Julia; Scharf, Toralf; Herzig, Hans P.; Plöger, Sven; Hermerschmidt, Andreas

    2016-04-01

    The demand of high resolution diffractive optical elements (DOE) is growing. Smaller critical dimensions allow higher deflection angles and can fulfill more demanding requirements, which can only be met by using electron-beam lithography. Replication techniques are more economical, since the high cost of the master can be distributed among a larger number of replicas. The lack of a suitable mold material for precision glass molding has so far prevented an industrial use. Glassy Carbon (GC) offers a high mechanical strength and high thermal strength. No anti-adhesion coatings are required in molding processes. This is clearly an advantage for high resolution, high aspect ratio microstructures, where a coating with a thickness between 10 nm and 200 nm would cause a noticeable rounding of the features. Electron-beam lithography was used to fabricate GC molds with highest precision and feature sizes from 250 nm to 2 μm. The master stamps were used for precision glass molding of a low Tg glass L-BAL42 from OHARA. The profile of the replicated glass is compared to the mold with the help of SEM images. This allows discussion of the max. aspect-ratio and min. feature size. To characterize optical performances, beamsplitting elements are fabricated and their characteristics were investigated, which are in excellent agreement to theory.

  9. High throughput screening of ligand binding to macromolecules using high resolution powder diffraction

    DOEpatents

    Von Dreele, Robert B.; D'Amico, Kevin

    2006-10-31

    A process is provided for the high throughput screening of binding of ligands to macromolecules using high resolution powder diffraction data including producing a first sample slurry of a selected polycrystalline macromolecule material and a solvent, producing a second sample slurry of a selected polycrystalline macromolecule material, one or more ligands and the solvent, obtaining a high resolution powder diffraction pattern on each of said first sample slurry and the second sample slurry, and, comparing the high resolution powder diffraction pattern of the first sample slurry and the high resolution powder diffraction pattern of the second sample slurry whereby a difference in the high resolution powder diffraction patterns of the first sample slurry and the second sample slurry provides a positive indication for the formation of a complex between the selected polycrystalline macromolecule material and at least one of the one or more ligands.

  10. A GUINIER CAMERA FOR SR POWDER DIFFRACTION: HIGH RESOLUTION AND HIGH THROUGHPUT.

    SciTech Connect

    SIDDONS,D.P.; HULBERT, S.L.; STEPHENS, P.W.

    2006-05-28

    The paper describe a new powder diffraction instrument for synchrotron radiation sources which combines the high throughput of a position-sensitive detector system with the high resolution normally only provided by a crystal analyzer. It uses the Guinier geometry which is traditionally used with an x-ray tube source. This geometry adapts well to the synchrotron source, provided proper beam conditioning is applied. The high brightness of the SR source allows a high resolution to be achieved. When combined with a photon-counting silicon microstrip detector array, the system becomes a powerful instrument for radiation-sensitive samples or time-dependent phase transition studies.

  11. High Resolution X-Ray Diffraction of Macromolecules with Synchrotron Radiation

    NASA Technical Reports Server (NTRS)

    Stojanoff, Vivian; Boggon, Titus; Helliwell, John R.; Judge, Russell; Olczak, Alex; Snell, Edward H.; Siddons, D. Peter; Rose, M. Franklin (Technical Monitor)

    2000-01-01

    We recently combined synchrotron-based monochromatic X-ray diffraction topography methods with triple axis diffractometry and rocking curve measurements: high resolution X-ray diffraction imaging techniques, to better understand the quality of protein crystals. We discuss these methods in the light of results obtained on crystals grown under different conditions. These non destructive techniques are powerful tools in the characterization of the protein crystals and ultimately will allow to improve, develop, and understand protein crystal growth. High resolution X-ray diffraction imaging methods will be discussed in detail in light of recent results obtained on Hen Egg White Lysozyme crystals and other proteins.

  12. High-resolution x-ray diffraction measurements of SiGe/Si structures

    SciTech Connect

    Jordan-Sweet, J.L.; Mooney, P.M.; Stephenson, G.B.

    1995-09-01

    High-resolution x-ray diffraction is an excellent probe of strain relaxation in complex SiGe structures. The high flux provided by synchrotron sources enables one to make extensive reciprocal space map measurements and evaluate many samples. The diffraction peak positions of each layer in a step-graded structure, measured for two different reflections, yield quantitative values for the relaxation and alloy composition in the layer. Grazing-incidence diffraction allows one to determine the in-plane structure of very thin layers, which have thickness-broadened peaks at conventional diffraction geometries. They demonstrate the power of these techniques with two examples.

  13. High-resolution ab initio three-dimensional x-ray diffraction microscopy

    DOE PAGESBeta

    Chapman, Henry N.; Barty, Anton; Marchesini, Stefano; Noy, Aleksandr; Hau-Riege, Stefan P.; Cui, Congwu; Howells, Malcolm R.; Rosen, Rachel; He, Haifeng; Spence, John C. H.; et al

    2006-01-01

    Coherent x-ray diffraction microscopy is a method of imaging nonperiodic isolated objects at resolutions limited, in principle, by only the wavelength and largest scattering angles recorded. We demonstrate x-ray diffraction imaging with high resolution in all three dimensions, as determined by a quantitative analysis of the reconstructed volume images. These images are retrieved from the three-dimensional diffraction data using no a priori knowledge about the shape or composition of the object, which has never before been demonstrated on a nonperiodic object. We also construct two-dimensional images of thick objects with greatly increased depth of focus (without loss of transverse spatialmore » resolution). These methods can be used to image biological and materials science samples at high resolution with x-ray undulator radiation and establishes the techniques to be used in atomic-resolution ultrafast imaging at x-ray free-electron laser sources.« less

  14. High-resolution ab initio Three-dimensional X-ray Diffraction Microscopy

    SciTech Connect

    Chapman, H N; Barty, A; Marchesini, S; Noy, A; Cui, C; Howells, M R; Rosen, R; He, H; Spence, J H; Weierstall, U; Beetz, T; Jacobsen, C; Shapiro, D

    2005-08-19

    Coherent X-ray diffraction microscopy is a method of imaging non-periodic isolated objects at resolutions only limited, in principle, by the largest scattering angles recorded. We demonstrate X-ray diffraction imaging with high resolution in all three dimensions, as determined by a quantitative analysis of the reconstructed volume images. These images are retrieved from the 3D diffraction data using no a priori knowledge about the shape or composition of the object, which has never before been demonstrated on a non-periodic object. We also construct 2D images of thick objects with infinite depth of focus (without loss of transverse spatial resolution). These methods can be used to image biological and materials science samples at high resolution using X-ray undulator radiation, and establishes the techniques to be used in atomic-resolution ultrafast imaging at X-ray free-electron laser sources.

  15. High-resolution ab initio three-dimensional x-ray diffraction microscopy

    SciTech Connect

    Chapman, Henry N.; Barty, Anton; Marchesini, Stefano; Noy, Aleksandr; Hau-Riege, Stefan P.; Cui, Congwu; Howells, Malcolm R.; Rosen, Rachel; He, Haifeng; Spence, John C. H.; Weierstall, Uwe; Beetz, Tobias; Jacobsen, Chris; Shapiro, David

    2006-01-01

    Coherent x-ray diffraction microscopy is a method of imaging nonperiodic isolated objects at resolutions limited, in principle, by only the wavelength and largest scattering angles recorded. We demonstrate x-ray diffraction imaging with high resolution in all three dimensions, as determined by a quantitative analysis of the reconstructed volume images. These images are retrieved from the three-dimensional diffraction data using no a priori knowledge about the shape or composition of the object, which has never before been demonstrated on a nonperiodic object. We also construct two-dimensional images of thick objects with greatly increased depth of focus (without loss of transverse spatial resolution). These methods can be used to image biological and materials science samples at high resolution with x-ray undulator radiation and establishes the techniques to be used in atomic-resolution ultrafast imaging at x-ray free-electron laser sources.

  16. High-resolution ab initio three-dimensional x-ray diffraction microscopy.

    PubMed

    Chapman, Henry N; Barty, Anton; Marchesini, Stefano; Noy, Aleksandr; Hau-Riege, Stefan P; Cui, Congwu; Howells, Malcolm R; Rosen, Rachel; He, Haifeng; Spence, John C H; Weierstall, Uwe; Beetz, Tobias; Jacobsen, Chris; Shapiro, David

    2006-05-01

    Coherent x-ray diffraction microscopy is a method of imaging nonperiodic isolated objects at resolutions limited, in principle, by only the wavelength and largest scattering angles recorded. We demonstrate x-ray diffraction imaging with high resolution in all three dimensions, as determined by a quantitative analysis of the reconstructed volume images. These images are retrieved from the three-dimensional diffraction data using no a priori knowledge about the shape or composition of the object, which has never before been demonstrated on a nonperiodic object. We also construct two-dimensional images of thick objects with greatly increased depth of focus (without loss of transverse spatial resolution). These methods can be used to image biological and materials science samples at high resolution with x-ray undulator radiation and establishes the techniques to be used in atomic-resolution ultrafast imaging at x-ray free-electron laser sources.

  17. Low-cost high-resolution diffractive position sensors for X-by-wire applications

    NASA Astrophysics Data System (ADS)

    Tupinier, L.; Marroux, O.; Ndao, M.; Kress, B.; Meyrueis, P.

    2006-04-01

    We are proposing a novel method to implement high resolution optical position sensors for automotive and other applications. Grating diffractive incremental encoders (both linear and rotation) are already becoming commodity products now, and include a read-out grating and a ruling grating [3]. We are implementing out high resolution incremental and/or absolute position encoders with a single diffractive substrate, replicated in mass in plastic. The diffractive structures are here much more complex than standard linear gratings. These new optical position sensors can achieve high absolute resolution without need of electronic interpolation, therefore being potentially very fast and accurate. Furthermore, due to the nature of these diffractive optical elements (surface relief elements), they are very cheaply replicated in mass by either polymers embossing or injection moulding.

  18. High-resolution x-ray diffraction microscopy of specifically labeled yeast cells

    DOE PAGESBeta

    Nelson, Johanna; Huang, Xiaojing; Steinbrener, Jan; Shapiro, David; Kirz, Janos; Marchesini, Stephano; Neiman, Aaron M.; Turner, Joshua J.; Jacobsen, Chris

    2010-04-20

    X-ray diffraction microscopy complements other x-ray microscopy methods by being free of lens-imposed radiation dose and resolution limits, and it allows for high-resolution imaging of biological specimens too thick to be viewed by electron microscopy. We report here the highest resolution (11-13 nm) x-ray diffraction micrograph of biological specimens, and a demonstration of molecular-specific gold labeling at different depths within cells via through-focus propagation of the reconstructed wavefield. The lectin concanavalin A conjugated to colloidal gold particles was used to label the α-mannan sugar in the cell wall of the yeast Saccharomyces cerevisiae. Cells were plunge-frozen in liquid ethane andmore » freeze-dried, after which they were imaged whole using x-ray diffraction microscopy at 750 eV photon energy.« less

  19. High-resolution x-ray diffraction microscopy of specifically labeled yeast cells

    SciTech Connect

    Nelson, Johanna; Huang, Xiaojing; Steinbrener, Jan; Shapiro, David; Kirz, Janos; Marchesini, Stephano; Neiman, Aaron M.; Turner, Joshua J.; Jacobsen, Chris

    2010-04-20

    X-ray diffraction microscopy complements other x-ray microscopy methods by being free of lens-imposed radiation dose and resolution limits, and it allows for high-resolution imaging of biological specimens too thick to be viewed by electron microscopy. We report here the highest resolution (11-13 nm) x-ray diffraction micrograph of biological specimens, and a demonstration of molecular-specific gold labeling at different depths within cells via through-focus propagation of the reconstructed wavefield. The lectin concanavalin A conjugated to colloidal gold particles was used to label the α-mannan sugar in the cell wall of the yeast Saccharomyces cerevisiae. Cells were plunge-frozen in liquid ethane and freeze-dried, after which they were imaged whole using x-ray diffraction microscopy at 750 eV photon energy.

  20. High spatial resolution X-ray and gamma ray imaging system using diffraction crystals

    DOEpatents

    Smither, Robert K.

    2011-05-17

    A method and a device for high spatial resolution imaging of a plurality of sources of x-ray and gamma-ray radiation are provided. The device comprises a plurality of arrays, with each array comprising a plurality of elements comprising a first collimator, a diffracting crystal, a second collimator, and a detector.

  1. Dedicated High-Resolution Powder Diffraction Beamline at the Advanced Photon Source

    SciTech Connect

    Lee, Peter L.; Beno, Mark A.; Shu Deming; Ramanathan, Mohan; Mitchell, John F.; Jorgensen, James D.; Von Dreele, Robert B.

    2004-05-12

    A high-resolution x-ray powder diffraction beamline that exploits the high flux, high energy resolution, and precise energy tuning of the third-generation synchrotron source will be built at the Advanced Photon Source (APS). The goal is to establish a high-resolution high-throughput dedicated powder instrument at the APS to serve the powder community. We describe design of the instrument that is able to measure a complete high-resolution powder pattern in one hour or less, uses automation to optimize throughput, has the ability to readily tune over a wide range of x-ray energies quickly and easily covering important absorption edges for resonant data measurements, and has the ability to accommodate various environmental devices for high-temperature, low-temperature or time-resolved data collection.

  2. High resolution x-ray and gamma ray imaging using diffraction lenses with mechanically bent crystals

    DOEpatents

    Smither, Robert K.

    2008-12-23

    A method for high spatial resolution imaging of a plurality of sources of x-ray and gamma-ray radiation is provided. High quality mechanically bent diffracting crystals of 0.1 mm radial width are used for focusing the radiation and directing the radiation to an array of detectors which is used for analyzing their addition to collect data as to the location of the source of radiation. A computer is used for converting the data to an image. The invention also provides for the use of a multi-component high resolution detector array and for narrow source and detector apertures.

  3. High resolution X-ray diffraction imaging of lead tin telluride

    NASA Technical Reports Server (NTRS)

    Steiner, Bruce; Dobbyn, Ronald C.; Black, David; Burdette, Harold; Kuriyama, Masao; Spal, Richard; Simchick, Richard; Fripp, Archibald

    1991-01-01

    High resolution X-ray diffraction images of two directly comparable crystals of lead tin telluride, one Bridgman-grown on Space Shuttle STS 61A and the other terrestrially Bridgman-grown under similar conditions from identical material, present different subgrain structure. In the terrestrial, sample 1 the appearance of an elaborate array of subgrains is closely associated with the intrusion of regions that are out of diffraction in all of the various images. The formation of this elaborate subgrain structure is inhibited by growth in microgravity.

  4. Pinhole diffraction holography for fabrication of high-resolution Fresnel zone plates.

    PubMed

    Sarkar, Sankha S; Solak, Harun H; David, Christian; van der Veen, J Friso

    2014-01-27

    Fresnel zone plates (FZPs) play an essential role in high spatial resolution x-ray imaging and analysis of materials in many fields. These diffractive lenses are commonly made by serial writing techniques such as electron beam or focused ion beam lithography. Here we show that pinhole diffraction holography has potential to generate FZP patterns that are free from aberrations and imperfections that may be present in alternative fabrication techniques. In this presented method, FZPs are fabricated by recording interference pattern of a spherical wave generated by diffraction through a pinhole, illuminated with coherent plane wave at extreme ultraviolet (EUV) wavelength. Fundamental and practical issues involved in formation and recording of the interference pattern are considered. It is found that resolution of the produced FZP is directly related to the diameter of the pinhole used and the pinhole size cannot be made arbitrarily small as the transmission of EUV or x-ray light through small pinholes diminishes due to poor refractive index contrast found between materials in these spectral ranges. We also find that the practical restrictions on exposure time due to the light intensity available from current sources directly imposes a limit on the number of zones that can be printed with this method. Therefore a trade-off between the resolution and the FZP diameter exists. Overall, we find that this method can be used to fabricate aberration free FZPs down to a resolution of about 10 nm. PMID:24515148

  5. High resolution diameter estimation of microthin wires by a novel 3D diffraction model

    NASA Astrophysics Data System (ADS)

    Vyas, Khushi; Lolla, Kameswara Rao

    2011-08-01

    Micro-thin wires are of significant importance to academia, research laboratories as well as industries engaged in micro-fabrication of products related to diverse fields like micromechanics, bio-instrumentation, optoelectronics etc. Critical dimension metrology of such wires often demands diameter estimation with tight tolerances. Amongst other measurement techniques, Optical Diffractometry under Fraunhofer approximation has emerged over years as a nondestructive, robust and precise technique for on-line diameter estimation of thin wires. However, it is observed that existing Fraunhofer models invariably result in experimental overestimation of wire diameter, leading to unacceptable error performances particularly for diameters below 50 μm. In this paper, a novel diffraction model based on Geometric theory is proposed and demonstrated to theoretically quantify this diameter overestimation. The proposed model utilizes hitherto unused paths-ways for the two lateral rays that contribute to the first diffraction minimum. Based the 3-D geometry of the suggested model, a new 'diffraction formulation' is proposed. The theoretical analysis reveals the following. For diffraction experiment, the Actual diameter of the diffracting wire is a function of four parameters: source wavelength 'λ', axial distance 'z', diffraction angle corresponding to first diffraction minimum 'θd' and a newly defined characteristic parameter 'm'. The analysis reveals further that the proposed characteristic parameter 'm' varies non-linearly with diameter and presents a dependence only on the experimentally measured diffraction angle 'θd'. Based on the proposed model, the communication reports for the first time, a novel diameter-inversion procedure which, not only corrects for the overestimated but also facilitates wire diameter-inversion with high resolution. Micro-thin metallic wires having diameters spanning the range 1-50 μm are examined. Experimental results are obtained that

  6. Structural anomalies in undoped Gallium Arsenide observed in high resolution diffraction imaging with monochromatic synchrotron radiation

    NASA Technical Reports Server (NTRS)

    Steiner, B.; Kuriyama, M.; Dobbyn, R. C.; Laor, U.; Larson, D.; Brown, M.

    1988-01-01

    Novel, streak-like disruption features restricted to the plane of diffraction have recently been observed in images obtained by synchrotron radiation diffraction from undoped, semi-insulating gallium arsenide crystals. These features were identified as ensembles of very thin platelets or interfaces lying in (110) planes, and a structural model consisting of antiphase domain boundaries was proposed. We report here the other principal features observed in high resolution monochromatic synchrotron radiation diffraction images: (quasi) cellular structure; linear, very low-angle subgrain boundaries in (110) directions, and surface stripes in a (110) direction. In addition, we report systematic differences in the acceptance angle for images involving various diffraction vectors. When these observations are considered together, a unifying picture emerges. The presence of ensembles of thin (110) antiphase platelet regions or boundaries is generally consistent not only with the streak-like diffraction features but with the other features reported here as well. For the formation of such regions we propose two mechanisms, operating in parallel, that appear to be consistent with the various defect features observed by a variety of techniques.

  7. High Resolution Triple Axis X-Ray Diffraction Analysis of II-VI Semiconductor Crystals

    NASA Technical Reports Server (NTRS)

    Volz, H. M.; Matyi, R. J.

    1999-01-01

    The objective of this research program is to develop methods of structural analysis based on high resolution triple axis X-ray diffractometry (HRTXD) and to carry out detailed studies of defect distributions in crystals grown in both microgravity and ground-based environments. HRTXD represents a modification of the widely used double axis X-ray rocking curve method for the characterization of grown-in defects in nearly perfect crystals. In a double axis rocking curve experiment, the sample is illuminated by a monochromatic X-ray beam and the diffracted intensity is recorded by a fixed, wide-open detector. The intensity diffracted by the sample is then monitored as the sample is rotated through the Bragg reflection condition. The breadth of the peak, which is often reported as the full angular width at half the maximum intensity (FWHM), is used as an indicator of the amount of defects in the sample. This work has shown that high resolution triple axis X-ray diffraction is an effective tool for characterizing the defect structure in semiconductor crystals, particularly at high defect densities. Additionally, the technique is complimentary to X-ray topography for defect characterization in crystals.

  8. High resolution coherent diffractive imaging with a table-top extreme ultraviolet source

    SciTech Connect

    Vu Le, Hoang Ba Dinh, Khuong; Hannaford, Peter; Van Dao, Lap

    2014-11-07

    We demonstrate a resolution of 45 nm with a sample size down to 3 μm × 3 μm is achieved in a short exposure time of 2 s, from the diffraction pattern generated by a table-top high harmonic source at around 30 nm. By using a narrow-bandwidth focusing mirror, the diffraction pattern's quality is improved and the required exposure time is significantly reduced. In order to obtain a high quality of the reconstructed image, the ratio of the beam size to the sample size and the curvature of the focused beam need to be considered in the reconstruction process. This new experimental scheme is very promising for imaging sub-10 nm scale objects with a table-top source based on a small inexpensive femtosecond laser system.

  9. High resolution light diffraction tomography: nearfield measurements of 10 MHz continuous wave ultrasound

    PubMed

    Almqvist; Holm; Jansson; Persson; Lindstrom

    1999-06-01

    Light diffraction tomography is an ultrasound measurement method that offers possibilities to make high spatial resolution measurements. The aim of this study was to investigate the spatial resolution of light diffraction tomography by characterizing the complex pressure and phase patterns 0.5-1 mm from the surface of a 5 mm diameter 10 MHz ultrasound transducer. Three different transducers were measured with a detection width of 5 microm, sample distances of 20-40 microm and 50-100 projections/180 degrees. They were excited with a 10 Vpp CW-signal. To verify the results the optical measurements were compared with 75 microm diameter hydrophone measurements and with theoretical calculations. The light diffraction tomography results show very good agreement with the hydrophone measurements and pressure peaks separated 160 microm were resolved. Comparison with the theoretical calculation shows that small distortions, caused by defects in the matching layer or in the piezo-electric disc, disturb the symmetric ring-pattern characteristic of an ideal piston source. PMID:10499805

  10. High resolution electron backscatter diffraction (EBSD) data from calcite biominerals in recent gastropod shells.

    PubMed

    Pérez-Huerta, Alberto; Dauphin, Yannicke; Cuif, Jean Pierre; Cusack, Maggie

    2011-04-01

    Electron backscatter diffraction (EBSD) is a microscopy technique that reveals in situ crystallographic information. Currently, it is widely used for the characterization of geological materials and in studies of biomineralization. Here, we analyze high resolution EBSD data from biogenic calcite in two mollusk taxa, Concholepas and Haliotis, previously used in the understanding of complex biomineralization and paleoenvironmental studies. Results indicate that Concholepas has less ordered prisms than in Haliotis, and that in Concholepas the level of order is not homogenous in different areas of the shell. Overall, the usefulness of data integration obtained from diffraction intensity and crystallographic orientation maps, and corresponding pole figures, is discussed as well as its application to similar studies.

  11. High resolution diffraction imaging of crystals grown in microgravity and closely related terrestrial crystals

    NASA Technical Reports Server (NTRS)

    Steiner, B.; Dobbyn, R.; Black, D.; Burdette, H.; Kuriyama, M.; Spal, R.; Vandenberg, L.; Fripp, A.; Simchick, R.; Lal, R.

    1991-01-01

    Irregularities found in three crystals grown in space, in four crystals grown entirely on the ground were examined and compared. Irregularities were observed in mercuric iodide, lead tin telluride, triglycine sulfate, and gallium arsenide by high resolution synchrotron x radiation diffraction imaging. Radiation detectors made from mercuric iodide crystals grown in microgravity were reported to perform far better than conventional detectors grown from the same material under full gravity. Effort is now underway to reproduce these 'space' crystals, optimize their properties, and extend comparable superiority to other types of materials.

  12. High resolution neutron diffraction crystallographic investigation of Oxide Dispersion Strengthened steels of interest for fusion technology

    NASA Astrophysics Data System (ADS)

    Coppola, R.; Rodriguez-Carvajal, J.; Wang, M.; Zhang, G.; Zhou, Z.

    2014-12-01

    High resolution neutron diffraction measurements have been carried out to characterize the crystallographic phases present in different Oxide Dispersion Strengthened (ODS) steels of interest for fusion technology. The different lattice structures, Im3m for the ferritic ODS and Fm3m for the austenitic ODS, are resolved showing line anisotropy effects possibly correlated with differences in dislocation densities and texture. Many contributions from minority phases are detected well above the background noise; none of the expected crystallographic phases, such as M23C6 and including Y2O3, fits them, but the TiN phase is identified in accordance with results of other microstructural techniques.

  13. High-Resolution Infrared and Electron-Diffraction Studies of Trimethylenecyclopropane ([3]-Radialene)

    SciTech Connect

    Wright, Corey; Holmes, Joshua; Nibler, Joseph W.; Hedberg, Kenneth; White, James D.; Hedberg, Lise; Weber, Alfons; Blake, Thomas A.

    2013-05-16

    Combined high-resolution spectroscopic, electron-diffraction, and quantum theoretical methods are particularly advantageous for small molecules of high symmetry and can yield accurate structures that reveal subtle effects of electron delocalization on molecular bonds. The smallest of the radialene compounds, trimethylenecyclopropane, [3]-radialene, has been synthesized and examined in the gas phase by these methods. The first high-resolution infrared spectra have been obtained for this molecule of D3h symmetry, leading to an accurate B0 rotational constant value of 0.1378629(8) cm-1, within 0.5% of the value obtained from electronic structure calculations (density functional theory (DFT) B3LYP/cc-pVTZ). This result is employed in an analysis of electron-diffraction data to obtain the rz bond lengths (in Å): C-H = 1.072 (17), C-C = 1.437 (4), and C=C = 1.330 (4). The analysis does not lead to an accurate value of the HCH angle; however, from comparisons of theoretical and experimental angles for similar compounds, the theoretical prediction of 117.5° is believed to be reliable to within 2°. The effect of electron delocalization in radialene is to reduce the single C-C bond length by 0.07 Å compared to that in cyclopropane.

  14. High resolution electron diffraction analysis of structural changes associated with the photocycle of bacteriorhodopsin

    SciTech Connect

    Han, B. -G.

    1994-04-01

    Changes in protein structure that occur during the formation of the M photointermediate of bacteriorhodopsin can be directly visualized by electron diffraction techniques. Samples containing a high percentage of the M intermediate were trapped by rapidly cooling the crystals with liquid nitrogen following illumination with filtered green light at 240K and 260K respectively. Difference Fourier projection maps for M minus bR at two temperatures and for M{sub 260K} minus M{sub 240K} are presented. While it is likely that a unique M-substate is trapped when illuminated at 260K produces a mixture of the M{sub 240K} substate and a second M-substate which may have a protein structure similar to the N-intermediate. The diffraction data clearly show that statistically significant structural changes occur upon formation of the M{sub 240K} specimen and then further upon formation of the second substate which is present in the mixture that is produced at 260K. A preliminary 3-D difference map, based on data collected with samples tilted up to 30{degree}, has been constructed at a resolution of 3.5{angstrom} parallel to the membrane plane and a resolution of 8.5{angstrom} perpendicular to the membrane. The data have been analyzed by a number of different criteria to ensure that the differences seen reflect real conformation changes at a level which is significantly above the noise in the map. Furthermore, a comparison of the positions of specific backbone and side-chain groups relative to significant difference peaks suggests that it will be necessary to further refine the atomic resolution model before it will be possible to interpret the changes in chemical structure that occur in the protein at this stage of the photocycle.

  15. Geometrically necessary dislocation densities in olivine obtained using high-angular resolution electron backscatter diffraction.

    PubMed

    Wallis, David; Hansen, Lars N; Ben Britton, T; Wilkinson, Angus J

    2016-09-01

    Dislocations in geological minerals are fundamental to the creep processes that control large-scale geodynamic phenomena. However, techniques to quantify their densities, distributions, and types over critical subgrain to polycrystal length scales are limited. The recent advent of high-angular resolution electron backscatter diffraction (HR-EBSD), based on diffraction pattern cross-correlation, offers a powerful new approach that has been utilised to analyse dislocation densities in the materials sciences. In particular, HR-EBSD yields significantly better angular resolution (<0.01°) than conventional EBSD (~0.5°), allowing very low dislocation densities to be analysed. We develop the application of HR-EBSD to olivine, the dominant mineral in Earth's upper mantle by testing (1) different inversion methods for estimating geometrically necessary dislocation (GND) densities, (2) the sensitivity of the method under a range of data acquisition settings, and (3) the ability of the technique to resolve a variety of olivine dislocation structures. The relatively low crystal symmetry (orthorhombic) and few slip systems in olivine result in well constrained GND density estimates. The GND density noise floor is inversely proportional to map step size, such that datasets can be optimised for analysing either short wavelength, high density structures (e.g. subgrain boundaries) or long wavelength, low amplitude orientation gradients. Comparison to conventional images of decorated dislocations demonstrates that HR-EBSD can characterise the dislocation distribution and reveal additional structure not captured by the decoration technique. HR-EBSD therefore provides a highly effective method for analysing dislocations in olivine and determining their role in accommodating macroscopic deformation. PMID:27337604

  16. Very High Resolution Solar X-ray Imaging Using Diffractive Optics

    NASA Technical Reports Server (NTRS)

    Dennis, B. R.; Skinner, G. K.; Li, M. J.; Shih, A. Y.

    2012-01-01

    This paper describes the development of X-ray diffractive optics for imaging solar flares with better than 0.1 arcsec angular resolution. X-ray images with this resolution of the greater than or equal to 10 MK plasma in solar active regions and solar flares would allow the cross-sectional area of magnetic loops to be resolved and the coronal flare energy release region itself to be probed. The objective of this work is to obtain X-ray images in the iron-line complex at 6.7 keV observed during solar flares with an angular resolution as fine as 0.1 arcsec - over an order of magnitude finer than is now possible. This line emission is from highly ionized iron atoms, primarily Fe xxv, in the hottest flare plasma at temperatures in excess of approximately equal to 10 MK. It provides information on the flare morphology, the iron abundance, and the distribution of the hot plasma. Studying how this plasma is heated to such high temperatures in such short times during solar flares is of critical importance in understanding these powerful transient events, one of the major objectives of solar physics.We describe the design, fabrication, and testing of phase zone plate X-ray lenses with focal lengths of approximately equal to 100 m at these energies that would be capable of achieving these objectives. We show how such lenses could be included on a two-spacecraft formation-flying mission with the lenses on the spacecraft closest to the Sun and an X-ray imaging array on the second spacecraft in the focal plane approximately equal to 100 m away. High resolution X-ray images could be obtained when the two spacecraft are aligned with the region of interest on the Sun. Requirements and constraints for the control of the two spacecraft are discussed together with the overall feasibility of such a formation-flying mission.

  17. Compact high-resolution spectrographs for large and extremely large telescopes: using the diffraction limit

    NASA Astrophysics Data System (ADS)

    Robertson, J. Gordon; Bland-Hawthorn, Joss

    2012-09-01

    As telescopes get larger, the size of a seeing-limited spectrograph for a given resolving power becomes larger also, and for ELTs the size will be so great that high resolution instruments of simple design will be infeasible. Solutions include adaptive optics (but not providing full correction for short wavelengths) or image slicers (which give feasible but still large instruments). Here we develop the solution proposed by Bland-Hawthorn and Horton: the use of diffraction-limited spectrographs which are compact even for high resolving power. Their use is made possible by the photonic lantern, which splits a multi-mode optical fiber into a number of single-mode fibers. We describe preliminary designs for such spectrographs, at a resolving power of R ~ 50,000. While they are small and use relatively simple optics, the challenges are to accommodate the longest possible fiber slit (hence maximum number of single-mode fibers in one spectrograph) and to accept the beam from each fiber at a focal ratio considerably faster than for most spectrograph collimators, while maintaining diffraction-limited imaging quality. It is possible to obtain excellent performance despite these challenges. We also briefly consider the number of such spectrographs required, which can be reduced by full or partial adaptive optics correction, and/or moving towards longer wavelengths.

  18. Beamline P02.1 at PETRA III for high-resolution and high-energy powder diffraction.

    PubMed

    Dippel, Ann-Christin; Liermann, Hanns-Peter; Delitz, Jan Torben; Walter, Peter; Schulte-Schrepping, Horst; Seeck, Oliver H; Franz, Hermann

    2015-05-01

    Powder X-ray diffraction techniques largely benefit from the superior beam quality provided by high-brilliance synchrotron light sources in terms of photon flux and angular resolution. The High Resolution Powder Diffraction Beamline P02.1 at the storage ring PETRA III (DESY, Hamburg, Germany) combines these strengths with the power of high-energy X-rays for materials research. The beamline is operated at a fixed photon energy of 60 keV (0.207 Å wavelength). A high-resolution monochromator generates the highly collimated X-ray beam of narrow energy bandwidth. Classic crystal structure determination in reciprocal space at standard and non-ambient conditions are an essential part of the scientific scope as well as total scattering analysis using the real space information of the pair distribution function. Both methods are complemented by in situ capabilities with time-resolution in the sub-second regime owing to the high beam intensity and the advanced detector technology for high-energy X-rays. P02.1's efficiency in solving chemical and crystallographic problems is illustrated by presenting key experiments that were carried out within these fields during the early stage of beamline operation.

  19. Beamline P02.1 at PETRA III for high-resolution and high-energy powder diffraction

    PubMed Central

    Dippel, Ann-Christin; Liermann, Hanns-Peter; Delitz, Jan Torben; Walter, Peter; Schulte-Schrepping, Horst; Seeck, Oliver H.; Franz, Hermann

    2015-01-01

    Powder X-ray diffraction techniques largely benefit from the superior beam quality provided by high-brilliance synchrotron light sources in terms of photon flux and angular resolution. The High Resolution Powder Diffraction Beamline P02.1 at the storage ring PETRA III (DESY, Hamburg, Germany) combines these strengths with the power of high-energy X-rays for materials research. The beamline is operated at a fixed photon energy of 60 keV (0.207 Å wavelength). A high-resolution monochromator generates the highly collimated X-ray beam of narrow energy bandwidth. Classic crystal structure determination in reciprocal space at standard and non-ambient conditions are an essential part of the scientific scope as well as total scattering analysis using the real space information of the pair distribution function. Both methods are complemented by in situ capabilities with time-resolution in the sub-second regime owing to the high beam intensity and the advanced detector technology for high-energy X-rays. P02.1’s efficiency in solving chemical and crystallographic problems is illustrated by presenting key experiments that were carried out within these fields during the early stage of beamline operation. PMID:25931084

  20. First results from IRENI - Rapid diffraction-limited high resolution imaging across the mid-infrared bandwidth

    SciTech Connect

    Nasse, Michael J.; Mattson, Eric; Hirschmugl, Carol

    2010-02-03

    First results from IRENI, a new beamline at the Synchrotron Radiation Center, demonstrate that synchrotron chemical imaging, which combines the characteristics of bright, stable, broadband synchrotron source with a multi-element detector, produces diffraction-limited images at all wavelengths simultaneously. A single cell of Micrasterias maintained in a flow cell has been measured, and results show high quality spectra and images demonstrating diffraction limited, and therefore wavelength-dependent, spatial resolution.

  1. Combining time of flight and diffraction tomography for high resolution breast imaging: initial in vivo results (L).

    PubMed

    Huthwaite, P; Simonetti, F; Duric, N

    2012-09-01

    Ultrasound tomography (UST) is being developed to address the limitations of mammography in breast cancer detection. Central to the success of UST is the possibility of obtaining high-resolution images of tissue mechanical properties across the whole breast. A recent paper [Huthwaite and Simonetti, J. Acoust. Soc. Am. 130, 1721-1734 (2011)] made use of a numerical phantom to demonstrate that sufficient image resolution can be obtained by simply treating refraction and diffraction effects in consecutive steps through the combination of ray-based time of flight and diffraction tomography. This letter presents the first experimental demonstration of the method using phantom and invivo data from a cancer patient. PMID:22978851

  2. Measurement method for roll angular displacement with a high resolution by using diffraction gratings and a heterodyne interferometer

    SciTech Connect

    Tang, Shanzhi; Wang, Zhao; Gao, Jianmin; Guo, Junjie

    2014-04-15

    The roll angle measurement is difficult to be achieved directly using a typical commercial interferometer due to its low sensitivity in axial direction, where the axial direction is orthogonal to the plane of the roll angular displacement. A roll angle measurement method combined diffraction gratings with a laser heterodyne interferometer is discussed in this paper. The diffraction grating placed in the plane of a roll angular displacement and the interferometer arranged in the plane's orthogonal direction, constitute the measurement pattern for the roll angle with high resolution. The roll angular displacement, considered as the linear, can be tested precisely when the corresponding angle is very small. Using the proposed method, the angle roll measurement obtains the high resolution of 0.002{sup ″}. Experiment has proved its feasibility and practicability.

  3. Measurement method for roll angular displacement with a high resolution by using diffraction gratings and a heterodyne interferometer.

    PubMed

    Tang, Shanzhi; Wang, Zhao; Gao, Jianmin; Guo, Junjie

    2014-04-01

    The roll angle measurement is difficult to be achieved directly using a typical commercial interferometer due to its low sensitivity in axial direction, where the axial direction is orthogonal to the plane of the roll angular displacement. A roll angle measurement method combined diffraction gratings with a laser heterodyne interferometer is discussed in this paper. The diffraction grating placed in the plane of a roll angular displacement and the interferometer arranged in the plane's orthogonal direction, constitute the measurement pattern for the roll angle with high resolution. The roll angular displacement, considered as the linear, can be tested precisely when the corresponding angle is very small. Using the proposed method, the angle roll measurement obtains the high resolution of 0.002″. Experiment has proved its feasibility and practicability.

  4. Competing orbital ordering in RVO{sub 3} compounds: High-resolution x-ray diffraction and thermal expansion

    SciTech Connect

    Sage, M. H.; Blake, G. R.; Palstra, T. T. M.; Marquina, C.

    2007-11-15

    We report evidence for the phase coexistence of orbital orderings of different symmetry in RVO{sub 3} compounds with intermediate-size rare earths. Through a study by high-resolution x-ray powder diffraction and thermal expansion, we show that the competing orbital orderings are associated with the magnitude of the VO{sub 6} octahedral tilting and magnetic exchange striction in these compounds and that the phase-separated state is stabilized by lattice strains.

  5. Feasibility study of high-resolution coherent diffraction microscopy using synchrotron x rays focused by Kirkpatrick-Baez mirrors

    SciTech Connect

    Takahashi, Yukio; Nishino, Yoshinori; Ishikawa, Tetsuya; Mimura, Hidekazu; Tsutsumi, Ryosuke; Kubo, Hideto; Yamauchi, Kazuto

    2009-04-15

    High-flux coherent x rays are necessary for the improvement of the spatial resolution in coherent x-ray diffraction microscopy (CXDM). In this study, high-resolution CXDM using Kirkpatrick-Baez (KB) mirrors is proposed, and the mirrors are designed for experiments of the transmission scheme at SPring-8. Both the photon density and spatial coherence of synchrotron x rays focused by the KB mirrors are investigated by wave optical simulation. The KB mirrors can produce nearly diffraction-limited two-dimensional focusing x rays of approx1 mum in size at 8 keV. When the sample size is less than approx1 mum, the sample can be illuminated with full coherent x rays by adjusting the cross-slit size set between the source and the mirrors. From the estimated photon density at the sample position, the feasibility of CXDM with a sub-1-nm spatial resolution is suggested. The present ultraprecise figuring process enables us to fabricate mirrors for carrying out high-resolution CXDM experiments.

  6. Structural anomalies in undoped gallium arsenide observed in high-resolution diffraction imaging with monochromatic synchrotron radiation

    NASA Technical Reports Server (NTRS)

    Steiner, B.; Kuriyama, M.; Dobbyn, R. C.; Laor, U.; Larson, D.

    1989-01-01

    Novel, streak-like disruption features restricted to the plane of diffraction have recently been observed in images obtained by synchrotron radiation diffraction from undoped, semi-insulating gallium arsenide crystals. These features were identified as ensembles of very thin platelets or interfaces lying in (110) planes, and a structural model consisting of antiphase domain boundaries was proposed. We report here the other principal features observed in high resolution monochromatic synchrotron radiation diffraction images: (quasi) cellular structure; linear, very low-angle subgrain boundaries in (110) directions, and surface stripes in a (110) direction. In addition, we report systematic differences in the acceptance angle for images involving various diffraction vectors. When these observations are considered together, a unifying picture emerges. The presence of ensembles of thin (110) antiphase platelet regions or boundaries is generally consistent not only with the streak-like diffraction features but with the other features reported here as well. For the formation of such regions we propose two mechanisms, operating in parallel, that appear to be consistent with the various defect features observed by a variety of techniques.

  7. Real-time, high-resolution x-ray diffraction measurements on shocked crystals at a synchrotron facility.

    PubMed

    Gupta, Y M; Turneaure, Stefan J; Perkins, K; Zimmerman, K; Arganbright, N; Shen, G; Chow, P

    2012-12-01

    The Advanced Photon Source (APS) at Argonne National Laboratory was used to obtain real-time, high-resolution x-ray diffraction measurements to determine the microscopic response of shock-compressed single crystals. Disk shaped samples were subjected to plane shock wave compression by impacting them with half-inch diameter, flat-faced projectiles. The projectiles were accelerated to velocities ranging between 300 and 1200 m/s using a compact powder gun designed specifically for use at a synchrotron facility. The experiments were designed to keep the sample probed volume under uniaxial strain and constant stress for a duration longer than the 153.4 ns spacing between x-ray bunches. X-rays from a single pulse (<100 ps duration) out of the periodic x-ray pulses emitted by the synchrotron were used for the diffraction measurements. A synchronization and x-ray detection technique was developed to ensure that the measured signal was obtained unambiguously from the desired x-ray pulse incident on the sample while the sample was in a constant uniaxial strain state. The synchronization and x-ray detection techniques described can be used for a variety of x-ray measurements on shock compressed solids and liquids at the APS. Detailed procedures for applying the Bragg-Brentano parafocusing approach to single crystals at the APS are presented. Analytic developments to determine the effects of crystal substructure and non-ideal geometry on the diffraction pattern position and shape are presented. Representative real-time x-ray diffraction data, indicating shock-induced microstructural changes, are presented for a shock-compressed Al(111) sample. The experimental developments presented here provided, in part, the impetus for the Dynamic Compression Sector (DCS) currently under development at the APS. Both the synchronization∕x-ray detection methods and the analysis equations for high-resolution single crystal x-ray diffraction can be used at the DCS.

  8. Real-time, high-resolution x-ray diffraction measurements on shocked crystals at a synchrotron facility

    SciTech Connect

    Gupta, Y. M.; Turneaure, Stefan J.; Perkins, K.; Zimmerman, K.; Arganbright, N.; Shen, G.; Chow, P.

    2012-12-15

    The Advanced Photon Source (APS) at Argonne National Laboratory was used to obtain real-time, high-resolution x-ray diffraction measurements to determine the microscopic response of shock-compressed single crystals. Disk shaped samples were subjected to plane shock wave compression by impacting them with half-inch diameter, flat-faced projectiles. The projectiles were accelerated to velocities ranging between 300 and 1200 m/s using a compact powder gun designed specifically for use at a synchrotron facility. The experiments were designed to keep the sample probed volume under uniaxial strain and constant stress for a duration longer than the 153.4 ns spacing between x-ray bunches. X-rays from a single pulse (<100 ps duration) out of the periodic x-ray pulses emitted by the synchrotron were used for the diffraction measurements. A synchronization and x-ray detection technique was developed to ensure that the measured signal was obtained unambiguously from the desired x-ray pulse incident on the sample while the sample was in a constant uniaxial strain state. The synchronization and x-ray detection techniques described can be used for a variety of x-ray measurements on shock compressed solids and liquids at the APS. Detailed procedures for applying the Bragg-Brentano parafocusing approach to single crystals at the APS are presented. Analytic developments to determine the effects of crystal substructure and non-ideal geometry on the diffraction pattern position and shape are presented. Representative real-time x-ray diffraction data, indicating shock-induced microstructural changes, are presented for a shock-compressed Al(111) sample. The experimental developments presented here provided, in part, the impetus for the Dynamic Compression Sector (DCS) currently under development at the APS. Both the synchronization/x-ray detection methods and the analysis equations for high-resolution single crystal x-ray diffraction can be used at the DCS.

  9. Fluvial suspended sediment characteristics by high-resolution, surrogate metrics of turbidity, laser-diffraction, acoustic backscatter, and acoustic attenuation

    NASA Astrophysics Data System (ADS)

    Landers, Mark Newton

    Sedimentation is a primary and growing environmental, engineering, and agricultural issue around the world. However, collection of the data needed to develop solutions to sedimentation issues has declined by about three-fourths since 1983. Suspended-sediment surrogates have the potential to obtain sediment data using methods that are more accurate, of higher spatial and temporal resolution, and with less manually intensive, costly, and hazardous methods. The improved quality of sediment data from high-resolution surrogates may inform improved understanding and solutions to sedimentation problems. The field experiments for this research include physical samples of suspended sediment collected concurrently with surrogate metrics from instruments including 1.2, 1.5, and 3.0 megahertz frequency acoustic doppler current profilers, a nephelometric turbidity sensor, and a laser-diffraction particle size analyzer. This comprehensive data set was collected over five storms in 2009 and 2010 at Yellow River near Atlanta, Georgia. Fluvial suspended sediment characteristics in this study can be determined by high-resolution surrogate parameters of turbidity, laser-diffraction and acoustics with model errors 33% to 49% lower than traditional methods using streamflow alone. Hysteresis in sediment-turbidity relations for single storm events was observed and quantitatively related to PSD changes of less than 10 microns in the fine silt to clay size range. Suspended sediment particle size detection (PSD) is significantly correlated with ratios of measured acoustic attenuation at different frequencies; however the data do not fit the theoretical relations. Using both relative acoustic backscatter (RB) and acoustic attenuation as explanatory variables results in a significantly improved model of suspended sediment compared with traditional sonar equations using only RB. High resolution PSD data from laser diffraction provide uniquely valuable information; however the size detection

  10. High-resolution neutron diffraction study of CuNCN: New evidence of structure anomalies at low temperature

    SciTech Connect

    Jacobs, Philipp; Houben, Andreas; Dronskowski, Richard; Tchougréeff, Andrei L.

    2013-12-14

    Copper carbodiimide (CuNCN) is the nitrogen-containing analogue of cupric oxide. Based on high-resolution neutron-diffraction data, CuNCN's lattice parameters are derived as a function of the temperature. In accordance with a recent synchrotron study, a clear trend in the cell parameter a is observed accompanying the changing magnetic behavior. With decreasing temperature, a slowly decreases to a minimum at ∼100 K after which it rises again. The same trend—albeit more pronounced—is observed for the c lattice parameter at ∼35 K. The herein presented neutron powder-diffraction data also support the conjectured sequence of transitions from the high-temperature one-dimensional resonating valence-bond (RVB) state to a transient two-dimensional RVB state and eventually, at lowest temperatures, into another two-dimensional RVB state, presumably the ground state.

  11. High-resolution neutron diffraction study of CuNCN: new evidence of structure anomalies at low temperature.

    PubMed

    Jacobs, Philipp; Houben, Andreas; Tchougréeff, Andrei L; Dronskowski, Richard

    2013-12-14

    Copper carbodiimide (CuNCN) is the nitrogen-containing analogue of cupric oxide. Based on high-resolution neutron-diffraction data, CuNCN's lattice parameters are derived as a function of the temperature. In accordance with a recent synchrotron study, a clear trend in the cell parameter a is observed accompanying the changing magnetic behavior. With decreasing temperature, a slowly decreases to a minimum at ~100 K after which it rises again. The same trend-albeit more pronounced-is observed for the c lattice parameter at ~35 K. The herein presented neutron powder-diffraction data also support the conjectured sequence of transitions from the high-temperature one-dimensional resonating valence-bond (RVB) state to a transient two-dimensional RVB state and eventually, at lowest temperatures, into another two-dimensional RVB state, presumably the ground state.

  12. Improved strain precision with high spatial resolution using nanobeam precession electron diffraction

    SciTech Connect

    Rouviere, Jean-Luc Martin, Yannick; Denneulin, Thibaud; Cooper, David

    2013-12-09

    NanoBeam Electron Diffraction is a simple and efficient technique to measure strain in nanostructures. Here, we show that improved results can be obtained by precessing the electron beam while maintaining a few nanometer probe size, i.e., by doing Nanobeam Precession Electron Diffraction (N-PED). The precession of the beam makes the diffraction spots more uniform and numerous, making N-PED more robust and precise. In N-PED, smaller probe size and better precision are achieved by having diffraction disks instead of diffraction dots. Precision in the strain measurement better than 2 × 10{sup −4} is obtained with a probe size approaching 1 nm in diameter.

  13. Random vs realistic amorphous carbon models for high resolution microscopy and electron diffraction

    SciTech Connect

    Ricolleau, C. Alloyeau, D.; Le Bouar, Y.; Amara, H.; Landon-Cardinal, O.

    2013-12-07

    Amorphous carbon and amorphous materials in general are of particular importance for high resolution electron microscopy, either for bulk materials, generally covered with an amorphous layer when prepared by ion milling techniques, or for nanoscale objects deposited on amorphous substrates. In order to quantify the information of the high resolution images at the atomic scale, a structural modeling of the sample is necessary prior to the calculation of the electron wave function propagation. It is thus essential to be able to reproduce the carbon structure as close as possible to the real one. The approach we propose here is to simulate a realistic carbon from an energetic model based on the tight-binding approximation in order to reproduce the important structural properties of amorphous carbon. At first, we compare this carbon with the carbon obtained by randomly generating the carbon atom positions. In both cases, we discuss the limit thickness of the phase object approximation. In a second step, we show the influence of both carbons models on (i) the contrast of Cu, Ag, and Au single atoms deposited on carbon and (ii) the determination of the long-range order parameter in CoPt bimetallic nanoalloys.

  14. High resolution synchrotron X-radiation diffraction imaging of crystals grown in microgravity and closely related terrestrial crystals

    NASA Technical Reports Server (NTRS)

    Steiner, Bruce; Dobbyn, Ronald C.; Black, David; Burdette, Harold; Kuriyama, Masao; Fripp, Archibald; Simchik, Richard

    1991-01-01

    Irregularities in three crystals grown in space and in four terrestrial crystals grown under otherwise comparable conditions have been observed in high resolution diffraction imaging. The images provide important new clues to the nature and origins of irregularities in each crystal. For two of the materials, mercuric iodide and lead tin telluride, more than one phase (an array of non-diffracting inclusions) was observed in terrestrial samples; but the formation of these multiple phases appears to have been suppressed in directly comparable crystals grown in microgravity. The terrestrial seed crystal of triglycine sulfate displayed an unexpected layered structure, which propagated during directly comparable space growth. Terrestrial Bridgman regrowth of gallium arsenide revealed a mesoscopic structure substantially different from that of the original Czochralski material. A directly comparable crystal is to be grown shortly in space.

  15. Ab initio simulation of diffractometer instrumental function for high-resolution X-ray diffraction1

    PubMed Central

    Mikhalychev, Alexander; Benediktovitch, Andrei; Ulyanenkova, Tatjana; Ulyanenkov, Alex

    2015-01-01

    Modeling of the X-ray diffractometer instrumental function for a given optics configuration is important both for planning experiments and for the analysis of measured data. A fast and universal method for instrumental function simulation, suitable for fully automated computer realization and describing both coplanar and noncoplanar measurement geometries for any combination of X-ray optical elements, is proposed. The method can be identified as semi-analytical backward ray tracing and is based on the calculation of a detected signal as an integral of X-ray intensities for all the rays reaching the detector. The high speed of calculation is provided by the expressions for analytical integration over the spatial coordinates that describe the detection point. Consideration of the three-dimensional propagation of rays without restriction to the diffraction plane provides the applicability of the method for noncoplanar geometry and the accuracy for characterization of the signal from a two-dimensional detector. The correctness of the simulation algorithm is checked in the following two ways: by verifying the consistency of the calculated data with the patterns expected for certain simple limiting cases and by comparing measured reciprocal-space maps with the corresponding maps simulated by the proposed method for the same diffractometer configurations. Both kinds of tests demonstrate the agreement of the simulated instrumental function shape with the measured data. PMID:26089760

  16. The joint astrophysical plasmadynamic experiment (J-PEX) high-resolution EUV spectrometer: diffraction grating efficiency

    NASA Astrophysics Data System (ADS)

    Kowalski, M. P.; Berendse, F. B.; Barbee, T. W., Jr.; Hunter, W. R.; Heidemann, K. F.; Lenke, R.; Seifert, A.; Cruddace, R. G.

    2006-06-01

    We have fabricated five new holographic ion-etched polymer-coated gratings for a reflight on a sounding rocket of the J-PEX high-resolution EUV spectrometer. The gratings are parabolic (nominal 2000-mm focal length), large (160 mm x 90 mm), and have a blazed groove profile of high density (3600 grooves/mm at the vertex). They have been coated with a high-reflectance multilayer of Mo/Si/C. Using an atomic force microscope, we examined grating topography before multilayer coating. The surface roughness is 2 angstrom rms and the blaze angle is near the target value of 2.4°. Using synchrotron radiation, we completed an efficiency calibration map of each multilayer-coated grating over the wavelength range 220-245 angstrom. At an angle of incidence of 5°, the average efficiency in the first inside order peaks near 234 angstrom. The average peak efficiency is 12.3 +/- 1.0% for Grating 1, 12.6 +/- 2.4% for Grating 2, 12.6 +/- 1.8% for Grating 3, 14.1 +/- 3.0% for Grating 4, and 13.0 +/- 1.0% for Grating 5. The derived groove efficiency averaged over all gratings is approximately 50%, which meets our goals. Refined models of the multilayer gratings are required to resolve remaining issues.

  17. Synchrotron powder diffraction simplified: The high-resolution diffractometer at 11-BM at the Advanced Photon Source

    NASA Astrophysics Data System (ADS)

    Ribaud, Lynn; Suchomel, Matthew; von Dreele, Robert; Toby, Brian

    2013-03-01

    Synchrotrons have revolutionized powder diffraction through higher resolution and sensitivity and much faster data collection. Few scientists beyond the synchrotron community make use of these capabilities. To help address this, the high resolution powder diffractometer beamline 11-BM at the APS offers rapid and easy mail-in access with world-class quality data 1. This instrument offers the highest resolution available in the Americas and is a free service for non-proprietary users 2. The instrument can collect a superb pattern in an hour, has an automated sample changer, and features variable temperature sample environments. Users of the mail-in program often receive their data within two weeks of sample receipt. The instrument is also available for on-site experiments requiring other conditions. Our poster will describe this instrument, highlight its capabilities, explain the types of measurements available, and discuss plans to improve access and available sample environments and collection protocols. More information about the 11-BM instrument and our mail-in program can be found at: http://11bm.xray.aps.anl.gov.

  18. Phase coexistence in NaTaO3 at room temperature; a high resolution neutron powder diffraction study

    NASA Astrophysics Data System (ADS)

    Knight, Kevin S.; Kennedy, Brendan J.

    2015-05-01

    Room temperature high resolution neutron powder diffraction data, measured in time-of-flight, from two independent samples of NaTaO3 shows the presence of phase coexistence of two orthorhombic structures with space groups Pbnm, and Cmcm. The failure of earlier work to recognise the extent of the hysteresis associated with the high temperature (∼763 K on heating) Cmcm - Pbnm phase transition, that extends down to room temperature, and probably to 0 K, is due to data having been collected at too low a real-space resolution to characterise the diagnostic pseudocubic fundamental and superlattice reflection multiplicities. The phase fraction of the Cmcm phase increases with increasing temperature from 45 weight % at 298 K, to 74 weight % at 758 K. Throughout the whole temperature interval 298 K-758 K, the volume per formula unit of the Cmcm phase exceeds that of the Pbnm phase by an almost constant ∼0.01 Å3 suggesting the addition of pressure would supress the volume fraction of the higher temperature phase. The crystal structure of both phases, determined from data collected at 298 K, are reported, with the atomic displacement parameters of the Cmcm phase being significantly larger than those associated with the Pbnm phase, probably reflecting a high degree of thermal and static disorder.

  19. High-resolution x-ray diffraction study of the heavy-fermion compound YbBiPt

    SciTech Connect

    Ueland, B. G.; Saunders, S. M.; Bud'ko, S. L.; Schmiedeshoff, G. M.; Canfield, P. C.; Kreyssig, A.; Goldman, A. I.

    2015-11-30

    In this study, YbBiPt is a heavy-fermion compound possessing significant short-range antiferromagnetic correlations below a temperature of T*=0.7K, fragile antiferromagnetic order below TN = 0.4K, a Kondo temperature of TK ≈ 1K, and crystalline-electric-field splitting on the order of E/kB = 1 – 10K. Whereas the compound has a face-centered-cubic lattice at ambient temperature, certain experimental data, particularly those from studies aimed at determining its crystalline-electric-field scheme, suggest that the lattice distorts at lower temperature. Here, we present results from high-resolution, high-energy x-ray diffraction experiments which show that, within our experimental resolution of ≈ 6 – 10 × 10–5 Å, no structural phase transition occurs between T = 1.5 and 50 K. In combination with results from dilatometry measurements, we further show that the compound's thermal expansion has a minimum at ≈ 18 K and a region of negative thermal expansion for 9 ≲ T ≲ 18 K. Despite diffraction patterns taken at 1.6 K which indicate that the lattice is face-centered cubic and that the Yb resides on a crystallographic site with cubic point symmetry, we demonstrate that the linear thermal expansion may be modeled using crystalline-electric-field level schemes appropriate for Yb3+ residing on a site with either cubic or less than cubic point symmetry.

  20. Determination of lattice parameters, strain state and composition in semipolar III-nitrides using high resolution X-ray diffraction

    SciTech Connect

    Frentrup, Martin Wernicke, Tim; Stellmach, Joachim; Kneissl, Michael; Hatui, Nirupam; Bhattacharya, Arnab

    2013-12-07

    In group-III-nitride heterostructures with semipolar or nonpolar crystal orientation, anisotropic lattice and thermal mismatch with the buffer or substrate lead to a complex distortion of the unit cells, e.g., by shearing of the lattice. This makes an accurate determination of lattice parameters, composition, and strain state under assumption of the hexagonal symmetry impossible. In this work, we present a procedure to accurately determine the lattice constants, strain state, and composition of semipolar heterostructures using high resolution X-ray diffraction. An analysis of the unit cell distortion shows that four independent lattice parameters are sufficient to describe this distortion. Assuming only small deviations from an ideal hexagonal structure, a linear expression for the interplanar distances d{sub hkl} is derived. It is used to determine the lattice parameters from high resolution X-ray diffraction 2ϑ-ω-scans of multiple on- and off-axis reflections via a weighted least-square fit. The strain and composition of ternary alloys are then evaluated by transforming the elastic parameters (using Hooke's law) from the natural crystal-fixed coordinate system to a layer-based system, given by the in-plane directions and the growth direction. We illustrate our procedure taking an example of (112{sup ¯}2) Al{sub κ}Ga{sub 1−κ}N epilayers with Al-contents over the entire composition range. We separately identify the in-plane and out-of-plane strains and discuss origins for the observed anisotropy.

  1. High-resolution x-ray diffraction study of the heavy-fermion compound YbBiPt

    DOE PAGESBeta

    Ueland, B. G.; Iowa State Univ., Ames, IA; Saunders, S. M.; Iowa State Univ., Ames, IA; Bud'ko, S. L.; Iowa State Univ., Ames, IA; Schmiedeshoff, G. M.; Canfield, P. C.; Iowa State Univ., Ames, IA; Kreyssig, A.; et al

    2015-11-30

    In this study, YbBiPt is a heavy-fermion compound possessing significant short-range antiferromagnetic correlations below a temperature of T*=0.7K, fragile antiferromagnetic order below TN = 0.4K, a Kondo temperature of TK ≈ 1K, and crystalline-electric-field splitting on the order of E/kB = 1 – 10K. Whereas the compound has a face-centered-cubic lattice at ambient temperature, certain experimental data, particularly those from studies aimed at determining its crystalline-electric-field scheme, suggest that the lattice distorts at lower temperature. Here, we present results from high-resolution, high-energy x-ray diffraction experiments which show that, within our experimental resolution of ≈ 6 – 10 × 10–5 Å,more » no structural phase transition occurs between T = 1.5 and 50 K. In combination with results from dilatometry measurements, we further show that the compound's thermal expansion has a minimum at ≈ 18 K and a region of negative thermal expansion for 9 ≲ T ≲ 18 K. Despite diffraction patterns taken at 1.6 K which indicate that the lattice is face-centered cubic and that the Yb resides on a crystallographic site with cubic point symmetry, we demonstrate that the linear thermal expansion may be modeled using crystalline-electric-field level schemes appropriate for Yb3+ residing on a site with either cubic or less than cubic point symmetry.« less

  2. Apparatus and method to achieve high-resolution microscopy with non-diffracting or refracting radiation

    SciTech Connect

    Tobin, Jr., Kenneth W.; Bingham, Philip R.; Hawari, Ayman I.

    2012-11-06

    An imaging system employing a coded aperture mask having multiple pinholes is provided. The coded aperture mask is placed at a radiation source to pass the radiation through. The radiation impinges on, and passes through an object, which alters the radiation by absorption and/or scattering. Upon passing through the object, the radiation is detected at a detector plane to form an encoded image, which includes information on the absorption and/or scattering caused by the material and structural attributes of the object. The encoded image is decoded to provide a reconstructed image of the object. Because the coded aperture mask includes multiple pinholes, the radiation intensity is greater than a comparable system employing a single pinhole, thereby enabling a higher resolution. Further, the decoding of the encoded image can be performed to generate multiple images of the object at different distances from the detector plane. Methods and programs for operating the imaging system are also disclosed.

  3. The role of dislocations in varied olivine deformation mechanisms investigated using high-angular resolution electron backscatter diffraction

    NASA Astrophysics Data System (ADS)

    Wallis, David; Hansen, Lars; Britton, Ben; Wilkinson, Angus

    2016-04-01

    Experimentally-derived flow laws can be used to predict the rheology of rocks deformed under natural conditions only if the same microphysical processes can be demonstrated to control the rate-limiting deformation mechanism in both cases. Olivine rheology may exert a principle control on the strength of the lithosphere, and therefore considerable research effort has been applied to assessing its rheology through experimental, geological, and geophysical approaches. Nonetheless, considerable uncertainty remains regarding the dominant deformation mechanisms in the upper mantle. This uncertainty arises in large part due to our limited understanding of the fundamental deformation processes associated with each mechanism. Future improvements to microphysical models of distinct deformation mechanisms require new insight into the contributions those fundamental processes to the macroscopic behaviour. The dynamics of dislocations is central to modelling viscous deformation of olivine, but characterisation techniques capable of constraining dislocation types, densities, and distributions over the critical grain to polycrystal length-scales have been lacking. High angular resolution electron backscatter diffraction (HR-EBSD), developed and increasingly applied in the material sciences, offers an approach capable of such analyses. HR-EBSD utilises diffraction pattern image cross-correlation to achieve dramatically improved angular resolution (~0.01°) of lattice orientation gradients compared to conventional Hough-based EBSD (~0.5°). This angular resolution allows very low densities (≥ 10^11 m^-2) of geometrically necessary dislocations (GND) to be resolved, facilitating analysis of a wide range of dislocation microstructures. We have developed the application of HR-EBSD to olivine and applied it to samples deformed both experimentally and naturally in grain-size sensitive and grain-size insensitive regimes. The results quantitatively highlight variations in the types and

  4. High-resolution x-ray diffraction study of the heavy-fermion compound YbBiPt

    NASA Astrophysics Data System (ADS)

    Ueland, B. G.; Saunders, S. M.; Bud'Ko, S. L.; Schmiedeshoff, G. M.; Canfield, P. C.; Kreyssig, A.; Goldman, A. I.

    YbBiPt is a heavy-fermion compound possessing significant short-range antiferromagnetic correlations below T* = 0 . 7 K, fragile antiferromagnetic order below TN = 0 . 4 K, a Kondo temperature of TK ~ 1 K, and crystalline-electric-field splitting (CEF) on the order of E /kB = 1 - 10 K. Its lattice is face-centered cubic at ambient temperature, but certain data, particularly those from studies aimed at determining the CEF level scheme, suggest that the lattice distorts at lower temperature. Here, we present results from high-energy x-ray diffraction experiments which show that, within our experimental resolution of ~ 6 - 10 ×10-5 Å, no structural phase transition occurs between 1 . 5 and 50 K. Despite this result, we demonstrate that the compound's thermal expansion may be modeled using CEF level schemes appropriate for Yb3+ residing on a site with either cubic or less than cubic point symmetry. Work at the Ames Laboratory was supported by the US DOE, BES, DMSE, under Contract No. DE-AC02-07CH11358. Work at Occidental College was supported by the NSF under DMR-1408598. This research used resources at the Advanced Photon Source a US DOE, Office of Science, User Facility.

  5. The effect of substrate topology on smectic liquid crystal alignment: A high-resolution x-ray diffraction study

    SciTech Connect

    Smela, E.

    1992-01-01

    Surface topography is theoretically predicted to affect liquid crystal alignment through mechanical interactions: elastic deformations of the director are energetically unfavorable, causing the molecules to realign to minimize the distortion energy. Octylcyanobiphenyl (8CB), a bilayer smecticA liquid crystal at room temperature, was deposited on gratings, grids, and flat surfaces, and was studied using high resolution x-ray diffraction at shallow angles of incidence. One surface of the film was in contact with air and the other was in contact with a treated glass or silicon substrate. At the air interface, surface tension forces caused the liquid crystal molecules to align perpendicularly with respect to the plane of the substrate. Competing with the LC-air interface, which is a strong aligner, a grating at the LC-substrate interface produced distortions in the smectic layering which resulted in excess elastic energy and favored alignment parallel to the substrate and the grooves. The results show that in films less than approximately 30 [mu]m thick, the homeotropic orientation was maintained throughout the film due to the constraint of perpendicular alignment at the air interface. However, for thicker films on gratings, Bragg scattering from molecules lying parallel to the grooves was observed. The free air surface was thus the strongest aligning force, followed by the surface topology, while surface anchoring was not found to play a role.

  6. High-resolution neutron powder diffraction study on the phase transitions in BaPbO{sub 3}

    SciTech Connect

    Fu, W.T. Visser, D.; Knight, K.S.; IJdo, D.J.W.

    2007-05-15

    Phase transitions that occurred in perovskite BaPbO{sub 3} have been investigated using high-resolution time-of-flight neutron powder diffraction. The structure at room temperature is orthorhombic (space group Imma), which is derived from the cubic aristotype by tilting the PbO{sub 6} octahedra around the two-fold axis (tilt system a {sup 0} b {sup -} b {sup -}). The orthorhombic structure shows anisotropic line broadening attributed to the presence of micro twins. At above about 573 K, BaPbO{sub 3} undergoes a discontinuous phase transition to a tetragonal structure (space group I4/mcm) with the tilting of the PbO{sub 6} octahedra being about the four-fold axis of the cubic aristotype (tilt system a {sup 0} a {sup 0} c {sup -}). With further increasing the temperature, BaPbO{sub 3} experiences a continuous phase transition to a simple cubic structure (space group Pm3-barm) at above about 673 K. The later phase transition is characterised by a critical exponent of {beta}=0.36, depicted by the three-dimensional Heisenberg universality class. The earlier reported Imma{sup {yields}}I2/m phase transition above room temperature has not been observed. - Graphical abstract: Temperature dependence of the octahedral tilting angles in BaPbO{sub 3}. The continuous line in tetragonal phase region is the fit to the expression: {phi}=A(T {sub c}-T) {sup {beta}} with the fitted values of T {sub c}=658(1) K, {beta}=0.36(2) and A=1.1(1). The shaded area indicates the possible two-phase region.

  7. High-resolution 2-D Bragg diffraction reveal heterogeneous domain transformation behavior in a bulk relaxor ferroelectric

    DOE PAGESBeta

    Pramanick, Abhijit; Stoica, Alexandru D.; An, Ke

    2016-09-02

    In-situ measurement of fine-structure of neutron Bragg diffraction peaks from a relaxor single-crystal using a time-of-flight instrument reveals highly heterogeneous mesoscale domain transformation behavior under applied electric fields. We observed that only 25% of domains undergo reorienta- tion or phase transition contributing to large average strains, while at least 40% remain invariant and exhibit microstrains. Such insights could be central for designing new relaxor materials with better performance and longevity. The current experimental technique can also be applied to resolve com- plex mesoscale phenomena in other functional materials.

  8. High-resolution three-dimensional imaging of red blood cells parasitized by Plasmodium falciparum and in situ hemozoin crystals using optical diffraction tomography

    PubMed Central

    Kim, Kyoohyun; Yoon, HyeOk; Diez-Silva, Monica; Dao, Ming; Dasari, Ramachandra R.

    2013-01-01

    Abstract. We present high-resolution optical tomographic images of human red blood cells (RBC) parasitized by malaria-inducing Plasmodium falciparum (Pf)-RBCs. Three-dimensional (3-D) refractive index (RI) tomograms are reconstructed by recourse to a diffraction algorithm from multiple two-dimensional holograms with various angles of illumination. These 3-D RI tomograms of Pf-RBCs show cellular and subcellular structures of host RBCs and invaded parasites in fine detail. Full asexual intraerythrocytic stages of parasite maturation (ring to trophozoite to schizont stages) are then systematically investigated using optical diffraction tomography algorithms. These analyses provide quantitative information on the structural and chemical characteristics of individual host Pf-RBCs, parasitophorous vacuole, and cytoplasm. The in situ structural evolution and chemical characteristics of subcellular hemozoin crystals are also elucidated. PMID:23797986

  9. High-resolution three-dimensional imaging of red blood cells parasitized by Plasmodium falciparum and in situ hemozoin crystals using optical diffraction tomography

    NASA Astrophysics Data System (ADS)

    Kim, Kyoohyun; Yoon, HyeOk; Diez-Silva, Monica; Dao, Ming; Dasari, Ramachandra R.; Park, YongKeun

    2014-01-01

    We present high-resolution optical tomographic images of human red blood cells (RBC) parasitized by malaria-inducing Plasmodium falciparum (Pf)-RBCs. Three-dimensional (3-D) refractive index (RI) tomograms are reconstructed by recourse to a diffraction algorithm from multiple two-dimensional holograms with various angles of illumination. These 3-D RI tomograms of Pf-RBCs show cellular and subcellular structures of host RBCs and invaded parasites in fine detail. Full asexual intraerythrocytic stages of parasite maturation (ring to trophozoite to schizont stages) are then systematically investigated using optical diffraction tomography algorithms. These analyses provide quantitative information on the structural and chemical characteristics of individual host Pf-RBCs, parasitophorous vacuole, and cytoplasm. The in situ structural evolution and chemical characteristics of subcellular hemozoin crystals are also elucidated.

  10. Bulk crystal growth, and high-resolution x-ray diffraction results of LiZnP semiconductor material

    NASA Astrophysics Data System (ADS)

    Montag, Benjamin W.; Reichenberger, Michael A.; Sunder, Madhana; Ugorowski, Philip B.; Nelson, Kyle A.; McGregor, Douglas S.

    2015-06-01

    Nowotny-Juza compounds continue to be explored as a candidate for solid-state neutron detectors. Such a device would have greater efficiency, in a compact form, than present day gas-filled 3He and 10BF3 detectors. The 6Li(n,t)4He reaction yields a total Q-value of 4.78 MeV, larger than 10B, an energy easily identified above background radiations. Hence, devices fabricated from semiconducting compounds containing either natural Li (nominally 7.5% 6Li) or enriched 6Li (usually 95% 6Li) may provide a semiconductor material for compact high efficiency neutron detectors. Starting material was synthesized by preparing equimolar portions of Li, Zn, and P sealed under vacuum (10-6 Torr) in quartz ampoules lined with boron nitride and subsequently reacted in a compounding furnace [1]. The synthesized material showed signs of high impurity levels from material and electrical property characterizations. A static vacuum sublimation in quartz was performed to help purify the synthesized material [2]. Bulk crystalline samples were grown from the purified material. An ingot 9.6 mm in diameter and 4.0 mm in length was harvested. Individual samples were characterized for crystallinity on a Bruker AXS Inc. D2 CRYSO, energy dispersive x-ray diffractometer, and a Bruker AXS D8 DISCOVER, high-resolution x-ray diffractometer with a 0.004° beam divergence. The (220) orientation was characterized as the main orientation with the D2 CRYSO, and confirmed with the D8 DISCOVER. An out-of-plane high-resolution rocking curve yielded a 0.417° full width at half maximum (FWHM) for the (220) LiZnP. In-plane ordering was confirmed by observation of the (311) orientation, where a rocking curve was collected with a FWHM of 0.294°.

  11. High spatial resolution, high energy synchrotron x-ray diffraction characterization of residual strains and stresses in laser shock peened Inconel 718SPF alloy

    NASA Astrophysics Data System (ADS)

    Gill, Amrinder S.; Zhou, Zhong; Lienert, Ulrich; Almer, Jonathan; Lahrman, David F.; Mannava, S. R.; Qian, Dong; Vasudevan, Vijay K.

    2012-04-01

    Laser shock peening (LSP) is an advanced surface enhancement technique used to enhance the fatigue strength of metal parts by imparting deep compressive residual stresses. In the present study, LSP was performed on IN718 SPF alloy, a fine grained nickel-based superalloy, with three different power densities and depth resolved residual strain and stress characterization was conducted using high energy synchrotron x-ray diffraction in beam line 1-ID-C at the Advanced Photon Source at the Argonne National laboratory. A fine probe size and conical slits were used to non-destructively obtain data from specific gauge volumes in the samples, allowing for high-resolution strain measurements. The results show that LSP introduces deep compressive residual stresses and the magnitude and depth of these stresses depend on the energy density of the laser. The LSP induced residual stresses were also simulated using three-dimensional nonlinear finite element analysis, with employment of the Johnson-Cook model for describing the nonlinear materials constitutive behavior. Good agreement between the experimental and simulated data was obtained. These various results are presented and discussed.

  12. Atomic Resolution Coherent Diffractive Imaging and Ultrafast Science

    SciTech Connect

    Zuo, Jian-min

    2011-01-12

    A major scientific challenge is determining the 3-D atomic structure of small nanostructures, including single molecules. Coherent diffractive imaging (CDI) is a promising approach. Recent progress has demonstrated coherent diffraction patterns can be recorded from individual nanostructures and phased to reconstruct their structure. However, overcoming the dose limit imposed by radiation damage is a major obstacle toward the full potential of CDI. One approach is to use ultrafast x-ray or electron pulses. In electron diffraction, amplitudes recorded in a diffraction pattern are unperturbed by lens aberrations, defocus, and other microscope resolution-limiting factors. Sub-A signals are available beyond the information limit of direct imaging. Significant contrast improvement is obtained compared to high-resolution electron micrographs. progress has also been made in developing time-resolved electron diffraction and imaging for the study of ultrafast dynamic processes in materials. This talk will cover these crosscutting issues and the convergence of electron and x-ray diffraction techniques toward structure determination of single molecules.

  13. A Quantitative Analysis of Room Temperature Recrystallization Kinetics in Electroplated Copper Films using High Resolution X-ray Diffraction

    SciTech Connect

    A Ying; K Witt; J Jordan-Sweet; R Rosenberg; I Noyan

    2011-12-31

    Time-resolved in situ x-ray diffraction measurements were used to study the room-temperature recrystallization kinetics of electroplated copper thin films with thicknesses between 400 and 1000 nm. The thinnest films exhibited limited recrystallization and subsequent growth of grains, while recrystallized grains in the thicker films grew until all as-plated microstructure was consumed. For all films, recrystallized grains that belonged to the majority texture component, <111>, started growing after the shortest incubation time. These grains exhibited volumetric growth until they achieved the film thickness. After this point the growth mode became planar, with the <111>-type grains growing in the plane of the film. Grains with the <111> direction normal to the film surface started growing after the <111>-type grains switched to planar growth. However, the planar growth of this texture component finished at the same time as the growth of the <111> grains. Profile fitting of the 111 peak permitted the separation of the diffraction signals from recrystallized and as-plated grain populations. The average strains in these two populations, calculated from the peak position of the corresponding {l_brace}111{r_brace} reflections, were different, indicating a heterogeneous stress state within this texture component. The increasing volume fraction of recrystallized <111> grains with time was monitored via the variation in the diffracted intensity. This variation could be represented by the Johnson-Mehl-Avrami-Kolmogorov model.

  14. Identification of cellulose fibres belonging to Spanish cultural heritage using synchrotron high resolution X-ray diffraction

    NASA Astrophysics Data System (ADS)

    Herrera, L. K.; Justo, A.; Duran, A.; de Haro, M. C. Jimenez; Franquelo, M. L.; Perez Rodríguez, J. L.

    2010-05-01

    A complete characterisation of fibres used in Spanish artwork is necessary to provide a complete knowledge of these natural fibres and their stage of degradation. Textile samples employed as painting supports on canvas and one sample of unprocessed plant material were chosen for this study. All the samples were investigated by synchrotron radiation X-ray diffraction (SR-XRD). Flax and cotton have the Cellulose I structure. The values of the crystalline index (CI) were calculated for both types of fibres. The structure of Cellulose IV was associated with the unprocessed plant material. The information obtained by SR-XRD was confirmed by laboratory techniques including scanning electron microscopy (SEM) and Fourier transform infrared spectroscopy (FTIR).

  15. Crack nucleation using combined crystal plasticity modelling, high-resolution digital image correlation and high-resolution electron backscatter diffraction in a superalloy containing non-metallic inclusions under fatigue

    PubMed Central

    Zhang, Tiantian; Britton, Ben; Shollock, Barbara; Dunne, Fionn

    2016-01-01

    A crystal plasticity finite-element model, which explicitly and directly represents the complex microstructures of a non-metallic agglomerate inclusion within polycrystal nickel alloy, has been developed to study the mechanistic basis of fatigue crack nucleation. The methodology is to use the crystal plasticity model in conjunction with direct measurement at the microscale using high (angular) resolution-electron backscatter diffraction (HR-EBSD) and high (spatial) resolution-digital image correlation (HR-DIC) strain measurement techniques. Experimentally, this sample has been subjected to heat treatment leading to the establishment of residual (elastic) strains local to the agglomerate and subsequently loaded under conditions of low cyclic fatigue. The full thermal and mechanical loading history was reproduced within the model. HR-EBSD and HR-DIC elastic and total strain measurements demonstrate qualitative and quantitative agreement with crystal plasticity results. Crack nucleation by interfacial decohesion at the nickel matrix/agglomerate inclusion boundaries is observed experimentally, and systematic modelling studies enable the mechanistic basis of the nucleation to be established. A number of fatigue crack nucleation indicators are also assessed against the experimental results. Decohesion was found to be driven by interface tensile normal stress alone, and the interfacial strength was determined to be in the range of 1270–1480 MPa. PMID:27279765

  16. Crack nucleation using combined crystal plasticity modelling, high-resolution digital image correlation and high-resolution electron backscatter diffraction in a superalloy containing non-metallic inclusions under fatigue

    NASA Astrophysics Data System (ADS)

    Zhang, Tiantian; Jiang, Jun; Britton, Ben; Shollock, Barbara; Dunne, Fionn

    2016-05-01

    A crystal plasticity finite-element model, which explicitly and directly represents the complex microstructures of a non-metallic agglomerate inclusion within polycrystal nickel alloy, has been developed to study the mechanistic basis of fatigue crack nucleation. The methodology is to use the crystal plasticity model in conjunction with direct measurement at the microscale using high (angular) resolution-electron backscatter diffraction (HR-EBSD) and high (spatial) resolution-digital image correlation (HR-DIC) strain measurement techniques. Experimentally, this sample has been subjected to heat treatment leading to the establishment of residual (elastic) strains local to the agglomerate and subsequently loaded under conditions of low cyclic fatigue. The full thermal and mechanical loading history was reproduced within the model. HR-EBSD and HR-DIC elastic and total strain measurements demonstrate qualitative and quantitative agreement with crystal plasticity results. Crack nucleation by interfacial decohesion at the nickel matrix/agglomerate inclusion boundaries is observed experimentally, and systematic modelling studies enable the mechanistic basis of the nucleation to be established. A number of fatigue crack nucleation indicators are also assessed against the experimental results. Decohesion was found to be driven by interface tensile normal stress alone, and the interfacial strength was determined to be in the range of 1270-1480 MPa.

  17. High-resolution x-ray diffraction investigation of relaxation and dislocations in SiGe layers grown on (001), (011), and (111) Si substrates

    SciTech Connect

    Zhylik, A.; Benediktovich, A.; Ulyanenkov, A.; Guerault, H.; Myronov, M.; Dobbie, A.; Leadley, D. R.; Ulyanenkova, T.

    2011-06-15

    This work presents a detailed characterization, using high-resolution x-ray diffraction, of multilayered Si{sub 1-x}Ge{sub x} heterostructures grown on (001), (011), and (111) Si substrates by reduced pressure chemical vapor deposition. Reciprocal space mapping has been used to determine both the strain and Ge concentration depth profiles within each layer of the heterostructures after initially determining the crystallographic tilt of all the layers. Both symmetric and asymmetric reciprocal space maps were measured on each sample, and the evaluation was performed simultaneously for the whole data set. The ratio of misfit to threading dislocation densities has been estimated for each individual layer based on an analysis of diffuse x-ray scattering from the defects.

  18. Crystallization temperature determination of Itokawa particles by plagioclase thermometry with X-ray diffraction data obtained by a high-resolution synchrotron Gandolfi camera

    NASA Astrophysics Data System (ADS)

    Tanaka, Masahiko; Nakamura, Tomoki; Noguchi, Takaaki; Nakato, Aiko; Ishida, Hatsumi; Yada, Toru; Shirai, Kei; Fujimura, Akio; Ishibashi, Yukihiro; Abe, Masanao; Okada, Tatsuaki; Ueno, Munetaka; Mukai, Toshifumi

    2014-02-01

    The crystallization temperatures of Itokawa surface particles recovered by the space probe Hayabusa were estimated by a plagioclase geothermometer using sodic plagioclase triclinicity. The Δ131-index required for the thermometer, which is the difference in X-ray diffraction peak positions between the 131 and 13¯1 reflections of plagioclase, was obtained by a high-resolution synchrotron Gandolfi camera developed for the third generation synchrotron radiation beamline, BL15XU at SPring-8. Crystallization temperatures were successfully determined from the Δ131-indices for four particles. The observed plagioclase crystallization temperatures were in a range from 655 to 660 °C. The temperatures indicate crystallization temperatures of plagioclases in the process of prograde metamorphism before the peak metamorphic stage.

  19. High-resolution electron-energy-loss spectroscopy and photoelectron-diffraction studies of the geometric structure of adsorbates on single-crystal metal surfaces

    SciTech Connect

    Rosenblatt, D.H.

    1982-11-01

    Two techniques which have made important contributions to the understanding of surface phenomena are high resolution electron energy loss spectroscopy (EELS) and photoelectron diffraction (PD). EELS is capable of directly measuring the vibrational modes of clean and adsorbate covered metal surfaces. In this work, the design, construction, and performance of a new EELS spectrometer are described. These results are discussed in terms of possible structures of the O-Cu(001) system. Recommendations for improvements in this EELS spectrometer and guidelines for future spectrometers are given. PD experiments provide accurate quantitative information about the geometry of atoms and molecules adsorbed on metal surfaces. The technique has advantages when used to study disordered overlayers, molecular overlayers, multiple site systems, and adsorbates which are weak electron scatterers. Four experiments were carried out which exploit these advantages.

  20. Crystal structure of Bi{sub 1-x}Tb{sub x}FeO{sub 3} from high-resolution neutron diffraction

    SciTech Connect

    Saxin, Stefan; Knee, Christopher S.

    2011-06-15

    Samples of Bi{sub 1-x}Tb{sub x}FeO{sub 3}, with x=0.05, 0.10, 0.15, 0.20 and 0.25, have been synthesised by solid state reaction. The crystal structures of the perovskite phases, characterised via Rietveld analysis of high resolution powder neutron diffraction data, reveal a structural transition from the R3c symmetry of the parent phase BiFeO{sub 3} to orthorhombic Pnma symmetry, which is complete for x=0.20. The x=0.10 and 0.15 samples are bi-phasic. The transition from a rhombohedral to orthorhombic unit cell is suggested to be driven by the dilution of the stereochemistry of the Bi{sup 3+} lone pair at the A-site. The G-type antiferromagnetic spin structure, the size of the ordered magnetic moment ({approx}3.8 {mu}{sub B}) and the T{sub N} ({approx}375 deg. C) are relatively insensitive to increasing Tb concentrations at the A-site. - Graphical abstract: High resolution neutron powder diffraction has been used to study the evolution of the RT crystal structure of Bi{sub 1-x}Tb{sub x}FeO{sub 3} (0.05{<=}x{<=}0.25) with terbium content. A transition from polar R3c to centrosymmetric Pnma symmetry is observed. The antiferromagnetic ordering temperature and size of the ordered magnetic moment are relatively insensitive to the change of crystal structure. Highlights: > Structural transition from polar R3c symmetry to non-polar Pnma symmetry occurs. > Behaviour is rationalised via dilution of the stereochemical nature of the Bi lone pair. > Magnetic properties are largely unaffected.

  1. High Resolution X-ray Diffraction Studies of MBE-Grown HgCdTe Layers on Bulk-Grown CdZnTe Substrate

    NASA Astrophysics Data System (ADS)

    Amarasinghe, Priyanthi M.; Qadri, Syed B.; Wijewarnasuriya, Priyalal S.

    2015-08-01

    The structural properties of molecular beam epitaxially (MBE)-grown Hg1- x Cd x Te epilayers on CdZnTe (211) substrate have been investigated using high-resolution x-ray topography and rocking curves. High-resolution x-ray diffraction 2 θ- θ scans of (422) reflections were utilized in calculating the out-of-plane lattice parameters of the HgCdTe layer and the CdZnTe substrate. The lattice strain of the HgCdTe layer was evaluated using the in-plane measurements of the (311) reflection. Etching seemed to improve the surface of the substrate by removing any damage caused by polishing or any post-processing. In spite of some localized line dislocations, a remarkable quality of the MBE-grown HgCdTe layer was observed. The full width at half maximum values of the HgCdTe layer and the CdZnTe substrate were determined as 43 arc-s and 16.2 arc-s, respectively.

  2. High-resolution diffraction from crystals of a membrane-protein complex: bacterial outer membrane protein OmpC complexed with the antibacterial eukaryotic protein lactoferrin

    SciTech Connect

    Sundara Baalaji, N.; Acharya, K. Ravi; Singh, T. P.; Krishnaswamy, S. E-mail: mkukrishna@rediffmail.com

    2005-08-01

    Crystals of the complex formed between the bacterial membrane protein OmpC and the antibacterial protein lactoferrin suitable for high-resolution structure determination have been obtained. The crystals belong to the hexagonal space group P6, with unit-cell parameters a = b = 116.3, c = 152.4 Å. Crystals of the complex formed between the outer membrane protein OmpC from Escherichia coli and the eukaryotic antibacterial protein lactoferrin from Camelus dromedarius (camel) have been obtained using a detergent environment. Initial data processing suggests that the crystals belong to the hexagonal space group P6, with unit-cell parameters a = b = 116.3, c = 152.4 Å, α = β = 90, γ = 120°. This indicated a Matthews coefficient (V{sub M}) of 3.3 Å{sup 3} Da{sup −1}, corresponding to a possible molecular complex involving four molecules of lactoferrin and two porin trimers in the unit cell (4832 amino acids; 533.8 kDa) with 63% solvent content. A complete set of diffraction data was collected to 3 Å resolution at 100 K. Structure determination by molecular replacement is in progress. Structural study of this first surface-exposed membrane-protein complex with an antibacterial protein will provide insights into the mechanism of action of OmpC as well as lactoferrin.

  3. High-pressure neutron diffraction

    SciTech Connect

    Xu, Hongwu

    2011-01-10

    This lecture will cover progress and prospect of applications of high-pressure neutron diffraction techniques to Earth and materials sciences. I will first introduce general high-pressure research topics and available in-situ high-pressure techniques. Then I'll talk about high-pressure neutron diffraction techniques using two types of pressure cells: fluid-driven and anvil-type cells. Lastly, I will give several case studies using these techniques, particularly, those on hydrogen-bearing materials and magnetic transitions.

  4. Equation of state and phase transition of deuterated ammonia monohydrate (ND3.D2O) measured by high-resolution neutron powder diffraction up to 500 MPa

    NASA Astrophysics Data System (ADS)

    Fortes, A. Dominic; Suard, Emmanuelle; Lemée-Cailleau, Marie-Hélène; Pickard, Christopher J.; Needs, Richard J.

    2009-10-01

    We describe the results of a neutron powder diffraction study of perdeuterated ammonia monohydrate (AMH, ND3ṡD2O) carried out in the range 102high-resolution diffractometer at the Institut Laue-Langevin. This paper reports observations of the phase transformation from the low-pressure P212121 phase (AMH I) to the high-pressure Pbca phase (AMH II) at 351 MPa, and measurements which have allowed us to determine the volumetric and axial incompressibilities of both polymorphs. At 180 K, the fitted third order Birch-Murnaghan equation of state of AMH I has parameters, V0=248.00(2) Å3, K0=7.33(3) GPa with the first pressure derivative of K0 fixed at the value obtained in ab initio calculations, (∂K0/∂P)T=K0'=5.3; the implied value of the second derivative is therefore (∂2K0/∂P2)T=K0″=-0.94(1) GPa-1. At 351 MPa, we observed that the transition from AMH I to AMH II occurred over a period of 90 min, with an associated reduction in molar volume of 4.6% and an increase in the incompressibility of 19.6%.

  5. Sub-diffraction limit resolution in microscopy

    NASA Technical Reports Server (NTRS)

    Cheng, Ming (Inventor); Chen, Weinong (Inventor)

    2007-01-01

    A method and apparatus for visualizing sub-micron size particles employs a polarizing microscope wherein a focused beam of polarized light is projected onto a target, and a portion of the illuminating light is blocked from reaching the specimen, whereby to produce a shadow region, and projecting diffracted light from the target onto the shadow region.

  6. [Solving resolution of diffraction gratings using coefficients of Zernike polynomials].

    PubMed

    Yu, Hai-li; Qi, Xiang-dong; Bayanheshig; Tang, Yu-guo

    2012-01-01

    It is hard and costly to test resolution directly, because the focal length of testing equipment could be nearly ten meters. Solving resolution by diffraction wavefront aberration indirectly is an effective solution to this problem. A normalization model of solving resolution using fitting coefficients of Zernike polynomials was established based on the spectral imaging theory of Fourier optics. The relationship between resolution and wavefront aberration of diffraction gratings was illustrated by this model. Finally, a new method of testing resolution using fitting coefficients of Zernike polynomials was proposed. According to this method, the resolution of a grating is tested by ZYGO interferometer indirectly. Compared with direct method, results indicate that the error of indirect method is less than 4.22%, and this method could be an effective way to avoid the difficulty of direct method to solve resolution. Meanwhile, this method can be used in ZYGO interferometer to solve resolution by wavefront testing easily.

  7. Phase relations in KxFe2-ySe2 and the structure of superconducting KxFe2Se2 via high-resolution synchrotron diffraction

    NASA Astrophysics Data System (ADS)

    Shoemaker, Daniel P.; Chung, Duck Young; Claus, Helmut; Francisco, Melanie C.; Avci, Sevda; Llobet, Anna; Kanatzidis, Mercouri G.

    2012-11-01

    Superconductivity in iron selenides has experienced a rapid growth, but not without major inconsistencies in the reported properties. For alkali-intercalated iron selenides, even the structure of the superconducting phase is a subject of debate, in part because the onset of superconductivity is affected much more delicately by stoichiometry and preparation than in cuprate or pnictide superconductors. If high-quality, pure, superconducting intercalated iron selenides are ever to be made, the intertwined physics and chemistry must be explained by systematic studies of how these materials form and by and identifying the many coexisting phases. To that end, we prepared pure K2Fe4Se5 powder and superconductors in the KxFe2-ySe2 system, and examined differences in their structures by high-resolution synchrotron and single-crystal x-ray diffraction. We found four distinct phases: semiconducting K2Fe4Se5, a metallic superconducting phase KxFe2Se2 with x ranging from 0.38 to 0.58, the phase KFe1.6Se2 with full K occupancy and no Fe vacancy ordering, and a oxidized phase K0.51(5)Fe0.70(2)Se that forms the PbClF structure upon exposure to moisture. We find that the vacancy-ordered phase K2Fe4Se5 does not become superconducting by doping, but the distinct iron-rich minority phase KxFe2Se2 precipitates from single crystals upon cooling from above the vacancy ordering temperature. This coexistence of separate metallic and semiconducting phases explains a broad maximum in resistivity around 100 K. Further studies to understand the solubility of excess Fe in the KxFe2-ySe2 structure will shed light on the maximum fraction of superconducting KxFe2Se2 that can be obtained by solid state synthesis.

  8. Crystal-structure analysis of four mineral samples of anhydrite, CaSO[subscript 4], using synchrotron high-resolution powder X-ray diffraction data

    SciTech Connect

    Antao, Sytle M.

    2014-05-28

    The crystal structures of four samples of anhydrite, CaSO{sub 4}, were obtained by Rietveld refinements using synchrotron high-resolution powder X-ray diffraction (HRPXRD) data and space group Amma. As an example, for one sample of anhydrite from Hants County, Nova Scotia, the unit-cell parameters are a = 7.00032(2), b = 6.99234(1), c = 6.24097(1) {angstrom}, and V = 305.487(1) {angstrom}{sup 3} with a > b. The eight-coordinated Ca atom has an average distance of 2.4667(4) {angstrom}. The tetrahedral SO{sub 4} group has two independent S-O distances of 1.484(1) to O1 and 1.478(1) {angstrom} to O2 and an average distance of 1.4810(5) {angstrom}. The three independent O-S-O angles [108.99(8) x 1, 110.38(3) x 4, 106.34(9){sup o} x 1; average [6] = 109.47(2){sup o}] and S-O distances indicate that the geometry of the SO{sub 4} group is quite distorted in anhydrite. The four anhydrite samples have structural trends where the a, b, and c unit-cell parameters increase linearly with increasing unit-cell volume, V, and their average and distances are nearly constant. The grand mean = 2.4660(2) {angstrom}, and grand mean = 1.4848(3) {angstrom}, the latter is longer than 1.480(1) {angstrom} in celestite, SrSO{sub 4}, as expected.

  9. High-Resolution X-ray Diffraction Studies of ZnSnAs2 Epitaxial Films Nearly Lattice-matched to InP Substrates

    NASA Astrophysics Data System (ADS)

    Asubar, Joel T.; Agatsuma, Yuji; Yamaguchi, Hiroshi; Nakamura, Shin`Ichi; Jinbo, Yoshio; Uchitomi, Naotaka

    2010-01-01

    ZnSnAs2 epitaxial films were grown by molecular beam epitaxy (MBE) on nearly lattice matched InP substrates. Four samples namely samples A, B, C, and D were prepared at different growth times of 15, 30, 50, and 83 mins, respectively, using the optimum growth conditions earlier reported to obtain samples of different values of thickness for the purpose of structural characterization using High-Resolution X-ray Diffraction (HR-XRD). HR-XRD investigations revealed unrelaxed lattice constant a⊥ values along the growth direction of 5.8991 Å, 5.8991 Å, 5.8886 Å, and 5.8928 Åfor samples A, B, C, and D, respectively. Reciprocal Space Mapping on one of the samples indicates pseudomorphic growth with respect to the InP substrate. The absence of full-width at half maximum (FWHM) broadening of the of the HR-XRD rocking curves with increasing thickness of the samples suggests that all the epitaxial films in this work are pseudomorphic with the InP substrate. Assuming a Poisson ratio ν of 1/3, the corrected values of the lattice constant, i.e. values of the free-standing lattice constant afs, were calculated to be 5.8840 Å, 5.8840 Å, 5.8788 Å, and 5.8809 Åfor samples A, B, C, and D. These results suggest that the elongation due to the pseudomorphic growth is substantial in the computation of the true lattice constant of ZnSnAs2 epitaxial films.

  10. Arterial microcalcification in atherosclerotic patients with and without chronic kidney disease: a comparative high-resolution scanning X-ray diffraction analysis.

    PubMed

    Fischer, Dagmar-Christiane; Behets, Geert J; Hakenberg, Oliver W; Voigt, Mathias; Vervaet, Benjamin A; Robijn, Stef; Kundt, Günther; Schareck, Wolfgang; D'Haese, Patrick C; Haffner, Dieter

    2012-06-01

    Vascular calcification, albeit heterogeneous in terms of biological and physicochemical properties, has been associated with ageing, lifestyle, diabetes, and chronic kidney disease (CKD). It is unknown whether or not moderately impaired renal function (CKD stages 2-4) affects the physiochemical composition and/or the formation of magnesium-containing tricalcium phosphate ([Ca,Mg](3)[PO(4)](2), whitlockite) in arterial microcalcification. Therefore, a high-resolution scanning X-ray diffraction analysis (European Synchrotron Radiation Facility, Grenoble, France) utilizing histological sections of paraffin-embedded arterial specimens derived from atherosclerotic patients with normal renal function (n = 15) and CKD (stages 2-4, n = 13) was performed. This approach allowed us to spatially assess the contribution of calcium phosphate (apatite) and whitlockite to arterial microcalcification. Per group, the number of samples (13 vs. 12) with sufficient signal intensity and total lengths of regions (201 vs. 232 μm) giving rise to diffractograms ("informative regions") were comparable. Summarizing all informative regions per group into one composite sample revealed calcium phosphate/apatite as the leading mineral phase in CKD patients, whereas in patients with normal renal function the relative contribution of whitlockite and calcium phosphate/apatite was on the same order of magnitude (CKD, calcium phosphate/apatite 157 μm, whitlockite 38.7 μm; non-CKD, calcium phosphate/apatite 79.0 μm, whitlockite 94.1 μm; each p < 0.05). Our results, although based on a limited number of samples, indicate that chronic impairment of renal function affects local magnesium homeostasis and thus contributes to the physicochemical composition of microcalcification in atherosclerotic patients.

  11. STEM Electron Diffraction and High Resolution Images Used in the Determination of the Crystal Structure of Au144(SR)60 Cluster

    PubMed Central

    Bahena, Daniel; Bhattarai, Nabraj; Santiago, Ulises; Tlahuice, Alfredo; Ponce, Arturo; Bach, Stephan B. H.; Yoon, Bokwon; Whetten, Robert L.; Landman, Uzi; Jose-Yacaman, Miguel

    2013-01-01

    Determination of the total structure of molecular nanocrystals is an outstanding experimental challenge that has been met, in only a few cases, by single-crystal X-ray diffraction. Described here is an alternative approach that is of most general applicability and does not require the fabrication of a single crystal. The method is based on rapid, time-resolved nanobeam electron diffraction (NBD) combined with high-angle annular dark field scanning/transmission electron microscopy (HAADF-STEM) images in a probe corrected STEM microscope, operated at reduced voltages. The results are compared with theoretical simulations of images and diffraction patterns obtained from atomistic structural models derived through first-principles density functional theory (DFT) calculations. The method is demonstrated by application to determination of the structure of the Au144(SCH2CH2Ph)60 cluster. PMID:23687562

  12. A multi-step strategy to obtain crystals of the dengue virus RNA-dependent RNA polymerase that diffract to high resolution

    SciTech Connect

    Yap, Thai Leong; Chen, Yen Liang; Xu, Ting; Wen, Daying; Vasudevan, Subhash G.; Lescar, Julien

    2007-02-01

    Crystals of the RNA-dependent RNA polymerase catalytic domain from the dengue virus NS5 protein have been obtained using a strategy that included expression screening of naturally occurring serotype variants of the protein, the addition of divalent metal ions and crystal dehydration. These crystals diffract to 1.85 Å resolution and are thus suitable for a structure-based drug-design program. Dengue virus, a member of the Flaviviridae genus, causes dengue fever, an important emerging disease with several million infections occurring annually for which no effective therapy exists. The viral RNA-dependent RNA polymerase NS5 plays an important role in virus replication and represents an interesting target for the development of specific antiviral compounds. Crystals that diffract to 1.85 Å resolution that are suitable for three-dimensional structure determination and thus for a structure-based drug-design program have been obtained using a strategy that included expression screening of naturally occurring serotype variants of the protein, the addition of divalent metal ions and crystal dehydration.

  13. Charge-density distribution and electrostatic flexibility of ZIF-8 based on high-resolution X-ray diffraction data and periodic calculations.

    PubMed

    Novaković, Sladjana B; Bogdanović, Goran A; Heering, Christian; Makhloufi, Gamall; Francuski, Djordje; Janiak, Christoph

    2015-03-16

    The electron-density distribution in a prototypical porous coordination polymer ZIF-8 has been obtained in an approach combining high-resolution X-ray diffraction data and Invariom refinement. In addition, the periodic quantum-chemical calculation has been used to describe the theoretical density features of ZIF-8 in the same geometry (m1) and also in a "high-pressure" form of ZIF-8 (m2) characterized by conformational change with respect to the methylimidazolate linker. A thorough comparison of the electronic and electrostatic properties in two limiting structural forms of ZIF-8 proposes additional aspects on diffusion and adsorption processes occurring within the framework. The dimensions of the four-membered (FM) and six-membered (SM) apertures of the β cage are reliably determined from the total electron-density distribution. The analysis shows that FM in m2 becomes competitive in size to the SM aperture and should be considered for the diffusion of small molecules and cations. Bader's topological analysis (quantum theory of atoms in molecules) shows similar properties of both ZIF-8 forms. On the other hand, analysis of their electrostatic properties reveals tremendous differences. The study suggests exceptional electrostatic flexibility of the ZIF-8 framework, where small conformational changes lead to a significantly different electrostatic potential (EP) distribution, a feature that could be important for the function and dynamics of the ZIF-8 framework. The cavity surface in m1 contains 38 distinct regions with moderately positive, negative, or neutral EP and weakly positive EP in the cavity volume. In contrast to m1, the m2 form displays only two regions of different EP, with the positive one taking the whole cavity surface and the strong negative one localized entirely in the FM apertures. The EP in the cavity volume is also more positive than that in m1. A pronounced influence of the linker reorientation on the EP of the ZIF-8 forms is related to the

  14. Prospects of high-resolution resonant X-ray inelastic scattering studies on solid materials, liquids and gases at diffraction-limited storage rings

    PubMed Central

    Schmitt, Thorsten; de Groot, Frank M. F.; Rubensson, Jan-Erik

    2014-01-01

    The spectroscopic technique of resonant inelastic X-ray scattering (RIXS) will particularly profit from immensely improved brilliance of diffraction-limited storage rings (DLSRs). In RIXS one measures the intensities of excitations as a function of energy and momentum transfer. DLSRs will allow for pushing the achievable energy resolution, signal intensity and the sampled spot size to new limits. With RIXS one nowadays probes a broad range of electronic systems reaching from simple molecules to complex materials displaying phenomena like peculiar magnetism, two-dimensional electron gases, superconductivity, photovoltaic energy conversion and heterogeneous catalysis. In this article the types of improved RIXS studies that will become possible with X-ray beams from DLSRs are envisioned. PMID:25177995

  15. Enhanced high-speed coherent diffraction imaging

    NASA Astrophysics Data System (ADS)

    Potier, Jonathan; Fricker, Sebastien; Idir, Mourad

    2011-03-01

    Due to recent advances in X-ray microscopy, we are now able to image objects with nanometer resolution thanks to Synchrotron beam lines or Free Electron Lasers (FEL). The PCI (Phase Contrast Imaging) is a robust technique that can recover the wavefront from measurements of only few intensity pictures in the Fresnel diffraction region. With our fast straightforward calculus methods, we manage to provide the phase induced by a microscopic specimen in few seconds. We can therefore obtain high contrasted images from transparent materials at very small scales. To reach atomic resolution imaging and thus make a transition from the near to the far field, the Coherent Diffraction Imaging (CDI) technique finds its roots in the analysis of diffraction patterns to obtain the phase of the altered complex wave. Theoretical results about existence and uniqueness of this retrieved piece of information by both iterative and direct algorithms have already been released. However, performances of algorithms remain limited by the coherence of the X-ray beam, presence of random noise and the saturation threshold of the detector. We will present reconstructions of samples using an enhanced version of HIO algorithm improving the speed of convergence and its repeatability. As a first step toward a practical X-Ray CDI system, initial images for reconstructions are acquired with the laser-based CDI system working in the visible spectrum.

  16. Conical diffraction illumination opens the way for low phototoxicity super-resolution imaging

    PubMed Central

    Caron, Julien; Fallet, Clément; Tinevez, Jean-Yves; Moisan, Lionel; Braitbart, L Philippe (Ori); Sirat, Gabriel Y; Shorte, Spencer L

    2014-01-01

    We present a new technology for super-resolution fluorescence imaging, based on conical diffraction. Conical diffraction is a linear, singular phenomenon, taking place when a laser beam is diffracted through a biaxial crystal. We use conical diffraction in a thin biaxial crystal to generate illumination patterns that are more compact than the classical Gaussian beam, and use them to generate a super-resolution imaging modality. While there already exist several super-resolution modalities, our technology (biaxial super-resolution: BSR) is distinguished by the unique combination of several performance features. Using BSR super-resolution data are achieved using low light illumination significantly less than required for classical confocal imaging, which makes BSR ideal for live-cell, long-term time-lapse super-resolution imaging. Furthermore, no specific sample preparation is required, and any fluorophore can be used. Perhaps most exciting, improved resolution BSR-imaging resolution enhancement can be achieved with any type of objective no matter the magnification, numerical aperture, working distance, or the absence or presence of immersion medium. In this article, we present the first implementation of BSR modality on a commercial confocal microscope. We acquire and analyze validation data, showing high quality super-resolved images of biological objects, and demonstrate the wide applicability of the technology. We report live-cell super-resolution imaging over a long period, and show that the light dose required for super-resolution imaging is far below the threshold likely to generate phototoxicity. PMID:25482642

  17. High-end spectroscopic diffraction gratings: design and manufacturing

    NASA Astrophysics Data System (ADS)

    Glaser, Tilman

    2015-02-01

    Diffraction gratings are key components for spectroscopic systems. For high-end applications, they have to meet advanced requirements as, e.g., maximum efficiency, lowest possible scattered light level, high numerical aperture, and minimal aberrations. Diffraction gratings are demanded to allow spectrometer designs with highest resolution, a maximal étendue, and minimal stray light, built within a minimal volume. This tutorial is intended to provide an overview of different high-end spectroscopic gratings, their theoretical design and manufacturing technologies.

  18. High resolution telescope

    DOEpatents

    Massie, Norbert A.; Oster, Yale

    1992-01-01

    A large effective-aperture, low-cost optical telescope with diffraction-limited resolution enables ground-based observation of near-earth space objects. The telescope has a non-redundant, thinned-aperture array in a center-mount, single-structure space frame. It employs speckle interferometric imaging to achieve diffraction-limited resolution. The signal-to-noise ratio problem is mitigated by moving the wavelength of operation to the near-IR, and the image is sensed by a Silicon CCD. The steerable, single-structure array presents a constant pupil. The center-mount, radar-like mount enables low-earth orbit space objects to be tracked as well as increases stiffness of the space frame. In the preferred embodiment, the array has elemental telescopes with subaperture of 2.1 m in a circle-of-nine configuration. The telescope array has an effective aperture of 12 m which provides a diffraction-limited resolution of 0.02 arc seconds. Pathlength matching of the telescope array is maintained by an electro-optical system employing laser metrology. Speckle imaging relaxes pathlength matching tolerance by one order of magnitude as compared to phased arrays. Many features of the telescope contribute to substantial reduction in costs. These include eliminating the conventional protective dome and reducing on-site construction activites. The cost of the telescope scales with the first power of the aperture rather than its third power as in conventional telescopes.

  19. Super-resolution optical telescopes with local light diffraction shrinkage.

    PubMed

    Wang, Changtao; Tang, Dongliang; Wang, Yanqin; Zhao, Zeyu; Wang, Jiong; Pu, Mingbo; Zhang, Yudong; Yan, Wei; Gao, Ping; Luo, Xiangang

    2015-01-01

    Suffering from giant size of objective lenses and infeasible manipulations of distant targets, telescopes could not seek helps from present super-resolution imaging, such as scanning near-field optical microscopy, perfect lens and stimulated emission depletion microscopy. In this paper, local light diffraction shrinkage associated with optical super-oscillatory phenomenon is proposed for real-time and optically restoring super-resolution imaging information in a telescope system. It is found that fine target features concealed in diffraction-limited optical images of a telescope could be observed in a small local field of view, benefiting from a relayed metasurface-based super-oscillatory imaging optics in which some local Fourier components beyond the cut-off frequency of telescope could be restored. As experimental examples, a minimal resolution to 0.55 of Rayleigh criterion is obtained, and imaging complex targets and large targets by superimposing multiple local fields of views are demonstrated as well. This investigation provides an access for real-time, incoherent and super-resolution telescopes without the manipulation of distant targets. More importantly, it gives counterintuitive evidence to the common knowledge that relayed optics could not deliver more imaging details than objective systems. PMID:26677820

  20. Super-resolution optical telescopes with local light diffraction shrinkage

    PubMed Central

    Wang, Changtao; Tang, Dongliang; Wang, Yanqin; Zhao, Zeyu; Wang, Jiong; Pu, Mingbo; Zhang, Yudong; Yan, Wei; Gao, Ping; Luo, Xiangang

    2015-01-01

    Suffering from giant size of objective lenses and infeasible manipulations of distant targets, telescopes could not seek helps from present super-resolution imaging, such as scanning near-field optical microscopy, perfect lens and stimulated emission depletion microscopy. In this paper, local light diffraction shrinkage associated with optical super-oscillatory phenomenon is proposed for real-time and optically restoring super-resolution imaging information in a telescope system. It is found that fine target features concealed in diffraction-limited optical images of a telescope could be observed in a small local field of view, benefiting from a relayed metasurface-based super-oscillatory imaging optics in which some local Fourier components beyond the cut-off frequency of telescope could be restored. As experimental examples, a minimal resolution to 0.55 of Rayleigh criterion is obtained, and imaging complex targets and large targets by superimposing multiple local fields of views are demonstrated as well. This investigation provides an access for real-time, incoherent and super-resolution telescopes without the manipulation of distant targets. More importantly, it gives counterintuitive evidence to the common knowledge that relayed optics could not deliver more imaging details than objective systems. PMID:26677820

  1. Super-resolution optical telescopes with local light diffraction shrinkage

    NASA Astrophysics Data System (ADS)

    Wang, Changtao; Tang, Dongliang; Wang, Yanqin; Zhao, Zeyu; Wang, Jiong; Pu, Mingbo; Zhang, Yudong; Yan, Wei; Gao, Ping; Luo, Xiangang

    2015-12-01

    Suffering from giant size of objective lenses and infeasible manipulations of distant targets, telescopes could not seek helps from present super-resolution imaging, such as scanning near-field optical microscopy, perfect lens and stimulated emission depletion microscopy. In this paper, local light diffraction shrinkage associated with optical super-oscillatory phenomenon is proposed for real-time and optically restoring super-resolution imaging information in a telescope system. It is found that fine target features concealed in diffraction-limited optical images of a telescope could be observed in a small local field of view, benefiting from a relayed metasurface-based super-oscillatory imaging optics in which some local Fourier components beyond the cut-off frequency of telescope could be restored. As experimental examples, a minimal resolution to 0.55 of Rayleigh criterion is obtained, and imaging complex targets and large targets by superimposing multiple local fields of views are demonstrated as well. This investigation provides an access for real-time, incoherent and super-resolution telescopes without the manipulation of distant targets. More importantly, it gives counterintuitive evidence to the common knowledge that relayed optics could not deliver more imaging details than objective systems.

  2. Super-resolution optical telescopes with local light diffraction shrinkage.

    PubMed

    Wang, Changtao; Tang, Dongliang; Wang, Yanqin; Zhao, Zeyu; Wang, Jiong; Pu, Mingbo; Zhang, Yudong; Yan, Wei; Gao, Ping; Luo, Xiangang

    2015-12-18

    Suffering from giant size of objective lenses and infeasible manipulations of distant targets, telescopes could not seek helps from present super-resolution imaging, such as scanning near-field optical microscopy, perfect lens and stimulated emission depletion microscopy. In this paper, local light diffraction shrinkage associated with optical super-oscillatory phenomenon is proposed for real-time and optically restoring super-resolution imaging information in a telescope system. It is found that fine target features concealed in diffraction-limited optical images of a telescope could be observed in a small local field of view, benefiting from a relayed metasurface-based super-oscillatory imaging optics in which some local Fourier components beyond the cut-off frequency of telescope could be restored. As experimental examples, a minimal resolution to 0.55 of Rayleigh criterion is obtained, and imaging complex targets and large targets by superimposing multiple local fields of views are demonstrated as well. This investigation provides an access for real-time, incoherent and super-resolution telescopes without the manipulation of distant targets. More importantly, it gives counterintuitive evidence to the common knowledge that relayed optics could not deliver more imaging details than objective systems.

  3. High-resolution imaging ellipsometer.

    PubMed

    Zhan, Qiwen; Leger, James R

    2002-08-01

    We report on a novel imaging ellipsometer using a high-numerical-aperture (NA) objective lens capable of measuring a two-dimensional ellipsometric signal with high resolution. Two-dimensional ellipsometric imaging is made possible by spatial filtering at the pupil plane of the objective. A Richards-Wolf vectorial diffraction model and geometrical optics model are developed to simulate the system. The thickness profile of patterned polymethyl methacrylate is measured for calibration purposes. Our instrument has a sensitivity of 5 A and provides spatial resolution of approximately 0.5 microm with 632.8-nm illumination. Its capability of measuring refractive-index variations with high spatial resolution is also demonstrated.

  4. High-resolution thermal imaging with a combination of nano-focus X-ray diffraction and ultra-fast chip calorimetry.

    PubMed

    Rosenthal, Martin; Doblas, David; Hernandez, Jaime J; Odarchenko, Yaroslav I; Burghammer, Manfred; Di Cola, Emanuela; Spitzer, Denis; Antipov, A E; Aldoshin, L S; Ivanov, Dimitri A

    2014-01-01

    A microelectromechanical-systems-based calorimeter designed for use on a synchrotron nano-focused X-ray beamline is described. This instrument allows quantitative DC and AC calorimetric measurements over a broad range of heating/cooling rates (≤100000 K s(-1)) and temperature modulation frequencies (≤1 kHz). The calorimeter was used for high-resolution thermal imaging of nanogram-sized samples subjected to X-ray-induced heating. For a 46 ng indium particle, the measured temperature rise reaches ∼0.2 K, and is directly correlated to the X-ray absorption. Thermal imaging can be useful for studies of heterogeneous materials exhibiting physical and/or chemical transformations. Moreover, the technique can be extended to three-dimensional thermal nanotomography. PMID:24365940

  5. High Resolution PDF Measurements on Ag Nanoparticles

    SciTech Connect

    Rocha, Tulio C. R.; Martin, Chris; Kycia, Stefan; Zanchet, Daniela

    2009-01-29

    The quantitative analysis of structural defects in Ag nanoparticles was addressed in this work. We performed atomic scale structural characterization by a combination of x-ray diffraction (XRD) using the Pair Distribution Function analysis (PDF) and High Resolution Transmission Electron Microscopy (HRTEM). The XRD measurements were performed using an innovative instrumentation setup to provide high resolution PDF patterns.

  6. Structural Characterization and Gas Reactions of Small Metal Particles by High Resolution In-situ TEM and TED. [Transmission Electron Microscopy and Transmission Electron Diffraction

    NASA Technical Reports Server (NTRS)

    Heinemann, K.

    1985-01-01

    A commercial electron microscope with flat-plate upper pole piece configuration of the objective lens and top entry specimen introduction was modified to obtain 5 x 10 to the minus 10th power mbar pressure at the site of the specimen while maintaining the convenience of a specimen airlock system that allows operation in the 10 to the 10th power mbar range within 15 minutes after specimen change. The specimen chamber contains three wire evaporation sources, a specimen heater, and facilities for oxygen or hydrogen plasma treatment to clean as-introduced specimens. Evacuation is achieved by dural differential pumping, with fine entrance and exit apertures for the electron beam. With the microscope operating at .000001 mbar, the first differential pumping stage features a high-speed cryopump operating in a stainless steel chamber that can be mildly baked and reaches 1 x 10 to the minus 8th power mbar. The second stage, containing the evaporation sources and a custom ionization gauge within 10 cm from the specimen, is a rigorously uncompromised all-metal uhv-system that is bakable to above 200 C throughout and is pumped with an 80-liter ion pump. Design operating pressures and image quality (resolution of metal particles smaller than 1 nm in size) was achieved.

  7. The Influence of Surface Morphology and Diffraction Resolution of Canavalin Crystals

    NASA Technical Reports Server (NTRS)

    Plomp, M.; Thomas, B. R.; Day, J. S.; McPherson, A.; Chernov, A. A.; Malkin, A.

    2003-01-01

    Canavalin crystals grown from material purified and not purified by High Performance Liquid Chromatography were studied by atomic force microscopy and x-ray diffraction. After purification, resolution was improved from 2.55Angstroms to 2.22Angstroms and jagged isotropic spiral steps transformed into regular, well polygonized steps.

  8. Electron diffraction and high-resolution transmission electron microscopy of the high temperature crystal structures of GexSb2Te3+x (x=1,2,3) phase change material

    NASA Astrophysics Data System (ADS)

    Kooi, B. J.; De Hosson, J. Th. M.

    2002-10-01

    The crystal structures of GeSb2Te4, Ge2Sb2Te5, and Ge3Sb2Te6 were determined using electron diffraction and high-resolution transmission electron microscopy. The structure determined for the former two crystals deviates from the ones proposed in the literature. These crystal structures were developed jointly upon cooling of liquid Ge2Sb2Te5. A stacking disorder parallel to the basal plane was observed that increases with increasing cooling rates. For the GexSb2Te3+x (x=1,2,3) crystals it is shown that an a,b,c stacking holds with an alternating stacking of x GeTe double layers identically present in binary GeTe and one Te-Sb-Te-Te-Sb- repeat unit also present in binary Sb2Te3. A stacking disorder is a logical consequence of building crystals with these two principal units. On the other hand, it is likely that all stable crystals of the Ge-Sb-Te systems are an ordered sequence of these two units. Some of the implications of these findings of the stable and metastable crystal structures that develop from amorphous Ge2Sb2Te5 are presented so as to understand the crucial crystallization process in Ge2Sb2Te5 phase change material.

  9. Nanometres-resolution Kikuchi patterns from materials science specimens with transmission electron forward scatter diffraction in the scanning electron microscope.

    PubMed

    Brodusch, N; Demers, H; Gauvin, R

    2013-04-01

    A charge-coupled device camera of an electron backscattered diffraction system in a scanning electron microscope was positioned below a thin specimen and transmission Kikuchi patterns were collected. Contrary to electron backscattered diffraction, transmission electron forward scatter diffraction provides phase identification and orientation mapping at the nanoscale. The minimum Pd particle size for which a Kikuchi diffraction pattern was detected and indexed reliably was 5.6 nm. An orientation mapping resolution of 5 nm was measured at 30 kV. The resolution obtained with transmission electron forward scatter diffraction was of the same order of magnitude than that reported in electron nanodiffraction in the transmission electron microscope. An energy dispersive spectrometer X-ray map and a transmission electron forward scatter diffraction orientation map were acquired simultaneously. The high-resolution chemical, phase and orientation maps provided at once information on the chemical form, orientation and coherency of precipitates in an aluminium-lithium 2099 alloy.

  10. High pressure x-ray diffraction techniques with synchrotron radiation

    NASA Astrophysics Data System (ADS)

    Jing, Liu

    2016-07-01

    This article summarizes the developments of experimental techniques for high pressure x-ray diffraction (XRD) in diamond anvil cells (DACs) using synchrotron radiation. Basic principles and experimental methods for various diffraction geometry are described, including powder diffraction, single crystal diffraction, radial diffraction, as well as coupling with laser heating system. Resolution in d-spacing of different diffraction modes is discussed. More recent progress, such as extended application of single crystal diffraction for measurements of multigrain and electron density distribution, time-resolved diffraction with dynamic DAC and development of modulated heating techniques are briefly introduced. The current status of the high pressure beamline at BSRF (Beijing Synchrotron Radiation Facility) and some results are also presented. Project supported by the National Natural Science Foundation of China (Grant Nos. 10875142, 11079040, and 11075175). The 4W2 beamline of BSRF was supported by the Chinese Academy of Sciences (Grant Nos. KJCX2-SW-N20, KJCX2-SW-N03, and SYGNS04).

  11. In situ and real-time characterization of metal-organic chemical vapor deposition growth by high resolution x-ray diffraction

    SciTech Connect

    Kharchenko, A.; Lischka, K.; Schmidegg, K.; Sitter, H.; Bethke, J.; Woitok, J.

    2005-03-01

    We present an x-ray diffractometer for the analysis of epitaxial layers during (in situ) metal-organic chemical vapor deposition (MOCVD). Our diffractometer has a conventional x-ray source, does not need a goniometer stage, and is not sensitive to precise adjustment of the samples before measurement. It allows us to perform measurements within a few seconds even from rotating and wobbling samples. The first results of laboratory tests performed with our x-ray diffraction system show that it is well suited for in situ and real-time monitoring of the MOCVD growth process. We were able to measure the growth rate of a cubic GaN layer and the intensity and peak position of Bragg reflections of the growing layer in less than 20 s only.

  12. High-Resolution Autoradiography

    NASA Technical Reports Server (NTRS)

    Towe, George C; Gomberg, Henry J; Freemen, J W

    1955-01-01

    This investigation was made to adapt wet-process autoradiography to metallurgical samples to obtain high resolution of segregated radioactive elements in microstructures. Results are confined to development of the technique, which was perfected to a resolution of less than 10 microns. The radioactive samples included carbon-14 carburized iron and steel, nickel-63 electroplated samples, a powder product containing nickel-63, and tungsten-185 in N-155 alloy.

  13. Ultra high resolution tomography

    SciTech Connect

    Haddad, W.S.

    1994-11-15

    Recent work and results on ultra high resolution three dimensional imaging with soft x-rays will be presented. This work is aimed at determining microscopic three dimensional structure of biological and material specimens. Three dimensional reconstructed images of a microscopic test object will be presented; the reconstruction has a resolution on the order of 1000 A in all three dimensions. Preliminary work with biological samples will also be shown, and the experimental and numerical methods used will be discussed.

  14. Component analyses of urinary nanocrystallites of uric acid stone formers by combination of high-resolution transmission electron microscopy, fast Fourier transformation, energy dispersive X-ray spectroscopy, X-ray diffraction and Fourier transform infrared spectroscopy.

    PubMed

    Sun, Xin-Yuan; Xue, Jun-Fa; Xia, Zhi-Yue; Ouyang, Jian-Ming

    2015-06-01

    This study aimed to analyse the components of nanocrystallites in urines of patients with uric acid (UA) stones. X-ray diffraction (XRD), Fourier transform infrared spectroscopy, high-resolution transmission electron microscopy (HRTEM), fast Fourier transformation (FFT) of HRTEM, and energy dispersive X-ray spectroscopy (EDS) were performed to analyse the components of these nanocrystallites. XRD and FFT showed that the main component of urinary nanocrystallites was UA, which contains a small amount of calcium oxalate monohydrate and phosphates. EDS showed the characteristic absorption peaks of C, O, Ca and P. The formation of UA stones was closely related to a large number of UA nanocrystallites in urine. A combination of HRTEM, FFT, EDS and XRD analyses could be performed accurately to analyse the components of urinary nanocrystallites.

  15. Solid state parameters, structure elucidation, High Resolution X-Ray Diffraction (HRXRD), phase matching, thermal and impedance analysis on L-Proline trichloroacetate (L-PTCA) NLO single crystals.

    PubMed

    Kalaiselvi, P; Raj, S Alfred Cecil; Jagannathan, K; Vijayan, N; Bhagavannarayana, G; Kalainathan, S

    2014-11-11

    Nonlinear optical single crystal of L-Proline trichloroacetate (L-PTCA) was successfully grown by Slow Evaporation Solution Technique (SEST). The grown crystals were subjected to single crystal X-ray diffraction analysis to confirm the structure. From the single crystal XRD data, solid state parameters were determined for the grown crystal. The crystalline perfection has been evaluated using high resolution X-ray diffractometer. The frequencies of various functional groups were identified from FTIR spectral analysis. The percentage of transmittance was obtained from UV Visible spectral analysis. TGA-DSC measurements indicate the thermal stability of the crystal. The dielectric constant, dielectric loss and ac conductivity were measured by the impedance analyzer. The DC conductivity was calculated by the cole-cole plot method.

  16. The evolution with strain of the stored energy in different texture components of cold-rolled IF steel revealed by high resolution X-ray diffraction

    SciTech Connect

    Wauthier-Monnin, A.; Chauveau, T.; Castelnau, O.; Réglé, H.; Bacroix, B.

    2015-06-15

    During the deformation of low carbon steel by cold-rolling, dislocations are created and stored in grains depending on local crystallographic orientation, deformation, and deformation gradient. Orientation dependent dislocation densities have been estimated from the broadening of X-ray diffraction lines measured on a synchrotron beamline. Different cold-rolling levels (from 30% to 95% thickness reduction) have been considered. It is shown that the present measurements are consistent with the hypothesis of the sole consideration of screw dislocations for the analysis of the data. The presented evolutions show that the dislocation density first increases within the α fiber (=(hkl)<110>) and then within the γ fiber (=(111)). A comparison with EBSD measurements is done and confirms that the storage of dislocations during the deformation process is orientation dependent and that this dependence is correlated to the cold-rolling level. If we assume that this dislocation density acts as a driving force during recrystallization, these observations can explain the fact that the recrystallization mechanisms are generally different after moderate or large strains. - Highlights: • Dislocation densities are assessed by XRD in main texture components of a steel sheet. • Dislocation densities vary with both strain and texture components. • The analysis relies on the sole presence of screw dislocations. • The measured dislocation densities include the contribution of both SSD and GND.

  17. High-resolution neutron and X-ray diffraction room-temperature studies of an H-FABP-oleic acid complex: study of the internal water cluster and ligand binding by a transferred multipolar electron-density distribution.

    PubMed

    Howard, E I; Guillot, B; Blakeley, M P; Haertlein, M; Moulin, M; Mitschler, A; Cousido-Siah, A; Fadel, F; Valsecchi, W M; Tomizaki, Takashi; Petrova, T; Claudot, J; Podjarny, A

    2016-03-01

    Crystal diffraction data of heart fatty acid binding protein (H-FABP) in complex with oleic acid were measured at room temperature with high-resolution X-ray and neutron protein crystallography (0.98 and 1.90 Å resolution, respectively). These data provided very detailed information about the cluster of water molecules and the bound oleic acid in the H-FABP large internal cavity. The jointly refined X-ray/neutron structure of H-FABP was complemented by a transferred multipolar electron-density distribution using the parameters of the ELMAMII library. The resulting electron density allowed a precise determination of the electrostatic potential in the fatty acid (FA) binding pocket. Bader's quantum theory of atoms in molecules was then used to study interactions involving the internal water molecules, the FA and the protein. This approach showed H⋯H contacts of the FA with highly conserved hydrophobic residues known to play a role in the stabilization of long-chain FAs in the binding cavity. The determination of water hydrogen (deuterium) positions allowed the analysis of the orientation and electrostatic properties of the water molecules in the very ordered cluster. As a result, a significant alignment of the permanent dipoles of the water molecules with the protein electrostatic field was observed. This can be related to the dielectric properties of hydration layers around proteins, where the shielding of electrostatic interactions depends directly on the rotational degrees of freedom of the water molecules in the interface. PMID:27006775

  18. High-resolution neutron and X-ray diffraction room-temperature studies of an H-FABP-oleic acid complex: study of the internal water cluster and ligand binding by a transferred multipolar electron-density distribution.

    PubMed

    Howard, E I; Guillot, B; Blakeley, M P; Haertlein, M; Moulin, M; Mitschler, A; Cousido-Siah, A; Fadel, F; Valsecchi, W M; Tomizaki, Takashi; Petrova, T; Claudot, J; Podjarny, A

    2016-03-01

    Crystal diffraction data of heart fatty acid binding protein (H-FABP) in complex with oleic acid were measured at room temperature with high-resolution X-ray and neutron protein crystallography (0.98 and 1.90 Å resolution, respectively). These data provided very detailed information about the cluster of water molecules and the bound oleic acid in the H-FABP large internal cavity. The jointly refined X-ray/neutron structure of H-FABP was complemented by a transferred multipolar electron-density distribution using the parameters of the ELMAMII library. The resulting electron density allowed a precise determination of the electrostatic potential in the fatty acid (FA) binding pocket. Bader's quantum theory of atoms in molecules was then used to study interactions involving the internal water molecules, the FA and the protein. This approach showed H⋯H contacts of the FA with highly conserved hydrophobic residues known to play a role in the stabilization of long-chain FAs in the binding cavity. The determination of water hydrogen (deuterium) positions allowed the analysis of the orientation and electrostatic properties of the water molecules in the very ordered cluster. As a result, a significant alignment of the permanent dipoles of the water molecules with the protein electrostatic field was observed. This can be related to the dielectric properties of hydration layers around proteins, where the shielding of electrostatic interactions depends directly on the rotational degrees of freedom of the water molecules in the interface.

  19. High-resolution headlamp

    NASA Astrophysics Data System (ADS)

    Gut, Carsten; Cristea, Iulia; Neumann, Cornelius

    2016-04-01

    The following article shall describe how human vision by night can be influenced. At first, front lighting systems that are already available on the market will be described, followed by their analysis with respect to the positive effects on traffic safety. Furthermore, how traffic safety by night can be increased since the introduction of high resolution headlamps shall be discussed.

  20. High resolution drift chambers

    SciTech Connect

    Va'vra, J.

    1985-07-01

    High precision drift chambers capable of achieving less than or equal to 50 ..mu..m resolutions are discussed. In particular, we compare so called cool and hot gases, various charge collection geometries, several timing techniques and we also discuss some systematic problems. We also present what we would consider an ''ultimate'' design of the vertex chamber. 50 refs., 36 figs., 6 tabs.

  1. A simple, high efficiency, high resolution spectropolarimeter

    NASA Astrophysics Data System (ADS)

    Barden, Samuel C.

    2012-09-01

    A simple concept is described that uses volume phase holographic gratings as polarizing dispersers for a high efficiency, high resolution spectropolarimeter. Although the idea has previously been mentioned in the literature as possible, such a concept has not been explored in detail. Performance analysis is presented for a VPHG spectropolarimeter concept that could be utilized for both solar and night-time astronomy. Instrumental peak efficiency can approach 100% with spectral dispersions permitting R~200,000 spectral resolution with diffraction limited telescopes. The instrument has 3-channels: two dispersed image planes with orthogonal polarization and an undispersed image plane. The concept has a range of versatility where it could be configured (with appropriate half-wave plates) for slit-fed spectroscopy or without slits for snapshot/hyperspectral/tomographic spectroscopic imaging. Multiplex gratings could also be used for the simultaneous recording of two separate spectral bands or multiple instruments could be daisy chained with beam splitters for further spectral coverage.

  2. High resolution data acquisition

    DOEpatents

    Thornton, Glenn W.; Fuller, Kenneth R.

    1993-01-01

    A high resolution event interval timing system measures short time intervals such as occur in high energy physics or laser ranging. Timing is provided from a clock (38) pulse train (37) and analog circuitry (44) for generating a triangular wave (46) synchronously with the pulse train (37). The triangular wave (46) has an amplitude and slope functionally related to the time elapsed during each clock pulse in the train. A converter (18, 32) forms a first digital value of the amplitude and slope of the triangle wave at the start of the event interval and a second digital value of the amplitude and slope of the triangle wave at the end of the event interval. A counter (26) counts the clock pulse train (37) during the interval to form a gross event interval time. A computer (52) then combines the gross event interval time and the first and second digital values to output a high resolution value for the event interval.

  3. High resolution data acquisition

    DOEpatents

    Thornton, G.W.; Fuller, K.R.

    1993-04-06

    A high resolution event interval timing system measures short time intervals such as occur in high energy physics or laser ranging. Timing is provided from a clock, pulse train, and analog circuitry for generating a triangular wave synchronously with the pulse train (as seen in diagram on patent). The triangular wave has an amplitude and slope functionally related to the time elapsed during each clock pulse in the train. A converter forms a first digital value of the amplitude and slope of the triangle wave at the start of the event interval and a second digital value of the amplitude and slope of the triangle wave at the end of the event interval. A counter counts the clock pulse train during the interval to form a gross event interval time. A computer then combines the gross event interval time and the first and second digital values to output a high resolution value for the event interval.

  4. High-speed detector for time-resolved diffraction studies

    PubMed Central

    Singh, Bipin; Miller, Stuart R.; Bhandari, Harish B.; Graceffa, Rita; Irving, Thomas C.; Nagarkar, Vivek V.

    2013-01-01

    There are a growing number of high brightness synchrotron sources that require high-frame-rate detectors to provide the time-scales required for performing time-resolved diffraction experiments. We report on the development of a very high frame rate CMOS X-ray detector for time-resolved muscle diffraction and time-resolved solution scattering experiments. The detector is based on a low-afterglow scintillator, provides a megapixel resolution with frame rates of up to 120,000 frames per second, an effective pixel size of 64 µm, and can be adapted for various X-ray energies. The paper describes the detector design and initial results of time-resolved diffraction experiments on a synchrotron beamline. PMID:24489595

  5. High-speed detector for time-resolved diffraction studies

    NASA Astrophysics Data System (ADS)

    Singh, Bipin; Miller, Stuart R.; Bhandari, Harish B.; Graceffa, Rita; Irving, Thomas C.; Nagarkar, Vivek V.

    2013-03-01

    There are a growing number of high brightness synchrotron sources that require high-frame-rate detectors to provide the time-scales required for performing time-resolved diffraction experiments. We report on the development of a very high frame rate CMOS X-ray detector for time-resolved muscle diffraction and time-resolved solution scattering experiments. The detector is based on a low-afterglow scintillator, provides a megapixel resolution with frame rates of up to 120,000 frames per second, an effective pixel size of 64 um, and can be adapted for various X-ray energies. The paper describes the detector design and initial results of time-resolved diffraction experiments on a synchrotron beamline.

  6. Ultra-high density diffraction grating

    DOEpatents

    Padmore, Howard A.; Voronov, Dmytro L.; Cambie, Rossana; Yashchuk, Valeriy V.; Gullikson, Eric M.

    2012-12-11

    A diffraction grating structure having ultra-high density of grooves comprises an echellette substrate having periodically repeating recessed features, and a multi-layer stack of materials disposed on the echellette substrate. The surface of the diffraction grating is planarized, such that layers of the multi-layer stack form a plurality of lines disposed on the planarized surface of the structure in a periodical fashion, wherein lines having a first property alternate with lines having a dissimilar property on the surface of the substrate. For example, in one embodiment, lines comprising high-Z and low-Z materials alternate on the planarized surface providing a structure that is suitable as a diffraction grating for EUV and soft X-rays. In some embodiments, line density of between about 10,000 lines/mm to about 100,000 lines/mm is provided.

  7. High resolution analysis

    NASA Technical Reports Server (NTRS)

    Robinove, C. J.

    1982-01-01

    The possibilities for the use of high spectral resolution analysis in the field of hydrology and water resources are examined. Critical gaps in scientific knowledge that must be filled before technology can be evaluated involve the spectral response of water, substances dissolved and suspended in water, and substances floating on water. The most complete mapping of oil slicks can be done in the ultraviolet region. A mean of measuring the ultraviolet reflection at the surface from satellite altitudes needs to be determined. The use of high spectral resolution sensors in a reasonable number of narrow bands may be able to sense the reflectance or emission characteristics of water and its contained materials that can be correlated with commonly used water quality variables. Technological alternative available to experiment with problems of sensing water quality are to use existing remote sensing instrumentation in an empirical mode and to develop instruments for either testing hypoteses or conducting empirical experiments.

  8. Synchrotron X-Ray Reciprocal Space Mapping, Topography and Diffraction Resolution Studies of Macromolecular Crystal Quality

    NASA Technical Reports Server (NTRS)

    Boggon, T. J.; Helliwell, J. R.; Judge, Russell A.; Siddons, D. P.; Snell, Edward H.; Stojanoff, V.

    2000-01-01

    A comprehensive study of microgravity and ground grown chicken egg white lysozyme crystals is presented using synchrotron X-ray reciprocal space mapping, topography techniques and diffraction resolution. Microgravity crystals displayed, on average, reduced intrinsic mosaicities but no differences in terms of stress over their earth grown counterparts. Topographic analysis revealed that in the microgravity case the majority of the crystal was contributing to the peak of the reflection at the appropriate Bragg angle. In the earth case at the diffraction peak only a small volume of the crystal contributed to the intensity. The techniques prove to be highly complementary with the reciprocal space mapping providing a quantitative measure of the crystal mosaicity and stress (or variation in lattice spacing) and topography providing a qualitative overall assessment of the crystal in terms of its X-ray diffraction properties. Structural data collection was also carried out both at the synchrotron and in the laboratory.

  9. High-resolution neutron and X-ray diffraction room-temperature studies of an H-FABP–oleic acid complex: study of the internal water cluster and ligand binding by a transferred multipolar electron-density distribution

    PubMed Central

    Howard, E. I.; Guillot, B.; Blakeley, M. P.; Haertlein, M.; Moulin, M.; Mitschler, A.; Cousido-Siah, A.; Fadel, F.; Valsecchi, W. M.; Tomizaki, Takashi; Petrova, T.; Claudot, J.; Podjarny, A.

    2016-01-01

    Crystal diffraction data of heart fatty acid binding protein (H-FABP) in complex with oleic acid were measured at room temperature with high-resolution X-ray and neutron protein crystallography (0.98 and 1.90 Å resolution, respectively). These data provided very detailed information about the cluster of water molecules and the bound oleic acid in the H-FABP large internal cavity. The jointly refined X-ray/neutron structure of H-FABP was complemented by a transferred multipolar electron-density distribution using the parameters of the ELMAMII library. The resulting electron density allowed a precise determination of the electrostatic potential in the fatty acid (FA) binding pocket. Bader’s quantum theory of atoms in molecules was then used to study interactions involving the internal water molecules, the FA and the protein. This approach showed H⋯H contacts of the FA with highly conserved hydrophobic residues known to play a role in the stabilization of long-chain FAs in the binding cavity. The determination of water hydrogen (deuterium) positions allowed the analysis of the orientation and electrostatic properties of the water molecules in the very ordered cluster. As a result, a significant alignment of the permanent dipoles of the water molecules with the protein electrostatic field was observed. This can be related to the dielectric properties of hydration layers around proteins, where the shielding of electrostatic interactions depends directly on the rotational degrees of freedom of the water molecules in the interface. PMID:27006775

  10. Electron density distribution and Madelung potential in alpha-spodumene, LiAl(SiO3)2, from two-wavelength high-resolution X-ray diffraction data.

    PubMed

    Kuntzinger; Ghermani

    1999-06-01

    The electron density distribution in alpha-spodumene, LiAl(SiO(3))(2), was derived from high-resolution X-ray diffraction experiments. The results obtained from both Mo Kalpha- and Ag Kalpha-wavelength data sets are reported. The features of the Si-O and Al-O bonds are related to the geometrical parameters of the Si-O-Al and Si-O-Si bridges on the one hand and to the O.Li(+) interaction on the other. Kappa refinements against the two data sets yielded almost the same net charges for the Si (+1.8 e) and O (-1.0 e) atoms in spodumene. However, the Al net charge obtained from the Ag Kalpha data (+1.9 e) is larger than the net charge derived from the Mo Kalpha data (+1.5 e). This difference correlates with a more contracted Al valence shell revealed by the shorter X-ray wavelength (kappa = 1.4 for the Ag Kalpha data set). The derived net charges were used to calculate the Madelung potential at the spodumene atomic sites. The electrostatic energy for the chemical formula LiAl(SiO(3))(2) was -8.60 e(2) Å(-1) (-123.84 eV) from the net charges derived from the Ag Kalpha data and -6.97 e(2) Å(-1) (-100.37 eV) from the net charges derived from the Mo Kalpha data.

  11. High resolution imaging at Palomar

    NASA Technical Reports Server (NTRS)

    Kulkarni, Shrinivas R.

    1992-01-01

    For the last two years we have embarked on a program of understanding the ultimate limits of ground-based optical imaging. We have designed and fabricated a camera specifically for high resolution imaging. This camera has now been pressed into service at the prime focus of the Hale 5 m telescope. We have concentrated on two techniques: the Non-Redundant Masking (NRM) and Weigelt's Fully Filled Aperture (FFA) method. The former is the optical analog of radio interferometry and the latter is a higher order extension of the Labeyrie autocorrelation method. As in radio Very Long Baseline Interferometry (VLBI), both these techniques essentially measure the closure phase and, hence, true image construction is possible. We have successfully imaged binary stars and asteroids with angular resolution approaching the diffraction limit of the telescope and image quality approaching that of a typical radio VLBI map. In addition, we have carried out analytical and simulation studies to determine the ultimate limits of ground-based optical imaging, the limits of space-based interferometric imaging, and investigated the details of imaging tradeoffs of beam combination in optical interferometers.

  12. High Resolution Laboratory Spectroscopy

    NASA Astrophysics Data System (ADS)

    Brünken, S.; Schlemmer, S.

    2016-05-01

    In this short review we will highlight some of the recent advancements in the field of high-resolution laboratory spectroscopy that meet the needs dictated by the advent of highly sensitive and broadband telescopes like ALMA and SOFIA. Among these is the development of broadband techniques for the study of complex organic molecules, like fast scanning conventional absorption spectroscopy based on multiplier chains, chirped pulse instrumentation, or the use of synchrotron facilities. Of similar importance is the extension of the accessible frequency range to THz frequencies, where many light hydrides have their ground state rotational transitions. Another key experimental challenge is the production of sufficiently high number densities of refractory and transient species in the laboratory, where discharges have proven to be efficient sources that can also be coupled to molecular jets. For ionic molecular species sensitive action spectroscopic schemes have recently been developed to overcome some of the limitations of conventional absorption spectroscopy. Throughout this review examples demonstrating the strong interplay between laboratory and observational studies will be given.

  13. High Resolution Doppler Imager

    NASA Technical Reports Server (NTRS)

    Hays, Paul B.

    1999-01-01

    This report summarizes the accomplishments of the High Resolution Doppler Imager (HRDI) on UARS spacecraft during the period 4/l/96 - 3/31/99. During this period, HRDI operation, data processing, and data analysis continued, and there was a high level of vitality in the HRDI project. The HRDI has been collecting data from the stratosphere, mesosphere, and lower thermosphere since instrument activation on October 1, 1991. The HRDI team has stressed three areas since operations commenced: 1) operation of the instrument in a manner which maximizes the quality and versatility of the collected data; 2) algorithm development and validation to produce a high-quality data product; and 3) scientific studies, primarily of the dynamics of the middle atmosphere. There has been no significant degradation in the HRDI instrument since operations began nearly 8 years ago. HRDI operations are fairly routine, although we have continued to look for ways to improve the quality of the scientific product, either by improving existing modes, or by designing new ones. The HRDI instrument has been programmed to collect data for new scientific studies, such as measurements of fluorescence from plants, measuring cloud top heights, and lower atmosphere H2O.

  14. High resolution time interval meter

    DOEpatents

    Martin, A.D.

    1986-05-09

    Method and apparatus are provided for measuring the time interval between two events to a higher resolution than reliability available from conventional circuits and component. An internal clock pulse is provided at a frequency compatible with conventional component operating frequencies for reliable operation. Lumped constant delay circuits are provided for generating outputs at delay intervals corresponding to the desired high resolution. An initiation START pulse is input to generate first high resolution data. A termination STOP pulse is input to generate second high resolution data. Internal counters count at the low frequency internal clock pulse rate between the START and STOP pulses. The first and second high resolution data are logically combined to directly provide high resolution data to one counter and correct the count in the low resolution counter to obtain a high resolution time interval measurement.

  15. Strain mapping at nanometer resolution using advanced nano-beam electron diffraction

    NASA Astrophysics Data System (ADS)

    Ozdol, V. B.; Gammer, C.; Jin, X. G.; Ercius, P.; Ophus, C.; Ciston, J.; Minor, A. M.

    2015-06-01

    We report on the development of a nanometer scale strain mapping technique by means of scanning nano-beam electron diffraction. Only recently possible due to fast acquisition with a direct electron detector, this technique allows for strain mapping with a high precision of 0.1% at a lateral resolution of 1 nm for a large field of view reaching up to 1 μm. We demonstrate its application to a technologically relevant strain-engineered GaAs/GaAsP hetero-structure and show that the method can even be applied to highly defected regions with substantial changes in local crystal orientation. Strain maps derived from atomically resolved scanning transmission electron microscopy images were used to validate the accuracy, precision and resolution of this versatile technique.

  16. Strain mapping at nanometer resolution using advanced nano-beam electron diffraction

    SciTech Connect

    Ozdol, V. B.; Ercius, P.; Ophus, C.; Ciston, J.; Gammer, C. E-mail: aminor@lbl.gov; Jin, X. G.; Minor, A. M. E-mail: aminor@lbl.gov

    2015-06-22

    We report on the development of a nanometer scale strain mapping technique by means of scanning nano-beam electron diffraction. Only recently possible due to fast acquisition with a direct electron detector, this technique allows for strain mapping with a high precision of 0.1% at a lateral resolution of 1 nm for a large field of view reaching up to 1 μm. We demonstrate its application to a technologically relevant strain-engineered GaAs/GaAsP hetero-structure and show that the method can even be applied to highly defected regions with substantial changes in local crystal orientation. Strain maps derived from atomically resolved scanning transmission electron microscopy images were used to validate the accuracy, precision and resolution of this versatile technique.

  17. ANL high-resolution injector

    SciTech Connect

    Minehara, E.; Kutschera, W.; Hartog, P.D.; Billquist, P.; Liu, Z.

    1986-05-01

    The ANL (Argonne National Laboratory) high-resolution injector has been installed to obtain higher mass resolution and higher preacceleration, and to utilize effectively the full mass range of ATLAS (Argonne tandem linac accelerator system). Preliminary results of the first beam test are reported briefly. The design and performance, in particular a high-mass-resolution magnet with aberration compensation, are discussed.

  18. Far-field Imaging of Non-fluorescent Species with Sub-diffraction Resolution

    PubMed Central

    Wang, Pu; Slipchenko, Mikhail N.; Mitchell, James; Yang, Chen; Potma, Eric O.; Xu, Xianfan; Cheng, Ji-Xin

    2013-01-01

    Super-resolution optical microscopy is opening a new window to unveil the unseen details on the nanoscopic scale. Current far-field super-resolution techniques rely on fluorescence as the read-out1–5. Here, we demonstrate a scheme for breaking the diffraction limit in far-field imaging of non-fluorescent species by using spatially controlled saturation of electronic absorption. Our method is based on a pump-probe process where a modulated pump field perturbs the charge-carrier density in a sample, thus modulating the transmission of a probe field. A doughnut shape laser beam is then added to transiently saturate the electronic transition in the periphery of the focal volume, thus the induced modulation in the sequential probe pulse only occurs at the focal center. By raster scanning the three collinearly aligned beams, high-speed sub-diffraction-limited imaging of graphite nano-platelets was performed. This technique potentially enables super-resolution imaging of nano-materials and non-fluorescent chromophores, which may remain out of reach for fluorescence-based methods. PMID:24436725

  19. Improving spatial resolution of convergent beam electron diffraction strain mapping in silicon microstructures

    SciTech Connect

    Armigliato, A.; Balboni, R.; Frabboni, S.

    2005-02-07

    Despite the use of nanometer-sized probes in field emission transmission electron microscopes, the spatial resolution in strain analysis performed by convergent beam electron diffraction is limited in one direction by the need for tilting the cross-sectional sample in the electron microscope off the vertical <110> direction. We demonstrate that it is possible to improve this resolution by using the <340> zone axis, instead of the <230> one, which has recently become of common use in the analysis of silicon microdevices. Quantitative strain information with good sensitivity and accuracy can be obtained in the new axis. An example of application to the two-dimensional strain mapping in shallow trench isolation structures, obtained with a scanning attachment and a high-angle annular dark-field detector, is reported.

  20. High Resolution Formaldehyde Photochemistry

    NASA Astrophysics Data System (ADS)

    Ernest, C. T.; Bauer, D.; Hynes, A. J.

    2010-12-01

    Formaldehyde (HCHO) is the most abundant and most important organic carbonyl compound in the atmosphere. The sources of formaldehyde are the oxidation of methane, isoprene, acetone, and other volatile organic compounds (VOCs); fossil fuel combustion; and biomass burning. The dominant loss mechanism for formaldehyde is photolysis which occurs via two pathways: (R1) HCHO + hv → HCO + H (R2) HCHO + hv → H2 + CO The first pathway (R1) is referred to as the radical channel, while the second pathway (R2) is referred to as the molecular channel. The products of both pathways play a significant role in atmospheric chemistry. The CO that is produced in the molecular channel undergoes further oxidation to produce CO2. Under atmospheric conditions, the H atom and formyl radical that are produced in the radical channel undergo rapid reactions with O2 to produce the hydroperoxyl radical (HO2) via (R3) and (R4). (R3) HCO + O2 → HO2 + CO (R4) H + O2 → HO2 Thus, for every photon absorbed, the photolysis of formaldehyde can contribute one CO2 molecule to the global greenhouse budget or two HO2 radicals to the tropospheric HOx (OH + HO2) cycle. The HO2 radicals produced during formaldehyde photolysis have also been implicated in the formation of photochemical smog. The HO2 radicals act as radical chain carriers and convert NO to NO2, which ultimately results in the catalytic production of O3. Constraining the yield of HO2 produced via HCHO photolysis is essential for improving tropospheric chemistry models. In this study, both the absorption cross section and the quantum yield of the radical channel (R1) were measured at high resolution over the tropospherically relevant wavelength range 304-330 nm. For the cross section measurements a narrow linewidth Nd:YAG pumped dye laser was used with a multi-pass cell. Partial pressures of HCHO were kept below 0.3 torr. Simultaneous measurement of OH LIF in a flame allowed absolute calibration of the wavelength scale. Pressure

  1. Transformation of nanodiamond into carbon onions: A comparative study by high-resolution transmission electron microscopy, electron energy-loss spectroscopy, x-ray diffraction, small-angle x-ray scattering, and ultraviolet Raman spectroscopy

    NASA Astrophysics Data System (ADS)

    Mykhaylyk, Oleksandr O.; Solonin, Yurii M.; Batchelder, David N.; Brydson, Rik

    2005-04-01

    The structural properties of both nanodiamond particles synthesized by detonation and the products of their transformation into carbon onions via vacuum annealing at 1000 and 1500°C have been studied using high-resolution transmission electron microscopy (HRTEM), electron energy-loss spectroscopy, x-ray diffraction (XRD), small-angle x-ray scattering (SAXS), and Raman spectroscopy. The advantages of UV Raman spectroscopy over visible Raman spectroscopy for the analysis of these carbon nanomaterials are demonstrated. It was found that the synthesized nanodiamond particles have a composite core-shell structure comprising an ordered diamond core covered by a disordered (amorphous) outer shell formed by the mixed sp2/sp3 bonding of carbon atoms. The observed structure of the nanodiamond particles are comparable with the structure of the bucky diamond clusters comprising a diamond core and a reconstructed surface which stabilizes the cluster at the average diameter of ˜30Å, as predicted recently from theoretical studies. Assuming a spherical shape for the particles and employing a two-step boundary model of electron density distribution developed in this work to describe the SAXS patterns produced by the core-shell structure of the nanodiamond particles, it was evaluated that the average diameter of the core is ˜30Å and the average thickness of the shell is ˜8Å; values which are in agreement with results obtained from HRTEM and XRD measurements. A discrepancy between these results and average diamond crystallite size obtained from Raman spectra by applying the phonon confinement model (35-45Å ) is discussed. It is hypothesized from analysis of broadening of the XRD diamond peaks that at the nanoscale under influence of the particle shape, which is not strictly of a cubic (or spherical) symmetry, a slight hexagonal distortion of the cubic diamond structure appears in the nanodiamond particles. The transformation of the nanodiamond into carbon onions proceeds from

  2. Metalenses at visible wavelengths: Diffraction-limited focusing and subwavelength resolution imaging

    NASA Astrophysics Data System (ADS)

    Khorasaninejad, Mohammadreza; Chen, Wei Ting; Devlin, Robert C.; Oh, Jaewon; Zhu, Alexander Y.; Capasso, Federico

    2016-06-01

    Subwavelength resolution imaging requires high numerical aperture (NA) lenses, which are bulky and expensive. Metasurfaces allow the miniaturization of conventional refractive optics into planar structures. We show that high-aspect-ratio titanium dioxide metasurfaces can be fabricated and designed as metalenses with NA = 0.8. Diffraction-limited focusing is demonstrated at wavelengths of 405, 532, and 660 nm with corresponding efficiencies of 86, 73, and 66%. The metalenses can resolve nanoscale features separated by subwavelength distances and provide magnification as high as 170×, with image qualities comparable to a state-of-the-art commercial objective. Our results firmly establish that metalenses can have widespread applications in laser-based microscopy, imaging, and spectroscopy.

  3. k-Microscopy: resolution beyond the diffraction limit

    NASA Astrophysics Data System (ADS)

    Geissbuehler, Matthias; Lasser, Theo; Leitgeb, Rainer A.

    2008-02-01

    We present a novel Fourier domain method for microscopic imaging - so-called k-microscopy - with lateral resolution independent of the detection numerical aperture. The concept is based on sample illumination by a lateral fringe-pattern of varying spatial frequency, which probes the lateral spatial frequency or k- spectrum of the sample structure. The illumination pattern is realized by interference of two collimated coherent beams. Wavelength tuning is employed for modulation of the fringe spacing. The uniqueness of the proposed system is that a single point detector is sufficient to collect the total light corresponding to a particular position in the sample k-space. By shifting the phase of the interference pattern, we get full access to the complex frequencies. An inverse Fourier transformation of the acquired band in the frequency- or k-space will reconstruct the sample. The resulting lateral resolution will be defined by the temporal coherence length associated with the detected light source spectrum as well as by the illumination angle. The feasibility of the concept has been demonstrated in 1D.

  4. Anomalous Diffraction at Ultra-High Energy for Protein Crystallography

    SciTech Connect

    Jakoncic,J.; Di Michiel, M.; Zhong, Z.; Honkimaki, V.; Jouanneau, Y.; Stojanoff, V.

    2006-01-01

    Single-wavelength anomalous diffraction (SAD), multiwavelength anomalous diffraction (MAD) and single isomorphous replacement with anomalous scattering (SIRAS) phasing at ultra-high X-ray energy, 55 keV, are used successfully to determine a high-quality and high-resolution experimental electronic density map of hen egg-white lysozyme, a model protein. Several combinations, between single- and three-wavelength, with native data were exploited to demonstrate that standard phasing procedures with standard equipment and software can successfully be applied to three-dimensional crystal structure determination of a macromolecule, even at these very short wavelengths. For the first time, a high-quality three-dimensional molecular structure is reported from SAD phasing with ultra-high-energy X-rays. The quality of the crystallographic data and the experimental electron density maps meet current standards. The 2.7% anomalous signal from three Ho atoms, at the Ho K edge, was sufficient to obtain a remarkable electron density and build the first lanthanide structure for HEWL in its entirety.

  5. Quantitative coherent diffractive imaging of an integrated circuit at a spatial resolution of 20 nm

    NASA Astrophysics Data System (ADS)

    Abbey, Brian; Williams, Garth J.; Pfeifer, Mark A.; Clark, Jesse N.; Putkunz, Corey T.; Torrance, Angela; McNulty, Ian; Levin, T. M.; Peele, Andrew G.; Nugent, Keith A.

    2008-11-01

    The complex transmission function of an integrated circuit is reconstructed at 20 nm spatial resolution using coherent diffractive imaging. A quantitative map is made of the exit surface wave emerging from void defects within the circuit interconnect. Assuming a known index of refraction for the substrate allows the volume of these voids to be estimated from the phase retardation in this region. Sample scanning and tomography of extended objects using coherent diffractive imaging is demonstrated.

  6. Design of dense transmission diffraction gratings for high efficiency.

    PubMed

    Golub, Michael A

    2015-01-01

    We propose a design method for dense surface-relief diffraction gratings with high efficiency in transmission mode. Closed-form analytical relations between diffraction efficiency, polarization, and grating parameters are derived and verified in the resonance domain of diffraction under general three-dimensional angles of incidence traditionally termed conical mounting. A powerful tool for rigorous design of computer-generated holograms and diffractive optical elements with spectroscopic scale periods is now enabled.

  7. Polarization sensitive ultrafast mid-IR pump probe micro-spectrometer with diffraction limited spatial resolution.

    PubMed

    Kaucikas, M; Barber, J; Van Thor, J J

    2013-04-01

    A setup of ultrafast transient infrared IR spectrometer is described in this paper that employed Schwarzschild objectives to focus the probe beam to a diffraction limited spot. Thus measurements were performed with very high spatial resolution in the mid-IR spectral region. Furthermore, modulating the polarization of the probe light enabled detecting transient dichroism of the sample. These capabilities of the setup were applied to study transient absorption of Photosystem II core complex and to image an organized film of methylene blue chloride dye. Moreover, a study of noise sources in a pump probe measurement is presented. The predicted noise level of the current setup was 8.25 μOD in 10(4) acquisitions and compared very well with the experimental observation of 9.6 μOD.

  8. High Resolution Imaging with AEOS

    SciTech Connect

    Patience, J; Macintosh, B A; Max, C E

    2001-08-27

    The U. S. Air Force Advanced Electro-Optical System (AEOS) which includes a 941 actuator adaptive optics system on a 3.7m telescope has recently been made available for astronomical programs. Operating at a wavelength of 750 nm, the diffraction-limited angular resolution of the system is 0.04 inches; currently, the magnitude limit is V {approx} 7 mag. At the distances of nearby open clusters, diffraction-limited images should resolve companions with separations as small as 4-6 AU--comparable to the Sun-Jupiter distance. The ability to study such close separations is critical, since most companions are expected to have separations in the few AU to tens of AU range. With the exceptional angular resolution of the current AEOS setup, but restricted target magnitude range, we are conducting a companion search of a large, well-defined sample of bright early-type stars in nearby open clusters and in the field. Our data set will both characterize this relatively new adaptive optics system and answer questions in binary star formation and stellar X-ray activity. We will discuss our experience using AEOS, the data analysis involved, and our initial results.

  9. High resolution signal processing

    NASA Astrophysics Data System (ADS)

    Tufts, Donald W.

    1993-08-01

    Motivated by the goal of efficient, effective, high-speed integrated-circuit realization, we have discovered an algorithm for high speed Fourier analysis called the Arithmetic Fourier Transform (AFT). It is based on the number-theoretic method of Mobius inversion, a method that is well suited for integrated-circuit realization. The computation of the AFT can be carried out in parallel, pipelined channels, and the individual operations are very simple to execute and control. Except for a single scaling in each channel, all the operations are additions or subtractions. Thus, it can reduce the required power, volume, and cost. Also, analog switched-capacitor realizations of the AFT have been studied. We have also analyzed the performance of a broad and useful class of data adaptive signal estimation algorithms. This in turn has led to our proposed improvements in the methods. We have used perturbation analysis of the rank-reduced data matrix to calculate its statistical properties. The improvements made have been demonstrated by computer simulation as well as by comparison with the Cramer-Rao Bound.

  10. Beating the Rayleigh limit: orbital-angular-momentum-based super-resolution diffraction tomography.

    PubMed

    Li, Lianlin; Li, Fang

    2013-09-01

    This paper reports a super-resolution imaging approach based on orbital-angular-momentum diffraction tomography (OAM-DT), which makes an important breakthrough on the Rayleigh limit associated with conventional diffraction tomography (DT) technique. It is well accepted that orbital-angular momentum (OAM) provides additional electromagnetic degrees of freedom. This concept has been widely applied in science and technology. In this paper we revisit the DT problem extended with OAM, and demonstrate theoretically and numerically that there is no physical limit on imaging resolution with OAM-DT. The physical mechanism behind it is that either the near field or superoscillation of the transmitter is employed to super-resolve probed objects. This super-resolution OAM-DT imaging paradigm does not require near-field measurement, a subtle focusing lens, or complicated postprocessing, etc., thus providing an approach to realize the wave-field imaging of universal objects with subwavelength resolution.

  11. High Resolution Doppler Lidar

    NASA Technical Reports Server (NTRS)

    1996-01-01

    This Grant supported the development of an incoherent lidar system to measure winds and aerosols in the lower atmosphere. During this period the following activities occurred: (1) an active feedback system was developed to improve the laser frequency stability; (2) a detailed forward model of the instrument was developed to take into account many subtle effects, such as detector non-linearity; (3) a non-linear least squares inversion method was developed to recover the Doppler shift and aerosol backscatter without requiring assumptions about the molecular component of the signal; (4) a study was done of the effects of systematic errors due to multiple etalon misalignment. It was discovered that even for small offsets and high aerosol loadings, the wind determination can be biased by as much as 1 m/s. The forward model and inversion process were modified to account for this effect; and (5) the lidar measurements were validated using rawinsonde balloon measurements. The measurements were found to be in agreement within 1-2 m/s.

  12. Enhanced High Resolution RBS System

    NASA Astrophysics Data System (ADS)

    Pollock, Thomas J.; Hass, James A.; Klody, George M.

    2011-06-01

    Improvements in full spectrum resolution with the second NEC high resolution RBS system are summarized. Results for 50 Å TiN/HfO films on Si yielding energy resolution on the order of 1 keV are also presented. Detector enhancements include improved pulse processing electronics, upgraded shielding for the MCP/RAE detector, and reduced noise generated from pumping. Energy resolution measurements on spectra front edge coupled with calculations using 0.4mStr solid angle show that beam energy spread at 400 KeV from the Pelletron® accelerator is less than 100 eV. To improve user throughput, magnet control has been added to the automatic data collection. Depth profiles derived from experimental data are discussed. For the thin films profiled, depth resolutions were on the Angstrom level with the non-linear energy/channel conversions ranging from 100 to 200 eV.

  13. High resolution digital delay timer

    DOEpatents

    Martin, Albert D.

    1988-01-01

    Method and apparatus are provided for generating an output pulse following a trigger pulse at a time delay interval preset with a resolution which is high relative to a low resolution available from supplied clock pulses. A first lumped constant delay (20) provides a first output signal (24) at predetermined interpolation intervals corresponding to the desired high resolution time interval. Latching circuits (26, 28) latch the high resolution data (24) to form a first synchronizing data set (60). A selected time interval has been preset to internal counters (142, 146, 154) and corrected for circuit propagation delay times having the same order of magnitude as the desired high resolution. Internal system clock pulses (32, 34) count down the counters to generate an internal pulse delayed by an interval which is functionally related to the preset time interval. A second LCD (184) corrects the internal signal with the high resolution time delay. A second internal pulse is then applied to a third LCD (74) to generate a second set of synchronizing data (76) which is complementary with the first set of synchronizing data (60) for presentation to logic circuits (64). The logic circuits (64) further delay the internal output signal (72) to obtain a proper phase relationship of an output signal (80) with the internal pulses (32, 34). The final delayed output signal (80) thereafter enables the output pulse generator (82) to produce the desired output pulse (84) at the preset time delay interval following input of the trigger pulse (10, 12).

  14. Diffractive imaging of highly focused X-ray fields

    NASA Astrophysics Data System (ADS)

    Quiney, H. M.; Peele, A. G.; Cai, Z.; Paterson, D.; Nugent, K. A.

    2006-02-01

    The rapid development of new sources of coherent X-rays, such as third-generation synchrotrons, high-harmonic-generation lasers and X-ray free-electron lasers, has led to the emergence of the new field of X-ray coherent science. The extension of coherent methods to the X-ray regime makes possible methods such as coherent diffraction, X-ray photon-correlation spectroscopy, speckle interferometry and ultrafast probing at atomic resolution and femtosecond timescales. Despite rapid improvements in the resolution that conventional X-ray optics can achieve, new methods for manipulating X-rays are required to push this to the atomic scale. Here we demonstrate a coherent imaging technique that enables us to image the complex field at the focus of an X-ray zone plate without the need for conventional X-ray lenses. There are no fundamental limits on the resolution of this lensless imaging technique other than the wavelength of the X-rays themselves. The ability to characterize the beam with one measurement makes the method ideally suited to characterizing the fields generated by pulsed coherent X-ray sources.

  15. High Resolution Imaging Spectrometer (HIRIS)

    NASA Technical Reports Server (NTRS)

    Conley, Joseph M.; Herring, Mark; Norris, David D.

    1988-01-01

    The High Resolution Imaging Spectrometer (HIRIS), related data system, orbit, and mission operations are described. The pushbroom instrument simultaneously images the terrestrial surface in 192 spectral bands from 0.4 to 2.5 microns. The swath width is 30 km and spatial resolution is 30 m. It is planned to be launched with the Earth Observing System aboard the Space Station Polar Platform in 1995. Array detectors allow concurrent integration of the signals at 192,000 detector elements.

  16. Computer synthesis of high resolution electron micrographs

    NASA Technical Reports Server (NTRS)

    Nathan, R.

    1976-01-01

    Specimen damage, spherical aberration, low contrast and noisy sensors combine to prevent direct atomic viewing in a conventional electron microscope. The paper describes two methods for obtaining ultra-high resolution in biological specimens under the electron microscope. The first method assumes the physical limits of the electron objective lens and uses a series of dark field images of biological crystals to obtain direct information on the phases of the Fourier diffraction maxima; this information is used in an appropriate computer to synthesize a large aperture lens for a 1-A resolution. The second method assumes there is sufficient amplitude scatter from images recorded in focus which can be utilized with a sensitive densitometer and computer contrast stretching to yield fine structure image details. Cancer virus characterization is discussed as an illustrative example. Numerous photographs supplement the text.

  17. Mars high-resolution mapping

    NASA Astrophysics Data System (ADS)

    Batson, R. M.; Thomas, P. K.

    1991-06-01

    A series of photomosaics of high-resolution Viking Orbiter images of Mars is being prepared and published to support the Mars 1:500,000 scale geologic mapping program. More than 100 of these photomosaics were made manually, but for the last several years they have all been made digitally. The digital mosaics are published on the Mars Transverse Mercator (MTM) system, and they are also available to the appropriate principal investigators as digital files in the mosaicked digital image model (MDIM) format. The mosaics contain Viking Orbiter images with the highest available resolution: in some areas as high as 10 m/pixel. This resolution, where it exists, will support a 1:100,000 map scale. The full resolution of a mosaic is preserved in a digital file, but conventional lithographic publication of such large-scale inset maps will be done only if required by the geologic map author. When high-resolution images do not fill the neat lines of an MTM quadrangle, the medium-resolution (1/256 degrees/pixel, or 231 m/pixel) MDIM is used. The mosaics are tied by image-matching to the planetwide MDIM, in which random errors as large as 5 km (10 mm at 1:500,000 scale) are common; a few much larger, worst-case errors also occur. Because of the distribution of the errors, many large discrepancies appear along the cutlines between frames with very different resolutions. Furthermore, each block of quadrangles is compiled on its own local control system, and adjacent blocks, compiled later, are unlikely to match. Selection of areas to be mapped is based on geologic mapping proposals reviewed and recommended by the Mars 1:500,000 scale geologic mapping review panel. There is no intention to map the entire planet at this scale.

  18. High-resolution light microscopy of nanoforms

    NASA Astrophysics Data System (ADS)

    Vodyanoy, Vitaly; Pustovyy, Oleg; Vainrub, Arnold

    2007-09-01

    We developed a high resolution light imaging system. Diffraction gratings with 100 nm width lines as well as less than 100 nm size features of different-shaped objects are clearly visible on a calibrated microscope test slide (Vainrub et al., Optics Letters, 2006, 31, 2855). The two-point resolution increase results from a known narrowing of the central diffraction peak for the annular aperture. Better visibility and advanced contrast of the smallest features in the image are due to enhancement of high spatial frequencies in the optical transfer function. The imaging system is portable, low energy, and battery operated. It has been adapted to use in both transmitting and reflecting light. It is particularly applicable for motile nanoform systems where structure and functions can be depicted in real time. We have isolated micrometer and submicrometer particles, termed proteons, from human and animal blood. Proteons form by reversible seeded aggregation of proteins around proteon nucleating centers (PNCs). PNCs are comprised of 1-2nm metallic nanoclusters containing 40-300 atoms. Proteons are capable of spontaneous assembling into higher nanoform systems assuming structure of complicated topology. The arrangement of complex proteon system mimics the structure of a small biological cell. It has structures that imitate membrane and nucleolus or nuclei. Some of these nanoforms are motile. They interact and divide. Complex nanoform systems can spontaneously reduce to simple proteons. The physical properties of these nanoforms could shed some light on the properties of early life forms or forms at extreme conditions.

  19. High throughput optoelectronic smart pixel systems using diffractive optics

    NASA Astrophysics Data System (ADS)

    Chen, Chih-Hao

    1999-12-01

    Recent developments in digital video, multimedia technology and data networks have greatly increased the demand for high bandwidth communication channels and high throughput data processing. Electronics is particularly suited for switching, amplification and logic functions, while optics is more suitable for interconnections and communications with lower energy and crosstalk. In this research, we present the design, testing, integration and demonstration of several optoelectronic smart pixel devices and system architectures. These systems integrate electronic switching/processing capability with parallel optical interconnections to provide high throughput network communication and pipeline data processing. The Smart Pixel Array Cellular Logic processor (SPARCL) is designed in 0.8 m m CMOS and hybrid integrated with Multiple-Quantum-Well (MQW) devices for pipeline image processing. The Smart Pixel Network Interface (SAPIENT) is designed in 0.6 m m GaAs and monolithically integrated with LEDs to implement a highly parallel optical interconnection network. The Translucent Smart Pixel Array (TRANSPAR) design is implemented in two different versions. The first version, TRANSPAR-MQW, is designed in 0.5 m m CMOS and flip-chip integrated with MQW devices to provide 2-D pipeline processing and translucent networking using the Carrier- Sense-MultipleAccess/Collision-Detection (CSMA/CD) protocol. The other version, TRANSPAR-VM, is designed in 1.2 m m CMOS and discretely integrated with VCSEL-MSM (Vertical-Cavity-Surface- Emitting-Laser and Metal-Semiconductor-Metal detectors) chips and driver/receiver chips on a printed circuit board. The TRANSPAR-VM provides an option of using the token ring network protocol in addition to the embedded functions of TRANSPAR-MQW. These optoelectronic smart pixel systems also require micro-optics devices to provide high resolution, high quality optical interconnections and external source arrays. In this research, we describe an innovative

  20. Toward atomic resolution diffractive imaging of isolated molecules with X-ray free-electron lasers.

    PubMed

    Stern, S; Holmegaard, L; Filsinger, F; Rouzée, A; Rudenko, A; Johnsson, P; Martin, A V; Barty, A; Bostedt, C; Bozek, J; Coffee, R; Epp, S; Erk, B; Foucar, L; Hartmann, R; Kimmel, N; Kühnel, K-U; Maurer, J; Messerschmidt, M; Rudek, B; Starodub, D; Thøgersen, J; Weidenspointner, G; White, T A; Stapelfeldt, H; Rolles, D; Chapman, H N; Küpper, J

    2014-01-01

    We give a detailed account of the theoretical analysis and the experimental results of an X-ray-diffraction experiment on quantum-state selected and strongly laser-aligned gas-phase ensembles of the prototypical large asymmetric rotor molecule 2,5-diiodobenzonitrile, performed at the Linac Coherent Light Source [Phys. Rev. Lett.112, 083002 (2014)]. This experiment is the first step toward coherent diffractive imaging of structures and structural dynamics of isolated molecules at atomic resolution, i.e., picometers and femtoseconds, using X-ray free-electron lasers.

  1. Toward atomic resolution diffractive imaging of isolated molecules with X-ray free-electron lasers.

    PubMed

    Stern, S; Holmegaard, L; Filsinger, F; Rouzée, A; Rudenko, A; Johnsson, P; Martin, A V; Barty, A; Bostedt, C; Bozek, J; Coffee, R; Epp, S; Erk, B; Foucar, L; Hartmann, R; Kimmel, N; Kühnel, K-U; Maurer, J; Messerschmidt, M; Rudek, B; Starodub, D; Thøgersen, J; Weidenspointner, G; White, T A; Stapelfeldt, H; Rolles, D; Chapman, H N; Küpper, J

    2014-01-01

    We give a detailed account of the theoretical analysis and the experimental results of an X-ray-diffraction experiment on quantum-state selected and strongly laser-aligned gas-phase ensembles of the prototypical large asymmetric rotor molecule 2,5-diiodobenzonitrile, performed at the Linac Coherent Light Source [Phys. Rev. Lett.112, 083002 (2014)]. This experiment is the first step toward coherent diffractive imaging of structures and structural dynamics of isolated molecules at atomic resolution, i.e., picometers and femtoseconds, using X-ray free-electron lasers. PMID:25415561

  2. Advanced very high resolution radiometer

    NASA Technical Reports Server (NTRS)

    1976-01-01

    The advanced very high resolution radiometer development program is considered. The program covered the design, construction, and test of a breadboard model, engineering model, protoflight model, mechanical structural model, and a life test model. Special bench test and calibration equipment was also developed for use on the program.

  3. Requirements on high resolution detectors

    SciTech Connect

    Koch, A.

    1997-02-01

    For a number of microtomography applications X-ray detectors with a spatial resolution of 1 {mu}m are required. This high spatial resolution will influence and degrade other parameters of secondary importance like detective quantum efficiency (DQE), dynamic range, linearity and frame rate. This note summarizes the most important arguments, for and against those detector systems which could be considered. This article discusses the mutual dependencies between the various figures which characterize a detector, and tries to give some ideas on how to proceed in order to improve present technology.

  4. High resolution optical DNA mapping

    NASA Astrophysics Data System (ADS)

    Baday, Murat

    Many types of diseases including cancer and autism are associated with copy-number variations in the genome. Most of these variations could not be identified with existing sequencing and optical DNA mapping methods. We have developed Multi-color Super-resolution technique, with potential for high throughput and low cost, which can allow us to recognize more of these variations. Our technique has made 10--fold improvement in the resolution of optical DNA mapping. Using a 180 kb BAC clone as a model system, we resolved dense patterns from 108 fluorescent labels of two different colors representing two different sequence-motifs. Overall, a detailed DNA map with 100 bp resolution was achieved, which has the potential to reveal detailed information about genetic variance and to facilitate medical diagnosis of genetic disease.

  5. High resolution spectrograph. [for LST

    NASA Technical Reports Server (NTRS)

    Peacock, K.

    1975-01-01

    The high resolution spectrograph (HRS) is designed to be used with the Large Space Telescope (LST) for the study of spectra of point and extended targets in the spectral range 110 to 410 nm. It has spectral resolutions of 1,000; 30,000; and 100,000 and has a field of view as large as 10 arc sec. The spectral range and resolution are selectable using interchangeable optical components and an echelle spectrograph is used to display a cross dispersed spectrum on the photocathode of either of 2 SEC orthicon image tubes. Provisions are included for wavelength calibration, target identification and acquisition and thermal control. The system considerations of the instrument are described.

  6. Super-resolution of dense nanoscale emitters beyond the diffraction limit using spatial and temporal information

    NASA Astrophysics Data System (ADS)

    Barsic, Anthony; Piestun, Rafael

    2013-06-01

    We propose a super-resolution technique for dense clusters of blinking emitters. The method relies on two basic assumptions: the emitters are statistically independent and a model of the imaging system is known. We numerically analyze the performance limits of the method as a function of emitter density and noise level. Numerical simulations show that five closely packed emitters can be resolved and localized to a precision of 17 nm. The experimental resolution of five quantum dots located within a diffraction-limited spot confirms the applicability of this approach. Statistical tests validate the independence of our quantum dots separated by nanoscale distances.

  7. On the optimum resolution of transmission-electron backscattered diffraction (t-EBSD).

    PubMed

    van Bremen, R; Ribas Gomes, D; de Jeer, L T H; Ocelík, V; De Hosson, J Th M

    2016-01-01

    The work presented aims at determining the optimum physical resolution of the transmission-electron backscattered diffraction (t-EBSD) technique. The resolution depends critically on intrinsic factors such as the density, atomic number and thickness of the specimen but also on the extrinsic experimental set-up of the electron beam voltage, specimen tilt and detector position. In the present study, the so-called physical resolution of a typical t-EBSD set-up was determined with the use of Monte Carlo simulations and confronted to experimental findings. In the case of a thin Au film of 20 nm, the best resolution obtained was 9 nm whereas for a 100 nm Au film the best resolution was 66 nm. The precise dependence of resolution on thickness was found to vary differently depending on the specific elements involved. This means that the resolution of each specimen should be determined individually. Experimentally the median probe size of the t-EBSD for a 140 nm thick AuAg specimen was measured to be 87 nm. The first and third quartiles of the probe size measurements were found to be 60 nm and 118 nm. Simulation of this specimen resulted in a resolution of 94 nm which fits between these quartiles.

  8. High resolution tomographic instrument development

    SciTech Connect

    Not Available

    1992-08-01

    Our recent work has concentrated on the development of high-resolution PET instrumentation reflecting in part the growing importance of PET in nuclear medicine imaging. We have developed a number of positron imaging instruments and have the distinction that every instrument has been placed in operation and has had an extensive history of application for basic research and clinical study. The present program is a logical continuation of these earlier successes. PCR-I, a single ring positron tomograph was the first demonstration of analog coding using BGO. It employed 4 mm detectors and is currently being used for a wide range of biological studies. These are of immense importance in guiding the direction for future instruments. In particular, PCR-II, a volume sensitive positron tomograph with 3 mm spatial resolution has benefited greatly from the studies using PCR-I. PCR-II is currently in the final stages of assembly and testing and will shortly be placed in operation for imaging phantoms, animals and ultimately humans. Perhaps the most important finding resulting from our previous study is that resolution and sensitivity must be carefully balanced to achieve a practical high resolution system. PCR-II has been designed to have the detection characteristics required to achieve 3 mm resolution in human brain under practical imaging situations. The development of algorithms by the group headed by Dr. Chesler is based on a long history of prior study including his joint work with Drs. Pelc and Reiderer and Stearns. This body of expertise will be applied to the processing of data from PCR-II when it becomes operational.

  9. High resolution tomographic instrument development

    SciTech Connect

    Not Available

    1992-01-01

    Our recent work has concentrated on the development of high-resolution PET instrumentation reflecting in part the growing importance of PET in nuclear medicine imaging. We have developed a number of positron imaging instruments and have the distinction that every instrument has been placed in operation and has had an extensive history of application for basic research and clinical study. The present program is a logical continuation of these earlier successes. PCR-I, a single ring positron tomograph was the first demonstration of analog coding using BGO. It employed 4 mm detectors and is currently being used for a wide range of biological studies. These are of immense importance in guiding the direction for future instruments. In particular, PCR-II, a volume sensitive positron tomograph with 3 mm spatial resolution has benefited greatly from the studies using PCR-I. PCR-II is currently in the final stages of assembly and testing and will shortly be placed in operation for imaging phantoms, animals and ultimately humans. Perhaps the most important finding resulting from our previous study is that resolution and sensitivity must be carefully balanced to achieve a practical high resolution system. PCR-II has been designed to have the detection characteristics required to achieve 3 mm resolution in human brain under practical imaging situations. The development of algorithms by the group headed by Dr. Chesler is based on a long history of prior study including his joint work with Drs. Pelc and Reiderer and Stearns. This body of expertise will be applied to the processing of data from PCR-II when it becomes operational.

  10. High resolution tomographic instrument development

    NASA Astrophysics Data System (ADS)

    Our recent work has concentrated on the development of high-resolution PET instrumentation reflecting in part the growing importance of PET in nuclear medicine imaging. We have developed a number of positron imaging instruments and have the distinction that every instrument has been placed in operation and has had an extensive history of application for basic research and clinical study. The present program is a logical continuation of these earlier successes. PCR-I, a single ring positron tomograph was the first demonstration of analog coding using BGO. It employed 4 mm detectors and is currently being used for a wide range of biological studies. These are of immense importance in guiding the direction for future instruments. In particular, PCR-II, a volume sensitive positron tomograph with 3 mm spatial resolution has benefitted greatly from the studies using PCR-I. PCR-II is currently in the final stages of assembly and testing and will shortly be placed in operation for imaging phantoms, animals and ultimately humans. Perhaps the most important finding resulting from our previous study is that resolution and sensitivity must be carefully balanced to achieve a practical high resolution system. PCR-II has been designed to have the detection characteristics required to achieve 3 mm resolution in human brain under practical imaging situations. The development of algorithms by the group headed by Dr. Chesler is based on a long history of prior study including his joint work with Drs. Pelc and Reiderer and Stearns. This body of expertise will be applied to the processing of data from PCR-II when it becomes operational.

  11. HRSC: High resolution stereo camera

    USGS Publications Warehouse

    Neukum, G.; Jaumann, R.; Basilevsky, A.T.; Dumke, A.; Van Gasselt, S.; Giese, B.; Hauber, E.; Head, J. W.; Heipke, C.; Hoekzema, N.; Hoffmann, H.; Greeley, R.; Gwinner, K.; Kirk, R.; Markiewicz, W.; McCord, T.B.; Michael, G.; Muller, Jan-Peter; Murray, J.B.; Oberst, J.; Pinet, P.; Pischel, R.; Roatsch, T.; Scholten, F.; Willner, K.

    2009-01-01

    The High Resolution Stereo Camera (HRSC) on Mars Express has delivered a wealth of image data, amounting to over 2.5 TB from the start of the mapping phase in January 2004 to September 2008. In that time, more than a third of Mars was covered at a resolution of 10-20 m/pixel in stereo and colour. After five years in orbit, HRSC is still in excellent shape, and it could continue to operate for many more years. HRSC has proven its ability to close the gap between the low-resolution Viking image data and the high-resolution Mars Orbiter Camera images, leading to a global picture of the geological evolution of Mars that is now much clearer than ever before. Derived highest-resolution terrain model data have closed major gaps and provided an unprecedented insight into the shape of the surface, which is paramount not only for surface analysis and geological interpretation, but also for combination with and analysis of data from other instruments, as well as in planning for future missions. This chapter presents the scientific output from data analysis and highlevel data processing, complemented by a summary of how the experiment is conducted by the HRSC team members working in geoscience, atmospheric science, photogrammetry and spectrophotometry. Many of these contributions have been or will be published in peer-reviewed journals and special issues. They form a cross-section of the scientific output, either by summarising the new geoscientific picture of Mars provided by HRSC or by detailing some of the topics of data analysis concerning photogrammetry, cartography and spectral data analysis.

  12. High-resolution color images of Io

    NASA Technical Reports Server (NTRS)

    Mcewen, A. S.; Soderblom, L. A.

    1984-01-01

    Color versions of the highest resolution Voyager images of Io were produced by combining the low resolution color images with the high resolution, clear filter images. High resolution versions of the orange, blue, and violet filter images are produced by: orange = high-res clear * low-res orange / low-res clear blue = high-res clear * low-res blue / low-res clear violet = high-res clear * low-res violet / low-res clear. The spectral responses of the high and low resolution clear filter images cancel, leaving the color, while the spatial frequencies of the two low resolution images cancel, leaving the high resolution.

  13. High Resolution Neutral Atom Microscope

    NASA Astrophysics Data System (ADS)

    Bucay, Igal; Castillo-Garza, Rodrigo; Stratis, Georgios; Raizen, Mark

    2015-03-01

    We are developing a high resolution neutral atom microscope based on metastable atom electron spectroscopy (MAES). When a metastable atom of a noble gas is near a solid, a surface electron will tunnel to an empty energy level of the metastable atom, thereby ejecting the excited electron from the atom. The emitted electrons carry information regarding the local topography and electronic, magnetic, and chemical structures of most hard materials. Furthermore, using a chromatic aberration corrected magnetic hexapole lens we expect to attain a spatial resolution below 10 nm. We will use this microscope to investigate how local phenomena can give rise to macroscopic effects in materials that cannot be probed using a scanning tunneling microscope, namely insulating transition metal oxides.

  14. A high resolution TDC subsystem

    SciTech Connect

    Geiges, R.; Merle, K. )

    1994-02-01

    A high resolution TDC subsystem was developed at the Institute for Nuclear Physics in Mainz. The TDC chip offers a time resolution of less than 300 ps and a programmable measurement range from 0 to 16 [mu]sec. The time measurement is done with a new, purely digital counting method. The chip can be operated in common start or common stop mode. In common start mode the chip is able to store up to 4 multiple hits per channel. The chip is used to build a transputer controlled subsystem for the measurement of the drift times of a vertical drift chamber. The design of the subsystem will be described and the first results from the tests of the prototype system will be presented.

  15. Limits of simulation based high resolution EBSD.

    PubMed

    Alkorta, Jon

    2013-08-01

    High resolution electron backscattered diffraction (HREBSD) is a novel technique for a relative determination of both orientation and stress state in crystals through digital image correlation techniques. Recent works have tried to use simulated EBSD patterns as reference patterns to achieve the absolute orientation and stress state of crystals. However, a precise calibration of the pattern centre location is needed to avoid the occurrence of phantom stresses. A careful analysis of the projective transformation involved in the formation of EBSD patterns has permitted to understand these phantom stresses. This geometrical analysis has been confirmed by numerical simulations. The results indicate that certain combinations of crystal strain states and sample locations (pattern centre locations) lead to virtually identical EBSD patterns. This ambiguity makes the problem of solving the absolute stress state of a crystal unfeasible in a single-detector configuration. PMID:23676453

  16. High-pressure neutron diffraction studies at LANSCE

    NASA Astrophysics Data System (ADS)

    Zhao, Yusheng; Zhang, Jianzhong; Xu, Hongwu; Lokshin, Konstantin A.; He, Duanwei; Qian, Jiang; Pantea, Cristian; Daemen, Luke L.; Vogel, Sven C.; Ding, Yang; Xu, Jian

    2010-06-01

    The development of neutron diffraction under extreme pressure ( P) and temperature ( T) conditions is highly valuable to condensed matter physics, crystal chemistry, materials science, and earth and planetary sciences. We have incorporated a 500-ton press TAP-98 into the HiPPO diffractometer at the Los Alamos Neutron Science Center (LANSCE) to conduct in situ high- P- T neutron diffraction experiments. We have developed a large gem-crystal anvil cell, ZAP, to conduct neutron diffraction experiments at high P. The ZAP cell can be used to integrate multiple experimental techniques such as neutron diffraction, laser spectroscopy, and ultrasonic interferometery. More recently, we have developed high- P low- T gas/liquid cells in conjunction with neutron diffraction. These techniques enable in situ and real-time examination of gas uptake/release processes and allow accurate, time-dependent determination of changes in crystal structure and related reaction kinetics. We have successfully used these techniques to study the equations of state, structural phase transitions, and thermo-mechanical properties of metals, ceramics, and minerals. We have conducted researches on the formation/decomposition kinetics of methane, CO2 and hydrogen hydrate clathrates, and hydrogen/CO2 adsorption of inclusion compounds such as metal-organic frameworks (MOFs). The aim of our research is to accurately map out phase relations and determine structural parameters (lattice constants, atomic positions, atomic thermal parameters, bond lengths, bond angles, etc.) in the P- T- X space. We are developing further high- P- T technology with a new 2000-ton press, TAPLUS-2000, and a ZIA (Deformation-DIA type) cubic anvil package to routinely achieve pressures up to 20 GPa and temperatures up to 2000 K. The design of a dedicated high- P neutron beamline, LAPTRON, is also underway for simultaneous high- P- T neutron diffraction, ultrasonic, calorimetry, radiography, and tomography studies. Studies based

  17. High resolution time interval counter

    DOEpatents

    Condreva, Kenneth J.

    1994-01-01

    A high resolution counter circuit measures the time interval between the occurrence of an initial and a subsequent electrical pulse to two nanoseconds resolution using an eight megahertz clock. The circuit includes a main counter for receiving electrical pulses and generating a binary word--a measure of the number of eight megahertz clock pulses occurring between the signals. A pair of first and second pulse stretchers receive the signal and generate a pair of output signals whose widths are approximately sixty-four times the time between the receipt of the signals by the respective pulse stretchers and the receipt by the respective pulse stretchers of a second subsequent clock pulse. Output signals are thereafter supplied to a pair of start and stop counters operable to generate a pair of binary output words representative of the measure of the width of the pulses to a resolution of two nanoseconds. Errors associated with the pulse stretchers are corrected by providing calibration data to both stretcher circuits, and recording start and stop counter values. Stretched initial and subsequent signals are combined with autocalibration data and supplied to an arithmetic logic unit to determine the time interval in nanoseconds between the pair of electrical pulses being measured.

  18. High resolution time interval counter

    DOEpatents

    Condreva, K.J.

    1994-07-26

    A high resolution counter circuit measures the time interval between the occurrence of an initial and a subsequent electrical pulse to two nanoseconds resolution using an eight megahertz clock. The circuit includes a main counter for receiving electrical pulses and generating a binary word--a measure of the number of eight megahertz clock pulses occurring between the signals. A pair of first and second pulse stretchers receive the signal and generate a pair of output signals whose widths are approximately sixty-four times the time between the receipt of the signals by the respective pulse stretchers and the receipt by the respective pulse stretchers of a second subsequent clock pulse. Output signals are thereafter supplied to a pair of start and stop counters operable to generate a pair of binary output words representative of the measure of the width of the pulses to a resolution of two nanoseconds. Errors associated with the pulse stretchers are corrected by providing calibration data to both stretcher circuits, and recording start and stop counter values. Stretched initial and subsequent signals are combined with autocalibration data and supplied to an arithmetic logic unit to determine the time interval in nanoseconds between the pair of electrical pulses being measured. 3 figs.

  19. High Spatial Resolution Spectroscopy of Semiconductor Nanostructures

    NASA Astrophysics Data System (ADS)

    Harris, Timothy D.; Gershoni, David; Pfeiffer, Loren N.

    1996-03-01

    Several recent reports employing high spatial resolution have revealed the dominance of exciton localization in the low temperature luminescence of semiconductor quantum structures.^[1-3] Understanding this localization is of critical importance for the reliable studies of low dimensional structures such as quantum wells, quantum wires and quantum dots. We report on low temperature and high spatial resolution photoluminescence and photoluminescence excitation studies of cleaved edge overgrown (CEO) single quantum wires. These samples permit the direct and unambiguous comparison between the optical properties of a (100) oriented quantum well, a (110) oriented quantum well, and the quantum wire which is formed at their intersection. Using low temperature near field optical spectroscopy, and a novel diffraction limited far field apparatus, we determine the carrier diffusion length dependence on pump wavelength and sample temperature in both the 2d systems and the genuinely 1D wire system. We also measure the absorption strength of the 1D system and find it to be a factor of 3 stronger than the absorption of the associated 2D systems.^[2] Using low temperature near field optical spectroscopy, and a novel diffraction limited far field apparatus, we also determine the carrier diffusion length dependence on pump wavelength and sample temperature. ^[1] H. F. Hess, E. Betzig, T. D. Harris, L. N. Pfeiffer, and K. W. West, Science 264, 1740 (1994). ^[2] T. D. Harris, D. Gershoni, R. D. Grober, L. Pfeiffer, K. West, and N. Chand, Appl. Phys. Lett, in press (1996) ^[3] D. Gammon, E. S. Snow, and D. S. Katzer, Appl. Phys. Lett. 67, 2391 (1995)

  20. DARPA high resolution display technologies

    NASA Astrophysics Data System (ADS)

    Slusarczuk, Marko

    1990-11-01

    Much of the information of interest to pilots in flight is display-limited, and is undergoing substantial expansion due to improved sensor output and signal processing; attention is accordingly given to digitally-based instrument display imaging in the present evaluation of high-resolution cockpit display technologies. Also noted are the advantages of digitally transmitted sensor data in cases where the airborne reconnaissance user may be able to analyze telemetered airborne data in real time and respond with requests to the pilot for more detailed information of specific battlefield sites.

  1. High-Resolution Imaging Spectrometer

    NASA Technical Reports Server (NTRS)

    Dozier, Jeff; Goetz, Alexander F. H.

    1990-01-01

    Earth resources observed in greater detail. High-Resolution Imaging Spectrometer, undergoing development for use in NASA's Earth Observing System, measures reflectance of Earth's surface in visible and near-infrared wavelengths. From an orbit around Earth, instrument scans surface of Earth in 200 wavelength bands simultaneously. Produces images enabling identification of minerals in rocks and soils, important algal pigments in oceans and inland waters, changes in spectra associated with biochemistry of plant canopies, compositions of atmospheric aerosols, sizes of grains in snow, and contamination of snow by impurities that absorb visible light.

  2. High Resolution Scanning Reflectarray Antenna

    NASA Technical Reports Server (NTRS)

    Romanofsky, Robert R. (Inventor); Miranda, Felix A. (Inventor)

    2000-01-01

    The present invention provides a High Resolution Scanning Reflectarray Antenna (HRSRA) for the purpose of tracking ground terminals and space craft communication applications. The present invention provides an alternative to using gimbaled parabolic dish antennas and direct radiating phased arrays. When compared to a gimbaled parabolic dish, the HRSRA offers the advantages of vibration free steering without incurring appreciable cost or prime power penalties. In addition, it offers full beam steering at a fraction of the cost of direct radiating arrays and is more efficient.

  3. High resolution EUV monochromator/spectrometer

    DOEpatents

    Koike, Masako

    1996-01-01

    This invention is related to a monochromator which employs a spherical mirror, a traveling plane mirror with simultaneous rotation, and a varied spacing plane grating. The divergent beam from the entrance slit is converged by the spherical mirror located at the various positions in the monochromator depending of the inventive system. To provide the meaningful diffraction efficiencies and to reduce unwanted higher order lights, the deviation angle subtending the incidence and diffraction beams for the plane grating is varied with the position of the traveling plane mirror with simultaneous rotation located in the front or back of the plane grating with wavelength scanning. The outgoing beam from the monochromator goes through the fixed exit slit and has same beam direction regardless of the scanning wavelength. The combination of properly designed motions of the plane mirror and novel varied-spacing parameters of the inventive plane grating corrects the aberrations and focuses the monochromatic spectral image on the exit slit, enabling measurements at high spectral resolution.

  4. High resolution EUV monochromator/spectrometer

    DOEpatents

    Koike, Masako

    1996-06-18

    This invention is related to a monochromator which employs a spherical mirror, a traveling plane mirror with simultaneous rotation, and a varied spacing plane grating. The divergent beam from the entrance slit is converged by the spherical mirror located at the various positions in the monochromator depending of the inventive system. To provide the meaningful diffraction efficiencies and to reduce unwanted higher order lights, the deviation angle subtending the incidence and diffraction beams for the plane grating is varied with the position of the traveling plane mirror with simultaneous rotation located in the front or back of the plane grating with wavelength scanning. The outgoing beam from the monochromator goes through the fixed exit slit and has same beam direction regardless of the scanning wavelength. The combination of properly designed motions of the plane mirror and novel varied-spacing parameters of the inventive plane grating corrects the aberrations and focuses the monochromatic spectral image on the exit slit, enabling measurements at high spectral resolution. 10 figs.

  5. An accurate dynamical electron diffraction algorithm for reflection high-energy electron diffraction

    NASA Astrophysics Data System (ADS)

    Huang, J.; Cai, C. Y.; Lv, C. L.; Zhou, G. W.; Wang, Y. G.

    2015-12-01

    The conventional multislice method (CMS) method, one of the most popular dynamical electron diffraction calculation procedures in transmission electron microscopy, was introduced to calculate reflection high-energy electron diffraction (RHEED) as it is well adapted to deal with the deviations from the periodicity in the direction parallel to the surface. However, in the present work, we show that the CMS method is no longer sufficiently accurate for simulating RHEED with the accelerating voltage 3-100 kV because of the high-energy approximation. An accurate multislice (AMS) method can be an alternative for more accurate RHEED calculations with reasonable computing time. A detailed comparison of the numerical calculation of the AMS method and the CMS method is carried out with respect to different accelerating voltages, surface structure models, Debye-Waller factors and glancing angles.

  6. Resolution of aplanatic systems with various semiapertures, viewed from the two sides of the diffracting aperture

    NASA Astrophysics Data System (ADS)

    Guo, Hanming; Chen, Jiabi; Zhuang, Songlin

    2006-11-01

    With the vector plane-wave spectrum and stationary phase method, a rigorous vector diffraction model of an aplanatic system when the polarized point source is at an arbitrary location on the optical axis is presented. The computer simulation is used to discuss in detail the effects of various angular semiapertures on the object and image sides on the resolution. Results show that angular semiapertures on the object and image sides have an obvious effect on the resolution and image fields, which indicates that the classical Wolf theory [Proc. R. Soc. London, Ser. A253, 358 (1959)] cannot be applied to the study of imaging properties of an aplanatic system when the point source is not located at infinity in the direction of the axis.

  7. Resolution of aplanatic systems with various semiapertures, viewed from the two sides of the diffracting aperture.

    PubMed

    Guo, Hanming; Chen, Jiabi; Zhuang, Songlin

    2006-11-01

    With the vector plane-wave spectrum and stationary phase method, a rigorous vector diffraction model of an aplanatic system when the polarized point source is at an arbitrary location on the optical axis is presented. The computer simulation is used to discuss in detail the effects of various angular semiapertures on the object and image sides on the resolution. Results show that angular semiapertures on the object and image sides have an obvious effect on the resolution and image fields, which indicates that the classical Wolf theory [Proc. R. Soc. London, Ser. A253, 358 (1959)] cannot be applied to the study of imaging properties of an aplanatic system when the point source is not located at infinity in the direction of the axis.

  8. Ultra-high resolution AMOLED

    NASA Astrophysics Data System (ADS)

    Wacyk, Ihor; Prache, Olivier; Ghosh, Amal

    2011-06-01

    AMOLED microdisplays continue to show improvement in resolution and optical performance, enhancing their appeal for a broad range of near-eye applications such as night vision, simulation and training, situational awareness, augmented reality, medical imaging, and mobile video entertainment and gaming. eMagin's latest development of an HDTV+ resolution technology integrates an OLED pixel of 3.2 × 9.6 microns in size on a 0.18 micron CMOS backplane to deliver significant new functionality as well as the capability to implement a 1920×1200 microdisplay in a 0.86" diagonal area. In addition to the conventional matrix addressing circuitry, the HDTV+ display includes a very lowpower, low-voltage-differential-signaling (LVDS) serialized interface to minimize cable and connector size as well as electromagnetic emissions (EMI), an on-chip set of look-up-tables for digital gamma correction, and a novel pulsewidth- modulation (PWM) scheme that together with the standard analog control provides a total dimming range of 0.05cd/m2 to 2000cd/m2 in the monochrome version. The PWM function also enables an impulse drive mode of operation that significantly reduces motion artifacts in high speed scene changes. An internal 10-bit DAC ensures that a full 256 gamma-corrected gray levels are available across the entire dimming range, resulting in a measured dynamic range exceeding 20-bits. This device has been successfully tested for operation at frame rates ranging from 30Hz up to 85Hz. This paper describes the operational features and detailed optical and electrical test results for the new AMOLED WUXGA resolution microdisplay.

  9. Novel techniques for detection and imaging of spin related phenomena: Towards sub-diffraction limited resolution

    NASA Astrophysics Data System (ADS)

    Wolfe, Christopher Stuart

    The idea that the spin degree of freedom of particles can be used to store and transport information has revolutionized the data storage industry and inspired a huge amount of research activity. Spin electronics, or spintronics, provides a plethora of potential improvements to conventional charge electronics that include increased functionality and energy efficiency. Scientists studying spintronics will need a multitude of characterization tools to sensitively detect spins in new materials and devices. There are already a handful of powerful techniques to image spin-related phenomena, but each has limitations. Magnetic resonance force microscopy, for example, offers sensitive detection of spin moments that are localized or nearly so but requires a high vacuum, cryogenic environment. Magnetometry based on nitrogen vacancy centers in diamond is a powerful approach, but requires the nitrogen vacancy center to be in very close contact to the spin system being studied to be able to measure the field generated by the system. Spin-polarized scanning tunneling microscopy provides perhaps the best demonstrated spatial resolution, but typically requires ultrahigh vacuum conditions and is limited to studying the surface of a sample. Traditional optical techniques such as Faraday or Kerr microscopy are limited in spatial resolution by the optical diffraction limit. In this dissertation I will present three new techniques we have developed to address some of these issues and to provide the community with new tools to help push forward spintronics and magnetism related research. I will start by presenting the first experimental demonstration of scanned spin-precession microscopy. This technique has the potential to turn any spin-sensitive detection technique into an imaging platform by providing the groundwork for incorporating a magnetic field gradient with that technique, akin to magnetic resonance imaging, and the mathematical tools to analyze the data and extract the local

  10. The high precision control of the satellites formation for diffraction imaging

    NASA Astrophysics Data System (ADS)

    Yang, Guang; He, Liang; Song, Ting; Sun, Binglei; Hao, Tianwei

    2016-01-01

    To satisfy need of high resolution observation from space. This article elaborates a method of high precision spacecraft formation control based on file diffraction theory. Improving the spacecraft control accuracy to millimeter is a challenge. With the method in this article this challenge can be solved. The algorithm in this article concerning the vibration of spacecraft and based on dynamic modeling of even relative quaternion theory deduced a method of attitude and orbit integrated control. Using this control algorithm to simulation can get the result that it can make the spacecraft integrate formation control as the technical basis of space high resolution observation.

  11. Highly Angle-Resolved X-Ray Photoelectron Diffraction from Solid Surfaces

    NASA Astrophysics Data System (ADS)

    Tamura, K.; Shiraki, S.; Ishii, H.; Owari, M.; Nihei, Y.

    We have carried out the highly angle-resolved X-ray photoelectron diffraction (XPED) measurements by using the input-lens system for restriction of the detection angle. In the input-lens system, high angular resolution and high throughput are accomplished by placing an aperture not on the image plane but on the diffraction plane of electron optics. The aperture sizes (ϕ 4 mm, ϕ 2 mm, ϕ 0.5 mm, ϕ 0.25 mm) correspond to the angular resolutions (± 0.6°, ± 0.3°, ± 0.08°, ± 0.04°) respectively. Highly angle-resolved Ge3d XPED patterns from Ge(111) obtained by the angle-resolving system contain fine structure such as Kikuchi patterns. The fine structure was reproduced by multiple scattering cluster calculations.

  12. Solar corona at high resolution

    NASA Technical Reports Server (NTRS)

    Golub, L.; Rosner, R.; Zombeck, M. V. Z.; Vaiana, G. S.

    1982-01-01

    The earth's surface is shielded from solar X rays almost completely by the atmosphere. It is, therefore, necessary to place X-ray detectors on rockets or orbiting satellites. Solar rays were detected for the first time in the late 1940's, using V-2 rockets. In 1960, the first true X-ray images of the sun were obtained with the aid of a simple pinhole camera. The spatial resolution of the X-ray images could be considerably improved by making use of reflective optics, operating at grazing incidence. Aspects of X-ray mirror developments are discussed along with the results obtained in coronal studies utilizing the new devices for the observation of solar X-ray emission. It is pointed out that the major achievements of the Skylab missions were due primarily to the unique opportunity to obtain data over an extended period of time. Attention is given to normal incidence X-ray optics, achievements possible by making use of high spatial resolution optics, and details of improved mirror design.

  13. High-resolution slug testing.

    PubMed

    Zemansky, G M; McElwee, C D

    2005-01-01

    The hydraulic conductivity (K) variation has important ramifications for ground water flow and the transport of contaminants in ground water. The delineation of the nature of that variation can be critical to complete characterization of a site and the planning of effective and efficient remedial measures. Site-specific features (such as high-conductivity zones) need to be quantified. Our alluvial field site in the Kansas River valley exhibits spatial variability, very high conductivities, and nonlinear behavior for slug tests in the sand and gravel aquifer. High-resolution, multilevel slug tests have been performed in a number of wells that are fully screened. A general nonlinear model based on the Navier-Stokes equation, nonlinear frictional loss, non-Darcian flow, acceleration effects, radius changes in the wellbore, and a Hvorslev model for the aquifer has been used to analyze the data, employing an automated processing system that runs within the Excel spreadsheet program. It is concluded that slug tests can provide the necessary data to identify the nature of both horizontal and vertical K variation in an aquifer and that improved delineation or higher resolution of K structure is possible with shorter test intervals. The gradation into zones of higher conductivity is sharper than seen previously, and the maximum conductivity observed is greater than previously measured. However, data from this project indicate that well development, the presence of fines, and the antecedent history of the well are important interrelated factors in regard to slug-test response and can prevent obtaining consistent results in some cases.

  14. The Effect of Ionic Liquids on Protein Crystallization and X-ray Diffraction Resolution

    SciTech Connect

    Judge, Russell A.; Takahashi, Sumiko; Longenecker, Kenton L.; Fry, Elizabeth H.; Abad-Zapatero, Cele; Chiu, Mark L.

    2009-09-08

    Ionic liquids exhibit a variety of properties that make them attractive solvents for biomaterials. Given the potential for productive interaction between ionic liquids and biological macromolecules, we investigated the use of ionic liquids as precipitating agents and additives for protein crystallization for six model proteins (lysozyme, catalase, myoglobin, trypsin, glucose isomerase, and xylanase). The ionic liquids produced changes in crystal morphology and mediated significant increases in crystal size in some cases. Crystals grown using ionic liquids as precipitating agents or as additives provided X-ray diffraction resolution similar to or better than that obtained without ionic liquids. Based upon the experiments performed with model proteins, the ionic liquids were used as additives for the crystallization of the poorly diffracting monoclonal antibody 106.3 Fab in complex with the B-type natriuretic peptide (5-13). The ionic liquids improved the crystallization behavior and provided improved diffraction resulting in the determination of the structure. Ionic liquids should be considered as useful additives for the crystallization of other proteins.

  15. Composition determination of β-(Al x Ga1‑ x )2O3 layers coherently grown on (010) β-Ga2O3 substrates by high-resolution X-ray diffraction

    NASA Astrophysics Data System (ADS)

    Oshima, Yuichi; Ahmadi, Elaheh; Badescu, Stefan C.; Wu, Feng; Speck, James S.

    2016-06-01

    We demonstrate X-ray-diffraction-based composition estimation of β-(Al x Ga1‑ x )2O3 coherently grown on (010) β-Ga2O3. The relation between the strain along the [010] direction and the Al composition of the β-(Al x Ga1‑ x )2O3 layer was formulated using the stress–strain relationship in the monoclinic system. This formulation allows us to estimate the Al composition using the out-of-plane lattice spacing determined by conventional X-ray ω–2θ measurements. This method was applied to molecular-beam-epitaxy-grown coherent β-(Al x Ga1‑ x )2O3/Ga2O3 heterostructures, and the Al composition in β-(Al x Ga1‑ x )2O3 agrees closely with the composition determined directly by atom probe tomography.

  16. Correlated high-resolution x-ray diffraction, photoluminescence, and atom probe tomography analysis of continuous and discontinuous In{sub x}Ga{sub 1−x}N quantum wells

    SciTech Connect

    Ren, Xiaochen; Riley, James R.; Lauhon, Lincoln J.; Koleske, Daniel D.

    2015-07-13

    Atom probe tomography (APT) is used to characterize the influence of hydrogen dosing during GaN barrier growth on the indium distribution of In{sub x}Ga{sub 1−x}N quantum wells, and correlated micro-photoluminescence is used to measure changes in the emission spectrum and efficiency. Relative to the control growth, hydrogen dosing leads to a 50% increase in emission intensity arising from discontinuous quantum wells that are narrower, of lower indium content, and with more abrupt interfaces. Simulations of carrier distributions based on APT composition profiles indicate that the greater carrier confinement leads to an increased radiative recombination rate. Furthermore, APT analysis of quantum well profiles enables refinement of x-ray diffraction analysis for more accurate nondestructive measurements of composition.

  17. High energy transmission annular beam X-ray diffraction.

    PubMed

    Dicken, Anthony; Shevchuk, Alex; Rogers, Keith; Godber, Simon; Evans, Paul

    2015-03-01

    We demonstrate material phase retrieval by linearly translating extended polycrystalline samples along the symmetry axis of an annular beam of high-energy X-rays. A series of pseudo-monochromatic diffraction images are recorded from the dark region encompassed by the beam. We measure Bragg maxima from different annular gauge volumes in the form of bright spots in the X-ray diffraction intensity. We present the experiment data from three materials with different crystallographic structural properties i.e. near ideal, large grain size and preferred orientation. This technique shows great promise for analytical inspection tasks requiring highly penetrating radiation such as security screening, medicine and non-destructive testing.

  18. In situ neutron diffraction under high pressure—Providing an insight into working catalysts

    NASA Astrophysics Data System (ADS)

    Kandemir, Timur; Wallacher, Dirk; Hansen, Thomas; Liss, Klaus-Dieter; Naumann d'Alnoncourt, Raoul; Schlögl, Robert; Behrens, Malte

    2012-05-01

    In the present work the construction and application of a continuous flow cell is presented, from which neutron diffraction data could be obtained during catalytic reactions at high pressure. By coupling an online gas detection system, parallel structure and activity investigations of working catalysts under industrial relevant conditions are possible. The flow cell can be operated with different feed gases in a wide range from room temperature to 603 K. Pressures from ambient up to 6 MPa are applicable. An exchangeable sample positioning system makes the flow cell suitable for several different goniomter types on a variety of instrument beam lines. Complementary operational test measurements were carried out monitoring reduction of and methanol synthesis over a Cu/ZnO/Al2O3 catalyst at the high-flux powder diffraction beamline D1B at ILL and high-resolution diffraction beamline Echidna at ANSTO.

  19. High Resolution Thermography In Medicine

    NASA Astrophysics Data System (ADS)

    Clark, R. P.; Goff, M. R.; Culley, J. E.

    1988-10-01

    A high resolution medical thermal imaging system using an 8 element SPRI1E detector is described. Image processing is by an Intellect 100 processor and is controlled by a DEC LSI 11/23 minicomputer. Image storage is with a 170 Mbyte winchester disc together with archival storage on 12 inch diameter optical discs having a capacity of 1 Gbyte per side. The system is currently being evaluated for use in physiology and medicine. Applications outlined include the potential of thermographic screening to identify genetic carriers in X-linked hypohidrotic ectodermal dysplasia (XED), detailed vas-cular perfusion studies in health and disease and the relation-ship between cutaneous blood flow, neurological peripheral function and skin surface temperature.

  20. An assessment of the resolution limitation due to radiation-damage in X-ray diffraction microscopy

    DOE PAGESBeta

    Howells, M. R.; Beetz, T.; Chapman, H. N.; Cui, C.; Holton, J. M.; Jacobsen, C. J.; Kirz, J.; Lima, E.; Marchesini, S.; Miao, H.; et al

    2008-11-17

    X-ray diffraction microscopy (XDM) is a new form of x-ray imaging that is being practiced at several third-generation synchrotron-radiation x-ray facilities. Nine years have elapsed since the technique was first introduced and it has made rapid progress in demonstrating high-resolution three-dimensional imaging and promises few-nm resolution with much larger samples than can be imaged in the transmission electron microscope. Both life- and materials-science applications of XDM are intended, and it is expected that the principal limitation to resolution will be radiation damage for life science and the coherent power of available x-ray sources for material science. In this paper wemore » address the question of the role of radiation damage. We use a statistical analysis based on the so-called "dose fractionation theorem" of Hegerl and Hoppe to calculate the dose needed to make an image of a single life-science sample by XDM with a given resolution. We find that for simply-shaped objects the needed dose scales with the inverse fourth power of the resolution and present experimental evidence to support this finding. To determine the maximum tolerable dose we have assembled a number of data taken from the literature plus some measurements of our own which cover ranges of resolution that are not well covered otherwise. The conclusion of this study is that, based on the natural contrast between protein and water and "Rose-criterion" image quality, one should be able to image a frozen-hydrated biological sample using XDM at a resolution of about 10 nm.« less

  1. An assessment of the resolution limitation due to radiation-damage in X-ray diffraction microscopy

    SciTech Connect

    Howells, M. R.; Beetz, T.; Chapman, H. N.; Cui, C.; Holton, J. M.; Jacobsen, C. J.; Kirz, J.; Lima, E.; Marchesini, S.; Miao, H.; Sayre, D.; Shapiro, D. A.; Spence, J. C.H.; Starodub, D.

    2008-11-17

    X-ray diffraction microscopy (XDM) is a new form of x-ray imaging that is being practiced at several third-generation synchrotron-radiation x-ray facilities. Nine years have elapsed since the technique was first introduced and it has made rapid progress in demonstrating high-resolution three-dimensional imaging and promises few-nm resolution with much larger samples than can be imaged in the transmission electron microscope. Both life- and materials-science applications of XDM are intended, and it is expected that the principal limitation to resolution will be radiation damage for life science and the coherent power of available x-ray sources for material science. In this paper we address the question of the role of radiation damage. We use a statistical analysis based on the so-called "dose fractionation theorem" of Hegerl and Hoppe to calculate the dose needed to make an image of a single life-science sample by XDM with a given resolution. We find that for simply-shaped objects the needed dose scales with the inverse fourth power of the resolution and present experimental evidence to support this finding. To determine the maximum tolerable dose we have assembled a number of data taken from the literature plus some measurements of our own which cover ranges of resolution that are not well covered otherwise. The conclusion of this study is that, based on the natural contrast between protein and water and "Rose-criterion" image quality, one should be able to image a frozen-hydrated biological sample using XDM at a resolution of about 10 nm.

  2. Development of XUV multilayer gratings with high resolution and high efficiency

    NASA Astrophysics Data System (ADS)

    Yang, Xiaowei; Huang, Qiushi; Kozhevnikov, Igor V.; Wang, Zhanshan; Zhao, Jun; Wu, Yanqing

    2015-05-01

    We present a short review of our activities carried out in Tongji University (Shanghai, China) in the field of theory and technology of soft X-ray multilayer diffraction gratings. Diffraction gratings are widely used to study the structure and dynamics of a matter in laboratory and space by spectral analysis techniques. Combining multilayer and grating structures into a single unit allows to increase essentially both the spectral resolution and the efficiency of the diffraction optics. The unified analytical theory of soft X-ray diffraction from multilayer gratings operating in the single-order regime is briefly discussed. The single-order regime occurs when incident wave excites the only diffraction order and it is characterized by ultimately high diffraction efficiency tending to the reflectivity of conventional multilayer mirror. Our first experiments in fabrication of the blazed multilayer gratings by anisotropic etching of a silicon crystal with small roughness of the facet surfaces are described.

  3. Evidence of local defects in the oxygen excess apatite La{sub 9.67}(SiO{sub 4}){sub 6}O{sub 2.5} from high resolution neutron powder diffraction

    SciTech Connect

    Guillot, Stephanie; Beaudet-Savignat, Sophie; Lambert, Sebastien; Vannier, Rose-Noelle; Roussel, Pascal; Porcher, Florence

    2009-12-15

    From neutron diffraction data collected at 3 K on a powder of La{sub 9.67}(SiO{sub 4}){sub 6}O{sub 2.5} composition and a careful examination of the average structure, a model was proposed to explain the oxygen over-stoichiometry in the apatite structure. This model leads to realistic distances to neighbouring atoms. Moreover, it accounts perfectly for the maximum oxygen content observed in these materials. Up to 0.5 oxygen atom located at the vicinity of the 2a site (0, 0, 1/4) would be shifted to a new interstitial position in the channel at (-0.01, 0.04, 0.06), creating a Frenkel defect, with the possibility of a maximum occupancy in this site equal to twice the Frenkel defect numbers. This structural model is in good agreement with the oxygen diffusion pathways recently proposed by Bechade et al. (2009) using computer modeling techniques. It supports preferred oxygen diffusion pathways via interstitial oxygen atoms and vacant sites along [0 0 1], close to the centre of the La(2)-O channels. - Graphical abstract legend: Structural defect position and possible conduction mechanism along the c-axis (representation of two adjacent unit-cells)

  4. High-efficiency multilayer-dielectric diffraction gratings

    SciTech Connect

    Perry, M.D.; Boyd, R.D.; Britten, J.A.

    1996-06-01

    The ability to produce short laser pulses of extremely high power and high irradiance, as is needed for fast ignitor research in inertial confinement fusion, places increasing demands on optical components such as amplifiers, lenses, and mirrors that must remain undamaged by the radiation. The higher refractive index in the center of an intense laser beam acts as a focusing lens. The resulting wavefront distortion, left uncorrected, eventually leads to catastrophic filamentation. Major advances in energy extraction and resulting increases in focused irradiance have been made possible by the use of chirped-pulse amplification (CPA), long used in radar applications and newly applied to optical frequencies. Optical-frequency CPA systems begin with a mode-locked oscillator that produces low-energy seed pulses with durations of ten to a few hundred femtoseconds. As a result of the classical uncertainty relation between time and frequency, these short pulses have a very broad frequency distribution. A pair of diffraction gratings (or other dispersive elements) lengthens the laser pulse and induces a time-varying frequency (or chirp). Following amplification, diffraction gratings compress the pulse back to nearly the original duration. Typically a nanojoule, femtosecond pulse is stretched by a factor of several thousand and is amplified by as much as 12 orders of magnitude before recompression. By producing the short pulse only after amplification, this technique makes possible efficient extraction of energy from a variety of broadband solid state materials. Achieving high focused irradiance from a pulse ultimately requires both high peak power and excellent beam quality. There is therefore a demand for diffraction gratings that produce a high-quality diffracted wavefront, have high diffraction efficiency, and exhibit a high threshold for laser damage.

  5. Investigation of Acrylic Acid at High Pressure Using Neutron Diffraction

    PubMed Central

    2014-01-01

    This article details the exploration of perdeuterated acrylic acid at high pressure using neutron diffraction. The structural changes that occur in acrylic acid-d4 are followed via diffraction and rationalized using the Pixel method. Acrylic acid undergoes a reconstructive phase transition to a new phase at ∼0.8 GPa and remains molecular to 7.2 GPa before polymerizing on decompression to ambient pressure. The resulting product is analyzed via Raman and FT-IR spectroscopy and differential scanning calorimetry and found to possess a different molecular structure compared with polymers produced via traditional routes. PMID:24650085

  6. High-speed autofocusing of a cell using diffraction pattern

    NASA Astrophysics Data System (ADS)

    Oku, Hiromasa; Ishikawa, Masatoshi; Theodorus; Hashimoto, Koichi

    2006-05-01

    This paper proposes a new autofocusing method for observing cells under a transmission illumination. The focusing method uses a quick and simple focus estimation technique termed “depth from diffraction,” which is based on a diffraction pattern in a defocused image of a biological specimen. Since this method can estimate the focal position of the specimen from only a single defocused image, it can easily realize high-speed autofocusing. To demonstrate the method, it was applied to continuous focus tracking of a swimming paramecium, in combination with two-dimensional position tracking. Three-dimensional tracking of the paramecium for 70 s was successfully demonstrated.

  7. High Pressure X-Ray Diffraction Studies of Nanocrystalline Materials

    NASA Technical Reports Server (NTRS)

    Palosz, B.; Stel'makh, S.; Grzanka, E.; Gierlotka, S.; Palosz, W.

    2004-01-01

    Experimental evidence obtained for a variety of nanocrystalline materials suggest that the crystallographic structure of a very small size particle deviates from that in the bulk crystals. In this paper we show the effect of the surface of nanocrystals on their structure by the analysis of generation and distribution of macro- and micro-strains at high pressures and their dependence on the grain size in nanocrystalline powders of Sic. We studied the structure of Sic nanocrystals by in-situ high-pressure powder diffraction technique using synchrotron and neutron sources and hydrostatic or isostatic pressure conditions. The diffraction measurements were done in HASYLAB at DESY using a Diamond Anvil Cell (DAC) in the energy dispersive geometry in the diffraction vector range up to 3.5 - 4/A and under pressures up to 50 GPa at room temperature. In-situ high pressure neutron diffraction measurements were done at LANSCE in Los Alamos National Laboratory using the HIPD and HIPPO diffractometers with the Paris-Edinburgh and TAP-98 cells, respectively, in the diffraction vector range up to 26 Examination of the response of the material to external stresses requires nonstandard methodology of the materials characterization and description. Although every diffraction pattern contains a complete information on macro- and micro-strains, a high pressure experiment can reveal only those factors which contribute to the characteristic diffraction patterns of the crystalline phases present in the sample. The elastic properties of powders with the grain size from several nm to micrometers were examined using three methodologies: (l), the analysis of positions and widths of individual Bragg reflections (used for calculating macro- and micro-strains generated during densification) [I], (2). the analysis of the dependence of the experimental apparent lattice parameter, alp, on the diffraction vector Q [2], and (3), the atomic Pair Distribution Function (PDF) technique [3]. The results

  8. Diffraction Gratings for High-Intensity Laser Applications

    SciTech Connect

    Britten, J

    2008-01-23

    The scattering of light into wavelength-dependent discrete directions (orders) by a device exhibiting a periodic modulation of a physical attribute on a spatial scale similar to the wavelength of light has been the subject of study for over 200 years. Such a device is called a diffraction grating. Practical applications of diffraction gratings, mainly for spectroscopy, have been around for over 100 years. The importance of diffraction gratings in spectroscopy for the measurement of myriad properties of matter can hardly be overestimated. Since the advent of coherent light sources (lasers) in the 1960's, applications of diffraction gratings in spectroscopy have further exploded. Lasers have opened a vast application space for gratings, and apace, gratings have enabled entirely new classes of laser systems. Excellent reviews of the history, fundamental properties, applications and manufacturing techniques of diffraction gratings up to the time of their publication can be found in the books by Hutley (1) and more recently Loewen and Popov (2). The limited scope of this chapter can hardly do justice to such a comprehensive subject, so the focus here will be narrowly limited to characteristics required for gratings suitable for high-power laser applications, and methods to fabricate them. A particular area of emphasis will be on maximally-efficient large-aperture gratings for short-pulse laser generation.

  9. High-Energy X-Ray Diffraction Analysis Tool

    2011-11-29

    The functionality of heRXD includes the following: distance and angular calibration and viewing flat-panel detector images used for X-ray diffraction; image (polar) rebinning or "caking"; line position fitting in powder diffraction images; image segmentation or "blob finding"; crystal orentation indesing; and lattice vector refinement. These functionalities encompass a critical set analyzing teh data for high-energy diffraction measurements that are currently performed at synchrotron sources such as the Advanced Photon Source (APS). The software design modularmore » and open source under LGPL. The intent is to provide a common framework and graphical user interface that has the ability to utillize internal as well as external subroutines to provide various optins for performing the fuctionalities listed above. The software will initially be deployed at several national user facilities--including APS, ALS, and CHESS--and then made available for download using a hosting service such as sourceforge.« less

  10. High-Energy X-Ray Diffraction Analysis Tool

    SciTech Connect

    2011-11-29

    The functionality of heRXD includes the following: distance and angular calibration and viewing flat-panel detector images used for X-ray diffraction; image (polar) rebinning or "caking"; line position fitting in powder diffraction images; image segmentation or "blob finding"; crystal orentation indesing; and lattice vector refinement. These functionalities encompass a critical set analyzing teh data for high-energy diffraction measurements that are currently performed at synchrotron sources such as the Advanced Photon Source (APS). The software design modular and open source under LGPL. The intent is to provide a common framework and graphical user interface that has the ability to utillize internal as well as external subroutines to provide various optins for performing the fuctionalities listed above. The software will initially be deployed at several national user facilities--including APS, ALS, and CHESS--and then made available for download using a hosting service such as sourceforge.

  11. Localizer with high occlusion immunity using diffraction optics

    NASA Astrophysics Data System (ADS)

    Ditto, Thomas D.; Farges, Jacques

    2004-10-01

    The chromatic method of diffraction range finding can be exploited to construct a 3D localizer that tracks the position of a pointer, a 3-D scanner or a robotic end-effecter. A spectrogram is made using a diffraction grating as the primary objective of an optical system that tracks a broad band emitter such as a tungsten filament or white L.E.D. Image processing on the resulting spectra transforms the spectrogram at the input to distance and displacement at the output. The behavior conforms to geometric optics following the Diffraction Equation. This novel technique has unique features. For example, the number of samples increases with target distance, reversing the loss of resolution as a function of distance that is endemic to triangulation. The plurality of samples also can overcome occlusion liability common to time-of-flight range finders, since multiple paths exist between emitter and sensor. The grating can be made from inexpensive embossed plastic, and a wave length sensor can be constructed from garden variety color cameras. The method is robust at a grazing exodus angles that allow for a compact configuration of the receiver. In this paper we disclose the theory of operation including a mathematical model, and we demonstrate the method empirically.

  12. Evaluation of Advanced Bionics high resolution mode.

    PubMed

    Buechner, Andreas; Frohne-Buechner, Carolin; Gaertner, Lutz; Lesinski-Schiedat, Anke; Battmer, Rolf-Dieter; Lenarz, Thomas

    2006-07-01

    The objective of this paper is to evaluate the advantages of the Advanced Bionic high resolution mode for speech perception, through a retrospective analysis. Forty-five adult subjects were selected who had a minimum experience of three months' standard mode (mean of 10 months) before switching to high resolution mode. Speech perception was tested in standard mode immediately before fitting with high resolution mode, and again after a maximum of six months high resolution mode usage (mean of two months). A significant improvement was found, between 11 and 17%, depending on the test material. The standard mode preference does not give any indication about the improvement when switching to high resolution. Users who are converted within any study achieve a higher performance improvement than those converted in the clinical routine. This analysis proves the significant benefits of high resolution mode for users, and also indicates the need for guidelines for individual optimization of parameter settings in a high resolution mode program.

  13. High resolution optoelectronic retinal prosthesis

    NASA Astrophysics Data System (ADS)

    Loudin, Jim; Dinyari, Rostam; Huie, Phil; Butterwick, Alex; Peumans, Peter; Palanker, Daniel

    2009-02-01

    Electronic retinal prostheses seek to restore sight in patients with retinal degeneration by delivering pulsed electric currents to retinal neurons via an array of microelectrodes. Most implants use inductive or optical transmission of information and power to an intraocular receiver, with decoded signals subsequently distributed to retinal electrodes through an intraocular cable. Surgical complexity could be minimized by an "integrated" prosthesis, in which both power and data are delivered directly to the stimulating array without any discrete components or cables. We present here an integrated retinal prosthesis system based on a photodiode array implant. Video frames are processed and imaged onto the retinal implant by a video goggle projection system operating at near-infrared wavelengths (~ 900 nm). Photodiodes convert light into pulsed electric current, with charge injection maximized by specially optimized series photodiode circuits. Prostheses of three different pixel densities (16 pix/mm2, 64 pix/mm2, and 256 pix/mm2) have been designed, simulated, and prototyped. Retinal tissue response to subretinal implants made of various materials has been investigated in RCS rats. The resulting prosthesis can provide sufficient charge injection for high resolution retinal stimulation without the need for implantation of any bulky discrete elements such as coils or tethers. In addition, since every pixel functions independently, pixel arrays may be placed separately in the subretinal space, providing visual stimulation to a larger field of view.

  14. Phase-Diverse Coherent Diffractive Imaging: High Sensitivity with Low Dose

    NASA Astrophysics Data System (ADS)

    Putkunz, Corey T.; Clark, Jesse N.; Vine, David J.; Williams, Garth J.; Pfeifer, Mark A.; Balaur, Eugeniu; McNulty, Ian; Nugent, Keith A.; Peele, Andrew G.

    2011-01-01

    This Letter demonstrates that coherent diffractive imaging (CDI), in combination with phase-diversity methods, provides reliable and artefact free high-resolution images. Here, using x rays, experimental results show a threefold improvement in the available image contrast. Furthermore, in conditions requiring low imaging dose, it is demonstrated that phase-diverse CDI provides a factor of 2 improvement in comparison to previous CDI techniques.

  15. High Energy Electron Diffraction from Transverse Stacking Faults.

    NASA Astrophysics Data System (ADS)

    Jesson, David Edward

    1987-12-01

    Available from UMI in association with The British Library. The principal aim of this work is to study electron diffraction phenomena associated with high symmetry zone axes of crystals which contain transverse stacking faults. A theory is developed to describe diffraction effects visible in convergent beam electron diffraction (CBED) patterns obtained from faulted crystals. In particular, it is shown that the idea of Bloch wave excitation transfers is of importance in understanding the origin of the diffraction phenomena. Three-dimensional (3D) diffraction is treated under pseudo-kinematic assumptions and an expression is derived for the higher order Laue zone (HOLZ) intensity profile associated with a single fault. As a basis for studying the faulted crystal, CBED patterns are obtained from perfect samples of the layered structure 2Hb MoS_2. Wide angle CBED (WACBED) results are simulated computationally and understood in terms of the dispersion surface construction. In particular, the relationship between HOLZ intensities and kinematic structure factors is investigated for the 2Hb polytype. In the case of faulted crystals, it is shown how the projected displacement vector can be determined from the symmetry of zone axis patterns (ZAP's). The sensitivity of pattern features to fault depth is examined by computer simulation and in some cases it is found useful to describe the excitation transfers in terms of tight binding functions. The phenomenon of HOLZ line splitting is clarified and it is shown how 3D diffraction can be used to provide information on the full displacement vector, including the non-zero layer component. Finally, absorption effects are shown to be important in simulating HOLZ intensity profiles from faulted crystals.

  16. Study of the spatial resolution of laser thermochemical technology for recording diffraction microstructures

    SciTech Connect

    Veiko, V P; Korol'kov, V I; Poleshchuk, A G; Sametov, A R; Shakhno, E A; Yarchuk, M V

    2011-07-31

    The thermochemical method for recording data, which is based on local laser oxidation of a thin metal film with subsequent etching of the unirradiated region, is an alternative to laser photolithography and direct laser removal of the film material. This recording technology is characterised by the absence of thermal and hydrodynamic image distortions, as in the case of laser ablation, and the number of necessary technological operations is much smaller as compared with the photomask preparation in classical photolithography. The main field of application of the thermochemical technology is the fabrication of diffraction optical elements (DOEs), which are widely used in printers, bar-code readers, CD and DVD laser players, etc. The purpose of this study is to increase the resolution of thermochemical data recording on thin chromium films. (interaction of laser radiation with matter)

  17. Planetary Atmospheres at High Resolution

    NASA Astrophysics Data System (ADS)

    Gurwell, M.; Butler, B.; Moullet, A.

    2013-10-01

    The long millimeter through submillimeter bands are particularly well suited for studying the wide variety of planetary atmospheres in our solar system. Temperatures ranging from a few 10s to hundreds of degrees, coupled with typically high densities (relative to the ISM) mean that thermal ‘continuum’ emission can be strong and molecular rotational transitions can be well-populated. Large bodies (Jovian and terrestrial planets) can be reasonably well studied by current interferometers such as the Submillimeter Array, IRAM Plateau de Bure Interferometer, and Combined Array for Research in Millimeter-wave Astronomy, yet many smaller bodies with atmospheres can only be crudely studied, primarily due to lack of sensitivity on baselines long enough to well resolve the object. Newly powerful interferometers such as the Atacama Large Millimeter/Submillimeter Array will usher in a new era of planetary atmospheric exploration. The vast sensitivity and spatial resolution of these arrays will increase our ability to image all bodies with extremely fine fidelity (due to the large number of antennas), and for study of smaller objects by resolving their disks into many pixels while providing the sensitivity necessary to detect narrow and/or weak line emission. New science topics will range from detailed mapping of HDO, ClO, and sulfur species in the mesosphere of Venus and PH3 and H2S in the upper tropospheres of the gas and ice giants, high SNR mapping of winds on Mars, Neptune and Titan, down to spectroscopic imaging of volcanic eruptions within the tenuous atmosphere on Io, resolved imaging of CO and other species in the atmosphere of Pluto, and even potentially detection of gases within the plumes of Enceladus.

  18. High Resolution, High Frame Rate Video Technology

    NASA Technical Reports Server (NTRS)

    1990-01-01

    Papers and working group summaries presented at the High Resolution, High Frame Rate Video (HHV) Workshop are compiled. HHV system is intended for future use on the Space Shuttle and Space Station Freedom. The Workshop was held for the dual purpose of: (1) allowing potential scientific users to assess the utility of the proposed system for monitoring microgravity science experiments; and (2) letting technical experts from industry recommend improvements to the proposed near-term HHV system. The following topics are covered: (1) State of the art in the video system performance; (2) Development plan for the HHV system; (3) Advanced technology for image gathering, coding, and processing; (4) Data compression applied to HHV; (5) Data transmission networks; and (6) Results of the users' requirements survey conducted by NASA.

  19. Breaking the diffraction-limited resolution barrier in fiber-optical two-photon fluorescence endoscopy by an azimuthally-polarized beam

    NASA Astrophysics Data System (ADS)

    Gu, Min; Kang, Hong; Li, Xiangping

    2014-01-01

    Although fiber-optical two-photon endoscopy has been recognized as a potential high-resolution diagnostic and therapeutic procedure in vivo, its resolution is limited by the optical diffraction nature to a few micrometers due to the low numerical aperture of an endoscopic objective. On the other hand, stimulated emission depletion (STED) achieved by a circularly-polarized vortex beam has been used to break the diffraction-limited resolution barrier in a bulky microscope. It has been a challenge to apply the STED principle to a fiber-optical two-photon endoscope as a circular polarization state cannot be maintained due to the birefringence of a fiber. Here, we demonstrate the first fiber-optical STED two-photon endoscope using an azimuthally-polarized beam directly generated from a double-clad fiber. As such, the diffraction-limited resolution barrier of fiber-optical two-photon endoscopy can be broken by a factor of three. Our new accomplishment has paved a robust way for high-resolution in vivo biomedical studies.

  20. Classification and averaging of random orientation single macromolecular diffraction patterns at atomic resolution.

    PubMed

    Bortel, G; Faigel, G; Tegze, M

    2009-05-01

    Single molecule imaging experiments at future X-ray free electron laser sources will provide large number of random 3D oriented diffraction patterns with low counting statistics. Grouping of this vast amount of data into classes of similar orientations and averaging must be performed before their orientation and structure reconstruction can take place. Classification algorithms performing all-pair pattern comparisons scale badly with the number of patterns in terms of their computing requirements, which presents a problem in case of improving resolution and decreasing signal to noise ratios. We describe an algorithm performing significantly less pattern comparisons and render classification possible in such cases. The invariance of patterns against rotation of the object about the primary beam axis is also exploited to decrease the number of classes and improve the quality of class averages. This work is the first, which demonstrates that it is possible to classify a dataset with realistic target parameters: 10 keV photon energy, 10(12) photons/pulse, 100 x 100 nm2 focusing, 538 kDa protein, 2.4 A resolution, 10(6) patterns, approximately 3 x 10(4) classes, <1 degree misorientation within classes. The effects of molecular symmetry and its consequences on classification are also analyzed.

  1. Diffraction-limited high-finesse optical cavities

    SciTech Connect

    Kleckner, Dustin; Irvine, William T. M.; Oemrawsingh, Sumant S. R.; Bouwmeester, Dirk

    2010-04-15

    High-quality optical cavities with wavelength-sized end mirrors are important to the growing field of micro-optomechanical systems. We present a versatile method for calculating the modes of diffraction limited optical cavities and show that it can be used to determine the effect of a wide variety of cavity geometries and imperfections. Additionally, we show these calculations agree remarkably well with FDTD simulations for wavelength-sized optical modes, even though our method is based on the paraxial approximation.

  2. Investigation of Methacrylic Acid at High Pressure Using Neutron Diffraction.

    PubMed

    Marshall, William G; Urquhart, Andrew J; Oswald, Iain D H

    2015-09-10

    This article shows that pressure can be a low-intensity route to the synthesis of polymethacrylic acid. The exploration of perdeuterated methacrylic acid at high pressure using neutron diffraction reveals that methacrylic acid exhibits two polymorphic phase transformations at relatively low pressures. The first is observed at 0.39 GPa, where both phases were observed simultaneously and confirm our previous observations. This transition is followed by a second transition at 1.2 GPa to a new polymorph that is characterized for the first time. On increasing pressure, the diffraction pattern of phase III deteriorates significantly. On decompression phase III persists to 0.54 GPa before transformation to the ambient pressure phase. There is significant loss of signal after decompression, signifying that there has been a loss of material through polymerization. The orientation of the molecules in phase III provides insight into the possible polymerization reaction. PMID:26289930

  3. High-dimensional quantum nature of ghost angular Young's diffraction

    SciTech Connect

    Chen Lixiang; Leach, Jonathan; Jack, Barry; Padgett, Miles J.; Franke-Arnold, Sonja; She Weilong

    2010-09-15

    We propose a technique to characterize the dimensionality of entangled sources affected by any environment, including phase and amplitude masks or atmospheric turbulence. We illustrate this technique on the example of angular ghost diffraction using the orbital angular momentum (OAM) spectrum generated by a nonlocal double slit. We realize a nonlocal angular double slit by placing single angular slits in the paths of the signal and idler modes of the entangled light field generated by parametric down-conversion. Based on the observed OAM spectrum and the measured Shannon dimensionality spectrum of the possible quantum channels that contribute to Young's ghost diffraction, we calculate the associated dimensionality D{sub total}. The measured D{sub total} ranges between 1 and 2.74 depending on the opening angle of the angular slits. The ability to quantify the nature of high-dimensional entanglement is vital when considering quantum information protocols.

  4. High order integral equation method for diffraction gratings.

    PubMed

    Lu, Wangtao; Lu, Ya Yan

    2012-05-01

    Conventional integral equation methods for diffraction gratings require lattice sum techniques to evaluate quasi-periodic Green's functions. The boundary integral equation Neumann-to-Dirichlet map (BIE-NtD) method in Wu and Lu [J. Opt. Soc. Am. A 26, 2444 (2009)], [J. Opt. Soc. Am. A 28, 1191 (2011)] is a recently developed integral equation method that avoids the quasi-periodic Green's functions and is relatively easy to implement. In this paper, we present a number of improvements for this method, including a revised formulation that is more stable numerically, and more accurate methods for computing tangential derivatives along material interfaces and for matching boundary conditions with the homogeneous top and bottom regions. Numerical examples indicate that the improved BIE-NtD map method achieves a high order of accuracy for in-plane and conical diffractions of dielectric gratings.

  5. HIGH-PRECISION ASTROMETRY WITH A DIFFRACTIVE PUPIL TELESCOPE

    SciTech Connect

    Guyon, Olivier; Eisner, Josh A.; Angel, Roger; Woolf, Neville J.; Bendek, Eduardo A.; Milster, Thomas D.; Mark Ammons, S.; Shao, Michael; Shaklan, Stuart; Levine, Marie; Nemati, Bijan; Pitman, Joe; Woodruff, Robert A.; Belikov, Ruslan

    2012-06-01

    Astrometric detection and mass determination of Earth-mass exoplanets require sub-{mu}as accuracy, which is theoretically possible with an imaging space telescope using field stars as an astrometric reference. The measurement must, however, overcome astrometric distortions, which are much larger than the photon noise limit. To address this issue, we propose to generate faint stellar diffraction spikes using a two-dimensional grid of regularly spaced small dark spots added to the surface of the primary mirror (PM). Accurate astrometric motion of the host star is obtained by comparing the position of the spikes to the background field stars. The spikes do not contribute to scattered light in the central part of the field and therefore allow unperturbed coronagraphic observation of the star's immediate surroundings. Because the diffraction spikes are created on the PM and imaged on the same focal plane detector as the background stars, astrometric distortions affect equally the diffraction spikes and the background stars and are therefore calibrated. We describe the technique, detail how the data collected by the wide-field camera are used to derive astrometric motion, and identify the main sources of astrometric error using numerical simulations and analytical derivations. We find that the 1.4 m diameter telescope, 0.3 deg{sup 2} field we adopt as a baseline design achieves 0.2 {mu}as single measurement astrometric accuracy. The diffractive pupil concept thus enables sub-{mu}as astrometry without relying on the accurate pointing, external metrology, or high-stability hardware required with previously proposed high-precision astrometry concepts.

  6. Study of the oxidation of W(110) by full-solid-angle photoelectron diffraction with chemical state and time resolution

    SciTech Connect

    Ynzunza, R. X.; Palomares, F. J.; Tober, E. D.; Wang, Z.; Morais, J.; Denecke, R.; Daimon, H.; Chen, Y.; Hussain, Z; Liesengang, J.; Van Hove, M. A.; Fadley, C. S.

    1997-04-01

    The brightness of third-generation synchrotron radiation from beamline 9.3.2 at the Advanced Light Source has been combined with the high-intensities and energy resolutions possible with its advanced photoelectron spectrometer/diffractometer experimental station in order to study the time dependence of the oxidation of the W(110) surface. This has been done via chemical-state-resolved core-level photoelectron spectroscopy and diffraction. This system has been studied previously by other methods such as LEED and STM, but several questions remain as to the basic kinetics of oxidation and the precise adsorption structures involved. By studying the decay and growth with time of various peaks in the W 4f{sub 7/2} photoelectron spectra, it should be possible to draw quantitative conclusions concerning the reaction kinetics involved. The authors have also measured full-solid-angle photoelectron diffraction patterns for the two oxygen-induced W states, and these should permit fully defining the different structures involved in this oxidation process.

  7. Cryogenic x-ray diffraction microscopy utilizing high-pressure cryopreservation.

    PubMed

    Lima, Enju; Chushkin, Yuriy; van der Linden, Peter; Kim, Chae Un; Zontone, Federico; Carpentier, Philippe; Gruner, Sol M; Pernot, Petra

    2014-10-01

    We present cryo x-ray diffraction microscopy of high-pressure-cryofixed bacteria and report high-convergence imaging with multiple image reconstructions. Hydrated D. radiodurans cells were cryofixed at 200 MPa pressure into ∼10-μm-thick water layers and their unstained, hydrated cellular environments were imaged by phasing diffraction patterns, reaching sub-30-nm resolutions with hard x-rays. Comparisons were made with conventional ambient-pressure-cryofixed samples, with respect to both coherent small-angle x-ray scattering and the image reconstruction. The results show a correlation between the level of background ice signal and phasing convergence, suggesting that phasing difficulties with frozen-hydrated specimens may be caused by high-background ice scattering.

  8. High-energy diffraction microscopy at the advanced photon source

    SciTech Connect

    Lienert, U.; Li, S.; Hefferan, C.; Lind, J.; Suter, R.; Bernier, J.; Barton, N.; Brandes, M.; Mills, M.; Miller, M.; Jakobsen, B.; Pantleon, W.

    2012-02-28

    The status of the High Energy Diffraction Microscopy (HEDM) program at the 1-ID beam line of the Advanced Photon Source is reported. HEDM applies high energy synchrotron radiation for the grain and sub-grain scale structural and mechanical characterization of polycrystalline bulk materials in situ during thermomechanical loading. Case studies demonstrate the mapping of grain boundary topology, the evaluation of stress tensors of individual grains during tensile deformation and comparison to a finite element modeling simulation, and the characterization of evolving dislocation structure. Complementary information is obtained by post mortem electron microscopy on the same sample volume previously investigated by HEDM.

  9. High Spectral Resolution Lidar Data

    DOE Data Explorer

    Eloranta, Ed

    2004-12-01

    The HSRL provided calibrated vertical profiles of optical depth, backscatter cross section and depoloarization at a wavelength of 532 nm. Profiles were acquired at 2.5 second intervals with 7.5 meter resolution. Profiles extended from an altitude of 100 m to 30 km in clear air. The lidar penetrated to a maximum optical depth of ~ 4 under cloudy conditions. Our data contributed directly to the aims of the M-PACE experiment, providing calibrated optical depth and optical backscatter measurements which were not available from any other instrument.

  10. High resolution magnetic spectrometer SHARAQ in RIBF

    SciTech Connect

    Shimoura, S.

    2007-05-22

    For a new spectroscopy of nuclei using intense RI beams at RIBF, we started the SHARAQ project where a high-resolution SHARAQ spectrometer is being constructed together with a high-resolution secondary beam line. Physics motivation and the specification of the spectrometer are presented.

  11. High resolution scintillation detector with semiconductor readout

    DOEpatents

    Levin, Craig S.; Hoffman, Edward J.

    2000-01-01

    A novel high resolution scintillation detector array for use in radiation imaging such as high resolution Positron Emission Tomography (PET) which comprises one or more parallelepiped crystals with at least one long surface of each crystal being in intimate contact with a semiconductor photodetector such that photons generated within each crystal by gamma radiation passing therethrough is detected by the photodetector paired therewith.

  12. Diffractive limit approach to elastic scattering and inelastic diffraction of high-energy hadrons

    NASA Astrophysics Data System (ADS)

    Małecki, Andrzej

    1996-09-01

    An approach to inelastic diffraction based on the concept of equivalence of diffractive states is developed. In the classical description of Good and Walker, the inelastic diffraction originates from the diversity of elastic scattering amplitudes in the initial and final state Δt. We consider a multichannel correction, accounting for intermediate transitions inside the equivalence class. This correction can be factorized yielding the diffraction amplitude in the form NΔt, to be taken in the ``diffractive limit'' N-->∞, Δt-->0 such that NΔt is finite. We analyze elastic scattering and the inclusive inelastic diffraction cross sections for p-p and p-p>¯ collisions, in the range of c.m. energy √s=20-1800 GeV. We claim that the angular distribution of the inclusive inelastic diffraction at small momentum transfers is determined by elastic scattering in the transition region between the forward peak and the minimum. This is successfully verified in experiment. The detailed comparison with the Good-Walker description, with emphasis on the advantages of our approach, is presented.

  13. High-resolution x-ray phase tomography

    NASA Astrophysics Data System (ADS)

    Peele, Andrew G.; Thomas, C. David L.; Clement, John G.; Arhatari, Benedicta D.; Hannah, Kevin M.; Doshi, Chandni; Putkunz, Corey T.; Clark, Jesse N.

    2010-09-01

    X-ray tomography is a workhorse tool of non-destructive imaging. It is used to probe three-dimensional structures across a wide range of length scales for objects that offer good absorption contrast to x-rays. In recent years extremely high resolution imaging (on the order of tens of nanometres) has become possible due to technological advances in x-ray optics. At the same time the requirement for strong absorption contrast has been relaxed thanks to the advent of new experimental and algorithmic techniques in phase imaging. Advances in both resolution and phase imaging can be combined to image biological samples at the sub-cellular level. I will report on recent advances in our work including improvements to the current approaches in extracting phase information at high resolution from measurements of the diffracted intensity from a sample. I will also discuss our current experimental status.

  14. Immersion Gratings for Infrared High-resolution Spectroscopy

    NASA Astrophysics Data System (ADS)

    Sarugaku, Yuki; Ikeda, Yuji; Kobayashi, Naoto; Kaji, Sayumi; Sukegawa, Takashi; Sugiyama, Shigeru; Nakagawa, Takao; Arasaki, Takayuki; Kondo, Sohei; Nakanishi, Kenshi; Yasui, Chikako; Kawakita, Hideyo

    2016-10-01

    High-resolution spectroscopy in the infrared wavelength range is essential for observations of minor isotopologues, such as HDO for water, and prebiotic organic molecules like hydrocarbons/P-bearing molecules because numerous vibrational molecular bands (including non-polar molecules) are located in this wavelength range. High spectral resolution enables us to detect weak lines without spectral line confusion. This technique has been widely used in planetary sciences, e.g., cometary coma (H2O, CO, and organic molecules), the martian atmosphere (CH4, CO2, H2O and HDO), and the upper atmosphere of gas giants (H3+ and organic molecules such as C2H6). Spectrographs with higher resolution (and higher sensitivity) still have a potential to provide a plenty of findings. However, because the size of spectrographs scales with the spectral resolution, it is difficult to realize it.Immersion grating (IG), which is a diffraction grating wherein the diffraction surface is immersed in a material with a high refractive index (n > 2), provides n times higher spectral resolution compared to a reflective grating of the same size. Because IG reduces the size of spectrograph to 1/n compared to the spectrograph with the same spectral resolution using a conventional reflective grating, it is widely acknowledged as a key optical device to realize compact spectrographs with high spectral resolution.Recently, we succeeded in fabricating a CdZnTe immersion grating with the theoretically predicted diffraction efficiency by machining process using an ultrahigh-precision five-axis processing machine developed by Canon Inc. Using the same technique, we completed a practical germanium (Ge) immersion grating with both a reflection coating on the grating surface and the an AR coating on the entrance surface. It is noteworthy that the wide wavelength range from 2 to 20 um can be covered by the two immersion gratings.In this paper, we present the performances and the applications of the immersion

  15. High spectral resolution in the solar spectrum

    NASA Technical Reports Server (NTRS)

    Baret, F.; Green, R. O.

    1994-01-01

    A session dedicated to high spectral resolution in the solar spectrum, covering topics of calibration, atmospheric correction, geology/pedology, inland water, and vegetation, is reported. The session showed a high degree of diversity in the topics and the approaches used. It was highlighted that high spectral resolution data could provide atmospherically corrected ground level calibrated reflectance values. Important advances were shown in the use of radiative transfer models applied either on water bodies or vegetation. Several studies highlighted the high degree of redundancy contained in high spectral resolution data.

  16. Classifying and assembling two-dimensional X-ray laser diffraction patterns of a single particle to reconstruct the three-dimensional diffraction intensity function: resolution limit due to the quantum noise

    SciTech Connect

    Tokuhisa, Atsushi; Taka, Junichiro; Kono, Hidetoshi; Go, Nobuhiro

    2012-05-01

    A new algorithm is developed for reconstructing the high-resolution three-dimensional diffraction intensity function of a globular biological macromolecule from many quantum-noise-limited two-dimensional X-ray laser diffraction patterns, each for an unknown orientation. The structural resolution is expressed as a function of the incident X-ray intensity and quantities characterizing the target molecule. A new two-step algorithm is developed for reconstructing the three-dimensional diffraction intensity of a globular biological macromolecule from many experimentally measured quantum-noise-limited two-dimensional X-ray laser diffraction patterns, each for an unknown orientation. The first step is classification of the two-dimensional patterns into groups according to the similarity of direction of the incident X-rays with respect to the molecule and an averaging within each group to reduce the noise. The second step is detection of common intersecting circles between the signal-enhanced two-dimensional patterns to identify their mutual location in the three-dimensional wavenumber space. The newly developed algorithm enables one to detect a signal for classification in noisy experimental photon-count data with as low as ∼0.1 photons per effective pixel. The wavenumber of such a limiting pixel determines the attainable structural resolution. From this fact, the resolution limit due to the quantum noise attainable by this new method of analysis as well as two important experimental parameters, the number of two-dimensional patterns to be measured (the load for the detector) and the number of pairs of two-dimensional patterns to be analysed (the load for the computer), are derived as a function of the incident X-ray intensity and quantities characterizing the target molecule.

  17. Research of the new optical diffractive super-resolution element of the two-photon microfabrication

    NASA Astrophysics Data System (ADS)

    Wei, Peng; Zhu, Yu; Duan, Guanghong

    2006-11-01

    The new optical diffractive superresolution element (DSE) is being applied to improve the microfabrication radial superresolution in the two-photon three-dimension (3D) microfabrication system, which appeared only a few years ago and can provide the ability to confine photochemical and physical reactions to the order of laser wavelength in three dimensions. The design method of the DSE is that minimizing M if the lowest limit S l of the S and the highest limit G u of the G is set, where Liu [1] explained the definition of the S, M and G. Simulation test result proved that the microfabrication radial superresolution can be improved by the new optical DSE. The phenomenon can only be interpreted as the intensity of high-order and side of the zero-order diffraction peaks have been clapped under the twophoton absorption (TPA) polymerization threshold. In a word the polymerized volume can be chosen because the S l and the G u is correspondingly adjustable, even if the laser wavelength, objective lens and the photosensitive resin is fixed for a given two-photon microfabrication system. That means the radial superresolution of the two-photon microfabrication can be chosen.

  18. Method and apparatus for reducing diffraction-induced damage in high power laser amplifier systems

    DOEpatents

    Campillo, Anthony J.; Newnam, Brian E.; Shapiro, Stanley L.; Terrell, Jr., N. James

    1976-01-01

    Self-focusing damage caused by diffraction in laser amplifier systems may be minimized by appropriately tailoring the input optical beam profile by passing the beam through an aperture having a uniform high optical transmission within a particular radius r.sub.o and a transmission which drops gradually to a low value at greater radii. Apertures having the desired transmission characteristics may readily be manufactured by exposing high resolution photographic films and plates to a diffuse, disk-shaped light source and mask arrangement.

  19. Weissenberg reflection high-energy electron diffraction for surface crystallography.

    PubMed

    Abukawa, Tadashi; Yamazaki, Tomoyuki; Yajima, Kentaro; Yoshimura, Koji

    2006-12-15

    The principle of a Weissenberg camera is applied to surface crystallographic analysis by reflection high-energy electron diffraction. By removing inelastic electrons and measuring hundreds of patterns as a function of sample rotation angle phi, kinematical analysis can be performed over a large volume of reciprocal space. The data set is equivalent to a three-dimensional stack of Weissenberg photographs. The method is applied to analysis of an Si(111)-square root of 3 x square root of 3-Ag surface, and the structural data obtained are in excellent agreement with the known atomic structure.

  20. High-Pressure Neutron Diffraction Studies for Materials Sciences and Energy Sciences

    NASA Astrophysics Data System (ADS)

    Zhao, Y.; Los Alamos High Pressure Materials Research Team

    2013-05-01

    The development of neutron diffraction under extreme pressure (P) and temperature (T) conditions is highly valuable to condensed matter physics, crystal chemistry, materials sciences, as well as earth and planetary sciences. We have incorporated a 500-ton press TAP-98 into the HiPPO diffractometer at LANSCE to conduct in situ high P-T neutron diffraction experiments. We have worked out a large gem-crystal anvil cell, ZAP, to conduct neutron diffraction experiments at high-P and low-T. The ZAP cell can be used to integrate multiple experimental techniques such as neutron diffraction, laser spectroscopy, and ultrasonic interferometery. Recently, we have developed high-P low-T gas/fluid cells in conjunction with neutron diffraction and inelastic neutron scattering instruments. These techniques enable in-situ and real-time examination of gas uptake/release processes and allow high-resolution time-dependent determination of changes in crystal structure and related reaction kinetics. We have successfully used these techniques to study the equation of state, structural phase transition, and thermo-mechanical properties of metals, ceramics, and minerals. We have conducted researches on the formation of methane and hydrogen clathrates, and hydrogen adsorption of the inclusion compounds such as the recently discovered metal-organic frameworks (MOFs). The aim of our research is to accurately map phase diagram, lattice parameters, thermal parameters, bond lengths, bond angles, neighboring atomic environments, and phase stability in P-T-X space. We are currently developing further high P-T technology with a new "true" triaxial loading press, TAP_6x, to compress cubic sample package to achieve pressures up to 20 GPa and temperatures up to 2000 K in routine experiments. The implementation of TAP_6x300 with high-pressure neutron beamlines is underway for simultaneous high P-T neutron diffraction, ultrasonic, calorimetry, radiography, and tomography studies. Studies based on high

  1. High quality single shot ultrafast MeV electron diffraction from a photocathode radio-frequency gun.

    PubMed

    Fu, Feichao; Liu, Shengguang; Zhu, Pengfei; Xiang, Dao; Zhang, Jie; Cao, Jianming

    2014-08-01

    A compact ultrafast electron diffractometer, consisting of an s-band 1.6 cell photocathode radio-frequency gun, a multi-function changeable sample chamber, and a sensitive relativistic electron detector, was built at Shanghai Jiao Tong University. High-quality single-shot transmission electron diffraction patterns have been recorded by scattering 2.5 MeV electrons off single crystalline gold and polycrystalline aluminum samples. The high quality diffraction pattern indicates an excellent spatial resolution, with the ratio of the diffraction ring radius over the ring rms width beyond 10. The electron pulse width is estimated to be about 300 fs. The high temporal and spatial resolution may open new opportunities in various areas of sciences.

  2. High quality single shot ultrafast MeV electron diffraction from a photocathode radio-frequency gun

    SciTech Connect

    Fu, Feichao; Liu, Shengguang; Zhu, Pengfei; Xiang, Dao Zhang, Jie; Cao, Jianming

    2014-08-15

    A compact ultrafast electron diffractometer, consisting of an s-band 1.6 cell photocathode radio-frequency gun, a multi-function changeable sample chamber, and a sensitive relativistic electron detector, was built at Shanghai Jiao Tong University. High-quality single-shot transmission electron diffraction patterns have been recorded by scattering 2.5 MeV electrons off single crystalline gold and polycrystalline aluminum samples. The high quality diffraction pattern indicates an excellent spatial resolution, with the ratio of the diffraction ring radius over the ring rms width beyond 10. The electron pulse width is estimated to be about 300 fs. The high temporal and spatial resolution may open new opportunities in various areas of sciences.

  3. At-wavelength interferometry of high-NA diffraction-limited EUV optics

    SciTech Connect

    Goldberg, Kenneth A.; Naulleau, Patrick; Rekawa, Senajith; Denham, Paul; Liddle, J. Alexander; Anderson, Erik; Jackson, Keith; Bokor, Jeffrey; Attwood, David

    2003-08-01

    Recent advances in all-reflective diffraction-limited optical systems designed for extreme ultraviolet (EUV) lithography have pushed numerical aperture (NA) values from 0.1 to 0.3, providing Rayleigh resolutions of 27-nm. Worldwide, several high-NA EUV optics are being deployed to serve in the development of advanced lithographic techniques required for EUV lithography, including the creation and testing of new, high-resolution photoresists. One such system is installed on an undulator beamline at Lawrence Berkeley National Laboratory's Advanced Light Source. Sub{angstrom}-accuracy optical testing and alignment techniques, developed for use with the previous generations of EUV lithographic optical systems, are being extended for use at high NA. Considerations for interferometer design and use are discussed.

  4. Levitation apparatus for neutron diffraction investigations on high temperature liquids

    SciTech Connect

    Hennet, Louis; Pozdnyakova, Irina; Bytchkov, Aleksei; Cristiglio, Viviana; Palleau, Pierre; Fischer, Henry E.; Cuello, Gabriel J.; Johnson, Mark; Melin, Philippe; Zanghi, Didier; Brassamin, Severine; Brun, Jean-Francois; Price, David L.; Saboungi, Marie-Louise

    2006-05-15

    We describe a new high temperature environment based on aerodynamic levitation and laser heating designed for neutron scattering experiments up to 3000 deg. C. The sample is heated to the desired temperature with three CO{sub 2} lasers from different directions in order to obtain a homogeneous temperature distribution. The apparent temperature of the sample is measured with an optical pyrometer, and two video cameras are employed to monitor the sample behavior during heating. The levitation setup is enclosed in a vacuum-tight chamber, enabling a high degree of gas purity and a reproducible sample environment for structural investigations on both oxide and metallic melts. High-quality neutron diffraction data have been obtained on liquid Y{sub 3}Al{sub 5}O{sub 12} and ZrNi alloy for relatively short counting times (1.5 h)

  5. High-Resolution Protein Structure Determination by Serial Femtosecond Crystallography

    PubMed Central

    Boutet, Sébastien; Lomb, Lukas; Williams, Garth J.; Barends, Thomas R. M.; Aquila, Andrew; Doak, R. Bruce; Weierstall, Uwe; DePonte, Daniel P.; Steinbrener, Jan; Shoeman, Robert L.; Messerschmidt, Marc; Barty, Anton; White, Thomas A.; Kassemeyer, Stephan; Kirian, Richard A.; Seibert, M. Marvin; Montanez, Paul A.; Kenney, Chris; Herbst, Ryan; Hart, Philip; Pines, Jack; Haller, Gunther; Gruner, Sol M.; Philipp, Hugh T.; Tate, Mark W.; Hromalik, Marianne; Koerner, Lucas J.; van Bakel, Niels; Morse, John; Ghonsalves, Wilfred; Arnlund, David; Bogan, Michael J.; Caleman, Carl; Fromme, Raimund; Hampton, Christina Y.; Hunter, Mark S.; Johansson, Linda C.; Katona, Gergely; Kupitz, Christopher; Liang, Mengning; Martin, Andrew V.; Nass, Karol; Redecke, Lars; Stellato, Francesco; Timneanu, Nicusor; Wang, Dingjie; Zatsepin, Nadia A.; Schafer, Donald; Defever, James; Neutze, Richard; Fromme, Petra; Spence, John C. H.; Chapman, Henry N.; Schlichting, Ilme

    2013-01-01

    Structure determination of proteins and other macromolecules has historically required the growth of high-quality crystals sufficiently large to diffract x-rays efficiently while withstanding radiation damage. We applied serial femtosecond crystallography (SFX) using an x-ray free-electron laser (XFEL) to obtain high-resolution structural information from microcrystals (less than 1 micrometer by 1 micrometer by 3 micrometers) of the well-characterized model protein lysozyme. The agreement with synchrotron data demonstrates the immediate relevance of SFX for analyzing the structure of the large group of difficult-to-crystallize molecules. PMID:22653729

  6. High-resolution protein structure determination by serial femtosecond crystallography.

    PubMed

    Boutet, Sébastien; Lomb, Lukas; Williams, Garth J; Barends, Thomas R M; Aquila, Andrew; Doak, R Bruce; Weierstall, Uwe; DePonte, Daniel P; Steinbrener, Jan; Shoeman, Robert L; Messerschmidt, Marc; Barty, Anton; White, Thomas A; Kassemeyer, Stephan; Kirian, Richard A; Seibert, M Marvin; Montanez, Paul A; Kenney, Chris; Herbst, Ryan; Hart, Philip; Pines, Jack; Haller, Gunther; Gruner, Sol M; Philipp, Hugh T; Tate, Mark W; Hromalik, Marianne; Koerner, Lucas J; van Bakel, Niels; Morse, John; Ghonsalves, Wilfred; Arnlund, David; Bogan, Michael J; Caleman, Carl; Fromme, Raimund; Hampton, Christina Y; Hunter, Mark S; Johansson, Linda C; Katona, Gergely; Kupitz, Christopher; Liang, Mengning; Martin, Andrew V; Nass, Karol; Redecke, Lars; Stellato, Francesco; Timneanu, Nicusor; Wang, Dingjie; Zatsepin, Nadia A; Schafer, Donald; Defever, James; Neutze, Richard; Fromme, Petra; Spence, John C H; Chapman, Henry N; Schlichting, Ilme

    2012-07-20

    Structure determination of proteins and other macromolecules has historically required the growth of high-quality crystals sufficiently large to diffract x-rays efficiently while withstanding radiation damage. We applied serial femtosecond crystallography (SFX) using an x-ray free-electron laser (XFEL) to obtain high-resolution structural information from microcrystals (less than 1 micrometer by 1 micrometer by 3 micrometers) of the well-characterized model protein lysozyme. The agreement with synchrotron data demonstrates the immediate relevance of SFX for analyzing the structure of the large group of difficult-to-crystallize molecules.

  7. High-resolution protein structure determination by serial femtosecond crystallography.

    PubMed

    Boutet, Sébastien; Lomb, Lukas; Williams, Garth J; Barends, Thomas R M; Aquila, Andrew; Doak, R Bruce; Weierstall, Uwe; DePonte, Daniel P; Steinbrener, Jan; Shoeman, Robert L; Messerschmidt, Marc; Barty, Anton; White, Thomas A; Kassemeyer, Stephan; Kirian, Richard A; Seibert, M Marvin; Montanez, Paul A; Kenney, Chris; Herbst, Ryan; Hart, Philip; Pines, Jack; Haller, Gunther; Gruner, Sol M; Philipp, Hugh T; Tate, Mark W; Hromalik, Marianne; Koerner, Lucas J; van Bakel, Niels; Morse, John; Ghonsalves, Wilfred; Arnlund, David; Bogan, Michael J; Caleman, Carl; Fromme, Raimund; Hampton, Christina Y; Hunter, Mark S; Johansson, Linda C; Katona, Gergely; Kupitz, Christopher; Liang, Mengning; Martin, Andrew V; Nass, Karol; Redecke, Lars; Stellato, Francesco; Timneanu, Nicusor; Wang, Dingjie; Zatsepin, Nadia A; Schafer, Donald; Defever, James; Neutze, Richard; Fromme, Petra; Spence, John C H; Chapman, Henry N; Schlichting, Ilme

    2012-07-20

    Structure determination of proteins and other macromolecules has historically required the growth of high-quality crystals sufficiently large to diffract x-rays efficiently while withstanding radiation damage. We applied serial femtosecond crystallography (SFX) using an x-ray free-electron laser (XFEL) to obtain high-resolution structural information from microcrystals (less than 1 micrometer by 1 micrometer by 3 micrometers) of the well-characterized model protein lysozyme. The agreement with synchrotron data demonstrates the immediate relevance of SFX for analyzing the structure of the large group of difficult-to-crystallize molecules. PMID:22653729

  8. Synchrotron powder diffraction of silicon: high-quality structure factors and electron density.

    PubMed

    Wahlberg, Nanna; Bindzus, Niels; Bjerg, Lasse; Becker, Jacob; Dippel, Ann Christin; Iversen, Bo Brummerstedt

    2016-01-01

    Crystalline silicon is an ideal compound to test the current state of experimental structure factors and corresponding electron densities. High-quality structure factors have been measured on crystalline silicon with synchrotron powder X-ray diffraction. They are in excellent agreement with benchmark Pendellösung data having comparable accuracy and precision, but acquired in far less time and to a much higher resolution (sin θ/λ < 1.7 Å(-1)). The extended data range permits an experimental modelling of not only the valence electron density but also the core deformation in silicon, establishing an increase of the core density upon bond formation in crystalline silicon. Furthermore, a physically sound procedure for evaluating the standard deviation of powder-derived structure factors has been applied. Sampling statistics inherently account for contributions from photon counts as well as the limited number of diffracting particles, where especially the latter are particularly difficult to handle. PMID:26697864

  9. Integrated high-order surface diffraction gratings for diode lasers

    NASA Astrophysics Data System (ADS)

    Zolotarev, V. V.; Leshko, A. Yu; Pikhtin, N. A.; Slipchenko, S. O.; Sokolova, Z. N.; Lubyanskiy, Ya V.; Voronkova, N. V.; Tarasov, I. S.

    2015-12-01

    High-order surface diffraction gratings acting as a distributed Bragg reflector (DBR) in mesa stripe semiconductor lasers (λ = 1030 nm) have been studied theoretically and experimentally. Higher order interfering radiation modes (IRMs), which propagate off the plane of the waveguide, have been shown to have a crucial effect on the reflection and transmission spectra of the DBR. The decrease in the reflectivity of the DBR in response to the increase in the diffraction efficiency of these modes may reach 80% and more. According to theoretical analysis results, the intensity of the higher order IRMs is determined by the geometry of the DBR groove profile. Experimental data demonstrate that the noncavity modes are responsible for parasitic light leakage losses in the laser cavity. It has been shown that, in the case of nonoptimal geometry of the grating groove profile, the overall external differential quantum efficiency of the parasitic laser emission may exceed 45%, which is more than half of the laser output power. The optimal geometry of the DBR groove profile is trapezoidal, with the smallest possible lower base. Experimental evidence has been presented that this geometry considerably reduces the power of the higher order IRMs and minimises the parasitic light leakage loss.

  10. High range resolution micro-Doppler analysis

    NASA Astrophysics Data System (ADS)

    Cammenga, Zachary A.; Smith, Graeme E.; Baker, Christopher J.

    2015-05-01

    This paper addresses use of the micro-Doppler effect and the use of high range-resolution profiles to observe complex targets in complex target scenes. The combination of micro-Doppler and high range-resolution provides the ability to separate the motion of complex targets from one another. This ability leads to the differentiation of targets based on their micro-Doppler signatures. Without the high-range resolution, this would not be possible because the individual signatures would not be separable. This paper also addresses the use of the micro-Doppler information and high range-resolution profiles to generate an approximation of the scattering properties of a complex target. This approximation gives insight into the structure of the complex target and, critically, is created without using a pre-determined target model.

  11. NOAA's Use of High-Resolution Imagery

    NASA Technical Reports Server (NTRS)

    Hund, Erik

    2007-01-01

    NOAA's use of high-resolution imagery consists of: a) Shoreline mapping and nautical chart revision; b) Coastal land cover mapping; c) Benthic habitat mapping; d) Disaster response; and e) Imagery collection and support for coastal programs.

  12. 7 Å Resolution in Protein 2-Dimentional-Crystal X-Ray Diffraction at Linac Coherent Light Source

    SciTech Connect

    Pedrini, Bill; Tsai, Ching-Ju; Capitani, Guido; Padeste, Celestino; Hunter, Mark; Zatsepin, Nadia A.; Barty, Anton; Benner, Henry; Boutet, Sebastien; Feld, Geoffrey K.; Hau-Riege, Stefan; Kirian, Rick; Kupitz, Christopher; Messerschmidt, Marc; Ogren, John I.; Pardini, Tommaso; Segelke, Brent; Williams, Garth J.; Spence , John C.; Abela, Rafael; Coleman, Matthew A.; Evans, James E.; Schertler, Gebhard; Frank, Matthias; Li, Xiao-Dan

    2014-06-09

    Membrane proteins arranged as two-dimensional (2D) crystals in the lipid en- vironment provide close-to-physiological structural information, which is essential for understanding the molecular mechanisms of protein function. X-ray diffraction from individual 2D crystals did not represent a suitable investigation tool because of radiation damage. The recent availability of ultrashort pulses from X-ray Free Electron Lasers (X-FELs) has now provided a mean to outrun the damage. Here we report on measurements performed at the LCLS X-FEL on bacteriorhodopsin 2D crystals mounted on a solid support and kept at room temperature. By merg- ing data from about a dozen of single crystal diffraction images, we unambiguously identified the diffraction peaks to a resolution of 7 °A, thus improving the observable resolution with respect to that achievable from a single pattern alone. This indicates that a larger dataset will allow for reliable quantification of peak intensities, and in turn a corresponding increase of resolution. The presented results pave the way to further X-FEL studies on 2D crystals, which may include pump-probe experiments at subpicosecond time resolution.

  13. 7 Å resolution in protein two-dimensional-crystal X-ray diffraction at Linac Coherent Light Source

    PubMed Central

    Pedrini, Bill; Tsai, Ching-Ju; Capitani, Guido; Padeste, Celestino; Hunter, Mark S.; Zatsepin, Nadia A.; Barty, Anton; Benner, W. Henry; Boutet, Sébastien; Feld, Geoffrey K.; Hau-Riege, Stefan P.; Kirian, Richard A.; Kupitz, Christopher; Messerschmitt, Marc; Ogren, John I.; Pardini, Tommaso; Segelke, Brent; Williams, Garth J.; Spence, John C. H.; Abela, Rafael; Coleman, Matthew; Evans, James E.; Schertler, Gebhard F. X.; Frank, Matthias; Li, Xiao-Dan

    2014-01-01

    Membrane proteins arranged as two-dimensional crystals in the lipid environment provide close-to-physiological structural information, which is essential for understanding the molecular mechanisms of protein function. Previously, X-ray diffraction from individual two-dimensional crystals did not represent a suitable investigational tool because of radiation damage. The recent availability of ultrashort pulses from X-ray free-electron lasers (XFELs) has now provided a means to outrun the damage. Here, we report on measurements performed at the Linac Coherent Light Source XFEL on bacteriorhodopsin two-dimensional crystals mounted on a solid support and kept at room temperature. By merging data from about a dozen single crystal diffraction images, we unambiguously identified the diffraction peaks to a resolution of 7 Å, thus improving the observable resolution with respect to that achievable from a single pattern alone. This indicates that a larger dataset will allow for reliable quantification of peak intensities, and in turn a corresponding increase in the resolution. The presented results pave the way for further XFEL studies on two-dimensional crystals, which may include pump–probe experiments at subpicosecond time resolution. PMID:24914166

  14. 7 Å resolution in protein two-dimensional-crystal X-ray diffraction at Linac Coherent Light Source.

    PubMed

    Pedrini, Bill; Tsai, Ching-Ju; Capitani, Guido; Padeste, Celestino; Hunter, Mark S; Zatsepin, Nadia A; Barty, Anton; Benner, W Henry; Boutet, Sébastien; Feld, Geoffrey K; Hau-Riege, Stefan P; Kirian, Richard A; Kupitz, Christopher; Messerschmitt, Marc; Ogren, John I; Pardini, Tommaso; Segelke, Brent; Williams, Garth J; Spence, John C H; Abela, Rafael; Coleman, Matthew; Evans, James E; Schertler, Gebhard F X; Frank, Matthias; Li, Xiao-Dan

    2014-07-17

    Membrane proteins arranged as two-dimensional crystals in the lipid environment provide close-to-physiological structural information, which is essential for understanding the molecular mechanisms of protein function. Previously, X-ray diffraction from individual two-dimensional crystals did not represent a suitable investigational tool because of radiation damage. The recent availability of ultrashort pulses from X-ray free-electron lasers (XFELs) has now provided a means to outrun the damage. Here, we report on measurements performed at the Linac Coherent Light Source XFEL on bacteriorhodopsin two-dimensional crystals mounted on a solid support and kept at room temperature. By merging data from about a dozen single crystal diffraction images, we unambiguously identified the diffraction peaks to a resolution of 7 Å, thus improving the observable resolution with respect to that achievable from a single pattern alone. This indicates that a larger dataset will allow for reliable quantification of peak intensities, and in turn a corresponding increase in the resolution. The presented results pave the way for further XFEL studies on two-dimensional crystals, which may include pump-probe experiments at subpicosecond time resolution.

  15. 7 Å resolution in protein two-dimensional-crystal X-ray diffraction at Linac Coherent Light Source.

    PubMed

    Pedrini, Bill; Tsai, Ching-Ju; Capitani, Guido; Padeste, Celestino; Hunter, Mark S; Zatsepin, Nadia A; Barty, Anton; Benner, W Henry; Boutet, Sébastien; Feld, Geoffrey K; Hau-Riege, Stefan P; Kirian, Richard A; Kupitz, Christopher; Messerschmitt, Marc; Ogren, John I; Pardini, Tommaso; Segelke, Brent; Williams, Garth J; Spence, John C H; Abela, Rafael; Coleman, Matthew; Evans, James E; Schertler, Gebhard F X; Frank, Matthias; Li, Xiao-Dan

    2014-07-17

    Membrane proteins arranged as two-dimensional crystals in the lipid environment provide close-to-physiological structural information, which is essential for understanding the molecular mechanisms of protein function. Previously, X-ray diffraction from individual two-dimensional crystals did not represent a suitable investigational tool because of radiation damage. The recent availability of ultrashort pulses from X-ray free-electron lasers (XFELs) has now provided a means to outrun the damage. Here, we report on measurements performed at the Linac Coherent Light Source XFEL on bacteriorhodopsin two-dimensional crystals mounted on a solid support and kept at room temperature. By merging data from about a dozen single crystal diffraction images, we unambiguously identified the diffraction peaks to a resolution of 7 Å, thus improving the observable resolution with respect to that achievable from a single pattern alone. This indicates that a larger dataset will allow for reliable quantification of peak intensities, and in turn a corresponding increase in the resolution. The presented results pave the way for further XFEL studies on two-dimensional crystals, which may include pump-probe experiments at subpicosecond time resolution. PMID:24914166

  16. High-Resolution X-Ray Telescopes

    NASA Technical Reports Server (NTRS)

    ODell, Stephen L.; Brissenden, Roger J.; Davis, William; Elsner, Ronald F.; Elvis, Martin; Freeman, Mark; Gaetz, Terry; Gorenstein, Paul; Gubarev, Mikhail V.

    2010-01-01

    Fundamental needs for future x-ray telescopes: a) Sharp images => excellent angular resolution. b) High throughput => large aperture areas. Generation-X optics technical challenges: a) High resolution => precision mirrors & alignment. b) Large apertures => lots of lightweight mirrors. Innovation needed for technical readiness: a) 4 top-level error terms contribute to image size. b) There are approaches to controlling those errors. Innovation needed for manufacturing readiness. Programmatic issues are comparably challenging.

  17. Focal construct geometry for high intensity energy dispersive x-ray diffraction based on x-ray capillary optics.

    PubMed

    Li, Fangzuo; Liu, Zhiguo; Sun, Tianxi; Jiang, Bowen; Zhu, Yu

    2016-03-14

    We presented a focal construct geometry (FCG) method for high intensity energy dispersive X-ray diffraction by utilizing a home-made ellipsoidal single-bounce capillary (ESBC) and a polycapillary parallel X-ray lens (PPXRL). The ESBC was employed to focus the X-rays from a conventional laboratory source into a small focal spot and to produce an annular X-ray beam in the far-field. Additionally, diffracted polychromatic X-rays were confocally collected by the PPXRL attached to a stationary energy-resolved detector. Our FCG method based on ESBC and PPXRL had achieved relatively high intensity diffraction peaks and effectively narrowed the diffraction peak width which was helpful in improving the potential d-spacing resolution for material phase analysis.

  18. Progress in high-resolution x-ray holographic microscopy

    SciTech Connect

    Jacobsen, C.; Kirz, J.; Howells, M.; McQuaid, K.; Rothman, S.; Feder, R.; Sayre, D.

    1987-07-01

    Among the various types of x-ray microscopes that have been demonstrated, the holographic microscope has had the largest gap between promise and performance. The difficulties of fabricating x-ray optical elements have led some to view holography as the most attractive method for obtaining the ultimate in high resolution x-ray micrographs; however, we know of no investigations prior to 1987 that clearly demonstrated submicron resolution in reconstructed images. Previous efforts suffered from problems such as limited resolution and dynamic range in the recording media, low coherent x-ray flux, and aberrations and diffraction limits in visible light reconstruction. We have addressed the recording limitations through the use of an undulator x-ray source and high-resolution photoresist recording media. For improved results in the readout and reconstruction steps, we have employed metal shadowing and transmission electron microscopy, along with numerical reconstruction techniques. We believe that this approach will allow holography to emerge as a practical method of high-resolution x-ray microscopy. 30 refs., 4 figs.

  19. High spectral resolution reflectance spectroscopy of minerals

    NASA Technical Reports Server (NTRS)

    Clark, Roger N.; King, Trude V. V.; Klejwa, Matthew; Swayze, Gregg A.; Vergo, Norma

    1990-01-01

    The reflectance spectra of minerals are studied as a function of spectral resolution in the range from 0.2 to 3.0 microns. Selected absorption bands were studied at resolving powers as high as 2240. At resolving powers of approximately 1000, many OH-bearing minerals show diagnostic sharp absorptions at the resolution limit. At low resolution, some minerals may not be distinguishable, but as the resolution is increased, most can be easily identified. As the resolution is increased, many minerals show fine structure, particularly in the OH-stretching overtone region near 1.4 micron. The fine structure can enhance the ability to discriminate between minerals, and in some cases the fine structure can be used to determine elemental composition.

  20. Revealing proton shape fluctuations with incoherent diffraction at high energy

    NASA Astrophysics Data System (ADS)

    Mäntysaari, Heikki; Schenke, Björn

    2016-08-01

    The differential cross section of exclusive diffractive vector meson production in electron proton collisions carries important information on the geometric structure of the proton. More specifically, the coherent cross section as a function of the transferred transverse momentum is sensitive to the size of the proton, while the incoherent or proton dissociative cross section is sensitive to fluctuations of the gluon distribution in coordinate space. We show that at high energies the experimentally measured coherent and incoherent cross sections for the production of J /Ψ mesons are very well reproduced within the color glass condensate framework when strong geometric fluctuations of the gluon distribution in the proton are included. For ρ meson production, we also find reasonable agreement. We study in detail the dependence of our results on various model parameters, including the average proton shape, analyze the effect of saturation scale and color charge fluctuations and constrain the degree of geometric fluctuations.

  1. Volumetric measurement of residual stress using high energy x-ray diffraction

    NASA Astrophysics Data System (ADS)

    Whitesell, R.; McKenna, A.; Wendt, S.; Gray, J.

    2016-02-01

    We present results and recent developments from our laboratory, bench-top high energy x-ray diffraction system (HEXRD), between diffraction energies 50 and 150 KeV, to measure internal strain of moderately sized objects. Traditional x-ray strain measurements are limited to a few microns depth due to the use of Cu Kα1 Mo Kα1 radiation. The use of high energy x-rays for volumetric measurements of strain is typically the domain of synchrotron sources. We discuss the use of industrial 320kVp tube sources to generate a brighter x-ray beam along with a method using the intrinsic 43 eV width of the Kα1 characteristic peak of tungsten to measure volumetric strains in a number of industrially relevant materials. We will present volumetric strain measurements from two examples, first, additive manufacturing (AM) parts with various build configurations and, secondly, residual strain depth profiles from shot peened surface treatments. The spatial resolution of these depth profiles is ˜75 microns. The development of a faster method as compared to energy dispersive or θ-2θ scans is based on the intensity variation measurement of the strain using the aforementioned 43 eV characteristic tungsten kα line. We will present recent results on the development of this new tool and on x-ray diffraction measurements at high energy.

  2. Preliminary neutron and ultrahigh-resolution X-ray diffraction studies of the aspartic proteinase endothiapepsin cocrystallized with a gem-diol inhibitor

    SciTech Connect

    Tuan, Han-Fang; Erskine, Peter; Langan, Paul; Cooper, Jon; Coates, Leighton

    2007-12-01

    Three data sets have been collected on endothiapepsin complexed with the gem-diol inhibitor PD-135,040: a high-resolution synchrotron X-ray data set, a room-temperature X-ray data set and a neutron diffraction data set. Until recently, it has been impossible to grow large protein crystals of endothiapepsin with any gem-diol inhibitor that are suitable for neutron diffraction. Endothiapepsin has been cocrystallized with the gem-diol inhibitor PD-135,040 in a low solvent-content (39%) unit cell, which is unprecedented for this enzyme–inhibitor complex and enables ultrahigh-resolution (1.0 Å) X-ray diffraction data to be collected. This atomic resolution X-ray data set will be used to deduce the protonation states of the catalytic aspartate residues. A room-temperature neutron data set has also been collected for joint refinement with a room-temperature X-ray data set in order to locate the H/D atoms at the active site.

  3. Alternative high-resolution lithographic technologies for optical applications

    NASA Astrophysics Data System (ADS)

    Zeitner, Uwe D.; Weichelt, Tina; Bourgin, Yannick; Kinder, Robert

    2016-03-01

    Modern optical applications have special demands on the lithographic fabrication technologies. This relates to the lateral shape of the structures as well as to their three dimensional surface profile. On the other hand optical nano-structures are often periodic which allows for the use of dedicated lithographic exposure principles. The paper briefly reviews actual developments in the field of optical nano-structure generation. Special emphasis will be given to two technologies: electron-beam lithography based on a flexible cell-projection method and the actual developments in diffractive mask aligner lithography. Both offer a cost effective fabrication alternative for high resolution structures or three-dimensional optical surface profiles.

  4. A compact high-resolution X-ray powder diffractometer

    PubMed Central

    Fewster, Paul F.; Trout, David R. D.

    2013-01-01

    A new powder diffractometer operating in transmission mode is described. It can work as a rapid very compact instrument or as a high-resolution instrument, and the sample preparation is simplified. The incident beam optics create pure Cu Kα1 radiation, giving rise to peak widths of ∼0.1° in 2θ in compact form with a sample-to-detector minimum radius of 55 mm, reducing to peak widths of <0.05° in high-resolution mode by increasing the detector radius to 240 mm. The resolution of the diffractometer is shown to be governed by a complex mixture of angular divergence, sample size, diffraction effects and the dimensions of the detector pixels. The data can be collected instantaneously, which combined with trivial sample preparation and no sample alignment, makes it a suitable method for very rapid phase identification. As the detector is moved further from the sample, the angular step from the pixel dimension is reduced and the resolution improves significantly for very detailed studies, including structure determination and analysis of the microstructure. The advantage of this geometry is that the resolution of the diffractometer can be calculated precisely and the instrumental artefacts can be analysed easily without a sample present. The performance is demonstrated with LaB6 and paracetamol, and a critical appraisal of the uncertainties in the measurements is presented. The instantaneous data collection offers possibilities in dynamic experiments. PMID:24282331

  5. X-ray diffraction properties of highly oriented pyrolytic graphite

    SciTech Connect

    Freund, A.K.; Munkholm, A.; Brennan, S.

    1996-12-31

    The x-ray diffraction properties of highly oriented pyrolytic graphite (HOPG) were studied for x-ray energies ranging from 4 to 60 keV. In particular, the secondary extinction thickness was determined by recording the peak and integrated reflectivity as a function of depth below the surface. The results showed that for the high quality material investigated a thickness of 200 to 300 {micro}m was sufficient to get 80% of the maximum reflectivity that is obtained for a very thick plate. Primary extinction was important for low energy and still persisted at higher energies. Inhomogeneities of the mosaic structure were observed, too, that make this material not a truly ideal mosaic monochromator crystal. However, quite high peak reflectivities between 35% and 58% were measured at FWHM of 0.25 to 0.45 degrees. A 200 {micro}m thick plate was then prepared and glued on a bending device to manufacture a monochromator or analyzer with variable curvature that works from flat down to a minimum bending radius of 10 cm. The successful tests of this device confirmed that HOPG plates much thinner than those commonly used as x-ray monochromators and analyzers still have high efficiency and can be curved to achieve dynamical focusing.

  6. High resolution SAR applications and instrument design

    NASA Technical Reports Server (NTRS)

    Dionisio, C.; Torre, A.

    1993-01-01

    The Synthetic Aperture Radar (SAR) has viewed, in the last two years, a huge increment of interest from many preset and potential users. The good spatial resolution associated to the all weather capability lead to considering SAR not only a scientific instrument but a tool for verifying and controlling the daily human relationships with the Earth Environment. New missions were identified for SAR as spatial resolution became lower than three meters: disasters, pollution, ships traffic, volcanic eruptions, earthquake effect are only a few of the possible objects which can be effectively detected, controlled and monitored by SAR mounted on satellites. High resolution radar design constraints and dimensioning are discussed.

  7. High-resolution climate simulation using CAM

    NASA Astrophysics Data System (ADS)

    Bacmeister, J.; Neale, R. B.; Hannay, C.; Lauritzen, P. H.; Wehner, M. F.

    2012-12-01

    Thanks to the development of highly scalable dynamical cores that can exploit massively parallel computer architectures, we expect that global climate models in the next decade will run routinely at horizontal resolutions of 25 km or finer. Early results at these resolutions show clear improvements in simulating climatologically and societally-important mesoscale meteorology such as tropical cyclones. Improvements in regional circulations likely associated with topography are also obtained. Nevertheless many long-standing biases in climate simulations, e.g., the "double ITCZ" bias in precipitation, remain remarkably insensitive to increased resolution. This talk will present high-resolution global simulations using the community atmosphere model. Sensitivity of tropical cyclone climatology and precipitation statistics to model physics suites will be shown

  8. Probing of protein localization and shuttling in mitochondrial microcompartments by FLIM with sub-diffraction resolution.

    PubMed

    Söhnel, Anna-Carina; Kohl, Wladislaw; Gregor, Ingo; Enderlein, Jörg; Rieger, Bettina; Busch, Karin B

    2016-08-01

    The cell is metabolically highly compartmentalized. Especially, mitochondria host many vital reactions in their different microcompartments. However, due to their small size, these microcompartments are not accessible by conventional microscopy. Here, we demonstrate that time-correlated single-photon counting (TCSPC) fluorescence lifetime-imaging microscopy (FLIM) classifies not only mitochondria, but different microcompartments inside mitochondria. Sensor proteins in the matrix had a different lifetime than probes at membrane proteins. Localization in the outer and inner mitochondrial membrane could be distinguished by significant differences in the lifetime. The method was sensitive enough to monitor shifts in protein location within mitochondrial microcompartments. Macromolecular crowding induced by changes in the protein content significantly affected the lifetime, while oxidizing conditions or physiological pH changes had only marginal effects. We suggest that FLIM is a versatile and completive method to monitor spatiotemporal events in mitochondria. The sensitivity in the time domain allows for gaining substantial information about sub-mitochondrial localization overcoming diffraction limitation. This article is part of a Special Issue entitled 'EBEC 2016: 19th European Bioenergetics Conference, Riva del Garda, Italy, July 2-6, 2016', edited by Prof. Paolo Bernardi. PMID:27016377

  9. Probing of protein localization and shuttling in mitochondrial microcompartments by FLIM with sub-diffraction resolution.

    PubMed

    Söhnel, Anna-Carina; Kohl, Wladislaw; Gregor, Ingo; Enderlein, Jörg; Rieger, Bettina; Busch, Karin B

    2016-08-01

    The cell is metabolically highly compartmentalized. Especially, mitochondria host many vital reactions in their different microcompartments. However, due to their small size, these microcompartments are not accessible by conventional microscopy. Here, we demonstrate that time-correlated single-photon counting (TCSPC) fluorescence lifetime-imaging microscopy (FLIM) classifies not only mitochondria, but different microcompartments inside mitochondria. Sensor proteins in the matrix had a different lifetime than probes at membrane proteins. Localization in the outer and inner mitochondrial membrane could be distinguished by significant differences in the lifetime. The method was sensitive enough to monitor shifts in protein location within mitochondrial microcompartments. Macromolecular crowding induced by changes in the protein content significantly affected the lifetime, while oxidizing conditions or physiological pH changes had only marginal effects. We suggest that FLIM is a versatile and completive method to monitor spatiotemporal events in mitochondria. The sensitivity in the time domain allows for gaining substantial information about sub-mitochondrial localization overcoming diffraction limitation. This article is part of a Special Issue entitled 'EBEC 2016: 19th European Bioenergetics Conference, Riva del Garda, Italy, July 2-6, 2016', edited by Prof. Paolo Bernardi.

  10. The high spectral resolution (scanning) lidar (HSRL)

    SciTech Connect

    Eloranta, E.

    1995-09-01

    Lidars enable the spatial resolution of optical depth variation in clouds. The optical depth must be inverted from the backscatter signal, a process which is complicated by the fact that both molecular and aerosol backscatter signals are present. The HSRL has the advantage of allowing these two signals to be separated. It has a huge dynamic range, allowing optical depth retrieval for t = 0.01 to 3. Depolarization is used to determine the nature of hydrometeors present. Experiments show that water clouds must almost always be taken into account during cirrus observations. An exciting new development is the possibility of measuring effective radius via diffraction peak width and variable field-of-view measurements. 2 figs.

  11. High-resolution structure of the native histone octamer

    PubMed Central

    Wood, Christopher M.; Nicholson, James M.; Lambert, Stanley J.; Chantalat, Laurent; Reynolds, Colin D.; Baldwin, John P.

    2005-01-01

    Crystals of native histone octamers (H2A–H2B)–(H4–H3)–(H3′–H4′)–(H2B′–­H2A′) from chick erythrocytes in 2 M KCl, 1.35 M potassium phosphate pH 6.9 diffract X-rays to 1.90 Å resolution, yielding a structure with an R work value of 18.7% and an R free of 22.2%. The crystal space group is P65, the asymmetric unit of which contains one complete octamer. This high-resolution model of the histone-core octamer allows further insight into intermolecular interactions, including water molecules, that dock the histone dimers to the tetramer in the nucleosome-core particle and have relevance to nucleosome remodelling. The three key areas analysed are the H2A′–H3–H4 molecular cluster (also H2A–H3′–H4′), the H4–H2B′ interaction (also H4′–H2B) and the H2A′–H4 β-sheet interaction (also H2A–H4′). The latter of these three regions is important to nucleosome remodelling by RNA polymerase II, as it is shown to be a likely core-histone binding site, and its disruption creates an instability in the nucleosome-core particle. A majority of the water molecules in the high-resolution octamer have positions that correlate to similar positions in the high-­resolution nucleosome-core particle structure, suggesting that the high-resolution octamer model can be used for comparative studies with the high-resolution nucleosome-core particle. PMID:16511091

  12. Ultra-high accuracy optical testing: creating diffraction-limitedshort-wavelength optical systems

    SciTech Connect

    Goldberg, Kenneth A.; Naulleau, Patrick P.; Rekawa, Senajith B.; Denham, Paul E.; Liddle, J. Alexander; Gullikson, Eric M.; Jackson, KeithH.; Anderson, Erik H.; Taylor, John S.; Sommargren, Gary E.; Chapman,Henry N.; Phillion, Donald W.; Johnson, Michael; Barty, Anton; Soufli,Regina; Spiller, Eberhard A.; Walton, Christopher C.; Bajt, Sasa

    2005-08-03

    Since 1993, research in the fabrication of extreme ultraviolet (EUV) optical imaging systems, conducted at Lawrence Berkeley National Laboratory (LBNL) and Lawrence Livermore National Laboratory (LLNL), has produced the highest resolution optical systems ever made. We have pioneered the development of ultra-high-accuracy optical testing and alignment methods, working at extreme ultraviolet wavelengths, and pushing wavefront-measuring interferometry into the 2-20-nm wavelength range (60-600 eV). These coherent measurement techniques, including lateral shearing interferometry and phase-shifting point-diffraction interferometry (PS/PDI) have achieved RMS wavefront measurement accuracies of 0.5-1-{angstrom} and better for primary aberration terms, enabling the creation of diffraction-limited EUV optics. The measurement accuracy is established using careful null-testing procedures, and has been verified repeatedly through high-resolution imaging. We believe these methods are broadly applicable to the advancement of short-wavelength optical systems including space telescopes, microscope objectives, projection lenses, synchrotron beamline optics, diffractive and holographic optics, and more. Measurements have been performed on a tunable undulator beamline at LBNL's Advanced Light Source (ALS), optimized for high coherent flux; although many of these techniques should be adaptable to alternative ultraviolet, EUV, and soft x-ray light sources. To date, we have measured nine prototype all-reflective EUV optical systems with NA values between 0.08 and 0.30 (f/6.25 to f/1.67). These projection-imaging lenses were created for the semiconductor industry's advanced research in EUV photolithography, a technology slated for introduction in 2009-13. This paper reviews the methods used and our program's accomplishments to date.

  13. Real-time super-resolution imaging by high-speed fluorescence emission difference microscopy

    NASA Astrophysics Data System (ADS)

    Rong, Zihao; Li, Shuai; Kuang, Cuifang; Xu, Yingke; Liu, Xu

    2014-09-01

    The recently proposed fluorescence emission difference (FED) microscopy has been demonstrated to be capable of breaking the diffraction barrier, which restricts the spatial resolution of far-field fluorescence microscopy. In this paper, we report a novel high-speed FED system that can realize real-time super-resolution imaging. By replacing the conventional nanopositioning stage with a galvo mirror, the temporal resolution of FED is improved to nearly one frame per second, which is 100 times faster than that of best existing FED, while the system maintains a super-high spatial resolution of 150 nm, which is far beyond the diffraction barrier. Therefore, the high-speed FED is suitable for large-area observations while avoiding photobleaching. Detailed theoretical analysis, simulations, and experimental real-time resolution tests on 100 nm nanoparticles and biological cells are reported.

  14. Solar system events at high spatial resolution

    SciTech Connect

    Baines, K H; Gavel, D T; Getz, A M; Gibbartd, S G; MacIntosh, B; Max, C E; McKay, C P; Young, E F; de Pater, I

    1999-02-19

    Until relatively recent advances in technology, astronomical observations from the ground were limited in image resolution by the blurring effects of earth's atmosphere. The blur extent, ranging typically from 0.5 to 2 seconds of arc at the best astronomical sights, precluded ground-based observations of the details of the solar system's moons, asteroids, and outermost planets. With the maturing of a high resolution image processing technique called speckle imaging the resolution limitation of the atmosphere can now be largely overcome. Over the past three years they have used speckle imaging to observe Titan, a moon of Saturn with an atmospheric density comparable to Earth's, Io, the volcanically active innermost moon of Jupiter, and Neptune, a gas giant outer planet which has continually changing planet-encircling storms. These observations were made at the world's largest telescope, the Keck telescope in Hawaii and represent the highest resolution infrared images of these objects ever taken.

  15. High resolution solar X-ray studies

    NASA Technical Reports Server (NTRS)

    Blake, R. L.

    1974-01-01

    Two high resolution solar X-ray payloads and their launches on Aerobee rockets with pointing system are described. The payloads included 5 to 25A X-ray spectrometers, multiaperture X-ray cameras, and command box attitude control inflight by means of a television image radioed to ground. Spatial resolution ranged from five arc minutes to ten arc seconds and spectral resolution ranged from 500 to 3000. Several laboratory tasks were completed in order to achieve the desired resolution. These included (1) development of techniques to align grid collimators, (2) studies of the spectrometric properties of crystals, (3) measurements of the absorption coefficients of various materials used in X-ray spectrometers, (4) evaluation of the performance of multiaperture cameras, and (5) development of facilities.

  16. High-Resolution PET Detector. Final report

    SciTech Connect

    Karp, Joel

    2014-03-26

    The objective of this project was to develop an understanding of the limits of performance for a high resolution PET detector using an approach based on continuous scintillation crystals rather than pixelated crystals. The overall goal was to design a high-resolution detector, which requires both high spatial resolution and high sensitivity for 511 keV gammas. Continuous scintillation detectors (Anger cameras) have been used extensively for both single-photon and PET scanners, however, these instruments were based on NaI(Tl) scintillators using relatively large, individual photo-multipliers. In this project we investigated the potential of this type of detector technology to achieve higher spatial resolution through the use of improved scintillator materials and photo-sensors, and modification of the detector surface to optimize the light response function.We achieved an average spatial resolution of 3-mm for a 25-mm thick, LYSO continuous detector using a maximum likelihood position algorithm and shallow slots cut into the entrance surface.

  17. High Spatial Resolution Thermal Satellite Technologies

    NASA Technical Reports Server (NTRS)

    Ryan, Robert

    2003-01-01

    This document in the form of viewslides, reviews various low-cost alternatives to high spatial resolution thermal satellite technologies. There exists no follow-on to Landsat 7 or ASTER high spatial resolution thermal systems. This document reviews the results of the investigation in to the use of new technologies to create a low-cost useful alternative. Three suggested technologies are examined. 1. Conventional microbolometer pushbroom modes offers potential for low cost Landsat Data Continuity Mission (LDCM) thermal or ASTER capability with at least 60-120 ground sampling distance (GSD). 2. Backscanning could produce MultiSpectral Thermal Imager performance without cooled detectors. 3. Cooled detector could produce hyperspectral thermal class system or extremely high spatial resolution class instrument.

  18. A high-transparency, micro-patternable chip for X-ray diffraction analysis of microcrystals under native growth conditions

    SciTech Connect

    Murray, Thomas D.; Lyubimov, Artem Y.; Ogata, Craig M.; Vo, Huy; Uervirojnangkoorn, Monarin; Brunger, Axel T.; Berger, James M.

    2015-09-26

    A highly X-ray-transparent, silicon nitride-based device has been designed and fabricated to harvest protein microcrystals for high-resolution X-ray diffraction data collection using microfocus beamlines and XFELs. Microcrystals present a significant impediment to the determination of macromolecular structures by X-ray diffraction methods. Although microfocus synchrotron beamlines and X-ray free-electron lasers (XFELs) can enable the collection of interpretable diffraction data from microcrystals, there is a need for efficient methods of harvesting small volumes (<2 µl) of microcrystals grown under common laboratory formats and delivering them to an X-ray beam source under native growth conditions. One approach that shows promise in overcoming the challenges intrinsic to microcrystal analysis is to pair so-called ‘fixed-target’ sample-delivery devices with microbeam-based X-ray diffraction methods. However, to record weak diffraction patterns it is necessary to fabricate devices from X-ray-transparent materials that minimize background scattering. Presented here is the design of a new micro-diffraction device consisting of three layers fabricated from silicon nitride, photoresist and polyimide film. The chip features low X-ray scattering and X-ray absorption properties, and uses a customizable blend of hydrophobic and hydrophilic surface patterns to help localize microcrystals to defined regions. Microcrystals in their native growth conditions can be loaded into the chips with a standard pipette, allowing data collection at room temperature. Diffraction data collected from hen egg-white lysozyme microcrystals (10–15 µm) loaded into the chips yielded a complete, high-resolution (<1.6 Å) data set sufficient to determine a high-quality structure by molecular replacement. The features of the chip allow the rapid and user-friendly analysis of microcrystals grown under virtually any laboratory format at microfocus synchrotron beamlines and XFELs.

  19. A High Resolution Scale-of-four

    DOE R&D Accomplishments Database

    Fitch, V.

    1949-08-25

    A high resolution scale-of-four has been developed to be used in conjunction with the nuclear particle detection devices in applications where the counting rate is unusually high. Specifically, it is intended to precede the commercially available medium resolution scaling circuits and so decrease the resolving time of the counting system. The circuit will function reliably on continuously recurring pulses separated by less than 0.1 microseconds. It will resolve two pulses (occurring at a moderate repetition rate) which are spaced at 0.04 microseconds. A five-volt input signal is sufficient to actuate the device.

  20. RAPID DAMAGE ASSESSMENT FROM HIGH RESOLUTION IMAGERY

    SciTech Connect

    Vijayaraj, Veeraraghavan; Bright, Eddie A; Bhaduri, Budhendra L

    2008-01-01

    Disaster impact modeling and analysis uses huge volumes of image data that are produced immediately following a natural or an anthropogenic disaster event. Rapid damage assessment is the key to time critical decision support in disaster management to better utilize available response resources and accelerate recovery and relief efforts. But exploiting huge volumes of high resolution image data for identifying damaged areas with robust consistency in near real time is a challenging task. In this paper, we present an automated image analysis technique to identify areas of structural damage from high resolution optical satellite data using features based on image content.

  1. High-resolution OCT balloon imaging catheter with astigmatism correction

    PubMed Central

    Xi, Jiefeng; Huo, Li; Wu, Yicong; Cobb, Michael J.; Hwang, Joo Ha; Li, Xingde

    2014-01-01

    We report new optics designs for an optical coherence tomography (OCT) balloon imaging catheter to achieve diffraction-limited high resolution at a large working distance and enable the correction of severe astigmatism in the catheter. The designs employed a 1 mm diameter gradient-index lens of a properly chosen pitch number and a glass rod spacer to fully utilize the available NA of the miniature optics. Astigmatism caused by the balloon tubing was analyzed, and a method based on a cylindrical reflector was proposed and demonstrated to compensate the astigmatism. A catheter based on the new designs was successfully developed with a measured diffraction-limited lateral resolution of ∼21 μm, a working distance of ∼ 11 –12 mm, and a round-shape beam profile. The performance of the OCT balloon catheter was demonstrated by 3D full-circumferential imaging of a swine esophagus in vivo along with a high-speed, Fourier-domain, mode-locked swept-source OCT system. PMID:19571960

  2. Phase retrieval of diffraction from highly strained crystals

    SciTech Connect

    Newton, Marcus C.; Harder, Ross; Huang Xiaojing; Xiong Gang; Robinson, Ian K.

    2010-10-15

    An important application of phase retrieval methods is to invert coherent x-ray diffraction measurements to obtain real-space images of nanoscale crystals. The phase information is currently recovered from reciprocal-space amplitude measurements by the application of iterative projective algorithms that solve the nonlinear and nonconvex optimization problem. Various algorithms have been developed each of which apply constraints in real and reciprocal space on the reconstructed object. In general, these methods rely on experimental data that is oversampled above the Nyquist frequency. To date, support-based methods have worked well, but are less successful for highly strained structures, defined as those which contain (real-space) phase information outside the range of {+-}{pi}/2. As a direct result the acquired experimental data is, in general, inadvertently subsampled below the Nyquist frequency. In recent years, a new theory of 'compressive sensing' has emerged, which dictates that an appropriately subsampled (or compressed) signal can be recovered exactly through iterative reconstruction and various routes to minimizing the l{sub 1} norm or total variation in that signal. This has proven effective in solving several classes of convex optimization problems. Here we report on a 'density-modification' phase reconstruction algorithm that applies the principles of compressive sensing to solve the nonconvex phase retrieval problem for highly strained crystalline materials. The application of a nonlinear operator in real-space minimizes the l{sub 1} norm of the amplitude by a promotion-penalization (or 'propenal') operation that confines the density bandwidth. This was found to significantly aid in the reconstruction of highly strained nanocrystals. We show how this method is able to successfully reconstruct phase information that otherwise could not be recovered.

  3. Customized MFM probes with high lateral resolution.

    PubMed

    Iglesias-Freire, Óscar; Jaafar, Miriam; Berganza, Eider; Asenjo, Agustina

    2016-01-01

    Magnetic force microscopy (MFM) is a widely used technique for magnetic imaging. Besides its advantages such as the high spatial resolution and the easy use in the characterization of relevant applied materials, the main handicaps of the technique are the lack of control over the tip stray field and poor lateral resolution when working under standard conditions. In this work, we present a convenient route to prepare high-performance MFM probes with sub-10 nm (sub-25 nm) topographic (magnetic) lateral resolution by following an easy and quick low-cost approach. This allows one to not only customize the tip stray field, avoiding tip-induced changes in the sample magnetization, but also to optimize MFM imaging in vacuum (or liquid media) by choosing tips mounted on hard (or soft) cantilevers, a technology that is currently not available on the market. PMID:27547625

  4. Customized MFM probes with high lateral resolution

    PubMed Central

    Jaafar, Miriam; Berganza, Eider; Asenjo, Agustina

    2016-01-01

    Summary Magnetic force microscopy (MFM) is a widely used technique for magnetic imaging. Besides its advantages such as the high spatial resolution and the easy use in the characterization of relevant applied materials, the main handicaps of the technique are the lack of control over the tip stray field and poor lateral resolution when working under standard conditions. In this work, we present a convenient route to prepare high-performance MFM probes with sub-10 nm (sub-25 nm) topographic (magnetic) lateral resolution by following an easy and quick low-cost approach. This allows one to not only customize the tip stray field, avoiding tip-induced changes in the sample magnetization, but also to optimize MFM imaging in vacuum (or liquid media) by choosing tips mounted on hard (or soft) cantilevers, a technology that is currently not available on the market. PMID:27547625

  5. Customized MFM probes with high lateral resolution.

    PubMed

    Iglesias-Freire, Óscar; Jaafar, Miriam; Berganza, Eider; Asenjo, Agustina

    2016-01-01

    Magnetic force microscopy (MFM) is a widely used technique for magnetic imaging. Besides its advantages such as the high spatial resolution and the easy use in the characterization of relevant applied materials, the main handicaps of the technique are the lack of control over the tip stray field and poor lateral resolution when working under standard conditions. In this work, we present a convenient route to prepare high-performance MFM probes with sub-10 nm (sub-25 nm) topographic (magnetic) lateral resolution by following an easy and quick low-cost approach. This allows one to not only customize the tip stray field, avoiding tip-induced changes in the sample magnetization, but also to optimize MFM imaging in vacuum (or liquid media) by choosing tips mounted on hard (or soft) cantilevers, a technology that is currently not available on the market.

  6. A High-Resolution Stopwatch for Cents

    ERIC Educational Resources Information Center

    Gingl, Z.; Kopasz, K.

    2011-01-01

    A very low-cost, easy-to-make stopwatch is presented to support various experiments in mechanics. The high-resolution stopwatch is based on two photodetectors connected directly to the microphone input of a sound card. Dedicated free open-source software has been developed and made available to download. The efficiency is demonstrated by a free…

  7. High-resolution two dimensional advective transport

    USGS Publications Warehouse

    Smith, P.E.; Larock, B.E.

    1989-01-01

    The paper describes a two-dimensional high-resolution scheme for advective transport that is based on a Eulerian-Lagrangian method with a flux limiter. The scheme is applied to the problem of pure-advection of a rotated Gaussian hill and shown to preserve the monotonicity property of the governing conservation law.

  8. High-Resolution, Two-Wavelength Pyrometer

    NASA Technical Reports Server (NTRS)

    Bickler, Donald B.; Henry, Paul K.; Logiurato, D. Daniel

    1989-01-01

    Modified two-color pyrometer measures temperatures of objects with high spatial resolution. Image focused on hole 0.002 in. (0.05 mm) in diameter in brass sheet near end of bundle, causing image to be distributed so fibers covered by defocused radiation from target. Pinhole ensures radiation from only small part of target scene reaches detector, thus providing required spatial resolution. By spreading radiation over bundle, pinhole ensures entire active area of detectors utilized. Produces signal as quiet as conventional instruments but with only 1/64 input radiation.

  9. A Portable, High Resolution, Surface Measurement Device

    NASA Technical Reports Server (NTRS)

    Ihlefeld, Curtis M.; Burns, Bradley M.; Youngquist, Robert C.

    2012-01-01

    A high resolution, portable, surface measurement device has been demonstrated to provide micron-resolution topographical plots. This device was specifically developed to allow in-situ measurements of defects on the Space Shuttle Orbiter windows, but is versatile enough to be used on a wide variety of surfaces. This paper discusses the choice of an optical sensor and then the decisions required to convert a lab bench optical measurement device into an ergonomic portable system. The necessary trade-offs between performance and portability are presented along with a description of the device developed to measure Orbiter window defects.

  10. Breaking the efficiency limit for high-frequency blazed multilayer soft x-ray gratings: Conical vs classical diffraction

    NASA Astrophysics Data System (ADS)

    Goray, L. I.; Egorov, A. Yu.

    2016-09-01

    High-frequency multilayer-coated blazed diffraction gratings (HFMBGs) are most promising elements for ultrahigh resolution soft x-ray spectroscopy. As it has been demonstrated recently [Voronov et al., Opt. Express 23, 4771 (2015)], the efficiency limit for in-plane diffraction can exceed 2-3 times, in higher orders too, when the period of a HFMBG is shorter than an attenuation length for soft x-rays and a bilayer asymmetry is designed. In this letter, using numerical experiments based on the rigorous electromagnetic theory, a possibility of off-plane diffraction and symmetrical multilayer coatings to enhance the efficiency of soft-x-ray high-order HFMBGs very closely to the absolute limit, i.e., 0.92-0.98 of the reflectance of the respective W/B4C multilayer, has been demonstrated.

  11. High-resolution reconstruction for terahertz imaging.

    PubMed

    Xu, Li-Min; Fan, Wen-Hui; Liu, Jia

    2014-11-20

    We present a high-resolution (HR) reconstruction model and algorithms for terahertz imaging, taking advantage of super-resolution methodology and algorithms. The algorithms used include projection onto a convex sets approach, iterative backprojection approach, Lucy-Richardson iteration, and 2D wavelet decomposition reconstruction. Using the first two HR reconstruction methods, we successfully obtain HR terahertz images with improved definition and lower noise from four low-resolution (LR) 22×24 terahertz images taken from our homemade THz-TDS system at the same experimental conditions with 1.0 mm pixel. Using the last two HR reconstruction methods, we transform one relatively LR terahertz image to a HR terahertz image with decreased noise. This indicates potential application of HR reconstruction methods in terahertz imaging with pulsed and continuous wave terahertz sources.

  12. HIRIS - The High Resolution Imaging Spectrometer

    NASA Technical Reports Server (NTRS)

    Dozier, Jeff

    1988-01-01

    The High-Resolution Imaging Spectrometer (HIRIS) is a JPL facility instrument designed for NASA's Earth Observing System (Eos).It will have 10-nm wide spectral bands from 0.4-2.5 microns at 30 m spatial resolution over a 30 km swath. The spectral resolution allows identification of many minerals in rocks and soils, important algal pigments in oceans and inland waters, spectral changes associated with plant canopy biochemistry, composition of atmospheric aerosols, and grain size of snow and its contamination by absorbing impurities. The bands wil have 12-bit quantization over a dynamic range suitable for bright targets, such as snow. For targets of low brightness, such as water bodies, image-motion compensation will allow gains up to a factor of eight to increase signal-to-noise ratios. In the 824-km orbit altitude proposed for Eos, the crosstrack pointing capability will allow 4-5 views during a 16-day revisit cycle.

  13. Constructing a WISE High Resolution Galaxy Atlas

    NASA Astrophysics Data System (ADS)

    Jarrett, T. H.; Masci, F.; Tsai, C. W.; Petty, S.; Cluver, M.; Assef, Roberto J.; Benford, D.; Blain, A.; Bridge, C.; Donoso, E.; Eisenhardt, P.; Fowler, J.; Koribalski, B.; Lake, S.; Neill, James D.; Seibert, M.; Sheth, K.; Stanford, S.; Wright, E.

    2012-08-01

    After eight months of continuous observations, the Wide-field Infrared Survey Explorer (WISE) mapped the entire sky at 3.4 μm, 4.6 μm, 12 μm, and 22 μm. We have begun a dedicated WISE High Resolution Galaxy Atlas project to fully characterize large, nearby galaxies and produce a legacy image atlas and source catalog. Here we summarize the deconvolution techniques used to significantly improve the spatial resolution of WISE imaging, specifically designed to study the internal anatomy of nearby galaxies. As a case study, we present results for the galaxy NGC 1566, comparing the WISE enhanced-resolution image processing to that of Spitzer, Galaxy Evolution Explorer, and ground-based imaging. This is the first paper in a two-part series; results for a larger sample of nearby galaxies are presented in the second paper.

  14. Constructing a WISE High Resolution Galaxy Atlas

    NASA Technical Reports Server (NTRS)

    Jarrett, T. H.; Masci, F.; Tsai, C. W.; Petty, S.; Cluver, M.; Assef, Roberto J.; Benford, D.; Blain, A.; Bridge, C.; Donoso, E.; Eisenhardt, P.; Fowler, J.; Koribalski, B.; Lake, S.; Neill, James D.; Seibert, M.; Stanford, S.; Wright, E.

    2012-01-01

    After eight months of continuous observations, the Wide-field Infrared Survey Explorer (WISE) mapped the entire sky at 3.4 micron, 4.6 micron, 12 micron, and 22 micron. We have begun a dedicated WISE High Resolution Galaxy Atlas project to fully characterize large, nearby galaxies and produce a legacy image atlas and source catalog. Here we summarize the deconvolution techniques used to significantly improve the spatial resolution of WISE imaging, specifically designed to study the internal anatomy of nearby galaxies. As a case study, we present results for the galaxy NGC 1566, comparing the WISE enhanced-resolution image processing to that of Spitzer, Galaxy Evolution Explorer, and ground-based imaging. This is the first paper in a two-part series; results for a larger sample of nearby galaxies are presented in the second paper.

  15. High-Resolution Traction Force Microscopy

    PubMed Central

    Plotnikov, Sergey V.; Sabass, Benedikt; Schwarz, Ulrich S.; Waterman, Clare M.

    2015-01-01

    Cellular forces generated by the actomyosin cytoskeleton and transmitted to the extracellular matrix (ECM) through discrete, integrin-based protein assemblies, that is, focal adhesions, are critical to developmental morphogenesis and tissue homeostasis, as well as disease progression in cancer. However, quantitative mapping of these forces has been difficult since there has been no experimental technique to visualize nanonewton forces at submicrometer spatial resolution. Here, we provide detailed protocols for measuring cellular forces exerted on two-dimensional elastic substrates with a high-resolution traction force microscopy (TFM) method. We describe fabrication of polyacrylamide substrates labeled with multiple colors of fiducial markers, functionalization of the substrates with ECM proteins, setting up the experiment, and imaging procedures. In addition, we provide the theoretical background of traction reconstruction and experimental considerations important to design a high-resolution TFM experiment. We describe the implementation of a new algorithm for processing of images of fiducial markers that are taken below the surface of the substrate, which significantly improves data quality. We demonstrate the application of the algorithm and explain how to choose a regularization parameter for suppression of the measurement error. A brief discussion of different ways to visualize and analyze the results serves to illustrate possible uses of high-resolution TFM in biomedical research. PMID:24974038

  16. High resolution schemes for hyperbolic conservation laws

    NASA Technical Reports Server (NTRS)

    Harten, A.

    1983-01-01

    A class of new explicit second order accurate finite difference schemes for the computation of weak solutions of hyperbolic conservation laws is presented. These highly nonlinear schemes are obtained by applying a nonoscillatory first order accurate scheme to an appropriately modified flux function. The so-derived second order accurate schemes achieve high resolution while preserving the robustness of the original nonoscillatory first order accurate scheme. Numerical experiments are presented to demonstrate the performance of these new schemes.

  17. Spin resolved bandstructure imaging with a high resolution momentum microscope.

    PubMed

    Tusche, Christian; Krasyuk, Alexander; Kirschner, Jürgen

    2015-12-01

    We present a spin resolving "momentum microscope" for the high resolution imaging of the momentum distribution of photoelectrons. Measurements of the band structure of a Au(111) single crystal surface demonstrate an energy resolution of ΔE=12 meV and a momentum resolution of Δk∥=0.0049 Å(-1), measured at the line-width of the spin-orbit split Shockley surface state. The relative accuracy of the k∥ measurement in the order of 10(-4) Å(-1) reveals a deviation from the ideal two-dimensional free electron gas model of the Shockley surface state, manifested in a threefold radial symmetry. Spin resolution in the full momentum image is obtained by an imaging spin-filter based on low-energy electron diffraction at a Au passivated Ir(100) single crystal. Using working points at 10.5 eV and 11.5 eV scattering energy with a completely reversed asymmetry of ±60% we demonstrate the efficient mapping of the spin texture of the Au(111) surface state.

  18. High Resolution Higher Energy X-ray Microscope for Mesoscopic Materials

    NASA Astrophysics Data System (ADS)

    Snigireva, I.; Snigirev, A.

    2013-10-01

    We developed a novel X-ray microscopy technique to study mesoscopically structured materials, employing compound refractive lenses. The easily seen advantage of lens-based methodology is the possibility to retrieve high resolution diffraction pattern and real-space images in the same experimental setup. Methodologically the proposed approach is similar to the studies of crystals by high resolution transmission electron microscopy. The proposed microscope was applied for studying of mesoscopic materials such as natural and synthetic opals, inverted photonic crystals.

  19. Diffraction-limited spatial resolution of circumstellar shells at 10 microns

    NASA Technical Reports Server (NTRS)

    Bloemhof, E. E.; Townes, C. H.; Vanderwyck, A. H. B.

    1983-01-01

    A new spatial array instrument provided diffraction-limited mid-infrared intensity profiles of the type-M supergiant stars alpha Orionis and alpha Scorpii, both of which are known to exhibit excess 10 microns radiation due to the presence of circumstellar dust shells. In the case of alpha Ori, there is a marked asymmetry in the dust distribution, with peak intensity of dust emission a distance of 0.9 inches from the star.

  20. Enhanced monolithic diffraction gratings with high efficiency and reduced polarization sensitivity for remote sensing applications

    NASA Astrophysics Data System (ADS)

    Triebel, Peter; Diehl, Torsten; Moeller, Tobias; Gatto, Alexandre; Pesch, Alexander; Erdmann, Lars H.; Burkhardt, Matthias; Kalies, Alexander

    2015-10-01

    Spectral imaging systems lead to enhanced sensing properties when the sensing system provides sufficient spectral resolution to identify materials from its spectral reflectance signature. The performance of diffraction gratings provides an initial way to improve instrumental resolution. Thus, subsequent manufacturing techniques of high quality gratings are essential to significantly improve the spectral performance. The ZEISS unique technology of manufacturing real-blazed profiles and as well as lamellar profiles comprising transparent substrates is well suited for the production of transmission gratings. In order to reduce high order aberrations, aspherical and free-form surfaces can be alternatively processed to allow more degrees of freedom in the optical design of spectroscopic instruments with less optical elements and therefore size and weight advantages. Prism substrates were used to manufacture monolithic GRISM elements for UV to IR spectral range. Many years of expertise in the research and development of optical coatings enable high transmission anti-reflection coatings from the DUV to the NIR. ZEISS has developed specially adapted coating processes (Ion beam sputtering, ion-assisted deposition and so on) for maintaining the micro-structure of blazed gratings in particular. Besides of transmission gratings, numerous spectrometer setups (e.g. Offner, Rowland circle, Czerny-Turner system layout) working on the optical design principles of reflection gratings. This technology steps can be applied to manufacture high quality reflection gratings from the EUV to the IR applications with an outstanding level of low stray light and ghost diffraction order by employing a combination of holography and reactive ion beam etching together with the in-house coating capabilities. We report on results of transmission gratings on plane and curved substrates and GRISM elements with enhanced efficiency of the grating itself combined with low scattered light in the angular

  1. Diffraction-Based Techniques For High Contrast X-ray Imaging

    NASA Astrophysics Data System (ADS)

    Peerzada, Lubna Naseem

    Two X-ray diffraction based techniques for high contrast were explored to improve contrast in radiology: diffraction enhanced imaging (DEI) and coherent scatter imaging. DEI produces contrast in images based upon the difference in the X-ray refractive indices of materials or tissues. Two DEI systems were devised. Both were comprised of a conventional polychromatic copper X-ray source, polycapillary collimating optics and two silicon crystals.Lucite step phantoms and nylon tubing were imaged. No fringe effects were observed. The lack of observable edge enhancement may have been due to the optic structure which obscured refraction effects. Better results might have been achieved if a higher resolution detector or phantom of larger step size or larger diameter thin walled tubing had been used. The second technique was coherent scatter X-ray imaging. The purpose of this work was to differentiate between healthy and diseased human breast tissues. For instance, breast carcinoma is known to have a peak coherent scattering angle at 12.2° for Mo Ka radiation at 17.5 keV, whereas fatty tissue peaks around 9°. A system which would be compatible with screening mammography was developed. The system was expanded to include sample scanning to allow for a larger image area. The modulation transfer function was computed for static and scanned images of a resolution phantom. These showed good agreement, indicating that the scanning was properly aligned and timed. Static and scanned images of phantoms were taken and the contrast was calculated for a series of experimental parameters including, grid tilt angle. A complex phantom was also then imaged. It was possible to distinguish tissue-equivalent phantom types. Good contrast resolution scanned images were obtained which is promising for a diagnostic system.

  2. High resolution 3D nonlinear integrated inversion

    NASA Astrophysics Data System (ADS)

    Li, Yong; Wang, Xuben; Li, Zhirong; Li, Qiong; Li, Zhengwen

    2009-06-01

    The high resolution 3D nonlinear integrated inversion method is based on nonlinear theory. Under layer control, the log data from several wells (or all wells) in the study area and seismic trace data adjacent to the wells are input to a network with multiple inputs and outputs and are integratedly trained to obtain an adaptive weight function of the entire study area. Integrated nonlinear mapping relationships are built and updated by the lateral and vertical geologic variations of the reservoirs. Therefore, the inversion process and its inversion results can be constrained and controlled and a stable seismic inversion section with high resolution with velocity inversion, impedance inversion, and density inversion sections, can be gained. Good geologic effects have been obtained in model computation tests and real data processing, which verified that this method has high precision, good practicality, and can be used for quantitative reservoir analysis.

  3. Superconducting High Resolution Fast-Neutron Spectrometers

    SciTech Connect

    Hau, Ionel Dragos

    2006-01-01

    Superconducting high resolution fast-neutron calorimetric spectrometers based on 6LiF and TiB{sub 2} absorbers have been developed. These novel cryogenic spectrometers measure the temperature rise produced in exothermal (n, α) reactions with fast neutrons in 6Li and 10B-loaded materials with heat capacity C operating at temperatures T close to 0.1 K. Temperature variations on the order of 0.5 mK are measured with a Mo/Cu thin film multilayer operated in the transition region between its superconducting and its normal state. The advantage of calorimetry for high resolution spectroscopy is due to the small phonon excitation energies kBT on the order of μeV that serve as signal carriers, resulting in an energy resolution ΔE ~ (kBT2C)1/2, which can be well below 10 keV. An energy resolution of 5.5 keV has been obtained with a Mo/Cu superconducting sensor and a TiB2 absorber using thermal neutrons from a 252Cf neutron source. This resolution is sufficient to observe the effect of recoil nuclei broadening in neutron spectra, which has been related to the lifetime of the first excited state in 7Li. Fast-neutron spectra obtained with a 6Li-enriched LiF absorber show an energy resolution of 16 keV FWHM, and a response in agreement with the 6Li(n, α)3H reaction cross section and Monte Carlo simulations for energies up to several MeV. The energy resolution of order of a few keV makes this novel instrument applicable to fast-neutron transmission spectroscopy based on the unique elemental signature provided by the neutron absorption and scattering resonances. The optimization of the energy resolution based on analytical and numerical models of the detector response is discussed in the context of these applications.

  4. Mesoscale Science with High Energy X-ray Diffraction Microscopy at the Advanced Photon Source

    NASA Astrophysics Data System (ADS)

    Suter, Robert

    2014-03-01

    Spatially resolved diffraction of monochromatic high energy (> 50 keV) x-rays is used to map microstructural quantities inside of bulk polycrystalline materials. The non-destructive nature of High Energy Diffraction Microscopy (HEDM) measurements allows tracking of responses as samples undergo thermo-mechanical or other treatments. Volumes of the order of a cubic millimeter are probed with micron scale spatial resolution. Data sets allow direct comparisons to computational models of responses that frequently involve long-ranged, multi-grain interactions; such direct comparisons have only become possible with the development of HEDM and other high energy x-ray methods. Near-field measurements map the crystallographic orientation field within and between grains using a computational reconstruction method that simulates the experimental geometry and matches orientations in micron sized volume elements to experimental data containing projected grain images in large numbers of Bragg peaks. Far-field measurements yield elastic strain tensors through indexing schemes that sort observed diffraction peaks into sets associated with individual crystals and detect small radial motions in large numbers of such peaks. Combined measurements, facilitated by a new end station hutch at Advanced Photon Source beamline 1-ID, are mutually beneficial and result in accelerated data reduction. Further, absorption tomography yields density contrast that locates secondary phases, void clusters, and cracks, and tracks sample shape during deformation. A collaboration led by the Air Force Research Laboratory and including the Advanced Photon Source, Lawrence Livermore National Laboratory, Carnegie Mellon University, Petra-III, and Cornell University and CHESS is developing software and hardware for combined measurements. Examples of these capabilities include tracking of grain boundary migrations during thermal annealing, tensile deformation of zirconium, and combined measurements of nickel

  5. High-resolution structure of the native histone octamer

    SciTech Connect

    Wood, Christopher M.; Nicholson, James M.; Lambert, Stanley J.; Chantalat, Laurent; Reynolds, Colin D.; Baldwin, John P.

    2005-06-01

    The high-resolution (1.90 Å) model of the native histone octamer allows structural comparisons to be made with the nucleosome-core particle, along with an identification of a likely core-histone binding site. Crystals of native histone octamers (H2A–H2B)–(H4–H3)–(H3′–H4′)–(H2B′–H2A′) from chick erythrocytes in 2 M KCl, 1.35 M potassium phosphate pH 6.9 diffract X-rays to 1.90 Å resolution, yielding a structure with an R{sub work} value of 18.7% and an R{sub free} of 22.2%. The crystal space group is P6{sub 5}, the asymmetric unit of which contains one complete octamer. This high-resolution model of the histone-core octamer allows further insight into intermolecular interactions, including water molecules, that dock the histone dimers to the tetramer in the nucleosome-core particle and have relevance to nucleosome remodelling. The three key areas analysed are the H2A′–H3–H4 molecular cluster (also H2A–H3′–H4′), the H4–H2B′ interaction (also H4′–H2B) and the H2A′–H4 β-sheet interaction (also H2A–H4′). The latter of these three regions is important to nucleosome remodelling by RNA polymerase II, as it is shown to be a likely core-histone binding site, and its disruption creates an instability in the nucleosome-core particle. A majority of the water molecules in the high-resolution octamer have positions that correlate to similar positions in the high-resolution nucleosome-core particle structure, suggesting that the high-resolution octamer model can be used for comparative studies with the high-resolution nucleosome-core particle.

  6. Super-resolution imaging and tracking of protein-protein interactions in sub-diffraction cellular space.

    PubMed

    Liu, Zhen; Xing, Dong; Su, Qian Peter; Zhu, Yun; Zhang, Jiamei; Kong, Xinyu; Xue, Boxin; Wang, Sheng; Sun, Hao; Tao, Yile; Sun, Yujie

    2014-07-17

    Imaging the location and dynamics of individual interacting protein pairs is essential but often difficult because of the fluorescent background from other paired and non-paired molecules, particularly in the sub-diffraction cellular space. Here we develop a new method combining bimolecular fluorescence complementation and photoactivated localization microscopy for super-resolution imaging and single-molecule tracking of specific protein-protein interactions. The method is used to study the interaction of two abundant proteins, MreB and EF-Tu, in Escherichia coli cells. The super-resolution imaging shows interesting distribution and domain sizes of interacting MreB-EF-Tu pairs as a subpopulation of total EF-Tu. The single-molecule tracking of MreB, EF-Tu and MreB-EF-Tu pairs reveals intriguing localization-dependent heterogonous dynamics and provides valuable insights to understanding the roles of MreB-EF-Tu interactions.

  7. Super-resolution imaging and tracking of protein–protein interactions in sub-diffraction cellular space

    PubMed Central

    Liu, Zhen; Xing, Dong; Su, Qian Peter; Zhu, Yun; Zhang, Jiamei; Kong, Xinyu; Xue, Boxin; Wang, Sheng; Sun, Hao; Tao, Yile; Sun, Yujie

    2014-01-01

    Imaging the location and dynamics of individual interacting protein pairs is essential but often difficult because of the fluorescent background from other paired and non-paired molecules, particularly in the sub-diffraction cellular space. Here we develop a new method combining bimolecular fluorescence complementation and photoactivated localization microscopy for super-resolution imaging and single-molecule tracking of specific protein–protein interactions. The method is used to study the interaction of two abundant proteins, MreB and EF-Tu, in Escherichia coli cells. The super-resolution imaging shows interesting distribution and domain sizes of interacting MreB–EF-Tu pairs as a subpopulation of total EF-Tu. The single-molecule tracking of MreB, EF-Tu and MreB–EF-Tu pairs reveals intriguing localization-dependent heterogonous dynamics and provides valuable insights to understanding the roles of MreB–EF-Tu interactions. PMID:25030837

  8. Super-resolution imaging and tracking of protein-protein interactions in sub-diffraction cellular space

    NASA Astrophysics Data System (ADS)

    Liu, Zhen; Xing, Dong; Su, Qian Peter; Zhu, Yun; Zhang, Jiamei; Kong, Xinyu; Xue, Boxin; Wang, Sheng; Sun, Hao; Tao, Yile; Sun, Yujie

    2014-07-01

    Imaging the location and dynamics of individual interacting protein pairs is essential but often difficult because of the fluorescent background from other paired and non-paired molecules, particularly in the sub-diffraction cellular space. Here we develop a new method combining bimolecular fluorescence complementation and photoactivated localization microscopy for super-resolution imaging and single-molecule tracking of specific protein-protein interactions. The method is used to study the interaction of two abundant proteins, MreB and EF-Tu, in Escherichia coli cells. The super-resolution imaging shows interesting distribution and domain sizes of interacting MreB-EF-Tu pairs as a subpopulation of total EF-Tu. The single-molecule tracking of MreB, EF-Tu and MreB-EF-Tu pairs reveals intriguing localization-dependent heterogonous dynamics and provides valuable insights to understanding the roles of MreB-EF-Tu interactions.

  9. High-Resolution US of Rheumatologic Diseases.

    PubMed

    Taljanovic, Mihra S; Melville, David M; Gimber, Lana H; Scalcione, Luke R; Miller, Margaret D; Kwoh, C Kent; Klauser, Andrea S

    2015-01-01

    For the past 15 years, high-resolution ultrasonography (US) is being routinely and increasingly used for initial evaluation and treatment follow-up of rheumatologic diseases. This imaging technique is performed by using high-frequency linear transducers and has proved to be a powerful diagnostic tool in evaluation of articular erosions, simple and complex joint and bursal effusions, tendon sheath effusions, and synovitis, with results comparable to those of magnetic resonance imaging, excluding detection of bone marrow edema. Crystal deposition diseases including gouty arthropathy and calcium pyrophosphate deposition disease (CPPD) have characteristic appearances at US, enabling differentiation between these two diseases and from inflammatory arthropathies. Enthesopathy, which frequently accompanies psoriatic and reactive arthritis, also has a characteristic appearance at high-resolution US, distinguishing these two entities from other inflammatory and metabolic arthropathies. The presence of Doppler signal in examined joints, bursae, and tendon sheaths indicates active synovitis. Microbubble echo contrast agents augment detection of tissue vascularity and may act in the future as a drug delivery vehicle. Frequently, joint, tendon sheath, and bursal fluid aspirations and therapeutic injections are performed under US guidance. The authors describe the high-resolution US technique including gray-scale, color or power Doppler, and contrast agent-enhanced US that is used in evaluation of rheumatologic diseases of the wrist and hand and the ankle and foot in their routine clinical practice. This article demonstrates imaging findings of normal joints, rheumatoid arthritis, gouty arthritis, CPPD, psoriatic and reactive arthritis, and osteoarthritis.

  10. High-resolution flurescence spectroscopy in immunoanalysis

    SciTech Connect

    Grubor, Nenad M.

    2005-01-01

    The work presented in this dissertation combines highly sensitive and selective fluorescence line-narrowing spectroscopy (FLNS) detection with various modes of immunoanalytical techniques. It has been shown that FLNS is capable of directly probing molecules immunocomplexed with antibodies, eliminating analytical ambiguities that may arise from interferences that accompany traditional immunochemical techniques. Moreover, the utilization of highly cross-reactive antibodies for highly specific analyte determination has been demonstrated. Finally, they demonstrate the first example of the spectral resolution of diastereomeric analytes based on their interaction with a cross-reactive antibody.

  11. MAGELLAN: High resolution spectroscopy at FUV and EUV wavelengths

    NASA Technical Reports Server (NTRS)

    Grewing, M.; Alighieri, S. D.; Burton, W.; Coleman, C. I.; Hoekstra, R.; Jamar, C.; Labeque, A.; Laurent, C.; Vidal-Madjar, A.; Rafanelli, P.

    1982-01-01

    The aim of ESA's MAGELLAN mission is to provide high resolution spectra of celestial sources down to sixteenth magnitude over the extreme ultraviolet wavelength range (between 50 and 140 nm). This range extends from studies of interstellar matter in the disc and halo of this and other galaxies, to stellar envelopes, hot and evolved stars, clusters, intergalactic matter, nuclei of galaxies, quasars, and, finally, planets and satellites. The instrument has a nonconventional optical design using only one reflecting surface; a high groove density concave grating collects the star light, diffracts it and focuses its spectrum into a bidimensional windowless detector operated in a photon counting mode. The slitless configuration provides the spectra of all the sources (point like and extended) in the field of view of the grating. This field of view is limited by a grid collimator to reduce the diffuse background, the stray light and the probability of overlapping spectra in crowded fields.

  12. High-Resolution Broadband Spectral Interferometry

    SciTech Connect

    Erskine, D J; Edelstein, J

    2002-08-09

    We demonstrate solar spectra from a novel interferometric method for compact broadband high-resolution spectroscopy. The spectral interferometer (SI) is a hybrid instrument that uses a spectrometer to externally disperse the output of a fixed-delay interferometer. It also has been called an externally dispersed interferometer (EDI). The interferometer can be used with linear spectrometers for imaging spectroscopy or with echelle spectrometers for very broad-band coverage. EDI's heterodyning technique enhances the spectrometer's response to high spectral-density features, increasing the effective resolution by factors of several while retaining its bandwidth. The method is extremely robust to instrumental insults such as focal spot size or displacement. The EDI uses no moving parts, such as purely interferometric FTS spectrometers, and can cover a much wider simultaneous bandpass than other internally dispersed interferometers (e.g. HHS or SHS).

  13. Calcium binding in. alpha. -amylases: An X-ray diffraction study at 2. 1- angstrom resolution of two enzymes from Aspergillus

    SciTech Connect

    Boel, E.; Jensen, V.J.; Petersen, S.B.; Thim, L. Woldike, H.F. ); Brady, L.; Brzozowski, AM.; Derewenda, Z.; Dodson, G.G.; Swift, H. )

    1990-07-03

    X-ray diffraction analysis (at 2.1-{angstrom} resolution) of an acid alpha-amylase from Aspergillus niger allowed a detailed description of the stereochemistry of the calcium-binding sites. The primary site (which is essential in maintaining proper folding around the active site) contains a tightly bound Ca{sup 2+} with an unusually high number of eight ligands. A secondary binding site was identified at the bottom of the substrate binding cleft; it involves the residues presumed to play a catalytic role (Asp206 and Glu230). This explains the inhibitory effect of calcium observed at higher concentrations. Neutral Aspergillus oryzae (TAKA) {alpha}-amylase was also refined in a new crystal at 2.1-{angstrom} resolution. The structure of this homologous (over 80%) enzyme and addition kinetic studies support all the structural conclusions regarding both calcium-binding sites.

  14. High resolution image measurements of nuclear tracks

    NASA Technical Reports Server (NTRS)

    Shirk, E. K.; Price, P. B.

    1980-01-01

    The striking clarity and high contrast of the mouths of tracks etched in CR-39 plastic detectors allow automatic measurement of track parameters to be made with simple image-recognition equipment. Using a commercially available Vidicon camera system with a microprocessor-controlled digitizer, resolution for normally incident C-12 and N-14 ions at 32 MeV/amu equivalent to a 14sigma separation of adjacent charges was demonstrated.

  15. Obtaining high resolution XUV coronal images

    NASA Technical Reports Server (NTRS)

    Golub, L.; Spiller, E.

    1992-01-01

    Photographs obtained during three flights of an 11 inch diameter normal incident soft X-ray (wavelength 63.5 A) telescope are analyzed and the data are compared to the results expected from tests of the mirror surfaces. Multilayer coated X ray telescopes have the potential for 0.01 arcsec resolution, and there is optimism that such high quality mirrors can be built. Some of the factors which enter into the performance actually achieved in practice are as follows: quality of the mirror substrate, quality of the multilayer coating, and number of photons collected. Measurements of multilayer mirrors show that the actual performance achieved in the solar X-ray images demonstrates a reduction in the scattering compared to that calculated from the topography of the top surface of the multilayer. In the brief duration of a rocket flight, the resolution is also limited by counting statistics from the number of photons collected. At X-ray Ultraviolet (XUV) wavelengths from 171 to 335 A the photon flux should be greater than 10(exp 10) ph/sec, so that a resolution better than 0.1 arcsec might be achieved, if mirror quality does not provide a limit first. In a satellite, a large collecting area will be needed for the highest resolution.

  16. Comparison between diffraction contrast tomography and high-energy diffraction microscopy on a slightly deformed aluminium alloy

    PubMed Central

    Renversade, Loïc; Quey, Romain; Ludwig, Wolfgang; Menasche, David; Maddali, Siddharth; Suter, Robert M.; Borbély, András

    2016-01-01

    The grain structure of an Al–0.3 wt%Mn alloy deformed to 1% strain was reconstructed using diffraction contrast tomography (DCT) and high-energy diffraction microscopy (HEDM). 14 equally spaced HEDM layers were acquired and their exact location within the DCT volume was determined using a generic algorithm minimizing a function of the local disorientations between the two data sets. The microstructures were then compared in terms of the mean crystal orientations and shapes of the grains. The comparison shows that DCT can detect subgrain boundaries with disorientations as low as 1° and that HEDM and DCT grain boundaries are on average 4 µm apart from each other. The results are important for studies targeting the determination of grain volume. For the case of a polycrystal with an average grain size of about 100 µm, a relative deviation of about ≤10% was found between the two techniques. PMID:26870379

  17. Comparison between diffraction contrast tomography and high-energy diffraction microscopy on a slightly deformed aluminium alloy.

    PubMed

    Renversade, Loïc; Quey, Romain; Ludwig, Wolfgang; Menasche, David; Maddali, Siddharth; Suter, Robert M; Borbély, András

    2016-01-01

    The grain structure of an Al-0.3 wt%Mn alloy deformed to 1% strain was reconstructed using diffraction contrast tomography (DCT) and high-energy diffraction microscopy (HEDM). 14 equally spaced HEDM layers were acquired and their exact location within the DCT volume was determined using a generic algorithm minimizing a function of the local disorientations between the two data sets. The microstructures were then compared in terms of the mean crystal orientations and shapes of the grains. The comparison shows that DCT can detect subgrain boundaries with disorientations as low as 1° and that HEDM and DCT grain boundaries are on average 4 µm apart from each other. The results are important for studies targeting the determination of grain volume. For the case of a polycrystal with an average grain size of about 100 µm, a relative deviation of about ≤10% was found between the two techniques.

  18. Comparison between diffraction contrast tomography and high-energy diffraction microscopy on a slightly deformed aluminium alloy.

    PubMed

    Renversade, Loïc; Quey, Romain; Ludwig, Wolfgang; Menasche, David; Maddali, Siddharth; Suter, Robert M; Borbély, András

    2016-01-01

    The grain structure of an Al-0.3 wt%Mn alloy deformed to 1% strain was reconstructed using diffraction contrast tomography (DCT) and high-energy diffraction microscopy (HEDM). 14 equally spaced HEDM layers were acquired and their exact location within the DCT volume was determined using a generic algorithm minimizing a function of the local disorientations between the two data sets. The microstructures were then compared in terms of the mean crystal orientations and shapes of the grains. The comparison shows that DCT can detect subgrain boundaries with disorientations as low as 1° and that HEDM and DCT grain boundaries are on average 4 µm apart from each other. The results are important for studies targeting the determination of grain volume. For the case of a polycrystal with an average grain size of about 100 µm, a relative deviation of about ≤10% was found between the two techniques. PMID:26870379

  19. Diffractive imaging using a polychromatic high-harmonic generation soft-x-ray source

    NASA Astrophysics Data System (ADS)

    Dilanian, Ruben A.; Chen, Bo; Williams, Garth J.; Quiney, Harry M.; Nugent, Keith A.; Teichmann, Sven; Hannaford, Peter; Dao, Lap V.; Peele, Andrew G.

    2009-07-01

    A new approach to diffractive imaging using polychromatic diffraction data is described. The method is tested using simulated and experimental data and is shown to yield high-quality reconstructions. Diffraction data produced using a high-harmonic generation source are considered explicitly here. The formalism can be readily adapted, however, to any short-wavelength source producing a discrete spectrum and possessing sufficient spatial coherence.

  20. Linear diffraction grating interferometer with high alignment tolerance and high accuracy

    NASA Astrophysics Data System (ADS)

    Cheng, Fang; Fan, Kuang-Chao

    2011-08-01

    We present an innovative structure of a linear diffraction grating interferometer as a long stroke and nanometer resolution displacement sensor for any linear stage. The principle of this diffractive interferometer is based on the phase information encoded by the ±1st order beams diffracted by a holographic grating. Properly interfering these two beams leads to modulation similar to a Doppler frequency shift that can be translated to displacement measurements via phase decoding. A self-compensation structure is developed to improve the alignment tolerance. LightTool analysis shows that this new structure is completely immune to alignment errors of offset, standoff, yaw, and roll. The tolerance of the pitch is also acceptable for most installation conditions. In order to compact the structure and improve the signal quality, a new optical bonding technology by mechanical fixture is presented so that the miniature optics can be permanently bonded together without an air gap in between. For the output waveform signals, a software module is developed for fast real-time pulse counting and phase subdivision. A laser interferometer HP5529A is employed to test the repeatability of the whole system. Experimental data show that within 15mm travel length, the repeatability is within 15nm.

  1. Linear diffraction grating interferometer with high alignment tolerance and high accuracy

    SciTech Connect

    Cheng Fang; Fan, Kuang-Chao

    2011-08-01

    We present an innovative structure of a linear diffraction grating interferometer as a long stroke and nanometer resolution displacement sensor for any linear stage. The principle of this diffractive interferometer is based on the phase information encoded by the {+-}1st order beams diffracted by a holographic grating. Properly interfering these two beams leads to modulation similar to a Doppler frequency shift that can be translated to displacement measurements via phase decoding. A self-compensation structure is developed to improve the alignment tolerance. LightTool analysis shows that this new structure is completely immune to alignment errors of offset, standoff, yaw, and roll. The tolerance of the pitch is also acceptable for most installation conditions. In order to compact the structure and improve the signal quality, a new optical bonding technology by mechanical fixture is presented so that the miniature optics can be permanently bonded together without an air gap in between. For the output waveform signals, a software module is developed for fast real-time pulse counting and phase subdivision. A laser interferometer HP5529A is employed to test the repeatability of the whole system. Experimental data show that within 15 mm travel length, the repeatability is within 15 nm.

  2. Fabrication of Pt nanowires with a diffraction-unlimited feature size by high-threshold lithography

    SciTech Connect

    Li, Li E-mail: wangz@cust.edu.cn Zhang, Ziang; Yu, Miao; Song, Zhengxun; Weng, Zhankun; Wang, Zuobin E-mail: wangz@cust.edu.cn Li, Wenjun; Wang, Dapeng; Zhao, Le; Peng, Kuiqing E-mail: wangz@cust.edu.cn

    2015-09-28

    Although the nanoscale world can already be observed at a diffraction-unlimited resolution using far-field optical microscopy, to make the step from microscopy to lithography still requires a suitable photoresist material system. In this letter, we consider the threshold to be a region with a width characterized by the extreme feature size obtained using a Gaussian beam spot. By narrowing such a region through improvement of the threshold sensitization to intensity in a high-threshold material system, the minimal feature size becomes smaller. By using platinum as the negative photoresist, we demonstrate that high-threshold lithography can be used to fabricate nanowire arrays with a scalable resolution along the axial direction of the linewidth from the micro- to the nanoscale using a nanosecond-pulsed laser source with a wavelength λ{sub 0} = 1064 nm. The minimal feature size is only several nanometers (sub λ{sub 0}/100). Compared with conventional polymer resist lithography, the advantages of high-threshold lithography are sharper pinpoints of laser intensity triggering the threshold response and also higher robustness allowing for large area exposure by a less-expensive nanosecond-pulsed laser.

  3. High-energy photoelectron diffraction: model calculations and future possibilities

    NASA Astrophysics Data System (ADS)

    Winkelmann, Aimo; Fadley, Charles S.; Garcia de Abajo, F. Javier

    2008-11-01

    We discuss the theoretical modeling of x-ray photoelectron diffraction (XPD) with hard x-ray excitation at up to 20 keV, using the dynamical theory of electron diffraction to illustrate the characteristic aspects of the diffraction patterns resulting from such localized emission sources in a multilayer crystal. We show via dynamical calculations for diamond, Si and Fe that the dynamical theory predicts well the available current data for lower energies around 1 keV, and that the patterns for energies above about 1 keV are dominated by Kikuchi bands, which are created by the dynamical scattering of electrons from lattice planes. The origin of the fine structure in such bands is discussed from the point of view of atomic positions in the unit cell. The profiles and positions of the element-specific photoelectron Kikuchi bands are found to be sensitive to lattice distortions (e.g. a 1% tetragonal distortion) and the position of impurities or dopants with respect to lattice sites. We also compare the dynamical calculations with results from a cluster model that is more often used to describe lower energy XPD. We conclude that hard XPD (HXPD) should be capable of providing unique bulk-sensitive structural information for a wide variety of complex materials in future experiments.

  4. High-energy X-ray diffraction of melts and amorphous solids at extreme conditions

    NASA Astrophysics Data System (ADS)

    Prescher, C.; Yu, T.; Wang, Y.; Eng, P. J.; Skinner, L. B.; Stubbs, J.; Prakapenka, V.

    2015-12-01

    The structural analysis of amorphous materials, glasses and liquids at extreme conditions using X-ray diffraction is a very challenging endeavor. The samples are typically very small and surrounded by pressure vessels, which result in a huge background signal which may be orders of magnitude stronger than the actual sample signal. Furthermore, the background signal changes during compression in diamond anvil cells (DAC), making analysis of the diffraction data impossible at large pressures (>60 GPa). A key factor for obtaining high quality structural data is the maximum obtainable Q of the data collection. While at ambient conditions a maximum Q of more than 20 Å-1 has become standard, at high pressures data have been reported and analyzed with a maximum Q as low as 7 Å-1, which significantly reduces the resolution of the obtained real space data for multicomponent systems. In order to overcome those challenges, we have successfully installed a multichannel collimator (MCC) for the DAC setup at APS/GSECARS 13-IDD and for the Paris Edinburgh Press (PEP) at 13-IDC. The MCC leads to a significant increase in signal to background ratio and the background remains almost constant during compression in a DAC and removes the additional diffraction signal from the pressure media in the PEP. The combination of MCC and the high-energy X-ray optics of the 13ID beamline enables data collection of melts, glasses and amorphous materials up to 10 GPa in the PEP with a maximum Q of about 16 Å-1 and the collection of amorphous materials and glasses up to pressures above 150 GPa with a maximum Q of about 13 Å-1, thus, enabling the structural investigation of amorphous materials at much larger pressures than previously achievable. Further, we have developed several new user-friendly software packages for the analysis of X-ray diffraction data with specific data reduction and optimization algorithms for the analysis of amorphous materials at high-pressure. In order to show the

  5. Binary Cepheids From High-Angular Resolution

    NASA Astrophysics Data System (ADS)

    Gallenne, A.; Mérand, A.; Kervella, P.

    2015-12-01

    Optical interferometry is the only technique giving access to milli-arcsecond (mas) spatial resolution. This is a powerful and unique tool to detect the close orbiting companions of Cepheids, and offers an unique opportunity to make progress in resolving the Cepheid mass discrepancy. Our goal in studying binary Cepheids is to measure the astrometric position of the high-contrast companion, and then combine them with spectroscopic measurements to derive the orbital elements, distances, and dynamical masses. In the course of this program, we developed a new tool, CANDID, to search for high-contrast companions and set detection limits from interferometric observations

  6. Moderate resolution spectrophotometry of high redshift quasars

    NASA Technical Reports Server (NTRS)

    Schneider, Donald P.; Schmidt, Maarten; Gunn, James E.

    1991-01-01

    A uniform set of photometry and high signal-to-noise moderate resolution spectroscopy of 33 quasars with redshifts larger than 3.1 is presented. The sample consists of 17 newly discovered quasars (two with redshifts in excess of 4.4) and 16 sources drawn from the literature. The objects in this sample have r magnitudes between 17.4 and 21.4; their luminosities range from -28.8 to -24.9. Three of the 33 objects are broad absorption line quasars. A number of possible high redshift damped Ly-alpha systems were found.

  7. Diffractive control of 3D multifilamentation in fused silica with micrometric resolution.

    PubMed

    Mendoza-Yero, Omel; Carbonell-Leal, Miguel; Doñate-Buendía, Carlos; Mínguez-Vega, Gladys; Lancis, Jesús

    2016-07-11

    We show that a simple diffractive phase element (DPE) can be used to manipulate at will the positions and energy of multiple filaments generated in fused silica under femtosecond pulsed illumination. The method allows obtaining three-dimensional distributions of controlled filaments whose separations can be in the order of few micrometers. With such small distances we are able to study the mutual coherence among filaments from the resulted interference pattern, without needing a two-arm interferometer. The encoding of the DPE into a phase-only spatial light modulator (SLM) provides an extra degree of freedom to the optical set-up, giving more versatility for implementing different DPEs in real time. Our proposal might be particularly suited for applications at which an accurate manipulation of multiple filaments is required. PMID:27410807

  8. High Resolution Laser Spectroscopy of Rhenium Carbide

    NASA Astrophysics Data System (ADS)

    Adam, Allan G.; Hall, Ryan M.; Linton, Colan; Tokaryk, Dennis

    2014-06-01

    The first spectroscopic study of rhenium carbide, ReC, has been performed using both low and high resolution techniques to collect rotationally resolved electronic spectra from 420 to 500nm. Laser-induced fluorescence (LIF), and dispersed fluorescence (DF) techniques were employed. ReC was formed in our laser ablation molecular jet apparatus by ablating a rhenium target rod in the presence of 1% methane in helium. The low resolution spectrum identified four bands of an electronic system belonging to ReC, three of which have been studied so far. Extensive hyperfine structure composed of six hyperfine components was observed in the high resolution spectrum, as well as a clear distinction between the 187ReC and 185ReC isotopologues. The data seems consistent with a ^4Π - ^4Σ- transition, as was predicted before experimentation. Dispersed fluorescence spectra allowed us to determine the ground state vibrational frequency (ωe"=994.4 ± 0.3 wn), and to identify a low-lying electronically excited state at Te"=1118.4 ± 0.4 wn with a vibrational frequency of ωe"=984 ± 2 wn. Personal communication, F. Grein, University of New Brunswick

  9. Comparative Very-High-Resolution VUV Spectroscopy

    NASA Astrophysics Data System (ADS)

    Lewis, B. R.; Gibson, S. T.; Baldwin, K. G. H.; Dooley, P. M.; Waring, K.

    Despite their importance to the photochemistry of the terrestrial atmosphere, and many experimental studies, previous characterization of the Schumann-Runge (SR) bands of O2, B3 Σ u- <- X3 Σ_g^- (v, 0) (1750-2050 Å) has been limited by poor experimental resolution. In addition, our understanding of the SR spectrum is incomplete, many rovibrational transitions in the perturbed region of the spectrum [B(v > 15)] remaining unassigned. We review new very-high-resolution measurements of the O2 photoabsorption cross section in the SR bands. Tunable, narrow-bandwidth background vacuum-ultraviolet (VUV) radiation for the measurements ( 7 × 105 resolving power) was generated by the two-photon-resonant difference-frequency four-wave mixing in Xe of excimer-pumped dye-laser radiation. With the aid of these cross-section measurements, rovibrational and line-shape analyses have led to new insights into the molecular structure and predissociation dynamics of O2. The current VUV laser-spectroscopic measurements are shown to compare favourably with results from two other very-high-resolution experimental techniques, namely laser-induced fluorescence spectroscopy and VUV Fourier-transform spectroscopy, the latter performed using a synchrotron source.

  10. High-resolution phylogenetic microbial community profiling

    PubMed Central

    Singer, Esther; Bushnell, Brian; Coleman-Derr, Devin; Bowman, Brett; Bowers, Robert M; Levy, Asaf; Gies, Esther A; Cheng, Jan-Fang; Copeland, Alex; Klenk, Hans-Peter; Hallam, Steven J; Hugenholtz, Philip; Tringe, Susannah G; Woyke, Tanja

    2016-01-01

    Over the past decade, high-throughput short-read 16S rRNA gene amplicon sequencing has eclipsed clone-dependent long-read Sanger sequencing for microbial community profiling. The transition to new technologies has provided more quantitative information at the expense of taxonomic resolution with implications for inferring metabolic traits in various ecosystems. We applied single-molecule real-time sequencing for microbial community profiling, generating full-length 16S rRNA gene sequences at high throughput, which we propose to name PhyloTags. We benchmarked and validated this approach using a defined microbial community. When further applied to samples from the water column of meromictic Sakinaw Lake, we show that while community structures at the phylum level are comparable between PhyloTags and Illumina V4 16S rRNA gene sequences (iTags), variance increases with community complexity at greater water depths. PhyloTags moreover allowed less ambiguous classification. Last, a platform-independent comparison of PhyloTags and in silico generated partial 16S rRNA gene sequences demonstrated significant differences in community structure and phylogenetic resolution across multiple taxonomic levels, including a severe underestimation in the abundance of specific microbial genera involved in nitrogen and methane cycling across the Lake's water column. Thus, PhyloTags provide a reliable adjunct or alternative to cost-effective iTags, enabling more accurate phylogenetic resolution of microbial communities and predictions on their metabolic potential. PMID:26859772

  11. A high resolution ultraviolet Shuttle glow spectrograph

    NASA Technical Reports Server (NTRS)

    Carruthers, George R.

    1993-01-01

    The High Resolution Shuttle Glow Spectrograph-B (HRSGS-B) is a small payload being developed by the Naval Research Laboratory. It is intended for study of shuttle surface glow in the 180-400 nm near- and middle-ultraviolet wavelength range, with a spectral resolution of 0.2 nm. It will search for, among other possible features, the band systems of excited NO which result from surface-catalyzed combination of N and O. It may also detect O2 Hertzberg bands and N2 Vegard-Kaplan bands resulting from surface recombination. This wavelength range also includes possible N2+ and OH emissions. The HRSGS-B will be housed in a Get Away Special canister, mounted in the shuttle orbiter payload bay, and will observe the glow on the tail of the orbiter.

  12. High-resolution adaptive spiking sonar.

    PubMed

    Alvarez, Fernando J; Kuc, Roman

    2009-05-01

    A new sonar system based on the conventional 6500 ranging module is presented that generates a sequence of spikes whose temporal density is related to the strength of the received echo. This system notably improves the resolution of a previous system by shortening the discharge cycle of the integrator included in the module. The operation is controlled by a PIC18F452 device, which can adapt the duration of the discharge to changing features of the echo, providing the system with a novel adaptive behavior. The performance of the new sensor is characterized and compared with that of the previous system by performing rotational scans of simple objects with different reflecting strengths. Some applications are suggested that exploit the high resolution and adaptability of this sensor.

  13. High Resolution γ-Ray Spectroscopy: the First 85 Years.

    PubMed

    Deslattes, R D

    2000-01-01

    This opening review attempts to follow the main trends in crystal diffraction spectrometry of nuclear γ rays from its 1914 beginning in Rutherford's laboratory to the ultra-high resolution instrumentation realized in the current generation of spectrometers at the Institute Laue Langeven (ILL). My perspective is that of an instrumentalist hoping to convey a sense of our intellectual debt to a number of predecessors, each of whom realized a certain elegance in making the tools that have enabled much good science, including that to which the remainder of this workshop is dedicated. This overview follows some of the main ideas along a trajectory toward higher resolution at higher energies, thereby enabling not only the disentangling of dense spectra, but also allowing detailed study of aspects of spectral profiles sensitive to excited state lifetimes and inter-atomic potentials. The parallel evolution toward increasing efficiency while preserving needed resolution is also an interesting story of artful compromise that should not be neglected. Finally, it is the robustness of the measurement chain connecting γ-ray wavelengths with optical wavelengths associated with the Rydberg constant that only recently has allowed γ-ray data to contribute to determination of particle masses and fundamental constants, as will be described in more detail in other papers from this workshop.

  14. High resolution {gamma}-ray spectroscopy: The first 85 years

    SciTech Connect

    Deslattes, R.D.

    2000-02-01

    This opening review attempts to follow the main trends in crystal diffraction spectrometry of nuclear {gamma} rays from its 1914 beginning in Rutherford's laboratory to the ultra-high resolution instrumentation realized in the current generation of spectrometers at the Institute Laue Langeven (ILL). The authors perspective is that of an instrumentalist hoping to convey a sense of intellectual debt to a number of predecessors, each of whom realized a certain elegance in making the tools that have enabled much good science, including that to which the remainder of this workshop is dedicated. This overview follows some of the main ideas along a trajectory toward higher resolution at higher energies, thereby enabling not only the disentangling of dense spectra, but also allowing detailed study of aspects of spectral profiles sensitive to excited state lifetimes and interatomic potentials. The parallel evolution toward increasing efficiency while preserving needed resolution is also an interesting story of artful compromise that should not be neglected. Finally, it is the robustness of the measurement chain connecting {gamma}-ray wavelengths with optical wave-lengths associated with the Rydberg constant that only recently has allowed {gamma}-ray data to contribute to determine of particle masses and fundamental constants, as will be described in more detail in other papers from this workshop.

  15. Fabrication and characterization of ultra-high resolution multilayer-coated blazed gratings

    SciTech Connect

    Voronov,, Dmitriy; Anderson, Erik; Cambie, Rossana; Dhuey, Scott; Gullikson, Eric; Salmassi, Farhad; Yashchuk, Tony; Padmore, Howard

    2011-07-26

    Multilayer coated blazed gratings with high groove density are the most promising candidate for ultra-high resolution soft x-ray spectroscopy. They combine the ability of blazed gratings to concentrate almost all diffraction energy in a desired high diffraction order with high reflectance soft x-ray multilayers. However in order to realize this potential, the grating fabrication process should provide a near perfect groove profile with an extremely smooth surface of the blazed facets. Here we report on successful fabrication and testing of ultra-dense saw-tooth substrates with 5,000 and 10,000 lines/mm.

  16. Black phosphorus photodetector for multispectral, high-resolution imaging.

    PubMed

    Engel, Michael; Steiner, Mathias; Avouris, Phaedon

    2014-11-12

    Black phosphorus is a layered semiconductor that is intensely researched in view of applications in optoelectronics. In this letter, we investigate a multilayer black phosphorus photodetector that is capable of acquiring high-contrast (V > 0.9) images both in the visible (λVIS = 532 nm) as well as in the infrared (λIR = 1550 nm) spectral regime. In a first step, by using photocurrent microscopy, we map the active area of the device and we characterize responsivity and gain. In a second step, by deploying the black phosphorus device as a point-like detector in a confocal microsope setup, we acquire diffraction-limited optical images with submicron resolution. The results demonstrate the usefulness of black phosphorus as an optoelectronic material for hyperspectral imaging applications.

  17. High Resolution Quantitative Angle-Scanning Widefield Surface Plasmon Microscopy

    NASA Astrophysics Data System (ADS)

    Tan, Han-Min; Pechprasarn, Suejit; Zhang, Jing; Pitter, Mark C.; Somekh, Michael G.

    2016-02-01

    We describe the construction of a prismless widefield surface plasmon microscope; this has been applied to imaging of the interactions of protein and antibodies in aqueous media. The illumination angle of spatially incoherent diffuse laser illumination was controlled with an amplitude spatial light modulator placed in a conjugate back focal plane to allow dynamic control of the illumination angle. Quantitative surface plasmon microscopy images with high spatial resolution were acquired by post-processing a series of images obtained as a function of illumination angle. Experimental results are presented showing spatially and temporally resolved binding of a protein to a ligand. We also show theoretical results calculated by vector diffraction theory that accurately predict the response of the microscope on a spatially varying sample thus allowing proper quantification and interpretation of the experimental results.

  18. High resolution hyperspectral imaging with a high throughput virtual slit

    NASA Astrophysics Data System (ADS)

    Gooding, Edward A.; Gunn, Thomas; Cenko, Andrew T.; Hajian, Arsen R.

    2016-05-01

    Hyperspectral imaging (HSI) device users often require both high spectral resolution, on the order of 1 nm, and high light-gathering power. A wide entrance slit assures reasonable étendue but degrades spectral resolution. Spectrometers built using High Throughput Virtual Slit™ (HTVS) technology optimize both parameters simultaneously. Two remote sensing use cases that require high spectral resolution are discussed. First, detection of atmospheric gases with intrinsically narrow absorption lines, such as hydrocarbon vapors or combustion exhaust gases such as NOx and CO2. Detecting exhaust gas species with high precision has become increasingly important in the light of recent events in the automobile industry. Second, distinguishing reflected daylight from emission spectra in the visible and NIR (VNIR) regions is most easily accomplished using the Fraunhofer absorption lines in solar spectra. While ground reflectance spectral features in the VNIR are generally quite broad, the Fraunhofer lines are narrow and provide a signature of intrinsic vs. extrinsic illumination. The High Throughput Virtual Slit enables higher spectral resolution than is achievable with conventional spectrometers by manipulating the beam profile in pupil space. By reshaping the instrument pupil with reflective optics, HTVS-equipped instruments create a tall, narrow image profile at the exit focal plane, typically delivering 5X or better the spectral resolution achievable with a conventional design.

  19. High Pressure X-ray Diffraction Study of Potassium Azide

    SciTech Connect

    C Ji; F Zhang; D Hong; H Zhu; J Wu; M Chyu; V Levitas; Y Ma

    2011-12-31

    Crystal structure and compressibility of potassium azide was investigated by in-situ synchrotron powder X-ray diffraction in a diamond anvil cell at room temperature up to 37.7 GPa. In the body-centered tetragonal (bct) phase, an anisotropic compressibility was observed with greater compressibility in the direction perpendicular to the plane containing N{sub 3}{sup -} ions than directions within that plane. The bulk modulus of the bct phase was determined to be 18.6(7) GPa. A pressure-induced phase transition may occur at 15.5 GPa.

  20. High Spectral Resolution Lidar: System Calibration

    NASA Astrophysics Data System (ADS)

    Vivek Vivekanandan, J.; Morley, Bruce; Spuler, Scott; Eloranta, Edwin

    2015-04-01

    One of the unique features of the high spectral resolution lidar (HSRL) is simultaneous measurements of backscatter and extinction of atmosphere. It separates molecular scattering from aerosol and cloud particle backscatter based on their Doppler spectrum width. Scattering from aerosol and cloud particle are referred as Mie scattering. Molecular or Rayleigh scattering is used as a reference for estimating aerosol extinction and backscatter cross-section. Absolute accuracy of the backscattered signals and their separation into Rayleigh and Mie scattering depends on spectral purity of the transmitted signals, accurate measurement of transmit power, and precise performance of filters. Internal calibration is used to characterize optical subsystems Descriptions of high spectral resolution lidar system and its measurement technique can be found in Eloronta (2005) and Hair et al.(2001). Four photon counting detectors are used to measure the backscatter from the combined Rayleigh and molecular scattering (high and low gain), molecular scattering and cross-polarized signal. All of the detectors are sensitive to crosstalk or leakage through the optical filters used to separate the received signals and special data files are used to remove these effects as much as possible. Received signals are normalized with respect to the combined channel response to Mie and Rayleigh scattering. The laser transmit frequency is continually monitored and tuned to the 1109 Iodine absorption line. Aerosol backscatter cross-section is measured by referencing the aerosol return signal to the molecular return signal. Extinction measurements are calculated based on the differences between the expected (theoretical) and actual change in the molecular return. In this paper an overview of calibration of the HSRL is presented. References: Eloranta, E. W., High Spectral Resolution Lidar in Lidar: Range-Resolved Optical Remote Sensing of the Atmosphere, Klaus Weitkamp editor, Springer Series in Optical

  1. High-resolution phylogenetic microbial community profiling

    SciTech Connect

    Singer, Esther; Coleman-Derr, Devin; Bowman, Brett; Schwientek, Patrick; Clum, Alicia; Copeland, Alex; Ciobanu, Doina; Cheng, Jan-Fang; Gies, Esther; Hallam, Steve; Tringe, Susannah; Woyke, Tanja

    2014-03-17

    The representation of bacterial and archaeal genome sequences is strongly biased towards cultivated organisms, which belong to merely four phylogenetic groups. Functional information and inter-phylum level relationships are still largely underexplored for candidate phyla, which are often referred to as microbial dark matter. Furthermore, a large portion of the 16S rRNA gene records in the GenBank database are labeled as environmental samples and unclassified, which is in part due to low read accuracy, potential chimeric sequences produced during PCR amplifications and the low resolution of short amplicons. In order to improve the phylogenetic classification of novel species and advance our knowledge of the ecosystem function of uncultivated microorganisms, high-throughput full length 16S rRNA gene sequencing methodologies with reduced biases are needed. We evaluated the performance of PacBio single-molecule real-time (SMRT) sequencing in high-resolution phylogenetic microbial community profiling. For this purpose, we compared PacBio and Illumina metagenomic shotgun and 16S rRNA gene sequencing of a mock community as well as of an environmental sample from Sakinaw Lake, British Columbia. Sakinaw Lake is known to contain a large age of microbial species from candidate phyla. Sequencing results show that community structure based on PacBio shotgun and 16S rRNA gene sequences is highly similar in both the mock and the environmental communities. Resolution power and community representation accuracy from SMRT sequencing data appeared to be independent of GC content of microbial genomes and was higher when compared to Illumina-based metagenome shotgun and 16S rRNA gene (iTag) sequences, e.g. full-length sequencing resolved all 23 OTUs in the mock community, while iTags did not resolve closely related species. SMRT sequencing hence offers various potential benefits when characterizing uncharted microbial communities.

  2. High-resolution digital holographic imaging by using a spatial light modulator

    NASA Astrophysics Data System (ADS)

    Li, Bin; Wang, Da-Yong; Wang, Yun-Xin; Rong, Lu

    2014-09-01

    Digital holography is the product of the optical holography, computer technology and photoelectric detection technology, and has the advantage of high-speed, real-time, full field of view, non-contact and quantitative phase contrast imaging. However, the numerical aperture of the hologram is limited due to the smaller sensitive area of the photoelectric sensor and the larger pixel size, and it is uneasy to meet the practical requirement on the imaging resolution. An approach is presented to achieve the high-resolution digital holographic imaging based on a spatial light modulator(SLM). An amplitude spatial light modulator is placed between the object and the CCD in the lensless Fourier transform digital holographic imaging system. The distribution of a diffraction grating is loaded into the SLM. In this way, more light including the high-frequency content, diffracted from the object, can be collected by the CCD. The standard resolution target is used as the object. The reconstructed image is obtained by the Fresnel diffraction propagation algorithm, which exhibits three diffraction orders. The results show that the resolution is improved from 62.5 μm to 31.3 μm.

  3. High resolution millimeter-wave imaging sensor

    NASA Technical Reports Server (NTRS)

    Wilson, W. J.; Howard, R. J.; Parks, G. S.

    1985-01-01

    A scanning 3-mm radiometer is described that has been built for use on a small aircraft to produce real time high resolution images of the ground when atmospheric conditions such as smoke, dust, and clouds make IR and visual sensors unusable. The sensor can be used for a variety of remote sensing applications such as measurements of snow cover and snow water equivalent, precipitation mapping, vegetation type and extent, surface moisture and temperature, and surface thermal inertia. The advantages of millimeter waves for cloud penetration and the ability to observe different physical phenomena make this system an attractive supplement to visible and IR remote sensing systems.

  4. High resolution extremity CT for biomechanics modeling

    SciTech Connect

    Ashby, A.E.; Brand, H.; Hollerbach, K.; Logan, C.M.; Martz, H.E.

    1995-09-23

    With the advent of ever more powerful computing and finite element analysis (FEA) capabilities, the bone and joint geometry detail available from either commercial surface definitions or from medical CT scans is inadequate. For dynamic FEA modeling of joints, precise articular contours are necessary to get appropriate contact definition. In this project, a fresh cadaver extremity was suspended in parafin in a lucite cylinder and then scanned with an industrial CT system to generate a high resolution data set for use in biomechanics modeling.

  5. High Resolution Image From Viking Lander 1

    NASA Technical Reports Server (NTRS)

    1976-01-01

    Viking 1 took this high-resolution picture today, its third day on Mars. Distance from the camera to the nearfield (bottom) is about 4 meters (13 feet); to the horizon, about 3 kilometers (1.8 miles). The photo shows numerous angular blocks ranging in size from a few centimeters to several meters. The surface between the blocks is composed of fine-grained material. Accumulation of some fine-grained material behind blocks indicates wind deposition of dust and sand downwind of obstacles. The large block on the horizon is about 4 meters (13 feet) wide. Distance across the horizon is about 34 meters (110 feet).

  6. High Resolution Spectroscopy with Submillimeter-Wave

    NASA Astrophysics Data System (ADS)

    Kumar, Vinay; Dave, Hemant

    2003-03-01

    In order to explain the characteristic features of planetary atmosphere, detection and precise measurements of environmentally important gases such as CO, CIO, No becomes necessary. Since most of the polyatomic molecules have (ro-vibrational) transitions in submillimeter region 100 μ-1000μ), probing in this wavelength region is vital. The specific rotational and vibrational states are the result of interactions between different atoms in the molecule. Since each molecule has a unique arrangement of atoms, it has an exclusive submillimeter signature. We are developing a portable heterodyne receiver system at Physical Research Laboratory, Ahmedabad to perform high-resolution spectroscopy in this wavelength region.

  7. High-resolution stratigraphy with strontium isotopes.

    PubMed

    Depaolo, D J; Ingram, B L

    1985-02-22

    The isotopic ratio of strontium-87 to strontium-86 shows no detectable variation in present-day ocean water but changes slowly over millions of years. The strontium contained in carbonate shells of marine organisms records the ratio of strontium-87 to strontium-86 of the oceans at the time that the shells form. Sedimentary rocks composed of accumulated fossil carbonate shells can be dated and correlated with the use of high precision measurements of the ratio of strontium-87 to strontium-86 with a resolution that is similar to that of other techniques used in age correlation. This method may prove valuable for many geological, paleontological, paleooceanographic, and geochemical problems.

  8. High-Resolution Shadowing of Transfer RNA

    PubMed Central

    Abermann, Reinhard J.; Yoshikami, Doju

    1972-01-01

    High-resolution shadowing with metals that melt at high temperatures was used to study macromolecules. Molecules of transfer RNA shadowed with tantalum-tungsten are readily visualized in an electron microscope. Mounting procedures for tRNA were perfected that reproducibly gave uniform distributions of both monomeric and dimeric tRNA particles, and allowed a statistical assessment of their gross shapes and sizes. Monomeric tRNA yielded a fairly homogeneous population of rod-shaped particles, with axial dimensions of about 40 × 85 Å. Dimers of yeast alanine tRNA held together by hydrogen bonds and dimers constructed by covalent linkage of the amino-acid acceptor (3′-) termini of monomers both gave slightly more heterogeneous populations of particles. Yet, their structures were also basically rod shaped, with their lengths ranging to about twice that of the monomer; this result indicates an end-to-end arrangement of the monomeric units within both dimers. These results suggest that the amino-acid acceptor terminus and the anticodon region are at the ends of the rod-shaped, dehydrated tRNA monomer visible by electron microscopy, consistent with the generally accepted view of tRNA structure in solution suggested by other workers using other methods. This study demonstrates that high-resolution shadowing with tantalum-tungsten provides a means to examine the three-dimensional structures of relatively small biological macromolecules. Images PMID:4504373

  9. High resolution detection system of capillary electrophoresis

    NASA Astrophysics Data System (ADS)

    Wang, Jie; Wang, Li Qiang; Shi, Yan; Zheng, Hua; Lu, Zu Kang

    2007-12-01

    The capillary electrophoresis (CE) with laser induced fluorescence detection (LIFD) system was founded according to confocal theory. The 3-D adjustment of the exciting and collecting optical paths was realized. The photomultiplier tube (PMT) is used and the signals are processed by a software designed by ourselves. Under computer control, high voltage is applied to appropriate reservoirs and to inject and separate DNA samples respectively. Two fluorescent dyes Thiazole Orange (TO) and SYBR Green I were contrasted. With both of the dyes, high signals-to-noise images were obtained with the CE-LIFD system. The single-bases can be distinguished from the electrophoretogram and high resolution of DNA sample separation was obtained.

  10. High Resolution Transmission Electron Microscopy (HRTEM) of nanophase ferric oxides

    NASA Technical Reports Server (NTRS)

    Golden, D. C.; Morris, R. V.; Ming, D. W.; Lauer, H. V., Jr.

    1994-01-01

    Iron oxide minerals are the prime candidates for Fe(III) signatures in remotely sensed Martian surface spectra. Magnetic, Mossbauer, and reflectance spectroscopy have been carried out in the laboratory in order to understand the mineralogical nature of Martian analog ferric oxide minerals of submicron or nanometer size range. Out of the iron oxide minerals studied, nanometer sized ferric oxides are promising candidates for possible Martian spectral analogs. 'Nanophase ferric oxide (np-Ox)' is a generic term for ferric oxide/oxihydroxide particles having nanoscale (less than 10 nm) particle dimensions. Ferrihydrite, superparamagnetic particles of hematite, maghemite and goethite, and nanometer sized particles of inherently paramagnetic lepidocrocite are all examples of nanophase ferric oxides. np-Ox particles in general do not give X-ray diffraction (XRD) patterns with well defined peaks and would often be classified as X-ray amorphous. Therefore, different np-Oxs preparations should be characterized using a more sensitive technique e.g., high resolution transmission electron microscopy (HRTEM). The purpose of this study is to report the particle size, morphology and crystalline order, of five np-Ox samples by HRTEM imaging and electron diffraction (ED).

  11. Crusta: Visualizing High-resolution Global Data

    NASA Astrophysics Data System (ADS)

    Bernardin, T. S.; Kreylos, O.; Bowles, C. J.; Cowgill, E.; Hamann, B.; Kellogg, L. H.

    2009-12-01

    Virtual globes have become indispensable tools for visualizing, understanding and presenting data from Earth and other planetary bodies. The scientific community has invested much effort into exploiting existing globes to their fullest potential by refining and adapting their capabilities to better satisfy specific needs. For example, Google Earth provides users with the ability to view hillshade images derived from airborne LiDAR data such as the 2007 Northern California GeoEarthScope data. However, because most available globes were not designed with the specific needs of geoscientists in mind, shortcomings are becoming increasingly evident in geoscience applications such as terrain visualization. In particular, earth scientists struggle to visualize digital elevation models with both high spatial resolution (0.5 - 1 square meters per sample) and large extent (>2000 square kilometers), such as those obtained with airborne LiDAR. To address the specific earth science need of real-time terrain visualization of LiDAR data, we are developing Crusta as part of a close collaboration involving earth and computer scientists. Crusta is a new virtual globe that differs from widely used globes by both providing accurate global data representation and the ability to easily visualize custom topographic and image data. As a result, Crusta enables real-time, interactive visualization of high resolution digital elevation data spanning thousands of square kilometers, such as the complete 2007 Northern California GeoEarthScope airborne LiDAR data set. To implement an accurate data representation and avoid distortion of the display at the poles, where other projections have singularities, Crusta represents the globe as a thirty-sided polyhedron. Each side of this polyhedron can be subdivided to an arbitrarily fine grid on the surface of the globe, which allows Crusta to accommodate input data of arbitrary resolution ranging from global (e.g., Blue Marble) to local (e.g., a tripod

  12. High Resolution Global View of Io

    NASA Technical Reports Server (NTRS)

    1997-01-01

    Io, the most volcanic body in the solar system is seen in the highest resolution obtained to date by NASA's Galileo spacecraft. The smallest features that can be discerned are 2.5 kilometers in size. There are rugged mountains several kilometers high, layered materials forming plateaus, and many irregular depressions called volcanic calderas. Several of the dark, flow-like features correspond to hot spots, and may be active lava flows. There are no landforms resembling impact craters, as the volcanism covers the surface with new deposits much more rapidly than the flux of comets and asteroids can create large impact craters. The picture is centered on the side of Io that always faces away from Jupiter; north is to the top.

    Color images acquired on September 7, 1996 have been merged with higher resolution images acquired on November 6, 1996 by the Solid State Imaging (CCD) system aboard NASA's Galileo spacecraft. The color is composed of data taken, at a range of 487,000 kilometers, in the near-infrared, green, and violet filters and has been enhanced to emphasize the extraordinary variations in color and brightness that characterize Io's face. The high resolution images were obtained at ranges which varied from 245,719 kilometers to 403,100 kilometers.

    Launched in October 1989, Galileo entered orbit around Jupiter on December 7, 1995. The spacecraft's mission is to conduct detailed studies of the giant planet, its largest moons and the Jovian magnetic environment. The Jet Propulsion Laboratory, Pasadena, CA manages the mission for NASA's Office of Space Science, Washington, DC.

    This image and other images and data received from Galileo are posted on the World Wide Web, on the Galileo mission home page at URL http://galileo.jpl.nasa.gov. Background information and educational context for the images can be found at URL http://www.jpl.nasa.gov/galileo/sepo

  13. High resolution multimodal clinical ophthalmic imaging system.

    PubMed

    Mujat, Mircea; Ferguson, R Daniel; Patel, Ankit H; Iftimia, Nicusor; Lue, Niyom; Hammer, Daniel X

    2010-05-24

    We developed a multimodal adaptive optics (AO) retinal imager which is the first to combine high performance AO-corrected scanning laser ophthalmoscopy (SLO) and swept source Fourier domain optical coherence tomography (SSOCT) imaging modes in a single compact clinical prototype platform. Such systems are becoming ever more essential to vision research and are expected to prove their clinical value for diagnosis of retinal diseases, including glaucoma, diabetic retinopathy (DR), age-related macular degeneration (AMD), and retinitis pigmentosa. The SSOCT channel operates at a wavelength of 1 microm for increased penetration and visualization of the choriocapillaris and choroid, sites of major disease activity for DR and wet AMD. This AO system is designed for use in clinical populations; a dual deformable mirror (DM) configuration allows simultaneous low- and high-order aberration correction over a large range of refractions and ocular media quality. The system also includes a wide field (33 deg.) line scanning ophthalmoscope (LSO) for initial screening, target identification, and global orientation, an integrated retinal tracker (RT) to stabilize the SLO, OCT, and LSO imaging fields in the presence of lateral eye motion, and a high-resolution LCD-based fixation target for presentation of visual cues. The system was tested in human subjects without retinal disease for performance optimization and validation. We were able to resolve and quantify cone photoreceptors across the macula to within approximately 0.5 deg (approximately 100-150 microm) of the fovea, image and delineate ten retinal layers, and penetrate to resolve features deep into the choroid. The prototype presented here is the first of a new class of powerful flexible imaging platforms that will provide clinicians and researchers with high-resolution, high performance adaptive optics imaging to help guide therapies, develop new drugs, and improve patient outcomes.

  14. Sub-diffraction-resolution fluorescence microscopy reveals a domain of the centrosome critical for pericentriolar material organization

    PubMed Central

    Mennella, V.; Keszthelyi, B.; McDonald, K.L.; Chhun, B.; Kan, F.; Rogers, G.C.; Huang, B; Agard, D.A.

    2013-01-01

    As the main microtubule-organizing center in animal cells, the centrosome has a fundamental role in cell function. Surrounding the centrioles, the Pericentriolar material (PCM) provides a dynamic platform for nucleating microtubules. While the PCM’s importance is established, its amorphous electron-dense nature has made it refractory to structural investigation. By using SIM and STORM sub-diffraction resolution microscopies to visualize proteins critical for centrosome maturation, we demonstrate that the PCM is organized into two major structural domains: a layer juxtaposed to the centriole wall, and proteins extending further away from the centriole organized in a matrix. Analysis of Pericentrin-like protein (Plp) reveals that its C-terminus is positioned at the centriole wall, it radiates outward into the matrix and is organized in clusters having quasi-nine-fold symmetry. By RNAi we show that Plp fibrils are required for interphase recruitment and proper mitotic assembly of the PCM matrix. PMID:23086239

  15. High-Resolution Scintimammography: A Pilot Study

    SciTech Connect

    Rachel F. Brem; Joelle M. Schoonjans; Douglas A. Kieper; Stan Majewski; Steven Goodman; Cahid Civelek

    2002-07-01

    This study evaluated a novel high-resolution breast-specific gamma camera (HRBGC) for the detection of suggestive breast lesions. Methods: Fifty patients (with 58 breast lesions) for whom a scintimammogram was clinically indicated were prospectively evaluated with a general-purpose gamma camera and a novel HRBGC prototype. The results of conventional and high-resolution nuclear studies were prospectively classified as negative (normal or benign) or positive (suggestive or malignant) by 2 radiologists who were unaware of the mammographic and histologic results. All of the included lesions were confirmed by pathology. Results: There were 30 benign and 28 malignant lesions. The sensitivity for detection of breast cancer was 64.3% (18/28) with the conventional camera and 78.6% (22/28) with the HRBGC. The specificity with both systems was 93.3% (28/30). For the 18 nonpalpable lesions, sensitivity was 55.5% (10/18) and 72.2% (13/18) with the general-purpose camera and the HRBGC, respectively. For lesions 1 cm, 7 of 15 were detected with the general-purpose camera and 10 of 15 with the HRBGC. Four lesions (median size, 8.5 mm) were detected only with the HRBGC and were missed by the conventional camera. Conclusion: Evaluation of indeterminate breast lesions with an HRBGC results in improved sensitivity for the detection of cancer, with greater improvement shown for nonpalpable and 1-cm lesions.

  16. High Resolution Camera for Mapping Titan Surface

    NASA Technical Reports Server (NTRS)

    Reinhardt, Bianca

    2011-01-01

    Titan, Saturn's largest moon, has a dense atmosphere and is the only object besides Earth to have stable liquids at its surface. The Cassini/Huygens mission has revealed the extraordinary breadth of geological processes shaping its surface. Further study requires high resolution imaging of the surface, which is restrained by light absorption by methane and scattering from aerosols. The Visual and Infrared Mapping Spectrometer (VIMS) onboard the Cassini spacecraft has demonstrated that Titan's surface can be observed within several windows in the near infrared, allowing us to process several regions in order to create a geological map and to determine the morphology. Specular reflections monitored on the lakes of the North Pole show little scattering at 5 microns, which, combined with the present study of Titan's northern pole area, refutes the paradigm that only radar can achieve high resolution mapping of the surface. The present data allowed us to monitor the evolution of lakes, to identify additional lakes at the Northern Pole, to examine Titan's hypothesis of non-synchronous rotation and to analyze the albedo of the North Pole surface. Future missions to Titan could carry a camera with 5 micron detectors and a carbon fiber radiator for weight reduction.

  17. Common high-resolution MMW scene generator

    NASA Astrophysics Data System (ADS)

    Saylor, Annie V.; McPherson, Dwight A.; Satterfield, H. DeWayne; Sholes, William J.; Mobley, Scott B.

    2001-08-01

    The development of a modularized millimeter wave (MMW) target and background high resolution scene generator is reported. The scene generator's underlying algorithms are applicable to both digital and real-time hardware-in-the-loop (HWIL) simulations. The scene generator will be configurable for a variety of MMW and multi-mode sensors employing state of the art signal processing techniques. At present, digital simulations for MMW and multi-mode sensor development and testing are custom-designed by the seeker vendor and are verified, validated, and operated by both the vendor and government in simulation-based acquisition. A typical competition may involve several vendors, each requiring high resolution target and background models for proper exercise of seeker algorithms. There is a need and desire by both the government and sensor vendors to eliminate costly re-design and re-development of digital simulations. Additional efficiencies are realized by assuring commonality between digital and HWIL simulation MMW scene generators, eliminating duplication of verification and validation efforts.

  18. Limiting liability via high resolution image processing

    SciTech Connect

    Greenwade, L.E.; Overlin, T.K.

    1996-12-31

    The utilization of high resolution image processing allows forensic analysts and visualization scientists to assist detectives by enhancing field photographs, and by providing the tools and training to increase the quality and usability of field photos. Through the use of digitized photographs and computerized enhancement software, field evidence can be obtained and processed as `evidence ready`, even in poor lighting and shadowed conditions or darkened rooms. These images, which are most often unusable when taken with standard camera equipment, can be shot in the worst of photographic condition and be processed as usable evidence. Visualization scientists have taken the use of digital photographic image processing and moved the process of crime scene photos into the technology age. The use of high resolution technology will assist law enforcement in making better use of crime scene photography and positive identification of prints. Valuable court room and investigation time can be saved and better served by this accurate, performance based process. Inconclusive evidence does not lead to convictions. Enhancement of the photographic capability helps solve one major problem with crime scene photos, that if taken with standard equipment and without the benefit of enhancement software would be inconclusive, thus allowing guilty parties to be set free due to lack of evidence.

  19. High Resolution Spectroscopy to Support Atmospheric Measurements

    NASA Technical Reports Server (NTRS)

    Venkataraman, Malathy Devi

    2003-01-01

    Spectroscopic parameters (such as line position, intensity, broadening and shifting coefficients and their temperature dependences, line mixing coefficients etc.) for various molecular species of atmospheric interest are determined. In order to achieve these results, infrared spectra of several molecular bands are obtained using high-resolution recording instruments such as tunable diode laser spectrometer and Fourier transform spectrometers. Using sophisticated analysis routines (Multispectrum nonlinear least squares technique) these high-resolution infrared spectra are processed to determine the various spectral line parameters that are cited above. Spectra were taken using the McMath-Pierce Fourier transform spectrometer (FTS) at the National Solar Observatory on Kitt Peak, Arizona as well as the Bruker FTS at the Pacific Northwest National Laboratory (PNNL) at Richland, Washington. Most of the spectra are acquired not only at room temperature, but also at several different cold temperatures. This procedure is necessary to study the variation of the spectral line parameters as a function of temperature in order to simulate the Earth's and other planetary atmospheric environments. Depending upon the strength or weakness of the various bands recorded and analyzed, the length(s) of the absorption cells in which the gas samples under study are kept varied from a few centimeters up to several meters and the sample temperatures varied from approximately +30 C to -63 C. Research on several infrared bands of various molecular species and their isotopomers are undertaken. Those studies are briefly described.

  20. High diffraction efficiency of three-layer diffractive optics designed for wide temperature range and large incident angle.

    PubMed

    Mao, Shan; Cui, Qingfeng; Piao, Mingxu; Zhao, Lidong

    2016-05-01

    A mathematical model of diffraction efficiency and polychromatic integral diffraction efficiency affected by environment temperature change and incident angle for three-layer diffractive optics with different dispersion materials is put forward, and its effects are analyzed. Taking optical materials N-FK5 and N-SF1 as the substrates of multilayer diffractive optics, the effect on diffraction efficiency and polychromatic integral diffraction efficiency with intermediate materials POLYCARB is analyzed with environment temperature change as well as incident angle. Therefore, three-layer diffractive optics can be applied in more wide environmental temperature ranges and larger incident angles for refractive-diffractive hybrid optical systems, which can obtain better image quality. Analysis results can be used to guide the hybrid imaging optical system design for optical engineers.

  1. High resolution wavefront measurement of aspheric optics

    NASA Astrophysics Data System (ADS)

    Erichsen, I.; Krey, S.; Heinisch, J.; Ruprecht, A.; Dumitrescu, E.

    2008-08-01

    With the recently emerged large volume production of miniature aspheric lenses for a wide range of applications, a new fast fully automatic high resolution wavefront measurement instrument has been developed. The Shack-Hartmann based system with reproducibility better than 0.05 waves is able to measure highly aspheric optics and allows for real time comparison with design data. Integrated advanced analysis tools such as calculation of Zernike coefficients, 2D-Modulation Transfer Function (MTF), Point Spread Function (PSF), Strehl-Ratio and the measurement of effective focal length (EFL) as well as flange focal length (FFL) allow for the direct verification of lens properties and can be used in a development as well as in a production environment.

  2. Ultra-high resolution computed tomography imaging

    DOEpatents

    Paulus, Michael J.; Sari-Sarraf, Hamed; Tobin, Jr., Kenneth William; Gleason, Shaun S.; Thomas, Jr., Clarence E.

    2002-01-01

    A method for ultra-high resolution computed tomography imaging, comprising the steps of: focusing a high energy particle beam, for example x-rays or gamma-rays, onto a target object; acquiring a 2-dimensional projection data set representative of the target object; generating a corrected projection data set by applying a deconvolution algorithm, having an experimentally determined a transfer function, to the 2-dimensional data set; storing the corrected projection data set; incrementally rotating the target object through an angle of approximately 180.degree., and after each the incremental rotation, repeating the radiating, acquiring, generating and storing steps; and, after the rotating step, applying a cone-beam algorithm, for example a modified tomographic reconstruction algorithm, to the corrected projection data sets to generate a 3-dimensional image. The size of the spot focus of the beam is reduced to not greater than approximately 1 micron, and even to not greater than approximately 0.5 microns.

  3. Low noise and high resolution microchannel plate

    NASA Astrophysics Data System (ADS)

    Liu, Shulin; Pan, Jingsheng; Deng, Guangxu; Su, Detan; Xu, Zhiqing; Zhang, Yanyun

    2008-02-01

    To improve the Figure of Merit (FOM) and reduce the Equivalent Background Input (EBI) and Fixed-Pattern-Noise (FPN) in image intensifier, NVT (North Night Vision Technology Co., Ltd) has been researching and developing a low noise and high resolution Micro Channel Plate (MCP). The density of dark current of this new MCP is less than 0.5PA/cm2 (when MCP voltage at 1000V). The FPN and scintillation noise are reduced remarkably. Channel diameter is 6 μm and open area ratio is 60%~70%. The vacuum bakeout temperature could be as high as 500°C. This new kind of MCP will be extensively used in the supper generation and the third generation image intensifiers.

  4. High-precision method for submicron-aperture fiber point-diffraction wavefront measurement.

    PubMed

    Wang, Daodang; Xu, Yangbo; Liang, Rongguang; Kong, Ming; Zhao, Jun; Zhang, Baowu; Li, Wei

    2016-04-01

    It is a key issue to measure the point-diffraction wavefront error, which determines the achievable accuracy of point-diffraction interferometer (PDI). A high-precision method based on shearing interferometry is proposed to measure submicron-aperture fiber point-diffraction wavefront with high numerical aperture (NA). To obtain the true shearing point-diffraction wavefront, a double-step calibration method based on three-dimensional coordinate reconstruction and symmetric lateral displacement compensation is proposed to calibrate the geometric aberration in the case of high NA and large lateral wavefront displacement. The calibration can be carried out without any prior knowledge about the system configuration parameters. With the true shearing wavefront, the differential Zernike polynomials fitting method is applied to reconstruct the point-diffraction wavefront. Numerical simulation and experiments have been carried out to demonstrate the accuracy and feasibility of the proposed measurement method, and a good measurement accuracy is achieved. PMID:27137002

  5. High-Resolution, Wide-Field-of-View Scanning Telescope

    NASA Technical Reports Server (NTRS)

    Sepulveda, Cesar; Wilson, Robert; Seshadri, Suresh

    2007-01-01

    would provide narrow-angle, diffraction-limited high resolution at a wavelength of 500 nm.

  6. Measurement of residual stresses on ceramic materials with high spatial resolution

    SciTech Connect

    Kozaczek, K.J.; Ruud, C.O.; Fitting, J.D.

    1993-12-31

    A fast x-ray diffraction technique has been developed for measuring the residual stresses with high spatial resolution in ceramic materials. This resolution is limited by the mean size of grains and the radiation type. The effective diffraction elastic constants were experimentally determined for alumina as (E/l+{nu})){sub (1016)} = 200 GPa. The accuracy of XRD measurement of residual stresses with the spatial resolution of 170 {mu}m and precision {plus_minus} 15 MPa was verified experimentally by strain gauge measurements. The stress field around a singular Kovar pin brazed to alumina was asymmetric with high tangential stresses in the vicinity of the pin decreasing with the distance from the pin.

  7. New high temperature furnace for structure refinement by powder diffraction in controlled atmospheres using synchrotron radiation

    SciTech Connect

    Margulies, L.; Kramer, M.J.; McCallum, R.W.; Kycia, S.; Haeffner, D.R.; Lang, J.C.; Goldman, A.I.

    1999-09-01

    A low thermal gradient furnace design is described which utilizes Debye{endash}Scherrer geometry for performing high temperature x-ray powder diffraction with synchrotron radiation at medium and high energies (35{endash}100 keV). The furnace has a maximum operating temperature of 1800 K with a variety of atmospheres including oxidizing, inert, and reducing. The capability for sample rotation, to ensure powder averaging, has been built into the design without compromising thermal stability or atmosphere control. The ability to perform high-resolution Rietveld refinement on data obtained at high temperatures has been demonstrated, and data collected on standard Al{sub 2}O{sub 3} powder is presented. Time-resolved data on the orthorhombic to rhombohedral solid state phase transformation of SrCO{sub 3} is demonstrated using image plates. Rietveld refinable spectra, collected in as little as 8 s, opens the possibility of performing time-resolved structural refinements of phase transformations. {copyright} {ital 1999 American Institute of Physics.}

  8. Performance improvements of wavelength-shifting-fiber neutron detectors using high-resolution positioning algorithms

    DOE PAGESBeta

    Wang, C. L.

    2016-05-17

    On the basis of FluoroBancroft linear-algebraic method [S.B. Andersson, Opt. Exp. 16, 18714 (2008)] three highly-resolved positioning methodswere proposed for wavelength-shifting fiber (WLSF) neutron detectors. Using a Gaussian or exponential-decay light-response function (LRF), the non-linear relation of photon-number profiles vs. x-pixels was linearized and neutron positions were determined. The proposed algorithms give an average 0.03-0.08 pixel position error, much smaller than that (0.29 pixel) from a traditional maximum photon algorithm (MPA). The new algorithms result in better detector uniformity, less position misassignment (ghosting), better spatial resolution, and an equivalent or better instrument resolution in powder diffraction than the MPA. Moreover,more » these characters will facilitate broader applications of WLSF detectors at time-of-flight neutron powder diffraction beamlines, including single-crystal diffraction and texture analysis.« less

  9. High-resolution colorimetric imaging of paintings

    NASA Astrophysics Data System (ADS)

    Martinez, Kirk; Cupitt, John; Saunders, David R.

    1993-05-01

    With the aim of providing a digital electronic replacement for conventional photography of paintings, a scanner has been constructed based on a 3000 X 2300 pel resolution camera which is moved precisely over a 1 meter square area. Successive patches are assembled to form a mosaic which covers the whole area at c. 20 pels/mm resolution, which is sufficient to resolve the surface textures, particularly craquelure. To provide high color accuracy, a set of seven broad-band interference filters are used to cover the visible spectrum. A calibration procedure based upon a least-mean-squares fit to the color of patches from a Macbeth Colorchecker chart yields an average color accuracy of better than 3 units in the CMC uniform color space. This work was mainly carried out as part of the VASARI project funded by the European Commission's ESPRIT program, involving companies and galleries from around Europe. The system is being used to record images for conservation research, for archival purposes and to assist in computer-aided learning in the field of art history. The paper will describe the overall system design, including the selection of the various hardware components and the design of controlling software. The theoretical basis for the color calibration methodology is described as well as the software for its practical implementation. The mosaic assembly procedure and some of the associated image processing routines developed are described. Preliminary results from the research will be presented.

  10. High resolution animated scenes from stills.

    PubMed

    Lin, Zhouchen; Wang, Lifeng; Wang, Yunbo; Kang, Sing Bing; Fang, Tian

    2007-01-01

    Current techniques for generating animated scenes involve either videos (whose resolution is limited) or a single image (which requires a significant amount of user interaction). In this paper, we describe a system that allows the user to quickly and easily produce a compelling-looking animation from a small collection of high resolution stills. Our system has two unique features. First, it applies an automatic partial temporal order recovery algorithm to the stills in order to approximate the original scene dynamics. The output sequence is subsequently extracted using a second-order Markov Chain model. Second, a region with large motion variation can be automatically decomposed into semiautonomous regions such that their temporal orderings are softly constrained. This is to ensure motion smoothness throughout the original region. The final animation is obtained by frame interpolation and feathering. Our system also provides a simple-to-use interface to help the user to fine-tune the motion of the animated scene. Using our system, an animated scene can be generated in minutes. We show results for a variety of scenes. PMID:17356221

  11. High-Resolution Radar Imagery of Mars

    NASA Astrophysics Data System (ADS)

    Harmon, John K.; Nolan, M. C.

    2009-09-01

    We present high-resolution radar images of Mars obtained during the 2005 and 2007 oppositions. The images were constructed from long-code delay-Doppler observations made with the Arecibo S-band (13-cm) radar. The average image resolution of 3 km represented a better than order-of-magnitude improvement over pre-upgrade Arecibo imagery of the planet. Images of depolarized reflectivity (an indicator primarily of wavelength-scale surface roughness) show the same bright volcanic flow features seen in earlier imagery, but with much finer detail. A new image of the Elysium region shows fine detail in the radar-bright channels of Athabasca Vallis, Marte Vallis, and Grjota Vallis. The new images of Tharsis and Olympus Mons also show a complex array of radar-bright and radar-dark features. Southern Amazonis exhibits some of the most complex and puzzling radar-bright structure on the planet. Another curiosity is the Chryse/Xanthe/Channels region, where we find some radar-bright features in or adjacent to fluvial chaos structures. Chryse/Xanthe is also the only region of Mars showing radar-bright craters (which are rare on Mars but common on the Moon and Mercury). We also obtained the first delay-Doppler image showing the enhanced backscatter from the residual south polar ice cap. In addition to the depolarized imagery, we were able to make the first delay-Doppler images of the circular polarization ratio (an important diagnostic for surface roughness texture). We find that vast areas of the radar-bright volcanic regions have polarization ratios close to unity. Such high ratios are rare for terrestrial lava flows and only seen for extremely blocky surfaces giving high levels of multiple scattering.

  12. Pyramidal fractal dimension for high resolution images.

    PubMed

    Mayrhofer-Reinhartshuber, Michael; Ahammer, Helmut

    2016-07-01

    Fractal analysis (FA) should be able to yield reliable and fast results for high-resolution digital images to be applicable in fields that require immediate outcomes. Triggered by an efficient implementation of FA for binary images, we present three new approaches for fractal dimension (D) estimation of images that utilize image pyramids, namely, the pyramid triangular prism, the pyramid gradient, and the pyramid differences method (PTPM, PGM, PDM). We evaluated the performance of the three new and five standard techniques when applied to images with sizes up to 8192 × 8192 pixels. By using artificial fractal images created by three different generator models as ground truth, we determined the scale ranges with minimum deviations between estimation and theory. All pyramidal methods (PM) resulted in reasonable D values for images of all generator models. Especially, for images with sizes ≥1024×1024 pixels, the PMs are superior to the investigated standard approaches in terms of accuracy and computation time. A measure for the possibility to differentiate images with different intrinsic D values did show not only that the PMs are well suited for all investigated image sizes, and preferable to standard methods especially for larger images, but also that results of standard D estimation techniques are strongly influenced by the image size. Fastest results were obtained with the PDM and PGM, followed by the PTPM. In terms of absolute D values best performing standard methods were magnitudes slower than the PMs. Concluding, the new PMs yield high quality results in short computation times and are therefore eligible methods for fast FA of high-resolution images.

  13. Pyramidal fractal dimension for high resolution images

    NASA Astrophysics Data System (ADS)

    Mayrhofer-Reinhartshuber, Michael; Ahammer, Helmut

    2016-07-01

    Fractal analysis (FA) should be able to yield reliable and fast results for high-resolution digital images to be applicable in fields that require immediate outcomes. Triggered by an efficient implementation of FA for binary images, we present three new approaches for fractal dimension (D) estimation of images that utilize image pyramids, namely, the pyramid triangular prism, the pyramid gradient, and the pyramid differences method (PTPM, PGM, PDM). We evaluated the performance of the three new and five standard techniques when applied to images with sizes up to 8192 × 8192 pixels. By using artificial fractal images created by three different generator models as ground truth, we determined the scale ranges with minimum deviations between estimation and theory. All pyramidal methods (PM) resulted in reasonable D values for images of all generator models. Especially, for images with sizes ≥1024 ×1024 pixels, the PMs are superior to the investigated standard approaches in terms of accuracy and computation time. A measure for the possibility to differentiate images with different intrinsic D values did show not only that the PMs are well suited for all investigated image sizes, and preferable to standard methods especially for larger images, but also that results of standard D estimation techniques are strongly influenced by the image size. Fastest results were obtained with the PDM and PGM, followed by the PTPM. In terms of absolute D values best performing standard methods were magnitudes slower than the PMs. Concluding, the new PMs yield high quality results in short computation times and are therefore eligible methods for fast FA of high-resolution images.

  14. Pyramidal fractal dimension for high resolution images.

    PubMed

    Mayrhofer-Reinhartshuber, Michael; Ahammer, Helmut

    2016-07-01

    Fractal analysis (FA) should be able to yield reliable and fast results for high-resolution digital images to be applicable in fields that require immediate outcomes. Triggered by an efficient implementation of FA for binary images, we present three new approaches for fractal dimension (D) estimation of images that utilize image pyramids, namely, the pyramid triangular prism, the pyramid gradient, and the pyramid differences method (PTPM, PGM, PDM). We evaluated the performance of the three new and five standard techniques when applied to images with sizes up to 8192 × 8192 pixels. By using artificial fractal images created by three different generator models as ground truth, we determined the scale ranges with minimum deviations between estimation and theory. All pyramidal methods (PM) resulted in reasonable D values for images of all generator models. Especially, for images with sizes ≥1024×1024 pixels, the PMs are superior to the investigated standard approaches in terms of accuracy and computation time. A measure for the possibility to differentiate images with different intrinsic D values did show not only that the PMs are well suited for all investigated image sizes, and preferable to standard methods especially for larger images, but also that results of standard D estimation techniques are strongly influenced by the image size. Fastest results were obtained with the PDM and PGM, followed by the PTPM. In terms of absolute D values best performing standard methods were magnitudes slower than the PMs. Concluding, the new PMs yield high quality results in short computation times and are therefore eligible methods for fast FA of high-resolution images. PMID:27475069

  15. Clementine High Resolution Camera Mosaicking Project

    NASA Technical Reports Server (NTRS)

    1998-01-01

    This report constitutes the final report for NASA Contract NASW-5054. This project processed Clementine I high resolution images of the Moon, mosaicked these images together, and created a 22-disk set of compact disk read-only memory (CD-ROM) volumes. The mosaics were produced through semi-automated registration and calibration of the high resolution (HiRes) camera's data against the geometrically and photometrically controlled Ultraviolet/Visible (UV/Vis) Basemap Mosaic produced by the US Geological Survey (USGS). The HiRes mosaics were compiled from non-uniformity corrected, 750 nanometer ("D") filter high resolution nadir-looking observations. The images were spatially warped using the sinusoidal equal-area projection at a scale of 20 m/pixel for sub-polar mosaics (below 80 deg. latitude) and using the stereographic projection at a scale of 30 m/pixel for polar mosaics. Only images with emission angles less than approximately 50 were used. Images from non-mapping cross-track slews, which tended to have large SPICE errors, were generally omitted. The locations of the resulting image population were found to be offset from the UV/Vis basemap by up to 13 km (0.4 deg.). Geometric control was taken from the 100 m/pixel global and 150 m/pixel polar USGS Clementine Basemap Mosaics compiled from the 750 nm Ultraviolet/Visible Clementine imaging system. Radiometric calibration was achieved by removing the image nonuniformity dominated by the HiRes system's light intensifier. Also provided are offset and scale factors, achieved by a fit of the HiRes data to the corresponding photometrically calibrated UV/Vis basemap, that approximately transform the 8-bit HiRes data to photometric units. The sub-polar mosaics are divided into tiles that cover approximately 1.75 deg. of latitude and span the longitude range of the mosaicked frames. Images from a given orbit are map projected using the orbit's nominal central latitude. Polar mosaics are tiled into squares 2250 pixels on a

  16. Clementine High Resolution Camera Mosaicking Project

    NASA Astrophysics Data System (ADS)

    1998-10-01

    This report constitutes the final report for NASA Contract NASW-5054. This project processed Clementine I high resolution images of the Moon, mosaicked these images together, and created a 22-disk set of compact disk read-only memory (CD-ROM) volumes. The mosaics were produced through semi-automated registration and calibration of the high resolution (HiRes) camera's data against the geometrically and photometrically controlled Ultraviolet/Visible (UV/Vis) Basemap Mosaic produced by the US Geological Survey (USGS). The HiRes mosaics were compiled from non-uniformity corrected, 750 nanometer ("D") filter high resolution nadir-looking observations. The images were spatially warped using the sinusoidal equal-area projection at a scale of 20 m/pixel for sub-polar mosaics (below 80 deg. latitude) and using the stereographic projection at a scale of 30 m/pixel for polar mosaics. Only images with emission angles less than approximately 50 were used. Images from non-mapping cross-track slews, which tended to have large SPICE errors, were generally omitted. The locations of the resulting image population were found to be offset from the UV/Vis basemap by up to 13 km (0.4 deg.). Geometric control was taken from the 100 m/pixel global and 150 m/pixel polar USGS Clementine Basemap Mosaics compiled from the 750 nm Ultraviolet/Visible Clementine imaging system. Radiometric calibration was achieved by removing the image nonuniformity dominated by the HiRes system's light intensifier. Also provided are offset and scale factors, achieved by a fit of the HiRes data to the corresponding photometrically calibrated UV/Vis basemap, that approximately transform the 8-bit HiRes data to photometric units. The sub-polar mosaics are divided into tiles that cover approximately 1.75 deg. of latitude and span the longitude range of the mosaicked frames. Images from a given orbit are map projected using the orbit's nominal central latitude. Polar mosaics are tiled into squares 2250 pixels on a

  17. A high-transparency, micro-patternable chip for X-ray diffraction analysis of microcrystals under native growth conditions

    SciTech Connect

    Murray, Thomas D.; Lyubimov, Artem Y.; Ogata, Craig M.; Vo, Huy; Uervirojnangkoorn, Monarin; Brunger, Axel T.; Berger, James M.

    2015-09-26

    Microcrystals present a significant impediment to the determination of macromolecular structures by X-ray diffraction methods. Although microfocus synchrotron beamlines and X-ray free-electron lasers (XFELs) can enable the collection of interpretable diffraction data from microcrystals, there is a need for efficient methods of harvesting small volumes (<2µl) of microcrystals grown under common laboratory formats and delivering them to an X-ray beam source under native growth conditions. One approach that shows promise in overcoming the challenges intrinsic to microcrystal analysis is to pair so-called `fixed-target' sample-delivery devices with microbeam-based X-ray diffraction methods. However, to record weak diffraction patterns it is necessary to fabricate devices from X-ray-transparent materials that minimize background scattering. Presented here is the design of a new micro-diffraction device consisting of three layers fabricated from silicon nitride, photoresist and polyimide film. The chip features low X-ray scattering and X-ray absorption properties, and uses a customizable blend of hydrophobic and hydrophilic surface patterns to help localize microcrystals to defined regions. Microcrystals in their native growth conditions can be loaded into the chips with a standard pipette, allowing data collection at room temperature. Diffraction data collected from hen egg-white lysozyme microcrystals (10–15µm) loaded into the chips yielded a complete, high-resolution (<1.6Å) data set sufficient to determine a high-quality structure by molecular replacement. The features of the chip allow the rapid and user-friendly analysis of microcrystals grown under virtually any laboratory format at microfocus synchrotron beamlines and XFELs.

  18. A high-transparency, micro-patternable chip for X-ray diffraction analysis of microcrystals under native growth conditions

    SciTech Connect

    Murray, Thomas D.; Lyubimov, Artem Y.; Ogata, Craig M.; Vo, Huy; Uervirojnangkoorn, Monarin; Brunger, Axel T.; Berger, James M.

    2015-08-11

    Microcrystals present a significant impediment to the determination of macromolecular structures by X-ray diffraction methods. Although microfocus synchrotron beamlines and X-ray free-electron lasers (XFELs) can enable the collection of interpretable diffraction data from microcrystals, there is a need for efficient methods of harvesting small volumes (<2 µl) of microcrystals grown under common laboratory formats and delivering them to an X-ray beam source under native growth conditions. One approach that shows promise in overcoming the challenges intrinsic to microcrystal analysis is to pair so-called `fixed-target' sample-delivery devices with microbeam-based X-ray diffraction methods. However, to record weak diffraction patterns it is necessary to fabricate devices from X-ray-transparent materials that minimize background scattering. Presented here is the design of a new micro-diffraction device consisting of three layers fabricated from silicon nitride, photoresist and polyimide film. The chip features low X-ray scattering and X-ray absorption properties, and uses a customizable blend of hydrophobic and hydrophilic surface patterns to help localize microcrystals to defined regions. Microcrystals in their native growth conditions can be loaded into the chips with a standard pipette, allowing data collection at room temperature. Diffraction data collected from hen egg-white lysozyme microcrystals (10–15 µm) loaded into the chips yielded a complete, high-resolution (<1.6 Å) data set sufficient to determine a high-quality structure by molecular replacement. In addition, the features of the chip allow the rapid and user-friendly analysis of microcrystals grown under virtually any laboratory format at microfocus synchrotron beamlines and XFELs.

  19. A high-transparency, micro-patternable chip for X-ray diffraction analysis of microcrystals under native growth conditions

    DOE PAGESBeta

    Murray, Thomas D.; Lyubimov, Artem Y.; Ogata, Craig M.; Vo, Huy; Uervirojnangkoorn, Monarin; Brunger, Axel T.; Berger, James M.

    2015-08-11

    Microcrystals present a significant impediment to the determination of macromolecular structures by X-ray diffraction methods. Although microfocus synchrotron beamlines and X-ray free-electron lasers (XFELs) can enable the collection of interpretable diffraction data from microcrystals, there is a need for efficient methods of harvesting small volumes (<2 µl) of microcrystals grown under common laboratory formats and delivering them to an X-ray beam source under native growth conditions. One approach that shows promise in overcoming the challenges intrinsic to microcrystal analysis is to pair so-called `fixed-target' sample-delivery devices with microbeam-based X-ray diffraction methods. However, to record weak diffraction patterns it is necessarymore » to fabricate devices from X-ray-transparent materials that minimize background scattering. Presented here is the design of a new micro-diffraction device consisting of three layers fabricated from silicon nitride, photoresist and polyimide film. The chip features low X-ray scattering and X-ray absorption properties, and uses a customizable blend of hydrophobic and hydrophilic surface patterns to help localize microcrystals to defined regions. Microcrystals in their native growth conditions can be loaded into the chips with a standard pipette, allowing data collection at room temperature. Diffraction data collected from hen egg-white lysozyme microcrystals (10–15 µm) loaded into the chips yielded a complete, high-resolution (<1.6 Å) data set sufficient to determine a high-quality structure by molecular replacement. In addition, the features of the chip allow the rapid and user-friendly analysis of microcrystals grown under virtually any laboratory format at microfocus synchrotron beamlines and XFELs.« less

  20. A high-transparency, micro-patternable chip for X-ray diffraction analysis of microcrystals under native growth conditions

    PubMed Central

    Murray, Thomas D.; Lyubimov, Artem Y.; Ogata, Craig M.; Vo, Huy; Uervirojnangkoorn, Monarin; Brunger, Axel T.; Berger, James M.

    2015-01-01

    Microcrystals present a significant impediment to the determination of macromolecular structures by X-ray diffraction methods. Although microfocus synchrotron beamlines and X-ray free-electron lasers (XFELs) can enable the collection of interpretable diffraction data from microcrystals, there is a need for efficient methods of harvesting small volumes (<2 µl) of microcrystals grown under common laboratory formats and delivering them to an X-ray beam source under native growth conditions. One approach that shows promise in overcoming the challenges intrinsic to microcrystal analysis is to pair so-called ‘fixed-target’ sample-delivery devices with microbeam-based X-ray diffraction methods. However, to record weak diffraction patterns it is necessary to fabricate devices from X-ray-transparent materials that minimize background scattering. Presented here is the design of a new micro-diffraction device consisting of three layers fabricated from silicon nitride, photoresist and polyimide film. The chip features low X-ray scattering and X-ray absorption properties, and uses a customizable blend of hydrophobic and hydrophilic surface patterns to help localize microcrystals to defined regions. Microcrystals in their native growth conditions can be loaded into the chips with a standard pipette, allowing data collection at room temperature. Diffraction data collected from hen egg-white lysozyme microcrystals (10–15 µm) loaded into the chips yielded a complete, high-resolution (<1.6 Å) data set sufficient to determine a high-quality structure by molecular replacement. The features of the chip allow the rapid and user-friendly analysis of microcrystals grown under virtually any laboratory format at microfocus synchrotron beamlines and XFELs. PMID:26457423

  1. Simultaneous X-ray diffraction and phase-contrast imaging for investigating material deformation mechanisms during high-rate loading

    PubMed Central

    Hudspeth, M.; Sun, T.; Parab, N.; Guo, Z.; Fezzaa, K.; Luo, S.; Chen, W.

    2015-01-01

    Using a high-speed camera and an intensified charge-coupled device (ICCD), a simultaneous X-ray imaging and diffraction technique has been developed for studying dynamic material behaviors during high-rate tensile loading. A Kolsky tension bar has been used to pull samples at 1000 s−1 and 5000 s−1 strain-rates for super-elastic equiatomic NiTi and 1100-O series aluminium, respectively. By altering the ICCD gating time, temporal resolutions of 100 ps and 3.37 µs have been achieved in capturing the diffraction patterns of interest, thus equating to single-pulse and 22-pulse X-ray exposure. Furthermore, the sample through-thickness deformation process has been simultaneously imaged via phase-contrast imaging. It is also shown that adequate signal-to-noise ratios are achieved for the detected white-beam diffraction patterns, thereby allowing sufficient information to perform quantitative data analysis diffraction via in-house software (WBXRD_GUI). Of current interest is the ability to evaluate crystal d-spacing, texture evolution and material phase transitions, all of which will be established from experiments performed at the aforementioned elevated strain-rates. PMID:25537588

  2. Simultaneous X-ray diffraction and phase-contrast imaging for investigating material deformation mechanisms during high-rate loading

    SciTech Connect

    Hudspeth, M.; Sun, T.; Parab, N.; Guo, Z.; Fezzaa, K.; Luo, S.; Chen, W.

    2015-01-01

    Using a high-speed camera and an intensified charge-coupled device (ICCD), a simultaneous X-ray imaging and diffraction technique has been developed for studying dynamic material behaviors during high-rate tensile loading. A Kolsky tension bar has been used to pull samples at 1000 s–1and 5000 s–1strain-rates for super-elastic equiatomic NiTi and 1100-O series aluminium, respectively. By altering the ICCD gating time, temporal resolutions of 100 ps and 3.37 µs have been achieved in capturing the diffraction patterns of interest, thus equating to single-pulse and 22-pulse X-ray exposure. Furthermore, the sample through-thickness deformation process has been simultaneously imagedviaphase-contrast imaging. It is also shown that adequate signal-to-noise ratios are achieved for the detected white-beam diffraction patterns, thereby allowing sufficient information to perform quantitative data analysis diffractionviain-house software (WBXRD_GUI). Finally, of current interest is the ability to evaluate crystald-spacing, texture evolution and material phase transitions, all of which will be established from experiments performed at the aforementioned elevated strain-rates.

  3. Improved methods for high resolution electron microscopy

    SciTech Connect

    Taylor, J.R.

    1987-04-01

    Existing methods of making support films for high resolution transmission electron microscopy are investigated and novel methods are developed. Existing methods of fabricating fenestrated, metal reinforced specimen supports (microgrids) are evaluated for their potential to reduce beam induced movement of monolamellar crystals of C/sub 44/H/sub 90/ paraffin supported on thin carbon films. Improved methods of producing hydrophobic carbon films by vacuum evaporation, and improved methods of depositing well ordered monolamellar paraffin crystals on carbon films are developed. A novel technique for vacuum evaporation of metals is described which is used to reinforce microgrids. A technique is also developed to bond thin carbon films to microgrids with a polymer bonding agent. Unique biochemical methods are described to accomplish site specific covalent modification of membrane proteins. Protocols are given which covalently convert the carboxy terminus of papain cleaved bacteriorhodopsin to a free thiol. 53 refs., 19 figs., 1 tab.

  4. (Development of high spectral resolution lidar technology)

    SciTech Connect

    Eloranta, E.W.

    1991-07-30

    The first year of this grant has been devoted to the design and construction of an upgraded version of the University of Wisconsin High Spectral Resolution Lidar (HSRL). The new system incorporates additional data channels to measure depolarization and multiple scattering in the lidar return. Schematic diagrams describing the new configurations are attached to this report. Increases in optical efficiency and receiver aperture, coupled with improvements in the stiffness and the thermal stability of the mechanical system are expected to significantly improve the performance of the instrument. Most components of the system are nearly completed and system integration is about to begin. The HSRL is committed to participate in the NASA FIRE cirrus experiment during November and December of this year. Our progress is completing HSRL subsystems is outlined in the following paragraphs. 3 figs.

  5. Improved methods for high resolution electron microscopy

    NASA Astrophysics Data System (ADS)

    Taylor, J. R.

    1987-04-01

    Existing methods of making support films for high resolution transmission electron microscopy are investigated and novel methods are developed. Existing methods of fabricating fenestrated, metal reinforced specimen supports (microgrids) are evaluated for their potential to reduce beam induced movement of monolamellar crystals of C44H90 paraffin supported on thin carbon films. Improved methods of producing hydrophobic carbon films by vacuum evaporation, and improved methods of depositing well ordered monolamellar paraffin crystals on carbon films are developed. A novel technique for vacuum evaporation of metals is described which is used to reinforce microgrids. A technique is also developed to bond thin carbon films to microgrids with a polymer bonding agent. Unique biochemical methods are described to accomplish site specific covalent modification of membrane proteins. Protocols are given which covalently convert the carboxy terminus of papain cleaved bacteriorhodopsin to a free thiol.

  6. Potential High Resolution Dosimeters For MRT

    NASA Astrophysics Data System (ADS)

    Bräuer-Krisch, E.; Rosenfeld, A.; Lerch, M.; Petasecca, M.; Akselrod, M.; Sykora, J.; Bartz, J.; Ptaszkiewicz, M.; Olko, P.; Berg, A.; Wieland, M.; Doran, S.; Brochard, T.; Kamlowski, A.; Cellere, G.; Paccagnella, A.; Siegbahn, E. A.; Prezado, Y.; Martinez-Rovira, I.; Bravin, A.; Dusseau, L.; Berkvens, P.

    2010-07-01

    Microbeam Radiation Therapy (MRT) uses highly collimated, quasi-parallel arrays of X-ray microbeams of 50-600 keV, produced by 2nd and 3rd generation synchrotron sources, such as the National Synchrotron Light Source (NSLS) in the U.S., and the European Synchrotron Radiation Facility (ESRF) in France, respectively. High dose rates are necessary to deliver therapeutic doses in microscopic volumes, to avoid spreading of the microbeams by cardiosynchronous movement of the tissues. A small beam divergence and a filtered white beam spectrum in the energy range between 30 and 250 keV results in the advantage of steep dose gradients with a sharper penumbra than that produced in conventional radiotherapy. MRT research over the past 20 years has allowed a vast number of results from preclinical trials on different animal models, including mice, rats, piglets and rabbits. Microbeams in the range between 10 and 100 micron width show an unprecedented sparing of normal radiosensitive tissues as well as preferential damage to malignant tumor tissues. Typically, MRT uses arrays of narrow (˜25-100 micron-wide) microplanar beams separated by wider (100-400 microns centre-to-centre, c-t-c) microplanar spaces. We note that thicker microbeams of 0.1-0.68 mm used by investigators at the NSLS are still called microbeams, although some invesigators in the community prefer to call them minibeams. This report, however, limits it discussion to 25-100 μm microbeams. Peak entrance doses of several hundreds of Gy are surprisingly well tolerated by normal tissues. High resolution dosimetry has been developed over the last two decades, but typical dose ranges are adapted to dose delivery in conventional Radiation Therapy (RT). Spatial resolution in the sub-millimetric range has been achieved, which is currently required for quality assurance measurements in Gamma-knife RT. Most typical commercially available detectors are not suitable for MRT applications at a dose rate of 16000 Gy/s, micron

  7. Potential High Resolution Dosimeters For MRT

    SciTech Connect

    Braeuer-Krisch, E.; Brochard, T.; Prezado, Y.; Bravin, A.; Berkvens, P.; Rosenfeld, A.; Lerch, M.; Petasecca, M.; Akselrod, M.; Sykora, J.; Bartz, J.; Ptaszkiewicz, M.; Olko, P.; Berg, A.; Wieland, M.; Doran, S.; Kamlowski, A.; Cellere, G.

    2010-07-23

    Microbeam Radiation Therapy (MRT) uses highly collimated, quasi-parallel arrays of X-ray microbeams of 50-600 keV, produced by 2nd and 3rd generation synchrotron sources, such as the National Synchrotron Light Source (NSLS) in the U.S., and the European Synchrotron Radiation Facility (ESRF) in France, respectively. High dose rates are necessary to deliver therapeutic doses in microscopic volumes, to avoid spreading of the microbeams by cardiosynchronous movement of the tissues. A small beam divergence and a filtered white beam spectrum in the energy range between 30 and 250 keV results in the advantage of steep dose gradients with a sharper penumbra than that produced in conventional radiotherapy. MRT research over the past 20 years has allowed a vast number of results from preclinical trials on different animal models, including mice, rats, piglets and rabbits. Microbeams in the range between 10 and 100 micron width show an unprecedented sparing of normal radiosensitive tissues as well as preferential damage to malignant tumor tissues. Typically, MRT uses arrays of narrow ({approx}25-100 micron-wide) microplanar beams separated by wider (100-400 microns centre-to-centre, c-t-c) microplanar spaces. We note that thicker microbeams of 0.1-0.68 mm used by investigators at the NSLS are still called microbeams, although some invesigators in the community prefer to call them minibeams. This report, however, limits it discussion to 25-100 {mu}m microbeams. Peak entrance doses of several hundreds of Gy are surprisingly well tolerated by normal tissues. High resolution dosimetry has been developed over the last two decades, but typical dose ranges are adapted to dose delivery in conventional Radiation Therapy (RT). Spatial resolution in the sub-millimetric range has been achieved, which is currently required for quality assurance measurements in Gamma-knife RT. Most typical commercially available detectors are not suitable for MRT applications at a dose rate of 16000 Gy

  8. High resolution analysis of satellite gradiometry

    NASA Technical Reports Server (NTRS)

    Colombo, O. L.

    1989-01-01

    Satellite gravity gradiometry is a technique now under development which, by the middle of the next decade, may be used for the high resolution charting from space of the gravity field of the earth and, afterwards, of other planets. Some data analysis schemes are reviewed for getting detailed gravity maps from gradiometry on both a global and a local basis. It also presents estimates of the likely accuracies of such maps, in terms of normalized spherical harmonics expansions, both using gradiometry alone and in combination with data from a Global Positioning System (GPS) receiver carried on the same spacecraft. It compares these accuracies with those of current and future maps obtained from other data (conventional tracking, satellite-satellite tracking, etc.), and also with the spectra of various signals of geophysical interest.

  9. High-resolution MRI: in vivo histology?

    PubMed Central

    Bridge, Holly; Clare, Stuart

    2005-01-01

    For centuries scientists have been fascinated with the question of how the brain works. Investigators have looked at both where different functions are localized and how the anatomical microstructure varies across the brain surface. Here we discuss how advances in magnetic resonance imaging (MRI) have allowed in vivo visualization of the fine structure of the brain that was previously only visible in post-mortem brains. We present data showing the correspondence between definitions of the primary visual cortex defined anatomically using very high-resolution MRI and functionally using functional MRI. We consider how this technology can be applied to allow the investigation of brains that differ from normal, and what this ever-evolving technology may be able to reveal about in vivo brain structure in the next few years. PMID:16553313

  10. Internal reflection sensors with high angular resolution

    NASA Astrophysics Data System (ADS)

    Shavirin, I.; Strelkov, O.; Vetskous, A.; Norton-Wayne, L.; Harwood, R.

    1996-07-01

    We discuss the use of total internal reflection for the production of sensors with high angular resolution. These sensors are intended for measurement of the angle between a sensor's axis and the direction to a source of radiation or reflecting object. Sensors of this type are used in controlling the position of machine parts in robotics and industry, orienting space vehicles and astronomic devices in relation to the Sun, and as autocollimators for checking angles of deviation. This kind of sensor was used in the Apollo space vehicle some 20 years ago. Using photodetectors with linear and area CCD arrays has opened up new application possibilities for appropriately designed sensors. A generalized methodology is presented applicable to a wide range of tasks. Some modifications that can improve the performance of the basic design are described.

  11. High-Resolution Anamorphic SPECT Imaging

    PubMed Central

    Durko, Heather L.; Barrett, Harrison H.; Furenlid, Lars R.

    2015-01-01

    We have developed a gamma-ray imaging system that combines a high-resolution silicon detector with two sets of movable, half-keel-edged copper-tungsten blades configured as crossed slits. These apertures can be positioned independently between the object and detector, producing an anamorphic image in which the axial and transaxial magnifications are not constrained to be equal. The detector is a 60 mm × 60 mm, one-millimeter-thick, one-megapixel silicon double-sided strip detector with a strip pitch of 59 μm. The flexible nature of this system allows the application of adaptive imaging techniques. We present system details; calibration, acquisition, and reconstruction methods; and imaging results. PMID:26160983

  12. High resolution derivative spectra in remote sensing

    NASA Technical Reports Server (NTRS)

    Demetriades-Shah, Tanvir H.; Steven, Michael D.; Clark, Jeremy A.

    1990-01-01

    The use of derivative spectra is an established technique in analytical chemistry for the elimination of background signals and for resolving overlapping spectral features. Application of this technique for tackling analogous problems such as interference from soil background reflectance in the remote sensing of vegetation or for resolving complex spectra of several target species within individual pixels in remote sensing is proposed. Methods for generating derivatives of high spectral resolution data are reviewed. Results of experiments to test the use of derivatives for monitoring chlorosis in vegetation show that derivative spectral indices are superior to conventional broad-band spectral indices such as the near-infrared/red reflectance ratio. Conventional broad-band indices are sensitive to both leaf cover as well as leaf color. New derivative spectral indices which were able to monitor chlorosis unambiguously were identified. Potential areas for the application of this technique in remote sensing are considered.

  13. Chromatic dispersion of a high-efficiency resonance domain diffractive lens.

    PubMed

    Barlev, Omri; Golub, Michael A

    2015-07-01

    Inherent strong lateral and longitudinal chromatic dispersion of a transmission resonance domain off-axis diffractive lens were studied theoretically and experimentally. It is shown that a 4 mm diameter and 0.14 NA diffractive lens provides both focusing and dispersion with a spectral resolution of up to 0.09 nm, which is suitable for laser line spectral measurements. Experimental results for measured spectra of a mercury-argon source, a helium-neon laser, and RGB laser diodes pave a technological path to compact spectral sensors and microspectrometers. PMID:26193158

  14. Overcoming the diffraction limit using multiple light scattering in a highly disordered medium.

    PubMed

    Choi, Youngwoon; Yang, Taeseok Daniel; Fang-Yen, Christopher; Kang, Pilsung; Lee, Kyoung Jin; Dasari, Ramachandra R; Feld, Michael S; Choi, Wonshik

    2011-07-01

    We report that disordered media made of randomly distributed nanoparticles can be used to overcome the diffraction limit of a conventional imaging system. By developing a method to extract the original image information from the multiple scattering induced by the turbid media, we dramatically increase a numerical aperture of the imaging system. As a result, the resolution is enhanced by more than 5 times over the diffraction limit, and the field of view is extended over the physical area of the camera. Our technique lays the foundation to use a turbid medium as a far-field superlens.

  15. High Resolution Spectroscopy to Support Atmospheric Measurements

    NASA Technical Reports Server (NTRS)

    Venkataraman, Malathy Devi

    2006-01-01

    The major research activities performed during the cooperative agreement enhanced our spectroscopic knowledge of molecules of atmospheric interest such as H2O (water vapor), O3 (ozone), HCN (hydrogen cyanide), CH4 (methane), NO2 (nitrogen dioxide) and CO (carbon monoxide). The data required for the analyses were obtained from two different Fourier Transform Spectrometers (FTS); one of which is located at the National Solar Observatory (NSO) on Kitt Peak, Arizona and the other instrument is located at the Pacific Northwest National Laboratories (PNNL) at Richland, Washington. The data were analyzed using a modified multispectrum nonlinear least squares fitting algorithm developed by Dr. D. Chris Benner of the College of William and Mary. The results from these studies made significant improvements in the line positons and intensities for these molecules. The measurements of pressure broadening and pressure induced line shift coefficients and the temperature dependence of pressure broadening and pressure induced shift coefficients for hundreds of infrared transitions of HCN, CO3 CH4 and H2O were also performed during this period. Results from these studies have been used for retrievals of stratospheric gas concentration profiles from data collected by several Upper Atmospheric Research Satellite (UARS) infrared instruments as well as in the analysis of high resolution atmospheric spectra such as those acquired by space-based, ground-based, and various balloon- and aircraft-borne experiments. Our results made significant contributions in several updates of the HITRAN (HIgh resolution TRANsmission) spectral line parameters database. This database enjoys worldwide recognition in research involving diversified scientific fields. The research conducted during the period 2003-2006 has resulted in publications given in this paper. In addition to Journal publications, several oral and poster presentations were given at various Scientific conferences within the United States

  16. Ecological applications of high resolution spectrometry

    NASA Technical Reports Server (NTRS)

    Lawrence, William T.

    1989-01-01

    Future directions of NASA's space program plans include a significant effort at studying the Earth as a system of interrelated ecosystems. As part of NASA's Earth Observing System (Eos) Program a series of space platforms will be launched and operated to study the Earth with a variety of active and passive instruments. Several of the Eos instruments will be capable of imaging the planet's surface reflectance on a large number of very narrow portions of the solar spectrum. After the development of appropriate algorithms, this reflectance information will be used to determine key parameters about the structure and function of terrestrial and aquatic ecosystems and the pattern and processes of those systems across large areas of the globe. Algorithm development applicable to terrestrial systems will permit the inference of ecological processes from high resolution spectrometry data, similar to that to be forthcoming from the Eos mission. The first summer was spent working with tropical soils and relating their reflectance characteristics to particle size, iron content, and color. This summer the emphasis is on vegetation and work was begun with the Forest Ecosystems Dynamics Project in the Earth Resources Branch where both optical and radar characteristics of a mixed conifer/hardwood forest in Maine are being studied for use in a ecological modeling effort. A major series of aircraft overflights will take place throughout the summer. Laboratory and field spectrometers are used to measure the spectral reflectance of a hierarchy of vegetation from individual leaves to whole canopies for eventual modeling of their nutrient content using reflectance data. Key leaf/canopy parameters are being approximated including chlorophyll, nitrogen, phosphorus, water content, and leaf specific weight using high resolution spectrometry alone. Measurements are made of carbon exchange across the landscape for input to a spatial modeling effort to gauge production within the forest. A

  17. X-ray diffraction study of highly purified human ceruloplasmin

    SciTech Connect

    Samygina, V. R.; Sokolov, A. V.; Pulina, M. O.; Bartunik, H. D.; Vasil'ev, V. B.

    2008-07-15

    The three-dimensional structure of ceruloplasmin (CP) with unoccupied labile metal-binding sites and the structure of CP containing Ni{sup 2+} in the labile sites were solved for the first time at 2.6 and 2.95 A resolution, respectively. Crystallization was performed with the use of storage-stable CP, which was prepared in the presence of proteinase inhibitors and purified from (pre)proteinases. Ceruloplasmin with Ni{sup 2+} crystallized in the orthorhombic space group, which had been earlier unknown for CP. Ceruloplasmin with the unoccupied labile sites crystallized in the trigonal crystal form. The differences in intermolecular contacts observed in the trigonal and orthorhombic crystal structures of CP are considered. The conformational changes attendant upon Ni{sup 2+} binding are described. It was suggested that the labile sites are multifunctional and can both bind metal ions potentially toxic to organisms and be involved in electron transfer from substrates to the active site.

  18. The HFIP High Resolution Hurricane Forecast Test

    NASA Astrophysics Data System (ADS)

    Nance, L. B.; Bernardet, L.; Bao, S.; Brown, B.; Carson, L.; Fowler, T.; Halley Gotway, J.; Harrop, C.; Szoke, E.; Tollerud, E. I.; Wolff, J.; Yuan, H.

    2010-12-01

    Tropical cyclones are a serious concern for the nation, causing significant risk to life, property and economic vitality. The National Oceanic and Atmospheric Administration (NOAA) National Weather Service has a mission of issuing tropical cyclone forecasts and warnings, aimed at protecting life and property and enhancing the national economy. In the last 10 years, the errors in hurricane track forecasts have been reduced by about 50% through improved model guidance, enhanced observations, and forecaster expertise. However, little progress has been made during this period toward reducing forecasted intensity errors. To address this shortcoming, NOAA established the Hurricane Forecast Improvement Project (HFIP) in 2007. HFIP is a 10-year plan to improve one to five day tropical cyclone forecasts, with a focus on rapid intensity change. Recent research suggests that prediction models with grid spacing less than 1 km in the inner core of the hurricane may provide a substantial improvement in intensity forecasts. The 2008-09 staging of the High Resolution Hurricane (HRH) Test focused on quantifying the impact of increased horizontal resolution in numerical models on hurricane intensity forecasts. The primary goal of this test was an evaluation of the effect of increasing horizontal resolution within a given model across a variety of storms with different intensity, location and structure. The test focused on 69 retrospectives cases from the 2005 and 2007 hurricane seasons. Six modeling groups participated in the HRH test utilizing a variety of models, including three configurations of the Weather Research and Forecasting (WRF) model, the operational GFDL model, the Navy’s tropical cyclone model, and a model developed at the University of Wisconsin-Madison (UWM). The Development Testbed Center (DTC) was tasked with providing objective verification statistics for a variety of metrics. This presentation provides an overview of the HRH Test and a summary of the standard

  19. Design of a high-flux instrument for ultrafast electron diffraction and microscopy

    NASA Astrophysics Data System (ADS)

    Filippetto, D.; Qian, H.

    2016-05-01

    We present the design and optimization of a new instrument for ultrafast electron diffraction and imaging. The proposed instrument merges the high peak current and relativistic electron energies of radio-frequency guns, with the high average electron flux of static electron microscopes, extending the beam parameter space achievable with relativistic electrons by many orders of magnitude. An immediate consequence of this work is a broader range of accessible science by using electron probes, enabling techniques as femtosecond nano-diffraction and coherent diffraction imaging, and paving the way to direct observation of ultrafast dynamics in complex and isolated samples, from nanocrystals, to nano/micro droplets and organic molecules.

  20. Hadron cross sections at ultra high energies and unitarity bounds on diffraction dissociation

    NASA Technical Reports Server (NTRS)

    Yodh, G. B.; Gaisser, T. K.

    1985-01-01

    It was shown that if unitarity bounds on diffractive cross sections are valid at ultra high energies then diffractive dominance models which ascribe the increase in total hadron-hadron cross sections to diffractive processes only are ruled out. Calculations also show that cosmic ray cross sections derived from air shower experiments at ultra high energies clearly rule out models for hadron-hadron cross sections with nat.log ns energy dependence and favor those with nat.log n(2)s variation.

  1. High resolution electron attachment to CO₂ clusters.

    PubMed

    Denifl, Stephan; Vizcaino, Violaine; Märk, Tilmann D; Illenberger, Eugen; Scheier, Paul

    2010-01-01

    Electron attachment to CO₂ clusters performed at high energy resolution (0.1 eV) is studied for the first time in the extended electron energy range from threshold (0 eV) to about 10 eV. Dissociative electron attachment (DEA) to single molecules yields O(-) as the only fragment ion arising from the well known (2)Π(u) shape resonance (ion yield centered at 4.4 eV) and a core excited resonance (at 8.2 eV). On proceeding to CO₂ clusters, non-dissociated complexes of the form (CO₂)(n)(-) including the monomer CO₂(-) are generated as well as solvated fragment ions of the form (CO₂)(n)O(-). The non-decomposed complexes appear already within a resonant feature near threshold (0 eV) and also within a broad contribution between 1 and 4 eV which is composed of two resonances observed for example for (CO₂)(4)(-) at 2.2 eV and 3.1 eV (peak maxima). While the complexes observed around 3.1 eV are generated via the (2)Π(u) resonance as precursor with subsequent intracluster relaxation, the contribution around 2.2 eV can be associated with a resonant scattering feature, recently discovered in single CO₂ in the selective excitation of the higher energy member of the well known Fermi dyad [M. Allan, Phys. Rev. Lett., 2001, 87, 0332012]. Formation of (CO₂)(n)(-) in the threshold region involves vibrational Feshbach resonances (VFRs) as previously discovered via an ultrahigh resolution (1 meV) laser photoelectron attachment method [E. Leber, S. Barsotti, I. I. Fabrikant, J. M. Weber, M.-W. Ruf and H. Hotop, Eur. Phys. J. D, 2000, 12, 125]. The complexes (CO₂)(n)O(-) clearly arise from DEA at an individual molecule within the cluster involving both the (2)Π(u) and the core excited resonance. PMID:21491691

  2. Toward high-resolution optoelectronic retinal prosthesis

    NASA Astrophysics Data System (ADS)

    Palanker, Daniel; Huie, Philip; Vankov, Alexander; Asher, Alon; Baccus, Steven

    2005-04-01

    It has been already demonstrated that electrical stimulation of retina can produce visual percepts in blind patients suffering from macular degeneration and retinitis pigmentosa. Current retinal implants provide very low resolution (just a few electrodes), while several thousand pixels are required for functional restoration of sight. We present a design of the optoelectronic retinal prosthetic system that can activate a retinal stimulating array with pixel density up to 2,500 pix/mm2 (geometrically corresponding to a visual acuity of 20/80), and allows for natural eye scanning rather than scanning with a head-mounted camera. The system operates similarly to "virtual reality" imaging devices used in military and medical applications. An image from a video camera is projected by a goggle-mounted infrared LED-LCD display onto the retina, activating an array of powered photodiodes in the retinal implant. Such a system provides a broad field of vision by allowing for natural eye scanning. The goggles are transparent to visible light, thus allowing for simultaneous utilization of remaining natural vision along with prosthetic stimulation. Optical control of the implant allows for simple adjustment of image processing algorithms and for learning. A major prerequisite for high resolution stimulation is the proximity of neural cells to the stimulation sites. This can be achieved with sub-retinal implants constructed in a manner that directs migration of retinal cells to target areas. Two basic implant geometries are described: perforated membranes and protruding electrode arrays. Possibility of the tactile neural stimulation is also examined.

  3. Decadal prediction with a high resolution model

    NASA Astrophysics Data System (ADS)

    Monerie, Paul-Arthur; Valcke, Sophie; Terray, Laurent; Moine, Marie-Pierre

    2016-04-01

    The ability of a high resolution coupled atmosphere-ocean general circulation model (with a horizontal resolution of the quarter degree in the ocean and of about 50 km in the atmosphere) to predict the annual means of temperature, precipitation, sea-ice volume and extent is assessed. Reasonable skill in predicting sea surface temperatures and surface air temperature is obtained, especially over the North Atlantic, the tropical Atlantic and the Indian Ocean. The skill in predicting precipitations is weaker and not significant. The Sea Ice Extent and volume are also reasonably predicted in winter (March) and summer (September). It is however argued that the skill is mainly due to the atmosphere feeding in well-mixed GHGs. The mid-90's subpolar gyre warming is assessed. The model simulates a warming of the North Atlantic Ocean, associated with an increase of the meridional heat transport, a strengthening of the North Atlantic current and a deepening of the mixed layer over the Labrador Sea. The atmosphere plays a role in the warming through a modulation of the North Atlantic Oscillation and a shrinking of the subpolar gyre. At the 3-8 years lead-time, a negative anomaly of pressure, located south of the subpolar gyre is associated with the wind speed decrease over the subpolar gyre. It prevents oceanic heat-loss and favors the northward move, from the subtropical to the subpolar gyre, of anomalously warm and salty water, leading to its warming. We finally argued that the subpolar gyre warming is triggered by the ocean dynamic but the atmosphere can contributes to its sustaining. This work is realised in the framework of the EU FP7 SPECS Project.

  4. High Resolution Image Reconstruction from Projection of Low Resolution Images DIffering in Subpixel Shifts

    NASA Technical Reports Server (NTRS)

    Mareboyana, Manohar; Le Moigne-Stewart, Jacqueline; Bennett, Jerome

    2016-01-01

    In this paper, we demonstrate a simple algorithm that projects low resolution (LR) images differing in subpixel shifts on a high resolution (HR) also called super resolution (SR) grid. The algorithm is very effective in accuracy as well as time efficiency. A number of spatial interpolation techniques using nearest neighbor, inverse-distance weighted averages, Radial Basis Functions (RBF) etc. used in projection yield comparable results. For best accuracy of reconstructing SR image by a factor of two requires four LR images differing in four independent subpixel shifts. The algorithm has two steps: i) registration of low resolution images and (ii) shifting the low resolution images to align with reference image and projecting them on high resolution grid based on the shifts of each low resolution image using different interpolation techniques. Experiments are conducted by simulating low resolution images by subpixel shifts and subsampling of original high resolution image and the reconstructing the high resolution images from the simulated low resolution images. The results of accuracy of reconstruction are compared by using mean squared error measure between original high resolution image and reconstructed image. The algorithm was tested on remote sensing images and found to outperform previously proposed techniques such as Iterative Back Projection algorithm (IBP), Maximum Likelihood (ML), and Maximum a posterior (MAP) algorithms. The algorithm is robust and is not overly sensitive to the registration inaccuracies.

  5. High resolution image reconstruction from projection of low resolution images differing in subpixel shifts

    NASA Astrophysics Data System (ADS)

    Mareboyana, Manohar; Le Moigne, Jacqueline; Bennett, Jerome

    2016-05-01

    In this paper, we demonstrate simple algorithms that project low resolution (LR) images differing in subpixel shifts on a high resolution (HR) also called super resolution (SR) grid. The algorithms are very effective in accuracy as well as time efficiency. A number of spatial interpolation techniques using nearest neighbor, inverse-distance weighted averages, Radial Basis Functions (RBF) etc. are used in projection. For best accuracy of reconstructing SR image by a factor of two requires four LR images differing in four independent subpixel shifts. The algorithm has two steps: i) registration of low resolution images and (ii) shifting the low resolution images to align with reference image and projecting them on high resolution grid based on the shifts of each low resolution image using different interpolation techniques. Experiments are conducted by simulating low resolution images by subpixel shifts and subsampling of original high resolution image and the reconstructing the high resolution images from the simulated low resolution images. The results of accuracy of reconstruction are compared by using mean squared error measure between original high resolution image and reconstructed image. The algorithm was tested on remote sensing images and found to outperform previously proposed techniques such as Iterative Back Projection algorithm (IBP), Maximum Likelihood (ML) algorithms. The algorithms are robust and are not overly sensitive to the registration inaccuracies.

  6. High Resolution Airborne Shallow Water Mapping

    NASA Astrophysics Data System (ADS)

    Steinbacher, F.; Pfennigbauer, M.; Aufleger, M.; Ullrich, A.

    2012-07-01

    In order to meet the requirements of the European Water Framework Directive (EU-WFD), authorities face the problem of repeatedly performing area-wide surveying of all kinds of inland waters. Especially for mid-sized or small rivers this is a considerable challenge imposing insurmountable logistical efforts and costs. It is therefore investigated if large-scale surveying of a river system on an operational basis is feasible by employing airborne hydrographic laser scanning. In cooperation with the Bavarian Water Authority (WWA Weilheim) a pilot project was initiated by the Unit of Hydraulic Engineering at the University of Innsbruck and RIEGL Laser Measurement Systems exploiting the possibilities of a new LIDAR measurement system with high spatial resolution and high measurement rate to capture about 70 km of riverbed and foreland for the river Loisach in Bavaria/Germany and the estuary and parts of the shoreline (about 40km in length) of lake Ammersee. The entire area surveyed was referenced to classic terrestrial cross-section surveys with the aim to derive products for the monitoring and managing needs of the inland water bodies forced by the EU-WFD. The survey was performed in July 2011 by helicopter and airplane and took 3 days in total. In addition, high resolution areal images were taken to provide an optical reference, offering a wide range of possibilities on further research, monitoring, and managing responsibilities. The operating altitude was about 500 m to maintain eye-safety, even for the aided eye, the airspeed was about 55 kts for the helicopter and 75 kts for the aircraft. The helicopter was used in the alpine regions while the fixed wing aircraft was used in the plains and the urban area, using appropriate scan rates to receive evenly distributed point clouds. The resulting point density ranged from 10 to 25 points per square meter. By carefully selecting days with optimum water quality, satisfactory penetration down to the river bed was achieved

  7. Development of low temperature and high magnetic field X-ray diffraction facility

    NASA Astrophysics Data System (ADS)

    Shahee, Aga; Sharma, Shivani; Singh, K.; Lalla, N. P.; Chaddah, P.

    2015-06-01

    The current progress of materials science regarding multifunctional materials (MFM) has put forward the challenges to understand the microscopic origin of their properties. Most of such MFMs have magneto-elastic correlations. To investigate the underlying mechanism it is therefore essential to investigate the structural properties in the presence of magnetic field. Keeping this in view low temperature and high magnetic field (LTHM) powder x-ray diffraction (XRD), a unique state-of-art facility in the country has been developed at CSR Indore. This setup works on symmetric Bragg Brentano geometry using a parallel incident x-ray beam from a rotating anode source working at 17 kW. Using this one can do structural studies at non-ambient conditions i.e. at low- temperatures (2-300 K) and high magnetic field (+8 to -8 T). The available scattering angle ranges from 5° to 115° 2θ with a resolution better than 0.1°. The proper functioning of the setup has been checked using Si sample. The effect of magnetic field on the structural properties has been demonstrated on Pr0.5Sr0.5MnO3 sample. Clear effect of field induced phase transition has been observed. Moreover, the effect of zero field cooled and field cooled conditions is also observed.

  8. Development of low temperature and high magnetic field X-ray diffraction facility

    SciTech Connect

    Shahee, Aga; Sharma, Shivani; Singh, K.; Lalla, N. P. Chaddah, P.

    2015-06-24

    The current progress of materials science regarding multifunctional materials (MFM) has put forward the challenges to understand the microscopic origin of their properties. Most of such MFMs have magneto-elastic correlations. To investigate the underlying mechanism it is therefore essential to investigate the structural properties in the presence of magnetic field. Keeping this in view low temperature and high magnetic field (LTHM) powder x-ray diffraction (XRD), a unique state-of-art facility in the country has been developed at CSR Indore. This setup works on symmetric Bragg Brentano geometry using a parallel incident x-ray beam from a rotating anode source working at 17 kW. Using this one can do structural studies at non-ambient conditions i.e. at low- temperatures (2-300 K) and high magnetic field (+8 to −8 T). The available scattering angle ranges from 5° to 115° 2θ with a resolution better than 0.1°. The proper functioning of the setup has been checked using Si sample. The effect of magnetic field on the structural properties has been demonstrated on Pr{sub 0.5}Sr{sub 0.5}MnO{sub 3} sample. Clear effect of field induced phase transition has been observed. Moreover, the effect of zero field cooled and field cooled conditions is also observed.

  9. High-resolution CCD imaging alternatives

    NASA Astrophysics Data System (ADS)

    Brown, D. L.; Acker, D. E.

    1992-08-01

    High resolution CCD color cameras have recently stimulated the interest of a large number of potential end-users for a wide range of practical applications. Real-time High Definition Television (HDTV) systems are now being used or considered for use in applications ranging from entertainment program origination through digital image storage to medical and scientific research. HDTV generation of electronic images offers significant cost and time-saving advantages over the use of film in such applications. Further in still image systems electronic image capture is faster and more efficient than conventional image scanners. The CCD still camera can capture 3-dimensional objects into the computing environment directly without having to shoot a picture on film develop it and then scan the image into a computer. 2. EXTENDING CCD TECHNOLOGY BEYOND BROADCAST Most standard production CCD sensor chips are made for broadcast-compatible systems. One popular CCD and the basis for this discussion offers arrays of roughly 750 x 580 picture elements (pixels) or a total array of approximately 435 pixels (see Fig. 1). FOR. A has developed a technique to increase the number of available pixels for a given image compared to that produced by the standard CCD itself. Using an inter-lined CCD with an overall spatial structure several times larger than the photo-sensitive sensor areas each of the CCD sensors is shifted in two dimensions in order to fill in spatial gaps between adjacent sensors.

  10. High resolution rainfall measurements around a high rise building

    NASA Astrophysics Data System (ADS)

    de Jong, Stijn; van de Giesen, Nick; Hut, Rolf

    2010-05-01

    A number of disdrometers (acoustic rain gauge) has been placed around a high rise building on a place where variation in spatial distribution of precipitation is expected, to show the advantage of high resolution rainfall measurements in a urban area. The standard recommendation for the placement of a rain gauge is that the gauge is positioned at a distance corresponding to two to four times the height of any nearby obstruction to obtain a measurement that is representative for the surrounding area. In an urban area it is almost impossible to find a location that suits this recommendation. Rain measurements in urban area with a high spatial resolution are desired, to obtain a better understanding of urban hydrology, but costs may be prohibitive. A low cost disdrometer has been developed to make it affordable to perform rain measurements with a very high spatial and temporal resolution. The disdrometer is tested around a high rise building on the Delft University of Technology campus. The faculty of Electrical Engineering, Mathematics and Computer Science (EWI) on the campus of Delft University of Technology consists of a high rise building of 90 meters and a low rise building of 15 meters. Sensors are placed on the low rise building to measure the impact of the high rise building on the spatial distribution of precipitation. In addition to the disdrometer, two other methods are used to measure precipitation differences around the high rise building. Tipping bucket rain gauges have been placed on two elevator shaft housings on the low rise building, of which one is situated in the shadow of the high rise building. Simultaneously, runoff from the elevator shafts is measured. A comparison of the different methods will be presented.

  11. Structural analysis of organic films by electron diffraction at high and low energy

    NASA Astrophysics Data System (ADS)

    Stevens, Michael Richard

    This dissertation concerns the importance of electron diffraction as a structural tool in the analysis of organic crystalline materials, focusing on those specimens for which X-ray analysis is insufficient. It extends the range of knowledge needed for solving common problems that occur in such analysis: sample preparation, damage processes, extraction of crystallographic phases, and specimen irregularities. This research reports the first direct measurement of electron beam damage in transmission for beam energies below the carbon-K edge and in part extends the research of Howie, Isaacson, Fryer, and others. Here, it is confirmed that a correlation exists between the carbon-K shell ionization and the damage cross section by direct measurement of spot fading in transmission at beam energies ranging from 200eV to 1000eV. The threshold in damage was directly measured confirming the hypothesis linking K shell ionization to damage in the aromatic specimens; however, for the aliphatic specimens, the threshold effects were not as significant, indicating the importance of other damage processes which are explained. Calculations based on the experimental data show a region of beam energy which may be utilized to image single molecules, in contradiction to previous theory. Utilizing energy filtering, Kohler mode, cryo-microscopy, and standard low-dose techniques, the structures of two organic specimens which could not be solved by X-ray are solved by electron diffraction. These specimens exhibited high sensitivity to the electron beam and were thought good candidates for the project. The first is a Diacetylene polymer 1,2 bis (10,12 tricosadiynoyl)-sn-glycero-3phosphocholine (DC89PC) with a large unit cell, here only a partial structure solution was possible by Direct Methods (DM) phasing and chemical modeling. The full solution will require new sample preparation techniques. Film bending was observed directly, and the resulting effects to the diffraction data are explained

  12. The High Time Resolution Radio Sky

    NASA Astrophysics Data System (ADS)

    Thornton, D.

    2013-11-01

    Pulsars are laboratories for extreme physics unachievable on Earth. As individual sources and possible orbital companions can be used to study magnetospheric, emission, and superfluid physics, general relativistic effects, and stellar and binary evolution. As populations they exhibit a wide range of sub-types, with parameters varying by many orders of magnitude signifying fundamental differences in their evolutionary history and potential uses. There are currently around 2200 known pulsars in the Milky Way, the Magellanic clouds, and globular clusters, most of which have been discovered with radio survey observations. These observations, as well as being suitable for detecting the repeating signals from pulsars, are well suited for identifying other transient astronomical radio bursts that last just a few milliseconds that either singular in nature, or rarely repeating. Prior to the work of this thesis non-repeating radio transients at extragalactic distances had possibly been discovered, however with just one example status a real astronomical sources was in doubt. Finding more of these sources was a vital to proving they were real and to open up the universe for millisecond-duration radio astronomy. The High Time Resolution Universe survey uses the multibeam receiver on the 64-m Parkes radio telescope to search the whole visible sky for pulsars and transients. The temporal and spectral resolution of the receiver and the digital back-end enable the detection of relatively faint, and distant radio sources. From the Parkes telescope a large portion of the Galactic plane can be seen, a rich hunting ground for radio pulsars of all types, while previously poorly surveyed regions away from the Galactic plane are also covered. I have made a number of pulsar discoveries in the survey, including some rare systems. These include PSR J1226-6208, a possible double neutron star system in a remarkably circular orbit, PSR J1431-471 which is being eclipsed by its companion with

  13. Diffractive hadroproduction of W{sup {+-}} and Z{sup 0} bosons at high energies

    SciTech Connect

    Ducati, M. B. Gay; Machado, M. M.; Machado, M. V. T.

    2008-10-13

    An analysis of W{sup {+-}} and Z{sup 0} hard diffractive hadroproduction at high energies is presented obtained using the simple assumption of Regge factorization and considering the recent diffractive parton density functions extracted by the H1 Collaboration at DESY-HERA. The corresponding multiple Pomeron exchange corrections to the single Pomeron one is considered by taking into account by a gap survival probability factor. It is shown that the ratio of diffractive to nondiffractive boson production is in good agreement with the Tevatron data. Estimations which are relevant for the incoming measurements at the LHC are discussed.

  14. Diffractive hadroproduction of W{sup {+-}} and Z{sup 0} bosons at high energies

    SciTech Connect

    Gay Ducati, M. B.; Machado, M. M.; Machado, M. V. T.

    2007-06-01

    Results from a phenomenological analysis of W and Z hard diffractive hadroproduction at high energies are reported. Using the Regge factorization approach, we consider the recent diffractive parton density functions extracted by the H1 Collaboration at DESY-HERA. In addition, we take into account multiple Pomeron exchange corrections considering a gap survival probability factor. It is found that the ratio of diffractive to nondiffractive boson production is in good agreement with the CDF and D0 data. We make predictions which could be compared to future measurements at the LHC.

  15. High resolution scanning electron microscopy of plasmodesmata.

    PubMed

    Brecknock, Sarah; Dibbayawan, Teresa P; Vesk, Maret; Vesk, Peter A; Faulkner, Christine; Barton, Deborah A; Overall, Robyn L

    2011-10-01

    Symplastic transport occurs between neighbouring plant cells through functionally and structurally dynamic channels called plasmodesmata (PD). Relatively little is known about the composition of PD or the mechanisms that facilitate molecular transport into neighbouring cells. While transmission electron microscopy (TEM) provides 2-dimensional information about the structural components of PD, 3-dimensional information is difficult to extract from ultrathin sections. This study has exploited high-resolution scanning electron microscopy (HRSEM) to reveal the 3-dimensional morphology of PD in the cell walls of algae, ferns and higher plants. Varied patterns of PD were observed in the walls, ranging from uniformly distributed individual PD to discrete clusters. Occasionally the thick walls of the giant alga Chara were fractured, revealing the surface morphology of PD within. External structures such as spokes, spirals and mesh were observed surrounding the PD. Enzymatic digestions of cell wall components indicate that cellulose or pectin either compose or stabilise the extracellular spokes. Occasionally, the PD were fractured open and desmotubule-like structures and other particles were observed in their central regions. Our observations add weight to the argument that Chara PD contain desmotubules and are morphologically similar to higher plant PD.

  16. High-resolution imaging using endoscopic holography

    NASA Astrophysics Data System (ADS)

    Bjelkhagen, Hans I.

    1990-08-01

    Endoscopic holography or endoholography combines the features of endoscopy and holography. The purpose of endoholographic imaging is to provide the physician with a unique means of extending diagnosis by providing a life-like record of tissue. Endoholographic recording will provide means for microscopic examination of tissue and in some cases may obviate the need to excise specimens for biopsy. In this method holograms which have the unique properties of three-dimensionality large focal depth and high resolution are made with a newly designed endoscope. The endoscope uses a single-mode optical fiber for illumination and single-beam reflection holograms are recorded in close contact with the tissue at the distal end of the endoscope. The holograms are viewed under a microscope. By using the proper combinations of dyes for staining specific tissue types with various wavelengths of laser illumination increased contrast on the cellular level can be obtained. Using dyes such as rose bengal in combination with the 514. 5 nm line of an argon ion laser and trypan blue or methylene blue with the 647. 1 nm line of a krypton ion laser holograms of the stained colon of a dog showed the architecture of the colon''s columnar epithelial cells. It is hoped through chronological study using this method in-vivo an increased understanding of the etiology and pathology of diseases such as Crohn''s diseases colitis proctitis and several different forms of cancer will help to their control. 1.

  17. Holographic high-resolution endoscopic image recording

    NASA Astrophysics Data System (ADS)

    Bjelkhagen, Hans I.

    1991-03-01

    Endoscopic holography or endoholography combines the features of endoscopy and holography. The purpose of endoholographic imaging is to provide the physician with a unique means of extending diagnosis by providing a life-like record of tissue. Endoholographic recording will provide means for microscopic examination of tissue and in some cases may obviate the need to excise specimens for biopsy. In this method holograms which have the unique properties of three-dimensionality large focal depth and high resolution are made with a newly designed endoscope. The endoscope uses a single-mode optical fiber for illumination and single-beam reflection holograms are recorded in close contact with the tissue at the distal end of the endoscope. The holograms are viewed under a microscope. By using the proper combinations of dyes for staining specific tissue types with various wavelengths of laser illumination increased contrast on the cellular level can be obtained. Using dyes such as rose bengal in combination with the 514. 5 nm line of an argon ion laser and trypan blue or methylene blue with the 647. 1 nm line of a krypton ion laser holograms of the stained colon of a dog showed the architecture of the colon''s columnar epithelial cells. It is hoped through chronological study using this method in-vivo an increased understanding of the etiology and pathology of diseases such as Crohn''s diseases colitis proctitis and several different forms of cancer will help

  18. High vertical resolution crosswell seismic imaging

    DOEpatents

    Lazaratos, Spyridon K.

    1999-12-07

    A method for producing high vertical resolution seismic images from crosswell data is disclosed. In accordance with one aspect of the disclosure, a set of vertically spaced, generally horizontally extending continuous layers and associated nodes are defined within a region between two boreholes. The specific number of nodes is selected such that the value of a particular characteristic of the subterranean region at each of the nodes is one which can be determined from the seismic data. Once values are established at the nodes, values of the particular characteristic are assigned to positions between the node points of each layer based on the values at node within that layer and without regard to the values at node points within any other layer. A seismic map is produced using the node values and the assigned values therebetween. In accordance with another aspect of the disclosure, an approximate model of the region is established using direct arrival traveltime data. Thereafter, the approximate model is adjusted using reflected arrival data. In accordance with still another aspect of the disclosure, correction is provided for well deviation. An associated technique which provides improvements in ray tracing is also disclosed.

  19. Europa Ice Cliffs-High Resolution

    NASA Technical Reports Server (NTRS)

    1998-01-01

    This view of the Conamara Chaos region on Jupiter's moon Europa shows cliffs along the edges of high-standing ice plates. The washboard texture of the older terrain has been broken into plates which are separated by material with a jumbled texture. The cliffs themselves are rough and broadly scalloped, and smooth debris shed from the cliff faces is piled along the base. For scale, the height of the cliffs and size of the scalloped indentations are comparable to the famous cliff face of Mount Rushmore in South Dakota.

    This image was taken on December 16, 1997 at a range of 900 kilometers (540 miles) by the solid state imaging system (camera) on NASA's Galileo spacecraft. North is to the top right of the picture, and the sun illuminates the surface from the east. This image, centered at approximately 8 degrees north latitude and 273 degrees west longitude, covers an area approximately 1.5 kilometers by 4 kilometers (0.9 miles by 2.4 miles). The resolution is 9 meters (30 feet) per picture element.

    The Jet Propulsion Laboratory, Pasadena, CA manages the Galileo mission for NASA's Office of Space Science, Washington, DC. JPL is an operating division of California Institute of Technology (Caltech).

    This image and other images and data received from Galileo are posted on the World Wide Web, on the Galileo mission home page at URL http://www.jpl.nasa.gov/ galileo.

  20. High-resolution microwave images of Saturn

    NASA Technical Reports Server (NTRS)

    Grossman, A. W.; Muhleman, D. O.; Berge, G. L.

    1989-01-01

    An analysis of high-resolution microwave images of Saturn and Saturn's individual rings is presented. Radio interferometric observations of Saturn taken at the Very Large Array in New Mexico at wavelengths of 2 and 6 centimeters reveal interesting new features in both the atmosphere and rings. The resulting maps show an increase in brightness temperature of about 3 K from equator to pole at both wavelengths, while the 6-centimeter map shows a bright band at northern midlatitudes. The data are consistent with a radiative transfer model of the atmosphere that constrains the well-mixed, fully saturated, NH3 mixing ratio to be 0.00012 in a region just below the NH3 clouds, while the observed bright band indicates a 25 percent relative decrease of NH3 in northern midlatitudes. Brightness temperatures for the classical rings are presented. Ring brightness shows a variation with azimuth and is linearly polarized at an average value of about 5 percent. The variations in ring polarization suggest that at least 20 percent of the ring brightness is the result of a single scattering process.

  1. The High Resolution Tropospheric Ozone Residual

    NASA Technical Reports Server (NTRS)

    Schoeberl, Mark R.

    2006-01-01

    The co-flight of the MLS stratospheric limb sounder and the Ozone Monitoring Instrument (OMI) provides the capability of computing the Tropospheric Ozone Residual (TOR) in much greater detail [Ziemke et al., 2006]. Using forward trajectory calculations of MLS ozone measurements combined with OMI column ozone we have developed a high horizontal resolution tropospheric ozone residual (HTOR) which can provide even more detail than the standard TOR product. HTOR is especially useful for extra-tropical studies of tropospheric ozone transport. We find that both the Pacific pollution corridor (East Asia to Alaska) and the Atlantic pollution corridor (North America east coast to Europe) are also preferred locations for strat-trop folds leading to systematic overestimates of pollution amounts. In fact, fold events appear to dominate extra-tropical Northern Hemisphere day-to-day maps of HTOR. Model estimates of the tropospheric column are in reasonable agreement with the HTOR amounts when offsets due to different tropopause height calculations are taken into consideration.

  2. Laser wavelength comparison by high resolution interferometry.

    PubMed

    Layer, H P; Deslattes, R D; Schweitzer, W G

    1976-03-01

    High resolution interferometry has been used to determine the wavelength ratio between two molecularly stabilized He-Ne lasers, one locked to a methane absorption at 3.39 microm and the other locked to the k peak of (129)I(2) at 633 nm. An optical beat frequency technique gave fractional orders while a microwave sideband method yielded the integer parts. Conventional (third derivative) peak seeking servoes stabilized both laser and cavity lengths. Reproducibility of the electronic control system and optics was a few parts in 10(12), while systematic errors associated with curvature of the cavity mirrors limited the accuracy of the wavelength ratio measurement to 2 parts in 10(10). The measured wavelength ratio of the methane stabilized He-Ne laser at 3.39 microm [P(7) line, nu(3) band] to the (129)I(2) (k peak) stabilized He-Ne laser at 633 nm was 5.359 049 260 6 (0.000 2 ppm). This ratio agrees with that calculated from the (lower accuracy) results of earlier wavelength measurements made relative to the (86)Kr standard. Its higher accuracy thus permits a provisional extension of the frequency scale based on the cesium oscillator into the visible spectrum.

  3. High-resolution microwave images of saturn.

    PubMed

    Grossman, A W; Muhleman, D O; Berge, G L

    1989-09-15

    An analysis of high-resolution microwave images of Saturn and Saturn's individual rings is presented. Radio interferometric observations of Saturn taken at the Very Large Array in New Mexico at wavelengths of 2 and 6 centimeters reveal interesting new features in both the atmosphere and rings. The resulting maps show an increase in brightness temperature of about 3 K from equator to pole at both wavelengths, while the 6-centimeter map shows a bright band at northern mid-latitudes. The data are consistent with a radiative transfer model of the atmosphere that constrains the well-mixed, fully saturated, NH(3) mixing ratio to be 1.2 x 10(-4) in a region just below the NH(3) clouds, while the observed bright band indicates a 25 percent relative decrease of NH(3) in northern mid-latitudes. Brightness temperatures for the classical rings are presented. Ring brightness shows a variation with azimuth and is linearly polarized at an average value of about 5 percent. The variations in ring polarization suggest that at least 20 percent of the ring brightness is the result of a single scattering process.

  4. Apparatus and fast method for cancer cell classification based on high harmonic coherent diffraction imaging in reflection geometry

    NASA Astrophysics Data System (ADS)

    Zürch, Michael; Foertsch, Stefan; Matzas, Mark; Pachmann, Katharina; Kuth, Rainer; Spielmann, Christian

    2014-03-01

    In cancer treatment it is highly desirable to identify and /or classify individual cancer cells in real time. Nowadays, the standard method is PCR which is costly and time-consuming. Here we present a different approach to rapidly classify cell types: we measure the pattern of coherently diffracted extreme ultraviolet radiation (XUV radiation at 38nm wavelength), allowing to distinguish different single breast cancer cell types. The output of our laser driven XUV light source is focused onto a single unstained and unlabeled cancer cell, and the resulting diffraction pattern is measured in reflection geometry. As we will further show, the outer shape of the object can be retrieved from the diffraction pattern with sub-micron resolution. For classification it is often not necessary to retrieve the image, it is only necessary to compare the diffraction patterns which can be regarded as a spatial fingerprint of the specimen. For a proof-of-principle experiment MCF7 and SKBR3 breast cancer cells were pipetted on gold-coated silica slides. From illuminating each single cell and measuring a diffraction pattern we could distinguish between them. Owing to the short bursts of coherent soft x-ray light, one could also image temporal changes of the specimen, i.e. studying changes upon drug application once the desired specimen is found by the classification method. Using a more powerful laser, even classifying circulating tumor cells (CTC) at a high throughput seems possible. This lab-sized equipment will allow fast classification of any kind of cells, bacteria or even viruses in the near future.

  5. High-resolution ophthalmic imaging system

    DOEpatents

    Olivier, Scot S.; Carrano, Carmen J.

    2007-12-04

    A system for providing an improved resolution retina image comprising an imaging camera for capturing a retina image and a computer system operatively connected to the imaging camera, the computer producing short exposures of the retina image and providing speckle processing of the short exposures to provide the improved resolution retina image. The system comprises the steps of capturing a retina image, producing short exposures of the retina image, and speckle processing the short exposures of the retina image to provide the improved resolution retina image.

  6. High-Resolution He I Spectropolarimetry of Chromospheric Fibrils

    NASA Astrophysics Data System (ADS)

    Schad, Thomas A.; Penn, M. J.

    2011-05-01

    Of spectral diagnostics for the magnetic field in the solar chromosphere, the He I triplet at 1083 nm offers a comparatively simple means to determine both the magnitude and direction of the field vector. The triplet forms over a narrow range of heights when compared to strong optical lines, and recently the mechanisms that influence its polarization have been well characterized, thus allowing inversions of the magnetic field from observed Stokes profiles. We discuss recent work with the Facility Infrared Spectropolarimeter (FIRS) at the Dunn Solar Telescope (DST), New Mexico, USA to measure and infer the magnetic field vector of chromospheric fibrils. FIRS is designed to perform fast diffraction-limited dual-beam spectropolarimetry simultaneously at visible and infrared wavelengths through the use of multiple slits and narrowband filters. It can be operated in congress with the High Order Adaptive Optics (HOAO) system of the DST as well as with the Interferometric BiDimensional Spectropolarimeter (IBIS). Here we present high-resolution FIRS observations of chromospheric fibrils which employ the HOAO system under great seeing. We calibrate these observations for the full effect of the FIRS-DST combined analysis system on the Stokes vector which allow us to define the observed Stokes geometry with respect to solar coordinates. Full inversions of our measurements incorporating the effects of atomic polarization, the Hanle effect, and the Zeeman effect will be presented showing support for chromospheric fibrils that are aligned with the magnetic field direction.

  7. Atomistic Simulations of High-intensity XFEL Pulses on Diffractive Imaging of Nano-sized Systems

    NASA Astrophysics Data System (ADS)

    Ho, Phay; Knight, Christopher; Young, Linda; Tegze, Miklos; Faigel, Gyula

    We have developed a large-scale atomistic computational method based on a combined Monte Carlo and Molecular Dynamics (MC/MD) method to simulate XFEL-induced radiation damage dynamics of complex materials. The MD algorithm is used to propagate the trajectories of electrons, ions and atoms forward in time and the quantum nature of interactions with an XFEL pulse is accounted for by a MC method to calculate probabilities of electronic transitions. Our code has good scalability with MPI/OpenMP parallelization, and it has been run on Mira, a petascale system at the Argonne Leardership Computing Facility, with particle number >50 million. Using this code, we have examined the impact of high-intensity 8-keV XFEL pulses on the x-ray diffraction patterns of argon clusters. The obtained patterns show strong pulse parameter dependence, providing evidence of significant lattice rearrangement and diffuse scattering. Real-space electronic reconstruction was performed using phase retrieval methods. We found that the structure of the argon cluster can be recovered with atomic resolution even in the presence of considerable radiation damage. This material is based upon work supported by the U.S. Department of Energy, Office of Science, Office of Basic Energy Sciences, Chemical Sciences, Geosciences, and Biosciences Division under Contract No. DE-AC02-06CH11357.

  8. High resolution in galaxy photometry and imaging

    NASA Astrophysics Data System (ADS)

    Nieto, J.-L.; Lelievre, G.

    Techniques for increasing the resolution of ground-based photometric observations of galaxies are discussed. The theoretical limitations on resolution and their implications for choosing telescope size at a given site considered, with an emphasis on the importance of the Fried (1966) parameter r0. The techniques recommended are shortening exposure time, selection of the highest-resolution images, and a posteriori digital image processing (as opposed to active-mirror image stabilization or the cine-CCD system of Fort et al., 1984). The value of the increased resolution (by a factor of 2) achieved at Pic du Midi observatory for studies of detailed structure in extragalactic objects, for determining the distance to galaxies, and for probing the central cores of galaxies is indicated.

  9. A High-Resolution Global Climate Simulation

    SciTech Connect

    Duffy, P B

    2001-01-23

    A major factor limiting the quality and usefulness of global climate models is the coarse spatial resolution of these models. Global climate models today are typically run at resolutions of {approx}300 km (or even coarser) meaning that the smallest features represented are 300 km across. As Figure 1 shows, this resolution does not allow adequate representation of small or even large topographic features (e.g. the Sierra Nevada mountains). As a result of this and other problems, coarse-resolution global models do not come close to accurately simulating climate on regional spatial scales (e.g. within California). Results on continental and larger sales are much more realistic. An important consequence of this inability to simulate regional climate is that global climate model results cannot be used as the basis of assessments of potential societal impacts of climate change (e.g. effects on agriculture in the Central Valley, on management of water resources, etc.).

  10. High-pressure X-ray diffraction studies on β-Ni(OH) 2

    NASA Astrophysics Data System (ADS)

    Garg, Nandini; Karmakar, S.; Sharma, Surinder M.; Busseto, E.; Sikka, S. K.

    2004-06-01

    Using in situ X-ray diffraction, we have investigated the high-pressure behavior of β-Ni(OH) 2 upto 10 GPa. No phase transformation was observed in this pressure range. Our studies show that the diffraction peaks show inherent broadening on increase of pressure. This suggests that H-lattice may be already disordered at ambient conditions and further increase in pressure may increase the lattice disorder as observed in Co(OH) 2 (Phys. Rev. B 66 (2002) 134301).

  11. High resolution fire risk mapping in Italy

    NASA Astrophysics Data System (ADS)

    Fiorucci, Paolo; Biondi, Guido; Campo, Lorenzo; D'Andrea, Mirko

    2014-05-01

    extinguishing actions, leaving more resources to improve safety in areas at risk. With the availability of fire perimeters mapped over a period spanning from 5 to 10 years, depending by the region, a procedure was defined in order to assess areas at risk with high spatial resolution (900 m2) based on objective criteria by observing past fire events. The availability of fire perimeters combined with a detailed knowledge of topography and land cover allowed to understand which are the main features involved in forest fire occurrences and their behaviour. The seasonality of the fire regime was also considered, partitioning the analysis in two macro season (November- April and May- October). In addition, the total precipitation obtained from the interpolation of 30 years-long time series from 460 raingauges and the average air temperature obtained downscaling 30 years ERA-INTERIM data series were considered. About 48000 fire perimeters which burnt about 5500 km2 were considered in the analysis. The analysis has been carried out at 30 m spatial resolution. Some important considerations relating to climate and the territorial features that characterize the fire regime at national level contribute to better understand the forest fire phenomena. These results allow to define new strategies for forest fire prevention and management extensible to other geographical areas.

  12. A pulse-front-tilt-compensated streaked optical spectrometer with high throughput and picosecond time resolution

    NASA Astrophysics Data System (ADS)

    Katz, J.; Boni, R.; Rivlis, R.; Muir, C.; Froula, D. H.

    2016-11-01

    A high-throughput, broadband optical spectrometer coupled to the Rochester optical streak system equipped with a Photonis P820 streak tube was designed to record time-resolved spectra with 1-ps time resolution. Spectral resolution of 0.8 nm is achieved over a wavelength coverage range of 480 to 580 nm, using a 300-groove/mm diffraction grating in conjunction with a pair of 225-mm-focal-length doublets operating at an f/2.9 aperture. Overall pulse-front tilt across the beam diameter generated by the diffraction grating is reduced by preferentially delaying discrete segments of the collimated input beam using a 34-element reflective echelon optic. The introduced delay temporally aligns the beam segments and the net pulse-front tilt is limited to the accumulation across an individual sub-element. The resulting spectrometer design balances resolving power and pulse-front tilt while maintaining high throughput.

  13. Analytical description of high-aperture STED resolution with 0–2π vortex phase modulation

    PubMed Central

    Xie, Hao; Liu, Yujia; Jin, Dayong; Santangelo, Philip J.; Xi, Peng

    2014-01-01

    Stimulated emission depletion (STED) can achieve optical superresolution, with the optical diffraction limit broken by the suppression on the periphery of the fluorescent focal spot. Previously, it is generally experimentally accepted that there exists an inverse square root relationship with the STED power and the resolution, but with arbitrary coefficients in expression. In this paper, we have removed the arbitrary coefficients by exploring the relationship between the STED power and the achievable resolution from vector optical theory for the widely used 0–2π vortex phase modulation. Electromagnetic fields of the focal region of a high numerical aperture objective are calculated and approximated into polynomials of radius in the focal plane, and analytical expression of resolution as a function of the STED intensity has been derived. As a result, the resolution can be estimated directly from the measurement of the saturation power of the dye and the STED power applied in the region of high STED power. PMID:24323224

  14. Single sensor processing to obtain high resolution color component signals

    NASA Technical Reports Server (NTRS)

    Glenn, William E. (Inventor)

    2010-01-01

    A method for generating color video signals representative of color images of a scene includes the following steps: focusing light from the scene on an electronic image sensor via a filter having a tri-color filter pattern; producing, from outputs of the sensor, first and second relatively low resolution luminance signals; producing, from outputs of the sensor, a relatively high resolution luminance signal; producing, from a ratio of the relatively high resolution luminance signal to the first relatively low resolution luminance signal, a high band luminance component signal; producing, from outputs of the sensor, relatively low resolution color component signals; and combining each of the relatively low resolution color component signals with the high band luminance component signal to obtain relatively high resolution color component signals.

  15. Large Scale, High Resolution, Mantle Dynamics Modeling

    NASA Astrophysics Data System (ADS)

    Geenen, T.; Berg, A. V.; Spakman, W.

    2007-12-01

    To model the geodynamic evolution of plate convergence, subduction and collision and to allow for a connection to various types of observational data, geophysical, geodetical and geological, we developed a 4D (space-time) numerical mantle convection code. The model is based on a spherical 3D Eulerian fem model, with quadratic elements, on top of which we constructed a 3D Lagrangian particle in cell(PIC) method. We use the PIC method to transport material properties and to incorporate a viscoelastic rheology. Since capturing small scale processes associated with localization phenomena require a high resolution, we spend a considerable effort on implementing solvers suitable to solve for models with over 100 million degrees of freedom. We implemented Additive Schwartz type ILU based methods in combination with a Krylov solver, GMRES. However we found that for problems with over 500 thousend degrees of freedom the convergence of the solver degraded severely. This observation is known from the literature [Saad, 2003] and results from the local character of the ILU preconditioner resulting in a poor approximation of the inverse of A for large A. The size of A for which ILU is no longer usable depends on the condition of A and on the amount of fill in allowed for the ILU preconditioner. We found that for our problems with over 5×105 degrees of freedom convergence became to slow to solve the system within an acceptable amount of walltime, one minute, even when allowing for considerable amount of fill in. We also implemented MUMPS and found good scaling results for problems up to 107 degrees of freedom for up to 32 CPU¡¯s. For problems with over 100 million degrees of freedom we implemented Algebraic Multigrid type methods (AMG) from the ML library [Sala, 2006]. Since multigrid methods are most effective for single parameter problems, we rebuild our model to use the SIMPLE method in the Stokes solver [Patankar, 1980]. We present scaling results from these solvers for 3D

  16. High resolution at low beam energy in the SEM: resolution measurement of a monochromated SEM.

    PubMed

    Michael, Joseph R

    2011-01-01

    The resolution of secondary electron low beam energy imaging of a scanning electron microscope equipped with a monochromator is quantitatively measured using the contrast transfer function (CTF) method. High-resolution images, with sub-nm resolutions, were produced using low beam energies. The use of a monochromator is shown to quantitatively improve the resolution of the SEM at low beam energies by limiting the chromatic aberration contribution to the electron probe size as demonstrated with calculations and images of suitable samples. Secondary electron image resolution at low beam energies is ultimately limited by noise in the images as shown by the CTFs.

  17. MULTIPULSE - high resolution and high power in one TDEM system

    NASA Astrophysics Data System (ADS)

    Chen, Tianyou; Hodges, Greg; Miles, Philip

    2015-09-01

    An airborne time domain electromagnetic (TEM) system with high resolution and great depth of exploration is desired for geological mapping as well as for mineral exploration. The MULTIPULSE technology enables an airborne TEM system to transmit a high power pulse (a half-sine, for instance) and one or multiple low power pulse(s) (trapezoid or square) within a half-cycle. The high power pulse ensures good depth of exploration and the low power pulse allows a fast transmitter current turn off and earlier off-time measurement thus providing higher frequency signals, which allows higher near-surface resolution and better sensitivity to weak conductors. The power spectrum of the MULTIPULSE waveform comprising a half-sine and a trapezoid pulse clearly shows increased power in the higher frequency range (> ~2.3 kHz) compared to that of a single half-sine waveform. The addition of the low power trapezoid pulse extends the range of the sensitivity 10-fold towards the weak conductors, expanding the geological conductivity range of a system and increasing the scope of its applications. The MULTIPULSE technology can be applied to standard single-pulse airborne TEM systems on both helicopter and fixed-wing. We field tested the HELITEM MULTIPULSE system over a wire-loop in Iroquois Falls, demonstrating the different sensitivity of the high and low power pulses to the overburden and the wire-loop. We also tested both HELITEM and GEOTEM MULTIPULSE systems over a layered oil sand geologic setting in Fort McMurray, Alberta, Canada. The results show comparable shallow geologic resolution of the MULTIPULSE to that of the RESOLVE system while maintaining superior depth of exploration, confirming the increased geological conductivity range of a system employing MULTIPULSE compared to the standard single-pulse systems.

  18. High Resolution Sensor for Nuclear Waste Characterization

    SciTech Connect

    Shah, Kanai; Higgins, William; Van Loef, Edgar V

    2006-01-23

    Gamma ray spectrometers are an important tool in the characterization of radioactive waste. Important requirements for gamma ray spectrometers used in this application include good energy resolution, high detection efficiency, compact size, light weight, portability, and low power requirements. None of the available spectrometers satisfy all of these requirements. The goal of the Phase I research was to investigate lanthanum halide and related scintillators for nuclear waste clean-up. LaBr3:Ce remains a very promising scintillator with high light yield and fast response. CeBr3 is attractive because it is very similar to LaBr3:Ce in terms of scintillation properties and also has the advantage of much lower self-radioactivity, which may be important in some applications. CeBr3 also shows slightly higher light yield at higher temperatures than LaBr3 and may be easier to produce with high uniformity in large volume since it does not require any dopants. Among the mixed lanthanum halides, the light yield of LaBrxI3-x:Ce is lower and the difference in crystal structure of the binaries (LaBr3 and LaI3) makes it difficult to grow high quality crystals of the ternary as the iodine concentration is increased. On the other hand, LaBrxCl3-x:Ce provides excellent performance. Its light output is high and it provides fast response. The crystal structures of the two binaries (LaBr3 and LaCl3) are very similar. Overall, its scintillation properties are very similar to those for LaBr3:Ce. While the gamma-ray stopping efficiency of LaBrxCl3-x:Ce is lower than that for LaBr3:Ce (primarily because the density of LaCl3 is lower than that of LaBr3), it may be easier to grow large crystals of LaBrxCl3-x:Ce than LaBr3:Ce since in some instances (for example, CdxZn1-xTe), the ternary compounds provide increased flexibility in the crystal lattice. Among the new dopants, Eu2+ and Pr3+, tried in LaBr3 host crystals, the Eu2+ doped samples exhibited low light output. This was mostly because a

  19. Simultaneous X-ray diffraction and phase-contrast imaging for investigating material deformation mechanisms during high-rate loading

    DOE PAGESBeta

    Hudspeth, M.; Sun, T.; Parab, N.; Guo, Z.; Fezzaa, K.; Luo, S.; Chen, W.

    2015-01-01

    Using a high-speed camera and an intensified charge-coupled device (ICCD), a simultaneous X-ray imaging and diffraction technique has been developed for studying dynamic material behaviors during high-rate tensile loading. A Kolsky tension bar has been used to pull samples at 1000 s–1and 5000 s–1strain-rates for super-elastic equiatomic NiTi and 1100-O series aluminium, respectively. By altering the ICCD gating time, temporal resolutions of 100 ps and 3.37 µs have been achieved in capturing the diffraction patterns of interest, thus equating to single-pulse and 22-pulse X-ray exposure. Furthermore, the sample through-thickness deformation process has been simultaneously imagedviaphase-contrast imaging. It is also shownmore » that adequate signal-to-noise ratios are achieved for the detected white-beam diffraction patterns, thereby allowing sufficient information to perform quantitative data analysis diffractionviain-house software (WBXRD_GUI). Finally, of current interest is the ability to evaluate crystald-spacing, texture evolution and material phase transitions, all of which will be established from experiments performed at the aforementioned elevated strain-rates.« less

  20. High Resolution Imaging of Io's Volcanoes with LBTI

    NASA Astrophysics Data System (ADS)

    Conrad, Al; Leisenring, Jarron; de Kleer, Katherine; Skemer, Andy; Hinz, Philip; Skrutskie, Michael; Veillet, Christian; de Pater, Imke; Bertero, Mario; Boccacci, Patrizia; Defrère, Denis; Hofmann, Karl-Heinz; La Camera, Andrea; Schertl, Dieter; Spencer, John; Weigelt, Gerd; Woodward, Charles E.

    2014-11-01

    The Large Binocular Telescope (LBT), located on Mount Graham in eastern Arizona, employs two 8.4 meter mirrors with a 14.4 center-to-center separation on a common mount. Coherent combination of these two AO-corrected apertures via the LBT Interferometer (LBTI) produces Fizeau interferometric images with spatial resolution consistent with the diffraction limit of the 22.8-meter aperture. In particular LBTI resolves thermal signatures (i.e., features observed at M-band) on the surface of Io down to ~150 kilometers; a two-fold improvement over what has previously been possible from the ground. We show images collected with LBTI on December 24, 2013, in which Loki's shape is clearly resolved and at least fourteen additional volcanic hot spots are detected.We analyze three locations in the LBTI data: emission features within Loki Patera, the area near Rarog and Heno Patarae, and a hot spot seen in the Colchis Regio.For Loki Patera, we interpret spatially resolved variation in the emission within that region. With M-band resolution that is comparable to what has previously been achievable only at K-band, we compare localized emission features with what has been seen in earlier observations at shorter wavelengths.Thermal emission from activity at Rarog and Heno Patarae is well resolved in these images, while a third hot-spot in the nearby Lerna Regio is also clearly resolved. This area is of special interest since it was the site of two high-effusion outbursts on August 15th, 2013 [de Pater et al. (2014) Icarus].Lastly, we explore a hot-spot seen in the Colchis Regio that may be a remnant of a violent outburst detected on August 29th, 2013 [de Kleer et al. (2014) Icarus].

  1. High-resolution full-field optical coherence tomography using high dynamic range image processing

    NASA Astrophysics Data System (ADS)

    Leong-Hoï, A.; Claveau, R.; Montgomery, P. C.; Serio, B.; Uhring, W.; Anstotz, F.; Flury, M.

    2016-04-01

    Full-field optical coherence tomography (FF-OCT) based on white-light interference microscopy, is an emerging noninvasive imaging technique for characterizing biological tissue or optical scattering media with micrometer resolution. Tomographic images can be obtained by analyzing a sequence of interferograms acquired with a camera. This is achieved by scanning an interferometric microscope objectives along the optical axis and performing appropriate signal processing for fringe envelope extraction, leading to three-dimensional imaging over depth. However, noise contained in the images can hide some important details or induce errors in the size of these details. To firstly reduce temporal and spatial noise from the camera, it is possible to apply basic image post processing methods such as image averaging, dark frame subtraction or flat field division. It has been demonstrate that this can improve the quality of microscopy images by enhancing the signal to noise ratio. In addition, the dynamic range of images can be enhanced to improve the contrast by combining images acquired with different exposure times or light intensity. This can be made possible by applying a hybrid high dynamic range (HDR) technique, which is proposed in this paper. High resolution tomographic analysis is thus performed using a combination of the above-mentioned image processing techniques. As a result, the lateral resolution of the system can be improved so as to approach the diffraction limit of the microscope as well as to increase the power of detection, thus enabling new sub-diffraction sized structures contained in a transparent layer, initially hidden by the noise, to be detected.

  2. High Spatial Resolution Commercial Satellite Imaging Product Characterization

    NASA Technical Reports Server (NTRS)

    Ryan, Robert E.; Pagnutti, Mary; Blonski, Slawomir; Ross, Kenton W.; Stnaley, Thomas

    2005-01-01

    NASA Stennis Space Center's Remote Sensing group has been characterizing privately owned high spatial resolution multispectral imaging systems, such as IKONOS, QuickBird, and OrbView-3. Natural and man made targets were used for spatial resolution, radiometric, and geopositional characterizations. Higher spatial resolution also presents significant adjacency effects for accurate reliable radiometry.

  3. Dynamic and static behaviors of N-Z-N σ(3c-4e) (Z = S, Se, and Te) interactions: atoms-in-molecules dual functional analysis with high-resolution X-ray diffraction determination of electron densities for 2-(2-pyridylimino)-2H-1,2,4-thiadiazolo[2,3-a]pyridine.

    PubMed

    Nakanishi, Waro; Hayashi, Satoko; Pitak, Mateusz B; Hursthouse, Michael B; Coles, Simon J

    2011-10-27

    The structure of 2-(2-pyridylimino)-2H-1,2,4-thiadiazolo[2,3-a]pyridine (NSN) indicates that the molecule has a planar geometry with a linear N···S···N linkage, creating a tetracyclic structure of the formal C(2v) symmetry. To clarify the nature of the NSN σ(3c-4e) bonding, together with the related NSeN and NTeN, the dynamic and static behaviors are investigated by applying atoms-in-molecules (AIM) dual functional analysis to both the fully optimized and perturbed structures. The structures were optimized computationally, retaining C(2v) symmetry. All bond critical points are detected as expected and exhibited on both sides of the N···Z···N moiety which supports the formation of NZN σ(3c-4e). It is confirmed that N···S···N is of the covalent nature close to Me(2)S(+)-∗-Cl or Me(2)Se(+)-∗-Br, whereas N···Se···N and N···Te···N have the (regular) CS nature close to the CT adducts of Me(2)S(-∗-Cl)(2) (TBP) and Me(2)Se-∗-Br(2) (MC), respectively. An experimental high-resolution charge density determination has been performed on NSN, which thoroughly supports the theoretical results. Very similar results are obtained in the analogous pyrimidyl derivatives for N···S···N, N···Se···N, and N···Te···N. AIM dual functional analysis, as validated by experimental high-resolution charge densities, is thus confirmed to be an excellent method to elucidate the nature of these interactions.

  4. Transient x-ray diffraction with simultaneous imaging under high strain-rate loading

    SciTech Connect

    Fan, D.; E, J. C.; Zhao, F.; Luo, S. N.; Lu, L.; Li, B.; Qi, M. L.; Sun, T.; Fezzaa, K.; Chen, W.

    2014-11-15

    Real time, in situ, multiframe, diffraction, and imaging measurements on bulk samples under high and ultrahigh strain-rate loading are highly desirable for micro- and mesoscale sciences. We present an experimental demonstration of multiframe transient x-ray diffraction (TXD) along with simultaneous imaging under high strain-rate loading at the Advanced Photon Source beamline 32ID. The feasibility study utilizes high strain-rate Hopkinson bar loading on a Mg alloy. The exposure time in TXD is 2–3 μs, and the frame interval is 26.7–62.5 μs. Various dynamic deformation mechanisms are revealed by TXD, including lattice expansion or compression, crystal plasticity, grain or lattice rotation, and likely grain refinement, as well as considerable anisotropy in deformation. Dynamic strain fields are mapped via x-ray digital image correlation, and are consistent with the diffraction measurements and loading histories.

  5. High spatial resolution restoration of IRAS images

    NASA Technical Reports Server (NTRS)

    Grasdalen, Gary L.; Inguva, R.; Dyck, H. Melvin; Canterna, R.; Hackwell, John A.

    1990-01-01

    A general technique to improve the spatial resolution of the IRAS AO data was developed at The Aerospace Corporation using the Maximum Entropy algorithm of Skilling and Gull. The technique has been applied to a variety of fields and several individual AO MACROS. With this general technique, resolutions of 15 arcsec were achieved in 12 and 25 micron images and 30 arcsec in 60 and 100 micron images. Results on galactic plane fields show that both photometric and positional accuracy achieved in the general IRAS survey are also achieved in the reconstructed images.

  6. Tabletop coherent diffractive microscopy with soft x-ray illumination from high harmonic generation at 29 nm and 13.5 nm

    NASA Astrophysics Data System (ADS)

    Raymondson, Daisy Arrelle

    Soft x-ray microscopy allows imaging at higher resolution than is possible with optical wavelengths. At the same time, it allows imaging of the internal structure of thick samples that cannot be viewed with electron microscopy. Optics for the soft x-ray region of the spectrum are limited, but coherent diffractive imaging techniques use computerized image reconstruction in place of a lens to form high-resolution images with x-rays. This dissertation presents a practical soft x-ray diffractive microscope with sub-100 nm resolution using tabletop coherent soft x-rays at 13.5 nm and 29 nm [1]. This represents the first demonstration of tabletop coherent imaging with 13.5 nm from high harmonics. Images with holography and phase retrieval are shown, with near-diffraction-limited resolution down to 53 nm [2--4]. The first tabletop diffractive images of biological samples with 13.5 nm and 29 nm beams are also shown [5]. This thesis also presents work on the construction of a high-power, high-repetition-rate laser amplifier implementing carrier-envelope phase stabilization. CEP stabilization provides unprecedented levels of control over the full electric field of an ultrafast laser. The first stage of the amplifier was stabilized to 250 mrad CEP noise on 100s timescales. The route to stabilizing the full 10 kHz, 30 W amplifier is outlined. This laser will be used for future coherent diffractive imaging applications at using high harmonic generation at 13.5 nm and shorter wavelengths, and will also be used for time-resolved studies of molecular dissociation [6].

  7. High-resolution microdiffraction study of notch-tip deformation in Mo single crystals using x-ray synchrotron radiation

    SciTech Connect

    Ice, G.; Habenschuss, A.; Bilello, J.C.; Rebonato, R.

    1989-12-31

    A new technique is presented for the determination of strain fields in single crystals, based on the simultaneous recording of the energy and position of a diffracted beam, with a resolution of 25 micrometers under current experimental conditions. The technique can be profitably used for perfect to highly deformed crystals, in materials as highly absorbing as Molybdenum, and allows a spatial resolution of one part in 10{sup 4}. Indications are given as to possible refinements and improvements of the method.

  8. High-resolution microdiffraction study of notch-tip deformation in Mo single crystals using x-ray synchrotron radiation

    SciTech Connect

    Ice, G.; Habenschuss, A. ); Bilello, J.C. ); Rebonato, R. . Physical Chemistry Lab.)

    1989-01-01

    A new technique is presented for the determination of strain fields in single crystals, based on the simultaneous recording of the energy and position of a diffracted beam, with a resolution of 25 micrometers under current experimental conditions. The technique can be profitably used for perfect to highly deformed crystals, in materials as highly absorbing as Molybdenum, and allows a spatial resolution of one part in 10{sup 4}. Indications are given as to possible refinements and improvements of the method.

  9. High resolution, high rate x-ray spectrometer

    DOEpatents

    Goulding, F.S.; Landis, D.A.

    1983-07-14

    It is an object of the invention to provide a pulse processing system for use with detected signals of a wide dynamic range which is capable of very high counting rates, with high throughput, with excellent energy resolution and a high signal-to-noise ratio. It is a further object to provide a pulse processing system wherein the fast channel resolving time is quite short and substantially independent of the energy of the detected signals. Another object is to provide a pulse processing system having a pile-up rejector circuit which will allow the maximum number of non-interfering pulses to be passed to the output. It is also an object of the invention to provide new methods for generating substantially symmetrically triangular pulses for use in both the main and fast channels of a pulse processing system.

  10. High Resolution Velocity Structure in Eastern Turkey

    SciTech Connect

    Pasyanos, M; Gok, R; Zor, E; Walter, W

    2004-09-03

    We investigate the crustal and upper mantle structure of eastern Turkey where the Anatolian, Arabian and Eurasian Plates meet and form a complex tectonic structure. The Bitlis suture is a continental collision zone between the Anatolian plateau and the Arabian plate. Broadband data available through the Eastern Turkey Seismic Experiment (ETSE) provided a unique opportunity for studying the high resolution velocity structure. Zor et al. found an average 46 km thick crust in Anatolian plateau using six-layered grid search inversion of the ETSE receiver functions. Receiver functions are sensitive to the velocity contrast of interfaces and the relative travel time of converted and reverberated waves between those interfaces. The interpretation of receiver function alone with many-layered parameterization may result in an apparent depth-velocity tradeoff. In order to improve previous velocity model, we employed the joint inversion method with many layered parameterization of Julia et al. (2000) to the ETSE receiver functions. In this technique, the receiver function and surface-wave observations are combined into a single algebraic equation and each data set is weighted by an estimate of the uncertainty in the observations. We consider azimuthal changes of receiver functions and have stacked them into different groups. We calculated the receiver functions using iterative time-domain deconvolution technique and surface wave group velocity dispersion curves between 10-100 sec. We are making surface wave dispersion measurements at the ETSE stations and have incorporated them into a regional group velocity model. Preliminary results indicate a strong trend in the long period group velocity in the northeast. This indicates slow upper mantle velocities in the region consistent with Pn, Sn and receiver function results. We started with both the 1-D model that is obtained with the 12 tones dam explosion shot data recorded by ETSE network and the existing receiver function

  11. High Resolution Surface Science at Mars

    NASA Technical Reports Server (NTRS)

    Bailey, Zachary J.; Tamppari, Leslie K.; Lock, Robert E.; Sturm, Erick J.

    2013-01-01

    The proposed mission would place a 2.4 m telescope in orbit around Mars with two focal plane instruments to obtain the highest resolution images and spectral maps of the surface to date (3-10x better than current). This investigation would make major contributions to all of the Mars Program Goals: life, climate, geology and preparation for human presence.

  12. High-precision three-dimensional coordinate measurement with subwavelength-aperture-fiber point diffraction interferometer

    NASA Astrophysics Data System (ADS)

    Wang, Daodang; Xu, Yangbo; Chen, Xixi; Wang, Fumin; Kong, Ming; Zhao, Jun

    2014-11-01

    To overcome the accuracy limitation due to the machining error of standard parts in measurement system, a threedimensional coordinate measurement method with subwavelength-aperture-fiber point diffraction interferometer (PDI) is proposed, in which the high-precision measurement standard is obtained from the ideal point-diffracted spherical wavefront instead of standard components. On the basis of the phase distribution demodulated from point-diffraction interference field, high-precision three-dimensional coordinate measurement is realized with numerical iteration optimization algorithm. The subwavelength-aperture fiber is used as point-diffraction source to get precise and highenergy spherical wavefront within high aperture angle range, by which the conflict between diffraction wave angle and energy in traditional PDI can be avoided. Besides, a double-iterative method based on Levenbery-Marquardt algorithm is proposed to realize precise reconstruct three-dimensional coordinate. The analysis shows that the proposed method can reach the measurement precision better than microns within a 200×200×300 (in unit of mm) working volume. This measurement method does not rely on the initial iteration value in numerical coordinate reconstruction, and also has high measurement precision, large measuring range, fast processing speed and preferable anti-noise ability. It is of great practicality for measurement of three-dimensional coordinate and calibration of measurement system.

  13. Manufacturing high-efficiency, high damage threshold diffraction gratings with lift-off processing

    SciTech Connect

    Agayan, Rodney

    1996-05-01

    High-efficiency, high damage threshold diffraction gratings fabricated out of multilayers of dielectric materials are needed for the application of chirped-pulse amplification (CPA) in the Petawatt Laser Project. The underlying multilayers are deposited onto a flat substrate by standard e-beam evaporation. The grating structures themselves, however, can either be etched into a plane layer or deposited between a photoresist grating mask which is subsequently lifted off. The latter procedure, although more easily applied to large apertures, requires high-aspect ratio, vertical sidewall photoresist grating masks with, preferably, an overhanging structure to facilitate liftoff. By varying factors in each processing step, sample gratings were fabricated and then characterized. Using a high-contrast profile photoresist (AZ7710), we have been able to create grating masks with both vertical sidewalls and high-aspect ratios (>4.5). We have also had some encouraging preliminary results in making overhanging structures by including a pre-development hlorobenzene soak in the processing steps. Once these samples are deposited with an oxide and the grating masks lifted off to create the final grating, a more definitive processing method can be developed based on the results.

  14. Flexible sample environment for high resolution neutron imaging at high temperatures in controlled atmosphere

    DOE PAGESBeta

    Makowska, Małgorzata G.; Theil Kuhn, Luise; Cleemann, Lars N.; Lauridsen, Erik M.; Bilheux, Hassina Z.; Molaison, Jamie J.; Santodonato, Louis J.; Tremsin, Anton S.; Grosse, Mirco; Morgano, Manuel; et al

    2015-12-17

    In high material penetration by neutrons allows for experiments using sophisticated sample environments providing complex conditions. Thus, neutron imaging holds potential for performing in situ nondestructive measurements on large samples or even full technological systems, which are not possible with any other technique. Our paper presents a new sample environment for in situ high resolution neutron imaging experiments at temperatures from room temperature up to 1100 degrees C and/or using controllable flow of reactive atmospheres. The design also offers the possibility to directly combine imaging with diffraction measurements. Design, special features, and specification of the furnace are described. In addition,more » examples of experiments successfully performed at various neutron facilities with the furnace, as well as examples of possible applications are presented. Our work covers a broad field of research from fundamental to technological investigations of various types of materials and components.« less

  15. Flexible sample environment for high resolution neutron imaging at high temperatures in controlled atmosphere

    SciTech Connect

    Makowska, Małgorzata G.; Theil Kuhn, Luise; Cleemann, Lars N.; Lauridsen, Erik M.; Bilheux, Hassina Z.; Molaison, Jamie J.; Santodonato, Louis J.; Tremsin, Anton S.; Grosse, Mirco; Morgano, Manuel; Kabra, Saurabh; Strobl, Markus

    2015-12-17

    In high material penetration by neutrons allows for experiments using sophisticated sample environments providing complex conditions. Thus, neutron imaging holds potential for performing in situ nondestructive measurements on large samples or even full technological systems, which are not possible with any other technique. Our paper presents a new sample environment for in situ high resolution neutron imaging experiments at temperatures from room temperature up to 1100 degrees C and/or using controllable flow of reactive atmospheres. The design also offers the possibility to directly combine imaging with diffraction measurements. Design, special features, and specification of the furnace are described. In addition, examples of experiments successfully performed at various neutron facilities with the furnace, as well as examples of possible applications are presented. Our work covers a broad field of research from fundamental to technological investigations of various types of materials and components.

  16. Flexible sample environment for high resolution neutron imaging at high temperatures in controlled atmosphere

    SciTech Connect

    Makowska, Małgorzata G.; Theil Kuhn, Luise; Cleemann, Lars N.; Lauridsen, Erik M.; Bilheux, Hassina Z.; Molaison, Jamie J.; Santodonato, Louis J.; Tremsin, Anton S.; Grosse, Mirco; Morgano, Manuel; Kabra, Saurabh; Strobl, Markus

    2015-12-15

    High material penetration by neutrons allows for experiments using sophisticated sample environments providing complex conditions. Thus, neutron imaging holds potential for performing in situ nondestructive measurements on large samples or even full technological systems, which are not possible with any other technique. This paper presents a new sample environment for in situ high resolution neutron imaging experiments at temperatures from room temperature up to 1100 °C and/or using controllable flow of reactive atmospheres. The design also offers the possibility to directly combine imaging with diffraction measurements. Design, special features, and specification of the furnace are described. In addition, examples of experiments successfully performed at various neutron facilities with the furnace, as well as examples of possible applications are presented. This covers a broad field of research from fundamental to technological investigations of various types of materials and components.

  17. Nature's crucible: Manufacturing optical nonlinearities for high resolution, high sensitivity encoding in the compound eye of the fly, Musca domestica

    NASA Technical Reports Server (NTRS)

    Wilcox, Mike

    1993-01-01

    The number of pixels per unit area sampling an image determines Nyquist resolution. Therefore, the highest pixel density is the goal. Unfortunately, as reduction in pixel size approaches the wavelength of light, sensitivity is lost and noise increases. Animals face the same problems and have achieved novel solutions. Emulating these solutions offers potentially unlimited sensitivity with detector size approaching the diffraction limit. Once an image is 'captured', cellular preprocessing of information allows extraction of high resolution information from the scene. Computer simulation of this system promises hyperacuity for machine vision.

  18. High-energy x-ray diffraction study of pure amorphous silicon

    SciTech Connect

    Laaziri, K.; Kycia, S.; Roorda, S.; Chicoine, M.; Robertson, J.L.; Wang, J.; Moss, S.C.

    1999-11-01

    Medium and high-energy x-ray diffraction has been used to study the atomic structure of pure amorphous Si prepared by MeV Si implantation into crystalline silicon. Both as-implanted and annealed samples were studied. The inelastically scattered x rays were removed by fitting the energy spectrum for the scattered x rays. The atomic scattering factor of silicon, previously known reliably up to 20 {Angstrom}{sup {minus}1}, has been extended to 55 {Angstrom}{sup {minus}1}. The radial distribution function of amorphous Si, before and after annealing, has been determined through an unbiased Fourier transformation of the normalized scattering data. Gaussian fits to the first neighbor peak in these functions shows that scattering data out to at least 40 {Angstrom}{sup {minus}1} is required to reliably determine the radial distribution function. The first-shell coordination number increases from 3.79 to 3.88 upon thermal annealing at 600{degree}C, whereas that of crystalline Si determined from similar measurements on a Si powder analyzed using the same technique is 4.0. Amorphous Si is therefore under coordinated relative to crystalline Si. Noise in the distribution function, caused by statistical variations in the scattering data at high-momentum transfer, has been reduced without affecting the experimental resolution through filtering of the interference function after subtracting the contribution of the first-neighbor peak. The difference induced by thermal annealing in the remainder of the radial distribution functions, thus revealed, is much smaller than previously believed. {copyright} {ital 1999} {ital The American Physical Society}

  19. Highly efficient acousto-optic diffraction in Sn2P2S6 crystals.

    PubMed

    Martynyuk-Lototska, I Yu; Mys, O G; Grabar, A A; Stoika, I M; Vysochanskii, Yu M; Vlokh, R O

    2008-01-01

    We have studied the acousto-optic (AO) diffraction in Sn2P2S6 crystals and found that they manifest high values of an AO figure of merit. The above crystals may therefore be used as highly efficient materials in different AO applications.

  20. Compact high-resolution differential interference contrast soft x-ray microscopy

    SciTech Connect

    Bertilson, Michael C.; Hofsten, Olov von; Lindblom, Magnus; Hertz, Hans M.; Vogt, Ulrich

    2008-02-11

    We demonstrate high-resolution x-ray differential interference contrast (DIC) in a compact soft x-ray microscope. Phase contrast imaging is enabled by the use of a diffractive optical element objective which is matched to the coherence conditions in the microscope setup. The performance of the diffractive optical element objective is evaluated in comparison with a normal zone plate by imaging of a nickel siemens star pattern and linear grating test objects. Images obtained with the DIC optic exhibit typical DIC enhancement in addition to the normal absorption contrast. Contrast transfer functions based on modulation measurements in the obtained images show that the DIC optic gives a significant increase in contrast without reducing the spatial resolution. The phase contrast operation mode now available for our compact soft x-ray microscope will be a useful tool for future studies of samples with low absorption contrast.

  1. High resolution transmission electron microscopy of aluminophosphates

    SciTech Connect

    Ulan, J.G.; Gronsky, R. ); Szostak, R. ); Sorby, K. . Dept. of Chemistry)

    1990-04-01

    VPI-5 transforms to AlPO{sub 4}-8 under mild thermal treatment (100{degree}C, 18 hrs). HRTEM micrographs, oriented normal to the c axis, show extensive defect-free regions in VPI-5, while slip planes normal to the c axis are found in AlPO{sub 4}-8. Analysis of the HRTEM data, in conjunction with infrared and thermal analysis, adsorption studies and x-ray powder diffraction, has lead to a proposed structure for AlPO{sub 4}-8. Though the sheets containing the 18 member rings which define the pores in VPI-5 remain intact in AlPO{sub 4}-8, reduction in the porosity is attributed to blockages created by the movement of these sheets relative to each other. 8 refs., 7 figs.

  2. High resolution x-ray microscope

    SciTech Connect

    Gary, C. K.; Park, H.; Lombardo, L. W.; Piestrup, M. A.; Cremer, J. T.; Pantell, R. H.; Dudchik, Y. I.

    2007-04-30

    The authors present x-ray images of grid meshes and biological material obtained using a microspot x-ray tube with a multilayer optic and a 92-element parabolic compound refractive lens (CRL) made of a plastic containing only hydrogen and carbon. Images obtained using this apparatus are compared with those using an area source with a spherical lens and a spherical lens with multilayer condenser. The authors found the best image quality using the multilayer condenser with a parabolic lens, compared to images with a spherical lens and without the multilayer optics. The resolution was measured using a 155-element parabolic CRL and a multilayer condenser with the microspot tube. The experiment demonstrates about 1.1 {mu}m resolution.

  3. High Resolution non-Markovianity in NMR

    PubMed Central

    Bernardes, Nadja K.; Peterson, John P. S.; Sarthour, Roberto S.; Souza, Alexandre M.; Monken, C. H.; Roditi, Itzhak; Oliveira, Ivan S.; Santos, Marcelo F.

    2016-01-01

    Memoryless time evolutions are ubiquitous in nature but often correspond to a resolution-induced approximation, i.e. there are correlations in time whose effects are undetectable. Recent advances in the dynamical control of small quantum systems provide the ideal scenario to probe some of these effects. Here we experimentally demonstrate the precise induction of memory effects on the evolution of a quantum coin (qubit) by correlations engineered in its environment. In particular, we design a collisional model in Nuclear Magnetic Resonance (NMR) and precisely control the strength of the effects by changing the degree of correlation in the environment and its time of interaction with the qubit. We also show how these effects can be hidden by the limited resolution of the measurements performed on the qubit. The experiment reinforces NMR as a test bed for the study of open quantum systems and the simulation of their classical counterparts. PMID:27669652

  4. High resolution alpha particle spectrometry through collimation

    NASA Astrophysics Data System (ADS)

    Park, Seunghoon; Kwak, Sung-Woo; Kang, Han-Byeol

    2015-06-01

    Alpha particle spectrometry with collimation is a useful method for identifying nuclear materials among various nuclides. A mesh type collimator reduces the low energy tail and broadened energy distribution by cutting off particles with a low incidence angle. The relation between the resolution and the counting efficiency can be investigated by changing a ratio of the mesh hole diameter and the collimator thickness. Through collimation, a target particle can be distinguished by a PIPS® detector under a mixture of various nuclides.

  5. COMPONENTS OF LASER SYSTEMS: Diffraction gratings with high optical strength for laser resonators

    NASA Astrophysics Data System (ADS)

    Svakhin, A. S.; Sychugov, V. A.; Tikhomirov, A. E.

    1994-03-01

    A new approach to the fabrication of efficient diffraction gratings of the reflection type with a high optical strength is proposed. A diffraction grating with an efficiency of 64% was made and used in a resonator of a Q-switched YAG : Nd3+ laser. Gratings of this type are capable of withstanding the action of pulsed optical radiation right up to a power density of 180 MW cm-2. Possible use of such gratings at high angles of incidence of radiation so as to improve the spectral selectivity is considered.

  6. Diffraction encoded position measuring apparatus

    DOEpatents

    Tansey, R.J.

    1991-09-24

    When a lightwave passes through a transmission grating, diffracted beams appear at the output or opposite side of the grating that are effectively Doppler shifted in frequency (phase) whereby a detector system can compare the phase of the zero order and higher order beams to obtain an indication of position. Multiple passes through the grating increase resolution for a given wavelength of a laser signal. The resolution can be improved further by using a smaller wavelength laser to generate the grating itself. Since the grating must only have a pitch sufficient to produce diffracted orders, inexpensive, ultraviolet wavelength lasers can be utilized and still obtain high resolution detection. 3 figures.

  7. Diffraction encoded position measuring apparatus

    DOEpatents

    Tansey, Richard J.

    1991-01-01

    When a lightwave passes through a transmission grating, diffracted beams appear at the output or opposite side of the grating that are effectively Doppler shifted in frequency (phase) whereby a detector system can compare the phase of the zero order and higher order beams to obtain an indication of position. Multiple passes through the grating increase resolution for a given wavelength of a laser signal. The resolution can be improved further by using a smaller wavelength laser to generate the grating itself. Since the grating must only have a pitch sufficient to produce diffracted orders, inexpensive, ultraviolet wavelength lasers can be utilized and still obtain high resolution detection.

  8. EDITORIAL: High-resolution noncontact atomic force microscopy High-resolution noncontact atomic force microscopy

    NASA Astrophysics Data System (ADS)

    Pérez, Rubén; García, Ricardo; Schwarz, Udo

    2009-06-01

    original papers authored by many of the leading groups in the field with the goal of providing a well-balanced overview on the state-of-the-art in this rapidly evolving field. These papers, many of which are based on notable presentations given during the Madrid conference, feature highlights such as (1) the development of sophisticated force spectroscopy procedures that are able to map the complete 3D tip-sample force field on different surfaces; (2) the considerable resolution improvement of Kelvin probe force microscopy (reaching, in some cases, the atomic scale), which is accompanied by a thorough, quantitative understanding of the contrast observed; (3) the perfecting of atomic resolution imaging on insulating substrates, which helps reshape our microscopic understanding of surface properties and chemical activity of these surfaces; (4) the description of instrumental and methodological developments that pave the way to the atomic-scale characterization of magnetic and electronic properties of nanostructures, and last but not least (5) the extension of dynamic imaging modes to high-resolution operation in liquids, ultimately achieving atomic resolution. The latter developments are already having a significant impact in the highly competitive field of biological imaging under physiological conditions. This special issue of Nanotechnology would not have been possible without the highly professional support from Nina Couzin, Amy Harvey, Alex Wotherspoon and the entire Nanotechnology team at IOP Publishing. We are thankful for their help in pushing this project forward. We also thank the authors who have contributed their excellent original articles to this issue, the referees whose comments have helped make the issue an accurate portrait of this rapidly moving field, and the entire NC-AFM community that continues to drive NC-AFM to new horizons.

  9. High regularity of Z-DNA revealed by ultra high-resolution crystal structure at 0.55;#8201;Å

    SciTech Connect

    Brzezinski, Krzysztof; Brzuszkiewicz, Anna; Dauter, Miroslawa; Kubicki, Maciej; Jaskolski, Mariusz; Dauter, Zbigniew

    2011-12-02

    The crystal structure of a Z-DNA hexamer duplex d(CGCGCG){sub 2} determined at ultra high resolution of 0.55 {angstrom} and refined without restraints, displays a high degree of regularity and rigidity in its stereochemistry, in contrast to the more flexible B-DNA duplexes. The estimations of standard uncertainties of all individually refined parameters, obtained by full-matrix least-squares optimization, are comparable with values that are typical for small-molecule crystallography. The Z-DNA model generated with ultra high-resolution diffraction data can be used to revise the stereochemical restraints applied in lower resolution refinements. Detailed comparisons of the stereochemical library values with the present accurate Z-DNA parameters, shows in general a good agreement, but also reveals significant discrepancies in the description of guanine-sugar valence angles and in the geometry of the phosphate groups.

  10. High contrast imaging for weakly diffracting specimens with ptychographical iterative engine.

    PubMed

    Pan, Xingchen; Veetil, Suhas P; Liu, Cheng; Zhu, Jianqiang

    2012-08-15

    As a newly developed coherent diffraction-imaging (CDI) imaging method, the ptychographical iterative engine not only can bypass the difficulty of having high-quality optics in x-ray microscopy by a numerical reconstruction algorithm, but also has obvious advantages on traditional CDI methods in both converging speeds and view fields. However, like in the other CDI methods, the reconstruction of the image from the intensity data of a weakly diffracting specimen is still difficult because of the low signal to noise ratio. To improve this situation, a modification to the currently used algorithms is suggested to double the presence of high spatial frequencies in the diffraction pattern and accordingly to enhance the contrast and fine details of the reconstructions. The simulation and experimental results are presented, and the results can be extended to other CDI methods also. PMID:23381253

  11. Spectral characteristics of multimode semiconductor lasers with a high-order surface diffraction grating

    SciTech Connect

    Zolotarev, V V; Leshko, A Yu; Pikhtin, N A; Lyutetskiy, A V; Slipchenko, S O; Bakhvalov, K V; Lubyanskiy, Ya V; Rastegaeva, M G; Tarasov, I S

    2014-10-31

    We have studied the spectral characteristics of multimode semiconductor lasers with high-order surface diffraction gratings based on asymmetric separate-confinement heterostructures grown by metalorganic vapour phase epitaxy (λ = 1070 nm). Experimental data demonstrate that, in the temperature range ±50 °C, the laser emission spectrum is ∼5 Å in width and contains a fine structure of longitudinal and transverse modes. A high-order (m = 15) surface diffraction grating is shown to ensure a temperature stability of the lasing spectrum dλ/dT = 0.9 Å K{sup -1} in this temperature range. From analysis of the fine structure of the lasing spectrum, we have evaluated the mode spacing and, thus, experimentally determined the effective length of the Bragg diffraction grating, which was ∼400 μm in our samples. (lasers)

  12. High-Index Facets in Gold Nanocrystals Elucidated by Coherent Electron Diffraction

    PubMed Central

    Shah, Amish B.; Sivapalan, Sean T.; DeVetter, Brent M.; Yang, Timothy K.; Wen, Jianguo; Bhargava, Rohit; Murphy, Catherine J.; Zuo, Jian-Min

    2013-01-01

    Characterization of high index facets in noble metal nanocrystals for plasmonics and catalysis has been a challenge due to their small sizes and complex shapes. Here, we present an approach to determine the high index facets of nanocrystals using streaked Bragg reflections in coherent electron diffraction patterns, and provide a comparison of high index facets on unusual nanostructures such as trisoctahedra. We report new high index facets in trisoctahedra and previous unappreciated diversity in facet sharpness. PMID:23484620

  13. Medusae Fossae Formation - High Resolution Image

    NASA Technical Reports Server (NTRS)

    1998-01-01

    An exotic terrain of wind-eroded ridges and residual smooth surfaces are seen in one of the highest resolution images ever taken of Mars from orbit. The Medusae Fossae formation is believed to be formed of the fragmental ejecta of huge explosive volcanic eruptions. When subjected to intense wind-blasting over hundreds of millions of years, this material erodes easily once the uppermost tougher crust is breached. The crust, or cap rock, can be seen in the upper right part of the picture. The finely-spaced ridges are similar to features on Earth called yardangs, which are formed by intense winds plucking individual grains from, and by wind-driven sand blasting particles off, sedimentary deposits.

    The image was taken on October 30, 1997 at 11:05 AM PST, shortly after the Mars Global Surveyor spacecraft's 31st closest approach to Mars. The image covers an area 3.6 X 21.5 km (2.2 X 13.4 miles) at 3.6 m (12 feet) per picture element--craters only 11 m (36 feet, about the size of a swimming pool) across can be seen. The best Viking view of the area (VO 1 387S34) has a resolution of 240 m/pixel, or 67 times lower resolution than the MOC frame.

    Malin Space Science Systems (MSSS) and the California Institute of Technology built the MOC using spare hardware from the Mars Observer mission. MSSS operates the camera from its facilities in San Diego, CA. The Jet Propulsion Laboratory's Mars Surveyor Operations Project operates the Mars Global Surveyor spacecraft with its industrial partner, Lockheed Martin Astronautics, from facilities in Pasadena, CA and Denver, CO.

  14. HIGH RESOLUTION PHOTOEMISSION STUDIES OF COMPLEX MATERIALS.

    SciTech Connect

    JOHNSON,P.D.; VALLA,T.; FEDOROV,A.; REISFELD,G.; HULBERT,S.L.

    1999-10-13

    Recent instrumentation developments in photoemission are providing new insights into the physics of complex materials. With increased energy and momentum resolution, it has become possible to examine in detail different contributions to the self-energy or inverse lifetime of the photohole created in the photoexcitation process. Employing momentum distribution and energy distribution curves, a detailed study of the optimally doped cuprate, Bi{sub 2}Sr{sub 2}CaCu{sub 2}O{sub 8+{delta}}, shows that the material behaves like a non-Fermi liquid with no evidence for the quasi-particles characteristic of a Fermi liquid.

  15. DSCOVR High Time Resolution Solar Wind Measurements

    NASA Technical Reports Server (NTRS)

    Szabo, Adam

    2012-01-01

    The Deep Space Climate Observatory (DSCOVR), previously known as Triana, spacecraft is expected to be launched in late 2014. It will carry a fluxgate magnetometer, Faraday Cup solar wind detector and a top-hat electron electrostatic analyzer. The Faraday Cup will provide an unprecedented 10 vectors/sec time resolution measurement of the solar wind proton and alpha reduced distribution functions. Coupled with the 40 vector/sec vector magnetometer measurements, the identification of specific wave modes in the solar wind will be possible for the first time. The science objectives and data products of the mission will be discussed.

  16. High resolution IVEM tomography of biological specimens

    SciTech Connect

    Sedat, J.W.; Agard, D.A.

    1997-02-01

    Electron tomography is a powerful tool for elucidating the three-dimensional architecture of large biological complexes and subcellular organelles. The introduction of intermediate voltage electron microscopes further extended the technique by providing the means to examine very large and non-symmetrical subcellular organelles, at resolutions beyond what would be possible using light microscopy. Recent studies using electron tomography on a variety of cellular organelles and assemblies such as centrosomes, kinetochores, and chromatin have clearly demonstrated the power of this technique for obtaining 3D structural information on non-symmetric cell components. When combined with biochemical and molecular observations, these 3D reconstructions have provided significant new insights into biological function.

  17. Comparing High Resolution Weather Forecasts to Observations

    NASA Astrophysics Data System (ADS)

    Foley, T. A.; Smith, J. A.; Raby, J. W.

    2013-12-01

    The Advanced Research version of the Weather Research and Forecasting model (WRF) is a mesoscale numerical weather prediction (NWP) system, with a horizontal grid spacing of several kilometers to several hundred kilometers. WRF can create forecasts of finer horizontal resolution by embedding a smaller domain inside the parent domain, a process called nesting. A nest may be embedded simultaneously within a coarser-resolution (parent) model run, or run independently as a separate model forecast. Army operations require weather forecasts on a scale of one kilometer or less, an area of weather modeling known as 'terra incognita' between which large eddy simulation and traditional mesoscale NWP models are applied with most confidence. Complex terrain leads to differences in surface temperature, moisture gradients, and wind speed /wind direction, and these differences are not always well-characterized by mesoscale WRF forecasts. Differences in land surface characteristics produce air flows such as mountain/valley breezes, and sea breezes that are of vital importance to Army and Air Force operations. Atmospheric effects on commercial as well as military air platforms and any associated subsystems is of critical concern, whether for commercial flight planning or for military mission execution. The traditional model verification techniques currently used aggregate the error statistics over an entire domain (such as on the order of 100km x 100km to 500km x 500km in size), techniques which produce results that often appear smoothed and may not show the value added of higher resolution WRF output at grid resolutions of 1km or less. Point verification methods can also be ineffective due to 'double counting' errors of phase and spatial nature, and failing to capture model skill in resolving mesoscale structure. More in-depth analysis of the forecast errors are needed to deduce the various sub-regimes and temporal and spatial trends which may govern the statistics in a way which

  18. High resolution obtained by photoelectric scanning techniques.

    NASA Technical Reports Server (NTRS)

    Hall, J. S.

    1972-01-01

    Several applications of linear scanning of different types of objects are described; examples include double stars, satellites, the Red Spot of Jupiter and a landing site on the moon. This technique allows one to achieve a gain of about an order of magnitude in resolution over conventional photoelectric techniques; it is also effective in providing sufficient data for removing background effects and for the application of deconvolution procedures. Brief consideration is given to two-dimensional scanning, either at the telescope or of electronographic images in the laboratory. It is suggested that some of the techniques described should be given serious consideration for space applications.

  19. Cepheids at high angular resolution: circumstellar envelope and pulsation

    NASA Astrophysics Data System (ADS)

    Gallenne, Alexandre

    2011-12-01

    In 2005, interferometric observations with VLTI/VINCI and CHARA/FLUOR revealed the existence of a circumstellar envelope (CSE) around some Cepheids. This surrounding material is particularly interesting for two reasons: it could have an impact on the distance estimates and could be linked to a past or on-going mass loss. The use of Baade-Wesselink methods for independent distance determinations could be significantly biased by the presence of these envelopes. Although their observations are difficult because of the high contrast between the photosphere of the star and the CSE, several observation techniques have the potential to improve our knowledge about their physical properties. In this thesis, I discuss in particular high angular resolution techniques that I applied to the study of several bright Galactic Cepheids. First, I used adaptive optic observations with NACO of the Cepheid RS Puppis, in order to deduce the flux ratio between the CSE and the photosphere of the star. In addition, I could carry out a statistical study of the speckle noise and inspect a possible asymmetry. Secondly, I analysed VISIR data to study the spectral energy distribution of a sample of Cepheids. These diffraction-limited images enabled me to carry out an accurate photometry in the N band and to detect an IR excess linked to the presence of a circumstellar component. On the other hand, applying a Fourier analysis I showed that some components are resolved. I then explored the K' band with the recombination instrument FLUOR for some bright Cepheids. Thanks to new set of data of Y Oph, I improved the study of its circumstellar envelope, using a ring-like model for the CSE. For two other Cepheids, U Vul and S Sge, I applied the interferometric Baade-Wesselink method in order to estimate their distance.

  20. The dynamic response of high pressure phase of Si using phase contrast imaging and X-ray diffraction

    NASA Astrophysics Data System (ADS)

    Lee, H. J.; Galtier, E.; Xing, Z.; Gleason, A.; Granados, E.; Tavella, F.; Schropp, A.; Seiboth, F.; Schroer, C.; Higginbotham, A.; Brown, S.; Arnold, B.; Curiel, R.; Peterswright, D.; Fry, A.; Nagler, B.

    2015-11-01

    Static compression studies have revealed that crystalline silicon undergoes phase transitions from a cubic diamond structure to a variety of phases including body-centered tetragonal phase, an orthorhombic phase, and a hexagonal primitive phase. However, the dynamic response of silicon at high pressure is not well understood. Phase contrast imaging has proven to be a powerful tool for probing density changes caused by the shock propagation into a material. With respect to the elastic and plastic compression, we image shock waves in Si with high spatial resolution using the LCLS X-ray free electron laser and Matter in Extreme Conditions instrument. In this study, the long pulse optical laser with pseudoflat top shape creates high pressures up to 60 GPa. We also measure the crystal structure by observing the X-ray diffraction orthogonal to the shock propagation direction over a range of pressure. In this talk, we will present the capability of simultaneously performing phase contrast imaging and in situ X-ray diffraction during shock loading and will discuss the dynamic response of Si in high pressure phases

  1. High-resolution ground-based spectroscopy: where and how ?

    NASA Astrophysics Data System (ADS)

    Pallavicini, R.

    2002-07-01

    An overview is presented of high-resolution optical spectrographs in operation or under development at large telescopes, with emphasis on those facilities best suited for the study of late-type stars and stellar surface inhomogeneities. Plans for the development of new high-resolution spectroscopic instruments are discussed with emphasis on the ICE spectrograph for the PEPSI spectropolarimeter at the LBT.

  2. High Resolution LTS-SQUID Microscopes

    NASA Astrophysics Data System (ADS)

    Baudenbacher, Franz; Peters, Nicholas; Wikswo, John

    2000-03-01

    We have developed a scanning superconducting quantum interference device (SQUID) microscope for imaging magnetic fields of room-temperature samples with sub-millimeter resolution. In our design, hand wound niobium pickup coils were coupled to commercially available low-temperature SQUID sensors. The SQUID sensor and the pickup coil are in the vacuum space of the cryostat separated typically less than 50μm by a thin sapphire window from the room-temperature sample. A computerized non-magnetic scanning stage with sub-micron resolution in combination with a tripod leveling system allows samples to be scanned within 10μm of the sapphire window. For a 20-turn 500μm diameter pickup coil, we achieved a field sensitivity of 350fT\\cdotHz-1/2 for frequencies above 1 Hz, and 1pT\\cdotHz-1/2 for a 10-turn 250mm coil. The SQUID microscope was used to image the distribution of time-dependent stimulus and action currents in anisotropic cardiac tissue, the remanent magnetization of the Martian meteorite ALH84001 during thermal demagnetisation, and the magnetic susceptibility of biogenic magnetite in the beak of homing pigeons.

  3. High-resolution X-ray Multilayers

    SciTech Connect

    Martynov, V.V.; Platonov, Yu.; Kazimirov, A.; Bilderback, D.H.

    2004-05-12

    Two new approaches are taken in multilayer fabrication to help bridge the gap in bandwidth between traditional multilayers (1 to 2%) and perfect crystals (0.01%). The first approach is based on creating many layers of low-contrast Al2O3/ B4C materials. The second approach is based on using multilayer structures with a small d-spacing using traditional W/B4C and Mo/B4C materials. With 8 keV x-rays on the Chess A2 beamline, we measured a bandwidth of 0.27% with a reflectivity of 40% and a Darwin width of 17 arc seconds from a 26 A d-spacing multilayer with 800 bi-layers of Al2O3/B4C using the low-contrast approach. On the other hand, the short period approach with a W/B4C multilayer and a 14.8 A d-spacing showed a resolution of 0.5 % and a reflectivity of 58.5%. Two more Mo/B4C samples with d-spacings of 15 A and 20 A showed energy resolutions of 0.25% and 0.52% with corresponding reflectivities of 39% and 66%. Thus we observe that both methods can produce useful x-ray optical components.

  4. High sensitivity Moire interferometry with phase shifting at nano resolution

    NASA Astrophysics Data System (ADS)

    Chen, Bicheng

    Due to insatiate demand for miniaturization of electronics, there is a need for new techniques to measure full-field strain at micro-scale structures. In addition, Micro-Electronic-Mechanical-Systems (MEMS) require a high resolution and high sensitivity material property characterization technique. In this study, a theoretic model for a high sensitivity Moire Interferometry (MI) for measuring nano-scale strain field has been developed. The study also includes the application of the proposed measurement technique for the study of reliability of next generation nano-electronics/power electronics. The study includes both theoretical and experimental work. In the theoretical part, a far field modeling of a Moire Interferometer (MI) using the mode decomposition method is proposed according to the analytical formulation from the scalar diffraction theory. The wave propagation within the defined MI far field domain is solved analytically for a single frequency surface relieved grating structure following the Rayleigh-Sommerfeld formulation under the paraxial approximation. It is shown that the far-field electrical field and the intensity interferogram can be calculated using the mode decomposition method. Furthermore, the near-field (propagation distance < 1 mum) assumptions are validated using exact electromagnetic (EM) theory; and the EM fields are simulated in a few microns region above the surface of the diffraction grating. The study shows that there is a strong correlation (correlation factor R = 0.869) of spatial frequency response between EM field and strain field at the nanoscale. Experimentally, a 164 nm/pixel spatial resolution Moire Interferometer with automated full strain field calculation is proposed. Accurate full strain field maps are generated automatically by a combination of phase shifting technique (temporal data redundancy) and Continuous Wavelet Transform (CWT) (spatial data redundancy). A thermal experiment on BGA packaging is used to demonstrate

  5. Quantitative Composition Analysis of Lipid Membranes by High-Resolution Secondary Ion Mass Spectrometry

    SciTech Connect

    Kraft, M L; Weber, P K; Lin, W C; Blanchette, C D; Longo, M L; Hutcheon, I D; Boxer, S G

    2005-04-29

    The lateral organization and interactions of lipid and protein components within biological membranes are essential for their functions. Investigations of the lateral organization within membranes hinge upon the ability to differentiate one component of interest from another. Typically, fluorophores are conjugated to specific components, and the organization is probed with fluorescence microscopy. However, bulky fluorophores may change the physical properties of the components they label, only the labeled components can be visualized, and the diffraction limit of light restricts the lateral resolution. Here we present a method to image microdomains within supported lipid membranes using isotopic labels and high-resolution secondary ion mass spectrometry (SIMS) performed with the NanoSIMS 50 (Cameca). Lateral resolution of 100 nm is achieved with high sensitivity. Quantitative information on the lipid composition within each domain was determined using calibration curves constructed from homogeneous lipid bilayer samples that systematically varied in the isotopically labeled lipid content.

  6. One dimension high range resolution profile of terahertz radar

    NASA Astrophysics Data System (ADS)

    Liang, Meiyan; Zeng, Bangze; Zhang, Cunlin; Zhao, Yuejin

    2012-12-01

    Step frequency signal is one of the more commonly used radar signal for high range resolution, it commonly used in radar target recognition. The wavelength of Terahertz signal is shorter than that of the microwave, so it is easy to realize the high range resolution. The paper first introduces the step frequency signal to obtain the one-dimensional distance image, and analyze the principle of high resolution range profiles of step frequency radar. Then, the 0.2THz step frequency radar systems are introduced. Finally, the high resolution range profiles are achieved by the simulation of Matlab. The simulation results show that the step frequency THz radar can reach centimeter level high resolution on stationary targets. For moving targets exist distance divergence and coupling shift. With greater speed, the greater the distortion.

  7. The radio remnant of Supernova 1987A at high frequencies and high resolution

    NASA Astrophysics Data System (ADS)

    Zanardo, G.; Staveley-Smith, L.; Ng, C.-Y.; Gaensler, B. M.; Potter, T. M.; Manchester, R. N.; Tzioumis, A. K.

    2014-01-01

    As the remnant of Supernova (SN) 1987A has been getting brighter over time, new observations at high frequencies have allowed imaging of the radio emission at unprecedented detail. We present a new radio image at 44 GHz of the supernova remnant (SNR), derived from observations performed with the Australia Telescope Compact Array (ATCA) in 2011. The diffraction-limited image has a resolution of 349×225 mas, which is the highest achieved to date in high-dynamic range images of the SNR. We also present a new image at 18 GHz, also derived from ATCA observations performed in 2011, which is super-resolved to 0''.25. The new 44 and 18 GHz images yield the first high-resolution spectral index map of the remnant. The comparison of the 44 GHz image with contemporaneous X-ray and Hα observations allows further investigations of the nature of the remnant asymmetry and sheds more light into the progenitor hypotheses and SN explosion. In light of simple free-free absorption models, we discuss the likelihood of detecting at 44 GHz the possible emission originating from a pulsar wind nebula (PWN) or a compact source in the centre of the remnant.

  8. High performance computing for a 3-D optical diffraction tomographic application in fluid velocimetry.

    PubMed

    Lobera, Julia; Ortega, Gloria; García, Inmaculada; Arroyo, María del Pilar; Garzón, Ester M

    2015-02-23

    Optical Diffraction Tomography has been recently introduced in fluid velocimetry to provide three dimensional information of seeding particle locations. In general, image reconstruction methods at visible wavelengths have to account for diffraction. Linear approximation has been used for three-dimensional image reconstruction, but a non-linear and iterative reconstruction method is required when multiple scattering is not negligible. Non-linear methods require the solution of the Helmholtz equation, computationally highly demanding due to the size of the problem. The present work shows the results of a non-linear method customized for spherical particle location using GPU computing and a made-to-measure storing format.

  9. Image reconstruction with sub-diffraction resolution in radio vision devices of millimeter and terahertz range using receiving arrays and image scanning

    NASA Astrophysics Data System (ADS)

    Vystavkin, Alexander N.; Pestryakov, Andrey V.; Bankov, Sergey E.; Chebotarev, Vladimir M.

    2009-09-01

    The method of image reconstruction with sub-diffraction resolution in radio vision devices (RVD) of shortwave millimeter and terahertz frequency range is proposed. The method is based on image scanning using two-dimensional receiving element array of RVD when array and image move circularly in common plane relatively each to other (rotating or not rotating) with small eccentricity between their centers. The results of scanning are signals reading out by detectors of array receiving elements. Each signal is proportional to the integral of two functions product. One function is a perfect image field distribution of the observed object received by RVD without diffraction distortion. Another one is RVD optical (quasioptical) transfer function comprising beams delivering incident radiation to detectors of array. The second function takes into account whole received radiation beam paths from RVD input to each detector including the effect of diffraction and reciprocal circular scanning of array and image. The image of observed object itself can be found solving inverse ill-posed problem determined by mentioned above integral relations. The estimation using computer simulation has shown that proposed method permits to increase resolution up to ten times in comparison with the case of diffraction restriction. The method is aimed at radioastronomy telescopes and RVD's for the security, medical diagnostics and other systems.

  10. In Situ High-Pressure X-ray Diffraction Study of H2O Ice VII

    SciTech Connect

    Somayazulu,M.; Shu, J.; Zha, C.; Goncharov, A.; Tschauner, O.; Mao, H.; Hemley, R.

    2008-01-01

    Ice VII was examined over the entire range of its pressure stability by a suite of x-ray diffraction techniques in order to understand a number of unexplained characteristics of its high-pressure behavior. Axial and radial polycrystalline (diamond anvil cell) x-ray diffraction measurements reveal a splitting of diffraction lines accompanied by changes in sample texture and elastic anisotropy. In situ laser heating of polycrystalline samples resulted in the sharpening of diffraction peaks due to release of nonhydrostatic stresses but did not remove the splitting. Radial diffraction measurements indicate changes in strength of the material at this pressure. Taken together, these observations provide evidence for a transition in ice VII near 14 GPa involving changes in the character of the proton order/disorder. The results are consistent with previous reports of changes in phase boundaries and equation of state at this pressure. The transition can be interpreted as ferroelastic with the appearance of spontaneous strain that vanishes at the hydrogen bond symmetrization transition near 60 GPa.

  11. Modified Noise Power Ratio testing of high resolution digitizers

    SciTech Connect

    McDonald, T.S.

    1994-05-01

    A broadband, full signal range, side-by-side (tandem) test method for estimating the internal noise performance of high resolution digitizers is described and illustrated. The technique involves a re-definition of the traditional Noise Power Ratio (NPR) test, a change that not only makes this test applicable to higher resolution systems than was previously practical, but also enhances its value and flexibility. Since coherence analysis is the basis of this new definition, and since the application of coherence procedures to high resolution data poses several problems, this report discusses these problems and their resolution.

  12. Fluid bilayer structure determination by the combined use of x-ray and neutron diffraction. I. Fluid bilayer models and the limits of resolution.

    PubMed Central

    Wiener, M C; White, S H

    1991-01-01

    This is the first in a series of papers concerned with methods for the determination of the structures of fluid phospholipid bilayers in the liquid-crystalline (L alpha) phase. The basic approach is the joint refinement of quasimolecular models (King and White, 1986. Biophys. J. 49:1047-1054) using x-ray and neutron diffraction data. We present here (a) the rationale for quasimolecular models, (b) the nature of the resolution problem for thermally disordered bilayers, and (c) an analysis of the resolution of experiments in which Gaussian functions are used to describe the distribution of submolecular components. We show that multilamellar liquid-crystalline bilayers are best described by the convolution of a perfect lattice function with a thermally disordered bilayer unit cell. Lamellar diffraction measurements on such a system generally yield only 5-10 orders of diffraction data from which transbilayer profiles of the unit cell can be constructed. The canonical resolution of these transbilayer profiles, defined as the Bragg spacing divided by the index of the highest recorded diffraction order, is typically 5-10 A. Using simple model calculations, we show that the canonical resolution is a measure of the widths of the distributions of constituents of the unit cell rather than a measure of the spatial separation of the distributions. The widths provide a measure of the thermal motion of the bilayer constituents which can be described by Gaussian functions. The equilibrium positions of the centers of the distributions can be determined with a precision of 0.1-0.5 A based upon typical experimental errors. Images FIGURE 1 PMID:2015381

  13. Rigorous analysis and design of diffractive cylindrical lenses with high numerical and large geometrical apertures

    NASA Astrophysics Data System (ADS)

    Schmitz, Martin; Bryngdahl, Olof

    1998-07-01

    A concept is presented for the analysis of diffractive cylindrical lenses with apertures larger than 100 wavelengths which are denoted as large geometrical apertures throughout this paper. The transmitted field of a cylindrical lens is calculated by the use of rigorous electromagnetic diffraction theory. Large geometrical apertures are subdivided into smaller overlapping areas that are treated in sequence. The wave propagation from the lens plane to the focal plane is calculated with the spectrum of plane waves. A design concept is presented which ensures that the performance of diffractive cylindrical lenses with high numerical apertures (NA≥0.3) is almost independent of the polarization of the illuminating light. The design concept is based on the local grating model in combination with the phase detour principle. As an example we design and analyze a F/0.5 cylindrical lens (NA=0.71) with a geometrical aperture of 600 wavelengths.

  14. High resolution spectral imagery of comets

    NASA Technical Reports Server (NTRS)

    Smith, W. H.

    1986-01-01

    C-13/C-12 data at a spectral resolution of 75,000, resolving the background interferences was obtained. Some data was obtained for N-15/N-14. In April, observations were obtained for the D/H ratio. The model analysis of these observations is beginning with the goal of presentation at the Heidelberg Halley meeting. A very large quantity of observations were obtained of both features with variations on the time scale of an hour being measured. At times, the 5577 feature dominates, and at times it is nearly absent. To date, a large body of data have been obtained for C2, NH2, (O I), and probably H2O+, CN, and from the MKO data, OH. These features can all be correlated with respect to their relative velocities and distribution at the time of observation. The Greenstein effect will be used to measure similar results for CN, OH, and few other selected molecular features.

  15. High Resolution Multimode Fiber Image Recovery

    NASA Technical Reports Server (NTRS)

    Jackson, Deborah

    2000-01-01

    The research emphasis is on developing a cost-effective method of recovering image information from small, closely confined spaces using multimode fibers. The state-of-the-art good quality-viewing fiber, which can currently be used for performing this function, is a 0.5 mm diameter bundle containing 6000 pixels at a cost of $10,000 per fiber bundle. However, these fiber bundles are very fragile and can easily break during surgical use, thereby making instrument reliability and replacement cost,a major impediment to their routine use in many applications. The advantage of working with a single multimode fiber is that it is significantly less expensive and mechanically more robust. In addition, careful choice of numerical aperture allows a higher image resolution (roughly 750,000 pixels) with a 0.5 mm diameter multimode fiber.

  16. High Spectral Resolution With Multilayer Gratings

    SciTech Connect

    Andre, J.-M.; Le Guen, K.; Jonnard, P.

    2010-04-06

    The improvement of spectral resolution brought about by the use of multilayer grating (MG) instead of multilayer mirror (MM) is analyzed. The spectrum of a complex sample containing various elements excited under electron irradiation is studied. This sample is a pellet made by pressing powders of Cu and compounds with Fe and F atoms. The MM is a Mo/B{sub 4}C periodic multilayer with a period of about 6 nm; for the MG a grating of 1 {mu}m period has been etched in the MM. It is shown that the MG can easily resolve the F Kalpha and Fe Lalpha emissions, separated by about 30 eV, whereas the MM is unable to give such a performance. A comparison with an EDS (SDD) detector is also given. It is also shown that the MG can improve the detection limit. Finally the role of the slit placed in front of the detector is discussed.

  17. A high resolution global scale groundwater model

    NASA Astrophysics Data System (ADS)

    de Graaf, I. E.; Sutanudjaja, E.; Van Beek, L. P.; Bierkens, M. F.

    2013-12-01

    As the world's largest accessible source of freshwater, groundwater plays a vital role in satisfying the basic needs of human society. It serves as a primary source of drinking water and also supplies water for agricultural and industrial activities. During times of drought, the large natural groundwater storage provides a buffer against water shortage and sustains flows to rivers and wetlands, supporting ecosystem habitats and biodiversity. Yet, the current generation of global scale hydrological models (GHMs) do not include a groundwater flow component, although it is a crucial part of the hydrological cycle. Thus, a realistic physical representation of the groundwater system that allows for the simulation of groundwater head dynamics and lateral flows is essential for GHMs that increasingly run at finer resolution. In this study we present a transient global groundwater model with a resolution of 5 arc-minutes (approximately 10 km at the equator) using MODFLOW (McDonald and Harbaugh, 1988). Aquifer schematization and properties of this groundwater model were developed from available global lithological maps and datasets (Dürr et al., 2005; Gleeson et al., 2010; Hartmann and Moosdorf, 2013) combined with information about e.g. aquifer thickness and presence of less permeable, impermeable, and semi-impermeable layers. For the parameterization, we relied entirely on available global datasets and did not calibrate the model so that it can equally be expanded to data poor environments. We forced the groundwater model with the output from the global hydrological model PCR-GLOBWB (van Beek et al., 2011), specifically the net groundwater recharge and average surface water levels derived from routed channel discharge. We validated simulated groundwater heads with observations, from North America and Australia, resulting in a coefficient of determination of 0.8 and 0.7 respectively. This shows that it is feasible to build a global groundwater model using best available

  18. High-order diffraction gratings for high-power semiconductor lasers

    SciTech Connect

    Vasil'eva, V. V.; Vinokurov, D. A.; Zolotarev, V. V.; Leshko, A. Yu.; Petrunov, A. N.; Pikhtin, N. A.; Rastegaeva, M. G.; Sokolova, Z. N. Shashkin, I. S.; Tarasov, I. S.

    2012-02-15

    A deep diffraction grating with a large period ({approx}2 {mu}m) within one of the cladding layers is proposed for the implementation of selective feedback in a semiconductor laser. Frequency dependences of reflectance in the 12th diffraction order for rectangular, triangular, and trapezoidal diffraction gratings are calculated. It is shown that the maximum reflectance of the waveguide mode is attained using a rectangular or trapezoidal grating {approx}2 {mu}m deep in the laser structure. Deep trapezoidal diffraction gratings with large periods are fabricated in the Al{sub 0.3}Ga{sub 0.7}As cladding layer of a GaAs/AlGaAs laser structure using photolithography and reactive ion etching.

  19. High resolution integral holography using Fourier ptychographic approach.

    PubMed

    Li, Zhaohui; Zhang, Jianqi; Wang, Xiaorui; Liu, Delian

    2014-12-29

    An innovative approach is proposed for calculating high resolution computer generated integral holograms by using the Fourier Ptychographic (FP) algorithm. The approach initializes a high resolution complex hologram with a random guess, and then stitches together low resolution multi-view images, synthesized from the elemental images captured by integral imaging (II), to recover the high resolution hologram through an iterative retrieval with FP constrains. This paper begins with an analysis of the principle of hologram synthesis from multi-projections, followed by an accurate determination of the constrains required in the Fourier ptychographic integral-holography (FPIH). Next, the procedure of the approach is described in detail. Finally, optical reconstructions are performed and the results are demonstrated. Theoretical analysis and experiments show that our proposed approach can reconstruct 3D scenes with high resolution.

  20. Whole-animal imaging with high spatio-temporal resolution

    NASA Astrophysics Data System (ADS)

    Chhetri, Raghav; Amat, Fernando; Wan, Yinan; Höckendorf, Burkhard; Lemon, William C.; Keller, Philipp J.

    2016-03-01

    We developed isotropic multiview (IsoView) light-sheet microscopy in order to image fast cellular dynamics, such as cell movements in an entire developing embryo or neuronal activity throughput an entire brain or nervous system, with high resolution in all dimensions, high imaging speeds, good physical coverage and low photo-damage. To achieve high temporal resolution and high spatial resolution at the same time, IsoView microscopy rapidly images large specimens via simultaneous light-sheet illumination and fluorescence detection along four orthogonal directions. In a post-processing step, these four views are then combined by means of high-throughput multiview deconvolution to yield images with a system resolution of ≤ 450 nm in all three dimensions. Using IsoView microscopy, we performed whole-animal functional imaging of Drosophila embryos and larvae at a spatial resolution of 1.1-2.5 μm and at a temporal resolution of 2 Hz for up to 9 hours. We also performed whole-brain functional imaging in larval zebrafish and multicolor imaging of fast cellular dynamics across entire, gastrulating Drosophila embryos with isotropic, sub-cellular resolution. Compared with conventional (spatially anisotropic) light-sheet microscopy, IsoView microscopy improves spatial resolution at least sevenfold and decreases resolution anisotropy at least threefold. Compared with existing high-resolution light-sheet techniques, such as lattice lightsheet microscopy or diSPIM, IsoView microscopy effectively doubles the penetration depth and provides subsecond temporal resolution for specimens 400-fold larger than could previously be imaged.