Flat field concave holographic grating with broad spectral region and moderately high resolution.
Wu, Jian Fen; Chen, Yong Yan; Wang, Tai Sheng
2012-02-01
In order to deal with the conflicts between broad spectral region and high resolution in compact spectrometers based on a flat field concave holographic grating and line array CCD, we present a simple and practical method to design a flat field concave holographic grating that is capable of imaging a broad spectral region at a moderately high resolution. First, we discuss the principle of realizing a broad spectral region and moderately high resolution. Second, we provide the practical method to realize our ideas, in which Namioka grating theory, a genetic algorithm, and ZEMAX are used to reach this purpose. Finally, a near-normal-incidence example modeled in ZEMAX is shown to verify our ideas. The results show that our work probably has a general applicability in compact spectrometers with a broad spectral region and moderately high resolution.
Experimental flat-panel high-spatial-resolution volume CT of the temporal bone.
Gupta, Rajiv; Bartling, Soenke H; Basu, Samit K; Ross, William R; Becker, Hartmut; Pfoh, Armin; Brady, Thomas; Curtin, Hugh D
2004-09-01
A CT scanner employing a digital flat-panel detector is capable of very high spatial resolution as compared with a multi-section CT (MSCT) scanner. Our purpose was to determine how well a prototypical volume CT (VCT) scanner with a flat-panel detector system defines fine structures in temporal bone. Four partially manipulated temporal-bone specimens were imaged by use of a prototypical cone-beam VCT scanner with a flat-panel detector system at an isometric resolution of 150 microm at the isocenter. These specimens were also depicted by state-of-the-art multisection CT (MSCT). Forty-two structures imaged by both scanners were qualitatively assessed and rated, and scores assigned to VCT findings were compared with those of MSCT. Qualitative assessment of anatomic structures, lesions, cochlear implants, and middle-ear hearing aids indicated that image quality was significantly better with VCT (P < .001). Structures near the spatial-resolution limit of MSCT (e.g., bony covering of the tympanic segment of the facial canal, the incudo-stapedial joint, the proximal vestibular aqueduct, the interscalar septum, and the modiolus) had higher contrast and less partial-volume effect with VCT. The flat-panel prototype provides better definition of fine osseous structures of temporal bone than that of currently available MSCT scanners. This study provides impetus for further research in increasing spatial resolution beyond that offered by the current state-of-the-art scanners.
VizieR Online Data Catalog: Orphan stream high-resolution spectroscopic study (Casey+, 2014)
NASA Astrophysics Data System (ADS)
Casey, A. R.; Keller, S. C.; da Costa, G.; Frebel, A.; Maunder, E.
2017-06-01
High-resolution spectra for five Orphan stream candidates and seven well-studied standard stars have been obtained with the Magellan Inamori Kyocera Echelle spectrograph (Bernstein et al. 2003SPIE.4841.1694B) on the Magellan Clay telescope. These objects were observed in 2011 March using a 1" wide slit in mean seeing of 0.9". This slit configuration provides continuous spectral coverage from 333 nm to 915 nm, with a spectral resolution of R=25000 in the blue arm and R=28000 in the red arm. A minimum of 10 exposures of each calibration type (biases, flat fields, and diffuse flats) were observed in the afternoon of each day, with additional flat-field and Th-Ar arc lamp exposures performed throughout the night to ensure an accurate wavelength calibration. (3 data files).
High-Accuracy Tidal Flat Digital Elevation Model Construction Using TanDEM-X Science Phase Data
NASA Technical Reports Server (NTRS)
Lee, Seung-Kuk; Ryu, Joo-Hyung
2017-01-01
This study explored the feasibility of using TanDEM-X (TDX) interferometric observations of tidal flats for digital elevation model (DEM) construction. Our goal was to generate high-precision DEMs in tidal flat areas, because accurate intertidal zone data are essential for monitoring coastal environment sand erosion processes. To monitor dynamic coastal changes caused by waves, currents, and tides, very accurate DEMs with high spatial resolution are required. The bi- and monostatic modes of the TDX interferometer employed during the TDX science phase provided a great opportunity for highly accurate intertidal DEM construction using radar interferometry with no time lag (bistatic mode) or an approximately 10-s temporal baseline (monostatic mode) between the master and slave synthetic aperture radar image acquisitions. In this study, DEM construction in tidal flat areas was first optimized based on the TDX system parameters used in various TDX modes. We successfully generated intertidal zone DEMs with 57-m spatial resolutions and interferometric height accuracies better than 0.15 m for three representative tidal flats on the west coast of the Korean Peninsula. Finally, we validated these TDX DEMs against real-time kinematic-GPS measurements acquired in two tidal flat areas; the correlation coefficient was 0.97 with a root mean square error of 0.20 m.
Meng, Lingyan; Yang, Zhilin; Chen, Jianing; Sun, Mengtao
2015-01-01
Tip-enhanced Raman spectroscopy (TERS) with sub-nanometer spatial resolution has been recently demonstrated experimentally. However, the physical mechanism underlying is still under discussion. Here we theoretically investigate the electric field gradient of a coupled tip-substrate system. Our calculations suggest that the ultra-high spatial resolution of TERS can be partially attributed to the electric field gradient effect owning to its tighter spatial confinement and sensitivity to the infrared (IR)-active of molecules. Particularly, in the case of TERS of flat-lying H2TBPP molecules,we find the electric field gradient enhancement is the dominating factor for the high spatial resolution, which qualitatively coincides with previous experimental report. Our theoretical study offers a new paradigm for understanding the mechanisms of the ultra-high spatial resolution demonstrated in tip-enhanced spectroscopy which is of importance but neglected. PMID:25784161
Using a flat-panel detector in high resolution cone beam CT for dental imaging.
Baba, R; Ueda, K; Okabe, M
2004-09-01
Cone beam CT (CBCT) requires a two-dimensional X-ray detector. In the several CBCT systems developed for dental imaging, detection has been by the combination of an X-ray image intensifier and charge-coupled device (CCD) camera. In this paper, we propose a new CBCT system in which the detector is of the flat-panel type and evaluate its performance in dental imaging. We developed a prototype CBCT that has a flat-panel-type detector. The detector consists of a CsI scintillator screen and a photosensor array. First, the flat panel detector and image intensifier detector were compared in terms of the signal-to-noise ratio (SNR) of projected images. We then used these data and a theoretical formula to evaluate noise in reconstructed images. Second, reconstructed images of a bar pattern phantom were obtained as a way of evaluating the spatial resolution. Then, reconstructed images of a skull phantom were obtained. The SNR of the developed system was 1.6 times as high as that of a system with an image intensifier detector of equal detector pitch. The system was capable of resolving a 0.35 mm pattern and its field of view almost completely encompassed that of an image intensifier detector which is used in dentomaxillofacial imaging. The fine spatial resolution of the detector led to images in which the structural details of a skull phantom were clearly visible. The system's isotropically fine resolution will lead to improved precision in dental diagnosis and surgery. The next stage of our research will be the development of a flat panel detector system with a high frame acquisition rate.
NASA Astrophysics Data System (ADS)
Cha, B. K.; kim, J. Y.; Kim, T. J.; Sim, C.; Cho, G.; Lee, D. H.; Seo, C.-W.; Jeon, S.; Huh, Y.
2011-01-01
In digital neutron radiography system, a thermal neutron imaging detector based on neutron-sensitive scintillating screens with CMOS(complementary metal oxide semiconductor) flat panel imager is introduced for non-destructive testing (NDT) application. Recently, large area CMOS APS (active-pixel sensor) in conjunction with scintillation films has been widely used in many digital X-ray imaging applications. Instead of typical imaging detectors such as image plates, cooled-CCD cameras and amorphous silicon flat panel detectors in combination with scintillation screens, we tried to apply a scintillator-based CMOS APS to neutron imaging detection systems for high resolution neutron radiography. In this work, two major Gd2O2S:Tb and 6LiF/ZnS:Ag scintillation screens with various thickness were fabricated by a screen printing method. These neutron converter screens consist of a dispersion of Gd2O2S:Tb and 6LiF/ZnS:Ag scintillating particles in acrylic binder. These scintillating screens coupled-CMOS flat panel imager with 25x50mm2 active area and 48μm pixel pitch was used for neutron radiography. Thermal neutron flux with 6x106n/cm2/s was utilized at the NRF facility of HANARO in KAERI. The neutron imaging characterization of the used detector was investigated in terms of relative light output, linearity and spatial resolution in detail. The experimental results of scintillating screen-based CMOS flat panel detectors demonstrate possibility of high sensitive and high spatial resolution imaging in neutron radiography system.
Greschus, Susanne; Kuchenbuch, Tim; Plötz, Christian; Obert, Martin; Traupe, Horst; Padberg, Winfried; Grau, Veronika; Hirschburger, Markus
2009-01-01
Noninvasive assessment of experimental lung transplants with high resolution would be favorable to exclude technical failure and to follow up graft outcome in the living animal. Here we describe a flat-panel Volumetric Computed Tomography (fpVCT) technique using a prototype scanner. Lung transplantation was performed in allogeneic as well as in corresponding syngeneic rat strain combinations. At different time points post-transplantation, fpVCT was performed. Lung transplants can be visualized in the living rat with high-spatial resolution. FpVCT allows a detailed analysis of the lung and the bronchi. Infiltrates developing during rejection episodes can be diagnosed and follow-up studies can easily be performed. With fpVCT it is possible to control the technical success of the surgical procedure. Graft rejection can be visualized individually in the living animal noninvasively, which is highly advantageous for studying the pathogenesis of chronic rejection or to monitor new therapies.
Combat vehicle crew helmet-mounted display: next generation high-resolution head-mounted display
NASA Astrophysics Data System (ADS)
Nelson, Scott A.
1994-06-01
The Combat Vehicle Crew Head-Mounted Display (CVC HMD) program is an ARPA-funded, US Army Natick Research, Development, and Engineering Center monitored effort to develop a high resolution, flat panel HMD for the M1 A2 Abrams main battle tank. CVC HMD is part of the ARPA High Definition Systems (HDS) thrust to develop and integrate small (24 micrometers square pels), high resolution (1280 X 1024 X 6-bit grey scale at 60 frame/sec) active matrix electroluminescent (AMEL) and active matrix liquid crystal displays (AMLCD) for head mounted and projection applications. The Honeywell designed CVC HMD is a next generation head-mounted display system that includes advanced flat panel image sources, advanced digital display driver electronics, high speed (> 1 Gbps) digital interconnect electronics, and light weight, high performance optical and mechanical designs. The resulting dramatic improvements in size, weight, power, and cost have already led to program spin offs for both military and commercial applications.
Transmission type flat-panel X-ray source using ZnO nanowire field emitters
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chen, Daokun; Song, Xiaomeng; Zhang, Zhipeng
2015-12-14
A transmission type flat-panel X-ray source in diode structure was fabricated. Large-scale patterned ZnO nanowires grown on a glass substrate by thermal oxidation were utilized as field emitters, and tungsten thin film coated on silica glass was used as the transmission anode. Uniform distribution of X-ray generation was achieved, which benefited from the uniform electron emission from ZnO nanowires. Self-ballasting effect induced by the intrinsic resistance of ZnO nanowire and decreasing of screening effect caused by patterned emitters account for the uniform emission. Characteristic X-ray peaks of W-L lines and bremsstrahlung X-rays have been observed under anode voltages at amore » range of 18–20 kV, the latter of which were the dominant X-ray signals. High-resolution X-ray images with spatial resolution less than 25 μm were obtained by the flat-panel X-ray source. The high resolution was attributed to the small divergence angle of the emitted X-rays from the transmission X-ray source.« less
Influence of high resolution rainfall data on the hydrological response of urban flat catchments
NASA Astrophysics Data System (ADS)
Cristiano, Elena; ten Veldhuis, Marie-claire; van de Giesen, Nick
2016-04-01
In the last decades, cities have become more and more urbanized and population density in urban areas is increased. At the same time, due to the climate changes, rainfall events present higher intensity and shorter duration than in the past. The increase of imperviousness degree, due to urbanization, combined with short and intense rainfall events, determinates a fast hydrological response of the urban catchment and in some cases it can lead to flooding. Urban runoff processes are sensitive to rainfall spatial and temporal variability and, for this reason, high resolution rainfall data are required as input for the hydrological model. A better knowledge of the hydrological response of system can help to prevent damages caused by flooding. This study aims to evaluate the sensitivity of urban hydrological response to spatial and temporal rainfall variability in urban areas, focusing especially on understanding the hydrological behaviour in lowland areas. In flat systems, during intense rainfall events, the flow in the sewer network can be pressurized and it can change direction, depending on the setting of pumping stations and CSOs (combined sewer overflow). In many cases these systems are also looped and it means that the water can follow different paths, depending on the pipe filling process. For these reasons, hydrological response of flat and looped catchments is particularly complex and it can be difficult characterize and predict it. A new dual polarimetric X-band weather radar, able to measure rainfall with temporal resolution of 1 min and spatial resolution of 100mX100m, was recently installed in the city of Rotterdam (NL). With this instrument, high resolution rainfall data were measured and used, in this work, as input for the hydrodynamic model. High detailed, semi-distributed hydrodynamic models of some districts of Rotterdam were used to investigate the hydrological response of flat catchments to high resolution rainfall data. In particular, the hydrological response of some subcatchments of the district of Kralingen was studied. Rainfall data were combined with level and discharge measurements at the pumping station that connects the sewer system with the waste water treatment plane. Using this data it was possible to study the water balance and to have a better idea of the amount of water that leave the system during a specific rainfall events. Results show that the hydrological response of flat and looped catchments is sensitive to spatial and temporal rainfall variability and it can be strongly influenced by rainfall event characteristics, such as intensity, velocity and intermittency of the storm.
Generation of flat-top pulsed magnetic fields with feedback control approach.
Kohama, Yoshimitsu; Kindo, Koichi
2015-10-01
We describe the construction of a simple, compact, and cost-effective feedback system that produces flat-top field profiles in pulsed magnetic fields. This system is designed for use in conjunction with a typical capacitor-bank driven pulsed magnet and was tested using a 60-T pulsed magnet. With the developed feedback controller, we have demonstrated flat-top magnetic fields as high as 60.64 T with an excellent field stability of ±0.005 T. The result indicates that the flat-top pulsed magnetic field produced features high field stability and an accessible field strength. These features make this system useful for improving the resolution of data with signal averaging.
Shin-Etsu super-high-flat substrate for FPD panel photomask
NASA Astrophysics Data System (ADS)
Ishitsuka, Youkou; Harada, Daijitsu; Watabe, Atsushi; Takeuchi, Masaki
2017-07-01
Recently, high-resolution exposure machine has been developed for production of high-definition (HD) panels, and higher-flat photomask substrates for FPD is being expected for panel makers to produce HD panels. In this presentation, we introduce about Shin-Etsu's advanced technique of producing super-high-flat photomask substrates. Shin-Etsu has developed surface polishing and planarization technology with No.1-quality-IC photomask substrates. Our most advanced IC photomask substrates have gained the highest estimation and appreciation from our customers because of their surface quality (non-defect surface without sub-0.1um size defects) and ultimate flatness (sub-0.1um order having achieved). By scaling up those IC photomask substrate technologies and developing unique large-size processing technologies, we have achieved creating high-flat large substrates, even G10-photomask size as well as regular G6-G8 photomask size. The core technology is that the surface shape of the substrate is completely controlled by the unique method. For example, we can regularly produce a substrate with its flatness of triple 5ums; front side flatness, back side flatness and total thickness variation are all less than 5μm. Furthermore, we are able to supply a substrate with its flatness of triple 3ums for G6-photomask size advanced grade, believed to be needed in near future.
NASA Astrophysics Data System (ADS)
Scaduto, David A.; Lubinsky, Anthony R.; Rowlands, John A.; Kenmotsu, Hidenori; Nishimoto, Norihito; Nishino, Takeshi; Tanioka, Kenkichi; Zhao, Wei
2014-03-01
We have previously proposed SAPHIRE (scintillator avalanche photoconductor with high resolution emitter readout), a novel detector concept with potentially superior spatial resolution and low-dose performance compared with existing flat-panel imagers. The detector comprises a scintillator that is optically coupled to an amorphous selenium photoconductor operated with avalanche gain, known as high-gain avalanche rushing photoconductor (HARP). High resolution electron beam readout is achieved using a field emitter array (FEA). This combination of avalanche gain, allowing for very low-dose imaging, and electron emitter readout, providing high spatial resolution, offers potentially superior image quality compared with existing flat-panel imagers, with specific applications to fluoroscopy and breast imaging. Through the present collaboration, a prototype HARP sensor with integrated electrostatic focusing and nano- Spindt FEA readout technology has been fabricated. The integrated electron-optic focusing approach is more suitable for fabricating large-area detectors. We investigate the dependence of spatial resolution on sensor structure and operating conditions, and compare the performance of electrostatic focusing with previous technologies. Our results show a clear dependence of spatial resolution on electrostatic focusing potential, with performance approaching that of the previous design with external mesh-electrode. Further, temporal performance (lag) of the detector is evaluated and the results show that the integrated electrostatic focusing design exhibits comparable or better performance compared with the mesh-electrode design. This study represents the first technical evaluation and characterization of the SAPHIRE concept with integrated electrostatic focusing.
Du, Hong; El-Mohri, Youcef; Zhao, Qihua; Su, Zhong; Yamamoto, Jin; Wang, Yi
2009-01-01
Active matrix, flat-panel x-ray imagers based on a-Si:H thin film transistors offer many advantages and are widely utilized in medical imaging applications. Unfortunately, the detective quantum efficiency (DQE) of conventional flat-panel imagers incorporating scintillators or a-Se photoconductors is significantly limited by their relatively modest signal to noise ratio, particularly in applications involving low x-ray exposures or high spatial resolution. For this reason, polycrystalline HgI2 is of considerable interest by virtue of its low effective work function, high atomic number, and the possibility of large-area deposition. In this study, a detailed investigation of the properties of prototype, flat-panel arrays coated with two forms of this high-gain photoconductor are reported. Encouragingly, high x-ray sensitivity, low dark current, and spatial resolution close to the theoretical limits were observed from a number of prototypes. In addition, input-quantum-limited DQE performance was measured from one of the prototypes at relatively low exposures. However, high levels of charge trapping, lag, and polarization, as well as pixel-to-pixel variations in x-ray sensitivity are of concern. While the results of the current study are promising, further development will be required to realize prototypes exhibiting the characteristics necessary to allow practical implementation of this approach. PMID:18296765
Super-resolution imaging of multiple cells by optimized flat-field epi-illumination
NASA Astrophysics Data System (ADS)
Douglass, Kyle M.; Sieben, Christian; Archetti, Anna; Lambert, Ambroise; Manley, Suliana
2016-11-01
Biological processes are inherently multi-scale, and supramolecular complexes at the nanoscale determine changes at the cellular scale and beyond. Single-molecule localization microscopy (SMLM) techniques have been established as important tools for studying cellular features with resolutions of the order of around 10 nm. However, in their current form these modalities are limited by a highly constrained field of view (FOV) and field-dependent image resolution. Here, we develop a low-cost microlens array (MLA)-based epi-illumination system—flat illumination for field-independent imaging (FIFI)—that can efficiently and homogeneously perform simultaneous imaging of multiple cells with nanoscale resolution. The optical principle of FIFI, which is an extension of the Köhler integrator, is further elucidated and modelled with a new, free simulation package. We demonstrate FIFI's capabilities by imaging multiple COS-7 and bacteria cells in 100 × 100 μm2 SMLM images—more than quadrupling the size of a typical FOV and producing near-gigapixel-sized images of uniformly high quality.
Short time dynamics of water coalescence on a flat water pool
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lim, Su Jin; Gim, Bopil; Fezzaa, Kamel
2016-12-01
Coalescence is an important hydrodynamic event that frequently takes place in nature as well as in industry. Here we provide an experimental study on short time dynamics of water coalescence, particularly when a water droplet comes in contact with a flat water surface, by utilizing high-resolution high-penetration ultrafast X-ray microscopy. Our results demonstrate a possibility that an extreme curvature difference between a drop and a flat surface can significantly modify the hydrodynamics of water coalescence, which is unexpected in the existing theory. We suggest a plausible explanation for why coalescence can be modified by an extreme curvature difference.
NASA Astrophysics Data System (ADS)
Cusanno, F.; Argentieri, A.; Baiocchi, M.; Colilli, S.; Cisbani, E.; De Vincentis, G.; Fratoni, R.; Garibaldi, F.; Giuliani, F.; Gricia, M.; Lucentini, M.; Magliozzi, M. L.; Majewski, S.; Marano, G.; Musico, P.; Musumeci, M.; Santavenere, F.; Torrioli, S.; Tsui, B. M. W.; Vitelli, L.; Wang, Y.
2010-05-01
Cardiovascular diseases are the most common cause of death in western countries. Understanding the rupture of vulnerable atherosclerotic plaques and monitoring the effect of innovative therapies of heart failure is of fundamental importance. A flexible, high resolution, high sensitivity detector system for molecular imaging with radionuclides on small animal models has been designed for this aim. A prototype has been built using tungsten pinhole and LaBr3(Ce) scintillator coupled to Hamamatsu Flat Panel PMTs. Compact individual-channel readout has been designed, built and tested. Measurements with phantoms as well as pilot studies on mice have been performed, the results show that the myocardial perfusion in mice can be determined with sufficient precision. The detector will be improved replacing the Hamamatsu Flat Panel with Silicon Photomultipliers (SiPMs) to allow integration of the system with MRI scanners. Application of LaBr3(Ce) scintillator coupled to photosensor with high photon detection efficiency and excellent energy resolution will allow dual-label imaging to monitor simultaneously the cardiac perfusion and the molecular targets under investigation during the heart therapy.
Arthroscopic knee surgery using the advanced flat panel high-resolution color head-mounted display
NASA Astrophysics Data System (ADS)
Nelson, Scott A.; Jones, D. E. Casey; St. Pierre, Patrick; Sampson, James B.
1997-06-01
The first ever deployed arthroscopic knee surgeries have been performed using a high resolution color head-mounted display (HMD) developed under the DARPA Advanced Flat Panel HMD program. THese procedures and several fixed hospital procedures have allowed both the system designers and surgeons to gain new insight into the use of a HMD for medical procedures in both community and combat support hospitals scenarios. The surgeons demonstrated and reported improved head-body orientation and awareness while using the HMD and reported several advantages and disadvantages of the HMD as compared to traditional CRT monitor viewing of the arthroscopic video images. The surgeries, the surgeon's comments, and a human factors overview of HMDs for Army surgical applications are discussed here.
Image interpreter tool: An ArcGIS tool for estimating vegetation cover from high-resolution imagery
USDA-ARS?s Scientific Manuscript database
Land managers need increased temporal and spatial resolution of rangeland assessment and monitoring data. However, with flat or declining land management and monitoring agency budgets, such increases in sampling intensity are unlikely unless new methods can be developed that capture data of key rang...
Beyer, Hannes; Wagner, Tino; Stemmer, Andreas
2016-01-01
Frequency-modulation atomic force microscopy has turned into a well-established method to obtain atomic resolution on flat surfaces, but is often limited to ultra-high vacuum conditions and cryogenic temperatures. Measurements under ambient conditions are influenced by variations of the dew point and thin water layers present on practically every surface, complicating stable imaging with high resolution. We demonstrate high-resolution imaging in air using a length-extension resonator operating at small amplitudes. An additional slow feedback compensates for changes in the free resonance frequency, allowing stable imaging over a long period of time with changing environmental conditions.
Flat-panel video resolution LED display system
NASA Astrophysics Data System (ADS)
Wareberg, P. G.; Kennedy, D. I.
The system consists of a 128 x 128 element X-Y addressable LED array fabricated from green-emitting gallium phosphide. The LED array is interfaced with a 128 x 128 matrix TV camera. Associated electronics provides for seven levels of grey scale above zero with a grey scale ratio of square root of 2. Picture elements are on 0.008 inch centers resulting in a resolution of 125 lines-per-inch and a display area of approximately 1 sq. in. The LED array concept lends itself to modular construction, permitting assembly of a flat panel screen of any desired size from 1 x 1 inch building blocks without loss of resolution. A wide range of prospective aerospace applications exist extending from helmet-mounted systems involving small dedicated arrays to multimode cockpit displays constructed as modular screens. High-resolution LED arrays are already used as CRT replacements in military film-marking reconnaissance applications.
Multiband super-resolution imaging of graded-index photonic crystal flat lens
NASA Astrophysics Data System (ADS)
Xie, Jianlan; Wang, Junzhong; Ge, Rui; Yan, Bei; Liu, Exian; Tan, Wei; Liu, Jianjun
2018-05-01
Multiband super-resolution imaging of point source is achieved by a graded-index photonic crystal flat lens. With the calculations of six bands in common photonic crystal (CPC) constructed with scatterers of different refractive indices, it can be found that the super-resolution imaging of point source can be realized by different physical mechanisms in three different bands. In the first band, the imaging of point source is based on far-field condition of spherical wave while in the second band, it is based on the negative effective refractive index and exhibiting higher imaging quality than that of the CPC. However, in the fifth band, the imaging of point source is mainly based on negative refraction of anisotropic equi-frequency surfaces. The novel method of employing different physical mechanisms to achieve multiband super-resolution imaging of point source is highly meaningful for the field of imaging.
Single-frame 3D fluorescence microscopy with ultraminiature lensless FlatScope
Adams, Jesse K.; Boominathan, Vivek; Avants, Benjamin W.; Vercosa, Daniel G.; Ye, Fan; Baraniuk, Richard G.; Robinson, Jacob T.; Veeraraghavan, Ashok
2017-01-01
Modern biology increasingly relies on fluorescence microscopy, which is driving demand for smaller, lighter, and cheaper microscopes. However, traditional microscope architectures suffer from a fundamental trade-off: As lenses become smaller, they must either collect less light or image a smaller field of view. To break this fundamental trade-off between device size and performance, we present a new concept for three-dimensional (3D) fluorescence imaging that replaces lenses with an optimized amplitude mask placed a few hundred micrometers above the sensor and an efficient algorithm that can convert a single frame of captured sensor data into high-resolution 3D images. The result is FlatScope: perhaps the world’s tiniest and lightest microscope. FlatScope is a lensless microscope that is scarcely larger than an image sensor (roughly 0.2 g in weight and less than 1 mm thick) and yet able to produce micrometer-resolution, high–frame rate, 3D fluorescence movies covering a total volume of several cubic millimeters. The ability of FlatScope to reconstruct full 3D images from a single frame of captured sensor data allows us to image 3D volumes roughly 40,000 times faster than a laser scanning confocal microscope while providing comparable resolution. We envision that this new flat fluorescence microscopy paradigm will lead to implantable endoscopes that minimize tissue damage, arrays of imagers that cover large areas, and bendable, flexible microscopes that conform to complex topographies. PMID:29226243
100 GHz FMCW Radar Module Based on Broadband Schottky-diode Transceiver
NASA Astrophysics Data System (ADS)
Jiang, Shu; Xu, Jinping; Dou, Jiangling; Wang, Wenbo
2018-04-01
We report on a W-band frequency-modulated continuous-wave (FMCW) radar module with fractional bandwidth over 10 %. To improve flatness over large operation bandwidth, the radar module is developed with focus on the 90-101 GHz modular transceiver, for which accurate modeling of Schottky diode in combination with an integrated design method are proposed in this work. Moreover, the nonlinearity compensation approach is introduced to further optimize the range resolution. To verify the design method and RF performance of the radar module, both measurements of critical components and ISAR imaging experiments are performed. The results demonstrate that high resolution in range and azimuth dimensions can be achieved based on the radar module, of which the receiving gain flatness and transmitting power flatness are better than ±1.3 dB and ±0.7 dB over 90 101 GHz, respectively.
1998-06-08
A color image of the Tyrrhena Patera Region of Mars; north toward top. The scene shows a central circular depression surrounded by circular fractures and highly dissected horizontal sheets. A patera (Latin for shallow dish or saucer) is a volcano of broad areal extent with little vertical relief. This image is a composite of Viking medium-resolution images in black and white and low-resolution images in color. The image extends from latitude 17 degrees S. to 25 degrees S. and from longitude 250 degrees to 260 degrees; Mercator projection. Tyrrhena Patera has a 12-km-diameter caldera at its center surrounded by a 45-km-diameter fracture ring. Around the fracture ring, the terrain is highly eroded forming ragged outward-facing cliffs, as though successive flat-lying layers had been eroded back. Cut into the sequence are several flat-floored channels that extend outward as far as 200 km from the center of the volcano. The structure may be composed of highly erodible ash layers and the channels may be fluvial, with the release of water being triggered by volcanic activity (Carr, 1981, The surface of Mars, Yale Univ. Press, New Haven, 232 p.). http://photojournal.jpl.nasa.gov/catalog/PIA00421
Multipass holographic interferometer improves image resolution
NASA Technical Reports Server (NTRS)
Brooks, R. E.; Heflinger, L. O.
1970-01-01
Multipass holographic interferometer forms a hologram of high diffraction efficiency, and hence provides a bright and high contrast interferogram. It is used to study any effect which changes the index of refraction and to study surface deformations of a flat reflecting surface.
Recent advances in flexible low power cholesteric LCDs
NASA Astrophysics Data System (ADS)
Khan, Asad; Shiyanovskaya, Irina; Montbach, Erica; Schneider, Tod; Nicholson, Forrest; Miller, Nick; Marhefka, Duane; Ernst, Todd; Doane, J. W.
2006-05-01
Bistable reflective cholesteric displays are a liquid crystal display technology developed to fill a market need for very low power displays. Their unique look, high reflectivity, bistability, and simple structure make them an ideal flat panel display choice for handheld or other portable devices where small lightweight batteries with long lifetimes are important. Applications ranging from low resolution large signs to ultra high resolution electronic books can utilize cholesteric displays to not only benefit from the numerous features, but also create enabling features that other flat panel display technologies cannot. Flexible displays are the focus of attention of numerous research groups and corporations worldwide. Cholesteric displays have been demonstrated to be highly amenable to flexible substrates. This paper will review recent advances in flexible cholesteric displays including both phase separation and emulsification approaches to encapsulation. Both approaches provide unique benefits to various aspects of manufacturability, processes, flexibility, and conformability.
NASA Astrophysics Data System (ADS)
Nguyen, Hoang Hai; Tran, Hien; Sunwoo, Wooyeon; Yi, Jong-hyuk; Kim, Dongkyun; Choi, Minha
2017-04-01
A series of multispectral high-resolution Korean Multi-Purpose Satellite (KOMPSAT) images was used to detect the geographical changes in four different tidal flats between the Yellow Sea and the west coast of South Korea. The method of unsupervised classification was used to generate a series of land use/land cover (LULC) maps from satellite images, which were then used as input for temporal trajectory analysis to detect the temporal change of coastal wetlands and its association with natural and anthropogenic activities. The accurately classified LULC maps of KOMPSAT images, with overall accuracy ranging from 83.34% to 95.43%, indicate that these multispectral high-resolution satellite data are highly applicable to the generation of high-quality thematic maps for extracting wetlands. The result of the trajectory analysis showed that, while the variation of the tidal flats in the Gyeonggi and Jeollabuk provinces was well correlated with the regular tidal regimes, the reductive trajectory of the wetland areas belonging to the Saemangeum province was caused by a high degree of human-induced activities including large reclamation and urbanization. The conservation of the Jeungdo Wetland Protected Area in the Jeollanam province revealed that effective social and environmental policies could help in protecting coastal wetlands from degradation.
Operational characteristics of Wedge and Strip image readout systems
NASA Technical Reports Server (NTRS)
Siegmund, O. H. W.; Lampton, M.; Bixler, J.; Bowyer, S.; Malina, R. F.
1986-01-01
Application of the Wedge and Strip readout system in microchannel plate detectors for the Extreme Ultraviolet Explorer and FAUST space astronomy programs is discussed. Anode designs with high resolution (greater than 600 x 600 pixels) in imaging and spectroscopy applications have been developed. Extension of these designs to larger formats (100 mm) with higher resolution (3000 x 3000 pixels) are considered. It is shown that the resolution and imaging are highly stable, and that the flat field performance is essentially limited by photon statistics. Very high speed event response has also been achieved with output pulses having durations of less than 10 nanoseconds.
Use of PZT's for adaptive control of Fabry-Perot etalon plate figure
NASA Technical Reports Server (NTRS)
Skinner, WIlbert; Niciejewski, R.
2005-01-01
A Fabry Perot etalon, consisting of two spaced and reflective glass flats, provides the mechanism by which high resolution spectroscopy may be performed over narrow spectral regions. Space based applications include direct measurements of Doppler shifts of airglow absorption and emission features and the Doppler broadening of spectral lines. The technique requires a high degree of parallelism between the two flats to be maintained through harsh launch conditions. Monitoring and adjusting the plate figure by illuminating the Fabry Perot interferometer with a suitable monochromatic source may be performed on orbit to actively control of the parallelism of the flats. This report describes the use of such a technique in a laboratory environment applied to a piezo-electric stack attached to the center of a Fabry Perot etalon.
High Resolution Tissue Imaging Using the Single-probe Mass Spectrometry under Ambient Conditions
NASA Astrophysics Data System (ADS)
Rao, Wei; Pan, Ning; Yang, Zhibo
2015-06-01
Ambient mass spectrometry imaging (MSI) is an emerging field with great potential for the detailed spatial analysis of biological samples with minimal pretreatment. We have developed a miniaturized sampling and ionization device, the Single-probe, which uses in-situ surface micro-extraction to achieve high detection sensitivity and spatial resolution during MSI experiments. The Single-probe was coupled to a Thermo LTQ Orbitrap XL mass spectrometer and was able to create high spatial and high mass resolution MS images at 8 ± 2 and 8.5 μm on flat polycarbonate microscope slides and mouse kidney sections, respectively, which are among the highest resolutions available for ambient MSI techniques. Our proof-of-principle experiments indicate that the Single-probe MSI technique has the potential to obtain ambient MS images with very high spatial resolutions with minimal sample preparation, which opens the possibility for subcellular ambient tissue MSI to be performed in the future.
Wang, Bo; Dong, Fengliang; Li, Qi-Tong; Yang, Dong; Sun, Chengwei; Chen, Jianjun; Song, Zhiwei; Xu, Lihua; Chu, Weiguo; Xiao, Yun-Feng; Gong, Qihuang; Li, Yan
2016-08-10
Dielectric metasurfaces built up with nanostructures of high refractive index represent a powerful platform for highly efficient flat optical devices due to their easy-tuning electromagnetic scattering properties and relatively high transmission efficiencies. Here we show visible-frequency silicon metasurfaces formed by three kinds of nanoblocks multiplexed in a subwavelength unit to constitute a metamolecule, which are capable of wavefront manipulation for red, green, and blue light simultaneously. Full phase control is achieved for each wavelength by independently changing the in-plane orientations of the corresponding nanoblocks to induce the required geometric phases. Achromatic and highly dispersive meta-holograms are fabricated to demonstrate the wavefront manipulation with high resolution. This technique could be viable for various practical holographic applications and flat achromatic devices.
Application of terrestrial laser scanner on tidal flat morphology at a typhoon event timescale
NASA Astrophysics Data System (ADS)
Xie, Weiming; He, Qing; Zhang, Keqi; Guo, Leicheng; Wang, Xianye; Shen, Jian; Cui, Zheng
2017-09-01
Quantification of tidal flat morphological changes at varying timescales is critical from a management point of view. High-resolution tidal flat morphology data, including those for mudflats and salt-marshes, are rare due to monitoring difficulty by traditional methods. Recent advances in Terrestrial Laser Scanner (TLS) technology allow rapid acquisition of high-resolution and large-scale morphological data, but it remains problematic for its application on salt-marshes due to the presence of dense vegetation. In this study, we applied a TLS system to retrieve high-accuracy digital elevation models in a tidal flat of the Yangtze Estuary by using a robust and accurate Progressive Morphological filter (PM) to separate ground and non-ground points. Validations against GPS-supported RTK measurements suggested remarkable performance. In this case the average estimation error was about 0.3 cm, while the Root Mean Square Error (RMSE) was 2.0 cm. We conducted three TLS surveys on the same field including salt-marshes and mudflats at the time points 5 days before, 3 days after, and 45 days after a typhoon event. The retrieved data showed that the mudflats suffered from profound erosion while the salt-marshes slightly accreted during the typhoon period. The average elevation change of the total area was about - 4 cm (- 0.28 cm per day). However, both the mudflats and salt-marshes deposited in the post-typhoon period and the accretion over salt-marshes occurred at a higher rate than that during the typhoon. The elevation of the total area increased by 15.9 cm (0.37 cm per day), suggesting fast recovery under calm conditions. Quantification of the erosion and deposition rates was aided by the high quality TLS data. This study shows the effectiveness of TLS in quantifying morphological changes of tidal flats at an event (and post-event) timescale. The data and analysis also provide sound evidence on vegetation impact in stimulating salt-marsh development and restoration, shedding lights on bio-morphological interactions.
Surface-based atlases of cerebellar cortex in the human, macaque, and mouse.
Van Essen, David C
2002-12-01
This study describes surface reconstructions and associated flat maps that represent the highly convoluted shape of cerebellar cortex in three species: human, macaque, and mouse. The reconstructions were based on high-resolution structural MRI data obtained from other laboratories. The surface areas determined for the fiducial reconstructions are about 600 cm(2) for the human, 60 cm(2) for the macaque, and 0.8 cm(2) for the mouse. As expected from the ribbon-like pattern of cerebellar folding, the cerebellar flat maps are elongated along the axis parallel to the midline. However, the degree of elongation varies markedly across species. The macaque flat map is many times longer than its mean width, whereas the mouse flat map is only slightly elongated and the human map is intermediate in its aspect ratio. These cerebellar atlases, along with associated software for visualization and for mapping experimental data onto the atlas, are freely available to the neuroscience community (see http:/brainmap.wustl.edu).
Surface-based atlases of cerebellar cortex in the human, macaque, and mouse
NASA Technical Reports Server (NTRS)
Van Essen, David C.
2002-01-01
This study describes surface reconstructions and associated flat maps that represent the highly convoluted shape of cerebellar cortex in three species: human, macaque, and mouse. The reconstructions were based on high-resolution structural MRI data obtained from other laboratories. The surface areas determined for the fiducial reconstructions are about 600 cm(2) for the human, 60 cm(2) for the macaque, and 0.8 cm(2) for the mouse. As expected from the ribbon-like pattern of cerebellar folding, the cerebellar flat maps are elongated along the axis parallel to the midline. However, the degree of elongation varies markedly across species. The macaque flat map is many times longer than its mean width, whereas the mouse flat map is only slightly elongated and the human map is intermediate in its aspect ratio. These cerebellar atlases, along with associated software for visualization and for mapping experimental data onto the atlas, are freely available to the neuroscience community (see http:/brainmap.wustl.edu).
Toward the Era of a One-Stop Imaging Service Using an Angiography Suite for Neurovascular Disorders
Hung, Sheng-Che; Lin, Chung-Jung; Chang, Feng-Chi; Luo, Chao-Bao; Teng, Michael Mu-Huo; Chang, Cheng-Yen
2013-01-01
Transportation of patients requiring multiple diagnostic and imaging-guided therapeutic modalities is unavoidable in current radiological practice. This clinical scenario causes time delays and increased risk in the management of stroke and other neurovascular emergencies. Since the emergence of flat-detector technology in imaging practice in recent decades, studies have proven that flat-detector X-ray angiography in conjunction with contrast medium injection and specialized reconstruction algorithms can provide not only high-quality and high-resolution CT-like images but also functional information. This improvement in imaging technology allows quantitative assessment of intracranial hemodynamics and, subsequently in the same imaging session, provides treatment guidance for patients with neurovascular disorders by using only a flat-detector angiographic suite—a so-called one-stop quantitative imaging service (OSIS). In this paper, we review the recent developments in the field of flat-detector imaging and share our experience of applying this technology in neurovascular disorders such as acute ischemic stroke, cerebral aneurysm, and stenoocclusive carotid diseases. PMID:23762863
A quality assurance phantom for the performance evaluation of volumetric micro-CT systems
NASA Astrophysics Data System (ADS)
Du, Louise Y.; Umoh, Joseph; Nikolov, Hristo N.; Pollmann, Steven I.; Lee, Ting-Yim; Holdsworth, David W.
2007-12-01
Small-animal imaging has recently become an area of increased interest because more human diseases can be modeled in transgenic and knockout rodents. As a result, micro-computed tomography (micro-CT) systems are becoming more common in research laboratories, due to their ability to achieve spatial resolution as high as 10 µm, giving highly detailed anatomical information. Most recently, a volumetric cone-beam micro-CT system using a flat-panel detector (eXplore Ultra, GE Healthcare, London, ON) has been developed that combines the high resolution of micro-CT and the fast scanning speed of clinical CT, so that dynamic perfusion imaging can be performed in mice and rats, providing functional physiological information in addition to anatomical information. This and other commercially available micro-CT systems all promise to deliver precise and accurate high-resolution measurements in small animals. However, no comprehensive quality assurance phantom has been developed to evaluate the performance of these micro-CT systems on a routine basis. We have designed and fabricated a single comprehensive device for the purpose of performance evaluation of micro-CT systems. This quality assurance phantom was applied to assess multiple image-quality parameters of a current flat-panel cone-beam micro-CT system accurately and quantitatively, in terms of spatial resolution, geometric accuracy, CT number accuracy, linearity, noise and image uniformity. Our investigations show that 3D images can be obtained with a limiting spatial resolution of 2.5 mm-1 and noise of ±35 HU, using an acquisition interval of 8 s at an entrance dose of 6.4 cGy.
Wang, Qiang; Wen, Jie; Ravindranath, Bosky; O'Sullivan, Andrew W; Catherall, David; Li, Ke; Wei, Shouyi; Komarov, Sergey; Tai, Yuan-Chuan
2015-09-11
Compact high-resolution panel detectors using virtual pinhole (VP) PET geometry can be inserted into existing clinical or pre-clinical PET systems to improve regional spatial resolution and sensitivity. Here we describe a compact panel PET detector built using the new Though Silicon Via (TSV) multi-pixel photon counters (MPPC) detector. This insert provides high spatial resolution and good timing performance for multiple bio-medical applications. Because the TSV MPPC design eliminates wire bonding and has a package dimension which is very close to the MPPC's active area, it is 4-side buttable. The custom designed MPPC array (based on Hamamatsu S12641-PA-50(x)) used in the prototype is composed of 4 × 4 TSV-MPPC cells with a 4.46 mm pitch in both directions. The detector module has 16 × 16 lutetium yttrium oxyorthosilicate (LYSO) crystal array, with each crystal measuring 0.92 × 0.92 × 3 mm 3 with 1.0 mm pitch. The outer diameter of the detector block is 16.8 × 16.8 mm 2 . Thirty-two such blocks will be arranged in a 4 × 8 array with 1 mm gaps to form a panel detector with detection area around 7 cm × 14 cm in the full-size detector. The flood histogram acquired with Ge-68 source showed excellent crystal separation capability with all 256 crystals clearly resolved. The detector module's mean, standard deviation, minimum (best) and maximum (worst) energy resolution were 10.19%, +/-0.68%, 8.36% and 13.45% FWHM, respectively. The measured coincidence time resolution between the block detector and a fast reference detector (around 200 ps single photon timing resolution) was 0.95 ns. When tested with Siemens Cardinal electronics the performance of the detector blocks remain consistent. These results demonstrate that the TSV-MPPC is a promising photon sensor for use in a flat panel PET insert composed of many high resolution compact detector modules.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Pasha, M. Fayzul K.; Yang, Majntxov; Yeasmin, Dilruba
Benefited from the rapid development of multiple geospatial data sets on topography, hydrology, and existing energy-water infrastructures, the reconnaissance level hydropower resource assessment can now be conducted using geospatial models in all regions of the US. Furthermore, the updated techniques can be used to estimate the total undeveloped hydropower potential across all regions, and may eventually help identify further hydropower opportunities that were previously overlooked. To enhance the characterization of higher energy density stream-reaches, this paper explored the sensitivity of geospatial resolution on the identification of hydropower stream-reaches using the geospatial merit matrix based hydropower resource assessment (GMM-HRA) model. GMM-HRAmore » model simulation was conducted with eight different spatial resolutions on six U.S. Geological Survey (USGS) 8-digit hydrologic units (HUC8) located at three different terrains; Flat, Mild, and Steep. The results showed that more hydropower potential from higher energy density stream-reaches can be identified with increasing spatial resolution. Both Flat and Mild terrains exhibited lower impacts compared to the Steep terrain. Consequently, greater attention should be applied when selecting the discretization resolution for hydropower resource assessments in the future study.« less
Pasha, M. Fayzul K.; Yang, Majntxov; Yeasmin, Dilruba; ...
2016-01-07
Benefited from the rapid development of multiple geospatial data sets on topography, hydrology, and existing energy-water infrastructures, the reconnaissance level hydropower resource assessment can now be conducted using geospatial models in all regions of the US. Furthermore, the updated techniques can be used to estimate the total undeveloped hydropower potential across all regions, and may eventually help identify further hydropower opportunities that were previously overlooked. To enhance the characterization of higher energy density stream-reaches, this paper explored the sensitivity of geospatial resolution on the identification of hydropower stream-reaches using the geospatial merit matrix based hydropower resource assessment (GMM-HRA) model. GMM-HRAmore » model simulation was conducted with eight different spatial resolutions on six U.S. Geological Survey (USGS) 8-digit hydrologic units (HUC8) located at three different terrains; Flat, Mild, and Steep. The results showed that more hydropower potential from higher energy density stream-reaches can be identified with increasing spatial resolution. Both Flat and Mild terrains exhibited lower impacts compared to the Steep terrain. Consequently, greater attention should be applied when selecting the discretization resolution for hydropower resource assessments in the future study.« less
Ito, Yoichiro; Clary, Robert
2016-01-01
High-speed countercurrent chromatography with a spiral tube assembly can retain a satisfactory amount of stationary phase of polymer phase systems used for protein separation. In order to improve the partition efficiency a simple tool to modify the tubing shapes was fabricated, and the following four different tubing modifications were made: intermittently pressed at 10 mm width, flat, flat-wave, and flat-twist. Partition efficiencies of the separation column made from these modified tubing were examined in protein separation with an aqueous-aqueous polymer phase system at flow rates of 1–2 ml/min under 800 rpm. The results indicated that the column with all modified tubing improved the partition efficiency at a flow rate of 1 ml/min, but at a higher flow rate of 2 ml/min the columns made of flattened tubing showed lowered partition efficiency apparently due to the loss of the retained stationary phase. Among all the modified columns, the column with intermittently pressed tubing gave the best peak resolution. It may be concluded that the intermittently pressed and flat-twist improve the partition efficiency in a semi-preparative separation while other modified tubing of flat and flat-wave configurations may be used for analytical separations with a low flow rate. PMID:27790621
Ito, Yoichiro; Clary, Robert
2016-12-01
High-speed countercurrent chromatography with a spiral tube assembly can retain a satisfactory amount of stationary phase of polymer phase systems used for protein separation. In order to improve the partition efficiency a simple tool to modify the tubing shapes was fabricated, and the following four different tubing modifications were made: intermittently pressed at 10 mm width, flat, flat-wave, and flat-twist. Partition efficiencies of the separation column made from these modified tubing were examined in protein separation with an aqueous-aqueous polymer phase system at flow rates of 1-2 ml/min under 800 rpm. The results indicated that the column with all modified tubing improved the partition efficiency at a flow rate of 1 ml/min, but at a higher flow rate of 2 ml/min the columns made of flattened tubing showed lowered partition efficiency apparently due to the loss of the retained stationary phase. Among all the modified columns, the column with intermittently pressed tubing gave the best peak resolution. It may be concluded that the intermittently pressed and flat-twist improve the partition efficiency in a semi-preparative separation while other modified tubing of flat and flat-wave configurations may be used for analytical separations with a low flow rate.
Shen, Y; Zhong, Y; Lai, C; Wang, T; Shaw, C
2012-06-01
To investigate the advantage of a high resolution flat panel detector for improving the visibility of microcalcifications (MCs) in cone beam breast CT Methods: A paraffin cylinder was used to simulate a 100% adipose breast. Calcium carbonate grains, ranging from 125-140 μm to 224 - 250 μm in size, were used to simulate the MCs. Groups of 25 same size MCs were embedded at the phantom center. The phantom was scanned with a bench-top CBCT system at various exposure levels. A 75μm pitch flat panel detector (Dexela 2923, Perkin Elmer) with 500μm thick CsI scintillator plate was used as the high resolution detector. A 194 μm pitch detector (Paxscan 4030CB, Varian Medical Systems) was used for reference. 300 projection images were acquired over 360° and reconstructed. The images were reviewed by 6 readers. The MC visibility was quantified as the fraction of visible MCs and averaged for comparison. The visibility was plotted as a function of the estimated dose level for various MC sizes and detectors. The MTFs and DQEs were measured and compared. For imaging small (200 μm and smaller) MCs, the visibility achieved with the 75μm pitch detector was found to be significantly higher than those achieved with the 194μm pitch detector. For imaging larger MCs, there was little advantage in using the 75μm pitch detector. Using the 75μm pitch detector, MCs as small as 180 μm could be imaged to achieve a visibility of 78% with an isocenter tissue dose of ∼20 mGys versus 62% achieved with the 194 μm pitch detector at the same dose level. It was found that a high pitch flat panel detector had the advantages of extending its imaging capability to higher frequencies thus helping improve the visibility when used to image small MCs. This work was supported in part by grants CA104759, CA13852 and CA124585 from NIH-NCI, a grant EB00117 from NIH-NIBIB, and a subcontract from NIST-ATP. © 2012 American Association of Physicists in Medicine.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kim, Jungho; Shi, Xianbo; Casa, Diego
Advances in resonant inelastic X-ray scattering (RIXS) have come in lockstep with improvements in energy resolution. Currently, the best energy resolution at the IrL 3-edge stands at ~25 meV, which is achieved using a diced Si(844) spherical crystal analyzer. However, spherical analyzers are limited by their intrinsic reflection width. A novel analyzer system using multiple flat crystals provides a promising way to overcome this limitation. For the present design, an energy resolution at or below 10 meV was selected. Recognizing that the angular acceptance of flat crystals is severely limited, a collimating element is essential to achieve the necessary solid-anglemore » acceptance. For this purpose, a laterally graded, parabolic, multilayer Montel mirror was designed for use at the IrL 3-absorption edge. It provides an acceptance larger than 10 mrad, collimating the reflected X-ray beam to smaller than 100 µrad, in both vertical and horizontal directions. The performance of this mirror was studied at beamline 27-ID at the Advanced Photon Source. X-rays from a diamond (111) monochromator illuminated a scattering source of diameter 5 µm, generating an incident beam on the mirror with a well determined divergence of 40 mrad. A flat Si(111) crystal after the mirror served as the divergence analyzer. From X-ray measurements, ray-tracing simulations and optical metrology results, it was established that the Montel mirror satisfied the specifications of angular acceptance and collimation quality necessary for a high-resolution RIXS multi-crystal analyzer system.« less
Large area x-ray detectors for cargo radiography
NASA Astrophysics Data System (ADS)
Bueno, C.; Albagli, D.; Bendahan, J.; Castleberry, D.; Gordon, C.; Hopkins, F.; Ross, W.
2007-04-01
Large area x-ray detectors based on phosphors coupled to flat panel amorphous silicon diode technology offer significant advances for cargo radiologic imaging. Flat panel area detectors provide large object coverage offering high throughput inspections to meet the high flow rate of container commerce. These detectors provide excellent spatial resolution when needed, and enhanced SNR through low noise electronics. If the resolution is reduced through pixel binning, further advances in SNR are achievable. Extended exposure imaging and frame averaging enables improved x-ray penetration of ultra-thick objects, or "select-your-own" contrast sensitivity at a rate many times faster than LDAs. The areal coverage of flat panel technology provides inherent volumetric imaging with the appropriate scanning methods. Flat panel area detectors have flexible designs in terms of electronic control, scintillator selection, pixel pitch, and frame rates. Their cost is becoming more competitive as production ramps up for the healthcare, nondestructive testing (NDT), and homeland protection industries. Typically used medical and industrial polycrystalline phosphor materials such as Gd2O2S:Tb (GOS) can be applied to megavolt applications if the phosphor layer is sufficiently thick to enhance x-ray absorption, and if a metal radiator is used to augment the quantum detection efficiency and reduce x-ray scatter. Phosphor layers ranging from 0.2-mm to 1-mm can be "sandwiched" between amorphous silicon flat panel diode arrays and metal radiators. Metal plates consisting of W, Pb or Cu, with thicknesses ranging from 0.25-mm to well over 1-mm can be used by covering the entire area of the phosphor plate. In some combinations of high density metal and phosphor layers, the metal plate provides an intensification of 25% in signal due to electron emission from the plate and subsequent excitation within the phosphor material. This further improves the SNR of the system.
Bendable X-ray Optics for High Resolution Imaging
NASA Technical Reports Server (NTRS)
Gubarev, M.; Ramsey, B.; Kilaru, K.; Atkins, C.; Broadway, D.
2014-01-01
Current state-of the-art for x-ray optics fabrication calls for either the polishing of massive substrates into high-angular-resolution mirrors or the replication of thin, lower-resolution, mirrors from perfectly figured mandrels. Future X-ray Missions will require a change in this optics fabrication paradigm in order to achieve sub-arcsecond resolution in light-weight optics. One possible approach to this is to start with perfectly flat, light-weight surface, bend it into a perfect cone, form the desired mirror figure by material deposition, and insert the resulting mirror into a telescope structure. Such an approach is currently being investigated at MSFC, and a status report will be presented detailing the results of finite element analyses, bending tests and differential deposition experiments.
Flat space (higher spin) gravity with chemical potentials
NASA Astrophysics Data System (ADS)
Gary, Michael; Grumiller, Daniel; Riegler, Max; Rosseel, Jan
2015-01-01
We introduce flat space spin-3 gravity in the presence of chemical potentials and discuss some applications to flat space cosmology solutions, their entropy, free energy and flat space orbifold singularity resolution. Our results include flat space Einstein gravity with chemical potentials as special case. We discover novel types of phase transitions between flat space cosmologies with spin-3 hair and show that the branch that continuously connects to spin-2 gravity becomes thermodynamically unstable for sufficiently large temperature or spin-3 chemical potential.
NASA Astrophysics Data System (ADS)
Cha, B. K.; Kim, J. Y.; Kim, Y. J.; Yun, S.; Cho, G.; Kim, H. K.; Seo, C.-W.; Jeon, S.; Huh, Y.
2012-04-01
In digital X-ray imaging systems, X-ray imaging detectors based on scintillating screens with electronic devices such as charge-coupled devices (CCDs), thin-film transistors (TFT), complementary metal oxide semiconductor (CMOS) flat panel imagers have been introduced for general radiography, dental, mammography and non-destructive testing (NDT) applications. Recently, a large-area CMOS active-pixel sensor (APS) in combination with scintillation films has been widely used in a variety of digital X-ray imaging applications. We employed a scintillator-based CMOS APS image sensor for high-resolution mammography. In this work, both powder-type Gd2O2S:Tb and a columnar structured CsI:Tl scintillation screens with various thicknesses were fabricated and used as materials to convert X-ray into visible light. These scintillating screens were directly coupled to a CMOS flat panel imager with a 25 × 50 mm2 active area and a 48 μm pixel pitch for high spatial resolution acquisition. We used a W/Al mammographic X-ray source with a 30 kVp energy condition. The imaging characterization of the X-ray detector was measured and analyzed in terms of linearity in incident X-ray dose, modulation transfer function (MTF), noise-power spectrum (NPS) and detective quantum efficiency (DQE).
Pixel-based absolute surface metrology by three flat test with shifted and rotated maps
NASA Astrophysics Data System (ADS)
Zhai, Dede; Chen, Shanyong; Xue, Shuai; Yin, Ziqiang
2018-03-01
In traditional three flat test, it only provides the absolute profile along one surface diameter. In this paper, an absolute testing algorithm based on shift-rotation with three flat test has been proposed to reconstruct two-dimensional surface exactly. Pitch and yaw error during shift procedure is analyzed and compensated in our method. Compared with multi-rotation method proposed before, it only needs a 90° rotation and a shift, which is easy to carry out especially in condition of large size surface. It allows pixel level spatial resolution to be achieved without interpolation or assumption to the test surface. In addition, numerical simulations and optical tests are implemented and show the high accuracy recovery capability of the proposed method.
Eberle, Felix; Metzler, Martin; Kolb, Dieter M; Saitner, Marc; Wagner, Patrick; Boyen, Hans-Gerd
2010-09-10
Self-assembled monolayers of 1,4-dicyanobenzene on Au(111) electrodes are studied by cyclic voltammetry, in-situ STM and ex-situ XPS. High-resolution STM images reveal a long-range order of propeller-like assemblies each of which consists of three molecules, all lying flat on the gold substrate with the cyano groups oriented parallel to the metal surface. It is demonstrated that both functional groups can act as complexation sites for metal ions from solution. Surprisingly, such arrangements still allow the metal to be deposited on top of the molecules by electrochemical reduction despite the close vicinity to the Au surface. The latter is demonstrated by angle-resolved XPS which unequivocally shows that the metal indeed resides on top of the organic layer rather than underneath, despite the flat arrangement of the molecules.
The x-ray light valve: a low-cost, digital radiographic imaging system-spatial resolution
NASA Astrophysics Data System (ADS)
MacDougall, Robert D.; Koprinarov, Ivaylo; Webster, Christie A.; Rowlands, J. A.
2007-03-01
In recent years, new x-ray radiographic systems based on large area flat panel technology have revolutionized our capability to produce digital x-ray radiographic images. However, these active matrix flat panel imagers (AMFPIs) are extraordinarily expensive compared to the systems they are replacing. Thus there is a need for a low cost digital imaging system for general applications in radiology. Different approaches have been considered to make lower cost, integrated x-ray imaging devices for digital radiography, including: scanned projection x-ray, an integrated approach based on computed radiography technology and optically demagnified x-ray screen/CCD systems. These approaches suffer from either high cost or high mechanical complexity and do not have the image quality of AMFPIs. We have identified a new approach - the X-ray Light Valve (XLV). The XLV has the potential to achieve the immediate readout in an integrated system with image quality comparable to AMFPIs. The XLV concept combines three well-established and hence lowcost technologies: an amorphous selenium (a-Se) layer to convert x-rays to image charge, a liquid crystal (LC) cell as an analog display, and an optical scanner for image digitization. Here we investigate the spatial resolution possible with XLV systems. Both a-Se and LC cells have both been shown separately to have inherently very high spatial resolution. Due to the close electrostatic coupling in the XLV, it can be expected that the spatial resolution of this system will also be very high. A prototype XLV was made and a typical office scanner was used for image digitization. The Modulation Transfer Function was measured and the limiting factor was seen to be the optical scanner. However, even with this limitation the XLV system is able to meet or exceed the resolution requirements for chest radiography.
NASA Astrophysics Data System (ADS)
Ba, Yu Tao; xian Liu, Bao; Sun, Feng; Wang, Li hua; Tang, Yu jia; Zhang, Da wei
2017-04-01
High-resolution mapping of PM2.5 is the prerequisite for precise analytics and subsequent anti-pollution interventions. Considering the large variances of particulate distribution, urban-scale mapping is challenging either with ground-based fixed stations, with satellites or via models. In this study, a dynamic fusion method between high-density sensor network and MODIS Aerosol Optical Depth (AOD) was introduced. The sensor network was deployed in Beijing ( > 1000 fixed monitors across 16000 km2 area) to provide raw observations with high temporal resolution (sampling interval < 1 hour), high spatial resolution in flat areas ( < 1 km), and low spatial resolution in mountainous areas ( > 5 km). The MODIS AOD was calibrated to provide distribution map with low temporal resolution (daily) and moderate spatial resolution ( = 3 km). By encoding the data quality and defects (e.g. could, reflectance, abnormal), a hybrid interpolation procedure with cross-validation generated PM2.5 distribution with both high temporal and spatial resolution. Several no-pollutant and high-pollution periods were tested to validate the proposed fusion method for capturing the instantaneous patterns of PM2.5 emission.
Yamauchi, Kazuto; Yamamura, Kazuya; Mimura, Hidekazu; Sano, Yasuhisa; Saito, Akira; Endo, Katsuyoshi; Souvorov, Alexei; Yabashi, Makina; Tamasaku, Kenji; Ishikawa, Tetsuya; Mori, Yuzo
2005-11-10
The intensity flatness and wavefront shape in a coherent hard-x-ray beam totally reflected by flat mirrors that have surface bumps modeled by Gaussian functions were investigated by use of a wave-optical simulation code. Simulated results revealed the necessity for peak-to-valley height accuracy of better than 1 nm at a lateral resolution near 0.1 mm to remove high-contrast interference fringes and appreciable wavefront phase errors. Three mirrors that had different surface qualities were tested at the 1 km-long beam line at the SPring-8/Japan Synchrotron Radiation Research Institute. Interference fringes faded when the surface figure was corrected below the subnanometer level to a spatial resolution close to 0.1 mm, as indicated by the simulated results.
Flat-panel cone-beam CT: a novel imaging technology for image-guided procedures
NASA Astrophysics Data System (ADS)
Siewerdsen, Jeffrey H.; Jaffray, David A.; Edmundson, Gregory K.; Sanders, W. P.; Wong, John W.; Martinez, Alvaro A.
2001-05-01
The use of flat-panel imagers for cone-beam CT signals the emergence of an attractive technology for volumetric imaging. Recent investigations demonstrate volume images with high spatial resolution and soft-tissue visibility and point to a number of logistical characteristics (e.g., open geometry, volume acquisition in a single rotation about the patient, and separation of the imaging and patient support structures) that are attractive to a broad spectrum of applications. Considering application to image-guided (IG) procedures - specifically IG therapies - this paper examines the performance of flat-panel cone-beam CT in relation to numerous constraints and requirements, including time (i.e., speed of image acquisition), dose, and field-of-view. The imaging and guidance performance of a prototype flat panel cone-beam CT system is investigated through the construction of procedure-specific tasks that test the influence of image artifacts (e.g., x-ray scatter and beam-hardening) and volumetric imaging performance (e.g., 3D spatial resolution, noise, and contrast) - taking two specific examples in IG brachytherapy and IG vertebroplasty. For IG brachytherapy, a procedure-specific task is constructed which tests the performance of flat-panel cone-beam CT in measuring the volumetric distribution of Pd-103 permanent implant seeds in relation to neighboring bone and soft-tissue structures in a pelvis phantom. For IG interventional procedures, a procedure-specific task is constructed in the context of vertebroplasty performed on a cadaverized ovine spine, demonstrating the volumetric image quality in pre-, intra-, and post-therapeutic images of the region of interest and testing the performance of the system in measuring the volumetric distribution of bone cement (PMMA) relative to surrounding spinal anatomy. Each of these tasks highlights numerous promising and challenging aspects of flat-panel cone-beam CT applied to IG procedures.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Rana, R; Bednarek, D; Rudin, S
2015-06-15
Purpose: Anti-scatter grid-line artifacts are more prominent for high-resolution x-ray detectors since the fraction of a pixel blocked by the grid septa is large. Direct logarithmic subtraction of the artifact pattern is limited by residual scattered radiation and we investigate an iterative method for scatter correction. Methods: A stationary Smit-Rοntgen anti-scatter grid was used with a high resolution Dexela 1207 CMOS X-ray detector (75 µm pixel size) to image an artery block (Nuclear Associates, Model 76-705) placed within a uniform head equivalent phantom as the scattering source. The image of the phantom was divided by a flat-field image obtained withoutmore » scatter but with the grid to eliminate grid-line artifacts. Constant scatter values were subtracted from the phantom image before dividing by the averaged flat-field-with-grid image. The standard deviation of pixel values for a fixed region of the resultant images with different subtracted scatter values provided a measure of the remaining grid-line artifacts. Results: A plot of the standard deviation of image pixel values versus the subtracted scatter value shows that the image structure noise reaches a minimum before going up again as the scatter value is increased. This minimum corresponds to a minimization of the grid-line artifacts as demonstrated in line profile plots obtained through each of the images perpendicular to the grid lines. Artifact-free images of the artery block were obtained with the optimal scatter value obtained by this iterative approach. Conclusion: Residual scatter subtraction can provide improved grid-line artifact elimination when using the flat-field with grid “subtraction” technique. The standard deviation of image pixel values can be used to determine the optimal scatter value to subtract to obtain a minimization of grid line artifacts with high resolution x-ray imaging detectors. This study was supported by NIH Grant R01EB002873 and an equipment grant from Toshiba Medical Systems Corp.« less
AXAF Alignment Test System Autocollimating Flat Error Correction
NASA Technical Reports Server (NTRS)
Lewis, Timothy S.
1995-01-01
The alignment test system for the advanced x ray astrophysics facility (AXAF) high-resolution mirror assembly (HRMA) determines the misalignment of the HRMA by measuring the displacement of a beam of light reflected by the HRMA mirrors and an autocollimating flat (ACF). This report shows how to calibrate the system to compensate for errors introduced by the ACF, using measurements taken with the ACF in different positions. It also shows what information can be obtained from alignment test data regarding errors in the shapes of the HRMA mirrors. Simulated results based on measured ACF surface data are presented.
The Australia Telescope search for cosmic microwave background anisotropy
NASA Astrophysics Data System (ADS)
Subrahmanyan, Ravi; Kesteven, Michael J.; Ekers, Ronald D.; Sinclair, Malcolm; Silk, Joseph
1998-08-01
In an attempt to detect cosmic microwave background (CMB) anisotropy on arcmin scales, we have made an 8.7-GHz image of a sky region with a resolution of 2 arcmin and high surface brightness sensitivity using the Australia Telescope Compact Array (ATCA) in an ultracompact configuration. The foreground discrete-source confusion was estimated from observations with higher resolution at the same frequency and in a scaled array at a lower frequency. Following the subtraction of the foreground confusion, the field shows no features in excess of the instrument noise. This limits the CMB anisotropy flat-band power to Q_flat<23.6muK with 95 per cent confidence; the ATCA filter function (which is available at the website www.atnf.csiro.au/Research/cmbr/cmbr_atca.html) F_l in multipole l-space peaks at l_eff=4700 and has half-maximum values at l=3350 and 6050.
Wang, Qiang; Wen, Jie; Ravindranath, Bosky; O’Sullivan, Andrew W.; Catherall, David; Li, Ke; Wei, Shouyi; Komarov, Sergey; Tai, Yuan-Chuan
2015-01-01
Compact high-resolution panel detectors using virtual pinhole (VP) PET geometry can be inserted into existing clinical or pre-clinical PET systems to improve regional spatial resolution and sensitivity. Here we describe a compact panel PET detector built using the new Though Silicon Via (TSV) multi-pixel photon counters (MPPC) detector. This insert provides high spatial resolution and good timing performance for multiple bio-medical applications. Because the TSV MPPC design eliminates wire bonding and has a package dimension which is very close to the MPPC’s active area, it is 4-side buttable. The custom designed MPPC array (based on Hamamatsu S12641-PA-50(x)) used in the prototype is composed of 4 × 4 TSV-MPPC cells with a 4.46 mm pitch in both directions. The detector module has 16 × 16 lutetium yttrium oxyorthosilicate (LYSO) crystal array, with each crystal measuring 0.92 × 0.92 × 3 mm3 with 1.0 mm pitch. The outer diameter of the detector block is 16.8 × 16.8 mm2. Thirty-two such blocks will be arranged in a 4 × 8 array with 1 mm gaps to form a panel detector with detection area around 7 cm × 14 cm in the full-size detector. The flood histogram acquired with Ge-68 source showed excellent crystal separation capability with all 256 crystals clearly resolved. The detector module’s mean, standard deviation, minimum (best) and maximum (worst) energy resolution were 10.19%, +/−0.68%, 8.36% and 13.45% FWHM, respectively. The measured coincidence time resolution between the block detector and a fast reference detector (around 200 ps single photon timing resolution) was 0.95 ns. When tested with Siemens Cardinal electronics the performance of the detector blocks remain consistent. These results demonstrate that the TSV-MPPC is a promising photon sensor for use in a flat panel PET insert composed of many high resolution compact detector modules. PMID:26085702
NASA Astrophysics Data System (ADS)
Hu, Zhan; Lenting, Walther; van der Wal, Daphne; Bouma, Tjeerd
2015-04-01
Tidal flat morphology is continuously shaped by hydrodynamic force, resulting in highly dynamic bed elevations. The knowledge of short-term bed-level changes is important both for understanding sediment transport processes as well as for assessing critical ecological processes such as e.g. vegetation recruitment chances on tidal flats. Due to the labour involved, manual discontinuous measurements lack the ability to continuously monitor bed-elevation changes. Existing methods for automated continuous monitoring of bed-level changes lack vertical accuracy (e.g., Photo-Electronic Erosion Pin sensor and resistive rod) or limited in spatial application by using expensive technology (e.g., acoustic bed level sensors). A method provides sufficient accuracy with a reasonable cost is needed. In light of this, a high-accuracy sensor (2 mm) for continuously measuring short-term Surface-Elevation Dynamics (SED-sensor) was developed. This SED-sensor makes use of photovoltaic cells and operates stand-alone using internal power supply and data logging system. The unit cost and the labour in deployments is therefore reduced, which facilitates monitoring with a number of units. In this study, the performance of a group of SED-sensors is tested against data obtained with precise manual measurements using traditional Sediment Erosion Bars (SEB). An excellent agreement between the two methods was obtained, indicating the accuracy and precision of the SED-sensors. Furthermore, to demonstrate how the SED-sensors can be used for measuring short-term bed-level dynamics, two SED-sensors were deployed for 1 month at two sites with contrasting wave exposure conditions. Daily bed-level changes were obtained including a severe storm erosion event. The difference in observed bed-level dynamics at both sites was statistically explained by their different hydrodynamic conditions. Thus, the stand-alone SED-sensor can be applied to monitor sediment surface dynamics with high vertical and temporal resolutions, which provides opportunities to pinpoint morphological responses to various forces in a number of environments (e.g. tidal flats, beaches, rivers and dunes).
A hybrid scanning mode for fast scanning ion conductance microscopy (SICM) imaging
Zhukov, Alex; Richards, Owen; Ostanin, Victor; Korchev, Yuri; Klenerman, David
2012-01-01
We have developed a new method of controlling the pipette for scanning ion conductance microscopy to obtain high-resolution images faster. The method keeps the pipette close to the surface during a single line scan but does not follow the exact surface topography, which is calculated by using the ion current. Using an FPGA platform we demonstrate this new method on model test samples and then on live cells. This method will be particularly useful to follow changes occurring on relatively flat regions of the cell surface at high spatial and temporal resolutions. PMID:22902298
An all-reflective wide-angle flat-field telescope for space
NASA Technical Reports Server (NTRS)
Hallam, K. L.; Howell, B. J.; Wilson, M. E.
1984-01-01
An all-reflective wide-angle flat-field telescope (WAFFT) designed and built at Goddard Space Flight Center demonstrates the markedly improved wide-angle imaging capability which can be achieved with a design based on a recently announced class of unobscured 3-mirror optical systems. Astronomy and earth observation missions in space dictate the necessity or preference for wide-angle all-reflective systems which can provide UV through IR wavelength coverage and tolerate the space environment. An initial prototype unit has been designed to meet imaging requirements suitable for monitoring the ultraviolet sky from space. The unobscured f/4, 36 mm efl system achieves a full 20 x 30 deg field of view with resolution over a flat focal surface that is well matched for use with advanced ultraviolet image array detectors. Aspects of the design and fabrication approach, which have especially important bearing on the system solution, are reviewed; and test results are compared with the analytic performance predictions. Other possible applications of the WAFFT class of imaging system are briefly discussed. The exceptional wide-angle, high quality resolution, and very wide spectral coverage of the WAFFT-type optical system could make it a very important tool for future space research.
NASA Technical Reports Server (NTRS)
Stoller, Ray A.; Wedding, Donald K.; Friedman, Peter S.
1993-01-01
A development status evaluation is presented for gas plasma display technology, noting how tradeoffs among the parameters of size, resolution, speed, portability, color, and image quality can yield cost-effective solutions for medical imaging, CAD, teleconferencing, multimedia, and both civil and military applications. Attention is given to plasma-based large-area displays' suitability for radar, sonar, and IR, due to their lack of EM susceptibility. Both monochrome and color displays are available.
Micrometer-thickness liquid sheet jets flowing in vacuum
NASA Astrophysics Data System (ADS)
Galinis, Gediminas; Strucka, Jergus; Barnard, Jonathan C. T.; Braun, Avi; Smith, Roland A.; Marangos, Jon P.
2017-08-01
Thin liquid sheet jet flows in vacuum provide a new platform for performing experiments in the liquid phase, for example X-ray spectroscopy. Micrometer thickness, high stability, and optical flatness are the key characteristics required for successful exploitation of these targets. A novel strategy for generating sheet jets in vacuum is presented in this article. Precision nozzles were designed and fabricated using high resolution (0.2 μm) 2-photon 3D printing and generated 1.49 ± 0.04 μm thickness, stable, and <λ /20-flat jets in isopropanol under normal atmosphere and under vacuum at 5 × 10-1 mbar. The thin sheet technology also holds great promise for advancing the fields of high harmonic generation in liquids, laser acceleration of ions as well as other fields requiring precision and high repetition rate targets.
Imaging the Peruvian flat slab with Rayliegh wave tomography
NASA Astrophysics Data System (ADS)
Knezevic Antonijevic, Sanja
In subduction zones the oceanic plates descend at a broad range of dip angles. A "flat slab" is an oceanic plate that starts to subduct steeply, but bends at 100 km depth and continues almost horizontally for several hundred kilometers. This unusual slab geometry has been linked to various geologic features, including the cessation of arc volcanism, basement core uplifts removed far from subducting margins, and the formation of high plateaus. Despite the prevalence of flat slabs worldwide since the Proterozoic, questions on how flat slabs form, persist, and re-steepen remains a topic of ongoing research. Even less clear is how this phenomenon relates to unusual features observed at the surface. To better understand the causes and consequences of slab flattening I focus on the Peruvian flat slab. This is not only the biggest flat slab region today, but due to the oblique angle at which the Nazca Plate subducts under the South American Plate, it also provides unique opportunity to get insights into the temporal evolution of the flat slab. Using ambient noise and earthquake-generated Rayleigh waves recorded at several contemporary dense seismic networks, I was able to perform unprecedentedly high resolution imaging of the subduction zone in southern Peru. Surprisingly, instead of imaging a vast flat slab region as expected, I found that the flat slab tears and re-steepens north of the subducting Nazca Ridge. The change in slab geometry is associated with variations in the slab's internal strain along strike, as inferred from slab-related anisotropy. Based on newly-discovered features I discuss the critical role of the subducting ridges in the formation and longevity of flat slabs. The slab tear created a new mantle pathway between the torn slab and the flat slab remnant to the east, and is possibly linked to the profound low velocity anomaly located under the eastern corner of the flat slab. Finally, I re-evaluate the connection between slab flattening and volcanic patterns at the surface. These findings have important implications for all present-day and paleo-flat slab regions, such as the one proposed for the western United States during the Laramide orogeny 80-55 Ma.
The Imaging Properties of a Silicon Wafer X-Ray Telescope
NASA Technical Reports Server (NTRS)
Joy, M. K.; Kolodziejczak, J. J.; Weisskopf, M. C.; Fair, S.; Ramsey, B. D.
1994-01-01
Silicon wafers have excellent optical properties --- low microroughness and good medium-scale flatness --- which Make them suitable candidates for inexpensive flat-plate grazing-incidence x-ray mirrors. On short spatial scales (less than 3 mm) the surface quality of silicon wafers rivals that expected of the Advanced X-Ray Astrophysics Facility (AXAF) high-resolution optics. On larger spatial scales, however, performance may be degraded by the departure from flatness of the wafer and by distortions induced by the mounting scheme. In order to investigate such effects, we designed and constructed a prototype silicon-wafer x-ray telescope. The device was then tested in both visible light and x rays. The telescope module consists of 94 150-mm-diameter wafers, densely packed into the first stage of a Kirkpatrick-Baez configuration. X-ray tests at three energies (4.5, 6.4, and 8.0 keV) showed an energy-independent line spread function with full width at half maximum (FWHM) of 150 arcseconds, dominated by deviations from large-scale flatness.
Zhou, Qian; Pang, Jinchao; Li, Xinghui; Ni, Kai; Tian, Rui
2015-11-10
In this study, a new flat-field concave grating miniature spectrometer is proposed with improved resolution across a wide spectral band. A mirror is added to a conventional concave grating spectrometer and placed near the existing detector array, allowing a wide spectral band to be divided into two adjacent subspectral bands. One of these bands is directly detected by the detector, and the other is indirectly analyzed by the same detector after being reflected by the mirror. These two subspectral bands share the same entrance slit, concave grating, and detector, which allows for a compact size, while maintaining an improved spectral resolution across the entire spectral band. The positions of the mirror and other parameters of the spectrometer are designed by a computer procedure and the optical design software ZEMAX. Simulation results show that the resolution of this kind of flat-field concave grating miniature spectrometer is better than 1.6 nm across a spectral band of 700 nm. Experiments based on three laser sources reveal that the measured resolutions are comparable to the simulated ones, with a maximum relative error between them of less than 19%.
Kline, David I; Teneva, Lida; Hauri, Claudine; Schneider, Kenneth; Miard, Thomas; Chai, Aaron; Marker, Malcolm; Dunbar, Rob; Caldeira, Ken; Lazar, Boaz; Rivlin, Tanya; Mitchell, Brian Gregory; Dove, Sophie; Hoegh-Guldberg, Ove
2015-01-01
Understanding the temporal dynamics of present thermal and pH exposure on coral reefs is crucial for elucidating reef response to future global change. Diel ranges in temperature and carbonate chemistry parameters coupled with seasonal changes in the mean conditions define periods during the year when a reef habitat is exposed to anomalous thermal and/or pH exposure. Anomalous conditions are defined as values that exceed an empirically estimated threshold for each variable. We present a 200-day time series from June through December 2010 of carbonate chemistry and environmental parameters measured on the Heron Island reef flat. These data reveal that aragonite saturation state, pH, and pCO2 were primarily modulated by biologically-driven changes in dissolved organic carbon (DIC) and total alkalinity (TA), rather than salinity and temperature. The largest diel temperature ranges occurred in austral spring, in October (1.5 - 6.6°C) and lowest diel ranges (0.9 - 3.2°C) were observed in July, at the peak of winter. We observed large diel total pH variability, with a maximum range of 7.7 - 8.5 total pH units, with minimum diel average pH values occurring during spring and maximum during fall. As with many other reefs, the nighttime pH minima on the reef flat were far lower than pH values predicted for the open ocean by 2100. DIC and TA both increased from June (end of Fall) to December (end of Spring). Using this high-resolution dataset, we developed exposure metrics of pH and temperature individually for intensity, duration, and severity of low pH and high temperature events, as well as a combined metric. Periods of anomalous temperature and pH exposure were asynchronous on the Heron Island reef flat, which underlines the importance of understanding the dynamics of co-occurrence of multiple stressors on coastal ecosystems.
Kline, David I.; Teneva, Lida; Hauri, Claudine; Schneider, Kenneth; Miard, Thomas; Chai, Aaron; Marker, Malcolm; Dunbar, Rob; Caldeira, Ken; Lazar, Boaz; Rivlin, Tanya; Mitchell, Brian Gregory; Dove, Sophie; Hoegh-Guldberg, Ove
2015-01-01
Understanding the temporal dynamics of present thermal and pH exposure on coral reefs is crucial for elucidating reef response to future global change. Diel ranges in temperature and carbonate chemistry parameters coupled with seasonal changes in the mean conditions define periods during the year when a reef habitat is exposed to anomalous thermal and/or pH exposure. Anomalous conditions are defined as values that exceed an empirically estimated threshold for each variable. We present a 200-day time series from June through December 2010 of carbonate chemistry and environmental parameters measured on the Heron Island reef flat. These data reveal that aragonite saturation state, pH, and pCO2 were primarily modulated by biologically-driven changes in dissolved organic carbon (DIC) and total alkalinity (TA), rather than salinity and temperature. The largest diel temperature ranges occurred in austral spring, in October (1.5 – 6.6°C) and lowest diel ranges (0.9 – 3.2°C) were observed in July, at the peak of winter. We observed large diel total pH variability, with a maximum range of 7.7 – 8.5 total pH units, with minimum diel average pH values occurring during spring and maximum during fall. As with many other reefs, the nighttime pH minima on the reef flat were far lower than pH values predicted for the open ocean by 2100. DIC and TA both increased from June (end of Fall) to December (end of Spring). Using this high-resolution dataset, we developed exposure metrics of pH and temperature individually for intensity, duration, and severity of low pH and high temperature events, as well as a combined metric. Periods of anomalous temperature and pH exposure were asynchronous on the Heron Island reef flat, which underlines the importance of understanding the dynamics of co-occurrence of multiple stressors on coastal ecosystems. PMID:26039687
NASA Technical Reports Server (NTRS)
Crooker, N. U.; Pagel, C.
2008-01-01
A recent assessment of suprathermal electron heat flux dropouts (HFDs) in the solar wind eliminated 90% as possible signatures of field lines disconnected from the Sun at both ends (Pagel et al., 2005b). The primary reason for elimination was the presence of a residual field-aligned strahl presumably signaling field lines connected to the Sun. Using high-time-resolution data from the Wind spacecraft, this paper tests whether the residual strahls were an artifact of averaging over pitch angle distributions (PADs) with and without strahls. An automated search for PADs without strahls (flat PADs) yields an occurrence rate of only 14% within HFDs, but a detailed case study shows that these flat PADs are imbedded within intervals of nearly flat PADs, that is, PADS with residual strahls that cannot be artifacts of averaging. An attractive alternative is that the residual strahls result from intermixing of originally back-scattered fluxes (haloes) of unequal intensities on field lines that have either disconnected or interchange reconnected at the Sun. A reevaluation of reported streaming of higher-energy electrons in HFDs suggests a similar cause. While the high-time-resolution data show high variability of PAD profiles within HFDs, this paper reopens the possibility that a substantial fraction signal disconnection or interchange reconnection. Estimated occurrence rates of fields having undergone these processes based upon published HFD rates are of the same order of magnitude as the surprisingly low values of 1-5% recently predicted by a model of a balanced heliospheric flux budget (Owens and Crooker, 2007).
Redey, L.; Bloom, I.D.
1988-01-21
A reference electrode utilizes a small thin, flat membrane of a highly conductive glass placed on a small diameter insulator tube having a reference material inside in contact with an internal voltage lead. When the sensor is placed in a non-aqueous ionic electrolytic solution, the concentration difference across the glass membrane generates a low voltage signal in precise relationship to the concentration of the species to be measured, with high spatial resolution. 2 figs.
Scanning instrumentation for measuring magnetic field trapping in high Tc superconductors
NASA Technical Reports Server (NTRS)
Sisk, R. C.; Helton, A. J.
1993-01-01
Computerized scanning instrumentation measures and displays trapped magnetic fields across the surface of high Tc superconductors at 77 K. Data are acquired in the form of a raster scan image utilizing stepping motor stages for positioning and a cryogenic Hall probe for magnetic field readout. Flat areas up to 45 mm in diameter are scanned with 0.5-mm resolution and displayed as false color images.
NASA Astrophysics Data System (ADS)
Kumpová, I.; Vavřík, D.; Fíla, T.; Koudelka, P.; Jandejsek, I.; Jakůbek, J.; Kytýř, D.; Zlámal, P.; Vopálenský, M.; Gantar, A.
2016-02-01
To overcome certain limitations of contemporary materials used for bone tissue engineering, such as inflammatory response after implantation, a whole new class of materials based on polysaccharide compounds is being developed. Here, nanoparticulate bioactive glass reinforced gelan-gum (GG-BAG) has recently been proposed for the production of bone scaffolds. This material offers promising biocompatibility properties, including bioactivity and biodegradability, with the possibility of producing scaffolds with directly controlled microgeometry. However, to utilize such a scaffold with application-optimized properties, large sets of complex numerical simulations using the real microgeometry of the material have to be carried out during the development process. Because the GG-BAG is a material with intrinsically very low attenuation to X-rays, its radiographical imaging, including tomographical scanning and reconstructions, with resolution required by numerical simulations might be a very challenging task. In this paper, we present a study on X-ray imaging of GG-BAG samples. High-resolution volumetric images of investigated specimens were generated on the basis of micro-CT measurements using a large area flat-panel detector and a large area photon-counting detector. The photon-counting detector was composed of a 010× 1 matrix of Timepix edgeless silicon pixelated detectors with tiling based on overlaying rows (i.e. assembled so that no gap is present between individual rows of detectors). We compare the results from both detectors with the scanning electron microscopy on selected slices in transversal plane. It has been shown that the photon counting detector can provide approx. 3× better resolution of the details in low-attenuating materials than the integrating flat panel detectors. We demonstrate that employment of a large area photon counting detector is a good choice for imaging of low attenuating materials with the resolution sufficient for numerical simulations.
Majdani, Omid; Bartling, Soenke H; Leinung, Martin; Stöver, Timo; Lenarz, Minoo; Dullin, Christian; Lenarz, Thomas
2008-02-01
High-precision intraoperative navigation using high-resolution flat-panel volume computed tomography makes feasible the possibility of minimally invasive cochlear implant surgery, including cochleostomy. Conventional cochlear implant surgery is typically performed via mastoidectomy with facial recess to identify and avoid damage to vital anatomic landmarks. To accomplish this procedure via a minimally invasive approach--without performing mastoidectomy--in a precise fashion, image-guided technology is necessary. With such an approach, surgical time and expertise may be reduced, and hearing preservation may be improved. Flat-panel volume computed tomography was used to scan 4 human temporal bones. A drilling channel was planned preoperatively from the mastoid surface to the round window niche, providing a margin of safety to all functional important structures (e.g., facial nerve, chorda tympani, incus). Postoperatively, computed tomographic imaging and conventional surgical exploration of the drilled route to the cochlea were performed. All 4 specimens showed a cochleostomy located at the scala tympani anterior inferior to the round window. The chorda tympani was damaged in 1 specimen--this was preoperatively planned as a narrow facial recess was encountered. Using flat-panel volume computed tomography for image-guided surgical navigation, we were able to perform minimally invasive cochlear implant surgery defined as a narrow, single-channel mastoidotomy with cochleostomy. Although this finding is preliminary, it is technologically achievable.
Study of Electric Explosion of Flat Micron-Thick Foils at Current Densities of (5-50)×108 A/cm2
NASA Astrophysics Data System (ADS)
Shelkovenko, T. A.; Pikuz, S. A.; Tilikin, I. N.; Mingaleev, A. R.; Atoyan, L.; Hammer, D. A.
2018-02-01
Electric explosions of flat Al, Ti, Ni, Cu, and Ta foils with thicknesses of 1-16 μm, widths of 1-8 mm, and lengths of 5-11 mm were studied experimentally on the BIN, XP, and COBRA high-current generators at currents of 40-1000 kA and current densities of (5-50) × 108 A/cm2. The images of the exploded foils were taken at different angles to the foil surface by using point projection radiography with an X-pinch hot spot as the radiation source, the spatial resolution and exposure time being 3 μm and 50 ps, respectively, as well by the laser probing method with a spatial resolution of 20 μm and an exposure time of 180 ps. In the course of foil explosion, rapidly expanding objects resembling the core and corona of an exploded wire were observed. It is shown that the core of the exploded foil has a complicated time-varying structure.
Lung imaging of laboratory rodents in vivo
NASA Astrophysics Data System (ADS)
Cody, Dianna D.; Cavanaugh, Dawn; Price, Roger E.; Rivera, Belinda; Gladish, Gregory; Travis, Elizabeth
2004-10-01
We have been acquiring respiratory-gated micro-CT images of live mice and rats for over a year with our General Electric (formerly Enhanced Vision Systems) hybrid scanner. This technique is especially well suited for the lung due to the inherent high tissue contrast. Our current studies focus on the assessment of lung tumors and their response to experimental agents, and the assessment of lung damage due to chemotherapy agents. We have recently installed a custom-built dual flat-panel cone-beam CT scanner with the ability to scan laboratory animals that vary in size from mice to large dogs. A breath-hold technique is used in place of respiratory gating on this scanner. The objective of this pilot study was to converge on scan acquisition parameters and optimize the visualization of lung damage in a mouse model of fibrosis. Example images from both the micro-CT scanner and the flat-panel CT scanner will be presented, as well as preliminary data describing spatial resolution, low contrast resolution, and radiation dose parameters.
Chemical speciation using high energy resolution PIXE spectroscopy in the tender X-ray range
NASA Astrophysics Data System (ADS)
Kavčič, Matjaž; Petric, Marko; Vogel-Mikuš, Katarina
2018-02-01
High energy resolution X-ray emission spectroscopy employing wavelength dispersive (WDS) crystal spectrometers can provide energy resolution on the level of core-hole lifetime broadening of the characteristic emission lines. While crystal spectrometers have been traditionally used in combination with electron excitation for major and minor element analysis, they have been rarely considered in proton induced X-ray emission (PIXE) trace element analysis mainly due to low detection efficiency. Compared to the simplest flat crystal WDS spectrometer the efficiency can be improved by employing cylindrically or even spherically curved crystals in combination with position sensitive X-ray detectors. When such spectrometer is coupled to MeV proton excitation, chemical bonding effects are revealed in the high energy resolution spectra yielding opportunity to extend the analytical capabilities of PIXE technique also towards chemical state analysis. In this contribution we will focus on the high energy resolution PIXE (HR-PIXE) spectroscopy in the tender X-ray range performed in our laboratory with our home-built tender X-ray emission spectrometer. Some general properties of high energy resolution PIXE spectroscopy in the tender X-ray range are presented followed by an example of sulfur speciation in biological tissue illustrating the capabilities as well as limitations of HR-PIXE method used for chemical speciation in the tender X-ray range.
Zhang, Lina; Zhang, Haoxu; Zhou, Ruifeng; Chen, Zhuo; Li, Qunqing; Fan, Shoushan; Ge, Guanglu; Liu, Renxiao; Jiang, Kaili
2011-09-23
A novel grid for use in transmission electron microscopy is developed. The supporting film of the grid is composed of thin graphene oxide films overlying a super-aligned carbon nanotube network. The composite film combines the advantages of graphene oxide and carbon nanotube networks and has the following properties: it is ultra-thin, it has a large flat and smooth effective supporting area with a homogeneous amorphous appearance, high stability, and good conductivity. The graphene oxide-carbon nanotube grid has a distinct advantage when characterizing the fine structure of a mass of nanomaterials over conventional amorphous carbon grids. Clear high-resolution transmission electron microscopy images of various nanomaterials are obtained easily using the new grids.
Direct-conversion flat-panel imager with avalanche gain: Feasibility investigation for HARP-AMFPI
Wronski, M. M.; Rowlands, J. A.
2008-01-01
The authors are investigating the concept of a direct-conversion flat-panel imager with avalanche gain for low-dose x-ray imaging. It consists of an amorphous selenium (a-Se) photoconductor partitioned into a thick drift region for x-ray-to-charge conversion and a relatively thin region called high-gain avalanche rushing photoconductor (HARP) in which the charge undergoes avalanche multiplication. An active matrix of thin film transistors is used to read out the electronic image. The authors call the proposed imager HARP active matrix flat panel imager (HARP-AMFPI). The key advantages of HARP-AMFPI are its high spatial resolution, owing to the direct-conversion a-Se layer, and its programmable avalanche gain, which can be enabled during low dose fluoroscopy to overcome electronic noise and disabled during high dose radiography to prevent saturation of the detector elements. This article investigates key design considerations for HARP-AMFPI. The effects of electronic noise on the imaging performance of HARP-AMFPI were modeled theoretically and system parameters were optimized for radiography and fluoroscopy. The following imager properties were determined as a function of avalanche gain: (1) the spatial frequency dependent detective quantum efficiency; (2) fill factor; (3) dynamic range and linearity; and (4) gain nonuniformities resulting from electric field strength nonuniformities. The authors results showed that avalanche gains of 5 and 20 enable x-ray quantum noise limited performance throughout the entire exposure range in radiography and fluoroscopy, respectively. It was shown that HARP-AMFPI can provide the required gain while maintaining a 100% effective fill factor and a piecewise dynamic range over five orders of magnitude (10−7–10−2 R∕frame). The authors have also shown that imaging performance is not significantly affected by the following: electric field strength nonuniformities, avalanche noise for x-ray energies above 1 keV and direct interaction of x rays in the gain region. Thus, HARP-AMFPI is a promising flat-panel imager structure that enables high-resolution fully quantum noise limited x-ray imaging over a wide exposure range. PMID:19175080
Direct-conversion flat-panel imager with avalanche gain: Feasibility investigation for HARP-AMFPI
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wronski, M. M.; Rowlands, J. A.
2008-12-15
The authors are investigating the concept of a direct-conversion flat-panel imager with avalanche gain for low-dose x-ray imaging. It consists of an amorphous selenium (a-Se) photoconductor partitioned into a thick drift region for x-ray-to-charge conversion and a relatively thin region called high-gain avalanche rushing photoconductor (HARP) in which the charge undergoes avalanche multiplication. An active matrix of thin film transistors is used to read out the electronic image. The authors call the proposed imager HARP active matrix flat panel imager (HARP-AMFPI). The key advantages of HARP-AMFPI are its high spatial resolution, owing to the direct-conversion a-Se layer, and its programmablemore » avalanche gain, which can be enabled during low dose fluoroscopy to overcome electronic noise and disabled during high dose radiography to prevent saturation of the detector elements. This article investigates key design considerations for HARP-AMFPI. The effects of electronic noise on the imaging performance of HARP-AMFPI were modeled theoretically and system parameters were optimized for radiography and fluoroscopy. The following imager properties were determined as a function of avalanche gain: (1) the spatial frequency dependent detective quantum efficiency; (2) fill factor; (3) dynamic range and linearity; and (4) gain nonuniformities resulting from electric field strength nonuniformities. The authors results showed that avalanche gains of 5 and 20 enable x-ray quantum noise limited performance throughout the entire exposure range in radiography and fluoroscopy, respectively. It was shown that HARP-AMFPI can provide the required gain while maintaining a 100% effective fill factor and a piecewise dynamic range over five orders of magnitude (10{sup -7}-10{sup -2} R/frame). The authors have also shown that imaging performance is not significantly affected by the following: electric field strength nonuniformities, avalanche noise for x-ray energies above 1 keV and direct interaction of x rays in the gain region. Thus, HARP-AMFPI is a promising flat-panel imager structure that enables high-resolution fully quantum noise limited x-ray imaging over a wide exposure range.« less
Flat super-oscillatory lens for heat-assisted magnetic recording with sub-50 nm resolution.
Yuan, Guanghui; Rogers, Edward T F; Roy, Tapashree; Shen, Zexiang; Zheludev, Nikolay I
2014-03-24
Heat-assisted magnetic recording (HAMR) is a future roadmap technology to overcome the superparamagnetic limit in high density magnetic recording. Existing HAMR schemes depend on a simultaneous magnetic stimulation and light-induced local heating of the information carrier. To achieve high-density recorded data, near-field plasmonic transducers have been proposed as light concentrators. Here we suggest and investigate in detail an alternative approach exploiting a far-field focusing device that can focus light into sub-50 nm hot-spots in the magnetic recording layer using a laser source operating at 473 nm. It is based on a recently introduced super-oscillatory flat lens improved with the use of solid immersion, giving an effective numerical aperture as high as 4.17. The proposed solution is robust and easy to integrate with the magnetic recording head thus offering a competitive advantage over plasmonic technology.
Investigation of time-resolved proton radiography using x-ray flat-panel imaging system
NASA Astrophysics Data System (ADS)
Jee, K.-W.; Zhang, R.; Bentefour, E. H.; Doolan, P. J.; Cascio, E.; Sharp, G.; Flanz, J.; Lu, H.-M.
2017-03-01
Proton beam therapy benefits from the Bragg peak and delivers highly conformal dose distributions. However, the location of the end-of-range is subject to uncertainties related to the accuracy of the relative proton stopping power estimates and thereby the water-equivalent path length (WEPL) along the beam. To remedy the range uncertainty, an in vivo measurement of the WEPL through the patient, i.e. a proton-range radiograph, is highly desirable. Towards that goal, we have explored a novel method of proton radiography based on the time-resolved dose measured by a flat panel imager (FPI). A 226 MeV pencil beam and a custom-designed range modulator wheel (MW) were used to create a time-varying broad beam. The proton imaging technique used exploits this time dependency by looking at the dose rate at the imager as a function of time. This dose rate function (DRF) has a unique time-varying dose pattern at each depth of penetration. A relatively slow rotation of the MW (0.2 revolutions per second) and a fast image acquisition (30 frames per second, ~33 ms sampling) provided a sufficient temporal resolution for each DRF. Along with the high output of the CsI:Tl scintillator, imaging with pixel binning (2 × 2) generated high signal-to-noise data at a very low radiation dose (~0.1 cGy). Proton radiographs of a head phantom and a Gammex CT calibration phantom were taken with various configurations. The results of the phantom measurements show that the FPI can generate low noise and high spatial resolution proton radiographs. The WEPL values of the CT tissue surrogate inserts show that the measured relative stopping powers are accurate to ~2%. The panel did not show any noticeable radiation damage after the accumulative dose of approximately 3831 cGy. In summary, we have successfully demonstrated a highly practical method of generating proton radiography using an x-ray flat panel imager.
Investigation of time-resolved proton radiography using x-ray flat-panel imaging system.
Jee, K-W; Zhang, R; Bentefour, E H; Doolan, P J; Cascio, E; Sharp, G; Flanz, J; Lu, H-M
2017-03-07
Proton beam therapy benefits from the Bragg peak and delivers highly conformal dose distributions. However, the location of the end-of-range is subject to uncertainties related to the accuracy of the relative proton stopping power estimates and thereby the water-equivalent path length (WEPL) along the beam. To remedy the range uncertainty, an in vivo measurement of the WEPL through the patient, i.e. a proton-range radiograph, is highly desirable. Towards that goal, we have explored a novel method of proton radiography based on the time-resolved dose measured by a flat panel imager (FPI). A 226 MeV pencil beam and a custom-designed range modulator wheel (MW) were used to create a time-varying broad beam. The proton imaging technique used exploits this time dependency by looking at the dose rate at the imager as a function of time. This dose rate function (DRF) has a unique time-varying dose pattern at each depth of penetration. A relatively slow rotation of the MW (0.2 revolutions per second) and a fast image acquisition (30 frames per second, ~33 ms sampling) provided a sufficient temporal resolution for each DRF. Along with the high output of the CsI:Tl scintillator, imaging with pixel binning (2 × 2) generated high signal-to-noise data at a very low radiation dose (~0.1 cGy). Proton radiographs of a head phantom and a Gammex CT calibration phantom were taken with various configurations. The results of the phantom measurements show that the FPI can generate low noise and high spatial resolution proton radiographs. The WEPL values of the CT tissue surrogate inserts show that the measured relative stopping powers are accurate to ~2%. The panel did not show any noticeable radiation damage after the accumulative dose of approximately 3831 cGy. In summary, we have successfully demonstrated a highly practical method of generating proton radiography using an x-ray flat panel imager.
NASA Astrophysics Data System (ADS)
Wang, Chen-Lu; Zhang, Yan; Huang, Jian-Wei; Liu, Guo-Dong; Liang, Ai-Ji; Zhang, Yu-Xiao; Shen, Bing; Liu, Jing; Hu, Cheng; Ding, Ying; Liu, De-Fa; Hu, Yong; He, Shao-Long; Zhao, Lin; Yu, Li; Hu, Jin; Wei, Jiang; Mao, Zhi-Qiang; Shi, You-Guo; Jia, Xiao-Wen; Zhang, Feng-Feng; Zhang, Shen-Jin; Yang, Feng; Wang, Zhi-Min; Peng, Qin-Jun; Xu, Zu-Yan; Chen, Chuang-Tian; Zhou, Xing-Jiang
2017-08-01
WTe2 has attracted a great deal of attention because it exhibits extremely large and nonsaturating magnetoresistance. The underlying origin of such a giant magnetoresistance is still under debate. Utilizing laser-based angle-resolved photoemission spectroscopy with high energy and momentum resolutions, we reveal the complete electronic structure of WTe2. This makes it possible to determine accurately the electron and hole concentrations and their temperature dependence. We find that, with increasing the temperature, the overall electron concentration increases while the total hole concentration decreases. It indicates that the electron-hole compensation, if it exists, can only occur in a narrow temperature range, and in most of the temperature range there is an electron-hole imbalance. Our results are not consistent with the perfect electron-hole compensation picture that is commonly considered to be the cause of the unusual magnetoresistance in WTe2. We identified a flat band near the Brillouin zone center that is close to the Fermi level and exhibits a pronounced temperature dependence. Such a flat band can play an important role in dictating the transport properties of WTe2. Our results provide new insight on understanding the origin of the unusual magnetoresistance in WTe2.
Freeform metrology using subaperture stitching interferometry
NASA Astrophysics Data System (ADS)
Supranowitz, Chris; Lormeau, Jean-Pierre; Maloney, Chris; Murphy, Paul; Dumas, Paul
2016-11-01
As applications for freeform optics continue to grow, the need for high-precision metrology is becoming more of a necessity. Currently, coordinate measuring machines (CMM) that implement touch probes or optical probes can measure the widest ranges of shapes of freeform optics, but these measurement solutions often lack sufficient lateral resolution and accuracy. Subaperture stitching interferometry (SSI™) extends traditional Fizeau interferometry to provide accurate, high-resolution measurements of flats, spheres, and aspheres, and development is currently on-going to enable measurements of freeform surfaces. We will present recent freeform metrology results, including repeatability and cross-test data. We will also present MRF® polishing results where the stitched data was used as the input "hitmap" to the deterministic polishing process.
Unsupervised detection of salt marsh platforms: a topographic method
NASA Astrophysics Data System (ADS)
Goodwin, Guillaume C. H.; Mudd, Simon M.; Clubb, Fiona J.
2018-03-01
Salt marshes filter pollutants, protect coastlines against storm surges, and sequester carbon, yet are under threat from sea level rise and anthropogenic modification. The sustained existence of the salt marsh ecosystem depends on the topographic evolution of marsh platforms. Quantifying marsh platform topography is vital for improving the management of these valuable landscapes. The determination of platform boundaries currently relies on supervised classification methods requiring near-infrared data to detect vegetation, or demands labour-intensive field surveys and digitisation. We propose a novel, unsupervised method to reproducibly isolate salt marsh scarps and platforms from a digital elevation model (DEM), referred to as Topographic Identification of Platforms (TIP). Field observations and numerical models show that salt marshes mature into subhorizontal platforms delineated by subvertical scarps. Based on this premise, we identify scarps as lines of local maxima on a slope raster, then fill landmasses from the scarps upward, thus isolating mature marsh platforms. We test the TIP method using lidar-derived DEMs from six salt marshes in England with varying tidal ranges and geometries, for which topographic platforms were manually isolated from tidal flats. Agreement between manual and unsupervised classification exceeds 94 % for DEM resolutions of 1 m, with all but one site maintaining an accuracy superior to 90 % for resolutions up to 3 m. For resolutions of 1 m, platforms detected with the TIP method are comparable in surface area to digitised platforms and have similar elevation distributions. We also find that our method allows for the accurate detection of local block failures as small as 3 times the DEM resolution. Detailed inspection reveals that although tidal creeks were digitised as part of the marsh platform, unsupervised classification categorises them as part of the tidal flat, causing an increase in false negatives and overall platform perimeter. This suggests our method may benefit from combination with existing creek detection algorithms. Fallen blocks and high tidal flat portions, associated with potential pioneer zones, can also lead to differences between our method and supervised mapping. Although pioneer zones prove difficult to classify using a topographic method, we suggest that these transition areas should be considered when analysing erosion and accretion processes, particularly in the case of incipient marsh platforms. Ultimately, we have shown that unsupervised classification of marsh platforms from high-resolution topography is possible and sufficient to monitor and analyse topographic evolution.
Continuous Beam Steering From a Segmented Liquid Crystal Optical Phased Array
NASA Technical Reports Server (NTRS)
Titus, Charles M.; Pouch, John; Nguyen, Hung; Miranda, Felix; Bos, Philip J.
2002-01-01
Optical communications to and from deep space probes will require beams possessing divergence on the order of a microradian, and must be steered with sub-microradian precision. Segmented liquid crystal spatial phase modulators, a type of optical phased array, are considered for this ultra-high resolution beam steering. It is shown here that in an ideal device of this type, there are ultimately no restrictions on the angular resolution. Computer simulations are used to obtain that result, and to analyze the influence of beam truncation and substrate flatness on the performance of this type of device.
Continuous Beam Steering From A Segmented Liquid Crystal Optical Phased Array
NASA Technical Reports Server (NTRS)
Pouch, John; Nguyen, Hung; Miranda, Felix; Titus, Charles M.; Bos, Philip J.
2002-01-01
Optical communications to and from deep space probes will require beams possessing divergence on the order of a microradian, and must be steered with sub-microradian precision. Segmented liquid crystal spatial phase modulators, a type of optical phased array, are considered for this ultra-high resolution beam steering. It is shown here that in an ideal device of this type, there are ultimately no restrictions on the angular resolution. Computer simulations are used to obtain that result, and to analyze the influence of beam truncation and substrate flatness on the performance of this type of device.
ADVANCES IN IMAGING TECHNOLOGIES IN THE EVALUATION OF HIGH-GRADE BLADDER CANCER
Zlatev, Dimitar V.; Altobelli, Emanuela; Liao, Joseph C.
2015-01-01
Bladder cancer is a heterogeneous disease that ranges from low-grade variant with an indolent course, to high-grade subtype with a recurrent, progressive, and potentially lethal outcome. Accurate assessment for individualized treatment depends critically on the diagnostic accuracy of white light cystoscopy. Despite its central role, white light cystoscopy has several well-documented shortcomings including difficult flat lesion detection, imprecise tumor delineation that limits complete resection, differentiation between inflammation and malignancy, and grade and stage determination. As the limitations of white light cystoscopy contribute to the risk of cancer persistence, recurrence, and progression, there is a need for improved visualization of flat, multifocal, high-grade, and muscle-invasive lesions. Optical imaging technologies have emerged as an adjunct to white light cystoscopy with the goal to guide more effective treatment by improving cancer detection and patient stratification on the basis of grade and stage. Photodynamic diagnosis and narrow band imaging are macroscopic imaging modalities similar to white light cystoscopy, but provide additional contrast enhancement of bladder tumors and have been shown to improve detection rates. Confocal laser endomicroscopy and optical coherence tomography are microscopic imaging technologies that enable real-time high resolution, subsurface tissue characterization with spatial resolutions similar to histology. Molecular imaging offers the potential for the combination of optical imaging technologies with cancer-specific molecular agents to improve the specificity of disease detection. PMID:25882557
High-resolution fluence verification for treatment plan specific QA in ion beam radiotherapy
NASA Astrophysics Data System (ADS)
Martišíková, Mária; Brons, Stephan; Hesse, Bernd M.; Jäkel, Oliver
2013-03-01
Ion beam radiotherapy exploits the finite range of ion beams and the increased dose deposition of ions toward the end of their range in material. This results in high dose conformation to the target region, which can be further increased using scanning ion beams. The standard method for patient-plan verification in ion beam therapy is ionization chamber dosimetry. The spatial resolution of this method is given by the distance between the chambers (typically 1 cm). However, steep dose gradients created by scanning ion beams call for more information and improved spatial resolution. Here we propose a clinically applicable method, supplementary to standard patient-plan verification. It is based on ion fluence measurements in the entrance region with high spatial resolution in the plane perpendicular to the beam, separately for each energy slice. In this paper the usability of the RID256 L amorphous silicon flat-panel detector for the measurements proposed is demonstrated for carbon ion beams. The detector provides sufficient spatial resolution for this kind of measurement (pixel pitch 0.8 mm). The experiments were performed at the Heidelberg Ion-Beam Therapy Center in Germany. This facility is equipped with a synchrotron capable of accelerating ions from protons up to oxygen to energies between 48 and 430 MeV u-1. Beam application is based on beam scanning technology. The measured signal corresponding to single energy slices was translated to ion fluence on a pixel-by-pixel basis, using calibration, which is dependent on energy and ion type. To quantify the agreement of the fluence distributions measured with those planned, a gamma-index criterion was used. In the patient field investigated excellent agreement was found between the two distributions. At least 95% of the slices contained more than 96% of points agreeing with our criteria. Due to the high spatial resolution, this method is especially valuable for measurements of strongly inhomogeneous fluence distributions like those in intensity-modulated treatment plans or plans including dose painting. Since no water phantom is needed to perform measurements, the flat-panel detector investigated has high potential for use with gantries. Before the method can be used in the clinical routine, it has to be sufficiently tested for each detector-facility combination.
Domain-averaged snow depth over complex terrain from flat field measurements
NASA Astrophysics Data System (ADS)
Helbig, Nora; van Herwijnen, Alec
2017-04-01
Snow depth is an important parameter for a variety of coarse-scale models and applications, such as hydrological forecasting. Since high-resolution snow cover models are computational expensive, simplified snow models are often used. Ground measured snow depth at single stations provide a chance for snow depth data assimilation to improve coarse-scale model forecasts. Snow depth is however commonly recorded at so-called flat fields, often in large measurement networks. While these ground measurement networks provide a wealth of information, various studies questioned the representativity of such flat field snow depth measurements for the surrounding topography. We developed two parameterizations to compute domain-averaged snow depth for coarse model grid cells over complex topography using easy to derive topographic parameters. To derive the two parameterizations we performed a scale dependent analysis for domain sizes ranging from 50m to 3km using highly-resolved snow depth maps at the peak of winter from two distinct climatic regions in Switzerland and in the Spanish Pyrenees. The first, simpler parameterization uses a commonly applied linear lapse rate. For the second parameterization, we first removed the obvious elevation gradient in mean snow depth, which revealed an additional correlation with the subgrid sky view factor. We evaluated domain-averaged snow depth derived with both parameterizations using flat field measurements nearby with the domain-averaged highly-resolved snow depth. This revealed an overall improved performance for the parameterization combining a power law elevation trend scaled with the subgrid parameterized sky view factor. We therefore suggest the parameterization could be used to assimilate flat field snow depth into coarse-scale snow model frameworks in order to improve coarse-scale snow depth estimates over complex topography.
NASA Astrophysics Data System (ADS)
Adolph, Winny; Jung, Richard; Schmidt, Alena; Ehlers, Manfred; Heipke, Christian; Bartholomä, Alexander; Farke, Hubert
2017-04-01
The Wadden Sea is a large coastal transition area adjoining the southern North Sea uniting ecological key functions with an important role in coastal protection. The region is strictly protected by EU directives and national law and is a UNESCO World Heritage Site, requiring frequent quality assessments and regular monitoring. In 2014 an intertidal bedform area characterised by alternating crests and water-covered troughs on the tidal flats of the island of Norderney (German Wadden Sea sector) was chosen to test different remote sensing methods for habitat mapping: airborne lidar, satellite-based radar (TerraSAR-X) and electro-optical sensors (RapidEye). The results revealed that, although sensitive to different surface qualities, all sensors were able to image the bedforms. A digital terrain model generated from the lidar data shows crests and slopes of the bedforms with high geometric accuracy in the centimetre range, but high costs limit the operation area. TerraSAR-X data enabled identifying the positions of the bedforms reflecting the residual water in the troughs also with a high resolution of up to 1.1 m, but with larger footprints and much higher temporal availability. RapidEye data are sensitive to differences in sediment moisture employed to identify crest areas, slopes and troughs, with high spatial coverage but the lowest resolution (6.5 m). Monitoring concepts may differ in their remote sensing requirements regarding areal coverage, spatial and temporal resolution, sensitivity and geometric accuracy. Also financial budgets limit the selection of sensors. Thus, combining differing assets into an integrated concept of remote sensing contributes to solving these issues.
Thermographic imaging for high-temperature composite materials: A defect detection study
NASA Technical Reports Server (NTRS)
Roth, Don J.; Bodis, James R.; Bishop, Chip
1995-01-01
The ability of a thermographic imaging technique for detecting flat-bottom hole defects of various diameters and depths was evaluated in four composite systems (two types of ceramic matrix composites, one metal matrix composite, and one polymer matrix composite) of interest as high-temperature structural materials. The holes ranged from 1 to 13 mm in diameter and 0.1 to 2.5 mm in depth in samples approximately 2-3 mm thick. The thermographic imaging system utilized a scanning mirror optical system and infrared (IR) focusing lens in conjunction with a mercury cadmium telluride infrared detector element to obtain high resolution infrared images. High intensity flash lamps located on the same side as the infrared camera were used to heat the samples. After heating, up to 30 images were sequentially acquired at 70-150 msec intervals. Limits of detectability based on depth and diameter of the flat-bottom holes were defined for each composite material. Ultrasonic and radiographic images of the samples were obtained and compared with the thermographic images.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Carey, P.; Kamath, H.
Raychem Corporation (RYC) and the Lawrence Livermore National Laboratory (LLNL) conducted a development program with the goal to make rugged, low-cost., high-resolution flat panel displays based on RYC's proprietary Nematic Curvilinear Aligned Phase (NCAP) liquid crystal and LLNL's patented processes for the formation and doping of polycrystalline silicon on low-temperature, flexible, plastic substrates.
2006-06-01
work by Marshak et al.,9 who was studying neutron diffusion, and by Hamaker ,10 who had calculated the light emitted from a layer of x-ray fluorescent...diffusion and slowing down of neutrons,” Nucleonics 4, 10–22 1949. 10H. C. Hamaker , “Radiation and heat conduction in light scattering mate- rials
Aeromagnetic Expression of Buried Basaltic Volcanoes Near Yucca Mountain, Nevada
O'Leary, Dennis W.; Mankinen, E.A.; Blakely, R.J.; Langenheim, V.E.; Ponce, D.A.
2002-01-01
A high-resolution aeromagnetic survey has defined a number of small dipolar anomalies indicating the presence of magnetic bodies buried beneath the surface of Crater Flat and the Amargosa Desert. Results of potential-field modeling indicate that isolated, small-volume, highly magnetic bodies embedded within the alluvial deposits of both areas produce the anomalies. Their physical characteristics and the fact that they tend to be aligned along major structural trends provide strong support for the hypothesis that the anomalies reflect buried basaltic volcanic centers. Other, similar anomalies are identified as possible targets for further investigation. High-resolution gravity and ground-magnetic surveys, perhaps along with drilling sources of selected anomalies and radiometric age determinations, can provide valuable constraints in estimating potential volcanic hazard to the potential nuclear waste repository at Yucca Mountain.
Laterally modulated excitation microscopy: improvement of resolution by using a diffraction grating
NASA Astrophysics Data System (ADS)
Heintzmann, Rainer; Cremer, Christoph G.
1999-01-01
High spatial frequencies in the illuminating light of microscopes lead to a shift of the object spatial frequencies detectable through the objective lens. If a suitable procedure is found for evaluation of the measured data, a microscopic image with a higher resolution than under flat illumination can be obtained. A simple method for generation of a laterally modulated illumination pattern is discussed here. A specially constructed diffraction grating was inserted in the illumination beam path at the conjugate object plane (position of the adjustable aperture) and projected through the objective into the object. Microscopic beads were imaged with this method and evaluated with an algorithm based on the structure of the Fourier space. The results indicate an improvement of resolution.
Morishita, Shigeyuki; Ishikawa, Ryo; Kohno, Yuji; Sawada, Hidetaka; Shibata, Naoya; Ikuhara, Yuichi
2018-02-01
The achievement of a fine electron probe for high-resolution imaging in scanning transmission electron microscopy requires technological developments, especially in electron optics. For this purpose, we developed a microscope with a fifth-order aberration corrector that operates at 300 kV. The contrast flat region in an experimental Ronchigram, which indicates the aberration-free angle, was expanded to 70 mrad. By using a probe with convergence angle of 40 mrad in the scanning transmission electron microscope at 300 kV, we attained the spatial resolution of 40.5 pm, which is the projected interatomic distance between Ga-Ga atomic columns of GaN observed along [212] direction.
INTERMITTENCY AND MULTIFRACTALITY SPECTRA OF THE MAGNETIC FIELD IN SOLAR ACTIVE REGIONS
DOE Office of Scientific and Technical Information (OSTI.GOV)
Abramenko, Valentyna; Yurchyshyn, Vasyl
We present the results of a study of intermittency and multifractality of magnetic structures in solar active regions (ARs). Line-of-sight magnetograms for 214 ARs of different flare productivity observed at the center of the solar disk from 1997 January until 2006 December are utilized. Data from the Michelson Doppler Imager (MDI) instrument on board the Solar and Heliospheric Observatory operating in the high resolution mode, the Big Bear Solar Observatory digital magnetograph, and the Hinode SOT/SP instrument were used. Intermittency spectra were derived from high-order structure functions and flatness functions. The flatness function exponent is a measure of the degreemore » of intermittency. We found that the flatness function exponent at scales below approximately 10 Mm is correlated with flare productivity (the correlation coefficient is -0.63). The Hinode data show that the intermittency regime is extended toward small scales (below 2 Mm) as compared to the MDI data. The spectra of multifractality, derived from the structure functions and flatness functions, are found to be broader for ARs of higher flare productivity as compared to those of low flare productivity. The magnetic structure of high-flaring ARs consists of a voluminous set of monofractals, and this set is much richer than that for low-flaring ARs. The results indicate the relevance of the multifractal organization of the photospheric magnetic fields to the flaring activity. The strong intermittency observed in complex and high-flaring ARs is a hint that we observe a photospheric imprint of enhanced sub-photospheric dynamics.« less
NASA Astrophysics Data System (ADS)
Chu, Hongjun; Qi, Jiaran; Xiao, Shanshan; Qiu, Jinghui
2018-04-01
In this paper, we present a flat transmission-type focusing metasurface for the near-field passive millimeter-wave (PMMW) imaging systems. Considering the non-uniform wavefront of the actual feeding horn, the metasurface is configured by unit cells consisting of coaxial annular apertures and is optimized to achieve broadband, high spatial resolution, and polarization insensitive properties important for PMMW imaging applications in the frequency range from 33 GHz to 37 GHz, with the focal spot as small as 0.43λ0 (@35 GHz). A prototype of the proposed metasurface is fabricated, and the measurement results fairly agree with the simulation ones. Furthermore, an experimental single-sensor PMMW imaging system is constructed based on the metasurface and a Ka-band direct detection radiometer. The experimental results show that the azimuth resolution of the system can reach approximately 4 mm (≈0.47λ0). It is shown that the proposed metasurface can potentially replace the bulky dielectric-lens or reflector antenna to achieve possibly more compact PMMW imaging systems with high spatial resolution approaching the diffraction-limit.
EVLA observations of radio-loud quasars selected to study radio orientation
NASA Astrophysics Data System (ADS)
Maithil, Jaya; Brotherton, Michael S.; Runnoe, Jessie; Wardle, John F. C.; DiPompeo, Michael; De Breuck, Carlos; Wills, Beverley J.
2018-06-01
We present preliminary work to develop an unbiased sample of radio-loud quasars to test orientation indicators. We have obtained radio data of 147 radio-loud quasars using EVLA at 10 GHz and with the A-array. With this high-resolution data we have measured the uncontaminated core flux density to determine orientation indicators based on radio core dominance. The radio cores of quasars have a flat spectrum over a broad range of frequencies, so we expect that the core flux density at the FIRST and the observed frequencies should be the same in the absence of variability. Jackson & Brown (2012) pointed out that the survey measurements of core flux density, like FIRST, often doesn't have the spatial resolution to distinguish cores from extended emission. Our measurements show that at FIRST spatial resolution, core flux measurements are indeed systematically high. Our results establish that orientation studies need high-resolution radio data as compared to survey data, and that the optical emission is a better normalization than the extended radio emission for a core dominance parameter to track orientation.
Scaduto, David A; Tousignant, Olivier; Zhao, Wei
2017-08-01
Dual-energy contrast-enhanced imaging is being investigated as a tool to identify and localize angiogenesis in the breast, a possible indicator of malignant tumors. This imaging technique requires that x-ray images are acquired at energies above the k-shell binding energy of an appropriate radiocontrast agent. Iodinated contrast agents are commonly used for vascular imaging, and require x-ray energies greater than 33 keV. Conventional direct conversion amorphous selenium (a-Se) flat-panel imagers for digital mammography show suboptimal absorption efficiencies at these higher energies. We use spatial-frequency domain image quality metrics to evaluate the performance of a prototype direct conversion flat-panel imager with a thicker a-Se layer, specifically fabricated for dual-energy contrast-enhanced breast imaging. Imaging performance was evaluated in a prototype digital breast tomosynthesis (DBT) system. The spatial resolution, noise characteristics, detective quantum efficiency, and temporal performance of the detector were evaluated for dual-energy imaging for both conventional full-field digital mammography (FFDM) and DBT. The zero-frequency detective quantum efficiency of the prototype detector is improved by approximately 20% over the conventional detector for higher energy beams required for imaging with iodinated contrast agents. The effect of oblique entry of x-rays on spatial resolution does increase with increasing photoconductor thickness, specifically for the most oblique views of a DBT scan. Degradation of spatial resolution due to focal spot motion was also observed. Temporal performance was found to be comparable to conventional mammographic detectors. Increasing the a-Se thickness in direct conversion flat-panel imagers results in better performance for dual-energy contrast-enhanced breast imaging. The reduction in spatial resolution due to oblique entry of x-rays is appreciable in the most extreme clinically relevant cases, but may not profoundly affect reconstructed images due to the algorithms and filters employed. Degradation to projection domain spatial resolution is thus outweighed by the improvement in detective quantum efficiency for high-energy x-rays. © 2017 American Association of Physicists in Medicine.
Flatness metrology based on small-angle deflectometric procedures with electronic tiltmeters
NASA Astrophysics Data System (ADS)
Ehret, G.; Laubach, S.; Schulz, M.
2017-06-01
The measurement of optical flats, e. g. synchrotron or XFEL mirrors, with single nanometer topography uncertainty is still challenging. At PTB, we apply for this task small-angle deflectometry in which the angle between the direction of the beam sent to the surface and the beam detected is small. Conventional deflectometric systems measure the surface angle with autocollimators whose light beam also represents the straightness reference. An advanced flatness metrology system was recently implemented at PTB that separates the straightness reference task from the angle detection task. We call it `Exact Autocollimation Deflectometric Scanning' because the specimen is slightly tilted in such a way that at every scanning position the specimen is `exactly' perpendicular to the reference light beam directed by a pentaprism to the surface under test. The tilt angle of the surface is then measured with an additional autocollimator. The advantage of the EADS method is that the two tasks (straightness reference and measurement of surface slope) are separated and each of these can be optimized independently. The idea presented in this paper is to replace this additional autocollimator by one or more electro-mechanical tiltmeters, which are typically faster and have a higher resolution than highly accurate commercially available autocollimators. We investigate the point stability and the linearity of a highly accurate electronic tiltmeter. The pros and cons of using tiltmeters in flatness metrology are discussed.
[Design of flat field holographic concave grating for near-infrared spectrophotometer].
Xiang, Xian-Yi; Wen, Zhi-Yu
2008-07-01
Near-infrared spectrum analysis can be used to determine the nature or test quantitatively some chemical compositions by detecting molecular double frequency and multiple frequency absorption. It has been used in agriculture, biology, petrifaction, foodstuff, medicament, spinning and other fields. Near-infrared spectrophotometer is the main apparatus for near-infrared spectrum analysis, and the grating is the most important part of the apparatus. Based on holographic concave grating theory and optic design software CODE V, a flat field holographic concave grating for near-infrared spectrophotometer was designed from primary structure, which relied on global optimization of the software. The contradiction between wide spectrum bound and limited spectrum extension was resolved, aberrations were reduced successfully, spectrum information was utilized fully, and the optic structure of spectrometer was highly efficient. Using CODE V software, complex high-order aberration equations need not be solved, the result can be evaluated quickly, flat field and resolving power can be kept in balance, and the work efficiency is also enhanced. A paradigm of flat field holographic concave grating is given, it works between 900 nm to 1 700 nm, the diameter of the concave grating is 25 mm, and F/ # is 1. 5. The design result was analyzed and evaluated. It was showed that if the slit source, whose width is 50 microm, is used to reconstruction, the theoretic resolution capacity is better than 6.3 nm.
Investigations of a flat-panel detector for quality assurance measurements in ion beam therapy.
Hartmann, Bernadette; Telsemeyer, Julia; Huber, Lucas; Ackermann, Benjamin; Jäkel, Oliver; Martišíková, Mária
2012-01-07
Increased accuracy in radiation delivery to a patient provided by scanning particle beams leads to high demands on quality assurance (QA). To meet the requirements, an extensive quality assurance programme has been implemented at the Heidelberg Ion Beam Therapy Center. Currently, high-resolution radiographic films are used for beam spot position measurements and homogeneity measurements for scanned fields. However, given that using this film type is time and equipment demanding, considerations have been made to replace the radiographic films in QA by another appropriate device. In this study, the suitability of the flat-panel detector RID 256 L based on amorphous silicon was investigated as an alternative method. The currently used radiographic films were taken as a reference. Investigations were carried out for proton and carbon ion beams. The detectors were irradiated simultaneously to allow for a direct comparison. The beam parameters (e.g. energy, focus, position) currently used in the daily QA procedures were applied. Evaluation of the measurements was performed using newly implemented automatic routines. The results for the flat-panel detector were compared to the standard radiographic films. Additionally, a field with intentionally decreased homogeneity was applied to test the detector's sensitivities toward possible incorrect scan parameters. For the beam position analyses, the flat-panel detector results showed good agreement with radiographic films. For both detector types, deviations between measured and planned spot distances were found to be below 1% (1 mm). In homogeneously irradiated fields, the flat-panel detector showed a better dose response homogeneity than the currently used radiographic film. Furthermore, the flat-panel detector is sensitive to field irregularities. The flat-panel detector was found to be an adequate replacement for the radiographic film in QA measurements. In addition, it saves time and equipment because no post-exposure treatment and no developer and darkroom facilities are needed.
Photolithographic patterning of vacuum-deposited organic light emitting devices
NASA Astrophysics Data System (ADS)
Tian, P. F.; Burrows, P. E.; Forrest, S. R.
1997-12-01
We demonstrate a photolithographic technique to fabricate vacuum-deposited organic light emitting devices. Photoresist liftoff combined with vertical deposition of the emissive organic materials and the metal cathode, followed by oblique deposition of a metal cap, avoids the use of high processing temperatures and the exposure of the organic materials to chemical degradation. The unpackaged devices show no sign of deterioration in room ambient when compared with conventional devices fabricated using low-resolution, shadow mask patterning. Furthermore, the devices are resistant to rapid degradation when operated in air for extended periods. This work illustrates a potential foundation for the volume production of very high-resolution, full color, flat panel displays based on small molecular weight organic light emitting devices.
Weber, Stefan M; Extermann, Jérôme; Bonacina, Luigi; Noell, Wilfried; Kiselev, Denis; Waldis, Severin; de Rooij, Nico F; Wolf, Jean-Pierre
2010-09-15
We demonstrate the capabilities of a new optical microelectromechanical systems device that we specifically developed for broadband femtosecond pulse shaping. It consists of a one-dimensional array of 100 independently addressable, high-aspect-ratio micromirrors with up to 3 μm stroke. We apply linear and quadratic phase modulations demonstrating the temporal compression of 800 and 400 nm pulses. Because of the device's surface flatness, stroke, and stroke resolution, phase shaping over an unprecedented bandwidth is attainable.
NASA Astrophysics Data System (ADS)
Tanaka, M.; Katsuya, Y.; Matsushita, Y.
2013-03-01
The focused-beam flat-sample method (FFM), which is a method for high-resolution and rapid synchrotron X-ray powder diffraction measurements by combination of beam focusing optics, a flat shape sample and an area detector, was applied for diffraction experiments with anomalous scattering effect. The advantages of FFM for anomalous diffraction were absorption correction without approximation, rapid data collection by an area detector and good signal-to-noise ratio data by focusing optics. In the X-ray diffraction experiments of CoFe2O4 and Fe3O4 (By FFM) using X-rays near the Fe K absorption edge, the anomalous scattering effect between Fe/Co or Fe2+/Fe3+ can be clearly detected, due to the change of diffraction intensity. The change of observed diffraction intensity as the incident X-ray energy was consistent with the calculation. The FFM is expected to be a method for anomalous powder diffraction.
Study of Electric Explosion of Flat Micron-Thick Foils at Current Densities of (5-50)×10 8A/cm 2
DOE Office of Scientific and Technical Information (OSTI.GOV)
Shelkovenko, T. A.; Pikuz, S. A.; Tilikin, I. N.
Electric explosions of flat Al, Тi, Ni, Cu, and Та foils with thicknesses of 1-16 μm, widths of 1-8 mm, and lengths of 5-11 mm were studied experimentally on the BIN, XP, and COBRA high-current generators at currents of 40-1000 kA and current densities of (5–50) × 10 8 A/cm 2. The images of the exploded foils were taken at different angles to the foil surface by using point projection radiography with an X-pinch hot spot as the radiation source, the spatial resolution and exposure time being 3 μm and 50 ps, respectively, as well by the laser probing methodmore » with a spatial resolution of 20 μm and an exposure time of 180 ps. In the course of foil explosion, rapidly expanding objects resembling the core and corona of an exploded wire were observed. It is shown that the core of the exploded foil has a complicated time-varying structure.« less
Study of Electric Explosion of Flat Micron-Thick Foils at Current Densities of (5-50)×10 8A/cm 2
Shelkovenko, T. A.; Pikuz, S. A.; Tilikin, I. N.; ...
2018-01-01
Electric explosions of flat Al, Тi, Ni, Cu, and Та foils with thicknesses of 1-16 μm, widths of 1-8 mm, and lengths of 5-11 mm were studied experimentally on the BIN, XP, and COBRA high-current generators at currents of 40-1000 kA and current densities of (5–50) × 10 8 A/cm 2. The images of the exploded foils were taken at different angles to the foil surface by using point projection radiography with an X-pinch hot spot as the radiation source, the spatial resolution and exposure time being 3 μm and 50 ps, respectively, as well by the laser probing methodmore » with a spatial resolution of 20 μm and an exposure time of 180 ps. In the course of foil explosion, rapidly expanding objects resembling the core and corona of an exploded wire were observed. It is shown that the core of the exploded foil has a complicated time-varying structure.« less
Evaluation of coarse scale land surface remote sensing albedo product over rugged terrain
NASA Astrophysics Data System (ADS)
Wen, J.; Xinwen, L.; You, D.; Dou, B.
2017-12-01
Satellite derived Land surface albedo is an essential climate variable which controls the earth energy budget and it can be used in applications such as climate change, hydrology, and numerical weather prediction. The accuracy and uncertainty of surface albedo products should be evaluated with a reliable reference truth data prior to applications. And more literatures investigated the validation methods about the albedo validation in a flat or homogenous surface. However, the albedo performance over rugged terrain is still unknow due to the validation method limited. A multi-validation strategy is implemented to give a comprehensive albedo validation, which will involve the high resolution albedo processing, high resolution albedo validation based on in situ albedo, and the method to upscale the high resolution albedo to a coarse scale albedo. Among them, the high resolution albedo generation and the upscale method is the core step for the coarse scale albedo validation. In this paper, the high resolution albedo is generated by Angular Bin algorithm. And a albedo upscale method over rugged terrain is developed to obtain the coarse scale albedo truth. The in situ albedo located 40 sites in mountain area are selected globally to validate the high resolution albedo, and then upscaled to the coarse scale albedo by the upscale method. This paper takes MODIS and GLASS albedo product as a example, and the prelimarily results show the RMSE of MODIS and GLASS albedo product over rugged terrain are 0.047 and 0.057, respectively under the RMSE with 0.036 of high resolution albedo.
High resolution colonoscopy in a bowel cancer screening program improves polyp detection
Banks, Matthew R; Haidry, Rehan; Butt, M Adil; Whitley, Lisa; Stein, Judith; Langmead, Louise; Bloom, Stuart L; O’Bichere, Austin; McCartney, Sara; Basherdas, Kalpesh; Rodriguez-Justo, Manuel; Lovat, Laurence B
2011-01-01
AIM: To compare high resolution colonoscopy (Olympus Lucera) with a megapixel high resolution system (Pentax HiLine) as an in-service evaluation. METHODS: Polyp detection rates and measures of performance were collected for 269 colonoscopy procedures. Five colonoscopists conducted the study over a three month period, as part of the United Kingdom bowel cancer screening program. RESULTS:There were no differences in procedure duration (χ2 P = 0.98), caecal intubation rates (χ2 P = 0.67), or depth of sedation (χ2 P = 0.64). Mild discomfort was more common in the Pentax group (χ2 P = 0.036). Adenoma detection rate was significantly higher in the Pentax group (χ2 test for trend P = 0.01). Most of the extra polyps detected were flat or sessile adenomas. CONCLUSION: Megapixel definition colonoscopes improve adenoma detection without compromising other measures of endoscope performance. Increased polyp detection rates may improve future outcomes in bowel cancer screening programs. PMID:22090787
Cryo-electron microscopy of membrane proteins.
Goldie, Kenneth N; Abeyrathne, Priyanka; Kebbel, Fabian; Chami, Mohamed; Ringler, Philippe; Stahlberg, Henning
2014-01-01
Electron crystallography is used to study membrane proteins in the form of planar, two-dimensional (2D) crystals, or other crystalline arrays such as tubular crystals. This method has been used to determine the atomic resolution structures of bacteriorhodopsin, tubulin, aquaporins, and several other membrane proteins. In addition, a large number of membrane protein structures were studied at a slightly lower resolution, whereby at least secondary structure motifs could be identified.In order to conserve the structural details of delicate crystalline arrays, cryo-electron microscopy (cryo-EM) allows imaging and/or electron diffraction of membrane proteins in their close-to-native state within a lipid bilayer membrane.To achieve ultimate high-resolution structural information of 2D crystals, meticulous sample preparation for electron crystallography is of outmost importance. Beam-induced specimen drift and lack of specimen flatness can severely affect the attainable resolution of images for tilted samples. Sample preparations that sandwich the 2D crystals between symmetrical carbon films reduce the beam-induced specimen drift, and the flatness of the preparations can be optimized by the choice of the grid material and the preparation protocol.Data collection in the cryo-electron microscope using either the imaging or the electron diffraction mode has to be performed applying low-dose procedures. Spot-scanning further reduces the effects of beam-induced drift. Data collection using automated acquisition schemes, along with improved and user-friendlier data processing software, is increasingly being used and is likely to bring the technique to a wider user base.
Passive Bistatic Radar and Waveform Diversity
2009-11-01
transmission, but these are significantly beyond the detection ranges of interest. The sidelobe structure of the ambiguity function is flat , as would...kHz (corresponding to a monostatic range resolution c/2B = 3000 m). The transmitters are usually sited on tall towers or masts in high locations. The...peak and the sidelobe structure are well-defined, though the peak Passive Bistatic Radar and Waveform Diversity RTO-EN-SET-119(2009) 3 - 5
Development of reaction-sintered SiC mirror for space-borne optics
NASA Astrophysics Data System (ADS)
Yui, Yukari Y.; Kimura, Toshiyoshi; Tange, Yoshio
2017-11-01
We are developing high-strength reaction-sintered silicon carbide (RS-SiC) mirror as one of the new promising candidates for large-diameter space-borne optics. In order to observe earth surface or atmosphere with high spatial resolution from geostationary orbit, larger diameter primary mirrors of 1-2 m are required. One of the difficult problems to be solved to realize such optical system is to obtain as flat mirror surface as possible that ensures imaging performance in infrared - visible - ultraviolet wavelength region. This means that homogeneous nano-order surface flatness/roughness is required for the mirror. The high-strength RS-SiC developed and manufactured by TOSHIBA is one of the most excellent and feasible candidates for such purpose. Small RS-SiC plane sample mirrors have been manufactured and basic physical parameters and optical performances of them have been measured. We show the current state of the art of the RS-SiC mirror and the feasibility of a large-diameter RS-SiC mirror for space-borne optics.
NASA Astrophysics Data System (ADS)
Deckard, Michael; Ratib, Osman M.; Rubino, Gregory
2002-05-01
Our project was to design and implement a ceiling-mounted multi monitor display unit for use in a high-field MRI surgical suite. The system is designed to simultaneously display images/data from four different digital and/or analog sources with: minimal interference from the adjacent high magnetic field, minimal signal-to-noise/artifact contribution to the MRI images and compliance with codes and regulations for the sterile neuro-surgical environment. Provisions were also made to accommodate the importing and exporting of video information via PACS and remote processing/display for clinical and education uses. Commercial fiber optic receivers/transmitters were implemented along with supporting video processing and distribution equipment to solve the video communication problem. A new generation of high-resolution color flat panel displays was selected for the project. A custom-made monitor mount and in-suite electronics enclosure was designed and constructed at UCLA. Difficulties with implementing an isolated AC power system are discussed and a work-around solution presented.
Improving catalytic selectivity through control of adsorption orientation
NASA Astrophysics Data System (ADS)
Pang, Simon H.
In this thesis, we present an investigation, starting from surface science experiments, leading to design of supported catalysts, of how adsorption orientation can be used to affect reaction selectivity of highly functional molecules. The surface chemistry of furfuryl alcohol and benzyl alcohol and their respective aldehydes was studied on a Pd(111) single-crystal surface under ultra-high vacuum conditions. Temperature-programmed desorption experiments showed that synergistic chemistry existed between the aromatic ring and the oxygen-containing functional group, each allowing the other to participate in reaction pathways that a monofunctional molecule could not. Most important of these was a deoxygenation reaction that occurred more readily when the surface was crowded by the highest exposures. High-resolution electron energy loss spectroscopy revealed that at these high exposures, molecules were oriented upright on the surface, with the aromatic function extending into vacuum. In contrast, at low exposures, molecules were oriented flat on the surface. The upright adsorption geometry was correlated with deoxygenation, whereas the flat-lying geometry was correlated with decarbonylation. The insight gained from surface science experiments was utilized in catalyst design. Self-assembled monolayers of alkanethiolates were used to systematically reduce the average surface ensemble size, and the reaction selectivity was tracked. When a sparsely-packed monolayer was used, such as one formed by 1-adamantanethiol, the reactant furfural was still able to lie flat on the surface and the reaction selectivity was similar to that of the uncoated catalyst. However, when a densely-packed monolayer, formed by 1-octadecanethiol, was used, furfural was not able to adsorb flat on the surface and instead adopted an upright conformation, leading to a drastic increase in aldehyde hydrogenation and hydrodeoxygenation reaction selectivity. Using an even higher sulfur coverage from a monolayer formed by 1,2-benzenedithiol, we determined that hydrodeoxygenation selectively occurred on catalyst particle steps and edges from an upright structure, whereas decarbonylation occurred on particle terraces from a flat-lying structure. Control of furfural adsorption orientation was also achieved through the use of NiCu bimetallic catalysts. The aromatic furan ring was repelled from surface Cu, leading to an upright structure. However, under hydrogenation conditions, Ni tended to be near the surface of thin films and catalysts, leading to less dramatic selectivity enhancement. The presence of a 1-octadecanethiol monolayer kinetically stabilized the surface termination, allowing Cu to remain at the surface.
Gong, Jian-Ru; Wan, Li-Jun; Yuan, Qun-Hui; Bai, Chun-Li; Jude, Hershel; Stang, Peter J
2005-01-25
A self-assembled supramolecular metallacyclic rectangle was investigated with scanning tunneling microscopy on highly oriented pyrolytic graphite and Au(111) surfaces. The rectangles spontaneously adsorb on both surfaces and self-organize into well ordered adlayers. On highly oriented pyrolytic graphite, the long edge of the rectangle stands on the surface, forming a 2D molecular network. In contrast, the face of the rectangle lays flat on the Au(111) surface, forming linear chains. The structures and intramolecular features obtained through high-resolution scanning tunneling microscopy imaging are discussed.
Laba, M.; Downs, R.; Smith, S.; Welsh, S.; Neider, C.; White, S.; Richmond, M.; Philpot, W.; Baveye, P.
2008-01-01
The National Estuarine Research Reserve (NERR) program is a nationally coordinated research and monitoring program that identifies and tracks changes in ecological resources of representative estuarine ecosystems and coastal watersheds. In recent years, attention has focused on using high spatial and spectral resolution satellite imagery to map and monitor wetland plant communities in the NERRs, particularly invasive plant species. The utility of this technology for that purpose has yet to be assessed in detail. To that end, a specific high spatial resolution satellite imagery, QuickBird, was used to map plant communities and monitor invasive plants within the Hudson River NERR (HRNERR). The HRNERR contains four diverse tidal wetlands (Stockport Flats, Tivoli Bays, Iona Island, and Piermont), each with unique water chemistry (i.e., brackish, oligotrophic and fresh) and, consequently, unique assemblages of plant communities, including three invasive plants (Trapa natans, Phragmites australis, and Lythrum salicaria). A maximum-likelihood classification was used to produce 20-class land cover maps for each of the four marshes within the HRNERR. Conventional contingency tables and a fuzzy set analysis served as a basis for an accuracy assessment of these maps. The overall accuracies, as assessed by the contingency tables, were 73.6%, 68.4%, 67.9%, and 64.9% for Tivoli Bays, Stockport Flats, Piermont, and Iona Island, respectively. Fuzzy assessment tables lead to higher estimates of map accuracies of 83%, 75%, 76%, and 76%, respectively. In general, the open water/tidal channel class was the most accurately mapped class and Scirpus sp. was the least accurately mapped. These encouraging accuracies suggest that high-resolution satellite imagery offers significant potential for the mapping of invasive plant species in estuarine environments. ?? 2007 Elsevier Inc. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Li Dan; Zhao Wei
2008-07-15
An indirect flat panel imager (FPI) with programmable avalanche gain and field emitter array (FEA) readout is being investigated for low-dose and high resolution x-ray imaging. It is made by optically coupling a structured x-ray scintillator, e.g., thallium (Tl) doped cesium iodide (CsI), to an amorphous selenium (a-Se) avalanche photoconductor called high-gain avalanche rushing amorphous photoconductor (HARP). The charge image created by the scintillator/HARP (SHARP) combination is read out by the electron beams emitted from the FEA. The proposed detector is called scintillator avalanche photoconductor with high resolution emitter readout (SAPHIRE). The programmable avalanche gain of HARP can improve themore » low dose performance of indirect FPI while the FEA can be made with pixel sizes down to 50 {mu}m. Because of the avalanche gain, a high resolution type of CsI (Tl), which has not been widely used in indirect FPI due to its lower light output, can be used to improve the high spatial frequency performance. The purpose of the present article is to investigate the factors affecting the spatial resolution of SAPHIRE. Since the resolution performance of the SHARP combination has been well studied, the focus of the present work is on the inherent resolution of the FEA readout method. The lateral spread of the electron beam emitted from a 50 {mu}mx50 {mu}m pixel FEA was investigated with two different electron-optical designs: mesh-electrode-only and electrostatic focusing. Our results showed that electrostatic focusing can limit the lateral spread of electron beams to within the pixel size of down to 50 {mu}m. Since electrostatic focusing is essentially independent of signal intensity, it will provide excellent spatial uniformity.« less
Wave Dissipation on Low- to Super-Energy Coral Reefs
NASA Astrophysics Data System (ADS)
Harris, D. L.
2016-02-01
Coral reefs are valuable, complex and bio-diverse ecosystems and are also known to be one of the most effective barriers to swell events in coastal environments. Previous research has found coral reefs to be remarkably efficient in removing most of the wave energy during the initial breaking and transformation on the reef flats. The rate of dissipation is so rapid that coral reefs have been referred to as rougher than any known coastal barrier. The dissipation of wave energy across reef flats is crucial in maintaining the relatively low-energy conditions in the back reef and lagoonal environments providing vital protection to adjacent beach or coastal regions from cyclone and storm events. A shift in the regulation of wave energy by reef flats could have catastrophic consequences ecologically, socially, and economically. This study examined the dissipation of wave energy during two swell events in Tahiti and Moorea, French Polyesia. Field sites were chosen in varying degrees of exposure and geomorphology from low-energy protected sites (Tiahura, Moorea) to super-energy sites (Teahupo'o, Tahiti). Waves were measured during two moderate to large swell events in cross reef transects using short-term high-resolution pressure transducers. Wave conditions were found to be similar in all back reef locations despite the very different wave exposure at each reef site. However, wave conditions on the reef flats were different and mirrored the variation in wave exposure with depth over the reef flat the primary regulator of reef flat wave height. These results indicate that coral reef flats evolve morphodynamically with the wave climate, which creates coral reef geomorphologies capable of dissipating wave energy that results in similar back reef wave conditions regardless of the offshore wave climate.
Phelps, Geoffrey A.; McKee, Edwin H.; Sweetkind, D.; Langenheim, V.E.
2000-01-01
The Environmental Restoration Program of the U.S. Department of Energy, Nevada Operations Office, was developed to investigate the possible consequences to the environment of 40 years of nuclear testing on the Nevada Test Site. The majority of the tests were detonated underground, introducing contaminants into the ground-water system (Laczniak and others, 1996). An understanding of the ground-water flow paths is necessary to evaluate the extent of ground-water contamination. This report provides information specific to Yucca Flat on the Nevada Test Site. Critical to understanding the ground-water flow beneath Yucca Flat is an understanding of the subsurface geology, particularly the structure and distribution of the pre-Tertiary rocks, which comprise both the major regional aquifer and aquitard sequences (Winograd and Thordarson, 1975; Laczniak and others, 1996). Because the pre-Tertiary rocks are not exposed at the surface of Yucca Flat their distribution must be determined through well logs and less direct geophysical methods such as potential field studies. In previous studies (Phelps and others, 1999; Phelps and Mckee, 1999) developed a model of the basement surface of the Paleozoic rocks beneath Yucca Flat and a series of normal faults that create topographic relief on the basement surface. In this study the basement rocks and structure of Yucca Flat are examined in more detail using the basement gravity anomaly derived from the isostatic gravity inversion model of Phelps and others (1999) and high-resolution magnetic data, as part of an effort to gain a better understanding of the Paleozoic rocks beneath Yucca Flat in support of groundwater modeling.
Euler flow predictions for an oscillating cascade using a high resolution wave-split scheme
NASA Technical Reports Server (NTRS)
Huff, Dennis L.; Swafford, Timothy W.; Reddy, T. S. R.
1991-01-01
A compressible flow code that can predict the nonlinear unsteady aerodynamics associated with transonic flows over oscillating cascades is developed and validated. The code solves the two dimensional, unsteady Euler equations using a time-marching, flux-difference splitting scheme. The unsteady pressures and forces can be determined for arbitrary input motions, although only harmonic pitching and plunging motions are addressed. The code solves the flow equations on a H-grid which is allowed to deform with the airfoil motion. Predictions are presented for both flat plate cascades and loaded airfoil cascades. Results are compared to flat plate theory and experimental data. Predictions are also presented for several oscillating cascades with strong normal shocks where the pitching amplitudes, cascade geometry and interblade phase angles are varied to investigate nonlinear behavior.
Paediatric interventional cardiology: flat detector versus image intensifier using a test object
NASA Astrophysics Data System (ADS)
Vano, E.; Ubeda, C.; Martinez, L. C.; Leyton, F.; Miranda, P.
2010-12-01
Entrance surface air kerma (ESAK) values and image quality parameters were measured and compared for two biplane angiography x-ray systems dedicated to paediatric interventional cardiology, one equipped with image intensifiers (II) and the other one with dynamic flat detectors (FDs). Polymethyl methacrylate phantoms of different thicknesses, ranging from 8 to 16 cm, and a Leeds TOR 18-FG test object were used. The parameters of the image quality evaluated were noise, signal-difference-to-noise ratio (SdNR), high contrast spatial resolution (HCSR) and three figures of merit combining entrance doses and signal-to-noise ratios or HCSR. The comparisons showed a better behaviour of the II-based system in the low contrast region over the whole interval of thicknesses. The FD-based system showed a better performance in HCSR. The FD system evaluated would need around two times more dose than the II system evaluated to reach a given value of SdNR; moreover, a better spatial resolution was measured (and perceived in conventional monitors) for the system equipped with flat detectors. According to the results of this paper, the use of dynamic FD systems does not lead to an automatic reduction in ESAK or to an automatic improvement in image quality by comparison with II systems. Any improvement also depends on the setting of the x-ray systems and it should still be possible to refine these settings for some of the dynamic FDs used in paediatric cardiology.
[Modification and luminescence properties of transparent Lu2SiO5 : Ce3+ thin-film phosphors].
Fan, Yang-Yang; Liu, Xiao-Lin; Gu, Mu; Ni, Chen; Huang, Shi-Ming; Liu, Bo
2011-02-01
To achieve high-spatial-resolution for X-ray imaging and flat panel display, transparent thin-film phosphors have been attracted much attention in recent years. In comparison with conventional powder phosphors, the transparent thin-film phosphors have some outstanding advantages such as high contrast and resolution, superior thermal conductivity and better adhesion. Cerium-doped lutetium oxyorthosilicate Lu2 SiO5 (LSO) is one promising candidate due to its high density (7.4 g x cm(-3)), high light yield (27 300 photons x MeV(-1)), short decay time (40 ns), and excellent chemical stability. The sol-gel method is one of the most important techniques for deposition of functional thin films, because it possesses a number of advantages over conventional film formation techniques, such as low processing temperature, easy coating of large surfaces, homogenous multicomponent films, and cheap equipments. In X-ray imaging application, the thickness of the thin-film phosphor is the most important factor, which can increase X-ray absorption of the film and then strengthen its luminescence intensity. In the present work, transparent LSO : Ce film was successfully prepared using sol-gel method and spin-coating technique by using inorganic salts as raw materials, 2-methoxyethanol as solvent, and poly (ethylene glycol) (PEG) as modifier without inert atmosphere. The effect of PEG on the luminescence properties of the film was investigated in detail. The results indicated that PEG200 played an important role in the formation of LSO : Ce film, improving its quality and luminescent intensity. The film thickness of 0.9 microm was achieved after 5 times of coating. The luminescence properties of the film were studied. Their performances were good, which implied that the film would have promising applications in high-spatial-resolution X-ray imaging and flat panel display devices.
Observations of ebb flows on tidal flats: Evidence of dewatering?
NASA Astrophysics Data System (ADS)
Rinehimer, J. P.; Thomson, J. M.; Chickadel, C.
2010-12-01
Incised channels are a common morphological feature of tidal flats. When the flats are inundated, flows are generally forced by the tidally varying sea surface height. During low tide, however, these channels continue to drain throughout flat exposure even without an upstream source of water. While the role of porewater is generally overlooked due to the low permeability of marine muds, it remains the only potential source of flows through the channels during low tide. In situ and remotely sensed observations (Figure 1) at an incised channel on a tidal flat in Willapa Bay from Spring 2010 indicate that dewatering of the flats may be driving these low tide flows. High resolution Aquadopp ADCP velocity profiles are combined with observations from tower-based infrared (IR) video to produce a complete time series of surface velocity measurements throughout low tide. The IR video observations provide a measurement of surface currents even when the channel depth is below the blanking distance of the ADCP (10 cm). As the depth within the channel drops from 50 cm to 10 cm surface velocities increase from 10 cm/s to 60 cm/s even as the tide level drops below the channel flanks and the flats are dry. As the drainage continues, the temperature of the flow rises throughout low tide, mirroring temperatures within the sediment bed on the tidal flat. Drainage salinity falls despite the lack of any freshwater input to the flat indicating that less saline porewater may be the source. The likely source of the drainage water is from the channel flanks where time-lapse video shows slumping and compaction of channel sediments. Velocity profiles, in situ temperatures, and IR observations also are consistent with the presence of fluid muds and a hyperpycnal, density driven outflow at the channel mouth highlighting a possible pathway for sediment delivery from the flats to the main distributary channels of the bay. Figure 1: Time series of tidal flat channel velocities and temperatures. Top: (soild) Water depth within the channel and (dashed) tidal flat elevation. Center: Channel surface velocities as measured by an (black) ADCP and (red) a Fourier technique using infrared video. Bottom: Temperatures of (blue) near bed water downstream of the incised channel, (black) channel outflow, and (red) tidal flat sediment at 10 cm depth within the bed.
Patterns and drivers of daily bed-level dynamics on two tidal flats with contrasting wave exposure.
Hu, Zhan; Yao, Peng; van der Wal, Daphne; Bouma, Tjeerd J
2017-08-02
Short-term bed-level dynamics has been identified as one of the main factors affecting biota establishment or retreat on tidal flats. However, due to a lack of proper instruments and intensive labour involved, the pattern and drivers of daily bed-level dynamics are largely unexplored in a spatiotemporal context. In this study, 12 newly-developed automatic bed-level sensors were deployed for nearly 15 months on two tidal flats with contrasting wave exposure, proving an unique dataset of daily bed-level changes and hydrodynamic forcing. By analysing the data, we show that (1) a general steepening trend exists on both tidal flats, even with contrasting wave exposure and different bed sediment grain size; (2) daily morphodynamics level increases towards the sea; (3) tidal forcing sets the general morphological evolution pattern at both sites; (4) wave forcing induces short-term bed-level fluctuations at the wave-exposed site, but similar effect is not seen at the sheltered site with smaller waves; (5) storms provoke aggravated erosion, but the impact is conditioned by tidal levels. This study provides insights in the pattern and drivers of daily intertidal bed-level dynamics, thereby setting a template for future high-resolution field monitoring programmes and inviting in-depth morphodynamic modelling for improved understanding and predictive capability.
Toward high-resolution NMR spectroscopy of microscopic liquid samples
DOE Office of Scientific and Technical Information (OSTI.GOV)
Butler, Mark C.; Mehta, Hardeep S.; Chen, Ying
A longstanding limitation of high-resolution NMR spectroscopy is the requirement for samples to have macroscopic dimensions. Commercial probes, for example, are designed for volumes of at least 5 mL, in spite of decades of work directed toward the goal of miniaturization. Progress in miniaturizing inductive detectors has been limited by a perceived need to meet two technical requirements: (1) minimal separation between the sample and the detector, which is essential for sensitivity, and (2) near-perfect magnetic-field homogeneity at the sample, which is typically needed for spectral resolution. The first of these requirements is real, but the second can be relaxed,more » as we demonstrate here. By using pulse sequences that yield high-resolution spectra in an inhomogeneous field, we eliminate the need for near-perfect field homogeneity and the accompanying requirement for susceptibility matching of microfabricated detector components. With this requirement removed, typical imperfections in microfabricated components can be tolerated, and detector dimensions can be matched to those of the sample, even for samples of volume << 5 uL. Pulse sequences that are robust to field inhomogeneity thus enable small-volume detection with optimal sensitivity. We illustrate the potential of this approach to miniaturization by presenting spectra acquired with a flat-wire detector that can easily be scaled to subnanoliter volumes. In particular, we report high-resolution NMR spectroscopy of an alanine sample of volume 500 pL.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Rana, R; Bednarek, D; Rudin, S
Purpose: Demonstrate the effectiveness of an anti-scatter grid artifact minimization method by removing the grid-line artifacts for three different grids when used with a high resolution CMOS detector. Method: Three different stationary x-ray grids were used with a high resolution CMOS x-ray detector (Dexela 1207, 75 µm pixels, sensitivity area 11.5cm × 6.5cm) to image a simulated artery block phantom (Nuclear Associates, Stenosis/Aneurysm Artery Block 76–705) combined with a frontal head phantom used as the scattering source. The x-ray parameters were 98kVp, 200mA, and 16ms for all grids. With all the three grids, two images were acquired: the first formore » a scatter-less flat field including the grid and the second of the object with the grid which may still have some scatter transmission. Because scatter has a low spatial frequency distribution, it was represented by an estimated constant value as an initial approximation and subtracted from the image of the object with grid before dividing by an average frame of the grid flat-field with no scatter. The constant value was iteratively changed to minimize residual grid-line artifact. This artifact minimization process was used for all the three grids. Results: Anti-scatter grid lines artifacts were successfully eliminated in all the three final images taken with the three different grids. The image contrast and CNR were also compared before and after the correction, and also compared with those from the image of the object when no grid was used. The corrected images showed an increase in CNR of approximately 28%, 33% and 25% for the three grids, as compared to the images when no grid at all was used. Conclusion: Anti-scatter grid-artifact minimization works effectively irrespective of the specifications of the grid when it is used with a high spatial resolution detector. Partial support from NIH Grant R01-EB002873 and Toshiba Medical Systems Corp.« less
Image quality assessment of a pre-clinical flat-panel volumetric micro-CT scanner
NASA Astrophysics Data System (ADS)
Du, Louise Y.; Lee, Ting-Yim; Holdsworth, David W.
2006-03-01
Small animal imaging has recently become an area of increased interest because more human diseases can be modeled in transgenic and knockout rodents. Current micro-CT systems are capable of achieving spatial resolution on the order of 10 μm, giving highly detailed anatomical information. However, the speed of data acquisition of these systems is relatively slow, when compared with clinical CT systems. Dynamic CT perfusion imaging has proven to be a powerful tool clinically in detecting and diagnosing cancer, stroke, pulmonary and ischemic heart diseases. In order to perform this technique in mice and rats, quantitative CT images must be acquired at a rate of at least 1 Hz. Recently, a research pre-clinical CT scanner (eXplore Ultra, GE Healthcare) has been designed specifically for dynamic perfusion imaging in small animals. Using an amorphous silicon flat-panel detector and a clinical slip-ring gantry, this system is capable of acquiring volumetric image data at a rate of 1 Hz, with in-plane resolution of 150 μm, while covering the entire thoracic region of a mouse or whole organs of a rat. The purpose of this study was to evaluate the principal imaging performance of the micro-CT system, in terms of spatial resolution, image uniformity, linearity, dose and voxel noise for the feasibility of imaging mice and rats. Our investigations show that 3D images can be obtained with a limiting spatial resolution of 2.7 line pairs per mm and noise of 42 HU, using an acquisition interval of 8 seconds at an entrance dose of 6.4 cGy.
Comparison of High and Low Density Airborne LIDAR Data for Forest Road Quality Assessment
NASA Astrophysics Data System (ADS)
Kiss, K.; Malinen, J.; Tokola, T.
2016-06-01
Good quality forest roads are important for forest management. Airborne laser scanning data can help create automatized road quality detection, thus avoiding field visits. Two different pulse density datasets have been used to assess road quality: high-density airborne laser scanning data from Kiihtelysvaara and low-density data from Tuusniemi, Finland. The field inventory mainly focused on the surface wear condition, structural condition, flatness, road side vegetation and drying of the road. Observations were divided into poor, satisfactory and good categories based on the current Finnish quality standards used for forest roads. Digital Elevation Models were derived from the laser point cloud, and indices were calculated to determine road quality. The calculated indices assessed the topographic differences on the road surface and road sides. The topographic position index works well in flat terrain only, while the standardized elevation index described the road surface better if the differences are bigger. Both indices require at least a 1 metre resolution. High-density data is necessary for analysis of the road surface, and the indices relate mostly to the surface wear and flatness. The classification was more precise (31-92%) than on low-density data (25-40%). However, ditch detection and classification can be carried out using the sparse dataset as well (with a success rate of 69%). The use of airborne laser scanning data can provide quality information on forest roads.
NASA Astrophysics Data System (ADS)
Anagnostopoulos, D. F.; Siozios, A.; Patsalas, P.
2018-02-01
X-ray fluorescence spectra of Al based films are measured, using a lab-scale wavelength dispersive flat crystal spectrometer. Various structures of AlN films were studied, like single layered, capped, stratified, nanostructured, crystalline, or amorphous. By optimizing the set-up for enhanced energy resolution and detection efficiency, the measured line shapes of Κα, Kβ, and KLL radiative Auger transitions are shown to be adequately detailed to allow chemical characterization. The chemistry identification is based on the pattern comparison of the emitted line shape from the chemically unknown film and the reference line shapes from standard materials, recorded under identical experimental conditions. The ultimate strength of lab-scale high resolution X-ray fluorescence spectroscopy on film analysis is verified, in cases that ordinary applied techniques like X-ray photoelectron and X-ray diffraction fail, while the characterization refers to the non-destructive determination of the bulk properties of the film and not to its surface, as the probed depth is in the micrometer range.
High resolution Fourier interferometer-spectrophotopolarimeter
NASA Technical Reports Server (NTRS)
Fymat, A. L. (Inventor)
1976-01-01
A high-resolution Fourier interferometer-spectrophotopolarimeter is provided using a single linear polarizer-analyzer the transmission axis azimuth of which is positioned successively in the three orientations of 0 deg, 45 deg, and 90 deg, in front of a detector; four flat mirrors, three of which are switchable to either of two positions to direct an incoming beam from an interferometer to the polarizer-analyzer around a sample cell transmitted through a medium in a cell and reflected by medium in the cell; and four fixed focussing lenses, all located in a sample chamber attached at the exit side of the interferometer. This arrangement can provide the distribution of energy and complete polarization state across the spectrum of the reference light entering from the interferometer; the same light after a fixed-angle reflection from the sample cell containing a medium to be analyzed; and the same light after direct transmission through the same sample cell, with the spectral resolution provided by the interferometer.
NASA Astrophysics Data System (ADS)
Lucas-Serrano, A.; Font, J. A.; Ibáñez, J. M.; Martí, J. M.
2004-12-01
We assess the suitability of a recent high-resolution central scheme developed by \\cite{kurganov} for the solution of the relativistic hydrodynamic equations. The novelty of this approach relies on the absence of Riemann solvers in the solution procedure. The computations we present are performed in one and two spatial dimensions in Minkowski spacetime. Standard numerical experiments such as shock tubes and the relativistic flat-faced step test are performed. As an astrophysical application the article includes two-dimensional simulations of the propagation of relativistic jets using both Cartesian and cylindrical coordinates. The simulations reported clearly show the capabilities of the numerical scheme of yielding satisfactory results, with an accuracy comparable to that obtained by the so-called high-resolution shock-capturing schemes based upon Riemann solvers (Godunov-type schemes), even well inside the ultrarelativistic regime. Such a central scheme can be straightforwardly applied to hyperbolic systems of conservation laws for which the characteristic structure is not explicitly known, or in cases where a numerical computation of the exact solution of the Riemann problem is prohibitively expensive. Finally, we present comparisons with results obtained using various Godunov-type schemes as well as with those obtained using other high-resolution central schemes which have recently been reported in the literature.
High-spatial-resolution mapping of catalytic reactions on single particles
Wu, Chung-Yeh; Wolf, William J.; Levartovsky, Yehonatan; ...
2017-01-26
We report the critical role in surface reactions and heterogeneous catalysis of metal atoms with low coordination numbers, such as found at atomic steps and surface defects, is firmly established. But despite the growing availability of tools that enable detailed in situ characterization, so far it has not been possible to document this role directly. Surface properties can be mapped with high spatial resolution, and catalytic conversion can be tracked with a clear chemical signature; however, the combination of the two, which would enable high-spatial-resolution detection of reactions on catalytic surfaces, has rarely been achieved. Single-molecule fluorescence spectroscopy has beenmore » used to image and characterize single turnover sites at catalytic surfaces, but is restricted to reactions that generate highly fluorescing product molecules. Herein the chemical conversion of N-heterocyclic carbene molecules attached to catalytic particles is mapped using synchrotron-radiation-based infrared nanospectroscopy with a spatial resolution of 25 nanometres, which enabled particle regions that differ in reactivity to be distinguished. Lastly, these observations demonstrate that, compared to the flat regions on top of the particles, the peripheries of the particles-which contain metal atoms with low coordination numbers-are more active in catalysing oxidation and reduction of chemically active groups in surface-anchored N-heterocyclic carbene molecules.« less
Two-photon excited autofluorescence imaging of freshly isolated frog retinas.
Lu, Rong-Wen; Li, Yi-Chao; Ye, Tong; Strang, Christianne; Keyser, Kent; Curcio, Christine A; Yao, Xin-Cheng
2011-06-01
The purpose of this study was to investigate cellular sources of autofluorescence signals in freshly isolated frog (Rana pipiens) retinas. Equipped with an ultrafast laser, a laser scanning two-photon excitation fluorescence microscope was employed for sub-cellular resolution examination of both sliced and flat-mounted retinas. Two-photon imaging of retinal slices revealed autofluorescence signals over multiple functional layers, including the photoreceptor layer (PRL), outer nuclear layer (ONL), outer plexiform layer (OPL), inner nuclear layer (INL), inner plexiform layer (IPL), and ganglion cell layer (GCL). Using flat-mounted retinas, depth-resolved imaging of individual retinal layers further confirmed multiple sources of autofluorescence signals. Cellular structures were clearly observed at the PRL, ONL, INL, and GCL. At the PRL, the autofluorescence was dominantly recorded from the intracellular compartment of the photoreceptors; while mixed intracellular and extracellular autofluorescence signals were observed at the ONL, INL, and GCL. High resolution autofluorescence imaging clearly revealed mosaic organization of rod and cone photoreceptors; and sub-cellular bright autofluorescence spots, which might relate to connecting cilium, was observed in the cone photoreceptors only. Moreover, single-cone and double-cone outer segments could be directly differentiated.
Characteristics of Fault Zones in Volcanic Rocks Near Yucca Flat, Nevada Test Site, Nevada
Sweetkind, Donald S.; Drake II, Ronald M.
2007-01-01
During 2005 and 2006, the USGS conducted geological studies of fault zones at surface outcrops at the Nevada Test Site. The objectives of these studies were to characterize fault geometry, identify the presence of fault splays, and understand the width and internal architecture of fault zones. Geologic investigations were conducted at surface exposures in upland areas adjacent to Yucca Flat, a basin in the northeastern part of the Nevada Test Site; these data serve as control points for the interpretation of the subsurface data collected at Yucca Flat by other USGS scientists. Fault zones in volcanic rocks near Yucca Flat differ in character and width as a result of differences in the degree of welding and alteration of the protolith, and amount of fault offset. Fault-related damage zones tend to scale with fault offset; damage zones associated with large-offset faults (>100 m) are many tens of meters wide, whereas damage zones associated with smaller-offset faults are generally a only a meter or two wide. Zeolitically-altered tuff develops moderate-sized damage zones whereas vitric nonwelded, bedded and airfall tuff have very minor damage zones, often consisting of the fault zone itself as a deformation band, with minor fault effect to the surrounding rock mass. These differences in fault geometry and fault zone architecture in surface analog sites can serve as a guide toward interpretation of high-resolution subsurface geophysical results from Yucca Flat.
Song, Yonghai; Wang, Li
2009-02-01
Well-ordered structure of methylene blue (MB) monolayers on Au(111) surface has been successfully obtained by controlling the substrate potential. Electrochemical scanning tunneling microscopy (ECSTM) examined the monolayers of MB on Au(111) in 0.1 M HClO(4) and showed long-range ordered, interweaved arrays of MB with quadratic symmetry on the substrate in the potential range of double-layer charging. High-resolution ECSTM image further revealed the details of the MB monolayers structure of c(5 x 5 radical 3)rect and the flat-lying orientation of ad-molecules. The dependence of molecular organization on the substrate potential and the formation mechanism of well-ordered structure on Au(111) surface were investigated in detail. The obtained well-ordered structure at the interface between a metal and an aqueous electrolyte might possibly be used as high-density device for signal memory and templates for the advanced nanopatterning of surfaces. (c) 2008 Wiley-Liss, Inc.
Nickoloff, Edward Lee
2011-01-01
This article reviews the design and operation of both flat-panel detector (FPD) and image intensifier fluoroscopy systems. The different components of each imaging chain and their functions are explained and compared. FPD systems have multiple advantages such as a smaller size, extended dynamic range, no spatial distortion, and greater stability. However, FPD systems typically have the same spatial resolution for all fields of view (FOVs) and are prone to ghosting. Image intensifier systems have better spatial resolution with the use of smaller FOVs (magnification modes) and tend to be less expensive. However, the spatial resolution of image intensifier systems is limited by the television system to which they are coupled. Moreover, image intensifier systems are degraded by glare, vignetting, spatial distortions, and defocusing effects. FPD systems do not have these problems. Some recent innovations to fluoroscopy systems include automated filtration, pulsed fluoroscopy, automatic positioning, dose-area product meters, and improved automatic dose rate control programs. Operator-selectable features may affect both the patient radiation dose and image quality; these selectable features include dose level setting, the FOV employed, fluoroscopic pulse rates, geometric factors, display software settings, and methods to reduce the imaging time. © RSNA, 2011.
On the rotation and pitching of flat plates
NASA Astrophysics Data System (ADS)
Jin, Yaqing; Ji, Sheng; Chamorro, Leonardo P.
2016-11-01
Wind tunnel experiments were performed to characterize the flow-induced rotation and pitching of various flat plates as a function of the thickness ratio, the location of the axis of rotation and turbulence levels. High-resolution telemetry, laser tachometer, and hotwire were used to get time series of the plates motions and the signature of the wake flow at a specific location. Results show that a minor axis offset can induce high-order modes in the plate rotation under low turbulence due to torque unbalance. The spectral decomposition of the flow velocity in the plate wake reveals the existence of a dominating high-frequency mode that corresponds to a static-like vortex shedding occurring at the maximum plate pitch, where the characteristic length scale is the projected width at maximum pitch. The plate thickness ratio shows inverse relation with the angular velocity. A simple model is derived to explain the linear relation between pitching frequency and wind speed. The spectra of the plate rotation show nonlinear relation with the incoming turbulence, and the dominating role of the generated vortices in the plate motions.
Assessment of a New High-Performance Small-Animal X-Ray Tomograph
NASA Astrophysics Data System (ADS)
Vaquero, J. J.; Redondo, S.; Lage, E.; Abella, M.; Sisniega, A.; Tapias, G.; Montenegro, M. L. Soto; Desco, M.
2008-06-01
We have developed a new X-ray cone-beam tomograph for in vivo small-animal imaging using a flat panel detector (CMOS technology with a microcolumnar CsI scintillator plate) and a microfocus X-ray source. The geometrical configuration was designed to achieve a spatial resolution of about 12 lpmm with a field of view appropriate for laboratory rodents. In order to achieve high performance with regard to per-animal screening time and cost, the acquisition software takes advantage of the highest frame rate of the detector and performs on-the-fly corrections on the detector raw data. These corrections include geometrical misalignments, sensor non-uniformities, and defective elements. The resulting image is then converted to attenuation values. We measured detector modulation transfer function (MTF), detector stability, system resolution, quality of the reconstructed tomographic images and radiated dose. The system resolution was measured following the standard test method ASTM E 1695 -95. For image quality evaluation, we assessed signal-to-noise ratio (SNR) and contrast-to-noise ratio (CNR) as a function of the radiated dose. Dose studies for different imaging protocols were performed by introducing TLD dosimeters in representative organs of euthanized laboratory rats. Noise figure, measured as standard deviation, was 50 HU for a dose of 10 cGy. Effective dose with standard research protocols is below 200 mGy, confirming that the system is appropriate for in vivo imaging. Maximum spatial resolution achieved was better than 50 micron. Our experimental results obtained with image quality phantoms as well as with in-vivo studies show that the proposed configuration based on a CMOS flat panel detector and a small micro-focus X-ray tube leads to a compact design that provides good image quality and low radiated dose, and it could be used as an add-on for existing PET or SPECT scanners.
NASA Astrophysics Data System (ADS)
Wang, Kai; Ou, Hai; Chen, Jun
2015-06-01
Since its emergence a decade ago, amorphous silicon flat panel X-ray detector has established itself as a ubiquitous platform for an array of digital radiography modalities. The fundamental building block of a flat panel detector is called a pixel. In all current pixel architectures, sensing, storage, and readout are unanimously kept separate, inevitably compromising resolution by increasing pixel size. To address this issue, we hereby propose a “smart” pixel architecture where the aforementioned three components are combined in a single dual-gate photo thin-film transistor (TFT). In other words, the dual-gate photo TFT itself functions as a sensor, a storage capacitor, and a switch concurrently. Additionally, by harnessing the amplification effect of such a thin-film transistor, we for the first time created a single-transistor active pixel sensor. The proof-of-concept device had a W/L ratio of 250μm/20μm and was fabricated using a simple five-mask photolithography process, where a 130nm transparent ITO was used as the top photo gate, and a 200nm amorphous silicon as the absorbing channel layer. The preliminary results demonstrated that the photocurrent had been increased by four orders of magnitude due to light-induced threshold voltage shift in the sub-threshold region. The device sensitivity could be simply tuned by photo gate bias to specifically target low-level light detection. The dependence of threshold voltage on light illumination indicated that a dynamic range of at least 80dB could be achieved. The "smart" pixel technology holds tremendous promise for developing high-resolution and low-dose X-ray imaging and may potentially lower the cancer risk imposed by radiation, especially among paediatric patients.
Cone-beam micro computed tomography dedicated to the breast.
Sarno, Antonio; Mettivier, Giovanni; Di Lillo, Francesca; Cesarelli, Mario; Bifulco, Paolo; Russo, Paolo
2016-12-01
We developed a scanner for micro computed tomography dedicated to the breast (BµCT) with a high resolution flat-panel detector and a microfocus X-ray tube. We evaluated the system spatial resolution via the 3D modulation transfer function (MTF). In addition to conventional absorption-based X-ray imaging, such a prototype showed capabilities for propagation-based phase-contrast and related edge enhancement effects in 3D imaging. The system limiting spatial resolution is 6.2mm -1 (MTF at 10%) in the vertical direction and 3.8mm -1 in the radial direction, values which compare favorably with the spatial resolution reached by mini focus breast CT scanners of other groups. The BµCT scanner was able to detect both microcalcification clusters and masses in an anthropomorphic breast phantom at a dose comparable to that of two-view mammography. The use of a breast holder is proposed in order to have 1-2min long scan times without breast motion artifacts. Copyright © 2016 IPEM. Published by Elsevier Ltd. All rights reserved.
New Insights into Auroral Particle Acceleration via Coordinated Optical-Radar Networks
NASA Astrophysics Data System (ADS)
Hirsch, M.
2016-12-01
The efficacy of instruments synthesized from heterogeneous sensor networks is increasingly being realized in fielded science observation systems. New insights into the finest spatio-temporal scales of ground-observable ionospheric physics are realized by coupling low-level data from fixed legacy instruments with mobile and portable sensors. In particular, turbulent ionospheric events give enhanced radar returns more than three orders of magnitude larger than typical incoherent plasma observations. Radar integration times for the Poker Flat Incoherent Scatter Radar (PFISR) can thereby be shrunk from order 100 second integration time down to order 100 millisecond integration time for the ion line. Auroral optical observations with 20 millisecond cadence synchronized in absolute time with the radar help uncover plausible particle acceleration processes for the highly dynamic aurora often associated with Langmuir turbulence. Quantitative analysis of coherent radar returns combined with a physics-based model yielding optical volume emission rate profiles vs. differential number flux input of precipitating particles into the ionosphere yield plausibility estimates for a particular auroral acceleration process type. Tabulated results from a survey of auroral events where the Boston University High Speed Auroral Tomography system operated simultaneously with PFISR are presented. Context is given to the narrow-field HiST observations by the Poker Flat Digital All-Sky Camera and THEMIS GBO ASI network. Recent advances in high-rate (order 100 millisecond) plasma line ISR observations (100x improvement in temporal resolution) will contribute to future coordinated observations. ISR beam pattern and pulse parameter configurations favorable for future coordinated optical-ISR experiments are proposed in light of recent research uncovering the criticality of aspect angle to ISR-observable physics. High-rate scientist-developed GPS TEC receivers are expected to contribute additional high resolution observations to such experiments.
A Distributive, Non-Destructive, Real-Time Approach to Snowpack Monitoring
NASA Technical Reports Server (NTRS)
Frolik, Jeff; Skalka, Christian
2012-01-01
This invention is designed to ascertain the snow water equivalence (SWE) of snowpacks with better spatial and temporal resolutions than present techniques. The approach is ground-based, as opposed to some techniques that are air-based. In addition, the approach is compact, non-destructive, and can be communicated with remotely, and thus can be deployed in areas not possible with current methods. Presently there are two principal ground-based techniques for obtaining SWE measurements. The first is manual snow core measurements of the snowpack. This approach is labor-intensive, destructive, and has poor temporal resolution. The second approach is to deploy a large (e.g., 3x3 m) snowpillow, which requires significant infrastructure, is potentially hazardous [uses a approximately equal to 200-gallon (approximately equal to 760-L) antifreeze-filled bladder], and requires deployment in a large, flat area. High deployment costs necessitate few installations, thus yielding poor spatial resolution of data. Both approaches have limited usefulness in complex and/or avalanche-prone terrains. This approach is compact, non-destructive to the snowpack, provides high temporal resolution data, and due to potential low cost, can be deployed with high spatial resolution. The invention consists of three primary components: a robust wireless network and computing platform designed for harsh climates, new SWE sensing strategies, and algorithms for smart sampling, data logging, and SWE computation.
Park, Chan Woo; Moon, Yu Gyeong; Seong, Hyejeong; Jung, Soon Won; Oh, Ji-Young; Na, Bock Soon; Park, Nae-Man; Lee, Sang Seok; Im, Sung Gap; Koo, Jae Bon
2016-06-22
We demonstrate a new patterning technique for gallium-based liquid metals on flat substrates, which can provide both high pattern resolution (∼20 μm) and alignment precision as required for highly integrated circuits. In a very similar manner as in the patterning of solid metal films by photolithography and lift-off processes, the liquid metal layer painted over the whole substrate area can be selectively removed by dissolving the underlying photoresist layer, leaving behind robust liquid patterns as defined by the photolithography. This quick and simple method makes it possible to integrate fine-scale interconnects with preformed devices precisely, which is indispensable for realizing monolithically integrated stretchable circuits. As a way for constructing stretchable integrated circuits, we propose a hybrid configuration composed of rigid device regions and liquid interconnects, which is constructed on a rigid substrate first but highly stretchable after being transferred onto an elastomeric substrate. This new method can be useful in various applications requiring both high-resolution and precisely aligned patterning of gallium-based liquid metals.
Coronal Abundances and Their Variation
NASA Technical Reports Server (NTRS)
Saba, Julia L. R.
1996-01-01
This contract supported the investigation of elemental abundances in the solar corona, principally through analysis of high-resolution soft X-ray spectra from the Flat Crystal Spectrometer on NASA's Solar Maximum Mission. The goals of the study were a characterization of the mean values of relative abundances of elements accessible in the FCS data, and information on the extent and circumstances of their variability. This is the Final Report, summarizing the data analysis and reporting activities which occurred during the period of performance, June 1993 - December 1996.
Flat-field VLS spectrometers for laboratory applications
NASA Astrophysics Data System (ADS)
Ragozin, Evgeny N.; Belokopytov, Aleksei A.; Kolesnikov, Aleksei O.; Muslimov, Eduard R.; Shatokhin, Aleksei N.; Vishnyakov, Eugene A.
2017-05-01
Our intention is to develop high-resolution stigmatic spectral imaging in the XUV (2 - 40 nm). We have designed, aligned and tested a broadband stigmatic spectrometer for a range of 12-30 nm, which makes combined use of a normalincidence multilayer mirror (MM) (in particular, a broadband aperiodic MM) and a grazing-incidence plane varied linespace (VLS) reflection grating. The concave MM produces a slightly astigmatic image of the radiation source (for instance, the entrance slit), and the VLS grating produces a set of its dispersed stigmatic spectral images. The multilayer structure determines the spectral width of the operating range, which may amount to more than an octave in wavelength (e.g. 12.5-30 nm for an aperiodic Mo/Si MM), while the VLS grating controls the spectral focal curve. The stigmatism condition is satisfied simultaneously for two wavelengths, 14 and 27 nm. In this case, the condition of non-rigorous stigmatism is fulfilled for the entire wavelength range. A LiF laser plasma spectrum was recorded in one 0.5 J laser shot. A spatial resolution of 26 μm and a spectral resolution of 900 were demonstrated in the 12.5 - 25 nm range. We also report the design of a set of flat-field spectrometers of Harada type with VLS gratings. VLS gratings were made by ebeam and interference lithography. A technique (analytical + numerical) was developed for calculating optical schemes for writing plane and concave VLS gratings with predefined line density variation.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Vijayan, S; Rana, V; Nagesh, S Setlur
Purpose: To determine the reduction of integral dose to the patient when using the micro-angiographic fluoroscope (MAF) compared to when using the standard flat-panel detector (FPD) for the techniques used during neurointerventional procedures. Methods: The MAF is a small field-of-view, high resolution x-ray detector which captures 1024 x 1024 pixels with an effective pixel size of 35μm and is capable of real-time imaging up to 30 frames per second. The MAF was used in neuro-interventions during those parts of the procedure when high resolution was needed and the FPD was used otherwise. The technique parameters were recorded when each detectormore » was used and the kerma-area-product (KAP) per image frame was determined. KAP values were calculated for seven neuro interventions using premeasured calibration files of output as a function of kVp and beam filtration and included the attenuation of the patient table for the frontal projections to be more representative of integral patient dose. The air kerma at the patient entrance was multiplied by the beam area at that point to obtain the KAP values. The ranges of KAP values per frame were determined for the range of technique parameters used during the clinical procedures. To appreciate the benefit of the higher MAF resolution in the region of interventional activity, DA technique parameters were generally used with the MAF. Results: The lowest and highest values of KAP per frame for the MAF in DA mode were 4 and 50 times lower, respectively, compared to those of the FPD in pulsed fluoroscopy mode. Conclusion: The MAF was used in those parts of the clinical procedures when high resolution and image quality was essential. The integral patient dose as represented by the KAP value was substantially lower when using the MAF than when using the FPD due to the much smaller volume of tissue irradiated. This research was supported in part by Toshiba Medical Systems Corporation and NIH Grant R01EB002873.« less
Advanced aerosense display interfaces
NASA Astrophysics Data System (ADS)
Hopper, Darrel G.; Meyer, Frederick M.
1998-09-01
High-resolution display technologies are being developed to meet the ever-increasing demand for realistic detail. The requirement for evermore visual information exceeds the capacity of fielded aerospace display interfaces. In this paper we begin an exploration of display interfaces and evolving aerospace requirements. Current and evolving standards for avionics, commercial, and flat panel displays are summarized and compared to near term goals for military and aerospace applications. Aerospace and military applications prior to 2005 up to UXGA and digital HDTV resolution can be met by using commercial interface standard developments. Advanced aerospace requirements require yet higher resolutions (2560 X 2048 color pixels, 5120 X 4096 color pixels at 85 Hz, etc.) and necessitate the initiation of discussion herein of an 'ultra digital interface standard (UDIS)' which includes 'smart interface' features such as large memory and blazingly fast resizing microcomputer. Interface capacity, IT, increased about 105 from 1973 to 1998; 102 more is needed for UDIS.
Gimenez, Felicidad; Costa-e-Silva, Ivan Tramujas da; Daumas, Adriana; Araújo, José de; Medeiros, Sara Grigna; Ferreira, Luiz
2011-01-01
Anal cancer, although a still rare disease, is being observed in ascending rates among some population segments known to be at risk for the development of the disease. Human papillomavirus (HPV) infection, immunodepression and anal intercourse are some factors associated with the development of the malignancy. Its similarities to cervical cancer have led to many studies aiming to establish guidelines for detecting and treating precursor lesions of anal cancer, with the goal of prevention. High-resolution anoscopy is routinely used for the diagnosis of anal cancer precursor lesions in many centers but the medical literature is still deficient concerning the role of this diagnostic modality. To evaluate diagnostic validation and precision measures of high-resolution anoscopy in comparison to histopathological results of anal biopsies performed in HIV-positive patients treated at the Tropical Medicine Foundation of Amazonas, AM, Brazil. To observe any possible association between some risk factors for the development of anal cancer and the presence of anal squamous intraepithelial lesions. A hundred and twenty-eight HIV-positive patients were submitted to anal canal cytological sampling for the detection of HPV infection by a PCR based method. High-resolution anoscopy was then performed after topical application of acetic acid 3% in the anal canal for 2 minutes. Eventual acetowhite lesions that were detected were recorded in respect to location, and classified by their tinctorial pattern, distribution aspect, relief, surface and vascular pattern. Biopsies of acetowhite lesions were performed under local anesthesia and the specimens sent to histopathological analysis. The patients were interviewed for the presence of anal cancer risk factors. The prevalences of anal HPV infection and of anal squamous intraepithelial lesions in the studied population were, respectively, 79% and 39.1%. High-resolution anoscopy showed sensibility of 90%, specificity of 19.23%, positive predictive value of 41.67%, negative predictive value of 75%, and a kappa coefficient of 0.076. From the analyzed lesions, high-grade squamous intraepithelial lesions was more frequently observed in association to dense (68%), flat (61%), smooth (61%), non-papillary (83%) and normal vascular pattern (70%) acetowhite lesions, while low-grade squamous intraepithelial lesions tended to be associated to dense (66%), flat-raised or raised (68%), granular (59%), non-papillary (62%) and normal vascular pattern (53%) acetowhite lesions. No statistical significance was observed as to the association of epidemiological characteristics and of most of the investigated anal cancer risk factors and presence of acetowhite lesions or anal squamous intraepithelial lesions. However, anal receptive sex and anal HPV infection were significantly associated to anal squamous intraepithelial lesions (P = 0.0493 and P = 0.006, respectively). High-resolution anoscopy demonstrated to be a sensitive, but not specific test for the detection of anal squamous intraepithelial lesions. Risk factors anal receptive sex and anal HPV infection were significantly associated to the presence of anal squamous intraepithelial lesions. Based on high-resolution anoscopy image data, acetowhite lesions relief and surface pattern were prone to distinguish between low-grade squamous intraepithelial lesions and high-grade squamous intraepithelial lesions.
Re-engineering the stereoscope for the 21st Century
NASA Astrophysics Data System (ADS)
Kollin, Joel S.; Hollander, Ari J.
2007-02-01
While discussing the current state of stereo head-mounted and 3D projection displays, the authors came to the realization that flat-panel LCD displays offer higher resolution than projection for stereo display at a low (and continually dropping) cost. More specifically, where head-mounted displays of moderate resolution and field-of-view cost tens of thousands of dollars, we can achieve an angular resolution approaching that of the human eye with a field-of-view (FOV) greater than 90° for less than $1500. For many immersive applications head tracking is unnecessary and sometimes even undesirable, and a low cost/high quality wide FOV display may significantly increase the application space for 3D display. After outlining the problem and potential of this solution we describe the initial construction of a simple Wheatstone stereoscope using 24" LCD displays and then show engineering improvements that increase the FOV and usability of the system. The applicability of a high-immersion, high-resolution display for art, entertainment, and simulation is presented along with a content production system that utilizes the capabilities of the system. We then discuss the potential use of the system for VR pain control therapy, treatment of post-traumatic stress disorders and other serious games applications.
NASA Technical Reports Server (NTRS)
Hamilton, T. T.; Hailey, C. J.; Ku, W. H.-M.; Novick, R.
1980-01-01
In recent years much effort has been devoted to the development of large area gas scintillation proportional counters (GSPCs) suitable for use in X-ray astronomy. The paper deals with a low-energy GSPC for use in detecting sub-keV X-rays from cosmic sources. This instrument has a measured energy resolution of 85 eV (FWHM) at 149 eV over a sensitive area of 5 sq cm. The development of imaging capability for this instrument is discussed. Tests are performed on the feasibility of using an arrangement of several phototubes placed adjacent to one another to determine event locations in a large flat counter. A simple prototype has been constructed and successfully operated.
7A projection map of the S-layer protein sbpA obtained with trehalose-embedded monolayer crystals.
Norville, Julie E; Kelly, Deborah F; Knight, Thomas F; Belcher, Angela M; Walz, Thomas
2007-12-01
Two-dimensional crystallization on lipid monolayers is a versatile tool to obtain structural information of proteins by electron microscopy. An inherent problem with this approach is to prepare samples in a way that preserves the crystalline order of the protein array and produces specimens that are sufficiently flat for high-resolution data collection at high tilt angles. As a test specimen to optimize the preparation of lipid monolayer crystals for electron microscopy imaging, we used the S-layer protein sbpA, a protein with potential for designing arrays of both biological and inorganic materials with engineered properties for a variety of nanotechnology applications. Sugar embedding is currently considered the best method to prepare two-dimensional crystals of membrane proteins reconstituted into lipid bilayers. We found that using a loop to transfer lipid monolayer crystals to an electron microscopy grid followed by embedding in trehalose and quick-freezing in liquid ethane also yielded the highest resolution images for sbpA lipid monolayer crystals. Using images of specimens prepared in this way we could calculate a projection map of sbpA at 7A resolution, one of the highest resolution projection structures obtained with lipid monolayer crystals to date.
Marschall, Matthias; Reichert, Joachim; Seufert, Knud; Auwärter, Willi; Klappenberger, Florian; Weber-Bargioni, Alexander; Klyatskaya, Svetlana; Zoppellaro, Giorgio; Nefedov, Alexei; Strunskus, Thomas; Wöll, Christof; Ruben, Mario; Barth, Johannes V
2010-05-17
The supramolecular organization and layer formation of the non-linear, prochiral molecule [1, 1';4',1'']-terphenyl-3,3"-dicarbonitrile adsorbed on the Ag(111) surface is investigated by scanning tunneling microscopy (STM) and near-edge X-ray absorption fine-structure spectroscopy (NEXAFS). Upon two-dimensional confinement the molecules are deconvoluted in three stereoisomers, that is, two mirror-symmetric trans- and one cis-species. STM measurements reveal large and regular islands following room temperature deposition, whereby NEXAFS confirms a flat adsorption geometry with the electronic pi-system parallel to the surface plane. The ordering within the expressed supramolecular arrays reflects a substrate templating effect, steric constraints and the operation of weak lateral interactions mainly originating from the carbonitrile endgroups. High-resolution data at room temperature reveal enantiormorphic characteristics of the molecular packing schemes in different domains of the arrays, indicative of chiral resolution during the 2D molecular self-assembly process. At submonolayer coverage supramolecular islands coexist with a disordered fluid phase of highly mobile molecules. Following thermal quenching (down to 6 K) we find extended supramolecular ribbons stabilised again by attractive and directional noncovalent interactions, the formation of which reflects a chiral resolution of trans-species.
Entezam, A.; Khandaker, M. U.; Amin, Y. M.; Ung, N. M.; Bradley, D. A.; Maah, J.; Safari, M. J.; Moradi, F.
2016-01-01
Study has been made of the thermoluminescence (TL) response of silica-based Ge-doped cylindrical, flat and photonic crystal fibres (referred to herein as PCF-collapsed) to electron (6, 12 and 20 MeV) and photon (6, 10 MV) irradiation and 1.25 MeV γ-rays, for doses from 0.1 Gy to 100 Gy. The electron and photon irradiations were delivered through use of a Varian Model 2100C linear accelerator located at the University of Malaya Medical Centre and γ-rays delivered from a 60Co irradiator located at the Secondary Standard Dosimetry Laboratory (SSDL), Malaysian Nuclear Agency. Tailor-made to be of various dimensions and dopant concentrations (6–10% Ge), the fibres were observed to provide TL yield linear with radiation dose, reproducibility being within 1–5%, with insensitivity to energy and angular variation. The sensitivity dependency of both detectors with respect to field size follows the dependency of the output factors. For flat fibres exposed to 6 MV X-rays, the 6% Ge-doped fibre provided the greatest TL yield while PCF-collapsed showed a response 2.4 times greater than that of the 6% Ge-doped flat fibres. The response of cylindrical fibres increased with core size. The fibres offer uniform response, high spatial resolution and sensitivity, providing the basis of promising TL systems for radiotherapy applications. PMID:27149115
STM studies of GeSi thin layers epitaxially grown on Si(111)
NASA Astrophysics Data System (ADS)
Motta, N.; Sgarlata, A.; De Crescenzi, M.; Derrien, J.
1996-08-01
Ge/Si alloys were prepared in UHV by solid phase epitaxy on Si(111) substrates. The alloy formation, as a function of the evaporation rate and the Ge layer thickness has been followed in situ by RHEED and scanning tunneling microscopy. The 5 × 5 surface reconstruction appeared after annealing at 450°C Ge layers (up to 10 Å thick), obtained from a low rate Knudsen cell evaporator. In this case a nearly flat and uniform layer of reconstructed alloy was observed. When using an e-gun high rate evaporator we needed to anneal the Ge layer up to 780°C to obtain a 5 × 5 reconstruction. The grown layer was not flat, with many steps and Ge clusters; at high coverages (10 Å and more) large Ge islands appeared. Moreover, we then succeeded in visualizing at atomic resolution the top of some of these Ge islands which displayed a 2 × 1 reconstruction, probably induced from the high compressive strain due to the lattice mismatch with the substrate. We suggest that this unusual behavior could be connected to the high evaporation rate, which helped the direct formation of Ge microcrystals on the Si substrate during the deposition process.
NASA Technical Reports Server (NTRS)
Baldwin, B. S.; Maccormack, R. W.; Deiwert, G. S.
1975-01-01
The time-splitting explicit numerical method of MacCormack is applied to separated turbulent boundary layer flow problems. Modifications of this basic method are developed to counter difficulties associated with complicated geometry and severe numerical resolution requirements of turbulence model equations. The accuracy of solutions is investigated by comparison with exact solutions for several simple cases. Procedures are developed for modifying the basic method to improve the accuracy. Numerical solutions of high-Reynolds-number separated flows over an airfoil and shock-separated flows over a flat plate are obtained. A simple mixing length model of turbulence is used for the transonic flow past an airfoil. A nonorthogonal mesh of arbitrary configuration facilitates the description of the flow field. For the simpler geometry associated with the flat plate, a rectangular mesh is used, and solutions are obtained based on a two-equation differential model of turbulence.
On-demand stereoscopic 3D displays for avionic and military applications
NASA Astrophysics Data System (ADS)
Sarma, Kalluri; Lu, Kanghua; Larson, Brent; Schmidt, John; Cupero, Frank
2010-04-01
High speed AM LCD flat panels are evaluated for use in Field Sequential Stereoscopic (FSS) 3D displays for military and avionic applications. A 120 Hz AM LCD is used in field-sequential mode for constructing eyewear-based as well as autostereoscopic 3D display demonstrators for test and evaluation. The COTS eyewear-based system uses shutter glasses to control left-eye/right-eye images. The autostereoscopic system uses a custom backlight to generate illuminating pupils for left and right eyes. It is driven in synchronization with the images on the LCD. Both displays provide 3D effect in full-color and full-resolution in the AM LCD flat panel. We have realized luminance greater than 200 fL in 3D mode with the autostereoscopic system for sunlight readability. The characterization results and performance attributes of both systems are described.
A flat Universe from high-resolution maps of the cosmic microwave background radiation
de Bernardis P; Ade; Bock; Bond; Borrill; Boscaleri; Coble; Crill; De Gasperis G; Farese; Ferreira; Ganga; Giacometti; Hivon; Hristov; Iacoangeli; Jaffe; Lange; Martinis; Masi; Mason; Mauskopf; Melchiorri; Miglio; Montroy; Netterfield
2000-04-27
The blackbody radiation left over from the Big Bang has been transformed by the expansion of the Universe into the nearly isotropic 2.73 K cosmic microwave background. Tiny inhomogeneities in the early Universe left their imprint on the microwave background in the form of small anisotropies in its temperature. These anisotropies contain information about basic cosmological parameters, particularly the total energy density and curvature of the Universe. Here we report the first images of resolved structure in the microwave background anisotropies over a significant part of the sky. Maps at four frequencies clearly distinguish the microwave background from foreground emission. We compute the angular power spectrum of the microwave background, and find a peak at Legendre multipole Ipeak = (197 +/- 6), with an amplitude delta T200 = (69 +/- 8) microK. This is consistent with that expected for cold dark matter models in a flat (euclidean) Universe, as favoured by standard inflationary models.
Design of a prototype tri-electrode ion-chamber for megavoltage X-ray imaging
NASA Astrophysics Data System (ADS)
Samant, Sanjiv S.; Gopal, Arun; Jain, Jinesh; Xia, Junyi; DiBianca, Frank A.
2007-04-01
High-energy (megavoltage) X-ray imaging is widely used in industry (e.g., aerospace, construction, material sciences) as well as in health care (radiation therapy). One of the fundamental problems with megavoltage imaging is poor contrast and spatial resolution in the detected images due to the dominance of Compton scattering at megavoltage X-ray energies. Therefore, although megavoltage X-rays can be used to image highly attenuating objects that cannot be imaged at kilovoltage energies, the former does not provide the high image quality that is associated with the latter. A high contrast and spatial resolution detector for high-energy X-ray fields called the kinestatic charge detector (KCD) is presented here. The KCD is a tri-electrode ion-chamber based on highly pressurized noble gas. The KCD operates in conjunction with a strip-collimated X-ray beam (for high scatter rejection) to scan across the imaging field. Its thick detector design and unique operating principle provides enhanced charge signal integration for high quality imaging (quantum efficiency ˜50%) despite the unfavorable implications of high-energy X-ray interactions on image quality. The proposed design for a large-field prototype KCD includes a cylindrical pressure chamber along with 576 signal-collecting electrodes capable of resolving at 2 mm -1. The collecting electrodes are routed out of the chamber through the flat end-cap, thereby optimizing the mechanical strength of the chamber. This article highlights the simplified design of the chamber using minimal components for simple assembly. In addition, fundamental imaging measurements and estimates of ion recombination that were performed on a proof-of-principle test chamber are presented. The imaging performance of the prototype KCD was found to be an order-of-magnitude greater than commercial phosphor screen based flat-panel systems, demonstrating the potential for high-quality megavoltage imaging for a variety of industrial applications.
CAMECA IMS 1300-HR3: The New Generation Ion Microprobe
NASA Astrophysics Data System (ADS)
Peres, P.; Choi, S. Y.; Renaud, L.; Saliot, P.; Larson, D. J.
2016-12-01
The success of secondary ion mass spectrometry (SIMS) in Geo- and Cosmo-chemistry relies on its performance in terms of: 1) very high sensitivity (mandatory for high precision measurements or to achieve low detection limits); 2) a broad mass range of elemental and isotopic species, from low mass (H) to high mass (U and above); 3) in-situ analysis of any solid flat polished surface; and 4) high spatial resolution from tens of microns down to sub-micron scale. The IMS 1300-HR3 (High Reproducibility, High spatial Resolution, High mass Resolution) is the latest generation of CAMECA's large geometry magnetic sector SIMS (or ion microprobe), successor to the internationally recognized IMS 1280-HR. The 1300-HR3delivers unmatched analytical performance for a wide range of applications (stable isotopes, geochronology, trace elements, nuclear safeguards and environmental studies…) due to: • High brightness RF-plasma oxygen ion source with enhanced beam density and current stability, dramatically improving spatial resolution, data reproducibility, and throughput • Automated sample loading system with motorized sample height (Z) adjustment, significantly increasing analysis precision, ease-of-use, and productivity • UV-light microscope for enhanced optical image resolution, together with dedicated software for easy sample navigation (developed by University of Wisconsin, USA) • Low noise 1012Ω resistor Faraday cup preamplifier boards for measuring low signal intensities In addition, improvements in electronics and software have been integrated into the new instrument. In order to meet a growing demand from geochronologists, CAMECA also introduces the KLEORA, which is a fully optimized ion microprobe for advanced mineral dating derived from the IMS 1300-HR3. Instrumental developments as well as data obtained for stable isotope and U-Pb dating applications will be presented in detail.
Moriichi, Kentaro; Fujiya, Mikihiro; Sato, Ryu; Watari, Jiro; Nomura, Yoshiki; Nata, Toshie; Ueno, Nobuhiro; Maeda, Shigeaki; Kashima, Shin; Itabashi, Kentaro; Ishikawa, Chisato; Inaba, Yuhei; Ito, Takahiro; Okamoto, Kotaro; Tanabe, Hiroki; Mizukami, Yusuke; Saitoh, Yusuke; Kohgo, Yutaka
2012-06-22
Some patients under close colonoscopic surveillance still develop colorectal cancer, thus suggesting the overlook of colorectal adenoma by endoscopists. AFI detects colorectal adenoma as a clear magenta, therefore the efficacy of AFI is expected to improve the detection ability of colorectal adenoma. The aim of this study is to determine the efficacy of AFI in detecting colorectal adenoma. This study enrolled 88 patients who underwent colonoscopy at Asahikawa Medical University and Kushiro Medical Association Hospital. A randomly selected colonoscopist first observed the sigmoid colon and rectum with conventional high resolution endosopy (HRE). Then the colonoscopist changed the mode to AFI and handed to the scope to another colonoscopist who knew no information about the HRE. Then the second colonoscopist observed the sigmoid colon and rectum. Each colonoscopist separately recorded the findings. The detection rate, miss rate and procedural time were assessed in prospective manner. The detection rate of flat and depressed adenoma, but not elevated adenoma, by AFI is significantly higher than that by HRE. In less-experienced endoscopists, AFI dramatically increased the detection rate (30.3%) and reduced miss rate (0%) of colorectal adenoma in comparison to those of HRE (7.7%, 50.0%), but not for experienced endoscopists. The procedural time of HRE was significantly shorter than that of AFI. AFI increased the detection rate and reduced the miss rate of flat and depressed adenomas. These advantages of AFI were limited to less-experienced endoscopists because experienced endoscopists exhibited a substantially high detection rate for colorectal adenoma with HRE.
2012-01-01
Background Some patients under close colonoscopic surveillance still develop colorectal cancer, thus suggesting the overlook of colorectal adenoma by endoscopists. AFI detects colorectal adenoma as a clear magenta, therefore the efficacy of AFI is expected to improve the detection ability of colorectal adenoma. The aim of this study is to determine the efficacy of AFI in detecting colorectal adenoma. Methods This study enrolled 88 patients who underwent colonoscopy at Asahikawa Medical University and Kushiro Medical Association Hospital. A randomly selected colonoscopist first observed the sigmoid colon and rectum with conventional high resolution endosopy (HRE). Then the colonoscopist changed the mode to AFI and handed to the scope to another colonoscopist who knew no information about the HRE. Then the second colonoscopist observed the sigmoid colon and rectum. Each colonoscopist separately recorded the findings. The detection rate, miss rate and procedural time were assessed in prospective manner. Results The detection rate of flat and depressed adenoma, but not elevated adenoma, by AFI is significantly higher than that by HRE. In less-experienced endoscopists, AFI dramatically increased the detection rate (30.3%) and reduced miss rate (0%) of colorectal adenoma in comparison to those of HRE (7.7%, 50.0%), but not for experienced endoscopists. The procedural time of HRE was significantly shorter than that of AFI. Conclusions AFI increased the detection rate and reduced the miss rate of flat and depressed adenomas. These advantages of AFI were limited to less-experienced endoscopists because experienced endoscopists exhibited a substantially high detection rate for colorectal adenoma with HRE. PMID:22726319
NASA Technical Reports Server (NTRS)
Feldman, Sandra C.
1987-01-01
Methods of applying principal component (PC) analysis to high resolution remote sensing imagery were examined. Using Airborne Imaging Spectrometer (AIS) data, PC analysis was found to be useful for removing the effects of albedo and noise and for isolating the significant information on argillic alteration, zeolite, and carbonate minerals. An effective technique for using PC analysis using an input the first 16 AIS bands, 7 intermediate bands, and the last 16 AIS bands from the 32 flat field corrected bands between 2048 and 2337 nm. Most of the significant mineralogical information resided in the second PC. PC color composites and density sliced images provided a good mineralogical separation when applied to a AIS data set. Although computer intensive, the advantage of PC analysis is that it employs algorithms which already exist on most image processing systems.
Electron-density-sensitive Line Ratios of Fe XIII– XVI from Laboratory Sources Compared to CHIANTI
NASA Astrophysics Data System (ADS)
Weller, M. E.; Beiersdorfer, P.; Soukhanovskii, V. A.; Scotti, F.; LeBlanc, B. P.
2018-02-01
We present electron-density-sensitive line ratios for Fe XIII– XVI measured in the spectral wavelength range of 200–440 Å and an electron density range of (1–4) × 1013 cm‑3. The results provide a test at the high-density limit of density-sensitive line ratios useful for astrophysical studies. The measurements were performed on the National Spherical Torus Experiment-Upgrade, where electron densities were measured independently by the laser Thomson scattering diagnostic. Spectra were collected with a flat-field grazing-incidence spectrometer, which provided a spectral resolution of up to 0.3 Å, i.e., high resolution across the broad wavelength range. The response of the instrument was relatively calibrated using spectroscopic techniques in order to improve accuracy. The line ratios are compared to other laboratory sources and the latest version of CHIANTI (8.0.2), and an agreement within 30% is found.
Correcting Thermal Deformations in an Active Composite Reflector
NASA Technical Reports Server (NTRS)
Bradford, Samuel C.; Agnes, Gregory S.; Wilkie, William K.
2011-01-01
Large, high-precision composite reflectors for future space missions are costly to manufacture, and heavy. An active composite reflector capable of adjusting shape in situ to maintain required tolerances can be lighter and cheaper to manufacture. An active composite reflector testbed was developed that uses an array of piezoelectric composite actuators embedded in the back face sheet of a 0.8-m reflector panel. Each individually addressable actuator can be commanded from 500 to +1,500 V, and the flatness of the panel can be controlled to tolerances of 100 nm. Measuring the surface flatness at this resolution required the use of a speckle holography interferometer system in the Precision Environmental Test Enclosure (PETE) at JPL. The existing testbed combines the PETE for test environment stability, the speckle holography system for measuring out-of-plane deformations, the active panel including an array of individually addressable actuators, a FLIR thermal camera to measure thermal profiles across the reflector, and a heat source. Use of an array of flat piezoelectric actuators to correct thermal deformations is a promising new application for these actuators, as is the use of this actuator technology for surface flatness and wavefront control. An isogrid of these actuators is moving one step closer to a fully active face sheet, with the significant advantage of ease in manufacturing. No extensive rib structure or other actuation backing structure is required, as these actuators can be applied directly to an easy-to-manufacture flat surface. Any mission with a surface flatness requirement for a panel or reflector structure could adopt this actuator array concept to create lighter structures and enable improved performance on orbit. The thermal environment on orbit tends to include variations in temperature during shadowing or changes in angle. Because of this, a purely passive system is not an effective way to maintain flatness at the scale of microns over several meters. This technology is specifically referring to correcting thermal deformations of a large, flat structure to a specified tolerance. However, the underlying concept (an array of actuators on the back face of a panel for correcting the flatness of the front face) could be extended to many applications, including energy harvesting, changing the wavefront of an optical system, and correcting the flatness of an array of segmented deployable panels.
Samant, Sanjiv S; Gopal, Arun
2006-09-01
Megavoltage x-ray imaging suffers from reduced image quality due to low differential x-ray attenuation and large Compton scatter compared with kilovoltage imaging. Notwithstanding this, electronic portal imaging devices (EPIDs) are now widely used in portal verification in radiotherapy as they offer significant advantages over film, including immediate digital imaging and superior contrast range. However video-camera-based EPIDs (VEPIDs) are limited by problems of low light collection efficiency and significant light scatter, leading to reduced contrast and spatial resolution. Indirect and direct detection-based flat-panel EPIDs have been developed to overcome these limitations. While flat-panel image quality has been reported to exceed that achieved with portal film, these systems have detective quantum efficiency (DQE) limited by the thin detection medium and are sensitive to radiation damage to peripheral read-out electronics. An alternative technology for high-quality portal imaging is presented here: kinesatic charge detection (KCD). The KCD is a scanning tri-electrode ion-chamber containing high-pressure noble gas (xenon at 100 atm) used in conjunction with a strip-collimated photon beam. The chamber is scanned across the patient, and an external electric field is used to regulate the cation drift velocity. By matching the scanning velocity with that of the cation (i.e., ion) drift velocity, the cations remain static in the object frame of reference, allowing temporal integration of the signal. The KCD offers several advantages as a portal imaging system. It has a thick detector geometry with an active detection depth of 6.1 cm, compared to the sub-millimeter thickness of the phosphor layer in conventional phosphor screens, leading to an order of magnitude advantage in quantum efficiency (>0.3). The unique principle of and the use of the scanning strip-collimated x-ray beam provide further integration of charges in time, reduced scatter, and a significantly reduced imaging dose, enhancing the imaging signal-to-noise ratio (SNR) and leading to high DQE. While thick detectors usually suffer from reduced spatial resolution, the KCD provides good spatial resolution due to high gas pressure that limits the spread of scattered electrons, and a strip-collimated beam that significantly reduces the inclusion of scatter in the imaging signal. A 10 cm wide small-field-of-view (SFOV) prototype of the KCD is presented with a complete analysis of its imaging performance. Measurements of modulation transfer function (MTF), noise power spectrum (NPS), and DQE were in good agreement with Monte Carlo simulations. Imaging signal loss from recombination within the KCD chamber was measured at different gas pressures, ion drift velocities, and strip-collimation widths. Image quality for the prototype KCD was also observed with anthropomorphic phantom imaging in comparison with various commercial and research portal imaging systems, including VEPID, flat-panel imager, and conventional and high contrast film systems. KCD-based imaging provided very good contrast and good spatial resolution at very low imaging dose (0.1 cGy per image). For the prototype KCD, measurements yielded DQE(0)=0.19 and DQE(1 cy/mm)=0.004.
NASA Astrophysics Data System (ADS)
Emadi, Tahereh Arezoo; Buchanan, Douglas A.
2014-03-01
A robust capacitive micromachined ultrasonic transducer has been developed. In this novel configuration, a stack of two deflectable membranes are suspended over a fixed bottom electrode. Similar to conventional capacitive ultrasonic transducers, a generated electrostatic force between the electrodes causes the membranes to deflect and vibrate. However, in this new configuration the transducer effective cavity height is reduced due to the deflection of two membranes. Therefore, the transducer spring constant is more susceptible to bias voltage, which in return reduces the required bias voltage. The transducers have been produced employing a MEMS sacrificial technique where two different membrane anchoring (curved- and flat- anchors) structures, with similar membrane radii were fabricated. Highly doped polysilicon was used as the membrane material. The resonant frequencies of the two transducers have been investigated. It was found that the transducers with curved membrane anchors exhibits a larger resonant frequency shift compared to the transducers with flat membranes for a given bias voltage. Comparison has been made between the spring constant of the flat membrane transducer and that of a conventional single membrane transducer. It is shown that the multiple moving membrane transducer exhibits a larger reduction in the spring constant compared to the conventional transducer, when driven with the same bias voltage. This results in a transducer with a higher power generation capability and sensitivity.
Chemically amplified i-line positive resist for next-generation flat panel display
NASA Astrophysics Data System (ADS)
Lee, Hsing-Chieh; Lu, Ying-Hao; Huang, Shin-Yih; Lan, Wei-Jen; Hanabata, Makoto
2017-03-01
Traditional diazonaphthoquinone (DNQ) positive photoresists are widely used for TFT-LCD array process. Current LTPS technology has more than 600ppi resolution is required for small or middle-sized TFT liquid crystal display panels. One of the ways to enhance resolution is to apply i-line single exposure system instead of traditional g/h/ibroadband exposure system. We have been developing i-line chemically amplified photoresist ECA 200 series for the next generation flat panel display (FPD). ECA 200 consists of three components: a phenol resin, a photo acid generator and dissolution enhancer. We applied two different types of dissolution enhancers with two different kinds of protected groups to our resist materials. As a result, we achieved higher sensitivity, higher resolution, less footing of the resist profile and reduced standing wave effect compared with traditional DNQ photoresists. In addition, we have found further property of photoresist that does not need post exposure bake (PEB) process. This resist has a great advantage at most of current panel plants without PEB process.
NASA Astrophysics Data System (ADS)
Fernandez, Carlos; Platero, Carlos; Campoy, Pascual; Aracil, Rafael
1994-11-01
This paper describes some texture-based techniques that can be applied to quality assessment of flat products continuously produced (metal strips, wooden surfaces, cork, textile products, ...). Since the most difficult task is that of inspecting for product appearance, human-like inspection ability is required. A common feature to all these products is the presence of non- deterministic texture on their surfaces. Two main subjects are discussed: statistical techniques for both surface finishing determination and surface defect analysis as well as real-time implementation for on-line inspection in high-speed applications. For surface finishing determination a Gray Level Difference technique is presented to perform over low resolution images, that is, no-zoomed images. Defect analysis is performed by means of statistical texture analysis over defective portions of the surface. On-line implementation is accomplished by means of neural networks. When a defect arises, textural analysis is applied which result in a data-vector, acting as input of a neural net, previously trained in a supervised way. This approach tries to reach on-line performance in automated visual inspection applications when texture is presented in flat product surfaces.
NASA Astrophysics Data System (ADS)
Leon, J. X.; Baldock, T.; Callaghan, D. P.; Hoegh-guldberg, O.; Mumby, P.; Phinn, S. R.; Roelfsema, C. M.; Saunders, M. I.
2013-12-01
Coral reef hydrodynamics operate at several and overlapping spatial-temporal scales. Waves have the most important forcing function on shallow (< 5 m) reefs as they drive most ecological and biogeochemical processes by exerting direct physical stress, directly mixing water (temperature and nutrients) and transporting sediments, nutrients and plankton. Reef flats are very effective at dissipating wave energy and providing an important ecosystem service by protecting highly valued shorelines. The effectiveness of reef flats to dissipate wave energy is related to the extreme hydraulic roughness of the benthos and substrate composition. Hydraulic roughness is usually obtained empirically from frictional-dissipation calculations, as detailed field measurements of bottom roughness (e.g. chain-method or profile gauges) is a very labour and time-consuming task. In this study we measured the impact of coral structures on wave directional spreading. Field data was collected during October 2012 across a reef flat on Lizard Island, northern Great Barrier Reef. Wave surface levels were measured using an array of self-logging pressure sensors. A rapid in situ close-range photogrammetric method was used to create a high-resolution (0.5 cm) image mosaic and digital elevation model. Individual coral heads were extracted from these datasets using geo-morphometric and object-based image analysis techniques. Wave propagation was modelled using a modified version of the SWAN model which includes the measured coral structures in 2m by 1m cells across the reef. The approach followed a cylinder drag approach, neglecting skin friction and inertial components. Testing against field data included bed skin friction. Our results show, for the first time, how the variability of the reef benthos structures affects wave dissipation across a shallow reef flat. This has important implications globally for coral reefs, due to the large extent of their area occupied by reef flats, particularly, as global-scale degradation in coral reef health is causing a lowering of reef carbonate production that might lead to a decrease in reef structure and roughness.
NASA Technical Reports Server (NTRS)
Danehy, Paul M.; Ivey, Christoper B.; Barthel, Brett F.; Inman, Jennifer A.; Jones, Stephen B.; Watkins, Anthony N.; Goodman, Kyle Z.; McCrea, Andrew C.; Leighty, Bradley D.; Lipford, William K.;
2010-01-01
This paper reports a series of wind tunnel tests simulating the near-field behavior of the Space Shuttle Orbiter Boundary Layer Transition Detailed Test Objective (BLT DTO) flight experiment. Hypersonic flow over a flat plate with an attached BLT DTO-shaped trip was tested in a Mach 10 wind tunnel. The sharp-leading-edge flat plate was oriented at an angle of 20 degrees with respect to the freestream flow, resulting in post-shock edge Mach number of approximately 4. The flowfield was visualized using nitric oxide (NO) planar laser-induced fluorescence (PLIF). Flow visualizations were performed at 10 Hz using a wide-field of view and high-resolution NO PLIF system. A lower spatial resolution and smaller field of view NO PLIF system visualized the flow at 500 kHz, which was fast enough to resolve unsteady flow features. At the lowest Reynolds number studied, the flow was observed to be laminar and mostly steady. At the highest Reynolds number, flow visualizations showed streak instabilities generated immediately downstream of the trip. These instabilities transitioned to unsteady periodic and spatially irregular structures downstream. Quantitative surface heating imagery was obtained using the Temperature Sensitive Paint (TSP) technique. Comparisons between the PLIF flow visualizations and TSP heating measurements show a strong correlation between flow patterns and surface heating trends.
New design studies for TRIUMF's ARIEL High Resolution Separator
NASA Astrophysics Data System (ADS)
Maloney, J. A.; Baartman, R.; Marchetto, M.
2016-06-01
As part of its new Advanced Rare IsotopE Laboratory (ARIEL), TRIUMF is designing a novel High Resolution Separator (HRS) (Maloney et al., 2015) to separate rare isotopes. The HRS has a 180° bend, separated into two 90° magnetic dipoles, bend radius 1.2 m, with an electrostatic multipole corrector between them. Second order correction comes mainly from the dipole edge curvatures, but is intended to be fine-tuned with a sextupole component and a small octupole component in the multipole. This combination is designed to achieve 1:20,000 resolution for a 3 μm (horizontal) and 6 μm (vertical) emittance. A design for the HRS dipole magnets achieves both radial and integral flatness goals of <10-5. A review of the optical design for the HRS is presented, including the study of limiting factors affecting separation, matching and aberration correction. Field simulations from the OPERA-3D (OPERA) [2] models of the dipole magnets are used in COSY Infinity (COSY) (Berz and Makino, 2005) [3] to find and optimize the transfer maps to 3rd order and study residual nonlinearities to 8th order.
High-Speed PLIF Imaging of Hypersonic Transition over Discrete Cylindrical Roughness
NASA Technical Reports Server (NTRS)
Danehy, P. M.; Ivey, C. B.; Inman, J. A.; Bathel, B. F.; Jones, S. B.; McCrea, A. C.; Jiang, N.; Webster, M.; Lempert, W.; Miller, J.;
2010-01-01
In two separate test entries, advanced laser-based instrumentation has been developed and applied to visualize the hypersonic flow over cylindrical protrusions on a flat plate. Upstream of these trips, trace quantities of nitric oxide (NO) were seeded into the boundary layer. The protuberances were sized to force laminar-to-turbulent boundary layer transition. In the first test, a 10-Hz nitric oxide planar laser-induced fluorescence (NO PLIF) flow visualization system was used to provide wide-field-of-view, high-resolution images of the flowfield. The images had sub-microsecond time resolution. However these images, obtained with a time separation of 0.1 sec, were uncorrelated with each other. Fluorescent oil-flow visualizations were also obtained during this test. In the second experiment, a laser and camera system capable of acquiring NO PLIF measurements at 1 million frames per second (1 MHz) was used. This system had lower spatial resolution, and a smaller field of view, but the images were time correlated so that the development of the flow structures could be observed in time.
Examining nanoparticle assemblies using high spatial resolution x-ray microtomography
NASA Astrophysics Data System (ADS)
Jenneson, P. M.; Luggar, R. D.; Morton, E. J.; Gundogdu, O.; Tüzün, U.
2004-09-01
An experimental system has been designed to examine the assembly of nanoparticles in a variety of process engineering applications. These applications include the harvesting from solutions of nanoparticles into green parts, and the subsequent sintering into finished components. The system is based on an x-ray microtomography with a spatial resolution down to 5μm. The theoretical limitations in x-ray imaging are considered to allow experimental optimization. A standard nondestructive evaluation type apparatus with a small focal-spot x-ray tube, high-resolution complementary metal oxide semiconductor flat-panel pixellated detector, and a mechanical rotational stage is used to image the static systems. Dynamic sintering processes are imaged using the same x-ray source and detector but a custom rotational stage which is contained in an environmental chamber where the temperature, atmospheric pressure, and compaction force can be controlled. Three-dimensional tomographic data sets are presented here for samples from the pharmaceutical, nutraceutical, biotechnology, and nanoparticle handling industries and show the microscopic features and defects which can be resolved with the system.
NASA Astrophysics Data System (ADS)
Li, Y.; Epifanio, C.
2017-12-01
In numerical prediction models, the interaction between the Earth's surface and the atmosphere is typically accounted for in terms of surface layer parameterizations, whose main job is to specify turbulent fluxes of heat, moisture and momentum across the lower boundary of the model domain. In the case of a domain with complex geometry, implementing the flux conditions (particularly the tensor stress condition) at the boundary can be somewhat subtle, and there has been a notable history of confusion in the CFD community over how to formulate and impose such conditions generally. In the atmospheric case, modelers have largely been able to avoid these complications, at least until recently, by assuming that the terrain resolved at typical model resolutions is fairly gentle, in the sense of having relatively shallow slopes. This in turn allows the flux conditions to be imposed as if the lower boundary were essentially flat. Unfortunately, while this flat-boundary assumption is acceptable for coarse resolutions, as grids become more refined and the geometry of the resolved terrain becomes more complex, the appproach is less justified. With this in mind, the goal of our present study is to explore the implementation and usage of the full, unapproximated version of the turbulent flux/stress conditions in atmospheric models, thus taking full account of the complex geometry of the resolved terrain. We propose to implement the conditions using a semi-idealized model developed by Epifanio (2007), in which the discretized boundary conditions are reduced to a large, sparse-matrix problem. The emphasis will be on fluxes of momentum, as the tensor nature of this flux makes the associated stress condition more difficult to impose, although the flux conditions for heat and moisture will be considered as well. With the resulotion of 90 meters, some of the results show that the typical differences between flat-boundary cases and full/stress cases are on the order of 10%, with extreme cases reaching as high as 30% based on typical disturbance wind speeds. And this difference dropping by a factor of six between grid spacings of 90 meters and 240 meters. It would thus appear that the need to apply the full stress condition is limited to relatively high-resolution modeling, with grid spacings on the order of 250 meters or less.
Automated Detection of Salt Marsh Platforms : a Topographic Method
NASA Astrophysics Data System (ADS)
Goodwin, G.; Mudd, S. M.; Clubb, F. J.
2017-12-01
Monitoring the topographic evolution of coastal marshes is a crucial step toward improving the management of these valuable landscapes under the pressure of relative sea level rise and anthropogenic modification. However, determining their geometrically complex boundaries currently relies on spectral vegetation detection methods or requires labour-intensive field surveys and digitisation.We propose a novel method to reproducibly isolate saltmarsh scarps and platforms from a DEM. Field observations and numerical models show that saltmarshes mature into sub-horizontal platforms delineated by sub-vertical scarps: based on this premise, we identify scarps as lines of local maxima on a slope*relief raster, then fill landmasses from the scarps upward, thus isolating mature marsh platforms. Non-dimensional search parameters allow batch-processing of data without recalibration. We test our method using lidar-derived DEMs of six saltmarshes in England with varying tidal ranges and geometries, for which topographic platforms were manually isolated from tidal flats. Agreement between manual and automatic segregation exceeds 90% for resolutions of 1m, with all but one sites maintaining this performance for resolutions up to 3.5m. For resolutions of 1m, automatically detected platforms are comparable in surface area and elevation distribution to digitised platforms. We also find that our method allows the accurate detection of local bloc failures 3 times larger than the DEM resolution.Detailed inspection reveals that although tidal creeks were digitised as part of the marsh platform, automatic detection classifies them as part of the tidal flat, causing an increase in false negatives and overall platform perimeter. This suggests our method would benefit from a combination with existing creek detection algorithms. Fallen blocs and pioneer zones are inconsistently identified, particularly in macro-tidal marshes, leading to differences between digitisation and the automated method: this also suggests that these areas must be carefully considered when analysing erosion and accretion processes. Ultimately, we have shown that automatic detection of marsh platforms from high-resolution topography is possible and sufficient to monitor and analyse topographic evolution.
Kim, Jungho; Casa, D.; Said, Ayman; ...
2018-01-31
Continued improvement of the energy resolution of resonant inelastic x-ray scattering (RIXS) spectrometers is crucial for fulfilling the potential of this technique in the study of electron dynamics in materials of fundamental and technological importance. In particular, RIXS is the only alternative tool to inelastic neutron scattering capable of providing fully momentum resolved information on dynamic spin structures of magnetic materials, but is limited to systems whose magnetic excitation energy scales are comparable to the energy resolution. The state-of-the-art spherical diced crystal analyzer optics provides energy resolution as good as 25 meV but has already reached its theoretical limit. Formore » this study, we demonstrate a novel sub-10 meV RIXS spectrometer based on flat-crystal optics at the Ir-L3 absorption edge (11.215 keV) that achieves an analyzer energy resolution of 3.9 meV, very close to the theoretical value of 3.7 meV. In addition, the new spectrometer allows efficient polarization analysis without loss of energy resolution. The performance of the instrument is emonstrated using longitudinal acoustical and optical phonons in diamond, and magnon in Sr 3Ir 2O 7. The novel sub-10 meV RIXS spectrometer thus provides a window into magnetic materials with small energy scales.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kim, Jungho; Casa, D.; Said, Ayman
Continued improvement of the energy resolution of resonant inelastic x-ray scattering (RIXS) spectrometers is crucial for fulfilling the potential of this technique in the study of electron dynamics in materials of fundamental and technological importance. In particular, RIXS is the only alternative tool to inelastic neutron scattering capable of providing fully momentum resolved information on dynamic spin structures of magnetic materials, but is limited to systems whose magnetic excitation energy scales are comparable to the energy resolution. The state-of-the-art spherical diced crystal analyzer optics provides energy resolution as good as 25 meV but has already reached its theoretical limit. Formore » this study, we demonstrate a novel sub-10 meV RIXS spectrometer based on flat-crystal optics at the Ir-L3 absorption edge (11.215 keV) that achieves an analyzer energy resolution of 3.9 meV, very close to the theoretical value of 3.7 meV. In addition, the new spectrometer allows efficient polarization analysis without loss of energy resolution. The performance of the instrument is emonstrated using longitudinal acoustical and optical phonons in diamond, and magnon in Sr 3Ir 2O 7. The novel sub-10 meV RIXS spectrometer thus provides a window into magnetic materials with small energy scales.« less
Combination of CT scanning and fluoroscopy imaging on a flat-panel CT scanner
NASA Astrophysics Data System (ADS)
Grasruck, M.; Gupta, R.; Reichardt, B.; Suess, Ch.; Schmidt, B.; Stierstorfer, K.; Popescu, S.; Brady, T.; Flohr, T.
2006-03-01
We developed and evaluated a prototype flat-panel detector based Volume CT (fpVCT) scanner. The fpVCT scanner consists of a Varian 4030CB a-Si flat-panel detector mounted in a multi slice CT-gantry (Siemens Medical Solutions). It provides a 25 cm field of view with 18 cm z-coverage at the isocenter. In addition to the standard tomographic scanning, fpVCT allows two new scan modes: (1) fluoroscopic imaging from any arbitrary rotation angle, and (2) continuous, time-resolved tomographic scanning of a dynamically changing viewing volume. Fluoroscopic imaging is feasible by modifying the standard CT gantry so that the imaging chain can be oriented along any user-selected rotation angle. Scanning with a stationary gantry, after it has been oriented, is equivalent to a conventional fluoroscopic examination. This scan mode enables combined use of high-resolution tomography and real-time fluoroscopy with a clinically usable field of view in the z direction. The second scan mode allows continuous observation of a timeevolving process such as perfusion. The gantry can be continuously rotated for up to 80 sec, with the rotation time ranging from 3 to 20 sec, to gather projection images of a dynamic process. The projection data, that provides a temporal log of the viewing volume, is then converted into multiple image stacks that capture the temporal evolution of a dynamic process. Studies using phantoms, ex vivo specimens, and live animals have confirmed that these new scanning modes are clinically usable and offer a unique view of the anatomy and physiology that heretofore has not been feasible using static CT scanning. At the current level of image quality and temporal resolution, several clinical applications such a dynamic angiography, tumor enhancement pattern and vascularity studies, organ perfusion, and interventional applications are in reach.
Comparison of physical and semi-empirical hydraulic models for flood inundation mapping
NASA Astrophysics Data System (ADS)
Tavakoly, A. A.; Afshari, S.; Omranian, E.; Feng, D.; Rajib, A.; Snow, A.; Cohen, S.; Merwade, V.; Fekete, B. M.; Sharif, H. O.; Beighley, E.
2016-12-01
Various hydraulic/GIS-based tools can be used for illustrating spatial extent of flooding for first-responders, policy makers and the general public. The objective of this study is to compare four flood inundation modeling tools: HEC-RAS-2D, Gridded Surface Subsurface Hydrologic Analysis (GSSHA), AutoRoute and Height Above the Nearest Drainage (HAND). There is a trade-off among accuracy, workability and computational demand in detailed, physics-based flood inundation models (e.g. HEC-RAS-2D and GSSHA) in contrast with semi-empirical, topography-based, computationally less expensive approaches (e.g. AutoRoute and HAND). The motivation for this study is to evaluate this trade-off and offer guidance to potential large-scale application in an operational prediction system. The models were assessed and contrasted via comparability analysis (e.g. overlapping statistics) by using three case studies in the states of Alabama, Texas, and West Virginia. The sensitivity and accuracy of physical and semi-eimpirical models in producing inundation extent were evaluated for the following attributes: geophysical characteristics (e.g. high topographic variability vs. flat natural terrain, urbanized vs. rural zones, effect of surface roughness paratermer value), influence of hydraulic structures such as dams and levees compared to unobstructed flow condition, accuracy in large vs. small study domain, effect of spatial resolution in topographic data (e.g. 10m National Elevation Dataset vs. 0.3m LiDAR). Preliminary results suggest that semi-empericial models tend to underestimate in a flat, urbanized area with controlled/managed river channel around 40% of the inundation extent compared to the physical models, regardless of topographic resolution. However, in places where there are topographic undulations, semi-empericial models attain relatively higher level of accuracy than they do in flat non-urbanized terrain.
A spatially adaptive total variation regularization method for electrical resistance tomography
NASA Astrophysics Data System (ADS)
Song, Xizi; Xu, Yanbin; Dong, Feng
2015-12-01
The total variation (TV) regularization method has been used to solve the ill-posed inverse problem of electrical resistance tomography (ERT), owing to its good ability to preserve edges. However, the quality of the reconstructed images, especially in the flat region, is often degraded by noise. To optimize the regularization term and the regularization factor according to the spatial feature and to improve the resolution of reconstructed images, a spatially adaptive total variation (SATV) regularization method is proposed. A kind of effective spatial feature indicator named difference curvature is used to identify which region is a flat or edge region. According to different spatial features, the SATV regularization method can automatically adjust both the regularization term and regularization factor. At edge regions, the regularization term is approximate to the TV functional to preserve the edges; in flat regions, it is approximate to the first-order Tikhonov (FOT) functional to make the solution stable. Meanwhile, the adaptive regularization factor determined by the spatial feature is used to constrain the regularization strength of the SATV regularization method for different regions. Besides, a numerical scheme is adopted for the implementation of the second derivatives of difference curvature to improve the numerical stability. Several reconstruction image metrics are used to quantitatively evaluate the performance of the reconstructed results. Both simulation and experimental results indicate that, compared with the TV (mean relative error 0.288, mean correlation coefficient 0.627) and FOT (mean relative error 0.295, mean correlation coefficient 0.638) regularization methods, the proposed SATV (mean relative error 0.259, mean correlation coefficient 0.738) regularization method can endure a relatively high level of noise and improve the resolution of reconstructed images.
Keleshis, C; Ionita, CN; Yadava, G; Patel, V; Bednarek, DR; Hoffmann, KR; Verevkin, A; Rudin, S
2008-01-01
A graphical user interface based on LabVIEW software was developed to enable clinical evaluation of a new High-Sensitivity Micro-Angio-Fluoroscopic (HSMAF) system for real-time acquisition, display and rapid frame transfer of high-resolution region-of-interest images. The HSMAF detector consists of a CsI(Tl) phosphor, a light image intensifier (LII), and a fiber-optic taper coupled to a progressive scan, frame-transfer, charged-coupled device (CCD) camera which provides real-time 12 bit, 1k × 1k images capable of greater than 10 lp/mm resolution. Images can be captured in continuous or triggered mode, and the camera can be programmed by a computer using Camera Link serial communication. A graphical user interface was developed to control the camera modes such as gain and pixel binning as well as to acquire, store, display, and process the images. The program, written in LabVIEW, has the following capabilities: camera initialization, synchronized image acquisition with the x-ray pulses, roadmap and digital subtraction angiography acquisition (DSA), flat field correction, brightness and contrast control, last frame hold in fluoroscopy, looped playback of the acquired images in angiography, recursive temporal filtering and LII gain control. Frame rates can be up to 30 fps in full-resolution mode. The user friendly implementation of the interface along with the high framerate acquisition and display for this unique high-resolution detector should provide angiographers and interventionalists with a new capability for visualizing details of small vessels and endovascular devices such as stents and hence enable more accurate diagnoses and image guided interventions. (Support: NIH Grants R01NS43924, R01EB002873) PMID:18836570
Keleshis, C; Ionita, Cn; Yadava, G; Patel, V; Bednarek, Dr; Hoffmann, Kr; Verevkin, A; Rudin, S
2008-01-01
A graphical user interface based on LabVIEW software was developed to enable clinical evaluation of a new High-Sensitivity Micro-Angio-Fluoroscopic (HSMAF) system for real-time acquisition, display and rapid frame transfer of high-resolution region-of-interest images. The HSMAF detector consists of a CsI(Tl) phosphor, a light image intensifier (LII), and a fiber-optic taper coupled to a progressive scan, frame-transfer, charged-coupled device (CCD) camera which provides real-time 12 bit, 1k × 1k images capable of greater than 10 lp/mm resolution. Images can be captured in continuous or triggered mode, and the camera can be programmed by a computer using Camera Link serial communication. A graphical user interface was developed to control the camera modes such as gain and pixel binning as well as to acquire, store, display, and process the images. The program, written in LabVIEW, has the following capabilities: camera initialization, synchronized image acquisition with the x-ray pulses, roadmap and digital subtraction angiography acquisition (DSA), flat field correction, brightness and contrast control, last frame hold in fluoroscopy, looped playback of the acquired images in angiography, recursive temporal filtering and LII gain control. Frame rates can be up to 30 fps in full-resolution mode. The user friendly implementation of the interface along with the high framerate acquisition and display for this unique high-resolution detector should provide angiographers and interventionalists with a new capability for visualizing details of small vessels and endovascular devices such as stents and hence enable more accurate diagnoses and image guided interventions. (Support: NIH Grants R01NS43924, R01EB002873).
The X-ray reflectivity of the AXAF VETA-I optics
NASA Technical Reports Server (NTRS)
Kellogg, E.; Chartas, G.; Graessle, D.; Hughes, J. P.; Van Speybroeck, L.; Zhao, Ping; Weisskopf, M. C.; Elsner, R. F.; O'Dell, S. L.
1993-01-01
The study measures the X-ray reflectivity of the AXAF VETA-I optic and compares it with theoretical predictions. Measurements made at energies of 0.28, 0.9, 1.5, 2.1, and 2.3 keV are compared with predictions based on ray trace calculations. Results on the variation of the reflectivity with energy as well as the absolute value of the reflectivity are presented. A synchrotron reflectivity measurement with a high-energy resolution over the range 0.26 to 1.8 keV on a flat Zerodur sample is also reported. Evidence is found for contamination of the flat by a thin layer of carbon on the surface, and the possibility of alteration of the surface composition of the VETA-I mirror, perhaps by the polishing technique. The overall agreement between the measured and calculated effective area of VETA-I is between 2.6 and 10 percent. Measurements at individual energies deviate from the best-fitting calculation to 0.3 to 0.8 percent, averaging 0.6 percent at energies below the high energy cutoff of the mirror reflectivity, and are as high as 20.7 percent at the cutoff.
From Airy to Abbe: quantifying the effects of wide-angle focusing for scalar spherical waves
NASA Astrophysics Data System (ADS)
Calm, Yitzi M.; Merlo, Juan M.; Burns, Michael J.; Naughton, Michael J.
2017-10-01
Recent advances in optical microscopy have enabled imaging with spatial resolution beyond the diffraction limit. This limit is sometimes taken as one of several different criteria according to different conventions, including Rayleigh’s 0.61λ /NA, Abbe’s 0.5λ /NA, and Sparrow’s 0.47λ /NA. In this paper, we perform a parametric study, numerically integrating the scalar Kirchhoff diffraction integrals, and we propose new functional forms for the resolution limits derived from scalar focusing. The new expressions remain accurate under wide angle focusing, up to 90^\\circ . Our results could materially impact the design of high intensity focused ultrasound systems, and can be used as a qualitative guideline for the design of a particular type of planar optical element: the flat lens metasurface.
A 360-degree floating 3D display based on light field regeneration.
Xia, Xinxing; Liu, Xu; Li, Haifeng; Zheng, Zhenrong; Wang, Han; Peng, Yifan; Shen, Weidong
2013-05-06
Using light field reconstruction technique, we can display a floating 3D scene in the air, which is 360-degree surrounding viewable with correct occlusion effect. A high-frame-rate color projector and flat light field scanning screen are used in the system to create the light field of real 3D scene in the air above the spinning screen. The principle and display performance of this approach are investigated in this paper. The image synthesis method for all the surrounding viewpoints is analyzed, and the 3D spatial resolution and angular resolution of the common display zone are employed to evaluate display performance. The prototype is achieved and the real 3D color animation image has been presented vividly. The experimental results verified the representability of this method.
Conebeam CT of the head and neck, part 1: physical principles.
Miracle, A C; Mukherji, S K
2009-06-01
Conebeam x-ray CT (CBCT) is a developing imaging technique designed to provide relatively low-dose high-spatial-resolution visualization of high-contrast structures in the head and neck and other anatomic areas. This first installment in a 2-part review will address the physical principles underlying CBCT imaging as it is used in dedicated head and neck scanners. Concepts related to CBCT acquisition geometry, flat panel detection, and image quality will be explored in detail. Particular emphasis will be placed on technical limitations to low-contrast detectability and radiation dose. Proposed methods of x-ray scatter reduction will also be discussed.
Oblong-Shaped-Focused Transducers for Intravascular Ultrasound Imaging.
Lee, Junsu; Jang, Jihun; Chang, Jin Ho
2017-03-01
In intravascular ultrasound (IVUS) imaging, a transducer is inserted into a blood vessel and rotated to obtain image data. For this purpose, the transducer aperture is typically less than 0.5 mm in diameter, which causes natural focusing to occur in the imaging depth ranging from 1 to 5 mm. Due to the small aperture, however, it is not viable to conduct geometric focusing in order to enhance the spatial resolution of IVUS images. Furthermore, this hampers narrowing the slice thickness of a cross-sectional scan plane in the imaging depth, which leads to lowering spatial and contrast resolutions of IVUS images. To solve this problem, we propose an oblong-shaped-focused transducer for IVUS imaging. Unlike the conventional IVUS transducers with either a circular or a square flat aperture, the proposed transducer has an oblong aperture of which long side is positioned along a blood vessel. This unique configuration makes it possible to conduct geometric focusing at a desired depth in the elevation direction. In this study, furthermore, it is demonstrated that a spherically shaped aperture in both lateral and elevation directions also improves lateral resolution, compared to the conventional flat aperture. To ascertain this, the conventional and the proposed IVUS transducers were designed and fabricated to evaluate and to compare their imaging performances through wire phantom and tissue-mimicking phantom experiments. For the proposed 50-MHz IVUS transducer, a PZT piece of 0.5 × 1.0 mm 2 was spherically shaped for elevation focus at 3 mm by using the conventional press-focusing technique whereas the conventional one has a flat aperture of 0.5 × 0.5 mm 2 . The experimental results demonstrated that the proposed IVUS transducer is capable of improving spatial and contrast resolutions of IVUS images.
Stephens, Douglas N.; Mahmoud, Ahmed M.; Ding, Xuan; Lucero, Steven; Dutta, Debaditya; Yu, Francois T.H.; Chen, Xucai
2013-01-01
Ultrasound-induced thermal strain imaging (US-TSI) for carotid artery plaque detection requires both high imaging resolution (<100 μm) and sufficient US induced heating to elevate the tissue temperature (~1-3°C within 1-3 cardiac cycles) in order to produce a noticeable change in sound speed in the targeted tissues. Since the optimization of both imaging and heating in a monolithic array design is particularly expensive and inflexible, a new integrated approach is presented that utilizes independent ultrasound arrays to meet the requirements for this particular application. This work demonstrates a new approach in dual-array construction. A 3D printed manifold was built to support both a high resolution 20 MHz commercial imaging array and 6 custom heating elements operating in the 3.5-4 MHz range. For the application of US-TSI on carotid plaque characterization, the tissue target site is 20 to 30 mm deep, with a typical target volume of 2 mm (elevation) × 8 mm (azimuthal) × 5 mm (depth). The custom heating array performance was fully characterized for two design variants (flat and spherical apertures), and can easily deliver 30 W of total acoustic power to produce intensities greater than 15 W/cm2 in tissue target region. PMID:24297029
NASA Technical Reports Server (NTRS)
Sheeley, N. R., Jr.; Harvey, J. W.
1975-01-01
This paper presents particularly simple mathematical formulas for the calculation of force-free fields of constant alpha from the distribution of discrete sources on a flat surface. The advantage of these formulas lies in their physical simplicity and the fact that they can be easily used in practice to calculate the fields. The disadvantage is that they are limited to fields of 'sufficiently small alpha'. These formulas may be useful in the study of chromospheric magnetic fields by the comparison of high-resolution H-alpha photographs and photospheric magnetograms.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Yang, Zhaoqing; Khangaonkar, Tarang
2010-11-19
Water circulation in Puget Sound, a large complex estuary system in the Pacific Northwest coastal ocean of the United States, is governed by multiple spatially and temporally varying forcings from tides, atmosphere (wind, heating/cooling, precipitation/evaporation, pressure), and river inflows. In addition, the hydrodynamic response is affected strongly by geomorphic features, such as fjord-like bathymetry and complex shoreline features, resulting in many distinguishing characteristics in its main and sub-basins. To better understand the details of circulation features in Puget Sound and to assist with proposed nearshore restoration actions for improving water quality and the ecological health of Puget Sound, a high-resolutionmore » (around 50 m in estuaries and tide flats) hydrodynamic model for the entire Puget Sound was needed. Here, a threedimensional circulation model of Puget Sound using an unstructured-grid finite volume coastal ocean model is presented. The model was constructed with sufficient resolution in the nearshore region to address the complex coastline, multi-tidal channels, and tide flats. Model open boundaries were extended to the entrance of the Strait of Juan de Fuca and the northern end of the Strait of Georgia to account for the influences of ocean water intrusion from the Strait of Juan de Fuca and the Fraser River plume from the Strait of Georgia, respectively. Comparisons of model results, observed data, and associated error statistics for tidal elevation, velocity, temperature, and salinity indicate that the model is capable of simulating the general circulation patterns on the scale of a large estuarine system as well as detailed hydrodynamics in the nearshore tide flats. Tidal characteristics, temperature/salinity stratification, mean circulation, and river plumes in estuaries with tide flats are discussed.« less
Development of a Dual-PIV system for high-speed flow applications
NASA Astrophysics Data System (ADS)
Schreyer, Anne-Marie; Lasserre, Jean J.; Dupont, Pierre
2015-10-01
A new Dual-particle image velocimetry (Dual-PIV) system for application in supersonic flows was developed. The system was designed for shock wave/turbulent boundary layer interactions with separation. This type of flow places demanding requirements on the system, from the large range of characteristic frequencies O(100 Hz-100 kHz) to spatial and temporal resolutions necessary for the measurement of turbulent quantities (Dolling in AIAA J 39(8):1517-1531, 2001; Dupont et al. in J Fluid Mech 559:255-277, 2006; Smits and Dussauge in Turbulent shear layers in supersonic flow, 2nd edn. Springer, New York, 2006). While classic PIV systems using high-resolution CCD sensors allow high spatial resolution, these systems cannot provide the required temporal resolution. Existing high-speed PIV systems provide temporal and CMOS sensor resolutions, and even laser pulse energies, that are not adapted to our needs. The only obvious solution allowing sufficiently high spatial resolution, access to high frequencies, and a high laser pulse energy is a multi-frame system: a Dual-PIV system, consisting of two synchronized PIV systems observing the same field of view, will give access to temporal characteristics of the flow. The key technology of our system is frequency-based image separation: two lasers of different wavelengths illuminate the field of view. The cross-pollution with laser light from the respective other branches was quantified during system validation. The overall system noise was quantified, and the prevailing error of only 2 % reflects the good spatial and temporal alignment. The quality of the measurement system is demonstrated with some results on a subsonic jet flow including the spatio-temporal inter-correlation functions between the systems. First measurements in a turbulent flat-plate boundary layer at Mach 2 show the same satisfactory data quality and are also presented and discussed.
Zero pressure gradient boundary layer at extreme Reynolds numbers
NASA Astrophysics Data System (ADS)
Hultmark, Marcus; Vallikivi, Margit; Smits, Alexander
2011-11-01
Experiments were conducted in a zero pressure gradient flat plate boundary layer using the Princeton/ONR High Reynolds number Test Facility (HRTF). The HRTF uses highly compressed air, up to 220 atmospheres, to produce Reynolds numbers up to Reθ =225,000 . This corresponds to a δ+ =65,000 which is one of the highest Reynolds numbers ever measured in a laboratory. When using pressure to achieve high Reynolds numbers the size of the measurement probes become critical, thus the need for very small sensors is acute. The streamwise component of velocity was investigated using a nanoscale thermal anemometer (NSTAP) as well as a 200 μm pitot tube. The NSTAP has a spatial resolution as well as a temporal resolution one order of magnitude better than conventional measurement techniques. The data was compared to recent data from a high Reynolds number turbulent pipe flow and it was shown that the two flows are more similar than previous data suggests. Supported under NR Grant N00014-09-1-0263 (program manager Ron Joslin) and NSF Grant CBET-1064257(program manager Henning Winter).
NASA Astrophysics Data System (ADS)
Shankar, A.; Russ, M.; Vijayan, S.; Bednarek, D. R.; Rudin, S.
2017-03-01
Apodized Aperture Pixel (AAP) design, proposed by Ismailova et.al, is an alternative to the conventional pixel design. The advantages of AAP processing with a sinc filter in comparison with using other filters include non-degradation of MTF values and elimination of signal and noise aliasing, resulting in an increased performance at higher frequencies, approaching the Nyquist frequency. If high resolution small field-of-view (FOV) detectors with small pixels used during critical stages of Endovascular Image Guided Interventions (EIGIs) could also be extended to cover a full field-of-view typical of flat panel detectors (FPDs) and made to have larger effective pixels, then methods must be used to preserve the MTF over the frequency range up to the Nyquist frequency of the FPD while minimizing aliasing. In this work, we convolve the experimentally measured MTFs of an Microangiographic Fluoroscope (MAF) detector, (the MAF-CCD with 35μm pixels) and a High Resolution Fluoroscope (HRF) detector (HRF-CMOS50 with 49.5μm pixels) with the AAP filter and show the superiority of the results compared to MTFs resulting from moving average pixel binning and to the MTF of a standard FPD. The effect of using AAP is also shown in the spatial domain, when used to image an infinitely small point object. For detectors in neurovascular interventions, where high resolution is the priority during critical parts of the intervention, but full FOV with larger pixels are needed during less critical parts, AAP design provides an alternative to simple pixel binning while effectively eliminating signal and noise aliasing yet allowing the small FOV high resolution imaging to be maintained during critical parts of the EIGI.
Large-field high-resolution mosaic movies
NASA Astrophysics Data System (ADS)
Hammerschlag, Robert H.; Sliepen, Guus; Bettonvil, Felix C. M.; Jägers, Aswin P. L.; Sütterlin, Peter; Martin, Sara F.
2012-09-01
Movies with fields-of-view larger than normal for high-resolution telescopes will give a better understanding of processes on the Sun, such as filament and active region developments and their possible interactions. New active regions can influence, by their emergence, their environment to the extent of possibly serving as an igniter of the eruption of a nearby filament. A method to create a large field-of-view is to join several fields-of-view into a mosaic. Fields are imaged quickly one after another using fast telescope-pointing. Such a pointing cycle has been automated at the Dutch Open Telescope (DOT), a high-resolution solar telescope located on the Canary Island La Palma. The observer can draw with the computer mouse the desired total field in the guider-telescope image of the whole Sun. The guider telescope is equipped with an H-alpha filter and electronic enhancement of contrast in the image for good visibility of filaments and prominences. The number and positions of the subfields are calculated automatically and represented by an array of bright points indicating the subfield centers inside the drawn rectangle of the total field on the computer screen with the whole-sun image. When the exposures start the telescope repeats automatically the sequence of subfields. Automatic production of flats is also programmed including defocusing and fast motion over the solar disk of the image field. For the first time mosaic movies were programmed from stored information on automated telescope motions from one field to the next. The mosaic movies fill the gap between whole-sun images with limited resolution of synoptic telescopes including space instruments and small-field high-cadence movies of high-resolution solar telescopes.
NASA Astrophysics Data System (ADS)
Wagner, L.
2007-12-01
There have been a number of recent papers (i.e. Lee (2003), James et al. (2004), Hacker and Abers (2004), Schutt and Lesher (2006)) which calculate predicted velocities for xenolith compositions at mantle pressures and temperatures. It is tempting, therefore, to attempt to go the other way ... to use tomographically determined absolute velocities to constrain mantle composition. However, in order to do this, it is vital that one is able to accurately constrain not only the polarity of the determined velocity deviations (i.e. fast vs slow) but also how much faster, how much slower relative to the starting model, if absolute velocities are to be so closely analyzed. While much attention has been given to issues concerning spatial resolution in seismic tomography (i.e. what areas are fast, what areas are slow), little attention has been directed at the issue of amplitude resolution (how fast, how slow). Velocity deviation amplitudes in seismic tomography are heavily influenced by the amount of regularization used and the number of iterations performed. Determining these two parameters is a difficult and little discussed problem. I explore the effect of these two parameters on the amplitudes obtained from the tomographic inversion of the Chile Argentina Geophysical Experiment (CHARGE) dataset, and attempt to determine a reasonable solution space for the low Vp, high Vs, low Vp/Vs anomaly found above the flat slab in central Chile. I then compare this solution space to the range in experimentally determined velocities for peridotite end-members to evaluate our ability to constrain composition using tomographically determined seismic velocities. I find that in general, it will be difficult to constrain the compositions of normal mantle peridotites using tomographically determined velocities, but that in the unusual case of the anomaly above the flat slab, the observed velocity structure still has an anomalously high S wave velocity and low Vp/Vs ratio that is most consistent with enstatite, but inconsistent with the predicted velocities of known mantle xenoliths.
Research of X-ray curved crystals analyzer
NASA Astrophysics Data System (ADS)
Xiao, Shali; Xong, Xian-cai; Qian, Jia-yu; Zhong, Xian-xin; Yan, Guo-hong; Liu, Zhong-li; Ding, Yong-kun
2005-08-01
X-ray spectrograph has long been used as a means of diagnosing conditions of laser-produced plasmas, as information concerning both the temperature and density can be extracted from the emitted radiation. For the measurement of X-ray lines in the energy range of 0.6-6 keV, A curved crystal X-ray spectrometer of reflection type elliptical geometry is required. In order to obtain both high resolution and collection efficiency the elliptical geometry is more advantageous than the flat configurations. Elliptical curved crystals spectrograph with a relatively wide spectral range are of particular use for deducing electron temperatures by measurement of the ratios of lines associated with different charge states. Curved crystals analyzer was designed and manufactured for use on an experiment to investigate the properties of laser produced plasmas. The spectrograph has 1350mm focal length and for these measurements, utilized PET, LIF, KAP and MICA crystal bent onto an elliptical substrate. This crystal analyzer covers the Bragg angel range from 30 to 67.5. The analyzer based on elliptically geometrical principle, which has self-focusing characteristics. The experiment was carried out on Shanghai Shengguang-II Facility and aimed to investigate the characteristics of a high density plasma. Experimental results using Curved crystal analyzer are described which show spectrum of Ti, Au laser-plasma. The focusing crystal analyzer clearly gave an increase in sensitivity over a flat crystal. Spectra showing the main resonance line were recorded with X-ray CCD and with laser energies 150J laser wavelength 350nm. The calculated wavelength resolution is about 500-1000.
NASA Astrophysics Data System (ADS)
Worthington, Lindsay L.; Gulick, Sean P. S.; Pavlis, Terry L.
Within the northern Gulf of Alaska, the Yakutat (YAK) microplate obliquely collides with and subducts beneath the North American (NA) continent at near-Pacific plate velocities. We investigate the extent that thin-skinned deformation on offshore structures located within the western portion of the unsubducted YAK block accommodates YAK-NA convergence. We compare faulting and folding observed on high-resolution and basin-scale multichannel seismic (MCS) reflection data with earthquake locations and surface ruptures observed on high-resolution bathymetric data. Holocene sediments overlying the Kayak Island fault zone (KIZ), previously interpreted as a region of active contraction, are relatively flat-lying, suggesting that active convergence within the KIZ is waning. Seismic reflection profiles east of KIZ show up to ˜200 m of undisturbed sediments overlying older folds in the Bering Trough, indicating that this area has been tectonically inactive since at least the last ˜1.3 Ma. Farther east, MCS profiles image active deformation in surface sediments along the eastern edge of the Pamplona zone (PZ) fold-and-thrust belt, that are collocated with a concentration of earthquake events that continues southwest to Khitrov Ridge and onshore through Icy Bay. These observations suggest that during the late Quaternary offshore shallow deformation style changed from distributed across the western Yakutat block to localized at the eastern edge of the PZ with extrusion of sediments southwest through the Khitrov Ridge area to the Aleutian Trench. This shallow deformation is interpreted as deformation of an accretionary complex above a shallow decollement.
Development of scanning holographic display using MEMS SLM
NASA Astrophysics Data System (ADS)
Takaki, Yasuhiro
2016-10-01
Holography is an ideal three-dimensional (3D) display technique, because it produces 3D images that naturally satisfy human 3D perception including physiological and psychological factors. However, its electronic implementation is quite challenging because ultra-high resolution is required for display devices to provide sufficient screen size and viewing zone. We have developed holographic display techniques to enlarge the screen size and the viewing zone by use of microelectromechanical systems spatial light modulators (MEMS-SLMs). Because MEMS-SLMs can generate hologram patterns at a high frame rate, the time-multiplexing technique is utilized to virtually increase the resolution. Three kinds of scanning systems have been combined with MEMS-SLMs; the screen scanning system, the viewing-zone scanning system, and the 360-degree scanning system. The screen scanning system reduces the hologram size to enlarge the viewing zone and the reduced hologram patterns are scanned on the screen to increase the screen size: the color display system with a screen size of 6.2 in. and a viewing zone angle of 11° was demonstrated. The viewing-zone scanning system increases the screen size and the reduced viewing zone is scanned to enlarge the viewing zone: a screen size of 2.0 in. and a viewing zone angle of 40° were achieved. The two-channel system increased the screen size to 7.4 in. The 360-degree scanning increases the screen size and the reduced viewing zone is scanned circularly: the display system having a flat screen with a diameter of 100 mm was demonstrated, which generates 3D images viewed from any direction around the flat screen.
Sedimentary Environments Mapping in the Yellow Sea Using TanDEM-X and Optic Satellites
NASA Astrophysics Data System (ADS)
Ryu, J. H.; Lee, Y. K.; Kim, S. W.
2017-12-01
Due to land reclamation and dredging, 57% of China's coastal wetlands have disappeared since the 1950s, and the total area of tidal flats in South Korea decreased from approximately 2,800km2 in 1990 to 2392km2 in 2005(Qiu, 2011 and MLTM, 2010). Intertidal DEM and sedimentary facies are useful for understanding intertidal functions and monitoring their response to natural and anthropogenic actions. Highly accurate intertidal DEMs with 5-m resolution were generated based on the TanDEM-X interferometric SAR (InSAR) technique because TanDEM-X allows the acquisition of the coherent InSAR pairs with no time lag or approximately 10-second temporal baseline between master and slave SAR image. We successfully generated intertidal zone DEMs with 5-7-m spatial resolutions and interferometric height accuracies better than 0.15 m for three representative tidal flats on the west coast of the Korean Peninsula and one site of chinese coastal region in the Yellow Sea. Surface sediment classification based on remotely sensed data must circumspectly consider an effective critical grain size, water content, local topography, and intertidal structures. The earlier studies have some limitation that the classification map is not considered to analysis various environmental conditions. Therefore, the purpose of this study was minutely to mapping the surface sedimentary facies by analyzing the tidal channel, topography with multi-sensor remotely sensed data and in-situ data.
NASA Astrophysics Data System (ADS)
Ye, L.; Wu, B.
2017-09-01
High-resolution imagery is an attractive option for surveying and mapping applications due to the advantages of high quality imaging, short revisit time, and lower cost. Automated reliable and dense image matching is essential for photogrammetric 3D data derivation. Such matching, in urban areas, however, is extremely difficult, owing to the complexity of urban textures and severe occlusion problems on the images caused by tall buildings. Aimed at exploiting high-resolution imagery for 3D urban modelling applications, this paper presents an integrated image matching and segmentation approach for reliable dense matching of high-resolution imagery in urban areas. The approach is based on the framework of our existing self-adaptive triangulation constrained image matching (SATM), but incorporates three novel aspects to tackle the image matching difficulties in urban areas: 1) occlusion filtering based on image segmentation, 2) segment-adaptive similarity correlation to reduce the similarity ambiguity, 3) improved dense matching propagation to provide more reliable matches in urban areas. Experimental analyses were conducted using aerial images of Vaihingen, Germany and high-resolution satellite images in Hong Kong. The photogrammetric point clouds were generated, from which digital surface models (DSMs) were derived. They were compared with the corresponding airborne laser scanning data and the DSMs generated from the Semi-Global matching (SGM) method. The experimental results show that the proposed approach is able to produce dense and reliable matches comparable to SGM in flat areas, while for densely built-up areas, the proposed method performs better than SGM. The proposed method offers an alternative solution for 3D surface reconstruction in urban areas.
NASA Astrophysics Data System (ADS)
Salman Shahid, Syed; Gaul, Robert T.; Kerskens, Christian; Flamini, Vittoria; Lally, Caitríona
2017-12-01
Diffusion magnetic resonance imaging (dMRI) can provide insights into the microstructure of intact arterial tissue. The current study employed high magnetic field MRI to obtain ultra-high resolution dMRI at an isotropic voxel resolution of 117 µm3 in less than 2 h of scan time. A parameter selective single shell (128 directions) diffusion-encoding scheme based on Stejskel-Tanner sequence with echo-planar imaging (EPI) readout was used. EPI segmentation was used to reduce the echo time (TE) and to minimise the susceptibility-induced artefacts. The study utilised the dMRI analysis with diffusion tensor imaging (DTI) framework to investigate structural heterogeneity in intact arterial tissue and to quantify variations in tissue composition when the tissue is cut open and flattened. For intact arterial samples, the region of interest base comparison showed significant differences in fractional anisotropy and mean diffusivity across the media layer (p < 0.05). For open cut flat samples, DTI based directionally invariant indices did not show significant differences across the media layer. For intact samples, fibre tractography based indices such as calculated helical angle and fibre dispersion showed near circumferential alignment and a high degree of fibre dispersion, respectively. This study demonstrates the feasibility of fast dMRI acquisition with ultra-high spatial and angular resolution at 7 T. Using the optimised sequence parameters, this study shows that DTI based markers are sensitive to local structural changes in intact arterial tissue samples and these markers may have clinical relevance in the diagnosis of atherosclerosis and aneurysm.
Development of an Amorphous Selenium-Based Photodetector Driven by a Diamond Cold Cathode
Masuzawa, Tomoaki; Saito, Ichitaro; Yamada, Takatoshi; Onishi, Masanori; Yamaguchi, Hisato; Suzuki, Yu; Oonuki, Kousuke; Kato, Nanako; Ogawa, Shuichi; Takakuwa, Yuji; Koh, Angel T. T.; Chua, Daniel H. C.; Mori, Yusuke; Shimosawa, Tatsuo; Okano, Ken
2013-01-01
Amorphous-selenium (a-Se) based photodetectors are promising candidates for imaging devices, due to their high spatial resolution and response speed, as well as extremely high sensitivity enhanced by an internal carrier multiplication. In addition, a-Se is reported to show sensitivity against wide variety of wavelengths, including visible, UV and X-ray, where a-Se based flat-panel X-ray detector was proposed. In order to develop an ultra high-sensitivity photodetector with a wide detectable wavelength range, a photodetector was fabricated using a-Se photoconductor and a nitrogen-doped diamond cold cathode. In the study, a prototype photodetector has been developed, and its response to visible and ultraviolet light are characterized. PMID:24152932
High-Resolution Infrared Filter System for Solar Spectroscopy and Polarimetry
NASA Astrophysics Data System (ADS)
Cao, W.; Ma, J.; Wang, J.; Goode, P. R.; Wang, H.; Denker, C.
2003-05-01
We report on the design of an imaging filter system working at the near infrared (NIR) of 1.56 μ m to obtain monochromatic images and to probe weak magnetic fields in different layers of the deep photosphere with high temporal resolution and spatial resolution at Big Bear Solar Observatory (BBSO). This filter system consists of an interference filter, a birefringent filter, and a Fabry-Pérot etalon. As the narrowest filter system, the infrared Fabry-Pérot plays an important role in achieving narrow band transmission and high throughput, maintaining wavelength tuning ability, and assuring stability and reliability. In this poster, we outline a set of methods for the evaluation and calibration of the near infrared Fabry-Pérot etalon. Two-dimensional characteristic maps of the near infrared Fabry-Pérot etalon, including full-width-at-half-maximum (FWHM), effective finesse, peak transmission, along with free spectral range, flatness, roughness, stability and repeatability were obtained with lab equipments. Finally, by utilizing these results, a detailed analysis of the filter performance for the Fe I 1.5648 μ m and Fe I 1.5652 μ m Zeeman sensitive lines is presented. These results will benefit the design of NIR spectro-polarimeter of Advanced Technology Solar Telescope (ATST).
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wu, Chung-Yeh; Wolf, William J.; Levartovsky, Yehonatan
We report the critical role in surface reactions and heterogeneous catalysis of metal atoms with low coordination numbers, such as found at atomic steps and surface defects, is firmly established. But despite the growing availability of tools that enable detailed in situ characterization, so far it has not been possible to document this role directly. Surface properties can be mapped with high spatial resolution, and catalytic conversion can be tracked with a clear chemical signature; however, the combination of the two, which would enable high-spatial-resolution detection of reactions on catalytic surfaces, has rarely been achieved. Single-molecule fluorescence spectroscopy has beenmore » used to image and characterize single turnover sites at catalytic surfaces, but is restricted to reactions that generate highly fluorescing product molecules. Herein the chemical conversion of N-heterocyclic carbene molecules attached to catalytic particles is mapped using synchrotron-radiation-based infrared nanospectroscopy with a spatial resolution of 25 nanometres, which enabled particle regions that differ in reactivity to be distinguished. Lastly, these observations demonstrate that, compared to the flat regions on top of the particles, the peripheries of the particles-which contain metal atoms with low coordination numbers-are more active in catalysing oxidation and reduction of chemically active groups in surface-anchored N-heterocyclic carbene molecules.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Atari, N.A.; Svensson, G.K.
1986-05-01
A high-resolution digital dosimetric system has been developed for the spatial characterization of radiation fields. The system comprises the following: 0.5-mm-thick, 25-mm-diam CaF/sub 2/:Dy thermoluminescent crystal; intensified charge coupled device video camera; video cassette recorder; and a computerized image processing subsystem. The optically flat single crystal is used as a radiation imaging device and the subsequent thermally stimulated phosphorescence is viewed by the intensified camera for further processing and analysis. Parameters governing the performance characteristics of the system were measured. A spatial resolution limit of 31 +- 2 ..mu..m (1sigma) corresponding to 16 +- 1 line pair/mm measured at themore » 4% level of the modulation transfer function has been achieved. The full width at half maximum of the line spread function measured independently by the slit method or derived from the edge response function was found to be 69 +- 4 ..mu..m (1sigma). The high resolving power, speed of readout, good precision, wide dynamic range, and the large image storage capacity make the system suitable for the digital mapping of the relative distribution of absorbed doses for various small radiation fields and the edges of larger fields.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Atari, N.A.; Svensson, G.K.
1986-05-01
A high-resolution digital dosimetric system has been developed for the spatial characterization of radiation fields. The system comprises the following: 0.5-mm-thick, 25-mm-diam CaF2:Dy thermoluminescent crystal; intensified charge coupled device video camera; video cassette recorder; and a computerized image processing subsystem. The optically flat single crystal is used as a radiation imaging device and the subsequent thermally stimulated phosphorescence is viewed by the intensified camera for further processing and analysis. Parameters governing the performance characteristics of the system were measured. A spatial resolution limit of 31 +/- 2 microns (1 sigma) corresponding to 16 +/- 1 line pairs/mm measured at themore » 4% level of the modulation transfer function has been achieved. The full width at half maximum of the line spread function measured independently by the slit method or derived from the edge response function was found to be 69 +/- 4 microns (1 sigma). The high resolving power, speed of readout, good precision, wide dynamic range, and the large image storage capacity make the system suitable for the digital mapping of the relative distribution of absorbed doses for various small radiation fields and the edges of larger fields.« less
Electron-density-sensitive Line Ratios of Fe xiii– xvi from Laboratory Sources Compared to CHIANTI
Weller, M. E.; Beiersdorfer, P.; Soukhanovskii, V. A.; ...
2018-02-15
We present electron-density-sensitive line ratios for Fe xiii– xvi measured in the spectral wavelength range of 200–440 Å and an electron density range of (1-4) × 10 13 cm -3. The results provide a test at the high-density limit of density-sensitive line ratios useful for astrophysical studies. The measurements were performed on the National Spherical Torus Experiment-Upgrade, where electron densities were measured independently by the laser Thomson scattering diagnostic. Spectra were collected with a flat-field grazing-incidence spectrometer, which provided a spectral resolution of up to 0.3 Å, i.e., high resolution across the broad wavelength range. The response of the instrumentmore » was relatively calibrated using spectroscopic techniques in order to improve accuracy. Lastly, the line ratios are compared to other laboratory sources and the latest version of CHIANTI (8.0.2), and an agreement within 30% is found.« less
Ospina, C A; Terra, J; Ramirez, A J; Farina, M; Ellis, D E; Rossi, A M
2012-01-01
High-resolution transmission electron microscopy (HRTEM) and ab initio quantum-mechanical calculations of electronic structure were combined to investigate the structure of the hydroxyapatite (HA) (010) surface, which plays an important role in HA interactions with biological media. HA was synthesized by in vitro precipitation at 37°C. HRTEM images revealed thin elongated rod nanoparticles with preferential growth along the [001] direction and terminations parallel to the (010) plane. The focal series reconstruction (FSR) technique was applied to develop an atomic-scale structural model of the high-resolution images. The HRTEM simulations identified the coexistence of two structurally distinct terminations for (010) surfaces: a rather flat Ca(II)-terminated surface and a zig-zag structure with open OH channels. Density functional theory (DFT) was applied in a periodic slab plane-wave pseudopotential approach to refine details of atomic coordination and bond lengths of Ca(I) and Ca(II) sites in hydrated HA (010) surfaces, starting from the HRTEM model. Copyright © 2011 Elsevier B.V. All rights reserved.
Imaging inflammation in mouse colon using a rapid stage-scanning confocal fluorescence microscope
NASA Astrophysics Data System (ADS)
Saldua, Meagan A.; Olsovsky, Cory A.; Callaway, Evelyn S.; Chapkin, Robert S.; Maitland, Kristen C.
2012-01-01
Large area confocal microscopy may provide fast, high-resolution image acquisition for evaluation of tissue in pre-clinical studies with reduced tissue processing in comparison to histology. We present a rapid beam and stage-scanning confocal fluorescence microscope to image cellular and tissue features along the length of the entire excised mouse colon. The beam is scanned at 8,333 lines/sec by a polygon scanning mirror while the specimen is scanned in the orthogonal axis by a motorized translation stage with a maximum speed of 7 mm/sec. A single 1×60 mm2 field of view image spanning the length of the mouse colon is acquired in 10 s. Z-projection images generated from axial image stacks allow high resolution imaging of the surface of non-flat specimens. In contrast to the uniform size, shape, and distribution of colon crypts in confocal images of normal colon, confocal images of chronic bowel inflammation exhibit heterogeneous tissue structure with localized severe crypt distortion.
Electron-density-sensitive Line Ratios of Fe xiii– xvi from Laboratory Sources Compared to CHIANTI
DOE Office of Scientific and Technical Information (OSTI.GOV)
Weller, M. E.; Beiersdorfer, P.; Soukhanovskii, V. A.
We present electron-density-sensitive line ratios for Fe xiii– xvi measured in the spectral wavelength range of 200–440 Å and an electron density range of (1-4) × 10 13 cm -3. The results provide a test at the high-density limit of density-sensitive line ratios useful for astrophysical studies. The measurements were performed on the National Spherical Torus Experiment-Upgrade, where electron densities were measured independently by the laser Thomson scattering diagnostic. Spectra were collected with a flat-field grazing-incidence spectrometer, which provided a spectral resolution of up to 0.3 Å, i.e., high resolution across the broad wavelength range. The response of the instrumentmore » was relatively calibrated using spectroscopic techniques in order to improve accuracy. Lastly, the line ratios are compared to other laboratory sources and the latest version of CHIANTI (8.0.2), and an agreement within 30% is found.« less
MEGARA: large pupil element tests and performance
NASA Astrophysics Data System (ADS)
Martínez-Delgado, I.; Sánchez-Blanco, E.; Pérez-Calpena, A.; García-Vargas, M. L.; Maldonado, X. M.; Gil de Paz, A.; Carrasco, E.; Gallego, J.; Iglesias-Páramo, J.; Sánchez-Moreno, F. M.
2016-07-01
MEGARA is a third generation spectrograph for the Spanish 10.4m telescope (GTC) providing two observing modes: a large central Integral Field Unit (IFU), called the Large Compact Bundle (LCB), covering a FOV of 12.5 × 11.3 arcsec2, and a Multi-Object Spectrograph (MOS) with a FOV of 3.5 × 3.5 arcmin2. MEGARA will observe the whole visible range from 3650A to 10000A allowing different spectral resolutions (low, medium and high) with R = 6000, 11000 and 18000 respectively. The dispersive elements are placed at the spectrograph pupil position in the path of the collimated beam and they are composed of a set of volume phase hologram gratings (VPHs) sandwiched between two flat windows and coupled in addition to two prisms in the case of the medium- and high-resolution units. We will describe the tests and setups developed to check the requirements of all units, as well as the obtained performance at laboratory
Detecting personnel around UGVs using stereo vision
NASA Astrophysics Data System (ADS)
Bajracharya, Max; Moghaddam, Baback; Howard, Andrew; Matthies, Larry H.
2008-04-01
Detecting people around unmanned ground vehicles (UGVs) to facilitate safe operation of UGVs is one of the highest priority issues in the development of perception technology for autonomous navigation. Research to date has not achieved the detection ranges or reliability needed in deployed systems to detect upright pedestrians in flat, relatively uncluttered terrain, let alone in more complex environments and with people in postures that are more difficult to detect. Range data is essential to solve this problem. Combining range data with high resolution imagery may enable higher performance than range data alone because image appearance can complement shape information in range data and because cameras may offer higher angular resolution than typical range sensors. This makes stereo vision a promising approach for several reasons: image resolution is high and will continue to increase, the physical size and power dissipation of the cameras and computers will continue to decrease, and stereo cameras provide range data and imagery that are automatically spatially and temporally registered. We describe a stereo vision-based pedestrian detection system, focusing on recent improvements to a shape-based classifier applied to the range data, and present frame-level performance results that show great promise for the overall approach.
2009-11-17
This infrared view of the whole sky highlights the flat plane of our Milky Way galaxy line across middle of image. NASA WISE, will take a similar infrared census of the whole sky, only with much improved resolution and sensitivity.
Haga, Yoshihiro; Chida, Koichi; Inaba, Yohei; Kaga, Yuji; Meguro, Taiichiro; Zuguchi, Masayuki
2016-02-01
As the use of diagnostic X-ray equipment with flat panel detectors (FPDs) has increased, so has the importance of proper management of FPD systems. To ensure quality control (QC) of FPD system, an easy method for evaluating FPD imaging performance for both stationary and moving objects is required. Until now, simple rotatable QC phantoms have not been available for the easy evaluation of the performance (spatial resolution and dynamic range) of FPD in imaging moving objects. We developed a QC phantom for this purpose. It consists of three thicknesses of copper and a rotatable test pattern of piano wires of various diameters. Initial tests confirmed its stable performance. Our moving phantom is very useful for QC of FPD images of moving objects because it enables visual evaluation of image performance (spatial resolution and dynamic range) easily.
NASA Astrophysics Data System (ADS)
Chen, G.; Guenther, E. W.; Pallé, E.; Nortmann, L.; Nowak, G.; Kunz, S.; Parviainen, H.; Murgas, F.
2017-04-01
Aims: As a sub-Uranus-mass low-density planet, GJ 3470b has been found to show a flat featureless transmission spectrum in the infrared and a tentative Rayleigh scattering slope in the optical. We conducted an optical transmission spectroscopy project to assess the impacts of stellar activity and to determine whether or not GJ 3470b hosts a hydrogen-rich gas envelop. Methods: We observed three transits with the low-resolution Optical System for Imaging and low-Intermediate-Resolution Integrated Spectroscopy (OSIRIS) at the 10.4 m Gran Telescopio Canarias, and one transit with the high-resolution Ultraviolet and Visual Echelle Spectrograph (UVES) at the 8.2 m Very Large Telescope. Results: From the high-resolution data, we find that the difference of the Ca II H+K lines in- and out-of-transit is only 0.67 ± 0.22%, and determine a magnetic filling factor of about 10-15%. From the low-resolution data, we present the first optical transmission spectrum in the 435-755 nm band, which shows a slope consistent with Rayleigh scattering. Conclusions: After exploring the potential impacts of stellar activity in our observations, we confirm that Rayleigh scattering in an extended hydrogen-helium atmosphere is currently the best explanation. Further high-precision observations that simultaneously cover optical and infrared bands are required to answer whether or not clouds and hazes exist at high-altitude. Based on observations made with the Gran Telescopio Canarias (GTC), at the Spanish Observatorio del Roque de los Muchachos of the Instituto de Astrofísica de Canarias, on the island of La Palma, as well as observations obtained at the European Southern Observatory at Paranal, Chile in program 096.C-0258(A).
Application of GEM-based detectors in full-field XRF imaging
NASA Astrophysics Data System (ADS)
Dąbrowski, W.; Fiutowski, T.; Frączek, P.; Koperny, S.; Lankosz, M.; Mendys, A.; Mindur, B.; Świentek, K.; Wiącek, P.; Wróbel, P. M.
2016-12-01
X-ray fluorescence spectroscopy (XRF) is a commonly used technique for non-destructive elemental analysis of cultural heritage objects. It can be applied to investigations of provenance of historical objects as well as to studies of art techniques. While the XRF analysis can be easily performed locally using standard available equipment there is a growing interest in imaging of spatial distribution of specific elements. Spatial imaging of elemental distrbutions is usually realised by scanning an object with a narrow focused X-ray excitation beam and measuring characteristic fluorescence radiation using a high energy resolution detector, usually a silicon drift detector. Such a technique, called macro-XRF imaging, is suitable for investigation of flat surfaces but it is time consuming because the spatial resolution is basically determined by the spot size of the beam. Another approach is the full-field XRF, which is based on simultaneous irradiation and imaging of large area of an object. The image of the investigated area is projected by a pinhole camera on a position-sensitive and energy dispersive detector. The infinite depth of field of the pinhole camera allows one, in principle, investigation of non-flat surfaces. One of possible detectors to be employed in full-field XRF imaging is a GEM based detector with 2-dimensional readout. In the paper we report on development of an imaging system equipped with a standard 3-stage GEM detector of 10 × 10 cm2 equipped with readout electronics based on dedicated full-custom ASICs and DAQ system. With a demonstrator system we have obtained 2-D spatial resolution of the order of 100 μm and energy resolution at a level of 20% FWHM for 5.9 keV . Limitations of such a detector due to copper fluorescence radiation excited in the copper-clad drift electrode and GEM foils is discussed and performance of the detector using chromium-clad electrodes is reported.
Jain, A; Bednarek, D; Rudin, S
2012-06-01
The need for high-resolution, dynamic x-ray imaging capability for neurovascular applications has put an ever increasing demand on x-ray detector technology. Present state-of-the-art detectors such as flat panels have limited resolution and noise performance. A linear cascade model analysis was used to estimate the theoretical performance for a proposed CMOS-based detector. The proposed CMOS-based detector was assumed to have a 300-micron thick HL type CsI phosphor, 35-micron pixels, a variable gain light image intensifier (LU), and 400 electron readout noise. The proposed detector has a CMOS sensor coupled to an LII which views the output of the CsI phosphor. For the analysis the whole imaging chain was divided into individual stages characterized by one of the basic processes (stochastic/deterministic blurring, binomial selection, quantum gain, additive noise). Standard linear cascade modeling was used for the propagation of signal and noise through the stages and an RQA5 spectrum was assumed. The gain, blurring or transmission of different stages was either measured or taken from manufacturer's specifications. The theoretically calculated MTF and DQE for the proposed detector were compared with a high-resolution, high-sensitive Micro-Angio Fluoroscope (MAF), predecessor of the proposed detector. Signal and noise for each of the 19 stages in the complete imaging chain were calculated and showed improved performance. For example, at 5 cycles/mm the MTF and DQE were 0.08 and 0.28, respectively, for the CMOS detector compared to 0.05 and 0.07 for the MAF detector. The proposed detector will have improved MTF and DQE and slimmer physical dimension due to the elimination of the large fiber-optic taper used in the MAF. Once operational, the proposed CMOS detector will serve as a further improvement over standard flat panel detectors compared to the MAF which is already receiving a very positive reception by neuro-vascular interventionalists. (Support:NIH-Grant R01EB002873) NIH Grants R01- EB008425, R01-EB002873 and an equipment grant from Toshiba Medical Systems Corp. © 2012 American Association of Physicists in Medicine.
Preliminary gravity inversion model of Frenchman Flat Basin, Nevada Test Site, Nevada
Phelps, Geoffrey A.; Graham, Scott E.
2002-01-01
The depth of the basin beneath Frenchman Flat is estimated using a gravity inversion method. Gamma-gamma density logs from two wells in Frenchman Flat constrained the density profiles used to create the gravity inversion model. Three initial models were considered using data from one well, then a final model is proposed based on new information from the second well. The preferred model indicates that a northeast-trending oval-shaped basin underlies Frenchman Flat at least 2,100 m deep, with a maximum depth of 2,400 m at its northeast end. No major horst and graben structures are predicted. Sensitivity analysis of the model indicates that each parameter contributes the same magnitude change to the model, up to 30 meters change in depth for a 1% change in density, but some parameters affect a broader area of the basin. The horizontal resolution of the model was determined by examining the spacing between data stations, and was set to 500 square meters.
Development of a fast multi-line x-ray CT detector for NDT
NASA Astrophysics Data System (ADS)
Hofmann, T.; Nachtrab, F.; Schlechter, T.; Neubauer, H.; Mühlbauer, J.; Schröpfer, S.; Ernst, J.; Firsching, M.; Schweiger, T.; Oberst, M.; Meyer, A.; Uhlmann, N.
2015-04-01
Typical X-ray detectors for non-destructive testing (NDT) are line detectors or area detectors, like e.g. flat panel detectors. Multi-line detectors are currently only available in medical Computed Tomography (CT) scanners. Compared to flat panel detectors, line and multi-line detectors can achieve much higher frame rates. This allows time-resolved 3D CT scans of an object under investigation. Also, an improved image quality can be achieved due to reduced scattered radiation from object and detector themselves. Another benefit of line and multi-line detectors is that very wide detectors can be assembled easily, while flat panel detectors are usually limited to an imaging field with a size of approx. 40 × 40 cm2 at maximum. The big disadvantage of line detectors is the limited number of object slices that can be scanned simultaneously. This leads to long scan times for large objects. Volume scans with a multi-line detector are much faster, but with almost similar image quality. Due to the promising properties of multi-line detectors their application outside of medical CT would also be very interesting for NDT. However, medical CT multi-line detectors are optimized for the scanning of human bodies. Many non-medical applications require higher spatial resolutions and/or higher X-ray energies. For those non-medical applications we are developing a fast multi-line X-ray detector.In the scope of this work, we present the current state of the development of the novel detector, which includes several outstanding properties like an adjustable curved design for variable focus-detector-distances, conserving nearly uniform perpendicular irradiation over the entire detector width. Basis of the detector is a specifically designed, radiation hard CMOS imaging sensor with a pixel pitch of 200 μ m. Each pixel has an automatic in-pixel gain adjustment, which allows for both: a very high sensitivity and a wide dynamic range. The final detector is planned to have 256 lines of pixels. By using a modular assembly of the detector, the width can be chosen as multiples of 512 pixels. With a frame rate of up to 300 frames/s (full resolution) or 1200 frame/s (analog binning to 400 μ m pixel pitch) time-resolved 3D CT applications become possible. Two versions of the detector are in development, one with a high resolution scintillator and one with a thick, structured and very efficient scintillator (pitch 400 μ m). This way the detector can even work with X-ray energies up to 450 kVp.
NASA Astrophysics Data System (ADS)
Stolzenburg, Maribeth; Marshall, Thomas C.; Karunarathne, Sumedhe; Orville, Richard E.
2018-10-01
Using video data recorded at 50,000 frames per second for nearby negative lightning flashes, estimates are derived for the length of positive upward connecting leaders (UCLs) that presumably formed prior to new ground attachments. Return strokes were 1.7 to 7.8 km distant, yielding image resolutions of 4.25 to 19.5 m. No UCLs are imaged in these data, indicating those features were too transient or too dim compared to other lightning processes that are imaged at these resolutions. Upper bound lengths for 17 presumed UCLs are determined from the height above flat ground or water of the successful stepped leader tip in the image immediately prior to (within 20 μs before) the return stroke. Better estimates of maximum UCL lengths are determined using the downward stepped leader tip's speed of advance and the estimated return stroke time within its first frame. For 17 strokes, the upper bound length of the possible UCL averages 31.6 m and ranges from 11.3 to 50.3 m. Among the close strokes (those with spatial resolution <8 m per pixel), the five which connected to water (salt water lagoon) have UCL upper bound estimates averaging significantly shorter (24.1 m) than the average for the three close strokes which connected to land (36.9 m). The better estimates of maximum UCL lengths for the eight close strokes average 20.2 m, with slightly shorter average of 18.3 m for the five that connected to water. All the better estimates of UCL maximum lengths are <38 m in this dataset
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lanekoff, Ingela T.; Heath, Brandi S.; Liyu, Andrey V.
2012-10-02
An automated platform has been developed for acquisition and visualization of mass spectrometry imaging (MSI) data using nanospray desorption electrospray ionization (nano-DESI). The new system enables robust operation of the nano-DESI imaging source over many hours. This is achieved by controlling the distance between the sample and the probe by mounting the sample holder onto an automated XYZ stage and defining the tilt of the sample plane. This approach is useful for imaging of relatively flat samples such as thin tissue sections. Custom software called MSI QuickView was developed for visualization of large data sets generated in imaging experiments. MSImore » QuickView enables fast visualization of the imaging data during data acquisition and detailed processing after the entire image is acquired. The performance of the system is demonstrated by imaging rat brain tissue sections. High resolution mass analysis combined with MS/MS experiments enabled identification of lipids and metabolites in the tissue section. In addition, high dynamic range and sensitivity of the technique allowed us to generate ion images of low-abundance isobaric lipids. High-spatial resolution image acquired over a small region of the tissue section revealed the spatial distribution of an abundant brain metabolite, creatine, in the white and gray matter that is consistent with the literature data obtained using magnetic resonance spectroscopy.« less
NASA Astrophysics Data System (ADS)
Pietri, A.; Karstensen, J.
2018-03-01
A submesoscale coherent vortex (SCV) with a low oxygen core is characterized from underwater glider and mooring observations from the eastern tropical North Atlantic, north of the Cape Verde Islands. The eddy crossed the mooring with its center and a 1 month time series of the SCV's hydrographic and upper 100 m currents structure was obtained. About 45 days after, and ˜100 km west, the SCV frontal zone was surveyed in high temporal and spatial resolution using an underwater glider. Satellite altimetry showed the SCV was formed about 7 months before at the Mauritanian coast. The SCV was located at 80-100 m depth, its diameter was ˜100 km and its maximum swirl velocity ˜0.4 m s-1. A Burger number of 0.2 and a vortex Rossby number 0.15 indicate a flat lens in geostrophic balance. Mooring and glider data show in general comparable dynamical and thermohaline structures, the glider in high spatial resolution, the mooring in high temporal resolution. Surface maps of chlorophyll concentration suggest high productivity inside and around the SCV. The low potential vorticity (PV) core of the SCV is surrounded by filamentary structures, sloping down at different angles from the mixed layer base and with typical width of 10-20 km and a vertical extent of 50-100 m.
NASA Technical Reports Server (NTRS)
Ueno, Shiro; Mushotzky, Richard F.; Koyama, Katsuji; Iwasawa, Kazushi; Awaki, Hisamitsu; Hayashi, Ichizo
1994-01-01
With the high sensitivity and spectral resolution of the Advanced Satellite for Cosmology and Astrophysics (ASCA) satellite, we have discovered strong emission lines from the H-like and/or He-like ions of Ne, Mg, Si, and S as well as Fe L and confirmed the complex structure of Fe K line emission in the Seyfert II galaxy NGC 1068. The continuum emission above 3 keV exhibits rather flat shape with no evidence of low energy absorption. The overall X-ray spectrum can be well explained with a model involving starburst activity plus an obscured active galactic nucleus.
A normal incidence, high resolution X-ray telescope for solar coronal observations
NASA Technical Reports Server (NTRS)
Golub, L.
1985-01-01
The following major activities were advanced or completed: complete design of the entire telescope assembly and fabrication of all front-end components; specification of all rocket skin sections including bulkheads, feedthroughs and access door; fabrication, curing, and delivery of the large graphite-epoxy telescope tube; engineering analysis of the primary mirror vibration test was completed and a decision made to redesign the mirror attachment to a kinematic three-point mount; detail design of the camera control, payload and housekeeping electronics; and multilayer mirror flats with 2d spacings of 50 A and 60 A.
X-ray Spectroscopy of E2 and M3 Transitions in Ni-like W
DOE Office of Scientific and Technical Information (OSTI.GOV)
Clementson, J; Beiersdorfer, P; Gu, M F
2009-11-09
The electric quadrupole (E2) and magnetic octupole (M3) ground state transitions in Ni-like W{sup 46+} have been measured using high-resolution crystal spectroscopy at the Livermore electron beam ion trap facility. The lines fall in the soft x-ray region near 7.93 {angstrom} and were originally observed as an unresolved feature in tokamak plasmas. Using flat ADP and quartz crystals the wavelengths, intensities, and polarizations of the two lines have been measured for various electron beam energies and compared to intensity and polarization calculations performed using the Flexible Atomic Code (FAC).
Noninvasive Quantification of Retinal Microglia Using Widefield Autofluorescence Imaging.
Kokona, Despina; Schneider, Nadia; Giannakaki-Zimmermann, Helena; Jovanovic, Joel; Ebneter, Andreas; Zinkernagel, Martin
2017-04-01
To validate widefield autofluorescence (AF) in vivo imaging of the retina in mice expressing green fluorescent protein (gfp) in microglia, and to monitor retinal microglia reconstitution in vivo after lethal irradiation and bone marrow transplantation. Transgenic Cx3cr1gfp/gfp and wildtype Balb/c mice were used in this study. A confocal scanning laser ophthalmoscope was used for AF imaging with a 55° and a widefield 102° lens. Intrasession reproducibility was assessed for each lens. To investigate reconstitution in vivo, bone marrow from Cx3cr1gfp/gfp mice was used to rescue lethally irradiated wildtype mice. Data were compared to confocal microscopy of retinal flat mounts. Both the 55° and the 102° lens produced high resolution images of retinal microglia with similar microglia density. However, compared to the 55° lens, the widefield 102° lens captured approximately 3.6 times more microglia cells (1515 ± 123 cells versus 445 ± 76 cells [mean ± SD], for 102° and 55°, respectively, P < 0.001). No statistical difference in the number of gfp positive cells within corresponding areas was observed within the same imaging session. Imaging of microglia reconstitution showed a similar time course compared to flat mount preparations with an excellent correlation between microglia cell numbers in AF and gfp-stained flat mounts (R = 0.92, P < 0.0001). Widefield AF imaging of mice with gfp expressing microglia can be used to quantify retinal microglia. In vivo microglia counts corresponded very well with ex vivo counts on retinal flat mounts. As such, AF imaging can largely replace ex vivo quantification.
Dipping-interface mapping using mode-separated Rayleigh waves
Luo, Y.; Xia, J.; Xu, Y.; Zeng, C.; Miller, R.D.; Liu, Q.
2009-01-01
Multichannel analysis of surface waves (MASW) method is a non-invasive geophysical technique that uses the dispersive characteristic of Rayleigh waves to estimate a vertical shear (S)-wave velocity profile. A pseudo-2D S-wave velocity section is constructed by aligning 1D S-wave velocity profiles at the midpoint of each receiver spread that are contoured using a spatial interpolation scheme. The horizontal resolution of the section is therefore most influenced by the receiver spread length and the source interval. Based on the assumption that a dipping-layer model can be regarded as stepped flat layers, high-resolution linear Radon transform (LRT) has been proposed to image Rayleigh-wave dispersive energy and separate modes of Rayleigh waves from a multichannel record. With the mode-separation technique, therefore, a dispersion curve that possesses satisfactory accuracy can be calculated using a pair of consecutive traces within a mode-separated shot gather. In this study, using synthetic models containing a dipping layer with a slope of 5, 10, 15, 20, or 30 degrees and a real-world example, we assess the ability of using high-resolution LRT to image and separate fundamental-mode Rayleigh waves from raw surface-wave data and accuracy of dispersion curves generated by a pair of consecutive traces within a mode-separated shot gather. Results of synthetic and real-world examples demonstrate that a dipping interface with a slope smaller than 15 degrees can be successfully mapped by separated fundamental waves using high-resolution LRT. ?? Birkh??user Verlag, Basel 2009.
Advancements in ion beam figuring of very thin glass plates (Conference Presentation)
NASA Astrophysics Data System (ADS)
Civitani, M.; Ghigo, M.; Hołyszko, J.; Vecchi, G.; Basso, S.; Cotroneo, V.; DeRoo, C. T.; Schwartz, E. D.; Reid, P. B.
2017-09-01
The high-quality surface characteristics, both in terms of figure error and of micro-roughness, required on the mirrors of a high angular resolution x-ray telescope are challenging, but in principle well suited with a deterministic and non-contact process like the ion beam figuring. This process has been recently proven to be compatible even with very thin (thickness around 0.4mm) sheet of glasses (like D263 and Eagle). In the last decade, these types of glass have been investigated as substrates for hot slumping, with residual figure errors of hundreds of nanometres. In this view, the mirrors segments fabrication could be envisaged as a simple two phases process: a first replica step based on hot slumping (direct/indirect) followed by an ion beam figuring which can be considered as a post-fabrication correction method. The first ion beam figuring trials, realized on flat samples, showed that the micro-roughness is not damaged but a deeper analysis is necessary to characterize and eventually control/compensate the glass shape variations. In this paper, we present the advancements in the process definition, both on flat and slumped glass samples.
NASA Astrophysics Data System (ADS)
Dhar, Sukanta; Mandal, Sourav; Das, Gourab; Mukhopadhyay, Sumita; Pratim Ray, Partha; Banerjee, Chandan; Barua, Asok Kumar
2015-08-01
A novel fluorinated phosphorus doped silicon oxide based nanocrystalline material have been used to prepare heterojunction solar cells on flat p-type crystalline silicon (c-Si) Czochralski (CZ) wafers. The n-type nc-SiO:F:H material were deposited by radio frequency plasma enhanced chemical vapor deposition. Deposited films were characterized in detail by using atomic force microscopy (AFM), high resolution transmission electron microscopy (HRTEM), Raman, fourier transform infrared spectroscopy (FTIR) and optoelectronics properties have been studied using temperature dependent conductivity measurement, Ellipsometry, UV-vis spectrum analysis etc. It is observed that the cell fabricated with fluorinated silicon oxide emitter showing higher initial efficiency (η = 15.64%, Jsc = 32.10 mA/cm2, Voc = 0.630 V, FF = 0.77) for 1 cm2 cell area compare to conventional n-a-Si:H emitter (14.73%) on flat c-Si wafer. These results indicate that n type nc-SiO:F:H material is a promising candidate for heterojunction solar cell on p-type crystalline wafers. The high Jsc value is associated with excellent quantum efficiencies at short wavelengths (<500 nm).
Popp, Paul S; Herrmann, Janning F; Fritz, Eva-Corinna; Ravoo, Bart Jan; Höppener, Christiane
2016-03-23
Coupling of plasmon resonances in metallic gap antennas is of interest for a wide range of applications due to the highly localized strong electric fields supported by these structures, and their high sensitivity to alterations of their structure, geometry, and environment. Morphological alterations of asymmetric nanoparticle dimer antennas with (sub)-nanometer size gaps are assigned to changes of their optical response in correlative dark-field spectroscopy and high-resolution transmission electron microscopy (HR-TEM) investigations. This multimodal approach to investigate individual dimer structures clearly demonstrates that the coupling of the plasmon modes, in addition to well-known parameters such as the particle geometry and the gap size, is also affected by the relative alignment of both nanoparticles. The investigations corroborate that the alignment of the gap forming facets, and with that the gap area, is crucial for their scattering properties. The impact of a flat versus a rounded gap structure on the optical properties of equivalent dimers becomes stronger with decreasing gap size. These results hint at a higher confinement of the electric field in the gap and possibly a different onset of quantum transport effects for flat and rounded gap antennas in corresponding structures for very narrow gaps. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Flat-field anastigmatic mirror objective for high-magnification extreme ultraviolet microscopy
NASA Astrophysics Data System (ADS)
Toyoda, Mitsunori
2015-08-01
To apply high-definition microscopy to the extreme ultraviolet (EUV) region in practice, i.e. to enable in situ observation of living tissue and the at-wavelength inspection of lithography masks, we constructed a novel reflective objective made of three multilayer mirrors. This objective is configured as a two-stage imaging system made of a Schwarzschild two-mirror system as the primary objective and an additional magnifier with a single curved mirror. This two-stage configuration can provide a high magnification of 1500, which is suitable for real-time observation with an EUV charge coupled device (CCD) camera. Besides, since off-axis aberrations can be corrected by the magnifier, which provides field flattener optics, we are able to configure the objective as a flat-field anastigmatic system, in which we will have a diffraction-limited spatial resolution over a large field-of-view. This paper describes in detail the optical design of the present objective. After calculating the closed-form equations representing the third-order aberrations of the objective, we apply these equations to practical design examples with a numerical aperture of 0.25 and an operation wavelength of 13.5 nm. We also confirm the imaging performances of this novel design by using the numerical ray-tracing method.
NASA Astrophysics Data System (ADS)
Lazzerini, Giovanni Mattia; Paternò, Giuseppe Maria; Tregnago, Giulia; Treat, Neil; Stingelin, Natalie; Yacoot, Andrew; Cacialli, Franco
2016-02-01
We report high-resolution, traceable atomic force microscopy measurements of high-quality, solvent-free single crystals of [6,6]-phenyl-C61-butyric acid methyl ester (PCBM). These were grown by drop-casting PCBM solutions onto the spectrosil substrates and by removing the residual solvent in a vacuum. A home-built atomic force microscope featuring a plane mirror differential optical interferometer, fiber-fed from a frequency-stabilized laser (emitting at 632.8 nm), was used to measure the crystals' height. The optical interferometer together with the stabilized laser provides traceability (via the laser wavelength) of the vertical measurements made with the atomic force microscope. We find that the crystals can conform to the surface topography, thanks to their height being significantly smaller compared to their lateral dimensions (namely, heights between about 50 nm and 140 nm, for the crystals analysed, vs. several tens of microns lateral dimensions). The vast majority of the crystals are flat, but an isolated, non-flat crystal provides insights into the growth mechanism and allows identification of "molecular terraces" whose height corresponds to one of the lattice constants of the single PCBM crystal (1.4 nm) as measured with X-ray diffraction.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lazzerini, Giovanni Mattia; Yacoot, Andrew; Paternò, Giuseppe Maria
2016-02-01
We report high-resolution, traceable atomic force microscopy measurements of high-quality, solvent-free single crystals of [6,6]-phenyl-C61-butyric acid methyl ester (PCBM). These were grown by drop-casting PCBM solutions onto the spectrosil substrates and by removing the residual solvent in a vacuum. A home-built atomic force microscope featuring a plane mirror differential optical interferometer, fiber-fed from a frequency-stabilized laser (emitting at 632.8 nm), was used to measure the crystals' height. The optical interferometer together with the stabilized laser provides traceability (via the laser wavelength) of the vertical measurements made with the atomic force microscope. We find that the crystals can conform to the surfacemore » topography, thanks to their height being significantly smaller compared to their lateral dimensions (namely, heights between about 50 nm and 140 nm, for the crystals analysed, vs. several tens of microns lateral dimensions). The vast majority of the crystals are flat, but an isolated, non-flat crystal provides insights into the growth mechanism and allows identification of “molecular terraces” whose height corresponds to one of the lattice constants of the single PCBM crystal (1.4 nm) as measured with X-ray diffraction.« less
Gupta, Sandesh K; Jain, Amit; Bednarek, Daniel R; Rudin, Stephen
2011-01-01
In this study, we evaluated the imaging characteristics of the high-resolution, high-sensitivity micro-angiographic fluoroscope (MAF) with 35-micron pixel-pitch when used with different commercially-available 300 micron thick phosphors: the high resolution (HR) and high light (HL) from Hamamatsu. The purpose of this evaluation was to see if the HL phosphor with its higher screen efficiency could be replaced with the HR phosphor to achieve improved resolution without an increase in noise resulting from the HR's decreased light-photon yield. We designated the detectors MAF-HR and MAF-HL and compared them with a standard flat panel detector (FPD) (194 micron pixel pitch and 600 micron thick CsI(Tl)). For this comparison, we used the generalized linear-system metrics of GMTF, GNNPS and GDQE which are more realistic measures of total system performance since they include the effect of scattered radiation, focal spot distribution, and geometric un-sharpness. Magnifications (1.05-1.15) and scatter fractions (0.28 and 0.33) characteristic of a standard head phantom were used. The MAF-HR performed significantly better than the MAF-HL at high spatial frequencies. The ratio of GMTF and GDQE of the MAF-HR compared to the MAF-HL at 3(6) cycles/mm was 1.45(2.42) and 1.23(2.89), respectively. Despite significant degradation by inclusion of scatter and object magnification, both MAF-HR and MAF-HL provide superior performance over the FPD at higher spatial frequencies with similar performance up to the FPD's Nyquist frequency of 2.5 cycles/mm. Both substantially higher resolution and improved GDQE can be achieved with the MAF using the HR phosphor instead of the HL phosphor.
NASA Astrophysics Data System (ADS)
Rata, Mihaela; Salomir, Rares; Umathum, Reiner; Jenne, Jürgen; Lafon, Cyril; Cotton, François; Bock, Michael
2008-11-01
High-intensity contact ultrasound (HICU) under MRI guidance may provide minimally invasive treatment of endocavitary digestive tumors in the esophagus, colon or rectum. In this study, a miniature receive-only coil was integrated into an endoscopic ultrasound applicator to offer high-resolution MRI guidance of thermotherapy. A cylindrical plastic support with an incorporated single element flat transducer (9.45 MHz, water cooling tip) was made and equipped with a rectangular RF loop coil surrounding the active element. The integrated coil provided significantly higher sensitivity than a four-element extracorporeal phased array coil, and the standard deviation of the MR thermometry (SDT) improved up to a factor of 7 at 10 mm depth in tissue. High-resolution morphological images (T1w-TFE and IR-T1w-TSE with a voxel size of 0.25 × 0.25 × 3 mm3) and accurate thermometry data (the PRFS method with a voxel size of 0.5 × 0.5 × 5 mm3, 2.2 s/image, 0.3 °C voxel-wise SDT) were acquired in an ex vivo esophagus sample, on a clinical 1.5T scanner. The endoscopic device was actively operated under automatic temperature control, demonstrating a high level of accuracy (1.7% standard deviation, 1.1% error of mean value), which indicates that this technology may be suitable for HICU therapy of endoluminal cancer.
Radio spectra of bright compact sources at z > 4.5
NASA Astrophysics Data System (ADS)
Coppejans, Rocco; van Velzen, Sjoert; Intema, Huib T.; Müller, Cornelia; Frey, Sándor; Coppejans, Deanne L.; Cseh, Dávid; Williams, Wendy L.; Falcke, Heino; Körding, Elmar G.; Orrú, Emanuela; Paragi, Zsolt; Gabányi, Krisztina É.
2017-05-01
High-redshift quasars are important to study galaxy and active galactic nuclei evolution, test cosmological models and study supermassive black hole growth. Optical searches for high-redshift sources have been very successful, but radio searches are not hampered by dust obscuration and should be more effective at finding sources at even higher redshifts. Identifying high-redshift sources based on radio data is, however, not trivial. Here we report on new multifrequency Giant Metrewave Radio Telescope observations of eight z > 4.5 sources previously studied at high angular resolution with very long baseline interferometry (VLBI). Combining these observations with those from the literature, we construct broad-band radio spectra of all 30 z > 4.5 sources that have been observed with VLBI. In the sample we found flat, steep and peaked spectra in approximately equal proportions. Despite several selection effects, we conclude that the z > 4.5 VLBI (and likely also non-VLBI) sources have diverse spectra and that only about a quarter of the sources in the sample have flat spectra. Previously, the majority of high-redshift radio sources were identified based on their ultrasteep spectra. Recently, a new method has been proposed to identify these objects based on their megahertz-peaked spectra. No method would have identified more than 18 per cent of the high-redshift sources in this sample. More effective methods are necessary to reliably identify complete samples of high-redshift sources based on radio data.
In-flight edge response measurements for high-spatial-resolution remote sensing systems
NASA Astrophysics Data System (ADS)
Blonski, Slawomir; Pagnutti, Mary A.; Ryan, Robert; Zanoni, Vickie
2002-09-01
In-flight measurements of spatial resolution were conducted as part of the NASA Scientific Data Purchase Verification and Validation process. Characterization included remote sensing image products with ground sample distance of 1 meter or less, such as those acquired with the panchromatic imager onboard the IKONOS satellite and the airborne ADAR System 5500 multispectral instrument. Final image products were used to evaluate the effects of both the image acquisition system and image post-processing. Spatial resolution was characterized by full width at half maximum of an edge-response-derived line spread function. The edge responses were analyzed using the tilted-edge technique that overcomes the spatial sampling limitations of the digital imaging systems. As an enhancement to existing algorithms, the slope of the edge response and the orientation of the edge target were determined by a single computational process. Adjacent black and white square panels, either painted on a flat surface or deployed as tarps, formed the ground-based edge targets used in the tests. Orientation of the deployable tarps was optimized beforehand, based on simulations of the imaging system. The effects of such factors as acquisition geometry, temporal variability, Modulation Transfer Function compensation, and ground sample distance on spatial resolution were investigated.
Mori, Shinichiro; Inaniwa, Taku; Kumagai, Motoki; Kuwae, Tsunekazu; Matsuzaki, Yuka; Furukawa, Takuji; Shirai, Toshiyuki; Noda, Koji
2012-06-01
To increase the accuracy of carbon ion beam scanning therapy, we have developed a graphical user interface-based digitally-reconstructed radiograph (DRR) software system for use in routine clinical practice at our center. The DRR software is used in particular scenarios in the new treatment facility to achieve the same level of geometrical accuracy at the treatment as at the imaging session. DRR calculation is implemented simply as the summation of CT image voxel values along the X-ray projection ray. Since we implemented graphics processing unit-based computation, the DRR images are calculated with a speed sufficient for the particular clinical practice requirements. Since high spatial resolution flat panel detector (FPD) images should be registered to the reference DRR images in patient setup process in any scenarios, the DRR images also needs higher spatial resolution close to that of FPD images. To overcome the limitation of the CT spatial resolution imposed by the CT voxel size, we applied image processing to improve the calculated DRR spatial resolution. The DRR software introduced here enabled patient positioning with sufficient accuracy for the implementation of carbon-ion beam scanning therapy at our center.
NASA Astrophysics Data System (ADS)
Scopélitis, J.; Andréfouët, S.; Phinn, S.; Done, T.; Chabanet, P.
2011-12-01
Observations made on Heron Island reef flat during the 1970s-1990s highlighted the importance of rapid change in hydrodynamics and accommodation space for coral development. Between the 1940s and the 1990s, the minimum reef-flat top water level varied by some tens of centimetres, successively down then up, in rapid response to local engineering works. Coral growth followed sea-level variations and was quantified here for several coral communities using horizontal two-dimensional above water remotely sensed observations. This required seven high spatial resolution aerial photographs and Quickbird satellite images spanning 35 years: 1972, 1979, 1990, 1992, 2002, 2006 and 2007. The coral growth dynamics followed four regimes corresponding to artificially induced changes in sea levels: 1972-1979 (lowest growth rate): no detectable coral development, due to high tidal currents and minimum mean low-tide water level; 1979-1991 (higher growth rate): horizontal coral development promoted by calmer hydrodynamic conditions; 1991-2001(lower growth rate): vertical coral development, induced by increased local sea level by ~12 cm due to construction of new bund walls; 2001-2007 (highest growth rate): horizontal coral development after that vertical growth had become limited by sea level. This unique time-series displays a succession of ecological stage comprising a `catch-up' dynamic in response to a rapid local sea-level rise in spite of the occurrences of the most severe bleaching events on record (1998, 2002) and the decreasing calcification rates reported in massive corals in the northern part of the Great Barrier Reef.
Super long viewing distance light homogeneous emitting three-dimensional display
NASA Astrophysics Data System (ADS)
Liao, Hongen
2015-04-01
Three-dimensional (3D) display technology has continuously been attracting public attention with the progress in today's 3D television and mature display technologies. The primary characteristics of conventional glasses-free autostereoscopic displays, such as spatial resolution, image depths, and viewing angle, are often limited due to the use of optical lenses or optical gratings. We present a 3D display using MEMS-scanning-mechanism-based light homogeneous emitting (LHE) approach and demonstrate that the display can directly generate an autostereoscopic 3D image without the need for optical lenses or gratings. The generated 3D image has the advantages of non-aberration and a high-definition spatial resolution, making it the first to exhibit animated 3D images with image depth of six meters. Our LHE 3D display approach can be used to generate a natural flat-panel 3D display with super long viewing distance and alternative real-time image update.
Buttenfield, B.P.; Stanislawski, L.V.; Brewer, C.A.
2011-01-01
This paper reports on generalization and data modeling to create reduced scale versions of the National Hydrographic Dataset (NHD) for dissemination through The National Map, the primary data delivery portal for USGS. Our approach distinguishes local differences in physiographic factors, to demonstrate that knowledge about varying terrain (mountainous, hilly or flat) and varying climate (dry or humid) can support decisions about algorithms, parameters, and processing sequences to create generalized, smaller scale data versions which preserve distinct hydrographic patterns in these regions. We work with multiple subbasins of the NHD that provide a range of terrain and climate characteristics. Specifically tailored generalization sequences are used to create simplified versions of the high resolution data, which was compiled for 1:24,000 scale mapping. Results are evaluated cartographically and metrically against a medium resolution benchmark version compiled for 1:100,000, developing coefficients of linear and areal correspondence.
Spectromicroscopy measurements of surface morphology and band structure of exfoliated graphene
NASA Astrophysics Data System (ADS)
Knox, Kevin; Locatelli, Andrea; Cvetko, Dean; Mentes, Tevfik; Nino, Miguel; Wang, Shancai; Yilmaz, Mehmet; Kim, Philip; Osgood, Richard; Morgante, Alberto
2011-03-01
Monolayer-thick crystals, such as graphene, are an area of intense interest in condensed matter research. ~However, crystal deformations in these 2D systems are known to adversely affect conductivity and increase local chemical reactivity. Additionally, surface roughness in graphene complicates band-mapping and limits resolution in techniques such as angle resolved photoemission spectroscopy (ARPES), the theory of which was developed for atomically flat surfaces. Thus, an understanding of the surface morphology of graphene is essential to making high quality devices and important for interpreting ARPES results. In this talk, we will describe a non-invasive approach to examining the corrugation in exfoliated graphene using a combination of low energy electron microscopy (LEEM) and micro-spot low energy electron diffraction (LEED). We will also describe how such knowledge of surface roughness can be used in the analysis of ARPES data to improve resolution and extract useful information about the band-structure.
Super resolution for astronomical observations
NASA Astrophysics Data System (ADS)
Li, Zhan; Peng, Qingyu; Bhanu, Bir; Zhang, Qingfeng; He, Haifeng
2018-05-01
In order to obtain detailed information from multiple telescope observations a general blind super-resolution (SR) reconstruction approach for astronomical images is proposed in this paper. A pixel-reliability-based SR reconstruction algorithm is described and implemented, where the developed process incorporates flat field correction, automatic star searching and centering, iterative star matching, and sub-pixel image registration. Images captured by the 1-m telescope at Yunnan Observatory are used to test the proposed technique. The results of these experiments indicate that, following SR reconstruction, faint stars are more distinct, bright stars have sharper profiles, and the backgrounds have higher details; thus these results benefit from the high-precision star centering and image registration provided by the developed method. Application of the proposed approach not only provides more opportunities for new discoveries from astronomical image sequences, but will also contribute to enhancing the capabilities of most spatial or ground-based telescopes.
NASA Astrophysics Data System (ADS)
Lee, Jong-won; Geng, Xiaotao; Jung, Jae Hyung; Cho, Min Sang; Yang, Seong Hyeok; Jo, Jawon; Lee, Chang-lyoul; Cho, Byoung Ick; Kim, Dong-Eon
2018-07-01
Recent interest in highly excited matter generated by intense femtosecond laser pulses has led to experimental methods that directly investigate ultrafast non-equilibrium electronic and structural dynamics. We present a tabletop experimental station for the extreme ultraviolet (EUV) spectroscopy used to trace L-edge dynamics in warm dense aluminum with a temporal resolution of a hundred femtoseconds. The system consists of the EUV probe generation part via a high-order harmonic generation process of femtosecond laser pulses with atomic clusters, a beamline with high-throughput optics and a sample-refreshment system of nano-foils utilizing the full repetition rate of the probe, and a flat-field EUV spectrograph. With the accumulation of an order of a hundred shots, a clear observation of the change in the aluminum L-shell absorption was achieved with a temporal resolution of 90 fs in a 600-fs window. The signature of a non-equilibrium electron distribution over a 10-eV range and its evolution to a 1-eV Fermi distribution are observed. This demonstrates the capability of this apparatus to capture the non-equilibrium electron-hole dynamics in highly excited warm dense matter conditions.
NASA Astrophysics Data System (ADS)
Loucks, D. C.; Palo, S. E.; Pilinski, M.; Crowley, G.; Azeem, S. I.; Hampton, D. L.
2016-12-01
Ionospheric behavior in the high-latitudes can significantly impact Ultra High Frequency (UHF) signals in the 300 MHz to 3 GHz band, resulting in degradation of Global Positioning System (GPS) position solutions and satellite communications interruptions. To address these operational concerns, a need arises to identify and understand the ionospheric structure that leads to disturbed conditions in the Arctic. Structures in the high-latitude ionosphere are known to change on the order of seconds or less, can be decameters to kilometers in scale, and elongate across magnetic field lines at auroral latitudes. Nominal operations at Poker Flat Incoherent Scatter Radar (PFISR) give temporal resolution on the order of minutes, and range resolution on the order of tens of kilometers, while specialized GPS receivers available for ionospheric sensing have a 100Hz observation sampling rate. One of these, ASTRA's Connected Autonomous Space Environment Sensor (CASES) is used for this study. We have developed a new GPS scintillation tracking mode for PFISR to address open scientific questions regarding temporal and spatial electron density gradients. The mode will be described, a number of experimental campaigns will be analyzed, and results and lessons learned will be presented.
Russ, M; Shankar, A; Jain, A; Setlur Nagesh, S V; Ionita, C N; Scott, C; Karim, K S; Bednarek, D R; Rudin, S
2016-02-27
A novel amorphous selenium (a-Se) direct detector with CMOS readout has been designed, and relative detector performance investigated. The detector features include a 25 μ m pixel pitch, and 1000 μ m thick a-Se layer operating at 10V/ μ m bias field. A simulated detector DQE was determined, and used in comparative calculations of the Relative Object Detectability (ROD) family of prewhitening matched-filter (PWMF) observer and non-prewhitening matched filter (NPWMF) observer model metrics to gauge a-Se detector performance against existing high resolution micro-angiographic fluoroscopic (MAF) detectors and a standard flat panel detector (FPD). The PWMF-ROD or ROD metric compares two x-ray imaging detectors in their relative abilities in imaging a given object by taking the integral over spatial frequencies of the Fourier transform of the detector DQE weighted by an object function, divided by the comparable integral for a different detector. The generalized-ROD (G-ROD) metric incorporates clinically relevant parameters (focal-spot size, magnification, and scatter) to show the degradation in imaging performance for detectors that are part of an imaging chain. Preliminary ROD calculations using simulated spheres as the object predicted superior imaging performance by the a-Se detector as compared to existing detectors. New PWMF-G-ROD and NPWMF-G-ROD results still indicate better performance by the a-Se detector in an imaging chain over all sphere sizes for various focal spot sizes and magnifications, although a-Se performance advantages were degraded by focal spot blurring. Nevertheless, the a-Se technology has great potential to provide breakthrough abilities such as visualization of fine details including of neuro-vascular perforator vessels and of small vascular devices.
NASA Astrophysics Data System (ADS)
Russ, M.; Shankar, A.; Jain, A.; Setlur Nagesh, S. V.; Ionita, C. N.; Scott, C.; Karim, K. S.; Bednarek, D. R.; Rudin, S.
2016-03-01
A novel amorphous selenium (a-Se) direct detector with CMOS readout has been designed, and relative detector performance investigated. The detector features include a 25μm pixel pitch, and 1000μm thick a-Se layer operating at 10V/μm bias field. A simulated detector DQE was determined, and used in comparative calculations of the Relative Object Detectability (ROD) family of prewhitening matched-filter (PWMF) observer and non-pre-whitening matched filter (NPWMF) observer model metrics to gauge a-Se detector performance against existing high resolution micro-angiographic fluoroscopic (MAF) detectors and a standard flat panel detector (FPD). The PWMF-ROD or ROD metric compares two x-ray imaging detectors in their relative abilities in imaging a given object by taking the integral over spatial frequencies of the Fourier transform of the detector DQE weighted by an object function, divided by the comparable integral for a different detector. The generalized-ROD (G-ROD) metric incorporates clinically relevant parameters (focal- spot size, magnification, and scatter) to show the degradation in imaging performance for detectors that are part of an imaging chain. Preliminary ROD calculations using simulated spheres as the object predicted superior imaging performance by the a-Se detector as compared to existing detectors. New PWMF-G-ROD and NPWMF-G-ROD results still indicate better performance by the a-Se detector in an imaging chain over all sphere sizes for various focal spot sizes and magnifications, although a-Se performance advantages were degraded by focal spot blurring. Nevertheless, the a-Se technology has great potential to provide break- through abilities such as visualization of fine details including of neuro-vascular perforator vessels and of small vascular devices.
Twichell, David C.; Cross, VeeAnn A.; Rudin, Mark J.; Parolski, Kenneth F.
1999-01-01
Sidescan sonar imagery and high-resolution seismic-reflection profiles were collected in Las Vegas Bay and Boulder Basin of Lake Mead to determine the surficial geology as well as the distribution and thickness of sediment that has accumulated in these areas of the lake since the completion of Hoover Dam in 1935 (Gould, 1951). Results indicate that the accumulation of post-impoundment sediment is restricted to the original Colorado River bed which runs down the axis of Boulder Basin from Boulder Canyon to Hoover Dam, and the old Las Vegas Creek bed that bisects Las Vegas Bay. The sediment cover along the original Colorado River bed is continuous and is typically greater than 10-m thick throughout much of its length with the thickness in some areas exceeding 35 meters. The flat-lying nature of the deposits suggests that they are the result of turbidity currents that flow the length of the lake. The sediment cover in Las Vegas Bay is much thinner (rarely exceeding 2 m in thickness) and more discontinuous. The source for these sediments presumably is Las Vegas Wash and a series of other ephemeral washes that empty into this part of the lake. The presence of sediments along the entire length of the Las Vegas Creek bed suggests that turbidity currents probably are active here as well, and that sediment has been transported from these streams at least 10 km down the axis of this valley to where it enters Boulder Basin. Alluvial deposits and rock outcrops are still exposed on large parts of the lake floor.
Russ, M.; Shankar, A.; Jain, A.; Setlur Nagesh, S. V.; Ionita, C. N.; Scott, C.; Karim, K. S.; Bednarek, D. R.; Rudin, S.
2017-01-01
A novel amorphous selenium (a-Se) direct detector with CMOS readout has been designed, and relative detector performance investigated. The detector features include a 25μm pixel pitch, and 1000μm thick a-Se layer operating at 10V/μm bias field. A simulated detector DQE was determined, and used in comparative calculations of the Relative Object Detectability (ROD) family of prewhitening matched-filter (PWMF) observer and non-prewhitening matched filter (NPWMF) observer model metrics to gauge a-Se detector performance against existing high resolution micro-angiographic fluoroscopic (MAF) detectors and a standard flat panel detector (FPD). The PWMF-ROD or ROD metric compares two x-ray imaging detectors in their relative abilities in imaging a given object by taking the integral over spatial frequencies of the Fourier transform of the detector DQE weighted by an object function, divided by the comparable integral for a different detector. The generalized-ROD (G-ROD) metric incorporates clinically relevant parameters (focal-spot size, magnification, and scatter) to show the degradation in imaging performance for detectors that are part of an imaging chain. Preliminary ROD calculations using simulated spheres as the object predicted superior imaging performance by the a-Se detector as compared to existing detectors. New PWMF-G-ROD and NPWMF-G-ROD results still indicate better performance by the a-Se detector in an imaging chain over all sphere sizes for various focal spot sizes and magnifications, although a-Se performance advantages were degraded by focal spot blurring. Nevertheless, the a-Se technology has great potential to provide breakthrough abilities such as visualization of fine details including of neuro-vascular perforator vessels and of small vascular devices. PMID:28615795
High-resolution hot-film measurement of surface heat flux to an impinging jet
NASA Astrophysics Data System (ADS)
O'Donovan, T. S.; Persoons, T.; Murray, D. B.
2011-10-01
To investigate the complex coupling between surface heat transfer and local fluid velocity in convective heat transfer, advanced techniques are required to measure the surface heat flux at high spatial and temporal resolution. Several established flow velocity techniques such as laser Doppler anemometry, particle image velocimetry and hot wire anemometry can measure fluid velocities at high spatial resolution (µm) and have a high-frequency response (up to 100 kHz) characteristic. Equivalent advanced surface heat transfer measurement techniques, however, are not available; even the latest advances in high speed thermal imaging do not offer equivalent data capture rates. The current research presents a method of measuring point surface heat flux with a hot film that is flush mounted on a heated flat surface. The film works in conjunction with a constant temperature anemometer which has a bandwidth of 100 kHz. The bandwidth of this technique therefore is likely to be in excess of more established surface heat flux measurement techniques. Although the frequency response of the sensor is not reported here, it is expected to be significantly less than 100 kHz due to its physical size and capacitance. To demonstrate the efficacy of the technique, a cooling impinging air jet is directed at the heated surface, and the power required to maintain the hot-film temperature is related to the local heat flux to the fluid air flow. The technique is validated experimentally using a more established surface heat flux measurement technique. The thermal performance of the sensor is also investigated numerically. It has been shown that, with some limitations, the measurement technique accurately measures the surface heat transfer to an impinging air jet with improved spatial resolution for a wide range of experimental parameters.
Shuttle radar DEM hydrological correction for erosion modelling in small catchments
NASA Astrophysics Data System (ADS)
Jarihani, Ben; Sidle, Roy; Bartley, Rebecca
2016-04-01
Digital Elevation Models (DEMs) that accurately replicate both landscape form and processes are critical to support modelling of environmental processes. Catchment and hillslope scale runoff and sediment processes (i.e., patterns of overland flow, infiltration, subsurface stormflow and erosion) are all topographically mediated. In remote and data-scarce regions, high resolution DEMs (LiDAR) are often not available, and moderate to course resolution digital elevation models (e.g., SRTM) have difficulty replicating detailed hydrological patterns, especially in relatively flat landscapes. Several surface reconditioning algorithms (e.g., Smoothing) and "Stream burning" techniques (e.g., Agree or ANUDEM), in conjunction with representation of the known stream networks, have been used to improve DEM performance in replicating known hydrology. Detailed stream network data are not available at regional and national scales, but can be derived at local scales from remotely-sensed data. This research explores the implication of high resolution stream network data derived from Google Earth images for DEM hydrological correction, instead of using course resolution stream networks derived from topographic maps. The accuracy of implemented method in producing hydrological-efficient DEMs were assessed by comparing the hydrological parameters derived from modified DEMs and limited high-resolution airborne LiDAR DEMs. The degree of modification is dominated by the method used and availability of the stream network data. Although stream burning techniques improve DEMs hydrologically, these techniques alter DEM characteristics that may affect catchment boundaries, stream position and length, as well as secondary terrain derivatives (e.g., slope, aspect). Modification of a DEM to better reflect known hydrology can be useful, however, knowledge of the magnitude and spatial pattern of the changes are required before using a DEM for subsequent analyses.
Linking Wave Forcing to Coral Cover and Structural Complexity Across Coral Reef Flats
NASA Astrophysics Data System (ADS)
Harris, D. L.; Rovere, A.; Parravicini, V.; Casella, E.
2015-12-01
The hydrodynamic regime is a significant component in the geomorphic and ecological development of coral reefs. The energy gradients and flow conditions generated by the breaking and transformation of waves across coral reef crests and flats drive changes in geomorphic structure, and coral growth form and distribution. One of the key aspects in regulating the wave energy propagating across reef flats is the rugosity or roughness of the benthic substrate. Rugosity and structural complexity of coral reefs is also a key indicator of species diversity, ecological functioning, and reef health. However, the links between reef rugosity, coral species distribution and abundance, and hydrodynamic forcing are poorly understood. In this study we examine this relationship by using high resolution measurement of waves in the surf zone and coral reef benthic structure.Pressure transducers (logging at 4 Hz) were deployed in cross reef transects at two sites (Tiahura and Ha'apiti reef systems) in Moorea, French Polynesia with wave characteristics determined on a wave by wave basis. A one dimensional hydrodynamic model (XBeach) was calibrated from this data to determine wave processes on the reef flats under average conditions. Transects of the reef benthic structure were conducted using photographic analysis and the three dimensional reef surface was constructed using structure from motion procedures. From this analysis reef rugosity, changes in coral genus and growth form, and across reef shifts in benthic community were determined. The results show clear changes in benthic assemblages along wave energy gradients with some indication of threshold values of wave induced bed shear stress above which live coral cover was reduced. Reef rugosity was shown to be significantly along the cross-reef transect which has important implications for accurate assessment of wave dissipation across coral reef flats. Links between reef rugosity and coral genus were also observed and may indicate that some coral species are crucial in maintaining the structural diversity of coral reefs.
NASA Astrophysics Data System (ADS)
Caress, D. W.; Paull, C. K.; Dallimore, S.; Lundsten, E. M.; Anderson, K.; Gwiazda, R.; Melling, H.; Lundsten, L.; Graves, D.; Thomas, H. J.; Cote, M.
2017-12-01
Two active submarine mud volcano sites located at 420 and 740 m depths on the margin of the Canadian Beaufort Sea were mapped in 2013 and again in 2016 using the same survey line pattern allowing detection of change over three years. The surveys were conducted using MBARI's mapping AUVs which fields a 200 kHz or 400 kHz multibeam sonar, a 1-6 kHz chirp sub-bottom profiler, and a 110 kHz chirp sidescan from a 50 m altitude. The resulting bathymetry has 1 m lateral resolution and 0.1 m vertical precision and sidescan mosaics have 1 m lateral resolution. Vertical changes of ≥0.2 m are observable by differencing repeat surveys. These features were also visited with MBARI's miniROV, which was outfitted for these dives with a manipulator mounted temperature probe. The 420 m mud volcano is nearly circular, 1100 m across, flat-topped, and superimposed on the pre-existing smooth slope. The central plateau has low relief <3 m consisting of concentric rings and ovoid mounds that appear to reflect distinct eruptions at shifting locations. The 740 m site contains 3 mud volcanoes, most prominently a 630 m wide, 30 m high flat-topped plateau with about 4 m of relief similar to the 420 m feature plus a 5 m high cone on the southern rim. North of this plateau is a smooth-textured conically shaped feature also standing about 30 m above the floor of the subsidence structure. Sidescan mosaics reveal significant changes in backscatter patterns at both mud volcano sites between surveys. Comparison of bathymetry also reveals new flows of up to 1.8 m thickness at both sites, as well as subtle spreading of the flat plateaus rims. An active mudflow was encountered during a miniROV dive on a high backscatter target at the 740 m site. This tongue of mud was observed to be slowly flowing downslope. The ROV temperature probe inserted 2 cm into the flow measured 23°C, compared to ambient water (-0.4°C), indicating the rapid ascent of the mud from considerable subsurface depths. Bubbles (presumably methane) were escaping from the active mudflow. Combining seafloor mapping with ROV observations indicates that new sediment flows with entrained methane bubbles exhibit very high backscatter which rapidly changes to very low backscatter following degassing of the smooth, bare mud. To our knowledge this is the first time an eruption on a submarine mud volcano has been observed.
Rudin, Stephen; Kuhls, Andrew T.; Yadava, Girijesh K.; Josan, Gaurav C.; Wu, Ye; Chityala, Ravishankar N.; Rangwala, Hussain S.; Ciprian Ionita, N.; Hoffmann, Kenneth R.; Bednarek, Daniel R.
2011-01-01
New cone-beam computed tomographic (CBCT) mammography system designs are presented where the detectors provide high spatial resolution, high sensitivity, low noise, wide dynamic range, negligible lag and high frame rates similar to features required for high performance fluoroscopy detectors. The x-ray detectors consist of a phosphor coupled by a fiber-optic taper to either a high gain image light amplifier (LA) then CCD camera or to an electron multiplying CCD. When a square-array of such detectors is used, a field-of-view (FOV) to 20 × 20 cm can be obtained where the images have pixel-resolution of 100 µm or better. To achieve practical CBCT mammography scan-times, 30 fps may be acquired with quantum limited (noise free) performance below 0.2 µR detector exposure per frame. Because of the flexible voltage controlled gain of the LA’s and EMCCDs, large detector dynamic range is also achievable. Features of such detector systems with arrays of either generation 2 (Gen 2) or 3 (Gen 3) LAs optically coupled to CCD cameras or arrays of EMCCDs coupled directly are compared. Quantum accounting analysis is done for a variety of such designs where either the lowest number of information carriers off the LA photo-cathode or electrons released in the EMCCDs per x-ray absorbed in the phosphor are large enough to imply no quantum sink for the design. These new LA- or EMCCD-based systems could lead to vastly improved CBCT mammography, ROI-CT, or fluoroscopy performance compared to systems using flat panels. PMID:21297904
NASA Astrophysics Data System (ADS)
Rudin, Stephen; Kuhls, Andrew T.; Yadava, Girijesh K.; Josan, Gaurav C.; Wu, Ye; Chityala, Ravishankar N.; Rangwala, Hussain S.; Ionita, N. Ciprian; Hoffmann, Kenneth R.; Bednarek, Daniel R.
2006-03-01
New cone-beam computed tomographic (CBCT) mammography system designs are presented where the detectors provide high spatial resolution, high sensitivity, low noise, wide dynamic range, negligible lag and high frame rates similar to features required for high performance fluoroscopy detectors. The x-ray detectors consist of a phosphor coupled by a fiber-optic taper to either a high gain image light amplifier (LA) then CCD camera or to an electron multiplying CCD. When a square-array of such detectors is used, a field-of-view (FOV) to 20 x 20 cm can be obtained where the images have pixel-resolution of 100 μm or better. To achieve practical CBCT mammography scan-times, 30 fps may be acquired with quantum limited (noise free) performance below 0.2 μR detector exposure per frame. Because of the flexible voltage controlled gain of the LA's and EMCCDs, large detector dynamic range is also achievable. Features of such detector systems with arrays of either generation 2 (Gen 2) or 3 (Gen 3) LAs optically coupled to CCD cameras or arrays of EMCCDs coupled directly are compared. Quantum accounting analysis is done for a variety of such designs where either the lowest number of information carriers off the LA photo-cathode or electrons released in the EMCCDs per x-ray absorbed in the phosphor are large enough to imply no quantum sink for the design. These new LA- or EMCCD-based systems could lead to vastly improved CBCT mammography, ROI-CT, or fluoroscopy performance compared to systems using flat panels.
Polishing techniques for MEGARA pupil elements optics
NASA Astrophysics Data System (ADS)
Izazaga, R.; Carrasco, E.; Aguirre, D.; Salas, A.; Gil de Paz, A.; Gallego, J.; Iglesias, J.; Arroyo, J. M.; Hernández, M.; López, N.; López, V.; Quechol, J. T.; Salazar, M. F.; Carballo, C.; Cruz, E.; Arriaga, J.; De la Luz, J. A.; Huepa, A.; Jaimes, G. L.; Reyes, J.
2016-07-01
MEGARA (Multi-Espectrógrafo en GTC de Alta Resolución para Astronomía) is the new integral-field and multi-object optical spectrograph for the 10.4m Gran Telescopio Canarias.. It will offer RFWHM 6,000, 12,000 and 18,700 for the low- , mid- and high-resolution, respectively in the wavelength range 3650-9700Å. .The dispersive elements are volume phase holographic (VPH) gratings, sandwiched between two flat Fused Silica windows of high optical precision in large apertures. The design, based in VPHs in combination with Ohara PBM2Y prisms allows to keep the collimator and camera angle fixed. Seventy three optical elements are being built in Mexico at INAOE and CIO. For the low resolution modes, the VPHs windows specifications in irregularity is 1 fringe in 210mm x 170mm and 0.5 fringe in 190mm x 160mm. for a window thickness of 25 mm. For the medium and high resolution modes the irregularity specification is 2 fringes in 220mm x 180mm and 1 fringe in 205mm x 160mm, for a window thickness of 20mm. In this work we present a description of the polishing techniques developed at INAOE optical workshop to fabricate the 36 Fused Silica windows and 24 PBM2Y prisms that allows us to achieve such demanding specifications. We include the processes of mounting, cutting, blocking, polishing and testing.
Wouters, Bert; Vanhoutte, Dominique J D; Aarnoutse, Petra; Visser, Adriaan; Stassen, Catherine; Devreese, Bart; Kok, Wim Th; Schoenmakers, Peter J; Eeltink, Sebastiaan
2013-04-19
The present study concerns the application of visualization methods, i.e. coomassie-brilliant-blue-R staining (CBB-R), silver-nitrate staining, and fluorescamine labeling, and subsequent MALDI-MS analysis of intact proteins and peptides on the surface of flat-bed monoliths, intended for spatial two-dimensional chromatographic separations. The use of 100-μm thick macroporous poly(butyl methacrylate-co-ethylene dimethacrylate) flat-bed monoliths renders a fixation step obsolete, so that CBB-R and silver-nitrate staining and destaining could be achieved in 10-15 min as opposed to up to 24h, as is typical on 2D-PAGE gels. The detection limits remained comparable. The compatibility of the monolithic layer with subsequent MALDI-MS analysis of individual proteins and peptide spots was investigated with regards to mass accuracy, mass precision, resolution, and signal intensity. When comparing results from MALDI-MS analysis of proteins and peptides on a flat-bed monolith to results obtained directly on stainless-steel target plates, significant losses in mass precision, signal intensity, and an increased variation in resolution were observed. In addition, a loss in signal intensity up to two orders of magnitude was observed when using monolithic layers. After CCB-R and silver-nitrate staining and destaining to disrupt the protein-dye complexes no MALDI spectra with significant S/N ratios could be achieved. After fluorescamine labeling heterogeneous signals were observed, which resulted from a distribution in the number of fluorescence-labeled lysine groups and from the presence of labeled derivatives that had undergone condensation reactions. Copyright © 2013 Elsevier B.V. All rights reserved.
The polar amplification asymmetry: role of Antarctic surface height
NASA Astrophysics Data System (ADS)
Salzmann, Marc
2017-05-01
Previous studies have attributed an overall weaker (or slower) polar amplification in Antarctica compared to the Arctic to a weaker Antarctic surface albedo feedback and also to more efficient ocean heat uptake in the Southern Ocean in combination with Antarctic ozone depletion. Here, the role of the Antarctic surface height for meridional heat transport and local radiative feedbacks, including the surface albedo feedback, was investigated based on CO2-doubling experiments in a low-resolution coupled climate model. When Antarctica was assumed to be flat, the north-south asymmetry of the zonal mean top of the atmosphere radiation budget was notably reduced. Doubling CO2 in a flat Antarctica (flat AA) model setup led to a stronger increase in southern hemispheric poleward atmospheric and oceanic heat transport compared to the base model setup. Based on partial radiative perturbation (PRP) computations, it was shown that local radiative feedbacks and an increase in the CO2 forcing in the deeper atmospheric column also contributed to stronger Antarctic warming in the flat AA model setup, and the roles of the individual radiative feedbacks are discussed in some detail. A considerable fraction (between 24 and 80 % for three consecutive 25-year time slices starting in year 51 and ending in year 126 after CO2 doubling) of the polar amplification asymmetry was explained by the difference in surface height, but the fraction was subject to transient changes and might to some extent also depend on model uncertainties. In order to arrive at a more reliable estimate of the role of land height for the observed polar amplification asymmetry, additional studies based on ensemble runs from higher-resolution models and an improved model setup with a more realistic gradual increase in the CO2 concentration are required.
FIEStool: Automated data reduction for FIber-fed Echelle Spectrograph (FIES)
NASA Astrophysics Data System (ADS)
Stempels, Eric; Telting, John
2017-08-01
FIEStool automatically reduces data obtained with the FIber-fed Echelle Spectrograph (FIES) at the Nordic Optical Telescope, a high-resolution spectrograph available on a stand-by basis, while also allowing the basic properties of the reduction to be controlled in real time by the user. It provides a Graphical User Interface and offers bias subtraction, flat-fielding, scattered-light subtraction, and specialized reduction tasks from the external packages IRAF (ascl:9911.002) and NumArray. The core of FIEStool is instrument-independent; the software, written in Python, could with minor modifications also be used for automatic reduction of data from other instruments.
Automated detection of new impact sites on Martian surface from HiRISE images
NASA Astrophysics Data System (ADS)
Xin, Xin; Di, Kaichang; Wang, Yexin; Wan, Wenhui; Yue, Zongyu
2017-10-01
In this study, an automated method for Martian new impact site detection from single images is presented. It first extracts dark areas in full high resolution image, then detects new impact craters within dark areas using a cascade classifier which combines local binary pattern features and Haar-like features trained by an AdaBoost machine learning algorithm. Experimental results using 100 HiRISE images show that the overall detection rate of proposed method is 84.5%, with a true positive rate of 86.9%. The detection rate and true positive rate in the flat regions are 93.0% and 91.5%, respectively.
An X-ray diffractometer using mirage diffraction
Fukamachi, Tomoe; Jongsukswat, Sukswat; Ju, Dongying; Negishi, Riichirou; Hirano, Keiichi; Kawamura, Takaaki
2014-01-01
Some characteristics are reported of a triple-crystal diffractometer with a (+, −, +) setting of Si(220) using mirage diffraction. The first crystal is flat, while the second and third crystals are bent. Basically, the first crystal is used as a collimator, the second as a monochromator and the third as the sample. The third crystal also works as an analyzer. The advantages of this diffractometer are that its setup is easy, its structure is simple, the divergence angle from the second crystal is small and the energy resolution of the third crystal is high, of the order of sub-meV. PMID:25242911
X-ray spectroscopy of E2 and M3 transitions in Ni-like W
DOE Office of Scientific and Technical Information (OSTI.GOV)
Clementson, J.; Beiersdorfer, P.; Gu, M. F.
2010-01-15
The electric quadrupole (E2) and magnetic octupole (M3) ground-state transitions in Ni-like W{sup 46+} have been measured using high-resolution crystal spectroscopy at the LLNL electron-beam ion trap facility. The lines fall in the soft x-ray region near 7.93 A and were originally observed as an unresolved feature in tokamak plasmas. Using flat ammonium dihydrogen phosphate and quartz crystals, the wavelengths, intensities, and polarizations of the two lines have been measured for various electron-beam energies and compared to intensity and polarization calculations performed using the Flexible Atomic Code (FAC).
High-resolution crystal spectrometer for the 10-60 A extreme ultraviolet region
DOE Office of Scientific and Technical Information (OSTI.GOV)
Beiersdorfer, P.; Brown, G.V.; Goddard, R.
2004-10-01
A vacuum crystal spectrometer with nominal resolving power approaching 1000 is described for measuring emission lines with wavelength in the extreme ultraviolet region up to 60 A. The instrument utilizes a flat octadecyl hydrogen maleate crystal and a thin-window 1D position-sensitive gas proportional detector. This detector employs a 1-{mu}m-thick 100x8 mm{sup 2} aluminized polyimide window and operates at one atmosphere pressure. The spectrometer has been implemented on the Livermore electron beam ion traps. The performance of the instrument is illustrated in measurements of the newly discovered magnetic field-sensitive line in Ar{sup 8+}.
High-resolution crystal spectrometer for the 10-60 (angstrom) EUV region
DOE Office of Scientific and Technical Information (OSTI.GOV)
Beiersdorfer, P; Brown, G V; Goddard, R
2004-02-20
A vacuum crystal spectrometer with nominal resolving power approaching 1000 is described for measuring emission lines with wavelength in the extreme ultraviolet region up to 60 Angstroms. The instrument utilizes a flat octadecyl hydrogen maleate (OHM) crystal and a thin-window 1-D position-sensitive gas proportional detector. This detector employs a 1 {micro}m-thick 100 x8 mm{sup 2} aluminized polyimide window and operates at one atmosphere pressure. The spectrometer has been implemented on the Livermore electron beam ion traps. The performance of the instrument is illustrated in measurements of the newly discovered magnetic field-sensitive line in Ar{sup 8+}.
Generation of real-time mode high-resolution water vapor fields from GPS observations
NASA Astrophysics Data System (ADS)
Yu, Chen; Penna, Nigel T.; Li, Zhenhong
2017-02-01
Pointwise GPS measurements of tropospheric zenith total delay can be interpolated to provide high-resolution water vapor maps which may be used for correcting synthetic aperture radar images, for numeral weather prediction, and for correcting Network Real-time Kinematic GPS observations. Several previous studies have addressed the importance of the elevation dependency of water vapor, but it is often a challenge to separate elevation-dependent tropospheric delays from turbulent components. In this paper, we present an iterative tropospheric decomposition interpolation model that decouples the elevation and turbulent tropospheric delay components. For a 150 km × 150 km California study region, we estimate real-time mode zenith total delays at 41 GPS stations over 1 year by using the precise point positioning technique and demonstrate that the decoupled interpolation model generates improved high-resolution tropospheric delay maps compared with previous tropospheric turbulence- and elevation-dependent models. Cross validation of the GPS zenith total delays yields an RMS error of 4.6 mm with the decoupled interpolation model, compared with 8.4 mm with the previous model. On converting the GPS zenith wet delays to precipitable water vapor and interpolating to 1 km grid cells across the region, validations with the Moderate Resolution Imaging Spectroradiometer near-IR water vapor product show 1.7 mm RMS differences by using the decoupled model, compared with 2.0 mm for the previous interpolation model. Such results are obtained without differencing the tropospheric delays or water vapor estimates in time or space, while the errors are similar over flat and mountainous terrains, as well as for both inland and coastal areas.
NASA Technical Reports Server (NTRS)
Kim, K.; Wiedner, B.; Camci, C.
1993-01-01
A combined convective heat transfer and fluid dynamics investigation in a turbulent round jet impinging on a flat surface is presented. The experimental study uses a high resolution liquid crystal technique for the determination of the convective heat transfer coefficients on the impingement plate. The heat transfer experiments are performed using a transient heat transfer method. The mean flow and the character of turbulent flow in the free jet is presented through five hole probe and hot wire measurements, respectively. The flow field character of the region near the impingement plate plays an important role in the amount of convective heat transfer. Detailed surveys obtained from five hole probe and hot wire measurements are provided. An extensive validation of the liquid crystal based heat transfer method against a conventional technique is also presented. After a complete documentation of the mean and turbulent flow field, the convective heat transfer coefficient distributions on the impingement plate are presented. The near wall of the impingement plate and the free jet region is treated separately. The current heat transfer distributions are compared to other studies available from the literature. The present paper contains complete sets of information on the three dimensional mean flow, turbulent velocity fluctuations, and convective heat transfer to the plate. The experiments also prove that the present nonintrusive heat transfer method is highly effective in obtaining high resolution heat transfer maps with a heat transfer coefficient uncertainty of 5.7 percent.
Spectroscopy of the nova candidate M31-2008-10b
NASA Astrophysics Data System (ADS)
Di Mille, F.; Ciroi, S.; Orio, M.; Rafanelli, P.; Bianchini, A.; Nelson, T.; Andreuzzi, G.
2008-10-01
We obtained a low resolution spectrum of the nova candidate M31-2008-10b ( see CBAT M31 nova page) on 2008 October 26.12 UT. The observations were performed with TNG + DOLORES spectrograph 20 days after the first detection (see Atel #1790 ). The spectrum (in the 330-790 nm range, with resolution 1 nm) shows strong Balmer lines superimposed on a flat continuum.
Jeong, Chang-Won; Ryu, Jong-Hyun; Joo, Su-Chong; Jun, Hong-Young; Heo, Dong-Woon; Lee, Jinseok; Kim, Kyong-Woo; Yoon, Kwon-Ha
2015-01-01
Technologies employing digital X-ray devices are developed for mobile settings. To develop a mobile digital X-ray fluoroscopy (MDF) for intraoperative guidance, using a novel flat panel detector to focus on diagnostics in outpatient clinics, operating and emergency rooms. An MDF for small-scale field diagnostics was configured using an X-ray source and a novel flat panel detector. The imager enabled frame rates reaching 30 fps in full resolution fluoroscopy with maximal running time of 5 minutes. Signal-to-noise (SNR), contrast-to-noise (CNR), and spatial resolution were analyzed. Stray radiation, exposure radiation dose, and effective absorption dose were measured for patients. The system was suitable for small-scale field diagnostics. SNR and CNR were 62.4 and 72.0. Performance at 10% of MTF was 9.6 lp/mm (53 μ m) in the no binned mode. Stray radiation at 100 cm and 150 cm from the source was below 0.2 μ Gy and 0.1 μ Gy. Exposure radiation in radiography and fluoroscopy (5 min) was 10.2 μ Gy and 82.6 mGy. The effective doses during 5-min-long fluoroscopy were 0.26 mSv (wrist), 0.28 mSv (elbow), 0.29 mSv (ankle), and 0.31 mSv (knee). The proposed MDF is suitable for imaging in operating rooms.
Ampou, Eghbert Elvan; Ouillon, Sylvain; Iovan, Corina; Andréfouët, Serge
2018-06-01
In Bunaken Island (Indonesia), a time-series of very high resolution (2-4m) satellite imagery was used to draw the long-term dynamics of shallow reef flat habitats from 2001 to 2015. Lack of historical georeferenced ground-truth data oriented the analysis towards a scenario-approach based on the monitoring of selected unambiguously-changing habitat polygons characterized in situ in 2014 and 2015. Eight representative scenarios (coral colonization, coral loss, coral stability, and sand colonization by seagrass) were identified. All occurred simultaneously in close vicinity, precluding the identification of a single general cause of changes that could have affected the whole reef. Likely, very fine differences in reef topography, exposure to wind/wave and sea level variations were responsible for the variety of trajectories. While trajectories of reef habitats is a way to measure resilience and coral recovery, here, the 15-year time-series was too short to be able to conclude on the resilience of Bunaken reefs. Copyright © 2017 Elsevier Ltd. All rights reserved.
Views of the Sea Floor in Northern Monterey Bay, California
Storlazzi, Curt D.; Golden, Nadine E.; Finlayson, David P.
2008-01-01
A sonar survey that produced unprecedented high-resolution images of the sea floor in northern Monterey Bay was conducted in 2005 and 2006. The survey, performed over 14 days by the U.S. Geological Survey (USGS), consisted of 172 tracklines and over 300 million soundings and covered an area of 12.2 km2 (4.7 mi2). The goals of this survey were to collect high-resolution bathymetry (depth to the sea floor) and acoustic backscatter data (amount of sound energy bounced back from the sea floor, which provides information on sea-floor hardness and texture) from the inner continental shelf. These data will provide a baseline for future change analyses, geologic mapping, sediment- and contaminant-transport studies, benthic-habitat delineation, and numerical modeling efforts. The survey shows that the inner shelf in this area is extremely varied in nature, encompassing flat sandy areas, faults, boulder fields, and complex bedrock ridges that support rich marine ecosystems. Furthermore, many of these complex bedrock ridges form the ?reefs? that result in a number of California?s classic surf breaks.
Slaying Hydra: A Python-Based Reduction Pipeline for the Hydra Multi-Object Spectrograph
NASA Astrophysics Data System (ADS)
Seifert, Richard; Mann, Andrew
2018-01-01
We present a Python-based data reduction pipeline for the Hydra Multi-Object Spectrograph on the WIYN 3.5 m telescope, an instrument which enables simultaneous spectroscopy of up to 93 targets. The reduction steps carried out include flat-fielding, dynamic fiber tracing, wavelength calibration, optimal fiber extraction, and sky subtraction. The pipeline also supports the use of sky lines to correct for zero-point offsets between fibers. To account for the moving parts on the instrument and telescope, fiber positions and wavelength solutions are derived in real-time for each dataset. The end result is a one-dimensional spectrum for each target fiber. Quick and fully automated, the pipeline enables on-the-fly reduction while observing, and has been known to outperform the IRAF pipeline by more accurately reproducing known RVs. While Hydra has many configurations in both high- and low-resolution, the pipeline was developed and tested with only one high-resolution mode. In the future we plan to expand the pipeline to work in most commonly used modes.
Step-by-step growth of epitaxially aligned polythiophene by surface-confined reaction
Lipton-Duffin, J. A.; Miwa, J. A.; Kondratenko, M.; Cicoira, F.; Sumpter, B. G.; Meunier, V.; Perepichka, D. F.; Rosei, F.
2010-01-01
One of the great challenges in surface chemistry is to assemble aromatic building blocks into ordered structures that are mechanically robust and electronically interlinked—i.e., are held together by covalent bonds. We demonstrate the surface-confined growth of ordered arrays of poly(3,4-ethylenedioxythiophene) (PEDOT) chains, by using the substrate (the 110 facet of copper) simultaneously as template and catalyst for polymerization. Copper acts as promoter for the Ullmann coupling reaction, whereas the inherent anisotropy of the fcc 110 facet confines growth to a single dimension. High resolution scanning tunneling microscopy performed under ultrahigh vacuum conditions allows us to simultaneously image PEDOT oligomers and the copper lattice with atomic resolution. Density functional theory calculations confirm an unexpected adsorption geometry of the PEDOT oligomers, which stand on the sulfur atom of the thiophene ring rather than lying flat. This polymerization approach can be extended to many other halogen-terminated molecules to produce epitaxially aligned conjugated polymers. Such systems might be of central importance to develop future electronic and optoelectronic devices with high quality active materials, besides representing model systems for basic science investigations. PMID:20534511
Three-Dimensional Water and Carbon Cycle Modeling at High Spatial-Temporal Resolutions
NASA Astrophysics Data System (ADS)
Liao, C.; Zhuang, Q.
2017-12-01
Terrestrial ecosystems in cryosphere are very sensitive to the global climate change due to the presence of snow covers, mountain glaciers and permafrost, especially when the increase in near surface air temperature is almost twice as large as the global average. However, few studies have investigated the water and carbon cycle dynamics using process-based hydrological and biogeochemistry modeling approach. In this study, we used three-dimensional modeling approach at high spatial-temporal resolutions to investigate the water and carbon cycle dynamics for the Tanana Flats Basin in interior Alaska with emphases on dissolved organic carbon (DOC) dynamics. The results have shown that: (1) lateral flow plays an important role in water and carbon cycle, especially in dissolved organic carbon (DOC) dynamics. (2) approximately 2.0 × 104 kg C yr-1 DOC is exported to the hydrological networks and it compromises 1% and 0.01% of total annual gross primary production (GPP) and total organic carbon stored in soil, respectively. This study has established an operational and flexible framework to investigate and predict the water and carbon cycle dynamics under the changing climate.
Weber, G; Bauer, J
1998-06-01
On fractionation of highly heterogeneous protein mixtures, optimal resolution was achieved by forcing proteins to migrate through a preestablished pH gradient, until they entered a medium with a pH similar but not equal to their pIs. For this purpose, up to seven different media were pumped through the electrophoresis chamber so that they were flowing adjacently to each other, forming a pH gradient declining stepwise from the cathode to the anode. This gradient had a sufficiently strong band-focusing effect to counterbalance sample distortion effects of the flowing medium as proteins approached their isoelectric medium closer than 0.5 pH units. Continuous free-flow zone electrophoresis (FFZE) with high throughput capability was applicable if proteins did not precipitate or aggregate in these media. If components of heterogeneous protein mixtures had already started to precipitate or aggregate, in a medium with a pH exceeding their pI by more than 0.5 pH units, the application of interval modus and media forming flat pH gradients appeared advantageous.
High-resolution radio and X-ray observations of the supernova remnant W28
NASA Technical Reports Server (NTRS)
Andrews, M. D.; Basart, J. P.; Lamb, R. C.; Becker, R. H.
1983-01-01
The present study has the objective to report the first high resolution radio and X-ray observations of the central part of the galactic supernova remnant, W28, taking into account the possible association of the remnant with the unidentified gamma-ray source, 2CG 006-00. This gamma-ray source is approximately two-thirds as bright as the Crab pulsar above 100 MeV, and has a somewhat flatter spectrum. Both the radio and X-ray observations reveal previously unknown aspects of W28 which support the possibility of W28 being a gamma-ray source. The radio data show a flat-spectrum, nonthermal component reminiscent of the Crab Nebula and Vela, both of which are confirmed gamma-ray sources. The X-ray observations reveal a compact source within W28, again suggestive of both the Crab and Vela. If the similarities among W28, the Crab Nebula, and the Vela remnant are valid, the gamma-ray source 2CG 00-00 should be studied for periodicity, the conclusive signature of a compact source of emission.
NASA Astrophysics Data System (ADS)
Gardner, J. M.; Hagen, R.; Hart, P.; Czarnecki, M.; Nishimura, C.; Hutchinson, D. R.
2005-12-01
The purpose of this project was to conduct detailed surface mapping of one of the areas drilled by the Joint Industry Project with ChevronTexaco to understand gas hydrates in the Gulf of Mexico. The gently sloping, mostly flat floor of the Mississippi Canyon is interrupted by mounds and depressions that presumably reflect the complex geology and geohydrology related to turbidite deposition and pervasive salt tectonism. The seafloor mounds we mapped in this study occur in approximately 1300 water depth along the floor of the Mississippi Canyon in lease block areas Atwater Valley 13 and 14. High resolution sidescan sonar (100 kHz and 500 kHz) backscatter imagery, and chirp sub-bottom profiler data were collected using the DT1 deep-towed oceanographic mapping instrument, concentrating on the region directly adjacent to and surrounding two mounds identified as, mounds D and F, and in the region directly adjacent to and surrounding the mounds. The backscatter data have been mosaiced and normalized to provide information on the shape and extent of the mounds, the possible lateral extent of fauna, such as mussel and clam fields on the mounds, possible seep related flows and the occurrence of carbonate material. The extent of a mudflow can be mapped on the southeastern side of mound F. Previously collected bottom camera images have been used to ground-truth the backscatter information. Coincident with the collection of backscatter information was the collection of very high-resolution bathymetric data. Together, the backscatter and bathymetric data show extremely high-resolution detail about the shape, relief, and morphology of the mounds. This information, coupled with porewater chemistry and heatflow data form a coherent picture of possible mechanics for fluid venting and flora/fauna of the seeps in this region.
NASA Astrophysics Data System (ADS)
Zhou, Fei; Sadigh, Babak; Erhart, Paul; Åberg, Daniel
2016-08-01
The excellent light yield proportionality of europium-doped strontium iodide (SrI2:Eu) has resulted in state-of-the-art γ-ray detectors with remarkably high-energy resolution, far exceeding that of most halide compounds. In this class of materials, the formation of self-trapped hole polarons is very common. However, polaron formation is usually expected to limit carrier mobilities and has been associated with poor scintillator light-yield proportionality and resolution. Here using a recently developed first-principles method, we perform an unprecedented study of polaron transport in SrI2, both for equilibrium polarons, as well as nascent polarons immediately following a self-trapping event. We propose a rationale for the unexpected high-energy resolution of SrI2. We identify nine stable hole polaron configurations, which consist of dimerised iodine pairs with polaron-binding energies of up to 0.5 eV. They are connected by a complex potential energy landscape that comprises 66 unique nearest-neighbour migration paths. Ab initio molecular dynamics simulations reveal that a large fraction of polarons is born into configurations that migrate practically barrier free at room temperature. Consequently, carriers created during γ-irradiation can quickly diffuse away reducing the chance for non-linear recombination, the primary culprit for non-proportionality and resolution reduction. We conclude that the flat, albeit complex, landscape for polaron migration in SrI2 is a key for understanding its outstanding performance. This insight provides important guidance not only for the future development of high-performance scintillators but also of other materials, for which large polaron mobilities are crucial such as batteries and solid-state ionic conductors.
Zhou, Fei; Sadigh, Babak; Aberg, Daniel; ...
2016-08-12
The excellent light yield proportionality of europium-doped strontium iodide (SrI 2:Eu) has resulted in state-of-the-art γ-ray detectors with remarkably high-energy resolution, far exceeding that of most halide compounds. In this class of materials, the formation of self-trapped hole polarons is very common. However, polaron formation is usually expected to limit carrier mobilities and has been associated with poor scintillator light-yield proportionality and resolution. Here using a recently developed first-principles method, we perform an unprecedented study of polaron transport in SrI 2, both for equilibrium polarons, as well as nascent polarons immediately following a self-trapping event. We propose a rationale formore » the unexpected high-energy resolution of SrI 2. We identify nine stable hole polaron configurations, which consist of dimerised iodine pairs with polaron-binding energies of up to 0.5 eV. They are connected by a complex potential energy landscape that comprises 66 unique nearest-neighbour migration paths. Ab initio molecular dynamics simulations reveal that a large fraction of polarons is born into configurations that migrate practically barrier free at room temperature. Consequently, carriers created during γ-irradiation can quickly diffuse away reducing the chance for nonlinear recombination, the primary culprit for non-proportionality and resolution reduction. We conclude that the flat, albeit complex, landscape for polaron migration in SrI 2 is a key for understanding its outstanding performance. This insight provides important guidance not only for the future development of high-performance scintillators but also of other materials, for which large polaron mobilities are crucial such as batteries and solid-state ionic conductors.« less
NEMA NU-4 performance evaluation of PETbox4, a high sensitivity dedicated PET preclinical tomograph
NASA Astrophysics Data System (ADS)
Gu, Z.; Taschereau, R.; Vu, N. T.; Wang, H.; Prout, D. L.; Silverman, R. W.; Bai, B.; Stout, D. B.; Phelps, M. E.; Chatziioannou, A. F.
2013-06-01
PETbox4 is a new, fully tomographic bench top PET scanner dedicated to high sensitivity and high resolution imaging of mice. This manuscript characterizes the performance of the prototype system using the National Electrical Manufacturers Association NU 4-2008 standards, including studies of sensitivity, spatial resolution, energy resolution, scatter fraction, count-rate performance and image quality. The PETbox4 performance is also compared with the performance of PETbox, a previous generation limited angle tomography system. PETbox4 consists of four opposing flat-panel type detectors arranged in a box-like geometry. Each panel is made by a 24 × 50 pixelated array of 1.82 × 1.82 × 7 mm bismuth germanate scintillation crystals with a crystal pitch of 1.90 mm. Each of these scintillation arrays is coupled to two Hamamatsu H8500 photomultiplier tubes via a glass light guide. Volumetric images for a 45 × 45 × 95 mm field of view (FOV) are reconstructed with a maximum likelihood expectation maximization algorithm incorporating a system model based on a parameterized detector response. With an energy window of 150-650 keV, the peak absolute sensitivity is approximately 18% at the center of FOV. The measured crystal energy resolution ranges from 13.5% to 48.3% full width at half maximum (FWHM), with a mean of 18.0%. The intrinsic detector spatial resolution is 1.5 mm FWHM in both transverse and axial directions. The reconstructed image spatial resolution for different locations in the FOV ranges from 1.32 to 1.93 mm, with an average of 1.46 mm. The peak noise equivalent count rate for the mouse-sized phantom is 35 kcps for a total activity of 1.5 MBq (40 µCi) and the scatter fraction is 28%. The standard deviation in the uniform region of the image quality phantom is 5.7%. The recovery coefficients range from 0.10 to 0.93. In comparison to the first generation two panel PETbox system, PETbox4 achieves substantial improvements on sensitivity and spatial resolution. The overall performance demonstrates that the PETbox4 scanner is suitable for producing high quality images for molecular imaging based biomedical research.
Ultrasonic force microscopy: detection and imaging of ultra-thin molecular domains.
Dinelli, Franco; Albonetti, Cristiano; Kolosov, Oleg V
2011-03-01
The analysis of the formation of ultra-thin organic films is a very important issue. In fact, it is known that the properties of organic light emitting diodes and field effect transistors are strongly affected by the early growth stages. For instance, in the case of sexithiophene, the presence of domains made of molecules with the backbone parallel to the substrate surface has been indirectly evidenced by photoluminescence spectroscopy and confocal microscopy. On the contrary, conventional scanning force microscopy both in contact and intermittent contact modes have failed to detect such domains. In this paper, we show that Ultrasonic Force Microscopy (UFM), sensitive to nanomechanical properties, allows one to directly identify the structure of sub-monolayer thick films. Sexithiophene flat domains have been imaged for the first time with nanometer scale spatial resolution. A comparison with lateral force and intermittent contact modes has been carried out in order to explain the origins of the UFM contrast and its advantages. In particular, it indicates that UFM is highly suitable for investigations where high sensitivity to material properties, low specimen damage and high spatial resolution are required. Copyright © 2010 Elsevier B.V. All rights reserved.
Space configuration as an explanation for lithology-related cross-polarized radar image anomalies
NASA Technical Reports Server (NTRS)
Mccauley, J. R.
1972-01-01
Three rock types are described that produce dark cross-polarized images on Ka-band imagery: lava flows dating from Pleistocene and Holocene, some Tertiary volcanics, and certain massive sandstones. Their planar surfaces are large with respect to the wavelength of the Ka-band system, yet are small in comparison to the resolution. It is found that only outcrops with proper faceted surface orientations produce significant radar returns showing the dominance of specular reflectors. The omnidirectional attitude of the facets and their wide distribution on the outcrops explains the independence of look-direction that the flat-lying anomalous outcrops exhibit in production of darker cross-polarized images.
Evolution of digital angiography systems.
Brigida, Raffaela; Misciasci, Teresa; Martarelli, Fabiola; Gangitano, Guido; Ottaviani, Pierfrancesco; Rollo, Massimo; Marano, Pasquale
2003-01-01
The innovations introduced by digital subtraction angiography in digital radiography are briefly illustrated with the description of its components and functioning. The pros and cons of digital subtraction angiography are analyzed in light of present and future imaging technologies. In particular, among advantages there are: automatic exposure, digital image subtraction, digital post-processing, high number of images per second, possible changes in density and contrast. Among disadvantages there are: small round field of view, geometric distortion at the image periphery, high sensitivity to patient movements, not very high spatial resolution. At present, flat panel detectors represent the most suitable substitutes for digital subtraction angiography, with the introduction of novel solutions for those artifacts which for years have hindered its diagnostic validity. The concept of temporal artifact, reset light and possible future evolutions of this technology that may afford both diagnostic and protectionist advantages, are analyzed.
El-Mohri, Youcef; Antonuk, Larry E.; Choroszucha, Richard B.; Zhao, Qihua; Jiang, Hao; Liu, Langechuan
2014-01-01
Thick, segmented crystalline scintillators have shown increasing promise as replacement x-ray converters for the phosphor screens currently used in active matrix flat-panel imagers (AMFPIs) in radiotherapy, by virtue of providing over an order of magnitude improvement in the DQE. However, element-to-element misalignment in current segmented scintillator prototypes creates a challenge for optimal registration with underlying AMFPI arrays, resulting in degradation of spatial resolution. To overcome this challenge, a methodology involving the use of a relatively high resolution AMFPI array in combination with novel binning techniques is presented. The array, which has a pixel pitch of 0.127 mm, was coupled to prototype segmented scintillators based on BGO, LYSO and CsI:Tl materials, each having a nominal element-to-element pitch of 1.016 mm and thickness of ~1 cm. The AMFPI systems incorporating these prototypes were characterized at a radiotherapy energy of 6 MV in terms of MTF, NPS, DQE, and reconstructed images of a resolution phantom acquired using a cone-beam CT geometry. For each prototype, the application of 8×8 pixel binning to achieve a sampling pitch of 1.016 mm was optimized through use of an alignment metric which minimized misregistration and thereby improved spatial resolution. In addition, the application of alternative binning techniques that exclude the collection of signal near septal walls resulted in further significant improvement in spatial resolution for the BGO and LYSO prototypes, though not for the CsI:Tl prototype due to the large amount of optical cross-talk resulting from significant light spread between scintillator elements in that device. The efficacy of these techniques for improving spatial resolution appears to be enhanced for scintillator materials that exhibit mechanical hardness, high density and high refractive index, such as BGO. Moreover, materials that exhibit these properties as well as offer significantly higher light output than BGO, such as CdWO4, should provide the additional benefit of preserving DQE performance. PMID:24487347
NASA Astrophysics Data System (ADS)
Kim, Hoon-Young; Choi, Won-Suk; Ji, Suk-Young; Shin, Young-Gwan; Jeon, Jin-Woo; Ahn, Sanghoon; Cho, Sung-Hak
2018-02-01
This study compares the ablation morphologies obtained with a femtosecond laser of both Gaussian and quasi-flat top beam profiles when applied to indium tin oxide (ITO) thin films for the purpose of OLED repair. A femtosecond laser system with a wavelength of 1030 nm and pulse duration of 190 fs is used to pattern an ITO thin film. The laser fluence is optimized for patterning at 1.38 J/cm2. The patterned ITO thin film is then evaluated through both optical microscope and atomic force microscope. Ablations with a square quasi-flat top beam are demonstrated using slits with varying x- y axes. With the Gaussian beam, the pattern width of the ablated area is shown to range from 9.17 to 9.99 μm when the number of irradiation pulse increases from one to six. In contrast, when slit control is used to obtain a quasi-flat top beam, the ablated pattern width remains constant at 10 μm, despite the increase in the number of pulse. The improved surface roughness is correlated with the quasi-flat top beam through measured Ra values. Furthermore, when using the Gaussian beam, the minimum resolution of the controllable ablation depth on the ITO thin film is found to be 60 nm. In contrast, when the quasi-flat top beam is used, the minimum ablation depth decreases to 40 nm.
High-resolution US and MR imaging of peroneal tendon injuries.
Taljanovic, Mihra S; Alcala, Jennifer N; Gimber, Lana H; Rieke, Joshua D; Chilvers, Margaret M; Latt, L Daniel
2015-01-01
Injuries of the peroneal tendon complex are common and should be considered in every patient who presents with chronic lateral ankle pain. These injuries occur as a result of trauma (including ankle sprains), in tendons with preexisting tendonopathy, and with repetitive microtrauma due to instability. The peroneus brevis and peroneus longus tendons are rarely torn simultaneously. Several anatomic variants, including a flat or convex fibular retromalleolar groove, hypertrophy of the peroneal tubercle at the lateral aspect of the calcaneus, an accessory peroneus quartus muscle, a low-lying peroneus brevis muscle belly, and an os peroneum, may predispose to peroneal tendon injuries. High-resolution 1.5-T and 3-T magnetic resonance (MR) imaging with use of dedicated extremity coils and high-resolution ultrasonography (US) with high-frequency linear transducers and dynamic imaging are proved to adequately depict the peroneal tendons for evaluation and can aid the orthopedic surgeon in injury management. An understanding of current treatment approaches for partial- and full-thickness peroneal tendon tears, subluxation and dislocation of these tendons with superior peroneal retinaculum (SPR) injuries, intrasheath subluxations, and peroneal tendonopathy and tenosynovitis can help physicians achieve a favorable outcome. Patients with low functional demands do well with conservative treatment, while those with high functional demands may benefit from surgery if nonsurgical treatment is unsuccessful. Radiologists should recognize the normal anatomy and specific pathologic conditions of the peroneal tendons at US and MR imaging and understand the various treatment options for peroneal tendon and SPR superior peroneal retinaculum injuries. Online supplemental material is available for this article. RSNA, 2015
Why do high-redshift galaxies show diverse gas-phase metallicity gradients?
NASA Astrophysics Data System (ADS)
Ma, Xiangcheng; Hopkins, Philip F.; Feldmann, Robert; Torrey, Paul; Faucher-Giguère, Claude-André; Kereš, Dušan
2017-04-01
Recent spatially resolved observations of galaxies at z ˜ 0.6-3 reveal that high-redshift galaxies show complex kinematics and a broad distribution of gas-phase metallicity gradients. To understand these results, we use a suite of high-resolution cosmological zoom-in simulations from the Feedback in Realistic Environments project, which include physically motivated models of the multiphase interstellar medium, star formation and stellar feedback. Our simulations reproduce the observed diversity of kinematic properties and metallicity gradients, broadly consistent with observations at z ˜ 0-3. Strong negative metallicity gradients only appear in galaxies with a rotating disc, but not all rotationally supported galaxies have significant gradients. Strongly perturbed galaxies with little rotation always have flat gradients. The kinematic properties and metallicity gradient of a high-redshift galaxy can vary significantly on short time-scales, associated with starburst episodes. Feedback from a starburst can destroy the gas disc, drive strong outflows and flatten a pre-existing negative metallicity gradient. The time variability of a single galaxy is statistically similar to the entire simulated sample, indicating that the observed metallicity gradients in high-redshift galaxies reflect the instantaneous state of the galaxy rather than the accretion and growth history on cosmological time-scales. We find weak dependence of metallicity gradient on stellar mass and specific star formation rate (sSFR). Low-mass galaxies and galaxies with high sSFR tend to have flat gradients, likely due to the fact that feedback is more efficient in these galaxies. We argue that it is important to resolve feedback on small scales in order to produce the diverse metallicity gradients observed.
High-speed Particle Image Velocimetry Near Surfaces
Lu, Louise; Sick, Volker
2013-01-01
Multi-dimensional and transient flows play a key role in many areas of science, engineering, and health sciences but are often not well understood. The complex nature of these flows may be studied using particle image velocimetry (PIV), a laser-based imaging technique for optically accessible flows. Though many forms of PIV exist that extend the technique beyond the original planar two-component velocity measurement capabilities, the basic PIV system consists of a light source (laser), a camera, tracer particles, and analysis algorithms. The imaging and recording parameters, the light source, and the algorithms are adjusted to optimize the recording for the flow of interest and obtain valid velocity data. Common PIV investigations measure two-component velocities in a plane at a few frames per second. However, recent developments in instrumentation have facilitated high-frame rate (> 1 kHz) measurements capable of resolving transient flows with high temporal resolution. Therefore, high-frame rate measurements have enabled investigations on the evolution of the structure and dynamics of highly transient flows. These investigations play a critical role in understanding the fundamental physics of complex flows. A detailed description for performing high-resolution, high-speed planar PIV to study a transient flow near the surface of a flat plate is presented here. Details for adjusting the parameter constraints such as image and recording properties, the laser sheet properties, and processing algorithms to adapt PIV for any flow of interest are included. PMID:23851899
Barnhardt, W.A.; Richmond, B.M.; Grossman, E.E.; Hart, P.
2005-01-01
High-resolution, seismic-reflection data elucidate the late Quaternary development of the largest coral-reef complex in the main Hawaiian Islands. Six acoustic facies were identified from reflection characteristics and lithosome geometry. An extensive, buried platform with uniformly low relief was traced beneath fore-reef and marginal shelf environments. This highly reflective surface dips gently seaward to ???130 m depth and locally crops out on the seafloor. It probably represents a wave-cut platform or ancient reef flat. We propose alternative evolutionary models, in which sea-level changes have modulated the development of reef systems, to explain the observed stratigraphic relationships. The primary difference between the models is the origin of the underlying antecedent surface, which arguably could have formed during either regression/lowstand or subsequent transgression.
Mobile patient monitoring based on impedance-loaded SAW-sensors.
Karilainen, Anna; Finnberg, Thomas; Uelzen, Thorsten; Dembowski, Klaus; Müller, Jörg
2004-11-01
A remotely requestable, passive, short-range sensor network for measuring small voltages is presented. The sensor system is able to simultaneously monitor six small voltages in millivolt-range, and it can be used for Holter-electrocardiogram (ECG) and other biopotential monitoring, or in industrial applications. The sensors are based on a surface acoustic wave (SAW) delay line with voltage-dependent, impedance loading on a reflector interdigital transducer (IDT). The load circuit impedance is varied by the capacitance of the voltage-controlled varactor. High resolution is achieved by developing a MOS-capacitor with a thin oxide, low flat-band voltage, and zero-voltage capacitance in the space-charge region, as well as a high-Q-microcoil by thick metal electroplating. Simultaneous monitoring of multiple potentials is realized by time-division-multiplexing of different sensor signals.
Kim, Jeong Won; Jeon, Hwan-Jin; Lee, Chang-Lyoul; Ahn, Chi Won
2017-03-02
Well-aligned, high-resolution (10 nm), three-dimensional (3D) hybrid nanostructures consisting of patterned cylinders and Au islands were fabricated on ITO substrates using an ion bombardment process and a tilted deposition process. The fabricated 3D hybrid nanostructure-embedded ITO maintained its excellent electrical and optical properties after applying a surface-structuring process. The solution processable organic photovoltaic device (SP-OPV) employing a 3D hybrid nanostructure-embedded ITO as the anode displayed a 10% enhancement in the photovoltaic performance compared to the photovoltaic device prepared using a flat ITO electrode, due to the improved charge collection (extraction and transport) efficiency as well as light absorbance by the photo-active layer.
Samant, Sanjiv S; Gopal, Arun
2006-08-01
Image quality in portal imaging suffers significantly from the loss in contrast and spatial resolution that results from the excessive Compton scatter associated with megavoltage x rays. In addition, portal image quality is further reduced due to the poor quantum efficiency (QE) of current electronic portal imaging devices (EPIDs). Commercial video-camera-based EPIDs or VEPIDs that utilize a thin phosphor screen in conjunction with a metal buildup plate to convert the incident x rays to light suffer from reduced light production due to low QE (<2% for Eastman Kodak Lanex Fast-B). Flat-panel EPIDs that utilize the same luminescent screen along with an a-Si:H photodiode array provide improved image quality compared to VEPIDs, but they are expensive and can be susceptible to radiation damage to the peripheral electronics. In this article, we present a prototype VEPID system for high quality portal imaging at sub-monitor-unit (subMU) exposures based on a thick scintillation crystal (TSC) that acts as a high QE luminescent screen. The prototype TSC system utilizes a 12 mm thick transparent CsI(Tl) (thallium-activated cesium iodide) scintillator for QE=0.24, resulting in significantly higher light production compared to commercial phosphor screens. The 25 X 25 cm2 CsI(Tl) screen is coupled to a high spatial and contrast resolution Video-Optics plumbicon-tube camera system (1240 X 1024 pixels, 250 microm pixel width at isocenter, 12-bit ADC). As a proof-of-principle prototype, the TSC system with user-controlled camera target integration was adapted for use in an existing clinical gantry (Siemens BEAMVIEW(PLUS)) with the capability for online intratreatment fluoroscopy. Measurements of modulation transfer function (MTF) were conducted to characterize the TSC spatial resolution. The measured MTF along with measurements of the TSC noise power spectrum (NPS) were used to determine the system detective quantum efficiency (DQE). A theoretical expression of DQE(0) was developed to be used as a predictive model to propose improvements in the optics associated with the light detection. The prototype TSC provides DQE(0)=0.02 with its current imaging geometry, which is an order of magnitude greater than that for commercial VEPID systems and comparable to flat-panel imaging systems. Following optimization in the imaging geometry and the use of a high-end, cooled charge-coupled-device (CCD) camera system, the performance of the TSC is expected to improve even further. Based on our theoretical model, the expected DQE(0)=0.12 for the TSC system with the proposed improvements, which exceeds the performance of current flat-panel EPIDs. The prototype TSC provides high quality imaging even at subMU exposures (typical imaging dose is 0.2 MU per image), which offers the potential for daily patient localization imaging without increasing the weekly dose to the patient. Currently, the TSC is capable of limited frame-rate fluoroscopy for intratreatment visualization of patient motion at approximately 3 frames/second, since the achievable frame rate is significantly reduced by the limitations of the camera-control processor. With optimized processor control, the TSC is expected to be capable of intratreatment imaging exceeding 10 frames/second to monitor patient motion.
[Evidence of lacrimal plugs via high resolution ultrasound].
Tost, Frank H W; Darman, Jacques
2003-07-01
The practical value of high-frequency ultrasound (transducer frequency of 20 MHz) for studying lacrimal plugs positioned into canaliculi was proved. Twelve patients with twenty intracanalicular plugs and two punctum plugs were examined via high-frequency B-scan ultrasonography using 20 MHz transducer (model I3 Sacramento, USA). Detection and localisation of the intracanalicular plugs was made by a 20 MHz sector scanner. The ultrasound examinations were performed 1 - 24 month after the placement of lacrimal plugs. After patient's head positioning, the high-frequency ultrasound investigation was done via immersion fluid (2 % methylcellulose). All patients with dry eye treated by lacrimal plug implant showed echographic structure in the lacrimal canaliculus. In transversal echograms it was possible to image both canaliculi together when the lids were half-closed. Contrary to the normal state, it was not necessary to inject viscous fluid into the canaliculus. High-resolution ultrasound was able to differentiate the normal canaliculus from the findings after plug placement. The echograms can vary from one plug type to another. Highly reflective structures were found after the placement of silicone intracanalicular plugs, e. g. HERRICK-Plug. In contrast, the ultrasonic image taken through acrylic polymer intracanalicular plugs showed homogeneous small reflective inner structure, e. g. SMART-Plug. However, smooth and flat acoustic interface between acrylic polymer plug and the lacrimal canaliculus produced strong echoes. 20 MHz ultrasound seems to be well suited for the detection and localisation of intracanalicular plugs. By use of 20 MHz ultrasound scans it is possible to get high-quality images of the intracanalicular plug and around lacrimal canaliculus. Compared with UBM, the depth of penetration is much higher with negligible resolution. On the whole, we believe that 20 MHz ultrasound can become a useful tool for evaluating the placement of intracanalicular plugs after insertion.
High-resolution tungsten spectroscopy relevant to the diagnostic of high-temperature tokamak plasmas
NASA Astrophysics Data System (ADS)
Rzadkiewicz, J.; Yang, Y.; Kozioł, K.; O'Mullane, M. G.; Patel, A.; Xiao, J.; Yao, K.; Shen, Y.; Lu, D.; Hutton, R.; Zou, Y.; JET Contributors
2018-05-01
The x-ray transitions in Cu- and Ni-like tungsten ions in the 5.19-5.26 Å wavelength range that are relevant as a high-temperature tokamak diagnostic, in particular for JET in the ITER-like wall configuration, have been studied. Tungsten spectra were measured at the upgraded Shanghai- Electron Beam Ion Trap operated with electron-beam energies from 3.16 to 4.55 keV. High-resolution measurements were performed by means of a flat Si 111 crystal spectrometer equipped by a CCD camera. The experimental wavelengths were determined with an accuracy of 0.3-0.4 mÅ. The wavelength of the ground-state transition in Cu-like tungsten from the 3 p53 d104 s 4 d [ (3/2 ,(1/2,5/2 ) 2] 1 /2 level was measured. All measured wavelengths were compared with those measured from JET ITER-like wall plasmas and with other experiments and various theoretical predictions including cowan, relac, multiconfigurational Dirac-Fock (MCDF), and fac calculations. To obtain a higher accuracy from theoretical predictions, the MCDF calculations were extended by taking into account correlation effects (configuration-interaction approach). It was found that such an extension brings the calculations closer to the experimental values in comparison with other calculations.
NASA Astrophysics Data System (ADS)
Lin, Han; Baoqi, Mao; Wen, Sun; Weimin, Shen
2016-10-01
There is a race to develop spaceborne high-resolution video cameras since Skybox's success. For low manufacture cost and adaption to micro and small satellites, it is urgent to design and develop compact long focal length optical system with not only small volume, light weight and easy implementation, and also two dimensional field. Our focus is on the Coaxial Three-Mirror Anastigmat (CTMA) with intermediate real image for its no need outer hood and compactness and for its easy alignment, low-order aspheric surface and low cost. The means to deflect its image space beam for accessibility of focal plane array detector and to eliminate its inherent secondary obscuration from its primary mirror central hole and deflection flat mirror is discussed. The conditions to satisfy the above-mentioned requirements are presented with our derived relationship among its optical and structural parameters based on Gaussian optics and geometry. One flat mirror near its exit pupil can be used to deflect its image plane from its axis. And its total length can be decreased with other some flat mirrors. Method for determination of its initial structure with the derived formulae is described through one design example. Furthermore, optimized CTMA without secondary obscuration and with effective focal length (EFFL) of 10m is reported. Its full field, F-number and total length are respectively 1.1°×1°, F/14.3, and one eighth of its EFFL. And its imaging quality is near diffraction limit.
Pjontek, Rastislav; Önenköprülü, Belgin; Scholz, Bernhard; Kyriakou, Yiannis; Schubert, Gerrit A; Othman, Ahmed; Wiesmann, Martin; Brockmann, Marc A
2016-01-01
Background Flat panel detector CT angiography with intravenous contrast agent injection (IV CTA) allows high-resolution imaging of cerebrovascular structures. Artifacts caused by metallic implants like platinum coils or clips lead to degradation of image quality and are a significant problem. Objective To evaluate the influence of a prototype metal artifact reduction (MAR) algorithm on image quality in patients with intracranial metallic implants. Methods Flat panel detector CT after intravenous application of 80 mL contrast agent was performed with an angiography system (Artis zee; Siemens, Forchheim, Germany) using a 20 s rotation protocol (200° rotation angle, 20 s acquisition time, 496 projections). The data before and after MAR of 26 patients with a total of 34 implants (coils, clips, stents) were independently evaluated by two blinded neuroradiologists. Results MAR improved the assessability of the brain parenchyma and small vessels (diameter <1 mm) in the neighborhood of metallic implants and at a distance of 6 cm (p<0.001 each, Wilcoxon test). Furthermore, MAR significantly improved the assessability of parent vessel patency and potential aneurysm remnants (p<0.005 each, McNemar test). MAR, however, did not improve assessability of stented vessels. Conclusions When an intravenous contrast protocol is used, MAR significantly ameliorates the assessability of brain parenchyma, vessels, and treated aneurysms in patients with intracranial coils or clips. PMID:26346458
Qu, Bin; Huang, Ying; Wang, Weiyuan; Sharma, Prateek; Kuhls-Gilcrist, Andrew T.; Cartwright, Alexander N.; Titus, Albert H.; Bednarek, Daniel R.; Rudin, Stephen
2011-01-01
Use of an extensible array of Electron Multiplying CCDs (EMCCDs) in medical x-ray imager applications was demonstrated for the first time. The large variable electronic-gain (up to 2000) and small pixel size of EMCCDs provide effective suppression of readout noise compared to signal, as well as high resolution, enabling the development of an x-ray detector with far superior performance compared to conventional x-ray image intensifiers and flat panel detectors. We are developing arrays of EMCCDs to overcome their limited field of view (FOV). In this work we report on an array of two EMCCD sensors running simultaneously at a high frame rate and optically focused on a mammogram film showing calcified ducts. The work was conducted on an optical table with a pulsed LED bar used to provide a uniform diffuse light onto the film to simulate x-ray projection images. The system can be selected to run at up to 17.5 frames per second or even higher frame rate with binning. Integration time for the sensors can be adjusted from 1 ms to 1000 ms. Twelve-bit correlated double sampling AD converters were used to digitize the images, which were acquired by a National Instruments dual-channel Camera Link PC board in real time. A user-friendly interface was programmed using LabVIEW to save and display 2K × 1K pixel matrix digital images. The demonstration tiles a 2 × 1 array to acquire increased-FOV stationary images taken at different gains and fluoroscopic-like videos recorded by scanning the mammogram simultaneously with both sensors. The results show high resolution and high dynamic range images stitched together with minimal adjustments needed. The EMCCD array design allows for expansion to an M×N array for arbitrarily larger FOV, yet with high resolution and large dynamic range maintained. PMID:23505330
NASA Astrophysics Data System (ADS)
Pinilla, P.; Tazzari, M.; Pascucci, I.; Youdin, A. N.; Garufi, A.; Manara, C. F.; Testi, L.; van der Plas, G.; Barenfeld, S. A.; Canovas, H.; Cox, E. G.; Hendler, N. P.; Pérez, L. M.; van der Marel, N.
2018-05-01
We analyze the dust morphology of 29 transition disks (TDs) observed with Atacama Large (sub-)Millimeter Array (ALMA) at (sub-)millimeter emission. We perform the analysis in the visibility plane to characterize the total flux, cavity size, and shape of the ring-like structure. First, we found that the M dust–M ⋆ relation is much flatter for TDs than the observed trends from samples of class II sources in different star-forming regions. This relation demonstrates that cavities open in high (dust) mass disks, independent of the stellar mass. The flatness of this relation contradicts the idea that TDs are a more evolved set of disks. Two potential reasons (not mutually exclusive) may explain this flat relation: the emission is optically thick or/and millimeter-sized particles are trapped in a pressure bump. Second, we discuss our results of the cavity size and ring width in the context of different physical processes for cavity formation. Photoevaporation is an unlikely leading mechanism for the origin of the cavity of any of the targets in the sample. Embedded giant planets or dead zones remain as potential explanations. Although both models predict correlations between the cavity size and the ring shape for different stellar and disk properties, we demonstrate that with the current resolution of the observations, it is difficult to obtain these correlations. Future observations with higher angular resolution observations of TDs with ALMA will help discern between different potential origins of cavities in TDs.
Disk hologram made from a computer-generated hologram.
Yamaguchi, Takeshi; Fujii, Tomohiko; Yoshikawa, Hiroshi
2009-12-01
We have been investigating disk holograms made from a computer-generated hologram (CGH). Since a general flat format hologram has a limited viewable area, we usually cannot see the other side of the reconstructed object. Therefore, we propose a computer-generated cylindrical hologram (CGCH) to obtain a hologram with a 360 deg viewable area. The CGCH has a special shape that is difficult to construct and calculation of such a hologram takes too much time. In contrast, a disk-type hologram is well known as a 360 deg viewable hologram. Since a regular disk hologram is a flat reflective type, the reconstruction setup is easy. However, there are just a few reports about creating a disk hologram by use of a CGH. Because the output device lacks spatial resolution, the hologram cannot provide a large diffraction angle. In addition, the viewing zone depends on the hologram size; the maximum size of the fringe pattern is decided on the basis of the special frequency of the output device. The calculation amount of the proposed hologram is approximately a quarter of that of a CGCH. In a previous study, a disk hologram made from a CGH was achieved. However, since the relation between the vertical viewing zone and reconstructed image size is a trade-off, the size of the reconstructed image and view zone is not enough for practical use. To improve both parameters, we modified a fringe printer to issue a high-resolution fringe pattern for a disk hologram. In addition, we propose a new calculation method for fast calculation.
NASA Astrophysics Data System (ADS)
Dahi, Bahram; Keyes, Gary S.; Rendon, David A.; DiBianca, Frank A.
2007-03-01
A new Cone-Beam CT (CBCT) system is introduced that uses the concept of Variable Resolution X-ray (VRX) detection, which has previously been demonstrated to significantly increase spatial resolution for small objects. An amorphous silicon Flat Panel Detector (FPD) with a CsI scintillator (PaxScan 2020, Varian, Salt Lake City, UT) is coupled with a micro-focus x-ray tube (35 - 80 kVp, 10 - 250 μA) to form a CBCT. The FPD is installed on a rotating arm that can be adjusted to any angle θ, called the VRX angle, between 90° and 0° with respect to the x-ray direction. A VRX angle of 90° for the detector corresponds to a conventional CBCT whereas a VRX angle of 30° means that the detector is tilted 90° - 30° = 60° from its perpendicular position. Tilting the FPD in this manner reduces both the line-spread function width and the sampling distance by a factor of sin(θ), thereby increasing detector spatial resolution proportionately. An in-house phantom is used to measure the MTF of the reconstructed CT images using different VRX angles. An increase by a factor of 1.67 +/- 0.007 is observed in the MTF cutoff frequency at 30° compared to 90° in images acquired at 75 kVp. Expected theoretical value for this case is 2.0. The new Cone-Beam Variable Resolution X-ray (CB-VRX) CT system is expected to significantly improve the images acquired from small objects - such as small animals - while exploiting the opportunities offered by a conventional CBCT.
The Changes of COP and Foot Pressure after One Hour's Walking Wearing High-heeled and Flat Shoes
Ko, Dong Yeol; Lee, Han Suk
2013-01-01
[Purpose] This study aimed to determine the most appropriate height for shoe heels by measuring the displacement of the COP (center of pressure) and changes in the distribution of foot pressure after walking in flat (0.5 cm), middle-heeled (4 cm), and high-heeled (9 cm) shoes for 1 hour. [Methods] A single-subject design was used, with 15 healthy women wearing shoes with heels of each height in a random order. The foot pressure and displacement of COP before and after walking in an ordinary environment for 1 hour were measured using an FDM-S (zebris Medical GmbH, Germany). [Results] The distribution of foot pressure did not change significantly after walking in middle-heeled (4 cm) shoes but did change significantly after walking in either flat (0.5 cm) or high-heeled (9 cm) shoes. Similarly, the COP was not significantly displaced after walking in middle-heeled (4 cm) shoes but was significantly displaced after walking in either flat (0.5 cm) or high-heeled (9 cm) shoes. [Conclusion] Both flat and high-heeled shoes had adverse effects on the body. Middle-heeled (4 cm) shoes are preferable to both flat (0.5 cm) and high-heeled (9 cm) shoes for the health and comfort of the feet. PMID:24259782
NASA Astrophysics Data System (ADS)
Loye, A.; Jaboyedoff, M.; Pedrazzini, A.
2009-10-01
The availability of high resolution Digital Elevation Models (DEM) at a regional scale enables the analysis of topography with high levels of detail. Hence, a DEM-based geomorphometric approach becomes more accurate for detecting potential rockfall sources. Potential rockfall source areas are identified according to the slope angle distribution deduced from high resolution DEM crossed with other information extracted from geological and topographic maps in GIS format. The slope angle distribution can be decomposed in several Gaussian distributions that can be considered as characteristic of morphological units: rock cliffs, steep slopes, footslopes and plains. A terrain is considered as potential rockfall sources when their slope angles lie over an angle threshold, which is defined where the Gaussian distribution of the morphological unit "Rock cliffs" become dominant over the one of "Steep slopes". In addition to this analysis, the cliff outcrops indicated by the topographic maps were added. They contain however "flat areas", so that only the slope angles values above the mode of the Gaussian distribution of the morphological unit "Steep slopes" were considered. An application of this method is presented over the entire Canton of Vaud (3200 km2), Switzerland. The results were compared with rockfall sources observed on the field and orthophotos analysis in order to validate the method. Finally, the influence of the cell size of the DEM is inspected by applying the methodology over six different DEM resolutions.
Nela, Luca; Tang, Jianshi; Cao, Qing; Tulevski, George; Han, Shu-Jen
2018-03-14
Artificial "electronic skin" is of great interest for mimicking the functionality of human skin, such as tactile pressure sensing. Several important performance metrics include mechanical flexibility, operation voltage, sensitivity, and accuracy, as well as response speed. In this Letter, we demonstrate a large-area high-performance flexible pressure sensor built on an active matrix of 16 × 16 carbon nanotube thin-film transistors (CNT TFTs). Made from highly purified solution tubes, the active matrix exhibits superior flexible TFT performance with high mobility and large current density, along with a high device yield of nearly 99% over 4 inch sample area. The fully integrated flexible pressure sensor operates within a small voltage range of 3 V and shows superb performance featuring high spatial resolution of 4 mm, faster response than human skin (<30 ms), and excellent accuracy in sensing complex objects on both flat and curved surfaces. This work may pave the road for future integration of high-performance electronic skin in smart robotics and prosthetic solutions.
Study of Image Qualities From 6D Robot-Based CBCT Imaging System of Small Animal Irradiator.
Sharma, Sunil; Narayanasamy, Ganesh; Clarkson, Richard; Chao, Ming; Moros, Eduardo G; Zhang, Xin; Yan, Yulong; Boerma, Marjan; Paudel, Nava; Morrill, Steven; Corry, Peter; Griffin, Robert J
2017-01-01
To assess the quality of cone beam computed tomography images obtained by a robotic arm-based and image-guided small animal conformal radiation therapy device. The small animal conformal radiation therapy device is equipped with a 40 to 225 kV X-ray tube mounted on a custom made gantry, a 1024 × 1024 pixels flat panel detector (200 μm resolution), a programmable 6 degrees of freedom robot for cone beam computed tomography imaging and conformal delivery of radiation doses. A series of 2-dimensional radiographic projection images were recorded in cone beam mode by placing and rotating microcomputed tomography phantoms on the "palm' of the robotic arm. Reconstructed images were studied for image quality (spatial resolution, image uniformity, computed tomography number linearity, voxel noise, and artifacts). Geometric accuracy was measured to be 2% corresponding to 0.7 mm accuracy on a Shelley microcomputed tomography QA phantom. Qualitative resolution of reconstructed axial computed tomography slices using the resolution coils was within 200 μm. Quantitative spatial resolution was found to be 3.16 lp/mm. Uniformity of the system was measured within 34 Hounsfield unit on a QRM microcomputed tomography water phantom. Computed tomography numbers measured using the linearity plate were linear with material density ( R 2 > 0.995). Cone beam computed tomography images of the QRM multidisk phantom had minimal artifacts. Results showed that the small animal conformal radiation therapy device is capable of producing high-quality cone beam computed tomography images for precise and conformal small animal dose delivery. With its high-caliber imaging capabilities, the small animal conformal radiation therapy device is a powerful tool for small animal research.
Nuclear pore assembly proceeds by an inside-out extrusion of the nuclear envelope
Otsuka, Shotaro; Bui, Khanh Huy; Schorb, Martin; Hossain, M Julius; Politi, Antonio Z; Koch, Birgit; Eltsov, Mikhail; Beck, Martin; Ellenberg, Jan
2016-01-01
The nuclear pore complex (NPC) mediates nucleocytoplasmic transport through the nuclear envelope. How the NPC assembles into this double membrane boundary has remained enigmatic. Here, we captured temporally staged assembly intermediates by correlating live cell imaging with high-resolution electron tomography and super-resolution microscopy. Intermediates were dome-shaped evaginations of the inner nuclear membrane (INM), that grew in diameter and depth until they fused with the flat outer nuclear membrane. Live and super-resolved fluorescence microscopy revealed the molecular maturation of the intermediates, which initially contained the nuclear and cytoplasmic ring component Nup107, and only later the cytoplasmic filament component Nup358. EM particle averaging showed that the evagination base was surrounded by an 8-fold rotationally symmetric ring structure from the beginning and that a growing mushroom-shaped density was continuously associated with the deforming membrane. Quantitative structural analysis revealed that interphase NPC assembly proceeds by an asymmetric inside-out extrusion of the INM. DOI: http://dx.doi.org/10.7554/eLife.19071.001 PMID:27630123
NASA Astrophysics Data System (ADS)
Palma, K. D.; Pichotka, M.; Hasn, S.; Granja, C.
2017-02-01
In mammography the difficult task to detect microcalcifications (≈ 100 μm) and low contrast structures in the breast has been a topic of interest from its beginnings. The possibility to improve the image quality requires the effort to employ novel X-ray imaging techniques, such as phase-contrast, and high resolution detectors. Phase-contrast techniques are promising tools for medical diagnosis because they provide additional and complementary information to traditional absorption-based X-ray imaging methods. In this work a Hamamatsu microfocus X-ray source with tungsten anode and a photon counting detector (Timepix operated in Medipix mode) was used. A significant improvement in the detection of phase-effects using Medipix detector was observed in comparison to an standard flat-panel detector. An optimization of geometrical parameters reveals the dependency on the X-ray propagation path and the small angle deviation. The quantification of these effects was achieved taking into account the image noise, contrast, spatial resolution of the phase-enhancement, absorbed dose, and energy dependence.
Evaluation of a gamma camera system for the RITS-6 accelerator using the self-magnetic pinch diode
NASA Astrophysics Data System (ADS)
Webb, Timothy J.; Kiefer, Mark L.; Gignac, Raymond; Baker, Stuart A.
2015-08-01
The self-magnetic pinch (SMP) diode is an intense radiographic source fielded on the Radiographic Integrated Test Stand (RITS-6) accelerator at Sandia National Laboratories in Albuquerque, NM. The accelerator is an inductive voltage adder (IVA) that can operate from 2-10 MV with currents up to 160 kA (at 7 MV). The SMP diode consists of an annular cathode separated from a flat anode, holding the bremsstrahlung conversion target, by a vacuum gap. Until recently the primary imaging diagnostic utilized image plates (storage phosphors) which has generally low DQE at these photon energies along with other problems. The benefits of using image plates include a high-dynamic range, good spatial resolution, and ease of use. A scintillator-based X-ray imaging system or "gamma camera" has been fielded in front of RITS and the SMP diode which has been able to provide vastly superior images in terms of signal-to-noise with similar resolution and acceptable dynamic range.
Performance evaluation of G8, a high sensitivity benchtop preclinical PET/CT tomograph.
Gu, Zheng; Taschereau, Richard; Vu, Nam; Prout, David L; Silverman, Robert W; Lee, Jason; Chatziioannou, Arion F
2018-06-14
G8 is a bench top integrated PET/CT scanner dedicated to high sensitivity and high resolution imaging of mice. This work characterizes its National Electrical Manufacturers Association (NEMA) NU4-2008 performance where applicable and also provides an assessment of the basic imaging performance of the CT subsystem. Methods: The PET subsystem in G8 consists of four flat-panel type detectors arranged in a box like geometry. Each panel consists of two modules of a 26 × 26 pixelated bismuth germanate (BGO) scintillator array with individual crystals measuring 1.75 × 1.75 × 7.2 mm. The crystal arrays are coupled to multichannel photomultiplier tubes via a tapered, pixelated glass lightguide. A cone-beam CT consisting of a micro focus X-ray source and a Complementary Metal Oxide Semiconductor (CMOS) detector provides anatomical information. Sensitivity, spatial resolution, energy resolution, scatter fraction, count-rate performance and the capability of phantom and mouse imaging were evaluated for the PET subsystem. Noise, dose level, contrast and resolution were evaluated for the CT subsystem. Results: With an energy window of 350-650 keV, the peak sensitivity was measured to be 9.0% near the center of the field of view (CFOV). The crystal energy resolution ranged from 15.0% to 69.6% full width at half maximum (FWHM), with a mean of 19.3 ± 3.7%. The average detector intrinsic spatial resolution was 1.30 mm and 1.38 mm FWHM in the transverse and axial directions. The maximum likelihood expectation maximization (ML-EM) reconstructed image of a point source in air, averaged 0.81 ± 0.11 mm FWHM. The peak noise equivalent count rate (NECR) for the mouse-sized phantom was 44 kcps for a total activity of 2.9 MBq (78 µCi) and the scatter fraction was 11%. For the CT subsystem, the value of the modulation transfer function (MTF) at 10% was 2.05 cycles/mm. Conclusion: The overall performance demonstrates that the G8 can produce high quality images for molecular imaging based biomedical research. Copyright © 2018 by the Society of Nuclear Medicine and Molecular Imaging, Inc.
NASA Technical Reports Server (NTRS)
Doerffer, R.; Fischer, J.; Stoessel, M.; Brockmann, C.; Grassl, H.
1989-01-01
Landsat 5 TM measurements are found suitable for study of small scale features in coastal waters; three independent factors, namely suspended matter concentration, atmospheric scattering, and sea-surface temperature, were extracted from all seven TM channels on the basis of factor analysis. The distribution of suspended matter in near-surface water layer and sea surface temperature is observable with a spatial resolution of at least 120 x 120 sq m. The high correlation between water depth and suspended matter distribution established by ship-gathered data supports the presently hypothesized control by bottom topography and wind-modified tidal currents of eddy and front formation.
High Resolution Imaging from the Stratosphere: Atmospheric Seeing and Tether Dynamics
NASA Technical Reports Server (NTRS)
Ford, Holland
2003-01-01
A balloon-borne telescope that is capable of imaging planets orbiting nearby stars requires that the flatness and tilt of the wavefront of the light entering that telescope meet certain stringent conditions. The atmosphere through which the light propagates distorts the wavefront due to turbulence in the atmosphere and due to the disturbances caused by the balloon itself The magnitude of these effects may be estimated, but no direct measurements have been made at the level of precision necessary for designing a telescope as demanding as we envision. Therefore, under this grant we carried out a study of techniques that could be used to make an in situ measurement of the distortion of the optical wavefront.
Coronal abundances and their variation
NASA Technical Reports Server (NTRS)
Saba, Julia L. R.
1994-01-01
This contract supports the investigation of elemental abundances in the solar corona, principally through analysis of high-resolution software X-ray spectra from the Flat Crystal Spectrometer on NASA's Solar Maximum Mission. The goals of the study are a characterization of the mean values of relative abundances of elements accessible in the FCS data, and information on the extent and circumstances of their variability. This report is a summation of the data analysis and reporting activities which occurred since the last report, submitted two months early, in April 1994, to facilitate evaluation of the first year's progress for contract renewal. Hence this report covers the period 15 April 1994 - 15 December 1994. A list of publications resulting from this research is included.
McCaw, Travis J; Micka, John A; Dewerd, Larry A
2011-10-01
Gafchromic(®) EBT2 film has a yellow marker dye incorporated into the active layer of the film that can be used to correct the film response for small variations in thickness. This work characterizes the effect of the marker-dye correction on the uniformity and uncertainty of dose measurements with EBT2 film. The effect of variations in time postexposure on the uniformity of EBT2 is also investigated. EBT2 films were used to measure the flatness of a (60)Co field to provide a high-spatial resolution evaluation of the film uniformity. As a reference, the flatness of the (60)Co field was also measured with Kodak EDR2 films. The EBT2 films were digitized with a flatbed document scanner 24, 48, and 72 h postexposure, and the images were analyzed using three methods: (1) the manufacturer-recommended marker-dye correction, (2) an in-house marker-dye correction, and (3) a net optical density (OD) measurement in the red color channel. The field flatness was calculated from orthogonal profiles through the center of the field using each analysis method, and the results were compared with the EDR2 measurements. Uncertainty was propagated through a dose calculation for each analysis method. The change in the measured field flatness for increasing times postexposure was also determined. Both marker-dye correction methods improved the field flatness measured with EBT2 film relative to the net OD method, with a maximum improvement of 1% using the manufacturer-recommended correction. However, the manufacturer-recommended correction also resulted in a dose uncertainty an order of magnitude greater than the other two methods. The in-house marker-dye correction lowered the dose uncertainty relative to the net OD method. The measured field flatness did not exhibit any unidirectional change with increasing time postexposure and showed a maximum change of 0.3%. The marker dye in EBT2 can be used to improve the response uniformity of the film. Depending on the film analysis method used, however, application of a marker-dye correction can improve or degrade the dose uncertainty relative to the net OD method. The uniformity of EBT2 was found to be independent of the time postexposure.
Detailed Geophysical Fault Characterization in Yucca Flat, Nevada Test Site, Nevada
Asch, Theodore H.; Sweetkind, Donald S.; Burton, Bethany L.; Wallin, Erin L.
2009-01-01
Yucca Flat is a topographic and structural basin in the northeastern part of the Nevada Test Site (NTS) in Nye County, Nevada. Between the years 1951 and 1992, 659 underground nuclear tests took place in Yucca Flat; most were conducted in large, vertical excavations that penetrated alluvium and the underlying Cenozoic volcanic rocks. Radioactive and other potential chemical contaminants at the NTS are the subject of a long-term program of investigation and remediation by the U.S. Department of Energy (DOE), National Nuclear Security Administration, Nevada Site Office, under its Environmental Restoration Program. As part of the program, the DOE seeks to assess the extent of contamination and to evaluate the potential risks to humans and the environment from byproducts of weapons testing. To accomplish this objective, the DOE Environmental Restoration Program is constructing and calibrating a ground-water flow model to predict hydrologic flow in Yucca Flat as part of an effort to quantify the subsurface hydrology of the Nevada Test Site. A necessary part of calibrating and evaluating a model of the flow system is an understanding of the location and characteristics of faults that may influence ground-water flow. In addition, knowledge of fault-zone architecture and physical properties is a fundamental component of the containment of the contamination from underground nuclear tests, should such testing ever resume at the Nevada Test Site. The goal of the present investigation is to develop a detailed understanding of the geometry and physical properties of fault zones in Yucca Flat. This study was designed to investigate faults in greater detail and to characterize fault geometry, the presence of fault splays, and the fault-zone width. Integrated geological and geophysical studies have been designed and implemented to work toward this goal. This report describes the geophysical surveys conducted near two drill holes in Yucca Flat, the data analyses performed, and the integrated interpretations developed from the suite of geophysical methodologies utilized in this investigation. Data collection for this activity started in the spring of 2005 and continued into 2006. A suite of electrical geophysical surveys were run in combination with ground magnetic surveys; these surveys resulted in high-resolution subsurface data that portray subsurface fault geometry at the two sites and have identified structures not readily apparent from surface geologic mapping, potential field geophysical data, or surface effects fracture maps.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Russ, M; Ionita, C; Bednarek, D
Purpose: In endovascular image-guided neuro-interventions, visualization of fine detail is paramount. For example, the ability of the interventionist to visualize the stent struts depends heavily on the x-ray imaging detector performance. Methods: A study to examine the relative performance of the high resolution MAF-CMOS (pixel size 75µm, Nyquist frequency 6.6 cycles/mm) and a standard Flat Panel Detector (pixel size 194µm, Nyquist frequency 2.5 cycles/mm) detectors in imaging a neuro stent was done using the Generalized Measured Relative Object Detectability (GM-ROD) metric. Low quantum noise images of a deployed stent were obtained by averaging 95 frames obtained by both detectors withoutmore » changing other exposure or geometric parameters. The square of the Fourier transform of each image is taken and divided by the generalized normalized noise power spectrum to give an effective measured task-specific signal-to-noise ratio. This expression is then integrated from 0 to each of the detector’s Nyquist frequencies, and the GM-ROD value is determined by taking a ratio of the integrals for the MAF-CMOS to that of the FPD. The lower bound of integration can be varied to emphasize high frequencies in the detector comparisons. Results: The MAF-CMOS detector exhibits vastly superior performance over the FPD when integrating over all frequencies, yielding a GM-ROD value of 63.1. The lower bound of integration was stepped up in increments of 0.5 cycles/mm for higher frequency comparisons. As the lower bound increased, the GM-ROD value was augmented, reflecting the superior performance of the MAF-CMOS in the high frequency regime. Conclusion: GM-ROD is a versatile metric that can provide quantitative detector and task dependent comparisons that can be used as a basis for detector selection. Supported by NIH Grant: 2R01EB002873 and an equipment grant from Toshiba Medical Systems Corporation.« less
NASA Astrophysics Data System (ADS)
Gans, Christine R.; Beck, Susan L.; Zandt, George; Gilbert, Hersh; Alvarado, Patricia; Anderson, Megan; Linkimer, Lepolt
2011-07-01
The Pampean flat slab of central Chile and Argentina (30°-32°S) has strongly influenced Cenozoic tectonics in western Argentina, which contains both the thick-skinned, basement-cored uplifts of the Sierras Pampeanas and the thin-skinned Andean Precordillera fold and thrust belt. In this region of South America, the Nazca Plate is subducting nearly horizontally beneath the South American Plate at ˜100 km depth. To gain a better understanding of the deeper structure of this region, including the transition from flat to 'normal' subduction to the south, three IRIS-PASSCAL arrays of broad-band seismic stations have been deployed in central Argentina. Using the dense SIEMBRA array, combined with the broader CHARGE and ESP arrays, the flat slab is imaged for the first time in 3-D detail using receiver function (RF) analysis. A distinct pair of RF arrivals consisting of a negative pulse that marks the top of the oceanic crust, followed by a positive pulse, which indicates the base of the oceanic crust, can be used to map the slab's structure. Depths to Moho and oceanic crustal thicknesses estimated from RF results provide new, more detailed regional maps. An improved depth to continental Moho map shows depths of more than 70 km in the main Cordillera and ˜50 km in the western Sierras Pampeanas, that shallow to ˜35 km in the eastern Sierras Pampeanas. Depth to Moho contours roughly follow terrane boundaries. Offshore, the hotspot seamount chain of the Juan Fernández Ridge (JFR) is thought to create overthickened oceanic crust, providing a mechanism for flat slab subduction. By comparing synthetic RFs, based on various structures, to the observed RF signal we determine that the thickness of the oceanic crust at the top of the slab averages at least ˜13-19 km, supporting the idea of a moderately overthickened crust to provide the additional buoyancy for the slab to remain flat. The overthickened region is broader than the area directly aligned with the path of the JFR, however, and indicates, along with the slab earthquake locations, that the flat slab area is wider than the JFR volcanic chain observed in the offshore bathymetry. Further, RFs indicate that the subducted oceanic crust in the region directly along the path of the subducted ridge is broken by trench-parallel faults. One explanation for these faults is that they are older structures within the oceanic crust that were created when the slab subducted. Alternatively, it is possible that faults formed recently from tectonic underplating caused by increased interplate coupling in the flat slab region.
NASA Technical Reports Server (NTRS)
1997-01-01
Color image of part of the Ismenius Lacus region of Mars (MC-5 quadrangle) containing the impact crater Moreux (right center); north toward top. The scene shows heavily cratered highlands in the south on relatively smooth lowland plains in the north separated by a belt of dissected terrain, containing flat-floored valleys, mesas, and buttes. This image is a composite of Viking medium-resolution images in black and white and low-resolution images in color. The image extends from latitude 36 degrees N. to 50 degrees N. and from longitude 310 degrees to 340 degrees; Lambert conformal conic projection. The dissected terrain along the highlands/lowlands boundary consists of the flat-floored valleys of Deuteronilus Mensae (on left) and Prontonilus Mensae (on right) and farther north the small, rounded hills of knobby terrain. Flows on the mensae floors contain striae that run parallel to valley walls; where valleys meet, the striae merge, similar to medial moraines on glaciers. Terraces within the valley hills have been interpreted as either layered rocks or wave terraces. The knobby terrain has been interpreted as remnants of the old, densely cratered highland terrain perhaps eroded by mass wasting.
Montironi, Rodolfo; Thompson, Deborah; Scarpelli, Marina; Mazzucchelli, Roberta; Peketi, Prasanthi; Hamilton, Peter W; Bostwick, David G; Bartels, Peter H
2004-08-01
This digital texture analysis-based study evaluates the chromatin organization state in flat and cribriform high-grade prostatic intraepithelial neoplasia (PIN), in the adjacent normal looking secretory epithelium and in the co-occurring adenocarcinoma. Digital texture analysis (karyometry) was carried out on hematoxylin and eosin-stained sections from 24 radical prostatectomy specimens with high-grade PIN (12 with flat and 12 with cribriform architectural pattern, respectively) and cancer. Quantification was also conducted on the normal looking secretory epithelium. Discriminant analysis and the nonsupervised learning algorithm P-index were used to identify suitable subsets of features useful for the discrimination and classification of pathological groups and to explore multivariate data structure in the pathological subgroups. The average nuclear abnormality increases monotonically from the histologically normal appearing secretory epithelium to high-grade PIN and to adenocarcinoma. The nuclei from the so-called perimeter compartment of the flat high-grade PIN lesions show a higher nuclear abnormality compared to the nuclei of the cribriform high-grade PINs. Discriminant analysis shows that flat and cribriform high-grade PINs fall into two populations. Processing by the nonsupervised learning algorithm P-index revealed the existence of three well-defined, distinct subpopulations of nuclei of different chromatin phenotype. In the flat high-grade PIN lesions the proportions of nuclei in the three subpopulations are 16.5% (low abnormality), 25.0% (mid abnormality) and 58.5% (high abnormality), respectively. In the cribriform high-grade PIN lesions, 100% of the nuclei are in the mid-abnormality subpopulation. These differences are also discernible in the co-occurring adenocarcinoma and the histologically normal appearing secretory epithelium. To conclude, karyometry and statistical analysis detect the existence of distinct cell subpopulations of different chromatin packaging and phenotype, with the nuclei from the flat high-grade PIN lesions, adjacent normal looking epithelium and co-occurring adenocarcinoma expressing a greater nuclear abnormality than in the specimens with cribriform high-grade PIN.
NASA Astrophysics Data System (ADS)
Chen, Shu-Hsia; Wu, Shin-Tson
1992-10-01
A broad range of interdisciplinary subjects related to display technologies is addressed, with emphasis on high-definition displays, CRTs, projection displays, materials for display application, flat-panel displays, display modeling, and polymer-dispersed liquid crystals. Particular attention is given to a CRT approach to high-definition television display, a superhigh-resolution electron gun for color display CRT, a review of active-matrix liquid-crystal displays, color design for LCD parameters in projection and direct-view applications, annealing effects on ZnS:TbF3 electroluminescent devices prepared by RF sputtering, polycrystalline silicon thin film transistors with low-temperature gate dielectrics, refractive index dispersions of liquid crystals, a new rapid-response polymer-dispersed liquid-crystal material, and improved liquid crystals for active-matrix displays using high-tilt-orientation layers. (No individual items are abstracted in this volume)
Alegre-Sanchez, Adrian; Jiménez-Gómez, Natalia; Moreno-Arrones, Óscar M; Fonda-Pascual, Pablo; Pérez-García, Bibiana; Jaén-Olasolo, Pedro; Boixeda, Pablo
2018-02-09
The novel picosecond lasers, initially developed for faster tattoo removal, have also shown great efficacy in endogenous pigmentary disorders. To describe the efficacy and safety profile of an alexandrite (755-nm) picosecond laser in a wide range of pigmented flat and elevated cutaneous lesions. A retrospective study was performed in which we collected all the clinical images of patients treated with the 755-nm alexandrite picosecond laser for 12 months (November 2016-November 2017). Clinical features were obtained from their medical charts. Patients treated for tattoo removal were excluded. All the images were analyzed by three blind physicians attending to a visual analogue scale (VAS) from 0 to 5 (0, no change; 1, 1-24% clearance; 2, 25-49% clearance; 3, 50-74% clearance; 4, 75-99% clearance; 5, complete clearance). Patient satisfaction was obtained from a subjective survey including four items: very satisfied, satisfied, non-satisfied, and totally dissatisfied. Thirty-seven patients were included (12 males; 25 females). The mean age of the study was 42.35 years. Twenty-five patients (68%) were treated for different pigmented flat disorders such as solar and mucosal lentigines (5), stasis dermatitis (4), or nevus of Ota (4), among other diagnoses. Twelve patients (32%) were treated for epidermal elevated lesions such as warts (5), epidermal nevi (2), and seborrheic keratosis (3), among other elevated lesions. Mean number of laser treatment was 3.02 sessions while mean follow-up after last laser treatment was 4.02 months. Mean VAS score of the three observers was 3.44 (61% of clearance) for pigmentary flat disorders and 3.60 (67%) for elevated lesions. Adverse effects reported were mild blistering in the first 2-5 days following laser treatment in some of the patients. Overall satisfaction among the patients included was high. The novel 755-nm picosecond alexandrite laser is effective not only for the resolution of pigmented flat lesions of different nature but also for the treatment of the more difficult elevated pigmented lesions.
Direct measurement of interaction forces between a single bacterium and a flat plate.
Klein, Jonah D; Clapp, Aaron R; Dickinson, Richard B
2003-05-15
A technique for precisely measuring the equilibrium and viscous interaction forces between a single bacterium and a flat surface as functions of separation distance is described. A single-beam gradient optical trap was used to micromanipulate the bacterium against a flat surface while evanescent wave light scattering was used to measure separation distances. Calibrating the optical trap far from the surface allowed the trapped bacterium to be used as a force probe. Equilibrium force-distance profiles were determined by measuring the deflection of the cell from the center of the optical trap at various trap positions. Simultaneously, viscous forces were determined by measuring the relaxation time for the fluctuating bacterium. Absolute distances were determined using a best-fit approximation to the theoretical prediction for the hindered mobility of a diffusing sphere near a wall. Using this approach, forces in the range from 0.01 to 4 pN were measured at near-nanometer resolution between Staphylococcus aureus and glass that was bare or coated with adsorbed protein.
Nonsingular bouncing cosmology: Consistency of the effective description
NASA Astrophysics Data System (ADS)
Koehn, Michael; Lehners, Jean-Luc; Ovrut, Burt
2016-05-01
We explicitly confirm that spatially flat nonsingular bouncing cosmologies make sense as effective theories. The presence of a nonsingular bounce in a spatially flat universe implies a temporary violation of the null energy condition, which can be achieved through a phase of ghost condensation. We calculate the scale of strong coupling and demonstrate that the ghost-condensate bounce remains trustworthy throughout, and that all perturbation modes within the regime of validity of the effective description remain under control. For this purpose we require the perturbed action up to third order in perturbations, which we calculate in both flat and co-moving gauge—since these two gauges allow us to highlight different physical aspects. Our conclusion is that there exist healthy descriptions of nonsingular bouncing cosmologies providing a viable resolution of the big-bang singularities in cosmological models. Our results also suggest a variant of ekpyrotic cosmology, in which entropy perturbations are generated during the contracting phase, but are only converted into curvature perturbations after the bounce.
High frequency wide-band transformer uses coax to achieve high turn ratio and flat response
NASA Technical Reports Server (NTRS)
De Parry, T.
1966-01-01
Center-tap push-pull transformer with toroidal core helically wound with a single coaxial cable creates a high frequency wideband transformer. This transformer has a high-turn ratio, a high coupling coefficient, and a flat broadband response.
Mobility and persistence of methane in groundwater in a controlled-release field experiment
NASA Astrophysics Data System (ADS)
Cahill, Aaron G.; Steelman, Colby M.; Forde, Olenka; Kuloyo, Olukayode; Emil Ruff, S.; Mayer, Bernhard; Ulrich Mayer, K.; Strous, Marc; Cathryn Ryan, M.; Cherry, John A.; Parker, Beth L.
2017-03-01
Expansion of shale gas extraction has fuelled global concern about the potential impact of fugitive methane on groundwater and climate. Although methane leakage from wells is well documented, the consequences on groundwater remain sparsely studied and are thought by some to be minor. Here we present the results of a 72-day methane gas injection experiment into a shallow, flat-lying sand aquifer. In our experiment, although a significant fraction of methane vented to the atmosphere, an equal portion remained in the groundwater. We find that methane migration in the aquifer was governed by subtle grain-scale bedding that impeded buoyant free-phase gas flow and led to episodic releases of free-phase gas. The result was lateral migration of gas beyond that expected by groundwater advection alone. Methane persisted in the groundwater zone despite active growth of methanotrophic bacteria, although much of the methane that vented into the vadose zone was oxidized. Our findings demonstrate that even small-volume releases of methane gas can cause extensive and persistent free phase and solute plumes emanating from leaks that are detectable only by contaminant hydrogeology monitoring at high resolution.
Sensitive Fibre-Based Thermoluminescence Detectors for High Resolution In-Vivo Dosimetry
NASA Astrophysics Data System (ADS)
Ghomeishi, Mostafa; Mahdiraji, G. Amouzad; Adikan, F. R. Mahamd; Ung, N. M.; Bradley, D. A.
2015-08-01
With interest in the potential of optical fibres as the basis of next-generation thermoluminescence dosimeters (TLDs), the development of suitable forms of material and their fabrication has become a fast-growing endeavour. Present study focuses on three types of Ge-doped optical fibres with different structural arrangements and/or shapes, namely conventional cylindrical fibre, capillary fibre, and flat fibre, all fabricated using the same optical fibre preform. For doses from 0.5 to 8 Gy, obtained at electron and photon energies, standard thermoluminescence (TL) characteristics of the optical fibres have been the subject of detailed investigation. The results show that in collapsing the capillary fibre into a flat shape, the TL yield is increased by a factor of 5.5, the yield being also some 3.2 times greater than that of the conventional cylindrical fibre fabricated from the same perform. This suggests a means of production of suitably sensitive TLD for in-vivo dosimeter applications. Addressing the associated defects generating luminescence from each of the optical fibres, the study encompasses analysis of the TL glow curves, with computerized glow curve deconvolution (CGCD) and 2nd order kinetics.
Sensitive Fibre-Based Thermoluminescence Detectors for High Resolution In-Vivo Dosimetry.
Ghomeishi, Mostafa; Mahdiraji, G Amouzad; Adikan, F R Mahamd; Ung, N M; Bradley, D A
2015-08-28
With interest in the potential of optical fibres as the basis of next-generation thermoluminescence dosimeters (TLDs), the development of suitable forms of material and their fabrication has become a fast-growing endeavour. Present study focuses on three types of Ge-doped optical fibres with different structural arrangements and/or shapes, namely conventional cylindrical fibre, capillary fibre, and flat fibre, all fabricated using the same optical fibre preform. For doses from 0.5 to 8 Gy, obtained at electron and photon energies, standard thermoluminescence (TL) characteristics of the optical fibres have been the subject of detailed investigation. The results show that in collapsing the capillary fibre into a flat shape, the TL yield is increased by a factor of 5.5, the yield being also some 3.2 times greater than that of the conventional cylindrical fibre fabricated from the same perform. This suggests a means of production of suitably sensitive TLD for in-vivo dosimeter applications. Addressing the associated defects generating luminescence from each of the optical fibres, the study encompasses analysis of the TL glow curves, with computerized glow curve deconvolution (CGCD) and 2(nd) order kinetics.
Sensitive Fibre-Based Thermoluminescence Detectors for High Resolution In-Vivo Dosimetry
Ghomeishi, Mostafa; Mahdiraji, G. Amouzad; Adikan, F. R. Mahamd; Ung, N. M.; Bradley, D. A.
2015-01-01
With interest in the potential of optical fibres as the basis of next-generation thermoluminescence dosimeters (TLDs), the development of suitable forms of material and their fabrication has become a fast-growing endeavour. Present study focuses on three types of Ge-doped optical fibres with different structural arrangements and/or shapes, namely conventional cylindrical fibre, capillary fibre, and flat fibre, all fabricated using the same optical fibre preform. For doses from 0.5 to 8 Gy, obtained at electron and photon energies, standard thermoluminescence (TL) characteristics of the optical fibres have been the subject of detailed investigation. The results show that in collapsing the capillary fibre into a flat shape, the TL yield is increased by a factor of 5.5, the yield being also some 3.2 times greater than that of the conventional cylindrical fibre fabricated from the same perform. This suggests a means of production of suitably sensitive TLD for in-vivo dosimeter applications. Addressing the associated defects generating luminescence from each of the optical fibres, the study encompasses analysis of the TL glow curves, with computerized glow curve deconvolution (CGCD) and 2nd order kinetics. PMID:26314683
Soft X-ray radiation damage in EM-CCDs used for Resonant Inelastic X-ray Scattering
NASA Astrophysics Data System (ADS)
Gopinath, D.; Soman, M.; Holland, A.; Keelan, J.; Hall, D.; Holland, K.; Colebrook, D.
2018-02-01
Advancement in synchrotron and free electron laser facilities means that X-ray beams with higher intensity than ever before are being created. The high brilliance of the X-ray beam, as well as the ability to use a range of X-ray energies, means that they can be used in a wide range of applications. One such application is Resonant Inelastic X-ray Scattering (RIXS). RIXS uses the intense and tuneable X-ray beams in order to investigate the electronic structure of materials. The photons are focused onto a sample material and the scattered X-ray beam is diffracted off a high resolution grating to disperse the X-ray energies onto a position sensitive detector. Whilst several factors affect the total system energy resolution, the performance of RIXS experiments can be limited by the spatial resolution of the detector used. Electron-Multiplying CCDs (EM-CCDs) at high gain in combination with centroiding of the photon charge cloud across several detector pixels can lead to sub-pixel spatial resolution of 2-3 μm. X-ray radiation can cause damage to CCDs through ionisation damage resulting in increases in dark current and/or a shift in flat band voltage. Understanding the effect of radiation damage on EM-CCDs is important in order to predict lifetime as well as the change in performance over time. Two CCD-97s were taken to PTB at BESSY II and irradiated with large doses of soft X-rays in order to probe the front and back surfaces of the device. The dark current was shown to decay over time with two different exponential components to it. This paper will discuss the use of EM-CCDs for readout of RIXS spectrometers, and limitations on spatial resolution, together with any limitations on instrument use which may arise from X-ray-induced radiation damage.
The influence of groundwater depth on coastal dune development at sand flats close to inlets
NASA Astrophysics Data System (ADS)
Silva, Filipe Galiforni; Wijnberg, Kathelijne M.; de Groot, Alma V.; Hulscher, Suzanne J. M. H.
2018-05-01
A cellular automata model is used to analyze the effects of groundwater levels and sediment supply on aeolian dune development occurring on sand flats close to inlets. The model considers, in a schematized and probabilistic way, aeolian transport processes, groundwater influence, vegetation development, and combined effects of waves and tides that can both erode and accrete the sand flat. Next to three idealized cases, a sand flat adjoining the barrier island of Texel, the Netherlands, was chosen as a case study. Elevation data from 18 annual LIDAR surveys was used to characterize sand flat and dune development. Additionally, a field survey was carried out to map the spatial variation in capillary fringe depth across the sand flat. Results show that for high groundwater situations, sediment supply became limited inducing formation of Coppice-like dunes, even though aeolian losses were regularly replenished by marine import during sand flat flooding. Long dune rows developed for high sediment supply scenarios which occurred for deep groundwater levels. Furthermore, a threshold depth appears to exist at which the groundwater level starts to affect dune development on the inlet sand flat. The threshold can vary spatially depending on external conditions such as topography. On sand flats close to inlets, groundwater is capable of introducing spatial variability in dune growth, which is consistent with dune development patterns found on the Texel sand flat.
Kimoto, Hideshi; Nozaki, Ken; Kudo, Setsuko; Kato, Ken; Negishi, Akira; Kayanne, Hajime
2002-03-01
A fully automated, continuous-flow-through type analyzer was developed to observe rapid changes in the concentration of total inorganic carbon (CT) in coastal zones. Seawater and an H3PO4 solution were fed into the analyzer's mixing coil by two high-precision valveless piston pumps. The CO2 was stripped from the seawater and moved into a carrier gas, using a newly developed continuous-flow-through CO2 extractor. A mass flow controller was used to assure a precise flow rate of the carrier gas. The CO2 concentration was then determined with a nondispersive infrared gas analyzer. This analyzer achieved a time-resolution of as good as 1 min. In field experiments on a shallow reef flat of Shiraho (Ishigaki Island, Southwest Japan), the analyzer detected short-term, yet extreme, variations in CT which manual sampling missed. Analytical values obtained by the analyzer on the boat were compared with those determined by potentiometric titration with a closed cell in a laboratory: CT(flow-through) = 0.980 x CT(titration) + 38.8 with r2 = 0.995 (n = 34; September 1998).
NASA Astrophysics Data System (ADS)
Ramgolam, Anoop; Sablong, Raphaël; Lafarge, Lionel; Saint-Jalmes, Hervé; Beuf, Olivier
2011-11-01
Colorectal cancer is a major health issue worldwide. Conventional white light endoscopy (WLE) coupled to histology is considered as the gold standard today and is the most widespread technique used for colorectal cancer diagnosis. However, during the early stages, colorectal cancer is very often characterized by flat adenomas which develop just underneath the mucosal surface. The use of WLE, which is heavily based on the detection of morphological changes, becomes quite delicate due to subtle or quasi-invisible morphological changes of the colonic lining. Several techniques are currently being investigated in the scope of providing new tools that would allow such a diagnostic or assist actual techniques in so doing. We hereby present a novel technique where high spatial resolution MRI is combined with autofluorescence and reflectance spectroscopy in a bimodal endoluminal probe to extract morphological data and biochemical information, respectively. The design and conception of the endoluminal probe are detailed and the promising preliminary results obtained in vitro (home-built phantom containing eosin and rhodamine B), on an organic sample (the kiwi fruit) and in vivo on a rabbit are presented and discussed.
NASA Astrophysics Data System (ADS)
Ramgolam, A.; Sablong, R.; Bou-Saïd, B.; Bouvard, S.; Saint-Jalmes, H.; Beuf, O.
2011-07-01
Conventional white light endoscopy (WLE) is the most widespread technique used today for colorectal cancer diagnosis and is considered as the gold standard when coupled to biopsy and histology. However for early stage colorectal cancer diagnosis, which is very often characterised by flat adenomas, the use of WLE is quite difficult due to subtle or quasiinvisible morphological changes of the colonic lining. Figures worldwide point out that diagnosing colorectal cancer in its early stages would significantly reduce the death toll all while increasing the 5-year survival rate. Several techniques are currently being investigated in the scope of providing new tools that would allow such a diagnostic or assist actual techniques in so doing. We hereby present a novel technique where High spatial Resolution MRI (HR-MRI) is coupled to optical spectroscopy (autofluorescence and reflectance) in a bimodal endoluminal probe to extract morphological data and biochemical information respectively. The design and conception of the endoluminal probe along with the preliminary results obtained with an organic phantom and in-vivo (rabbit) are presented and discussed.
NASA Technical Reports Server (NTRS)
Yang, Cheng I.; Guo, Yan-Hu; Liu, C.- H.
1996-01-01
The analysis and design of a submarine propulsor requires the ability to predict the characteristics of both laminar and turbulent flows to a higher degree of accuracy. This report presents results of certain benchmark computations based on an upwind, high-resolution, finite-differencing Navier-Stokes solver. The purpose of the computations is to evaluate the ability, the accuracy and the performance of the solver in the simulation of detailed features of viscous flows. Features of interest include flow separation and reattachment, surface pressure and skin friction distributions. Those features are particularly relevant to the propulsor analysis. Test cases with a wide range of Reynolds numbers are selected; therefore, the effects of the convective and the diffusive terms of the solver can be evaluated separately. Test cases include flows over bluff bodies, such as circular cylinders and spheres, at various low Reynolds numbers, flows over a flat plate with and without turbulence effects, and turbulent flows over axisymmetric bodies with and without propulsor effects. Finally, to enhance the iterative solution procedure, a full approximation scheme V-cycle multigrid method is implemented. Preliminary results indicate that the method significantly reduces the computational effort.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wharton, S.; Bulaevskaya, V.; Irons, Z.
The goal of our FY15 project was to explore the use of statistical models and high-resolution atmospheric input data to develop more accurate prediction models for turbine power generation. We modeled power for two operational wind farms in two regions of the country. The first site is a 235 MW wind farm in Northern Oklahoma with 140 GE 1.68 turbines. Our second site is a 38 MW wind farm in the Altamont Pass Region of Northern California with 38 Mitsubishi 1 MW turbines. The farms are very different in topography, climatology, and turbine technology; however, both occupy high wind resourcemore » areas in the U.S. and are representative of typical wind farms found in their respective areas.« less
Staircase and saw-tooth field emission steps from nanopatterned n-type GaSb surfaces
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kildemo, M.; Levinsen, Y. Inntjore; Le Roy, S.
2009-09-15
High resolution field emission experiments from nanopatterned GaSb surfaces consisting of densely packed nanocones prepared by low ion-beam-energy sputtering are presented. Both uncovered and metal-covered nanopatterned surfaces were studied. Surprisingly, the field emission takes place by regular steps in the field emitted current. Depending on the field, the steps are either regular, flat, plateaus, or saw-tooth shaped. To the author's knowledge, this is the first time that such results have been reported. Each discrete jump in the field emission may be understood in terms of resonant tunneling through an extended surface space charge region in an n-type, high aspect ratio,more » single GaSb nanocone. The staircase shape may be understood from the spatial distribution of the aspect ratio of the cones.« less
Lunar regolith thickness determination from 3D morphology of small fresh craters
NASA Astrophysics Data System (ADS)
Di, Kaichang; Sun, Shujuan; Yue, Zongyu; Liu, Bin
2016-03-01
The lunar regolith can provide critical information about the Moon and the space environment. In the study of lunar regolith, thickness is one of its most important parameters because of the significance in estimating the relative geologic age and the quantities of solar wind implanted volatiles. In this research, an improved morphological method for determining the lunar regolith thickness is proposed by directly measuring the distance from the lunar ground surface to the floor (flat-bottomed and central-mound craters) or bench (concentric craters) of indicative small fresh craters. The pre-impact ground surface is first modeled with crater edge points through plane fitting, avoiding crater ejecta. Then the lunar regolith thickness is calculated as the distance between the modeled ground surface and the crater floor or bench. The method has been verified at the landing sites of Chang'E-3 rover with high-resolution stereo images from Chang'E-2 orbiter, and the landing sites of Apollo 11, 12, 14, 15, 16, and 17 missions with high-resolution Lunar Reconnaissance Orbiter DEM data. All the results are in good agreement with results from in-situ measurements, demonstrating the reliability of the proposed method. This method can be applied to estimate lunar regolith thickness where high-precision topographic data is available.
Resistive switching: An investigation of the bipolar–unipolar transition in Co-doped ZnO thin films
DOE Office of Scientific and Technical Information (OSTI.GOV)
Santos, Daniel A.A., E-mail: danielandrade.ufs@gmail.com; Department of Physics, University at Buffalo, The State University of New York, Buffalo, NY 14260; Zeng, Hao
2015-06-15
Highlights: • A purely bipolar behavior on a Co-doped ZnO thin film has been demonstrated. • We have shown what can happen if a unipolar test is performed in a purely bipolar device. • An explanation for how a sample can show a purely bipolar switching behavior was suggested. • An important open issue about resistive switching effect was put in debate. - Abstract: In order to investigate the resistive switching effect we built devices in a planar structure in which two Al contacts were deposited on the top of the film and separated by a small gap using amore » shadow mask. Therefore, two samples of 10% Co-doped ZnO thin films were sputtered on glass substrate. High resolution X-ray diffraction (HRXRD) revealed a highly c-axis oriented crystalline structure, without secondary phase. The high resolution scanning electron microscopy (HRSEM) showed a flat surface with good coverage and thickness about 300 nm. A Keithley 2425 semiconductor characterization system was used to perform the resistive switching tests in the bipolar and unipolar modes. Considering only the effect of compliance current (CC), the devices showed a purely bipolar behavior since an increase in CC did not induce a transition to unipolar behavior.« less
Design and implemention of a multi-functional x-ray computed tomography system
NASA Astrophysics Data System (ADS)
Li, Lei; Xi, Xiaoqi; Han, Yu; Yan, Bin; Zhang, Xiang; Deng, Lin; Chen, Siyu; Jin, Zhao; Li, Zengguang
2015-10-01
A powerful volume X-ray tomography system has been designed and constructed to provide an universal tool for the three-dimensional nondestructive testing and investigation of industrial components, automotive, electronics, aerospace components, new materials, etc. The combined system is equipped with two commercial X-ray sources, sharing one flat panel detector of 400mm×400mm. The standard focus 450kV high-energy x-ray source is optimized for complex and high density components such as castings, engine blocks and turbine blades. And the microfocus 225kV x-ray source is to meet the demands of micro-resolution characterization applications. Thus the system's penetration capability allows to scan large objects up to 200mm thick dense materials, and the resolution capability can meet the demands of 20μm microstructure inspection. A high precision 6-axis manipulator system is fitted, capable of offset scanning mode in large field of view requirements. All the components are housed in a room with barium sulphate cement. On the other hand, the presented system expands the scope of applications such as dual energy research and testing. In this paper, the design and implemention of the flexible system is described, as well as the preliminary tomographic imaging results of an automobile engine block.
Simultaneous wall-shear-stress and wide-field PIV measurements in a turbulent boundary layer
NASA Astrophysics Data System (ADS)
Gomit, Guillaume; Fourrie, Gregoire; de Kat, Roeland; Ganapathisubramani, Bharathram
2015-11-01
Simultaneous particle image velocimetry (PIV) and hot-film shear stress sensor measurements were performed to study the large-scale structures associated with shear stress events in a flat plate turbulent boundary layer at a high Reynolds number (Reτ ~ 4000). The PIV measurement was performed in a streamwise-wall normal plane using an array of six high resolution cameras (4 ×16MP and 2 ×29MP). The resulting field of view covers 8 δ (where δ is the boundary layer thickness) in the streamwise direction and captures the entire boundary layer in the wall-normal direction. The spatial resolution of the measurement is approximately is approximately 70 wall units (1.8 mm) and sampled each 35 wall units (0.9 mm). In association with the PIV setup, a spanwise array of 10 skin-friction sensors (spanning one δ) was used to capture the footprint of the large-scale structures. This combination of measurements allowed the analysis of the three-dimensional conditional structures in the boundary layer. Particularly, from conditional averages, the 3D organisation of the wall normal and streamwise velocity components (u and v) and the Reynolds shear stress (-u'v') related to a low and high shear stress events can be extracted. European Research Council Grant No-277472-WBT.
NASA Technical Reports Server (NTRS)
Amason, David L.
2008-01-01
The goal of the Solar Dynamics Observatory (SDO) is to understand and, ideally, predict the solar variations that influence life and society. It's instruments will measure the properties of the Sun and will take hifh definition images of the Sun every few seconds, all day every day. The FlatSat is a high fidelity electrical and functional representation of the SDO spacecraft bus. It is a high fidelity test bed for Integration & Test (I & T), flight software, and flight operations. For I & T purposes FlatSat will be a driver to development and dry run electrical integration procedures, STOL test procedures, page displays, and the command and telemetry database. FlatSat will also serve as a platform for flight software acceptance and systems testing for the flight software system component including the spacecraft main processors, power supply electronics, attitude control electronic, gimbal control electrons and the S-band communications card. FlatSat will also benefit the flight operations team through post-launch flight software code and table update development and verification and verification of new and updated flight operations products. This document highlights the benefits of FlatSat; describes the building of FlatSat; provides FlatSat facility requirements, access roles and responsibilities; and, and discusses FlatSat mechanical and electrical integration and functional testing.
Geology and evolution of lakes in north-central Florida
Kindinger, J.L.; Davis, J.B.; Flocks, J.G.
1999-01-01
Fluid exchange between surficial waters and groundwater in karst environments, and the processes that control exchange, are of critical concern to water management districts and planners. High-resolution seismic data were collected from 30 lakes of north-central Florida. In each case study, lake structure and geomorphology were controlled by solution and/or mechanical processes. Processes that control lake development are twofold: (1) karstification or dissolution of the underlying limestone, and (2) the collapse, subsidence, or slumping of overburden to form sinkholes. Initial lake formation is directly related to the karst topography of the underlying host limestone. Case studies have shown that lakes can be divided by geomorphic types into progressive developmental phases: (1) active subsidence or collapse phase (young); (2) transitional phase (middle age); (3) baselevel phase (mature); and (4) polje (drowned prairie) - broad flat-bottom that have one or all phases of sinkhole. Using these criteria, Florida lakes can be classified by size, fill, subsurface features, and geomorphology.Fluid exchange between surficial waters and groundwater in karst environments, and the processes that control exchange, are of critical concern to water management districts and planners. High-resolution seismic data were collected from 30 lakes of north-central Florida. In each case study, lake structure and geomorphology were controlled by solution and/or mechanical processes. Processes that control lake development are twofold: (1) karstification or dissolution of the underlying limestone, and (2) the collapse, subsidence, or slumping of overburden to form sinkholes. Initial lake formation is directly related to the karst topography of the underlying host limestone. Case studies have shown that lakes can be divided by geomorphic types into progressive developmental phased: (1) active subsidence or collapse phase (young); (2) transitional phase (middle age); (3) baselevel phase (mature); and (4) polje (drowned prairie) - broad flat-bottom that have one or all phases of sinkhole. Using these criteria, Florida lakes can be classified by size, fill, subsurface features, and geomorphology.
Preparation of c-axis perpendicularly oriented ultra-thin L10-FePt films on MgO and VN underlayers
NASA Astrophysics Data System (ADS)
Futamoto, Masaaki; Shimizu, Tomoki; Ohtake, Mitsuru
2018-05-01
Ultra-thin L10-FePt films of 2 nm average thickness are prepared on (001) oriented MgO and VN underlayers epitaxially grown on base substrate of SrTiO3(001) single crystal. Detailed cross-sectional structures are observed by high-resolution transmission electron microscopy. Continuous L10-FePt(001) thin films with very flat surface are prepared on VN(001) underlayer whereas the films prepared on MgO(001) underlayer consist of isolated L10-FePt(001) crystal islands. Presence of misfit dislocation and lattice bending in L10-FePt material is reducing the effective lattice mismatch with respect to the underlayer to be less than 0.5 %. Formation of very flat and continuous FePt layer on VN underlayer is due to the large surface energy of VN material where de-wetting of FePt material at high temperature annealing process is suppressed under a force balance between the surface and interface energies of FePt and VN materials. An employment of underlayer or substrate material with the lattice constant and the surface energy larger than those of L10-FePt is important for the preparation of very thin FePt epitaxial thin continuous film with the c-axis controlled to be perpendicular to the substrate surface.
Electrohydrodynamic printing of organic polymeric resistors on flat and uneven surfaces
DOE Office of Scientific and Technical Information (OSTI.GOV)
Maktabi, Sepehr; Chiarot, Paul R., E-mail: pchiarot@binghamton.edu
In materials printing applications, the ability to generate fine droplets is critical for achieving high-resolution features. Other desirable characteristics are high print speeds, large stand-off distances, and minimal instrumentation requirements. In this work, a tunable electrohydrodynamic (EHD) printing technique capable of generating micron-sized droplets is reported. This method was used to print organic resistors on flat and uneven substrates. These ubiquitous electronic components were built using the commercial polymer-based conductive ink poly(3,4-ethylenedioxythiophene)-poly(styrenesulfonate) (PEDOT:PSS), which has been widely used in the manufacturing of organic electronic devices. Resistors with widths from 50 to 500 μm and resistances from 1 to 70 Ω/μm weremore » created. An array of emission modes for EHD printing was identified. Among these, the most promising is the microdripping mode, where droplets 10 times smaller than the nozzle's inner diameter were created at frequencies in excess of 5 kHz. It was found that the ink flow rate, applied voltage, and stand-off distance all significantly influence the droplet generation frequency. In particular, the experimental results reveal that the frequency increases nonlinearly with the applied voltage. The non-Newtonian shear thinning behavior of PEDOT:PSS strongly influenced the droplet frequency. Finally, the topology of a 3-dimensional target substrate had a significant effect on the structure and function of a printed resistor.« less
High-resolution observations of the globular cluster NGC 7099
NASA Astrophysics Data System (ADS)
Sams, Bruce Jones, III
The globular cluster NGC 7099 is a prototypical collapsed core cluster. Through a series of instrumental, observational, and theoretical observations, I have resolved its core structure using a ground based telescope. The core has a radius of 2.15 arcsec when imaged with a V band spatial resolution of 0.35 arcsec. Initial attempts at speckle imaging produced images of inadequate signal to noise and resolution. To explain these results, a new, fully general signal-to-noise model has been developed. It properly accounts for all sources of noise in a speckle observation, including aliasing of high spatial frequencies by inadequate sampling of the image plane. The model, called Full Speckle Noise (FSN), can be used to predict the outcome of any speckle imaging experiment. A new high resolution imaging technique called ACT (Atmospheric Correlation with a Template) was developed to create sharper astronomical images. ACT compensates for image motion due to atmospheric turbulence. ACT is similar to the Shift and Add algorithm, but uses apriori spatial knowledge about the image to further constrain the shifts. In this instance, the final images of NGC 7099 have resolutions of 0.35 arcsec from data taken in 1 arcsec seeing. The PAPA (Precision Analog Photon Address) camera was used to record data. It is subject to errors when imaging cluster cores in a large field of view. The origin of these errors is explained, and several ways to avoid them proposed. New software was created for the PAPA camera to properly take flat field images taken in a large field of view. Absolute photometry measurements of NGC 7099 made with the PAPA camera are accurate to 0.1 magnitude. Luminosity sampling errors dominate surface brightness profiles of the central few arcsec in a collapsed core cluster. These errors set limits on the ultimate spatial accuracy of surface brightness profiles.
Toyota beamline (BL33XU) at SPring-8
DOE Office of Scientific and Technical Information (OSTI.GOV)
Nonaka, T., E-mail: nonaka@mosk.tytlabs.co.jp; Dohmae, K.; Hayashi, Y.
2016-07-27
The Toyota beamline (BL33XU) at SPring-8 is an undulator beamline developed to assist in the study of various automotive-related materials. The light source is a tapered in-vacuum undulator that provides a variable energy band width as well as a high brilliance X-ray beam. Two different optical arrangements are available: Optics 1 and Optics 2. Optics 1 is dedicated to time-resolved X-ray absorption spectroscopy (XAFS), and consists of two channel-cut crystal monochromators and four water-cooled flat Si mirrors. The Si(111) and Si(220) monochromator crystals cover an energy range of 4.0–46.0 keV and are driven by high-speed AC servo motors. These monochromators,more » in conjunction with the tapered undulator, enable high-quality XAFS data acquisition with a temporal resolution of 10 ms. Optics 2 is optimized for X-ray diffraction, scattering and imaging and includes a recently installed double crystal monochromator, two water-cooled flat Si mirrors and Kirkpatrick-Baez (KB) focusing mirrors. The monochromator incorporates parallel mounted Si(111) and Si(311) crystals and covers an energy range of 4.5–70 keV. The beamline provides two experimental stations: Exp. Hutch 2 and Exp. Hutch 3. The gas supply system and mass spectrometers installed in Exp. Hutch 2 allow in-operando measurements under various atmospheres. The scanning three-dimensional X-ray diffraction (scanning 3DXRD) microscopy instrumentation developed and installed in Exp. Hutch 3 enables non-destructive orientation and stress mapping of 1 mm-thick steel specimens using a high energy microbeam.« less
Characterization of ASTER GDEM Elevation Data over Vegetated Area Compared with Lidar Data
NASA Technical Reports Server (NTRS)
Ni, Wenjian; Sun, Guoqing; Ranson, Kenneth J.
2013-01-01
Current researches based on areal or spaceborne stereo images with very high resolutions (less than 1 meter) have demonstrated that it is possible to derive vegetation height from stereo images. The second version of the Advanced Spaceborne Thermal Emission and Reflection Radiometer Global Digital Elevation Model (ASTER GDEM) is a state-of-the-art global elevation data-set developed by stereo images. However, the resolution of ASTER stereo images (15 meters) is much coarser than areal stereo images, and the ASTER GDEM is compiled products from stereo images acquired over 10 years. The forest disturbances as well as forest growth are inevitable in 10 years time span. In this study, the features of ASTER GDEM over vegetated areas under both flat and mountainous conditions were investigated by comparisons with lidar data. The factors possibly affecting the extraction of vegetation canopy height considered include (1) co-registration of DEMs; (2) spatial resolution of digital elevation models (DEMs); (3) spatial vegetation structure; and (4) terrain slope. The results show that accurate co-registration between ASTER GDEM and the National Elevation Dataset (NED) is necessary over mountainous areas. The correlation between ASTER GDEM minus NED and vegetation canopy height is improved from 0.328 to 0.43 by degrading resolutions from 1 arc-second to 5 arc-seconds and further improved to 0.6 if only homogenous vegetated areas were considered.
Yang, Yi; Aisa, Haji Akber; Ito, Yoichiro
2009-01-01
The toroidal column using a zigzag pattern has been improved in both retention of the stationary phase and peak resolution. To further improve the retention of stationary phase and peak resolution, a series of novel geometric designs of tubing (plain, mid-clamping, flattened and flat-twisted tubing) was evaluated their performance in CCC. The results showed that the tubing which was flattened vertically against centrifugal force (vert-flattened tubing) produced the best peak resolution among them. Using vert-flattened tubing a series of experiments was performed to study the effects of column capacity and sample size. The results indicated that a 0.25 ml capacity column is ideal for analysis of small amount samples. PMID:20454530
Dasarathy, Dhweeja; Ito, Yoichiro
2015-10-30
A new spiral tube assembly was designed to improve the column capacity and partition efficiency for protein separation. This spiral tube assembly has greater column capacity than the original tubing because of an increase in radial grooves from 4 to 12 to accommodate more spiral layers and 12 narrow spots instead of 4 in each circular loop to interrupt the laminar flow that causes sample band broadening. Standard PTFE tubing (1.6mm ID) and the modified flat-twisted tubing were used as the separation column. The performances of both assemblies were compared for separating three stable test proteins including cytochrome c, myoglobin, and lysozyme using a two phase aqueous-aqueous solvent system composed of polyethylene glycol 1000 (12.5% w/w) and dibasic potassium phosphate (12.5% w/w). All samples were run at 1, 2, 3, and 5mL/min at both 800rpm and 1000rpm. The separation of these three protein samples produced high stationary phase retentions at 1, 2, and 3mL/min, yet separated efficiently at 5mL/min in 40min. After comparing the separation efficiency in terms of the peak resolutions, theoretical plate numbers, and separation times, it was determined that the flat-twisted tubing was more effective in separating these protein samples. In order to validate the efficacy of this novel assembly, a mixture of five protein samples (cytochrome c, myoglobin, ovalbumin, lysozyme, and hemoglobin) were separated, under the optimal conditions established with these three protein samples, at 1mL/min with a revolution speed of 1000rpm. There were high stationary phase retentions of around 60%, with effective separations, demonstrating the efficiency of the flat-twisted spiral tube assembly. The separation time of 6h was a limitation but can potentially be shortened by improving the strength of the column that will permit an increase in revolution speed and flow rate. This novel spiral separation column will allow rapid and efficient separation of mixtures with high yield of the constituent components. Published by Elsevier B.V.
Pjontek, Rastislav; Önenköprülü, Belgin; Scholz, Bernhard; Kyriakou, Yiannis; Schubert, Gerrit A; Nikoubashman, Omid; Othman, Ahmed; Wiesmann, Martin; Brockmann, Marc A
2016-08-01
Flat panel detector CT angiography with intravenous contrast agent injection (IV CTA) allows high-resolution imaging of cerebrovascular structures. Artifacts caused by metallic implants like platinum coils or clips lead to degradation of image quality and are a significant problem. To evaluate the influence of a prototype metal artifact reduction (MAR) algorithm on image quality in patients with intracranial metallic implants. Flat panel detector CT after intravenous application of 80 mL contrast agent was performed with an angiography system (Artis zee; Siemens, Forchheim, Germany) using a 20 s rotation protocol (200° rotation angle, 20 s acquisition time, 496 projections). The data before and after MAR of 26 patients with a total of 34 implants (coils, clips, stents) were independently evaluated by two blinded neuroradiologists. MAR improved the assessability of the brain parenchyma and small vessels (diameter <1 mm) in the neighborhood of metallic implants and at a distance of 6 cm (p<0.001 each, Wilcoxon test). Furthermore, MAR significantly improved the assessability of parent vessel patency and potential aneurysm remnants (p<0.005 each, McNemar test). MAR, however, did not improve assessability of stented vessels. When an intravenous contrast protocol is used, MAR significantly ameliorates the assessability of brain parenchyma, vessels, and treated aneurysms in patients with intracranial coils or clips. Published by the BMJ Publishing Group Limited. For permission to use (where not already granted under a licence) please go to http://www.bmj.com/company/products-services/rights-and-licensing/
Roy, Anirban; Chakraborty, Arup Lal; Jha, Chandan Kumar
2017-04-20
This paper demonstrates a technique of high-resolution interrogation of two fiber Bragg gratings (FBGs) with flat-topped reflection spectra centered on 1649.55 nm and 1530.182 nm with narrow line width tunable semiconductor lasers emitting at 1651.93 nm and 1531.52 nm, respectively. The spectral shift of the reflection spectrum in response to temperature and strain is accurately measured with a fiber-optic Mach-Zehnder interferometer that has a free spectral range of 0.0523 GHz and a broadband photodetector. Laser wavelength modulation and harmonic detection techniques are used to transform the gentle edges of the flat-topped FBG into prominent leading and trailing peaks that are up to five times narrower than the FBG spectrum. Either of these peaks can be used to accurately measure spectral shifts of the FBG reflection spectrum with a resolution down to a value of 0.47 pm. A digital signal processing board is used to measure the temperature-induced spectral shifts over the range of 30°C-80°C and strain-induced spectral shifts from 0 μϵ to 12,000 μϵ. The shift is linear in both cases with a temperature sensitivity of 12.8 pm/°C and strain sensitivity of 0.12 pm/μϵ. The distinctive feature of this technique is that it does not use an optical spectrum analyzer at any stage of its design or operation. It can be readily extended to all types of tunable diode lasers and is ideally suited for compact field instruments and for biomedical applications in stroke rehabilitation monitoring.
Heidrich, G; Hassepass, F; Dullin, C; Attin, T; Grabbe, E; Hannig, C
2005-12-01
Successful endodontic diagnostics and therapy call for adequate depiction of the root canal anatomy with multimodal diagnostic imaging. The aim of the present study is to evaluate visualization of the endodont with flat-panel detector volume CT (FD-VCT). 13 human teeth were examined with the prototype of a FD-VCT. After data acquisition and generation of volume data sets in volume rendering technology (VRT), the findings obtained were compared to conventional X-rays and cross-section preparations of the teeth. The anatomical structures of the endodont such as root canals, side canals and communications between different root canals as well as denticles could be detected precisely with FD-VCT. The length of curved root canals was also determined accurately. The spatial resolution of the system is around 140 microm. Only around 73 % of the main root canals detected with FD-VCT and 87 % of the roots could be visualized with conventional dental X-rays. None of the side canals, shown with FD-VCT, was detectable on conventional X-rays. In all cases the enamel and dentin of the teeth could be well delineated. No differences in image quality could be discerned between stored and freshly extracted teeth, or between primary and adult teeth. FD-VCT is an innovative diagnostic modality in preclinical and experimental use for non-destructive three-dimensional analysis of teeth. Thanks to the high isotropic spatial resolution compared with conventional X-rays, even the minutest structures, such as side canals, can be detected and evaluated. Potential applications in endodontics include diagnostics and evaluation of all steps of root canal treatment, ranging from trepanation through determination of the length of the root canal to obturation.
Kakeda, S; Korogi, Y; Ohnari, N; Hatakeyama, Y; Moriya, J; Oda, N; Nishino, K; Miyamoto, W
2007-05-01
Compared with the image intensifier (I.I.)-TV system, the flat panel detector (FPD) system of direct conversion type has several theoretic advantages, such as higher spatial resolution, wide dynamic range, and no image distortion. The purpose of this study was to compare the image quality of 3D digital subtraction angiography (DSA) in the FPD and conventional I.I.-TV systems using a vascular phantom. An anthropomorphic vascular phantom was designed to simulate the various intracranial aneurysms with aneurysmal bleb. The tubes of this vascular phantom were filled with 2 concentrations of contrast material (300 and 150 mg I/mL), and we obtained 3D DSA using the FPD and I.I.-TV systems. First, 2 blinded radiologists compared the volume-rendering images for 3D DSA on the FPD and I.I.-TV systems, looking for pseudostenosis artifacts. Then, 2 other radiologists independently evaluated both systems for the depiction of the simulated aneurysm and aneurysmal bleb using a 5-point scale. For the degree of the pseudostenosis artifacts at the M1 segment of the middle cerebral artery at 300 mg I/mL, 3D DSA with FPD system showed mild stenoses, whereas severe stenoses were observed at 3D DSA with I.I.-TV system. At both concentrations, the FPD system was significantly superior to I.I.-TV system regarding the depiction of aneurysm and aneurysmal bleb. Compared with the I.I.-TV system, the FPD system could create high-resolution 3D DSA combined with a reduction of the pseudostenosis artifacts.
Extracting flat-field images from scene-based image sequences using phase correlation
DOE Office of Scientific and Technical Information (OSTI.GOV)
Caron, James N., E-mail: Caron@RSImd.com; Montes, Marcos J.; Obermark, Jerome L.
Flat-field image processing is an essential step in producing high-quality and radiometrically calibrated images. Flat-fielding corrects for variations in the gain of focal plane array electronics and unequal illumination from the system optics. Typically, a flat-field image is captured by imaging a radiometrically uniform surface. The flat-field image is normalized and removed from the images. There are circumstances, such as with remote sensing, where a flat-field image cannot be acquired in this manner. For these cases, we developed a phase-correlation method that allows the extraction of an effective flat-field image from a sequence of scene-based displaced images. The method usesmore » sub-pixel phase correlation image registration to align the sequence to estimate the static scene. The scene is removed from sequence producing a sequence of misaligned flat-field images. An average flat-field image is derived from the realigned flat-field sequence.« less
NASA Astrophysics Data System (ADS)
Broxton, P. D.; Harpold, A. A.; van Leeuwen, W.; Biederman, J. A.
2016-12-01
Quantifying the amount of snow in forested mountainous environments, as well as how it may change due to warming and forest disturbance, is critical given its importance for water supply and ecosystem health. Forest canopies affect snow accumulation and ablation in ways that are difficult to observe and model. Furthermore, fine-scale forest structure can accentuate or diminish the effects of forest-snow interactions. Despite decades of research demonstrating the importance of fine-scale forest structure (e.g. canopy edges and gaps) on snow, we still lack a comprehensive understanding of where and when forest structure has the largest impact on snowpack mass and energy budgets. Here, we use a hyper-resolution (1 meter spatial resolution) mass and energy balance snow model called the Snow Physics and Laser Mapping (SnowPALM) model along with LIDAR-derived forest structure to determine where spatial variability of fine-scale forest structure has the largest influence on large scale mass and energy budgets. SnowPALM was set up and calibrated at sites representing diverse climates in New Mexico, Arizona, and California. Then, we compared simulations at different model resolutions (i.e. 1, 10, and 100 m) to elucidate the effects of including versus not including information about fine scale canopy structure. These experiments were repeated for different prescribed topographies (i.e. flat, 30% slope north, and south-facing) at each site. Higher resolution simulations had more snow at lower canopy cover, with the opposite being true at high canopy cover. Furthermore, there is considerable scatter, indicating that different canopy arrangements can lead to different amounts of snow, even when the overall canopy coverage is the same. This modeling is contributing to the development of a high resolution machine learning algorithm called the Snow Water Artificial Network (SWANN) model to generate predictions of snow distributions over much larger domains, which has implications for improving land surface models that do not currently resolve or parameterize fine-scale canopy structure. In addition, these findings have implications for understanding the potential of different forest management strategies (i.e. thinning) based on local topography and climate to maximize the amount and retention of snow.
NASA Astrophysics Data System (ADS)
Duperret, Anne; Raimbault, Céline; Duguet, Timothée; Le Gall, Bernard; Costa, Stéphane; Vandycke, Sara
2017-04-01
During the EC2CO/DRIL/CROCODYL project, high-resolution land-sea DEM have been produced in NW Normandy and SW Brittany rocky coastal zone, using high-resolution bathymetry from shallow-water cruises CROCOLIT-1,-2,-3 (Duperret, 2013), SPLASHALIOT-3 (Maillet, 2014), THAPENFROM-1 (Duperret, 2015) and aerial topographic LiDAR data from the Litto3D project. Two study sites were selected to map detailed geomorphology of shore platforms in order to better understand rock coast evolution processes through time and long-term rates of rocky coastal erosion versus geological context. The eastern English Channel is made of coastal chalk cliffs that currently eroding with fast mean rates of the order of a few dm/year. In Normandy coast (NW France), this results to the generation of roughly linear coastal segments of about 20-30km long each. On coastal segments only made of Upper Cretaceous Chalk, erosion occurs by present-day sudden and repeated vertical failures and cliff collapses. Cliff collapse process is shaping vertical chalk cliffs in association with resulting roughly flat shore platforms. Even if shore platforms width are short and homogeneous (a few hundred meters in width), the detailed morphology observed on high-resolution bathymetry evidenced two main submarine geomorphological types. One is linear and regular and associated with linear coastal sections. This corresponds to homogeneous Chalk Formation and the lack of large-scale tectonic features. Coastal sections with chalk lithology variations, local folding, large-scale fractures transverse-oriented to the coastline and onshore valleys incision evidence chaotic shore platforms morphologies. They conduct to variations in coastline orientation and to meter-scale shoreline indentations The southwestern part of Brittany is made of low-lying granitic headland and indented bay cut into meta/granitic rocks. Erosion rates are poorly known, due to slow coastal evolutions through contemporary times. Land-Sea DEM evidence similar onshore and offshore morphologies, with flat and wide superposed plains, limited each one by 10m high scarps. In this case, shore platform extension reaches a few km in width and appears as superposed paleo-shore platforms generated since Pleistocene (Raimbault et al, in press). The erosive process is thus link to a long-term alteration of granitic rocks since Cenozoic, mainly clear and etched during recent past high sea levels. Coastal areas with large bays appear locally to be guided by large-scale Cenozoic fractures. In some places, km-scale fractures favor a spatial concentration of erosion. They are shaping coastline orientation and shore platform ending at km-scale.
Image pre-processing method for near-wall PIV measurements over moving curved interfaces
NASA Astrophysics Data System (ADS)
Jia, L. C.; Zhu, Y. D.; Jia, Y. X.; Yuan, H. J.; Lee, C. B.
2017-03-01
PIV measurements near a moving interface are always difficult. This paper presents a PIV image pre-processing method that returns high spatial resolution velocity profiles near the interface. Instead of re-shaping or re-orientating the interrogation windows, interface tracking and an image transformation are used to stretch the particle image strips near a curved interface into rectangles. Then the adaptive structured interrogation windows can be arranged at specified distances from the interface. Synthetic particles are also added into the solid region to minimize interfacial effects and to restrict particles on both sides of the interface. Since a high spatial resolution is only required in high velocity gradient region, adaptive meshing and stretching of the image strips in the normal direction is used to improve the cross-correlation signal-to-noise ratio (SN) by reducing the velocity difference and the particle image distortion within the interrogation window. A two dimensional Gaussian fit is used to compensate for the effects of stretching particle images. The working hypothesis is that fluid motion near the interface is ‘quasi-tangential flow’, which is reasonable in most fluid-structure interaction scenarios. The method was validated against the window deformation iterative multi-grid scheme (WIDIM) using synthetic image pairs with different velocity profiles. The method was tested for boundary layer measurements of a supersonic turbulent boundary layer on a flat plate, near a rotating blade and near a flexible flapping flag. This image pre-processing method provides higher spatial resolution than conventional WIDIM and good robustness for measuring velocity profiles near moving interfaces.
Evaluation of photomask flatness compensation for extreme ultraviolet lithography
NASA Astrophysics Data System (ADS)
Ballman, Katherine; Lee, Christopher; Zimmerman, John; Dunn, Thomas; Bean, Alexander
2016-10-01
As the semiconductor industry continues to strive towards high volume manufacturing for EUV, flatness specifications for photomasks have decreased to below 10nm for 2018 production, however the current champion masks being produced report P-V flatness values of roughly 50nm. Write compensation presents the promising opportunity to mitigate pattern placement errors through the use of geometrically adjusted target patterns which counteract the reticle's flatness induced distortions and address the differences in chucking mechanisms between e-beam write and electrostatic clamping during scan. Compensation relies on high accuracy flatness data which provides the critical topographical components of the reticle to the write tool. Any errors included in the flatness data file are translated to the pattern during the write process, which has now driven flatness measurement tools to target a 6σ reproducibility <1nm. Using data collected from a 2011 Sematech study on the Alpha Demo Tool, the proposed methodology for write compensation is validated against printed wafer results. Topographic features which lack compensation capability must then be held to stringent specifications in order to limit their contributions to the final image placement error (IPE) at wafer. By understanding the capabilities and limitations of write compensation, it is then possible to shift flatness requirements towards the "non-correctable" portion of the reticle's profile, potentially relieving polishers from having to adhere to the current single digit flatness specifications.
Wavelength Measurements of Ni L-shell Lines between 9 and 15 A
NASA Astrophysics Data System (ADS)
Gu, Ming F.; Beiersdorfer, P.; Brown, G. V.; Chen, H.; Thorn, D. B.; Kahn, S. M.
2006-09-01
We present accurate wavelength measurements of nikel L-shell X-ray lines resulting from Δ n ≥ 1 transitions (mostly, 2 - 3 transitions) between 9 and 15 Å. We have used the electron beam ion trap, SuperEBIT, at the Lawrence Livermore National Laboratory and a flat field grating spectrometer to record the spectra. Most significant emission lines of Ni XIX -- XXVI in our spectral coverage are identified. The resulting data set provides valuable input in the analyses of high resolution X-ray spectra of stellar coronae sources, including the Sun. This work was performed under the auspices of U.S. DOE contract No. W-7405-Eng-48, and supported by NASA APRA Grant NAG5-5419.
Wavelength selection of rolling-grain ripples in the laboratory
NASA Astrophysics Data System (ADS)
Rousseaux, Germain; Stegner, Alexandre; Wesfreid, José Eduardo
2004-03-01
We have performed an experimental study, at very high resolution, of the wavelength selection and the evolution of rolling-grain ripples. A clear distinction is made between the flat sand bed instability and the ripple coarsening. The observation of the initial wavelength for the rolling-grain ripples is only possible close to the threshold for movement which imposes a constraint on the parameters. Moreover, we have proposed a law for the selection of the unstable wavelength under the latter constraint. Our results suggest that the initial wavelength depends on the amplitude of oscillation, the grain diameter, and the Stokes layer. Besides, during the coarsening, we observe no self-similarity of the ripple shape and for few cases a logarithmic growth of the wavelength.
CloudSat Image of Tropical Thunderstorms Over Africa
NASA Technical Reports Server (NTRS)
2006-01-01
[figure removed for brevity, see original site] Figure 1 CloudSat image of a horizontal cross-section of tropical clouds and thunderstorms over east Africa. The red colors are indicative of highly reflective particles such as water (rain) or ice crystals, which the blue indicates thinner clouds (such as cirrus). The flat green/blue lines across the bottom represent the ground signal. The vertical scale on the CloudS at Cloud Profiling Radar image is approximately 30 kilometers (19 miles). The brown line below the image indicates the relative elevation of the land surface. The inset image shows the CloudSat track relative to a Moderate Resolution Imaging Spectroradiometer (MODIS) visible image taken at nearly the same time.Spectral Atlas of X-ray Lines Emitted During Solar Flares Based on CHIANTI
NASA Technical Reports Server (NTRS)
Landi, E.; Phillips, K. J. H.
2005-01-01
A spectral atlas of X-ray lines in the wavelength range 7.47-18.97 Angstroms is presented, based on high-resolution spectra obtained during two M-class solar flares (on 1980 August 25 and 1985 July 2) with the Flat Crystal Spectrometer on board the Solar Maximum Mission. The physical properties of the flaring plasmas are derived as a function of time using strong, isolated lines. From these properties predicted spectra using the CHIANTI database have been obtained which were then compared with wavelengths and fluxes of lines in the observed spectra to establish line identifications. identifications for nearly all the observed lines in the resulting atlas are given, with some significant corrections to previous analysis of these flare spectra.
Ultraviolet observations of cool stars. V - The local density of interstellar matter
NASA Technical Reports Server (NTRS)
Mcclintock, W.; Henry, R. C.; Moos, H. W.; Linsky, J. L.
1976-01-01
A high-resolution Copernicus observation of the chromospheric Ly-alpha emission line of the nearby (3.3 pc) K dwarf epsilon Eri sets limits on the velocity, the velocity dispersion, and the density of atomic hydrogen in the local interstellar medium. Analysis shows that the interstellar Ly-alpha absorption is on the flat portion of the curve of growth. An upper limit of 0.12 per cu cm is derived for the atomic-hydrogen density. The value of this density is 0.08 (plus or minus 0.04 per cu cm if the velocity-dispersion parameter is 9 km/s, corresponding to a temperature of 5000 K. Also, the interstellar deuterium Ly-alpha line may be present in the spectrum.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Han, B; Xing, L; Wang, L
Purpose: To systematically investigate an ultra-high spatial-resolution amorphous silicon flat-panel electronic portal imaging device (EPID) for MLC-based full-body robotic radiosurgery geometric and dosimetric quality assurance (QA). Methods: The high frame-rate and ultra-high spatial resolution EPID is an outstanding detector for measuring profiles, MLC-shaped radiosurgery field aperture verification, and small field dosimetry. A Monte Carlo based technique with a robotic linac specific response and calibration is developed to convert a raw EPID-measured image of a radiosurgery field into water-based dose distribution. The technique is applied to measure output factors and profiles for 6MV MLC-defined radiosurgery fields with various sizes ranging frommore » 7.6mm×7.7mm to 100mm×100.1mm and the results are compared with the radiosurgery diode scan measurements in water tank. The EPID measured field sizes and the penumbra regions are analyzed to evaluate the MLC positioning accuracy. Results: For all MLC fields, the EPID measured output factors of MLC-shaped fields are in good agreement with the diode measurements. The mean output difference between the EPID and diode measurement is 0.05±0.87%. The max difference is −1.33% for 7.6mm×7.7mm field. The MLC field size derived from the EPID measurements are in good agreement comparing to the diode scan result. For crossline field sizes, the mean difference is −0.17mm±0.14mm with a maximum of −0.35mm for the 30.8mm×30.8mm field. For inline field sizes, the mean difference is +0.08mm±0.18mm with a maximum of +0.45mm for the 100mm×100.1mm field. The high resolution EPID is able to measure the whole radiation field, without the need to align the detector center perfectly at field center as diode or ion chamber measurement. The setup time is greatly reduced so that the whole process is possible for machine and patient-specific QA. Conclusion: The high spatial-resolution EPID is proved to be an accurate and efficient tool for QA of MLC-equipped robotic radiosurgery system.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Makabe, Koki; Biancalana, Matthew; Yan, Shude
2010-02-08
{beta}-Rich self-assembly is a major structural class of polypeptides, but still little is known about its atomic structures and biophysical properties. Major impediments for structural and biophysical studies of peptide self-assemblies include their insolubility and heterogeneous composition. We have developed a model system, termed peptide self-assembly mimic (PSAM), based on the single-layer {beta}-sheet of Borrelia outer surface protein A. PSAM allows for the capture of a defined number of self-assembly-like peptide repeats within a water-soluble protein, making structural and energetic studies possible. In this work, we extend our PSAM approach to a highly hydrophobic peptide sequence. We show that amore » penta-Ile peptide (Ile{sub 5}), which is insoluble and forms {beta}-rich self-assemblies in aqueous solution, can be captured within the PSAM scaffold in a form capable of self-assembly. The 1.1-{angstrom} crystal structure revealed that the Ile{sub 5} stretch forms a highly regular {beta}-strand within this flat {beta}-sheet. Self-assembly models built with multiple copies of the crystal structure of the Ile5 peptide segment showed no steric conflict, indicating that this conformation represents an assembly-competent form. The PSAM retained high conformational stability, suggesting that the flat {beta}-strand of the Ile{sub 5} stretch primed for self-assembly is a low-energy conformation of the Ile{sub 5} stretch and rationalizing its high propensity for self-assembly. The ability of the PSAM to 'solubilize' an otherwise insoluble peptide stretch suggests the potential of the PSAM approach to the characterization of self-assembling peptides.« less
Daily QA of linear accelerators using only EPID and OBI
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sun, Baozhou, E-mail: bsun@radonc.wustl.edu; Goddu, S. Murty; Yaddanapudi, Sridhar
2015-10-15
Purpose: As treatment delivery becomes more complex, there is a pressing need for robust quality assurance (QA) tools to improve efficiency and comprehensiveness while simultaneously maintaining high accuracy and sensitivity. This work aims to present the hardware and software tools developed for comprehensive QA of linear accelerator (LINAC) using only electronic portal imaging devices (EPIDs) and kV flat panel detectors. Methods: A daily QA phantom, which includes two orthogonally positioned phantoms for QA of MV-beams and kV onboard imaging (OBI) is suspended from the gantry accessory holder to test both geometric and dosimetric components of a LINAC and an OBI.more » The MV component consists of a 0.5 cm water-equivalent plastic sheet incorporating 11 circular steel plugs for transmission measurements through multiple thicknesses and one resolution plug for MV-image quality testing. The kV-phantom consists of a Leeds phantom (TOR-18 FG phantom supplied by Varian) for testing low and high contrast resolutions. In the developed process, the existing LINAC tools were used to automate daily acquisition of MV and kV images and software tools were developed for simultaneous analysis of these images. A method was developed to derive and evaluate traditional QA parameters from these images [output, flatness, symmetry, uniformity, TPR{sub 20/10}, and positional accuracy of the jaws and multileaf collimators (MLCs)]. The EPID-based daily QA tools were validated by performing measurements on a detuned 6 MV beam to test its effectiveness in detecting errors in output, symmetry, energy, and MLC positions. The developed QA process was clinically commissioned, implemented, and evaluated on a Varian TrueBeam LINAC (Varian Medical System, Palo Alto, CA) over a period of three months. Results: Machine output constancy measured with an EPID (as compared against a calibrated ion-chamber) is shown to be within ±0.5%. Beam symmetry and flatness deviations measured using an EPID and a 2D ion-chamber array agree within ±0.5% and ±1.2% for crossline and inline profiles, respectively. MLC position errors of 0.5 mm can be detected using a picket fence test. The field size and phantom positioning accuracy can be determined within 0.5 mm. The entire daily QA process takes ∼15 min to perform tests for 5 photon beams, MLC tests, and imaging checks. Conclusions: The exclusive use of EPID-based QA tools, including a QA phantom and simultaneous analysis software tools, has been demonstrated as a viable, efficient, and comprehensive process for daily evaluation of LINAC performance.« less
HESS J1943+213: A Non-classical High-frequency-peaked BL Lac Object
NASA Astrophysics Data System (ADS)
Straal, S. M.; Gabányi, K. É.; van Leeuwen, J.; Clarke, T. E.; Dubner, G.; Frey, S.; Giacani, E.; Paragi, Z.
2016-05-01
HESS J1943+213 is an unidentified TeV source that is likely a high-frequency-peaked BL Lac (HBL) object, but that is also compatible with a pulsar wind nebula (PWN) nature. Each of these enormously different astronomical interpretations is supported by some of the observed unusual characteristics. In order to finally classify and understand this object, we took a three-pronged approach, through time-domain, high angular resolution, and multi-frequency radio studies. First, our deep time-domain observations with the Arecibo telescope failed to uncover the putative pulsar powering the proposed PWN. We conclude with ˜70% certainty that HESS J1943+213 does not host a pulsar. Second, long-baseline interferometry of the source with e-MERLIN at 1.5 and 5 GHz shows only a core, that is, a point source at ˜ 1-100 mas resolution. Its 2013 flux density is about one-third lower than that detected in the 2011 observations with similar resolution. This radio variability of the core strengthens the HBL object hypothesis. Third, additional evidence against the PWN scenario comes from the radio spectrum we compiled. The extended structure follows a power-law behavior with spectral index α \\=\\-0.54+/- 0.04 while the core component displays a flat spectrum (α \\=\\-0.03+/- 0.03). In contrast, the radio synchrotron emission of PWNe predicts a single power-law distribution. Overall, we rule out the PWN hypothesis and conclude that the source is a BL Lac object. The consistently high fraction (70%) of the flux density from the extended structure then leads us to conclude that HESS J1943+213 must be a non-classical HBL object.
NASA Astrophysics Data System (ADS)
Ekberg, Peter; Stiblert, Lars; Mattsson, Lars
2014-05-01
High-quality photomasks are a prerequisite for the production of flat panel TVs, tablets and other kinds of high-resolution displays. During the past years, the resolution demand has become more and more accelerated, and today, the high-definition standard HD, 1920 × 1080 pixels2, is well established, and already the next-generation so-called ultra-high-definition UHD or 4K display is entering the market. Highly advanced mask writers are used to produce the photomasks needed for the production of such displays. The dimensional tolerance in X and Y on absolute pattern placement on these photomasks, with sizes of square meters, has been in the range of 200-300 nm (3σ), but is now on the way to be <150 nm (3σ). To verify these photomasks, 2D ultra-precision coordinate measurement machines are used with even tighter tolerance requirements. The metrology tool MMS15000 is today the world standard tool used for the verification of large area photomasks. This paper will present a method called Z-correction that has been developed for the purpose of improving the absolute X, Y placement accuracy of features on the photomask in the writing process. However, Z-correction is also a prerequisite for achieving X and Y uncertainty levels <90 nm (3σ) in the self-calibration process of the MMS15000 stage area of 1.4 × 1.5 m2. When talking of uncertainty specifications below 200 nm (3σ) of such a large area, the calibration object used, here an 8-16 mm thick quartz plate of size approximately a square meter, cannot be treated as a rigid body. The reason for this is that the absolute shape of the plate will be affected by gravity and will therefore not be the same at different places on the measurement machine stage when it is used in the self-calibration process. This mechanical deformation will stretch or compress the top surface (i.e. the image side) of the plate where the pattern resides, and therefore spatially deform the mask pattern in the X- and Y-directions. Errors due to this deformation can easily be several hundred nanometers. When Z-correction is used in the writer, it is also possible to relax the flatness demand of the photomask backside, leading to reduced manufacturing costs of the plates.
A dual cone-beam CT system for image guided radiotherapy: initial performance characterization.
Li, Hao; Giles, William; Bowsher, James; Yin, Fang-Fang
2013-02-01
The purpose of this study is to evaluate the performance of a recently developed benchtop dual cone-beam computed tomography (CBCT) system with two orthogonally placed tube∕detector sets. The benchtop dual CBCT system consists of two orthogonally placed 40 × 30 cm flat-panel detectors and two conventional x-ray tubes with two individual high-voltage generators sharing the same rotational axis. The x-ray source to detector distance is 150 cm and x-ray source to rotational axis distance is 100 cm for both subsystems. The objects are scanned through 200° of rotation. The dual CBCT system utilized 110° of projection data from one detector and 90° from the other while the two individual single CBCTs utilized 200° data from each detector. The system performance was characterized in terms of uniformity, contrast, spatial resolution, noise power spectrum, and CT number linearity. The uniformities, within the axial slice and along the longitudinal direction, and noise power spectrum were assessed by scanning a water bucket; the contrast and CT number linearity were measured using the Catphan phantom; and the spatial resolution was evaluated using a tungsten wire phantom. A skull phantom and a ham were also scanned to provide qualitative evaluation of high- and low-contrast resolution. Each measurement was compared between dual and single CBCT systems. Compared to single CBCT, the dual CBCT presented: (1) a decrease in uniformity by 1.9% in axial view and 1.1% in the longitudinal view, as averaged for four energies (80, 100, 125, and 150 kVp); (2) comparable or slightly better contrast (0∼25 HU) for low-contrast objects and comparable contrast for high-contrast objects; (3) comparable spatial resolution; (4) comparable CT number linearity with R(2) ≥ 0.99 for all four tested energies; (5) lower noise power spectrum in magnitude. Dual CBCT images of the skull phantom and the ham demonstrated both high-contrast resolution and good soft-tissue contrast. The performance of a benchtop dual CBCT imaging system has been characterized and is comparable to that of a single CBCT.
High Resolution Digital Elevation Models of Pristine Explosion Craters
NASA Technical Reports Server (NTRS)
Farr, T. G.; Krabill, W.; Garvin, J. B.
2004-01-01
In order to effectively capture a realistic terrain applicable to studies of cratering processes and landing hazards on Mars, we have obtained high resolution digital elevation models of several pristine explosion craters at the Nevada Test Site. We used the Airborne Terrain Mapper (ATM), operated by NASA's Wallops Flight Facility to obtain DEMs with 1 m spacing and 10 cm vertical errors of 4 main craters and many other craters and collapse pits. The main craters that were mapped are Sedan, Scooter, Schooner, and Danny Boy. The 370 m diameter Sedan crater, located on Yucca Flat, is the largest and freshest explosion crater on Earth that was formed under conditions similar to hypervelocity impact cratering. As such, it is effectively pristine, having been formed in 1962 as a result of a controlled detonation of a 100 kiloton thermonuclear device, buried at the appropriate equivalent depth of burst required to make a simple crater. Sedan was formed in alluvium of mixed lithology and subsequently studied using a variety of field-based methods. Nearby secondary craters were also formed at the time and were also mapped by ATM. Adjacent to Sedan and also in alluvium is Scooter, about 90 m in diameter and formed by a high-explosive event. Schooner (240 m) and Danny Boy (80 m) craters were also important targets for ATM as they were excavated in hard basalt and therefore have much rougher ejecta. This will allow study of ejecta patterns in hard rock as well as engineering tests of crater and rock avoidance and rover trafficability. In addition to the high resolution DEMs, crater geometric characteristics, RMS roughness maps, and other higher-order derived data products will be generated using these data. These will provide constraints for models of landing hazards on Mars and for rover trafficability. Other planned studies will include ejecta size-frequency distribution at the resolution of the DEM and at finer resolution through air photography and field measurements, correlation of ejecta size and composition with radar and visible-thermal IR remote sensing signatures, and comparison of these results with similar measurements of Mars. The final DEMs, ancillary data sets, and derived data products will be made available to the community.
Design, development, fabrication and testing of high temperature Flat Conductor Cable (FCC)
NASA Technical Reports Server (NTRS)
Rigling, W. S.
1974-01-01
The results are presented of a development program for a flat, 25-conductor signal cable and a flat, 3-conductor power cable. Flat cables employ conductors made of strips or flattened round copper conductors insulated with polyimide films. It is shown that conductor thickness ranges from 0.003 to 0.010 inch, and begins to soften and loose mechanical strength at temperatures above 200 C.
Three-dimensional rotational micro-angiography
NASA Astrophysics Data System (ADS)
Patel, Vikas
Computed tomography (CT) is state-of-the-art for 3D imaging in which images are acquired about the patient and are used to reconstruct the data. But the commercial CT systems suffer from low spatial resolution (0.5-2 lp/mm). Micro-CT (microCT) systems have high resolution 3D reconstruction (>10 lp/mm), but are currently limited to small objects, e.g., small animals. To achieve artifact free reconstructions, geometric calibration of the rotating-object cone-beam microCT (CBmicroCT) system is performed using new techniques that use only the projection images of the object, i.e., no calibration objects are required. Translations (up to 0.2 mm) occurring during the acquisition in the horizontal direction are detected, quantified, and corrected based on sinogram analysis. The parameters describing the physical axis of rotation determined using our image-based method (aligning anti-posed images) agree well (within 0.1 mm and 0.3 degrees) with those determined using other techniques that use calibration objects. Geometric calibrations of the rotational angiography (RA) systems (clinical cone-beam CT systems with fluoroscopic capabilities provided by flat-panel detectors (FPD)) are performed using a simple single projection technique (SPT), which aligns a known 3D model of a calibration phantom with the projection data. The calibration parameters obtained by the SPT are found to be reproducible (angles within 0.2° and x- and y-translations less than 2 mm) for over 7 months. The spatial resolution of the RA systems is found to be virtually unaffected by such small geometric variations. Finally, using our understanding of the geometric calibrations, we have developed methods to combine relatively low-resolution RA acquisitions (2-3 lp/mm) with high resolution microCT acquisitions (using a high-resolution micro-angiographic fluoroscope (MAF) attached to the RA gantry) to produce the first-ever 3D rotational micro-angiography (3D-RmicroA) system on a clinical gantry. Images of a rabbit with a coronary stent placed in an artery were obtained and reconstructed. To eliminate artifacts due to image truncation, lower-dose (compared to the MAF acquisition) full-FOV (FFOV) FPD RA sequences are also obtained. To ensure high-quality high-resolution reconstruction, the high-resolution images from the MAF are aligned spatially with the lower-dose FPD images (average correlation coefficient before and after alignment: 0.65 and 0.97 respectively), and the pixel values in the FPD image data are scaled (using linear regression) to match those of the MAF. Greater details without any visible truncation artifacts are seen in 3D RmicroA (MAF-FPD) images than in those of the FPD alone. The FWHM of line profiles of stent struts (100 micron diameter) are approximately 192 +/- 21 and 313 +/- 38 microns for the 3D RmicroA and FPD data, respectively. Thus, with the RmicroA system, we have essentially developed a high resolution CBmicroCT system for clinical use.
NASA Astrophysics Data System (ADS)
Troiani, Francesco; Menichetti, Marco
2014-05-01
The Chihuahua Basin and Range (CBR) is the eastern branch of the northern Mexican Basin and Range Province that, from a morphostructural point of view, presently is one amongst the lesser-known zones of the southern portion of the North America Basin and Range Province. The study area covers an approximately 800 km2-wide portion of the CBR and encompasses the fault-bounded Charco basin and its surrounding areas. The bedrock of the area pertains to the large siliceous-igneous province of the Sierra Madre Occidental and consists of volcanoclastic rocks including Oligocene dacite, rhyolite, rhyolitic tuffs, and polimitic conglomerates. The region is characterized by a series of NW-SE oriented valleys delimited by tilted monoclinal blocks bounded by high angle, SW-dipping, normal faults. Abrupt changes in elevation, alternating between narrow faulted mountain chains and flat arid valleys or basins are the main morphological elements of the area. The valleys correspond to structural grabens filled with Plio-Pleistocene continental sediments. These grabens are about 10 km wide, while the extensional fault system extend over a distance of more than 15 km. The mountain ranges are in most cases continuous over distances that range from 10 to 70 km including different branches of the extensional and transfer faults. The morphogenesis is mainly erosive in character: erosional landforms (such as rocky scarps, ridges, strath-terraces, erosional pediment, reverse slopes, landslide scar zones, litho-structural flat surfaces) dominate the landscape. In contrast, Quaternary depositional landforms are mainly concentrated within the flat valleys or basins. The Quaternary deposits consist of wide alluvial fans extending to the foot of the main ridges, fluvial and debris-slope deposits. The morphostructural characterization of the area integrated different methodologies, including: i) geomorphological and structural field analyses; ii) remote sensing and geo-morphometric investigations based on aerial photos and Digital Elevation Models (a 28x28 m DEM and high-resolution LIDAR dataset in key sites), and iii) geophysical investigations (high resolution reflection seismic profiling combined with refraction seismic tomography). The main outputs of this research are as follows: i) the Charco basin master-faults and their conjugate extensional system were geometrically characterized and their main associated landforms mapped and described; ii) the morphostratigraphic correlations amongst both deformed and tectonically unaffected Quaternary deposits revealed that the Charco basin master fault has been inactive over the Holocene; iii) the main extensional fault system is associated with conjugate faults, oriented approximately SSW-NNE, that segmented the Charco basin master faults and favored the deposition of the most recent piedmont fans along the eastern margin of the basin; iv) the local morphostructures had played a dominant influence on the Quaternary evolution of both drainage network and relief landforms.
NASA Astrophysics Data System (ADS)
Karapetsas, Nikolaos; Skoulikaris, Charalampos; Katsogiannos, Fotis; Zalidis, George; Alexandridis, Thomas
2013-04-01
The use of satellite remote sensing products, such as Digital Elevation Models (DEMs), under specific computational interfaces of Geographic Information Systems (GIS) has fostered and facilitated the acquisition of data on specific hydrologic features, such as slope, flow direction and flow accumulation, which are crucial inputs to hydrology or hydraulic models at the river basin scale. However, even though DEMs of different resolution varying from a few km up to 20m are freely available for the European continent, these remotely sensed elevation data are rather coarse in cases where large flat areas are dominant inside a watershed, resulting in an unsatisfactory representation of the terrain characteristics. This scientific work aims at implementing a combing interpolation technique for the amelioration of the analysis of a DEM in order to be used as the input ground model to a hydraulic model for the assessment of potential flood events propagation in plains. More specifically, the second version of the ASTER Global Digital Elevation Model (GDEM2), which has an overall accuracy of around 20 meters, was interpolated with a vast number of aerial control points available from the Hellenic Mapping and Cadastral Organization (HMCO). The uncertainty that was inherent in both the available datasets (ASTER & HMCO) and the appearance of uncorrelated errors and artifacts was minimized by incorporating geostatistical filtering. The resolution of the produced DEM was approximately 10 meters and its validation was conducted with the use of an external dataset of 220 geodetic survey points. The derived DEM was then used as an input to the hydraulic model InfoWorks RS, whose operation is based on the relief characteristics contained in the ground model, for defining, in an automated way, the cross section parameters and simulating the flood spatial distribution. The plain of Serres, which is located in the downstream part of the Struma/Strymon transboundary river basin shared by Bulgaria and Greece, was selected as the case study area, because of its importance to the regional and national economy of Greece and because of the numerous flood events recorded in the past. The results of the simulation processing demonstrated the importance of high resolution relief models for estimating the potential flood hazard zones in order to mitigate the catastrophe caused, both in economic and environmental terms, by this type of extreme event.
NASA Astrophysics Data System (ADS)
Vannametee, E.; Karssenberg, D.; Hendriks, M. R.; de Jong, S. M.; Bierkens, M. F. P.
2010-05-01
We propose a modelling framework for distributed hydrological modelling of 103-105 km2 catchments by discretizing the catchment in geomorphologic units. Each of these units is modelled using a lumped model representative for the processes in the unit. Here, we focus on the development and parameterization of this lumped model as a component of our framework. The development of the lumped model requires rainfall-runoff data for an extensive set of geomorphological units. Because such large observational data sets do not exist, we create artificial data. With a high-resolution, physically-based, rainfall-runoff model, we create artificial rainfall events and resulting hydrographs for an extensive set of different geomorphological units. This data set is used to identify the lumped model of geomorphologic units. The advantage of this approach is that it results in a lumped model with a physical basis, with representative parameters that can be derived from point-scale measurable physical parameters. The approach starts with the development of the high-resolution rainfall-runoff model that generates an artificial discharge dataset from rainfall inputs as a surrogate of a real-world dataset. The model is run for approximately 105 scenarios that describe different characteristics of rainfall, properties of the geomorphologic units (i.e. slope gradient, unit length and regolith properties), antecedent moisture conditions and flow patterns. For each scenario-run, the results of the high-resolution model (i.e. runoff and state variables) at selected simulation time steps are stored in a database. The second step is to develop the lumped model of a geomorphological unit. This forward model consists of a set of simple equations that calculate Hortonian runoff and state variables of the geomorphologic unit over time. The lumped model contains only three parameters: a ponding factor, a linear reservoir parameter, and a lag time. The model is capable of giving an appropriate representation of the transient rainfall-runoff relations that exist in the artificial data set generated with the high-resolution model. The third step is to find the values of empirical parameters in the lumped forward model using the artificial dataset. For each scenario of the high-resolution model run, a set of lumped model parameters is determined with a fitting method using the corresponding time series of state variables and outputs retrieved from the database. Thus, the parameters in the lumped model can be estimated by using the artificial data set. The fourth step is to develop an approach to assign lumped model parameters based upon the properties of the geomorphological unit. This is done by finding relationships between the measurable physical properties of geomorphologic units (i.e. slope gradient, unit length, and regolith properties) and the lumped forward model parameters using multiple regression techniques. In this way, a set of lumped forward model parameters can be estimated as a function of morphology and physical properties of the geomorphologic units. The lumped forward model can then be applied to different geomorphologic units. Finally, the performance of the lumped forward model is evaluated; the outputs of the lumped forward model are compared with the results of the high-resolution model. Our results show that the lumped forward model gives the best estimates of total discharge volumes and peak discharges when rain intensities are not significantly larger than the infiltration capacities of the units and when the units are small with a flat gradient. Hydrograph shapes are fairly well reproduced for most cases except for flat and elongated units with large runoff volumes. The results of this study provide a first step towards developing low-dimensional models for large ungauged basins.
1998-06-08
Color image of part of the Ismenius Lacus region of Mars (MC-5 quadrangle) containing the impact crater Moreux (right center); north toward top. The scene shows heavily cratered highlands in the south on relatively smooth lowland plains in the north separated by a belt of dissected terrain, containing flat-floored valleys, mesas, and buttes. This image is a composite of Viking medium-resolution images in black and white and low-resolution images in color. The image extends from latitude 36 degrees N. to 50 degrees N. and from longitude 310 degrees to 340 degrees; Lambert conformal conic projection. The dissected terrain along the highlands/lowlands boundary consists of the flat-floored valleys of Deuteronilus Mensae (on left) and Prontonilus Mensae (on right) and farther north the small, rounded hills of knobby terrain. Flows on the mensae floors contain striae that run parallel to valley walls; where valleys meet, the striae merge, similar to medial moraines on glaciers. Terraces within the valley hills have been interpreted as either layered rocks or wave terraces. The knobby terrain has been interpreted as remnants of the old, densely cratered highland terrain perhaps eroded by mass wasting. http://photojournal.jpl.nasa.gov/catalog/PIA00420
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kobayashi, Naritaka, E-mail: naritaka@mail.saitama-u.ac.jp; Kawamura, Ryuzo; Yoshikawa, Hiroshi Y.
2016-06-07
In this study, we have directly observed nanoscale processes that occur on BaF{sub 2}(111) surfaces in various solutions using liquid-environment frequency modulation atomic force microscopy (FM-AFM) with a true atomic resolution. In addition, to investigate atomic-scale mechanisms of crystal growth process of BaF{sub 2}, we determined a suitable solution for atomic-resolution FM-AFM imaging of the BaF{sub 2}(111) surface. For undersaturated solutions, the surface is roughened by barium hydroxo complexes in the case of high pH, whereas by dissolution and proton or water molecule adsorption throughout the surface in the case of low pH. On the other hand, for supersaturated solutions,more » the surface shows two-dimensional nucleation and growth (σ = 0.1) and three-dimensional crystal growth with tetrahedral structures (σ = 1), where σ is the degree of supersaturation. The atomic-resolution imaging of the BaF{sub 2}(111) surface has been demonstrated in potassium fluoride (KF) and the supersaturated (σ = 0.1 and 1) solutions, wherein atomically flat terraces are shown at least for about 30 min.« less
Further advances in autostereoscopic technology at Dimension Technologies Inc.
NASA Astrophysics Data System (ADS)
Eichenlaub, Jesse B.
1992-06-01
Dimension Technologies is currently one of three companies offering autostereoscopic displays for sale and one of several which are actively pursuing advances to the technology. We have devised a new autostereoscopic imaging technique which possesses several advantages over previously explored methods. We are currently manufacturing autostereoscopic displays based on this technology, as well as vigorously pursuing research and development toward more advanced displays. During the past year, DTI has made major strides in advancing its LCD based autostereoscopic display technology. DTI has developed a color product -- a stand alone 640 X 480 flat panel LCD based 3-D display capable of accepting input from IBM PC and Apple MAC computers or TV cameras, and capable of changing from 3-D mode to 2-D mode with the flip of a switch. DTI is working on development of a prototype second generation color product that will provide autostereoscopic 3-D while allowing each eye to see the full resolution of the liquid crystal display. And development is also underway on a proof-of-concept display which produces hologram-like look-around images visible from a wide viewing angle, again while allowing the observer to see the full resolution of the display from all locations. Development of a high resolution prototype display of this type has begun.
Subwavelength resolution from multilayered structure (Conference Presentation)
NASA Astrophysics Data System (ADS)
Cheng, Bo Han; Jen, Yi-Jun; Liu, Wei-Chih; Lin, Shan-wen; Lan, Yung-Chiang; Tsai, Din Ping
2016-10-01
Breaking optical diffraction limit is one of the most important issues needed to be overcome for the demand of high-density optoelectronic components. Here, a multilayered structure which consists of alternating semiconductor and dielectric layers for breaking optical diffraction limitation at THz frequency region are proposed and analyzed. We numerically demonstrate that such multilayered structure not only can act as a hyperbolic metamaterial but also a birefringence material via the control of the external temperature (or magnetic field). A practical approach is provided to control all the diffraction signals toward a specific direction by using transfer matrix method and effective medium theory. Numerical calculations and computer simulation (based on finite element method, FEM) are carried out, which agree well with each other. The temperature (or magnetic field) parameter can be tuned to create an effective material with nearly flat isofrequency feature to transfer (project) all the k-space signals excited from the object to be resolved to the image plane. Furthermore, this multilayered structure can resolve subwavelength structures at various incident THz light sources simultaneously. In addition, the resolution power for a fixed operating frequency also can be tuned by only changing the magnitude of external magnetic field. Such a device provides a practical route for multi-functional material, photolithography and real-time super-resolution image.
NASA Astrophysics Data System (ADS)
Ng, Z. F.; Gisen, J. I.; Akbari, A.
2018-03-01
Topography dataset is an important input in performing flood inundation modelling. However, it is always difficult to obtain high resolution topography that provide accurate elevation information. Fortunately, there are some open source topography datasets available with reasonable resolution such as SRTM and ASTER-GDEM. In Malaysia particularly in Kuantan, the modelling research on the floodplain area is still lacking. This research aims to: a) to investigate the suitability of ASTER-GDEM to be applied in the 1D-2D flood inundation modelling for the Kuantan River Basin; b) to generate flood inundation map for Kuantan river basin. The topography dataset used in this study is ASTER-GDEM to generate physical characteristics of watershed in the basin. It is used to perform rainfall runoff modelling for hydrological studies and to delineate flood inundation area in the Flood Modeller. The results obtained have shown that a 30m resolution ASTER-GDEM is applicable as an input for the 1D-2D flood modelling. The simulated water level in 2013 has NSE of 0.644 and RSME of 1.259. As a conclusion, ASTER-GDEM can be used as one alternative topography datasets for flood inundation modelling. However, the flood level obtained from the hydraulic modelling shows low accuracy at flat urban areas.
Statistical Properties of a Two-Stage Procedure for Creating Sky Flats
NASA Astrophysics Data System (ADS)
Crawford, R. W.; Trueblood, M.
2004-05-01
Accurate flat fielding is an essential factor in image calibration and good photometry, yet no single method for creating flat fields is both practical and effective in all cases. At Winer Observatory, robotic telescope opera- tion and the research program of Near Earth Object follow-up astrometry favor the use of sky flats formed from the many images that are acquired during a night. This paper reviews the statistical properties of the median-combine process used to create sky flats and discusses a computationally efficient procedure for two-stage combining of many images to form sky flats with relatively high signal-to-noise ratio (SNR). This procedure is in use at Winer for the flat field calibration of unfiltered images taken for NEO follow-up astrometry.
Soft Landing of Bare Nanoparticles with Controlled Size, Composition, and Morphology
DOE Office of Scientific and Technical Information (OSTI.GOV)
Johnson, Grant E.; Colby, Robert J.; Laskin, Julia
2015-01-01
A kinetically-limited physical synthesis method based on magnetron sputtering and gas aggregation has been coupled with size-selection and ion soft landing to prepare bare metal nanoparticles on surfaces with controlled coverage, size, composition, and morphology. Employing atomic force microscopy (AFM) and scanning electron microscopy (SEM), it is demonstrated that the size and coverage of bare nanoparticles soft landed onto flat glassy carbon and silicon as well as stepped graphite surfaces may be controlled through size-selection with a quadrupole mass filter and the length of deposition, respectively. The bare nanoparticles are observed with AFM to bind randomly to the flat glassymore » carbon surface when soft landed at relatively low coverage (1012 ions). In contrast, on stepped graphite surfaces at intermediate coverage (1013 ions) the soft landed nanoparticles are shown to bind preferentially along step edges forming extended linear chains of particles. At the highest coverage (5 x 1013 ions) examined in this study the nanoparticles are demonstrated with both AFM and SEM to form a continuous film on flat glassy carbon and silicon surfaces. On a graphite surface with defects, however, it is shown with SEM that the presence of localized surface imperfections results in agglomeration of nanoparticles onto these features and the formation of neighboring depletion zones that are devoid of particles. Employing high resolution scanning transmission electron microscopy in the high angular annular dark field imaging mode (STEM-HAADF) and electron energy loss spectroscopy (EELS) it is demonstrated that the magnetron sputtering/gas aggregation synthesis technique produces single metal particles with controlled morphology as well as bimetallic alloy nanoparticles with clearly defined core-shell structure. Therefore, this kinetically-limited physical synthesis technique, when combined with ion soft landing, is a versatile complementary method for preparing a wide range of bare supported nanoparticles with selected properties that are free of the solvent, organic capping agents, and residual reactants present with nanoparticles synthesized in solution.« less
Tuning membrane protein mobility by confinement into nanodomains
NASA Astrophysics Data System (ADS)
Karner, Andreas; Nimmervoll, Benedikt; Plochberger, Birgit; Klotzsch, Enrico; Horner, Andreas; Knyazev, Denis G.; Kuttner, Roland; Winkler, Klemens; Winter, Lukas; Siligan, Christine; Ollinger, Nicole; Pohl, Peter; Preiner, Johannes
2017-03-01
High-speed atomic force microscopy (HS-AFM) can be used to visualize function-related conformational changes of single soluble proteins. Similar studies of single membrane proteins are, however, hampered by a lack of suitable flat, non-interacting membrane supports and by high protein mobility. Here we show that streptavidin crystals grown on mica-supported lipid bilayers can be used as porous supports for membranes containing biotinylated lipids. Using SecYEG (protein translocation channel) and GlpF (aquaglyceroporin), we demonstrate that the platform can be used to tune the lateral mobility of transmembrane proteins to any value within the dynamic range accessible to HS-AFM imaging through glutaraldehyde-cross-linking of the streptavidin. This allows HS-AFM to study the conformation or docking of spatially confined proteins, which we illustrate by imaging GlpF at sub-molecular resolution and by observing the motor protein SecA binding to SecYEG.
NASA Astrophysics Data System (ADS)
Huber, C.; Studer, M.; Giraud, H.; Durand, A.; Fruteau, L.; Lai, X.; Maxant, J.; Li, F.; Cao, L.; Tinel, C.; Yesou, H.
2014-11-01
Water resource monitoring and preservation are some of the biggest issues at global scale, and space technologies are playing a key role in various applications related to water topics the recently launched Sentinel-1, the future Sentinel-2 and 2020 altimetric mission SWOT, will be powerful for an accurate mapping of continental water resources but would be even more powerful and useful in association with high quality Digital Surface Models (DSM). Within the Thematic User Commissioning phase intending to valorize Pleiades imagery, 6 tri-stereo sets of Pleiades-HR images were acquired over test sites located within the Yangtze low-intermediate watershed reaches. At the same time, TanDEM-X InSAR pairs were acquired over the same area in order to get a wider coverage.
Dielectric Optical-Controllable Magnifying Lens by Nonlinear Negative Refraction
Cao, Jianjun; Shang, Ce; Zheng, Yuanlin; Feng, Yaming; Chen, Xianfeng; Liang, Xiaogan; Wan, Wenjie
2015-01-01
A simple optical lens plays an important role for exploring the microscopic world in science and technology by refracting light with tailored spatially varying refractive indices. Recent advancements in nanotechnology enable novel lenses, such as, superlens and hyperlens, with sub-wavelength resolution capabilities by specially designed materials’ refractive indices with meta-materials and transformation optics. However, these artificially nano- or micro-engineered lenses usually suffer high losses from metals and are highly demanding in fabrication. Here, we experimentally demonstrate, for the first time, a nonlinear dielectric magnifying lens using negative refraction by degenerate four-wave mixing in a plano-concave glass slide, obtaining magnified images. Moreover, we transform a nonlinear flat lens into a magnifying lens by introducing transformation optics into the nonlinear regime, achieving an all-optical controllable lensing effect through nonlinear wave mixing, which may have many potential applications in microscopy and imaging science. PMID:26149952
NASA Astrophysics Data System (ADS)
Mazzinghi, Piero; Bratina, Vojko; Gambicorti, Lisa; Simonetti, Francesca; Zuccaro Marchi, Alessandro
2017-11-01
New technologies are proposed for large aperture and wide Field of View (FOV) space telescopes dedicated to detection of Ultra High Energy Cosmic Rays and Neutrinos flux, through observation of fluorescence traces in atmosphere and diffused Cerenkov signals. The presented advanced detection system is a spaceborne LEO telescope, with better performance than ground-based observatories, detecting up to 103 - 104 events/year. Different design approaches are implemented, all with very large FOV and focal surface detectors with sufficient segmentation and time resolution to allow precise reconstructions of the arrival direction. In particular, two Schmidt cameras are suggested as an appropriate solution to match most of the optical and technical requirements: large FOV, low f/#, reduction of stray light, optionally flat focal surface, already proven low-cost construction technologies. Finally, a preliminary proposal of a wideFOV retrofocus catadioptric telescope is explained.
Stretchable ultrasonic transducer arrays for three-dimensional imaging on complex surfaces
Zhu, Xuan; Li, Xiaoshi; Chen, Zeyu; Chen, Yimu; Lei, Yusheng; Li, Yang; Nomoto, Akihiro; Zhou, Qifa; di Scalea, Francesco Lanza
2018-01-01
Ultrasonic imaging has been implemented as a powerful tool for noninvasive subsurface inspections of both structural and biological media. Current ultrasound probes are rigid and bulky and cannot readily image through nonplanar three-dimensional (3D) surfaces. However, imaging through these complicated surfaces is vital because stress concentrations at geometrical discontinuities render these surfaces highly prone to defects. This study reports a stretchable ultrasound probe that can conform to and detect nonplanar complex surfaces. The probe consists of a 10 × 10 array of piezoelectric transducers that exploit an “island-bridge” layout with multilayer electrodes, encapsulated by thin and compliant silicone elastomers. The stretchable probe shows excellent electromechanical coupling, minimal cross-talk, and more than 50% stretchability. Its performance is demonstrated by reconstructing defects in 3D space with high spatial resolution through flat, concave, and convex surfaces. The results hold great implications for applications of ultrasound that require imaging through complex surfaces. PMID:29740603
Solid organ fabrication: comparison of decellularization to 3D bioprinting.
Jung, Jangwook P; Bhuiyan, Didarul B; Ogle, Brenda M
2016-01-01
Solid organ fabrication is an ultimate goal of Regenerative Medicine. Since the introduction of Tissue Engineering in 1993, functional biomaterials, stem cells, tunable microenvironments, and high-resolution imaging technologies have significantly advanced efforts to regenerate in vitro culture or tissue platforms. Relatively simple flat or tubular organs are already in (pre)clinical trials and a few commercial products are in market. The road to more complex, high demand, solid organs including heart, kidney and lung will require substantive technical advancement. Here, we consider two emerging technologies for solid organ fabrication. One is decellularization of cadaveric organs followed by repopulation with terminally differentiated or progenitor cells. The other is 3D bioprinting to deposit cell-laden bio-inks to attain complex tissue architecture. We reviewed the development and evolution of the two technologies and evaluated relative strengths needed to produce solid organs, with special emphasis on the heart and other tissues of the cardiovascular system.
NASA Astrophysics Data System (ADS)
Dang, H.; Stayman, J. W.; Xu, J.; Sisniega, A.; Zbijewski, W.; Wang, X.; Foos, D. H.; Aygun, N.; Koliatsos, V. E.; Siewerdsen, J. H.
2016-03-01
Intracranial hemorrhage (ICH) is associated with pathologies such as hemorrhagic stroke and traumatic brain injury. Multi-detector CT is the current front-line imaging modality for detecting ICH (fresh blood contrast 40-80 HU, down to 1 mm). Flat-panel detector (FPD) cone-beam CT (CBCT) offers a potential alternative with a smaller scanner footprint, greater portability, and lower cost potentially well suited to deployment at the point of care outside standard diagnostic radiology and emergency room settings. Previous studies have suggested reliable detection of ICH down to 3 mm in CBCT using high-fidelity artifact correction and penalized weighted least-squared (PWLS) image reconstruction with a post-artifact-correction noise model. However, ICH reconstructed by traditional image regularization exhibits nonuniform spatial resolution and noise due to interaction between the statistical weights and regularization, which potentially degrades the detectability of ICH. In this work, we propose three regularization methods designed to overcome these challenges. The first two compute spatially varying certainty for uniform spatial resolution and noise, respectively. The third computes spatially varying regularization strength to achieve uniform "detectability," combining both spatial resolution and noise in a manner analogous to a delta-function detection task. Experiments were conducted on a CBCT test-bench, and image quality was evaluated for simulated ICH in different regions of an anthropomorphic head. The first two methods improved the uniformity in spatial resolution and noise compared to traditional regularization. The third exhibited the highest uniformity in detectability among all methods and best overall image quality. The proposed regularization provides a valuable means to achieve uniform image quality in CBCT of ICH and is being incorporated in a CBCT prototype for ICH imaging.
Region-of-interest cone beam computed tomography (ROI CBCT) with a high resolution CMOS detector.
Jain, A; Takemoto, H; Silver, M D; Nagesh, S V S; Ionita, C N; Bednarek, D R; Rudin, S
Cone beam computed tomography (CBCT) systems with rotational gantries that have standard flat panel detectors (FPD) are widely used for the 3D rendering of vascular structures using Feldkamp cone beam reconstruction algorithms. One of the inherent limitations of these systems is limited resolution (<3 lp/mm). There are systems available with higher resolution but their small FOV limits them to small animal imaging only. In this work, we report on region-of-interest (ROI) CBCT with a high resolution CMOS detector (75 μm pixels, 600 μm HR-CsI) mounted with motorized detector changer on a commercial FPD-based C-arm angiography gantry (194 μm pixels, 600 μm HL-CsI). A cylindrical CT phantom and neuro stents were imaged with both detectors. For each detector a total of 209 images were acquired in a rotational protocol. The technique parameters chosen for the FPD by the imaging system were used for the CMOS detector. The anti-scatter grid was removed and the incident scatter was kept the same for both detectors with identical collimator settings. The FPD images were reconstructed for the 10 cm x10 cm FOV and the CMOS images were reconstructed for a 3.84 cm × 3.84 cm FOV. Although the reconstructed images from the CMOS detector demonstrated comparable contrast to the FPD images, the reconstructed 3D images of the neuro stent clearly showed that the CMOS detector improved delineation of smaller objects such as the stent struts (~70 μm) compared to the FPD. Further development and the potential for substantial clinical impact are suggested.
Improving image quality in laboratory x-ray phase-contrast imaging
NASA Astrophysics Data System (ADS)
De Marco, F.; Marschner, M.; Birnbacher, L.; Viermetz, M.; Noël, P.; Herzen, J.; Pfeiffer, F.
2017-03-01
Grating-based X-ray phase-contrast (gbPC) is known to provide significant benefits for biomedical imaging. To investigate these benefits, a high-sensitivity gbPC micro-CT setup for small (≍ 5 cm) biological samples has been constructed. Unfortunately, high differential-phase sensitivity leads to an increased magnitude of data processing artifacts, limiting the quality of tomographic reconstructions. Most importantly, processing of phase-stepping data with incorrect stepping positions can introduce artifacts resembling Moiré fringes to the projections. Additionally, the focal spot size of the X-ray source limits resolution of tomograms. Here we present a set of algorithms to minimize artifacts, increase resolution and improve visual impression of projections and tomograms from the examined setup. We assessed two algorithms for artifact reduction: Firstly, a correction algorithm exploiting correlations of the artifacts and differential-phase data was developed and tested. Artifacts were reliably removed without compromising image data. Secondly, we implemented a new algorithm for flatfield selection, which was shown to exclude flat-fields with strong artifacts. Both procedures successfully improved image quality of projections and tomograms. Deconvolution of all projections of a CT scan can minimize blurring introduced by the finite size of the X-ray source focal spot. Application of the Richardson-Lucy deconvolution algorithm to gbPC-CT projections resulted in an improved resolution of phase-contrast tomograms. Additionally, we found that nearest-neighbor interpolation of projections can improve the visual impression of very small features in phase-contrast tomograms. In conclusion, we achieved an increase in image resolution and quality for the investigated setup, which may lead to an improved detection of very small sample features, thereby maximizing the setup's utility.
Symplectic potentials and resolved Ricci-flat ACG metrics
NASA Astrophysics Data System (ADS)
Balasubramanian, Aswin K.; Govindarajan, Suresh; Gowdigere, Chethan N.
2007-12-01
We pursue the symplectic description of toric Kähler manifolds. There exists a general local classification of metrics on toric Kähler manifolds equipped with Hamiltonian 2-forms due to Apostolov, Calderbank and Gauduchon (ACG). We derive the symplectic potential for these metrics. Using a method due to Abreu, we relate the symplectic potential to the canonical potential written by Guillemin. This enables us to recover the moment polytope associated with metrics and we thus obtain global information about the metric. We illustrate these general considerations by focusing on six-dimensional Ricci-flat metrics and obtain Ricci-flat metrics associated with real cones over Lpqr and Ypq manifolds. The metrics associated with cones over Ypq manifolds turn out to be partially resolved with two blow-up parameters taking special (non-zero) values. For a fixed Ypq manifold, we find explicit metrics for several inequivalent blow-ups parametrized by a natural number k in the range 0 < k < p. We also show that all known examples of resolved metrics such as the resolved conifold and the resolution of {\\bb C}^3/{\\bb Z}_3 also fit the ACG classification.
Ultrahigh-resolution CT and DR scanner
NASA Astrophysics Data System (ADS)
DiBianca, Frank A.; Gupta, Vivek; Zou, Ping; Jordan, Lawrence M.; Laughter, Joseph S.; Zeman, Herbert D.; Sebes, Jeno I.
1999-05-01
A new technique called Variable-Resolution X-ray (VRX) detection that dramatically increases the spatial resolution in computed tomography (CT) and digital radiography (DR) is presented. The technique is based on a principle called 'projective compression' that allows the resolution element of a CT detector to scale with the subject or field size. For very large (40 - 50 cm) field sizes, resolution exceeding 2 cy/mm is possible and for very small fields, microscopy is attainable with resolution exceeding 100 cy/mm. Several effects that could limit the performance of VRX detectors are considered. Experimental measurements on a 16-channel, CdWO4 scintillator + photodiode test array yield a limiting MTF of 64 cy/mm (8(mu) ) in the highest-resolution configuration reported. Preliminary CT images have been made of small anatomical specimens and small animals using a storage phosphor screen in the VRX mode. Measured detector resolution of the CT projection data exceeds 20 cy/mm (less than 25 (mu) ); however, the final, reconstructed CT images produced thus far exhibit 10 cy/mm (50 (mu) ) resolution because of non-flatness of the storage phosphor plates, focal spot effects and the use of a rudimentary CT reconstruction algorithm. A 576-channel solid-state detector is being fabricated that is expected to achieve CT image resolution in excess of that of the 26-channel test array.
High-performance flat-panel solar thermoelectric generators with high thermal concentration
NASA Astrophysics Data System (ADS)
Kraemer, Daniel; Poudel, Bed; Feng, Hsien-Ping; Caylor, J. Christopher; Yu, Bo; Yan, Xiao; Ma, Yi; Wang, Xiaowei; Wang, Dezhi; Muto, Andrew; McEnaney, Kenneth; Chiesa, Matteo; Ren, Zhifeng; Chen, Gang
2011-07-01
The conversion of sunlight into electricity has been dominated by photovoltaic and solar thermal power generation. Photovoltaic cells are deployed widely, mostly as flat panels, whereas solar thermal electricity generation relying on optical concentrators and mechanical heat engines is only seen in large-scale power plants. Here we demonstrate a promising flat-panel solar thermal to electric power conversion technology based on the Seebeck effect and high thermal concentration, thus enabling wider applications. The developed solar thermoelectric generators (STEGs) achieved a peak efficiency of 4.6% under AM1.5G (1 kW m-2) conditions. The efficiency is 7-8 times higher than the previously reported best value for a flat-panel STEG, and is enabled by the use of high-performance nanostructured thermoelectric materials and spectrally-selective solar absorbers in an innovative design that exploits high thermal concentration in an evacuated environment. Our work opens up a promising new approach which has the potential to achieve cost-effective conversion of solar energy into electricity.
Penna, Rachele R; de Sanctis, Ugo; Catalano, Martina; Brusasco, Luca; Grignolo, Federico M
2017-01-01
To compare the repeatability/reproducibility of measurement by high-resolution Placido disk-based topography with that of a high-resolution rotating Scheimpflug camera and assess the agreement between the two instruments in measuring corneal power in eyes with keratoconus and post-laser in situ keratomileusis (LASIK). One eye each of 36 keratoconic patients and 20 subjects who had undergone LASIK was included in this prospective observational study. Two independent examiners worked in a random order to take three measurements of each eye with both instruments. Four parameters were measured on the anterior cornea: steep keratometry (Ks), flat keratometry (Kf), mean keratometry (Km), and astigmatism (Ks-Kf). Intra-examiner repeatability and inter-examiner reproducibility were evaluated by calculating the within-subject standard deviation (Sw) the coefficient of repeatability (R), the coefficient of variation (CoV), and the intraclass correlation coefficient (ICC). Agreement between instruments was tested with the Bland-Altman method by calculating the 95% limits of agreement (95% LoA). In keratoconic eyes, the intra-examiner and inter-examiner ICC were >0.95. As compared with measurement by high-resolution Placido disk-based topography, the intra-examiner R of the high-resolution rotating Scheimpflug camera was lower for Kf (0.32 vs 0.88), Ks (0.61 vs 0.88), and Km (0.32 vs 0.84) but higher for Ks-Kf (0.70 vs 0.57). Inter-examiner R values were lower for all parameters measured using the high-resolution rotating Scheimpflug camera. The 95% LoA were -1.28 to +0.55 for Kf, -1.36 to +0.99 for Ks, -1.08 to +0.50 for Km, and -1.11 to +1.48 for Ks-Kf. In the post-LASIK eyes, the intra-examiner and inter-examiner ICC were >0.87 for all parameters. The intra-examiner and inter-examiner R were lower for all parameters measured using the high-resolution rotating Scheimpflug camera. The intra-examiner R was 0.17 vs 0.88 for Kf, 0.21 vs 0.88 for Ks, 0.17 vs 0.86 for Km, and 0.28 vs 0.33 for Ks-Kf. The inter-examiner R was 0.09 vs 0.64 for Kf, 0.15 vs 0.56 for Ks, 0.09 vs 0.59 for Km, and 0.18 vs 0.23 for Ks-Kf. The 95% LoA were -0.54 to +0.58 for Kf, -0.51 to +0.53 for Ks and Km, and -0.28 to +0.27 for Ks-Kf. As compared with Placido disk-based topography, the high-resolution rotating Scheimpflug camera provides more repeatable and reproducible measurements of Ks, Kf and Ks in keratoconic and post-LASIK eyes. Agreement between instruments is fair in keratoconus and very good in post-LASIK eyes.
Penna, Rachele R.; de Sanctis, Ugo; Catalano, Martina; Brusasco, Luca; Grignolo, Federico M.
2017-01-01
AIM To compare the repeatability/reproducibility of measurement by high-resolution Placido disk-based topography with that of a high-resolution rotating Scheimpflug camera and assess the agreement between the two instruments in measuring corneal power in eyes with keratoconus and post-laser in situ keratomileusis (LASIK). METHODS One eye each of 36 keratoconic patients and 20 subjects who had undergone LASIK was included in this prospective observational study. Two independent examiners worked in a random order to take three measurements of each eye with both instruments. Four parameters were measured on the anterior cornea: steep keratometry (Ks), flat keratometry (Kf), mean keratometry (Km), and astigmatism (Ks-Kf). Intra-examiner repeatability and inter-examiner reproducibility were evaluated by calculating the within-subject standard deviation (Sw) the coefficient of repeatability (R), the coefficient of variation (CoV), and the intraclass correlation coefficient (ICC). Agreement between instruments was tested with the Bland-Altman method by calculating the 95% limits of agreement (95% LoA). RESULTS In keratoconic eyes, the intra-examiner and inter-examiner ICC were >0.95. As compared with measurement by high-resolution Placido disk-based topography, the intra-examiner R of the high-resolution rotating Scheimpflug camera was lower for Kf (0.32 vs 0.88), Ks (0.61 vs 0.88), and Km (0.32 vs 0.84) but higher for Ks-Kf (0.70 vs 0.57). Inter-examiner R values were lower for all parameters measured using the high-resolution rotating Scheimpflug camera. The 95% LoA were -1.28 to +0.55 for Kf, -1.36 to +0.99 for Ks, -1.08 to +0.50 for Km, and -1.11 to +1.48 for Ks-Kf. In the post-LASIK eyes, the intra-examiner and inter-examiner ICC were >0.87 for all parameters. The intra-examiner and inter-examiner R were lower for all parameters measured using the high-resolution rotating Scheimpflug camera. The intra-examiner R was 0.17 vs 0.88 for Kf, 0.21 vs 0.88 for Ks, 0.17 vs 0.86 for Km, and 0.28 vs 0.33 for Ks-Kf. The inter-examiner R was 0.09 vs 0.64 for Kf, 0.15 vs 0.56 for Ks, 0.09 vs 0.59 for Km, and 0.18 vs 0.23 for Ks-Kf. The 95% LoA were -0.54 to +0.58 for Kf, -0.51 to +0.53 for Ks and Km, and -0.28 to +0.27 for Ks-Kf. CONCLUSION As compared with Placido disk-based topography, the high-resolution rotating Scheimpflug camera provides more repeatable and reproducible measurements of Ks, Kf and Ks in keratoconic and post-LASIK eyes. Agreement between instruments is fair in keratoconus and very good in post-LASIK eyes. PMID:28393039
Near-field flat focusing mirrors
NASA Astrophysics Data System (ADS)
Cheng, Yu-Chieh; Staliunas, Kestutis
2018-03-01
This article reviews recent progress towards the design of near-field flat focusing mirrors, focusing/imaging light patterns in reflection. An important feature of such flat focusing mirrors is their transverse invariance, as they do not possess any optical axis. We start with a review of the physical background to the different focusing mechanisms of near- and far-field focusing. These near-field focusing devices like flat lenses and the reviewed near-field focusing mirrors can implement planar focusing devices without any optical axis. In contrast, various types of far-field planar focusing devices, such as high-contrast gratings and metasurfaces, unavoidably break the transverse invariance due to their radially symmetrical structures. The particular realizations of near-field flat focusing mirrors including Bragg-like dielectric mirrors and dielectric subwavelength gratings are the main subjects of the review. The first flat focusing mirror was demonstrated with a chirped mirror and was shown to manage an angular dispersion for beam focusing, similar to the management of chromatic dispersion for pulse compression. Furthermore, the reviewed optimized chirped mirror demonstrated a long near-field focal length, hardly achieved by a flat lens or a planar hyperlens. Two more different configurations of dielectric subwavelength gratings that focus a light beam at normal or oblique incidence are also reviewed. We also summarize and compare focusing performance, limitations, and future perspectives between the reviewed flat focusing mirrors and other planar focusing devices including a flat lens with a negative-index material, a planar hyperlens, a high-contrast grating, and a metasurface.
Design, construction, and evaluation of new high resolution medical imaging detector/systems
NASA Astrophysics Data System (ADS)
Jain, Amit
Increasing need of minimally invasive endovascular image guided interventional procedures (EIGI) for accurate and successful treatment of vascular disease has set a quest for better image quality. Current state of the art detectors are not up to the mark for these complex procedures due to their inherent limitations. Our group has been actively working on the design and construction of a high resolution, region of interest CCD-based X-ray imager for some time. As a part of that endeavor, a Micro-angiographic fluoroscope (MAF) was developed to serve as a high resolution, ROI X-ray imaging detector in conjunction with large lower resolution full field of view (FOV) state-of-the-art x-ray detectors. The newly developed MAF is an indirect x-ray imaging detector capable of providing real-time images with high resolution, high sensitivity, no lag and low instrumentation noise. It consists of a CCD camera coupled to a light image intensifier (LII) through a fiber optic taper. The CsI(Tl) phosphor serving as the front end is coupled to the LII. For this work, the MAF was designed and constructed. The linear system cascade theory was used to evaluate the performance theoretically. Linear system metrics such as MTF and DQE were used to gauge the detector performance experimentally. The capabilities of the MAF as a complete system were tested using generalized linear system metrics. With generalized linear system metrics the effects of finite size focal spot, geometric magnification and the presence of scatter are included in the analysis and study. To minimize the effect of scatter, an anti-scatter grid specially designed for the MAF was also studied. The MAF was compared with the flat panel detector using signal-to-noise ratio and the two dimensional linear system metrics. The signal-to-noise comparison was carried out to point out the effect of pixel size and Point Spread Function of the detector. The two dimensional linear system metrics were used to investigate the comparative performance of both the detectors in similar simulated clinical neuro-vascular conditions. The last part of this work presents a unique quality of the MAF: operation in single photon mode. The successful operation of the MAF was demonstrated with considerable improvement in spatial and contrast resolution over conventional energy integrating mode. The work presented shows the evolution of a high resolution, high sensitivity, and region of interest x-ray imaging detector as an attractive and capable x-ray imager for the betterment of complex EIGI procedures. The capability of single photon counting mode imaging provides the potential for additional uses of the MAF including the possibility of use in dual modality imaging with radionuclide sources as well as x-rays.
NASA Astrophysics Data System (ADS)
Bazhenova, E.; Zarayskaya, Y.; Wigley, R. A.; Anderson, R.; Falconer, R. K. H.; Kearns, T.; Martin, T.; Minami, H.; Roperez, J.; Rosedee, A.; Sade, H.; Seeboruth, S.; Simpson, B.; Sumiyoshi, M.; Tinmouth, N.; Zwolak, K.
2017-12-01
In preparation for the XPRIZE 2017 Round 1, a new sea-floor mapping system has been assembled based on an Unmanned Surface Vessel (USV) coupled with an Autonomous Underwater Vehicle (AUV). USV operation allows reducing logistics costs, while the AUV provides enhanced maneuverability and high accuracy of stabilization for the mapping missions. The AUV is equipped with a high-resolution interferometric synthetic aperture sonar (HISAS) and a multibeam sonar (MBES), covering a wide bathymetry swath and the nadir, respectively. Typically operating at 20 to 40 m altitude, the HISAS is capable of providing SAS imagery with 4 x 4 cm resolution and bathymetry with 40 x 40 cm resolution throughout the swath. Smaller areas of interest (50 x 50 m) can be further examined using the Spot processing technique, to produce SAS imagery with 2 x 2 cm resolution and high- resolution SAS bathymetry with 5 x 5 cm resolution. This allows multi-aspect imaging and examination of seabed geological features at different scales. Advanced data post-processing can be performed to produce 3D images of objects and explore their structure using the shadow contrast and shape. Being an interferometric system, the HISAS collects data for both imagery and bathymetry in the same swath. This improves the robustness for SAS in areas with significant relief. In the standard survey mode, the HISAS can typically collect SAS data at 2.6 km2/hr over relatively flat ground. Another limiting factor to the HISAS data coverage and quality is the vehicle stability influenced by downslope and cross currents and the resulting vehicle's speed. From experience, the best coverage occurs at a vehicle speed of around 2 m/s. At slower speeds the vehicle starts to lose steerage leading to degradation of tracking and navigation performance, which harms the focusing algorithm that creates the SAS data. For the AUV mission planning in unknown areas or in case of highly variable conditions at the study site, MBES reconnaissance data can be acquired at higher altitudes prior to running the AUV close to the seabed. Additionally, the MBES is used to collect the acoustic bottom reflectivity (backscatter) data, which allows further sea-floor characterization and potentially description of sediment types and marine bottom habitats, such as coral reefs, deep sea hydrothermal vents etc.
MAPPING THE SHORES OF THE BROWN DWARF DESERT. II. MULTIPLE STAR FORMATION IN TAURUS-AURIGA
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kraus, Adam L.; Ireland, Michael J.; Martinache, Frantz
2011-04-10
We have conducted a high-resolution imaging study of the Taurus-Auriga star-forming region in order to characterize the primordial outcome of multiple star formation and the extent of the brown dwarf desert. Our survey identified 16 new binary companions to primary stars with masses of 0.25-2.5 M{sub sun}, raising the total number of binary pairs (including components of high-order multiples) with separations of 3-5000 AU to 90. We find that {approx}2/3-3/4 of all Taurus members are multiple systems of two or more stars, while the other {approx}1/4-1/3 appear to have formed as single stars; the distribution of high-order multiplicity suggests thatmore » fragmentation into a wide binary has no impact on the subsequent probability that either component will fragment again. The separation distribution for solar-type stars (0.7-2.5 M{sub sun}) is nearly log-flat over separations of 3-5000 AU, but lower-mass stars (0.25-0.7 M{sub sun}) show a paucity of binary companions with separations of {approx}>200 AU. Across this full mass range, companion masses are well described with a linear-flat function; all system mass ratios (q = M{sub B} /M{sub A} ) are equally probable, apparently including substellar companions. Our results are broadly consistent with the two expected modes of binary formation (free-fall fragmentation on large scales and disk fragmentation on small scales), but the distributions provide some clues as to the epochs at which the companions are likely to form.« less
What is the diffraction limit? From Airy to Abbe using direct numerical integration
NASA Astrophysics Data System (ADS)
Calm, Y. M.; Merlo, J. M.; Burns, M. J.; Kempa, K.; Naughton, M. J.
The resolution of a conventional optical microscope is sometimes taken from Airy's point spread function (PSF), 0 . 61 λ / NA , and sometimes from Abbe, λ / 2 NA , where NA is the numerical aperture, however modern fluorescence and near-field optical microscopies achieve spatial resolution far better than either of these limits. There is a new category of 2D metamaterials called planar optical elements (POEs), which have a microscopic thickness (< λ), macroscopic transverse dimensions (> 100 λ), and are composed of an array of nanostructured light scatterers. POEs are found in a range of micro- and nano-photonic technologies, and will influence the future optical nanoscopy. With this pretext, we shed some light on the 'diffraction limit' by numerically evaluating Kirchhoff's scalar formulae (in their exact form) and identifying the features of highly non-paraxial, 3D PSFs. We show that the Airy and Abbe criteria are connected, and we comment on the design rules for a particular type of POE: the flat lens. This work is supported by the W. M. Keck Foundation.
External Peer Review Team Report Underground Testing Area Subproject for Frenchman Flat, Revision 1
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sam Marutzky
2010-09-01
An external peer review was conducted to review the groundwater models used in the corrective action investigation stage of the Underground Test Area (UGTA) subproject to forecast zones of potential contamination in 1,000 years for the Frenchman Flat area. The goal of the external peer review was to provide technical evaluation of the studies and to assist in assessing the readiness of the UGTA subproject to progress to monitoring activities for further model evaluation. The external peer review team consisted of six independent technical experts with expertise in geology, hydrogeology,'''groundwater modeling, and radiochemistry. The peer review team was tasked withmore » addressing the following questions: 1. Are the modeling approaches, assumptions, and model results for Frenchman Flat consistent with the use of modeling studies as a decision tool for resolution of environmental and regulatory requirements? 2. Do the modeling results adequately account for uncertainty in models of flow and transport in the Frenchman Flat hydrological setting? a. Are the models of sufficient scale/resolution to adequately predict contaminant transport in the Frenchman Flat setting? b. Have all key processes been included in the model? c. Are the methods used to forecast contaminant boundaries from the transport modeling studies reasonable and appropriate? d. Are the assessments of uncertainty technically sound and consistent with state-of-the-art approaches currently used in the hydrological sciences? 3. Are the datasets and modeling results adequate for a transition to Corrective Action Unit monitoring studies—the next stage in the UGTA strategy for Frenchman Flat? The peer review team is of the opinion that, with some limitations, the modeling approaches, assumptions, and model results are consistent with the use of modeling studies for resolution of environmental and regulatory requirements. The peer review team further finds that the modeling studies have accounted for uncertainty in models of flow and transport in the Frenchman Flat except for a few deficiencies described in the report. Finally, the peer review team concludes that the UGTA subproject has explored a wide range of variations in assumptions, methods, and data, and should proceed to the next stage with an emphasis on monitoring studies. The corrective action strategy, as described in the Federal Facility Agreement and Consent Order, states that the groundwater flow and transport models for each corrective action unit will consider, at a minimum, the following: • Alternative hydrostratigraphic framework models of the modeling domain. • Uncertainty in the radiological and hydrological source terms. • Alternative models of recharge. • Alternative boundary conditions and groundwater flows. • Multiple permissive sets of calibrated flow models. • Probabilistic simulations of transport using plausible sets of alternative framework and recharge models, and boundary and groundwater flows from calibrated flow models. • Ensembles of forecasts of contaminant boundaries. • Sensitivity and uncertainty analyses of model outputs. The peer review team finds that these minimum requirements have been met. While the groundwater modeling and uncertainty analyses have been quite detailed, the peer review team has identified several modeling-related issues that should be addressed in the next phase of the corrective action activities: • Evaluating and using water-level gradients from the pilot wells at the Area 5 Radioactive Waste Management Site in model calibration. • Re-evaluating the use of geochemical age-dating data to constrain model calibrations. • Developing water budgets for the alluvial and upper volcanic aquifer systems in Frenchman Flat. • Considering modeling approaches in which calculated groundwater flow directions near the water table are not predetermined by model boundary conditions and areas of recharge, all of which are very uncertain. • Evaluating local-scale variations in hydraulic conductivity on the calculated contaminant boundaries. • Evaluating the effects of non-steady-state flow conditions on calculated contaminant boundaries, including the effects of long-term declines in water levels, climatic change, and disruption of groundwater system by potential earthquake faulting along either of the two major controlling fault zones in the flow system (the Cane Spring and Rock Valley faults). • Considering the use of less-complex modeling approaches. • Evaluating the large change in water levels in the vicinity of the Frenchman Flat playa and developing a conceptual model to explain these water-level changes. • Developing a long-term groundwater level monitoring program for Frenchman Flat with regular monitoring of water levels at key monitoring wells. Despite these reservations, the peer review team strongly believes that the UGTA subproject should proceed to the next stage.« less
Ning, Ruola; Tang, Xiangyang; Conover, David; Yu, Rongfeng
2003-07-01
Cone beam computed tomography (CBCT) has been investigated in the past two decades due to its potential advantages over a fan beam CT. These advantages include (a) great improvement in data acquisition efficiency, spatial resolution, and spatial resolution uniformity, (b) substantially better utilization of x-ray photons generated by the x-ray tube compared to a fan beam CT, and (c) significant advancement in clinical three-dimensional (3D) CT applications. However, most studies of CBCT in the past are focused on cone beam data acquisition theories and reconstruction algorithms. The recent development of x-ray flat panel detectors (FPD) has made CBCT imaging feasible and practical. This paper reports a newly built flat panel detector-based CBCT prototype scanner and presents the results of the preliminary evaluation of the prototype through a phantom study. The prototype consisted of an x-ray tube, a flat panel detector, a GE 8800 CT gantry, a patient table and a computer system. The prototype was constructed by modifying a GE 8800 CT gantry such that both a single-circle cone beam acquisition orbit and a circle-plus-two-arcs orbit can be achieved. With a circle-plus-two-arcs orbit, a complete set of cone beam projection data can be obtained, consisting of a set of circle projections and a set of arc projections. Using the prototype scanner, the set of circle projections were acquired by rotating the x-ray tube and the FPD together on the gantry, and the set of arc projections were obtained by tilting the gantry while the x-ray tube and detector were at the 12 and 6 o'clock positions, respectively. A filtered backprojection exact cone beam reconstruction algorithm based on a circle-plus-two-arcs orbit was used for cone beam reconstruction from both the circle and arc projections. The system was first characterized in terms of the linearity and dynamic range of the detector. Then the uniformity, spatial resolution and low contrast resolution were assessed using different phantoms mainly in the central plane of the cone beam reconstruction. Finally, the reconstruction accuracy of using the circle-plus-two-arcs orbit and its related filtered backprojection cone beam volume CT reconstruction algorithm was evaluated with a specially designed disk phantom. The results obtained using the new cone beam acquisition orbit and the related reconstruction algorithm were compared to those obtained using a single-circle cone beam geometry and Feldkamp's algorithm in terms of reconstruction accuracy. The results of the study demonstrate that the circle-plus-two-arcs cone beam orbit is achievable in practice. Also, the reconstruction accuracy of cone beam reconstruction is significantly improved with the circle-plus-two-arcs orbit and its related exact CB-FPB algorithm, as compared to using a single circle cone beam orbit and Feldkamp's algorithm.
Quality of colonoscopy in Lynch syndrome
Niv, Yaron; Moeslein, Gabriela; Vasen, Hans F.A.; Karner-Hanusch, Judith; Lubinsky, Jan; Gasche, Christoph
2014-01-01
Lynch syndrome (LS) accounts for 2 – 4 % of all colorectal cancers. Affected family members have a germline mutation in one of the DNA mismatch repair genes MLH1, PMS2, MSH2, or MSH6, and a lifetime risk for development of colorectal cancer of 25 – 75 %. Current guidelines recommend annual to biannual surveillance colonoscopy in mutation carriers. Several factors may predict failure to prevent interval cancer in LS: more lesions in the right colon; more flat (“non polypoid”) and lateral growing polyps; small adenomas may already harbor high grade dysplasia or a high percentage of villous component and become advanced adenomas; there is a short duration of the adenoma – carcinoma sequence; synchronous lesions have high prevalence; patients are younger and less tolerant to colonoscopy (need more sedation); and repeated colonoscopies are needed for lifelong surveillance (patient experience is important for compliance). In order to prevent cancer in LS patients, surveillance colonoscopy should be performed in an endoscopic unit experienced with LS, every 1 – 2 years, starting at age 20 – 25 years, or 10 years younger than the age of first diagnosis in the family (whichever is first), and yearly after the age of 40 years. Colonoscopy in LS patients should be a very meticulous and precise procedure (i. e. taking sufficient withdrawal time, documentation of such warranted), with removal of all of the polyps, special attention to the right colon and alertness to flat lesions. Following quality indicators such as successful cleansing of the colon and removal of every polyp will probably improve prevention of interval cancers. At this moment, none of the new endoscopic techniques have shown convincing superiority over conventional high resolution white light colonoscopy. PMID:26135102
Development of a low cost high precision three-layer 3D artificial compound eye.
Zhang, Hao; Li, Lei; McCray, David L; Scheiding, Sebastian; Naples, Neil J; Gebhardt, Andreas; Risse, Stefan; Eberhardt, Ramona; Tünnermann, Andreas; Yi, Allen Y
2013-09-23
Artificial compound eyes are typically designed on planar substrates due to the limits of current imaging devices and available manufacturing processes. In this study, a high precision, low cost, three-layer 3D artificial compound eye consisting of a 3D microlens array, a freeform lens array, and a field lens array was constructed to mimic an apposition compound eye on a curved substrate. The freeform microlens array was manufactured on a curved substrate to alter incident light beams and steer their respective images onto a flat image plane. The optical design was performed using ZEMAX. The optical simulation shows that the artificial compound eye can form multiple images with aberrations below 11 μm; adequate for many imaging applications. Both the freeform lens array and the field lens array were manufactured using microinjection molding process to reduce cost. Aluminum mold inserts were diamond machined by the slow tool servo method. The performance of the compound eye was tested using a home-built optical setup. The images captured demonstrate that the proposed structures can successfully steer images from a curved surface onto a planar photoreceptor. Experimental results show that the compound eye in this research has a field of view of 87°. In addition, images formed by multiple channels were found to be evenly distributed on the flat photoreceptor. Additionally, overlapping views of the adjacent channels allow higher resolution images to be re-constructed from multiple 3D images taken simultaneously.
Strain-free polished channel-cut crystal monochromators: a new approach and results
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kasman, Elina; Montgomery, Jonathan; Huang, XianRong
The use of channel-cut crystal monochromators has been traditionally limited to applications that can tolerate the rough surface quality from wet etching without polishing. We have previously presented and discussed the motivation for producing channel cut crystals with strain-free polished surfaces [1]. Afterwards, we have undertaken an effort to design and implement an automated machine for polishing channel-cut crystals. The initial effort led to inefficient results. Since then, we conceptualized, designed, and implemented a new version of the channel-cut polishing machine, now called C-CHiRP (Channel-Cut High Resolution Polisher), also known as CCPM V2.0. The new machine design no longer utilizesmore » Figure-8 motion that mimics manual polishing. Instead, the polishing is achieved by a combination of rotary and linear functions of two coordinated motion systems. Here we present the new design of C-CHiRP, its capabilities and features. Multiple channel-cut crystals polished using the C-CHiRP have been deployed into several beamlines at the Advanced Photon Source (APS). We present the measurements of surface finish, flatness, as well as topography results obtained at 1-BM of APS, as compared with results typically achieved when polishing flat-surface monochromator crystals using conventional polishing processes. Limitations of the current machine design, capabilities and considerations for strain-free polishing of highly complex crystals are also discussed, together with an outlook for future developments and improvements.« less
Oxygen interaction with disordered and nanostructured Ag(001) surfaces
NASA Astrophysics Data System (ADS)
Vattuone, L.; Burghaus, U.; Savio, L.; Rocca, M.; Costantini, G.; Buatier de Mongeot, F.; Boragno, C.; Rusponi, S.; Valbusa, U.
2001-08-01
We investigated O2 adsorption on Ag(001) in the presence of defects induced by Ne+ sputtering at different crystal temperatures, corresponding to different surface morphologies recently identified by scanning tunneling microscopy. The gas-phase molecules were dosed with a supersonic molecular beam. The total sticking coefficient and the total uptake were measured with the retarded reflector method, while the adsorption products were characterized by high resolution electron energy loss spectroscopy. We find that, for the sputtered surfaces, both sticking probability and total O2 uptake decrease. Molecular adsorption takes place also for heavily damaged surfaces but, contrary to the flat surface case, dissociation occurs already at a crystal temperature, T, of 105 K. The internal vibrational frequency of the O2 admolecules indicates that two out of the three O2- moieties present on the flat Ag(001) surface are destabilized by the presence of defects. The dissociation probability depends on surface morphology and drops for sputtering temperatures larger than 350 K, i.e., when surface mobility prevails healing the defects. The latter, previously identified with kink sites, are saturated at large O2 doses. The vibrational frequency of the oxygen adatoms, produced by low temperature dissociation, indicates the formation of at least two different adatom moieties, which we tentatively assign to oxygen atoms at kinks and vacancies.
Spectrographs and Large Telescopes: A Study of Instrumentation
NASA Astrophysics Data System (ADS)
Fica, Haley Diane; Crane, Jeffrey D.; Uomoto, Alan K.; Hare, Tyson
2017-01-01
It is a truth universally acknowledged, that a telescope in possession of a large aperture, must be in want of a high resolution spectrograph. Subsystems of these instruments require testing and upgrading to ensure that they can continue to be scientifically productive and usher in a new era of astronomical research. The Planet Finder Spectrograph (PFS) and Magellan Inamori Kyocera Echelle (MIKE), both on the Magellan II Clay telescope at Las Campanas Observatory, and the Giant Magellan Telescope (GMT) Consortium Large Earth Finder (G-CLEF) are examples of such instruments. Bluer flat field lamps were designed for PFS and MIKE to replace lamps no longer available in order to ensure continued, efficient functionality. These newly designed lamps will result in better flat fielding and calibration of data, and thus result in increased reduction of instrument noise. When it is built and installed in 2022, G-CLEF will be be fed by a tertiary mirror on the GMT. Stepper motors attached to the back of this mirror will be used to correct misalignments in the optical relay system. These motors were characterized to ensure that they function as expected to an accuracy of a few microns. These projects incorporate several key aspects of astronomical instrumentation: designing, building, and testing.
Development of 4-Sides Buttable CdTe-ASIC Hybrid Module for X-ray Flat Panel Detector
NASA Astrophysics Data System (ADS)
Tamaki, Mitsuru; Mito, Yoshio; Shuto, Yasuhiro; Kiyuna, Tatsuya; Yamamoto, Masaya; Sagae, Kenichi; Kina, Tooru; Koizumi, Tatsuhiro; Ohno, Ryoichi
2009-08-01
A 4-sides buttable CdTe-ASIC hybrid module suitable for use in an X-ray flat panel detector (FPD) has been developed by applying through silicon via (TSV) technology to the readout ASIC. The ASIC has 128 times 256 channels of charge integration type readout circuitry and an area of 12.9 mm times 25.7 mm. The CdTe sensor of 1 mm thickness, having the same area and pixel of 100 mum pitch, was fabricated from the Cl-doped CdTe single crystal grown by traveling heater method (THM). Then the CdTe pixel sensor was hybridized with the ASIC using the bump-bonding technology. The basic performance of this 4-sides buttable module was evaluated by taking X-ray images, and it was compared with that of a commercially available indirect type CsI(Tl) FPD. A prototype CdTe FPD was made by assembling 9 pieces of the 4-sides buttable modules into 3 times 3 arrays in which the neighboring modules were mounted on the interface board. The FPD covers an active area of 77 mm times 39 mm. The results showed the great potential of this 4-sides buttable module for the new real time X-ray FPD with high spatial resolution.
Second generation large area microchannel plate flat panel phototubes
NASA Astrophysics Data System (ADS)
Ertley, C. D.; Siegmund, O. H. W.; Jelinsky, S. R.; Tedesco, J.; Minot, M. J.; O'Mahony, A.; Craven, C. A.; Popecki, M.; Lyashenko, A. V.; Foley, M. R.
2016-07-01
Very large (20 cm × 20 cm) flat panel phototubes are being developed which employ novel microchannel plates (MCPs). The MCPs are manufactured using borosilicate microcapillary arrays which are functionalized by the application of resistive and secondary emissive layers using atomic layer deposition (ALD). This allows the operational parameters to be set by tailoring sequential ALD deposition processes. The borosilicate substrates are robust, including the ability to be produced in large formats (20 cm square). ALD MCPs have performance characteristics (gain, pulse amplitude distributions, and imaging) that are equivalent or better than conventional MCPs. They have low intrinsic background (0.045 events cm-2 sec-1)., high open area ratios (74% for the latest generation of borosilicate substrates), and stable gain during >7 C cm-2 charge extraction after preconditioning (vacuum bake and burn-in). The tube assemblies use a pair of 20 cm × 20 cm ALD MCPs comprised of a borosilicate entrance window, a proximity focused bialkali photocathode, and a strip-line readout anode. The second generation design employs an all glass body with a hot indium seal and a transfer photocathode. We have achieved >20% quantum efficiency and good gain uniformity over the 400 cm2 field of view, spatial resolution of <1 cm and obtained event timing accuracy of close to 100 ps FWHM.
Storlazzi, C.D.; Ogston, A.S.; Bothner, Michael H.; Field, M.E.; Presto, M.K.
2004-01-01
The fringing coral reef off the south coast of Molokai, Hawaii is currently being studied as part of a US Geological Survey (USGS) multi-disciplinary project that focuses on geologic and oceanographic processes that affect coral reef systems. For this investigation, four instrument packages were deployed across the fringing coral reef during the summer of 2001 to understand the processes governing fine-grained terrestrial sediment suspension on the shallow reef flat (h=1m) and its advection across the reef crest and onto the deeper fore reef. The time-series measurements suggest the following conceptual model of water and fine-grained sediment transport across the reef: Relatively cool, clear water flows up onto the reef flat during flooding tides. At high tide, more deep-water wave energy is able to propagate onto the reef flat and larger Trade wind-driven waves can develop on the reef flat, thereby increasing sediment suspension. Trade wind-driven surface currents and wave breaking at the reef crest cause setup of water on the reef flat, further increasing the water depth and enhancing the development of depth-limited waves and sediment suspension. As the tide ebbs, the water and associated suspended sediment on the reef flat drains off the reef flat and is advected offshore and to the west by Trade wind- and tidally- driven currents. Observations on the fore reef show relatively high turbidity throughout the water column during the ebb tide. It therefore appears that high suspended sediment concentrations on the deeper fore reef, where active coral growth is at a maximum, are dynamically linked to processes on the muddy, shallow reef flat.
High sensitivity and high resolution element 3D analysis by a combined SIMS–SPM instrument
Wirtz, Tom
2015-01-01
Summary Using the recently developed SIMS–SPM prototype, secondary ion mass spectrometry (SIMS) data was combined with topographical data from the scanning probe microscopy (SPM) module for five test structures in order to obtain accurate chemical 3D maps: a polystyrene/polyvinylpyrrolidone (PS/PVP) polymer blend, a nickel-based super-alloy, a titanium carbonitride-based cermet, a reticle test structure and Mg(OH)2 nanoclusters incorporated inside a polymer matrix. The examples illustrate the potential of this combined approach to track and eliminate artefacts related to inhomogeneities of the sputter rates (caused by samples containing various materials, different phases or having a non-flat surface) and inhomogeneities of the secondary ion extraction efficiencies due to local field distortions (caused by topography with high aspect ratios). In this respect, this paper presents the measured relative sputter rates between PVP and PS as well as in between the different phases of the TiCN cermet. PMID:26171285
Diamond anvils with a round table designed for high pressure experiments in DAC
NASA Astrophysics Data System (ADS)
Dubrovinsky, Leonid; Koemets, Egor; Bykov, Maxim; Bykova, Elena; Aprilis, Georgios; Pakhomova, Anna; Glazyrin, Konstantin; Laskin, Alexander; Prakapenka, Vitali B.; Greenberg, Eran; Dubrovinskaia, Natalia
2017-10-01
Here, we present new Diamond Anvils with a Round Table (DART-anvils) designed for applications in the diamond anvil cell (DAC) technique. The main features of the new DART-anvil design are a spherical shape of both the crown and the table of a diamond and the position of the centre of the culet exactly in the centre of the sphere. The performance of DART-anvils was tested in a number of high pressure high-temperature experiments at different synchrotron beamlines. These experiments demonstrated a number of advantages, which are unavailable with any of the hitherto known anvil designs. Use of DART-anvils enables to realise in situ single-crystal X-ray diffraction experiments with laser heating using stationary laser-heating setups; eliminating flat-plate design of conventional anvils, DART-anvils make the cell alignment easier; working as solid immersion lenses, they provide additional magnification of the sample in a DAC and improve the image resolution.
First measurements of high frequency cross-spectra from a pair of large Michelson interferometers
Chou, Aaron S.; Gustafson, Richard; Hogan, Craig; ...
2016-09-09
Here, measurements are reported of the cross-correlation of spectra of differential position signals from the Fermilab Holometer, a pair of colocated 39 m long, high power Michelson interferometers with flat broadband frequency response in the MHz range. The instrument obtains sensitivity to high frequency correlated signals far exceeding any previous measurement in a broad frequency band extending beyond the 3.8 MHz inverse light-crossing time of the apparatus. The dominant but uncorrelated shot noise is averaged down over 2 × 10 8 independent spectral measurements with 381 Hz frequency resolution to obtain 2.1 × 10 -20m/ √Hz sensitivity to stationary signals. For signal bandwidthsmore » Δf > 11 kHz, the sensitivity to strain h or shear power spectral density of classical or exotic origin surpasses a milestone PSD δh < t p where t p = 5.39 × 10 -44/ Hz is the Planck time.« less
First Measurements of High Frequency Cross-Spectra from a Pair of Large Michelson Interferometers.
Chou, Aaron S; Gustafson, Richard; Hogan, Craig; Kamai, Brittany; Kwon, Ohkyung; Lanza, Robert; McCuller, Lee; Meyer, Stephan S; Richardson, Jonathan; Stoughton, Chris; Tomlin, Raymond; Waldman, Samuel; Weiss, Rainer
2016-09-09
Measurements are reported of the cross-correlation of spectra of differential position signals from the Fermilab Holometer, a pair of colocated 39 m long, high power Michelson interferometers with flat broadband frequency response in the MHz range. The instrument obtains sensitivity to high frequency correlated signals far exceeding any previous measurement in a broad frequency band extending beyond the 3.8 MHz inverse light-crossing time of the apparatus. The dominant but uncorrelated shot noise is averaged down over 2×10^{8} independent spectral measurements with 381 Hz frequency resolution to obtain 2.1×10^{-20}m/sqrt[Hz] sensitivity to stationary signals. For signal bandwidths Δf>11 kHz, the sensitivity to strain h or shear power spectral density of classical or exotic origin surpasses a milestone PSD_{δh}
Quantitative laser diagnostic and modeling study of C2 and CH chemistry in combustion.
Köhler, Markus; Brockhinke, Andreas; Braun-Unkhoff, Marina; Kohse-Höinghaus, Katharina
2010-04-15
Quantitative concentration measurements of CH and C(2) have been performed in laminar, premixed, flat flames of propene and cyclopentene with varying stoichiometry. A combination of cavity ring-down (CRD) spectroscopy and laser-induced fluorescence (LIF) was used to enable sensitive detection of these species with high spatial resolution. Previously, CH and C(2) chemistry had been studied, predominantly in methane flames, to understand potential correlations of their formation and consumption. For flames of larger hydrocarbon fuels, however, quantitative information on these small intermediates is scarce, especially under fuel-rich conditions. Also, the combustion chemistry of C(2) in particular has not been studied in detail, and although it has often been observed, its role in potential build-up reactions of higher hydrocarbon species is not well understood. The quantitative measurements performed here are the first to detect both species with good spatial resolution and high sensitivity in the same experiment in flames of C(3) and C(5) fuels. The experimental profiles were compared with results of combustion modeling to reveal details of the formation and consumption of these important combustion molecules, and the investigation was devoted to assist the further understanding of the role of C(2) and of its potential chemical interdependences with CH and other small radicals.
A short working distance multiple crystal x-ray spectrometer
Dickinson, B.; Seidler, G.T.; Webb, Z.W.; Bradley, J.A.; Nagle, K.P.; Heald, S.M.; Gordon, R.A.; Chou, I.-Ming
2008-01-01
For x-ray spot sizes of a few tens of microns or smaller, a millimeter-sized flat analyzer crystal placed ???1 cm from the sample will exhibit high energy resolution while subtending a collection solid angle comparable to that of a typical spherically bent crystal analyzer (SBCA) at much larger working distances. Based on this observation and a nonfocusing geometry for the analyzer optic, we have constructed and tested a short working distance (SWD) multicrystal x-ray spectrometer. This prototype instrument has a maximum effective collection solid angle of 0.14 sr, comparable to that of 17 SBCA at 1 m working distance. We find good agreement with prior work for measurements of the Mn K?? x-ray emission and resonant inelastic x-ray scattering for MnO, and also for measurements of the x-ray absorption near-edge structure for Dy metal using L??2 partial-fluorescence yield detection. We discuss future applications at third- and fourth-generation light sources. For concentrated samples, the extremely large collection angle of SWD spectrometers will permit collection of high-resolution x-ray emission spectra with a single pulse of the Linac Coherent Light Source. The range of applications of SWD spectrometers and traditional multi-SBCA instruments has some overlap, but also is significantly complementary. ?? 2008 American Institute of Physics.
2q37 Deletion syndrome confirmed by high-resolution cytogenetic analysis
Cho, Eun-Kyung; Kim, Jinsup; Yang, Aram; Jin, Dong-Kyu
2017-01-01
Chromosome 2q37 deletion syndrome is a rare chromosomal disorder characterized by mild to moderate developmental delay, brachydactyly of the third to fifth digits or toes, short stature, obesity, hypotonia, a characteristic facial appearance, and autism spectrum disorder. Here, we report on a patient with 2q37 deletion presenting with dilated cardiomyopathy (DCMP). Congenital heart malformations have been noted in up to 20% of patients with 2q37 deletions. However, DCMP has not been reported in 2q37 deletion patients previously. The patient exhibited the characteristic facial appearance (a flat nasal bridge, deep-set eyes, arched eyebrows, and a thin upper lip), developmental delay, mild mental retardation, peripheral nerve palsy, and Albright hereditary osteodystrophy (AHO)-like phenotypes (short stature and brachydactyly). Conventional chromosomal analysis results were normal; however, microarray-based comparative genomic hybridization revealed terminal deletion at 2q37.1q37.3. In addition, the patient was confirmed to have partial growth hormone (GH) deficiency and had shown a significant increase in growth rate after substitutive GH therapy. Chromosome 2q37 deletion syndrome should be considered in the differential diagnosis of patients presenting with AHO features, especially in the presence of facial dysmorphism. When patients are suspected of having a 2q37 deletion, high-resolution cytogenetic analysis is recommended. PMID:28690993
DOE Office of Scientific and Technical Information (OSTI.GOV)
Grimm, E.C.; Laird, K.R.; Mueller, P.G.
High-resolution fossil-pollen and diatom data from Moon Lake, North Dakota, reveal major climate and vegetation changes near the western margin of the tall-grass prairie. Fourteen AMS radiocarbon dates provide excellent time control for the past {approximately}11,800 {sup 14}C years B.P. Picea dominated during the late-glacial until it abruptly declined {approximately}10,300 B.P. During the early Holocene ({approximately}10,300-8000 B.P.), deciduous trees and shrubs (Populus, Betula, Corylus, Quercus, and especially Ulmus) were common, but prairie taxa (Poaceae, Artemisia, and Chenopodiaceae/Amaranthaceae) gradually increased. During this period the diatoms indicate the lake becoming gradually more saline as water-level fell. By {approximately}8000 B.P., salinity had increasedmore » to the point that the diatoms were no longer sensitive to further salinity increases. However, fluctuating pollen percentages of mud-flat weeds (Ambrosia and Iva) indicate frequently changing water levels during the mid-Holocene ({approximately}8000-5000 B.P.). The driest millennium was 7000-6000 B.P., when Iva annua was common. After {approximately}3000 B.P. the lake became less-saline, and the diatoms were again sensitive to changing salinity. The Medieval Warm Period and Little Ice Age are clearly evident in the diatom data.« less
Superelliptical insert gradient coil with a field-modifying layer for breast imaging.
Moon, Sung M; Goodrich, K Craig; Hadley, J Rock; Kim, Seong-Eun; Zeng, Gengsheng L; Morrell, Glen R; McAlpine, Matthew A; Chronik, Blaine A; Parker, Dennis L
2011-03-01
Many MRI applications such as dynamic contrast-enhanced MRI of the breast require high spatial and temporal resolution and can benefit from improved gradient performance, e.g., increased gradient strength and reduced gradient rise time. The improved gradient performance required to achieve high spatial and temporal resolution for this application may be achieved by using local insert gradients specifically designed for a target anatomy. Current flat gradient systems cannot create an imaging volume large enough to accommodate both breasts; further, their gradient fields are not homogeneous, dropping off rapidly with distance from the gradient coil surface. To attain an imaging volume adequate for bilateral breast MRI, a planar local gradient system design has been modified into a superellipse shape, creating homogeneous gradient volumes that are 182% (Gx), 57% (Gy), and 75% (Gz) wider (left/right direction) than those of the corresponding standard planar gradient. Adding an additional field-modifying gradient winding results in an additional improvement of the homogeneous gradient field near the gradient coil surface over the already enlarged homogeneous gradient volumes of the superelliptical gradients (67%, 89%, and 214% for Gx, Gy, and Gz respectively). A prototype y-gradient insert has been built to demonstrate imaging and implementation characteristics of the superellipse gradient in a 3 T MRI system. Copyright © 2010 Wiley-Liss, Inc.
Thermophysics of fractures on comet 67P/Churyumov-Gerasimenko
NASA Astrophysics Data System (ADS)
Höfner, S.; Vincent, J.-B.; Blum, J.; Davidsson, B. J. R.; Sierks, H.; El-Maarry, M. R.; Deller, J.; Hofmann, M.; Hu, X.; Pajola, M.; Barbieri, C.; Lamy, P. L.; Rodrigo, R.; Koschny, D.; Rickman, H.; Keller, H. U.; A'Hearn, M. F.; Auger, A.-T.; Barucci, M. A.; Bertaux, J.-L.; Bertini, I.; Bodewits, D.; Cremonese, G.; Da Deppo, V.; Debei, S.; De Cecco, M.; Fornasier, S.; Fulle, M.; Gicquel, A.; Groussin, O.; Gutiérrez, P. J.; Gutiérrez-Marqués, P.; Güttler, C.; Hviid, S. F.; Ip, W.-H.; Jorda, L.; Knollenberg, J.; Kovacs, G.; Kramm, J.-R.; Kührt, E.; Küppers, M.; La Forgia, F.; Lazzarin, M.; Lopez-Moreno, J. J.; Marzari, F.; Michalik, H.; Moissl-Fraund, R.; Moreno, F.; Mottola, S.; Naletto, G.; Oklay, N.; Preusker, F.; Scholten, F.; Shi, X.; Thomas, N.; Toth, I.; Tubiana, C.; Zitzmann, S.
2017-12-01
Context. The camera OSIRIS on board Rosetta obtained high-resolution images of the nucleus of comet 67P/Churyumov-Gerasimenko (67P). Great parts of the nucleus surface are composed of fractured terrain. Aims: Fracture formation, evolution, and their potential relationship to physical processes that drive activity are not yet fully understood. Observed temperatures and gas production rates can be explained or interpreted with the presence of fractures by applying appropriate modelling methods. Methods: We followed a transient thermophysical model approach that includes radiative, conductive, and water-ice sublimation fluxes by considering a variety of heliocentric distances, illumination conditions, and thermophysical properties for a set of characteristic fracture geometries on the nucleus of 67P. We computed diurnal temperatures, heat fluxes, and outgassing behaviour in order to derive and distinguish the influence of the mentioned parameters on fractured terrain. Results: Our analysis confirms that fractures, as already indicated by former studies about concavities, deviate from flat-terrain topographies with equivalent properties, mostly through the effect of self-heating. Compared to flat terrain, illuminated cometary fractures are generally warmer, with smaller diurnal temperature fluctuations. Maximum sublimation rates reach higher peaks, and dust mantle quenching effects on sublimation rates are weaker. Consequently, the rough structure of the fractured terrain leads to significantly higher inferred surface thermal inertia values than for flat areas with identical physical properties, which might explain the range of measured thermal inertia on 67P. Conclusions: At 3.5 AU heliocentric distance, sublimation heat sinks in fractures converge to maximum values >50 W / m2 and trigger dust activity that can be related mainly to H2O. Fractures are likely to grow through the erosive interplay of alternating sublimation and thermal fatigue.
NASA Astrophysics Data System (ADS)
Swain, Pradyumna; Mark, David
2004-09-01
The emergence of curved CCD detectors as individual devices or as contoured mosaics assembled to match the curved focal planes of astronomical telescopes and terrestrial stereo panoramic cameras represents a major optical design advancement that greatly enhances the scientific potential of such instruments. In altering the primary detection surface within the telescope"s optical instrumentation system from flat to curved, and conforming the applied CCD"s shape precisely to the contour of the telescope"s curved focal plane, a major increase in the amount of transmittable light at various wavelengths through the system is achieved. This in turn enables multi-spectral ultra-sensitive imaging with much greater spatial resolution necessary for large and very large telescope applications, including those involving infrared image acquisition and spectroscopy, conducted over very wide fields of view. For earth-based and space-borne optical telescopes, the advent of curved CCD"s as the principle detectors provides a simplification of the telescope"s adjoining optics, reducing the number of optical elements and the occurrence of optical aberrations associated with large corrective optics used to conform to flat detectors. New astronomical experiments may be devised in the presence of curved CCD applications, in conjunction with large format cameras and curved mosaics, including three dimensional imaging spectroscopy conducted over multiple wavelengths simultaneously, wide field real-time stereoscopic tracking of remote objects within the solar system at high resolution, and deep field survey mapping of distant objects such as galaxies with much greater multi-band spatial precision over larger sky regions. Terrestrial stereo panoramic cameras equipped with arrays of curved CCD"s joined with associative wide field optics will require less optical glass and no mechanically moving parts to maintain continuous proper stereo convergence over wider perspective viewing fields than their flat CCD counterparts, lightening the cameras and enabling faster scanning and 3D integration of objects moving within a planetary terrain environment. Preliminary experiments conducted at the Sarnoff Corporation indicate the feasibility of curved CCD imagers with acceptable electro-optic integrity. Currently, we are in the process of evaluating the electro-optic performance of a curved wafer scale CCD imager. Detailed ray trace modeling and experimental electro-optical data performance obtained from the curved imager will be presented at the conference.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Shen, Youtao; Zhong, Yuncheng; Lai, Chao-Jen
2013-10-15
Purpose: To measure and investigate the improvement of microcalcification (MC) visibility in cone beam breast CT with a high pitch (75 μm), thick (500 μm) scintillator CMOS/CsI flat panel detector (Dexela 2923, Perkin Elmer).Methods: Aluminum wires and calcium carbonate grains of various sizes were embedded in a paraffin cylinder to simulate imaging of calcifications in a breast. Phantoms were imaged with a benchtop experimental cone beam CT system at various exposure levels. In addition to the Dexela detector, a high pitch (50 μm), thin (150 μm) scintillator CMOS/CsI flat panel detector (C7921CA-09, Hamamatsu Corporation, Hamamatsu City, Japan) and a widelymore » used low pitch (194 μm), thick (600 μm) scintillator aSi/CsI flat panel detector (PaxScan 4030CB, Varian Medical Systems) were also used in scanning for comparison. The images were independently reviewed by six readers (imaging physicists). The MC visibility was quantified as the fraction of visible MCs and measured as a function of the estimated mean glandular dose (MGD) level for various MC sizes and detectors. The modulation transfer functions (MTFs) and detective quantum efficiencies (DQEs) were also measured and compared for the three detectors used.Results: The authors have demonstrated that the use of a high pitch (75 μm) CMOS detector coupled with a thick (500 μm) CsI scintillator helped make the smaller 150–160, 160–180, and 180–200 μm MC groups more visible at MGDs up to 10.8, 9, and 10.8 mGy, respectively. It also made the larger 200–212 and 212–224 μm MC groups more visible at MGDs up to 7.2 mGy. No performance improvement was observed for 224–250 μm or larger size groups. With the higher spatial resolution of the Dexela detector based system, the apparent dimensions and shapes of MCs were more accurately rendered. The results show that with the aforementioned detector, a 73% visibility could be achieved in imaging 160–180 μm MCs as compared to 28% visibility achieved by the low pitch (194 μm) aSi/CsI flat panel detector. The measurements confirm that the Hamamatsu detector has the highest MTF, followed by the Dexel detector, and then the Varian detector. However, the Dexela detector, with its thick (500 μm) CsI scintillator and low noise level, has the highest DQE at all frequencies, followed by the Varian detector, and then the Hamamatsu detector. The findings on the MC visibility correlated well with the differences in MTFs, noise power spectra, and DQEs measured for these three detectors.Conclusions: The authors have demonstrated that the use of the CMOS type Dexela detector with its high pitch (75 μm) and thick (500 μm) CsI scintillator could help improve the MC visibility. However, the improvement depended on the exposure level and the MC size. For imaging larger MCs or scanning at high exposure levels, there was little advantage in using the Dexela detector as compared to the aSi type Varian detector. These findings correlate well with the higher measured DQEs of the Dexela detector, especially at higher frequencies.« less
Shen, Youtao; Zhong, Yuncheng; Lai, Chao-Jen; Wang, Tianpeng; Shaw, Chris C.
2013-01-01
Purpose: To measure and investigate the improvement of microcalcification (MC) visibility in cone beam breast CT with a high pitch (75 μm), thick (500 μm) scintillator CMOS/CsI flat panel detector (Dexela 2923, Perkin Elmer). Methods: Aluminum wires and calcium carbonate grains of various sizes were embedded in a paraffin cylinder to simulate imaging of calcifications in a breast. Phantoms were imaged with a benchtop experimental cone beam CT system at various exposure levels. In addition to the Dexela detector, a high pitch (50 μm), thin (150 μm) scintillator CMOS/CsI flat panel detector (C7921CA-09, Hamamatsu Corporation, Hamamatsu City, Japan) and a widely used low pitch (194 μm), thick (600 μm) scintillator aSi/CsI flat panel detector (PaxScan 4030CB, Varian Medical Systems) were also used in scanning for comparison. The images were independently reviewed by six readers (imaging physicists). The MC visibility was quantified as the fraction of visible MCs and measured as a function of the estimated mean glandular dose (MGD) level for various MC sizes and detectors. The modulation transfer functions (MTFs) and detective quantum efficiencies (DQEs) were also measured and compared for the three detectors used. Results: The authors have demonstrated that the use of a high pitch (75 μm) CMOS detector coupled with a thick (500 μm) CsI scintillator helped make the smaller 150–160, 160–180, and 180–200 μm MC groups more visible at MGDs up to 10.8, 9, and 10.8 mGy, respectively. It also made the larger 200–212 and 212–224 μm MC groups more visible at MGDs up to 7.2 mGy. No performance improvement was observed for 224–250 μm or larger size groups. With the higher spatial resolution of the Dexela detector based system, the apparent dimensions and shapes of MCs were more accurately rendered. The results show that with the aforementioned detector, a 73% visibility could be achieved in imaging 160–180 μm MCs as compared to 28% visibility achieved by the low pitch (194 μm) aSi/CsI flat panel detector. The measurements confirm that the Hamamatsu detector has the highest MTF, followed by the Dexel detector, and then the Varian detector. However, the Dexela detector, with its thick (500 μm) CsI scintillator and low noise level, has the highest DQE at all frequencies, followed by the Varian detector, and then the Hamamatsu detector. The findings on the MC visibility correlated well with the differences in MTFs, noise power spectra, and DQEs measured for these three detectors. Conclusions: The authors have demonstrated that the use of the CMOS type Dexela detector with its high pitch (75 μm) and thick (500 μm) CsI scintillator could help improve the MC visibility. However, the improvement depended on the exposure level and the MC size. For imaging larger MCs or scanning at high exposure levels, there was little advantage in using the Dexela detector as compared to the aSi type Varian detector. These findings correlate well with the higher measured DQEs of the Dexela detector, especially at higher frequencies. PMID:24089917
Shen, Youtao; Zhong, Yuncheng; Lai, Chao-Jen; Wang, Tianpeng; Shaw, Chris C
2013-10-01
To measure and investigate the improvement of microcalcification (MC) visibility in cone beam breast CT with a high pitch (75 μm), thick (500 μm) scintillator CMOS/CsI flat panel detector (Dexela 2923, Perkin Elmer). Aluminum wires and calcium carbonate grains of various sizes were embedded in a paraffin cylinder to simulate imaging of calcifications in a breast. Phantoms were imaged with a benchtop experimental cone beam CT system at various exposure levels. In addition to the Dexela detector, a high pitch (50 μm), thin (150 μm) scintillator CMOS/CsI flat panel detector (C7921CA-09, Hamamatsu Corporation, Hamamatsu City, Japan) and a widely used low pitch (194 μm), thick (600 μm) scintillator aSi/CsI flat panel detector (PaxScan 4030CB, Varian Medical Systems) were also used in scanning for comparison. The images were independently reviewed by six readers (imaging physicists). The MC visibility was quantified as the fraction of visible MCs and measured as a function of the estimated mean glandular dose (MGD) level for various MC sizes and detectors. The modulation transfer functions (MTFs) and detective quantum efficiencies (DQEs) were also measured and compared for the three detectors used. The authors have demonstrated that the use of a high pitch (75 μm) CMOS detector coupled with a thick (500 μm) CsI scintillator helped make the smaller 150-160, 160-180, and 180-200 μm MC groups more visible at MGDs up to 10.8, 9, and 10.8 mGy, respectively. It also made the larger 200-212 and 212-224 μm MC groups more visible at MGDs up to 7.2 mGy. No performance improvement was observed for 224-250 μm or larger size groups. With the higher spatial resolution of the Dexela detector based system, the apparent dimensions and shapes of MCs were more accurately rendered. The results show that with the aforementioned detector, a 73% visibility could be achieved in imaging 160-180 μm MCs as compared to 28% visibility achieved by the low pitch (194 μm) aSi/CsI flat panel detector. The measurements confirm that the Hamamatsu detector has the highest MTF, followed by the Dexel detector, and then the Varian detector. However, the Dexela detector, with its thick (500 μm) CsI scintillator and low noise level, has the highest DQE at all frequencies, followed by the Varian detector, and then the Hamamatsu detector. The findings on the MC visibility correlated well with the differences in MTFs, noise power spectra, and DQEs measured for these three detectors. The authors have demonstrated that the use of the CMOS type Dexela detector with its high pitch (75 μm) and thick (500 μm) CsI scintillator could help improve the MC visibility. However, the improvement depended on the exposure level and the MC size. For imaging larger MCs or scanning at high exposure levels, there was little advantage in using the Dexela detector as compared to the aSi type Varian detector. These findings correlate well with the higher measured DQEs of the Dexela detector, especially at higher frequencies.
[Digital thoracic radiology: devices, image processing, limits].
Frija, J; de Géry, S; Lallouet, F; Guermazi, A; Zagdanski, A M; De Kerviler, E
2001-09-01
In a first part, the different techniques of digital thoracic radiography are described. Since computed radiography with phosphore plates are the most commercialized it is more emphasized. But the other detectors are also described, as the drum coated with selenium and the direct digital radiography with selenium detectors. The other detectors are also studied in particular indirect flat panels detectors and the system with four high resolution CCD cameras. In a second step the most important image processing are discussed: the gradation curves, the unsharp mask processing, the system MUSICA, the dynamic range compression or reduction, the soustraction with dual energy. In the last part the advantages and the drawbacks of computed thoracic radiography are emphasized. The most important are the almost constant good quality of the pictures and the possibilities of image processing.
Results of Skylab investigation over Italy. [Sicily and Sardinia
NASA Technical Reports Server (NTRS)
Cassinis, R.; Lechi, G. M.; Tonelli, A. M. (Principal Investigator)
1975-01-01
The author has identified the following significant results. Multispectral high resolution photography of S190A was successfully applied to the detection of paleoriverbeds in flat lands. Results of SL-3 mission were compared to those of LANDSAT for two regional geological surveys (linear structures) on the islands of Sicily and Sardinia. On Sicily, the seasonal conditions were unfavorable for Skylab while LANDSAT played a major role in discovering long, unknown lineaments of great interest for the geodynamics of the area. On Sardinia, owing to the vegetation type and to the geomorphic conditions, the Skylab imagery was successfully employed to describe the network of linears, both regional and local. Results can be used to study the relationship between linears, actual fracturing and the occurrence of mineral deposits.
Sanchez, Richard D.
2004-01-01
High-resolution airborne digital cameras with onboard data collection based on the Global Positioning System (GPS) and inertial navigation systems (INS) technology may offer a real-time means to gather accurate topographic map information by reducing ground control and eliminating aerial triangulation. Past evaluations of this integrated system over relatively flat terrain have proven successful. The author uses Emerge Digital Sensor System (DSS) combined with Applanix Corporation?s Position and Orientation Solutions for Direct Georeferencing to examine the positional mapping accuracy in rough terrain. The positional accuracy documented in this study did not meet large-scale mapping requirements owing to an apparent system mechanical failure. Nonetheless, the findings yield important information on a new approach for mapping in Antarctica and other remote or inaccessible areas of the world.
2016-01-12
This image from NASA's Dawn spacecraft shows Kupalo Crater, one of the youngest craters on Ceres. The crater has bright material exposed on its rim and walls, which could be salts. Its flat floor likely formed from impact melt and debris. Kupalo, which measures 16 miles (26 kilometers) across and is located at southern mid-latitudes, is named for the Slavic god of vegetation and harvest. Kupalo was imaged earlier in Dawn's science mission at Ceres -- during Survey orbit (see PIA19624) and from the high altitude mapping orbit, or HAMO (see PIA20124). Dawn took this image on Dec. 21 from its low-altitude mapping orbit (LAMO) at an approximate altitude of 240 miles (385 kilometers) above Ceres. The image resolution is 120 feet (35 meters) per pixel. http://photojournal.jpl.nasa.gov/catalog/PIA20192
sCMOS detector for imaging VNIR spectrometry
NASA Astrophysics Data System (ADS)
Eckardt, Andreas; Reulke, Ralf; Schwarzer, Horst; Venus, Holger; Neumann, Christian
2013-09-01
The facility Optical Information Systems (OS) at the Robotics and Mechatronics Center of the German Aerospace Center (DLR) has more than 30 years of experience with high-resolution imaging technology. This paper shows the scientific results of the institute of leading edge instruments and focal plane designs for EnMAP VIS/NIR spectrograph. EnMAP (Environmental Mapping and Analysis Program) is one of the selected proposals for the national German Space Program. The EnMAP project includes the technological design of the hyper spectral space borne instrument and the algorithms development of the classification. The EnMAP project is a joint response of German Earth observation research institutions, value-added resellers and the German space industry like Kayser-Threde GmbH (KT) and others to the increasing demand on information about the status of our environment. The Geo Forschungs Zentrum (GFZ) Potsdam is the Principal Investigator of EnMAP. DLR OS and KT were driving the technology of new detectors and the FPA design for this project, new manufacturing accuracy and on-chip processing capability in order to keep pace with the ambitious scientific and user requirements. In combination with the engineering research, the current generations of space borne sensor systems are focusing on VIS/NIR high spectral resolution to meet the requirements on earth and planetary observation systems. The combination of large swath and high spectral resolution with intelligent synchronization control, fast-readout ADC chains and new focal-plane concepts open the door to new remote-sensing and smart deep space instruments. The paper gives an overview over the detector verification program at DLR on FPA level, new control possibilities for sCMOS detectors in global shutter mode and key parameters like PRNU, DSNU, MTF, SNR, Linearity, Spectral Response, Quantum Efficiency, Flatness and Radiation Tolerance will be discussed in detail.
NASA Astrophysics Data System (ADS)
Mayer, L.
2012-07-01
We review progress in cosmological SPH simulations of disk galaxy formation. We discuss the role of numerical resolution and sub-grid recipes of star formation and feedback from supernovae, higlighting the important role of a high star formation density threshold comparable to that of star forming molecular gas phase. Two recent succesfull examples, in simulations of the formation of gas-rich bulgeless dwarf galaxies and in simulations of late-type spirals (the ERIS simulations), are presented and discussed. In the ERIS simulations, already in the progenitors at z = 3 the resolution is above the threshold indicated by previous idealized numerical experiments as necessary to minimize numerical angular momentum loss (Kaufmann et al. 2007). A high star formation density threshold maintains an inhomogeneous interstellar medium, where star formation is clustered, and thus the local effect of supernovae feedback is enhanced. As a result, outflows are naturally generated removing 2/3 of the baryons in galaxies with Vvir˜50 km/s and ˜ 30% of the baryons in galaxies with (Vvir ˜ 150 km/s). Low angular momentum baryons are preferentially removed since the strongest bursts of star formation occur predominantly near the center, especially after a merger event. This produces pure exponential disks or small bulges depending on galaxy mass, and, correspondingly, slowly rising or nearly flat rotation curves that match those of observed disk galaxies. In dwarfs the rapid mass removal by outflows generates a core-like distribution in the dark matter. Furthermore, contrary to the common picture, in the ERIS spiral galaxies a bar/pseudobulge forms rapidly, and not secularly, as a result of mergers and interactions at high-z.
NASA Astrophysics Data System (ADS)
Wang, Wanjun; He, Tian
1996-01-01
A five degrees of freedom high precision micropositioner based on spring suspension and electromagnetic driving has been designed, constructed, and tested. The device consists of two parts: a moving part and a stationary part. The moving part, named as ``motor'', is formed with a rigid frame and three groups of coils fixed on it. The stationary part of the device, called ``stator'', includes a chassis and twelve U-shaped magnetic ``shoes''. The motor is attached to the stator with flat springs whose linear suspension allows it to move in all dimensions except the rotation around z axis. The coils have been laid out in such a way that fractions of them pass through the air gaps between the facing magnets in the magnetic shoes. When electrical currents are supplied to the coils, the resulting Lorenz forces drive the motor to move in the five degrees of freedom allowed by the spring suspension. Since the system is inherently stable and there is no mechanical friction, the open-loop resolutions of the device are found to be limited only by that of the 12-bit D/A board used. A closed-loop translation resolution of 0.3 μm has been achieved over a working space of 180 μm by 180 μm by 680 μm. A closed-loop rotation resolution of 2.73×10-6 rad has been achieved over a working space of 1.38×10-3 rad. Potentially the device can be used for high precision microprobing and testing, cellular biology, microsurgery, and testing of micromechanical devices in the fast developing MEMS area.
Federal Register 2010, 2011, 2012, 2013, 2014
2012-11-21
... fully stabilized; high strength low alloy; and the substrate for motor lamination steel may also enter... Steel Flat Products From the People's Republic of China: Final Results and Final No Shipments... antidumping duty order on certain hot- rolled carbon steel flat products (``hot-rolled steel'') from the...
High-performance flat-panel solar thermoelectric generators with high thermal concentration.
Kraemer, Daniel; Poudel, Bed; Feng, Hsien-Ping; Caylor, J Christopher; Yu, Bo; Yan, Xiao; Ma, Yi; Wang, Xiaowei; Wang, Dezhi; Muto, Andrew; McEnaney, Kenneth; Chiesa, Matteo; Ren, Zhifeng; Chen, Gang
2011-05-01
The conversion of sunlight into electricity has been dominated by photovoltaic and solar thermal power generation. Photovoltaic cells are deployed widely, mostly as flat panels, whereas solar thermal electricity generation relying on optical concentrators and mechanical heat engines is only seen in large-scale power plants. Here we demonstrate a promising flat-panel solar thermal to electric power conversion technology based on the Seebeck effect and high thermal concentration, thus enabling wider applications. The developed solar thermoelectric generators (STEGs) achieved a peak efficiency of 4.6% under AM1.5G (1 kW m(-2)) conditions. The efficiency is 7-8 times higher than the previously reported best value for a flat-panel STEG, and is enabled by the use of high-performance nanostructured thermoelectric materials and spectrally-selective solar absorbers in an innovative design that exploits high thermal concentration in an evacuated environment. Our work opens up a promising new approach which has the potential to achieve cost-effective conversion of solar energy into electricity. © 2011 Macmillan Publishers Limited. All rights reserved
Tatsumoto, Hideki; Ishii, Yuichi; Machida, Motoi; Taki, Kazuo
2004-05-11
An artificial tidal flat was prepared for the mitigation tool on coastal environment. However, it is considered that most of the flat was not restored to the sufficient amenities for aquatic living things, migratory birds, etc. because none of the ecological mechanisms were understood or planned for. It is therefore investigated in this paper that historical transition factors in ecosystem structure are selected and traced with the diffusion of a public sewerage system, and with environmental factors such as water quality, sediment condition, and aquatic producers in the Yatsu Tidal Flat. As a result, it can be defined that the tidal flat, just like a lagoon, was formed artificially with reclamation and development of its circumference at the first step of transition; the water quality and sediment condition gradually became brackish water and muddy sediment conditions, interactively. The ecosystem pyramid forming orderly layers according to trophic level appeared as a high-bio-production potential in its tidal flat. In the second step, i.e., in recent years, the characteristics of water quality and sediment conditions evolved into a foreshore tidal flat, namely, conditions in the flat observed were that the progression of water included a high concentration of chloride ion as seawater and sediment conditions became sandy. Because of that, the inflowing fresh water and organic mater from the land area decreased with the improvement of the public sewerage system. The ecosystem pyramid was distorted into a chaos pyramid, with inversion of Ulva spp.
Burger, Joanna; Niles, Lawrence; Jeitner, Christian; Gochfeld, Michael
2018-05-04
Shorebirds usually forage on intertidal flats that are exposed during low tide, and roost on higher areas when the tidal flats are covered with water. During spring migration on Delaware Bay (New Jersey) shorebirds mainly forage on horseshoe crab (Limulus polyphemus) eggs that are concentrated at the high tide line. However, they also use other habitats for foraging. We examined habitat use of 4 species of shorebirds (with declining populations) at five Delaware Bay beaches to determine their use of the intertidal habitat (2015, 2016). We observed birds in three sections at different distances from the mean high tideline (< 100 m, 101-200 m, and 201-300 m)ne. We examined the presence of red knots (Calidris canutus rufa), ruddy turnstones (Arenaria interpres), semipalmated sandpipers (Calidris pusilla), and sanderling (Calidris alba) as a function of date, tide cycle, section shorebirds foraged from the mean high tide line, and presence of other shorebird species. Understanding how these species use the intertidal flats is important because these habitats are at risk from coastal development, sea level rise, and decreases in intertidal space, including the possible expansion of intertidal oyster culture. Overall, knots were present in the intertidal on 67% of the surveys, turnstones were present on 86% of the surveys, semipalmated sandpipers were present on 77% of the surveys, and sanderling were present on 86% of the surveys. Use of the intertidal flats varied among beaches. Peak and mean numbers of shorebirds/ decreased in each census section, as distance to mean high tideline increased. In general, shorebirds foraged at the waters' edge during high tide, and then moved out onto the intertidal flats. The strongest interspecific associations were between red knots and ruddy turnstones, and the lowest associations were between sanderling and semipalmated sandpipers. Variations in numbers of each species in 2016 were mainly explained by the number of other species, section (distance from the mean high tide line), location (one of 5 beaches), and date for all species (and minutes to low tide for sanderling). These data indicate that these 4 species use intertidal flats as they become available, and that the mean number in each newly exposed census section of the flats may be lower than in the previous one, partly as a result of some birds remaining in each previously-exposed section. We discuss the management and regulatory implications of shorebird use of the intertidal flats, which include protection of high quality intertidal for foraging by shorebirds. Copyright © 2018 Elsevier Inc. All rights reserved.
Selective adsorption of a supramolecular structure on flat and stepped gold surfaces
NASA Astrophysics Data System (ADS)
Peköz, Rengin; Donadio, Davide
2018-04-01
Halogenated aromatic molecules assemble on surfaces forming both hydrogen and halogen bonds. Even though these systems have been intensively studied on flat metal surfaces, high-index vicinal surfaces remain challenging, as they may induce complex adsorbate structures. The adsorption of 2,6-dibromoanthraquinone (2,6-DBAQ) on flat and stepped gold surfaces is studied by means of van der Waals corrected density functional theory. Equilibrium geometries and corresponding adsorption energies are systematically investigated for various different adsorption configurations. It is shown that bridge sites and step edges are the preferred adsorption sites for single molecules on flat and stepped surfaces, respectively. The role of van der Waals interactions, halogen bonds and hydrogen bonds are explored for a monolayer coverage of 2,6-DBAQ molecules, revealing that molecular flexibility and intermolecular interactions stabilize two-dimensional networks on both flat and stepped surfaces. Our results provide a rationale for experimental observation of molecular carpeting on high-index vicinal surfaces of transition metals.
Bauer, Christina T; Kroner, Elmar; Fleck, Norman A; Arzt, Eduard
2015-10-23
Nature uses hierarchical fibrillar structures to mediate temporary adhesion to arbitrary substrates. Such structures provide high compliance such that the flat fibril tips can be better positioned with respect to asperities of a wavy rough substrate. We investigated the buckling and adhesion of hierarchically structured adhesives in contact with flat smooth, flat rough and wavy rough substrates. A macroscopic model for the structural adhesive was fabricated by molding polydimethylsiloxane into pillars of diameter in the range of 0.3-4.8 mm, with up to three different hierarchy levels. Both flat-ended and mushroom-shaped hierarchical samples buckled at preloads one quarter that of the single level structures. We explain this behavior by a change in the buckling mode; buckling leads to a loss of contact and diminishes adhesion. Our results indicate that hierarchical structures can have a strong influence on the degree of adhesion on both flat and wavy substrates. Strategies are discussed that achieve highly compliant substrates which adhere to rough substrates.
NASA Technical Reports Server (NTRS)
Wriston, R. S.; Froechtenigt, J. F.
1972-01-01
A soft X-ray glancing incidence telescope mirror and a group of twelve optical flat samples were used to study the scattering of X-rays. The mirror was made of Kanigen coated beryllium and the images produced were severely limited by scattering of X-rays. The best resolution attained was about fifteen arc seconds. The telescope efficiency was found to be 0.0006. The X-ray beam reflected from the twelve optical flat samples was analyzed by means of a long vacuum system of special design for these tests. The scattering then decreased with increasing angle of incidence until a critical angle was passed. At larger angles the scattering increased again. The samples all scattered more at 44 A than at 8 A. Metal samples were found to have about the same scattering at 44 A but greater scattering at 8 A than glass samples.
39 CFR Appendix A to Subpart A of... - Mail Classification Schedule
Code of Federal Regulations, 2012 CFR
2012-07-01
... Density and Saturation Letters High Density and Saturation Flats/Parcels Carrier Route Letters Flats Not... Package Services Single-Piece Parcel Post Inbound Surface Parcel Post (at UPU rates) Bound Printed Matter... Single-Piece First-Class Mail International Standard Mail (Regular and Nonprofit) High Density and...
Arabi, Hosein; Asl, Ali Reza Kamali; Ay, Mohammad Reza; Zaidi, Habib
2011-03-01
The variable resolution x-ray (VRX) CT scanner provides substantial improvement in the spatial resolution by matching the scanner's field of view (FOV) to the size of the object being imaged. Intercell x-ray cross-talk is one of the most important factors limiting the spatial resolution of the VRX detector. In this work, a new cell arrangement in the VRX detector is suggested to decrease the intercell x-ray cross-talk. The idea is to orient the detector cells toward the opening end of the detector. Monte Carlo simulations were used for performance assessment of the oriented cell detector design. Previously published design parameters and simulation results of x-ray cross-talk for the VRX detector were used for model validation using the GATE Monte Carlo package. In the first step, the intercell x-ray cross-talk of the actual VRX detector model was calculated as a function of the FOV. The obtained results indicated an optimum cell orientation angle of 28 degrees to minimize the x-ray cross-talk in the VRX detector. Thereafter, the intercell x-ray cross-talk in the oriented cell detector was modeled and quantified. The intercell x-ray cross-talk in the actual detector model was considerably high, reaching up to 12% at FOVs from 24 to 38 cm. The x-ray cross-talk in the oriented cell detector was less than 5% for all possible FOVs, except 40 cm (maximum FOV). The oriented cell detector could provide considerable decrease in the intercell x-ray cross-talk for the VRX detector, thus leading to significant improvement in the spatial resolution and reduction in the spatial resolution nonuniformity across the detector length. The proposed oriented cell detector is the first dedicated detector design for the VRX CT scanners. Application of this concept to multislice and flat-panel VRX detectors would also result in higher spatial resolution.
Focused ion beam assisted three-dimensional rock imaging at submicron scale
DOE Office of Scientific and Technical Information (OSTI.GOV)
Tomutsa, Liviu; Radmilovic, Velimir
2003-05-09
Computation of effective flow properties of fluids in porous media based on three dimensional (3D) pore structure information has become more successful in the last few years, due to both improvements in the input data and the network models. Computed X-ray microtomography has been successful in 3D pore imaging at micron scale, which is adequate for many sandstones. For other rocks of economic interest, such as chalk and diatomite, submicron resolution is needed in order to resolve the 3D-pore structure. To achieve submicron resolution, a new method of sample serial sectioning and imaging using Focused Ion Beam (FIB) technology hasmore » been developed and 3D pore images of the pore system for diatomite and chalk have been obtained. FIB was used in the milling of layers as wide as 50 micrometers and as thin as 100 nanometers by sputtering of atoms from the sample surface. The focused ion beam, consisting of gallium ions (Ga+) accelerated by potentials of up to 30 kV and currents up to 20,000 pA, yields very clean, flat surfaces in which the pore-grain boundaries appear in high contrast. No distortion of the pore boundaries due to the ion milling is apparent. After each milling step, as a new surface is exposed, an image of the surface is generated. Using secondary electrons or ions, resolutions as high as 10 nm can be obtained. Afterwards, the series of 2D images can be stacked in the computer and, using appropriate interpolation and surface rendering algorithms, the 3D pore structure is reconstructed.« less
Automatic Coregistration for Multiview SAR Images in Urban Areas
NASA Astrophysics Data System (ADS)
Xiang, Y.; Kang, W.; Wang, F.; You, H.
2017-09-01
Due to the high resolution property and the side-looking mechanism of SAR sensors, complex buildings structures make the registration of SAR images in urban areas becomes very hard. In order to solve the problem, an automatic and robust coregistration approach for multiview high resolution SAR images is proposed in the paper, which consists of three main modules. First, both the reference image and the sensed image are segmented into two parts, urban areas and nonurban areas. Urban areas caused by double or multiple scattering in a SAR image have a tendency to show higher local mean and local variance values compared with general homogeneous regions due to the complex structural information. Based on this criterion, building areas are extracted. After obtaining the target regions, L-shape structures are detected using the SAR phase congruency model and Hough transform. The double bounce scatterings formed by wall and ground are shown as strong L- or T-shapes, which are usually taken as the most reliable indicator for building detection. According to the assumption that buildings are rectangular and flat models, planimetric buildings are delineated using the L-shapes, then the reconstructed target areas are obtained. For the orignal areas and the reconstructed target areas, the SAR-SIFT matching algorithm is implemented. Finally, correct corresponding points are extracted by the fast sample consensus (FSC) and the transformation model is also derived. The experimental results on a pair of multiview TerraSAR images with 1-m resolution show that the proposed approach gives a robust and precise registration performance, compared with the orignal SAR-SIFT method.
Open-Access Textbooks and Financial Sustainability: A Case Study on Flat World Knowledge
ERIC Educational Resources Information Center
Hilton, John, III; Wiley, David
2011-01-01
Many college students and their families are concerned about the high costs of textbooks. A company called Flat World Knowledge both gives away and sells open-source textbooks in a way it believes to be financially sustainable. This article reports on the financial sustainability of the Flat World Knowledge open-source textbook model after one…
NASA Astrophysics Data System (ADS)
Borncamp, David
2017-08-01
The stability of the CCD flat fields will be monitored using the calibration lamps. One set of observations for all the filters and another at a different epoch for a subset of filters will be taken during this cycle. High signal observations will be used to assess the stability of the pixel-to-pixel flat field structure and to monitor the position of the dust motes.
NASA Astrophysics Data System (ADS)
Borncamp, David
2016-10-01
The stability of the CCD flat fields will be monitored using the calibration lamps. One set of observations for all the filters and another at a different epoch for a subset of filters will be taken during this cycle. High signal observations will be used to assess the stability of the pixel-to-pixel flat field structure and to monitor the position of the dust motes.
Development of electromagnetic welding facility of flat plates for nuclear industry
NASA Astrophysics Data System (ADS)
Kumar, Rajesh; Sahoo, Subhanarayan; Sarkar, Biswanath; Shyam, Anurag
2017-04-01
Electromagnetic pulse welding (EMPW) process, one of high speed welding process uses electromagnetic force from discharged current through working coil, which develops a repulsive force between the induced current flowing parallel and in opposite direction. For achieving the successful weldment using this process the design of working coil is the most important factor due to high magnetic field on surface of work piece. In case of high quality flat plate welding factors such as impact velocity, angle of impact standoff distance, thickness of flyer and overlap length have to be chosen carefully. EMPW has wide applications in nuclear industry, automotive industry, aerospace, electrical industries. However formability and weldability still remain major issues. Due to ease in controlling the magnetic field enveloped inside tubes, the EMPW has been widely used for tube welding. In case of flat components control of magnetic field is difficult. Hence the application of EMPW gets restricted. The present work attempts to make a novel contribution by investigating the effect of process parameters on welding quality of flat plates. The work emphasizes the approaches and engineering calculations required to effectively use of actuator in EMPW of flat components.
Mussel beds are biological power stations on intertidal flats
NASA Astrophysics Data System (ADS)
Engel, Friederike G.; Alegria, Javier; Andriana, Rosyta; Donadi, Serena; Gusmao, Joao B.; van Leeuwe, Maria A.; Matthiessen, Birte; Eriksson, Britas Klemens
2017-05-01
Intertidal flats are highly productive areas that support large numbers of invertebrates, fish, and birds. Benthic diatoms are essential for the function of tidal flats. They fuel the benthic food web by forming a thin photosynthesizing compartment in the top-layer of the sediment that stretches over the vast sediment flats during low tide. However, the abundance and function of the diatom film is not homogenously distributed. Recently, we have realized the importance of bivalve reefs for structuring intertidal ecosystems; by creating structures on the intertidal flats they provide habitat, reduce hydrodynamic stress and modify the surrounding sediment conditions, which promote the abundance of associated organisms. Accordingly, field studies show that high chlorophyll a concentration in the sediment co-vary with the presence of mussel beds. Here we present conclusive evidence by a manipulative experiment that mussels increase the local biomass of benthic microalgae; and relate this to increasing biomass of microalgae as well as productivity of the biofilm across a nearby mussel bed. Our results show that the ecosystem engineering properties of mussel beds transform them into hot spots for primary production on tidal flats, highlighting the importance of biological control of sedimentary systems.
Integrated Real-Time Control and Imaging System for Microbiorobotics and Nanobiostructures
2016-01-11
kit with a control board and ALP 4.1 basic controller suite. The digital micromirror device is the highest resolution 16:9 aspect ratio system. This...in Figure 1, consisted of the following: (1) digital micromirror device (DMD) and controller, (2) an inverted epifluorescence microscope with a flat...accompanying control board and ALP 4.1 basic controller suite. The digital micromirror device is currently the highest commercially available
NASA Technical Reports Server (NTRS)
Ulaby, F. T. (Principal Investigator); Dobson, M. C.; Moezzi, S.
1982-01-01
Radar simulations were performed at five-day intervals over a twenty-day period and used to estimate soil moisture from a generalized algorithm requiring only received power and the mean elevation of a test site near Lawrence, Kansas. The results demonstrate that the soil moisture of about 90% of the 20-m by 20-m pixel elements can be predicted with an accuracy of + or - 20% of field capacity within relatively flat agricultural portions of the test site. Radar resolutions of 93 m by 100 m with 23 looks or coarser gave the best results, largely because of the effects of signal fading. For the distribution of land cover categories, soils, and elevation in the test site, very coarse radar resolutions of 1 km by 1 km and 2.6 km by 3.1 km gave the best results for wet moisture conditions while a finer resolution of 93 m by 100 m was found to yield superior results for dry to moist soil conditions.
Long-term millimeter VLBI monitoring of M 87 with KVN at milliarcsecond resolution: nuclear spectrum
NASA Astrophysics Data System (ADS)
Kim, Jae-Young; Lee, Sang-Sung; Hodgson, Jeffrey A.; Algaba, Juan-Carlos; Zhao, Guang-Yao; Kino, Motoki; Byun, Do-Young; Kang, Sincheol
2018-02-01
We study the centimeter- to millimeter-wavelength synchrotron spectrum of the core of the radio galaxy M 87 at ≲0.8 mas 110Rs spatial scales using four years of fully simultaneous, multi-frequency VLBI data obtained by the Korean VLBI Network (KVN). We find a core spectral index α of ≳‑0.37 (S ∝ ν+α) between 22 and 129 GHz. By combining resolution-matched flux measurements from the Very Long Baseline Array (VLBA) at 15 GHz and taking the Event Horizon Telescope (EHT) 230 GHz core flux measurements in epochs 2009 and 2012 as lower limits, we find evidence of a nearly flat core spectrum across 15 and 129 GHz, which could naturally connect the 230 GHz VLBI core flux. The extremely flat spectrum is a strong indication that the jet base does not consist of a simple homogeneous plasma, but of inhomogeneous multi-energy components, with at least one component with the turn-over frequency ≳ 100 GHz. The spectral shape can be qualitatively explained if both the strongly (compact, optically thick at >100 GHz) and the relatively weakly magnetized (more extended, optically thin at <100 GHz) plasma components are colocated in the footprint of the relativistic jet.
Sarnoff JND Vision Model for Flat-Panel Design
NASA Technical Reports Server (NTRS)
Brill, Michael H.; Lubin, Jeffrey
1998-01-01
This document describes adaptation of the basic Sarnoff JND Vision Model created in response to the NASA/ARPA need for a general-purpose model to predict the perceived image quality attained by flat-panel displays. The JND model predicts the perceptual ratings that humans will assign to a degraded color-image sequence relative to its nondegraded counterpart. Substantial flexibility is incorporated into this version of the model so it may be used to model displays at the sub-pixel and sub-frame level. To model a display (e.g., an LCD), the input-image data can be sampled at many times the pixel resolution and at many times the digital frame rate. The first stage of the model downsamples each sequence in time and in space to physiologically reasonable rates, but with minimum interpolative artifacts and aliasing. Luma and chroma parts of the model generate (through multi-resolution pyramid representation) a map of differences-between test and reference called the JND map, from which a summary rating predictor is derived. The latest model extensions have done well in calibration against psychophysical data and against image-rating data given a CRT-based front-end. THe software was delivered to NASA Ames and is being integrated with LCD display models at that facility,
Liu, Dong; Togbé, Casimir; Tran, Luc-Sy; Felsmann, Daniel; Oßwald, Patrick; Nau, Patrick; Koppmann, Julia; Lackner, Alexander; Glaude, Pierre-Alexandre; Sirjean, Baptiste; Fournet, René; Battin-Leclerc, Frédérique; Kohse-Höinghaus, Katharina
2013-01-01
Fuels of the furan family, i.e. furan itself, 2-methylfuran (MF), and 2,5-dimethylfuran (DMF) are being proposed as alternatives to hydrocarbon fuels and are potentially accessible from cellulosic biomass. While some experiments and modeling results are becoming available for each of these fuels, a comprehensive experimental and modeling analysis of the three fuels under the same conditions, simulated using the same chemical reaction model, has – to the best of our knowledge – not been attempted before. The present series of three papers, detailing the results obtained in flat flames for each of the three fuels separately, reports experimental data and explores their combustion chemistry using kinetic modeling. The first part of this series focuses on the chemistry of low-pressure furan flames. Two laminar premixed low-pressure (20 and 40 mbar) flat argon-diluted (50%) flames of furan were studied at two equivalence ratios (φ=1.0 and 1.7) using an analytical combination of high-resolution electron-ionization molecular-beam mass spectrometry (EI-MBMS) in Bielefeld and gas chromatography (GC) in Nancy. The time-of-flight MBMS with its high mass resolution enables the detection of both stable and reactive species, while the gas chromatograph permits the separation of isomers. Mole fractions of reactants, products, and stable and radical intermediates were measured as a function of the distance to the burner. A single kinetic model was used to predict the flame structure of the three fuels: furan (in this paper), 2-methylfuran (in Part II), and 2,5-dimethylfuran (in Part III). A refined sub-mechanism for furan combustion, based on the work of Tian et al. [Combustion and Flame 158 (2011) 756-773] was developed which was then compared to the present experimental results. Overall, the agreement is encouraging. The main reaction pathways involved in furan combustion were delineated computing the rates of formation and consumption of all species. It is seen that the predominant furan consumption pathway is initiated by H-addition on the carbon atom neighboring the O-atom with acetylene as one of the dominant products. PMID:24518999
Liu, Dong; Togbé, Casimir; Tran, Luc-Sy; Felsmann, Daniel; Oßwald, Patrick; Nau, Patrick; Koppmann, Julia; Lackner, Alexander; Glaude, Pierre-Alexandre; Sirjean, Baptiste; Fournet, René; Battin-Leclerc, Frédérique; Kohse-Höinghaus, Katharina
2014-03-01
Fuels of the furan family, i.e. furan itself, 2-methylfuran (MF), and 2,5-dimethylfuran (DMF) are being proposed as alternatives to hydrocarbon fuels and are potentially accessible from cellulosic biomass. While some experiments and modeling results are becoming available for each of these fuels, a comprehensive experimental and modeling analysis of the three fuels under the same conditions, simulated using the same chemical reaction model, has - to the best of our knowledge - not been attempted before. The present series of three papers, detailing the results obtained in flat flames for each of the three fuels separately, reports experimental data and explores their combustion chemistry using kinetic modeling. The first part of this series focuses on the chemistry of low-pressure furan flames. Two laminar premixed low-pressure (20 and 40 mbar) flat argon-diluted (50%) flames of furan were studied at two equivalence ratios (φ=1.0 and 1.7) using an analytical combination of high-resolution electron-ionization molecular-beam mass spectrometry (EI-MBMS) in Bielefeld and gas chromatography (GC) in Nancy. The time-of-flight MBMS with its high mass resolution enables the detection of both stable and reactive species, while the gas chromatograph permits the separation of isomers. Mole fractions of reactants, products, and stable and radical intermediates were measured as a function of the distance to the burner. A single kinetic model was used to predict the flame structure of the three fuels: furan (in this paper), 2-methylfuran (in Part II), and 2,5-dimethylfuran (in Part III). A refined sub-mechanism for furan combustion, based on the work of Tian et al. [Combustion and Flame 158 (2011) 756-773] was developed which was then compared to the present experimental results. Overall, the agreement is encouraging. The main reaction pathways involved in furan combustion were delineated computing the rates of formation and consumption of all species. It is seen that the predominant furan consumption pathway is initiated by H-addition on the carbon atom neighboring the O-atom with acetylene as one of the dominant products.
NASA Astrophysics Data System (ADS)
Hayden-Lesmeister, A.; Remo, J. W.; Piazza, B.
2017-12-01
The Atchafalaya River (AR) in Louisiana is the principal distributary of the Mississippi River. Reach to system scale modifications on the AR and throughout its basin for regional flood mitigation, navigation, and hydrocarbon extraction have substantially altered the hydrologic connectivity between the river and its floodplain wetlands, threatening the ecological integrity of this globally-important ecosystem. Stakeholder groups agree that restoring flow connectivity is essential to maintaining the basin's water quality, and recent management efforts have focused on the 174 km2 Flat Lake Water Management Unit (WMU). Several flow-connectivity enhancement projects have been proposed by the Atchafalaya Basin Program's Technical Advisory Group, but none have been constructed. We collaborated with The Nature Conservancy and other agencies to obtain existing datasets and develop a 1D2D hydraulic model to examine whether proposed restoration projects improved lateral surface-water connectivity in the Flat Lake WMU. To do this, we employed a range of physical parameters (inundation extent, water depths, and rates of WSEL reduction) as potential indicators of improved connectivity with restoration. We ran simulations to examine two scenarios - a baseline scenario (S1) to examine current conditions (no restoration projects), and a full-implementation scenario (S2), where all restoration projects that could be examined at the model resolution were implemented. Potential indicators of improved lateral connectivity indicated that proposed projects may play an important role in improving water quality in the Flat Lake WMU. At the end of the constant-discharge portion of the run, average depths between S1 and S2 remained unchanged; however, depths and water levels were consistently lower for S2 during a drawdown. Volumetrically, up to 4.4 million m3 less water was in the Flat Lake system when projects were implemented. The results indicate that projects introduce nutrient-rich river water and improve flushing flows through backswamp areas. Our modeling approach may provide a cost-effective framework for examining the performance of proposed restoration projects along other highly-altered, low-gradient river systems.
NASA Astrophysics Data System (ADS)
Fishkova, T. Ya.
2017-06-01
Using computer simulation, I have determined the parameters of a multichannel analyzer of charged particles of a simple design that I have proposed having the form of a cylindrical capacitor with a discrete outer cylinder and closed ends in a wide range of simultaneously recorded energies ( E max/ E min = 100). When introducing an additional cylindrical electrode of small dimensions near the front end of the system, it is possible to improve the resolution by more than an order of magnitude in the low-energy region. At the same time, the energy resolution of the analyzer in all the above energy range is ρ = (4-6) × 10-3.
Underresolved absorption spectroscopy of OH radicals in flames using broadband UV LEDs
NASA Astrophysics Data System (ADS)
White, Logan; Gamba, Mirko
2018-04-01
A broadband absorption spectroscopy diagnostic based on underresolution of the spectral absorption lines is evaluated for the inference of species mole fraction and temperature in combustion systems from spectral fitting. The approach uses spectrally broadband UV light emitting diodes and leverages low resolution, small form factor spectrometers. Through this combination, the method can be used to develop high precision measurement sensors. The challenges of underresolved spectroscopy are explored and addressed using spectral derivative fitting, which is found to generate measurements with high precision and accuracy. The diagnostic is demonstrated with experimental measurements of gas temperature and OH mole fraction in atmospheric air/methane premixed laminar flat flames. Measurements exhibit high precision, good agreement with 1-D flame simulations, and high repeatability. A newly developed model of uncertainty in underresolved spectroscopy is applied to estimate two-dimensional confidence regions for the measurements. The results of the uncertainty analysis indicate that the errors in the outputs of the spectral fitting procedure are correlated. The implications of the correlation between uncertainties for measurement interpretation are discussed.
Design, optimization and evaluation of a "smart" pixel sensor array for low-dose digital radiography
NASA Astrophysics Data System (ADS)
Wang, Kai; Liu, Xinghui; Ou, Hai; Chen, Jun
2016-04-01
Amorphous silicon (a-Si:H) thin-film transistors (TFTs) have been widely used to build flat-panel X-ray detectors for digital radiography (DR). As the demand for low-dose X-ray imaging grows, a detector with high signal-to-noise-ratio (SNR) pixel architecture emerges. "Smart" pixel is intended to use a dual-gate photosensitive TFT for sensing, storage, and switch. It differs from a conventional passive pixel sensor (PPS) and active pixel sensor (APS) in that all these three functions are combined into one device instead of three separate units in a pixel. Thus, it is expected to have high fill factor and high spatial resolution. In addition, it utilizes the amplification effect of the dual-gate photosensitive TFT to form a one-transistor APS that leads to a potentially high SNR. This paper addresses the design, optimization and evaluation of the smart pixel sensor and array for low-dose DR. We will design and optimize the smart pixel from the scintillator to TFT levels and validate it through optical and electrical simulation and experiments of a 4x4 sensor array.
NASA Astrophysics Data System (ADS)
Miyahara, Yoshinori; Hara, Yuki; Nakashima, Hiroto; Nishimura, Tomonori; Itakura, Kanae; Inomata, Taisuke; Kitagaki, Hajime
2018-03-01
In high-dose-rate (HDR) brachytherapy, a direct-conversion flat-panel detector (d-FPD) clearly depicts a 192Ir source without image halation, even under the emission of high-energy gamma rays. However, it was unknown why iridium is visible when using a d-FPD. The purpose of this study was to clarify the reasons for visibility of the source core based on physical imaging characteristics, including the modulation transfer functions (MTF), noise power spectral (NPS), contrast transfer functions, and linearity of d-FPD to high-energy gamma rays. The acquired data included: x-rays, [X]; gamma rays, [γ] dual rays (X + γ), [D], and subtracted data for depicting the source ([D] - [γ]). In the quality assurance (QA) test for the positional accuracy of a source core, the coordinates of each dwelling point were compared between the planned and actual source core positions using a CT/MR-compatible ovoid applicator and a Fletcher-Williamson applicator. The profile curves of [X] and ([D] - [γ]) matched well on MTF and NPS. The contrast resolutions of [D] and [X] were equivalent. A strongly positive linear correlation was found between the output data of [γ] and source strength (r 2 > 0.99). With regard to the accuracy of the source core position, the largest coordinate difference (3D distance) was noted at the maximum curvature of the CT/MR-compatible ovoid and Fletcher-Williamson applicators, showing 1.74 ± 0.02 mm and 1.01 ± 0.01 mm, respectively. A d-FPD system provides high-quality images of a source, even when high-energy gamma rays are emitted to the detector, and positional accuracy tests with clinical applicators are useful in identifying source positions (source movements) within the applicator for QA.
Jeong, Byung-Cheon; Park, Si Hoon; Yoo, Kyoung Shin; Shin, Jeong Sheop; Song, Hyun Kyu
2013-07-01
Cystathionine β-synthase (CBS) domains are small intracellular modules that can act as binding domains for adenosine derivatives, and they may regulate the activity of associated enzymes or other functional domains. Among these, the single CBS domain-containing proteins, CBSXs, from Arabidopsis thaliana, have recently been identified as redox regulators of the thioredoxin system. Here, the crystal structure of CBSX2 in complex with adenosine monophosphate (AMP) is reported at 2.2Å resolution. The structure of dimeric CBSX2 with bound-AMP is shown to be approximately flat, which is in stark contrast to the bent form of apo-CBSXs. This conformational change in quaternary structure is triggered by a local structural change of the unique α5 helix, and by moving each loop P into an open conformation to accommodate incoming ligands. Furthermore, subtle rearrangement of the dimer interface triggers movement of all subunits, and consequently, the bent structure of the CBSX2 dimer becomes a flat structure. This reshaping of the structure upon complex formation with adenosine-containing ligand provides evidence that ligand-induced conformational reorganization of antiparallel CBS domains is an important regulatory mechanism. Copyright © 2013 Elsevier Inc. All rights reserved.
Climatology of tropospheric vertical velocity spectra
NASA Technical Reports Server (NTRS)
Ecklund, W. L.; Gage, K. S.; Balsley, B. B.; Carter, D. A.
1986-01-01
Vertical velocity power spectra obtained from Poker Flat, Alaska; Platteville, Colorado; Rhone Delta, France; and Ponape, East Caroline Islands using 50-MHz clear-air radars with vertical beams are given. The spectra were obtained by analyzing the quietest periods from the one-minute-resolution time series for each site. The lengths of available vertical records ranged from as long as 6 months at Poker Flat to about 1 month at Platteville. The quiet-time vertical velocity spectra are shown. Spectral period ranging from 2 minutes to 4 hours is shown on the abscissa and power spectral density is given on the ordinate. The Brunt-Vaisala (B-V) periods (determined from nearby sounding balloons) are indicated. All spectra (except the one from Platteville) exhibit a peak at periods slightly longer than the B-V period, are flat at longer periods, and fall rapidly at periods less than the B-V period. This behavior is expected for a spectrum of internal waves and is very similar to what is observed in the ocean (Eriksen, 1978). The spectral amplitudes vary by only a factor of 2 or 3 about the mean, and show that under quiet conditions vertical velocity spectra from the troposphere are very similar at widely different locations.
NASA Astrophysics Data System (ADS)
Manuri, Solichin; Andersen, Hans-Erik; McGaughey, Robert J.; Brack, Cris
2017-04-01
The airborne lidar system (ALS) provides a means to efficiently monitor the status of remote tropical forests and continues to be the subject of intense evaluation. However, the cost of ALS acquisition can vary significantly depending on the acquisition parameters, particularly the return density (i.e., spatial resolution) of the lidar point cloud. This study assessed the effect of lidar return density on the accuracy of lidar metrics and regression models for estimating aboveground biomass (AGB) and basal area (BA) in tropical peat swamp forests (PSF) in Kalimantan, Indonesia. A large dataset of ALS covering an area of 123,000 ha was used in this study. This study found that cumulative return proportion (CRP) variables represent a better accumulation of AGB over tree heights than height-related variables. The CRP variables in power models explained 80.9% and 90.9% of the BA and AGB variations, respectively. Further, it was found that low-density (and low-cost) lidar should be considered as a feasible option for assessing AGB and BA in vast areas of flat, lowland PSF. The performance of the models generated using reduced return densities as low as 1/9 returns per m2 also yielded strong agreement with the original high-density data. The use model-based statistical inferences enabled relatively precise estimates of the mean AGB at the landscape scale to be obtained with a fairly low-density of 1/4 returns per m2, with less than 10% standard error (SE). Further, even when very low-density lidar data was used (i.e., 1/49 returns per m2) the bias of the mean AGB estimates were still less than 10% with a SE of approximately 15%. This study also investigated the influence of different DTM resolutions for normalizing the elevation during the generation of forest-related lidar metrics using various return densities point cloud. We found that the high-resolution digital terrain model (DTM) had little effect on the accuracy of lidar metrics calculation in PSF. The accuracy of low-density lidar metrics in PSF was more influenced by the density of aboveground returns, rather than the last return. This is due to the flat topography of the study area. The results of this study will be valuable for future economical and feasible assessments of forest metrics over large areas of tropical peat swamp ecosystems.
[Flat-panel detector technology -State-of-the-art and future prospects-].
Yamazaki, Tatsuya
2002-01-01
A flat-panel detector (FPD) is a long-awaited technology to implement the digital X-ray imaging technology into the radiological department. This paper describes the state-of-the-art technology and future prospects on the FPD technology. State-of-the-art technology was reviewed taking the CXDI series as an example. Several FPD-based systems have been introduced into the Japanese market since CXDI-11 opened it in November 1998. Accompanying CXDI-C2 for control, CXDI-22 for table position and CXDI-31 for portable, the CXDI series fulfills the requirement of the radiography room being a fully digitalized room. The FPD on the CXDI series is comprised of a scintillator (Gd(2)O(2)S:Tb(3+)) as a primary sensor in which the X-ray is captured and an amorphous silicon detector (LANMIT) as a secondary sensor in which the fluorescent light is detected. Since the scintillator is identical to that of the screen-film systems, it can be said as proven, durable and chemically stable and it is expected to produce the same image quality as the screen-film systems. CXDI-31, a portable FPD-based system, was developed targeting thinner dimensions, lightweight, durability and high spatial resolution. Thoroughly re-designing the mechanical structure and reducing the power consumption at the readout IC realized thinner dimensions. Introducing the portable note PC technologies successfully combined lightweight with durability. Improving the sensor process and re-designing the layout made the sensor high resolution without compromising the signal-to-noise ratio. Future prospects were overviewed in the aspect of technology and applications. Sensitivity, spatial resolution, frame rate and portability were described as the upcoming technology. Increasing gain and reducing noise will realize higher sensitivity, especially by adopting the PbI(2), HgI(2) or such photoconductor materials as the primary sensor. Pixelized amplifier will also achieve higher sensitivity. Layered sensor designed such that TFT layer and sensitive layer are constructed separately will decrease the pixel pitch lower than 100 microm. The FPD has been applied in radiography, mammography and angiography. It will expand the applications into low-dose fluoroscopy to replace the X-ray image intensifiers and into cone-beam computer tomography. What the FPD brought was mainly the efficient workflow of the X-ray technologist. However, diagnosis efficiency and patient benefit must be improved further more by combining FPD technology into computer-aided diagnosis, tele-radiography or other IT-based technologies. Such prospect may come true in the near future.
Harborne, A R
2013-09-01
Reef flats, typically a low-relief carbonate and sand habitat in shallow water leeward of the reef crest, are one of the most extensive zones on Pacific coral reefs. This shallow zone often supports an abundant and diverse fish assemblage that is exposed to more significant variations in physical factors, such as water depth and movement, temperature and ultraviolet (UV) radiation levels, than most other reef fishes. This review examines the characteristics of reef flat fish assemblages, and then investigates what is known about how they respond to their biophysical environment. Because of the challenges of living in shallow, wave-exposed water, reef flats typically support a distinct fish assemblage compared to other reef habitats. This assemblage clearly changes across tidal cycles as some larger species migrate to deeper water at low tide and other species modify their behaviour, but quantitative data are generally lacking. At least some reef flat fish species are well-adapted to high temperatures, low oxygen concentrations and high levels of UV radiation. These behavioural and physiological adaptations suggest that there may be differences in the demographic processes between reef flat assemblages and those in deeper water. Indeed, there is some evidence that reef flats may act as nurseries for some species, but more research is required. Further studies are also required to predict the effects of climate change, which is likely to have multifaceted impacts on reef flats by increasing temperature, water motion and sediment load. Sea-level rise may also affect reef flat fish assemblages and food webs by increasing the amount of time that larger species are able to forage in this zone. The lack of data on reef flats is surprising given their size and relative ease of access, and a better understanding of their functional role within tropical marine seascapes is urgently required. © 2013 The Fisheries Society of the British Isles.
Gu, Z; Prout, D L; Silverman, R W; Herman, H; Dooraghi, A; Chatziioannou, A F
2015-06-01
A new phoswich detector is being developed at the Crump Institute, aiming to provide improvements in sensitivity, and spatial resolution for PET. The detector configuration is comprised of two layers of pixelated scintillator crystal arrays, a glass light guide and a light detector. The annihilation photon entrance (top) layer is a 48 × 48 array of 1.01 × 1.01 × 7 mm 3 LYSO crystals. The bottom layer is a 32 × 32 array of 1.55 × 1.55 × 9 mm 3 BGO crystals. A tapered, multiple-element glass lightguide is used to couple the exit end of the BGO crystal array (52 × 52 mm 2 ) to the photosensitive area of the Position Sensitive Photomultiplier Tube (46 × 46 mm 2 ), allowing the creation of flat panel detectors without gaps between the detector modules. Both simulations and measurements were performed to evaluate the characteristics and benefits of the proposed design. The GATE Monte Carlo simulation indicated that the total fraction of the cross layer crystal scatter (CLCS) events in singles detection mode for this detector geometry is 13.2%. The large majority of these CLCS events (10.1% out of 13.2%) deposit most of their energy in a scintillator layer other than the layer of first interaction. Identification of those CLCS events for rejection or correction may lead to improvements in data quality and imaging performance. Physical measurements with the prototype detector showed that the LYSO, BGO and CLCS events were successfully identified using the delayed charge integration (DCI) technique, with more than 95% of the LYSO and BGO crystal elements clearly resolved. The measured peak-to-valley ratios (PVR) in the flood histograms were 3.5 for LYSO and 2.0 for BGO. For LYSO, the energy resolution ranged from 9.7% to 37.0% full width at half maximum (FWHM), with a mean of 13.4 ± 4.8%. For BGO the energy resolution ranged from 16.0% to 33.9% FWHM, with a mean of 18.6 ± 3.2%. In conclusion, these results demonstrate that the proposed detector is feasible and can potentially lead to a high spatial resolution, high sensitivity and DOI PET system.
Gu, Z.; Prout, D. L.; Silverman, R. W.; Herman, H.; Dooraghi, A.; Chatziioannou, A. F.
2015-01-01
A new phoswich detector is being developed at the Crump Institute, aiming to provide improvements in sensitivity, and spatial resolution for PET. The detector configuration is comprised of two layers of pixelated scintillator crystal arrays, a glass light guide and a light detector. The annihilation photon entrance (top) layer is a 48 × 48 array of 1.01 × 1.01 × 7 mm3 LYSO crystals. The bottom layer is a 32 × 32 array of 1.55 × 1.55 × 9 mm3 BGO crystals. A tapered, multiple-element glass lightguide is used to couple the exit end of the BGO crystal array (52 × 52 mm2) to the photosensitive area of the Position Sensitive Photomultiplier Tube (46 × 46 mm2), allowing the creation of flat panel detectors without gaps between the detector modules. Both simulations and measurements were performed to evaluate the characteristics and benefits of the proposed design. The GATE Monte Carlo simulation indicated that the total fraction of the cross layer crystal scatter (CLCS) events in singles detection mode for this detector geometry is 13.2%. The large majority of these CLCS events (10.1% out of 13.2%) deposit most of their energy in a scintillator layer other than the layer of first interaction. Identification of those CLCS events for rejection or correction may lead to improvements in data quality and imaging performance. Physical measurements with the prototype detector showed that the LYSO, BGO and CLCS events were successfully identified using the delayed charge integration (DCI) technique, with more than 95% of the LYSO and BGO crystal elements clearly resolved. The measured peak-to-valley ratios (PVR) in the flood histograms were 3.5 for LYSO and 2.0 for BGO. For LYSO, the energy resolution ranged from 9.7% to 37.0% full width at half maximum (FWHM), with a mean of 13.4 ± 4.8%. For BGO the energy resolution ranged from 16.0% to 33.9% FWHM, with a mean of 18.6 ± 3.2%. In conclusion, these results demonstrate that the proposed detector is feasible and can potentially lead to a high spatial resolution, high sensitivity and DOI PET system. PMID:26478600
NASA Astrophysics Data System (ADS)
Gu, Z.; Prout, D. L.; Silverman, R. W.; Herman, H.; Dooraghi, A.; Chatziioannou, A. F.
2015-06-01
A new phoswich detector is being developed at the Crump Institute, aiming to provide improvements in sensitivity, and spatial resolution for PET. The detector configuration is comprised of two layers of pixelated scintillator crystal arrays, a glass lightguide and a light detector. The annihilation photon entrance (top) layer is a 48×48 array of 1.01 × 1.01 × 7 mm3 LYSO crystals. The bottom layer is a 32 × 32 array of 1.55 × 1.55 × 9 mm3 BGO crystals. A tapered, multiple-element glass lightguide is used to couple the exit end of the BGO crystal array (52 × 52 mm2) to the photosensitive area of the Position Sensitive Photomultiplier Tube (46 × 46 mm2), allowing the creation of flat panel detectors without gaps between the detector modules. Both simulations and measurements were performed to evaluate the characteristics and benefits of the proposed design. The GATE Monte Carlo simulation indicated that the total fraction of the cross layer crystal scatter (CLCS) events in singles detection mode for this detector geometry is 13.2%. The large majority of these CLCS events (10.1% out of 13.2%) deposit most of their energy in a scintillator layer other than the layer of first interaction. Identification of those CLCS events for rejection or correction may lead to improvements in data quality and imaging performance. Physical measurements with the prototype detector showed that the LYSO, BGO and CLCS events were successfully identified using the delayed charge integration (DCI) technique, with more than 95% of the LYSO and BGO crystal elements clearly resolved. The measured peak-to-valley ratios (PVR) in the flood histograms were 3.5 for LYSO and 2.0 for BGO. For LYSO, the energy resolution ranged from 9.7% to 37.0% full width at half maximum (FWHM), with a mean of 13.4 ± 4.8%. For BGO the energy resolution ranged from 16.0% to 33.9% FWHM, with a mean of 18.6 ± 3.2%. In conclusion, these results demonstrate that the proposed detector is feasible and can potentially lead to a high spatial resolution, high sensitivity and DOI PET system.
Three-Dimensional Shear Wave Velocity Structure of the Peru Flat Slab Subduction Segment
NASA Astrophysics Data System (ADS)
Knezevic Antonijevic, S.; Wagner, L. S.; Beck, S. L.; Zandt, G.; Long, M. D.
2012-12-01
Recent studies focused on flat slab subduction segments in central Chile (L. S. Wagner, 2006) and Alaska (B. R. Hacker and G. A. Aber, 2012) suggest significant differences in seismic velocity structures, and hence, composition in the mantle wedge between flat and normal "steep" subducting slabs. Instead of finding the low velocities and high Vp/Vs ratios common in normal subduction zones, these studies find low Vp, high Vs, and very low Vp/Vs above flat slabs. This may indicate the presence of dry, cold material in the mantle wedge. In order to investigate the seismic velocities of the upper mantle above the Peruvian flat segment, we have inverted for 2D Rayleigh wave phase velocity maps using data from the currently deployed 40 station PULSE seismic network and some adjacent stations from the CAUGHT seismic network. We then used the sensitivity of surface waves to shear wave velocity structure with depth to develop a 3D shear wave velocity model. This model will allow us to determine the nature of the mantle lithosphere above the flat slab, and how this may have influenced the development of local topography. For example, dry conditions (high Vs velocities) above the flat slab would imply greater strength of this material, possibly making it capable of causing further inland overthrusting, while wet conditions (low Vs) would imply weaker material. This could provide some insight into the ongoing debate over whether the Fitzcarrald arch (along the northern most flank of the Altiplano) could be a topographical response to the subducted Nazca ridge hundred kilometers away from the trench (N. Espurt, 2012, P. Baby, 2005, V. A. Ramos, 2012) or not (J. Martinod, 2005, M. Wipf, 2008, T. Gerya, 2008).
Zhang, Xiaoying; Hu, Bill X; Ren, Hejun; Zhang, Jin
2018-08-15
The gradient distribution of microbial communities has been detected in profiles along many natural environments. In a mangrove seedlings inhabited mudflat, the microbes drive a variety of biogeochemical processes and are associated with a dramatically changed environment across the tidal zones of mudflat. A better understanding of microbial composition, diversity and associated functional profiles in relation to physicochemical influences could provide more insights into the ecological functions of microbes in a coastal mangrove ecosystem. In this study, the variation of microbial community along successive tidal flats inhabited by mangrove seedlings were characterized based on the 16S rDNA gene sequences, and then the factors that shape the bacterial and archaeal communities were determined. Results showed that the tidal cycles strongly influence the distribution of bacterial and archaeal communities. Dissimilarity and gradient distribution of microbial communities were found among high tidal flat, mid-low tidal flat and seawater. Discrepancies were also as well observed from the surface to subsurface layers specifically in the high tidal flat. For example, Alphaproteobacteria displayed an increasing trend from low tidal to high tidal flat and vice versa for Deltaproteobacteria; Cyanobacteria and Thaumarchaeota were more dominant in the surface layer than the subsurface. In addition, by classifying the microorganisms into metabolic functional groups, we were able to identify the biogeochemical pathway that was dominant in each zone. The (oxygenic) photoautotrophy and nitrate reduction were enhanced in the mangrove inhabited mid tidal flat. It revealed the ability of xenobiotic metabolism microbes to degrade, transform, or accumulate environmental hydrocarbon pollutants in seawater, increasing sulfur-related respiration from high tidal to low tidal flat. An opposite distribution was found for major nitrogen cycling processes. The shift of both composition and function of microbial communities were significantly related to light, oxygen availability and total dissolved nitrogen instead of sediment types or salinity. Copyright © 2018 Elsevier B.V. All rights reserved.
Regional body wave tomography of the Peruvian flat slab
NASA Astrophysics Data System (ADS)
Young, B. E.; Wagner, L. S.; Knezevic Antonijevic, S.; Kumar, A.; Beck, S. L.; Long, M. D.; Tavera, H.
2013-12-01
Local travel time data from the PerU Lithosphere and Slab Experiment (PULSE) were used to create three dimensional tomographic models of Vp and Vs above the flat slab in southern Peru. In the flat slab subduction regions of Peru and central Chile/Argentina, the Nazca plate subducts normally to a depth of ~100 km and then bends and progresses subhorizontally for several hundreds of kilometers before it resumes steep subduction. The Peruvian flat slab segment, located between 3°S and 15°S, corresponds to a gap in the volcanic arc and far-field thick-skinned deformation in the Eastern Cordillera. Despite ongoing research, there is still little consensus on the causes and consequences of flat slab subduction. In western North American, it has been suggested that flat subduction may have been responsible for the formation of the Rocky Mountains and ignimbrite flare-up during the Laramide orogeny. Preliminary tomography results show high shear wave velocities above the slab for a region that coincides with the location of the Nazca ridge, a 200 km wide bathymetric high that is currently subducting at ~15°S. Meanwhile, P wave velocities appear to be relatively normal. North of the ridge location, shear wave velocities can be separated into sublinear high (near the coast) and low (inland) velocity zones oriented approximately parallel to the trench. This geometry corresponds well with the organization of geotectonic and morphological terrains in Peru. High shear wave velocities above the slab are consistent with results from the 2000-2002 CHARGE deployment in central Chile/Argentina. This could indicate the presence of silica enriched, dry continental lithosphere, or it may be due to the presence of an anisotropic layer of hydrous phases directly above the slab. Future comparisons with results from Rayleigh wave tomography aim to address the role of anisotropy in observed shear wave velocities above flat slabs.
Osawa, Yoko; Fujita, Kazuhiko; Umezawa, Yu; Kayanne, Hajime; Ide, Yoichi; Nagaoka, Tatsutoshi; Miyajima, Toshihiro; Yamano, Hiroya
2010-08-01
Human impacts on sand-producing, large benthic foraminifers were investigated on ocean reef flats at the northeast Majuro Atoll, Marshall Islands, along a human population gradient. The densities of dominant foraminifers Calcarina and Amphistegina declined with distance from densely populated islands. Macrophyte composition on ocean reef flats differed between locations near sparsely or densely populated islands. Nutrient concentrations in reef-flat seawater and groundwater were high near or on densely populated islands. delta(15)N values in macroalgal tissues indicated that macroalgae in nearshore lagoons assimilate wastewater-derived nitrogen, whereas those on nearshore ocean reef flats assimilate nitrogen from other sources. These results suggest that increases in the human population result in high nutrient loading in groundwater and possibly into nearshore waters. High nutrient inputs into ambient seawater may have both direct and indirect negative effects on sand-producing foraminifers through habitat changes and/or the collapse of algal symbiosis. Copyright 2010 Elsevier Ltd. All rights reserved.
Soil strength response of select soil disturbance classes on a wet pine flat in South Carolina
Emily A. Carter; W. Michael Aust; James A. Burger
2007-01-01
Harvest operations conducted under conditions of high soil moisture on a et pine flat in South Carolina resulted in a high degree of soil surface disturbance. Less soil surface disturbance occurred when soil moisture content was lower. Soil strength varied by soil disturbance class in wet harvested locations and highly disturbed areas were associated with low soil...
SCIL nanoimprint solutions: high-volume soft NIL for wafer scale sub-10nm resolution
NASA Astrophysics Data System (ADS)
Voorkamp, R.; Verschuuren, M. A.; van Brakel, R.
2016-10-01
Nano-patterning materials and surfaces can add unique functionalities and properties which cannot be obtained in bulk or micro-structured materials. Examples range from hetro-epitaxy of semiconductor nano-wires to guiding cell expression and growth on medical implants. [1] Due to the cost and throughput requirements conventional nano-patterning techniques such as deep UV lithography (cost and flat substrate demands) and electron-beam lithography (cost, throughput) are not an option. Self-assembly techniques are being considered for IC manufacturing, but require nano-sized guiding patterns, which have to be fabricated in any case.[2] Additionally, the self-assembly process is highly sensitive to the environment and layer thickness, which is difficult to control on non-flat surfaces such as PV silicon wafers or III/V substrates. Laser interference lithography can achieve wafer scale periodic patterns, but is limited by the throughput due to intensity of the laser at the pinhole and only regular patterns are possible where the pattern fill fraction cannot be chosen freely due to the interference condition.[3] Nanoimprint lithography (NIL) is a promising technology for the cost effective fabrication of sub-micron and nano-patterns on large areas. The challenges for NIL are related to the technique being a contact method where a stamp which holds the patterns is required to be brought into intimate contact with the surface of the product. In NIL a strong distinction is made between the type of stamp used, either rigid or soft. Rigid stamps are made from patterned silicon, silica or plastic foils and are capable of sub-10nm resolution and wafer scale patterning. All these materials behave similar at the micro- to nm scale and require high pressures (5 - 50 Bar) to enable conformal contact to be made on wafer scales. Real world conditions such as substrate bow and particle contaminants complicate the use of rigid stamps for wafer scale areas, reducing stamp lifetime and yield. Soft stamps, usually based on silicone rubber, behave fundamentally different compared to rigid stamps on the macro-, micro- and nanometer level. The main limitation of traditional silicones is that they are too soft to support sub-micron features against surface tension based stamp deformation and collapse [4] and handling a soft stamp to achieve accurate feature placement on wafer scales to allow overlay alignment with sub-100nm overlay accuracy.
NASA Astrophysics Data System (ADS)
Cormier, M. H.; Sloan, H.; Boisson, D.; Brown, B.; Guerrier, K.; Hearn, C. K.; Heil, C. W., Jr.; Kelly, R. P.; King, J. W.; Knotts, P.; Lucier, O. F.; Momplaisir, R.; Stempel, R.; Symithe, S. J.; Ulysse, S. M. J.; Wattrus, N. J.
2017-12-01
The left-lateral Enriquillo-Plantain Garden Fault (EPGF) is one of two transform systems that define the Northern Caribbean plate boundary zone. Relative motion across its trace ( 10 mm/yr) evolves from nearly pure strike-slip in western Haiti to transpressional in eastern Haiti, where the fault system may terminate against a south-dipping oblique reverse fault. Lake Azuei is a large (10 km x 25 km) and shallow (< 30 m deep) lake that lies in the direct extension of the EPGF in eastern Haiti. A single core previously collected in the lake suggests high sedimentation rates at its depocenter ( 6 mm/yr). The shallow lake stratigraphy is therefore expected to faithfully record any tectonic deformation that occurred within the past few thousand years. In January 2017, we acquired a grid of high-resolution ( 10 cm), shallow penetration ( 4 to 5 m) subbottom seismic (CHIRP) profiles spaced 1.2 km apart across the entire lake. A new bathymetric map compiled from these CHIRP data and some prior echosounder survey reveals a flat lake floor (<0.01°) surrounded by steep ( 5°) shoreline slopes. The CHIRP profiles highlight several gentle folds that protrude from the flat lakebed near the southern shore, an area where transpressional deformation is presumably focused. Thin (< 20 cm) horizontal strata from the lakebed can be traced onto the flanks of these gentle folds and pinch out in an upward curve. They also often pinch upward onto the base of the shoreline slopes, indicating that young sediments on the lakebed bypassed the folds as well as the shoreline slopes. We interpret this feature as diagnostic of sediments deposited by turbidity currents. The fact that young turbidites pinch out in upward curves suggests that the folds are actively growing, and that active contractional structures (folds and/or blind thrust faults) control much of the periphery of the lake. A few sediment cores were strategically located where beds are pinching out in order to maximize stratigraphic records. Two of these cores successfully penetrated strata imaged by the CHIRP profiles. On-going Pb210 dating of sediment samples from the cores should constrain sedimentation rates and thus help quantify the rates of the tectonic deformation.
NASA Technical Reports Server (NTRS)
Gallon, John C.; Clark, Ian G.; Witkowski, Allen
2015-01-01
During the first Supersonic Flight Dynamics Test (SFDT-1) for NASA's Low Density Supersonic Decelerator (LDSD) Program, the Parachute Decelerator System (PDS) was successfully tested. The main parachute in the PDS was a 30.5-meter supersonic Disksail parachute. The term Disksail is derived from the canopy's constructional geometry, as it combined the aspects of a ringsail and a flat circular round (disk) canopy. The crown area of the canopy contained the disk feature, as a large flat circular disk that extended from the canopy's vent down to the upper gap. From this upper gap to the skirt-band the canopy was constructed with characteristics of sails seen in a ringsail. There was a second lower gap present in this sail region. The canopy maintained a nearly 10x forebody diameter trailing distance with 1.7 Do suspension line lengths. During the test, the parachute was deployed at the targeted Mach and dynamic pressure. Although the supersonic Disksail parachute experienced an anomaly during the inflation process, the system was tested successfully in the environment it was designed to operate within. The nature of the failure seen originated in the disk portion of the canopy. High-speed and high-resolution imagery of the anomaly was captured and has been used to aid in the forensics of the failure cause. In addition to the imagery, an inertial measurement unit (IMU) recorded test vehicle dynamics and loadcells captured the bridle termination forces. In reviewing the imagery and load data a number of hypothesizes have been generated in an attempt to explain the cause of the anomaly.
Complex carbonate and clastic stratigraphy of the inner shelf off west-central Florida
DOE Office of Scientific and Technical Information (OSTI.GOV)
Locker, S.D.; Doyle, L.J.; Hine, A.C.
1990-05-01
The near surface stratigraphy (< 30 m) of the inner shelf off the west coast of Florida was investigated using high-resolution seismic, side-scan sonar, and continuous underwater video camera coverage. The simultaneous operation of all three systems provided a unique opportunity to calibrate acoustic data with actual video images of the sea floor in a geologically complex area characterized by limestone dissolution structures, hard-bottom exposures, and overlain by a limited supply of terrigenous clastics. Three principle bottom types, grass, sand, and hard-bottom mapped using video and side-scan sonographs, show a correlation with two subsurface stratigraphic zones. The nearshore subsurface zonemore » extending to 6-7 m water depth is characterized by flat or rolling strata and sinkholes that increase in size (200-1,200 m in diameter) and become more numerous further offshore. This zone is truncated by a major erosional unconformity overlain by a thin (<3 m) sequence of Holocene sediment, which together form a terrace upon which the Anclote Key barrier island formed. The offshore subsurface zone (7-11 m water depth) exhibits irregular and discontinuous high-amplitude flat or inclined reflections and few sinkholes. Offshore, extensive hard-bottom exposures are common with discontinuous sediment that occur as lenses or sand waves. The complex stratigraphy of the west Florida shelf includes outcropping Neogene limestones that have undergone dissolution during sea level lowstands. Carbonates and clastics dispersed during multiple sea level changes overlie the Neogene limestones. Dissolution styles and erosional unconformities produced bedrock topography and now control modern geological and biological processes.« less
A comparison of the performance of digital mammography systems.
Monnin, P; Gutierrez, D; Bulling, S; Guntern, D; Verdun, F R
2007-03-01
An objective analysis of image quality parameters was performed for six digital mammography systems. The presampled modulation transfer function (MTF), normalized noise power spectrum (NNPS), and detective quantum efficiency (DQE) for the systems were determined at different doses, for 28 kVp with a Mo/Mo or W/Al target/filter combination and 2 mm of additional aluminium filtration. The flat-panel units have higher MTF and DQE in the mid to high frequency range than standard CR systems. The highest DQE, over the whole dose range, is for the slit-scanning direct photon counting system. Dual-side read CR can overcome the inherent x-ray absorption and signal collection limitations of standard CR mammography, improving the low-frequency DQE by 40%, to the same level as full-field systems, but it does not improve the poor spatial resolution of phosphor.
NASA Astrophysics Data System (ADS)
Guo, Junmeng; Wang, Yongfu; Liang, Hongyu; Liang, Aimin; Zhang, Junyan
2016-02-01
Fullerene-like hydrogenated carbon (FL-C:H) films as carbon materials were prepared by direct current plasma enhanced chemical vapor deposition (dc-PECVD) technique. The content of FL nanostructure was confirmed by high-resolution transmission electron microscopy (HRTEM), visible Raman spectroscopy, and X-ray photoelectron spectroscopy (XPS). The effect of fullerene-like nanostructure on the friction behavior of the films was studied using a reciprocating ball-on-flat tribometer in humid environment. It is concluded that the curved FL nanostructure provide the film excellent mechanical properties and friction performance. Interestingly, combining with the results of Raman analyses of the wear debris, we find that new FL nanostructure form during the friction process. These new FL nanostructure may originate from the rapid annealing and stress relaxation of unstable carbon clusters.
Management system of simple rental flats study based on technical aspect and health in Medan city
NASA Astrophysics Data System (ADS)
Novrial; Indra Cahaya, S.
2018-03-01
Medan city is a metropolis city in Sumatera that has slums area. Simple rental flats have been built to overcome the problem. However the preliminary survey result showed that the physical and non-physical environment management of simple rent flats is very bad. This study conducted in 3 simple rent flats. It has observed the simple rent flats environment and has interviewed occupants and related agencies. Results of conducted research showed the occupant’s characteristics based on the largest percentage are Javanese; last education is senior high with self-employed work with average income Rp 1,000,000 – Rp 2,500,000. Waste retribution submitted to their cleanliness except for Amplas simple rent flats, their waste management system does not manage properly and the garbage littered. The number of family members of Wisma Labuhan and Amplas simple rent flats exceeds the regulation number of occupants, so it is crowded and noisy. Physical conditions of Amplas simple rent flats are bad, septic tank is full and are not vacuumed. Clean water sources derived from wells and artesian wll are vulnerable to be contaminated by pollutants such as leachate and bad quality water. It is necessary to improve the physical, basic sanitation, and guidance for the simple rent flats occupants to the management system of Simple Rent Flats.
Beam deceleration for block-face scanning electron microscopy of embedded biological tissue.
Ohta, Keisuke; Sadayama, Shoji; Togo, Akinobu; Higashi, Ryuhei; Tanoue, Ryuichiro; Nakamura, Kei-ichiro
2012-04-01
The beam deceleration (BD) method for scanning electron microscopes (SEM) also referred to as "retarding" was applied to back-scattered electron (BSE) imaging of the flat block face of a resin embedded biological specimen under low accelerating voltage and low beam current conditions. BSE imaging was performed with 0-4 kV of BD on en bloc stained rat hepatocyte. BD drastically enhanced the compositional contrast of the specimen and also improved the resolution at low landing energy levels (1.5-3 keV) and a low beam current (10 pA). These effects also functioned in long working distance observation, however, stage tilting caused uncorrectable astigmatism in BD observation. Stage tilting is mechanically required for a FIB/SEM, so we designed a novel specimen holder to minimize the unfavorable tilting effect. The FIB/SEM 3D reconstruction using the new holder showed a reasonable contrast and resolution high enough to analyze individual cell organelles and also the mitochondrial cristae structures (~5 nm) of the hepatocyte. These results indicate the advantages of BD for block face imaging of biological materials such as cells and tissues under low-voltage and low beam current conditions. Copyright © 2011 Elsevier Ltd. All rights reserved.
MTF measurements with high-resolution a-Si:H imaging arrays
NASA Astrophysics Data System (ADS)
Yorkston, John; Antonuk, Larry E.; Seraji, N.; Huang, Weidong; Siewerdsen, Jeffrey H.; El-Mohri, Youcef
1995-05-01
Recent advances in a-Si:H fabrication technology have opened the way for the application of flat panel imaging arrays in a number of areas in medical imaging. Their large area (up to approximately 26 X 26 cm), thin profile (< 1 mm) and real time readout capability make them strong candidates for the replacement of more traditional x-ray imaging technologies such as film and image intensifier systems. As a first step towards a device suitable for clinical use we have created a 24.4 X 19.4 cm array with 127 micrometers pitch pixels. This device serves as a testbed for investigating the effects of design changes on array imaging performance. This paper reports on initial measurements of the spatial resolution of this device used in conjunction with an overlaying Lanex Regular screen and 90 kVp x rays. The measured pre-sampled modulation transfer function (p.s. MTF) is found to fall below the predicted value by up to approximately 8%. At least part of this reduction seems to be due to scattering of light photons between the array and the surface of the phosphor screen contacting the array.
VizieR Online Data Catalog: weak G-band stars abundances (Palacios+, 2016)
NASA Astrophysics Data System (ADS)
Palacios, A.; Jasniewicz, G.; Masseron, T.; Thevenin, F.; Itam-Pasquet, J.; Parthasarathy, M.
2016-05-01
Seventeen southern wGb stars were observed at La Silla, ESO Chile, with the high-efficiency Fiber-fed Extended Range Optical Spectrograph FEROS spectrograph mounted on the 2.2m telescope. FEROS is a bench-mounted, thermally controlled, prism-cross-dispersed echelle spectrograph, providing, in a single spectrogram spread over 39 orders, almost complete spectral coverage from ~350 to ~920nm at a resolution of 48000. The FEROS observations were carried out during an observing run between May 10 and 13, 2012. All these spectra were flat-fielded and calibrated by means of ThArNe exposures using standard processing tools available at ESO. In addition, two northern wGb stars, HD 18474 and HD 166208, were observed in service mode at the Observatoire du Pic du Midi, France, with the NARVAL spectrograph mounted on the Bernard Lyot 2.0m telescope. The NARVAL instrument consists of a bench-mounted cross-dispersed echelle spectrograph, fibre-fed from a Cassegrain-mounted polarimeter unit. It was used in its non-polarimetric mode; it provided almost complete spectral coverage from ~375 to ~1050nm at a resolution of 75000 in a single spectrogram spread over 40 orders. (6 data files).
HIGH-RESOLUTION MID-INFRARED IMAGING OF THE CIRCUMSTELLAR DISKS OF HERBIG Ae/Be STARS
DOE Office of Scientific and Technical Information (OSTI.GOV)
Marinas, N.; Telesco, C. M.; Packham, C.
2011-08-20
We have imaged the circumstellar environments of 17 Herbig Ae/Be stars at 12 and 18 {mu}m using MICHELLE on Gemini North and T-ReCS on Gemini South. Our sample contained eight Group I sources, those having large rising near- to far-infrared (IR) fluxes, and nine Group II sources, those having more modest mid-IR fluxes relative to their near-IR flux (in the classification of Meeus et al.). We have resolved extended emission from all Group I sources in our target list. The majority of these sources have radially symmetric mid-IR emission extending from a radius of 10 AU to hundreds of AU.more » Only one of the nine Group II sources is resolved at the FWHM level, with another two Group II sources resolved at fainter levels. Models by Dullemond et al. explain the observed spectral energy distribution of Group II sources using self-shadowed cold disks. If this is the case for all the Group II sources, we do not expect to detect extended emission with this study, since the IR emission measured should arise from a region only a few AU in size, which is smaller than our resolution. The fact that we do resolve some of the Group II sources implies that their disks are not completely flat, and might represent an intermediate stage. We also find that none of the more massive (>3 M{sub sun}) Herbig Ae/Be stars in our sample belongs to Group I, which may point to a relationship between stellar mass and circumstellar dust evolution. Disks around more massive stars might evolve faster so that stars are surrounded by a more evolved flat disk by the time they become optically visible, or they might follow a different evolutionary path altogether.« less
Cone-Beam CT with a Flat-Panel Detector: From Image Science to Image-Guided Surgery
Siewerdsen, Jeffrey H.
2011-01-01
The development of large-area flat-panel x-ray detectors (FPDs) has spurred investigation in a spectrum of advanced medical imaging applications, including tomosynthesis and cone-beam CT (CBCT). Recent research has extended image quality metrics and theoretical models to such applications, providing a quantitative foundation for the assessment of imaging performance as well as a general framework for the design, optimization, and translation of such technologies to new applications. For example, cascaded systems models of Fourier domain metrics, such as noise-equivalent quanta (NEQ), have been extended to these modalities to describe the propagation of signal and noise through the image acquisition and reconstruction chain and to quantify the factors that govern spatial resolution, image noise, and detectability. Moreover, such models have demonstrated basic agreement with human observer performance for a broad range of imaging conditions and imaging tasks. These developments in image science have formed a foundation for the knowledgeable development and translation of CBCT to new applications in image-guided interventions - for example, CBCT implemented on a mobile surgical C-arm for intraoperative 3D imaging. The ability to acquire high-quality 3D images on demand during surgical intervention overcomes conventional limitations of surgical guidance in the context of preoperative images alone. A prototype mobile C-arm developed in academic-industry partnership demonstrates CBCT with low radiation dose, sub-mm spatial resolution, and soft-tissue visibility potentially approaching that of diagnostic CT. Integration of the 3D imaging system with real-time tracking, deformable registration, endoscopic video, and 3D visualization offers a promising addition to the surgical arsenal in interventions ranging from head-and-neck / skull base surgery to spine, orthopaedic, thoracic, and abdominal surgeries. Cadaver studies show the potential for significant boosts in surgical performance under CBCT guidance, and early clinical trials demonstrate feasibility, workflow, and image quality within the surgical theatre. PMID:22942510
High-Fidelity Numerical Modeling of Compressible Flow
2015-11-01
details on these aspects of the implementation were reported in an earlier paper by Poggie.42 C. Flowfield Two flat - plate turbulent boundary layer flows...work investigated flat plate turbulent boundary layer flows. The baseline case was a flow at Mach 2.3, under conditions similar to those employed in...analyzed. The solutions are compared to a spanwise- periodic flat - plate turbulent boundary layer developed at the same conditions and yield similar
High sensitivity flat SiO2 fibres for medical dosimetry
NASA Astrophysics Data System (ADS)
Abdul Sani, Siti. F.; Alalawi, Amani I.; Azhar, Hairul A. R.; Amouzad Mahdiraji, Ghafour; Tamchek, Nizam; Nisbet, A.; Maah, M. J.; Bradley, D. A.
2014-11-01
We describe investigation of a novel undoped flat fibre fabricated for medical radiation dosimetry. Using high energy X-ray beams generated at a potential of 6 MV, comparison has been made of the TL yield of silica flat fibres, TLD-100 chips and Ge-doped silica fibres. The flat fibres provide competitive TL yield to that of TLD-100 chips, being some 100 times that of the Ge-doped fibres. Pt-coated flat fibres have then been used to increase photoelectron production and hence local dose deposition, obtaining significant increase in dose sensitivity over that of undoped flat fibres. Using 250 kVp X-ray beams, the TL yield reveals a progressive linear increase in dose for Pt thicknesses from 20 nm up to 80 nm. The dose enhancement factor (DEF) of (0.0150±0.0003) nm-1 Pt is comparable to that obtained using gold, agreeing at the 1% level with the value expected on the basis of photoelectron generation. Finally, X-ray photoelectron spectroscopy (XPS) has been employed to characterize the surface oxidation state of the fibre medium. The charge state of Si2p was found to lie on 103.86 eV of binding energy and the atomic percentage obtained from the XPS analysis is 22.41%.
Quantification of confocal images of biofilms grown on irregular surfaces
Ross, Stacy Sommerfeld; Tu, Mai Han; Falsetta, Megan L.; Ketterer, Margaret R.; Kiedrowski, Megan R.; Horswill, Alexander R.; Apicella, Michael A.; Reinhardt, Joseph M.; Fiegel, Jennifer
2014-01-01
Bacterial biofilms grow on many types of surfaces, including flat surfaces such as glass and metal and irregular surfaces such as rocks, biological tissues and polymers. While laser scanning confocal microscopy can provide high-resolution images of biofilms grown on any surface, quantification of biofilm-associated bacteria is currently limited to bacteria grown on flat surfaces. This can limit researchers studying irregular surfaces to qualitative analysis or quantification of only the total bacteria in an image. In this work, we introduce a new algorithm called modified connected volume filtration (MCVF) to quantify bacteria grown on top of an irregular surface that is fluorescently labeled or reflective. Using the MCVF algorithm, two new quantification parameters are introduced. The modified substratum coverage parameter enables quantification of the connected-biofilm bacteria on top of the surface and on the imaging substratum. The utility of MCVF and the modified substratum coverage parameter were shown with Pseudomonas aeruginosa and Staphylococcus aureus biofilms grown on human airway epithelial cells. A second parameter, the percent association, provides quantified data on the colocalization of the bacteria with a labeled component, including bacteria within a labeled tissue. The utility of quantifying the bacteria associated with the cell cytoplasm was demonstrated with Neisseria gonorrhoeae biofilms grown on cervical epithelial cells. This algorithm provides more flexibility and quantitative ability to researchers studying biofilms grown on a variety of irregular substrata. PMID:24632515
Seismic Imaging of the Source Physics Experiment Site with the Large-N Seismic Array
NASA Astrophysics Data System (ADS)
Chen, T.; Snelson, C. M.; Mellors, R. J.
2017-12-01
The Source Physics Experiment (SPE) consists of a series of chemical explosions at the Nevada National Security Site. The goal of SPE is to understand seismic wave generation and propagation from these explosions. To achieve this goal, we need an accurate geophysical model of the SPE site. A Large-N seismic array that was deployed at the SPE site during one of the chemical explosions (SPE-5) helps us construct high-resolution local geophysical model. The Large-N seismic array consists of 996 geophones, and covers an area of approximately 2 × 2.5 km. The array is located in the northern end of the Yucca Flat basin, at a transition from Climax Stock (granite) to Yucca Flat (alluvium). In addition to the SPE-5 explosion, the Large-N array also recorded 53 weight drops. Using the Large-N seismic array recordings, we perform body wave and surface wave velocity analysis, and obtain 3D seismic imaging of the SPE site for the top crust of approximately 1 km. The imaging results show clear variation of geophysical parameter with local geological structures, including heterogeneous weathering layer and various rock types. The results of this work are being incorporated in the larger 3D modeling effort of the SPE program to validate the predictive models developed for the site.
Seismic attenuation structure beneath Nazca Plate subduction zone in southern Peru
NASA Astrophysics Data System (ADS)
Jang, H.; Kim, Y.; Clayton, R. W.
2017-12-01
We estimate seismic attenuation in terms of quality factors, QP and QS using P and S phases, respectively, beneath Nazca Plate subduction zone between 10°S and 18.5°S latitude in southern Peru. We first relocate 298 earthquakes with magnitude ranges of 4.0-6.5 and depth ranges of 20-280 km. We measure t*, which is an integrated attenuation through the seismic raypath between the regional earthquakes and stations. The measured t* are inverted to construct three-dimensional attenuation structures of southern Peru. Checkerboard test results for both QP and QS structures ensure good resolution in the slab-dip transition zone between flat and normal slab subduction down to a depth of 200 km. Both QP and QS results show higher attenuation continued down to a depth of 50 km beneath volcanic arc and also beneath the Quimsachata volcano, the northernmost young volcano, located far east of the main volcanic front. We also observe high attenuation in mantle wedge especially beneath the normal subduction region in both QP and QS (100-130 in QP and 100-125 in QS) and slightly higher QP and QS beneath the flat-subduction and slab-dip transition regions. We plan to relate measured attenuation in the mantle wedge to material properties such as viscosity to understand the subduction zone dynamics.
Alternative synthetic aperture radar (SAR) modalities using a 1D dynamic metasurface antenna
NASA Astrophysics Data System (ADS)
Boyarsky, Michael; Sleasman, Timothy; Pulido-Mancera, Laura; Imani, Mohammadreza F.; Reynolds, Matthew S.; Smith, David R.
2017-05-01
Synthetic aperture radar (SAR) systems conventionally rely on mechanically-actuated reflector dishes or large phased arrays for generating steerable directive beams. While these systems have yielded high-resolution images, the hardware suffers from considerable weight, high cost, substantial power consumption, and moving parts. Since these disadvantages are particularly relevant in airborne and spaceborne systems, a flat, lightweight, and low-cost solution is a sought-after goal. Dynamic metasurface antennas have emerged as a recent technology for generating waveforms with desired characteristics. Metasurface antennas consist of an electrically-large waveguide loaded with numerous subwavelength radiators which selectively leak energy from a guided wave into free space to form various radiation patterns. By tuning each radiating element, we can modulate the aperture's overall radiation pattern to generate steered directive beams, without moving parts or phase shifters. Furthermore, by using established manufacturing methods, these apertures can be made to be lightweight, low-cost, and planar, while maintaining high performance. In addition to their hardware benefits, dynamic metasurfaces can leverage their dexterity and high switching speeds to enable alternative SAR modalities for improved performance. In this work, we briefly discuss how dynamic metasurfaces can conduct existing SAR modalities with similar performance as conventional systems from a significantly simpler hardware platform. We will also describe two additional modalities which may achieve improved performance as compared to traditional modalities. These modalities, enhanced resolution stripmap and diverse pattern stripmap, offer the ability to circumvent the trade-off between resolution and region-of-interest size that exists within stripmap and spotlight. Imaging results with a simulated dynamic metasurface verify the benefits of these modalities and a discussion of implementation considerations and noise effects is also included. Ultimately, the hardware gains coupled with the additional modalities well-suited to dynamic metasurface antennas has poised them to propel the SAR field forward and open the door to exciting opportunities.
NASA Astrophysics Data System (ADS)
Thomas, Christoph K.; Kennedy, Adam M.; Selker, John S.; Moretti, Ayla; Schroth, Martin H.; Smoot, Alexander R.; Tufillaro, Nicholas B.; Zeeman, Matthias J.
2012-02-01
We present a novel approach based on fibre-optic distributed temperature sensing (DTS) to measure the two-dimensional thermal structure of the surface layer at high resolution (0.25 m, ≈0.5 Hz). Air temperature observations obtained from a vertically-oriented fibre-optics array of approximate dimensions 8 m × 8 m and sonic anemometer data from two levels were collected over a short grass field located in the flat bottom of a wide valley with moderate surface heterogeneity. The objectives of the study were to evaluate the potential of the DTS technique to study small-scale processes in the surface layer over a wide range of atmospheric stability, and to analyze the space-time dynamics of transient cold-air pools in the calm boundary layer. The time response and precision of the fibre-based temperatures were adequate to resolve individual sub-metre sized turbulent and non-turbulent structures, of time scales of seconds, in the convective, neutral, and stable surface layer. Meaningful sensible heat fluxes were computed using the eddy-covariance technique when combined with vertical wind observations. We present a framework that determines the optimal environmental conditions for applying the fibre-optics technique in the surface layer and identifies areas for potentially significant improvements of the DTS performance. The top of the transient cold-air pool was highly non-stationary indicating a superposition of perturbations of different time and length scales. Vertical eddy scales in the strongly stratified transient cold-air pool derived from the DTS data agreed well with the buoyancy length scale computed using the vertical velocity variance and the Brunt-Vaisala frequency, while scales for weak stratification disagreed. The high-resolution DTS technique opens a new window into spatially sampling geophysical fluid flows including turbulent energy exchange.
Effect of Ultraviolet Light Irradiation on Structure and Electrochemical Properties of Iron Surface
NASA Astrophysics Data System (ADS)
Nanjo, Hiroshi; Deng, Huihua; Oconer, Irmin S.; Ishikawa, Ikuo; Suzuki, Toshishige M.
2005-01-01
The effect of ultraviolet light (UV) irradiation (254 nm, 0.8 mW/cm2) on air-formed oxide films and passivated films on iron was investigated by electrochemical methods and scanning tunneling microscopy (STM), in particular with respect to surface micro/nanostructures and the surface protective property. An as-deposited film appeared uniformly flat after UV irradiation for 2-4 h, which is associated with a decrease in current density. UV irradiation for 1-4 h assisted N-dodecylhydroxamic acid (DHA) molecules to strongly bond to the air-formed oxide film. UV irradiation for 1 h led to the formation of a flat terrace of atomic resolution on a surface passivated at 800 mV for 15 min. However, it was difficult to observe a terrace wider than 3 nm on the passive film irradiated for 4 h.
NASA Astrophysics Data System (ADS)
Rees, D.; Fuller-Rowell, T. J.; Lyons, A.; Killeen, T. L.; Hays, P. B.
1982-11-01
The cemented etalons are shown to be rugged and highly stable for high-resolution spectroscopy and to be well suited to space applications. The etalons will be of considerable value as the tuning elements of dye laser systems and as the stable spectral disperser for pulse and CW laser spectroscopy. Even for etalons 15 cm in diameter, the strength of the cemented bond is greatly in excess of the maximum steady and impulsive forces experienced from the much larger etalon plate mass (2-4 kg rather than 200 g). It is thought that the small but systematic and significant positive increment in the thermal expansion coefficient which occurs when an etalon and its spacers are cemented may be linked to the cessation of the microscopic migration that occurs with an optically contacted bond under thermal or mechanical stress. The etalon comprises two flat plates of fused silica, with spacers constructed of Zerodur (a polycrystalline glass ceramic of extremely low expansion coefficient) which are cemented together using cyanoacrylic adhesives.
Sunlight readable avionics displays
NASA Astrophysics Data System (ADS)
Visinski, Joseph R.
1998-09-01
The theme of the Cockpit Displays V Conference of 'Custom versus Consumer -- Grade Displays in Defense Applications' reflects the Raytheon Systems Company field emission display (FED) development effort. Raytheon chose to license commercial FED technology and subsequently participate in a commercial industry 'FED Alliance' to insert this technology into commercial and avionics defense applications. The unaffordability of custom military displays makes them an unfeasible choice to build a business upon. The major differences between consumer FEDs and those adapted for military/avionics installations are: (1) high brightness for sunlight visibility; (2) extended environmental range; (3) high resolution; (4) wider dimming range for sunlight to NVIS operation; (5) extended gray scales; (6) lifetime product support well beyond two year consumer market life. The transition to defense applications is further being accomplished via industry/government partnerships as the DARPA Technology Reinvestment Project (TRP) and BAA 97-31. FEDs combine cathode ray tube (CRT) and matrix addressed flat panel display technology, parts, manufacturing, and test equipment, plus open systems interfaces into a new display.
Tri-linear color multi-linescan sensor with 200 kHz line rate
NASA Astrophysics Data System (ADS)
Schrey, Olaf; Brockherde, Werner; Nitta, Christian; Bechen, Benjamin; Bodenstorfer, Ernst; Brodersen, Jörg; Mayer, Konrad J.
2016-11-01
In this paper we present a newly developed linear CMOS high-speed line-scanning sensor realized in a 0.35 μm CMOS OPTO process for line-scan with 200 kHz true RGB and 600 kHz monochrome line rate, respectively. In total, 60 lines are integrated in the sensor allowing for electronic position adjustment. The lines are read out in rolling shutter manner. The high readout speed is achieved by a column-wise organization of the readout chain. At full speed, the sensor provides RGB color images with a spatial resolution down to 50 μm. This feature enables a variety of applications like quality assurance in print inspection, real-time surveillance of railroad tracks, in-line monitoring in flat panel fabrication lines and many more. The sensor has a fill-factor close to 100%, preventing aliasing and color artefacts. Hence the tri-linear technology is robust against aliasing ensuring better inspection quality and thus less waste in production lines.
STS-42 Earth observation of Kamchatka Peninsula
NASA Technical Reports Server (NTRS)
1992-01-01
STS-42 Earth observation taken aboard Discovery, Orbiter Vehicle (OV) 103, with an electronic still camera (ESC) is of Kamchatka Peninsula in Russia. Mid-afternoon sun projects long shadows from volcanoes on the Kamchatka Peninsula. This flat-topped volcano with the sharp summit crater is Tobachinsky, over 3,085 kilometers high. Its last major eruption was in 1975 and 1976, but it has been very active since the middle of the Sixteenth Century. The shadows cast by the low sunlight brings out the dramatic relief of the volcano as well as the smaller morphologic features. For example, the small hills in the foreground and behind the central volcano are cinder cones, approximately only 200 meters high. Note the sharp triangular shadow from the conical volcano at right. Electronic still photography is a relatively new technology that enables a camera to electronically capture and digitize an image with resolution approaching film quality. The digital images from STS-42 were stored on a disk
Twin robotic x-ray system for 2D radiographic and 3D cone-beam CT imaging
NASA Astrophysics Data System (ADS)
Fieselmann, Andreas; Steinbrener, Jan; Jerebko, Anna K.; Voigt, Johannes M.; Scholz, Rosemarie; Ritschl, Ludwig; Mertelmeier, Thomas
2016-03-01
In this work, we provide an initial characterization of a novel twin robotic X-ray system. This system is equipped with two motor-driven telescopic arms carrying X-ray tube and flat-panel detector, respectively. 2D radiographs and fluoroscopic image sequences can be obtained from different viewing angles. Projection data for 3D cone-beam CT reconstruction can be acquired during simultaneous movement of the arms along dedicated scanning trajectories. We provide an initial evaluation of the 3D image quality based on phantom scans and clinical images. Furthermore, initial evaluation of patient dose is conducted. The results show that the system delivers high image quality for a range of medical applications. In particular, high spatial resolution enables adequate visualization of bone structures. This system allows 3D X-ray scanning of patients in standing and weight-bearing position. It could enable new 2D/3D imaging workflows in musculoskeletal imaging and improve diagnosis of musculoskeletal disorders.
Morgan, L.A.; Shanks, Wayne C.; Lee, G.K.; Webring, M.W.
2007-01-01
High-resolution, multi-beam sonar mapping of Yellowstone Lake was conducted by the U.S. Geological Survey in conjunction with the National Park Service from 1999 to 2002. Yellowstone Lake is the largest high-altitude lake in North America, at an altitude of 2,357 m with a surface area of 341 km2. More than 140 rivers and streams flow into Yellowstone Lake. The Yellowstone River, which enters at the southern end of the lake into the Southeast Arm, dominates the inflow of water and sediment (Shanks and others, 2005). The only outlet from the lake is at Fishing Bridge where the Yellowstone River flows northward discharging 375 to 4,600 cubic feet per second. The multi-beam sonar mapping occurred over a four-year period beginning in 1999 with mapping of the northern basin, continued in 2000 in West Thumb basin, in 2001 in the central basin, and in 2002 in the southern part of the lake including the Flat Mountain, South, and Southeast Arms.
G0.9 + 0.1 and the emerging class of composite supernova remnants
NASA Technical Reports Server (NTRS)
Helfand, D. J.; Becker, R. H.
1987-01-01
High-resolution, multifrequency maps of a bright extended radio source near the Galactic center have revealed it to be a classic example of a composite supernova remnant. A steep-spectrum shell of emission, about 8 arcmin in diameter, surrounds a flat-spectrum, highly polarized Crab-like core about 2 arcmin across. The two components have equal flux densities at about 6 cm, marking this source as having the highest core-to-shell ratio among the about 10 composite remnants identified to date. X-ray and far-infrared data on the source are used to constrain the energetics and evolutionary state of the remnant and its putative central pulsar. It is argued that the total energy contained in the Crab-like components requires that the pulsars powering them were all born with periods shorter than 50 ms, and that if a substantial number of neutron stars with slow initial rotation rates exist, their birthplaces have not yet been found.
Delisle, Dennis R
2013-01-01
With passage of the Affordable Care Act, the ever-evolving landscape of health care braces for another shift in the reimbursement paradigm. As health care costs continue to rise, providers are pressed to deliver efficient, high-quality care at flat to minimally increasing rates. Inherent systemwide inefficiencies between payers and providers at various clinical settings pose a daunting task for enhancing collaboration and care coordination. A change from Medicare's fee-for-service reimbursement model to bundled payments offers one avenue for resolution. Pilots using such payment models have realized varying degrees of success, leading to the development and upcoming implementation of a bundled payment initiative led by the Center for Medicare and Medicaid Innovation. Delivery integration is critical to ensure high-quality care at affordable costs across the system. Providers and payers able to adapt to the newly proposed models of payment will benefit from achieving cost reductions and improved patient outcomes and realize a competitive advantage.