High-resolution weather forecasting is affected by many aspects, i.e. model initial conditions, subgrid-scale cumulus convection and cloud microphysics schemes. Recent 12km grid studies using the Weather Research and Forecasting (WRF) model have identified the importance of inco...
A comparison of GLAS SAT and NMC high resolution NOSAT forecasts from 19 and 11 February 1976
NASA Technical Reports Server (NTRS)
Atlas, R.
1979-01-01
A subjective comparison of the Goddard Laboratory for Atmospheric Sciences (GLAS) and the National Meteorological Center (NMC) high resolution model forecasts is presented. Two cases where NMC's operational model in 1976 had serious difficulties in forecasting for the United States were examined. For each of the cases, the GLAS model forecasts from initial conditions which included satellite sounding data were compared directly to the NMC higher resolution model forecasts, from initial conditions which excluded the satellite data. The comparison showed that the GLAS satellite forecasts significantly improved upon the current NMC operational model's predictions in both cases.
NASA Astrophysics Data System (ADS)
Krishnamurthy, Lakshmi; Muñoz, Ángel G.; Vecchi, Gabriel A.; Msadek, Rym; Wittenberg, Andrew T.; Stern, Bill; Gudgel, Rich; Zeng, Fanrong
2018-05-01
The Caribbean low-level jet (CLLJ) is an important component of the atmospheric circulation over the Intra-Americas Sea (IAS) which impacts the weather and climate both locally and remotely. It influences the rainfall variability in the Caribbean, Central America, northern South America, the tropical Pacific and the continental Unites States through the transport of moisture. We make use of high-resolution coupled and uncoupled models from the Geophysical Fluid Dynamics Laboratory (GFDL) to investigate the simulation of the CLLJ and its teleconnections and further compare with low-resolution models. The high-resolution coupled model FLOR shows improvements in the simulation of the CLLJ and its teleconnections with rainfall and SST over the IAS compared to the low-resolution coupled model CM2.1. The CLLJ is better represented in uncoupled models (AM2.1 and AM2.5) forced with observed sea-surface temperatures (SSTs), emphasizing the role of SSTs in the simulation of the CLLJ. Further, we determine the forecast skill for observed rainfall using both high- and low-resolution predictions of rainfall and SSTs for the July-August-September season. We determine the role of statistical correction of model biases, coupling and horizontal resolution on the forecast skill. Statistical correction dramatically improves area-averaged forecast skill. But the analysis of spatial distribution in skill indicates that the improvement in skill after statistical correction is region dependent. Forecast skill is sensitive to coupling in parts of the Caribbean, Central and northern South America, and it is mostly insensitive over North America. Comparison of forecast skill between high and low-resolution coupled models does not show any dramatic difference. However, uncoupled models show improvement in the area-averaged skill in the high-resolution atmospheric model compared to lower resolution model. Understanding and improving the forecast skill over the IAS has important implications for highly vulnerable nations in the region.
Obtaining high-resolution stage forecasts by coupling large-scale hydrologic models with sensor data
NASA Astrophysics Data System (ADS)
Fries, K. J.; Kerkez, B.
2017-12-01
We investigate how "big" quantities of distributed sensor data can be coupled with a large-scale hydrologic model, in particular the National Water Model (NWM), to obtain hyper-resolution forecasts. The recent launch of the NWM provides a great example of how growing computational capacity is enabling a new generation of massive hydrologic models. While the NWM spans an unprecedented spatial extent, there remain many questions about how to improve forecast at the street-level, the resolution at which many stakeholders make critical decisions. Further, the NWM runs on supercomputers, so water managers who may have access to their own high-resolution measurements may not readily be able to assimilate them into the model. To that end, we ask the question: how can the advances of the large-scale NWM be coupled with new local observations to enable hyper-resolution hydrologic forecasts? A methodology is proposed whereby the flow forecasts of the NWM are directly mapped to high-resolution stream levels using Dynamical System Identification. We apply the methodology across a sensor network of 182 gages in Iowa. Of these sites, approximately one third have shown to perform well in high-resolution flood forecasting when coupled with the outputs of the NWM. The quality of these forecasts is characterized using Principal Component Analysis and Random Forests to identify where the NWM may benefit from new sources of local observations. We also discuss how this approach can help municipalities identify where they should place low-cost sensors to most benefit from flood forecasts of the NWM.
NASA Astrophysics Data System (ADS)
Park, Shinju; Berenguer, Marc; Sempere-Torres, Daniel; Baugh, Calum; Smith, Paul
2017-04-01
Flash floods induced by heavy rain are one of the hazardous natural events that significantly affect human lives. Because flash floods are characterized by their rapid onset, forecasting flash flood to lead an effective response requires accurate rainfall predictions with high spatial and temporal resolution and adequate representation of the hydrologic and hydraulic processes within a catchment that determine rainfall-runoff accumulations. We present extreme flash flood cases which occurred throughout Europe in 2015-2016 that were identified and forecasted by two real-time approaches: 1) the European Rainfall-Induced Hazard Assessment System (ERICHA) and 2) the European Runoff Index based on Climatology (ERIC). ERICHA is based on the nowcasts of accumulated precipitation generated from the pan-European radar composites produced by the EUMETNET project OPERA. It has the advantage of high-resolution precipitation inputs and rapidly updated forecasts (every 15 minutes), but limited forecast lead time (up to 8 hours). ERIC, on the other hand, provides 5-day forecasts based on the COSMO-LEPS NWP simulations updated 2 times a day but is only produced at a 7 km resolution. We compare the products from both systems and focus on showing the advantages, limitations and complementarities of ERICHA and ERIC for seamless high-resolution flash flood forecasting.
NASA Technical Reports Server (NTRS)
Molthan, Andrew; Case, Jonathan; Venner, Jason; Moreno-Madrinan, Max J.; Delgado, Francisco
2012-01-01
Two projects at NASA Marshall Space Flight Center have collaborated to develop a high resolution weather forecast model for Mesoamerica: The NASA Short-term Prediction Research and Transition (SPoRT) Center, which integrates unique NASA satellite and weather forecast modeling capabilities into the operational weather forecasting community. NASA's SERVIR Program, which integrates satellite observations, ground-based data, and forecast models to improve disaster response in Central America, the Caribbean, Africa, and the Himalayas.
A comparative verification of high resolution precipitation forecasts using model output statistics
NASA Astrophysics Data System (ADS)
van der Plas, Emiel; Schmeits, Maurice; Hooijman, Nicolien; Kok, Kees
2017-04-01
Verification of localized events such as precipitation has become even more challenging with the advent of high-resolution meso-scale numerical weather prediction (NWP). The realism of a forecast suggests that it should compare well against precipitation radar imagery with similar resolution, both spatially and temporally. Spatial verification methods solve some of the representativity issues that point verification gives rise to. In this study a verification strategy based on model output statistics is applied that aims to address both double penalty and resolution effects that are inherent to comparisons of NWP models with different resolutions. Using predictors based on spatial precipitation patterns around a set of stations, an extended logistic regression (ELR) equation is deduced, leading to a probability forecast distribution of precipitation for each NWP model, analysis and lead time. The ELR equations are derived for predictands based on areal calibrated radar precipitation and SYNOP observations. The aim is to extract maximum information from a series of precipitation forecasts, like a trained forecaster would. The method is applied to the non-hydrostatic model Harmonie (2.5 km resolution), Hirlam (11 km resolution) and the ECMWF model (16 km resolution), overall yielding similar Brier skill scores for the 3 post-processed models, but larger differences for individual lead times. Besides, the Fractions Skill Score is computed using the 3 deterministic forecasts, showing somewhat better skill for the Harmonie model. In other words, despite the realism of Harmonie precipitation forecasts, they only perform similarly or somewhat better than precipitation forecasts from the 2 lower resolution models, at least in the Netherlands.
Constraining Stochastic Parametrisation Schemes Using High-Resolution Model Simulations
NASA Astrophysics Data System (ADS)
Christensen, H. M.; Dawson, A.; Palmer, T.
2017-12-01
Stochastic parametrisations are used in weather and climate models as a physically motivated way to represent model error due to unresolved processes. Designing new stochastic schemes has been the target of much innovative research over the last decade. While a focus has been on developing physically motivated approaches, many successful stochastic parametrisation schemes are very simple, such as the European Centre for Medium-Range Weather Forecasts (ECMWF) multiplicative scheme `Stochastically Perturbed Parametrisation Tendencies' (SPPT). The SPPT scheme improves the skill of probabilistic weather and seasonal forecasts, and so is widely used. However, little work has focused on assessing the physical basis of the SPPT scheme. We address this matter by using high-resolution model simulations to explicitly measure the `error' in the parametrised tendency that SPPT seeks to represent. The high resolution simulations are first coarse-grained to the desired forecast model resolution before they are used to produce initial conditions and forcing data needed to drive the ECMWF Single Column Model (SCM). By comparing SCM forecast tendencies with the evolution of the high resolution model, we can measure the `error' in the forecast tendencies. In this way, we provide justification for the multiplicative nature of SPPT, and for the temporal and spatial scales of the stochastic perturbations. However, we also identify issues with the SPPT scheme. It is therefore hoped these measurements will improve both holistic and process based approaches to stochastic parametrisation. Figure caption: Instantaneous snapshot of the optimal SPPT stochastic perturbation, derived by comparing high-resolution simulations with a low resolution forecast model.
Iriza, Amalia; Dumitrache, Rodica C.; Lupascu, Aurelia; ...
2016-01-01
Our paper aims to evaluate the quality of high-resolution weather forecasts from the Weather Research and Forecasting (WRF) numerical weather prediction model. The lateral and boundary conditions were obtained from the numerical output of the Consortium for Small-scale Modeling (COSMO) model at 7 km horizontal resolution. Furthermore, the WRF model was run for January and July 2013 at two horizontal resolutions (3 and 1 km). The numerical forecasts of the WRF model were evaluated using different statistical scores for 2 m temperature and 10 m wind speed. Our results showed a tendency of the WRF model to overestimate the valuesmore » of the analyzed parameters in comparison to observations.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Iriza, Amalia; Dumitrache, Rodica C.; Lupascu, Aurelia
Our paper aims to evaluate the quality of high-resolution weather forecasts from the Weather Research and Forecasting (WRF) numerical weather prediction model. The lateral and boundary conditions were obtained from the numerical output of the Consortium for Small-scale Modeling (COSMO) model at 7 km horizontal resolution. Furthermore, the WRF model was run for January and July 2013 at two horizontal resolutions (3 and 1 km). The numerical forecasts of the WRF model were evaluated using different statistical scores for 2 m temperature and 10 m wind speed. Our results showed a tendency of the WRF model to overestimate the valuesmore » of the analyzed parameters in comparison to observations.« less
NASA Technical Reports Server (NTRS)
Warner, Thomas T.; Key, Lawrence E.; Lario, Annette M.
1989-01-01
The effects of horizontal and vertical data resolution, data density, data location, different objective analysis algorithms, and measurement error on mesoscale-forecast accuracy are studied with observing-system simulation experiments. Domain-averaged errors are shown to generally decrease with time. It is found that the vertical distribution of error growth depends on the initial vertical distribution of the error itself. Larger gravity-inertia wave noise is produced in forecasts with coarser vertical data resolution. The use of a low vertical resolution observing system with three data levels leads to more forecast errors than moderate and high vertical resolution observing systems with 8 and 14 data levels. Also, with poor vertical resolution in soundings, the initial and forecast errors are not affected by the horizontal data resolution.
Predicting Near-surface Winds with WindNinja for Wind Energy Applications
NASA Astrophysics Data System (ADS)
Wagenbrenner, N. S.; Forthofer, J.; Shannon, K.; Butler, B.
2016-12-01
WindNinja is a high-resolution diagnostic wind model widely used by operational wildland fire managers to predict how near-surface winds may influence fire behavior. Many of the features which have made WindNinja successful for wildland fire are also important for wind energy applications. Some of these features include flexible runtime options which allow the user to initialize the model with coarser scale weather model forecasts, sparse weather station observations, or a simple domain-average wind for what-if scenarios; built-in data fetchers for required model inputs, including gridded terrain and vegetation data and operational weather model forecasts; relatively fast runtimes on simple hardware; an extremely user-friendly interface; and a number of output format options, including KMZ files for viewing in Google Earth and GeoPDFs which can be viewed in a GIS. The recent addition of a conservation of mass and momentum solver based on OpenFOAM libraries further increases the utility of WindNinja to modelers in the wind energy sector interested not just in mean wind predictions, but also in turbulence metrics. Here we provide an evaluation of WindNinja forecasts based on (1) operational weather model forecasts and (2) weather station observations provided by the MesoWest API. We also compare the high-resolution WindNinja forecasts to the coarser operational weather model forecasts. For this work we will use the High Resolution Rapid Refresh (HRRR) model and the North American Mesoscale (NAM) model. Forecasts will be evaluated with data collected in the Birch Creek valley of eastern Idaho, USA between June-October 2013. Near-surface wind, turbulence data, and vertical wind and temperature profiles were collected at very high spatial resolution during this field campaign specifically for use in evaluating high-resolution wind models like WindNinja. This work demonstrates the ability of WindNinja to generate very high-resolution wind forecasts for wind energy applications and evaluates the forecasts produced by two different initialization methods with data collected in a broad valley surrounded by complex terrain.
The Rise of Complexity in Flood Forecasting: Opportunities, Challenges and Tradeoffs
NASA Astrophysics Data System (ADS)
Wood, A. W.; Clark, M. P.; Nijssen, B.
2017-12-01
Operational flood forecasting is currently undergoing a major transformation. Most national flood forecasting services have relied for decades on lumped, highly calibrated conceptual hydrological models running on local office computing resources, providing deterministic streamflow predictions at gauged river locations that are important to stakeholders and emergency managers. A variety of recent technological advances now make it possible to run complex, high-to-hyper-resolution models for operational hydrologic prediction over large domains, and the US National Weather Service is now attempting to use hyper-resolution models to create new forecast services and products. Yet other `increased-complexity' forecasting strategies also exist that pursue different tradeoffs between model complexity (i.e., spatial resolution, physics) and streamflow forecast system objectives. There is currently a pressing need for a greater understanding in the hydrology community of the opportunities, challenges and tradeoffs associated with these different forecasting approaches, and for a greater participation by the hydrology community in evaluating, guiding and implementing these approaches. Intermediate-resolution forecast systems, for instance, use distributed land surface model (LSM) physics but retain the agility to deploy ensemble methods (including hydrologic data assimilation and hindcast-based post-processing). Fully coupled numerical weather prediction (NWP) systems, another example, use still coarser LSMs to produce ensemble streamflow predictions either at the model scale or after sub-grid scale runoff routing. Based on the direct experience of the authors and colleagues in research and operational forecasting, this presentation describes examples of different streamflow forecast paradigms, from the traditional to the recent hyper-resolution, to illustrate the range of choices facing forecast system developers. We also discuss the degree to which the strengths and weaknesses of each strategy map onto the requirements for different types of forecasting services (e.g., flash flooding, river flooding, seasonal water supply prediction).
Fennec dust forecast intercomparison over the Sahara in June 2011
NASA Astrophysics Data System (ADS)
Chaboureau, Jean-Pierre; Flamant, Cyrille; Dauhut, Thibaut; Kocha, Cécile; Lafore, Jean-Philippe; Lavaysse, Chistophe; Marnas, Fabien; Mokhtari, Mohamed; Pelon, Jacques; Reinares Martínez, Irene; Schepanski, Kerstin; Tulet, Pierre
2016-06-01
In the framework of the Fennec international programme, a field campaign was conducted in June 2011 over the western Sahara. It led to the first observational data set ever obtained that documents the dynamics, thermodynamics and composition of the Saharan atmospheric boundary layer (SABL) under the influence of the heat low. In support to the aircraft operation, four dust forecasts were run daily at low and high resolutions with convection-parameterizing and convection-permitting models, respectively. The unique airborne and ground-based data sets allowed the first ever intercomparison of dust forecasts over the western Sahara. At monthly scale, large aerosol optical depths (AODs) were forecast over the Sahara, a feature observed by satellite retrievals but with different magnitudes. The AOD intensity was correctly predicted by the high-resolution models, while it was underestimated by the low-resolution models. This was partly because of the generation of strong near-surface wind associated with thunderstorm-related density currents that could only be reproduced by models representing convection explicitly. Such models yield emissions mainly in the afternoon that dominate the total emission over the western fringes of the Adrar des Iforas and the Aïr Mountains in the high-resolution forecasts. Over the western Sahara, where the harmattan contributes up to 80 % of dust emission, all the models were successful in forecasting the deep well-mixed SABL. Some of them, however, missed the large near-surface dust concentration generated by density currents and low-level winds. This feature, observed repeatedly by the airborne lidar, was partly forecast by one high-resolution model only.
Fennec dust forecast intercomparison over the Sahara in June 2011
NASA Astrophysics Data System (ADS)
Chaboureau, J. P.; Flamant, C.; Dauhut, T.; Lafore, J. P.; Lavaysse, C.; Pelon, J.; Schepanski, K.; Tulet, P.
2016-12-01
In the framework of the Fennec international programme, a field campaign was conducted in June 2011 over the western Sahara. It led to the first observational data set ever obtained that documents the dynamics, thermodynam-ics and composition of the Saharan atmospheric boundary layer (SABL) under the influence of the heat low. In support to the aircraft operation, four dust forecasts were run daily at low and high resolutions with convection-parameterizing and convection-permitting models, respectively. The unique airborne and ground-based data sets allowed the first ever intercomparison of dust forecasts over the western Sahara. At monthly scale, large aerosol optical depths (AODs) were forecast over the Sahara, a feature observed by satellite retrievals but with different magnitudes. The AOD intensity was correctly predicted by the high-resolution models, while it was underestimated by the low-resolution models. This was partly because of the generation of strong near-surface wind associated with thunderstorm-related density currents that could only be reproduced by models representing convection explicitly. Such models yield emissions mainly in the afternoon that dominate the total emission over the western fringes of the Adrar des Iforas and the Aïr Mountains in the high-resolution forecasts. Over the western Sahara, where the harmattan contributes up to 80 % of dust emission, all the models were successful in forecasting the deep well-mixed SABL. Some of them, however, missed the large near-surface dust concentration generated by density currents and low-level winds. This feature, observed repeatedly by the airborne lidar, was partly forecast by one high-resolution model only.
Spatial Ensemble Postprocessing of Precipitation Forecasts Using High Resolution Analyses
NASA Astrophysics Data System (ADS)
Lang, Moritz N.; Schicker, Irene; Kann, Alexander; Wang, Yong
2017-04-01
Ensemble prediction systems are designed to account for errors or uncertainties in the initial and boundary conditions, imperfect parameterizations, etc. However, due to sampling errors and underestimation of the model errors, these ensemble forecasts tend to be underdispersive, and to lack both reliability and sharpness. To overcome such limitations, statistical postprocessing methods are commonly applied to these forecasts. In this study, a full-distributional spatial post-processing method is applied to short-range precipitation forecasts over Austria using Standardized Anomaly Model Output Statistics (SAMOS). Following Stauffer et al. (2016), observation and forecast fields are transformed into standardized anomalies by subtracting a site-specific climatological mean and dividing by the climatological standard deviation. Due to the need of fitting only a single regression model for the whole domain, the SAMOS framework provides a computationally inexpensive method to create operationally calibrated probabilistic forecasts for any arbitrary location or for all grid points in the domain simultaneously. Taking advantage of the INCA system (Integrated Nowcasting through Comprehensive Analysis), high resolution analyses are used for the computation of the observed climatology and for model training. The INCA system operationally combines station measurements and remote sensing data into real-time objective analysis fields at 1 km-horizontal resolution and 1 h-temporal resolution. The precipitation forecast used in this study is obtained from a limited area model ensemble prediction system also operated by ZAMG. The so called ALADIN-LAEF provides, by applying a multi-physics approach, a 17-member forecast at a horizontal resolution of 10.9 km and a temporal resolution of 1 hour. The performed SAMOS approach statistically combines the in-house developed high resolution analysis and ensemble prediction system. The station-based validation of 6 hour precipitation sums shows a mean improvement of more than 40% in CRPS when compared to bilinearly interpolated uncalibrated ensemble forecasts. The validation on randomly selected grid points, representing the true height distribution over Austria, still indicates a mean improvement of 35%. The applied statistical model is currently set up for 6-hourly and daily accumulation periods, but will be extended to a temporal resolution of 1-3 hours within a new probabilistic nowcasting system operated by ZAMG.
Multi-RCM ensemble downscaling of global seasonal forecasts (MRED)
NASA Astrophysics Data System (ADS)
Arritt, R. W.
2008-12-01
The Multi-RCM Ensemble Downscaling (MRED) project was recently initiated to address the question, Can regional climate models provide additional useful information from global seasonal forecasts? MRED will use a suite of regional climate models to downscale seasonal forecasts produced by the new National Centers for Environmental Prediction (NCEP) Climate Forecast System (CFS) seasonal forecast system and the NASA GEOS5 system. The initial focus will be on wintertime forecasts in order to evaluate topographic forcing, snowmelt, and the potential usefulness of higher resolution, especially for near-surface fields influenced by high resolution orography. Each regional model will cover the conterminous US (CONUS) at approximately 32 km resolution, and will perform an ensemble of 15 runs for each year 1982-2003 for the forecast period 1 December - 30 April. MRED will compare individual regional and global forecasts as well as ensemble mean precipitation and temperature forecasts, which are currently being used to drive macroscale land surface models (LSMs), as well as wind, humidity, radiation, turbulent heat fluxes, which are important for more advanced coupled macro-scale hydrologic models. Metrics of ensemble spread will also be evaluated. Extensive analysis will be performed to link improvements in downscaled forecast skill to regional forcings and physical mechanisms. Our overarching goal is to determine what additional skill can be provided by a community ensemble of high resolution regional models, which we believe will eventually define a strategy for more skillful and useful regional seasonal climate forecasts.
NASA Technical Reports Server (NTRS)
Molthan, Andrew L.; Case, Jonathan L.; Venner, Jason; Moreno-Madrinan, Max. J.; Delgado, Francisco
2012-01-01
Over the past two years, scientists in the Earth Science Office at NASA fs Marshall Space Flight Center (MSFC) have explored opportunities to apply cloud computing concepts to support near real ]time weather forecast modeling via the Weather Research and Forecasting (WRF) model. Collaborators at NASA fs Short ]term Prediction Research and Transition (SPoRT) Center and the SERVIR project at Marshall Space Flight Center have established a framework that provides high resolution, daily weather forecasts over Mesoamerica through use of the NASA Nebula Cloud Computing Platform at Ames Research Center. Supported by experts at Ames, staff at SPoRT and SERVIR have established daily forecasts complete with web graphics and a user interface that allows SERVIR partners access to high resolution depictions of weather in the next 48 hours, useful for monitoring and mitigating meteorological hazards such as thunderstorms, heavy precipitation, and tropical weather that can lead to other disasters such as flooding and landslides. This presentation will describe the framework for establishing and providing WRF forecasts, example applications of output provided via the SERVIR web portal, and early results of forecast model verification against available surface ] and satellite ]based observations.
NASA Astrophysics Data System (ADS)
Molthan, A.; Case, J.; Venner, J.; Moreno-Madriñán, M. J.; Delgado, F.
2012-12-01
Over the past two years, scientists in the Earth Science Office at NASA's Marshall Space Flight Center (MSFC) have explored opportunities to apply cloud computing concepts to support near real-time weather forecast modeling via the Weather Research and Forecasting (WRF) model. Collaborators at NASA's Short-term Prediction Research and Transition (SPoRT) Center and the SERVIR project at Marshall Space Flight Center have established a framework that provides high resolution, daily weather forecasts over Mesoamerica through use of the NASA Nebula Cloud Computing Platform at Ames Research Center. Supported by experts at Ames, staff at SPoRT and SERVIR have established daily forecasts complete with web graphics and a user interface that allows SERVIR partners access to high resolution depictions of weather in the next 48 hours, useful for monitoring and mitigating meteorological hazards such as thunderstorms, heavy precipitation, and tropical weather that can lead to other disasters such as flooding and landslides. This presentation will describe the framework for establishing and providing WRF forecasts, example applications of output provided via the SERVIR web portal, and early results of forecast model verification against available surface- and satellite-based observations.
NASA Astrophysics Data System (ADS)
Wang, Gaili; Wong, Wai-Kin; Hong, Yang; Liu, Liping; Dong, Jili; Xue, Ming
2015-03-01
The primary objective of this study is to improve the performance of deterministic high resolution rainfall forecasts caused by severe storms by merging an extrapolation radar-based scheme with a storm-scale Numerical Weather Prediction (NWP) model. Effectiveness of Multi-scale Tracking and Forecasting Radar Echoes (MTaRE) model was compared with that of a storm-scale NWP model named Advanced Regional Prediction System (ARPS) for forecasting a violent tornado event that developed over parts of western and much of central Oklahoma on May 24, 2011. Then the bias corrections were performed to improve the forecast accuracy of ARPS forecasts. Finally, the corrected ARPS forecast and radar-based extrapolation were optimally merged by using a hyperbolic tangent weight scheme. The comparison of forecast skill between MTaRE and ARPS in high spatial resolution of 0.01° × 0.01° and high temporal resolution of 5 min showed that MTaRE outperformed ARPS in terms of index of agreement and mean absolute error (MAE). MTaRE had a better Critical Success Index (CSI) for less than 20-min lead times and was comparable to ARPS for 20- to 50-min lead times, while ARPS had a better CSI for more than 50-min lead times. Bias correction significantly improved ARPS forecasts in terms of MAE and index of agreement, although the CSI of corrected ARPS forecasts was similar to that of the uncorrected ARPS forecasts. Moreover, optimally merging results using hyperbolic tangent weight scheme further improved the forecast accuracy and became more stable.
NASA Astrophysics Data System (ADS)
Mailhot, J.; Milbrandt, J. A.; Giguère, A.; McTaggart-Cowan, R.; Erfani, A.; Denis, B.; Glazer, A.; Vallée, M.
2014-01-01
Environment Canada ran an experimental numerical weather prediction (NWP) system during the Vancouver 2010 Winter Olympic and Paralympic Games, consisting of nested high-resolution (down to 1-km horizontal grid-spacing) configurations of the GEM-LAM model, with improved geophysical fields, cloud microphysics and radiative transfer schemes, and several new diagnostic products such as density of falling snow, visibility, and peak wind gust strength. The performance of this experimental NWP system has been evaluated in these winter conditions over complex terrain using the enhanced mesoscale observing network in place during the Olympics. As compared to the forecasts from the operational regional 15-km GEM model, objective verification generally indicated significant added value of the higher-resolution models for near-surface meteorological variables (wind speed, air temperature, and dewpoint temperature) with the 1-km model providing the best forecast accuracy. Appreciable errors were noted in all models for the forecasts of wind direction and humidity near the surface. Subjective assessment of several cases also indicated that the experimental Olympic system was skillful at forecasting meteorological phenomena at high-resolution, both spatially and temporally, and provided enhanced guidance to the Olympic forecasters in terms of better timing of precipitation phase change, squall line passage, wind flow channeling, and visibility reduction due to fog and snow.
Efforts to improve the prediction accuracy of high-resolution (1–10 km) surface precipitation distribution and variability are of vital importance to local aspects of air pollution, wet deposition, and regional climate. However, precipitation biases and errors can occur at ...
High-Resolution Hydrological Sub-Seasonal Forecasting for Water Resources Management Over Europe
NASA Astrophysics Data System (ADS)
Wood, E. F.; Wanders, N.; Pan, M.; Sheffield, J.; Samaniego, L. E.; Thober, S.; Kumar, R.; Prudhomme, C.; Houghton-Carr, H.
2017-12-01
For decision-making at the sub-seasonal and seasonal time scale, hydrological forecasts with a high temporal and spatial resolution are required by water managers. So far such forecasts have been unavailable due to 1) lack of availability of meteorological seasonal forecasts, 2) coarse temporal resolution of meteorological seasonal forecasts, requiring temporal downscaling, 3) lack of consistency between observations and seasonal forecasts, requiring bias-correction. The EDgE (End-to-end Demonstrator for improved decision making in the water sector in Europe) project commissioned by the ECMWF (C3S) created a unique dataset of hydrological seasonal forecasts derived from four global climate models (CanCM4, FLOR-B01, ECMF, LFPW) in combination with four global hydrological models (PCR-GLOBWB, VIC, mHM, Noah-MP), resulting in 208 forecasts for any given day. The forecasts provide a daily temporal and 5-km spatial resolution, and are bias corrected against E-OBS meteorological observations. The forecasts are communicated to stakeholders via Sectoral Climate Impact Indicators (SCIIs), created in collaboration with the end-user community of the EDgE project (e.g. the percentage of ensemble realizations above the 10th percentile of monthly river flow, or below the 90th). Results show skillful forecasts for discharge from 3 months to 6 months (latter for N Europe due to snow); for soil moisture up to three months due precipitation forecast skill and short initial condition memory; and for groundwater greater than 6 months (lowest skill in western Europe.) The SCIIs are effective in communicating both forecast skill and uncertainty. Overall the new system provides an unprecedented ensemble for seasonal forecasts with significant skill over Europe to support water management. The consistency in both the GCM forecasts and the LSM parameterization ensures a stable and reliable forecast framework and methodology, even if additional GCMs or LSMs are added in the future.
NASA Astrophysics Data System (ADS)
O'Brien, Enda; McKinstry, Alastair; Ralph, Adam
2015-04-01
Building on previous work presented at EGU 2013 (http://www.sciencedirect.com/science/article/pii/S1876610213016068 ), more results are available now from a different wind-farm in complex terrain in southwest Ireland. The basic approach is to interpolate wind-speed forecasts from an operational weather forecast model (i.e., HARMONIE in the case of Ireland) to the precise location of each wind-turbine, and then use Bayes Model Averaging (BMA; with statistical information collected from a prior training-period of e.g., 25 days) to remove systematic biases. Bias-corrected wind-speed forecasts (and associated power-generation forecasts) are then provided twice daily (at 5am and 5pm) out to 30 hours, with each forecast validation fed back to BMA for future learning. 30-hr forecasts from the operational Met Éireann HARMONIE model at 2.5km resolution have been validated against turbine SCADA observations since Jan. 2014. An extra high-resolution (0.5km grid-spacing) HARMONIE configuration has been run since Nov. 2014 as an extra member of the forecast "ensemble". A new version of HARMONIE with extra filters designed to stabilize high-resolution configurations has been run since Jan. 2015. Measures of forecast skill and forecast errors will be provided, and the contributions made by the various physical and computational enhancements to HARMONIE will be quantified.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chiswell, S
2009-01-11
Assimilation of radar velocity and precipitation fields into high-resolution model simulations can improve precipitation forecasts with decreased 'spin-up' time and improve short-term simulation of boundary layer winds (Benjamin, 2004 & 2007; Xiao, 2008) which is critical to improving plume transport forecasts. Accurate description of wind and turbulence fields is essential to useful atmospheric transport and dispersion results, and any improvement in the accuracy of these fields will make consequence assessment more valuable during both routine operation as well as potential emergency situations. During 2008, the United States National Weather Service (NWS) radars implemented a significant upgrade which increased the real-timemore » level II data resolution to 8 times their previous 'legacy' resolution, from 1 km range gate and 1.0 degree azimuthal resolution to 'super resolution' 250 m range gate and 0.5 degree azimuthal resolution (Fig 1). These radar observations provide reflectivity, velocity and returned power spectra measurements at a range of up to 300 km (460 km for reflectivity) at a frequency of 4-5 minutes and yield up to 13.5 million point observations per level in super-resolution mode. The migration of National Weather Service (NWS) WSR-88D radars to super resolution is expected to improve warning lead times by detecting small scale features sooner with increased reliability; however, current operational mesoscale model domains utilize grid spacing several times larger than the legacy data resolution, and therefore the added resolution of radar data is not fully exploited. The assimilation of super resolution reflectivity and velocity data into high resolution numerical weather model forecasts where grid spacing is comparable to the radar data resolution is investigated here to determine the impact of the improved data resolution on model predictions.« less
NASA Astrophysics Data System (ADS)
Hernandez, F.; Liang, X.
2017-12-01
Reliable real-time hydrological forecasting, to predict important phenomena such as floods, is invaluable to the society. However, modern high-resolution distributed models have faced challenges when dealing with uncertainties that are caused by the large number of parameters and initial state estimations involved. Therefore, to rely on these high-resolution models for critical real-time forecast applications, considerable improvements on the parameter and initial state estimation techniques must be made. In this work we present a unified data assimilation algorithm called Optimized PareTo Inverse Modeling through Inverse STochastic Search (OPTIMISTS) to deal with the challenge of having robust flood forecasting for high-resolution distributed models. This new algorithm combines the advantages of particle filters and variational methods in a unique way to overcome their individual weaknesses. The analysis of candidate particles compares model results with observations in a flexible time frame, and a multi-objective approach is proposed which attempts to simultaneously minimize differences with the observations and departures from the background states by using both Bayesian sampling and non-convex evolutionary optimization. Moreover, the resulting Pareto front is given a probabilistic interpretation through kernel density estimation to create a non-Gaussian distribution of the states. OPTIMISTS was tested on a low-resolution distributed land surface model using VIC (Variable Infiltration Capacity) and on a high-resolution distributed hydrological model using the DHSVM (Distributed Hydrology Soil Vegetation Model). In the tests streamflow observations are assimilated. OPTIMISTS was also compared with a traditional particle filter and a variational method. Results show that our method can reliably produce adequate forecasts and that it is able to outperform those resulting from assimilating the observations using a particle filter or an evolutionary 4D variational method alone. In addition, our method is shown to be efficient in tackling high-resolution applications with robust results.
Routine High-Resolution Forecasts/Analyses for the Pacific Disaster Center: User Manual
NASA Technical Reports Server (NTRS)
Roads, John; Han, J.; Chen, S.; Burgan, R.; Fujioka, F.; Stevens, D.; Funayama, D.; Chambers, C.; Bingaman, B.; McCord, C.;
2001-01-01
Enclosed herein is our HWCMO user manual. This manual constitutes the final report for our NASA/PDC grant, NASA NAG5-8730, "Routine High Resolution Forecasts/Analysis for the Pacific Disaster Center". Since the beginning of the grant, we have routinely provided experimental high resolution forecasts from the RSM/MSM for the Hawaii Islands, while working to upgrade the system to include: (1) a more robust input of NCEP analyses directly from NCEP; (2) higher vertical resolution, with increased forecast accuracy; (3) faster delivery of forecast products and extension of initial 1-day forecasts to 2 days; (4) augmentation of our basic meteorological and simplified fireweather forecasts to firedanger and drought forecasts; (5) additional meteorological forecasts with an alternate mesoscale model (MM5); and (6) the feasibility of using our modeling system to work in higher-resolution domains and other regions. In this user manual, we provide a general overview of the operational system and the mesoscale models as well as more detailed descriptions of the models. A detailed description of daily operations and a cost analysis is also provided. Evaluations of the models are included although it should be noted that model evaluation is a continuing process and as potential problems are identified, these can be used as the basis for making model improvements. Finally, we include our previously submitted answers to particular PDC questions (Appendix V). All of our initially proposed objectives have basically been met. In fact, a number of useful applications (VOG, air pollution transport) are already utilizing our experimental output and we believe there are a number of other applications that could make use of our routine forecast/analysis products. Still, work still remains to be done to further develop this experimental weather, climate, fire danger and drought prediction system. In short, we would like to be a part of a future PDC team, if at all possible, to further develop and apply the system for the Hawaiian and other Pacific Islands as well as the entire Pacific Basin.
The Super Tuesday Outbreak: Forecast Sensitivities to Single-Moment Microphysics Schemes
NASA Technical Reports Server (NTRS)
Molthan, Andrew L.; Case, Jonathan L.; Dembek, Scott R.; Jedlovec, Gary J.; Lapenta, William M.
2008-01-01
Forecast precipitation and radar characteristics are used by operational centers to guide the issuance of advisory products. As operational numerical weather prediction is performed at increasingly finer spatial resolution, convective precipitation traditionally represented by sub-grid scale parameterization schemes is now being determined explicitly through single- or multi-moment bulk water microphysics routines. Gains in forecasting skill are expected through improved simulation of clouds and their microphysical processes. High resolution model grids and advanced parameterizations are now available through steady increases in computer resources. As with any parameterization, their reliability must be measured through performance metrics, with errors noted and targeted for improvement. Furthermore, the use of these schemes within an operational framework requires an understanding of limitations and an estimate of biases so that forecasters and model development teams can be aware of potential errors. The National Severe Storms Laboratory (NSSL) Spring Experiments have produced daily, high resolution forecasts used to evaluate forecast skill among an ensemble with varied physical parameterizations and data assimilation techniques. In this research, high resolution forecasts of the 5-6 February 2008 Super Tuesday Outbreak are replicated using the NSSL configuration in order to evaluate two components of simulated convection on a large domain: sensitivities of quantitative precipitation forecasts to assumptions within a single-moment bulk water microphysics scheme, and to determine if these schemes accurately depict the reflectivity characteristics of well-simulated, organized, cold frontal convection. As radar returns are sensitive to the amount of hydrometeor mass and the distribution of mass among variably sized targets, radar comparisons may guide potential improvements to a single-moment scheme. In addition, object-based verification metrics are evaluated for their utility in gauging model performance and QPF variability.
NASA Astrophysics Data System (ADS)
Pan, Yujie; Xue, Ming; Zhu, Kefeng; Wang, Mingjun
2018-05-01
A dual-resolution (DR) version of a regional ensemble Kalman filter (EnKF)-3D ensemble variational (3DEnVar) coupled hybrid data assimilation system is implemented as a prototype for the operational Rapid Refresh forecasting system. The DR 3DEnVar system combines a high-resolution (HR) deterministic background forecast with lower-resolution (LR) EnKF ensemble perturbations used for flow-dependent background error covariance to produce a HR analysis. The computational cost is substantially reduced by running the ensemble forecasts and EnKF analyses at LR. The DR 3DEnVar system is tested with 3-h cycles over a 9-day period using a 40/˜13-km grid spacing combination. The HR forecasts from the DR hybrid analyses are compared with forecasts launched from HR Gridpoint Statistical Interpolation (GSI) 3D variational (3DVar) analyses, and single LR hybrid analyses interpolated to the HR grid. With the DR 3DEnVar system, a 90% weight for the ensemble covariance yields the lowest forecast errors and the DR hybrid system clearly outperforms the HR GSI 3DVar. Humidity and wind forecasts are also better than those launched from interpolated LR hybrid analyses, but the temperature forecasts are slightly worse. The humidity forecasts are improved most. For precipitation forecasts, the DR 3DEnVar always outperforms HR GSI 3DVar. It also outperforms the LR 3DEnVar, except for the initial forecast period and lower thresholds.
NASA Astrophysics Data System (ADS)
Kourafalou, V.; Kang, H.; Perlin, N.; Le Henaff, M.; Lamkin, J. T.
2016-02-01
Connectivity around the South Florida coastal regions and between South Florida and Cuba are largely influenced by a) local coastal processes and b) circulation in the Florida Straits, which is controlled by the larger scale Florida Current variability. Prediction of the physical connectivity is a necessary component for several activities that require ocean forecasts, such as oil spills, fisheries research, search and rescue. This requires a predictive system that can accommodate the intense coastal to offshore interactions and the linkages to the complex regional circulation. The Florida Straits, South Florida and Florida Keys Hybrid Coordinate Ocean Model is such a regional ocean predictive system, covering a large area over the Florida Straits and the adjacent land areas, representing both coastal and oceanic processes. The real-time ocean forecast system is high resolution ( 900m), embedded in larger scale predictive models. It includes detailed coastal bathymetry, high resolution/high frequency atmospheric forcing and provides 7-day forecasts, updated daily (see: http://coastalmodeling.rsmas.miami.edu/). The unprecedented high resolution and coastal details of this system provide value added on global forecasts through downscaling and allow a variety of applications. Examples will be presented, focusing on the period of a 2015 fisheries cruise around the coastal areas of Cuba, where model predictions helped guide the measurements on biophysical connectivity, under intense variability of the mesoscale eddy field and subsequent Florida Current meandering.
NASA Astrophysics Data System (ADS)
Unnikrishnan, C. K.; Rajeevan, M.; Rao, S. Vijaya Bhaskara
2016-06-01
The direct impact of high resolution land surface initialization on the forecast bias in a regional climate model in recent years over Indian summer monsoon region is investigated. Two sets of regional climate model simulations are performed, one with a coarse resolution land surface initial conditions and second one used a high resolution land surface data for initial condition. The results show that all monsoon years respond differently to the high resolution land surface initialization. The drought monsoon year 2009 and extended break periods were more sensitive to the high resolution land surface initialization. These results suggest that the drought monsoon year predictions can be improved with high resolution land surface initialization. Result also shows that there are differences in the response to the land surface initialization within the monsoon season. Case studies of heat wave and a monsoon depression simulation show that, the model biases were also improved with high resolution land surface initialization. These results show the need for a better land surface initialization strategy in high resolution regional models for monsoon forecasting.
NASA Astrophysics Data System (ADS)
Singhofen, P.
2017-12-01
The National Water Model (NWM) is a remarkable undertaking. The foundation of the NWM is a 1 square kilometer grid which is used for near real-time modeling and flood forecasting of most rivers and streams in the contiguous United States. However, the NWM falls short in highly urbanized areas with complex drainage infrastructure. To overcome these shortcomings, the presenter proposes to leverage existing local hyper-resolution H&H models and adapt the NWM forcing data to them. Gridded near real-time rainfall, short range forecasts (18-hour) and medium range forecasts (10-day) during Hurricane Irma are applied to numerous detailed H&H models in highly urbanized areas of the State of Florida. Coastal and inland models are evaluated. Comparisons of near real-time rainfall data are made with observed gaged data and the ability to predict flooding in advance based on forecast data is evaluated. Preliminary findings indicate that the near real-time rainfall data is consistently and significantly lower than observed data. The forecast data is more promising. For example, the medium range forecast data provides 2 - 3 days advanced notice of peak flood conditions to a reasonable level of accuracy in most cases relative to both timing and magnitude. Short range forecast data provides about 12 - 14 hours advanced notice. Since these are hyper-resolution models, flood forecasts can be made at the street level, providing emergency response teams with valuable information for coordinating and dispatching limited resources.
Tropopause sharpening by data assimilation
NASA Astrophysics Data System (ADS)
Pilch Kedzierski, R.; Neef, L.; Matthes, K.
2016-08-01
Data assimilation was recently suggested to smooth out the sharp gradients that characterize the tropopause inversion layer (TIL) in systems that did not assimilate TIL-resolving observations. We investigate whether this effect is present in the ERA-Interim reanalysis and the European Centre for Medium-Range Weather Forecasts (ECMWF) operational forecast system (which assimilate high-resolution observations) by analyzing the 4D-Var increments and how the TIL is represented in their data assimilation systems. For comparison, we also diagnose the TIL from high-resolution GPS radio occultation temperature profiles from the COSMIC satellite mission, degraded to the same vertical resolution as ERA-Interim and ECMWF operational analyses. Our results show that more recent reanalysis and forecast systems improve the representation of the TIL, updating the earlier hypothesis. However, the TIL in ERA-Interim and ECMWF operational analyses is still weaker and farther away from the tropopause than GPS radio occultation observations of the same vertical resolution.
NASA Astrophysics Data System (ADS)
Christensen, Hannah; Moroz, Irene; Palmer, Tim
2015-04-01
Forecast verification is important across scientific disciplines as it provides a framework for evaluating the performance of a forecasting system. In the atmospheric sciences, probabilistic skill scores are often used for verification as they provide a way of unambiguously ranking the performance of different probabilistic forecasts. In order to be useful, a skill score must be proper -- it must encourage honesty in the forecaster, and reward forecasts which are reliable and which have good resolution. A new score, the Error-spread Score (ES), is proposed which is particularly suitable for evaluation of ensemble forecasts. It is formulated with respect to the moments of the forecast. The ES is confirmed to be a proper score, and is therefore sensitive to both resolution and reliability. The ES is tested on forecasts made using the Lorenz '96 system, and found to be useful for summarising the skill of the forecasts. The European Centre for Medium-Range Weather Forecasts (ECMWF) ensemble prediction system (EPS) is evaluated using the ES. Its performance is compared to a perfect statistical probabilistic forecast -- the ECMWF high resolution deterministic forecast dressed with the observed error distribution. This generates a forecast that is perfectly reliable if considered over all time, but which does not vary from day to day with the predictability of the atmospheric flow. The ES distinguishes between the dynamically reliable EPS forecasts and the statically reliable dressed deterministic forecasts. Other skill scores are tested and found to be comparatively insensitive to this desirable forecast quality. The ES is used to evaluate seasonal range ensemble forecasts made with the ECMWF System 4. The ensemble forecasts are found to be skilful when compared with climatological or persistence forecasts, though this skill is dependent on region and time of year.
Multi-RCM ensemble downscaling of global seasonal forecasts (MRED)
NASA Astrophysics Data System (ADS)
Arritt, R.
2009-04-01
Regional climate models (RCMs) have long been used to downscale global climate simulations. In contrast the ability of RCMs to downscale seasonal climate forecasts has received little attention. The Multi-RCM Ensemble Downscaling (MRED) project was recently initiated to address the question, Does dynamical downscaling using RCMs provide additional useful information for seasonal forecasts made by global models? MRED is using a suite of RCMs to downscale seasonal forecasts produced by the National Centers for Environmental Prediction (NCEP) Climate Forecast System (CFS) seasonal forecast system and the NASA GEOS5 system. The initial focus is on wintertime forecasts in order to evaluate topographic forcing, snowmelt, and the usefulness of higher resolution for near-surface fields influenced by high resolution orography. Each RCM covers the conterminous U.S. at approximately 32 km resolution, comparable to the scale of the North American Regional Reanalysis (NARR) which will be used to evaluate the models. The forecast ensemble for each RCM is comprised of 15 members over a period of 22+ years (from 1982 to 2003+) for the forecast period 1 December - 30 April. Each RCM will create a 15-member lagged ensemble by starting on different dates in the preceding November. This results in a 120-member ensemble for each projection (8 RCMs by 15 members per RCM). The RCMs will be continually updated at their lateral boundaries using 6-hourly output from CFS or GEOS5. Hydrometeorological output will be produced in a standard netCDF-based format for a common analysis grid, which simplifies both model intercomparison and the generation of ensembles. MRED will compare individual RCM and global forecasts as well as ensemble mean precipitation and temperature forecasts, which are currently being used to drive macroscale land surface models (LSMs). Metrics of ensemble spread will also be evaluated. Extensive process-oriented analysis will be performed to link improvements in downscaled forecast skill to regional forcings and physical mechanisms. Our overarching goal is to determine what additional skill can be provided by a community ensemble of high resolution regional models, which we believe will define a strategy for more skillful and useful regional seasonal climate forecasts.
NASA Astrophysics Data System (ADS)
Masarik, M. T.; Watson, K. A.; Flores, A. N.; Anderson, K.; Tangen, S.
2016-12-01
The water resources infrastructure of the Western US is designed to deliver reliable water supply to users and provide recreational opportunities for the public, as well as afford flood control for communities by buffering variability in precipitation and snow storage. Thus water resource management is a balancing act of meeting multiple objectives while trying to anticipate and mitigate natural variability of water supply. Currently, the forecast guidance available to personnel managing resources in mountainous terrain is lacking in two ways: the spatial resolution is too coarse, and there is a gap in the intermediate time range (10-30 days). To address this need we examine the effectiveness of using the Weather Research and Forecasting (WRF) model, a state of the art, regional, numerical weather prediction model, as a means to generate high-resolution weather guidance in the intermediate time range. This presentation will focus on a reanalysis and hindcasting case study of the extreme precipitation and flooding event in the Payette River Basin of Idaho during the period of June 2nd-4th, 2010. For the reanalysis exercise we use NCEP's Climate Forecast System Reanalysis (CFSR) and the North American Regional Reanalysis (NARR) data sets as input boundary conditions to WRF. The model configuration includes a horizontal spatial resolution of 3km in the outer nest, and 1 km in the inner nest, with output temporal resolution of 3 hrs and 1 hr, respectively. The hindcast simulations, which are currently underway, will make use of the NCEP Climate Forecast System Reforecast (CFSRR) data. The current state of these runs will be discussed. Preparations for the second of two components in this project, weekly WRF forecasts during the intense portion of the water year, will be briefly described. These forecasts will use the NCEP Climate Forecast System version 2 (CFSv2) operational forecast data as boundary conditions to provide forecast guidance geared towards water resource managers out to a lead time of 30 days. We are particularly interested in the degree to which there is forecast skill in basinwide precipitation occurrence, departure from climatology, timing, and amount in the intermediate time range.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Jiang, Huaiguang
This work proposes an approach for distribution system load forecasting, which aims to provide highly accurate short-term load forecasting with high resolution utilizing a support vector regression (SVR) based forecaster and a two-step hybrid parameters optimization method. Specifically, because the load profiles in distribution systems contain abrupt deviations, a data normalization is designed as the pretreatment for the collected historical load data. Then an SVR model is trained by the load data to forecast the future load. For better performance of SVR, a two-step hybrid optimization algorithm is proposed to determine the best parameters. In the first step of themore » hybrid optimization algorithm, a designed grid traverse algorithm (GTA) is used to narrow the parameters searching area from a global to local space. In the second step, based on the result of the GTA, particle swarm optimization (PSO) is used to determine the best parameters in the local parameter space. After the best parameters are determined, the SVR model is used to forecast the short-term load deviation in the distribution system.« less
NASA Astrophysics Data System (ADS)
Ángel Prósper Fernández, Miguel; Casal, Carlos Otero; Canoura Fernández, Felipe; Miguez-Macho, Gonzalo
2017-04-01
Regional meteorological models are becoming a generalized tool for forecasting wind resource, due to their capacity to simulate local flow dynamics impacting wind farm production. This study focuses on the production forecast and validation of a real onshore wind farm using high horizontal and vertical resolution WRF (Weather Research and Forecasting) model simulations. The wind farm is located in Galicia, in the northwest of Spain, in a complex terrain region with high wind resource. Utilizing the Fitch scheme, specific for wind farms, a period of one year is simulated with a daily operational forecasting set-up. Power and wind predictions are obtained and compared with real data provided by the management company. Results show that WRF is able to yield good wind power operational predictions for this kind of wind farms, due to a good representation of the planetary boundary layer behaviour of the region and the good performance of the Fitch scheme under these conditions.
The ARPAL operational high resolution Poor Man's Ensemble, description and validation
NASA Astrophysics Data System (ADS)
Corazza, Matteo; Sacchetti, Davide; Antonelli, Marta; Drofa, Oxana
2018-05-01
The Meteo Hydrological Functional Center for Civil Protection of the Environmental Protection Agency of the Liguria Region is responsible for issuing forecasts primarily aimed at the Civil Protection needs. Several deterministic high resolution models, run every 6 or 12 h, are regularly used in the Center to elaborate weather forecasts at short to medium range. The Region is frequently affected by severe flash floods over its very small basins, characterized by a steep orography close to the sea. These conditions led the Center in the past years to pay particular attention to the use and development of high resolution model chains for explicit simulation of convective phenomena. For years, the availability of several models has been used by the forecasters for subjective analyses of the potential evolution of the atmosphere and of its uncertainty. More recently, an Interactive Poor Man's Ensemble has been developed, aimed at providing statistical ensemble variables to help forecaster's evaluations. In this paper the structure of this system is described and results are validated using the regional dense ground observational network.
NASA Astrophysics Data System (ADS)
Beria, H.; Nanda, T., Sr.; Chatterjee, C.
2015-12-01
High resolution satellite precipitation products such as Tropical Rainfall Measuring Mission (TRMM), Climate Forecast System Reanalysis (CFSR), European Centre for Medium-Range Weather Forecasts (ECMWF), etc., offer a promising alternative to flood forecasting in data scarce regions. At the current state-of-art, these products cannot be used in the raw form for flood forecasting, even at smaller lead times. In the current study, these precipitation products are bias corrected using statistical techniques, such as additive and multiplicative bias corrections, and wavelet multi-resolution analysis (MRA) with India Meteorological Department (IMD) gridded precipitation product,obtained from gauge-based rainfall estimates. Neural network based rainfall-runoff modeling using these bias corrected products provide encouraging results for flood forecasting upto 48 hours lead time. We will present various statistical and graphical interpretations of catchment response to high rainfall events using both the raw and bias corrected precipitation products at different lead times.
NASA Astrophysics Data System (ADS)
Gagnon, Patrick; Rousseau, Alain N.; Charron, Dominique; Fortin, Vincent; Audet, René
2017-11-01
Several businesses and industries rely on rainfall forecasts to support their day-to-day operations. To deal with the uncertainty associated with rainfall forecast, some meteorological organisations have developed products, such as ensemble forecasts. However, due to the intensive computational requirements of ensemble forecasts, the spatial resolution remains coarse. For example, Environment and Climate Change Canada's (ECCC) Global Ensemble Prediction System (GEPS) data is freely available on a 1-degree grid (about 100 km), while those of the so-called High Resolution Deterministic Prediction System (HRDPS) are available on a 2.5-km grid (about 40 times finer). Potential users are then left with the option of using either a high-resolution rainfall forecast without uncertainty estimation and/or an ensemble with a spectrum of plausible rainfall values, but at a coarser spatial scale. The objective of this study was to evaluate the added value of coupling the Gibbs Sampling Disaggregation Model (GSDM) with ECCC products to provide accurate, precise and consistent rainfall estimates at a fine spatial resolution (10-km) within a forecast framework (6-h). For 30, 6-h, rainfall events occurring within a 40,000-km2 area (Québec, Canada), results show that, using 100-km aggregated reference rainfall depths as input, statistics of the rainfall fields generated by GSDM were close to those of the 10-km reference field. However, in forecast mode, GSDM outcomes inherit of the ECCC forecast biases, resulting in a poor performance when GEPS data were used as input, mainly due to the inherent rainfall depth distribution of the latter product. Better performance was achieved when the Regional Deterministic Prediction System (RDPS), available on a 10-km grid and aggregated at 100-km, was used as input to GSDM. Nevertheless, most of the analyzed ensemble forecasts were weakly consistent. Some areas of improvement are identified herein.
Wedi, Nils P
2014-06-28
The steady path of doubling the global horizontal resolution approximately every 8 years in numerical weather prediction (NWP) at the European Centre for Medium Range Weather Forecasts may be substantially altered with emerging novel computing architectures. It coincides with the need to appropriately address and determine forecast uncertainty with increasing resolution, in particular, when convective-scale motions start to be resolved. Blunt increases in the model resolution will quickly become unaffordable and may not lead to improved NWP forecasts. Consequently, there is a need to accordingly adjust proven numerical techniques. An informed decision on the modelling strategy for harnessing exascale, massively parallel computing power thus also requires a deeper understanding of the sensitivity to uncertainty--for each part of the model--and ultimately a deeper understanding of multi-scale interactions in the atmosphere and their numerical realization in ultra-high-resolution NWP and climate simulations. This paper explores opportunities for substantial increases in the forecast efficiency by judicious adjustment of the formal accuracy or relative resolution in the spectral and physical space. One path is to reduce the formal accuracy by which the spectral transforms are computed. The other pathway explores the importance of the ratio used for the horizontal resolution in gridpoint space versus wavenumbers in spectral space. This is relevant for both high-resolution simulations as well as ensemble-based uncertainty estimation. © 2014 The Author(s) Published by the Royal Society. All rights reserved.
Can High-resolution WRF Simulations Be Used for Short-term Forecasting of Lightning?
NASA Technical Reports Server (NTRS)
Goodman, S. J.; Lapenta, W.; McCaul, E. W., Jr.; LaCasse, K.; Petersen, W.
2006-01-01
A number of research teams have begun to make quasi-operational forecast simulations at high resolution with models such as the Weather Research and Forecast (WRF) model. These model runs have used horizontal meshes of 2-4 km grid spacing, and thus resolved convective storms explicitly. In the light of recent global satellite-based observational studies that reveal robust relationships between total lightning flash rates and integrated amounts of precipitation-size ice hydrometeors in storms, it is natural to inquire about the capabilities of these convection-resolving models in representing the ice hydrometeor fields faithfully. If they do, this might make operational short-term forecasts of lightning activity feasible. We examine high-resolution WRF simulations from several Southeastern cases for which either NLDN or LMA lightning data were available. All the WRF runs use a standard microphysics package that depicts only three ice species, cloud ice, snow and graupel. The realism of the WRF simulations is examined by comparisons with both lightning and radar observations and with additional even higher-resolution cloud-resolving model runs. Preliminary findings are encouraging in that they suggest that WRF often makes convective storms of the proper size in approximately the right location, but they also indicate that higher resolution and better hydrometeor microphysics would be helpful in improving the realism of the updraft strengths, reflectivity and ice hydrometeor fields.
NASA Products to Enhance Energy Utility Load Forecasting
NASA Technical Reports Server (NTRS)
Lough, G.; Zell, E.; Engel-Cox, J.; Fungard, Y.; Jedlovec, G.; Stackhouse, P.; Homer, R.; Biley, S.
2012-01-01
Existing energy load forecasting tools rely upon historical load and forecasted weather to predict load within energy company service areas. The shortcomings of load forecasts are often the result of weather forecasts that are not at a fine enough spatial or temporal resolution to capture local-scale weather events. This project aims to improve the performance of load forecasting tools through the integration of high-resolution, weather-related NASA Earth Science Data, such as temperature, relative humidity, and wind speed. Three companies are participating in operational testing one natural gas company, and two electric providers. Operational results comparing load forecasts with and without NASA weather forecasts have been generated since March 2010. We have worked with end users at the three companies to refine selection of weather forecast information and optimize load forecast model performance. The project will conclude in 2012 with transitioning documented improvements from the inclusion of NASA forecasts for sustained use by energy utilities nationwide in a variety of load forecasting tools. In addition, Battelle has consulted with energy companies nationwide to document their information needs for long-term planning, in light of climate change and regulatory impacts.
Air Quality Forecasts Using the NASA GEOS Model
NASA Technical Reports Server (NTRS)
Keller, Christoph A.; Knowland, K. Emma; Nielsen, Jon E.; Orbe, Clara; Ott, Lesley; Pawson, Steven; Saunders, Emily; Duncan, Bryan; Follette-Cook, Melanie; Liu, Junhua;
2018-01-01
We provide an introduction to a new high-resolution (0.25 degree) global composition forecast produced by NASA's Global Modeling and Assimilation office. The NASA Goddard Earth Observing System version 5 (GEOS-5) model has been expanded to provide global near-real-time forecasts of atmospheric composition at a horizontal resolution of 0.25 degrees (25 km). Previously, this combination of detailed chemistry and resolution was only provided by regional models. This system combines the operational GEOS-5 weather forecasting model with the state-of-the-science GEOS-Chem chemistry module (version 11) to provide detailed chemical analysis of a wide range of air pollutants such as ozone, carbon monoxide, nitrogen oxides, and fine particulate matter (PM2.5). The resolution of the forecasts is the highest resolution compared to current, publically-available global composition forecasts. Evaluation and validation of modeled trace gases and aerosols compared to surface and satellite observations will be presented for constituents relative to health air quality standards. Comparisons of modeled trace gases and aerosols against satellite observations show that the model produces realistic concentrations of atmospheric constituents in the free troposphere. Model comparisons against surface observations highlight the model's capability to capture the diurnal variability of air pollutants under a variety of meteorological conditions. The GEOS-5 composition forecasting system offers a new tool for scientists and the public health community, and is being developed jointly with several government and non-profit partners. Potential applications include air quality warnings, flight campaign planning and exposure studies using the archived analysis fields.
NASA Astrophysics Data System (ADS)
Noh, S. J.; Kim, S.; Habibi, H.; Seo, D. J.; Welles, E.; Philips, B.; Adams, E.; Smith, M. B.; Wells, E.
2017-12-01
With the development of the National Water Model (NWM), the NWS has made a step-change advance in operational water forecasting by enabling high-resolution hydrologic modeling across the US. As a part of a separate initiative to enhance flash flood forecasting and inundation mapping capacity, the NWS has been mandated to provide forecasts at even finer spatiotemporal resolutions when and where such information is demanded. In this presentation, we describe implementation of the NWM at a hyper resolution over a nested domain. We use WRF-Hydro as the core model but at significantly higher resolutions with scale-commensurate model parameters. The demonstration domain is multiple urban catchments within the Cities of Arlington and Grand Prairie in the Dallas-Fort Worth Metroplex. This area is susceptible to urban flooding due to the hydroclimatology coupled with large impervious cover. The nested model is based on hyper-resolution terrain data to resolve significant land surface features such as streets and large man-made structures, and forced by the high-resolution radar-based quantitative precipitation information. In this presentation, we summarize progress and preliminary results and share issues and challenges.
Improving near-range forecasts of severe precipitation with GNSS and InSAR high-resolution data
NASA Astrophysics Data System (ADS)
Miranda, P. M.; Mateus, P.; Nico, G.; Catalão, J.; Pinto, P.; Tomé, R.; Benevides, P.
2017-12-01
Precipitable water vapor (PWV) maps obtained by GNSS observations are now routinely incorporated into meteorological reanalysis by the main forecast centers such as ECMWF and NCEP. Such data, however, represent a small subset of the available microwave information, which now includes many regional networks of GNSS stations capable to produce frequent updates of the PWV distribution (at least at hourly time scales), and in some cases very high resolution PWV-anomaly fields that may be produced by SAR interferometry (Mateus et al 2013). Such very high resolution fields can be assimilated into state of the art forecast models such as WRF improving it's performance (Mateus et al 2016). In the present study, the assimilation of InSAR data from Sentinel 1A is used to analyse the evolution of two severe precipitation events, which occurred 12 hours apart in the city of Adra in 6-7 September 2015, southern Spain, timed after the two successive passages of the Sentinel. Such events, which produced a flash flood with casualties and large structural damage, were not forecasted by the operational models, but are very accurately reproduced once InSAR data is assimilated, as shown by local observations including weather radar. The physical processes involved in the development of the storm are discussed in some detail, by comparing different simulations: a control run, an experiment with GNSS assimilation, and the experiment with InSAR assimilation. While InSAR images are at this time only available every 6 days, the fact that an improvement of the water vapor distribution by data assimilation can have such a dramatic impact in severe weather forecasts suggests there is significant room for improvement in near term forecasting, by a better incorporation of both higher resolution GNSS data and more frequent SAR images.
NASA Astrophysics Data System (ADS)
Bernier, Natacha B.; Bélair, Stéphane; Bilodeau, Bernard; Tong, Linying
2014-01-01
A dynamical model was experimentally implemented to provide high resolution forecasts at points of interests in the 2010 Vancouver Olympics and Paralympics Region. In a first experiment, GEM-Surf, the near surface and land surface modeling system, is driven by operational atmospheric forecasts and used to refine the surface forecasts according to local surface conditions such as elevation and vegetation type. In this simple form, temperature and snow depth forecasts are improved mainly as a result of the better representation of real elevation. In a second experiment, screen level observations and operational atmospheric forecasts are blended to drive a continuous cycle of near surface and land surface hindcasts. Hindcasts of the previous day conditions are then regarded as today's optimized initial conditions. Hence, in this experiment, given observations are available, observation driven hindcasts continuously ensure that daily forecasts are issued from improved initial conditions. GEM-Surf forecasts obtained from improved short-range hindcasts produced using these better conditions result in improved snow depth forecasts. In a third experiment, assimilation of snow depth data is applied to further optimize GEM-Surf's initial conditions, in addition to the use of blended observations and forecasts for forcing. Results show that snow depth and summer temperature forecasts are further improved by the addition of snow depth data assimilation.
NASA Astrophysics Data System (ADS)
Mamgain, Ashu; Rajagopal, E. N.; Mitra, A. K.; Webster, S.
2018-03-01
There are increasing efforts towards the prediction of high-impact weather systems and understanding of related dynamical and physical processes. High-resolution numerical model simulations can be used directly to model the impact at fine-scale details. Improvement in forecast accuracy can help in disaster management planning and execution. National Centre for Medium Range Weather Forecasting (NCMRWF) has implemented high-resolution regional unified modeling system with explicit convection embedded within coarser resolution global model with parameterized convection. The models configurations are based on UK Met Office unified seamless modeling system. Recent land use/land cover data (2012-2013) obtained from Indian Space Research Organisation (ISRO) are also used in model simulations. Results based on short-range forecast of both the global and regional models over India for a month indicate that convection-permitting simulations by the high-resolution regional model is able to reduce the dry bias over southern parts of West Coast and monsoon trough zone with more intense rainfall mainly towards northern parts of monsoon trough zone. Regional model with explicit convection has significantly improved the phase of the diurnal cycle of rainfall as compared to the global model. Results from two monsoon depression cases during study period show substantial improvement in details of rainfall pattern. Many categories in rainfall defined for operational forecast purposes by Indian forecasters are also well represented in case of convection-permitting high-resolution simulations. For the statistics of number of days within a range of rain categories between `No-Rain' and `Heavy Rain', the regional model is outperforming the global model in all the ranges. In the very heavy and extremely heavy categories, the regional simulations show overestimation of rainfall days. Global model with parameterized convection have tendency to overestimate the light rainfall days and underestimate the heavy rain days compared to the observation data.
Impact of High Resolution SST Data on Regional Weather Forecasts
NASA Technical Reports Server (NTRS)
Jedlovec, Gary J.; Case, Jonathon; LaFontaine, Frank; Vazquez, Jorge; Mattocks, Craig
2010-01-01
Past studies have shown that the use of coarse resolution SST products such as from the real-time global (RTG) SST analysis[1] or other coarse resolution once-a-day products do not properly portray the diurnal variability of fluxes of heat and moisture from the ocean that drive the formation of low level clouds and precipitation over the ocean. For example, the use of high resolution MODIS SST composite [2] to initialize the Advanced Research Weather Research and Forecast (WRF) (ARW) [3] has been shown to improve the prediction of sensible weather parameters in coastal regions [4][5}. In an extend study, [6] compared the MODIS SST composite product to the RTG SST analysis and evaluated forecast differences for a 6 month period from March through August 2007 over the Florida coastal regions. In a comparison to buoy data, they found that that the MODIS SST composites reduced the bias and standard deviation over that of the RTG data. These improvements led to significant changes in the initial and forecasted heat fluxes and the resulting surface temperature fields, wind patterns, and cloud distributions. They also showed that the MODIS composite SST product, produced for the Terra and Aqua satellite overpass times, captured a component of the diurnal cycle in SSTs not represented in the RTG or other one-a-day SST analyses. Failure to properly incorporate these effects in the WRF initialization cycle led to temperature biases in the resulting short term forecasts. The forecast impact was limited in some situations however, due to composite product inaccuracies brought about by data latency during periods of long-term cloud cover. This paper focuses on the forecast impact of an enhanced MODIS/AMSR-E composite SST product designed to reduce inaccuracies due data latency in the MODIS only composite product.
On the skill of various ensemble spread estimators for probabilistic short range wind forecasting
NASA Astrophysics Data System (ADS)
Kann, A.
2012-05-01
A variety of applications ranging from civil protection associated with severe weather to economical interests are heavily dependent on meteorological information. For example, a precise planning of the energy supply with a high share of renewables requires detailed meteorological information on high temporal and spatial resolution. With respect to wind power, detailed analyses and forecasts of wind speed are of crucial interest for the energy management. Although the applicability and the current skill of state-of-the-art probabilistic short range forecasts has increased during the last years, ensemble systems still show systematic deficiencies which limit its practical use. This paper presents methods to improve the ensemble skill of 10-m wind speed forecasts by combining deterministic information from a nowcasting system on very high horizontal resolution with uncertainty estimates from a limited area ensemble system. It is shown for a one month validation period that a statistical post-processing procedure (a modified non-homogeneous Gaussian regression) adds further skill to the probabilistic forecasts, especially beyond the nowcasting range after +6 h.
Promoting Interests in Atmospheric Science at a Liberal Arts Institution
NASA Astrophysics Data System (ADS)
Roussev, S.; Sherengos, P. M.; Limpasuvan, V.; Xue, M.
2007-12-01
Coastal Carolina University (CCU) students in Computer Science participated in a project to set up an operational weather forecast for the local community. The project involved the construction of two computing clusters and the automation of daily forecasting. Funded by NSF-MRI, two high-performance clusters were successfully established to run the University of Oklahoma's Advance Regional Prediction System (ARPS). Daily weather predictions are made over South Carolina and North Carolina at 3-km horizontal resolution (roughly 1.9 miles) using initial and boundary condition data provided by UNIDATA. At this high resolution, the model is cloud- resolving, thus providing detailed picture of heavy thunderstorms and precipitation. Forecast results are displayed on CCU's website (https://marc.coastal.edu/HPC) to complement observations at the National Weather Service in Wilmington N.C. Present efforts include providing forecasts at 1-km resolution (or finer), comparisons with other models like Weather Research and Forecasting (WRF) model, and the examination of local phenomena (like water spouts and tornadoes). Through these activities the students learn about shell scripting, cluster operating systems, and web design. More importantly, students are introduced to Atmospheric Science, the processes involved in making weather forecasts, and the interpretation of their forecasts. Simulations generated by the forecasts will be integrated into the contents of CCU's course like Fluid Dynamics, Atmospheric Sciences, Atmospheric Physics, and Remote Sensing. Operated jointly between the departments of Applied Physics and Computer Science, the clusters are expected to be used by CCU faculty and students for future research and inquiry-based projects in Computer Science, Applied Physics, and Marine Science.
Air Quality Forecasts Using the NASA GEOS Model: A Unified Tool from Local to Global Scales
NASA Technical Reports Server (NTRS)
Knowland, E. Emma; Keller, Christoph; Nielsen, J. Eric; Orbe, Clara; Ott, Lesley; Pawson, Steven; Saunders, Emily; Duncan, Bryan; Cook, Melanie; Liu, Junhua;
2017-01-01
We provide an introduction to a new high-resolution (0.25 degree) global composition forecast produced by NASA's Global Modeling and Assimilation office. The NASA Goddard Earth Observing System version 5 (GEOS-5) model has been expanded to provide global near-real-time forecasts of atmospheric composition at a horizontal resolution of 0.25 degrees (approximately 25 km). Previously, this combination of detailed chemistry and resolution was only provided by regional models. This system combines the operational GEOS-5 weather forecasting model with the state-of-the-science GEOS-Chem chemistry module (version 11) to provide detailed chemical analysis of a wide range of air pollutants such as ozone, carbon monoxide, nitrogen oxides, and fine particulate matter (PM2.5). The resolution of the forecasts is the highest resolution compared to current, publically-available global composition forecasts. Evaluation and validation of modeled trace gases and aerosols compared to surface and satellite observations will be presented for constituents relative to health air quality standards. Comparisons of modeled trace gases and aerosols against satellite observations show that the model produces realistic concentrations of atmospheric constituents in the free troposphere. Model comparisons against surface observations highlight the model's capability to capture the diurnal variability of air pollutants under a variety of meteorological conditions. The GEOS-5 composition forecasting system offers a new tool for scientists and the public health community, and is being developed jointly with several government and non-profit partners. Potential applications include air quality warnings, flight campaign planning and exposure studies using the archived analysis fields.
Hurricane Forecasting with the High-resolution NASA Finite-volume General Circulation Model
NASA Technical Reports Server (NTRS)
Atlas, R.; Reale, O.; Shen, B.-W.; Lin, S.-J.; Chern, J.-D.; Putman, W.; Lee, T.; Yeh, K.-S.; Bosilovich, M.; Radakovich, J.
2004-01-01
A high-resolution finite-volume General Circulation Model (fvGCM), resulting from a development effort of more than ten years, is now being run operationally at the NASA Goddard Space Flight Center and Ames Research Center. The model is based on a finite-volume dynamical core with terrain-following Lagrangian control-volume discretization and performs efficiently on massive parallel architectures. The computational efficiency allows simulations at a resolution of a quarter of a degree, which is double the resolution currently adopted by most global models in operational weather centers. Such fine global resolution brings us closer to overcoming a fundamental barrier in global atmospheric modeling for both weather and climate, because tropical cyclones and even tropical convective clusters can be more realistically represented. In this work, preliminary results of the fvGCM are shown. Fifteen simulations of four Atlantic tropical cyclones in 2002 and 2004 are chosen because of strong and varied difficulties presented to numerical weather forecasting. It is shown that the fvGCM, run at the resolution of a quarter of a degree, can produce very good forecasts of these tropical systems, adequately resolving problems like erratic track, abrupt recurvature, intense extratropical transition, multiple landfall and reintensification, and interaction among vortices.
NASA Astrophysics Data System (ADS)
Judt, Falko; Chen, Shuyi S.
2015-07-01
Hurricane surface wind is a key measure of storm intensity. However, a climatology of hurricane winds is lacking to date, largely because hurricanes are relatively rare events and difficult to observe over the open ocean. Here we present a new hurricane wind climatology based on objective surface wind analyses, which are derived from Stepped Frequency Microwave Radiometer measurements acquired by NOAA WP-3D and U.S. Air Force WC-130J hurricane hunter aircraft. The wind data were collected during 72 aircraft reconnaissance missions into 21 western Atlantic hurricanes from 1998 to 2012. This climatology provides an opportunity to validate hurricane intensity forecasts beyond the simplistic maximum wind speed metric and allows evaluating the predictive skill of probabilistic hurricane intensity forecasts using high-resolution model ensembles. An example of application is presented here using a 1.3 km grid spacing Weather Research and Forecasting model ensemble forecast of Hurricane Earl (2010).
NASA Astrophysics Data System (ADS)
Rowley, C. D.; Hogan, P. J.; Martin, P.; Thoppil, P.; Wei, M.
2017-12-01
An extended range ensemble forecast system is being developed in the US Navy Earth System Prediction Capability (ESPC), and a global ocean ensemble generation capability to represent uncertainty in the ocean initial conditions has been developed. At extended forecast times, the uncertainty due to the model error overtakes the initial condition as the primary source of forecast uncertainty. Recently, stochastic parameterization or stochastic forcing techniques have been applied to represent the model error in research and operational atmospheric, ocean, and coupled ensemble forecasts. A simple stochastic forcing technique has been developed for application to US Navy high resolution regional and global ocean models, for use in ocean-only and coupled atmosphere-ocean-ice-wave ensemble forecast systems. Perturbation forcing is added to the tendency equations for state variables, with the forcing defined by random 3- or 4-dimensional fields with horizontal, vertical, and temporal correlations specified to characterize different possible kinds of error. Here, we demonstrate the stochastic forcing in regional and global ensemble forecasts with varying perturbation amplitudes and length and time scales, and assess the change in ensemble skill measured by a range of deterministic and probabilistic metrics.
[Possibile application of X-ray and high resolution CT in pneumoconiosis management].
Vlasov, V G; Laptev, V Ia; Logvinenko, I I; Smirnova, E L; Brovchenko, E P; Mironova, M V
2011-01-01
The article covers results of clinical and roentgenologic data analysis. The data were obtained in the study that covered 447 pneumoconiosis patients, 75 of which were subjected to high resolution CT. If compared to chest X-ray, high resolution CT helps more precise forecast of further course in pneumoconiosis.
Integrating Windblown Dust Forecasts with Public Safety and Health Systems
NASA Astrophysics Data System (ADS)
Sprigg, W. A.
2014-12-01
Experiments in real-time prediction of desert dust emissions and downstream plume concentrations (~ 3.5 km near-surface spatial resolution) succeed to the point of challenging public safety and public health services to beta test a dust storm warning and advisory system in lowering risks of highway and airline accidents and illnesses such as asthma and valley fever. Key beta test components are: high-resolution models of dust emission, entrainment and diffusion, integrated with synoptic weather observations and forecasts; satellite-based detection and monitoring of soil properties on the ground and elevated above; high space and time resolution for health surveillance and transportation advisories.
The Use of Scale-Dependent Precision to Increase Forecast Accuracy in Earth System Modelling
NASA Astrophysics Data System (ADS)
Thornes, Tobias; Duben, Peter; Palmer, Tim
2016-04-01
At the current pace of development, it may be decades before the 'exa-scale' computers needed to resolve individual convective clouds in weather and climate models become available to forecasters, and such machines will incur very high power demands. But the resolution could be improved today by switching to more efficient, 'inexact' hardware with which variables can be represented in 'reduced precision'. Currently, all numbers in our models are represented as double-precision floating points - each requiring 64 bits of memory - to minimise rounding errors, regardless of spatial scale. Yet observational and modelling constraints mean that values of atmospheric variables are inevitably known less precisely on smaller scales, suggesting that this may be a waste of computer resources. More accurate forecasts might therefore be obtained by taking a scale-selective approach whereby the precision of variables is gradually decreased at smaller spatial scales to optimise the overall efficiency of the model. To study the effect of reducing precision to different levels on multiple spatial scales, we here introduce a new model atmosphere developed by extending the Lorenz '96 idealised system to encompass three tiers of variables - which represent large-, medium- and small-scale features - for the first time. In this chaotic but computationally tractable system, the 'true' state can be defined by explicitly resolving all three tiers. The abilities of low resolution (single-tier) double-precision models and similar-cost high resolution (two-tier) models in mixed-precision to produce accurate forecasts of this 'truth' are compared. The high resolution models outperform the low resolution ones even when small-scale variables are resolved in half-precision (16 bits). This suggests that using scale-dependent levels of precision in more complicated real-world Earth System models could allow forecasts to be made at higher resolution and with improved accuracy. If adopted, this new paradigm would represent a revolution in numerical modelling that could be of great benefit to the world.
DMI's Baltic Sea Coastal operational forecasting system
NASA Astrophysics Data System (ADS)
Murawski, Jens; Berg, Per; Weismann Poulsen, Jacob
2017-04-01
Operational forecasting is challenged with bridging the gap between the large scales of the driving weather systems and the local, human scales of the model applications. The limit of what can be represented by local model has been continuously shifted to higher and higher spatial resolution, with the aim to better resolve the local dynamic and to make it possible to describe processes that could only be parameterised in older versions, with the ultimate goal to improve the quality of the forecast. Current hardware trends demand a str onger focus on the development of efficient, highly parallelised software and require a refactoring of the code with a solid focus on portable performance. The gained performance can be used for running high resolution model with a larger coverage. Together with the development of efficient two-way nesting routines, this has made it possible to approach the near-coastal zone with model applications that can run in a time effective way. Denmarks Meteorological Institute uses the HBM(1) ocean circulation model for applications that covers the entire Baltic Sea and North Sea with an integrated model set-up that spans the range of horizontal resolution from 1nm for the entire Baltic Sea to approx. 200m resolution in local fjords (Limfjord). For the next model generation, the high resolution set-ups are going to be extended and new high resolution domains in coastal zones are either implemented or tested for operational use. For the first time it will be possible to cover large stretches of the Baltic coastal zone with sufficiently high resolution to model the local hydrodynamic adequately. (1) HBM stands for HIROMB-BOOS-Model, whereas HIROMB stands for "High Resolution Model for the Baltic Sea" and BOOS stands for "Baltic Operational Oceanography System".
NASA Astrophysics Data System (ADS)
Singh, K. S.; Bonthu, Subbareddy; Purvaja, R.; Robin, R. S.; Kannan, B. A. M.; Ramesh, R.
2018-04-01
This study attempts to investigate the real-time prediction of a heavy rainfall event over the Chennai Metropolitan City, Tamil Nadu, India that occurred on 01 December 2015 using Advanced Research Weather Research and Forecasting (WRF-ARW) model. The study evaluates the impact of six microphysical (Lin, WSM6, Goddard, Thompson, Morrison and WDM6) parameterization schemes of the model on prediction of heavy rainfall event. In addition, model sensitivity has also been evaluated with six Planetary Boundary Layer (PBL) and two Land Surface Model (LSM) schemes. Model forecast was carried out using nested domain and the impact of model horizontal grid resolutions were assessed at 9 km, 6 km and 3 km. Analysis of the synoptic features using National Center for Environmental Prediction Global Forecast System (NCEP-GFS) analysis data revealed strong upper-level divergence and high moisture content at lower level were favorable for the occurrence of heavy rainfall event over the northeast coast of Tamil Nadu. The study signified that forecasted rainfall was more sensitive to the microphysics and PBL schemes compared to the LSM schemes. The model provided better forecast of the heavy rainfall event using the logical combination of Goddard microphysics, YSU PBL and Noah LSM schemes, and it was mostly attributed to timely initiation and development of the convective system. The forecast with different horizontal resolutions using cumulus parameterization indicated that the rainfall prediction was not well represented at 9 km and 6 km. The forecast with 3 km horizontal resolution provided better prediction in terms of timely initiation and development of the event. The study highlights that forecast of heavy rainfall events using a high-resolution mesoscale model with suitable representations of physical parameterization schemes are useful for disaster management and planning to minimize the potential loss of life and property.
NASA Astrophysics Data System (ADS)
Pierce, R. B.; Smith, N.; Barnet, C.; Barnet, C. D.; Kondragunta, S.; Davies, J. E.; Strabala, K.
2016-12-01
We use Suomi National Polar-orbiting Partnership (S-NPP) Visible Infrared Imaging Radiometer Suite (VIIRS) Aerosol Optical Depth (AOD) and combined Cross-track Infrared Sounder (CrIS) and Advanced Technology Microwave Sounder (ATMS) NOAA-Unique CrIS-ATMS Processing System (NUCAPS) carbon monoxide (CO) retrievals to initialize trajectory-based, high spatial resolution North American smoke dispersion forecasts during the May 2016 Fort McMurray wildfire in northern Alberta and the July 2016 Soberanes Fire in Northern California. These two case studies illustrate how long range transport of wild fire smoke can adversely impact surface air quality thousands of kilometers downwind and how local topographic flow can lead to complex transport patterns near the wildfire source region. The NUCAPS CO retrievals are shown to complement the high resolution VIIRS AOD retrievals by providing retrievals in partially cloudy scenes and also providing information on the vertical distribution of the wildfire smoke. This work addresses the need for low latency, web-based, high resolution forecasts of smoke dispersion for use by NWS Incident Meteorologists (IMET) to support on-site decision support services for fire incident management teams. The primary user community for the IDEA-I smoke forecasts is the Western regions of the NWS and US EPA due to the significant impacts of wildfires in these regions. Secondary users include Alaskan NWS offices and Western State and Local air quality management agencies such as the Western Regional Air Partnership (WRAP).
NASA Astrophysics Data System (ADS)
Mosier, T. M.; Hill, D. F.; Sharp, K. V.
2013-12-01
High spatial resolution time-series data are critical for many hydrological and earth science studies. Multiple groups have developed historical and forecast datasets of high-resolution monthly time-series for regions of the world such as the United States (e.g. PRISM for hindcast data and MACA for long-term forecasts); however, analogous datasets have not been available for most data scarce regions. The current work fills this data need by producing and freely distributing hindcast and forecast time-series datasets of monthly precipitation and mean temperature for all global land surfaces, gridded at a 30 arc-second resolution. The hindcast data are constructed through a Delta downscaling method, using as inputs 0.5 degree monthly time-series and 30 arc-second climatology global weather datasets developed by Willmott & Matsuura and WorldClim, respectively. The forecast data are formulated using a similar downscaling method, but with an additional step to remove bias from the climate variable's probability distribution over each region of interest. The downscaling package is designed to be compatible with a number of general circulation models (GCM) (e.g. with GCMs developed for the IPCC AR4 report and CMIP5), and is presently implemented using time-series data from the NCAR CESM1 model in conjunction with 30 arc-second future decadal climatologies distributed by the Consultative Group on International Agricultural Research. The resulting downscaled datasets are 30 arc-second time-series forecasts of monthly precipitation and mean temperature available for all global land areas. As an example of these data, historical and forecast 30 arc-second monthly time-series from 1950 through 2070 are created and analyzed for the region encompassing Pakistan. For this case study, forecast datasets corresponding to the future representative concentration pathways 45 and 85 scenarios developed by the IPCC are presented and compared. This exercise highlights a range of potential meteorological trends for the Pakistan region and more broadly serves to demonstrate the utility of the presented 30 arc-second monthly precipitation and mean temperature datasets for use in data scarce regions.
Optimal Exploitation of the Temporal and Spatial Resolution of SEVIRI for the Nowcasting of Clouds
NASA Astrophysics Data System (ADS)
Sirch, Tobias; Bugliaro, Luca
2015-04-01
Optimal Exploitation of the Temporal and Spatial Resolution of SEVIRI for the Nowcasting of Clouds An algorithm was developed to forecast the development of water and ice clouds for the successive 5-120 minutes separately using satellite data from SEVIRI (Spinning Enhanced Visible and Infrared Imager) aboard Meteosat Second Generation (MSG). In order to derive cloud cover, optical thickness and cloud top height of high ice clouds "The Cirrus Optical properties derived from CALIOP and SEVIRI during day and night" (COCS, Kox et al. [2014]) algorithm is applied. For the determination of the liquid water clouds the APICS ("Algorithm for the Physical Investigation of Clouds with SEVIRI", Bugliaro e al. [2011]) cloud algorithm is used, which provides cloud cover, optical thickness and effective radius. The forecast rests upon an optical flow method determining a motion vector field from two satellite images [Zinner et al., 2008.] With the aim of determining the ideal time separation of the satellite images that are used for the determination of the cloud motion vector field for every forecast horizon time the potential of the better temporal resolution of the Meteosat Rapid Scan Service (5 instead of 15 minutes repetition rate) has been investigated. Therefore for the period from March to June 2013 forecasts up to 4 hours in time steps of 5 min based on images separated by a time interval of 5 min, 10 min, 15 min, 30 min have been created. The results show that Rapid Scan data produces a small reduction of errors for a forecast horizon up to 30 minutes. For the following time steps forecasts generated with a time interval of 15 min should be used and for forecasts up to several hours computations with a time interval of 30 min provide the best results. For a better spatial resolution the HRV channel (High Resolution Visible, 1km instead of 3km maximum spatial resolution at the subsatellite point) has been integrated into the forecast. To detect clouds the difference of the measured albedo from SEVIRI and the clear-sky albedo provided by MODIS has been used and additionally the temporal development of this quantity. A pre-requisite for this work was an adjustment of the geolocation accuracy for MSG and MODIS by shifting the MODIS data and quantifying the correlation between both data sets.
NASA Astrophysics Data System (ADS)
Yildiz, Baran; Bilbao, Jose I.; Dore, Jonathon; Sproul, Alistair B.
2018-05-01
Smart grid components such as smart home and battery energy management systems, high penetration of renewable energy systems, and demand response activities, require accurate electricity demand forecasts for the successful operation of the electricity distribution networks. For example, in order to optimize residential PV generation and electricity consumption and plan battery charge-discharge regimes by scheduling household appliances, forecasts need to target and be tailored to individual household electricity loads. The recent uptake of smart meters allows easier access to electricity readings at very fine resolutions; hence, it is possible to utilize this source of available data to create forecast models. In this paper, models which predominantly use smart meter data alongside with weather variables, or smart meter based models (SMBM), are implemented to forecast individual household loads. Well-known machine learning models such as artificial neural networks (ANN), support vector machines (SVM) and Least-Square SVM are implemented within the SMBM framework and their performance is compared. The analysed household stock consists of 14 households from the state of New South Wales, Australia, with at least a year worth of 5 min. resolution data. In order for the results to be comparable between different households, our study first investigates household load profiles according to their volatility and reveals the relationship between load standard deviation and forecast performance. The analysis extends previous research by evaluating forecasts over four different data resolution; 5, 15, 30 and 60 min, each resolution analysed for four different horizons; 1, 6, 12 and 24 h ahead. Both, data resolution and forecast horizon, proved to have significant impact on the forecast performance and the obtained results provide important insights for the operation of various smart grid applications. Finally, it is shown that the load profile of some households vary significantly across different days; as a result, providing a single model for the entire period may result in limited performance. By the use of a pre-clustering step, similar daily load profiles are grouped together according to their standard deviation, and instead of applying one SMBM for the entire data-set of a particular household, separate SMBMs are applied to each one of the clusters. This preliminary clustering step increases the complexity of the analysis however it results in significant improvements in forecast performance.
An OSSE on Mesoscale Model Assimilation of Simulated HIRAD-Observed Hurricane Surface Winds
NASA Technical Reports Server (NTRS)
Albers, Cerese; Miller, Timothy; Uhlhorn, Eric; Krishnamurti, T. N.
2012-01-01
The hazards of landfalling hurricanes are well known, but progress on improving the intensity forecasts of these deadly storms at landfall has been slow. Many cite a lack of high-resolution data sets taken inside the core of a hurricane, and the lack of reliable measurements in extreme conditions near the surface of hurricanes, as possible reasons why even the most state-of-the-art forecasting models cannot seem to forecast intensity changes better. The Hurricane Imaging Radiometer (HIRAD) is a new airborne microwave remote sensor for observing hurricanes, and is operated and researched by NASA Marshall Space Flight Center in partnership with the NOAA Atlantic Oceanographic and Meteorological Laboratory/Hurricane Research Division, the University of Central Florida, the University of Michigan, and the University of Alabama in Huntsville. This instrument?s purpose is to study the wind field of a hurricane, specifically observing surface wind speeds and rain rates, in what has traditionally been the most difficult areas for other instruments to study; the high wind and heavy rain regions. Dr. T. N. Krishnamurti has studied various data assimilation techniques for hurricane and monsoon rain rates, and this study builds off of results obtained from utilizing his style of physical initializations of rainfall observations, but obtaining reliable observations in heavy rain regions has always presented trouble to our research of high-resolution rainfall forecasting. Reliable data from these regions at such a high resolution and wide swath as HIRAD provides is potentially very valuable to mesoscale forecasting of hurricane intensity. This study shows how the data assimilation technique of Ensemble Kalman Filtering (EnKF) in the Weather Research and Forecasting (WRF) model can be used to incorporate wind, and later rain rate, data into a mesoscale model forecast of hurricane intensity. The study makes use of an Observing System Simulation Experiment (OSSE) with a simulated HIRAD dataset sampled during a hurricane and uses EnKF to forecast the track and intensity prediction of the hurricane. Comparisons to truth and error metrics are used to assess the model?s forecast performance.
Increasing the temporal resolution of direct normal solar irradiance forecasted series
NASA Astrophysics Data System (ADS)
Fernández-Peruchena, Carlos M.; Gastón, Martin; Schroedter-Homscheidt, Marion; Marco, Isabel Martínez; Casado-Rubio, José L.; García-Moya, José Antonio
2017-06-01
A detailed knowledge of the solar resource is a critical point in the design and control of Concentrating Solar Power (CSP) plants. In particular, accurate forecasting of solar irradiance is essential for the efficient operation of solar thermal power plants, the management of energy markets, and the widespread implementation of this technology. Numerical weather prediction (NWP) models are commonly used for solar radiation forecasting. In the ECMWF deterministic forecasting system, all forecast parameters are commercially available worldwide at 3-hourly intervals. Unfortunately, as Direct Normal solar Irradiance (DNI) exhibits a great variability due to the dynamic effects of passing clouds, 3-h time resolution is insufficient for accurate simulations of CSP plants due to their nonlinear response to DNI, governed by various thermal inertias due to their complex response characteristics. DNI series of hourly or sub-hourly frequency resolution are normally used for an accurate modeling and analysis of transient processes in CSP technologies. In this context, the objective of this study is to propose a methodology for generating synthetic DNI time series at 1-h (or higher) temporal resolution from 3-h DNI series. The methodology is based upon patterns as being defined with help of the clear-sky envelope approach together with a forecast of maximum DNI value, and it has been validated with high quality measured DNI data.
Jiang, Huaiguang; Zhang, Yingchen; Muljadi, Eduard; ...
2016-01-01
This paper proposes an approach for distribution system load forecasting, which aims to provide highly accurate short-term load forecasting with high resolution utilizing a support vector regression (SVR) based forecaster and a two-step hybrid parameters optimization method. Specifically, because the load profiles in distribution systems contain abrupt deviations, a data normalization is designed as the pretreatment for the collected historical load data. Then an SVR model is trained by the load data to forecast the future load. For better performance of SVR, a two-step hybrid optimization algorithm is proposed to determine the best parameters. In the first step of themore » hybrid optimization algorithm, a designed grid traverse algorithm (GTA) is used to narrow the parameters searching area from a global to local space. In the second step, based on the result of the GTA, particle swarm optimization (PSO) is used to determine the best parameters in the local parameter space. After the best parameters are determined, the SVR model is used to forecast the short-term load deviation in the distribution system. The performance of the proposed approach is compared to some classic methods in later sections of the paper.« less
Development of Parallel Code for the Alaska Tsunami Forecast Model
NASA Astrophysics Data System (ADS)
Bahng, B.; Knight, W. R.; Whitmore, P.
2014-12-01
The Alaska Tsunami Forecast Model (ATFM) is a numerical model used to forecast propagation and inundation of tsunamis generated by earthquakes and other means in both the Pacific and Atlantic Oceans. At the U.S. National Tsunami Warning Center (NTWC), the model is mainly used in a pre-computed fashion. That is, results for hundreds of hypothetical events are computed before alerts, and are accessed and calibrated with observations during tsunamis to immediately produce forecasts. ATFM uses the non-linear, depth-averaged, shallow-water equations of motion with multiply nested grids in two-way communications between domains of each parent-child pair as waves get closer to coastal waters. Even with the pre-computation the task becomes non-trivial as sub-grid resolution gets finer. Currently, the finest resolution Digital Elevation Models (DEM) used by ATFM are 1/3 arc-seconds. With a serial code, large or multiple areas of very high resolution can produce run-times that are unrealistic even in a pre-computed approach. One way to increase the model performance is code parallelization used in conjunction with a multi-processor computing environment. NTWC developers have undertaken an ATFM code-parallelization effort to streamline the creation of the pre-computed database of results with the long term aim of tsunami forecasts from source to high resolution shoreline grids in real time. Parallelization will also permit timely regeneration of the forecast model database with new DEMs; and, will make possible future inclusion of new physics such as the non-hydrostatic treatment of tsunami propagation. The purpose of our presentation is to elaborate on the parallelization approach and to show the compute speed increase on various multi-processor systems.
Zhang, Banglin; Tallapragada, Vijay; Weng, Fuzhong; Liu, Qingfu; Sippel, Jason A.; Ma, Zaizhong; Bender, Morris A.
2016-01-01
The atmosphere−ocean coupled Hurricane Weather Research and Forecast model (HWRF) developed at the National Centers for Environmental Prediction (NCEP) is used as an example to illustrate the impact of model vertical resolution on track forecasts of tropical cyclones. A number of HWRF forecasting experiments were carried out at different vertical resolutions for Hurricane Joaquin, which occurred from September 27 to October 8, 2015, in the Atlantic Basin. The results show that the track prediction for Hurricane Joaquin is much more accurate with higher vertical resolution. The positive impacts of higher vertical resolution on hurricane track forecasts suggest that National Oceanic and Atmospheric Administration/NCEP should upgrade both HWRF and the Global Forecast System to have more vertical levels. PMID:27698121
Siedlecki, Samantha A.; Kaplan, Isaac C.; Hermann, Albert J.; Nguyen, Thanh Tam; Bond, Nicholas A.; Newton, Jan A.; Williams, Gregory D.; Peterson, William T.; Alin, Simone R.; Feely, Richard A.
2016-01-01
Resource managers at the state, federal, and tribal levels make decisions on a weekly to quarterly basis, and fishers operate on a similar timeframe. To determine the potential of a support tool for these efforts, a seasonal forecast system is experimented with here. JISAO’s Seasonal Coastal Ocean Prediction of the Ecosystem (J-SCOPE) features dynamical downscaling of regional ocean conditions in Washington and Oregon waters using a combination of a high-resolution regional model with biogeochemistry and forecasts from NOAA’s Climate Forecast System (CFS). Model performance and predictability were examined for sea surface temperature (SST), bottom temperature, bottom oxygen, pH, and aragonite saturation state through model hindcasts, reforecast, and forecast comparisons with observations. Results indicate J-SCOPE forecasts have measurable skill on seasonal timescales. Experiments suggest that seasonal forecasting of ocean conditions important for fisheries is possible with the right combination of components. Those components include regional predictability on seasonal timescales of the physical environment from a large-scale model, a high-resolution regional model with biogeochemistry that simulates seasonal conditions in hindcasts, a relationship with local stakeholders, and a real-time observational network. Multiple efforts and approaches in different regions would advance knowledge to provide additional tools to fishers and other stakeholders. PMID:27273473
NASA Astrophysics Data System (ADS)
Siedlecki, Samantha A.; Kaplan, Isaac C.; Hermann, Albert J.; Nguyen, Thanh Tam; Bond, Nicholas A.; Newton, Jan A.; Williams, Gregory D.; Peterson, William T.; Alin, Simone R.; Feely, Richard A.
2016-06-01
Resource managers at the state, federal, and tribal levels make decisions on a weekly to quarterly basis, and fishers operate on a similar timeframe. To determine the potential of a support tool for these efforts, a seasonal forecast system is experimented with here. JISAO’s Seasonal Coastal Ocean Prediction of the Ecosystem (J-SCOPE) features dynamical downscaling of regional ocean conditions in Washington and Oregon waters using a combination of a high-resolution regional model with biogeochemistry and forecasts from NOAA’s Climate Forecast System (CFS). Model performance and predictability were examined for sea surface temperature (SST), bottom temperature, bottom oxygen, pH, and aragonite saturation state through model hindcasts, reforecast, and forecast comparisons with observations. Results indicate J-SCOPE forecasts have measurable skill on seasonal timescales. Experiments suggest that seasonal forecasting of ocean conditions important for fisheries is possible with the right combination of components. Those components include regional predictability on seasonal timescales of the physical environment from a large-scale model, a high-resolution regional model with biogeochemistry that simulates seasonal conditions in hindcasts, a relationship with local stakeholders, and a real-time observational network. Multiple efforts and approaches in different regions would advance knowledge to provide additional tools to fishers and other stakeholders.
Siedlecki, Samantha A; Kaplan, Isaac C; Hermann, Albert J; Nguyen, Thanh Tam; Bond, Nicholas A; Newton, Jan A; Williams, Gregory D; Peterson, William T; Alin, Simone R; Feely, Richard A
2016-06-07
Resource managers at the state, federal, and tribal levels make decisions on a weekly to quarterly basis, and fishers operate on a similar timeframe. To determine the potential of a support tool for these efforts, a seasonal forecast system is experimented with here. JISAO's Seasonal Coastal Ocean Prediction of the Ecosystem (J-SCOPE) features dynamical downscaling of regional ocean conditions in Washington and Oregon waters using a combination of a high-resolution regional model with biogeochemistry and forecasts from NOAA's Climate Forecast System (CFS). Model performance and predictability were examined for sea surface temperature (SST), bottom temperature, bottom oxygen, pH, and aragonite saturation state through model hindcasts, reforecast, and forecast comparisons with observations. Results indicate J-SCOPE forecasts have measurable skill on seasonal timescales. Experiments suggest that seasonal forecasting of ocean conditions important for fisheries is possible with the right combination of components. Those components include regional predictability on seasonal timescales of the physical environment from a large-scale model, a high-resolution regional model with biogeochemistry that simulates seasonal conditions in hindcasts, a relationship with local stakeholders, and a real-time observational network. Multiple efforts and approaches in different regions would advance knowledge to provide additional tools to fishers and other stakeholders.
Statistical earthquake focal mechanism forecasts
NASA Astrophysics Data System (ADS)
Kagan, Yan Y.; Jackson, David D.
2014-04-01
Forecasts of the focal mechanisms of future shallow (depth 0-70 km) earthquakes are important for seismic hazard estimates and Coulomb stress, and other models of earthquake occurrence. Here we report on a high-resolution global forecast of earthquake rate density as a function of location, magnitude and focal mechanism. In previous publications we reported forecasts of 0.5° spatial resolution, covering the latitude range from -75° to +75°, based on the Global Central Moment Tensor earthquake catalogue. In the new forecasts we have improved the spatial resolution to 0.1° and the latitude range from pole to pole. Our focal mechanism estimates require distance-weighted combinations of observed focal mechanisms within 1000 km of each gridpoint. Simultaneously, we calculate an average rotation angle between the forecasted mechanism and all the surrounding mechanisms, using the method of Kagan & Jackson proposed in 1994. This average angle reveals the level of tectonic complexity of a region and indicates the accuracy of the prediction. The procedure becomes problematical where longitude lines are not approximately parallel, and where shallow earthquakes are so sparse that an adequate sample spans very large distances. North or south of 75°, the azimuths of points 1000 km away may vary by about 35°. We solved this problem by calculating focal mechanisms on a plane tangent to the Earth's surface at each forecast point, correcting for the rotation of the longitude lines at the locations of earthquakes included in the averaging. The corrections are negligible between -30° and +30° latitude, but outside that band uncorrected rotations can be significantly off. Improved forecasts at 0.5° and 0.1° resolution are posted at http://eq.ess.ucla.edu/kagan/glob_gcmt_index.html.
NASA Astrophysics Data System (ADS)
Friebele, Elaine
People living in coastal areas can rely on better hurricane predictions because forecasters now have nearly instant access to global wind data. Measurements of wind speed and direction over the world's oceans are available within 3 hours of measurement from the Japanese satellite ADEOS (Advanced Earth Observing Satellite).Wind parameters at 25-km resolution are being measured by NASA's scatterometer traveling on the Japanese satellite ADEOS (Advanced Earth Observing Satellite). “The high accuracy and spatial resolution of the data were quickly recognized by our forecasters, who have been starved for data over significant expanses of the world's oceans,” said Jim Hoke, director of NOAA's Marine Prediction Center.
Hurricane Intensity Forecasts with a Global Mesoscale Model on the NASA Columbia Supercomputer
NASA Technical Reports Server (NTRS)
Shen, Bo-Wen; Tao, Wei-Kuo; Atlas, Robert
2006-01-01
It is known that General Circulation Models (GCMs) have insufficient resolution to accurately simulate hurricane near-eye structure and intensity. The increasing capabilities of high-end computers (e.g., the NASA Columbia Supercomputer) have changed this. In 2004, the finite-volume General Circulation Model at a 1/4 degree resolution, doubling the resolution used by most of operational NWP center at that time, was implemented and run to obtain promising landfall predictions for major hurricanes (e.g., Charley, Frances, Ivan, and Jeanne). In 2005, we have successfully implemented the 1/8 degree version, and demonstrated its performance on intensity forecasts with hurricane Katrina (2005). It is found that the 1/8 degree model is capable of simulating the radius of maximum wind and near-eye wind structure, and thereby promising intensity forecasts. In this study, we will further evaluate the model s performance on intensity forecasts of hurricanes Ivan, Jeanne, Karl in 2004. Suggestions for further model development will be made in the end.
A national-scale seasonal hydrological forecast system: development and evaluation over Britain
NASA Astrophysics Data System (ADS)
Bell, Victoria A.; Davies, Helen N.; Kay, Alison L.; Brookshaw, Anca; Scaife, Adam A.
2017-09-01
Skilful winter seasonal predictions for the North Atlantic circulation and northern Europe have now been demonstrated and the potential for seasonal hydrological forecasting in the UK is now being explored. One of the techniques being used combines seasonal rainfall forecasts provided by operational weather forecast systems with hydrological modelling tools to provide estimates of seasonal mean river flows up to a few months ahead. The work presented here shows how spatial information contained in a distributed hydrological model typically requiring high-resolution (daily or better) rainfall data can be used to provide an initial condition for a much simpler forecast model tailored to use low-resolution monthly rainfall forecasts. Rainfall forecasts (hindcasts
) from the GloSea5 model (1996 to 2009) are used to provide the first assessment of skill in these national-scale flow forecasts. The skill in the combined modelling system is assessed for different seasons and regions of Britain, and compared to what might be achieved using other approaches such as use of an ensemble of historical rainfall in a hydrological model, or a simple flow persistence forecast. The analysis indicates that only limited forecast skill is achievable for Spring and Summer seasonal hydrological forecasts; however, Autumn and Winter flows can be reasonably well forecast using (ensemble mean) rainfall forecasts based on either GloSea5 forecasts or historical rainfall (the preferred type of forecast depends on the region). Flow forecasts using ensemble mean GloSea5 rainfall perform most consistently well across Britain, and provide the most skilful forecasts overall at the 3-month lead time. Much of the skill (64 %) in the 1-month ahead seasonal flow forecasts can be attributed to the hydrological initial condition (particularly in regions with a significant groundwater contribution to flows), whereas for the 3-month ahead lead time, GloSea5 forecasts account for ˜ 70 % of the forecast skill (mostly in areas of high rainfall to the north and west) and only 30 % of the skill arises from hydrological memory (typically groundwater-dominated areas). Given the high spatial heterogeneity in typical patterns of UK rainfall and evaporation, future development of skilful spatially distributed seasonal forecasts could lead to substantial improvements in seasonal flow forecast capability, potentially benefitting practitioners interested in predicting hydrological extremes, not only in the UK but also across Europe.
National Water Model assessment for water management needs over the Western United States.
NASA Astrophysics Data System (ADS)
Viterbo, F.; Thorstensen, A.; Cifelli, R.; Hughes, M.; Johnson, L.; Gochis, D.; Wood, A.; Nowak, K.; Dahm, K.
2017-12-01
The NOAA National Water Model (NWM) became operational in August 2016, providing the first ever, real-time distributed high-resolution forecasts for the continental United States. Since the model predictions occur at the CONUS scale, there is a need to evaluate the NWM in different regions to assess the wide variety and heterogeneity of hydrological processes that are included (e.g., snow melting, ice freezing, flash flooding events). In particular, to address water management needs in the western U.S., a collaborative project between the Bureau of Reclamation, NOAA, and NCAR is ongoing to assess the NWM performance for reservoir inflow forecasting needs and water management operations. In this work, the NWM is evaluated using different forecast ranges (short to medium) and retrospective historical runs forced by North American Land Data Assimilation System (NLDAS) analysis to assess the NWM skills over key headwaters watersheds in the western U.S. that are of interest to the Bureau of Reclamation. The streamflow results are analyzed and compared with the available observations at the gauge sites, evaluating different NWM operational versions together with the already existing local River Forecast Center forecasts. The NWM uncertainty is also considered, evaluating the propagation of the precipitation forcing uncertainties in the resulting hydrograph. In addition, the possible advantages of high-resolution distributed output variables (such as soil moisture, evapotranspiration fluxes) are investigated, to determine the utility of such information for water managers in terms of watershed characteristics in areas that traditionally have not had any forecast information. The results highlight the NWM's ability to provide high-resolution forecast information in space and time. As anticipated, the performance is best in regions that are dominated by natural flows and where the model has benefited from efforts toward parameter calibration. In highly regulated basins, the water management operations result in NWM overestimation of the peak flows and too fast recession curves. As a future project goal, some reforecasts will be run on target locations, ingesting water management information into the NWM and comparing the new results with the actual operational forecast.
Real-Time Very High-Resolution Regional 4D Assimilation in Supporting CRYSTAL-FACE Experiment
NASA Technical Reports Server (NTRS)
Wang, Donghai; Minnis, Patrick
2004-01-01
To better understand tropical cirrus cloud physical properties and formation processes with a view toward the successful modeling of the Earth's climate, the CRYSTAL-FACE (Cirrus Regional Study of Tropical Anvils and Cirrus Layers - Florida Area Cirrus Experiment) field experiment took place over southern Florida from 1 July to 29 July 2002. During the entire field campaign, a very high-resolution numerical weather prediction (NWP) and assimilation system was performed in support of the mission with supercomputing resources provided by NASA Center for Computational Sciences (NCCS). By using NOAA NCEP Eta forecast for boundary conditions and as a first guess for initial conditions assimilated with all available observations, two nested 15/3 km grids are employed over the CRYSTAL-FACE experiment area. The 15-km grid covers the southeast US domain, and is run two times daily for a 36-hour forecast starting at 0000 UTC and 1200 UTC. The nested 3-km grid covering only southern Florida is used for 9-hour and 18-hour forecasts starting at 1500 and 0600 UTC, respectively. The forecasting system provided more accurate and higher spatial and temporal resolution forecasts of 4-D atmospheric fields over the experiment area than available from standard weather forecast models. These forecasts were essential for flight planning during both the afternoon prior to a flight day and the morning of a flight day. The forecasts were used to help decide takeoff times and the most optimal flight areas for accomplishing the mission objectives. See more detailed products on the web site http://asd-www.larc.nasa.gov/mode/crystal. The model/assimilation output gridded data are archived on the NASA Center for Computational Sciences (NCCS) UniTree system in the HDF format at 30-min intervals for real-time forecasts or 5-min intervals for the post-mission case studies. Particularly, the data set includes the 3-D cloud fields (cloud liquid water, rain water, cloud ice, snow and graupe/hail).
Using the SPoRT POES/GOES Hybrid Product in OCONUS Forecasting
NASA Technical Reports Server (NTRS)
Smith, Matt; Fuell, Kevin; Nelson, Jim
2014-01-01
The SPoRT (Short-term Prediction and Research Transition) Program at the NASA/Marshall Space Flight Center has been providing unique NASA and NOAA data and techniques to partner Weather Forecast Offices (WFOs) for ten years. Data are provided in the Decision Support System used by WFO forecasters: AWIPS. For the last couple of years, SPoRT has been producing the POES/GOES Hybrid. This suite of products combines the strength ofl5- minute animations of GOES imagery - providing temporal continuity, with the higher resolution, relatively random availability, of polar orbiting (POES) imagery data. The product was first introduced with only MODIS data from NASA's Terra and Aqua satellites, but recently the VIIRS instrument onboard the Suomi-NPP satellite was added, providing better high-resolution coverage. These products represent SPoRT's efforts to prepare for higher resolution, higher frequency GOES-R imagery - as well as helping to move VIIRS (JPSS) data into the mainstream of weather forecasting. SPoRT generates 5 products for this dataset: Visible, Longwave Infrared (11 micrometers), Shortwave IR (3.7 micrometers), Water Vapor (6.7 micrometers), and Fog (Difference of 11 micrometer and 3.7 micrometer channels). The Water Vapor hybrid product has a Red-Blue-Green image from MODIS inlaid, since it provides even more qualitative information than water vapor alone. Animated examples of the products will be shown in this presentation. While the resolution at nadir of GOES imagery is nominally Han (4km for IR channels), the inlaid polar orbiter imagery has a resolution of 250m (lkm for IR channels). This has tremendous application in the continental US. However, in high latitudes, since the usefulness of GOES degrades poleward rapidly, the contrast of GOES and POES data is stark. The consistent temporal nature of GOES, even though at a reduced resolution at high latitudes, provides basic situational awareness, but the introduction of polar data is very helpful in seeing the big picture with clarity - even if only briefly. This presentation will offer real situations where these products helped forecasters make better informed decisions quickly. Plans to augment the product further with the addition of data from several A VHRR instruments will be described.
Stochastic Convection Parameterizations
NASA Technical Reports Server (NTRS)
Teixeira, Joao; Reynolds, Carolyn; Suselj, Kay; Matheou, Georgios
2012-01-01
computational fluid dynamics, radiation, clouds, turbulence, convection, gravity waves, surface interaction, radiation interaction, cloud and aerosol microphysics, complexity (vegetation, biogeochemistry, radiation versus turbulence/convection stochastic approach, non-linearities, Monte Carlo, high resolutions, large-Eddy Simulations, cloud structure, plumes, saturation in tropics, forecasting, parameterizations, stochastic, radiation-clod interaction, hurricane forecasts
Applications of Machine Learning to Downscaling and Verification
NASA Astrophysics Data System (ADS)
Prudden, R.
2017-12-01
Downscaling, sometimes known as super-resolution, means converting model data into a more detailed local forecast. It is a problem which could be highly amenable to machine learning approaches, provided that sufficient historical forecast data and observations are available. It is also closely linked to the subject of verification, since improving a forecast requires a way to measure that improvement. This talk will describe some early work towards downscaling Met Office ensemble forecasts, and discuss how the output may be usefully evaluated.
How Strong is the Case for Geostationary Hyperspectral Sounders?
NASA Astrophysics Data System (ADS)
Kirk-Davidoff, D. B.; Liu, Z.; Jensen, S.; Housley, E.
2014-12-01
The NASA GIFTS program designed and constructed a flight-ready hyperspectral infrared sounder for geostationary orbit. Efforts are now underway to launch a constellation of similar instruments. Salient characteristics included 4 km spatial resolution at nadir and 0.6 cm-1 spectral resolution in two infrared bands. Observing system experiments have demonstrated the success of assimilated hyperspectral infrared radiances from IASI and AIRS in improving weather forecast skill. These results provide circumstantial evidence that additional observations at higher spatial and temporal resolution would likely improve forecast skill further. However, there is only limited work investigating the magnitude of this skill improvement in the literature. Here we present a systematic program to quantify the additional skill of a constellation of geostationary hyperspectral sounders through observing system simulation experiments (OSSEs) using the WRF model and the WRFDA data assimilation system. The OSSEs will focus first on high-impact events, such as the forecast for Typhoon Haiyun, but will also address quotidian synoptic forecast skill. The focus will be on short-term forecast skill (<24 hours lead time), in accord with WRF's mesoscale design, and with the view that high time frequency observations are likely to make the biggest impact on the skill of short-range forecasts. The experiments will use as their starting point the full existing observational suite, so that additionality can be addressed, but will also consider contingencies, such as the loss of particular elements of the existing system, as well as the degree to which a stand-alone system of hyperspectral sounds would be able to successfully initialize a regional forecast model. A variety of settings, tropical and extratropical, marine and continental will be considered.
NASA Astrophysics Data System (ADS)
Krietemeyer, Andreas; ten Veldhuis, Marie-claire; van de Giesen, Nick
2017-04-01
Recent research has shown that assimilation of Precipitable Water Vapor (PWV) measurements into numerical weather predictions models improve the quality of rainfall now- and forecasting. Local PWV fluctuations may be related with water vapor increases in the lower troposphere which lead to deep convection. Prior studies show that about 20 minutes before rain occurs, the amount of water vapor in the atmosphere at 1 km height increases. Monitoring the small-scale temporal and spatial variability of PWV is therefore crucial to improve the weather now- and forecasting for convective storms, that are typically critical for urban stormwater systems. One established technique to obtain PWV measurements in the atmosphere is to exploit signal delays from GNSS satellites to dual-frequency receivers on the ground. Existing dual-frequency receiver networks typically have inter-station distances in the order of tens of kilometers, which is not sufficiently dense to capture the small-scale PWV variations. In this study, we will add low-cost, single-frequency GNSS receivers to an existing dual-frequency receiver network to obtain an inter-station distance of about 1 km in the Rotterdam area (Netherlands). The aim is to investigate the spatial variability of PWV in the atmosphere at this scale. We use the surrounding dual-frequency network (distributed over a radius of approximately 25 km) to apply an ionospheric delay model that accounts for the delay in the ionosphere (50-1000 km altitude) that cannot be eliminated by single-frequency receivers. The results are validated by co-aligning a single-frequency receiver to a dual-frequency receiver. In the next steps, we will investigate how the high temporal and increased spatial resolution network can help to improve high-resolution rainfall forecasts. Their supposed improved forecasting results will be evaluated based on high-resolution rainfall estimates from a polarimetric X-band rainfall radar installed in the city of Rotterdam.
NASA Astrophysics Data System (ADS)
Mel, Riccardo; Lionello, Piero
2014-05-01
Advantages of an ensemble prediction forecast (EPF) technique that has been used for sea level (SL) prediction at the Northern Adriatic coast are investigated. The aims is to explore whether EPF is more precise than the traditional Deterministic Forecast (DF) and the value of the added information, mainly on forecast uncertainty. Improving the SL forecast for the city of Venice is of paramount importance for the management and maintenance of this historical city and for operating the movable barriers that are presently being built for its protection. The operational practice is simulated for three months from 1st October to 31st December 2010. The EPF is based on the HYPSE model, which is a standard single-layer nonlinear shallow water model, whose equations are derived from the depth averaged momentum equations and predicts the SL. A description of the model is available in the scientific literature. Forcing of HYPSE are provided by three different sets of 3-hourly ECMWF 10m-wind and MSLP fields: the high resolution meteorological forecast (which is used for the deterministic SL forecast, DF), the control run forecast (CRF, that differs from the DF forecast only for it lower meteorological fields resolution) and the 50 ensemble members of the ECMWF EPS (which are used for the SL-EPS. The resolution of DF fields is T1279 and resolution of both CRF and ECMWF EPS fields is T639 resolution. The 10m wind and MSLP fields have been downloaded at 0.125degs (DF) and 0.25degs(CRF and EPS) and linearly interpolated to the HYPSE grid (which is the same for all simulations). The version of HYPSE used in the SR EPS uses a rectangular mesh grid of variable size, which has the minimum grid step (0.03 degrees) in the northern part of the Adriatic Sea, from where grid step increases with a 1.01 factor in both latitude and longitude (In practice, resolution varies in the range from 3.3 to 7km). Results are analyzed considering the EPS spread, the rms of the simulations, the Brier Skill Score and are compared to observations at tide gauges distributed along the Croatian and Italian coast of the Adriatic Sea. It is shown that the ensemble spread is indeed a reliable indicator of the uncertainty of the storm surge prediction. Further, results show how uncertainty depends on the predicted value of sea level and how it increases with the forecast time range. The accuracy of the ensemble mean forecast is actually larger than that of the deterministic forecast, though the latter is produced by meteorological forcings at higher resolution
GEOS S2S-2_1: GMAO's New High Resolution Seasonal Prediction System
NASA Technical Reports Server (NTRS)
Molod, Andrea; Akella, Santha; Andrews, Lauren; Barahona, Donifan; Borovikov, Anna; Chang, Yehui; Cullather, Richard; Hackert, Eric; Kovach, Robin; Koster, Randal;
2017-01-01
A new version of the modeling and analysis system used to produce sub-seasonal to seasonal forecasts has just been released by the NASA Goddard Global Modeling and Assimilation Office. The new version runs at higher atmospheric resolution (approximately 12 degree globally), contains a substantially improved model description of the cryosphere, and includes additional interactive earth system model components (aerosol model). In addition, the Ocean data assimilation system has been replaced with a Local Ensemble Transform Kalman Filter. Here will describe the new system, along with the plans for the future (GEOS S2S-3_0) which will include a higher resolution ocean model and more interactive earth system model components (interactive vegetation, biomass burning from fires). We will also present results from a free-running coupled simulation with the new system and results from a series of retrospective seasonal forecasts. Results from retrospective forecasts show significant improvements in surface temperatures over much of the northern hemisphere and a much improved prediction of sea ice extent in both hemispheres. The precipitation forecast skill is comparable to previous S2S systems, and the only trade off is an increased double ITCZ, which is expected as we go to higher atmospheric resolution.
GEOS S2S-2_1: The GMAO new high resolution Seasonal Prediction System
NASA Astrophysics Data System (ADS)
Molod, A.; Vikhliaev, Y. V.; Hackert, E. C.; Kovach, R. M.; Zhao, B.; Cullather, R. I.; Marshak, J.; Borovikov, A.; Li, Z.; Barahona, D.; Andrews, L. C.; Chang, Y.; Schubert, S. D.; Koster, R. D.; Suarez, M.; Akella, S.
2017-12-01
A new version of the modeling and analysis system used to produce subseasonalto seasonal forecasts has just been released by the NASA/Goddard GlobalModeling and Assimilation Office. The new version runs at higher atmospheric resolution (approximately 1/2 degree globally), contains a subtantially improvedmodel description of the cryosphere, and includes additional interactive earth system model components (aerosol model). In addition, the Ocean data assimilationsystem has been replaced with a Local Ensemble Transform Kalman Filter.Here will describe the new system, along with the plans for the future (GEOS S2S-3_0) which will include a higher resolution ocean model and more interactive earth system model components (interactive vegetation, biomass burning from fires). We will alsopresent results from a free-running coupled simulation with the new system and resultsfrom a series of retrospective seasonal forecasts.Results from retrospective forecasts show significant improvements in surface temperaturesover much of the northern hemisphere and a much improved prediction of sea ice extent in bothhemispheres. The precipitation forecast skill is comparable to previous S2S systems, andthe only tradeoff is an increased "double ITCZ", which is expected as we go to higher atmospheric resolution.
The 4th order GISS model of the global atmosphere
NASA Technical Reports Server (NTRS)
Kalnay-Rivas, E.; Bayliss, A.; Storch, J.
1977-01-01
The new GISS 4th order model of the global atmosphere is described. It is based on 4th order quadratically conservative differences with the periodic application of a 16th order filter on the sea level pressure and potential temperature equations, a combination which is approximately enstrophy conserving. Several short range forecasts indicate a significant improvement over 2nd order forecasts with the same resolution (approximately 400 km). However the 4th order forecasts are somewhat inferior to 2nd order forecasts with double resolution. This is probably due to the presence of short waves in the range between 1000 km and 2000 km, which are computed more accurately by the 2nd order high resolution model. An operation count of the schemes indicates that with similar code optimization, the 4th order model will require approximately the same amount of computer time as the 2nd order model with the same resolution. It is estimated that the 4th order model with a grid size of 200 km provides enough accuracy to make horizontal truncation errors negligible over a period of a week for all synoptic scales (waves longer than 1000 km).
NASA Astrophysics Data System (ADS)
Federico, S.; Avolio, E.; Bellecci, C.; Colacino, M.; Walko, R. L.
2006-03-01
This paper reports preliminary results for a Limited area model Ensemble Prediction System (LEPS), based on RAMS (Regional Atmospheric Modelling System), for eight case studies of moderate-intense precipitation over Calabria, the southernmost tip of the Italian peninsula. LEPS aims to transfer the benefits of a probabilistic forecast from global to regional scales in countries where local orographic forcing is a key factor to force convection. To accomplish this task and to limit computational time in an operational implementation of LEPS, we perform a cluster analysis of ECMWF-EPS runs. Starting from the 51 members that form the ECMWF-EPS we generate five clusters. For each cluster a representative member is selected and used to provide initial and dynamic boundary conditions to RAMS, whose integrations generate LEPS. RAMS runs have 12-km horizontal resolution. To analyze the impact of enhanced horizontal resolution on quantitative precipitation forecasts, LEPS forecasts are compared to a full Brute Force (BF) ensemble. This ensemble is based on RAMS, has 36 km horizontal resolution and is generated by 51 members, nested in each ECMWF-EPS member. LEPS and BF results are compared subjectively and by objective scores. Subjective analysis is based on precipitation and probability maps of case studies whereas objective analysis is made by deterministic and probabilistic scores. Scores and maps are calculated by comparing ensemble precipitation forecasts against reports from the Calabria regional raingauge network. Results show that LEPS provided better rainfall predictions than BF for all case studies selected. This strongly suggests the importance of the enhanced horizontal resolution, compared to ensemble population, for Calabria for these cases. To further explore the impact of local physiographic features on QPF (Quantitative Precipitation Forecasting), LEPS results are also compared with a 6-km horizontal resolution deterministic forecast. Due to local and mesoscale forcing, the high resolution forecast (Hi-Res) has better performance compared to the ensemble mean for rainfall thresholds larger than 10mm but it tends to overestimate precipitation for lower amounts. This yields larger false alarms that have a detrimental effect on objective scores for lower thresholds. To exploit the advantages of a probabilistic forecast compared to a deterministic one, the relation between the ECMWF-EPS 700 hPa geopotential height spread and LEPS performance is analyzed. Results are promising even if additional studies are required.
Hydrological Applications of a High-Resolution Radar Precipitation Data Base for Sweden
NASA Astrophysics Data System (ADS)
Olsson, Jonas; Berg, Peter; Norin, Lars; Simonsson, Lennart
2017-04-01
There is an increasing need for high-resolution observations of precipitation on local, regional, national and even continental level. Urbanization and other environmental changes often make societies more vulnerable to intense short-duration rainfalls (cloudbursts) and their consequences in terms of e.g. flooding and landslides. Impact and forecasting models of these hazards put very high demands on the rainfall input in terms of both resolution and accuracy. Weather radar systems obviously have a great potential in this context, but also limitations with respect to e.g. conversion algorithms and various error sources that may have a significant impact on the subsequent hydrological modelling. In Sweden, the national weather radar network has been in operation for nearly three decades, but until recently the hydrological applications have been very limited. This is mainly because of difficulties in managing the different errors and biases in the radar precipitation product, which made it hard to demonstrate any distinct added value as compared with gauge-based precipitation products. In the last years, however, in light of distinct progress in developing error correction procedures, substantial efforts have been made to develop a national gauge-adjusted radar precipitation product - HIPRAD (High-Resolution Precipitation from Gauge-Adjusted Weather Radar). In HIPRAD, the original radar precipitation data are scaled to match the monthly accumulations in a national grid (termed PTHBV) created by optimal interpolation of corrected daily gauge observations, with the intention to attain both a high spatio-temporal resolution and accurate long-term accumulations. At present, HIPRAD covers the period 2000-present with resolutions 15 min and 2×2 km2. A key motivation behind the development of HIPRAD is the intention to increase the temporal resolution in the national flood forecasting system from 1 day to 1 hour. Whereas a daily time step is sufficient to describe the rainfall-runoff process in large, slow river basins, which traditionally has been the main focus in the national forecasting, an hourly time step (or preferably even shorter) is required to simulate the flow in fast-responding basins. At the daily scale, the PTHBV product is used for model initialization prior to the forecasts but with its daily resolution it is not applicable at the hourly scale. For this purpose, a real-time version of HIPRAD has been developed which is currently running operationally. HIPRAD is also being used for historical simulations with an hourly time step, which is important for e.g. water quality assessment. Finally, we will use HIPRAD to gain an improved knowledge of the short-duration precipitation climate in Sweden. Currently there are many open issues with respect to e.g. geographical differences, spatial correlations and areal extremes. Here we will show and discuss selected results from the ongoing development and validation of HIPRAD as well as its various applications for hydrological forecasting and risk assessment. Further, web resources containing radar-based observation and forecasting for hydrological applications will be demonstrated. Finally, some future research directions will be outlined. Fast responding hydrological catchments require fine spatial and temporal resolution of the precipitation input data to provide realistic results.
NASA Technical Reports Server (NTRS)
Case, Jonathan L.; Kumar, Sujay V.; Santos, Pablo; Medlin, Jeffrey M.; Jedlovec, Gary J.
2009-01-01
One of the most challenging weather forecast problems in the southeastern U.S. is daily summertime pulse convection. During the summer, atmospheric flow and forcing are generally weak in this region; thus, convection typically initiates in response to local forcing along sea/lake breezes, and other discontinuities often related to horizontal gradients in surface heating rates. Numerical simulations of pulse convection usually have low skill, even in local predictions at high resolution, due to the inherent chaotic nature of these precipitation systems. Forecast errors can arise from assumptions within physics parameterizations, model resolution limitations, as well as uncertainties in both the initial state of the atmosphere and land surface variables such as soil moisture and temperature. For this study, it is hypothesized that high-resolution, consistent representations of surface properties such as soil moisture and temperature, ground fluxes, and vegetation are necessary to better simulate the interactions between the land surface and atmosphere, and ultimately improve predictions of local circulations and summertime pulse convection. The NASA Short-term Prediction Research and Transition (SPORT) Center has been conducting studies to examine the impacts of high-resolution land surface initialization data generated by offline simulations of the NASA Land Informatiot System (LIS) on subsequent numerical forecasts using the Weather Research and Forecasting (WRF) model (Case et al. 2008, to appear in the Journal of Hydrometeorology). Case et al. presents improvements to simulated sea breezes and surface verification statistics over Florida by initializing WRF with land surface variables from an offline LIS spin-up run, conducted on the exact WRF domain and resolution. The current project extends the previous work over Florida, focusing on selected case studies of typical pulse convection over the southeastern U.S., with an emphasis on improving local short-term WRF simulations over the Mobile, AL and Miami, FL NWS county warning areas. Future efforts may involve examining the impacts of assimilating remotely-sensed soil moisture data, and/or introducing weekly greenness vegetation fraction composites (as opposed to monthly climatologies) into ol'fline NASA LIS runs. Based on positive impacts, the offline LIS runs could be transitioned into an operational mode, providing land surface initialization data to NWS forecast offices in real time.
There is a growing need in the field of exposure science for monitoring methods that rapidly screen environmental media for suspect contaminants. Measurement and analysis platforms, based on high resolution mass spectrometry (HRMS), now exist to meet this need. Here we describe r...
Impact of GFZ's Effective Angular Momentum Forecasts on Polar Motion Prediction
NASA Astrophysics Data System (ADS)
Dill, Robert; Dobslaw, Henryk
2017-04-01
The Earth System Modelling group at GeoForschungsZentrum (GFZ) Potsdam offers now 6-day forecasts of Earth rotation excitation due to atmospheric, oceanic, and hydrologic angular momentum changes that are consistent with its 40 years-long EAM series. Those EAM forecasts are characterized by an improved long-term consistency due to the introduction of a time-invariant high-resolution reference topography into the AAM processing that accounts for occasional NWP model changes. In addition, all tidal signals from both atmosphere and ocean have been separated, and the temporal resolution of both AAM and OAM has been increased to 3 hours. Analysis of an extended set of EAM short-term hindcasts revealed positive prediction skills for up to 6 days into the future when compared to a persistent forecast. Whereas UT1 predictions in particular rely on an accurate AAM forecast, skillfull polar motion prediction requires high-quality OAM forecasts as well. We will present in this contribution the results from a multi-year hindcast experiment, demonstrating that the polar motion prediction as currently available from Bulletin A can be improved in particular for lead-times between 2 and 5 days by incorporating OAM forecasts. We will also report about early results obtained at Observatoire de Paris to predict polar motion from the integration of GFZ's 6-day EAM forecasts into the Liouville equation in a routine setting, that fully takes into account the operational latencies of all required input products.
JPSS application in a near real time regional numerical forecast system at CIMSS
NASA Astrophysics Data System (ADS)
Li, J.; Wang, P.; Han, H.; Zhu, F.; Schmit, T. J.; Goldberg, M.
2015-12-01
Observations from next generation of environmental sensors onboard the Suomi National Polar-Orbiting Parnership (S-NPP) and its successor, the Joint Polar Satellite System (JPSS), provide us the critical information for numerical weather forecast (NWP). How to better represent these satellite observations and how to get value added information into NWP system still need more studies. Recently scientists from Cooperative Institute of Meteorological Satellite Studies (CIMSS) at University of Wisconsin-Madison have developed a near realtime regional Satellite Data Assimilation system for Tropical storm forecasts (SDAT) (http://cimss.ssec.wisc.edu/sdat). The system is built with the community Gridpoint Statistical Interpolation (GSI) assimilation and advanced Weather Research Forecast (WRF) model. With GSI, SDAT can assimilate all operational available satellite data including GOES, AMSUA/AMSUB, HIRS, MHS, ATMS, AIRS and IASI radiances and some satellite derived products. In addition, some research products, such as hyperspectral IR retrieved temperature and moisture profiles, GOES imager atmospheric motion vector (AMV) and GOES sounder layer precipitable water (LPW), are also added into the system. Using SDAT as a research testbed, studies have been conducted to show how to improve high impact weather forecast by better handling cloud information in satellite data. Previously by collocating high spatial resolution MODIS data with hyperspectral resolution AIRS data, precise clear pixels of AIRS can be identified and some partially or thin cloud contamination from pixels can be removed by taking advantage of high spatial resolution and high accurate MODIS cloud information. The results have demonstrated that both of these strategies have greatly improved the hurricane track and intensity forecast. We recently have extended these methodologies into processing CrIS/VIIRS data. We also tested similar ideas in microwave sounders by the collocation of AMSU/MODIS and ATMS/VIIRS data. The experiments along with other SDAT progresses will be presented in the meeting.
NASA Technical Reports Server (NTRS)
Zavodsky, Bradley T.; Case, Jonathan L.; Molthan, Andrew L.
2012-01-01
The Short-term Prediction Research and Transition (SPoRT) Center is a collaborative partnership between NASA and operational forecasting partners, including a number of National Weather Service forecast offices. SPoRT provides real-time NASA products and capabilities to help its partners address specific operational forecast challenges. One challenge that forecasters face is using guidance from local and regional deterministic numerical models configured at convection-allowing resolution to help assess a variety of mesoscale/convective-scale phenomena such as sea-breezes, local wind circulations, and mesoscale convective weather potential on a given day. While guidance from convection-allowing models has proven valuable in many circumstances, the potential exists for model improvements by incorporating more representative land-water surface datasets, and by assimilating retrieved temperature and moisture profiles from hyper-spectral sounders. In order to help increase the accuracy of deterministic convection-allowing models, SPoRT produces real-time, 4-km CONUS forecasts using a configuration of the Weather Research and Forecasting (WRF) model (hereafter SPoRT-WRF) that includes unique NASA products and capabilities including 4-km resolution soil initialization data from the Land Information System (LIS), 2-km resolution SPoRT SST composites over oceans and large water bodies, high-resolution real-time Green Vegetation Fraction (GVF) composites derived from the Moderate-resolution Imaging Spectroradiometer (MODIS) instrument, and retrieved temperature and moisture profiles from the Atmospheric Infrared Sounder (AIRS) and Infrared Atmospheric Sounding Interferometer (IASI). NCAR's Model Evaluation Tools (MET) verification package is used to generate statistics of model performance compared to in situ observations and rainfall analyses for three months during the summer of 2012 (June-August). Detailed analyses of specific severe weather outbreaks during the summer will be presented to assess the potential added-value of the SPoRT datasets and data assimilation methodology compared to a WRF configuration without the unique datasets and data assimilation.
Use of High-Resolution WRF Simulations to Forecast Lightning Threat
NASA Technical Reports Server (NTRS)
McCaul, E. W., Jr.; LaCasse, K.; Goodman, S. J.; Cecil, D. J.
2008-01-01
Recent observational studies have confirmed the existence of a robust statistical relationship between lightning flash rates and the amount of large precipitating ice hydrometeors aloft in storms. This relationship is exploited, in conjunction with the capabilities of cloud-resolving forecast models such as WRF, to forecast explicitly the threat of lightning from convective storms using selected output fields from the model forecasts. The simulated vertical flux of graupel at -15C and the shape of the simulated reflectivity profile are tested in this study as proxies for charge separation processes and their associated lightning risk. Our lightning forecast method differs from others in that it is entirely based on high-resolution simulation output, without reliance on any climatological data. short [6-8 h) simulations are conducted for a number of case studies for which three-dmmensional lightning validation data from the North Alabama Lightning Mapping Array are available. Experiments indicate that initialization of the WRF model on a 2 km grid using Eta boundary conditions, Doppler radar radial velocity fields, and METAR and ACARS data y&eld satisfactory simulations. __nalyses of the lightning threat fields suggests that both the graupel flux and reflectivity profile approaches, when properly calibrated, can yield reasonable lightning threat forecasts, although an ensemble approach is probably desirable in order to reduce the tendency for misplacement of modeled storms to hurt the accuracy of the forecasts. Our lightning threat forecasts are also compared to other more traditional means of forecasting thunderstorms, such as those based on inspection of the convective available potential energy field.
NASA Astrophysics Data System (ADS)
Jedlovec, G.; Molthan, A.; Zavodsky, B.; Case, J.; Lafontaine, F.
2010-12-01
The NASA Short-term Prediction Research and Transition (SPoRT) Center focuses on the transition of unique observations and research capabilities to the operational weather community, with a goal of improving short-term forecasts on a regional scale. Advances in research computing have lead to “Climate in a Box” systems, with hardware configurations capable of producing high resolution, near real-time weather forecasts, but with footprints, power, and cooling requirements that are comparable to desktop systems. The SPoRT Center has developed several capabilities for incorporating unique NASA research capabilities and observations with real-time weather forecasts. Planned utilization includes the development of a fully-cycled data assimilation system used to drive 36-48 hour forecasts produced by the NASA Unified version of the Weather Research and Forecasting (WRF) model (NU-WRF). The horsepower provided by the “Climate in a Box” system is expected to facilitate the assimilation of vertical profiles of temperature and moisture provided by the Atmospheric Infrared Sounder (AIRS) aboard the NASA Aqua satellite. In addition, the Moderate Resolution Imaging Spectroradiometer (MODIS) instruments aboard NASA’s Aqua and Terra satellites provide high-resolution sea surface temperatures and vegetation characteristics. The development of MODIS normalized difference vegetation index (NVDI) composites for use within the NASA Land Information System (LIS) will assist in the characterization of vegetation, and subsequently the surface albedo and processes related to soil moisture. Through application of satellite simulators, NASA satellite instruments can be used to examine forecast model errors in cloud cover and other characteristics. Through the aforementioned application of the “Climate in a Box” system and NU-WRF capabilities, an end goal is the establishment of a real-time forecast system that fully integrates modeling and analysis capabilities developed within the NASA SPoRT Center, with benefits provided to the operational forecasting community.
NASA Technical Reports Server (NTRS)
Jedlovec, Gary J.; Molthan, Andrew L.; Zavodsky, Bradley; Case, Jonathan L.; LaFontaine, Frank J.
2010-01-01
The NASA Short-term Prediction Research and Transition (SPoRT) Center focuses on the transition of unique observations and research capabilities to the operational weather community, with a goal of improving short-term forecasts on a regional scale. Advances in research computing have lead to "Climate in a Box" systems, with hardware configurations capable of producing high resolution, near real-time weather forecasts, but with footprints, power, and cooling requirements that are comparable to desktop systems. The SPoRT Center has developed several capabilities for incorporating unique NASA research capabilities and observations with real-time weather forecasts. Planned utilization includes the development of a fully-cycled data assimilation system used to drive 36-48 hour forecasts produced by the NASA Unified version of the Weather Research and Forecasting (WRF) model (NU-WRF). The horsepower provided by the "Climate in a Box" system is expected to facilitate the assimilation of vertical profiles of temperature and moisture provided by the Atmospheric Infrared Sounder (AIRS) aboard the NASA Aqua satellite. In addition, the Moderate Resolution Imaging Spectroradiometer (MODIS) instruments aboard NASA s Aqua and Terra satellites provide high-resolution sea surface temperatures and vegetation characteristics. The development of MODIS normalized difference vegetation index (NVDI) composites for use within the NASA Land Information System (LIS) will assist in the characterization of vegetation, and subsequently the surface albedo and processes related to soil moisture. Through application of satellite simulators, NASA satellite instruments can be used to examine forecast model errors in cloud cover and other characteristics. Through the aforementioned application of the "Climate in a Box" system and NU-WRF capabilities, an end goal is the establishment of a real-time forecast system that fully integrates modeling and analysis capabilities developed within the NASA SPoRT Center, with benefits provided to the operational forecasting community.
Using High Resolution Model Data to Improve Lightning Forecasts across Southern California
NASA Astrophysics Data System (ADS)
Capps, S. B.; Rolinski, T.
2014-12-01
Dry lightning often results in a significant amount of fire starts in areas where the vegetation is dry and continuous. Meteorologists from the USDA Forest Service Predictive Services' program in Riverside, California are tasked to provide southern and central California's fire agencies with fire potential outlooks. Logistic regression equations were developed by these meteorologists several years ago, which forecast probabilities of lightning as well as lightning amounts, out to seven days across southern California. These regression equations were developed using ten years of historical gridded data from the Global Forecast System (GFS) model on a coarse scale (0.5 degree resolution), correlated with historical lightning strike data. These equations do a reasonably good job of capturing a lightning episode (3-5 consecutive days or greater of lightning), but perform poorly regarding more detailed information such as exact location and amounts. It is postulated that the inadequacies in resolving the finer details of episodic lightning events is due to the coarse resolution of the GFS data, along with limited predictors. Stability parameters, such as the Lifted Index (LI), the Total Totals index (TT), Convective Available Potential Energy (CAPE), along with Precipitable Water (PW) are the only parameters being considered as predictors. It is hypothesized that the statistical forecasts will benefit from higher resolution data both in training and implementing the statistical model. We have dynamically downscaled NCEP FNL (Final) reanalysis data using the Weather Research and Forecasting model (WRF) to 3km spatial and hourly temporal resolution across a decade. This dataset will be used to evaluate the contribution to the success of the statistical model of additional predictors in higher vertical, spatial and temporal resolution. If successful, we will implement an operational dynamically downscaled GFS forecast product to generate predictors for the resulting statistical lightning model. This data will help fire agencies be better prepared to pre-deploy resources in advance of these events. Specific information regarding duration, amount, and location will be especially valuable.
NASA Astrophysics Data System (ADS)
Pinson, Pierre
2016-04-01
The operational management of renewable energy generation in power systems and electricity markets requires forecasts in various forms, e.g., deterministic or probabilistic, continuous or categorical, depending upon the decision process at hand. Besides, such forecasts may also be necessary at various spatial and temporal scales, from high temporal resolutions (in the order of minutes) and very localized for an offshore wind farm, to coarser temporal resolutions (hours) and covering a whole country for day-ahead power scheduling problems. As of today, weather predictions are a common input to forecasting methodologies for renewable energy generation. Since for most decision processes, optimal decisions can only be made if accounting for forecast uncertainties, ensemble predictions and density forecasts are increasingly seen as the product of choice. After discussing some of the basic approaches to obtaining ensemble forecasts of renewable power generation, it will be argued that space-time trajectories of renewable power production may or may not be necessitate post-processing ensemble forecasts for relevant weather variables. Example approaches and test case applications will be covered, e.g., looking at the Horns Rev offshore wind farm in Denmark, or gridded forecasts for the whole continental Europe. Eventually, we will illustrate some of the limitations of current frameworks to forecast verification, which actually make it difficult to fully assess the quality of post-processing approaches to obtain renewable energy predictions.
Quasi-most unstable modes: a window to 'À la carte' ensemble diversity?
NASA Astrophysics Data System (ADS)
Homar Santaner, Victor; Stensrud, David J.
2010-05-01
The atmospheric scientific community is nowadays facing the ambitious challenge of providing useful forecasts of atmospheric events that produce high societal impact. The low level of social resilience to false alarms creates tremendous pressure on forecasting offices to issue accurate, timely and reliable warnings.Currently, no operational numerical forecasting system is able to respond to the societal demand for high-resolution (in time and space) predictions in the 12-72h time span. The main reasons for such deficiencies are the lack of adequate observations and the high non-linearity of the numerical models that are currently used. The whole weather forecasting problem is intrinsically probabilistic and current methods aim at coping with the various sources of uncertainties and the error propagation throughout the forecasting system. This probabilistic perspective is often created by generating ensembles of deterministic predictions that are aimed at sampling the most important sources of uncertainty in the forecasting system. The ensemble generation/sampling strategy is a crucial aspect of their performance and various methods have been proposed. Although global forecasting offices have been using ensembles of perturbed initial conditions for medium-range operational forecasts since 1994, no consensus exists regarding the optimum sampling strategy for high resolution short-range ensemble forecasts. Bred vectors, however, have been hypothesized to better capture the growing modes in the highly nonlinear mesoscale dynamics of severe episodes than singular vectors or observation perturbations. Yet even this technique is not able to produce enough diversity in the ensembles to accurately and routinely predict extreme phenomena such as severe weather. Thus, we propose a new method to generate ensembles of initial conditions perturbations that is based on the breeding technique. Given a standard bred mode, a set of customized perturbations is derived with specified amplitudes and horizontal scales. This allows the ensemble to excite growing modes across a wider range of scales. Results show that this approach produces significantly more spread in the ensemble prediction than standard bred modes alone. Several examples that illustrate the benefits from this approach for severe weather forecasts will be provided.
James, Eric P.; Benjamin, Stanley G.; Marquis, Melinda
2016-10-28
A new gridded dataset for wind and solar resource estimation over the contiguous United States has been derived from hourly updated 1-h forecasts from the National Oceanic and Atmospheric Administration High-Resolution Rapid Refresh (HRRR) 3-km model composited over a three-year period (approximately 22 000 forecast model runs). The unique dataset features hourly data assimilation, and provides physically consistent wind and solar estimates for the renewable energy industry. The wind resource dataset shows strong similarity to that previously provided by a Department of Energy-funded study, and it includes estimates in southern Canada and northern Mexico. The solar resource dataset represents anmore » initial step towards application-specific fields such as global horizontal and direct normal irradiance. This combined dataset will continue to be augmented with new forecast data from the advanced HRRR atmospheric/land-surface model.« less
Local short-duration precipitation extremes in Sweden: observations, forecasts and projections
NASA Astrophysics Data System (ADS)
Olsson, Jonas; Berg, Peter; Simonsson, Lennart
2015-04-01
Local short-duration precipitation extremes (LSPEs) are a key driver of hydrological hazards, notably in steep catchments with thin soils and in urban environments. The triggered floodings, landslides, etc., have large consequences for society in terms of both economy and health. Accurate estimations of LSPEs on both climatological time-scales (past, present, future) and in real-time is thus of great importance for improved hydrological predictions as well as design of constructions and infrastructure affected by hydrological fluxes. Analysis of LSPEs is, however, associated with various limitations and uncertainties. These are to a large degree associated with the small-scale nature of the meteorological processes behind LSPEs and the associated requirements on observation sensors as well as model descriptions. Some examples of causes for the limitations involved are given in the following. - Observations: High-resolution data sets available for LSPE analyses are often limited to either relatively long series from one or a few stations or relatively short series from larger station networks. Radar data have excellent resolutions in both time and space but the estimated local precipitation intensity is still highly uncertain. New and promising techniques (e.g. microwave links) are still in their infancy. - Weather forecasts (short-range): Although forecasts with the required spatial resolution for potential generation of LSPEs (around 2-4 km) are becoming operationally available, the actual forecast precision of LSPEs is largely unknown. Forecasted LSPEs may be displaced in time or, more critically, in space which strongly affects the possibility to assess hydrological risk. - Climate projections: The spatial resolution of the current RCM generation (around 25 km) is not sufficient for proper description of LSPEs. Statistical post-processing (i.e. downscaling) is required which adds substantial uncertainty to the final result. Ensemble generation of sufficiently high-resolution RCM projections is not yet computationally feasible. In this presentation, examples of recent research in Sweden related to these aspects will be given with some main findings shown and discussed. Finally, some ongoing and future research directions will be outlined (the former hopefully accompanied by some brand-new results).
Impacts of high resolution model downscaling in coastal regions
NASA Astrophysics Data System (ADS)
Bricheno, Lucy; Wolf, Judith
2013-04-01
With model development and cheaper computational resources ocean forecasts are becoming readily available, high resolution coastal forecasting is now a reality. This can only be achieved, however, by downscaling global or basin-scale products such as the MyOcean reanalyses and forecasts. These model products have resolution ranging from 1/16th - 1/4 degree, which are often insufficient for coastal scales, but can provide initialisation and boundary data. We present applications of downscaling the MyOcean products for use in shelf-seas and the nearshore. We will address the question 'Do coastal predictions improve with higher resolution modelling?' with a few focused examples, while also discussing what is meant by an improved result. Increasing resolution appears to be an obvious route for getting more accurate forecasts in operational coastal models. However, when models resolve finer scales, this may lead to the introduction of high-frequency variability which is not necessarily deterministic. Thus a flow may appear more realistic by generating eddies but the simple statistics like rms error and correlation may become less good because the model variability is not exactly in phase with the observations (Hoffman et al., 1995). By deciding on a specific process to simulate (rather than concentrating on reducing rms error) we can better assess the improvements gained by downscaling. In this work we will select two processes which are dominant in our case-study site: Liverpool Bay. Firstly we consider the magnitude and timing of a peak in tide-surge elevations, by separating out the event into timing (or displacement) and intensity (or amplitude) errors. The model can thus be evaluated on how well it predicts the timing and magnitude of the surge. The second important characteristic of Liverpool Bay is the position of the freshwater front. To evaluate model performance in this case, the location, sharpness, and temperature difference across the front will be considered. We will show that by using intelligent metrics designed with a physical process in mind, we can learn more about model performance than by considering 'bulk' statistics alone. R. M. Hoffman and Z. Liu and J-F. Louic and C. Grassotti (1995) 'Distortion Representation of Forecast Errors' Monthly Weather Review 123: 2758-2770
Improving Flood Forecasting in International River Basins
NASA Astrophysics Data System (ADS)
Hossain, Faisal; Katiyar, Nitin
2006-01-01
In flood-prone international river basins (IRBs), many riparian nations that are located close to a basin's outlet face a major problem in effectively forecasting flooding because they are unable to assimilate in situ rainfall data in real time across geopolitical boundaries. NASA's proposed Global Precipitation Measurement (GPM) mission, which is expected to begin in 2010, will comprise high-resolution passive microwave (PM) sensors (at resolution ~3-6 hours, 10 × 10 square kilometers) that may provide new opportunities to improve flood forecasting in these river basins. Research is now needed to realize the potential of GPM. With adequate research in the coming years, it may be possible to identify the specific IRBs that would benefit cost-effectively from a preprogrammed satellite-based forecasting system in anticipation of GPM. Acceleration of such a research initiative is worthwhile because it could reduce the risk of the cancellation of GPM [see Zielinski, 2005].
Exploring the calibration of a wind forecast ensemble for energy applications
NASA Astrophysics Data System (ADS)
Heppelmann, Tobias; Ben Bouallegue, Zied; Theis, Susanne
2015-04-01
In the German research project EWeLiNE, Deutscher Wetterdienst (DWD) and Fraunhofer Institute for Wind Energy and Energy System Technology (IWES) are collaborating with three German Transmission System Operators (TSO) in order to provide the TSOs with improved probabilistic power forecasts. Probabilistic power forecasts are derived from probabilistic weather forecasts, themselves derived from ensemble prediction systems (EPS). Since the considered raw ensemble wind forecasts suffer from underdispersiveness and bias, calibration methods are developed for the correction of the model bias and the ensemble spread bias. The overall aim is to improve the ensemble forecasts such that the uncertainty of the possible weather deployment is depicted by the ensemble spread from the first forecast hours. Additionally, the ensemble members after calibration should remain physically consistent scenarios. We focus on probabilistic hourly wind forecasts with horizon of 21 h delivered by the convection permitting high-resolution ensemble system COSMO-DE-EPS which has become operational in 2012 at DWD. The ensemble consists of 20 ensemble members driven by four different global models. The model area includes whole Germany and parts of Central Europe with a horizontal resolution of 2.8 km and a vertical resolution of 50 model levels. For verification we use wind mast measurements around 100 m height that corresponds to the hub height of wind energy plants that belong to wind farms within the model area. Calibration of the ensemble forecasts can be performed by different statistical methods applied to the raw ensemble output. Here, we explore local bivariate Ensemble Model Output Statistics at individual sites and quantile regression with different predictors. Applying different methods, we already show an improvement of ensemble wind forecasts from COSMO-DE-EPS for energy applications. In addition, an ensemble copula coupling approach transfers the time-dependencies of the raw ensemble to the calibrated ensemble. The calibrated wind forecasts are evaluated first with univariate probabilistic scores and additionally with diagnostics of wind ramps in order to assess the time-consistency of the calibrated ensemble members.
Data center thermal management
Hamann, Hendrik F.; Li, Hongfei
2016-02-09
Historical high-spatial-resolution temperature data and dynamic temperature sensor measurement data may be used to predict temperature. A first formulation may be derived based on the historical high-spatial-resolution temperature data for determining a temperature at any point in 3-dimensional space. The dynamic temperature sensor measurement data may be calibrated based on the historical high-spatial-resolution temperature data at a corresponding historical time. Sensor temperature data at a plurality of sensor locations may be predicted for a future time based on the calibrated dynamic temperature sensor measurement data. A three-dimensional temperature spatial distribution associated with the future time may be generated based on the forecasted sensor temperature data and the first formulation. The three-dimensional temperature spatial distribution associated with the future time may be projected to a two-dimensional temperature distribution, and temperature in the future time for a selected space location may be forecasted dynamically based on said two-dimensional temperature distribution.
Using Analog Ensemble to generate spatially downscaled probabilistic wind power forecasts
NASA Astrophysics Data System (ADS)
Delle Monache, L.; Shahriari, M.; Cervone, G.
2017-12-01
We use the Analog Ensemble (AnEn) method to generate probabilistic 80-m wind power forecasts. We use data from the NCEP GFS ( 28 km resolution) and NCEP NAM (12 km resolution). We use forecasts data from NAM and GFS, and analysis data from NAM which enables us to: 1) use a lower-resolution model to create higher-resolution forecasts, and 2) use a higher-resolution model to create higher-resolution forecasts. The former essentially increases computing speed and the latter increases forecast accuracy. An aggregated model of the former can be compared against the latter to measure the accuracy of the AnEn spatial downscaling. The AnEn works by taking a deterministic future forecast and comparing it with past forecasts. The model searches for the best matching estimates within the past forecasts and selects the predictand value corresponding to these past forecasts as the ensemble prediction for the future forecast. Our study is based on predicting wind speed and air density at more than 13,000 grid points in the continental US. We run the AnEn model twice: 1) estimating 80-m wind speed by using predictor variables such as temperature, pressure, geopotential height, U-component and V-component of wind, 2) estimating air density by using predictors such as temperature, pressure, and relative humidity. We use the air density values to correct the standard wind power curves for different values of air density. The standard deviation of the ensemble members (i.e. ensemble spread) will be used as the degree of difficulty to predict wind power at different locations. The value of the correlation coefficient between the ensemble spread and the forecast error determines the appropriateness of this measure. This measure is prominent for wind farm developers as building wind farms in regions with higher predictability will reduce the real-time risks of operating in the electricity markets.
NASA Astrophysics Data System (ADS)
Pendergrass, W.; Vogel, C. A.
2013-12-01
As an outcome of discussions between Duke Energy Generation and NOAA/ARL following the 2009 AMS Summer Community Meeting, in Norman Oklahoma, ARL and Duke Energy Generation (Duke) signed a Cooperative Research and Development Agreement (CRADA) which allows NOAA to conduct atmospheric boundary layer (ABL) research using Duke renewable energy sites as research testbeds. One aspect of this research has been the evaluation of forecast hub-height winds from three NOAA atmospheric models. Forecasts of 10m (surface) and 80m (hub-height) wind speeds from (1) NOAA/GSD's High Resolution Rapid Refresh (HRRR) model, (2) NOAA/NCEP's 12 km North America Model (NAM12) and (3) NOAA/NCEP's 4k high resolution North America Model (NAM4) were evaluated against 18 months of surface-layer wind observations collected at the joint NOAA/Duke Energy research station located at Duke Energy's West Texas Ocotillo wind farm over the period April 2011 through October 2012. HRRR, NAM12 and NAM4 10m wind speed forecasts were compared with 10m level wind speed observations measured on the NOAA/ATDD flux-tower. Hub-height (80m) HRRR , NAM12 and NAM4 forecast wind speeds were evaluated against the 80m operational PMM27-28 meteorological tower supporting the Ocotillo wind farm. For each HRRR update, eight forecast hours (hour 01, 02, 03, 05, 07, 10, 12, 15) plus the initialization hour (hour 00), evaluated. For the NAM12 and NAM4 models forecast hours 00-24 from the 06z initialization were evaluated. Performance measures or skill score based on absolute error 50% cumulative probability were calculated for each forecast hour. HRRR forecast hour 01 provided the best skill score with an absolute wind speed error within 0.8 m/s of observed 10m wind speed and 1.25 m/s for hub-height wind speed at the designated 50% cumulative probability. For both NAM4 and NAM12 models, skill scores were diurnal with comparable best scores observed during the day of 0.7 m/s of observed 10m wind speed and 1.1 m/s for hub-height wind speed at the designated 50% cumulative probability level.
Automated system for smoke dispersion prediction due to wild fires in Alaska
NASA Astrophysics Data System (ADS)
Kulchitsky, A.; Stuefer, M.; Higbie, L.; Newby, G.
2007-12-01
Community climate models have enabled development of specific environmental forecast systems. The University of Alaska (UAF) smoke group was created to adapt a smoke forecast system to the Alaska region. The US Forest Service (USFS) Missoula Fire Science Lab had developed a smoke forecast system based on the Weather Research and Forecasting (WRF) Model including chemistry (WRF/Chem). Following the successful experience of USFS, which runs their model operationally for the contiguous U.S., we develop a similar system for Alaska in collaboration with scientists from the USFS Missoula Fire Science Lab. Wildfires are a significant source of air pollution in Alaska because the climate and vegetation favor annual summer fires that burn huge areas. Extreme cases occurred in 2004, when an area larger than Maryland (more than 25000~km2) burned. Small smoke particles with a diameter less than 10~μm can penetrate deep into lungs causing health problems. Smoke also creates a severe restriction to air transport and has tremendous economical effect. The smoke dispersion and forecast system for Alaska was developed at the Geophysical Institute (GI) and the Arctic Region Supercomputing Center (ARSC), both at University of Alaska Fairbanks (UAF). They will help the public and plan activities a few days in advance to avoid dangerous smoke exposure. The availability of modern high performance supercomputers at ARSC allows us to create and run high-resolution, WRF-based smoke dispersion forecast for the entire State of Alaska. The core of the system is a Python program that manages the independent pieces. Our adapted Alaska system performs the following steps \\begin{itemize} Calculate the medium-resolution weather forecast using WRF/Met. Adapt the near real-time satellite-derived wildfire location and extent data that are received via direct broadcast from UAF's "Geographic Information Network of Alaska" (GINA) Calculate fuel moisture using WRF forecasts and National Fire Danger Rating System (NFDRS) fuel maps Calculate smoke emission components using a first order fire emission model Model the smoke plume rise yielding a vertically distribution that accounts for one-dimensional (vertical) concentrations of smoke constituents in the atmosphere above the fire Run WRF/Chem at high resolution for the forecast Use standard graphical tools to provide accessible smoke dispersion The system run twice each day at ARSC. The results will be freely available from a dedicated wildfire smoke web portal at ARSC.
Water Management Applications of Advanced Precipitation Products
NASA Astrophysics Data System (ADS)
Johnson, L. E.; Braswell, G.; Delaney, C.
2012-12-01
Advanced precipitation sensors and numerical models track storms as they occur and forecast the likelihood of heavy rain for time frames ranging from 1 to 8 hours, 1 day, and extended outlooks out to 3 to 7 days. Forecast skill decreases at the extended time frames but the outlooks have been shown to provide "situational awareness" which aids in preparation for flood mitigation and water supply operations. In California the California-Nevada River Forecast Centers and local Weather Forecast Offices provide precipitation products that are widely used to support water management and flood response activities of various kinds. The Hydrometeorology Testbed (HMT) program is being conducted to help advance the science of precipitation tracking and forecasting in support of the NWS. HMT high-resolution products have found applications for other non-federal water management activities as well. This presentation will describe water management applications of HMT advanced precipitation products, and characterization of benefits expected to accrue. Two case examples will be highlighted, 1) reservoir operations for flood control and water supply, and 2) urban stormwater management. Application of advanced precipitation products in support of reservoir operations is a focus of the Sonoma County Water Agency. Examples include: a) interfacing the high-resolution QPE products with a distributed hydrologic model for the Russian-Napa watersheds, b) providing early warning of in-coming storms for flood preparedness and water supply storage operations. For the stormwater case, San Francisco wastewater engineers are developing a plan to deploy high resolution gap-filling radars looking off shore to obtain longer lead times on approaching storms. A 4 to 8 hour lead time would provide opportunity to optimize stormwater capture and treatment operations, and minimize combined sewer overflows into the Bay.ussian River distributed hydrologic model.
Using ensembles in water management: forecasting dry and wet episodes
NASA Astrophysics Data System (ADS)
van het Schip-Haverkamp, Tessa; van den Berg, Wim; van de Beek, Remco
2015-04-01
Extreme weather situations as droughts and extensive precipitation are becoming more frequent, which makes it more important to obtain accurate weather forecasts for the short and long term. Ensembles can provide a solution in terms of scenario forecasts. MeteoGroup uses ensembles in a new forecasting technique which presents a number of weather scenarios for a dynamical water management project, called Water-Rijk, in which water storage and water retention plays a large role. The Water-Rijk is part of Park Lingezegen, which is located between Arnhem and Nijmegen in the Netherlands. In collaboration with the University of Wageningen, Alterra and Eijkelkamp a forecasting system is developed for this area which can provide water boards with a number of weather and hydrology scenarios in order to assist in the decision whether or not water retention or water storage is necessary in the near future. In order to make a forecast for drought and extensive precipitation, the difference 'precipitation- evaporation' is used as a measurement of drought in the weather forecasts. In case of an upcoming drought this difference will take larger negative values. In case of a wet episode, this difference will be positive. The Makkink potential evaporation is used which gives the most accurate potential evaporation values during the summer, when evaporation plays an important role in the availability of surface water. Scenarios are determined by reducing the large number of forecasts in the ensemble to a number of averaged members with each its own likelihood of occurrence. For the Water-Rijk project 5 scenario forecasts are calculated: extreme dry, dry, normal, wet and extreme wet. These scenarios are constructed for two forecasting periods, each using its own ensemble technique: up to 48 hours ahead and up to 15 days ahead. The 48-hour forecast uses an ensemble constructed from forecasts of multiple high-resolution regional models: UKMO's Euro4 model,the ECMWF model, WRF and Hirlam. Using multiple model runs and additional post processing, an ensemble can be created from non-ensemble models. The 15-day forecast uses the ECMWF Ensemble Prediction System forecast from which scenarios can be deduced directly. A combination of the ensembles from the two forecasting periods is used in order to have the highest possible resolution of the forecast for the first 48 hours followed by the lower resolution long term forecast.
The use of a high resolution model in a private environment.
NASA Astrophysics Data System (ADS)
van Dijke, D.; Malda, D.
2009-09-01
The commercial organisation MeteoGroup uses high resolution modelling for multiple purposes. MeteoGroup uses the Weather Research and Forecasting Model (WRF®1). WRF is used in the operational environment of several MeteoGroup companies across Europe. It is also used in hindcast studies, for example hurricane tracking, wind climate computation and deriving boundary conditions for air quality models. A special operational service was set up for our tornado chasing team that uses high resolution flexible WRF data to chase for super cells and tornados in the USA during spring. Much effort is put into the development and improvement of the pre- and post-processing of the model. At MeteoGroup the static land-use data has been extended and adjusted to improve temperature and wind forecasts. The system has been modified such that sigma level input data from the global ECMWF model can be used for initialisation. By default only pressure level data could be used. During the spin-up of the model synoptical observations are nudged. A program to adjust possible initialisation errors of several surface parameters in coastal areas has been implemented. We developed an algorithm that computes cloud fractions using multiple direct model output variables. Forecasters prefer to use weather codes for their daily forecasts to detect severe weather. For this usage we developed model weather codes using a variety of direct model output and our own derived variables. 1 WRF® is a registered trademark of the University Corporation for Atmospheric Research (UCAR)
NASA Astrophysics Data System (ADS)
Massimo Rossa, Andrea; Laudanna Del Guerra, Franco; Borga, Marco; Zanon, Francesco; Settin, Tommaso; Leuenberger, Daniel
2010-05-01
Space and time scales of flash floods are such that flash flood forecasting and warning systems depend upon the accurate real-time provision of rainfall information, high-resolution numerical weather prediction (NWP) forecasts and the use of hydrological models. Currently available high-resolution NWP model models can potentially provide warning forecasters information on the future evolution of storms and their internal structure, thereby increasing convective-scale warning lead times. However, it is essential that the model be started with a very accurate representation of on-going convection, which calls for assimilation of high-resolution rainfall data. This study aims to assess the feasibility of using carefully checked radar-derived quantitative precipitation estimates (QPE) for assimilation into NWP and hydrological models. The hydrometeorological modeling chain includes the convection-permitting NWP model COSMO-2 and a hydrologic-hydraulic models built upon the concept of geomorphological transport. Radar rainfall observations are assimilated into the NWP model via the latent heat nudging method. The study is focused on 26 September 2007 extreme flash flood event which impacted the coastal area of north-eastern Italy around Venice. The hydro-meteorological modeling system is implemented over the Dese river, a 90 km2 catchment flowing to the Venice lagoon. The radar rainfall observations are carefully checked for artifacts, including beam attenuation, by means of physics-based correction procedures and comparison with a dense network of raingauges. The impact of the radar QPE in the assimilation cycle of the NWP model is very significant, in that the main individual organized convective systems were successfully introduced into the model state, both in terms of timing and localization. Also, incorrectly localized precipitation in the model reference run without rainfall assimilation was correctly reduced to about the observed levels. On the other hand, the highest rainfall intensities were underestimated by 20% at a scale of 1000 km2, and the local peaks by 50%. The positive impact of the assimilated radar rainfall was carried over into the free forecast for about 2-5 hours, depending on when this forecast was started, and was larger, when the main mesoscale convective system was present in the initial conditions. The improvements of the meteorological model simulations were directly propagated to the river flow simulations, with an extension of the warning lead time up to three hours.
Meteorological air quality forecasting using the WRF-Chem model during the LMOS2017 field campaign
NASA Astrophysics Data System (ADS)
Stanier, C. O.; Abdioskouei, M.; Carmichael, G. R.; Christiansen, M.; Sobhani, N.
2017-12-01
The Lake Michigan Ozone Study (LMOS 2017) occurred during May and June 2017 to address the high ozone episodes in coastal communities surrounding Lake Michigan. Aircraft, ship, mobile lab, and ground-based stations were used in this campaign to build an extensive dataset regarding ozone, its precursors, and particulate matter. The University of Iowa produced high-resolution (4x4 km2 horizontal resolution and 53 vertical levels) forecast products using the WRF-Chem modeling system in support of experimental planning during LMOS 2017. The base forecast system used WRF-Chem 3.6.1 and updated National Emission Inventory (NEI-2011v2). In the updated NEI-2011v2, we reduced the NOx emissions by 28% based on EPA's estimated NOx trends from 2011 to 2017. We ran another daily forecast (perturbed forecast) with 50% reduced NOx emission to capture the sensitivity of ozone to NOx emission and account for the impact of weekend emissions on ozone values. Preliminary in-field evaluation of model performance for clouds, on-shore flows, and surface and aircraft sampled ozone and NOx concentrations found that the model successfully captured much of the observed synoptic variability of onshore flows. The model captured the variability of O3 well, but underpredicted peak ozone during high O3 episodes. In post-campaign WRF-Chem simulations, we investigated the sensitivity of the model to the hydrocarbon emission.
High resolution modelling and observation of wind-driven surface currents in a semi-enclosed estuary
NASA Astrophysics Data System (ADS)
Nash, S.; Hartnett, M.; McKinstry, A.; Ragnoli, E.; Nagle, D.
2012-04-01
Hydrodynamic circulation in estuaries is primarily driven by tides, river inflows and surface winds. While tidal and river data can be quite easily obtained for input to hydrodynamic models, sourcing accurate surface wind data is problematic. Firstly, the wind data used in hydrodynamic models is usually measured on land and can be quite different in magnitude and direction from offshore winds. Secondly, surface winds are spatially-varying but due to a lack of data it is common practice to specify a non-varying wind speed and direction across the full extents of a model domain. These problems can lead to inaccuracies in the surface currents computed by three-dimensional hydrodynamic models. In the present research, a wind forecast model is coupled with a three-dimensional numerical model of Galway Bay, a semi-enclosed estuary on the west coast of Ireland, to investigate the effect of surface wind data resolution on model accuracy. High resolution and low resolution wind fields are specified to the model and the computed surface currents are compared with high resolution surface current measurements obtained from two high frequency SeaSonde-type Coastal Ocean Dynamics Applications Radars (CODAR). The wind forecast models used for the research are Harmonie cy361.3, running on 2.5 and 0.5km spatial grids for the low resolution and high resolution models respectively. The low-resolution model runs over an Irish domain on 540x500 grid points with 60 vertical levels and a 60s timestep and is driven by ECMWF boundary conditions. The nested high-resolution model uses 300x300 grid points on 60 vertical levels and a 12s timestep. EFDC (Environmental Fluid Dynamics Code) is used for the hydrodynamic model. The Galway Bay model has ten vertical layers and is resolved spatially and temporally at 150m and 4 sec respectively. The hydrodynamic model is run for selected hindcast dates when wind fields were highly energetic. Spatially- and temporally-varying wind data is provided by offline coupling with the wind forecast models. Modelled surface currents show good correlation with CODAR observed currents and the resolution of the surface wind data is shown to be important for model accuracy.
NASA Astrophysics Data System (ADS)
Wong, M.; Skamarock, W. C.
2015-12-01
Global numerical weather forecast tests were performed using the global nonhydrostatic atmospheric model, Model for Prediction Across Scales (MPAS), for the NOAA Storm Prediction Center 2015 Spring Forecast Experiment (May 2015) and the Plains Elevated Convection at Night (PECAN) field campaign (June to mid-July 2015). These two sets of forecasts were performed on 50-to-3 km and 15-to-3 km smoothly-varying horizontal meshes, respectively. Both variable-resolution meshes have nominal convection-permitting 3-km grid spacing over the entire continental US. Here we evaluate the limited-area (vs. global) spectra from these NWP simulations. We will show the simulated spectral characteristics of total kinetic energy, vertical velocity variance, and precipitation during these spring and summer periods when diurnal continental convection is most active over central US. Spectral characteristics of a high-resolution global 3-km simulation (essentially no nesting) from the 20 May 2013 Moore, OK tornado case are also shown. These characteristics include spectral scaling, shape, and anisotropy, as well as the effective resolution of continental convection representation in MPAS.
Integrated Wind Power Planning Tool
NASA Astrophysics Data System (ADS)
Rosgaard, Martin; Giebel, Gregor; Skov Nielsen, Torben; Hahmann, Andrea; Sørensen, Poul; Madsen, Henrik
2013-04-01
This poster presents the current state of the public service obligation (PSO) funded project PSO 10464, with the title "Integrated Wind Power Planning Tool". The goal is to integrate a mesoscale numerical weather prediction (NWP) model with purely statistical tools in order to assess wind power fluctuations, with focus on long term power system planning for future wind farms as well as short term forecasting for existing wind farms. Currently, wind power fluctuation models are either purely statistical or integrated with NWP models of limited resolution. Using the state-of-the-art mesoscale NWP model Weather Research & Forecasting model (WRF) the forecast error is sought quantified in dependence of the time scale involved. This task constitutes a preparative study for later implementation of features accounting for NWP forecast errors in the DTU Wind Energy maintained Corwind code - a long term wind power planning tool. Within the framework of PSO 10464 research related to operational short term wind power prediction will be carried out, including a comparison of forecast quality at different mesoscale NWP model resolutions and development of a statistical wind power prediction tool taking input from WRF. The short term prediction part of the project is carried out in collaboration with ENFOR A/S; a Danish company that specialises in forecasting and optimisation for the energy sector. The integrated prediction model will allow for the description of the expected variability in wind power production in the coming hours to days, accounting for its spatio-temporal dependencies, and depending on the prevailing weather conditions defined by the WRF output. The output from the integrated short term prediction tool constitutes scenario forecasts for the coming period, which can then be fed into any type of system model or decision making problem to be solved. The high resolution of the WRF results loaded into the integrated prediction model will ensure a high accuracy data basis is available for use in the decision making process of the Danish transmission system operator. The need for high accuracy predictions will only increase over the next decade as Denmark approaches the goal of 50% wind power based electricity in 2025 from the current 20%.
Weather Research and Forecasting Model Wind Sensitivity Study at Edwards Air Force Base, CA
NASA Technical Reports Server (NTRS)
Watson, Leela R.; Bauman, William H., III
2008-01-01
NASA prefers to land the space shuttle at Kennedy Space Center (KSC). When weather conditions violate Flight Rules at KSC, NASA will usually divert the shuttle landing to Edwards Air Force Base (EAFB) in Southern California. But forecasting surface winds at EAFB is a challenge for the Spaceflight Meteorology Group (SMG) forecasters due to the complex terrain that surrounds EAFB, One particular phenomena identified by SMG is that makes it difficult to forecast the EAFB surface winds is called "wind cycling". This occurs when wind speeds and directions oscillate among towers near the EAFB runway leading to a challenging deorbit bum forecast for shuttle landings. The large-scale numerical weather prediction models cannot properly resolve the wind field due to their coarse horizontal resolutions, so a properly tuned high-resolution mesoscale model is needed. The Weather Research and Forecasting (WRF) model meets this requirement. The AMU assessed the different WRF model options to determine which configuration best predicted surface wind speed and direction at EAFB, To do so, the AMU compared the WRF model performance using two hot start initializations with the Advanced Research WRF and Non-hydrostatic Mesoscale Model dynamical cores and compared model performance while varying the physics options.
NASA Technical Reports Server (NTRS)
Reale, Oreste; Lau, William K.; Kim, Kyu-Myong; Brin, Eugenia
2009-01-01
This article investigates the role of the Saharan Air Layer (SAL) in tropical cyclogenetic processes associated with a non-developing and a developing African easterly wave observed during the Special Observation Period (SOP-3) phase of the 2006 NASA African Monsoon Multidisciplinary Analyses (NAMMA). The two waves are chosen because both interact heavily with Saharan air. A global data assimilation and forecast system, the NASA GEOS-5, is being run to produce a set of high-quality global analyses, inclusive of all observations used operationally but with denser satellite information. In particular, following previous works by the same Authors, the quality-controlled data from the Atmospheric Infrared Sounder (AIRS) used to produce these analyses have a better coverage than the one adopted by operational centers. From these improved analyses, two sets of 31 5-day high resolution forecasts, at horizontal resolutions of both half and quarter degrees, are produced. Results show that very steep moisture gradients are associated with the SAL in forecasts and analyses even at great distance from the Sahara. In addition, a thermal dipole (warm above, cool below) is present in the non-developing case. Moderate Resolution Imaging Spectroradiometer (MODIS) show that aerosol optical thickness is higher in the non-developing case. Altogether, results suggest that radiative effect of dust may play some role in producing a thermal structure less favorable to cyclogenesis. Results also indicate that only global horizontal resolutions on the order of 20-30 kilometers can capture the large-scale transport and the fine thermal structure of the SAL, inclusive of the sharp moisture gradients, reproducing the effect of tropical cyclone suppression which has been hypothesized by previous authors from observational and regional modeling perspectives. These effects cannot be fully represented at lower resolutions. Global resolution of a quarter of a degree is a minimum critical threshold to investigate Atlantic tropical cyclogenesis from a global modeling perspective.
Range-Specific High-Resolution Mesoscale Model Setup: Data Assimilation
NASA Technical Reports Server (NTRS)
Watson, Leela R.
2014-01-01
Mesoscale weather conditions can have an adverse effect on space launch, landing, and ground processing at the Eastern Range (ER) in Florida and Wallops Flight Facility (WFF) in Virginia. During summer, land-sea interactions across Kennedy Space Center (KSC) and Cape Canaveral Air Force Station (CCAFS) lead to sea breeze front formation, which can spawn deep convection that can hinder operations and endanger personnel and resources. Many other weak locally driven low-level boundaries and their interactions with the sea breeze front and each other can also initiate deep convection in the KSC/CCAFS area. Some of these other boundaries include the Indian River breeze front, Banana River breeze front, outflows from previous convection, horizontal convective rolls, convergence lines from other inland bodies of water such as Lake Okeechobee, the trailing convergence line from convergence of sea breeze fronts due to the shape of Cape Canaveral, frictional convergence lines from the islands in the Bahamas, convergence lines from soil moisture differences, convergence lines from cloud shading, and others. All these subtle weak boundary interactions often make forecasting of operationally important weather very difficult at KSC/CCAFS during the convective season (May-Oct). These convective processes often build quickly, last a short time (60 minutes or less), and occur over small distances, all of which also poses a significant challenge to the local forecasters who are responsible for issuing weather advisories, watches, and warnings. Surface winds during the transition seasons of spring and fall pose the most difficulties for the forecasters at WFF. They also encounter problems forecasting convective activity and temperature during those seasons. Therefore, accurate mesoscale model forecasts are needed to aid in their decision making. Both the ER and WFF would benefit greatly from high-resolution mesoscale model output to better forecast a variety of unique weather phenomena. Global and national scale models cannot properly resolve important local-scale weather features at each location due to their horizontal resolutions being much too coarse. Therefore, a properly tuned model at a high resolution is needed to provide improved capability. This task is a multi-year effort in which the Applied Meteorology Unit (AMU) will tune the Weather Research and Forecasting (WRF) model individually for each range. The goal of the first year, the results of which are in this report, was to tune the WRF model based on the best model resolution and run time while using reasonable computing capabilities. To accomplish this, the ER and WFF supported the tasking of the AMU to perform a number of sensitivity tests in order to determine the best model configuration for operational use at each of the ranges to best predict winds, precipitation, and temperature (Watson 2013). This task is a continuation of that work and will provide a recommended local data assimilation (DA) and numerical forecast model design optimized for the ER and WFF to support space launch activities. The model will be optimized for local weather challenges at both ranges.
NASA Astrophysics Data System (ADS)
Nazari, B.; Seo, D.; Cannon, A.
2013-12-01
With many diverse features such as channels, pipes, culverts, buildings, etc., hydraulic modeling in urban areas for inundation mapping poses significant challenges. Identifying the practical extent of the details to be modeled in order to obtain sufficiently accurate results in a timely manner for effective emergency management is one of them. In this study we assess the tradeoffs between model complexity vs. information content for decision making in applying high-resolution hydrologic and hydraulic models for real-time flash flood forecasting and inundation mapping in urban areas. In a large urban area such as the Dallas-Fort Worth Metroplex (DFW), there exists very large spatial variability in imperviousness depending on the area of interest. As such, one may expect significant sensitivity of hydraulic model results to the resolution and accuracy of hydrologic models. In this work, we present the initial results from coupling of high-resolution hydrologic and hydraulic models for two 'hot spots' within the City of Fort Worth for real-time inundation mapping.
The impact of scatterometer wind data on global weather forecasting
NASA Technical Reports Server (NTRS)
Atlas, D.; Baker, W. E.; Kalnay, E.; Halem, M.; Woiceshyn, P. M.; Peteherych, S.
1984-01-01
The impact of SEASAT-A scatterometer (SASS) winds on coarse resolution atmospheric model forecasts was assessed. The scatterometer provides high resolution winds, but each wind can have up to four possible directions. One wind direction is correct; the remainder are ambiguous or "aliases'. In general, the effect of objectively dealiased-SASS data was found to be negligible in the Northern Hemisphere. In the Southern Hemisphere, the impact was larger and primarily beneficial when vertical temperature profile radiometer (VTPR) data was excluded. However, the inclusion of VTPR data eliminates the positive impact, indicating some redundancy between the two data sets.
Forecasting the Human Pathogen Vibrio Parahaemolyticus in Shellfish Tissue within Long Island Sound
NASA Astrophysics Data System (ADS)
Whitney, M. M.; DeRosia-Banick, K.
2016-02-01
Vibrio parahaemolyticus (Vp) is a marine bacterium that occurs naturally in brackish and saltwater environments and may be found in higher concentrations in the warmest months. Vp is a growing threat to producing safe seafood. Consumption of shellfish with high Vp levels can result in gastrointestinal human illnesses. Management response to Vp-related illness outbreaks includes closure of shellfish growing areas. Water quality observations, Vp measurements, and model forecasts are key components to effective management of shellfish growing areas. There is a clear need for observations within the growing area themselves. These areas are offshore of coastal stations and typically inshore of the observing system moorings. New field observations in Long Island Sound (LIS) shellfish growing areas are described and their agreement with high-resolution satellite sea surface temperature data is discussed. A new dataset of Vp concentrations in shellfish tissue is used to determine the LIS-specific Vp vs. temperature relationship following methods in the FDA pre-harvest Vp risk model. This information is combined with output from a high-resolution hydrodynamic model of LIS to make daily forecasts of Vp levels. The influence of river inflows, the role of heat waves, and predictions for future warmer climates are discussed. The key elements of this observational-modeling approach to pathogen forecasting are extendable to other coastal systems.
NASA Astrophysics Data System (ADS)
Chang, Liang; Liu, Min; Guo, Lixin; He, Xiufeng; Gao, Guoping
2016-10-01
The estimation of atmospheric water vapor with high resolution is important for operational weather forecasting, climate monitoring, atmospheric research, and numerous other applications. The 40 m×40 m and 30 m×30 m differential precipitable water vapor (ΔPWV) maps are generated with C- and L-band synthetic aperture radar interferometry (InSAR) images over Shanghai, China, respectively. The ΔPWV maps are accessed via comparisons with the spatiotemporally synchronized PWV measurements from the European Centre for Medium-Range Weather Forecasts Interim reanalysis at the finest resolution and global positioning system observations, respectively. Results reveal that the ΔPWV maps can be estimated from both C- and L-band InSAR images with an accuracy of better than 2.0 mm, which, therefore, demonstrates the ability of InSAR observations at both C- and L-band to detect the water vapor distribution with high spatial resolution.
Technical Challenges and Solutions in Representing Lakes when using WRF in Downscaling Applications
The Weather Research and Forecasting (WRF) model is commonly used to make high resolution future projections of regional climate by downscaling global climate model (GCM) outputs. Because the GCM fields are typically at a much coarser spatial resolution than the target regional ...
NASA Astrophysics Data System (ADS)
Li, J.
2017-12-01
Large-watershed flood simulation and forecasting is very important for a distributed hydrological model in the application. There are some challenges including the model's spatial resolution effect, model performance and accuracy and so on. To cope with the challenge of the model's spatial resolution effect, different model resolution including 1000m*1000m, 600m*600m, 500m*500m, 400m*400m, 200m*200m were used to build the distributed hydrological model—Liuxihe model respectively. The purpose is to find which one is the best resolution for Liuxihe model in Large-watershed flood simulation and forecasting. This study sets up a physically based distributed hydrological model for flood forecasting of the Liujiang River basin in south China. Terrain data digital elevation model (DEM), soil type and land use type are downloaded from the website freely. The model parameters are optimized by using an improved Particle Swarm Optimization(PSO) algorithm; And parameter optimization could reduce the parameter uncertainty that exists for physically deriving model parameters. The different model resolution (200m*200m—1000m*1000m ) are proposed for modeling the Liujiang River basin flood with the Liuxihe model in this study. The best model's spatial resolution effect for flood simulation and forecasting is 200m*200m.And with the model's spatial resolution reduction, the model performance and accuracy also become worse and worse. When the model resolution is 1000m*1000m, the flood simulation and forecasting result is the worst, also the river channel divided based on this resolution is differs from the actual one. To keep the model with an acceptable performance, minimum model spatial resolution is needed. The suggested threshold model spatial resolution for modeling the Liujiang River basin flood is a 500m*500m grid cell, but the model spatial resolution with a 200m*200m grid cell is recommended in this study to keep the model at a best performance.
The Ensemble Space Weather Modeling System (eSWMS): Status, Capabilities and Challenges
NASA Astrophysics Data System (ADS)
Fry, C. D.; Eccles, J. V.; Reich, J. P.
2010-12-01
Marking a milestone in space weather forecasting, the Space Weather Modeling System (SWMS) successfully completed validation testing in advance of operational testing at Air Force Weather Agency’s primary space weather production center. This is the first coupling of stand-alone, physics-based space weather models that are currently in operations at AFWA supporting the warfighter. Significant development effort went into ensuring the component models were portable and scalable while maintaining consistent results across diverse high performance computing platforms. Coupling was accomplished under the Earth System Modeling Framework (ESMF). The coupled space weather models are the Hakamada-Akasofu-Fry version 2 (HAFv2) solar wind model and GAIM1, the ionospheric forecast component of the Global Assimilation of Ionospheric Measurements (GAIM) model. The SWMS was developed by team members from AFWA, Explorations Physics International, Inc. (EXPI) and Space Environment Corporation (SEC). The successful development of the SWMS provides new capabilities beyond enabling extended lead-time, data-driven ionospheric forecasts. These include ingesting diverse data sets at higher resolution, incorporating denser computational grids at finer time steps, and performing probability-based ensemble forecasts. Work of the SWMS development team now focuses on implementing the ensemble-based probability forecast capability by feeding multiple scenarios of 5 days of solar wind forecasts to the GAIM1 model based on the variation of the input fields to the HAFv2 model. The ensemble SWMS (eSWMS) will provide the most-likely space weather scenario with uncertainty estimates for important forecast fields. The eSWMS will allow DoD mission planners to consider the effects of space weather on their systems with more advance warning than is currently possible. The payoff is enhanced, tailored support to the warfighter with improved capabilities, such as point-to-point HF propagation forecasts, single-frequency GPS error corrections, and high cadence, high-resolution Space Situational Awareness (SSA) products. We present the current status of eSWMS, its capabilities, limitations and path of transition to operational use.
A Sensor Driven Probabilistic Method for Enabling Hyper Resolution Flood Simulations
NASA Astrophysics Data System (ADS)
Fries, K. J.; Salas, F.; Kerkez, B.
2016-12-01
A reduction in the cost of sensors and wireless communications is now enabling researchers and local governments to make flow, stage and rain measurements at locations that are not covered by existing USGS or state networks. We ask the question: how should these new sources of densified, street-level sensor measurements be used to make improved forecasts using the National Water Model (NWM)? Assimilating these data "into" the NWM can be challenging due to computational complexity, as well as heterogeneity of sensor and other input data. Instead, we introduce a machine learning and statistical framework that layers these data "on top" of the NWM outputs to improve high-resolution hydrologic and hydraulic forecasting. By generalizing our approach into a post-processing framework, a rapidly repeatable blueprint is generated for for decision makers who want to improve local forecasts by coupling sensor data with the NWM. We present preliminary results based on case studies in highly instrumented watersheds in the US. Through the use of statistical learning tools and hydrologic routing schemes, we demonstrate the ability of our approach to improve forecasts while simultaneously characterizing bias and uncertainty in the NWM.
Scale and modeling issues in water resources planning
Lins, H.F.; Wolock, D.M.; McCabe, G.J.
1997-01-01
Resource planners and managers interested in utilizing climate model output as part of their operational activities immediately confront the dilemma of scale discordance. Their functional responsibilities cover relatively small geographical areas and necessarily require data of relatively high spatial resolution. Climate models cover a large geographical, i.e. global, domain and produce data at comparatively low spatial resolution. Although the scale differences between model output and planning input are large, several techniques have been developed for disaggregating climate model output to a scale appropriate for use in water resource planning and management applications. With techniques in hand to reduce the limitations imposed by scale discordance, water resource professionals must now confront a more fundamental constraint on the use of climate models-the inability to produce accurate representations and forecasts of regional climate. Given the current capabilities of climate models, and the likelihood that the uncertainty associated with long-term climate model forecasts will remain high for some years to come, the water resources planning community may find it impractical to utilize such forecasts operationally.
Forecasting Lightning Threat Using WRF Proxy Fields
NASA Technical Reports Server (NTRS)
McCaul, E. W., Jr.
2010-01-01
Objectives: Given that high-resolution WRF forecasts can capture the character of convective outbreaks, we seek to: 1. Create WRF forecasts of LTG threat (1-24 h), based on 2 proxy fields from explicitly simulated convection: - graupel flux near -15 C (captures LTG time variability) - vertically integrated ice (captures LTG threat area). 2. Calibrate each threat to yield accurate quantitative peak flash rate densities. 3. Also evaluate threats for areal coverage, time variability. 4. Blend threats to optimize results. 5. Examine sensitivity to model mesh, microphysics. Methods: 1. Use high-resolution 2-km WRF simulations to prognose convection for a diverse series of selected case studies. 2. Evaluate graupel fluxes; vertically integrated ice (VII). 3. Calibrate WRF LTG proxies using peak total LTG flash rate densities from NALMA; relationships look linear, with regression line passing through origin. 4. Truncate low threat values to make threat areal coverage match NALMA flash extent density obs. 5. Blend proxies to achieve optimal performance 6. Study CAPS 4-km ensembles to evaluate sensitivities.
NASA Astrophysics Data System (ADS)
Solano, Miguel; Gonzalez, Juan; Canals, Miguel; Capella, Jorge; Morell, Julio; Leonardi, Stefano
2017-04-01
A prevailing problem for a tidally driven coastal ocean has been the adequate imposition of open boundary conditions. This study aims at assessing the role of open boundary conditions and tidal forcing for one and two way downscaling applications at high resolution. The operational system is based on the Caribbean Coastal Ocean Forecasting System (COFS) that uses the Regional Ocean Modeling System (ROMS), a split-explicit ocean model in which the barotropic (2D) and baroclinic (3D) modes advance separately. This COFS uses a uniform horizontal grid with 1km resolution, but a grid sensitivity analysis is performed for both one and two way downscaling methodologies with horizontal resolutions up to 700m. Initial and lateral boundary conditions are derived from the U.S Naval Oceanographic Office (NAVOCEANO) operational AmSeas model forecast, a 3-km resolution of the regional Navy Coastal Ocean Model (NCOM) that encompasses the Gulf of Mexico and Caribbean Sea. Meteorological conditions are interpolated from the Navy's COAMPS model with the exception of surface stresses, which are computed from a 2-km application of the WRF model used by NCEP's National Digital Forecast Database. Tidal forcing is performed in two different ways: 1) tidal and sub-tidal variability is imposed to the barotropic and baroclinic modes by downscaling from the AmSeas NCOM regional model and 2) tidal variability is imposed using ROMS harmonic tidal forcing from OTPS and sub-tidal conditions are imposed by filtering high frequencies out the NCOM regional solution. Special focus is given to the latter approach, where the nudging time scales and the boundary update frequency play an important role in the evolution of the ocean state for short 3-day forecasts. A spectral analysis of the sea surface height and barotropic velocity is performed via Fourier's transform, continuous 1-D wavelet transforms, and classic harmonic analysis. Tide signals are then reconstructed and removed from the OBC's in 3 ways: 1) using Rich Pawlowicz's t_tide package (classic harmonic analysis), 2) with traditional band-pass filters (e.g. Lanczos) and 3) using Proper Orthogonal Decomposition. The tide filtering approach shows great improvement in the high frequency response of tidal motions at the open boundaries. Results are validated with NOAA tide gauges, Acoustic Doppler Current Profilers, High Frequency Radars (6km and 2km resolution). A floating drifter experiment is performed in coastal zones, in which 12 drifters were deployed at different coastal zones and tracked for several days. The results show an improvement of the forecast skill with the proper implementation of the tide filtering approach by adjusting the nudging time scales and adequately removing the tidal signals. Significant improvement is found in the tracking skill of the floating drifters for the one-way grid and the two-way nested application also shows some improvement over the offline downscaling approach at higher resolutions.
Towards an operational high-resolution air quality forecasting system at ECCC
NASA Astrophysics Data System (ADS)
Munoz-Alpizar, Rodrigo; Stroud, Craig; Ren, Shuzhan; Belair, Stephane; Leroyer, Sylvie; Souvanlasy, Vanh; Spacek, Lubos; Pavlovic, Radenko; Davignon, Didier; Moran, Moran
2017-04-01
Urban environments are particularly sensitive to weather, air quality (AQ), and climatic conditions. Despite the efforts made in Canada to reduce pollution in urban areas, AQ continues to be a concern for the population, especially during short-term episodes that could lead to exceedances of daily air quality standards. Furthermore, urban air pollution has long been associated with significant adverse health effects. In Canada, the large percentage of the population living in urban areas ( 81%, according to the Canada's 2011 census) is exposed to elevated air pollution due to local emissions sources. Thus, in order to improve the services offered to the Canadian public, Environment and Climate Change Canada has launched an initiative to develop a high-resolution air quality prediction capacity for urban areas in Canada. This presentation will show observed pollution trends (2010-2016) for Canadian mega-cities along with some preliminary high-resolution air quality modelling results. Short-term and long-term plans for urban AQ forecasting in Canada will also be described.
Modeling fire behavior on tropical islands with high-resolution weather data
John W. Benoit; Francis M. Fujioka; David R. Weise
2009-01-01
In this study, we consider fire behavior simulation in tropical island scenarios such as Hawaii and Puerto Rico. The development of a system to provide real-time fire behavior prediction in Hawaii is discussed. This involves obtaining fuels and topography information at a fine scale, as well as supplying daily high-resolution weather forecast data for the area of...
High resolution climate projection of storm surge at the Venetian coast
NASA Astrophysics Data System (ADS)
Mel, R.; Sterl, A.; Lionello, P.
2013-04-01
Climate change impact on storm surge regime is of great importance for the safety and maintenance of Venice. In this study a future storm surge scenario is evaluated using new high resolution sea level pressure and wind data recently produced by EC-Earth, an Earth System Model based on the operational seasonal forecast system of the European Centre for Medium-Range Weather Forecasts (ECMWF). The study considers an ensemble of six 5 yr long simulations of the rcp45 scenario at 0.25° resolution and compares the 2094-2098 to the 2004-2008 period. EC-Earth sea level pressure and surface wind fields are used as input for a shallow water hydrodynamic model (HYPSE) which computes sea level and barotropic currents in the Adriatic Sea. Results show that a high resolution climate model is needed for producing realistic values of storm surge statistics and confirm previous studies in that they show little sensitivity of storm surge levels to climate change. However, some climate change signals are detected, such as increased persistence of high pressure conditions, an increased frequency of windless hour, and a decreased number of moderate windstorms.
Extended-Range High-Resolution Dynamical Downscaling over a Continental-Scale Domain
NASA Astrophysics Data System (ADS)
Husain, S. Z.; Separovic, L.; Yu, W.; Fernig, D.
2014-12-01
High-resolution mesoscale simulations, when applied for downscaling meteorological fields over large spatial domains and for extended time periods, can provide valuable information for many practical application scenarios including the weather-dependent renewable energy industry. In the present study, a strategy has been proposed to dynamically downscale coarse-resolution meteorological fields from Environment Canada's regional analyses for a period of multiple years over the entire Canadian territory. The study demonstrates that a continuous mesoscale simulation over the entire domain is the most suitable approach in this regard. Large-scale deviations in the different meteorological fields pose the biggest challenge for extended-range simulations over continental scale domains, and the enforcement of the lateral boundary conditions is not sufficient to restrict such deviations. A scheme has therefore been developed to spectrally nudge the simulated high-resolution meteorological fields at the different model vertical levels towards those embedded in the coarse-resolution driving fields derived from the regional analyses. A series of experiments were carried out to determine the optimal nudging strategy including the appropriate nudging length scales, nudging vertical profile and temporal relaxation. A forcing strategy based on grid nudging of the different surface fields, including surface temperature, soil-moisture, and snow conditions, towards their expected values obtained from a high-resolution offline surface scheme was also devised to limit any considerable deviation in the evolving surface fields due to extended-range temporal integrations. The study shows that ensuring large-scale atmospheric similarities helps to deliver near-surface statistical scores for temperature, dew point temperature and horizontal wind speed that are better or comparable to the operational regional forecasts issued by Environment Canada. Furthermore, the meteorological fields resulting from the proposed downscaling strategy have significantly improved spatiotemporal variance compared to those from the operational forecasts, and any time series generated from the downscaled fields do not suffer from discontinuities due to switching between the consecutive forecasts.
National Centers for Environmental Prediction
NAM Specifications/References [<--click here] Rapid Refresh (RAP) [<--click here] High -Resolution Rapid Refresh (HRRR) [<--click here] Short-range Ensemble Forecast (SREF) system [<--click
A New Integrated Weighted Model in SNOW-V10: Verification of Categorical Variables
NASA Astrophysics Data System (ADS)
Huang, Laura X.; Isaac, George A.; Sheng, Grant
2014-01-01
This paper presents the verification results for nowcasts of seven categorical variables from an integrated weighted model (INTW) and the underlying numerical weather prediction (NWP) models. Nowcasting, or short range forecasting (0-6 h), over complex terrain with sufficient accuracy is highly desirable but a very challenging task. A weighting, evaluation, bias correction and integration system (WEBIS) for generating nowcasts by integrating NWP forecasts and high frequency observations was used during the Vancouver 2010 Olympic and Paralympic Winter Games as part of the Science of Nowcasting Olympic Weather for Vancouver 2010 (SNOW-V10) project. Forecast data from Canadian high-resolution deterministic NWP system with three nested grids (at 15-, 2.5- and 1-km horizontal grid-spacing) were selected as background gridded data for generating the integrated nowcasts. Seven forecast variables of temperature, relative humidity, wind speed, wind gust, visibility, ceiling and precipitation rate are treated as categorical variables for verifying the integrated weighted forecasts. By analyzing the verification of forecasts from INTW and the NWP models among 15 sites, the integrated weighted model was found to produce more accurate forecasts for the 7 selected forecast variables, regardless of location. This is based on the multi-categorical Heidke skill scores for the test period 12 February to 21 March 2010.
NASA Astrophysics Data System (ADS)
Bailey, Monika E.; Isaac, George A.; Gultepe, Ismail; Heckman, Ivan; Reid, Janti
2014-01-01
An automated short-range forecasting system, adaptive blending of observations and model (ABOM), was tested in real time during the 2010 Vancouver Olympic and Paralympic Winter Games in British Columbia. Data at 1-min time resolution were available from a newly established, dense network of surface observation stations. Climatological data were not available at these new stations. This, combined with output from new high-resolution numerical models, provided a unique and exciting setting to test nowcasting systems in mountainous terrain during winter weather conditions. The ABOM method blends extrapolations in time of recent local observations with numerical weather predictions (NWP) model predictions to generate short-range point forecasts of surface variables out to 6 h. The relative weights of the model forecast and the observation extrapolation are based on performance over recent history. The average performance of ABOM nowcasts during February and March 2010 was evaluated using standard scores and thresholds important for Olympic events. Significant improvements over the model forecasts alone were obtained for continuous variables such as temperature, relative humidity and wind speed. The small improvements to forecasts of variables such as visibility and ceiling, subject to discontinuous changes, are attributed to the persistence component of ABOM.
2016-06-13
Global Ocean Forecast System 3.1 also showed a substantial improvement in ice edge location over a system using the SSMIS sea ice concentration product... Global Ocean Fore- cast System (GOFS 3.1). Prior to 2 February 2015, the ice concentration fields from both ACNFS and GOFS 3.1 had been updated with...Scanning Radiometer (AMSR2) on the Japan Aerospace Exploration Agency (JAXA) Global Change Observation Mission – Water (GCOM-W) platform became available
NASA Astrophysics Data System (ADS)
Wu, Ting-Chi
This dissertation research explores the influence of assimilating satellite-derived observations on mesoscale numerical analyses and forecasts of tropical cyclones (TC). The ultimate goal is to provide more accurate mesoscale analyses of TC and its surrounding environment for superior TC track and intensity forecasts. High spatial and temporal resolution satellite-derived observations are prepared for two TC cases, Typhoon Sinlaku and Hurricane Ike (both 2008). The Advanced Research version of the Weather and Research Forecasting Model (ARW-WRF) is employed and data is assimilated using the Ensemble Adjustment Kalman Filter (EAKF) implemented in the Data Assimilation Research Testbed. In the first part of this research, the influence of assimilating enhanced atmospheric motion vectors (AMVs) derived from geostationary satellites is examined by comparing three parallel WRF/EnKF experiments. The control experiment assimilates the same AMV dataset assimilated in NCEP operational analysis along with conventional observations from radiosondes, aircraft, and advisory TC position data. During Sinlaku and Ike, the Cooperative Institute for Meteorological Satellite Studies (CIMSS) generates hourly AMVs along with Rapid-Scan (RS) AMVs when the satellite RS mode is activated. With an order of magnitude more AMV data assimilated, the assimilation of hourly CIMSS AMV dataset exhibit superior initial TC position, intensity and structure estimates to the control analyses and the subsequent short-range forecasts. When RS AMVs are processed and assimilated, the addition of RS AMVs offers additional modification to the TC and its environment and leads to Sinlaku's recurvature toward Japan, albeit prematurely. The results demonstrate the promise of assimilating enhanced AMV data into regional TC models. The second part of this research continues the work in the first part and further explores the influence of assimilating enhanced AMV datasets by conducting parallel data-denial WRF/EnKF experiments that assimilate AMVs subsetted horizontally by their distances to the TC center (interior and exterior) and vertically by their assigned heights (upper, middle, and lower layers). For both Sinlaku and Ike, it is found: 1) interior AMVs are important for accurate TC intensity, 2) excluding upper-layer AMVs generally results in larger track errors and ensemble spread, 3) exclusion of interior AMVs has the largest impact on the forecast of TC size than exclusively removing AMVs in particular tropospheric layers, 4) the largest ensemble spreads are found in track, intensity, and size forecasts when interior and upper-layer AMVs are not included, 5) withholding the middle-layer AMVs can improve the track forecasts. Findings from this study could influence future scenarios that involve the targeted acquisition and assimilation of high-density AMV observations in TC events. The last part of the research focuses on the assimilation of hyperspectral temperature and moisture soundings and microwave based vertically-integrated total precipitable water (TPW) products derived from polar-orbiting satellites. A comparison is made between the assimilation of soundings retrieved from the combined use of Advanced Microwave Scanning Radiometer and Atmospheric Infrared Sounder (AMSU-AIRS) and sounding products provided by CIMSS (CIMSS-AIRS). AMSU-AIRS soundings provide broad spatial coverage albeit coarse resolution, whilst CIMSS-AIRS is geared towards mesoscale applications and thus provide higher spatial resolution but restricted coverage due to the use of radiance in clear sky. The assimilation of bias-corrected CIMSS-AIRS soundings provides slightly more accurate TC structure than the control case. The assimilation of AMSU-AIRS improves the track forecasts but produces weaker and smaller storm. Preliminary results of assimilating TPW product derived from the Advanced Microwave Scanning Radiometer-EOS indicate improved TC structure over the control case. However, the short-range forecasts exhibit the largest TC track errors. In all, this study demonstrates the influence of assimilating high-resolution satellite data on mesoscale analyses and forecasts of TC track and structure. The results suggest the inclusion and assimilation of observations with high temporal resolution, broad spatial coverage, and greater proximity to TCs does indeed improve TC track and structure forecasts. Such findings are beneficial for future decisions on data collecting and retrievals that are essential for TC forecasts.
Nowcasting in the FROST-2014 Sochi Olympic project
NASA Astrophysics Data System (ADS)
Bica, Benedikt; Wang, Yong; Joe, Paul; Isaac, George; Kiktev, Dmitry; Bocharnikov, Nikolai
2013-04-01
FROST (Forecast and Research: the Olympic Sochi Testbed) 2014 is a WMO WWRP international project aimed at development, implementation, and demonstration of capabilities of short-range numerical weather prediction and nowcasting technologies for mountainous terrain in winter season. Sharp weather contrasts and high spatial and temporal variability are typical for the region of the Sochi-2014 Olympics. Steep mountainous terrain and an intricate mixture of maritime sub-tropical and Alpine environments make weather forecasting in this region extremely challenging. Goals of the FROST-2014 project: • To develop a comprehensive information resource of Alpine winter weather observations; • To improve and exploit: o Nowcasting systems of high impact weather phenomena (precipitation type and intensity, snow levels, visibility, wind speed, direction and gusts) in complex terrain; o High-resolution deterministic and ensemble mesoscale forecasts in winter complex terrain environment; • To improve the understanding of physics of high impact weather phenomena in the region; • To deliver forecasts (Nowcasts) to Olympic weather forecasters and decision makers and assess benefits of forecast improvement. 46 Automatic Meteorological Stations (AMS) were installed in the Olympic region by Roshydromet, by owners of sport venues and by the Megafon corporation, provider of mobile communication services. The time resolution of AMS observations does not exceed 10 minutes. For a subset of the stations it is even equal to 1 min. Data flow from the new dual polarization Doppler weather radar WRM200 in Sochi was organized at the end of 2012. Temperature/humidity and wind profilers and two Micro Rain Radars (MRR) will supplement the network. Nowcasting potential of NWP models participating in the project (COSMO, GEM, WRF, AROME, HARMONIE) is to be assessed for direct and post-processed (e.g. Kalman filter, 1-D model, MOS) model forecasts. Besides the meso-scale models, the specialized nowcasting systems are expected to be used in the project - ABOM, CARDS, INCA, INTW, STEPS, MeteoExpert. FROST-2014 is intended as an 'end-to-end' project. Its products will be used by local forecasters for meteorological support of the Olympics and preceding test sport events. The project is open for new interested participants. Additional information is available at http://frost2014.meteoinfo.ru.
NASA Astrophysics Data System (ADS)
Tang, L.; Titov, V. V.; Chamberlin, C. D.
2009-12-01
The study describes the development, testing and applications of site-specific tsunami inundation models (forecast models) for use in NOAA's tsunami forecast and warning system. The model development process includes sensitivity studies of tsunami wave characteristics in the nearshore and inundation, for a range of model grid setups, resolutions and parameters. To demonstrate the process, four forecast models in Hawaii, at Hilo, Kahului, Honolulu, and Nawiliwili are described. The models were validated with fourteen historical tsunamis and compared with numerical results from reference inundation models of higher resolution. The accuracy of the modeled maximum wave height is greater than 80% when the observation is greater than 0.5 m; when the observation is below 0.5 m the error is less than 0.3 m. The error of the modeled arrival time of the first peak is within 3% of the travel time. The developed forecast models were further applied to hazard assessment from simulated magnitude 7.5, 8.2, 8.7 and 9.3 tsunamis based on subduction zone earthquakes in the Pacific. The tsunami hazard assessment study indicates that use of a seismic magnitude alone for a tsunami source assessment is inadequate to achieve such accuracy for tsunami amplitude forecasts. The forecast models apply local bathymetric and topographic information, and utilize dynamic boundary conditions from the tsunami source function database, to provide site- and event-specific coastal predictions. Only by combining a Deep-ocean Assessment and Reporting of Tsunami-constrained tsunami magnitude with site-specific high-resolution models can the forecasts completely cover the evolution of earthquake-generated tsunami waves: generation, deep ocean propagation, and coastal inundation. Wavelet analysis of the tsunami waves suggests the coastal tsunami frequency responses at different sites are dominated by the local bathymetry, yet they can be partially related to the locations of the tsunami sources. The study also demonstrates the nonlinearity between offshore and nearshore maximum wave amplitudes.
The End-to-end Demonstrator for improved decision making in the water sector in Europe (EDgE)
NASA Astrophysics Data System (ADS)
Wood, Eric; Wanders, Niko; Pan, Ming; Sheffield, Justin; Samaniego, Luis; Thober, Stephan; Kumar, Rohinni; Prudhomme, Christel; Houghton-Carr, Helen
2017-04-01
High-resolution simulations of water resources from hydrological models are vital to supporting important climate services. Apart from a high level of detail, both spatially and temporally, it is important to provide simulations that consistently cover a range of timescales, from historical reanalysis to seasonal forecast and future projections. In the new EDgE project commissioned by the ECMWF (C3S) we try to fulfill these requirements. EDgE is a proof-of-concept project which combines climate data and state-of-the-art hydrological modelling to demonstrate a water-oriented information system implemented through a web application. EDgE is working with key European stakeholders representative of private and public sectors to jointly develop and tailor approaches and techniques. With these tools, stakeholders are assisted in using improved climate information in decision-making, and supported in the development of climate change adaptation and mitigation policies. Here, we present the first results of the EDgE modelling chain, which is divided into three main processes: 1) pre-processing and downscaling; 2) hydrological modelling; 3) post-processing. Consistent downscaling and bias corrections for historical simulations, seasonal forecasts and climate projections ensure that the results across scales are robust. The daily temporal resolution and 5km spatial resolution ensure locally relevant simulations. With the use of four hydrological models (PCR-GLOBWB, VIC, mHM, Noah-MP), uncertainty between models is properly addressed, while consistency is guaranteed by using identical input data for static land surface parameterizations. The forecast results are communicated to stakeholders via Sectoral Climate Impact Indicators (SCIIs) that have been created in collaboration with the end-user community of the EDgE project. The final product of this project is composed of 15 years of seasonal forecast and 10 climate change projections, all combined with four hydrological models. These unique high-resolution climate information simulations in the EDgE project provide an unprecedented information system for decision-making over Europe.
NASA Astrophysics Data System (ADS)
Misra, Vasubandhu; Li, H.; Wu, Z.; DiNapoli, S.
2014-03-01
This paper shows demonstrable improvement in the global seasonal climate predictability of boreal summer (at zero lead) and fall (at one season lead) seasonal mean precipitation and surface temperature from a two-tiered seasonal hindcast forced with forecasted SST relative to two other contemporary operational coupled ocean-atmosphere climate models. The results from an extensive set of seasonal hindcasts are analyzed to come to this conclusion. This improvement is attributed to: (1) The multi-model bias corrected SST used to force the atmospheric model. (2) The global atmospheric model which is run at a relatively high resolution of 50 km grid resolution compared to the two other coupled ocean-atmosphere models. (3) The physics of the atmospheric model, especially that related to the convective parameterization scheme. The results of the seasonal hindcast are analyzed for both deterministic and probabilistic skill. The probabilistic skill analysis shows that significant forecast skill can be harvested from these seasonal hindcasts relative to the deterministic skill analysis. The paper concludes that the coupled ocean-atmosphere seasonal hindcasts have reached a reasonable fidelity to exploit their SST anomaly forecasts to force such relatively higher resolution two tier prediction experiments to glean further boreal summer and fall seasonal prediction skill.
High Resolution Wind Direction and Speed Information for Support of Fire Operations
B.W. Butler; J.M. Forthofer; M.A. Finney; L.S. Bradshaw; R. Stratton
2006-01-01
Computational Fluid Dynamics (CFD) technology has been used to model wind speed and direction in mountainous terrain at a relatively high resolution compared to other readily available technologies. The process termed âgridded windâ is not a forecast, but rather represents a method for calculating the influence of terrain on general wind flows. Gridded wind simulations...
The Importance of Hurricane Research to Life, Property, the Economy, and National Security.
NASA Astrophysics Data System (ADS)
Busalacchi, A. J.
2017-12-01
The devastating 2017 Atlantic hurricane season has brought into stark relief how much hurricane forecasts have improved - and how important it is to make them even better. Whereas the error in 48-hour track forecasts has been reduced by more than half, according to the National Hurricane Center, intensity forecasts remain challenging, especially with storms such as Harvey that strengthened from a tropical depression to a Category 4 hurricane in less than three days. The unusually active season, with Hurricane Irma sustaining 185-mph winds for a record 36 hours and two Atlantic hurricanes reaching 150-mph winds simultaneously for the first time, also highlighted what we do, and do not, know about how tropical cyclones will change as the climate warms. The extraordinary toll of Hurricanes Harvey, Irma, and Maria - which may ultimately be responsible for hundreds of deaths and an estimated $200 billion or more in damages - underscores why investments into improved forecasting must be a national priority. At NCAR and UCAR, scientists are working with their colleagues at federal agencies, the private sector, and the university community to advance our understanding of these deadly storms. Among their many projects, NCAR researchers are making experimental tropical cyclone forecasts using an innovative Earth system model that allows for variable resolution. We are working with NOAA to issue flooding, inundation, and streamflow forecasts for areas hit by hurricanes, and we have used extremely high-resolution regional models to simulate successfully the rapid hurricane intensification that has proved so difficult to predict. We are assessing ways to better predict the damage potential of tropical cyclones by looking beyond wind speed to consider such important factors as the size and forward motion of the storm. On the important question of climate change, scientists have experimented with running coupled climate models at a high enough resolution to spin up a hurricane, and we have used a convection-permitting regional model to examine how named storms of the past might look if they were to formed in a warmer, wetter future. Finally, research is also being performed to better communicate forecasts to help residents make informed choices when a damaging storm approaches.
A global flash flood forecasting system
NASA Astrophysics Data System (ADS)
Baugh, Calum; Pappenberger, Florian; Wetterhall, Fredrik; Hewson, Tim; Zsoter, Ervin
2016-04-01
The sudden and devastating nature of flash flood events means it is imperative to provide early warnings such as those derived from Numerical Weather Prediction (NWP) forecasts. Currently such systems exist on basin, national and continental scales in Europe, North America and Australia but rely on high resolution NWP forecasts or rainfall-radar nowcasting, neither of which have global coverage. To produce global flash flood forecasts this work investigates the possibility of using forecasts from a global NWP system. In particular we: (i) discuss how global NWP can be used for flash flood forecasting and discuss strengths and weaknesses; (ii) demonstrate how a robust evaluation can be performed given the rarity of the event; (iii) highlight the challenges and opportunities in communicating flash flood uncertainty to decision makers; and (iv) explore future developments which would significantly improve global flash flood forecasting. The proposed forecast system uses ensemble surface runoff forecasts from the ECMWF H-TESSEL land surface scheme. A flash flood index is generated using the ERIC (Enhanced Runoff Index based on Climatology) methodology [Raynaud et al., 2014]. This global methodology is applied to a series of flash floods across southern Europe. Results from the system are compared against warnings produced using the higher resolution COSMO-LEPS limited area model. The global system is evaluated by comparing forecasted warning locations against a flash flood database of media reports created in partnership with floodlist.com. To deal with the lack of objectivity in media reports we carefully assess the suitability of different skill scores and apply spatial uncertainty thresholds to the observations. To communicate the uncertainties of the flash flood system output we experiment with a dynamic region-growing algorithm. This automatically clusters regions of similar return period exceedence probabilities, thus presenting the at-risk areas at a spatial resolution appropriate to the NWP system. We then demonstrate how these warning areas could eventually complement existing global systems such as the Global Flood Awareness System (GloFAS), to give warnings of flash floods. This work demonstrates the possibility of creating a global flash flood forecasting system based on forecasts from existing global NWP systems. Future developments, in post-processing for example, will need to address an under-prediction bias, for extreme point rainfall, that is innate to current-generation global models.
Fusion of multi-source remote sensing data for agriculture monitoring tasks
NASA Astrophysics Data System (ADS)
Skakun, S.; Franch, B.; Vermote, E.; Roger, J. C.; Becker Reshef, I.; Justice, C. O.; Masek, J. G.; Murphy, E.
2016-12-01
Remote sensing data is essential source of information for enabling monitoring and quantification of crop state at global and regional scales. Crop mapping, state assessment, area estimation and yield forecasting are the main tasks that are being addressed within GEO-GLAM. Efficiency of agriculture monitoring can be improved when heterogeneous multi-source remote sensing datasets are integrated. Here, we present several case studies of utilizing MODIS, Landsat-8 and Sentinel-2 data along with meteorological data (growing degree days - GDD) for winter wheat yield forecasting, mapping and area estimation. Archived coarse spatial resolution data, such as MODIS, VIIRS and AVHRR, can provide daily global observations that coupled with statistical data on crop yield can enable the development of empirical models for timely yield forecasting at national level. With the availability of high-temporal and high spatial resolution Landsat-8 and Sentinel-2A imagery, course resolution empirical yield models can be downscaled to provide yield estimates at regional and field scale. In particular, we present the case study of downscaling the MODIS CMG based generalized winter wheat yield forecasting model to high spatial resolution data sets, namely harmonized Landsat-8 - Sentinel-2A surface reflectance product (HLS). Since the yield model requires corresponding in season crop masks, we propose an automatic approach to extract winter crop maps from MODIS NDVI and MERRA2 derived GDD using Gaussian mixture model (GMM). Validation for the state of Kansas (US) and Ukraine showed that the approach can yield accuracies > 90% without using reference (ground truth) data sets. Another application of yearly derived winter crop maps is their use for stratification purposes within area frame sampling for crop area estimation. In particular, one can simulate the dependence of error (coefficient of variation) on the number of samples and strata size. This approach was used for estimating the area of winter crops in Ukraine for 2013-2016. The GMM-GDD approach is further extended for HLS data to provide automatic winter crop mapping at 30 m resolution for crop yield model and area estimation. In case of persistent cloudiness, addition of Sentinel-1A synthetic aperture radar (SAR) images is explored for automatic winter crop mapping.
NASA Astrophysics Data System (ADS)
Mitchell, M. J.; Pichugina, Y. L.; Banta, R. M.
2015-12-01
Models are important tools for assessing potential of wind energy sites, but the accuracy of these projections has not been properly validated. In this study, High Resolution Doppler Lidar (HRDL) data obtained with high temporal and spatial resolution at heights of modern turbine rotors were compared to output from the WRF-chem model in order to help improve the performance of the model in producing accurate wind forecasts for the industry. HRDL data were collected from January 23-March 1, 2012 during the Uintah Basin Winter Ozone Study (UBWOS) field campaign. A model validation method was based on the qualitative comparison of the wind field images, time-series analysis and statistical analysis of the observed and modeled wind speed and direction, both for case studies and for the whole experiment. To compare the WRF-chem model output to the HRDL observations, the model heights and forecast times were interpolated to match the observed times and heights. Then, time-height cross-sections of the HRDL and WRF-Chem wind speed and directions were plotted to select case studies. Cross-sections of the differences between the observed and forecasted wind speed and directions were also plotted to visually analyze the model performance in different wind flow conditions. A statistical analysis includes the calculation of vertical profiles and time series of bias, correlation coefficient, root mean squared error, and coefficient of determination between two datasets. The results from this analysis reveals where and when the model typically struggles in forecasting winds at heights of modern turbine rotors so that in the future the model can be improved for the industry.
NASA Astrophysics Data System (ADS)
Boichu, Marie; Clarisse, Lieven; Khvorostyanov, Dmitry; Clerbaux, Cathy
2014-04-01
Forecasting the dispersal of volcanic clouds during an eruption is of primary importance, especially for ensuring aviation safety. As volcanic emissions are characterized by rapid variations of emission rate and height, the (generally) high level of uncertainty in the emission parameters represents a critical issue that limits the robustness of volcanic cloud dispersal forecasts. An inverse modeling scheme, combining satellite observations of the volcanic cloud with a regional chemistry-transport model, allows reconstructing this source term at high temporal resolution. We demonstrate here how a progressive assimilation of freshly acquired satellite observations, via such an inverse modeling procedure, allows for delivering robust sulfur dioxide (SO2) cloud dispersal forecasts during the eruption. This approach provides a computationally cheap estimate of the expected location and mass loading of volcanic clouds, including the identification of SO2-rich parts.
NASA Technical Reports Server (NTRS)
Shen, B.-W.; Atlas, R.; Reale, O.; Lin, S.-J.; Chern, J.-D.; Chang, J.; Henze, C.
2006-01-01
Hurricane Katrina was the sixth most intense hurricane in the Atlantic. Katrina's forecast poses major challenges, the most important of which is its rapid intensification. Hurricane intensity forecast with General Circulation Models (GCMs) is difficult because of their coarse resolution. In this article, six 5-day simulations with the ultra-high resolution finite-volume GCM are conducted on the NASA Columbia supercomputer to show the effects of increased resolution on the intensity predictions of Katrina. It is found that the 0.125 degree runs give comparable tracks to the 0.25 degree, but provide better intensity forecasts, bringing the center pressure much closer to observations with differences of only plus or minus 12 hPa. In the runs initialized at 1200 UTC 25 AUG, the 0.125 degree simulates a more realistic intensification rate and better near-eye wind distributions. Moreover, the first global 0.125 degree simulation without convection parameterization (CP) produces even better intensity evolution and near-eye winds than the control run with CP.
Tests of high-resolution simulations over a region of complex terrain in Southeast coast of Brazil
NASA Astrophysics Data System (ADS)
Chou, Sin Chan; Luís Gomes, Jorge; Ristic, Ivan; Mesinger, Fedor; Sueiro, Gustavo; Andrade, Diego; Lima-e-Silva, Pedro Paulo
2013-04-01
The Eta Model is used operationally by INPE at the Centre for Weather Forecasts and Climate Studies (CPTEC) to produce weather forecasts over South America since 1997. The model has gone through upgrades along these years. In order to prepare the model for operational higher resolution forecasts, the model is configured and tested over a region of complex topography located near the coast of Southeast Brazil. The model domain includes the two Brazilians cities, Rio de Janeiro and Sao Paulo, urban areas, preserved tropical forest, pasture fields, and complex terrain where it can rise from sea level up to about 1000 m. Accurate near-surface wind direction and magnitude are needed for the power plant emergency plan. Besides, the region suffers from frequent events of floods and landslides, therefore accurate local forecasts are required for disaster warnings. The objective of this work is to carry out a series of numerical experiments to test and evaluate high resolution simulations in this complex area. Verification of model runs uses observations taken from the nuclear power plant and higher resolution reanalyses data. The runs were tested in a period when flow was predominately forced by local conditions and in a period forced by frontal passage. The Eta Model was configured initially with 2-km horizontal resolution and 50 layers. The Eta-2km is a second nesting, it is driven by Eta-15km, which in its turn is driven by Era-Interim reanalyses. The series of experiments consists of replacing surface layer stability function, adjusting cloud microphysics scheme parameters, further increasing vertical and horizontal resolutions. By replacing the stability function for the stable conditions substantially increased the katabatic winds and verified better against the tower wind data. Precipitation produced by the model was excessive in the region. Increasing vertical resolution to 60 layers caused a further increase in precipitation production. This excessive precipitation was reduced by adjusting some parameters in the cloud microphysics scheme. Precipitation overestimate still occurs and further tests are still necessary. The increase of horizontal resolution to 1 km required adjusting model diffusion parameters and refining divergence calculations. Available observations in the region for a thorough evaluation is a major constraint.
NASA Astrophysics Data System (ADS)
Skaugen, Thomas; Haddeland, Ingjerd
2014-05-01
A new parameter-parsimonious rainfall-runoff model, DDD (Distance Distribution Dynamics) has been run operationally at the Norwegian Flood Forecasting Service for approximately a year. DDD has been calibrated for, altogether, 104 catchments throughout Norway, and provide runoff forecasts 8 days ahead on a daily temporal resolution driven by precipitation and temperature from the meteorological forecast models AROME (48 hrs) and EC (192 hrs). The current version of DDD differs from the standard model used for flood forecasting in Norway, the HBV model, in its description of the subsurface and runoff dynamics. In DDD, the capacity of the subsurface water reservoir M, is the only parameter to be calibrated whereas the runoff dynamics is completely parameterised from observed characteristics derived from GIS and runoff recession analysis. Water is conveyed through the soils to the river network by waves with celerities determined by the level of saturation in the catchment. The distributions of distances between points in the catchment to the nearest river reach and of the river network give, together with the celerities, distributions of travel times, and, consequently unit hydrographs. DDD has 6 parameters less to calibrate in the runoff module than the HBV model. Experiences using DDD show that especially the timing of flood peaks has improved considerably and in a comparison between DDD and HBV, when assessing timeseries of 64 years for 75 catchments, DDD had a higher hit rate and a lower false alarm rate than HBV. For flood peaks higher than the mean annual flood the median hit rate is 0.45 and 0.41 for the DDD and HBV models respectively. Corresponding number for the false alarm rate is 0.62 and 0.75 For floods over the five year return interval, the median hit rate is 0.29 and 0.28 for the DDD and HBV models, respectively with false alarm rates equal to 0.67 and 0.80. During 2014 the Norwegian flood forecasting service will run DDD operationally at a 3h temporal resolution. Running DDD at a 3h resolution will give a better prediction of flood peaks in small catchments, where the averaging over 24 hrs will lead to a underestimation of high events, and we can better describe the progress floods in larger catchments. Also, at a 3h temporal resolution we make better use of the meteorological forecasts that for long have been provided at a very detailed temporal resolution.
NASA Technical Reports Server (NTRS)
Reale, Oreste; Lau, William K.; Kim, Kyu-Myong; Brin, Eugenia
2009-01-01
This article investigates the role of the Saharan air layer (SAL) in tropical cyclogenetic processes associated with a nondeveloping and a developing African easterly wave observed during the Special Observation Period (SOP-3) phase of the 2006 NASA African. Monsoon Multidisciplinary Analyses (NAMMA). The two waves are chosen because they both interact heavily with Saharan air. A glottal data assimilation and forecast system, the NASA Goddard Earth Observing System. version 5 (GEOS-5), is being run to produce a set of high-9 uality global analyses, inclusive of all observations used operationally but with additional satellite information. In particular, following previous works by the same authors, the duality-controlled data from the Atmospheric Infrared Sounder (AIRS) used to produce these analyses have a better coverage than the one adopted by operational centers. From these improved analyses, two sets of 31 five-day high-resolution forecasts, at horizontal resolutions of both half and quarter degrees, are produced. Results indicate that very steep moisture gradients are associated with the SAL in forecasts and analyses, even at great distances from their source over the Sahara. In addition, a thermal dipole in the vertiieat (warm above, cool below) is present in the nondeveloping case. The Moderate Resolution Imaging Spoctroradiometer (MODIS) aboard NASA's Terra and Aqua satellites shows that aerosol optical thickness, indicative of more dust as opposed to other factors, is higher in the nondeveloping case. Altogether, results suggest that the radiative effect of dust may play some role in producing a thermal structure less favorable to cyclogenesis. Results also indicate that only global horizontal resolutions on the order of 20-30 km can capture the large-scale transport and the tine thermal structure of the SAL, inclusive of the sharp moisture gradients, reproducing the effect of tropical cyclone suppression that has been hypothesized by previous authors from observational and regional modeling perspectives. Thcse effects cannot be fully represented at lower resolutions, therefore global resolution of a quarter of a degree is a minimum critical threshold necessary to investigate Atlantic tropical cyclogenesis from a global modeling perspective
A Real-Time Offshore Weather Risk Advisory System
NASA Astrophysics Data System (ADS)
Jolivet, Samuel; Zemskyy, Pavlo; Mynampati, Kalyan; Babovic, Vladan
2015-04-01
Offshore oil and gas operations in South East Asia periodically face extended downtime due to unpredictable weather conditions, including squalls that are accompanied by strong winds, thunder, and heavy rains. This downtime results in financial losses. Hence, a real time weather risk advisory system is developed to provide the offshore Oil and Gas (O&G) industry specific weather warnings in support of safety and environment security. This system provides safe operating windows based on sensitivity of offshore operations to sea state. Information products for safety and security include area of squall occurrence for the next 24 hours, time before squall strike, and heavy sea state warning for the next 3, 6, 12 & 24 hours. These are predicted using radar now-cast, high resolution Numerical Weather Prediction (NWP) and Data Assimilation (DA). Radar based now-casting leverages the radar data to produce short term (up to 3 hours) predictions of severe weather events including squalls/thunderstorms. A sea state approximation is provided through developing a translational model based on these predictions to risk rank the sensitivity of operations. A high resolution Weather Research and Forecasting (WRF, an open source NWP model) is developed for offshore Brunei, Malaysia and the Philippines. This high resolution model is optimized and validated against the adaptation of temperate to tropical met-ocean parameterization. This locally specific parameters are calibrated against federated data to achieve a 24 hour forecast of high resolution Convective Available Potential Energy (CAPE). CAPE is being used as a proxy for the risk of squall occurrence. Spectral decomposition is used to blend the outputs of the now-cast and the forecast in order to assimilate near real time weather observations as an implementation of the integration of data sources. This system uses the now-cast for the first 3 hours and then the forecast prediction horizons of 3, 6, 12 & 24 hours. The output is a 24 hour window of high resolution/accuracy forecasts leveraging available data-model integration and CAPE prediction. The systems includes dissemination of WRF outputs over the World Wide Web. Components of the system (including WRF computational engine and results dissemination modules) are deployed in to computational cloud. This approach tends to increase system robustness and sustainability. The creation of such a system to share information between the public and private sectors and across territorial boundaries is an important step towards the next generation of governance for climate risk and extreme weather offshore. The system benefits offshore operators by reducing downtime related to accidents and incidents; eliminate unnecessary hiring costs related to waiting on weather; and improve the efficiency and planning of transport and logistics by providing a rolling weather risk advisory.
2008-09-30
participated in EGU General Assembly , Vienna Austria 13-18 April 2008, giving a poster presentation. Bogumil Jakubiak, University of Warsaw...participated in EGU General Assembly , Vienna Austria 13-18 April 2008, giving two posters presentation. Mikolaj Sierzega, University of Warwick – participated...model forecast to generate background error statistics. This helps us to identify and understand the uncertainties in high-resolution NWP forecasts
2013-09-01
potential energy CFSR Climate Forecast System Reanalysis COAMPS Coupled Ocean / Atmosphere Mesoscale Prediction System DA data assimilation DART Data...developing (TCS025) tropical disturbance using the adjoint and tangent linear models for the Coupled Ocean – Atmosphere Mesoscale Prediction System (COAMPS...for Medium-range Weather Forecasts ELDORA ELectra DOppler RAdar EOL Earth Observing Laboratory GPS global positioning system GTS Global
NASA Astrophysics Data System (ADS)
Renko, Tanja; Ivušić, Sarah; Telišman Prtenjak, Maja; Šoljan, Vinko; Horvat, Igor
2018-03-01
In this study, a synoptic and mesoscale analysis was performed and Szilagyi's waterspout forecasting method was tested on ten waterspout events in the period of 2013-2016. Data regarding waterspout occurrences were collected from weather stations, an online survey at the official website of the National Meteorological and Hydrological Service of Croatia and eyewitness reports from newspapers and the internet. Synoptic weather conditions were analyzed using surface pressure fields, 500 hPa level synoptic charts, SYNOP reports and atmospheric soundings. For all observed waterspout events, a synoptic type was determined using the 500 hPa geopotential height chart. The occurrence of lightning activity was determined from the LINET lightning database, and waterspouts were divided into thunderstorm-related and "fair weather" ones. Mesoscale characteristics (with a focus on thermodynamic instability indices) were determined using the high-resolution (500 m grid length) mesoscale numerical weather model and model results were compared with the available observations. Because thermodynamic instability indices are usually insufficient for forecasting waterspout activity, the performance of the Szilagyi Waterspout Index (SWI) was tested using vertical atmospheric profiles provided by the mesoscale numerical model. The SWI successfully forecasted all waterspout events, even the winter events. This indicates that the Szilagyi's waterspout prognostic method could be used as a valid prognostic tool for the eastern Adriatic.
The Navy’s Application of Ocean Forecasting to Decision Support
2014-09-01
Prediction Center (OPC) website for graphics or the National Operational Model Archive and Distribution System ( NOMADS ) for data files. Regional...inputs: » GLOBE = Global Land One-km Base Elevation » WVS = World Vector Shoreline » DBDB2 = Digital Bathymetry Data Base 2 minute resolution » DBDBV... Digital Bathymetry Data Base variable resolution Oceanography | Vol. 27, No.3130 Very High-Resolution Coastal Circulation Models Nearshore
NASA Astrophysics Data System (ADS)
Mesinger, F.
The traditional views hold that high-resolution limited area models (LAMs) down- scale large-scale lateral boundary information, and that predictability of small scales is short. Inspection of various rms fits/errors has contributed to these views. It would follow that the skill of LAMs should visibly deteriorate compared to that of their driver models at more extended forecast times. The limited area Eta Model at NCEP has an additional handicap of being driven by LBCs of the previous Avn global model run, at 0000 and 1200 UTC estimated to amount to about an 8 h loss in accuracy. This should make its relative skill compared to that of the Avn deteriorate even faster. These views are challenged by various Eta results including rms fits to raobs out to 84 h. It is argued that it is the largest scales that contribute the most to the skill of the Eta relative to that of the Avn.
Wave ensemble forecast system for tropical cyclones in the Australian region
NASA Astrophysics Data System (ADS)
Zieger, Stefan; Greenslade, Diana; Kepert, Jeffrey D.
2018-05-01
Forecasting of waves under extreme conditions such as tropical cyclones is vitally important for many offshore industries, but there remain many challenges. For Northwest Western Australia (NW WA), wave forecasts issued by the Australian Bureau of Meteorology have previously been limited to products from deterministic operational wave models forced by deterministic atmospheric models. The wave models are run over global (resolution 1/4∘) and regional (resolution 1/10∘) domains with forecast ranges of + 7 and + 3 day respectively. Because of this relatively coarse resolution (both in the wave models and in the forcing fields), the accuracy of these products is limited under tropical cyclone conditions. Given this limited accuracy, a new ensemble-based wave forecasting system for the NW WA region has been developed. To achieve this, a new dedicated 8-km resolution grid was nested in the global wave model. Over this grid, the wave model is forced with winds from a bias-corrected European Centre for Medium Range Weather Forecast atmospheric ensemble that comprises 51 ensemble members to take into account the uncertainties in location, intensity and structure of a tropical cyclone system. A unique technique is used to select restart files for each wave ensemble member. The system is designed to operate in real time during the cyclone season providing + 10-day forecasts. This paper will describe the wave forecast components of this system and present the verification metrics and skill for specific events.
An ensemble forecast of the South China Sea monsoon
NASA Astrophysics Data System (ADS)
Krishnamurti, T. N.; Tewari, Mukul; Bensman, Ed; Han, Wei; Zhang, Zhan; Lau, William K. M.
1999-05-01
This paper presents a generalized ensemble forecast procedure for the tropical latitudes. Here we propose an empirical orthogonal function-based procedure for the definition of a seven-member ensemble. The wind and the temperature fields are perturbed over the global tropics. Although the forecasts are made over the global belt with a high-resolution model, the emphasis of this study is on a South China Sea monsoon. Over this domain of the South China Sea includes the passage of a Tropical Storm, Gary, that moved eastwards north of the Philippines. The ensemble forecast handled the precipitation of this storm reasonably well. A global model at the resolution Triangular Truncation 126 waves is used to carry out these seven forecasts. The evaluation of the ensemble of forecasts is carried out via standard root mean square errors of the precipitation and the wind fields. The ensemble average is shown to have a higher skill compared to a control experiment, which was a first analysis based on operational data sets over both the global tropical and South China Sea domain. All of these experiments were subjected to physical initialization which provides a spin-up of the model rain close to that obtained from satellite and gauge-based estimates. The results furthermore show that inherently much higher skill resides in the forecast precipitation fields if they are averaged over area elements of the order of 4° latitude by 4° longitude squares.
National Centers for Environmental Prediction
; at the NOAA/ESRL Rapid Refresh Page [<--click here] See "Current and Forecast Graphics" ; at the NOAA/ESRL High-Resolution Rapid Refresh Page [<--click here] NOAA / National Weather
Ensemble Solar Forecasting Statistical Quantification and Sensitivity Analysis: Preprint
DOE Office of Scientific and Technical Information (OSTI.GOV)
Cheung, WanYin; Zhang, Jie; Florita, Anthony
2015-12-08
Uncertainties associated with solar forecasts present challenges to maintain grid reliability, especially at high solar penetrations. This study aims to quantify the errors associated with the day-ahead solar forecast parameters and the theoretical solar power output for a 51-kW solar power plant in a utility area in the state of Vermont, U.S. Forecasts were generated by three numerical weather prediction (NWP) models, including the Rapid Refresh, the High Resolution Rapid Refresh, and the North American Model, and a machine-learning ensemble model. A photovoltaic (PV) performance model was adopted to calculate theoretical solar power generation using the forecast parameters (e.g., irradiance,more » cell temperature, and wind speed). Errors of the power outputs were quantified using statistical moments and a suite of metrics, such as the normalized root mean squared error (NRMSE). In addition, the PV model's sensitivity to different forecast parameters was quantified and analyzed. Results showed that the ensemble model yielded forecasts in all parameters with the smallest NRMSE. The NRMSE of solar irradiance forecasts of the ensemble NWP model was reduced by 28.10% compared to the best of the three NWP models. Further, the sensitivity analysis indicated that the errors of the forecasted cell temperature attributed only approximately 0.12% to the NRMSE of the power output as opposed to 7.44% from the forecasted solar irradiance.« less
Visualization of ocean forecast in BYTHOS
NASA Astrophysics Data System (ADS)
Zhuk, E.; Zodiatis, G.; Nikolaidis, A.; Stylianou, S.; Karaolia, A.
2016-08-01
The Cyprus Oceanography Center has been constantly searching for new ideas for developing and implementing innovative methods and new developments concerning the use of Information Systems in Oceanography, to suit both the Center's monitoring and forecasting products. Within the frame of this scope two major online managing and visualizing data systems have been developed and utilized, those of CYCOFOS and BYTHOS. The Cyprus Coastal Ocean Forecasting and Observing System - CYCOFOS provides a variety of operational predictions such as ultra high, high and medium resolution ocean forecasts in the Levantine Basin, offshore and coastal sea state forecasts in the Mediterranean and Black Sea, tide forecasting in the Mediterranean, ocean remote sensing in the Eastern Mediterranean and coastal and offshore monitoring. As a rich internet application, BYTHOS enables scientists to search, visualize and download oceanographic data online and in real time. The recent improving of BYTHOS system is the extension with access and visualization of CYCOFOS data and overlay forecast fields and observing data. The CYCOFOS data are stored at OPENDAP Server in netCDF format. To search, process and visualize it the php and python scripts were developed. Data visualization is achieved through Mapserver. The BYTHOS forecast access interface allows to search necessary forecasting field by recognizing type, parameter, region, level and time. Also it provides opportunity to overlay different forecast and observing data that can be used for complex analyze of sea basin aspects.
NASA Astrophysics Data System (ADS)
Bytheway, J. L.; Biswas, S.; Cifelli, R.; Hughes, M.
2017-12-01
The Russian River carves a 110 mile path through Mendocino and Sonoma counties in western California, providing water for thousands of residents and acres of agriculture as well as a home for several species of endangered fish. The Russian River basin receives almost all of its precipitation during the October through March wet season, and the systems bringing this precipitation are often impacted by atmospheric river events as well as the complex topography of the region. This study will examine the performance of several high resolution (hourly, < 5km) estimates of precipitation from observational products and forecasts over the 2015-2016 and 2016-2017 wet seasons. Comparisons of event total rainfall as well as hourly rainfall will be performed using 1) rain gauges operated by the National Oceanic and Atmospheric Administration (NOAA) Physical Sciences Division (PSD), 2) products from the Multi-Radar/Multi-Sensor (MRMS) QPE dataset, and 3) quantitative precipitation forecasts from the High Resolution Rapid Refresh (HRRR) model at 1, 3, 6, and 12 hour lead times. Further attention will be given to cases or locations representing large disparities between the estimates.
Scientific assessment of accuracy, skill and reliability of ocean probabilistic forecast products.
NASA Astrophysics Data System (ADS)
Wei, M.; Rowley, C. D.; Barron, C. N.; Hogan, P. J.
2016-02-01
As ocean operational centers are increasingly adopting and generating probabilistic forecast products for their customers with valuable forecast uncertainties, how to assess and measure these complicated probabilistic forecast products objectively is challenging. The first challenge is how to deal with the huge amount of the data from the ensemble forecasts. The second one is how to describe the scientific quality of probabilistic products. In fact, probabilistic forecast accuracy, skills, reliability, resolutions are different attributes of a forecast system. We briefly introduce some of the fundamental metrics such as the Reliability Diagram, Reliability, Resolution, Brier Score (BS), Brier Skill Score (BSS), Ranked Probability Score (RPS), Ranked Probability Skill Score (RPSS), Continuous Ranked Probability Score (CRPS), and Continuous Ranked Probability Skill Score (CRPSS). The values and significance of these metrics are demonstrated for the forecasts from the US Navy's regional ensemble system with different ensemble members. The advantages and differences of these metrics are studied and clarified.
NASA Technical Reports Server (NTRS)
Jedlovec, Gary J.
2005-01-01
Over the last three years, NASA/MSFC scientists have embarked on an effort to transition unique NASA EOS data/products and research technology to selected NWSEOs in the southeast U.S. This activity, called the Short-term Prediction and - Research Transition (SPoRT) program, supports the NASA Science Mission Directorate and its Earth-Sun System Mission to develop a scientific understanding of the Earth System and its response to natural or human-induced changes that will enable improved prediction capability for climate, weather, and natural hazards. The overarching question related to weather prediction is "How well can weather forecasting duration and reliability be improved by new space-based observations, data assimilation, and modeling?" The transition activity has included the real-time delivery of MODIS data and products to several NWS Forecast Offices. Local NWS FOs have used the MODIS data to complement the coarse resolution GOES data for a number of applications. Specialized products have also been developed and made available to local and remote offices for their weather applications. Data from &e Lightning Mapping Array (LMA) network has been used in severe storm forecasts at several offices in the region. At the regional scale and forecast horizons from 0-1 day, the next generation of high-resolution mesoscale forecast and data assimilation models have been used to provide local offices with unique weather forecasts not otherwise available. The continued use of near red-time infusion of NASA science products into high-resolution mesoscale forecast and decision-making models can be expected to improve the model initialization as well as short-term forecasts. A current focus of SPoRT is to expand collaborations to include contributions from the assimilation of AMSR-E data in the ADASIARPS forecast system (OU), inclusion of MODIS SSTs and AIRS thermodynamic profiles in the WRF, and to extend the distribution of real-time MODIS and AMSR-E data and products to the Florida coastal WFOs. A SPoRT Test bed, together with input from other interagency and university partners, will provide a means and a process to effectively transition ESE observations and technology to NWS operations and decision makers at both the globdnational and regional scales. The transition of emerging experimental products into operations through the SPoRT infrastructure will allow NASA to foster and accelerate the progress of this Science Mission Directorate research strategy over the coming years.
Time Relevance of Convective Weather Forecast for Air Traffic Automation
NASA Technical Reports Server (NTRS)
Chan, William N.
2006-01-01
The Federal Aviation Administration (FAA) is handling nearly 120,000 flights a day through its Air Traffic Management (ATM) system and air traffic congestion is expected to increse substantially over the next 20 years. Weather-induced impacts to throughput and efficiency are the leading cause of flight delays accounting for 70% of all delays with convective weather accounting for 60% of all weather related delays. To support the Next Generation Air Traffic System goal of operating at 3X current capacity in the NAS, ATC decision support tools are being developed to create advisories to assist controllers in all weather constraints. Initial development of these decision support tools did not integrate information regarding weather constraints such as thunderstorms and relied on an additional system to provide that information. Future Decision Support Tools should move towards an integrated system where weather constraints are factored into the advisory of a Decision Support Tool (DST). Several groups such at NASA-Ames, Lincoln Laboratories, and MITRE are integrating convective weather data with DSTs. A survey of current convective weather forecast and observation data show they span a wide range of temporal and spatial resolutions. Short range convective observations can be obtained every 5 mins with longer range forecasts out to several days updated every 6 hrs. Today, the short range forecasts of less than 2 hours have a temporal resolution of 5 mins. Beyond 2 hours, forecasts have much lower temporal. resolution of typically 1 hour. Spatial resolutions vary from 1km for short range to 40km for longer range forecasts. Improving the accuracy of long range convective forecasts is a major challenge. A report published by the National Research Council states improvements for convective forecasts for the 2 to 6 hour time frame will only be achieved for a limited set of convective phenomena in the next 5 to 10 years. Improved longer range forecasts will be probabilistic as opposed to the deterministic shorter range forecasts. Despite the known low level of confidence with respect to long range convective forecasts, these data are still useful to a DST routing algorithm. It is better to develop an aircraft route using the best information available than no information. The temporally coarse long range forecast data needs to be interpolated to be useful to a DST. A DST uses aircraft trajectory predictions that need to be evaluated for impacts by convective storms. Each time-step of a trajectory prediction n&s to be checked against weather data. For the case of coarse temporal data, there needs to be a method fill in weather data where there is none. Simply using the coarse weather data without any interpolation can result in DST routes that are impacted by regions of strong convection. Increasing the temporal resolution of these data can be achieved but result in a large dataset that may prove to be an operational challenge in transmission and loading by a DST. Currently, it takes about 7mins retrieve a 7mb RUC2 forecast file from NOAA at NASA-Ames Research Center. A prototype NCWF6 1 hour forecast is about 3mb in size. A Six hour NCWFG forecast with a 1hr forecast time-step will be about l8mb (6 x 3mb). A 6 hour NCWF6 forecast with a l5min forecast time-step will be about 7mb (24 x 3mb). Based on the time it takes to retrieve a 7mb RUC2 forecast, it will take approximately 70mins to retrieve a 6 hour NCWF forecast with 15min time steps. Until those issues are addressed, there is a need to develop an algorithm that interpolates between these temporally coarse long range forecasts. This paper describes a method of how to use low temporal resolution probabilistic weather forecasts in a DST. The beginning of this paper is a description of some convective weather forecast and observation products followed by an example of how weather data are used by a DST. The subsequent sections will describe probabilistic forecasts followed by a descrtion of a method to use low temporal resolution probabilistic weather forecasts by providing a relevance value to these data outside of their valid times.
NASA Astrophysics Data System (ADS)
Ahmadov, R.; Grell, G. A.; James, E.; Alexander, C.; Stewart, J.; Benjamin, S.; McKeen, S. A.; Csiszar, I. A.; Tsidulko, M.; Pierce, R. B.; Pereira, G.; Freitas, S. R.; Goldberg, M.
2017-12-01
We present a new real-time smoke modeling system, the High Resolution Rapid Refresh coupled with smoke (HRRR-Smoke), to simulate biomass burning (BB) emissions, plume rise and smoke transport in real time. The HRRR is the NOAA Earth System Research Laboratory's 3km grid spacing version of the Weather Research and Forecasting (WRF) model used for weather forecasting. Here we make use of WRF-Chem (the WRF model coupled with chemistry) and simulate fine particulate matter (smoke) emissions emitted by BB. The HRRR-Smoke modeling system ingests fire radiative power (FRP) data from the Visible Infrared Imaging Radiometer Suite (VIIRS) sensor on the Suomi National Polar-orbiting Partnership (S-NPP) satellite to calculate BB emissions. The FRP product is based on processing 750m resolution "M" bands. The algorithms for fire detection and FRP retrieval are consistent with those used to generate the MODIS fire detection data. For the purpose of ingesting VIIRS fire data into the HRRR-Smoke model, text files are generated to provide the location and detection confidence of fire pixels, as well as FRP. The VIIRS FRP data from the text files are processed and remapped over the HRRR-Smoke model domains. We process the FRP data to calculate BB emissions (smoldering part) and fire size for the model input. In addition, HRRR-Smoke uses the FRP data to simulate the injection height for the flaming emissions using concurrently simulated meteorological fields by the model. Currently, there are two 3km resolution domains covering the contiguous US and Alaska which are used to simulate smoke in real time. In our presentation, we focus on the CONUS domain. HRRR-Smoke is initialized 4 times per day to forecast smoke concentrations for the next 36 hours. The VIIRS FRP data, as well as near-surface and vertically integrated smoke mass concentrations are visualized for every forecast hour. These plots are provided to the public via the HRRR-Smoke web-page: https://rapidrefresh.noaa.gov/HRRRsmoke/. Model evaluations for a case study are presented, where simulated smoke concentrations are compared with hourly PM2.5 measurements from EPA's Air Quality System network. These comparisons demonstrate the model's ability in simulating high aerosol loadings during major wildfire events in the western US.
Gridded Calibration of Ensemble Wind Vector Forecasts Using Ensemble Model Output Statistics
NASA Astrophysics Data System (ADS)
Lazarus, S. M.; Holman, B. P.; Splitt, M. E.
2017-12-01
A computationally efficient method is developed that performs gridded post processing of ensemble wind vector forecasts. An expansive set of idealized WRF model simulations are generated to provide physically consistent high resolution winds over a coastal domain characterized by an intricate land / water mask. Ensemble model output statistics (EMOS) is used to calibrate the ensemble wind vector forecasts at observation locations. The local EMOS predictive parameters (mean and variance) are then spread throughout the grid utilizing flow-dependent statistical relationships extracted from the downscaled WRF winds. Using data withdrawal and 28 east central Florida stations, the method is applied to one year of 24 h wind forecasts from the Global Ensemble Forecast System (GEFS). Compared to the raw GEFS, the approach improves both the deterministic and probabilistic forecast skill. Analysis of multivariate rank histograms indicate the post processed forecasts are calibrated. Two downscaling case studies are presented, a quiescent easterly flow event and a frontal passage. Strengths and weaknesses of the approach are presented and discussed.
An Overview of Numerical Weather Prediction on Various Scales
NASA Astrophysics Data System (ADS)
Bao, J.-W.
2009-04-01
The increasing public need for detailed weather forecasts, along with the advances in computer technology, has motivated many research institutes and national weather forecasting centers to develop and run global as well as regional numerical weather prediction (NWP) models at high resolutions (i.e., with horizontal resolutions of ~10 km or higher for global models and 1 km or higher for regional models, and with ~60 vertical levels or higher). The need for running NWP models at high horizontal and vertical resolutions requires the implementation of non-hydrostatic dynamic core with a choice of horizontal grid configurations and vertical coordinates that are appropriate for high resolutions. Development of advanced numerics will also be needed for high resolution global and regional models, in particular, when the models are applied to transport problems and air quality applications. In addition to the challenges in numerics, the NWP community is also facing the challenges of developing physics parameterizations that are well suited for high-resolution NWP models. For example, when NWP models are run at resolutions of ~5 km or higher, the use of much more detailed microphysics parameterizations than those currently used in NWP model will become important. Another example is that regional NWP models at ~1 km or higher only partially resolve convective energy containing eddies in the lower troposphere. Parameterizations to account for the subgrid diffusion associated with unresolved turbulence still need to be developed. Further, physically sound parameterizations for air-sea interaction will be a critical component for tropical NWP models, particularly for hurricane predictions models. In this review presentation, the above issues will be elaborated on and the approaches to address them will be discussed.
NASA Technical Reports Server (NTRS)
Putman, William P.
2012-01-01
Using a high-resolution non-hydrostatic version of GEOS-5 with the cubed-sphere finite-volume dynamical core, the impact of spatial and temporal resolution on cloud properties will be evaluated. There are indications from examining convective cluster development in high resolution GEOS-5 forecasts that the temporal resolution within the model may playas significant a role as horizontal resolution. Comparing modeled convective cloud clusters versus satellite observations of brightness temperature, we have found that improved. temporal resolution in GEOS-S accounts for a significant portion of the improvements in the statistical distribution of convective cloud clusters. Using satellite simulators in GEOS-S we will compare the cloud optical properties of GEOS-S at various spatial and temporal resolutions with those observed from MODIS. The potential impact of these results on tropical cyclone formation and intensity will be examined as well.
A framework for probabilistic pluvial flood nowcasting for urban areas
NASA Astrophysics Data System (ADS)
Ntegeka, Victor; Murla, Damian; Wang, Lipen; Foresti, Loris; Reyniers, Maarten; Delobbe, Laurent; Van Herk, Kristine; Van Ootegem, Luc; Willems, Patrick
2016-04-01
Pluvial flood nowcasting is gaining ground not least because of the advancements in rainfall forecasting schemes. Short-term forecasts and applications have benefited from the availability of such forecasts with high resolution in space (~1km) and time (~5min). In this regard, it is vital to evaluate the potential of nowcasting products for urban inundation applications. One of the most advanced Quantitative Precipitation Forecasting (QPF) techniques is the Short-Term Ensemble Prediction System, which was originally co-developed by the UK Met Office and Australian Bureau of Meteorology. The scheme was further tuned to better estimate extreme and moderate events for the Belgian area (STEPS-BE). Against this backdrop, a probabilistic framework has been developed that consists of: (1) rainfall nowcasts; (2) sewer hydraulic model; (3) flood damage estimation; and (4) urban inundation risk mapping. STEPS-BE forecasts are provided at high resolution (1km/5min) with 20 ensemble members with a lead time of up to 2 hours using a 4 C-band radar composite as input. Forecasts' verification was performed over the cities of Leuven and Ghent and biases were found to be small. The hydraulic model consists of the 1D sewer network and an innovative 'nested' 2D surface model to model 2D urban surface inundations at high resolution. The surface components are categorized into three groups and each group is modelled using triangular meshes at different resolutions; these include streets (3.75 - 15 m2), high flood hazard areas (12.5 - 50 m2) and low flood hazard areas (75 - 300 m2). Functions describing urban flood damage and social consequences were empirically derived based on questionnaires to people in the region that were recently affected by sewer floods. Probabilistic urban flood risk maps were prepared based on spatial interpolation techniques of flood inundation. The method has been implemented and tested for the villages Oostakker and Sint-Amandsberg, which are part of the larger city of Gent, Belgium. After each of the different above-mentioned components were evaluated, they were combined and tested for recent historical flood events. The rainfall nowcasting, hydraulic sewer and 2D inundation modelling and socio-economical flood risk results each could be partly evaluated: the rainfall nowcasting results based on radar data and rain gauges; the hydraulic sewer model results based on water level and discharge data at pumping stations; the 2D inundation modelling results based on limited data on some recent flood locations and inundation depths; the results for the socio-economical flood consequences of the most extreme events based on claims in the database of the national disaster agency. Different methods for visualization of the probabilistic inundation results are proposed and tested.
Clouds in ECMWF's 30 KM Resolution Global Atmospheric Forecast Model (TL639)
NASA Technical Reports Server (NTRS)
Cahalan, R. F.; Morcrette, J. J.
1999-01-01
Global models of the general circulation of the atmosphere resolve a wide range of length scales, and in particular cloud structures extend from planetary scales to the smallest scales resolvable, now down to 30 km in state-of-the-art models. Even the highest resolution models do not resolve small-scale cloud phenomena seen, for example, in Landsat and other high-resolution satellite images of clouds. Unresolved small-scale disturbances often grow into larger ones through non-linear processes that transfer energy upscale. Understanding upscale cascades is of crucial importance in predicting current weather, and in parameterizing cloud-radiative processes that control long term climate. Several movie animations provide examples of the temporal and spatial variation of cloud fields produced in 4-day runs of the forecast model at the European Centre for Medium-Range Weather Forecasts (ECMWF) in Reading, England, at particular times and locations of simultaneous measurement field campaigns. model resolution is approximately 30 km horizontally (triangular truncation TL639) with 31 vertical levels from surface to stratosphere. Timestep of the model is about 10 minutes, but animation frames are 3 hours apart, at timesteps when the radiation is computed. The animations were prepared from an archive of several 4-day runs at the highest available model resolution, and archived at ECMWF. Cloud, wind and temperature fields in an approximately 1000 km X 1000 km box were retrieved from the archive, then approximately 60 Mb Vis5d files were prepared with the help of Graeme Kelly of ECMWF, and were compressed into MPEG files each less than 3 Mb. We discuss the interaction of clouds and radiation in the model, and compare the variability of cloud liquid as a function of scale to that seen in cloud observations made in intensive field campaigns. Comparison of high-resolution global runs to cloud-resolving models, and to lower resolution climate models is leading to better understanding of the upscale cascade and suggesting new cloud-radiation parameterizations for climate models.
National Centers for Environmental Prediction
Contacts Change Log Events Calendar Numerical Forecast Systems Link to NOAA/ESRL Rapid Refresh page [< ;--click here] Link to NOAA/ESRL High-Resolution Rapid Refresh page [<--click here] NOAA / National
High-Resolution Mesoscale Model Setup for the Eastern Range and Wallops Flight Facility
NASA Technical Reports Server (NTRS)
Watson, Leela R.; Zavodsky, Bradley T.
2015-01-01
Mesoscale weather conditions can have an adverse effect on space launch, landing, ground processing, and weather advisories, watches, and warnings at the Eastern Range (ER) in Florida and Wallops Flight Facility (WFF) in Virginia. During summer, land-sea interactions across Kennedy Space Center (KSC) and Cape Canaveral Air Force Station (CCAFS) lead to sea breeze front formation, which can spawn deep convection that can hinder operations and endanger personnel and resources. Many other weak locally-driven low-level boundaries and their interactions with the sea breeze front and each other can also initiate deep convection in the KSC/CCAFS area. These convective processes often last 60 minutes or less and pose a significant challenge to the local forecasters. Surface winds during the transition seasons (spring and fall) pose the most difficulties for the forecasters at WFF. They also encounter problems forecasting convective activity and temperature during those seasons. Therefore, accurate mesoscale model forecasts are needed to better forecast a variety of unique weather phenomena. Global and national scale models cannot properly resolve important local-scale weather features at each location due to their horizontal resolutions being much too coarse. Therefore, a properly tuned local data assimilation (DA) and forecast model at a high resolution is needed to provide improved capability. To accomplish this, a number of sensitivity tests were performed using the Weather Research and Forecasting (WRF) model in order to determine the best DA/model configuration for operational use at each of the space launch ranges to best predict winds, precipitation, and temperature. A set of Perl scripts to run the Gridpoint Statistical Interpolation (GSI)/WRF in real-time were provided by NASA's Short-term Prediction Research and Transition Center (SPoRT). The GSI can analyze many types of observational data including satellite, radar, and conventional data. The GSI/WRF scripts use a cycled GSI system similar to the operational North American Mesoscale (NAM) model. The scripts run a 12-hour pre-cycle in which data are assimilated from 12 hours prior up to the model initialization time. A number of different model configurations were tested for both the ER and WFF by varying the horizontal resolution on which the data assimilation was done. Three different grid configurations were run for the ER and two configurations were run for WFF for archive cases from 27 Aug 2013 through 10 Nov 2013. To quantify model performance, standard model output will be compared to the Meteorological Assimilation Data Ingest System (MADIS) data. The MADIS observation data will be compared to the WRF forecasts using the Model Evaluation Tools (MET) verification package. In addition, the National Centers for Environmental Prediction's Stage IV precipitation data will be used to validate the WRF precipitation forecasts. The author will summarize the relative skill of the various WRF configurations and how each configuration behaves relative to the others, as well as determine the best model configuration for each space launch range.
Thirty-four years of Hawaii wave hindcast from downscaling of climate forecast system reanalysis
NASA Astrophysics Data System (ADS)
Li, Ning; Cheung, Kwok Fai; Stopa, Justin E.; Hsiao, Feng; Chen, Yi-Leng; Vega, Luis; Cross, Patrick
2016-04-01
The complex wave climate of Hawaii includes a mix of seasonal swells and wind waves from all directions across the Pacific. Numerical hindcasting from surface winds provides essential space-time information to complement buoy and satellite observations for studies of the marine environment. We utilize WAVEWATCH III and SWAN (Simulating WAves Nearshore) in a nested grid system to model basin-wide processes as well as high-resolution wave conditions around the Hawaiian Islands from 1979 to 2013. The wind forcing includes the Climate Forecast System Reanalysis (CFSR) for the globe and downscaled regional winds from the Weather Research and Forecasting (WRF) model. Long-term in-situ buoy measurements and remotely-sensed wind speeds and wave heights allow thorough assessment of the modeling approach and data products for practical application. The high-resolution WRF winds, which include orographic and land-surface effects, are validated with QuickSCAT observations from 2000 to 2009. The wave hindcast reproduces the spatial patterns of swell and wind wave events detected by altimeters on multiple platforms between 1991 and 2009 as well as the seasonal variations recorded at 16 offshore and nearshore buoys around the Hawaiian Islands from 1979 to 2013. The hindcast captures heightened seas in interisland channels and around prominent headlands, but tends to overestimate the heights of approaching northwest swells and give lower estimates in sheltered areas. The validated high-resolution hindcast sets a baseline for future improvement of spectral wave models.
Impact of using scatterometer and altimeter data on storm surge forecasting
NASA Astrophysics Data System (ADS)
Bajo, Marco; De Biasio, Francesco; Umgiesser, Georg; Vignudelli, Stefano; Zecchetto, Stefano
2017-05-01
Satellite data are rarely used in storm surge models because of the lack of established methodologies. Nevertheless, they can provide useful information on surface wind and sea level, which can potentially improve the forecast. In this paper satellite wind data are used to correct the bias of wind originating from a global atmospheric model, while satellite sea level data are used to improve the initial conditions of the model simulations. In a first step, the capability of global winds (biased and unbiased) to adequately force a storm surge model are assessed against that of a high resolution local wind. Then, the added value of direct assimilation of satellite altimeter data in the storm surge model is tested. Eleven storm surge events, recorded in Venice from 2008 to 2012, are simulated using different configurations of wind forcing and altimeter data assimilation. Focusing on the maximum surge peak, results show that the relative error, averaged over the eleven cases considered, decreases from 13% to 7%, using both the unbiased wind and assimilating the altimeter data, while, if the high resolution local wind is used to force the hydrodynamic model, the altimeter data assimilation reduces the error from 9% to 6%. Yet, the overall capabilities in reproducing the surge in the first day of forecast, measured by the correlation and by the rms error, improve only with the use of the unbiased global wind and not with the use of high resolution local wind and altimeter data assimilation.
NASA Astrophysics Data System (ADS)
Choudhury, Devanil; Das, Someshwar
2017-06-01
The Advanced Research WRF (ARW) model is used to simulate Very Severe Cyclonic Storms (VSCS) Hudhud (7-13 October, 2014), Phailin (8-14 October, 2013) and Lehar (24-29 November, 2013) to investigate the sensitivity to microphysical schemes on the skill of forecasting track and intensity of the tropical cyclones for high-resolution (9 and 3 km) 120-hr model integration. For cloud resolving grid scale (<5 km) cloud microphysics plays an important role. The performance of the Goddard, Thompson, LIN and NSSL schemes are evaluated and compared with observations and a CONTROL forecast. This study is aimed to investigate the sensitivity to microphysics on the track and intensity with explicitly resolved convection scheme. It shows that the Goddard one-moment bulk liquid-ice microphysical scheme provided the highest skill on the track whereas for intensity both Thompson and Goddard microphysical schemes perform better. The Thompson scheme indicates the highest skill in intensity at 48, 96 and 120 hr, whereas at 24 and 72 hr, the Goddard scheme provides the highest skill in intensity. It is known that higher resolution domain produces better intensity and structure of the cyclones and it is desirable to resolve the convection with sufficiently high resolution and with the use of explicit cloud physics. This study suggests that the Goddard cumulus ensemble microphysical scheme is suitable for high resolution ARW simulation for TC's track and intensity over the BoB. Although the present study is based on only three cyclones, it could be useful for planning real-time predictions using ARW modelling system.
Impact of MODIS High-Resolution Sea-Surface Temperatures on WRF Forecasts at NWS Miami, FL
NASA Technical Reports Server (NTRS)
Case, Jonathan L.; LaCasse, Katherine M.; Dembek, Scott R.; Santos, Pablo; Lapenta, William M.
2007-01-01
Over the past few years,studies at the Short-term Prediction Research and Transition (SPoRT) Center have suggested that the use of Moderate Resolution Imaging Spectroradiometer (MODIS) composite sea-surface temperature (SST) products in regional weather forecast models can have a significant positive impact on short-term numerical weather prediction in coastal regions. The recent paper by LaCasse et al. (2007, Monthly Weather Review) highlights lower atmospheric differences in regional numerical simulations over the Florida offshore waters using 2-km SST composites derived from the MODIS instrument aboard the polar-orbiting Aqua and Terra Earth Observing System satellites. To help quantify the value of this impact on NWS Weather Forecast Offices (WFOs), the SPoRT Center and the NWS WFO at Miami, FL (MIA) are collaborating on a project to investigate the impact of using the high-resolution MODIS SST fields within the Weather Research and Forecasting (WRF) prediction system. The scientific hypothesis being tested is: More accurate specification of the lower-boundary forcing within WRF will result in improved land/sea fluxes and hence, more accurate evolution of coastal mesoscale circulations and the associated sensible weather elements. The NWS MIA is currently running the WRF system in real-time to support daily forecast operations, using the National Centers for Environmental Prediction Nonhydrostatic Mesoscale Model dynamical core within the NWS Science and Training Resource Center's Environmental Modeling System (EMS) software; The EMS is a standalone modeling system capable of downloading the necessary daily datasets, and initializing, running and displaying WRF forecasts in the NWS Advanced Weather Interactive Processing System (AWIPS) with little intervention required by forecasters. Twenty-seven hour forecasts are run daily with start times of 0300,0900, 1500, and 2100 UTC on a domain with 4-km grid spacing covering the southern half of Florida and the far western portions of the Bahamas, the Florida Keys, the Straights of Florida, and adjacent waters of the Gulf of Mexico and Atlantic Ocean. Each model run is initialized using the Local Analysis and Prediction System (LAPS) analyses available in AWIPS, invoking the diabatic. "hot-start" capability. In this WRF model "hot-start", the LAPS-analyzed cloud and precipitation features are converted into model microphysics fields with enhanced vertical velocity profiles, effectively reducing the model spin-up time required to predict precipitation systems. The SSTs are initialized with the NCEP Real-Time Global (RTG) analyses at l/12 degree resolution (approx. 9 km); however, the RTG product does not exhibit fine-scale details consistent with its grid resolution. SPoRT is conducting parallel WRF EMS runs identical to the operational runs at NWS MIA in every respect except for the use of MODIS SST composites in place of the RTG product as the initial and boundary conditions over water. The MODIS SST composites for initializing the SPoRT WRF runs are generated on a 2-km grid four times daily at 0400, 0700, 1600, and 1900 UTC, based on the times of the overhead passes of the Aqua and Terra satellites. The incorporation of the MODIS SST composites into the SPoRTWRF runs is staggered such that the 0400UTC composite initializes the 0900 UTC WRF, the 0700 UTC composite initializes the 1500 UTC WRF, the 1600 UTC composite initializes the 2100 UTC WRF, and the 1900 UTC composite initializes the 0300 UTC WRF. A comparison of the SPoRT and Miami forecasts is underway in 2007, and includes quantitative verification of near-surface temperature, dewpoint, and wind forecasts at surface observation locations. In addition, particular days of interest are being analyzed to determine the impact of the MODIS SST data on the development and evolution of predicted sea/land-breeze circulations, clouds, and precipitation. This paper will present verification results comparing the NWS MIA forecasts the SPoRT experimental WRF forecasts, and highlight any substantial differences noted in the predicted mesoscale phenomena.
Dissemination and Use of NPOESS Data in AWIPS II
NASA Technical Reports Server (NTRS)
Jedlovec, Gary; Burks, Jason
2008-01-01
Real-time satellite information provides one of many data sources used by NWS forecast offices to diagnose current weather conditions and to assist in short-term forecast preparation. While GOES satellite data provides relatively coarse spatial resolution coverage of the continental U.S. on a 10-15 minute repeat cycle, polar orbiting data has the potential to provide snapshots of weather conditions at high-resolution in many spectral channels. The multispectral polar orbiting satellite capabilities allow for the derivation of image and sounding products not available from geostationary orbit. The utility of these polar orbiting measurements to forecasters has been demonstrated with NASA EOS observations as part of the Short-term Prediction and Research Transition (SPORT) program at Marshall Space Flight Center. SPORT scientists have been providing real-time MODIS data to NWS forecasters on an experimental basis to address a variety of short-term weather forecasting problems since 2003. The launch of the NPOESS Preparatory Project (NPP) satellite in 2009 will extend the continuity of high-resolution data provided by the NASA EOS satellites into future operational weather systems. The NPP data will be available in a timeframe consistent with the early installation of the next generation Advanced Weather Information Processing System (AWIPS) under development by Raytheon for the NWS. The AWIPS II system will be a JAVA-based decision support system which preserves the functionality of the existing systems and offers unique development opportunities for new data sources and applications in the Service Orientated Architecture (SOA) environment. The poster will highlight some of the advanced observing and display- capabilities of these new systems such as plug-ins for NASA and NPP datasets, and the development of local applications which are not well handled in the current AWIPS (e.g., 3D displays of LMA data, generation and display of 3-channel color composites, etc.).
NASA Astrophysics Data System (ADS)
Wei, Y.; Titov, V. V.; Bernard, E. N.; Spillane, M. C.
2014-12-01
The tragedies of 2004 Sumatra and 2011 Tohoku tsunamis exposed the limits of our knowledge in preparing for devastating tsunamis, especially in the near field. The 1,100-km coastline of the Pacific coast of North America has tectonic and geological settings similar to Sumatra and Japan. The geological records unambiguously show that the Cascadia fault had caused devastating tsunamis in the past and this geological process will cause tsunamis in the future. Existing observational instruments along the Cascadia Subduction Zone are capable of providing tsunami data within minutes of tsunami generation. However, this strategy requires separation of the tsunami signals from the overwhelming high-frequency seismic waves produced during a strong earthquake- a real technical challenge for existing operational tsunami observational network. A new-generation of nano-resolution pressure sensors can provide high temporal resolution of the earthquake and tsunami signals without loosing precision. The nano-resolution pressure sensor offers a state-of the-science ability to separate earthquake vibrations and other oceanic noise from tsunami waveforms, paving the way for accurate, early warnings of local tsunamis. This breakthrough underwater technology has been tested and verified for a couple of micro-tsunami events (Paros et al., 2011). Real-time forecast of Cascadia tsunamis is becoming a possibility with the development of nano-tsunameter technology. The present study provides an investigation on optimizing the placement of these new sensors so that the forecast time can be shortened.. The presentation will cover the optimization of an observational array to quickly detect and forecast a tsunami generated by a strong Cascadia earthquake, including short and long rupture scenarios. Lessons learned from the 2011 Tohoku tsunami will be examined to demonstrate how we can improve the local forecast using the new technology We expect this study to provide useful guideline for future siting and deployment of the new-generation tsunameters. Driven by the new technology, we demonstrate scenarios of real-time forecast of Cascadia tsunami impact along the Pacific Northwest, as well as in the Puget Sound.
Skill of Predicting Heavy Rainfall Over India: Improvement in Recent Years Using UKMO Global Model
NASA Astrophysics Data System (ADS)
Sharma, Kuldeep; Ashrit, Raghavendra; Bhatla, R.; Mitra, A. K.; Iyengar, G. R.; Rajagopal, E. N.
2017-11-01
The quantitative precipitation forecast (QPF) performance for heavy rains is still a challenge, even for the most advanced state-of-art high-resolution Numerical Weather Prediction (NWP) modeling systems. This study aims to evaluate the performance of UK Met Office Unified Model (UKMO) over India for prediction of high rainfall amounts (>2 and >5 cm/day) during the monsoon period (JJAS) from 2007 to 2015 in short range forecast up to Day 3. Among the various modeling upgrades and improvements in the parameterizations during this period, the model horizontal resolution has seen an improvement from 40 km in 2007 to 17 km in 2015. Skill of short range rainfall forecast has improved in UKMO model in recent years mainly due to increased horizontal and vertical resolution along with improved physics schemes. Categorical verification carried out using the four verification metrics, namely, probability of detection (POD), false alarm ratio (FAR), frequency bias (Bias) and Critical Success Index, indicates that QPF has improved by >29 and >24% in case of POD and FAR. Additionally, verification scores like EDS (Extreme Dependency Score), EDI (Extremal Dependence Index) and SEDI (Symmetric EDI) are used with special emphasis on verification of extreme and rare rainfall events. These scores also show an improvement by 60% (EDS) and >34% (EDI and SEDI) during the period of study, suggesting an improved skill of predicting heavy rains.
Evaluation of NU-WRF Rainfall Forecasts for IFloodS
NASA Technical Reports Server (NTRS)
Wu, Di; Peters-Lidard, Christa; Tao, Wei-Kuo; Petersen, Walter
2016-01-01
The Iowa Flood Studies (IFloodS) campaign was conducted in eastern Iowa as a pre- GPM-launch campaign from 1 May to 15 June 2013. During the campaign period, real time forecasts are conducted utilizing NASA-Unified Weather Research and Forecasting (NU-WRF) model to support the everyday weather briefing. In this study, two sets of the NU-WRF rainfall forecasts are evaluated with Stage IV and Multi-Radar Multi-Sensor (MRMS) Quantitative Precipitation Estimation (QPE), with the objective to understand the impact of Land Surface initialization on the predicted precipitation. NU-WRF is also compared with North American Mesoscale Forecast System (NAM) 12 kilometer forecast. In general, NU-WRF did a good job at capturing individual precipitation events. NU-WRF is also able to replicate a better rainfall spatial distribution compare with NAM. Further sensitivity tests show that the high-resolution makes a positive impact on rainfall forecast. The two sets of NU-WRF simulations produce very close rainfall characteristics. The Land surface initialization do not show significant impact on short term rainfall forecast, and it is largely due to the soil conditions during the field campaign period.
NASA Astrophysics Data System (ADS)
Olson, J.; Kenyon, J.; Brown, J. M.; Angevine, W. M.; Marquis, M.; Pichugina, Y. L.; Choukulkar, A.; Bonin, T.; Banta, R. M.; Bianco, L.; Djalalova, I.; McCaffrey, K.; Wilczak, J. M.; Lantz, K. O.; Long, C. N.; Redfern, S.; McCaa, J. R.; Stoelinga, M.; Grimit, E.; Cline, J.; Shaw, W. J.; Lundquist, J. K.; Lundquist, K. A.; Kosovic, B.; Berg, L. K.; Kotamarthi, V. R.; Sharp, J.; Jiménez, P.
2017-12-01
The Rapid Refresh (RAP) and High-Resolution Rapid Refresh (HRRR) are NOAA real-time operational hourly updating forecast systems run at 13- and 3-km grid spacing, respectively. Both systems use the Advanced Research version of the Weather Research and Forecasting (WRF-ARW) as the model component of the forecast system. During the second installment of the Wind Forecast Improvement Project (WFIP 2), the RAP/HRRR have been targeted for the improvement of low-level wind forecasts in the complex terrain within the Columbia River Basin (CRB), which requires much finer grid spacing to resolve important terrain peaks in the Cascade Mountains as well as the Columbia River Gorge. Therefore, this project provides a unique opportunity to test and develop the RAP/HRRR physics suite within a very high-resolution nest (Δx = 750 m) over the northwestern US. Special effort is made to incorporate scale-aware aspects into the model physical parameterizations to improve RAP/HRRR wind forecasts for any application at any grid spacing. Many wind profiling and scanning instruments have been deployed in the CRB in support the WFIP 2 field project, which spanned 01 October 2015 to 31 March 2017. During the project, several forecast error modes were identified, such as: (1) too-shallow cold pools during the cool season, which can mix-out more frequently than observed and (2) the low wind speed bias in thermal trough-induced gap flows during the warm season. Development has been focused on the column-based turbulent mixing scheme to improve upon these biases, but investigating the effects of horizontal (and 3D) mixing has also helped improve some of the common forecast failure modes. This presentation will highlight the testing and development of various model components, showing the improvements over original versions for temperature and wind profiles. Examples of case studies and retrospective periods will be presented to illustrate the improvements. We will demonstrate that the improvements made in WFIP 2 will be extendable to other regions, complex or flat terrain. Ongoing and future challenges in RAP/HRRR physics development will be touched upon.
Yao, Yibin; Shan, Lulu; Zhao, Qingzhi
2017-09-29
Global Navigation Satellite System (GNSS) can effectively retrieve precipitable water vapor (PWV) with high precision and high-temporal resolution. GNSS-derived PWV can be used to reflect water vapor variation in the process of strong convection weather. By studying the relationship between time-varying PWV and rainfall, it can be found that PWV contents increase sharply before raining. Therefore, a short-term rainfall forecasting method is proposed based on GNSS-derived PWV. Then the method is validated using hourly GNSS-PWV data from Zhejiang Continuously Operating Reference Station (CORS) network of the period 1 September 2014 to 31 August 2015 and its corresponding hourly rainfall information. The results show that the forecasted correct rate can reach about 80%, while the false alarm rate is about 66%. Compared with results of the previous studies, the correct rate is improved by about 7%, and the false alarm rate is comparable. The method is also applied to other three actual rainfall events of different regions, different durations, and different types. The results show that the method has good applicability and high accuracy, which can be used for rainfall forecasting, and in the future study, it can be assimilated with traditional weather forecasting techniques to improve the forecasted accuracy.
Impact of SST on heavy rainfall events on eastern Adriatic during SOP1 of HyMeX
NASA Astrophysics Data System (ADS)
Ivatek-Šahdan, Stjepan; Stanešić, Antonio; Tudor, Martina; Odak Plenković, Iris; Janeković, Ivica
2018-02-01
The season of late summer and autumn is favourable for intensive precipitation events (IPE) in the central Mediterranean. During that period the sea surface is warm and contributes to warming and moistening of the lowest portion of the atmosphere, particularly the planetary boundary layer (PBL). Adriatic sea is surrounded by mountains and the area often receives substantial amounts of precipitation in short time (24 h). The IPEs are a consequence of convection triggered by topography acting on the southerly flow that has brought the unstable air to the coastline. Improvement in prediction of high impact weather events is one of the goals of The Hydrological cycle in the Mediterranean eXperiment (HyMeX). This study examines how precipitation patterns change in response to different SST forcing. We focus on the IPEs that occurred on the eastern Adriatic coast during the first HyMeX Special observing period (SOP1, 6 September to 5 November 2012). The operational forecast model ALADIN uses the same SST as the global meteorological model (ARPEGE from Meteo France), as well as the forecast lateral boundary conditions (LBCs). First we assess the SST used by the operational atmospheric model ALADIN and compare it to the in situ measurements, ROMS ocean model, OSTIA and MUR analyses. Results of this assessment show that SST in the eastern Adriatic was overestimated by up to 10 K during HyMeX SOP1 period. Then we examine the sensitivity of 8 km and 2 km resolution forecasts of IPEs to the changes in the SST during whole SOP1 with special attention to the intensive precipitation event in Rijeka. Forecast runs in both resolutions are performed for the whole SOP1 using different SST fields prescribed at initial time and kept constant during the model forecast. Categorical verification of 24 h accumulated precipitation did not show substantial improvement in verification scores when more realistic SST was used. Furthermore, the results show that the impact of introducing improved SST in the analysis on the precipitation forecast varies for different cases. There is generally a larger sensitivity to the SST in high resolution than in the lower one, although the forecast period of the latter is longer.
NASA Astrophysics Data System (ADS)
Caumont, Olivier; Hally, Alan; Garrote, Luis; Richard, Évelyne; Weerts, Albrecht; Delogu, Fabio; Fiori, Elisabetta; Rebora, Nicola; Parodi, Antonio; Mihalović, Ana; Ivković, Marija; Dekić, Ljiljana; van Verseveld, Willem; Nuissier, Olivier; Ducrocq, Véronique; D'Agostino, Daniele; Galizia, Antonella; Danovaro, Emanuele; Clematis, Andrea
2015-04-01
The FP7 DRIHM (Distributed Research Infrastructure for Hydro-Meteorology, http://www.drihm.eu, 2011-2015) project intends to develop a prototype e-Science environment to facilitate the collaboration between meteorologists, hydrologists, and Earth science experts for accelerated scientific advances in Hydro-Meteorology Research (HMR). As the project comes to its end, this presentation will summarize the HMR results that have been obtained in the framework of DRIHM. The vision shaped and implemented in the framework of the DRIHM project enables the production and interpretation of numerous, complex compositions of hydrometeorological simulations of flood events from rainfall, either simulated or modelled, down to discharge. Each element of a composition is drawn from a set of various state-of-the-art models. Atmospheric simulations providing high-resolution rainfall forecasts involve different global and limited-area convection-resolving models, the former being used as boundary conditions for the latter. Some of these models can be run as ensembles, i.e. with perturbed boundary conditions, initial conditions and/or physics, thus sampling the probability density function of rainfall forecasts. In addition, a stochastic downscaling algorithm can be used to create high-resolution rainfall ensemble forecasts from deterministic lower-resolution forecasts. All these rainfall forecasts may be used as input to various rainfall-discharge hydrological models that compute the resulting stream flows for catchments of interest. In some hydrological simulations, physical parameters are perturbed to take into account model errors. As a result, six different kinds of rainfall data (either deterministic or probabilistic) can currently be compared with each other and combined with three different hydrological model engines running either in deterministic or probabilistic mode. HMR topics which are allowed or facilitated by such unprecedented sets of hydrometerological forecasts include: physical process studies, intercomparison of models and ensembles, sensitivity studies to a particular component of the forecasting chain, and design of flash-flood early-warning systems. These benefits will be illustrated with the different key cases that have been under investigation in the course of the project. These are four catastrophic cases of flooding, namely the case of 4 November 2011 in Genoa, Italy, 6 November 2011 in Catalonia, Spain, 13-16 May 2014 in eastern Europe, and 9 October 2014, again in Genoa, Italy.
NASA Technical Reports Server (NTRS)
Case, Jonathan L.; Splitt, Michael E.; Fuell, Kevin K.; Santos, Pablo; Lazarus, Steven M.; Jedlovec, Gary J.
2009-01-01
The NASA Short-term Prediction Research and Transition (SPoRT) Center, the Florida Institute of Technology, and the NOAA/NWS Weather Forecast Office at Miami, FL (MFL) are collaborating on a project to investigate the impact of using high-resolution, 2-km Moderate Resolution Imaging Spectroradiometer (MODIS) sea surface temperature (SST) composites within the Weather Research and Forecasting (WRF) prediction system. The NWS MFL is currently running WRF in real-time to support daily forecast operations, using the National Centers for Environmental Prediction Nonhydrostatic Mesoscale Model dynamical core within the NWS Science and Training Resource Center's Environmental Modeling System (EMS) software. Twenty-seven hour forecasts are run daily initialized at 0300, 0900, 1500, and 2100 UTC on a domain with 4-km grid spacing covering the southern half of Florida and adjacent waters of the Gulf of Mexico and Atlantic Ocean. The SSTs are initialized with the NCEP Real-Time Global (RTG) analyses at 1/12deg resolution. The project objective is to determine whether more accurate specification of the lower-boundary forcing over water using the MODIS SST composites within the 4-km WRF runs will result in improved sea fluxes and hence, more accurate e\\olutiono f coastal mesoscale circulations and the associated sensible weather elements. SPoRT conducted parallel WRF EMS runs from February to August 2007 identical to the operational runs at NWS MFL except for the use of MODIS SST composites in place of the RTG product as the initial and boundary conditions over water. During the course of this evaluation, an intriguing case was examined from 6 May 2007, in which lake breezes and convection around Lake Okeechobee evolved quite differently when using the high-resolution SPoRT MODIS SST composites versus the lower-resolution RTG SSTs. This paper will analyze the differences in the 6 May simulations, as well as examine other cases from the summer 2007 in which the WRF-simulated Lake Okeechobee breezes evolved differently due to the SST initialization. The effects on wind fields and precipitation systems will be emphasized, including validation against surface mesonet observations and Stage IV precipitation grids.
Impact of CYGNSS Data on Tropical Cyclone Analyses and Forecasts in a Regional OSSE Framework
NASA Astrophysics Data System (ADS)
Annane, B.; McNoldy, B. D.; Leidner, S. M.; Atlas, R. M.; Hoffman, R.; Majumdar, S.
2016-12-01
The Cyclone Global Navigation Satellite System, or CYGNSS, is a planned constellation of micro-satellites that will utilize reflected Global Positioning System (GPS) satellite signals to retrieve ocean surface wind speed along the satellites' ground tracks. The orbits are designed so that there is excellent coverage of the tropics and subtropics, resulting in more thorough spatial sampling and improved sampling intervals over tropical cyclones than is possible with current spaceborne scatterometer and passive microwave sensor platforms. Furthermore, CYGNSS will be able to retrieve winds under all precipitating conditions, and over a large range of wind speeds.A regional Observing System Simulation Experiment (OSSE) framework was developed at NOAA/AOML and University of Miami that features a high-resolution regional nature run (27-km regional domain with 9/3/1 km storm-following nests; Nolan et al., 2013) embedded within a lower-resolution global nature run . Simulated observations are generated by sampling from the nature run and are provided to a data assimilation scheme, which produces analyses for a high-resolution regional forecast model, the 2014 operational Hurricane-WRF model. For data assimilation, NOAA's GSI and EnKF systems are used. Analyses are performed on the parent domain at 9-km resolution. The forecast model uses a single storm-following 3-km resolution nest. Synthetic CYGNSS wind speed data have also been created, and the impacts of the assimilation of these data on the forecasts of tropical cyclone track and intensity will be discussed.In addition to the choice of assimilation scheme, we have also examined a number of other factors/parameters that effect the impact of simulated CYGNSS observations, including frequency of data assimilation cycling (e.g., hourly, 3-hourly and 6-hourly) and the assimilation of scalar versus vector synthetic CYGNSS winds.We have found sensitivity to all of the factors tested and will summarize the methods used for testing as well as results. Generally, we have found that more frequent cycling is better than less; and flow-dependent background error covariances (e.g., EnKF) are better than static or climatological assumptions about the background error covariance.
High Resolution Forecasting System for Mountain area based on KLAPS-WRF
NASA Astrophysics Data System (ADS)
Chun, Ji Min; Rang Kim, Kyu; Lee, Seon-Yong; Kang, Wee Soo; Park, Jong Sun; Yi, Chae Yeon; Choi, Young-jean; Park, Eun Woo; Hong, Soon Sung; Jung, Hyun-Sook
2013-04-01
This paper reviews the results of recent observations and simulations on the thermal belt and cold air drainage, which are outstanding in local climatic phenomena in mountain areas. In a mountain valley, cold air pool and thermal belt were simulated with the Weather and Research Forecast (WRF) model and the Korea Local Analysis and Prediction System (KLAPS) to determine the impacts of planetary boundary layer (PBL) schemes and topography resolution on model performance. Using the KLAPS-WRF models, an information system was developed for 12 hour forecasting of cold air damage in orchard. This system was conducted on a three level nested grid from 1 km to 111 m horizontal resolution. Results of model runs were verified by the data from automated weather stations, which were installed at twelve sites in a valley at Yeonsuri, Yangpyeonggun, Gyeonggido to measure temperature and wind speed and direction during March to May 2012. The potential of the numerical model to simulate these local features was found to be dependent on the planetary boundary layer schemes. Statistical verification results indicate that Mellor-Yamada-Janjic (MYJ) PBL scheme was in good agreement with night time temperature, while the no-PBL scheme produced predictions similar to the day time temperature observation. Although the KLAPS-WRF system underestimates temperature in mountain areas and overestimates wind speed, it produced an accurate description of temperature, with an RMSE of 1.67 ˚C in clear daytime. Wind speed and direction were not forecasted well in precision (RMSE: 5.26 m/s and 10.12 degree). It might have been caused by the measurement uncertainty and spatial variability. Additionally, the performance of KLAPS-WRF was performed to evaluate for different terrain resolution: Topography data were improved from USGS (United States Geological Survey) 30" to NGII (National Geographic Information Institute) 10 m. The simulated results were quantitatively compared to observations and there was a significant improvement (RMSE: 2.06 ˚C -> 1.73 ˚C) in the temperature prediction in the study area. The results will provide useful guidance of grid size selection on high resolution simulation over the mountain regions in Korea.
NASA Astrophysics Data System (ADS)
Schmidt, T.; Kalisch, J.; Lorenz, E.; Heinemann, D.
2015-10-01
Clouds are the dominant source of variability in surface solar radiation and uncertainty in its prediction. However, the increasing share of solar energy in the world-wide electric power supply increases the need for accurate solar radiation forecasts. In this work, we present results of a shortest-term global horizontal irradiance (GHI) forecast experiment based on hemispheric sky images. A two month dataset with images from one sky imager and high resolutive GHI measurements from 99 pyranometers distributed over 10 km by 12 km is used for validation. We developed a multi-step model and processed GHI forecasts up to 25 min with an update interval of 15 s. A cloud type classification is used to separate the time series in different cloud scenarios. Overall, the sky imager based forecasts do not outperform the reference persistence forecasts. Nevertheless, we find that analysis and forecast performance depend strongly on the predominant cloud conditions. Especially convective type clouds lead to high temporal and spatial GHI variability. For cumulus cloud conditions, the analysis error is found to be lower than that introduced by a single pyranometer if it is used representatively for the whole area in distances from the camera larger than 1-2 km. Moreover, forecast skill is much higher for these conditions compared to overcast or clear sky situations causing low GHI variability which is easier to predict by persistence. In order to generalize the cloud-induced forecast error, we identify a variability threshold indicating conditions with positive forecast skill.
2014-02-01
Operational Model Archive and Distribution System ( NOMADS ). The RTMA product was generated using a 2-D variational method to assimilate point weather...observations and satellite-derived measurements (National Weather Service, 2013). The products were downloaded using the NOMADS General Regularly...of the completed WRF run" read Start_Date echo $Start_Date echo " " echo "Enter 2- digit , zulu, observation hour (HH) for remapping" read oHH
Development of a multi-ensemble Prediction Model for China
NASA Astrophysics Data System (ADS)
Brasseur, G. P.; Bouarar, I.; Petersen, A. K.
2016-12-01
As part of the EU-sponsored Panda and MarcoPolo Projects, a multi-model prediction system including 7 models has been developed. Most regional models use global air quality predictions provided by the Copernicus Atmospheric Monitoring Service and downscale the forecast at relatively high spatial resolution in eastern China. The paper will describe the forecast system and show examples of forecasts produced for several Chinese urban areas and displayed on a web site developed by the Dutch Meteorological service. A discussion on the accuracy of the predictions based on a detailed validation process using surface measurements from the Chinese monitoring network will be presented.
NASA Astrophysics Data System (ADS)
Solano, M.
2016-02-01
The present study discusses the accuracy of a high-resolution ocean forecasting system in predicting floating drifter trajectories and the uncertainty of modeled particle dispersion in coastal areas. Trajectories were calculated using an offline particle-tracking algorithm coupled to the operational model developed for the region of Puerto Rico by CariCOOS. Both, a simple advection algorithm as well as the Larval TRANSport (LTRANS) model, a more sophisticated offline particle-tracking application, were coupled to the ocean model. Numerical results are compared with 12 floating drifters deployed in the near-shore of Puerto Rico during February and March 2015, and tracked for several days using Global Positioning Systems mounted on the drifters. In addition the trajectories have also been calculated with the AmSeas Navy Coastal Ocean Model (NCOM). The operational model is based on the Regional Ocean Modeling System (ROMS) with a uniform horizontal resolution of 1/100 degrees (1.1km). Initial, surface and open boundary conditions are taken from NCOM, except for wind stress, which is computed using winds from the National Digital Forecasting Database. Probabilistic maps were created to quantify the uncertainty of particle trajectories at different locations. Results show that the forecasted trajectories are location dependent, with tidally active regions having the largest error. The predicted trajectories by both the ROMS and NCOM models show good agreement on average, however both perform differently at particular locations. The effect of wind stress on the drifter trajectories is investigated to account for wind slippage. Furthermore, a real case scenario is presented where simulated trajectories show good agreement when compared to the actual drifter trajectories.
Cloud archiving and data mining of High-Resolution Rapid Refresh forecast model output
NASA Astrophysics Data System (ADS)
Blaylock, Brian K.; Horel, John D.; Liston, Samuel T.
2017-12-01
Weather-related research often requires synthesizing vast amounts of data that need archival solutions that are both economical and viable during and past the lifetime of the project. Public cloud computing services (e.g., from Amazon, Microsoft, or Google) or private clouds managed by research institutions are providing object data storage systems potentially appropriate for long-term archives of such large geophysical data sets. We illustrate the use of a private cloud object store developed by the Center for High Performance Computing (CHPC) at the University of Utah. Since early 2015, we have been archiving thousands of two-dimensional gridded fields (each one containing over 1.9 million values over the contiguous United States) from the High-Resolution Rapid Refresh (HRRR) data assimilation and forecast modeling system. The archive is being used for retrospective analyses of meteorological conditions during high-impact weather events, assessing the accuracy of the HRRR forecasts, and providing initial and boundary conditions for research simulations. The archive is accessible interactively and through automated download procedures for researchers at other institutions that can be tailored by the user to extract individual two-dimensional grids from within the highly compressed files. Characteristics of the CHPC object storage system are summarized relative to network file system storage or tape storage solutions. The CHPC storage system is proving to be a scalable, reliable, extensible, affordable, and usable archive solution for our research.
Development of an aerosol assimilation/forecasting system with Himawari-8 aerosol products
NASA Astrophysics Data System (ADS)
Maki, T.; Yumimoto, K.; Tanaka, T. Y.; Yoshida, M.; Kikuchi, M.; Nagao, T. M.; Murakami, H.; Ogi, A.; Sekiyama, T. T.
2016-12-01
A new generation geostationary meteorological satellite (GMS), Himawari-8, was launched on 7 October 2014 and became operational on 7 July 2015. Himawari-8 is equipped with more advanced multispectral imager (Advanced Himawari Imager; AHI) ahead of other planned GMSs (e.g., GEOS-R). The AHI has 16 observational bands including three visible lights (i.e. RGB) with high spatial (0.5-2 km) and temporal (every 10 minutes full-disk images) resolutions, and provides about 50 times more data than previous GMSs. It is attractive characteristics for aerosol study that the visible and near-infrared observational bands allow us to obtain full-disk maps of aerosol optical properties (i.e., aerosol optical thickness (AOT) and ångström exponent) with unprecedented temporal resolution. Meteorological Research Institute (MRI)/JMA and Japan Aerospace Exploration Agency (JAXA) have been developing an aerosol assimilation/forecasting system with a global aerosol transport model (MASINGAR mk-2), 2 dimensional variational (2D-Var) method, and the Himawari-8 AOTs. Forecasting results are quantitatively validated by AOTs measured by AERONET and PM2.5 concentrations obtained by in-situ stations. Figure 1 shows model-predicted and satellite-observed AOTs during the 2016 Siberian wildfire. Upper and lower panels exhibit maps of AOT at analysis time (0000 UTC on May 18, 2016) and 27-hour forecast time (03 UTC on May 19, 2016), respectively. The 27-hour forecasted AOT starting with the analyzed initial condition (Figure 1f) successfully predicts heavy smokes covering the northern part of Japan, which forecast without assimilation (Figure 1e) failed to reproduces. Figure 1: Horizontal distribution of observed and forecasted AOTs at 0000 UTC 18 May, 2016 (analysis time; upper panels) and 0300 UTC 19 May, 2016 (18-h forecast from the analysis time; lower panel). (a, d) observed AOT from Himawari-8, (b, e) forecasted AOT without assimilation, and (c, f) forecast AOT with assimilation.
A Comparison of the Forecast Skills among Three Numerical Models
NASA Astrophysics Data System (ADS)
Lu, D.; Reddy, S. R.; White, L. J.
2003-12-01
Three numerical weather forecast models, MM5, COAMPS and WRF, operating with a joint effort of NOAA HU-NCAS and Jackson State University (JSU) during summer 2003 have been chosen to study their forecast skills against observations. The models forecast over the same region with the same initialization, boundary condition, forecast length and spatial resolution. AVN global dataset have been ingested as initial conditions. Grib resolution of 27 km is chosen to represent the current mesoscale model. The forecasts with the length of 36h are performed to output the result with 12h interval. The key parameters used to evaluate the forecast skill include 12h accumulated precipitation, sea level pressure, wind, surface temperature and dew point. Precipitation is evaluated statistically using conventional skill scores, Threat Score (TS) and Bias Score (BS), for different threshold values based on 12h rainfall observations whereas other statistical methods such as Mean Error (ME), Mean Absolute Error(MAE) and Root Mean Square Error (RMSE) are applied to other forecast parameters.
NASA Astrophysics Data System (ADS)
Lim, Kyo-Sun Sunny; Lim, Jong-Myoung; Shin, Hyeyum Hailey; Hong, Jinkyu; Ji, Young-Yong; Lee, Wanno
2018-06-01
A substantial over-prediction bias at low-to-moderate wind speeds in the Weather Research and Forecasting (WRF) model has been reported in the previous studies. Low-level wind fields play an important role in dispersion of air pollutants, including radionuclides, in a high-resolution WRF framework. By implementing two subgrid-scale orography parameterizations (Jimenez and Dudhia in J Appl Meteorol Climatol 51:300-316, 2012; Mass and Ovens in WRF model physics: problems, solutions and a new paradigm for progress. Preprints, 2010 WRF Users' Workshop, NCAR, Boulder, Colo. http://www.mmm.ucar.edu/wrf/users/workshops/WS2010/presentations/session%204/4-1_WRFworkshop2010Final.pdf, 2010), we tried to compare the performance of parameterizations and to enhance the forecast skill of low-level wind fields over the central western part of South Korea. Even though both subgrid-scale orography parameterizations significantly alleviated the positive bias at 10-m wind speed, the parameterization by Jimenez and Dudhia revealed a better forecast skill in wind speed under our modeling configuration. Implementation of the subgrid-scale orography parameterizations in the model did not affect the forecast skills in other meteorological fields including 10-m wind direction. Our study also brought up the problem of discrepancy in the definition of "10-m" wind between model physics parameterizations and observations, which can cause overestimated winds in model simulations. The overestimation was larger in stable conditions than in unstable conditions, indicating that the weak diurnal cycle in the model could be attributed to the representation error.
Data-driven forecasting algorithms for building energy consumption
NASA Astrophysics Data System (ADS)
Noh, Hae Young; Rajagopal, Ram
2013-04-01
This paper introduces two forecasting methods for building energy consumption data that are recorded from smart meters in high resolution. For utility companies, it is important to reliably forecast the aggregate consumption profile to determine energy supply for the next day and prevent any crisis. The proposed methods involve forecasting individual load on the basis of their measurement history and weather data without using complicated models of building system. The first method is most efficient for a very short-term prediction, such as the prediction period of one hour, and uses a simple adaptive time-series model. For a longer-term prediction, a nonparametric Gaussian process has been applied to forecast the load profiles and their uncertainty bounds to predict a day-ahead. These methods are computationally simple and adaptive and thus suitable for analyzing a large set of data whose pattern changes over the time. These forecasting methods are applied to several sets of building energy consumption data for lighting and heating-ventilation-air-conditioning (HVAC) systems collected from a campus building at Stanford University. The measurements are collected every minute, and corresponding weather data are provided hourly. The results show that the proposed algorithms can predict those energy consumption data with high accuracy.
Predictability of short-range forecasting: a multimodel approach
NASA Astrophysics Data System (ADS)
García-Moya, Jose-Antonio; Callado, Alfons; Escribà, Pau; Santos, Carlos; Santos-Muñoz, Daniel; Simarro, Juan
2011-05-01
Numerical weather prediction (NWP) models (including mesoscale) have limitations when it comes to dealing with severe weather events because extreme weather is highly unpredictable, even in the short range. A probabilistic forecast based on an ensemble of slightly different model runs may help to address this issue. Among other ensemble techniques, Multimodel ensemble prediction systems (EPSs) are proving to be useful for adding probabilistic value to mesoscale deterministic models. A Multimodel Short Range Ensemble Prediction System (SREPS) focused on forecasting the weather up to 72 h has been developed at the Spanish Meteorological Service (AEMET). The system uses five different limited area models (LAMs), namely HIRLAM (HIRLAM Consortium), HRM (DWD), the UM (UKMO), MM5 (PSU/NCAR) and COSMO (COSMO Consortium). These models run with initial and boundary conditions provided by five different global deterministic models, namely IFS (ECMWF), UM (UKMO), GME (DWD), GFS (NCEP) and CMC (MSC). AEMET-SREPS (AE) validation on the large-scale flow, using ECMWF analysis, shows a consistent and slightly underdispersive system. For surface parameters, the system shows high skill forecasting binary events. 24-h precipitation probabilistic forecasts are verified using an up-scaling grid of observations from European high-resolution precipitation networks, and compared with ECMWF-EPS (EC).
NASA Technical Reports Server (NTRS)
Molthan, A. L.; Haynes, J. A.; Case, J. L.; Jedlovec, G. L.; Lapenta, W. M.
2008-01-01
As computational power increases, operational forecast models are performing simulations with higher spatial resolution allowing for the transition from sub-grid scale cloud parameterizations to an explicit forecast of cloud characteristics and precipitation through the use of single- or multi-moment bulk water microphysics schemes. investments in space-borne and terrestrial remote sensing have developed the NASA CloudSat Cloud Profiling Radar and the NOAA National Weather Service NEXRAD system, each providing observations related to the bulk properties of clouds and precipitation through measurements of reflectivity. CloudSat and NEXRAD system radars observed light to moderate snowfall in association with a cold-season, midlatitude cyclone traversing the Central United States in February 2007. These systems are responsible for widespread cloud cover and various types of precipitation, are of economic consequence, and pose a challenge to operational forecasters. This event is simulated with the Weather Research and Forecast (WRF) Model, utilizing the NASA Goddard Cumulus Ensemble microphysics scheme. Comparisons are made between WRF-simulated and observed reflectivity available from the CloudSat and NEXRAD systems. The application of CloudSat reflectivity is made possible through the QuickBeam radiative transfer model, with cautious application applied in light of single scattering characteristics and spherical target assumptions. Significant differences are noted within modeled and observed cloud profiles, based upon simulated reflectivity, and modifications to the single-moment scheme are tested through a supplemental WRF forecast that incorporates a temperature dependent snow crystal size distribution.
High Resolution Land Surface Modeling with the next generation Land Data Assimilation Systems
NASA Astrophysics Data System (ADS)
Kumar, S. V.; Eylander, J.; Peters-Lidard, C.
2005-12-01
Knowledge of land surface processes is important to many real-world applications such as agricultural production, water resources management, and flood predication. The Air Force Weather Agency (AFWA) has provided the USDA and other customers global soil moisture and temperature data for the past 30 years using the agrometeorological data assimilation model (now called AGRMET), merging atmospheric data. Further, accurate initialization of land surface conditions has been shown to greatly influence and improve weather forecast model and seasonal-to-interannual climate predictions. The AFWA AGRMET model exploits real time precipitation observations and analyses, global forecast model and satellite data to generate global estimates of soil moisture, soil temperature and other land surface states at 48km spatial resolution. However, to truly address the land surface initialization and climate prediction problem, and to mitigate the errors introduced by the differences in spatial scales of models, representations of land surface conditions need to be developed at the same fine scales such as that of cloud resolving models. NASA's Goddard Space Flight Center has developed an offline land data assimilation system known as the Land Information System (LIS) capable of modeling land atmosphere interactions at spatial resolutions as fine as 1km. LIS provides a software architecture that integrates the use of the state of the art land surface models, data assimilation techniques, and high performance computing and data management tools. LIS also employs many high resolution surface parameters such as the NASA Earth Observing System (EOS)-era products. In this study we describe the development of a next generation high resolution land surface modeling and data assimilation system, combining the capabilities of LIS and AGRMET. We investigate the influence of high resolution land surface data and observations on the land surface conditions by comparing with the operational AGRMET outputs.
Miyazawa, Yasumasa; Guo, Xinyu; Varlamov, Sergey M.; Miyama, Toru; Yoda, Ken; Sato, Katsufumi; Kano, Toshiyuki; Sato, Keiji
2015-01-01
At the present time, ocean current is being operationally monitored mainly by combined use of numerical ocean nowcast/forecast models and satellite remote sensing data. Improvement in the accuracy of the ocean current nowcast/forecast requires additional measurements with higher spatial and temporal resolution as expected from the current observation network. Here we show feasibility of assimilating high-resolution seabird and ship drift data into an operational ocean forecast system. Data assimilation of geostrophic current contained in the observed drift leads to refinement in the gyre mode events of the Tsugaru warm current in the north-eastern sea of Japan represented by the model. Fitting the observed drift to the model depends on ability of the drift representing geostrophic current compared to that representing directly wind driven components. A preferable horizontal scale of 50 km indicated for the seabird drift data assimilation implies their capability of capturing eddies with smaller horizontal scale than the minimum scale of 100 km resolved by the satellite altimetry. The present study actually demonstrates that transdisciplinary approaches combining bio-/ship- logging and numerical modeling could be effective for enhancement in monitoring the ocean current. PMID:26633309
NASA Astrophysics Data System (ADS)
Lorente, Pablo; Sotillo, Marcos G.; Gutknecht, Elodie; Dabrowski, Tomasz; Aouf, Lotfi; Toledano, Cristina; Amo-Baladron, Arancha; Aznar, Roland; De Pascual, Alvaro; Levier, Bruno; Bowyer, Peter; Rainaud, Romain; Alvarez-Fanjul, Enrique
2017-04-01
The IBI-MFC (Iberia-Biscay-Ireland Monitoring & Forecasting Centre) has been providing daily ocean model estimates and forecasts of diverse physical parameters for the IBI regional seas since 2011, first in the frame of MyOcean projects and later as part of the Copernicus Marine Environment Monitoring Service (CMEMS). By April 2017, coincident with the V3 CMEMS Service Release, the IBI-MFC will extend their near real time (NRT) forecast capabilities. Two new operational IBI forecast systems will be operationally run to generate high resolution biochemical (BIO) and wave (WAV) products on the IBI area. The IBI-NRT-BIO forecast system, based on a 1/36° NEMO-PISCES model application, is run once a week coupled with the IBI physical forecast solution and nested to the CMEMS GLOBAL-BIO solution. On the other hand, the IBI-NRT-WAV system, based on a MeteoFrance-WAM 10km resolution model application, runs twice a day using ECMWF wind forcing. Among other novelties related to the evolution of the IBI physical (PHY) solution, it is worthwhile mentioning the provision, as part of the IBI-NRT-PHY product daily updated, of three-dimensional hourly data on specific areas within the IBI domain. The delivery of these new hourly data along the whole water column has been achieved after the request from IBI users, in order to foster downscaling approaches by providing coherent open boundary conditions to any potential high-resolution coastal model nested to IBI regional solution. An extensive skill assessment of IBI-NRT forecast products has been conducted through the NARVAL (North Atlantic Regional VALidation) web tool, by means of the automatic computation of statistical metrics and quality indicators. By now, this tool has been focused on the validation of the IBI-NRT-PHY system. Nowadays, NARVAL is facing a significant upgrade to validate the aforementioned new biogeochemical and wave IBI products. To this aim, satellite derived observations of chlorophyll and significant wave height will be used, together with in-situ wave parameters measured by mooring buoys. Within this validation framework, special emphasis has been placed on the intercomparison of different forecast model solutions in overlapping areas in order to evaluate models' performances and prognostic capabilities. This common uncertainty estimates of IBI and other model solution is currently performed by NARVAL using both CMEMS forecast model sources (i.e. GLOBAL-MFC, MED-MFC and NWS-MFC) and non-CMEMS operational forecast solutions (mostly downstream application nested to the IBI solution). With respect to the IBI multi-year (MY) products, it is worth mentioning that the actual biogeochemical and physical reanalysis products will be re-run along year 2017, extending its time coverage backwards until 1992. Based on these IBI-MY products, a variety of climatic indicators related to essential oceanographic processes (i.e. western coastal upwelling or the Mediterranean Outflow Water) are currently being computed.
NASA Astrophysics Data System (ADS)
Hoss, F.; Fischbeck, P. S.
2014-10-01
This study further develops the method of quantile regression (QR) to predict exceedance probabilities of flood stages by post-processing forecasts. Using data from the 82 river gages, for which the National Weather Service's North Central River Forecast Center issues forecasts daily, this is the first QR application to US American river gages. Archived forecasts for lead times up to six days from 2001-2013 were analyzed. Earlier implementations of QR used the forecast itself as the only independent variable (Weerts et al., 2011; López López et al., 2014). This study adds the rise rate of the river stage in the last 24 and 48 h and the forecast error 24 and 48 h ago to the QR model. Including those four variables significantly improved the forecasts, as measured by the Brier Skill Score (BSS). Mainly, the resolution increases, as the original QR implementation already delivered high reliability. Combining the forecast with the other four variables results in much less favorable BSSs. Lastly, the forecast performance does not depend on the size of the training dataset, but on the year, the river gage, lead time and event threshold that are being forecast. We find that each event threshold requires a separate model configuration or at least calibration.
Applied Meteorology Unit Quarterly Report. First Quarter FY-13
NASA Technical Reports Server (NTRS)
2013-01-01
The AMU team worked on five tasks for their customers: (1) Ms. Crawford continued work on the objective lightning forecast task for airports in east-central Florida. (2) Ms. Shafer continued work on the task for Vandenberg Air Force Base to create an automated tool that will help forecasters relate pressure gradients to peak wind values. (3) Dr. Huddleston began work to develop a lightning timing forecast tool for the Kennedy Space Center/Cape Canaveral Air Force Station area. (3) Dr. Bauman began work on a severe weather forecast tool focused on east-central Florida. (4) Dr. Watson completed testing high-resolution model configurations for Wallops Flight Facility and the Eastern Range, and wrote the final report containing the AMU's recommendations for model configurations at both ranges.
Modeling influence of tide stages on forecasts of the 2010 Chilean tsunami
NASA Astrophysics Data System (ADS)
Uslu, B. U.; Chamberlin, C.; Walsh, D.; Eble, M. C.
2010-12-01
The impact of the 2010 Chilean tsunami is studied using the NOAA high-resolution tsunami forecast model augmented to include modeled tide heights in addition to deep-water tsunami propagation as boundary-condition input. The Chilean tsunami was observed at the Los Angeles tide station at mean low water, Hilo at low, Pago Pago at mid tide and Wake Island near high tide. Because the tsunami arrived at coastal communities at a representative variety of tide stages, 2010 Chile tsunami provides opportunity to study the tsunami impacts at different tide levels to different communities. The current forecast models are computed with a constant tidal stage, and this study evaluates techniques for adding an additional varying predicted tidal component in a forecasting context. Computed wave amplitudes, wave currents and flooding are compared at locations around the Pacific, and the difference in tsunami impact due to tidal stage is studied. This study focuses on how tsunami impacts vary with different tide levels, and helps us understand how the inclusion of tidal components can improve real-time forecast accuracy.
Weather monitoring and forecasting over eastern Attica (Greece) in the frame of FLIRE project
NASA Astrophysics Data System (ADS)
Kotroni, Vassiliki; Lagouvardos, Konstantinos; Chrysoulakis, Nektarios; Makropoulos, Christtos; Mimikou, Maria; Papathanasiou, Chrysoula; Poursanidis, Dimitris
2015-04-01
In the frame of FLIRE project a Decision Support System has been built with the aim to support decision making of Civil Protection Agencies and local stakeholders in the area of east Attica (Greece), in the cases of forest fires and floods. In this presentation we focus on a specific action that focuses on the provision of high resolution short-term weather forecasting data as well as of dense meteorological observations over the study area. Both weather forecasts and observations serve as an input in the Weather Information Management Tool (WIMT) of the Decision Support System. We focus on: (a) the description of the adopted strategy for setting-up the operational weather forecasting chain that provides the weather forecasts for the FLIRE project needs, (b) the presentation of the surface network station that provides real-time weather monitoring of the study area and (c) the strategy adopted for issuing smart alerts for thunderstorm forecasting based of real-time lightning observations as well as satellite observations.
Funk, Chris; Verdin, James P.; Husak, Gregory
2007-01-01
Famine early warning in Africa presents unique challenges and rewards. Hydrologic extremes must be tracked and anticipated over complex and changing climate regimes. The successful anticipation and interpretation of hydrologic shocks can initiate effective government response, saving lives and softening the impacts of droughts and floods. While both monitoring and forecast technologies continue to advance, discontinuities between monitoring and forecast systems inhibit effective decision making. Monitoring systems typically rely on high resolution satellite remote-sensed normalized difference vegetation index (NDVI) and rainfall imagery. Forecast systems provide information on a variety of scales and formats. Non-meteorologists are often unable or unwilling to connect the dots between these disparate sources of information. To mitigate these problem researchers at UCSB's Climate Hazard Group, NASA GIMMS and USGS/EROS are implementing a NASA-funded integrated decision support system that combines the monitoring of precipitation and NDVI with statistical one-to-three month forecasts. We present the monitoring/forecast system, assess its accuracy, and demonstrate its application in food insecure sub-Saharan Africa.
NASA Astrophysics Data System (ADS)
Macatangay, Ronald; Bagtasa, Gerry; Sonkaew, Thiranan
2017-09-01
The Weather Research and Forecasting (WRF v. 3.7) model was applied to model PM10 data in Chiang Mai city for 10-days during a high haze event utilizing updated land use categories from the Moderate Resolution Imaging Spectroradiometer (MODIS). A higher resolution meteorological lateral boundary condition (from 1 degree to 0.25 degree) was also used from the NCEP GDAS/FNL Global Tropospheric Analyses and Forecast Grid system. A 3-category urban canopy model was also added and the Thompson aerosol-aware microphysics parameterization scheme was used to model the aerosol number concentrations that were later converted to PM10 concentrations. Aerosol number concentration monthly climatology was firstly used as initial and lateral boundary conditions to model PM10 concentrations. These were compared to surface data obtained from two stations of the Pollution Control Department (PCD) of Thailand. The results from the modeled PM10 concentrations could not capture the variability (r = 0.29; 0.27 for each site) and underestimated a high PM10 spike during the period studied. The authors then added satellite data to the aerosol climatology that improved the comparison with observations (r = 0.45; 43). However, both model runs still were not able to capture the high PM10 concentration event. This requires further investigation.
A High Resolution Tropical Cyclone Power Outage Forecasting Model for the Continental United States
NASA Astrophysics Data System (ADS)
Pino, J. V.; Quiring, S. M.; Guikema, S.; Shashaani, S.; Linger, S.; Backhaus, S.
2017-12-01
Tropical cyclones cause extensive damage to the power infrastructure system throughout the United States. This damage can leave millions without power for extended periods of time, as most recently seen with Hurricane Matthew (2016). Accurate and timely prediction of power outages are essential for utility companies, emergency management agencies, and governmental organizations. Here we present a high-resolution (250 m x 250 m) hurricane power outage model for the United States. The model uses only publicly-available data to make predictions. It uses forecasts of storm variables such as maximum 3-second wind gust, duration of strong winds > 20 m s-2, soil moisture, and precipitation. It also incorporates static environmental variables such as elevation characteristics, land cover type, population density, tree species data, and root zone depth. A web tool was established for use by the Department of Energy (DOE) so that the model can be used for real-time outage forecasting or for synthetic tropical cyclones as an exercise in emergency management. This web tool provides DOE decision-makers with high impact analytic results and products that can be disseminated to federal, local, and state agencies. The results then aid utility companies in their pre- and post-storm activities, thus decreasing restoration times and lowering costs.
Evaluation of streamflow forecast for the National Water Model of U.S. National Weather Service
NASA Astrophysics Data System (ADS)
Rafieeinasab, A.; McCreight, J. L.; Dugger, A. L.; Gochis, D.; Karsten, L. R.; Zhang, Y.; Cosgrove, B.; Liu, Y.
2016-12-01
The National Water Model (NWM), an implementation of the community WRF-Hydro modeling system, is an operational hydrologic forecasting model for the contiguous United States. The model forecasts distributed hydrologic states and fluxes, including soil moisture, snowpack, ET, and ponded water. In particular, the NWM provides streamflow forecasts at more than 2.7 million river reaches for three forecast ranges: short (15 hr), medium (10 days), and long (30 days). In this study, we verify short and medium range streamflow forecasts in the context of the verification of their respective quantitative precipitation forecasts/forcing (QPF), the High Resolution Rapid Refresh (HRRR) and the Global Forecast System (GFS). The streamflow evaluation is performed for summer of 2016 at more than 6,000 USGS gauges. Both individual forecasts and forecast lead times are examined. Selected case studies of extreme events aim to provide insight into the quality of the NWM streamflow forecasts. A goal of this comparison is to address how much streamflow bias originates from precipitation forcing bias. To this end, precipitation verification is performed over the contributing areas above (and between assimilated) USGS gauge locations. Precipitation verification is based on the aggregated, blended StageIV/StageII data as the "reference truth". We summarize the skill of the streamflow forecasts, their skill relative to the QPF, and make recommendations for improving NWM forecast skill.
Probabilistic forecasting of extreme weather events based on extreme value theory
NASA Astrophysics Data System (ADS)
Van De Vyver, Hans; Van Schaeybroeck, Bert
2016-04-01
Extreme events in weather and climate such as high wind gusts, heavy precipitation or extreme temperatures are commonly associated with high impacts on both environment and society. Forecasting extreme weather events is difficult, and very high-resolution models are needed to describe explicitly extreme weather phenomena. A prediction system for such events should therefore preferably be probabilistic in nature. Probabilistic forecasts and state estimations are nowadays common in the numerical weather prediction community. In this work, we develop a new probabilistic framework based on extreme value theory that aims to provide early warnings up to several days in advance. We consider the combined events when an observation variable Y (for instance wind speed) exceeds a high threshold y and its corresponding deterministic forecasts X also exceeds a high forecast threshold y. More specifically two problems are addressed:} We consider pairs (X,Y) of extreme events where X represents a deterministic forecast, and Y the observation variable (for instance wind speed). More specifically two problems are addressed: Given a high forecast X=x_0, what is the probability that Y>y? In other words: provide inference on the conditional probability: [ Pr{Y>y|X=x_0}. ] Given a probabilistic model for Problem 1, what is the impact on the verification analysis of extreme events. These problems can be solved with bivariate extremes (Coles, 2001), and the verification analysis in (Ferro, 2007). We apply the Ramos and Ledford (2009) parametric model for bivariate tail estimation of the pair (X,Y). The model accommodates different types of extremal dependence and asymmetry within a parsimonious representation. Results are presented using the ensemble reforecast system of the European Centre of Weather Forecasts (Hagedorn, 2008). Coles, S. (2001) An Introduction to Statistical modelling of Extreme Values. Springer-Verlag.Ferro, C.A.T. (2007) A probability model for verifying deterministic forecasts of extreme events. Wea. Forecasting {22}, 1089-1100.Hagedorn, R. (2008) Using the ECMWF reforecast dataset to calibrate EPS forecasts. ECMWF Newsletter, {117}, 8-13.Ramos, A., Ledford, A. (2009) A new class of models for bivariate joint tails. J.R. Statist. Soc. B {71}, 219-241.
Assessment of Data Assimilation with the Prototype High Resolution Rapid Refresh for Alaska (HRRRAK)
NASA Technical Reports Server (NTRS)
Harrison, Kayla; Morton, Don; Zavodsky, Brad; Chou, Shih
2012-01-01
The Arctic Region Supercomputing Center has been running a quasi-operational prototype of a High Resolution Rapid Refresh for Alaska (HRRRAK) at 3km resolution, initialized by the 13km Rapid Refresh (RR). Although the RR assimilates a broad range of observations into its analyses, experiments with the HRRRAK suggest that there may be added value in assimilating observations into the 3km initial conditions, downscaled from the 13km RR analyses. The NASA Short-term Prediction Research and Transition (SPoRT) group has been using assimilated data from the Atmospheric Infrared Sounder (AIRS) in WRF and WRF-Var simulations since 2004 with promising results. The sounder is aboard NASA s Aqua satellite, and provides vertical profiles of temperature and humidity. The Gridpoint Statistical Interpolation (GSI) system is then used to assimilate these vertical profiles into WRF forecasts. In this work, we assess the use of AIRS data in combination with other global data assimilation products on non-assimilated HRRRAK case studies. Two separate weather events will be assessed to qualitatively and quantitatively assess the impacts of AIRS data on HRRRAK forecasts.
Extended Range Prediction of Indian Summer Monsoon: Current status
NASA Astrophysics Data System (ADS)
Sahai, A. K.; Abhilash, S.; Borah, N.; Joseph, S.; Chattopadhyay, R.; S, S.; Rajeevan, M.; Mandal, R.; Dey, A.
2014-12-01
The main focus of this study is to develop forecast consensus in the extended range prediction (ERP) of monsoon Intraseasonal oscillations using a suit of different variants of Climate Forecast system (CFS) model. In this CFS based Grand MME prediction system (CGMME), the ensemble members are generated by perturbing the initial condition and using different configurations of CFSv2. This is to address the role of different physical mechanisms known to have control on the error growth in the ERP in the 15-20 day time scale. The final formulation of CGMME is based on 21 ensembles of the standalone Global Forecast System (GFS) forced with bias corrected forecasted SST from CFS, 11 low resolution CFST126 and 11 high resolution CFST382. Thus, we develop the multi-model consensus forecast for the ERP of Indian summer monsoon (ISM) using a suite of different variants of CFS model. This coordinated international effort lead towards the development of specific tailor made regional forecast products over Indian region. Skill of deterministic and probabilistic categorical rainfall forecast as well the verification of large-scale low frequency monsoon intraseasonal oscillations has been carried out using hindcast from 2001-2012 during the monsoon season in which all models are initialized at every five days starting from 16May to 28 September. The skill of deterministic forecast from CGMME is better than the best participating single model ensemble configuration (SME). The CGMME approach is believed to quantify the uncertainty in both initial conditions and model formulation. Main improvement is attained in probabilistic forecast which is because of an increase in the ensemble spread, thereby reducing the error due to over-confident ensembles in a single model configuration. For probabilistic forecast, three tercile ranges are determined by ranking method based on the percentage of ensemble members from all the participating models falls in those three categories. CGMME further added value to both deterministic and probability forecast compared to raw SME's and this better skill is probably flows from large spread and improved spread-error relationship. CGMME system is currently capable of generating ER prediction in real time and successfully delivering its experimental operational ER forecast of ISM for the last few years.
NASA Technical Reports Server (NTRS)
Pagano, Thomas S.; Chahine, Moustafa T.; Susskind, Joel
2008-01-01
Hyperspectral infrared atmospheric sounders (e.g., the Atmospheric Infrared Sounder (AIRS) on Aqua and the Infrared Atmospheric Sounding Interferometer (IASI) on Met Op) provide highly accurate temperature and water vapor profiles in the lower to upper troposphere. These systems are vital operational components of our National Weather Prediction system and the AIRS has demonstrated over 6 hrs of forecast improvement on the 5 day operational forecast. Despite the success in the mid troposphere to lower stratosphere, a reduction in sensitivity and accuracy has been seen in these systems in the boundary layer over land. In this paper we demonstrate the potential improvement associated with higher spatial resolution (1 km vs currently 13.5 km) on the accuracy of boundary layer products with an added consequence of higher yield of cloud free scenes. This latter feature is related to the number of samples that can be assimilated and has also shown to have a significant impact on improving forecast accuracy. We also present a set of frequencies and resolutions that will improve vertical resolution of temperature and water vapor and trace gas species throughout the atmosphere. Development of an Advanced Low Earth Orbit (LEO) Sounder (ALS) with these improvements will improve weather forecast at the regional scale and of tropical storms and hurricanes. Improvements are also expected in the accuracy of the water vapor and cloud properties products, enhancing process studies and providing a better match to the resolution of future climate models. The improvements of technology required for the ALS are consistent with the current state of technology as demonstrated in NASA Instrument Incubator Program and NOAA's Hyperspectral Environmental Suite (HES) formulation phase development programs.
Performance of the operational high-resolution numerical weather predictions of the Daphne project
NASA Astrophysics Data System (ADS)
Tegoulias, Ioannis; Pytharoulis, Ioannis; Karacostas, Theodore; Kartsios, Stergios; Kotsopoulos, Stelios; Bampzelis, Dimitrios
2015-04-01
In the framework of the DAPHNE project, the Department of Meteorology and Climatology (http://meteo.geo.auth.gr) of the Aristotle University of Thessaloniki, Greece, utilizes the nonhydrostatic Weather Research and Forecasting model with the Advanced Research dynamic solver (WRF-ARW) in order to produce high-resolution weather forecasts over Thessaly in central Greece. The aim of the DAPHNE project is to tackle the problem of drought in this area by means of Weather Modification. Cloud seeding assists the convective clouds to produce rain more efficiently or reduce hailstone size in favour of raindrops. The most favourable conditions for such a weather modification program in Thessaly occur in the period from March to October when convective clouds are triggered more frequently. Three model domains, using 2-way telescoping nesting, cover: i) Europe, the Mediterranean sea and northern Africa (D01), ii) Greece (D02) and iii) the wider region of Thessaly (D03; at selected periods) at horizontal grid-spacings of 15km, 5km and 1km, respectively. This research work intents to describe the atmospheric model setup and analyse its performance during a selected period of the operational phase of the project. The statistical evaluation of the high-resolution operational forecasts is performed using surface observations, gridded fields and radar data. Well established point verification methods combined with novel object based upon these methods, provide in depth analysis of the model skill. Spatial characteristics are adequately captured but a variable time lag between forecast and observation is noted. Acknowledgments: This research work has been co-financed by the European Union (European Regional Development Fund) and Greek national funds, through the action "COOPERATION 2011: Partnerships of Production and Research Institutions in Focused Research and Technology Sectors" (contract number 11SYN_8_1088 - DAPHNE) in the framework of the operational programme "Competitiveness and Entrepreneurship" and Regions in Transition (OPC II, NSRF 2007-2013)
NASA Technical Reports Server (NTRS)
Jonathan L. Case; Kumar, Sujay V.; Srikishen, Jayanthi; Jedlovec, Gary J.
2010-01-01
One of the most challenging weather forecast problems in the southeastern U.S. is daily summertime pulse-type convection. During the summer, atmospheric flow and forcing are generally weak in this region; thus, convection typically initiates in response to local forcing along sea/lake breezes, and other discontinuities often related to horizontal gradients in surface heating rates. Numerical simulations of pulse convection usually have low skill, even in local predictions at high resolution, due to the inherent chaotic nature of these precipitation systems. Forecast errors can arise from assumptions within parameterization schemes, model resolution limitations, and uncertainties in both the initial state of the atmosphere and land surface variables such as soil moisture and temperature. For this study, it is hypothesized that high-resolution, consistent representations of surface properties such as soil moisture, soil temperature, and sea surface temperature (SST) are necessary to better simulate the interactions between the surface and atmosphere, and ultimately improve predictions of summertime pulse convection. This paper describes a sensitivity experiment using the Weather Research and Forecasting (WRF) model. Interpolated land and ocean surface fields from a large-scale model are replaced with high-resolution datasets provided by unique NASA assets in an experimental simulation: the Land Information System (LIS) and Moderate Resolution Imaging Spectroradiometer (MODIS) SSTs. The LIS is run in an offline mode for several years at the same grid resolution as the WRF model to provide compatible land surface initial conditions in an equilibrium state. The MODIS SSTs provide detailed analyses of SSTs over the oceans and large lakes compared to current operational products. The WRF model runs initialized with the LIS+MODIS datasets result in a reduction in the overprediction of rainfall areas; however, the skill is almost equally as low in both experiments using traditional verification methodologies. Output from object-based verification within NCAR s Meteorological Evaluation Tools reveals that the WRF runs initialized with LIS+MODIS data consistently generated precipitation objects that better matched observed precipitation objects, especially at higher precipitation intensities. The LIS+MODIS runs produced on average a 4% increase in matched precipitation areas and a simultaneous 4% decrease in unmatched areas during three months of daily simulations.
Improvement of High-Resolution Tropical Cyclone Structure and Intensity Forecasts using COAMPS-TC
2010-09-30
techniques, as well as observational results from the scientific community including the recent T- PARC /TCS08 and ITOP field campaigns to build upon the...forecast for the recent Hurricane Irene is shown in Figure 2. The composite National Weather Service radar reflectivity is shown in the top panel near...the time of landfall in North Carolina at 1148 UTC 27 August 2011 and the COAMPS-TC predicted radar reflectivity at 36 h valid at 1200 UTC is shown
Improvement of High-Resolution Tropical Cyclone Structure and Intensity Forecasts using COAMPS-TC
2012-09-30
techniques, as well as observational results from the scientific community including the recent T- PARC /TCS08 and ITOP field campaigns to build upon the...real-time COAMPS-TC forecast for the recent Hurricane Irene is shown in Figure 2. The composite National Weather Service radar reflectivity is shown in...the top panel near the time of landfall in North Carolina at 1148 UTC 27 August 2011 and the COAMPS-TC predicted radar reflectivity at 36 h valid
Improvement of High-Resolution Tropical Cyclone Structure and Intensity Forecasts using COAMPS-TC
2012-09-30
techniques, as well as observational results from the scientific community including the recent T- PARC /TCS08 and ITOP field campaigns to build upon the...forecast for the recent Hurricane Irene is shown in Figure 2. The composite National Weather Service radar reflectivity is shown in the top panel...near the time of landfall in North Carolina at 1148 UTC 27 August 2011 and the COAMPS-TC predicted radar reflectivity at 36 h valid at 1200 UTC is
2013-09-30
using polar orbit microwave and infrared sounder measurements from the Global Telecommunication System (GTS). The SDAT system was developed as a...WRF/GSI initial conditions and WRF boundary conditions. • WRF system to do short-range forecasts (6 hours) to provide the background fields for GSI...UCAR is related to a NASA GNSS proposal: “Improving Tropical Prediction and Analysis using COSMIC Radio Occultation Observations and an Ensemble Data
Assessing the value of increased model resolution in forecasting fire danger
Jeanne Hoadley; Miriam Rorig; Ken Westrick; Larry Bradshaw; Sue Ferguson; Scott Goodrick; Paul Werth
2003-01-01
The fire season of 2000 was used as a case study to assess the value of increasing mesoscale model resolution for fire weather and fire danger forecasting. With a domain centered on Western Montana and Northern Idaho, MM5 simulations were run at 36, 12, and 4-km resolutions for a 30 day period at the height of the fire season. Verification analyses for meteorological...
Comparison of online and offline based merging methods for high resolution rainfall intensities
NASA Astrophysics Data System (ADS)
Shehu, Bora; Haberlandt, Uwe
2016-04-01
Accurate rainfall intensities with high spatial and temporal resolution are crucial for urban flow prediction. Commonly, raw or bias corrected radar fields are used for forecasting, while different merging products are employed for simulation. The merging products are proven to be adequate for rainfall intensities estimation, however their application in forecasting is limited as they are developed for offline mode. This study aims at adapting and refining the offline merging techniques for the online implementation, and at comparing the performance of these methods for high resolution rainfall data. Radar bias correction based on mean fields and quantile mapping are analyzed individually and also are implemented in conditional merging. Special attention is given to the impact of different spatial and temporal filters on the predictive skill of all methods. Raw radar data and kriging interpolation of station data are considered as a reference to check the benefit of the merged products. The methods are applied for several extreme events in the time period 2006-2012 caused by different meteorological conditions, and their performance is evaluated by split sampling. The study area is located within the 112 km radius of Hannover radar in Lower Saxony, Germany and the data set constitutes of 80 recording stations in 5 min time steps. The results of this study reveal how the performance of the methods is affected by the adjustment of radar data, choice of merging method and selected event. Merging techniques can be used to improve the performance of online rainfall estimation, which gives way to the application of merging products in forecasting.
NASA Technical Reports Server (NTRS)
Limaye, Ashutosh S.; Molthan, Andrew L.; Srikishen, Jayanthi
2010-01-01
The development of the Nebula Cloud Computing Platform at NASA Ames Research Center provides an open-source solution for the deployment of scalable computing and storage capabilities relevant to the execution of real-time weather forecasts and the distribution of high resolution satellite data to the operational weather community. Two projects at Marshall Space Flight Center may benefit from use of the Nebula system. The NASA Short-term Prediction Research and Transition (SPoRT) Center facilitates the use of unique NASA satellite data and research capabilities in the operational weather community by providing datasets relevant to numerical weather prediction, and satellite data sets useful in weather analysis. SERVIR provides satellite data products for decision support, emphasizing environmental threats such as wildfires, floods, landslides, and other hazards, with interests in numerical weather prediction in support of disaster response. The Weather Research and Forecast (WRF) model Environmental Modeling System (WRF-EMS) has been configured for Nebula cloud computing use via the creation of a disk image and deployment of repeated instances. Given the available infrastructure within Nebula and the "infrastructure as a service" concept, the system appears well-suited for the rapid deployment of additional forecast models over different domains, in response to real-time research applications or disaster response. Future investigations into Nebula capabilities will focus on the development of a web mapping server and load balancing configuration to support the distribution of high resolution satellite data sets to users within the National Weather Service and international partners of SERVIR.
Forecasting short-term data center network traffic load with convolutional neural networks.
Mozo, Alberto; Ordozgoiti, Bruno; Gómez-Canaval, Sandra
2018-01-01
Efficient resource management in data centers is of central importance to content service providers as 90 percent of the network traffic is expected to go through them in the coming years. In this context we propose the use of convolutional neural networks (CNNs) to forecast short-term changes in the amount of traffic crossing a data center network. This value is an indicator of virtual machine activity and can be utilized to shape the data center infrastructure accordingly. The behaviour of network traffic at the seconds scale is highly chaotic and therefore traditional time-series-analysis approaches such as ARIMA fail to obtain accurate forecasts. We show that our convolutional neural network approach can exploit the non-linear regularities of network traffic, providing significant improvements with respect to the mean absolute and standard deviation of the data, and outperforming ARIMA by an increasingly significant margin as the forecasting granularity is above the 16-second resolution. In order to increase the accuracy of the forecasting model, we exploit the architecture of the CNNs using multiresolution input distributed among separate channels of the first convolutional layer. We validate our approach with an extensive set of experiments using a data set collected at the core network of an Internet Service Provider over a period of 5 months, totalling 70 days of traffic at the one-second resolution.
Forecasting short-term data center network traffic load with convolutional neural networks
Ordozgoiti, Bruno; Gómez-Canaval, Sandra
2018-01-01
Efficient resource management in data centers is of central importance to content service providers as 90 percent of the network traffic is expected to go through them in the coming years. In this context we propose the use of convolutional neural networks (CNNs) to forecast short-term changes in the amount of traffic crossing a data center network. This value is an indicator of virtual machine activity and can be utilized to shape the data center infrastructure accordingly. The behaviour of network traffic at the seconds scale is highly chaotic and therefore traditional time-series-analysis approaches such as ARIMA fail to obtain accurate forecasts. We show that our convolutional neural network approach can exploit the non-linear regularities of network traffic, providing significant improvements with respect to the mean absolute and standard deviation of the data, and outperforming ARIMA by an increasingly significant margin as the forecasting granularity is above the 16-second resolution. In order to increase the accuracy of the forecasting model, we exploit the architecture of the CNNs using multiresolution input distributed among separate channels of the first convolutional layer. We validate our approach with an extensive set of experiments using a data set collected at the core network of an Internet Service Provider over a period of 5 months, totalling 70 days of traffic at the one-second resolution. PMID:29408936
Development and validation of a regional coupled forecasting system for S2S forecasts
NASA Astrophysics Data System (ADS)
Sun, R.; Subramanian, A. C.; Hoteit, I.; Miller, A. J.; Ralph, M.; Cornuelle, B. D.
2017-12-01
Accurate and efficient forecasting of oceanic and atmospheric circulation is essential for a wide variety of high-impact societal needs, including: weather extremes; environmental protection and coastal management; management of fisheries, marine conservation; water resources; and renewable energy. Effective forecasting relies on high model fidelity and accurate initialization of the models with observed state of the ocean-atmosphere-land coupled system. A regional coupled ocean-atmosphere model with the Weather Research and Forecasting (WRF) model and the MITGCM ocean model coupled using the ESMF (Earth System Modeling Framework) coupling framework is developed to resolve mesoscale air-sea feedbacks. The regional coupled model allows oceanic mixed layer heat and momentum to interact with the atmospheric boundary layer dynamics at the mesoscale and submesoscale spatiotemporal regimes, thus leading to feedbacks which are otherwise not resolved in coarse resolution global coupled forecasting systems or regional uncoupled forecasting systems. The model is tested in two scenarios in the mesoscale eddy rich Red Sea and Western Indian Ocean region as well as mesoscale eddies and fronts of the California Current System. Recent studies show evidence for air-sea interactions involving the oceanic mesoscale in these two regions which can enhance predictability on sub seasonal timescale. We will present results from this newly developed regional coupled ocean-atmosphere model for forecasts over the Red Sea region as well as the California Current region. The forecasts will be validated against insitu observations in the region as well as reanalysis fields.
Process studies with airborne GLORIA limb-imaging FTS observations during the Arctic winter 2015/16
NASA Astrophysics Data System (ADS)
Woiwode, W.; Bramberger, M.; Braun, M.; Dörnbrack, A.; Friedl-Vallon, F.; Grooss, J. U.; Hoepfner, M.; Johansson, S.; Latzko, T.; Oelhaf, H.; Orphal, J.; Preusse, P.; Sinnhuber, B. M.; Suminska-Ebersoldt, O.; Ungermann, J.
2017-12-01
The Gimballed Limb Observer for Radiance Imaging of the Atmosphere (GLORIA) limb-imaging infrared Fourier-Transform Spectrometer (FTS) was deployed on board the High Altitude and LOng range research aircraft (HALO) from December 2015 until March 2016 for process studies in the Arctic and mid-latitudes. Operations were carried out from Kiruna (Sweden, 68°N) and Oberpfaffenhofen (Germany, 48°N) in the framework of the combined POLSTRACC/GW-LCYCLE/SALSA (PGS) campaigns, including 18 scientific HALO flights and about 156 flight hours. After a brief overview of the instrument, examples of process studies using GLORIA high spectral resolution mode observations will be given: (1) Strong nitrification of the Arctic lowermost stratosphere during the exceptionally cold stratospheric winter 2015/16 and comparisons with CLaMS (Chemical Lagrangian Model of the Stratosphere) chemistry transport simulations. (ii) A case study involving high-resolution ECMWF (European Centre for Medium-Range Weather Forecasts) IFS (Integrated Forecasting System) data, investigating the meridional structure of a tropopause fold interfering with a mountain wave.
Hydrologic Simulation in Mediterranean flood prone Watersheds using high-resolution quality data
NASA Astrophysics Data System (ADS)
Eirini Vozinaki, Anthi; Alexakis, Dimitrios; Pappa, Polixeni; Tsanis, Ioannis
2015-04-01
Flooding is a significant threat causing lots of inconveniencies in several societies, worldwide. The fact that the climatic change is already happening, increases the flooding risk, which is no longer a substantial menace to several societies and their economies. The improvement of spatial-resolution and accuracy of the topography and land use data due to remote sensing techniques could provide integrated flood inundation simulations. In this work hydrological analysis of several historic flood events in Mediterranean flood prone watersheds (island of Crete/Greece) takes place. Satellite images of high resolution are elaborated. A very high resolution (VHR) digital elevation model (DEM) is produced from a GeoEye-1 0.5-m-resolution satellite stereo pair and is used for floodplain management and mapping applications such as watershed delineation and river cross-section extraction. Sophisticated classification algorithms are implemented for improving Land Use/ Land Cover maps accuracy. In addition, soil maps are updated with means of Radar satellite images. The above high-resolution data are innovatively used to simulate and validate several historical flood events in Mediterranean watersheds, which have experienced severe flooding in the past. The hydrologic/hydraulic models used for flood inundation simulation in this work are HEC-HMS and HEC-RAS. The Natural Resource Conservation Service (NRCS) curve number (CN) approach is implemented to account for the effect of LULC and soil on the hydrologic response of the catchment. The use of high resolution data provides detailed validation results and results of high precision, accordingly. Furthermore, the meteorological forecasting data, which are also combined to the simulation model results, manage the development of an integrated flood forecasting and early warning system tool, which is capable of confronting or even preventing this imminent risk. The research reported in this paper was fully supported by the "ARISTEIA II" Action ("REINFORCE" program) of the "Operational Education and Life Long Learning programme" and is co-funded by the European Social Fund (ESF) and National Resources.
NASA Astrophysics Data System (ADS)
Sterling, K.; Denbo, D. W.; Eble, M. C.
2016-12-01
Short-term Inundation Forecasting for Tsunamis (SIFT) software was developed by NOAA's Pacific Marine Environmental Laboratory (PMEL) for use in tsunami forecasting and has been used by both U.S. Tsunami Warning Centers (TWCs) since 2012, when SIFTv3.1 was operationally accepted. Since then, advancements in research and modeling have resulted in several new features being incorporated into SIFT forecasting. Following the priorities and needs of the TWCs, upgrades to SIFT forecasting were implemented into SIFTv4.0, scheduled to become operational in October 2016. Because every minute counts in the early warning process, two major time saving features were implemented in SIFT 4.0. To increase processing speeds and generate high-resolution flooding forecasts more quickly, the tsunami propagation and inundation codes were modified to run on Graphics Processing Units (GPUs). To reduce time demand on duty scientists during an event, an automated DART inversion (or fitting) process was implemented. To increase forecasting accuracy, the forecasted amplitudes and inundations were adjusted to include dynamic tidal oscillations, thereby reducing the over-estimates of flooding common in SIFTv3.1 due to the static tide stage conservatively set at Mean High Water. Further improvements to forecasts were gained through the assimilation of additional real-time observations. Cabled array measurements from Bottom Pressure Recorders (BPRs) in the Oceans Canada NEPTUNE network are now available to SIFT for use in the inversion process. To better meet the needs of harbor masters and emergency managers, SIFTv4.0 adds a tsunami currents graphical product to the suite of disseminated forecast results. When delivered, these new features in SIFTv4.0 will improve the operational tsunami forecasting speed, accuracy, and capabilities at NOAA's Tsunami Warning Centers.
NASA Astrophysics Data System (ADS)
Zhu, Dehua; Echendu, Shirley; Xuan, Yunqing; Webster, Mike; Cluckie, Ian
2016-11-01
Impact-focused studies of extreme weather require coupling of accurate simulations of weather and climate systems and impact-measuring hydrological models which themselves demand larger computer resources. In this paper, we present a preliminary analysis of a high-performance computing (HPC)-based hydrological modelling approach, which is aimed at utilizing and maximizing HPC power resources, to support the study on extreme weather impact due to climate change. Here, four case studies are presented through implementation on the HPC Wales platform of the UK mesoscale meteorological Unified Model (UM) with high-resolution simulation suite UKV, alongside a Linux-based hydrological model, Hydrological Predictions for the Environment (HYPE). The results of this study suggest that the coupled hydro-meteorological model was still able to capture the major flood peaks, compared with the conventional gauge- or radar-driving forecast, but with the added value of much extended forecast lead time. The high-resolution rainfall estimation produced by the UKV performs similarly to that of radar rainfall products in the first 2-3 days of tested flood events, but the uncertainties particularly increased as the forecast horizon goes beyond 3 days. This study takes a step forward to identify how the online mode approach can be used, where both numerical weather prediction and the hydrological model are executed, either simultaneously or on the same hardware infrastructures, so that more effective interaction and communication can be achieved and maintained between the models. But the concluding comments are that running the entire system on a reasonably powerful HPC platform does not yet allow for real-time simulations, even without the most complex and demanding data simulation part.
Forecast of drifter trajectories using a Rapid Environmental Assessment based on CTD observations
NASA Astrophysics Data System (ADS)
Sorgente, R.; Tedesco, C.; Pessini, F.; De Dominicis, M.; Gerin, R.; Olita, A.; Fazioli, L.; Di Maio, A.; Ribotti, A.
2016-11-01
A high resolution submesoscale resolving ocean model was implemented in a limited area north of Island of Elba where a maritime exercise, named Serious Game 1 (SG1), took place on May 2014 in the framework of the project MEDESS-4MS (Mediterranean Decision Support System for Marine Safety). During the exercise, CTD data have been collected responding to the necessity of a Rapid Environmental Assessment, i.e. to a rapid evaluation of the marine conditions able to provide sensible information for initialisation of modelling tools, in the scenario of possible maritime accidents. The aim of this paper is to evaluate the impact of such mesoscale-resolving CTD observations on short-term forecasts of the surface currents, within the framework of possible oil-spill related emergencies. For this reason, modelling outputs were compared with Lagrangian observations at sea: the high resolution modelled currents, together with the ones of the coarser sub-regional model WMED, are used to force the MEDSLIK-II oil-spill model to simulate drifter trajectories. Both ocean models have been assessed by comparing the prognostic scalar and vector fields as an independent CTD data set and with real drifter trajectories acquired during SG1. The diagnosed and prognosed circulation reveals that the area was characterised by water masses of Atlantic origin influenced by small mesoscale cyclonic and anti-cyclonic eddies, which govern the spatial and temporal evolution of the drifter trajectories and of the water masses distribution. The assimilation of CTD data into the initial conditions of the high resolution model highly improves the accuracy of the short-term forecast in terms of location and structure of the thermocline and positively influence the ability of the model in reproducing the observed paths of the surface drifters.
NASA Technical Reports Server (NTRS)
Maschhoff, K. R.; Polizotti, J. J.; Aumann, H. H.; Susskind, J.
2016-01-01
MISTiC(TM) Winds is an approach to improve short-term weather forecasting based on a miniature high resolution, wide field, thermal emission spectrometry instrument that will provide global tropospheric vertical profiles of atmospheric temperature and humidity at high (3-4 km) horizontal and vertical ( 1 km) spatial resolution. MISTiCs extraordinarily small size, payload mass of less than 15 kg, and minimal cooling requirements can be accommodated aboard a 27U-class CubeSat or an ESPA-Class micro-satellite. Low fabrication and launch costs enable a LEO sunsynchronous sounding constellation that would collectively provide frequent IR vertical profiles and vertically resolved atmospheric motion vector wind observations in the troposphere. These observations are highly complementary to present and emerging environmental observing systems, and would provide a combination of high vertical and horizontal resolution not provided by any other environmental observing system currently in operation. The spectral measurements that would be provided by MISTiC Winds are similar to those of NASA's AIRS that was built by BAE Systems and operates aboard the AQUA satellite. These new observations, when assimilated into high resolution numerical weather models, would revolutionize short-term and severe weather forecasting, save lives, and support key economic decisions in the energy, air transport, and agriculture arenasat much lower cost than providing these observations from geostationary orbit. In addition, this observation capability would be a critical tool for the study of transport processes for water vapor, clouds, pollution, and aerosols. Key remaining technical risks are being reduced through laboratory and airborne testing under NASA's Instrument Incubator Program.
NASA Astrophysics Data System (ADS)
Maschhoff, K. R.; Polizotti, J. J.; Susskind, J.; Aumann, H. H.
2015-12-01
MISTiCTM Winds is an approach to improve short-term weather forecasting based on a miniature high resolution, wide field, thermal emission spectrometry instrument that will provide global tropospheric vertical profiles of atmospheric temperature and humidity at high (3-4 km) horizontal and vertical ( 1 km) spatial resolution. MISTiC's extraordinarily small size, payload mass of less than 15 kg, and minimal cooling requirements can be accommodated aboard a 27U-class CubeSat or an ESPA-Class micro-satellite. Low fabrication and launch costs enable a LEO sun-synchronous sounding constellation that would collectively provide frequent IR vertical profiles and vertically resolved atmospheric motion vector wind observations in the troposphere. These observations are highly complementary to present and emerging environmental observing systems, and would provide a combination of high vertical and horizontal resolution not provided by any other environmental observing system currently in operation. The spectral measurements that would be provided by MISTiC Winds are similar to those of NASA's Atmospheric Infrared Sounder that was built by BAE Systems and operates aboard the AQUA satellite. These new observations, when assimilated into high resolution numerical weather models, would revolutionize short-term and severe weather forecasting, save lives, and support key economic decisions in the energy, air transport, and agriculture arenas-at much lower cost than providing these observations from geostationary orbit. In addition, this observation capability would be a critical tool for the study of transport processes for water vapor, clouds, pollution, and aerosols. Key technical risks are being reduced through laboratory and airborne testing under NASA's Instrument Incubator Program.
NASA Astrophysics Data System (ADS)
Maschhoff, K. R.; Polizotti, J. J.; Aumann, H. H.; Susskind, J.
2016-09-01
MISTiCTM Winds is an approach to improve short-term weather forecasting based on a miniature high resolution, wide field, thermal emission spectrometry instrument that will provide global tropospheric vertical profiles of atmospheric temperature and humidity at high (3-4 km) horizontal and vertical ( 1 km) spatial resolution. MISTiC's extraordinarily small size, payload mass of less than 15 kg, and minimal cooling requirements can be accommodated aboard a 27U-class CubeSat or an ESPA-Class micro-satellite. Low fabrication and launch costs enable a LEO sunsynchronous sounding constellation that would collectively provide frequent IR vertical profiles and vertically resolved atmospheric motion vector wind observations in the troposphere. These observations are highly complementary to present and emerging environmental observing systems, and would provide a combination of high vertical and horizontal resolution not provided by any other environmental observing system currently in operation. The spectral measurements that would be provided by MISTiC Winds are similar to those of NASA's AIRS that was built by BAE Systems and operates aboard the AQUA satellite. These new observations, when assimilated into high resolution numerical weather models, would revolutionize short-term and severe weather forecasting, save lives, and support key economic decisions in the energy, air transport, and agriculture arenas-at much lower cost than providing these observations from geostationary orbit. In addition, this observation capability would be a critical tool for the study of transport processes for water vapor, clouds, pollution, and aerosols. Key remaining technical risks are being reduced through laboratory and airborne testing under NASA's Instrument Incubator Program.
NASA Astrophysics Data System (ADS)
Maschhoff, K. R.; Polizotti, J. J.; Aumann, H. H.; Susskind, J.
2016-10-01
MISTiC Winds is an approach to improve short-term weather forecasting based on a miniature high resolution, wide field, thermal emission spectrometry instrument that will provide global tropospheric vertical profiles of atmospheric temperature and humidity at high (3-4 km) horizontal and vertical ( 1 km) spatial resolution. MISTiC's extraordinarily small size, payload mass of less than 15 kg, and minimal cooling requirements can be accommodated aboard a 27U-class CubeSat or an ESPA-Class micro-satellite. Low fabrication and launch costs enable a LEO sunsynchronous sounding constellation that would collectively provide frequent IR vertical profiles and vertically resolved atmospheric motion vector wind observations in the troposphere. These observations are highly complementary to present and emerging environmental observing systems, and would provide a combination of high vertical and horizontal resolution not provided by any other environmental observing system currently in operation. The spectral measurements that would be provided by MISTiC Winds are similar to those of NASA's AIRS that was built by BAE Systems and operates aboard the AQUA satellite. These new observations, when assimilated into high resolution numerical weather models, would revolutionize short-term and severe weather forecasting, save lives, and support key economic decisions in the energy, air transport, and agriculture arenas-at much lower cost than providing these observations from geostationary orbit. In addition, this observation capability would be a critical tool for the study of transport processes for water vapor, clouds, pollution, and aerosols. Key remaining technical risks are being reduced through laboratory and airborne testing under NASA's Instrument Incubator Program.
High Quality Data for Grid Integration Studies
DOE Office of Scientific and Technical Information (OSTI.GOV)
Clifton, Andrew; Draxl, Caroline; Sengupta, Manajit
As variable renewable power penetration levels increase in power systems worldwide, renewable integration studies are crucial to ensure continued economic and reliable operation of the power grid. The existing electric grid infrastructure in the US in particular poses significant limitations on wind power expansion. In this presentation we will shed light on requirements for grid integration studies as far as wind and solar energy are concerned. Because wind and solar plants are strongly impacted by weather, high-resolution and high-quality weather data are required to drive power system simulations. Future data sets will have to push limits of numerical weather predictionmore » to yield these high-resolution data sets, and wind data will have to be time-synchronized with solar data. Current wind and solar integration data sets are presented. The Wind Integration National Dataset (WIND) Toolkit is the largest and most complete grid integration data set publicly available to date. A meteorological data set, wind power production time series, and simulated forecasts created using the Weather Research and Forecasting Model run on a 2-km grid over the continental United States at a 5-min resolution is now publicly available for more than 126,000 land-based and offshore wind power production sites. The National Solar Radiation Database (NSRDB) is a similar high temporal- and spatial resolution database of 18 years of solar resource data for North America and India. The need for high-resolution weather data pushes modeling towards finer scales and closer synchronization. We also present how we anticipate such datasets developing in the future, their benefits, and the challenges with using and disseminating such large amounts of data.« less
NASA Astrophysics Data System (ADS)
Schmidt, Thomas; Kalisch, John; Lorenz, Elke; Heinemann, Detlev
2016-03-01
Clouds are the dominant source of small-scale variability in surface solar radiation and uncertainty in its prediction. However, the increasing share of solar energy in the worldwide electric power supply increases the need for accurate solar radiation forecasts. In this work, we present results of a very short term global horizontal irradiance (GHI) forecast experiment based on hemispheric sky images. A 2-month data set with images from one sky imager and high-resolution GHI measurements from 99 pyranometers distributed over 10 km by 12 km is used for validation. We developed a multi-step model and processed GHI forecasts up to 25 min with an update interval of 15 s. A cloud type classification is used to separate the time series into different cloud scenarios. Overall, the sky-imager-based forecasts do not outperform the reference persistence forecasts. Nevertheless, we find that analysis and forecast performance depends strongly on the predominant cloud conditions. Especially convective type clouds lead to high temporal and spatial GHI variability. For cumulus cloud conditions, the analysis error is found to be lower than that introduced by a single pyranometer if it is used representatively for the whole area in distances from the camera larger than 1-2 km. Moreover, forecast skill is much higher for these conditions compared to overcast or clear sky situations causing low GHI variability, which is easier to predict by persistence. In order to generalize the cloud-induced forecast error, we identify a variability threshold indicating conditions with positive forecast skill.
Flash flood warnings for ungauged basins based on high-resolution precipitation forecasts
NASA Astrophysics Data System (ADS)
Demargne, Julie; Javelle, Pierre; Organde, Didier; de Saint Aubin, Céline; Janet, Bruno
2016-04-01
Early detection of flash floods, which are typically triggered by severe rainfall events, is still challenging due to large meteorological and hydrologic uncertainties at the spatial and temporal scales of interest. Also the rapid rising of waters necessarily limits the lead time of warnings to alert communities and activate effective emergency procedures. To better anticipate such events and mitigate their impacts, the French national service in charge of flood forecasting (SCHAPI) is implementing a national flash flood warning system for small-to-medium (up to 1000 km²) ungauged basins based on a discharge-threshold flood warning method called AIGA (Javelle et al. 2014). The current deterministic AIGA system has been run in real-time in the South of France since 2005 and has been tested in the RHYTMME project (rhytmme.irstea.fr/). It ingests the operational radar-gauge QPE grids from Météo-France to run a simplified hourly distributed hydrologic model at a 1-km² resolution every 15 minutes. This produces real-time peak discharge estimates along the river network, which are subsequently compared to regionalized flood frequency estimates to provide warnings according to the AIGA-estimated return period of the ongoing event. The calibration and regionalization of the hydrologic model has been recently enhanced for implementing the national flash flood warning system for the entire French territory by 2016. To further extend the effective warning lead time, the flash flood warning system is being enhanced to ingest Météo-France's AROME-NWC high-resolution precipitation nowcasts. The AROME-NWC system combines the most recent available observations with forecasts from the nowcasting version of the AROME convection-permitting model (Auger et al. 2015). AROME-NWC pre-operational deterministic precipitation forecasts, produced every hour at a 2.5-km resolution for a 6-hr forecast horizon, were provided for 3 significant rain events in September and November 2014 and ingested as time-lagged ensembles. The time-lagged approach is a practical choice of accounting for the atmospheric forecast uncertainty when no extensive forecast archive is available for statistical modelling. The evaluation on 185 basins in the South of France showed significant improvements in terms of flash flood event detection and effective warning lead-time, compared to warnings from the current AIGA setup (without any future precipitation). Various verification metrics (e.g., Relative Mean Error, Brier Skill Score) show the skill of ensemble precipitation and flow forecasts compared to single-valued persistency benchmarks. Planned enhancements include integrating additional probabilistic NWP products (e.g., AROME precipitation ensembles on longer forecast horizon), accounting for and reducing hydrologic uncertainties from the model parameters and initial conditions via data assimilation, and developing a comprehensive observational and post-event damage database to determine decision-relevant warning thresholds for flood magnitude and probability. Javelle, P., Demargne, J., Defrance, D., Arnaud, P., 2014. Evaluating flash flood warnings at ungauged locations using post-event surveys: a case study with the AIGA warning system. Hydrological Sciences Journal, doi: 10.1080/02626667.2014.923970 Auger, L., Dupont, O., Hagelin, S., Brousseau, P., Brovelli, P., 2015. AROME-NWC: a new nowcasting tool based on an operational mesoscale forecasting system. Quarterly Journal of the Royal Meteorological Society, 141: 1603-1611, doi: 10.1002/qj.2463
Improving the Transition of Earth Satellite Observations from Research to Operations
NASA Technical Reports Server (NTRS)
Goodman, Steven J.; Lapenta, William M.; Jedlovec, Gary J.
2004-01-01
There are significant gaps between the observations, models, and decision support tools that make use of new data. These challenges include: 1) Decreasing the time to incorporate new satellite data into operational forecast assimilation systems, 2) Blending in-situ and satellite observing systems to produce the most accurate and comprehensive data products and assessments, 3) Accelerating the transition from research to applications through national test beds, field campaigns, and pilot demonstrations, and 4) Developing the partnerships and organizational structures to effectively transition new technology into operations. At the Short-term Prediction Research and Transition (SPORT) Center in Huntsville, Alabama, a NASA-NOAA-University collaboration has been developed to accelerate the infusion of NASA Earth science observations, data assimilation and modeling research into NWS forecast operations and decision-making. The SPoRT Center research focus is to improve forecasts through new observation capability and the regional prediction objectives of the US Weather Research Program dealing with 0-1 day forecast issues such as convective initiation and 24-hr quantitative precipitation forecasting. The near real-time availability of high-resolution experimental products of the atmosphere, land, and ocean from the Moderate Resolution Imaging Spectroradiometer (MODIS), the Advanced Infrared Spectroradiometer (AIRS), and lightning mapping systems provide an opportunity for science and algorithm risk reduction, and for application assessment prior to planned observations from the next generation of operational low Earth orbiting and geostationary Earth orbiting satellites. This paper describes the process for the transition of experimental products into forecast operations, current products undergoing assessment by forecasters, and plans for the future. The SPoRT Web page is at (http://www.ghcc.msfc.nasa.gov/sport).
Hybrid vs Adaptive Ensemble Kalman Filtering for Storm Surge Forecasting
NASA Astrophysics Data System (ADS)
Altaf, M. U.; Raboudi, N.; Gharamti, M. E.; Dawson, C.; McCabe, M. F.; Hoteit, I.
2014-12-01
Recent storm surge events due to Hurricanes in the Gulf of Mexico have motivated the efforts to accurately forecast water levels. Toward this goal, a parallel architecture has been implemented based on a high resolution storm surge model, ADCIRC. However the accuracy of the model notably depends on the quality and the recentness of the input data (mainly winds and bathymetry), model parameters (e.g. wind and bottom drag coefficients), and the resolution of the model grid. Given all these uncertainties in the system, the challenge is to build an efficient prediction system capable of providing accurate forecasts enough ahead of time for the authorities to evacuate the areas at risk. We have developed an ensemble-based data assimilation system to frequently assimilate available data into the ADCIRC model in order to improve the accuracy of the model. In this contribution we study and analyze the performances of different ensemble Kalman filter methodologies for efficient short-range storm surge forecasting, the aim being to produce the most accurate forecasts at the lowest possible computing time. Using Hurricane Ike meteorological data to force the ADCIRC model over a domain including the Gulf of Mexico coastline, we implement and compare the forecasts of the standard EnKF, the hybrid EnKF and an adaptive EnKF. The last two schemes have been introduced as efficient tools for enhancing the behavior of the EnKF when implemented with small ensembles by exploiting information from a static background covariance matrix. Covariance inflation and localization are implemented in all these filters. Our results suggest that both the hybrid and the adaptive approach provide significantly better forecasts than those resulting from the standard EnKF, even when implemented with much smaller ensembles.
An operational coupled wave-current forecasting system for the northern Adriatic Sea
NASA Astrophysics Data System (ADS)
Russo, A.; Coluccelli, A.; Deserti, M.; Valentini, A.; Benetazzo, A.; Carniel, S.
2012-04-01
Since 2005 an Adriatic implementation of the Regional Ocean Modeling System (AdriaROMS) is being producing operational short-term forecasts (72 hours) of some hydrodynamic properties (currents, sea level, temperature, salinity) of the Adriatic Sea at 2 km horizontal resolution and 20 vertical s-levels, on a daily basis. The main objective of AdriaROMS, which is managed by the Hydro-Meteo-Clima Service (SIMC) of ARPA Emilia Romagna, is to provide useful products for civil protection purposes (sea level forecasts, outputs to run other forecasting models as for saline wedge, oil spills and coastal erosion). In order to improve the forecasts in the coastal area, where most of the attention is focused, a higher resolution model (0.5 km, again with 20 vertical s-levels) has been implemented for the northern Adriatic domain. The new implementation is based on the Coupled-Ocean-Atmosphere-Wave-Sediment Transport Modeling System (COAWST)and adopts ROMS for the hydrodynamic and Simulating WAve Nearshore (SWAN) for the wave module, respectively. Air-sea fluxes are computed using forecasts produced by the COSMO-I7 operational atmospheric model. At the open boundary of the high resolution model, temperature, salinity and velocity fields are provided by AdriaROMS while the wave characteristics are provided by an operational SWAN implementation (also managed by SIMC). Main tidal components are imposed as well, derived from a tidal model. Work in progress is oriented now on the validation of model results by means of extensive comparisons with acquired hydrographic measurements (such as CTDs or XBTs from sea-truth campaigns), currents and waves acquired at observational sites (including those of SIMC, CNR-ISMAR network and its oceanographic tower, located off the Venice littoral) and satellite-derived wave-heights data. Preliminary results on the forecast waves denote how, especially during intense storms, the effect of coupling can lead to significant variations in the wave heights. Part of the activity has been funded by the EU FP VII program (project "MICORE", contract n. 202798) and by the Regione Veneto regional law 15/2007 (Progetto "MARINA").
NASA Astrophysics Data System (ADS)
Li, Zhe; Yang, Dawen; Yang, Hanbo; Wu, Tianjiao; Xu, Jijun; Gao, Bing; Xu, Tao
2015-04-01
The study area, the Three Gorges Region (TGR), plays a critical role in predicting the floods drained into the Three Gorges Reservoir, as reported local floods often exceed 10000m3/s during rainstorm events and trigger fast as well as significant impacts on the Three Gorges Reservoir's regulation. Meanwhile, it is one of typical mountainous areas in China, which is located in the transition zone between two monsoon systems: the East Asian monsoon and the South Asian (Indian) monsoon. This climatic feature, combined with local irregular terrains, has shaped complicated rainfall-runoff regimes in this focal region. However, due to the lack of high-resolution hydrometeorological data and physically-based hydrologic modeling framework, there was little knowledge about rainfall variability and flood pattern in this historically ungauged region, which posed great uncertainties to flash flood forecasting in the past. The present study summarize latest progresses of regional flash floods monitoring and prediction, including installation of a ground-based Hydrometeorological Observation Network (TGR-HMON), application of a regional geomorphology-based hydrological model (TGR-GBHM), development of an integrated forecasting and modeling system (TGR-INFORMS), and evaluation of quantitative precipitation estimations (QPE) and quantitative precipitation forecasting (QPF) products in TGR flash flood forecasting. With these continuing efforts to improve the forecasting performance of flash floods in TGR, we have addressed several critical issues: (1) Current observation network is still insufficient to capture localized rainstorms, and weather radar provides valuable information to forecast flash floods induced by localized rainstorms, although current radar QPE products can be improved substantially in future; (2) Long-term evaluation shows that the geomorphology-based distributed hydrologic model (GBHM) is able to simulate flash flooding processes reasonably, while model performance will decline at hourly scale with larger uncertainties. However, model comparison suggests that this physically-based distributed model (GBHM), compared with a traditional lumped model (Xin'anjiang model), shows more robust performance and larger transferability for prediction in those ungauged basins in TGR; (3) Operational test of our integrated forecasting system (TRG-INFORMS) shows that it works reasonably to simulate the flood routing in Three Gorges reservoir, indicating the accuracy of simulation of total floods generated at region scale; (4) Current operational QPF is too coarse to provide valuable information even for flood forecasting of whole TGR, thus, downscaling and high-resolution QPF are necessary to unravel the potentials of weather forecasting. Finally, according to these results, we also discuss about some possible solutions with high priority for future advanced forecasting scheme of local flash floods in TGR.
NASA Astrophysics Data System (ADS)
Badrzadeh, Honey; Sarukkalige, Ranjan; Jayawardena, A. W.
2013-12-01
Discrete wavelet transform was applied to decomposed ANN and ANFIS inputs.Novel approach of WNF with subtractive clustering applied for flow forecasting.Forecasting was performed in 1-5 step ahead, using multi-variate inputs.Forecasting accuracy of peak values and longer lead-time significantly improved.
NASA Technical Reports Server (NTRS)
Koster, Randal D.; Walker, Gregory K.; Mahanama, Sarith P.; Reichle, Rolf H.
2013-01-01
Offline simulations over the conterminous United States (CONUS) with a land surface model are used to address two issues relevant to the forecasting of large-scale seasonal streamflow: (i) the extent to which errors in soil moisture initialization degrade streamflow forecasts, and (ii) the extent to which a realistic increase in the spatial resolution of forecasted precipitation would improve streamflow forecasts. The addition of error to a soil moisture initialization field is found to lead to a nearly proportional reduction in streamflow forecast skill. The linearity of the response allows the determination of a lower bound for the increase in streamflow forecast skill achievable through improved soil moisture estimation, e.g., through satellite-based soil moisture measurements. An increase in the resolution of precipitation is found to have an impact on large-scale streamflow forecasts only when evaporation variance is significant relative to the precipitation variance. This condition is met only in the western half of the CONUS domain. Taken together, the two studies demonstrate the utility of a continental-scale land surface modeling system as a tool for addressing the science of hydrological prediction.
Delensing CMB polarization with external datasets
DOE Office of Scientific and Technical Information (OSTI.GOV)
Smith, Kendrick M.; Hanson, Duncan; LoVerde, Marilena
2012-06-01
One of the primary scientific targets of current and future CMB polarization experiments is the search for a stochastic background of gravity waves in the early universe. As instrumental sensitivity improves, the limiting factor will eventually be B-mode power generated by gravitational lensing, which can be removed through use of so-called ''delensing'' algorithms. We forecast prospects for delensing using lensing maps which are obtained externally to CMB polarization: either from large-scale structure observations, or from high-resolution maps of CMB temperature. We conclude that the forecasts in either case are not encouraging, and that significantly delensing large-scale CMB polarization requires high-resolutionmore » polarization maps with sufficient sensitivity to measure the lensing B-mode. We also present a simple formalism for including delensing in CMB forecasts which is computationally fast and agrees well with Monte Carlos.« less
Smooth Sailing for Weather Forecasting
NASA Technical Reports Server (NTRS)
2002-01-01
Through a cooperative venture with NASA's Stennis Space Center, WorldWinds, Inc., developed a unique weather and wave vector map using space-based radar satellite information and traditional weather observations. Called WorldWinds, the product provides accurate, near real-time, high-resolution weather forecasts. It was developed for commercial and scientific users. In addition to weather forecasting, the product's applications include maritime and terrestrial transportation, aviation operations, precision farming, offshore oil and gas operations, and coastal hazard response support. Target commercial markets include the operational maritime and aviation communities, oil and gas providers, and recreational yachting interests. Science applications include global long-term prediction and climate change, land-cover and land-use change, and natural hazard issues. Commercial airlines have expressed interest in the product, as it can provide forecasts over remote areas. WorldWinds, Inc., is currently providing its product to commercial weather outlets.
JPSS Preparations at the Satellite Proving Ground for Marine, Precipitation, and Satellite Analysis
NASA Astrophysics Data System (ADS)
Folmer, M. J.; Berndt, E.; Clark, J.; Orrison, A.; Kibler, J.; Sienkiewicz, J. M.; Nelson, J. A., Jr.; Goldberg, M.
2016-12-01
The National Oceanic and Atmospheric Administration (NOAA) Satellite Proving Ground (PG) for Marine, Precipitation, and Satellite Analysis (MPS) has been demonstrating and evaluating Suomi National Polar-orbiting Partnership (S-NPP) products along with other polar-orbiting satellite platforms in preparation for the Joint Polar Satellite System - 1 (JPSS-1) launch in March 2017. The first S-NPP imagery was made available to the MPS PG during the evolution of Hurricane Sandy in October 2012 and has since been popular in operations. Since this event the MPS PG Satellite Liaison has been working with forecasters on ways to integrate single-channel and multispectral imagery from the Visible Infrared Imaging Radiometer Suite (VIIRS), the Moderate Resolution Imaging Spectroradiometer (MODIS), and the Advanced Very High Resolution Radiometer (AVHRR)into operations to complement numerical weather prediction and geostationary satellite savvy National Weather Service (NWS) National Centers. Additional unique products have been introduced to operations to address specific forecast challenges, including the Cooperative Institute for Research in the Atmosphere (CIRA) Layered Precipitable Water, the National Environmental Satellite, Data, and Information Service (NESDIS) Snowfall Rate product, NOAA Unique Combined Atmospheric Processing System (NUCAPS) Soundings, ozone products from the Atmospheric Infrared Sounder (AIRS), Cross-track Infrared Sounder/Advanced Technology Microwave Sounder (CrIS/ATMS), and Infrared Atmospheric Sounding Interferometer (IASI). In addition, new satellite domains have been created to provide forecasters at the NWS Ocean Prediction Center and Weather Prediction Center with better quality imagery at high latitudes. This has led to research projects that are addressing forecast challenges such as tropical to extratropical transition and explosive cyclogenesis. This presentation will provide examples of how the MPS PG has been introducing and integrating these products into operations to help solve these forecast challenges.
NASA Technical Reports Server (NTRS)
Molthan, Andrew L.
2010-01-01
High resolution weather forecast models with explicit prediction of hydrometeor type, size distribution, and fall speed may be useful in the development of precipitation retrievals, by providing representative characteristics of frozen hydrometeors. Several single or double-moment microphysics schemes are currently available within the Weather Research and Forecasting (WRF) model, allowing for the prediction of up to three ice species. Each scheme incorporates different assumptions regarding the characteristics of their ice classes, particularly in terms of size distribution, density, and fall speed. In addition to the prediction of hydrometeor content, these schemes must accurately represent the vertical profile of water vapor to account for possible attenuation, along with the size distribution, density, and shape characteristics of ice crystals that are relevant to microwave scattering. An evaluation of a particular scheme requires the availability of field campaign measurements. The Canadian CloudSat/CALIPSO Validation Project (C3VP) obtained measurements of ice crystal shapes, size distributions, fall speeds, and precipitation during several intensive observation periods. In this study, C3VP observations obtained during the 22 January 2007 synoptic-scale snowfall event are compared against WRF model output, based upon forecasts using four single-moment and two double-moment schemes available as of version 3.1. Schemes are compared against aircraft observations by examining differences in size distribution, density, and content. In addition to direct measurements from aircraft probes, simulated precipitation can also be converted to equivalent, remotely sensed characteristics through the use of the NASA Goddard Satellite Data Simulator Unit. Outputs from high resolution forecasts are compared against radar and satellite observations emphasizing differences in assumed crystal shape and size distribution characteristics.
NASA Astrophysics Data System (ADS)
Mahura, Alexander; Amstrup, Bjarne; Nuterman, Roman; Yang, Xiaohua; Baklanov, Alexander
2017-04-01
Air pollution is a serious problem in different regions of China and its continuously growing megacities. Information on air quality, and especially, in urbanized areas is important for decision making, emergency response and population. In particular, the metropolitan areas of Shanghai, Beijing, and Pearl River Delta are well known as main regions having serious air pollution problems. The on-line integrated meteorology-chemistry-aerosols Enviro-HIRLAM (Environment - HIgh Resolution Limited Area Model) model adapted for China and selected megacities is applied for forecasting of weather and atmospheric composition (with focus on aerosols). The model system is running in downscaling chain from regional to urban scales at subsequent horizontal resolutions of 15-5-2.5 km. The model setup includes also the urban Building Effects Parameterization module, describing different types of urban districts (industrial commercial, city center, high density and residential) with its own morphological and aerodynamical characteristics. The effects of urbanization are important for atmospheric transport, dispersion, deposition, and chemical transformations, in addition to better quality emission inventories for China and selected urban areas. The Enviro-HIRLAM system provides meteorology and air quality forecasts at regional-subregional-urban scales (China - East China - selected megacities). In particular, such forecasting is important for metropolitan areas, where formation and development of meteorological and chemical/aerosol patterns are especially complex. It also provides information for evaluation impact on selected megacities of China as well as for investigation relationship between air pollution and meteorology.
On using scatterometer and altimeter data to improve storm surge forecasting in the Adriatic Sea
NASA Astrophysics Data System (ADS)
Bajo, Marco; Umgiesser, Georg; De Biasio, Francesco; Vignudelli, Stefano; Zecchetto, Stefano
2017-04-01
Satellite data are seldom used in storm surge forecasting. Among the most important issues related to the storm surge forecasting are the quality of the model wind forcing and the initial condition of the sea surface elevation. In this work, focused on storm surge forecasting in the Adriatic Sea, satellite scatterometer wind data are used to correct the wind speed and direction biases of the ECMWF global atmospheric model by tuning the spatial fields, as an alternative to data assimilation. The capability of such an unbiased wind is tested against that of a high resolution wind, produced by a regional non-hydrostatic model. On the other hand, altimeter Total Water Level Envelope (TWLE) data, which provide the sea level elevation, are used to improve the accuracy of the initial state of the model simulations. This is done by assimilating into a storm surge model the TWLE obtained by the altimeter observations along ground tracks, after subtraction of the tidal components. In order to test the methodology, eleven storm surge events recorded in Venice, from 2008 to 2012, have been simulated using different configurations of forcing wind and altimeter data assimilation. Results show that the relative error on the estimation of the maximum surge peak, averaged over the cases considered, decreases from 13% to 7% using both the unbiased wind and the altimeter data assimilation, while forcing the hydrodynamic model with the high resolution wind (no tuning), the altimeter data assimilation reduces the error from 9% to 6%.
The impact of vertical resolution in mesoscale model AROME forecasting of radiation fog
NASA Astrophysics Data System (ADS)
Philip, Alexandre; Bergot, Thierry; Bouteloup, Yves; Bouyssel, François
2015-04-01
Airports short-term forecasting of fog has a security and economic impact. Numerical simulations have been performed with the mesoscale model AROME (Application of Research to Operations at Mesoscale) (Seity et al. 2011). Three vertical resolutions (60, 90 and 156 levels) are used to show the impact of radiation fog on numerical forecasting. Observations at Roissy Charles De Gaulle airport are compared to simulations. Significant differences in the onset, evolution and dissipation of fog were found. The high resolution simulation is in better agreement with observations than a coarser one. The surface boundary layer and incoming long-wave radiations are better represented. A more realistic behaviour of liquid water content evolution allows a better anticipation of low visibility procedures (ceiling < 60m and/or visibility < 600m). The case study of radiation fog shows that it is necessary to have a well defined vertical grid to better represent local phenomena. A statistical study over 6 months (October 2011 - March 2012 ) using different configurations was carried out. Statistically, results were the same as in the case study of radiation fog. Seity Y., P. Brousseau, S. Malardel, G. Hello, P. Bénard, F. Bouttier, C. Lac, V. Masson, 2011: The AROME-France convective scale operational model. Mon.Wea.Rev., 139, 976-991.
NASA Astrophysics Data System (ADS)
Graham, Jennifer A.; O'Dea, Enda; Holt, Jason; Polton, Jeff; Hewitt, Helene T.; Furner, Rachel; Guihou, Karen; Brereton, Ashley; Arnold, Alex; Wakelin, Sarah; Castillo Sanchez, Juan Manuel; Mayorga Adame, C. Gabriela
2018-02-01
This paper describes the next-generation ocean forecast model for the European north-west shelf, which will become the basis of operational forecasts in 2018. This new system will provide a step change in resolution and therefore our ability to represent small-scale processes. The new model has a resolution of 1.5 km compared with a grid spacing of 7 km in the current operational system. AMM15 (Atlantic Margin Model, 1.5 km) is introduced as a new regional configuration of NEMO v3.6. Here we describe the technical details behind this configuration, with modifications appropriate for the new high-resolution domain. Results from a 30-year non-assimilative run using the AMM15 domain demonstrate the ability of this model to represent the mean state and variability of the region.
Overall, there is an improvement in the representation of the mean state across the region, suggesting similar improvements may be seen in the future operational system. However, the reduction in seasonal bias is greater off-shelf than on-shelf. In the North Sea, biases are largely unchanged. Since there has been no change to the vertical resolution or parameterization schemes, performance improvements are not expected in regions where stratification is dominated by vertical processes rather than advection. This highlights the fact that increased horizontal resolution will not lead to domain-wide improvements. Further work is needed to target bias reduction across the north-west shelf region.
Predictability of the European heat and cold waves
NASA Astrophysics Data System (ADS)
Lavaysse, Christophe; Naumann, Gustavo; Alfieri, Lorenzo; Salamon, Peter; Vogt, Jürgen
2018-06-01
Heat and cold waves may have considerable human and economic impacts in Europe. Recent events, like the heat waves observed in France in 2003 and Russia in 2010, illustrated the major consequences to be expected. Reliable Early Warning Systems for extreme temperatures would, therefore, be of high value for decision makers. However, they require a clear definition and robust forecasts of these events. This study analyzes the predictability of heat and cold waves over Europe, defined as at least three consecutive days of {T}_{min} and {T}_{max} above the quantile Q90 (under Q10), using the extended ensemble system of ECMWF. The results show significant predictability for events within a 2-week lead time, but with a strong decrease of the predictability during the first week of forecasts (from 80 to 40% of observed events correctly forecasted). The scores show a higher predictive skill for the cold waves (in winter) than for the heat waves (in summer). The uncertainties and the sensitivities of the predictability are discussed on the basis of tests conducted with different spatial and temporal resolutions. Results demonstrate the negligible effect of the temporal resolution (very few errors due to bad timing of the forecasts), and a better predictability of large-scale events. The onset and the end of the waves are slightly less predictable with an average of about 35% (30%) of observed heat (cold) waves onsets or ends correctly forecasted with a 5-day lead time. Finally, the forecasted intensities show a correlation of about 0.65 with those observed, revealing the challenge to predict this important characteristic.
A Structured and Unstructured grid Relocatable ocean platform for Forecasting (SURF)
NASA Astrophysics Data System (ADS)
Trotta, Francesco; Fenu, Elisa; Pinardi, Nadia; Bruciaferri, Diego; Giacomelli, Luca; Federico, Ivan; Coppini, Giovanni
2016-11-01
We present a numerical platform named Structured and Unstructured grid Relocatable ocean platform for Forecasting (SURF). The platform is developed for short-time forecasts and is designed to be embedded in any region of the large-scale Mediterranean Forecasting System (MFS) via downscaling. We employ CTD data collected during a campaign around the Elba island to calibrate and validate SURF. The model requires an initial spin up period of a few days in order to adapt the initial interpolated fields and the subsequent solutions to the higher-resolution nested grids adopted by SURF. Through a comparison with the CTD data, we quantify the improvement obtained by SURF model compared to the coarse-resolution MFS model.
Assessment of prediction skill in equatorial Pacific Ocean in high resolution model of CFS
NASA Astrophysics Data System (ADS)
Arora, Anika; Rao, Suryachandra A.; Pillai, Prasanth; Dhakate, Ashish; Salunke, Kiran; Srivastava, Ankur
2018-01-01
The effect of increasing atmospheric resolution on prediction skill of El Niño southern oscillation phenomenon in climate forecast system model is explored in this paper. Improvement in prediction skill for sea surface temperature (SST) and winds at all leads compared to low resolution model in the tropical Indo-Pacific basin is observed. High resolution model is able to capture extreme events reasonably well. As a result, the signal to noise ratio is improved in the high resolution model. However, spring predictability barrier (SPB) for summer months in Nino 3 and Nino 3.4 region is stronger in high resolution model, in spite of improvement in overall prediction skill and dynamics everywhere else. Anomaly correlation coefficient of SST in high resolution model with observations in Nino 3.4 region targeting boreal summer months when predicted at lead times of 3-8 months in advance decreased compared its lower resolution counterpart. It is noted that higher variance of winds predicted in spring season over central equatorial Pacific compared to observed variance of winds results in stronger than normal response on subsurface ocean, hence increases SPB for boreal summer months in high resolution model.
Operational Forecasting and Warning systems for Coastal hazards in Korea
NASA Astrophysics Data System (ADS)
Park, Kwang-Soon; Kwon, Jae-Il; Kim, Jin-Ah; Heo, Ki-Young; Jun, Kicheon
2017-04-01
Coastal hazards caused by both Mother Nature and humans cost tremendous social, economic and environmental damages. To mitigate these damages many countries have been running the operational forecasting or warning systems. Since 2009 Korea Operational Oceanographic System (KOOS) has been developed by the leading of Korea Institute of Ocean Science and Technology (KIOST) in Korea and KOOS has been operated in 2012. KOOS is consists of several operational modules of numerical models and real-time observations and produces the basic forecasting variables such as winds, tides, waves, currents, temperature and salinity and so on. In practical application systems include storm surges, oil spills, and search and rescue prediction models. In particular, abnormal high waves (swell-like high-height waves) have occurred in the East coast of Korea peninsula during winter season owing to the local meteorological condition over the East Sea, causing property damages and the loss of human lives. In order to improve wave forecast accuracy even very local wave characteristics, numerical wave modeling system using SWAN is established with data assimilation module using 4D-EnKF and sensitivity test has been conducted. During the typhoon period for the prediction of sever waves and the decision making support system for evacuation of the ships, a high-resolution wave forecasting system has been established and calibrated.
Urban Air Quality Modelling with AURORA: Prague and Bratislava
NASA Astrophysics Data System (ADS)
Veldeman, N.; Viaene, P.; De Ridder, K.; Peelaerts, W.; Lauwaet, D.; Muhammad, N.; Blyth, L.
2012-04-01
The European Commission, in its strategy to protect the health of the European citizens, states that in order to assess the impact of air pollution on public health, information on long-term exposure to air pollution should be available. Currently, indicators of air quality are often being generated using measured pollutant concentrations. While air quality monitoring stations data provide accurate time series information at specific locations, air quality models have the advantage of being able to assess the spatial variability of air quality (for different resolutions) and predict air quality in the future based on different scenarios. When running such air quality models at a high spatial and temporal resolution, one can simulate the actual situation as closely as possible, allowing for a detailed assessment of the risk of exposure to citizens from different pollutants. AURORA (Air quality modelling in Urban Regions using an Optimal Resolution Approach), a prognostic 3-dimensional Eulerian chemistry-transport model, is designed to simulate urban- to regional-scale atmospheric pollutant concentration and exposure fields. The AURORA model also allows to calculate the impact of changes in land use (e.g. planting of trees) or of emission reduction scenario's on air quality. AURORA is currently being applied within the ESA atmospheric GMES service, PASODOBLE (http://www.myair-eu.org), that delivers information on air quality, greenhouse gases, stratospheric ozone, … At present there are two operational AURORA services within PASODOBLE. Within the "Air quality forecast service" VITO delivers daily air quality forecasts for Belgium at a resolution of 5 km and for the major Belgian cities: Brussels, Ghent, Antwerp, Liege and Charleroi. Furthermore forecast services are provided for Prague, Czech Republic and Bratislava, Slovakia, both at a resolution of 1 km. The "Urban/regional air quality assessment service" provides urban- and regional-scale maps (hourly resolution) for air pollution and human exposure statistics for an entire year. So far we concentrated on Brussels, Belgium and the Rotterdam harbour area, The Netherlands. In this contribution we focus on the operational forecast services. Reference Lefebvre W. et al. (2011) Validation of the MIMOSA-AURORA-IFDM model chain for policy support: Modeling concentrations of elemental carbon in Flanders, Atmospheric Environment 45, 6705-6713
Enviro-HIRLAM/ HARMONIE Studies in ECMWF HPC EnviroAerosols Project
NASA Astrophysics Data System (ADS)
Hansen Sass, Bent; Mahura, Alexander; Nuterman, Roman; Baklanov, Alexander; Palamarchuk, Julia; Ivanov, Serguei; Pagh Nielsen, Kristian; Penenko, Alexey; Edvardsson, Nellie; Stysiak, Aleksander Andrzej; Bostanbekov, Kairat; Amstrup, Bjarne; Yang, Xiaohua; Ruban, Igor; Bergen Jensen, Marina; Penenko, Vladimir; Nurseitov, Daniyar; Zakarin, Edige
2017-04-01
The EnviroAerosols on ECMWF HPC project (2015-2017) "Enviro-HIRLAM/ HARMONIE model research and development for online integrated meteorology-chemistry-aerosols feedbacks and interactions in weather and atmospheric composition forecasting" is aimed at analysis of importance of the meteorology-chemistry/aerosols interactions and to provide a way for development of efficient techniques for on-line coupling of numerical weather prediction and atmospheric chemical transport via process-oriented parameterizations and feedback algorithms, which will improve both the numerical weather prediction and atmospheric composition forecasts. Two main application areas of the on-line integrated modelling are considered: (i) improved numerical weather prediction with short-term feedbacks of aerosols and chemistry on formation and development of meteorological variables, and (ii) improved atmospheric composition forecasting with on-line integrated meteorological forecast and two-way feedbacks between aerosols/chemistry and meteorology. During 2015-2016 several research projects were realized. At first, the study on "On-line Meteorology-Chemistry/Aerosols Modelling and Integration for Risk Assessment: Case Studies" focused on assessment of scenarios with accidental and continuous emissions of sulphur dioxide for case studies for Atyrau (Kazakhstan) near the northern part of the Caspian Sea and metallurgical enterprises on the Kola Peninsula (Russia), with GIS integration of modelling results into the RANDOM (Risk Assessment of Nature Detriment due to Oil spill Migration) system. At second, the studies on "The sensitivity of precipitation simulations to the soot aerosol presence" & "The precipitation forecast sensitivity to data assimilation on a very high resolution domain" focused on sensitivity and changes in precipitation life-cycle under black carbon polluted conditions over Scandinavia. At third, studies on "Aerosol effects over China investigated with a high resolution convection permitting weather model" & "Meteorological and chemical urban scale modelling for Shanghai metropolitan area" with focus on aerosol effects and influence of urban areas in China at regional-subregional-urban scales. At fourth, study on "Direct variational data assimilation algorithm for atmospheric chemistry data with transport and transformation model" with focus on testing chemical data assimilation algorithm of in situ concentration measurements on real data scenario. At firth, study on "Aerosol influence on High Resolution NWP HARMONIE Operational Forecasts" with focus on impact of sea salt aerosols on numerical weather prediction during low precipitation events. And finally, study on "Impact of regional afforestation on climatic conditions in metropolitan areas: case study of Copenhagen" with focus on impact of forest and land-cover change on formation and development of temperature regimes in the Copenhagen metropolitan area of Denmark. Selected results and findings will be presented and discussed.
Comparing Physics Scheme Performance for a Lake Effect Snowfall Event in Northern Lower Michigan
NASA Technical Reports Server (NTRS)
Molthan, Andrew; Arnott, Justin M.
2012-01-01
High resolution forecast models, such as those used to predict severe convective storms, can also be applied to predictions of lake effect snowfall. A high resolution WRF model forecast model is provided to support operations at NWS WFO Gaylord, Michigan, using a 12 ]km and 4 ]km nested configuration. This is comparable to the simulations performed by other NWS WFOs adjacent to the Great Lakes, including offices in the NWS Eastern Region who participate in regional ensemble efforts. Ensemble efforts require diversity in initial conditions and physics configurations to emulate the plausible range of events in order to ascertain the likelihood of different forecast scenarios. In addition to providing probabilistic guidance, individual members can be evaluated to determine whether they appear to be biased in some way, or to better understand how certain physics configurations may impact the resulting forecast. On January 20 ]21, 2011, a lake effect snow event occurred in Northern Lower Michigan, with cooperative observing and CoCoRaHS stations reporting new snow accumulations between 2 and 8 inches and liquid equivalents of 0.1 ]0.25 h. The event of January 21, 2011 was particularly well observed, with numerous surface reports available. It was also well represented by the WRF configuration operated at NWS Gaylord. Given that the default configuration produced a reasonable prediction, it is used here to evaluate the impacts of other physics configurations on the resulting prediction of the primary lake effect band and resulting QPF. Emphasis here is on differences in planetary boundary layer and cloud microphysics parameterizations, given their likely role in determining the evolution of shallow convection and precipitation processes. Results from an ensemble of seven microphysics schemes and three planetary boundary layer schemes are presented to demonstrate variability in forecast evolution, with results used in an attempt to improve the forecasts in the 2011 ]2012 lake effect season.
Progress and Challenges in Short to Medium Range Coupled Prediction
NASA Technical Reports Server (NTRS)
Brassington, G. B.; Martin, M. J.; Tolman, H. L.; Akella, Santha; Balmeseda, M.; Chambers, C. R. S.; Cummings, J. A.; Drillet, Y.; Jansen, P. A. E. M.; Laloyaux, P.;
2014-01-01
The availability of GODAE Oceanview-type ocean forecast systems provides the opportunity to develop high-resolution, short- to medium-range coupled prediction systems. Several groups have undertaken the first experiments based on relatively unsophisticated approaches. Progress is being driven at the institutional level targeting a range of applications that represent their respective national interests with clear overlaps and opportunities for information exchange and collaboration. These include general circulation, hurricanes, extra-tropical storms, high-latitude weather and sea-ice forecasting as well as coastal air-sea interaction. In some cases, research has moved beyond case and sensitivity studies to controlled experiments to obtain statistically significant metrics.
Taraphdar, S.; Mukhopadhyay, P.; Leung, L. Ruby; ...
2016-12-05
The prediction skill of tropical synoptic scale transients (SSTR) such as monsoon low and depression during the boreal summer of 2007–2009 are assessed using high resolution ECMWF and NCEP TIGGE forecasts data. By analyzing 246 forecasts for lead times up to 10 days, it is found that the models have good skills in forecasting the planetary scale means but the skills of SSTR remain poor, with the latter showing no skill beyond 2 days for the global tropics and Indian region. Consistent forecast skills among precipitation, velocity potential, and vorticity provide evidence that convection is the primary process responsible formore » precipitation. The poor skills of SSTR can be attributed to the larger random error in the models as they fail to predict the locations and timings of SSTR. Strong correlation between the random error and synoptic precipitation suggests that the former starts to develop from regions of convection. As the NCEP model has larger biases of synoptic scale precipitation, it has a tendency to generate more random error that ultimately reduces the prediction skill of synoptic systems in that model. Finally, the larger biases in NCEP may be attributed to the model moist physics and/or coarser horizontal resolution compared to ECMWF.« less
NASA Astrophysics Data System (ADS)
Caccamo, M. T.; Castorina, G.; Colombo, F.; Insinga, V.; Maiorana, E.; Magazù, S.
2017-12-01
Over the past decades, Sicily has undergone an increasing sequence of extreme weather events that have produced, besides huge damages to both environment and territory, the death of hundreds of people together with the evacuation of thousands of residents, which have permanently lost their properties. In this framework, with this paper we have investigated the impact of different grid spacing and geographic data on the performance of forecasts over complex orographic areas. In order to test the validity of this approach we have analyzed and discussed, as case study, the heavy rainfall occurred in Sicily during the night of October 10, 2015. In just 9 h, a Mediterranean depression, centered on the Tunisian coastline, produced a violent mesoscale storm localized on the Peloritani Mountains with a maximum rain accumulation of about 200 mm. The results of these simulations were obtained using the Weather Research and Forecasting (WRF-ARW) Model, version 3.7.1, at different grid spacing values and the Two Way Nesting procedure with a sub-domain centered on the area of interest. The results highlighted that providing correct and timely forecasts of extreme weather events is a challenge that could have been efficiently and effectively countered using proper employment of high spatial resolution models.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Taraphdar, S.; Mukhopadhyay, P.; Leung, L. Ruby
The prediction skill of tropical synoptic scale transients (SSTR) such as monsoon low and depression during the boreal summer of 2007–2009 are assessed using high resolution ECMWF and NCEP TIGGE forecasts data. By analyzing 246 forecasts for lead times up to 10 days, it is found that the models have good skills in forecasting the planetary scale means but the skills of SSTR remain poor, with the latter showing no skill beyond 2 days for the global tropics and Indian region. Consistent forecast skills among precipitation, velocity potential, and vorticity provide evidence that convection is the primary process responsible formore » precipitation. The poor skills of SSTR can be attributed to the larger random error in the models as they fail to predict the locations and timings of SSTR. Strong correlation between the random error and synoptic precipitation suggests that the former starts to develop from regions of convection. As the NCEP model has larger biases of synoptic scale precipitation, it has a tendency to generate more random error that ultimately reduces the prediction skill of synoptic systems in that model. Finally, the larger biases in NCEP may be attributed to the model moist physics and/or coarser horizontal resolution compared to ECMWF.« less
NASA Astrophysics Data System (ADS)
LI, J.; Chen, Y.; Wang, H. Y.
2016-12-01
In large basin flood forecasting, the forecasting lead time is very important. Advances in numerical weather forecasting in the past decades provides new input to extend flood forecasting lead time in large rivers. Challenges for fulfilling this goal currently is that the uncertainty of QPF with these kinds of NWP models are still high, so controlling the uncertainty of QPF is an emerging technique requirement.The Weather Research and Forecasting (WRF) model is one of these NWPs, and how to control the QPF uncertainty of WRF is the research topic of many researchers among the meteorological community. In this study, the QPF products in the Liujiang river basin, a big river with a drainage area of 56,000 km2, was compared with the ground observation precipitation from a rain gauge networks firstly, and the results show that the uncertainty of the WRF QPF is relatively high. So a post-processed algorithm by correlating the QPF with the observed precipitation is proposed to remove the systematical bias in QPF. With this algorithm, the post-processed WRF QPF is close to the ground observed precipitation in area-averaged precipitation. Then the precipitation is coupled with the Liuxihe model, a physically based distributed hydrological model that is widely used in small watershed flash flood forecasting. The Liuxihe Model has the advantage with gridded precipitation from NWP and could optimize model parameters when there are some observed hydrological data even there is only a few, it also has very high model resolution to improve model performance, and runs on high performance supercomputer with parallel algorithm if executed in large rivers. Two flood events in the Liujiang River were collected, one was used to optimize the model parameters and another is used to validate the model. The results show that the river flow simulation has been improved largely, and could be used for real-time flood forecasting trail in extending flood forecasting leading time.
NASA Astrophysics Data System (ADS)
Yang, Chun; Liu, Zhiquan; Gao, Feng; Childs, Peter P.; Min, Jinzhong
2017-05-01
The Geostationary Operational Environmental Satellite (GOES) imager data could provide a continuous image of the evolutionary pattern of severe weather phenomena with its high spatial and temporal resolution. The capability to assimilate the GOES imager radiances has been developed within the Weather Research and Forecasting model's data assimilation system. Compared to the benchmark experiment with no GOES imager data, the impact of assimilating GOES imager radiances on the analysis and forecast of convective process over Mexico in 7-10 March 2016 was assessed through analysis/forecast cycling experiments using rapid refresh assimilation system with hybrid-3DEnVar scheme. With GOES imager radiance assimilation, better analyses were obtained in terms of the humidity, temperature, and simulated water vapor channel brightness temperature distribution. Positive forecast impacts from assimilating GOES imager radiance were seen when verified against the Tropospheric Airborne Meteorological Data Reporting observation, GOES imager observation, and Mexico station precipitation data.
Analysis of Numerical Weather Predictions of Reference Evapotranspiration and Precipitation
NASA Astrophysics Data System (ADS)
Bughici, Theodor; Lazarovitch, Naftali; Fredj, Erick; Tas, Eran
2017-04-01
This study attempts to improve the forecast skill of the evapotranspiration (ET0) and Precipitation for the purpose of crop irrigation management over Israel using the Weather Research and Forecasting (WRF) Model. Optimized crop irrigation, in term of timing and quantities, decreases water and agrochemicals demand. Crop water demands depend on evapotranspiration and precipitation. The common method for computing reference evapotranspiration, for agricultural needs, ET0, is according to the FAO Penman-Monteith equation. The weather variables required for ET0 calculation (air temperature, relative humidity, wind speed and solar irradiance) are estimated by the WRF model. The WRF Model with two-way interacting domains at horizontal resolutions of 27, 9 and 3 km is used in the study. The model prediction was performed in an hourly time resolution and a 3 km spatial resolution, with forecast lead-time of up to four days. The WRF prediction of these variables have been compared against measurements from 29 meteorological stations across Israel for the year 2013. The studied area is small but with strong climatic gradient, diverse topography and variety of synoptic conditions. The forecast skill that was used for forecast validation takes into account the prediction bias, mean absolute error and root mean squared error. The forecast skill of the variables was almost robust to lead time, except for precipitation. The forecast skill was tested across stations with respect to topography and geographic location and for all stations with respect to seasonality and synoptic weather system determined by employing a semi-objective synoptic systems classification to the forecasted days. It was noticeable that forecast skill of some of the variables was deteriorated by seasonality and topography. However, larger impacts in the ET0 skill scores on the forecasted day are achieved by a synoptic based forecast. These results set the basis for increasing the robustness of ET0 to synoptic effects and for more precise crop irrigation over Israel.
NASA Astrophysics Data System (ADS)
Claverie, M.; Franch, B.; Vermote, E.; Becker-Reshef, I.; Justice, C. O.
2015-12-01
Wheat is one of the key cereals crop grown worldwide. Thus, accurate and timely forecasts of its production are critical for informing agricultural policies and investments, as well as increasing market efficiency and stability. Becker-Reshef et al. (2010) used an empirical generalized model for forecasting winter wheat production using combined BRDF-corrected daily surface reflectance from the Moderate resolution Imaging Spectroradiometer (MODIS) Climate Modeling Grid (CMG) with detailed official crop statistics and crop type masks. It is based on the relationship between the Normalized Difference Vegetation Index (NDVI) at the peak of the growing season, percent wheat within the CMG pixel, and the final yields. This method predicts the yield approximately one month to six weeks prior to harvest. Recently, Franch et al. (2015) included Growing Degree Day (GDD) information extracted from NCEP/NCAR reanalysis data in order to improve the winter wheat production forecast by increasing the timeliness of the forecasts between a month to a month and a half prior to the peak NDVI (i.e. 1-2.5 months prior to harvest), while conserving the accuracy of the original model. In this study, we apply these methods to historical data from the Advanced Very High Resolution Radiometer (AVHRR). We apply both the original and the modified model to United States of America from 1990 to 2014 and inter-compare the AVHRR results to MODIS from 2000 to 2014.
NASA Astrophysics Data System (ADS)
Morin, C.; Quattrochi, D. A.; Zavodsky, B.; Case, J.
2015-12-01
Dengue fever (DF) is an important mosquito transmitted disease that is strongly influenced by meteorological and environmental conditions. Recent research has focused on forecasting DF case numbers based on meteorological data. However, these forecasting tools have generally relied on empirical models that require long DF time series to train. Additionally, their accuracy has been tested retrospectively, using past meteorological data. Consequently, the operational utility of the forecasts are still in question because the error associated with weather and climate forecasts are not reflected in the results. Using up-to-date weekly dengue case numbers for model parameterization and weather forecast data as meteorological input, we produced weekly forecasts of DF cases in San Juan, Puerto Rico. Each week, the past weeks' case counts were used to re-parameterize a process-based DF model driven with updated weather forecast data to generate forecasts of DF case numbers. Real-time weather forecast data was produced using the Weather Research and Forecasting (WRF) numerical weather prediction (NWP) system enhanced using additional high-resolution NASA satellite data. This methodology was conducted in a weekly iterative process with each DF forecast being evaluated using county-level DF cases reported by the Puerto Rico Department of Health. The one week DF forecasts were accurate especially considering the two sources of model error. First, weather forecasts were sometimes inaccurate and generally produced lower than observed temperatures. Second, the DF model was often overly influenced by the previous weeks DF case numbers, though this phenomenon could be lessened by increasing the number of simulations included in the forecast. Although these results are promising, we would like to develop a methodology to produce longer range forecasts so that public health workers can better prepare for dengue epidemics.
Implementation and test of a coastal forecasting system for wind waves in the Mediterranean Sea
NASA Astrophysics Data System (ADS)
Inghilesi, R.; Catini, F.; Orasi, A.; Corsini, S.
2010-09-01
A coastal forecasting system has been implemented in order to provide a coverage of the whole Mediterranean Sea and of several enclosed coastal areas as well. The problem is to achieve a good definition of the small scale coastal processes which affect the propagation of waves toward the shores while retaining the possibility of selecting any of the possible coastal areas in the whole Mediterranean Sea. The system is built on a very high resolution parallel implementation of the WAM and SWAN models, one-way chain-nested in key areas. The system will shortly be part of the ISPRA SIMM forecasting system which has been operative since 2001. The SIMM sistem makes available the high resolution wind fields (0.1/0.1 deg) used in the coastal system. The coastal system is being tested on several Italian coastal areas (Ligurian Sea, Lower Tyrrenian Sea, Sicily Channel, Lower Adriatic Sea) in order to optimise the numerics of the coastal processes and to verify the results in shallow waters and complex bathymetries. The results of the comparison between hindcast and buoy data in very shallow (14m depth) and deep sea (150m depth) will be shown for several episodes in the upper Tyrrenian Sea.
A View of Hurricane Katrina with Early 2lSt Century Technology
NASA Technical Reports Server (NTRS)
Lin, Xin; Li, J.-L.; Suarez, M. J.; Tompkins, A. M.; Waliser, D. E.; Rienecker, M. M.; Bacmeister, J.; Jiang, J.; Wu, H.-T.; Tassone, C. M.
2006-01-01
Recent advances in space-borne observations and numerical weather prediction models provide new opportunities for improving hurricane forecasts. In this study, state-of-the-art satellite observations are used to document the evolution of one of the most devastating tropical cyclones ever to hit the United States: Hurricane Katrina. The ECMWF and NASA global high-resolution forecasts, the latter being run in experimental mode, are compared with satellite observations, with a focus on precipitation and cloud processes. Future directions on modeling and observations are briefly discussed.
Short-Term Load Forecasting Based Automatic Distribution Network Reconfiguration
DOE Office of Scientific and Technical Information (OSTI.GOV)
Jiang, Huaiguang; Ding, Fei; Zhang, Yingchen
In a traditional dynamic network reconfiguration study, the optimal topology is determined at every scheduled time point by using the real load data measured at that time. The development of the load forecasting technique can provide an accurate prediction of the load power that will happen in a future time and provide more information about load changes. With the inclusion of load forecasting, the optimal topology can be determined based on the predicted load conditions during a longer time period instead of using a snapshot of the load at the time when the reconfiguration happens; thus, the distribution system operatormore » can use this information to better operate the system reconfiguration and achieve optimal solutions. This paper proposes a short-term load forecasting approach to automatically reconfigure distribution systems in a dynamic and pre-event manner. Specifically, a short-term and high-resolution distribution system load forecasting approach is proposed with a forecaster based on support vector regression and parallel parameters optimization. The network reconfiguration problem is solved by using the forecasted load continuously to determine the optimal network topology with the minimum amount of loss at the future time. The simulation results validate and evaluate the proposed approach.« less
Short-Term Load Forecasting Based Automatic Distribution Network Reconfiguration: Preprint
DOE Office of Scientific and Technical Information (OSTI.GOV)
Jiang, Huaiguang; Ding, Fei; Zhang, Yingchen
In the traditional dynamic network reconfiguration study, the optimal topology is determined at every scheduled time point by using the real load data measured at that time. The development of load forecasting technique can provide accurate prediction of load power that will happen in future time and provide more information about load changes. With the inclusion of load forecasting, the optimal topology can be determined based on the predicted load conditions during the longer time period instead of using the snapshot of load at the time when the reconfiguration happens, and thus it can provide information to the distribution systemmore » operator (DSO) to better operate the system reconfiguration to achieve optimal solutions. Thus, this paper proposes a short-term load forecasting based approach for automatically reconfiguring distribution systems in a dynamic and pre-event manner. Specifically, a short-term and high-resolution distribution system load forecasting approach is proposed with support vector regression (SVR) based forecaster and parallel parameters optimization. And the network reconfiguration problem is solved by using the forecasted load continuously to determine the optimal network topology with the minimum loss at the future time. The simulation results validate and evaluate the proposed approach.« less
Short-Term Load Forecasting-Based Automatic Distribution Network Reconfiguration
DOE Office of Scientific and Technical Information (OSTI.GOV)
Jiang, Huaiguang; Ding, Fei; Zhang, Yingchen
In a traditional dynamic network reconfiguration study, the optimal topology is determined at every scheduled time point by using the real load data measured at that time. The development of the load forecasting technique can provide an accurate prediction of the load power that will happen in a future time and provide more information about load changes. With the inclusion of load forecasting, the optimal topology can be determined based on the predicted load conditions during a longer time period instead of using a snapshot of the load at the time when the reconfiguration happens; thus, the distribution system operatormore » can use this information to better operate the system reconfiguration and achieve optimal solutions. This paper proposes a short-term load forecasting approach to automatically reconfigure distribution systems in a dynamic and pre-event manner. Specifically, a short-term and high-resolution distribution system load forecasting approach is proposed with a forecaster based on support vector regression and parallel parameters optimization. The network reconfiguration problem is solved by using the forecasted load continuously to determine the optimal network topology with the minimum amount of loss at the future time. The simulation results validate and evaluate the proposed approach.« less
Hydro-meteorological evaluation of downscaled global ensemble rainfall forecasts
NASA Astrophysics Data System (ADS)
Gaborit, Étienne; Anctil, François; Fortin, Vincent; Pelletier, Geneviève
2013-04-01
Ensemble rainfall forecasts are of high interest for decision making, as they provide an explicit and dynamic assessment of the uncertainty in the forecast (Ruiz et al. 2009). However, for hydrological forecasting, their low resolution currently limits their use to large watersheds (Maraun et al. 2010). In order to bridge this gap, various implementations of the statistic-stochastic multi-fractal downscaling technique presented by Perica and Foufoula-Georgiou (1996) were compared, bringing Environment Canada's global ensemble rainfall forecasts from a 100 by 70-km resolution down to 6 by 4-km, while increasing each pixel's rainfall variance and preserving its original mean. For comparison purposes, simpler methods were also implemented such as the bi-linear interpolation, which disaggregates global forecasts without modifying their variance. The downscaled meteorological products were evaluated using different scores and diagrams, from both a meteorological and a hydrological view points. The meteorological evaluation was conducted comparing the forecasted rainfall depths against nine days of observed values taken from Québec City rain gauge database. These 9 days present strong precipitation events occurring during the summer of 2009. For the hydrologic evaluation, the hydrological models SWMM5 and (a modified version of) GR4J were implemented on a small 6 km2 urban catchment located in the Québec City region. Ensemble hydrologic forecasts with a time step of 3 hours were then performed over a 3-months period of the summer of 2010 using the original and downscaled ensemble rainfall forecasts. The most important conclusions of this work are that the overall quality of the forecasts was preserved during the disaggregation procedure and that the disaggregated products using this variance-enhancing method were of similar quality than bi-linear interpolation products. However, variance and dispersion of the different members were, of course, much improved for the variance-enhanced products, compared to the bi-linear interpolation, which is a decisive advantage. The disaggregation technique of Perica and Foufoula-Georgiou (1996) hence represents an interesting way of bridging the gap between the meteorological models' resolution and the high degree of spatial precision sometimes required by hydrological models in their precipitation representation. References Maraun, D., Wetterhall, F., Ireson, A. M., Chandler, R. E., Kendon, E. J., Widmann, M., Brienen, S., Rust, H. W., Sauter, T., Themeßl, M., Venema, V. K. C., Chun, K. P., Goodess, C. M., Jones, R. G., Onof, C., Vrac, M., and Thiele-Eich, I. 2010. Precipitation downscaling under climate change: recent developments to bridge the gap between dynamical models and the end user. Reviews of Geophysics, 48 (3): RG3003, [np]. Doi: 10.1029/2009RG000314. Perica, S., and Foufoula-Georgiou, E. 1996. Model for multiscale disaggregation of spatial rainfall based on coupling meteorological and scaling descriptions. Journal Of Geophysical Research, 101(D21): 26347-26361. Ruiz, J., Saulo, C. and Kalnay, E. 2009. Comparison of Methods Used to Generate Probabilistic Quantitative Precipitation Forecasts over South America. Weather and forecasting, 24: 319-336. DOI: 10.1175/2008WAF2007098.1 This work is distributed under the Creative Commons Attribution 3.0 Unported License together with an author copyright. This license does not conflict with the regulations of the Crown Copyright.
Estimation of Eddy Dissipation Rates from Mesoscale Model Simulations
NASA Technical Reports Server (NTRS)
Ahmad, Nashat N.; Proctor, Fred H.
2012-01-01
The Eddy Dissipation Rate is an important metric for representing the intensity of atmospheric turbulence and is used as an input parameter for predicting the decay of aircraft wake vortices. In this study, the forecasts of eddy dissipation rates obtained from the current state-of-the-art mesoscale model are evaluated for terminal area applications. The Weather Research and Forecast mesoscale model is used to simulate the planetary boundary layer at high horizontal and vertical mesh resolutions. The Bougeault-Lacarrer and the Mellor-Yamada-Janji schemes implemented in the Weather Research and Forecast model are evaluated against data collected during the National Aeronautics and Space Administration s Memphis Wake Vortex Field Experiment. Comparisons with other observations are included as well.
NASA Astrophysics Data System (ADS)
Brooks, B. A.; Foster, J.; Cherubini, T.; Businger, S.; Miklius, A.; Mouginis-Mark, P.
2004-12-01
We investigate the utility of a mesoscale weather model for mitigating atmospheric errors in InSAR-derived displacement fields associated with volcanotectonic phenomena at Mauna Loa and Kilauea volcanoes on the Island of Hawaii. The MM5 (NCAR-Penn State Mesoscale Model Version 5) forecast is run twice daily for the island of Hawaii by the Mauna Kea Weather Center in support of Mauna Kea's astronomical observatories. MM5 has a 60-hour forecast window and the forecast fields are output in 3-hour increments. A high-resolution analysis that incorporates weather observations from National Weather Service and satellite-derived winds from the University of Wisconsin, provides the initial conditions for MM5. In turn, MM5 produces predictions of thermodynamic properties of the atmosphere, including temperature, pressure, and moisture fields at a 3 km horizontal resolution. The vertical resolution is density weighted with the greatest vertical resolution (10s of meters) near the surface. For any radar image acquisition there is a high-resolution 3D simulation of atmospheric water vapor valid within 1.5 hours of the acquisition time and predicted forward no more than 12 hours from the initial observations. Using MM5 forecast water vapor, we create line-of-sight delay maps that can be either directly removed from InSAR differential pairs or used to create synthetic radar interferograms that can be compared with the observed interferogram. We analyze Envisat ASAR radar data collected during 2003-2004 and find, qualitatively, that contours of excess path delay in MM5 model runs often closely mimic both topographic contours and fringes observed in differential interferograms which have had topographic phase removed. Over periods of days, the delays can vary in magnitude and spatial scale by 10s of mms and 10s of kms, respectively. Individual models can predict peak delays associated with moist layer inversions of order ~20 mm around the summits of Mauna Loa and Kilauea, both active volcanoes. Similar delays are also associated with the inactive Mauna Kea summit. These results are particularly pertinent for using InSAR to track accurately the history of summit-related magmatic phenomena between scene acquisitions. The path delays would introduce a significant atmosphere-related bias if included in a deformation analysis. To validate the technique, we compare total delays and precipitable water data from more than 20 continuous GPS (CGPS) sites with those estimated by the MM5 model. We investigate the technique's efficacy by inverting InSAR-derived line-of-sight displacement fields for the time-varying characteristics of a shallow magma chamber below Mauna Loa's summit caldera. Finally, we compare these results with independent inversion of summit CGPS data.
NASA Astrophysics Data System (ADS)
Satoh, Masaki; Tomita, Hirofumi; Yashiro, Hisashi; Kajikawa, Yoshiyuki; Miyamoto, Yoshiaki; Yamaura, Tsuyoshi; Miyakawa, Tomoki; Nakano, Masuo; Kodama, Chihiro; Noda, Akira T.; Nasuno, Tomoe; Yamada, Yohei; Fukutomi, Yoshiki
2017-12-01
This article reviews the major outcomes of a 5-year (2011-2016) project using the K computer to perform global numerical atmospheric simulations based on the non-hydrostatic icosahedral atmospheric model (NICAM). The K computer was made available to the public in September 2012 and was used as a primary resource for Japan's Strategic Programs for Innovative Research (SPIRE), an initiative to investigate five strategic research areas; the NICAM project fell under the research area of climate and weather simulation sciences. Combining NICAM with high-performance computing has created new opportunities in three areas of research: (1) higher resolution global simulations that produce more realistic representations of convective systems, (2) multi-member ensemble simulations that are able to perform extended-range forecasts 10-30 days in advance, and (3) multi-decadal simulations for climatology and variability. Before the K computer era, NICAM was used to demonstrate realistic simulations of intra-seasonal oscillations including the Madden-Julian oscillation (MJO), merely as a case study approach. Thanks to the big leap in computational performance of the K computer, we could greatly increase the number of cases of MJO events for numerical simulations, in addition to integrating time and horizontal resolution. We conclude that the high-resolution global non-hydrostatic model, as used in this five-year project, improves the ability to forecast intra-seasonal oscillations and associated tropical cyclogenesis compared with that of the relatively coarser operational models currently in use. The impacts of the sub-kilometer resolution simulation and the multi-decadal simulations using NICAM are also reviewed.
Short-term Temperature Prediction Using Adaptive Computing on Dynamic Scales
NASA Astrophysics Data System (ADS)
Hu, W.; Cervone, G.; Jha, S.; Balasubramanian, V.; Turilli, M.
2017-12-01
When predicting temperature, there are specific places and times when high accuracy predictions are harder. For example, not all the sub-regions in the domain require the same amount of computing resources to generate an accurate prediction. Plateau areas might require less computing resources than mountainous areas because of the steeper gradient of temperature change in the latter. However, it is difficult to estimate beforehand the optimal allocation of computational resources because several parameters play a role in determining the accuracy of the forecasts, in addition to orography. The allocation of resources to perform simulations can become a bottleneck because it requires human intervention to stop jobs or start new ones. The goal of this project is to design and develop a dynamic approach to generate short-term temperature predictions that can automatically determines the required computing resources and the geographic scales of the predictions based on the spatial and temporal uncertainties. The predictions and the prediction quality metrics are computed using a numeric weather prediction model, Analog Ensemble (AnEn), and the parallelization on high performance computing systems is accomplished using Ensemble Toolkit, one component of the RADICAL-Cybertools family of tools. RADICAL-Cybertools decouple the science needs from the computational capabilities by building an intermediate layer to run general ensemble patterns, regardless of the science. In this research, we show how the ensemble toolkit allows generating high resolution temperature forecasts at different spatial and temporal resolution. The AnEn algorithm is run using NAM analysis and forecasts data for the continental United States for a period of 2 years. AnEn results show that temperature forecasts perform well according to different probabilistic and deterministic statistical tests.
Generalization of information-based concepts in forecast verification
NASA Astrophysics Data System (ADS)
Tödter, J.; Ahrens, B.
2012-04-01
This work deals with information-theoretical methods in probabilistic forecast verification. Recent findings concerning the Ignorance Score are shortly reviewed, then the generalization to continuous forecasts is shown. For ensemble forecasts, the presented measures can be calculated exactly. The Brier Score (BS) and its generalizations to the multi-categorical Ranked Probability Score (RPS) and to the Continuous Ranked Probability Score (CRPS) are the prominent verification measures for probabilistic forecasts. Particularly, their decompositions into measures quantifying the reliability, resolution and uncertainty of the forecasts are attractive. Information theory sets up the natural framework for forecast verification. Recently, it has been shown that the BS is a second-order approximation of the information-based Ignorance Score (IGN), which also contains easily interpretable components and can also be generalized to a ranked version (RIGN). Here, the IGN, its generalizations and decompositions are systematically discussed in analogy to the variants of the BS. Additionally, a Continuous Ranked IGN (CRIGN) is introduced in analogy to the CRPS. The applicability and usefulness of the conceptually appealing CRIGN is illustrated, together with an algorithm to evaluate its components reliability, resolution, and uncertainty for ensemble-generated forecasts. This is also directly applicable to the more traditional CRPS.
All-season flash flood forecasting system for real-time operations
USDA-ARS?s Scientific Manuscript database
Flash floods can cause extensive damage to both life and property, especially because they are difficult to predict. Flash flood prediction requires high-resolution meteorologic observations and predictions, as well as calibrated hydrologic models in addition to extensive data handling. We have de...
Wave Processes in Arctic Seas, Observed from TerraSAR-X
2015-09-30
Susanne Lehner German Aerospace Center Maritime Safety and Security Lab Henrich-Focke-Str. 4 28199 Bremen Germany phone: 0049 421/ 24420...of high resolution sea state forecast models in the German Bight, The International Archives of the Photogrammetry, Remote Sensing and Spatial
NASA Astrophysics Data System (ADS)
Riddle, E. E.; Hopson, T. M.; Gebremichael, M.; Boehnert, J.; Broman, D.; Sampson, K. M.; Rostkier-Edelstein, D.; Collins, D. C.; Harshadeep, N. R.; Burke, E.; Havens, K.
2017-12-01
While it is not yet certain how precipitation patterns will change over Africa in the future, it is clear that effectively managing the available water resources is going to be crucial in order to mitigate the effects of water shortages and floods that are likely to occur in a changing climate. One component of effective water management is the availability of state-of-the-art and easy to use rainfall forecasts across multiple spatial and temporal scales. We present a web-based system for displaying and disseminating ensemble forecast and observed precipitation data over central and eastern Africa. The system provides multi-model rainfall forecasts integrated to relevant hydrological catchments for timescales ranging from one day to three months. A zoom-in features is available to access high resolution forecasts for small-scale catchments. Time series plots and data downloads with forecasts, recent rainfall observations and climatological data are available by clicking on individual catchments. The forecasts are calibrated using a quantile regression technique and an optimal multi-model forecast is provided at each timescale. The forecast skill at the various spatial and temporal scales will discussed, as will current applications of this tool for managing water resources in Sudan and optimizing hydropower operations in Ethiopia and Tanzania.
NASA Technical Reports Server (NTRS)
Shenk, W. E.; Adler, R. F.; Chesters, D.; Susskind, J.; Uccellini, L.
1984-01-01
The measurements from current and planned geosynchronous satellites provide quantitative estimates of temperature and moisture profiles, surface temperature, wind, cloud properties, and precipitation. A number of significant observation characteristics remain, they include: (1) temperature and moisture profiles in cloudy areas; (2) high vertical profile resolution; (3) definitive precipitation area mapping and precipitation rate estimates on the convective cloud scale; (4) winds from low level cloud motions at night; (5) the determination of convective cloud structure; and (6) high resolution surface temperature determination. Four major new observing capabilities are proposed to overcome these deficiencies: a microwave sounder/imager, a high resolution visible and infrared imager, a high spectral resolution infrared sounder, and a total ozone mapper. It is suggested that the four sensors are flown together and used to support major mesoscale and short range forecasting field experiments.
New Aspects of Probabilistic Forecast Verification Using Information Theory
NASA Astrophysics Data System (ADS)
Tödter, Julian; Ahrens, Bodo
2013-04-01
This work deals with information-theoretical methods in probabilistic forecast verification, particularly concerning ensemble forecasts. Recent findings concerning the "Ignorance Score" are shortly reviewed, then a consistent generalization to continuous forecasts is motivated. For ensemble-generated forecasts, the presented measures can be calculated exactly. The Brier Score (BS) and its generalizations to the multi-categorical Ranked Probability Score (RPS) and to the Continuous Ranked Probability Score (CRPS) are prominent verification measures for probabilistic forecasts. Particularly, their decompositions into measures quantifying the reliability, resolution and uncertainty of the forecasts are attractive. Information theory sets up a natural framework for forecast verification. Recently, it has been shown that the BS is a second-order approximation of the information-based Ignorance Score (IGN), which also contains easily interpretable components and can also be generalized to a ranked version (RIGN). Here, the IGN, its generalizations and decompositions are systematically discussed in analogy to the variants of the BS. Additionally, a Continuous Ranked IGN (CRIGN) is introduced in analogy to the CRPS. The useful properties of the conceptually appealing CRIGN are illustrated, together with an algorithm to evaluate its components reliability, resolution, and uncertainty for ensemble-generated forecasts. This algorithm can also be used to calculate the decomposition of the more traditional CRPS exactly. The applicability of the "new" measures is demonstrated in a small evaluation study of ensemble-based precipitation forecasts.
Tsunami Forecasting in the Atlantic Basin
NASA Astrophysics Data System (ADS)
Knight, W. R.; Whitmore, P.; Sterling, K.; Hale, D. A.; Bahng, B.
2012-12-01
The mission of the West Coast and Alaska Tsunami Warning Center (WCATWC) is to provide advance tsunami warning and guidance to coastal communities within its Area-of-Responsibility (AOR). Predictive tsunami models, based on the shallow water wave equations, are an important part of the Center's guidance support. An Atlantic-based counterpart to the long-standing forecasting ability in the Pacific known as the Alaska Tsunami Forecast Model (ATFM) is now developed. The Atlantic forecasting method is based on ATFM version 2 which contains advanced capabilities over the original model; including better handling of the dynamic interactions between grids, inundation over dry land, new forecast model products, an optional non-hydrostatic approach, and the ability to pre-compute larger and more finely gridded regions using parallel computational techniques. The wide and nearly continuous Atlantic shelf region presents a challenge for forecast models. Our solution to this problem has been to develop a single unbroken high resolution sub-mesh (currently 30 arc-seconds), trimmed to the shelf break. This allows for edge wave propagation and for kilometer scale bathymetric feature resolution. Terminating the fine mesh at the 2000m isobath keeps the number of grid points manageable while allowing for a coarse (4 minute) mesh to adequately resolve deep water tsunami dynamics. Higher resolution sub-meshes are then included around coastal forecast points of interest. The WCATWC Atlantic AOR includes eastern U.S. and Canada, the U.S. Gulf of Mexico, Puerto Rico, and the Virgin Islands. Puerto Rico and the Virgin Islands are in very close proximity to well-known tsunami sources. Because travel times are under an hour and response must be immediate, our focus is on pre-computing many tsunami source "scenarios" and compiling those results into a database accessible and calibrated with observations during an event. Seismic source evaluation determines the order of model pre-computation - starting with those sources that carry the highest risk. Model computation zones are confined to regions at risk to save computation time. For example, Atlantic sources have been shown to not propagate into the Gulf of Mexico. Therefore, fine grid computations are not performed in the Gulf for Atlantic sources. Outputs from the Atlantic model include forecast marigrams at selected sites, maximum amplitudes, drawdowns, and currents for all coastal points. The maximum amplitude maps will be supplemented with contoured energy flux maps which show more clearly the effects of bathymetric features on tsunami wave propagation. During an event, forecast marigrams will be compared to observations to adjust the model results. The modified forecasts will then be used to set alert levels between coastal breakpoints, and provided to emergency management.
1/32° real-time global ocean prediction and value-added over 1/16° resolution
NASA Astrophysics Data System (ADS)
Shriver, J. F.; Hurlburt, H. E.; Smedstad, O. M.; Wallcraft, A. J.; Rhodes, R. C.
2007-03-01
A 1/32° global ocean nowcast/forecast system has been developed by the Naval Research Laboratory at the Stennis Space Center. It started running at the Naval Oceanographic Office in near real-time on 1 Nov. 2003 and has been running daily in real-time since 1 Mar. 2005. It became an operational system on 6 March 2006, replacing the existing 1/16° system which ceased operation on 12 March 2006. Both systems use the NRL Layered Ocean Model (NLOM) with assimilation of sea surface height from satellite altimeters and sea surface temperature from multi-channel satellite infrared radiometers. Real-time and archived results are available online at http://www.ocean.nrlssc.navy.mil/global_nlom. The 1/32° system has improvements over the earlier system that can be grouped into two categories: (1) better resolution and representation of dynamical processes and (2) design modifications. The design modifications are the result of accrued knowledge since the development of the earlier 1/16° system. The improved horizontal resolution of the 1/32° system has significant dynamical benefits which increase the ability of the model to accurately nowcast and skillfully forecast. At the finer resolution, current pathways and their transports become more accurate, the sea surface height (SSH) variability increases and becomes more realistic and even the global ocean circulation experiences some changes (including inter-basin exchange). These improvements make the 1/32° system a better dynamical interpolator of assimilated satellite altimeter track data, using a one-day model forecast as the first guess. The result is quantitatively more accurate nowcasts, as is illustrated by several model-data comparisons. Based on comparisons with ocean color imagery in the northwestern Arabian Sea and the Gulf of Oman, the 1/32° system has even demonstrated the ability to map small eddies, 25-75 km in diameter, with 70% reliability and a median eddy center location error of 22.5 km, a surprising and unanticipated result from assimilation of altimeter track data. For all of the eddies (50% small eddies), the reliability was 80% and the median eddy center location error was 29 km. The 1/32° system also exhibits improved forecast skill in relation to the 1/16° system. This is due to ( a) a more accurate initial condition for the forecast and ( b) better resolution and representation of critical dynamical processes (such as upper ocean - topographic coupling via mesoscale flow instabilities) which allow the model to more accurately evolve these features in time while running in forecast mode (forecast atmospheric forcing for the first 5 days, then gradually reverting toward climatology for the remainder of the 30-day forecast period). At 1/32° resolution, forecast SSH generally compares better with unassimilated observations and the anomaly correlation of the forecast SSH exceeds that from persistence by a larger amount than found in the 1/16° system.
Chemical weather forecasting for the Yangtze River Delta
NASA Astrophysics Data System (ADS)
Xie, Y.; Xu, J.; Zhou, G.; Chang, L.; Chen, B.
2016-12-01
Shanghai is one of the largest megacities in the world. With rapid economic growth of the city and its surrounding areas in recent years, air pollution has posed adverse effects on public health and ecosystem. In winter heavy pollution episodes are often associated with PM exceedances under stagnant conditions or transport events, whereas in summer the region frequently experiences elevated O3 levels. Chemical weather prediction systems with the WRF-Chem and CMAQ models are being developed to support air quality and haze forecasting for Shanghai and the Yangtze River Delta region. We will present main components of the modeling system, forecasting products, as well as evaluation results. Evaluation of the WRF-Chem forecasts show the model has generally good ability to capture the temporal variations of O3 and PM2.5. Substantial regional differences exist, with the best performance in Shanghai. Meanwhile, the forecasts tend to degrade during highly polluted episodes and transitional time periods, which highlights the need to improve model representation of key process (e.g. meteorological fields and formation of secondary pollutants). Recent work includes using the ECMWF global model forecasts as chemical boundary conditions for our regional model. We investigate the impact of chemical downscaling, and also compare the results from different models participated in the PANDA (PArtnership with chiNa on space Data) project. Results from ongoing efforts (e.g. chemical weather forecasting driven by SMS regional high resolution NWP) will also be presented.
NASA Technical Reports Server (NTRS)
Kim, Dongchul; Chin, Mian; Kemp, Eric M.; Tao, Zhining; Peters-Lidard, Christa D.; Ginoux, Paul
2017-01-01
A high-resolution dynamic dust source has been developed in the NASA Unified-Weather Research and Forecasting (NU-WRF) model to improve the existing coarse static dust source. In the new dust source map, topographic depression is in 1-km resolution and surface bareness is derived using the Normalized Difference Vegetation Index (NDVI) data from Moderate Resolution Imaging Spectroradiometer (MODIS). The new dust source better resolves the complex topographic distribution over the Western United States where its magnitude is higher than the existing, coarser resolution static source. A case study is conducted with an extreme dust storm that occurred in Phoenix, Arizona in 0203 UTC July 6, 2011. The NU-WRF model with the new high-resolution dynamic dust source is able to successfully capture the dust storm, which was not achieved with the old source identification. However the case study also reveals several challenges in reproducing the time evolution of the short-lived, extreme dust storm events.
Kim, Dongchul; Chin, Mian; Kemp, Eric M.; Tao, Zhining; Peters-Lidard, Christa D.; Ginoux, Paul
2018-01-01
A high-resolution dynamic dust source has been developed in the NASA Unified-Weather Research and Forecasting (NU-WRF) model to improve the existing coarse static dust source. In the new dust source map, topographic depression is in 1-km resolution and surface bareness is derived using the Normalized Difference Vegetation Index (NDVI) data from Moderate Resolution Imaging Spectroradiometer (MODIS). The new dust source better resolves the complex topographic distribution over the Western United States where its magnitude is higher than the existing, coarser resolution static source. A case study is conducted with an extreme dust storm that occurred in Phoenix, Arizona in 02-03 UTC July 6, 2011. The NU-WRF model with the new high-resolution dynamic dust source is able to successfully capture the dust storm, which was not achieved with the old source identification. However the case study also reveals several challenges in reproducing the time evolution of the short-lived, extreme dust storm events. PMID:29632432
Kim, Dongchul; Chin, Mian; Kemp, Eric M; Tao, Zhining; Peters-Lidard, Christa D; Ginoux, Paul
2017-06-01
A high-resolution dynamic dust source has been developed in the NASA Unified-Weather Research and Forecasting (NU-WRF) model to improve the existing coarse static dust source. In the new dust source map, topographic depression is in 1-km resolution and surface bareness is derived using the Normalized Difference Vegetation Index (NDVI) data from Moderate Resolution Imaging Spectroradiometer (MODIS). The new dust source better resolves the complex topographic distribution over the Western United States where its magnitude is higher than the existing, coarser resolution static source. A case study is conducted with an extreme dust storm that occurred in Phoenix, Arizona in 02-03 UTC July 6, 2011. The NU-WRF model with the new high-resolution dynamic dust source is able to successfully capture the dust storm, which was not achieved with the old source identification. However the case study also reveals several challenges in reproducing the time evolution of the short-lived, extreme dust storm events.
Potential Technologies for Assessing Risk Associated with a Mesoscale Forecast
2015-10-01
American GFS models, and informally applied on the Weather Research and Forecasting ( WRF ) model. The current CI equation is as follows...Reen B, Penc R. Investigating surface bias errors in the Weather Research and Forecasting ( WRF ) model using a Geographic Information System (GIS). J...Forecast model ( WRF -ARW) with extensions that might include finer terrain resolutions and more detailed representations of the underlying atmospheric
Deodhar, Suruchi; Bisset, Keith; Chen, Jiangzhuo; Barrett, Chris; Wilson, Mandy; Marathe, Madhav
2016-01-01
Public health decision makers need access to high resolution situation assessment tools for understanding the extent of various epidemics in different regions of the world. In addition, they need insights into the future course of epidemics by way of forecasts. Such forecasts are essential for planning the allocation of limited resources and for implementing several policy-level and behavioral intervention strategies. The need for such forecasting systems became evident in the wake of the recent Ebola outbreak in West Africa. We have developed EpiCaster, an integrated Web application for situation assessment and forecasting of various epidemics, such as Flu and Ebola, that are prevalent in different regions of the world. Using EpiCaster, users can assess the magnitude and severity of different epidemics at highly resolved spatio-temporal levels. EpiCaster provides time-varying heat maps and graphical plots to view trends in the disease dynamics. EpiCaster also allows users to visualize data gathered through surveillance mechanisms, such as Google Flu Trends (GFT) and the World Health Organization (WHO). The forecasts provided by EpiCaster are generated using different epidemiological models, and the users can select the models through the interface to filter the corresponding forecasts. EpiCaster also allows the users to study epidemic propagation in the presence of a number of intervention strategies specific to certain diseases. Here we describe the modeling techniques, methodologies and computational infrastructure that EpiCaster relies on to support large-scale predictive analytics for situation assessment and forecasting of global epidemics. PMID:27796009
Validation of soil moisture ocean salinity (SMOS) satellite soil moisture products
USDA-ARS?s Scientific Manuscript database
The surface soil moisture state controls the partitioning of precipitation into infiltration and runoff. High-resolution observations of soil moisture will lead to improved flood forecasts, especially for intermediate to large watersheds where most flood damage occurs. Soil moisture is also key in d...
NASA Astrophysics Data System (ADS)
Maschhoff, K. R.; Polizotti, J. J.; Aumann, H. H.; Susskind, J.
2017-12-01
MISTiCTM Winds is an approach to improve short-term weather forecasting based on a miniature high resolution, wide field, thermal emission spectrometry instrument that will provide global tropospheric vertical profiles of atmospheric temperature and humidity at high (3-4 km) horizontal and vertical ( 1 km) spatial resolution. MISTiC's extraordinarily small size, payload mass of less than 15 kg, and minimal cooling requirements can be accommodated aboard a ESPA-Class (50 kg) micro-satellite. Low fabrication and launch costs enable a LEO sun-synchronous sounding constellation that would provide frequent IR vertical profiles and vertically resolved atmospheric motion vector wind observations in the troposphere. These observations are highly complementary to present and emerging environmental observing systems, and would provide a combination of high vertical and horizontal resolution not provided by any other environmental observing system currently in operation. The spectral measurements that would be provided by MISTiC Winds are similar to those of NASA's Atmospheric Infrared Sounder. These new observations, when assimilated into high resolution numerical weather models, would revolutionize short-term and severe weather forecasting, save lives, and support key economic decisions in the energy, air transport, and agriculture arenas-at much lower cost than providing these observations from geostationary orbit. In addition, this observation capability would be a critical tool for the study of transport processes for water vapor, clouds, pollution, and aerosols. In this third year of a NASA Instrument incubator program, the compact infrared spectrometer has been integrated into an airborne version of the instrument for high-altitude flights on a NASA ER2. The purpose of these airborne tests is to examine the potential for improved capabilities for tracking atmospheric motion-vector wind tracer features, and determining their height using hyper-spectral sounding and imaging methods.
NASA Astrophysics Data System (ADS)
Liu, Y.; Wu, W.; Zhang, Y.; Kucera, P. A.; Liu, Y.; Pan, L.
2012-12-01
Weather forecasting in the Middle East is challenging because of its complicated geographical nature including massive coastal area and heterogeneous land, and regional spare observational network. Strong air-land-sea interactions form multi-scale weather regimes in the area, which require a numerical weather prediction model capable of properly representing multi-scale atmospheric flow with appropriate initial conditions. The WRF-based Real-Time Four Dimensional Data Assimilation (RTFDDA) system is one of advanced multi-scale weather analysis and forecasting facilities developed at the Research Applications Laboratory (RAL) of NCAR. The forecasting system is applied for the Middle East with careful configuration. To overcome the limitation of the very sparsely available conventional observations in the region, we develop a hybrid data assimilation algorithm combining RTFDDA and WRF-3DVAR, which ingests remote sensing data from satellites and radar. This hybrid data assimilation blends Newtonian nudging FDDA and 3DVAR technology to effectively assimilate both conventional observations and remote sensing measurements and provide improved initial conditions for the forecasting system. For brevity, the forecasting system is called RTF3H (RTFDDA-3DVAR Hybrid). In this presentation, we will discuss the hybrid data assimilation algorithm, and its implementation, and the applications for high-impact weather events in the area. Sensitivity studies are conducted to understand the strength and limitations of this hybrid data assimilation algorithm.
Enhancing SMAP Soil Moisture Retrievals via Superresolution Techniques
NASA Astrophysics Data System (ADS)
Beale, K. D.; Ebtehaj, A. M.; Romberg, J. K.; Bras, R. L.
2017-12-01
Soil moisture is a key state variable that modulates land-atmosphere interactions and its high-resolution global scale estimates are essential for improved weather forecasting, drought prediction, crop management, and the safety of troop mobility. Currently, NASA's Soil Moisture Active/Passive (SMAP) satellite provides a global picture of soil moisture variability at a resolution of 36 km, which is prohibitive for some hydrologic applications. The goal of this research is to enhance the resolution of SMAP passive microwave retrievals by a factor of 2 to 4 using modern superresolution techniques that rely on the knowledge of high-resolution land surface models. In this work, we explore several super-resolution techniques including an empirical dictionary method, a learned dictionary method, and a three-layer convolutional neural network. Using a year of global high-resolution land surface model simulations as training set, we found that we are able to produce high-resolution soil moisture maps that outperform the original low-resolution observations both qualitatively and quantitatively. In particular, on a patch-by-patch basis we are able to produce estimates of high-resolution soil moisture maps that improve on the original low-resolution patches by on average 6% in terms of mean-squared error, and 14% in terms of the structural similarity index.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Marjanovic, Nikola; Mirocha, Jeffrey D.; Kosović, Branko
A generalized actuator line (GAL) wind turbine parameterization is implemented within the Weather Research and Forecasting model to enable high-fidelity large-eddy simulations of wind turbine interactions with boundary layer flows under realistic atmospheric forcing conditions. Numerical simulations using the GAL parameterization are evaluated against both an already implemented generalized actuator disk (GAD) wind turbine parameterization and two field campaigns that measured the inflow and near-wake regions of a single turbine. The representation of wake wind speed, variance, and vorticity distributions is examined by comparing fine-resolution GAL and GAD simulations and GAD simulations at both fine and coarse-resolutions. The higher-resolution simulationsmore » show slightly larger and more persistent velocity deficits in the wake and substantially increased variance and vorticity when compared to the coarse-resolution GAD. The GAL generates distinct tip and root vortices that maintain coherence as helical tubes for approximately one rotor diameter downstream. Coarse-resolution simulations using the GAD produce similar aggregated wake characteristics to both fine-scale GAD and GAL simulations at a fraction of the computational cost. The GAL parameterization provides the capability to resolve near wake physics, including vorticity shedding and wake expansion.« less
NASA Astrophysics Data System (ADS)
Reed, P. M.; Chaney, N.; Herman, J. D.; Wood, E. F.; Ferringer, M. P.
2015-12-01
This research represents a multi-institutional collaboration between Cornell University, The Aerospace Corporation, and Princeton University that has completed a Petascale diagnostic assessment of the current 10 satellite missions providing rainfall observations. Our diagnostic assessment has required four core tasks: (1) formally linking high-resolution astrodynamics design and coordination of space assets with their global hydrological impacts within a Petascale "many-objective" global optimization framework, (2) developing a baseline diagnostic evaluation of a 1-degree resolution global implementation of the Variable Infiltration Capacity (VIC) model to establish the required satellite observation frequencies and coverage to maintain acceptable global flood forecasts, (3) evaluating the limitations and vulnerabilities of the full suite of current satellite precipitation missions including the recently approved Global Precipitation Measurement (GPM) mission, and (4) conceptualizing the next generation spaced-based platforms for water cycle observation. Our team exploited over 100 Million hours of computing access on the 700,000+ core Blue Waters machine to radically advance our ability to discover and visualize key system tradeoffs and sensitivities. This project represents to our knowledge the first attempt to develop a 10,000 member Monte Carlo global hydrologic simulation at one degree resolution that characterizes the uncertain effects of changing the available frequencies of satellite precipitation on drought and flood forecasts. The simulation—optimization components of the work have set a theoretical baseline for the best possible frequencies and coverages for global precipitation given unlimited investment, broad international coordination in reconfiguring existing assets, and new satellite constellation design objectives informed directly by key global hydrologic forecasting requirements. Our research poses a step towards realizing the integrated global water cycle observatory long sought by the World Climate Research Programme, which has to date eluded the world's space agencies.
Forecasting wildland fire behavior using high-resolution large-eddy simulations
NASA Astrophysics Data System (ADS)
Munoz-Esparza, D.; Kosovic, B.; Jimenez, P. A.; Anderson, A.; DeCastro, A.; Brown, B.
2016-12-01
Wildland fires are responsible for large socio-economic impacts. Fires affect the environment, damage structures, threaten lives, cause health issues, and involve large suppression costs. These impacts can be mitigated via accurate fire spread forecast to inform the incident management team. To this end, the state of Colorado is funding the development of the Colorado Fire Prediction System (CO-FPS). The system is based on the Weather Research and Forecasting (WRF) model enhanced with a fire behavior module (WRF-Fire). Realistic representation of wildland fire behavior requires explicit representation of small scale weather phenomena to properly account for coupled atmosphere-wildfire interactions. Moreover, transport and dispersion of biomass burning emissions from wildfires is controlled by turbulent processes in the atmospheric boundary layer, which are difficult to parameterize and typically lead to large errors when simplified source estimation and injection height methods are used. Therefore, we utilize turbulence-resolving large-eddy simulations at a resolution of 111 m to forecast fire spread and smoke distribution using a coupled atmosphere-wildfire model. This presentation will describe our improvements to the level-set based fire-spread algorithm in WRF-Fire and an evaluation of the operational system using 12 wildfire events that occurred in Colorado in 2016, as well as other historical fires. In addition, the benefits of explicit representation of turbulence for smoke transport and dispersion will be demonstrated.
The Impact of Microphysics on Intensity and Structure of Hurricanes
NASA Technical Reports Server (NTRS)
Tao, Wei-Kuo; Shi, Jainn; Lang, Steve; Peters-Lidard, Christa
2006-01-01
During the past decade, both research and operational numerical weather prediction models, e.g. Weather Research and Forecast (WRF) model, have started using more complex microphysical schemes originally developed for high-resolution cloud resolving models (CRMs) with a 1-2 km or less horizontal resolutions. WFW is a next-generation mesoscale forecast model and assimilation system that has incorporated modern software framework, advanced dynamics, numeric and data assimilation techniques, a multiple moveable nesting capability, and improved physical packages. WFW model can be used for a wide range of applications, from idealized research to operational forecasting, with an emphasis on horizontal grid sizes in the range of 1-10 km. The current WRF includes several different microphysics options such as Lin et al. (1983), WSM 6-class and Thompson microphysics schemes. We have recently implemented three sophisticated cloud microphysics schemes into WRF. The cloud microphysics schemes have been extensively tested and applied for different mesoscale systems in different geographical locations. The performances of these schemes have been compared to those from other WRF microphysics options. We are performing sensitivity tests in using WW to examine the impact of six different cloud microphysical schemes on hurricane track, intensity and rainfall forecast. We are also performing the inline tracer calculation to comprehend the physical processes @e., boundary layer and each quadrant in the boundary layer) related to the development and structure of hurricanes.
Forecasting wildland fire behavior using high-resolution large-eddy simulations
NASA Astrophysics Data System (ADS)
Munoz-Esparza, D.; Kosovic, B.; Jimenez, P. A.; Anderson, A.; DeCastro, A.; Brown, B.
2017-12-01
Wildland fires are responsible for large socio-economic impacts. Fires affect the environment, damage structures, threaten lives, cause health issues, and involve large suppression costs. These impacts can be mitigated via accurate fire spread forecast to inform the incident management team. To this end, the state of Colorado is funding the development of the Colorado Fire Prediction System (CO-FPS). The system is based on the Weather Research and Forecasting (WRF) model enhanced with a fire behavior module (WRF-Fire). Realistic representation of wildland fire behavior requires explicit representation of small scale weather phenomena to properly account for coupled atmosphere-wildfire interactions. Moreover, transport and dispersion of biomass burning emissions from wildfires is controlled by turbulent processes in the atmospheric boundary layer, which are difficult to parameterize and typically lead to large errors when simplified source estimation and injection height methods are used. Therefore, we utilize turbulence-resolving large-eddy simulations at a resolution of 111 m to forecast fire spread and smoke distribution using a coupled atmosphere-wildfire model. This presentation will describe our improvements to the level-set based fire-spread algorithm in WRF-Fire and an evaluation of the operational system using 12 wildfire events that occurred in Colorado in 2016, as well as other historical fires. In addition, the benefits of explicit representation of turbulence for smoke transport and dispersion will be demonstrated.
Improvement of High-Resolution Tropical Cyclone Structure and Intensity Forecasts using COAMPS-TC
2013-09-30
scientific community including the recent T- PARC /TCS08, ITOP, and HS3 field campaigns to build upon the existing modeling capabilities. We will...heating and cooling rates in developing and non-developing tropical disturbances during tcs-08: radar -equivalent retrievals from mesoscale numerical
Predicting agricultural impacts of large-scale drought: 2012 and the case for better modeling
USDA-ARS?s Scientific Manuscript database
We present an example of a simulation-based forecast for the 2012 U.S. maize growing season produced as part of a high-resolution, multi-scale, predictive mechanistic modeling study designed for decision support, risk management, and counterfactual analysis. The simulations undertaken for this analy...
NASA Astrophysics Data System (ADS)
Yang, Xiu-Qun; Yang, Dejian; Xie, Qian; Zhang, Yaocun; Ren, Xuejuan; Tang, Youmin
2017-04-01
Based on historical forecasts of three quasi-operational multi-model ensemble (MME) systems, this study assesses the superiority of coupled MME over contributing single-model ensembles (SMEs) and over uncoupled atmospheric MME in predicting the Western North Pacific-East Asian summer monsoon variability. The probabilistic and deterministic forecast skills are measured by Brier skill score (BSS) and anomaly correlation (AC), respectively. A forecast-format dependent MME superiority over SMEs is found. The probabilistic forecast skill of the MME is always significantly better than that of each SME, while the deterministic forecast skill of the MME can be lower than that of some SMEs. The MME superiority arises from both the model diversity and the ensemble size increase in the tropics, and primarily from the ensemble size increase in the subtropics. The BSS is composed of reliability and resolution, two attributes characterizing probabilistic forecast skill. The probabilistic skill increase of the MME is dominated by the dramatic improvement in reliability, while resolution is not always improved, similar to AC. A monotonic resolution-AC relationship is further found and qualitatively explained, whereas little relationship can be identified between reliability and AC. It is argued that the MME's success in improving the reliability arises from an effective reduction of the overconfidence in forecast distributions. Moreover, it is examined that the seasonal predictions with coupled MME are more skillful than those with the uncoupled atmospheric MME forced by persisting sea surface temperature (SST) anomalies, since the coupled MME has better predicted the SST anomaly evolution in three key regions.
Use of High-resolution WRF Simulations to Forecast Lightning Threat
NASA Technical Reports Server (NTRS)
McCaul, William E.; LaCasse, K.; Goodman, S. J.
2006-01-01
Recent observational studies have confirmed the existence of a robust statistical relationship between lightning flash rates and the amount of large precipitating ice hydrometeors in storms. This relationship is exploited, in conjunction with the capabilities of recent forecast models such as WRF, to forecast the threat of lightning from convective storms using the output fields from the model forecasts. The simulated vertical flux of graupel at -15C is used in this study as a proxy for charge separation processes and their associated lightning risk. Six-h simulations are conducted for a number of case studies for which three-dimensional lightning validation data from the North Alabama Lightning Mapping Array are available. Experiments indicate that initialization of the WRF model on a 2 km grid using Eta boundary conditions, Doppler radar radial velocity and reflectivity fields, and METAR and ACARS data yield the most realistic simulations. An array of subjective and objective statistical metrics are employed to document the utility of the WRF forecasts. The simulation results are also compared to other more traditional means of forecasting convective storms, such as those based on inspection of the convective available potential energy field.
High-Resolution WRF Forecasts of Lightning Threat
NASA Technical Reports Server (NTRS)
Goodman, S. J.; McCaul, E. W., Jr.; LaCasse, K.
2007-01-01
Tropical Rainfall Measuring Mission (TRMM)lightning and precipitation observations have confirmed the existence of a robust relationship between lightning flash rates and the amount of large precipitating ice hydrometeors in storms. This relationship is exploited, in conjunction with the capabilities of the Weather Research and Forecast (WRF) model, to forecast the threat of lightning from convective storms using the output fields from the model forecasts. The simulated vertical flux of graupel at -15C is used in this study as a proxy for charge separation processes and their associated lightning risk. Initial experiments using 6-h simulations are conducted for a number of case studies for which three-dimensional lightning validation data from the North Alabama Lightning Mapping Array are available. The WRF has been initialized on a 2 km grid using Eta boundary conditions, Doppler radar radial velocity and reflectivity fields, and METAR and ACARS data. An array of subjective and objective statistical metrics is employed to document the utility of the WRF forecasts. The simulation results are also compared to other more traditional means of forecasting convective storms, such as those based on inspection of the convective available potential energy field.
NASA Astrophysics Data System (ADS)
Turnbull, S. J.
2017-12-01
Within the US Army Corps of Engineers (USACE), reservoirs are typically operated according to a rule curve that specifies target water levels based on the time of year. The rule curve is intended to maximize flood protection by specifying releases of water before the dominant rainfall period for a region. While some operating allowances are permissible, generally the rule curve elevations must be maintained. While this operational approach provides for the required flood control purpose, it may not result in optimal reservoir operations for multi-use impoundments. In the Russian River Valley of California a multi-agency research effort called Forecast-Informed Reservoir Operations (FIRO) is assessing the application of forecast weather and streamflow predictions to potentially enhance the operation of reservoirs in the watershed. The focus of the study has been on Lake Mendocino, a USACE project important for flood control, water supply, power generation and ecological flows. As part of this effort the Engineer Research and Development Center is assessing the ability of utilizing the physics based, distributed watershed model Gridded Surface Subsurface Hydrologic Analysis (GSSHA) model to simulate stream flows, reservoir stages, and discharges while being driven by weather forecast products. A key question in this application is the effect of watershed model resolution on forecasted stream flows. To help resolve this question, GSSHA models of multiple grid resolutions, 30, 50, and 270m, were developed for the upper Russian River, which includes Lake Mendocino. The models were derived from common inputs: DEM, soils, land use, stream network, reservoir characteristics, and specified inflows and discharges. All the models were calibrated in both event and continuous simulation mode using measured precipitation gages and then driven with the West-WRF atmospheric model in prediction mode to assess the ability of the model to function in short term, less than one week, forecasting mode. In this presentation we will discuss the effect the grid resolution has model development, parameter assignment, streamflow prediction and forecasting capability utilizing the West-WRF forecast hydro-meteorology.
NASA Astrophysics Data System (ADS)
Courdent, Vianney; Grum, Morten; Munk-Nielsen, Thomas; Mikkelsen, Peter S.
2017-05-01
Precipitation is the cause of major perturbation to the flow in urban drainage and wastewater systems. Flow forecasts, generated by coupling rainfall predictions with a hydrologic runoff model, can potentially be used to optimize the operation of integrated urban drainage-wastewater systems (IUDWSs) during both wet and dry weather periods. Numerical weather prediction (NWP) models have significantly improved in recent years, having increased their spatial and temporal resolution. Finer resolution NWP are suitable for urban-catchment-scale applications, providing longer lead time than radar extrapolation. However, forecasts are inevitably uncertain, and fine resolution is especially challenging for NWP. This uncertainty is commonly addressed in meteorology with ensemble prediction systems (EPSs). Handling uncertainty is challenging for decision makers and hence tools are necessary to provide insight on ensemble forecast usage and to support the rationality of decisions (i.e. forecasts are uncertain and therefore errors will be made; decision makers need tools to justify their choices, demonstrating that these choices are beneficial in the long run). This study presents an economic framework to support the decision-making process by providing information on when acting on the forecast is beneficial and how to handle the EPS. The relative economic value (REV) approach associates economic values with the potential outcomes and determines the preferential use of the EPS forecast. The envelope curve of the REV diagram combines the results from each probability forecast to provide the highest relative economic value for a given gain-loss ratio. This approach is traditionally used at larger scales to assess mitigation measures for adverse events (i.e. the actions are taken when events are forecast). The specificity of this study is to optimize the energy consumption in IUDWS during low-flow periods by exploiting the electrical smart grid market (i.e. the actions are taken when no events are forecast). Furthermore, the results demonstrate the benefit of NWP neighbourhood post-processing methods to enhance the forecast skill and increase the range of beneficial uses.
NASA Astrophysics Data System (ADS)
Levelt, Pieternel; Veefkind, Pepijn; Bhartia, Pawan; Joiner, Joanna; Tamminen, Johanna; OMI Science Team
2014-05-01
On July 15, 2004 Ozone Monitoring Instrument (OMI) was successfully launched from the Vandenberg military air force basis in California, USA, on NASA's EOS-Aura spacecraft. OMI is the first of a new generation of UV/VIS nadir solar backscatter imaging spectrometers, which provides nearly global coverage in one day with an unprecedented spatial resolution of 13 x 24 km2. OMI measures solar irradiance and Earth radiances in the wavelength range of 270 to 500 nm with a spectral resolution of about 0.5 nm. OMI is designed and built by the Netherlands and Finland and is also a third party mission of ESA. The major step that was made in the OMI instrument compared to its predecessors is the use of 2-dimensional detector arrays (CCDs) in a highly innovative small optical design. These innovations enable the combination of a high spatial resolution and a good spectral resolution with daily global coverage. OMI measures a range of trace gases (O3, NO2, SO2, HCHO, BrO, OClO, H2O), clouds and aerosols. Albeit OMI is already 5 years over its design lifetime, the instrument is still fully operational. The successor of OMI is TROPOMI (TROPOspheric Monitoring Instrument) on the Copernicus Sentinel-5 precursor mission, planned for launch in 2015. OMI's unique capabilities rely in measuring tropospheric trace gases with a small footprint and daily global coverage. The unprecedented spatial resolution of the instrument revealed for the first time tropospheric pollution maps on a daily basis with urban scale resolution leading to improved air quality forecasts. The OMI measurements also improve our understanding of air quality and the interaction between air quality and climate change by combining measurements of air pollutants and aerosols. In recent years the data are also used for obtaining high-resolution global emission maps using inverse modelling or related techniques, challenging the bottom-up inventories based emission maps. In addition to scientific research, OMI also contributes to several operational services, including volcanic plume warning systems for aviation, UV forecasts and the air quality forecasts. In this invited talk an overview will be given of unique findings and new scientific results based on OMI data over the last 10 years and which unique OMI instrument features are recurring in the new generation of UV/VIS satellite instrumentation in Europe, USA and Asia.
NASA Astrophysics Data System (ADS)
Badrzadeh, Honey; Sarukkalige, Ranjan; Jayawardena, A. W.
2015-10-01
Reliable river flow forecasts play a key role in flood risk mitigation. Among different approaches of river flow forecasting, data driven approaches have become increasingly popular in recent years due to their minimum information requirements and ability to simulate nonlinear and non-stationary characteristics of hydrological processes. In this study, attempts are made to apply four different types of data driven approaches, namely traditional artificial neural networks (ANN), adaptive neuro-fuzzy inference systems (ANFIS), wavelet neural networks (WNN), and, hybrid ANFIS with multi resolution analysis using wavelets (WNF). Developed models applied for real time flood forecasting at Casino station on Richmond River, Australia which is highly prone to flooding. Hourly rainfall and runoff data were used to drive the models which have been used for forecasting with 1, 6, 12, 24, 36 and 48 h lead-time. The performance of models further improved by adding an upstream river flow data (Wiangaree station), as another effective input. All models perform satisfactorily up to 12 h lead-time. However, the hybrid wavelet-based models significantly outperforming the ANFIS and ANN models in the longer lead-time forecasting. The results confirm the robustness of the proposed structure of the hybrid models for real time runoff forecasting in the study area.
NASA Technical Reports Server (NTRS)
Reale, O.; Lau, K. M.; da Silva, A.
2010-01-01
The real-time treatment of interactive realistically varying aerosol in a global operational forecasting system, as opposed to prescribed (fixed or climatologically varying) aerosols, is a very difficult challenge that only recently begins to be addressed. Experiment results from a recent version of the NASA GEOS-5 forecasting system, inclusive of interactive aerosol treatment, are presented in this work. Four sets of 30 5-day forecasts are initialized from a high quality set of analyses previously produced and documented to cover the period from 15 August to 16 September 2006, which corresponds to the NASA African Monsoon Multidisciplinary Analysis (NAMMA) observing campaign. The four forecast sets are at two different horizontal resolutions and with and without interactive aerosol treatment. The net impact of aerosol, at times in which there is a strong dust outbreak, is a temperature increase at the dust level and decrease in the near-surface levels, in complete agreement with previous observational and modeling studies. Moreover, forecasts in which interactive aerosols are included depict an African Easterly (AEJ) at slightly higher elevation, and slightly displace northward, with respect to the forecasts in which aerosols are not include. The shift in the AEJ position goes in the direction of observations and agrees with previous results.
Statistical Correction of Air Temperature Forecasts for City and Road Weather Applications
NASA Astrophysics Data System (ADS)
Mahura, Alexander; Petersen, Claus; Sass, Bent; Gilet, Nicolas
2014-05-01
The method for statistical correction of air /road surface temperatures forecasts was developed based on analysis of long-term time-series of meteorological observations and forecasts (from HIgh Resolution Limited Area Model & Road Conditions Model; 3 km horizontal resolution). It has been tested for May-Aug 2012 & Oct 2012 - Mar 2013, respectively. The developed method is based mostly on forecasted meteorological parameters with a minimal inclusion of observations (covering only a pre-history period). Although the st iteration correction is based taking into account relevant temperature observations, but the further adjustment of air and road temperature forecasts is based purely on forecasted meteorological parameters. The method is model independent, e.g. it can be applied for temperature correction with other types of models having different horizontal resolutions. It is relatively fast due to application of the singular value decomposition method for matrix solution to find coefficients. Moreover, there is always a possibility for additional improvement due to extra tuning of the temperature forecasts for some locations (stations), and in particular, where for example, the MAEs are generally higher compared with others (see Gilet et al., 2014). For the city weather applications, new operationalized procedure for statistical correction of the air temperature forecasts has been elaborated and implemented for the HIRLAM-SKA model runs at 00, 06, 12, and 18 UTCs covering forecast lengths up to 48 hours. The procedure includes segments for extraction of observations and forecast data, assigning these to forecast lengths, statistical correction of temperature, one-&multi-days statistical evaluation of model performance, decision-making on using corrections by stations, interpolation, visualisation and storage/backup. Pre-operational air temperature correction runs were performed for the mainland Denmark since mid-April 2013 and shown good results. Tests also showed that the CPU time required for the operational procedure is relatively short (less than 15 minutes including a large time spent for interpolation). These also showed that in order to start correction of forecasts there is no need to have a long-term pre-historical data (containing forecasts and observations) and, at least, a couple of weeks will be sufficient when a new observational station is included and added to the forecast point. Note for the road weather application, the operationalization of the statistical correction of the road surface temperature forecasts (for the RWM system daily hourly runs covering forecast length up to 5 hours ahead) for the Danish road network (for about 400 road stations) was also implemented, and it is running in a test mode since Sep 2013. The method can also be applied for correction of the dew point temperature and wind speed (as a part of observations/ forecasts at synoptical stations), where these both meteorological parameters are parts of the proposed system of equations. The evaluation of the method performance for improvement of the wind speed forecasts is planned as well, with considering possibilities for the wind direction improvements (which is more complex due to multi-modal types of such data distribution). The method worked for the entire domain of mainland Denmark (tested for 60 synoptical and 395 road stations), and hence, it can be also applied for any geographical point within this domain, as through interpolation to about 100 cities' locations (for Danish national byvejr forecasts). Moreover, we can assume that the same method can be used in other geographical areas. The evaluation for other domains (with a focus on Greenland and Nordic countries) is planned. In addition, a similar approach might be also tested for statistical correction of concentrations of chemical species, but such approach will require additional elaboration and evaluation.
The Mesoscale Ionospheric Simulation Testbed (MIST) Regional Data Assimilation Model (Invited)
NASA Astrophysics Data System (ADS)
Comberiate, J.; Kelly, M. A.; Miller, E.; Paxton, L.
2013-12-01
The Mesoscale Ionospheric Simulation Testbed (MIST) provides a regional nowcast and forecast of electron density values and has sufficient resolution to include equatorial plasma bubbles. The SSUSI instrument on the DMSP F18 satellite has high-resolution nightly observations of plasma bubbles at 8 PM local time throughout the current solar maximum. MIST can assimilate SSUSI UV observations, GPS TEC measurements, and SCINDA S4 readings simultaneously into a single scintillation map over a region of interest. MIST also models ionospheric physics to provide a short-term UHF scintillation forecast based on assimilated data. We will present examples of electron density and scintillation maps from MIST. We will also discuss the potential to predict scintillation occurrence up to 6 hours in advance using observations of the equatorial arcs from SSUSI observations at 5:30 PM local time on the DMSP F17 satellite.
A Decision Support System for Ecosystem-Based Management of Tropical Coral Reef Environments
NASA Astrophysics Data System (ADS)
Muller-Karger, F. E.; Eakin, C.; Guild, L. S.; Nemani, R. R.; Hu, C.; Lynds, S. E.; Li, J.; Vega-Rodriguez, M.; Coral Reef Watch Decision Support System Team
2010-12-01
We review a new collaborative program established between the National Aeronautics and Space Administration (NASA) and the National Oceanic and Atmospheric Administration (NOAA) to augment the NOAA Coral Reef Watch decision-support system. NOAA has developed a Decision Support System (DSS) under the Coral Reef Watch (CRW) program to forecast environmental stress in coral reef ecosystems around the world. This DSS uses models and 50 km Advanced Very High Resolution Radiometer (AVHRR) to generate “HotSpot” and Degree Heating Week coral bleaching indices. These are used by scientists and resource managers around the world. These users, including National Marine Sanctuary managers, have expressed the need for higher spatial resolution tools to understand local issues. The project will develop a series of coral bleaching products at higher spatial resolution using Moderate Resolution Imaging Spectroradiometer (MODIS) and AVHRR data. We will generate and validate products at 1 km resolution for the Caribbean Sea and Gulf of Mexico, and test global assessments at 4 and 50 km. The project will also incorporate the Global Coral Reef Millennium Map, a 30-m resolution thematic classification of coral reefs developed by the NASA Landsat-7 Science Team, into the CRW. The Millennium Maps help understand the geomorphology of individual reefs around the world. The products will be available through the NOAA CRW and UNEP-WCMC web portals. The products will help users formulate policy options and management decisions. The augmented DSS has a global scope, yet it addresses the needs of local resource managers. The work complements efforts to map and monitor coral reef communities in the U.S. territories by NOAA, NASA, and the USGS, and is a contribution to international efforts in ecological forecasting of coral reefs under changing environments, coral reef research, resource management, and conservation. Acknowledgement: Funding is provided by the NASA Ecological Forecasting application area and by NOAA NESDIS.
NASA Astrophysics Data System (ADS)
Leung, L.; Hagos, S. M.; Rauscher, S.; Ringler, T.
2012-12-01
This study compares two grid refinement approaches using global variable resolution model and nesting for high-resolution regional climate modeling. The global variable resolution model, Model for Prediction Across Scales (MPAS), and the limited area model, Weather Research and Forecasting (WRF) model, are compared in an idealized aqua-planet context with a focus on the spatial and temporal characteristics of tropical precipitation simulated by the models using the same physics package from the Community Atmosphere Model (CAM4). For MPAS, simulations have been performed with a quasi-uniform resolution global domain at coarse (1 degree) and high (0.25 degree) resolution, and a variable resolution domain with a high-resolution region at 0.25 degree configured inside a coarse resolution global domain at 1 degree resolution. Similarly, WRF has been configured to run on a coarse (1 degree) and high (0.25 degree) resolution tropical channel domain as well as a nested domain with a high-resolution region at 0.25 degree nested two-way inside the coarse resolution (1 degree) tropical channel. The variable resolution or nested simulations are compared against the high-resolution simulations that serve as virtual reality. Both MPAS and WRF simulate 20-day Kelvin waves propagating through the high-resolution domains fairly unaffected by the change in resolution. In addition, both models respond to increased resolution with enhanced precipitation. Grid refinement induces zonal asymmetry in precipitation (heating), accompanied by zonal anomalous Walker like circulations and standing Rossby wave signals. However, there are important differences between the anomalous patterns in MPAS and WRF due to differences in the grid refinement approaches and sensitivity of model physics to grid resolution. This study highlights the need for "scale aware" parameterizations in variable resolution and nested regional models.
Determining neutrino mass from the cosmic microwave background alone.
Kaplinghat, Manoj; Knox, Lloyd; Song, Yong-Seon
2003-12-12
Distortions of cosmic microwave background temperature and polarization maps caused by gravitational lensing, observable with high angular resolution and high sensitivity, can be used to measure the neutrino mass. Assuming two massless species and one with mass m(nu), we forecast sigma(m(nu))=0.15 eV from the Planck satellite and sigma(m(nu))=0.04 eV from observations with twice the angular resolution and approximately 20 times the sensitivity. A detection is likely at this higher sensitivity since the observation of atmospheric neutrino oscillations requires Deltam(2)(nu) greater, similar (0.04 eV)(2).
NASA Astrophysics Data System (ADS)
Mateus, Pedro; Nico, Giovanni; Catalao, Joao
2017-04-01
In the last two decades, SAR interferometry has been used to obtain maps of Precipitable Water Vapor (PWV).This maps are characterized by their high spatial resolution when compared to the currently available PWV measurements (e.g. GNSS, radiometers or radiosondes). Several previous works have shown that assimilating PWV values, mainly derived from GNSS observations, into Numerical Weather Models (NWMs) can significantly improve rainfall predictions.It is noteworthy that the PWV-derived from GNSS observations have a high temporal resolution but a low spatialone. In addition, there are many regions without any GNSS stations, where temporal and spatial distribution of PWV areonly available through satellite measurements. The first attempt to assimilate InSAR-derived maps of PWV (InSAR-PWV) into a NWM was made by Pichelli et al. [1].They used InSAR-PWV maps obtained from ENVISAT-ASAR images and the mesoscale weather prediction model MM5 over the city of Rome, Italy. The statistical indices show that the InSAR-PWVdata assimilation improves the forecast of weak to moderateprecipitation (< 15 mm/3-h). The second and last attempt, was performed by Mateus et al. [2]. They used the same satellite mission and the Weather Research and Forecast (WRF) model over the city of Lisbon, Portugal, during a light rain event not forecast by the model.Results showed that after data assimilation, there is a bias correction of the PWV field and an improvement in the forecast of the weakto moderate rainfall up to 9 h after the assimilation time. We used, for the first time, the Weather Research and Forecast Data Assimilation (WRFDA) model, at micro-scale resolutions (3 km), over the Iberian Peninsula (focusing on the southern region of Spain) and during a convective cell associated with a local heavy rainfall event, to study the impact of assimilation PWV maps obtained from SAR interferometric phase calculated using images acquired by the Sentinel-1 satellite. It's worth noting that, in this case, the model without assimilation PWV maps fails to reproduce the amount and the region of heavy rainfall. The assimilation of InSAR-PWV maps with high spatial variability by the WRF model, promoted alterations in the buoyancy force over the study area and consequently increased the atmospheric instability, were new convection cells were generated over the correct area. We assessed the results using in-situ meteorological data and with a meteorological radar. With the Sentinel-1 A/B C-band sensors its possible generate maps of PWV over large areas with a length of hundreds of kilometers and a width of about 250 km (country-spanning areas), a spatial resolution of 5×20 m and an absolute revisiting time of 6 days or fewer when combined with other sensors, opening new perspectives to the application of SAR meteorology concept. The availability of interferometric PWV maps on a routine basis can help to capture the high variability of the water vapor distribution at micro-scales. In this study, we show that the knowledge of the PWV with high spatial resolution can change the system thermodynamics to improve the NWP accuracy. Publication supported by the Short-Term Mobility Consiglio Nazionale delle Ricerche programs 2015 and 2016 and the Postdoctoral Grant SFRH/BPD/96069/2013. References: [1] E. Pichelli et al., "InSAR water vapor data assimilation into mesoscale model MM5: Technique and pilot study," IEEE J. Sel. Topics Appl. Earth Observ. Remote Sens., vol. 8, no. 8, pp. 3859-3875, Aug. 2015. [2] P. Mateus, R. Tomé, G. Nico, and J. Catalão, "Three-Dimensional Variational Assimilation of InSAR PWV Using the WRFDA Model," IEEE Transactions on Geoscience and Remote Sensing, vol. 54, no. 12, pp. 7323-7330, 2016.
Integration of Local Observations into the One Dimensional Fog Model PAFOG
NASA Astrophysics Data System (ADS)
Thoma, Christina; Schneider, Werner; Masbou, Matthieu; Bott, Andreas
2012-05-01
The numerical prediction of fog requires a very high vertical resolution of the atmosphere. Owing to a prohibitive computational effort of high resolution three dimensional models, operational fog forecast is usually done by means of one dimensional fog models. An important condition for a successful fog forecast with one dimensional models consists of the proper integration of observational data into the numerical simulations. The goal of the present study is to introduce new methods for the consideration of these data in the one dimensional radiation fog model PAFOG. First, it will be shown how PAFOG may be initialized with observed visibilities. Second, a nudging scheme will be presented for the inclusion of measured temperature and humidity profiles in the PAFOG simulations. The new features of PAFOG have been tested by comparing the model results with observations of the German Meteorological Service. A case study will be presented that reveals the importance of including local observations in the model calculations. Numerical results obtained with the modified PAFOG model show a distinct improvement of fog forecasts regarding the times of fog formation, dissipation as well as the vertical extent of the investigated fog events. However, model results also reveal that a further improvement of PAFOG might be possible if several empirical model parameters are optimized. This tuning can only be realized by comprehensive comparisons of model simulations with corresponding fog observations.
Quality Assessment of the Cobel-Isba Numerical Forecast System of Fog and Low Clouds
NASA Astrophysics Data System (ADS)
Bergot, Thierry
2007-06-01
Short-term forecasting of fog is a difficult issue which can have a large societal impact. Fog appears in the surface boundary layer and is driven by the interactions between land surface and the lower layers of the atmosphere. These interactions are still not well parameterized in current operational NWP models, and a new methodology based on local observations, an adaptive assimilation scheme and a local numerical model is tested. The proposed numerical forecast method of foggy conditions has been run during three years at Paris-CdG international airport. This test over a long-time period allows an in-depth evaluation of the forecast quality. This study demonstrates that detailed 1-D models, including detailed physical parameterizations and high vertical resolution, can reasonably represent the major features of the life cycle of fog (onset, development and dissipation) up to +6 h. The error on the forecast onset and burn-off time is typically 1 h. The major weakness of the methodology is related to the evolution of low clouds (stratus lowering). Even if the occurrence of fog is well forecasted, the value of the horizontal visibility is only crudely forecasted. Improvements in the microphysical parameterization and in the translation algorithm converting NWP prognostic variables into a corresponding horizontal visibility seems necessary to accurately forecast the value of the visibility.
NASA Technical Reports Server (NTRS)
Taylor, Gregory E.; Zack, John W.; Manobianco, John
1994-01-01
NASA funded Mesoscale Environmental Simulations and Operations (MESO), Inc. to develop a version of the Mesoscale Atmospheric Simulation System (MASS). The model has been modified specifically for short-range forecasting in the vicinity of KSC/CCAS. To accomplish this, the model domain has been limited to increase the number of horizontal grid points (and therefore grid resolution) and the model' s treatment of precipitation, radiation, and surface hydrology physics has been enhanced to predict convection forced by local variations in surface heat, moisture fluxes, and cloud shading. The objective of this paper is to (1) provide an overview of MASS including the real-time initialization and configuration for running the data pre-processor and model, and (2) to summarize the preliminary evaluation of the model's forecasts of temperature, moisture, and wind at selected rawinsonde station locations during February 1994 and July 1994. MASS is a hydrostatic, three-dimensional modeling system which includes schemes to represent planetary boundary layer processes, surface energy and moisture budgets, free atmospheric long and short wave radiation, cloud microphysics, and sub-grid scale moist convection.
The implementation of sea ice model on a regional high-resolution scale
NASA Astrophysics Data System (ADS)
Prasad, Siva; Zakharov, Igor; Bobby, Pradeep; McGuire, Peter
2015-09-01
The availability of high-resolution atmospheric/ocean forecast models, satellite data and access to high-performance computing clusters have provided capability to build high-resolution models for regional ice condition simulation. The paper describes the implementation of the Los Alamos sea ice model (CICE) on a regional scale at high resolution. The advantage of the model is its ability to include oceanographic parameters (e.g., currents) to provide accurate results. The sea ice simulation was performed over Baffin Bay and the Labrador Sea to retrieve important parameters such as ice concentration, thickness, ridging, and drift. Two different forcing models, one with low resolution and another with a high resolution, were used for the estimation of sensitivity of model results. Sea ice behavior over 7 years was simulated to analyze ice formation, melting, and conditions in the region. Validation was based on comparing model results with remote sensing data. The simulated ice concentration correlated well with Advanced Microwave Scanning Radiometer for EOS (AMSR-E) and Ocean and Sea Ice Satellite Application Facility (OSI-SAF) data. Visual comparison of ice thickness trends estimated from the Soil Moisture and Ocean Salinity satellite (SMOS) agreed with the simulation for year 2010-2011.
A Data Assimilation System For Operational Weather Forecast In Galicia Region (nw Spain)
NASA Astrophysics Data System (ADS)
Balseiro, C. F.; Souto, M. J.; Pérez-Muñuzuri, V.; Brewster, K.; Xue, M.
Regional weather forecast models, such as the Advanced Regional Prediction System (ARPS), over complex environments with varying local influences require an accurate meteorological analysis that should include all local meteorological measurements available. In this work, the ARPS Data Analysis System (ADAS) (Xue et al. 2001) is applied as a three-dimensional weather analysis tool to include surface station and rawinsonde data with the NCEP AVN forecasts as the analysis background. Currently in ADAS, a set of five meteorological variables are considered during the analysis: horizontal grid-relative wind components, pressure, potential temperature and spe- cific humidity. The analysis is used for high resolution numerical weather prediction for the Galicia region. The analysis method used in ADAS is based on the successive corrective scheme of Bratseth (1986), which asymptotically approaches the result of a statistical (optimal) interpolation, but at lower computational cost. As in the optimal interpolation scheme, the Bratseth interpolation method can take into account the rel- ative error between background and observational data, therefore they are relatively insensitive to large variations in data density and can integrate data of mixed accuracy. This method can be applied economically in an operational setting, providing signifi- cant improvement over the background model forecast as well as any analysis without high-resolution local observations. A one-way nesting is applied for weather forecast in Galicia region, and the use of this assimilation system in both domains shows better results not only in initial conditions but also in all forecast periods. Bratseth, A.M. (1986): "Statistical interpolation by means of successive corrections." Tellus, 38A, 439-447. Souto, M. J., Balseiro, C. F., Pérez-Muñuzuri, V., Xue, M. Brewster, K., (2001): "Im- pact of cloud analysis on numerical weather prediction in the galician region of Spain". Submitted to Journal of Applied Meteorology. Xue, M., Wang. D., Gao, J., Brewster, K, Droegemeier, K. K., (2001): "The Advanced Regional Prediction System (ARPS), storm-scale numerical weather prediction and data assimilation". Meteor. Atmos Physics. Accepted
Development of a satellite-based nowcasting system for surface solar radiation
NASA Astrophysics Data System (ADS)
Limbach, Sebastian; Hungershoefer, Katja; Müller, Richard; Trentmann, Jörg; Asmus, Jörg; Schömer, Elmar; Groß, André
2014-05-01
The goal of the RadNowCast project was the development of a tool-chain for a satellite-based nowcasting of the all sky global and direct surface solar radiation. One important application of such short-term forecasts is the computation of the expected energy yield of photovoltaic systems. This information is of great importance for an efficient balancing of power generation and consumption in large, decentralized power grids. Our nowcasting approach is based on an optical-flow analysis of a series of Meteosat SEVIRI satellite images. For this, we extended and combined several existing software tools and set up a series of benchmarks for determining the optimal forecasting parameters. The first step in our processing-chain is the determination of the cloud albedo from the HRV (High Resolution Visible)-satellite images using a Heliosat-type method. The actual nowcasting is then performed by a commercial software system in two steps: First, vector fields characterizing the movement of the clouds are derived from the cloud albedo data from the previous 15 min to 2 hours. Next, these vector fields are combined with the most recent cloud albedo data in order to extrapolate the cloud albedo in the near future. In the last step of the processing, the Gnu-Magic software is used to calculate the global and direct solar radiation based on the forecasted cloud albedo data. For an evaluation of the strengths and weaknesses of our nowcastig system, we analyzed four different benchmarks, each of which covered different weather conditions. We compared the forecasted data with radiation data derived from the real satellite images of the corresponding time steps. The impact of different parameters on the cloud albedo nowcasting and the surface radiation computation has been analysed. Additionally, we could show that our cloud-albedo-based forecasts outperform forecasts based on the original HRV images. Possible future extension are the incorporation of additional data sources, for example NWC-SAF high resolution wind fields, in order to improve the quality of the atmospheric motion fields, and experiments with custom, optimized software components for the optical-flow estimation and the nowcasting.
NASA Technical Reports Server (NTRS)
Tao, W.-K.; Shi, J.; Chen, S. S>
2007-01-01
Advances in computing power allow atmospheric prediction models to be mn at progressively finer scales of resolution, using increasingly more sophisticated physical parameterizations and numerical methods. The representation of cloud microphysical processes is a key component of these models, over the past decade both research and operational numerical weather prediction models have started using more complex microphysical schemes that were originally developed for high-resolution cloud-resolving models (CRMs). A recent report to the United States Weather Research Program (USWRP) Science Steering Committee specifically calls for the replacement of implicit cumulus parameterization schemes with explicit bulk schemes in numerical weather prediction (NWP) as part of a community effort to improve quantitative precipitation forecasts (QPF). An improved Goddard bulk microphysical parameterization is implemented into a state-of the-art of next generation of Weather Research and Forecasting (WRF) model. High-resolution model simulations are conducted to examine the impact of microphysical schemes on two different weather events (a midlatitude linear convective system and an Atllan"ic hurricane). The results suggest that microphysics has a major impact on the organization and precipitation processes associated with a summer midlatitude convective line system. The 31CE scheme with a cloud ice-snow-hail configuration led to a better agreement with observation in terms of simulated narrow convective line and rainfall intensity. This is because the 3ICE-hail scheme includes dense ice precipitating (hail) particle with very fast fall speed (over 10 m/s). For an Atlantic hurricane case, varying the microphysical schemes had no significant impact on the track forecast but did affect the intensity (important for air-sea interaction)
NASA Astrophysics Data System (ADS)
Di, Zhenhua; Duan, Qingyun; Wang, Chen; Ye, Aizhong; Miao, Chiyuan; Gong, Wei
2018-03-01
Forecasting skills of the complex weather and climate models have been improved by tuning the sensitive parameters that exert the greatest impact on simulated results based on more effective optimization methods. However, whether the optimal parameter values are still work when the model simulation conditions vary, which is a scientific problem deserving of study. In this study, a highly-effective optimization method, adaptive surrogate model-based optimization (ASMO), was firstly used to tune nine sensitive parameters from four physical parameterization schemes of the Weather Research and Forecasting (WRF) model to obtain better summer precipitation forecasting over the Greater Beijing Area in China. Then, to assess the applicability of the optimal parameter values, simulation results from the WRF model with default and optimal parameter values were compared across precipitation events, boundary conditions, spatial scales, and physical processes in the Greater Beijing Area. The summer precipitation events from 6 years were used to calibrate and evaluate the optimal parameter values of WRF model. Three boundary data and two spatial resolutions were adopted to evaluate the superiority of the calibrated optimal parameters to default parameters under the WRF simulations with different boundary conditions and spatial resolutions, respectively. Physical interpretations of the optimal parameters indicating how to improve precipitation simulation results were also examined. All the results showed that the optimal parameters obtained by ASMO are superior to the default parameters for WRF simulations for predicting summer precipitation in the Greater Beijing Area because the optimal parameters are not constrained by specific precipitation events, boundary conditions, and spatial resolutions. The optimal values of the nine parameters were determined from 127 parameter samples using the ASMO method, which showed that the ASMO method is very highly-efficient for optimizing WRF model parameters.
UK Environmental Prediction - integration and evaluation at the convective scale
NASA Astrophysics Data System (ADS)
Fallmann, Joachim; Lewis, Huw; Castillo, Juan Manuel; Pearson, David; Harris, Chris; Saulter, Andy; Bricheno, Lucy; Blyth, Eleanor
2016-04-01
Traditionally, the simulation of regional ocean, wave and atmosphere components of the Earth System have been considered separately, with some information on other components provided by means of boundary or forcing conditions. More recently, the potential value of a more integrated approach, as required for global climate and Earth System prediction, for regional short-term applications has begun to gain increasing research effort. In the UK, this activity is motivated by an understanding that accurate prediction and warning of the impacts of severe weather requires an integrated approach to forecasting. The substantial impacts on individuals, businesses and infrastructure of such events indicate a pressing need to understand better the value that might be delivered through more integrated environmental prediction. To address this need, the Met Office, NERC Centre for Ecology & Hydrology and NERC National Oceanography Centre have begun to develop the foundations of a coupled high resolution probabilistic forecast system for the UK at km-scale. This links together existing model components of the atmosphere, coastal ocean, land surface and hydrology. Our initial focus has been on a 2-year Prototype project to demonstrate the UK coupled prediction concept in research mode. This presentation will provide an update on UK environmental prediction activities. We will present the results from the initial implementation of an atmosphere-land-ocean coupled system, including a new eddy-permitting resolution ocean component, and discuss progress and initial results from further development to integrate wave interactions in this relatively high resolution system. We will discuss future directions and opportunities for collaboration in environmental prediction, and the challenges to realise the potential of integrated regional coupled forecasting for improving predictions and applications.
NASA Astrophysics Data System (ADS)
Abernethy, Jennifer A.
Pilots' ability to avoid clear-air turbulence (CAT) during flight affects the safety of the millions of people who fly commercial airlines and other aircraft, and turbulence costs millions in injuries and aircraft maintenance every year. Forecasting CAT is not straightforward, however; microscale features like the turbulence eddies that affect aircraft (100m) are below the current resolution of operational numerical weather prediction (NWP) models, and the only evidence of CAT episodes, until recently, has been sparse, subjective reports from pilots known as PIREPs. To forecast CAT, researchers use a simple weighted sum of top-performing turbulence indicators derived from NWP model outputs---termed diagnostics---based on their agreement with current PIREPs. However, a new, quantitative source of observation data---high-density measurements made by sensor equipment and software on aircraft, called in-situ measurements---is now available. The main goal of this thesis is to develop new data analysis and processing techniques to apply to the model and new observation data, in order to improve CAT forecasting accuracy. This thesis shows that using in-situ data improves forecasting accuracy and that automated machine learning algorithms such as support vector machines (SVM), logistic regression, and random forests, can match current performance while eliminating almost all hand-tuning. Feature subset selection is paired with the new algorithms to choose diagnostics that predict well as a group rather than individually. Specializing forecasts and choice of diagnostics by geographic region further improves accuracy because of the geographic variation in turbulence sources. This work uses random forests to find climatologically-relevant regions based on these variations and implements a forecasting system testbed which brings these techniques together to rapidly prototype new, regionalized versions of operational CAT forecasting systems.
An Airborne Conflict Resolution Approach Using a Genetic Algorithm
NASA Technical Reports Server (NTRS)
Mondoloni, Stephane; Conway, Sheila
2001-01-01
An airborne conflict resolution approach is presented that is capable of providing flight plans forecast to be conflict-free with both area and traffic hazards. This approach is capable of meeting constraints on the flight plan such as required times of arrival (RTA) at a fix. The conflict resolution algorithm is based upon a genetic algorithm, and can thus seek conflict-free flight plans meeting broader flight planning objectives such as minimum time, fuel or total cost. The method has been applied to conflicts occurring 6 to 25 minutes in the future in climb, cruise and descent phases of flight. The conflict resolution approach separates the detection, trajectory generation and flight rules function from the resolution algorithm. The method is capable of supporting pilot-constructed resolutions, cooperative and non-cooperative maneuvers, and also providing conflict resolution on trajectories forecast by an onboard FMC.
Cloud Computing Applications in Support of Earth Science Activities at Marshall Space Flight Center
NASA Technical Reports Server (NTRS)
Molthan, Andrew L.; Limaye, Ashutosh S.; Srikishen, Jayanthi
2011-01-01
Currently, the NASA Nebula Cloud Computing Platform is available to Agency personnel in a pre-release status as the system undergoes a formal operational readiness review. Over the past year, two projects within the Earth Science Office at NASA Marshall Space Flight Center have been investigating the performance and value of Nebula s "Infrastructure as a Service", or "IaaS" concept and applying cloud computing concepts to advance their respective mission goals. The Short-term Prediction Research and Transition (SPoRT) Center focuses on the transition of unique NASA satellite observations and weather forecasting capabilities for use within the operational forecasting community through partnerships with NOAA s National Weather Service (NWS). SPoRT has evaluated the performance of the Weather Research and Forecasting (WRF) model on virtual machines deployed within Nebula and used Nebula instances to simulate local forecasts in support of regional forecast studies of interest to select NWS forecast offices. In addition to weather forecasting applications, rapidly deployable Nebula virtual machines have supported the processing of high resolution NASA satellite imagery to support disaster assessment following the historic severe weather and tornado outbreak of April 27, 2011. Other modeling and satellite analysis activities are underway in support of NASA s SERVIR program, which integrates satellite observations, ground-based data and forecast models to monitor environmental change and improve disaster response in Central America, the Caribbean, Africa, and the Himalayas. Leveraging SPoRT s experience, SERVIR is working to establish a real-time weather forecasting model for Central America. Other modeling efforts include hydrologic forecasts for Kenya, driven by NASA satellite observations and reanalysis data sets provided by the broader meteorological community. Forecast modeling efforts are supplemented by short-term forecasts of convective initiation, determined by geostationary satellite observations processed on virtual machines powered by Nebula.
Adaptive use of research aircraft data sets for hurricane forecasts
NASA Astrophysics Data System (ADS)
Biswas, M. K.; Krishnamurti, T. N.
2008-02-01
This study uses an adaptive observational strategy for hurricane forecasting. It shows the impacts of Lidar Atmospheric Sensing Experiment (LASE) and dropsonde data sets from Convection and Moisture Experiment (CAMEX) field campaigns on hurricane track and intensity forecasts. The following cases are used in this study: Bonnie, Danielle and Georges of 1998 and Erin, Gabrielle and Humberto of 2001. A single model run for each storm is carried out using the Florida State University Global Spectral Model (FSUGSM) with the European Center for Medium Range Weather Forecasts (ECMWF) analysis as initial conditions, in addition to 50 other model runs where the analysis is randomly perturbed for each storm. The centers of maximum variance of the DLM heights are located from the forecast error variance fields at the 84-hr forecast. Back correlations are then performed using the centers of these maximum variances and the fields at the 36-hr forecast. The regions having the highest correlations in the vicinity of the hurricanes are indicative of regions from where the error growth emanates and suggests the need for additional observations. Data sets are next assimilated in those areas that contain high correlations. Forecasts are computed using the new initial conditions for the storm cases, and track and intensity skills are then examined with respect to the control forecast. The adaptive strategy is capable of identifying sensitive areas where additional observations can help in reducing the hurricane track forecast errors. A reduction of position error by approximately 52% for day 3 of forecast (averaged over 7 storm cases) over the control runs is observed. The intensity forecast shows only a slight positive impact due to the model’s coarse resolution.
NASA Technical Reports Server (NTRS)
Duda, David P.; Minnis, Patrick
2009-01-01
Previous studies have shown that probabilistic forecasting may be a useful method for predicting persistent contrail formation. A probabilistic forecast to accurately predict contrail formation over the contiguous United States (CONUS) is created by using meteorological data based on hourly meteorological analyses from the Advanced Regional Prediction System (ARPS) and from the Rapid Update Cycle (RUC) as well as GOES water vapor channel measurements, combined with surface and satellite observations of contrails. Two groups of logistic models were created. The first group of models (SURFACE models) is based on surface-based contrail observations supplemented with satellite observations of contrail occurrence. The second group of models (OUTBREAK models) is derived from a selected subgroup of satellite-based observations of widespread persistent contrails. The mean accuracies for both the SURFACE and OUTBREAK models typically exceeded 75 percent when based on the RUC or ARPS analysis data, but decreased when the logistic models were derived from ARPS forecast data.
A Comparison Study of Two Numerical Tsunami Forecasting Systems
NASA Astrophysics Data System (ADS)
Greenslade, Diana J. M.; Titov, Vasily V.
2008-12-01
This paper presents a comparison of two tsunami forecasting systems: the NOAA/PMEL system (SIFT) and the Australian Bureau of Meteorology system (T1). Both of these systems are based on a tsunami scenario database and both use the same numerical model. However, there are some major differences in the way in which the scenarios are constructed and in the implementation of the systems. Two tsunami events are considered here: Tonga 2006 and Sumatra 2007. The results show that there are some differences in the distribution of maximum wave amplitude, particularly for the Tonga event, however both systems compare well to the available tsunameter observations. To assess differences in the forecasts for coastal amplitude predictions, the offshore forecast results from both systems were used as boundary conditions for a high-resolution model for Hilo, Hawaii. The minor differences seen between the two systems in deep water become considerably smaller at the tide gauge and both systems compare very well with the observations.
NASA Technical Reports Server (NTRS)
Case, Jonathan L.; Wheeler, Mark M.; Merceret, Francis J. (Technical Monitor)
2002-01-01
The nocturnal land breeze at the Kennedy Space Center (KSC) and Cape Canaveral Air Force Station (CCAFS) is both operationally significant and challenging to forecast. The occurrence and timing of land breezes impact low-level winds, atmospheric stability, low temperatures, and fog development. Accurate predictions of the land breeze are critical for toxic material dispersion forecasts associated with space launch missions, since wind direction and low-level stability can change noticeably with the onset of a land breeze. This report presents a seven-year observational study of land breezes over east-central Florida from 1995 to 2001. This comprehensive analysis was enabled by the high-resolution tower observations over KSC/CCAFS. Five-minute observations of winds, temperature, and moisture along with 9 15-MHz Doppler Radar Wind Profiler data were used to analyze specific land-breeze cases, while the tower data were used to construct a composite climatology. Utilities derived from this climatology were developed to assist forecasters in determining the land-breeze occurrence, timing, and movement based on predicted meteorological conditions.
NASA Astrophysics Data System (ADS)
Moore, A. W.; Bock, Y.; Geng, J.; Gutman, S. I.; Laber, J. L.; Morris, T.; Offield, D. G.; Small, I.; Squibb, M. B.
2012-12-01
We describe a system under development for generating ultra-low latency tropospheric delay and precipitable water vapor (PWV) estimates in situ at a prototype network of geodetic GPS sites in southern California, and demonstrating their utility in forecasting severe storms commonly associated with flooding and debris flow events along the west coast of North America through infusion of this meteorological data at NOAA National Weather Service (NWS) Forecast Offices and the NOAA Earth System Research Laboratory (ESRL). The first continuous geodetic GPS network was established in southern California in the early 1990s and much of it was converted to real-time (latency <1s) high-rate (1Hz) mode over the following decades. GPS stations are multi-purpose and can also provide estimates of tropospheric zenith delays, which can be converted into mm-accuracy PWV using collocated pressure and temperature measurements, the basis for GPS meteorology (Bevis et al. 1992, 1994; Duan et al. 1996) as implemented by NOAA with a nationwide distribution of about 300 GPS-Met stations providing PW estimates at subhourly resolution currently used in operational weather forecasting in the U.S. We improve upon the current paradigm of transmitting large quantities of raw data back to a central facility for processing into higher-order products. By operating semi-autonomously, each station will provide low-latency, high-fidelity and compact data products within the constraints of the narrow communications bandwidth that often occurs in the aftermath of natural disasters. The onsite ambiguity-resolved precise point positioning solutions are enabled by a power-efficient, low-cost, plug-in Geodetic Module for fusion of data from in situ sensors including GPS and a low-cost MEMS meteorological sensor package. The decreased latency (~5 minutes) PW estimates will provide the detailed knowledge of the distribution and magnitude of PW that NWS forecasters require to monitor and predict severe winter storms, landfalling atmospheric rivers, and summer thunderstorms associated with the North American monsoon. On the national level, the ESRL will evaluate the utility of ultra-low resolution GNSS observations to improve NOAA's warning and forecast capabilities. The overall objective is to better forecast, assess, and mitigate natural hazards through the flow of information from multiple geodetic stations to scientists, mission planners, decision makers, and first responders.
NASA Astrophysics Data System (ADS)
Hristova-Veleva, S. M.; Chen, H.; Gopalakrishnan, S.; Haddad, Z. S.
2017-12-01
Tropical cyclones (TCs) are the product of complex multi-scale processes and interactions. The role of the environment has long been recognized. However, recent research has shown that convective-scale processes in the hurricane core might also play a crucial role in determining TCs intensity and size. Several studies have linked Rapid Intensification to the characteristics of the convective clouds (shallow versus deep), their organization (isolated versus wide-spread) and their location with respect to dynamical controls (the vertical shear, the radius of maximum wind). Yet a third set of controls signifies the interaction between the storm-scale and large-scale processes. Our goal is to use observations and models to advance the still-lacking understanding of these processes. Recently, hurricane models have improved significantly. However, deterministic forecasts have limitations due to the uncertainty in the representation of the physical processes and initial conditions. A crucial step forward is the use of high-resolution ensembles. We adopt the following approach: i) generate a high resolution ensemble forecast using HWRF; ii) produce synthetic data (e.g. brightness temperature) from the model fields for direct comparison to satellite observations; iii) develop metrics to allow us to sub-select the realistic members of the ensemble, based on objective measures of the similarity between observed and forecasted structures; iv) for these most-realistic members, determine the skill in forecasting TCs to provide"guidance on guidance"; v) use the members with the best predictive skill to untangle the complex multi-scale interactions. We will report on the first three goals of our research, using forecasts and observations of hurricane Edouard (2014), focusing on RI. We will focus on describing the metrics for the selection of the most appropriate ensemble members, based on applying low-wave number analysis (WNA - Hristova-Veleva et al., 2016) to the observed and forecasted 2D fields to develop objective criteria for consistency. We investigate the WNA cartoons of environmental moisture, precipitation structure and surface convergence. We will present the preliminary selection of most skillful members and will outline our future goals - analyzing the multi-scale interactions using these members
NASA Astrophysics Data System (ADS)
Korabel, Vasily; She, Jun; Huess, Vibeke; Woge Nielsen, Jacob; Murawsky, Jens; Nerger, Lars
2017-04-01
The potential of an efficient data assimilation (DA) scheme to improve model forecast skill was successfully demonstrated by many operational centres around the world. The Baltic-North Sea region is one of the most heavily monitored seas. Ferryboxes, buoys, ADCP moorings, shallow water Argo floats, and research vessels are providing more and more near-real time observations. Coastal altimetry has now providing increasing amount of high resolution sea level observations, which will be significantly expanded by the launch of SWOT satellite in next years. This will turn operational DA into a valuable tool for improving forecast quality in the region. This motivated us to focus on advancing DA for the Baltic Monitoring and Forecasting Centre (BAL MFC) in order to create a common framework for operational data assimilation in the Baltic Sea. We have implemented HBM-PDAF system based on the Parallel Data Assimilation Framework (PDAF), a highly versatile and optimised parallel suit with a choice of sequential schemes originally developed at AWI, and a hydrodynamic HIROMB-BOOS Model (HBM). At initial phase, only the satellite Sea Surface Temperature (SST) Level 3 data has been assimilated. Several related aspects are discussed, including improvements of the forecast quality for both surface and subsurface fields, the estimation of ensemble-based forecast error covariance, as well as possibilities of assimilating new types of observations, such as in-situ salinity and temperature profiles, coastal altimetry, and ice concentration.
3.1 Global High Resolution Analyses and Forecasts at the Mesoscale
2008-11-01
drifters drogued at 15 m are deployed throughout the world ocean and report real-time data typically 16-20 times a day (Lumpkin and Pazos , 2007; NOAA...Atmos. Oceans, 45: 102-134. Lumpkin, R. and M. Pazos (2007) Measuring surface currents with SVP drifters: The instrument, its data, and some recent
2012-09-30
package developed by the Cloud Feedback Model Intercomparison Project (CFMIP), COSP (BODAS- SALCEDO et al. 2011). COSP will convert the model hydrometers ...and infrared data at high spatial and temporal resolution. J. Hydromet ., 5, 487-503. Kay, J. E. et al., 2012: Exposing global cloud biases in the
Distant Influence of Kuroshio Eddies on North Pacific Weather Patterns?
Ma, Xiaohui; Chang, Ping; Saravanan, R; Montuoro, Raffaele; Hsieh, Jen-Shan; Wu, Dexing; Lin, Xiaopei; Wu, Lixin; Jing, Zhao
2015-12-04
High-resolution satellite measurements of surface winds and sea-surface temperature (SST) reveal strong coupling between meso-scale ocean eddies and near-surface atmospheric flow over eddy-rich oceanic regions, such as the Kuroshio and Gulf Stream, highlighting the importance of meso-scale oceanic features in forcing the atmospheric planetary boundary layer (PBL). Here, we present high-resolution regional climate modeling results, supported by observational analyses, demonstrating that meso-scale SST variability, largely confined in the Kuroshio-Oyashio confluence region (KOCR), can further exert a significant distant influence on winter rainfall variability along the U.S. Northern Pacific coast. The presence of meso-scale SST anomalies enhances the diabatic conversion of latent heat energy to transient eddy energy, intensifying winter cyclogenesis via moist baroclinic instability, which in turn leads to an equivalent barotropic downstream anticyclone anomaly with reduced rainfall. The finding points to the potential of improving forecasts of extratropical winter cyclones and storm systems and projections of their response to future climate change, which are known to have major social and economic impacts, by improving the representation of ocean eddy-atmosphere interaction in forecast and climate models.
Operational use of high-resolution sst in a coupled sea ice-ocean model
NASA Astrophysics Data System (ADS)
Albretsen, A.
2003-04-01
A high-latitude, near real time, sea surface temperature (SST) product with 10 km resolution is developed at the Norwegian Meteorological Institute (met.no) through the EUMETSAT project OSI-SAF (Ocean and Sea Ice Satellite Application Facility). The product covers the Atlantic Ocean from 50N to 90N and is produced twice daily. A digitized SST and sea ice map is produced manually once a week at the Ice Mapping Service at met.no using all available information from the previous week. This map is the basis for a daily SST analysis, in which the most recent OSI-SAF SST products are successively overlaid. The resulting SST analysis field is then used in a simple data assimilation scheme in a coupled ice-ocean model to perform daily 10 days forecasts of ocean and sea ice variables. Also, the associated OSI-SAF sea ice concentration product, built from different polar orbiting satellites, is assimilated into the sea ice model. Preliminary estimates of impact on forecast skill and error statistics will be presented.
NASA Technical Reports Server (NTRS)
Hillger, D. W.; Vonder Haar, T. H.
1977-01-01
The ability to provide mesoscale temperature and moisture fields from operational satellite infrared sounding radiances over the United States is explored. High-resolution sounding information for mesoscale analysis and forecasting is shown to be obtainable in mostly clear areas. An iterative retrieval algorithm applied to NOAA-VTPR radiances uses a mean radiosonde sounding as a best initial-guess profile. Temperature soundings are then retrieved at a horizontal resolution of about 70 km, as is an indication of the precipitable water content of the vertical sounding columns. Derived temperature values may be biased in general by the initial-guess sounding or in certain areas by the cloud correction technique, but the resulting relative temperature changes across the field when not contaminated by clouds will be useful for mesoscale forecasting and models. The derived moisture, affected only by high clouds, proves to be reliable to within 0.5 cm of precipitable water and contains valuable horizontal information. Present-day applications from polar-orbiting satellites as well as possibilities from upcoming temperature and moisture sounders on geostationary satellites are noted.
Wind Power Forecasting Error Frequency Analyses for Operational Power System Studies: Preprint
DOE Office of Scientific and Technical Information (OSTI.GOV)
Florita, A.; Hodge, B. M.; Milligan, M.
2012-08-01
The examination of wind power forecasting errors is crucial for optimal unit commitment and economic dispatch of power systems with significant wind power penetrations. This scheduling process includes both renewable and nonrenewable generators, and the incorporation of wind power forecasts will become increasingly important as wind fleets constitute a larger portion of generation portfolios. This research considers the Western Wind and Solar Integration Study database of wind power forecasts and numerical actualizations. This database comprises more than 30,000 locations spread over the western United States, with a total wind power capacity of 960 GW. Error analyses for individual sites andmore » for specific balancing areas are performed using the database, quantifying the fit to theoretical distributions through goodness-of-fit metrics. Insights into wind-power forecasting error distributions are established for various levels of temporal and spatial resolution, contrasts made among the frequency distribution alternatives, and recommendations put forth for harnessing the results. Empirical data are used to produce more realistic site-level forecasts than previously employed, such that higher resolution operational studies are possible. This research feeds into a larger work of renewable integration through the links wind power forecasting has with various operational issues, such as stochastic unit commitment and flexible reserve level determination.« less
City scale pollen concentration variability
NASA Astrophysics Data System (ADS)
van der Molen, Michiel; van Vliet, Arnold; Krol, Maarten
2016-04-01
Pollen are emitted in the atmosphere both in the country-side and in cities. Yet the majority of the population is exposed to pollen in cities. Allergic reactions may be induced by short-term exposure to pollen. This raises the question how variable pollen concentration in cities are in temporally and spatially, and how much of the pollen in cities are actually produced in the urban region itself. We built a high resolution (1 × 1 km) pollen dispersion model based on WRF-Chem to study a city's pollen budget and the spatial and temporal variability in concentration. It shows that the concentrations are highly variable, as a result of source distribution, wind direction and boundary layer mixing, as well as the release rate as a function of temperature, turbulence intensity and humidity. Hay Fever Forecasts based on such high resolution emission and physical dispersion modelling surpass traditional hay fever warning methods based on temperature sum methods. The model gives new insights in concentration variability, personal and community level exposure and prevention. The model will be developped into a new forecast tool to serve allergic people to minimize their exposure and reduce nuisance, coast of medication and sick leave. This is an innovative approach in hay fever warning systems.
NASA Technical Reports Server (NTRS)
Case, Jonathan L.; Lazarus, Steven M.; Splitt, Michael E.; Crosson, William L.; Lapenta, William M.; Jedlovec, Gary J.; Peters-Lidard, Christa D.
2008-01-01
The exchange of energy and moisture between the Earth's surface and the atmospheric boundary layer plays a critical role in many meteorological processes. High-resolution, accurate representations of surface properties such as sea-surface temperature (SST), soil temperature and moisture content, ground fluxes, and vegetation are necessary to better understand the Earth-atmosphere interactions and improve numerical predictions of sensible weather. The NASA Short-term Prediction Research and Transition (SPoRT) Center has been conducting separate studies to examine the impacts of high-resolution land-surface initialization data from the Goddard Space Flight Center Land Information System (LIS) on subsequent WRF forecasts, as well as the influence of initializing WRF with SST composites derived from the MODIS instrument. This current project addresses the combined impacts of using high-resolution lower boundary data over both land (LIS data) and water (MODIS SSTs) on the subsequent daily WRF forecasts over Florida during May 2004. For this experiment, the WRF model is configured to run on a nested domain with 9- km and 3-kin grid spacing, centered on the Florida peninsula and adjacent coastal waters of the Gulf of Mexico and Atlantic Ocean. A control configuration of WRF is established to take all initial condition data from the NCEP Eta model. Meanwhile, two WRF experimental runs are configured to use high-resolution initialization data from (1) LIS land-surface data only, and (2) a combination of LIS data and high-resolution MODIS SST composites. The experiment involves running 24-hour simulations of the control WRF configuration, the MS-initialized WRF, and the LIS+MODIS-initialized WRF daily for the entire month of May 2004. All atmospheric data for initial and boundary conditions for the Control, LIS, and LIS+MODIS runs come from the NCEP Eta model on a 40-km grid. Verification statistics are generated at land surface observation sites and buoys, and the impacts of the high-resolution lower boundary data on the development and evolution of mesoscale circulations such as sea and land breezes are examined, This paper will present the results of these WRF modeling experiments using LIS and MODIS lower boundary datasets over the Florida peninsula during May 2004.
Macroturbulence in Very High Resolution Atmospheric Models: Evidence for Two Scaling Regimes
NASA Astrophysics Data System (ADS)
Straus, D. M.
2010-12-01
The macro-turbulent properties of the atmosphere's circulation are examined in a number of very high resolution seasonal simulations using the global Nonhydrostatic ICosahedral Atmospheric Model (NICAM) at 7-km horizontal resolution (40 levels), and the forecast model of the European Centre for Medium-Range Weather Forecasts (ECMWF) at T1279 and T2047 spectral resolutions (90-levels). These simulations were carried out as part of an extraordinary collaborative project between the Center for Ocean-Land-Atmosphere Studies (COLA), the University of Tokyo, the Japan Agency for Marine-Earth Science and Technology (JAMSTEC), ECMWF, and the National Institute of Computational Sciences (NICS) The goals of the analysis are to document the rotational and divergence kinetic energy spectral characteristics, to shed light on the different scaling regimes obtained and the role of non-hydrostatic dynamics, and to asses the effects of the smallest scales on the cascades of energy. Simulations with all the models show some evidence of two scaling regimes (power law with steep slope, and a distinctly more shallow slope at smaller scales) for both rotational and divergent kinetic energy. The strength of the evidence for the two-regimes, as well as the wavenumber ranges in which they occur, do differ between models. Analysis of different time scale contributions to the spectra lend insight into the energy transfer mechanism. The implications for dynamical theories of turbulent energy exchange are discussed, as well as difference in approach to compared with multiplicative cascade theories.
Research on regional numerical weather prediction
NASA Technical Reports Server (NTRS)
Kreitzberg, C. W.
1976-01-01
Extension of the predictive power of dynamic weather forecasting to scales below the conventional synoptic or cyclonic scales in the near future is assessed. Lower costs per computation, more powerful computers, and a 100 km mesh over the North American area (with coarser mesh extending beyond it) are noted at present. Doubling the resolution even locally (to 50 km mesh) would entail a 16-fold increase in costs (including vertical resolution and halving the time interval), and constraints on domain size and length of forecast. Boundary conditions would be provided by the surrounding 100 km mesh, and time-varying lateral boundary conditions can be considered to handle moving phenomena. More physical processes to treat, more efficient numerical techniques, and faster computers (improved software and hardware) backing up satellite and radar data could produce further improvements in forecasting in the 1980s. Boundary layer modeling, initialization techniques, and quantitative precipitation forecasting are singled out among key tasks.
NASA Astrophysics Data System (ADS)
Munoz-Arriola, F.; Torres-Alavez, J.; Mohamad Abadi, A.; Walko, R. L.
2014-12-01
Our goal is to investigate possible sources of predictability of hydrometeorological extreme events in the Northern High Plains. Hydrometeorological extreme events are considered the most costly natural phenomena. Water deficits and surpluses highlight how the water-climate interdependence becomes crucial in areas where single activities drive economies such as Agriculture in the NHP. Nonetheless we recognize the Water-Climate interdependence and the regulatory role that human activities play, we still grapple to identify what sources of predictability could be added to flood and drought forecasts. To identify the benefit of multi-scale climate modeling and the role of initial conditions on flood and drought predictability on the NHP, we use the Ocean Land Atmospheric Model (OLAM). OLAM is characterized by a dynamic core with a global geodesic grid with hexagonal (and variably refined) mesh cells and a finite volume discretization of the full compressible Navier Stokes equations, a cut-grid cell method for topography (that reduces error in computational gradient computation and anomalous vertical dispersion). Our hypothesis is that wet conditions will drive OLAM's simulations of precipitation to wetter conditions affecting both flood forecast and drought forecast. To test this hypothesis we simulate precipitation during identified historical flood events followed by drought events in the NHP (i.e. 2011-2012 years). We initialized OLAM with CFS-data 1-10 days previous to a flooding event (as initial conditions) to explore (1) short-term and high-resolution and (2) long-term and coarse-resolution simulations of flood and drought events, respectively. While floods are assessed during a maximum of 15-days refined-mesh simulations, drought is evaluated during the following 15 months. Simulated precipitation will be compared with the Sub-continental Observation Dataset, a gridded 1/16th degree resolution data obtained from climatological stations in Canada, US, and Mexico. This in-progress research will ultimately contribute to integrate OLAM and VIC models and improve predictability of extreme hydrometeorological events.
NASA Astrophysics Data System (ADS)
Tang, Wei; Liao, Mingsheng; Zhang, Lu; Li, Wei; Yu, Weimin
2016-09-01
A high spatial and temporal resolution of the precipitable water vapour (PWV) in the atmosphere is a key requirement for the short-scale weather forecasting and climate research. The aim of this work is to derive temporally differenced maps of the spatial distribution of PWV by analysing the tropospheric delay "noise" in interferometric synthetic aperture radar (InSAR). Time series maps of differential PWV were obtained by processing a set of ENVISAT ASAR (Advanced Synthetic Aperture Radar) images covering the area of southern California, USA from 6 October 2007 to 29 November 2008. To get a more accurate PWV, the component of hydrostatic delay was calculated and subtracted by using ERA-Interim reanalysis products. In addition, the ERA-Interim was used to compute the conversion factors required to convert the zenith wet delay to water vapour. The InSAR-derived differential PWV maps were calibrated by means of the GPS PWV measurements over the study area. We validated our results against the measurements of PWV derived from the Medium Resolution Imaging Spectrometer (MERIS) which was located together with the ASAR sensor on board the ENVISAT satellite. Our comparative results show strong spatial correlations between the two data sets. The difference maps have Gaussian distributions with mean values close to zero and standard deviations below 2 mm. The advantage of the InSAR technique is that it provides water vapour distribution with a spatial resolution as fine as 20 m and an accuracy of ˜ 2 mm. Such high-spatial-resolution maps of PWV could lead to much greater accuracy in meteorological understanding and quantitative precipitation forecasts. With the launch of Sentinel-1A and Sentinel-1B satellites, every few days (6 days) new SAR images can be acquired with a wide swath up to 250 km, enabling a unique operational service for InSAR-based water vapour maps with unprecedented spatial and temporal resolution.
NASA Astrophysics Data System (ADS)
Chou, S. C.; Zolino, M. M.; Gomes, J. L.; Bustamante, J. F.; Lima-e-Silva, P. P.
2012-04-01
The Eta Model is used operationally by CPTEC to produce weather forecasts over South America since 1997. The model has gone through upgrades. In order to prepare the model for operational higher resolution forecasts, the model is configured and tested over a region of complex topography located near the coast of Southeast Brazil. The Eta Model was configured, with 2-km horizontal resolution and 50 layers. The Eta-2km is a second nesting, it is driven by Eta-15km, which in its turn is driven by Era-Interim reanalyses. The model domain includes the two Brazilians cities, Rio de Janeiro and Sao Paulo, urban areas, preserved tropical forest, pasture fields, and complex terrain and coastline. Mountains can rise up to about 700m. The region suffers frequent events of floods and landslides. The objective of this work is to evaluate high resolution simulations of wind and temperature in this complex area. Verification of model runs uses observations taken from the nuclear power plant. Accurate near-surface wind direction and magnitude are needed for the plant emergency plan and winds are highly sensitive to model spatial resolution and atmospheric stability. Verification of two cases during summer shows that model has clear diurnal cycle signal for wind in that region. The area is characterized by weak winds which makes the simulation more difficult. The simulated wind magnitude is about 1.5m/s, which is close to observations of about 2m/s; however, the observed change of wind direction of the sea breeze is fast whereas it is slow in the simulations. Nighttime katabatic flow is captured by the simulations. Comparison against Eta-5km runs show that the valley circulation is better described in the 2-km resolution run. Simulated temperatures follow closely the observed diurnal cycle. Experiments improving some surface conditions such as the surface temperature and land cover show simulation error reduction and improved diurnal cycle.
Evaluation of a regional assimilation system coupled with the WRF-chem model
NASA Astrophysics Data System (ADS)
Liu, Yan-an; Gao, Wei; Huang, Hung-lung; Strabala, Kathleen; Liu, Chaoshun; Shi, Runhe
2013-09-01
Air quality has become a social issue that is causing great concern to humankind across the globe, but particularly in developing countries. Even though the Weather Research and Forecasting with Chemistry (WRF-Chem) model has been applied in many regions, the resolution for inputting meteorology field analysis still impacts the accuracy of forecast. This article describes the application of the CIMSS Regional Assimilation System (CRAS) in East China, and its capability to assimilate the direct broadcast (DB) satellite data for obtaining more detailed meteorological information, including cloud top pressure (CTP) and total precipitation water (TPW) from MODIS. Performance evaluation of CRAS is based on qualitative and quantitative analyses. Compared with data collected from ERA-Interim, Radiosonde, and the Tropical Rainfall Measuring Mission (TRMM) precipitation measurements using bias and Root Mean Square Error (RMSE), CRAS has a systematic error due to the impact of topography and other factors; however, the forecast accuracy of all elements in the model center area is higher at various levels. The bias computed with Radiosonde reveals that the temperature and geopotential height of CRAS are better than ERA-Interim at first guess. Moreover, the location of the 24 h accumulated precipitation forecast are highly consistent with the TRMM retrieval precipitation, which means that the performance of CRAS is excellent. In summation, the newly built Vtable can realize the function of inputting the meteorology field from CRAS output into WRF, which couples the CRAS with WRF-Chem. Therefore, this study not only provides for forecast accuracy of CRAS, but also increases the capability of running the WRF-Chem model at higher resolutions in the future.
NASA Astrophysics Data System (ADS)
Barth, A.; Alvera-Azcarate, A.; Rixen, M.; Beckers, J.-M.; Testut, C.-E.; Brankart, J.-M.; Brasseur, P.
2003-04-01
The GHER 3D primitive equation model is implemented with three different resolutions: a low resolution model (1/4^o) covering the whole Mediterranean Sea, an intermediate resolution model (1/20^o) of the Liguro-Provençal basin and a high resolution model (1/60^o) simulating the fine mesoscale structures in the Ligurian Sea. Boundary conditions and the averaged fields (feedback) are exchanged between two successive nesting levels. The model of the Ligurian Sea is also coupled with the assimilation package SESAM. It allows to assimilate satellite data and in situ observations using the local adaptative SEEK (Singular Evolutive Extended Kalman) filter. Instead of evolving the error space by the numerically expensive Lyapunov equation, a simplified algebraic equation depending on the misfit between observation and model forecast is used. Starting from the 1st January 1998 the low and intermediate resolution models are spun up for 18 months. The initial conditions for the Ligurian Sea are interpolated from the intermediate resolution model. The three models are then integrated until August 1999. During this period AVHRR Sea Surface Temperature of the Ligurian Sea is assimilated. The results are validated by using CTD and XBT profiles of the SIRENA cruise from the SACLANT Center. The overall objective of this study is pre-operational. It should help to identify limitations and weaknesses of forecasting methods and to suggest improvements of existing operational models.
NASA Astrophysics Data System (ADS)
Fomin, Vladimir; Diansky, Nikolay; Gusev, Anatoly; Kabatchenko, Ilia; Panasenkova, Irina
2017-04-01
The diagnosis and forecast system for simulating hydrometeorological characteristics of the Russian Western Arctic seas is presented. It performs atmospheric forcing computation with the regional non-hydrostatic atmosphere model Weather Research and Forecasting model (WRF) with spatial resolution 15 km, as well as computation of circulation, sea level, temperature, salinity and sea ice with the marine circulation model INMOM (Institute of Numerical Mathematics Ocean Model) with spatial resolution 2.7 km, and the computation of wind wave parameters using the Russian wind-wave model (RWWM) with spatial resolution 5 km. Verification of the meteorological characteristics is done for air temperature, air pressure, wind velocity, water temperature, currents, sea level anomaly, wave characteristics such as wave height and wave period. The results of the hydrometeorological characteristic verification are presented for both retrospective and forecast computations. The retrospective simulation of the hydrometeorological characteristics for the White, Barents, Kara and Pechora Seas was performed with the diagnosis and forecast system for the period 1986-2015. The important features of the Kara Sea circulation are presented. Water exchange between Pechora and Kara Seas is described. The importance is shown of using non-hydrostatic atmospheric circulation model for the atmospheric forcing computation in coastal areas. According to the computation results, extreme values of hydrometeorological characteristics were obtained for the Russian Western Arctic seas.
NASA Astrophysics Data System (ADS)
Putman, W. M.; Suarez, M.
2009-12-01
The Goddard Earth Observing System Model (GEOS-5), an earth system model developed in the NASA Global Modeling and Assimilation Office (GMAO), has integrated the non-hydrostatic finite-volume dynamical core on the cubed-sphere grid. The extension to a non-hydrostatic dynamical framework and the quasi-uniform cubed-sphere geometry permits the efficient exploration of global weather and climate modeling at cloud permitting resolutions of 10- to 4-km on today's high performance computing platforms. We have explored a series of incremental increases in global resolution with GEOS-5 from it's standard 72-level 27-km resolution (~5.5 million cells covering the globe from the surface to 0.1 hPa) down to 3.5-km (~3.6 billion cells). We will present results from a series of forecast experiments exploring the impact of the non-hydrostatic dynamics at transition resolutions of 14- to 7-km, and the influence of increased horizontal/vertical resolution on convection and physical parameterizations within GEOS-5. Regional and mesoscale features of 5- to 10-day weather forecasts will be presented and compared with satellite observations. Our results will highlight the impact of resolution on the structure of cloud features including tropical convection and tropical cyclone predicability, cloud streets, von Karman vortices, and the marine stratocumulus cloud layer. We will also present experiment design and early results from climate impact experiments for global non-hydrostatic models using GEOS-5. Our climate experiments will focus on support for the Year of Tropical Convection (YOTC). We will also discuss a seasonal climate time-slice experiment design for downscaling coarse resolution century scale climate simulations to global non-hydrostatic resolutions of 14- to 7-km with GEOS-5.
Resolution of Probabilistic Weather Forecasts with Application in Disease Management.
Hughes, G; McRoberts, N; Burnett, F J
2017-02-01
Predictive systems in disease management often incorporate weather data among the disease risk factors, and sometimes this comes in the form of forecast weather data rather than observed weather data. In such cases, it is useful to have an evaluation of the operational weather forecast, in addition to the evaluation of the disease forecasts provided by the predictive system. Typically, weather forecasts and disease forecasts are evaluated using different methodologies. However, the information theoretic quantity expected mutual information provides a basis for evaluating both kinds of forecast. Expected mutual information is an appropriate metric for the average performance of a predictive system over a set of forecasts. Both relative entropy (a divergence, measuring information gain) and specific information (an entropy difference, measuring change in uncertainty) provide a basis for the assessment of individual forecasts.
Hydrologic ensembles based on convection-permitting precipitation nowcasts for flash flood warnings
NASA Astrophysics Data System (ADS)
Demargne, Julie; Javelle, Pierre; Organde, Didier; de Saint Aubin, Céline; Ramos, Maria-Helena
2017-04-01
In order to better anticipate flash flood events and provide timely warnings to communities at risk, the French national service in charge of flood forecasting (SCHAPI) is implementing a national flash flood warning system for small-to-medium ungauged basins. Based on a discharge-threshold flood warning method called AIGA (Javelle et al. 2014), the current version of the system runs a simplified hourly distributed hydrologic model with operational radar-gauge QPE grids from Météo-France at a 1-km2 resolution every 15 minutes. This produces real-time peak discharge estimates along the river network, which are subsequently compared to regionalized flood frequency estimates to provide warnings according to the AIGA-estimated return period of the ongoing event. To further extend the effective warning lead time while accounting for hydrometeorological uncertainties, the flash flood warning system is being enhanced to include Météo-France's AROME-NWC high-resolution precipitation nowcasts as time-lagged ensembles and multiple sets of hydrological regionalized parameters. The operational deterministic precipitation forecasts, from the nowcasting version of the AROME convection-permitting model (Auger et al. 2015), were provided at a 2.5-km resolution for a 6-hr forecast horizon for 9 significant rain events from September 2014 to June 2016. The time-lagged approach is a practical choice of accounting for the atmospheric forecast uncertainty when no extensive forecast archive is available for statistical modelling. The evaluation on 781 French basins showed significant improvements in terms of flash flood event detection and effective warning lead-time, compared to warnings from the current AIGA setup (without any future precipitation). We also discuss how to effectively communicate verification information to help determine decision-relevant warning thresholds for flood magnitude and probability. Javelle, P., Demargne, J., Defrance, D., Arnaud, P., 2014. Evaluating flash flood warnings at ungauged locations using post-event surveys: a case study with the AIGA warning system. Hydrological Sciences Journal, doi: 10.1080/02626667.2014.923970 Auger, L., Dupont, O., Hagelin, S., Brousseau, P., Brovelli, P., 2015. AROME-NWC: a new nowcasting tool based on an operational mesoscale forecasting system. Quarterly Journal of the Royal Meteorological Society, 141: 1603-1611, doi:10.1002/qj.2463
Use of EOS Data in AWIPS for Weather Forecasting
NASA Technical Reports Server (NTRS)
Jedlovec, Gary J.; Haines, Stephanie L.; Suggs, Ron J.; Bradshaw, Tom; Darden, Chris; Burks, Jason
2003-01-01
Operational weather forecasting relies heavily on real time data and modeling products for forecast preparation and dissemination of significant weather information to the public. The synthesis of this information (observations and model products) by the meteorologist is facilitated by a decision support system to display and integrate the information in a useful fashion. For the NWS this system is called Advanced Weather Interactive Processing System (AWIPS). Over the last few years NASA has launched a series of new Earth Observation Satellites (EOS) for climate monitoring that include several instruments that provide high-resolution measurements of atmospheric and surface features important for weather forecasting and analysis. The key to the utilization of these unique new measurements by the NWS is the real time integration of the EOS data into the AWIPS system. This is currently being done in the Huntsville and Birmingham NWS Forecast Offices under the NASA Short-term Prediction Research and Transition (SPORT) Program. This paper describes the use of near real time MODIS and AIRS data in AWIPS to improve the detection of clouds, moisture variations, atmospheric stability, and thermal signatures that can lead to significant weather development. The paper and the conference presentation will focus on several examples where MODIS and AIRS data have made a positive impact on forecast accuracy. The results of an assessment of the utility of these products for weather forecast improvement made at the Huntsville NWS Forecast Office will be presented.
NASA Astrophysics Data System (ADS)
Lellouche, J. M.; Le Galloudec, O.; Greiner, E.; Garric, G.; Regnier, C.; Drillet, Y.
2016-02-01
Mercator Ocean currently delivers in real-time daily services (weekly analyses and daily forecast) with a global 1/12° high resolution system. The model component is the NEMO platform driven at the surface by the IFS ECMWF atmospheric analyses and forecasts. Observations are assimilated by means of a reduced-order Kalman filter with a 3D multivariate modal decomposition of the forecast error. It includes an adaptive-error estimate and a localization algorithm. Along track altimeter data, satellite Sea Surface Temperature and in situ temperature and salinity vertical profiles are jointly assimilated to estimate the initial conditions for numerical ocean forecasting. A 3D-Var scheme provides a correction for the slowly-evolving large-scale biases in temperature and salinity.Since May 2015, Mercator Ocean opened the Copernicus Marine Service (CMS) and is in charge of the global ocean analyses and forecast, at eddy resolving resolution. In this context, R&D activities have been conducted at Mercator Ocean these last years in order to improve the real-time 1/12° global system for the next CMS version in 2016. The ocean/sea-ice model and the assimilation scheme benefit among others from the following improvements: large-scale and objective correction of atmospheric quantities with satellite data, new Mean Dynamic Topography taking into account the last version of GOCE geoid, new adaptive tuning of some observational errors, new Quality Control on the assimilated temperature and salinity vertical profiles based on dynamic height criteria, assimilation of satellite sea-ice concentration, new freshwater runoff from ice sheets melting …This presentation doesn't focus on the impact of each update, but rather on the overall behavior of the system integrating all updates. This assessment reports on the products quality improvements, highlighting the level of performance and the reliability of the new system.
Payette River Basin Project: Improving Operational Forecasting in Complex Terrain through Chemistry
NASA Astrophysics Data System (ADS)
Blestrud, D.; Kunkel, M. L.; Parkinson, S.; Holbrook, V. P.; Benner, S. G.; Fisher, J.
2015-12-01
Idaho Power Company (IPC) is an investor owned hydroelectric based utility, serving customers throughout southern Idaho and eastern Oregon. The University of Arizona (UA) runs an operational 1.8-km resolution Weather and Research Forecast (WRF) model for IPC, which is incorporated into IPC near and real-time forecasts for hydro, solar and wind generation, load servicing and a large-scale wintertime cloud seeding operation to increase winter snowpack. Winter snowpack is critical to IPC, as hydropower provides ~50% of the company's generation needs. In efforts to improve IPC's near-term forecasts and operational guidance to its cloud seeding program, IPC is working extensively with UA and the National Center for Atmospheric Research (NCAR) to improve WRF performance in the complex terrain of central Idaho. As part of this project, NCAR has developed a WRF based cloud seeding module (WRF CS) to deliver high-resolution, tailored forecasts to provide accurate guidance for IPC's operations. Working with Boise State University (BSU), IPC is conducting a multiyear campaign to validate the WRF CS's ability to account for and disperse the cloud seeding agent (AgI) within the boundary layer. This improved understanding of how WRF handles the AgI dispersion and fate will improve the understanding and ultimately the performance of WRF to forecast other parameters. As part of this campaign, IPC has developed an extensive ground based monitoring network including a Remote Area Snow Sampling Device (RASSD) that provides spatially and temporally discrete snow samples during active cloud seeding periods. To quantify AgI dispersion in the complex terrain, BSU conducts trace element analysis using LA-ICP-MS on the RASSD sampled snow to provide measurements (at the 10-12 level) of incorporated AgI, measurements are compare directly with WRF CS's estimates of distributed AgI. Modeling and analysis results from previous year's research and plans for coming seasons will be presented.
NASA Technical Reports Server (NTRS)
Manobianco, John; Zack, John W.; Taylor, Gregory E.
1996-01-01
This paper describes the capabilities and operational utility of a version of the Mesoscale Atmospheric Simulation System (MASS) that has been developed to support operational weather forecasting at the Kennedy Space Center (KSC) and Cape Canaveral Air Station (CCAS). The implementation of local, mesoscale modeling systems at KSC/CCAS is designed to provide detailed short-range (less than 24 h) forecasts of winds, clouds, and hazardous weather such as thunderstorms. Short-range forecasting is a challenge for daily operations, and manned and unmanned launches since KSC/CCAS is located in central Florida where the weather during the warm season is dominated by mesoscale circulations like the sea breeze. For this application, MASS has been modified to run on a Stardent 3000 workstation. Workstation-based, real-time numerical modeling requires a compromise between the requirement to run the system fast enough so that the output can be used before expiration balanced against the desire to improve the simulations by increasing resolution and using more detailed physical parameterizations. It is now feasible to run high-resolution mesoscale models such as MASS on local workstations to provide timely forecasts at a fraction of the cost required to run these models on mainframe supercomputers. MASS has been running in the Applied Meteorology Unit (AMU) at KSC/CCAS since January 1994 for the purpose of system evaluation. In March 1995, the AMU began sending real-time MASS output to the forecasters and meteorologists at CCAS, Spaceflight Meteorology Group (Johnson Space Center, Houston, Texas), and the National Weather Service (Melbourne, Florida). However, MASS is not yet an operational system. The final decision whether to transition MASS for operational use will depend on a combination of forecaster feedback, the AMU's final evaluation results, and the life-cycle costs of the operational system.
NASA Astrophysics Data System (ADS)
Saide, Pablo E.; Carmichael, Gregory R.; Spak, Scott N.; Gallardo, Laura; Osses, Axel E.; Mena-Carrasco, Marcelo A.; Pagowski, Mariusz
2011-05-01
This study presents a system to predict high pollution events that develop in connection with enhanced subsidence due to coastal lows, particularly in winter over Santiago de Chile. An accurate forecast of these episodes is of interest since the local government is entitled by law to take actions in advance to prevent public exposure to PM10 concentrations in excess of 150 μg m -3 (24 h running averages). The forecasting system is based on accurately simulating carbon monoxide (CO) as a PM10/PM2.5 surrogate, since during episodes and within the city there is a high correlation (over 0.95) among these pollutants. Thus, by accurately forecasting CO, which behaves closely to a tracer on this scale, a PM estimate can be made without involving aerosol-chemistry modeling. Nevertheless, the very stable nocturnal conditions over steep topography associated with maxima in concentrations are hard to represent in models. Here we propose a forecast system based on the WRF-Chem model with optimum settings, determined through extensive testing, that best describe both meteorological and air quality available measurements. Some of the important configurations choices involve the boundary layer (PBL) scheme, model grid resolution (both vertical and horizontal), meteorological initial and boundary conditions and spatial and temporal distribution of the emissions. A forecast for the 2008 winter is performed showing that this forecasting system is able to perform similarly to the authority decision for PM10 and better than persistence when forecasting PM10 and PM2.5 high pollution episodes. Problems regarding false alarm predictions could be related to different uncertainties in the model such as day to day emission variability, inability of the model to completely resolve the complex topography and inaccuracy in meteorological initial and boundary conditions. Finally, according to our simulations, emissions from previous days dominate episode concentrations, which highlights the need for 48 h forecasts that can be achieved by the system presented here. This is in fact the largest advantage of the proposed system.
NASA Astrophysics Data System (ADS)
Seyoum, Mesgana; van Andel, Schalk Jan; Xuan, Yunqing; Amare, Kibreab
Flow forecasting in poorly gauged, flood-prone Ribb and Gumara sub-catchments of the Blue Nile was studied with the aim of testing the performance of Quantitative Precipitation Forecasts (QPFs). Four types of QPFs namely MM5 forecasts with a spatial resolution of 2 km; the Maximum, Mean and Minimum members (MaxEPS, MeanEPS and MinEPS where EPS stands for Ensemble Prediction System) of the fixed, low resolution (2.5 by 2.5 degrees) National Oceanic and Atmospheric Administration Global Forecast System (NOAA GFS) ensemble forecasts were used. Both the MM5 and the EPS were not calibrated (bias correction, downscaling (for EPS), etc.). In addition, zero forecasts assuming no rainfall in the coming days, and monthly average forecasts assuming average monthly rainfall in the coming days, were used. These rainfall forecasts were then used to drive the Hydrologic Engineering Center’s-Hydrologic Modeling System, HEC-HMS, hydrologic model for flow predictions. The results show that flow predictions using MaxEPS and MM5 precipitation forecasts over-predicted the peak flow for most of the seven events analyzed, whereas under-predicted peak flow was found using zero- and monthly average rainfall. The comparison of observed and predicted flow hydrographs shows that MM5, MaxEPS and MeanEPS precipitation forecasts were able to capture the rainfall signal that caused peak flows. Flow predictions based on MaxEPS and MeanEPS gave results that were quantitatively close to the observed flow for most events, whereas flow predictions based on MM5 resulted in large overestimations for some events. In follow-up research for this particular case study, calibration of the MM5 model will be performed. The overall analysis shows that freely available atmospheric forecasting products can provide additional information on upcoming rainfall and peak flow events in areas where only base-line forecasts such as no-rainfall or climatology are available.
Optimizing UV Index determination from broadband irradiances
NASA Astrophysics Data System (ADS)
Tereszchuk, Keith A.; Rochon, Yves J.; McLinden, Chris A.; Vaillancourt, Paul A.
2018-03-01
A study was undertaken to improve upon the prognosticative capability of Environment and Climate Change Canada's (ECCC) UV Index forecast model. An aspect of that work, and the topic of this communication, was to investigate the use of the four UV broadband surface irradiance fields generated by ECCC's Global Environmental Multiscale (GEM) numerical prediction model to determine the UV Index. The basis of the investigation involves the creation of a suite of routines which employ high-spectral-resolution radiative transfer code developed to calculate UV Index fields from GEM forecasts. These routines employ a modified version of the Cloud-J v7.4 radiative transfer model, which integrates GEM output to produce high-spectral-resolution surface irradiance fields. The output generated using the high-resolution radiative transfer code served to verify and calibrate GEM broadband surface irradiances under clear-sky conditions and their use in providing the UV Index. A subsequent comparison of irradiances and UV Index under cloudy conditions was also performed. Linear correlation agreement of surface irradiances from the two models for each of the two higher UV bands covering 310.70-330.0 and 330.03-400.00 nm is typically greater than 95 % for clear-sky conditions with associated root-mean-square relative errors of 6.4 and 4.0 %. However, underestimations of clear-sky GEM irradiances were found on the order of ˜ 30-50 % for the 294.12-310.70 nm band and by a factor of ˜ 30 for the 280.11-294.12 nm band. This underestimation can be significant for UV Index determination but would not impact weather forecasting. Corresponding empirical adjustments were applied to the broadband irradiances now giving a correlation coefficient of unity. From these, a least-squares fitting was derived for the calculation of the UV Index. The resultant differences in UV indices from the high-spectral-resolution irradiances and the resultant GEM broadband irradiances are typically within 0.2-0.3 with a root-mean-square relative error in the scatter of ˜ 6.6 % for clear-sky conditions. Similar results are reproduced under cloudy conditions with light to moderate clouds, with a relative error comparable to the clear-sky counterpart; under strong attenuation due to clouds, a substantial increase in the root-mean-square relative error of up to 35 % is observed due to differing cloud radiative transfer models.
Forecasting Safe or Dangerous Space Weather from HMI Magnetograms
NASA Technical Reports Server (NTRS)
Falconer, David; Barghouty, Abdulnasser F.; Khazanov, Igor; Moore, Ron
2011-01-01
We have developed a space-weather forecasting tool using an active-region free-energy proxy that was measured from MDI line-of-sight magnetograms. To develop this forecasting tool (Falconer et al 2011, Space Weather Journal, in press), we used a database of 40,000 MDI magnetograms of 1300 active regions observed by MDI during the previous solar cycle (cycle 23). From each magnetogram we measured our free-energy proxy and for each active region we determined its history of major flare, CME and Solar Particle Event (SPE) production. This database determines from the value of an active region s free-energy proxy the active region s expected rate of production of 1) major flares, 2) CMEs, 3) fast CMEs, and 4) SPEs during the next few days. This tool was delivered to NASA/SRAG in 2010. With MDI observations ending, we have to be able to use HMI magnetograms instead of MDI magnetograms. One of the difficulties is that the measured value of the free-energy proxy is sensitive to the spatial resolution of the measured magnetogram: the 0.5 /pixel resolution of HMI gives a different value for the free-energy proxy than the 2 /pixels resolution of MDI. To use our MDI-database forecasting curves until a comparably large HMI database is accumulated, we smooth HMI line-of-sight magnetograms to MDI resolution, so that we can use HMI to find the value of the free-energy proxy that MDI would have measured, and then use the forecasting curves given by the MDI database. The new version for use with HMI magnetograms was delivered to NASA/SRAG (March 2011). It can also use GONG magnetograms, as a backup.
Men, Zhongxian; Yee, Eugene; Lien, Fue-Sang; Yang, Zhiling; Liu, Yongqian
2014-01-01
Short-term wind speed and wind power forecasts (for a 72 h period) are obtained using a nonlinear autoregressive exogenous artificial neural network (ANN) methodology which incorporates either numerical weather prediction or high-resolution computational fluid dynamics wind field information as an exogenous input. An ensemble approach is used to combine the predictions from many candidate ANNs in order to provide improved forecasts for wind speed and power, along with the associated uncertainties in these forecasts. More specifically, the ensemble ANN is used to quantify the uncertainties arising from the network weight initialization and from the unknown structure of the ANN. All members forming the ensemble of neural networks were trained using an efficient particle swarm optimization algorithm. The results of the proposed methodology are validated using wind speed and wind power data obtained from an operational wind farm located in Northern China. The assessment demonstrates that this methodology for wind speed and power forecasting generally provides an improvement in predictive skills when compared to the practice of using an "optimal" weight vector from a single ANN while providing additional information in the form of prediction uncertainty bounds.
Lien, Fue-Sang; Yang, Zhiling; Liu, Yongqian
2014-01-01
Short-term wind speed and wind power forecasts (for a 72 h period) are obtained using a nonlinear autoregressive exogenous artificial neural network (ANN) methodology which incorporates either numerical weather prediction or high-resolution computational fluid dynamics wind field information as an exogenous input. An ensemble approach is used to combine the predictions from many candidate ANNs in order to provide improved forecasts for wind speed and power, along with the associated uncertainties in these forecasts. More specifically, the ensemble ANN is used to quantify the uncertainties arising from the network weight initialization and from the unknown structure of the ANN. All members forming the ensemble of neural networks were trained using an efficient particle swarm optimization algorithm. The results of the proposed methodology are validated using wind speed and wind power data obtained from an operational wind farm located in Northern China. The assessment demonstrates that this methodology for wind speed and power forecasting generally provides an improvement in predictive skills when compared to the practice of using an “optimal” weight vector from a single ANN while providing additional information in the form of prediction uncertainty bounds. PMID:27382627
NASA Astrophysics Data System (ADS)
Wang, Pei; Li, Jun; Li, Zhenglong; Lim, Agnes H. N.; Li, Jinlong; Schmit, Timothy J.; Goldberg, Mitchell D.
2017-12-01
Hyperspectral infrared (IR) sounders provide high vertical resolution atmospheric sounding information that can improve the forecast skill in numerical weather prediction. Commonly, only clear radiances are assimilated, because IR sounder observations are highly affected by clouds. A cloud-clearing (CC) technique, which removes the cloud effects from an IR cloudy field of view (FOV) and derives the cloud-cleared radiances (CCRs) or clear-sky equivalent radiances, can be an alternative yet effective way to take advantage of the thermodynamic information from cloudy skies in data assimilation. This study develops a Visible Infrared Imaging Radiometer Suite (VIIRS)-based CC method for deriving Cross-track Infrared Sounder (CrIS) CCRs under partially cloudy conditions. Due to the lack of absorption bands on VIIRS, two important quality control steps are implemented in the CC process. Validation using VIIRS clear radiances indicates that the CC method can effectively obtain the CrIS CCRs for FOVs with partial cloud cover. To compare the impacts from assimilation of CrIS original radiances and CCRs, three experiments are carried out on two storm cases, Hurricane Joaquin (2015) and Hurricane Matthew (2016), using Gridpoint Statistical Interpolation assimilation system and Weather Research and Forecasting-Advanced Research Version models. At the analysis time, more CrIS observations are assimilated when using CrIS CCRs than with CrIS original radiances. Comparing temperature, specific humidity, and U/V winds with radiosondes indicates that the data impacts are growing larger with longer time forecasts (beyond 72 h forecast). Hurricane track forecasts also show improvements from the assimilation of CrIS CCRs due to better weather system forecasts. The impacts of CCRs on intensity are basically neutral with mixed positive and negative results.
Bayesian quantitative precipitation forecasts in terms of quantiles
NASA Astrophysics Data System (ADS)
Bentzien, Sabrina; Friederichs, Petra
2014-05-01
Ensemble prediction systems (EPS) for numerical weather predictions on the mesoscale are particularly developed to obtain probabilistic guidance for high impact weather. An EPS not only issues a deterministic future state of the atmosphere but a sample of possible future states. Ensemble postprocessing then translates such a sample of forecasts into probabilistic measures. This study focus on probabilistic quantitative precipitation forecasts in terms of quantiles. Quantiles are particular suitable to describe precipitation at various locations, since no assumption is required on the distribution of precipitation. The focus is on the prediction during high-impact events and related to the Volkswagen Stiftung funded project WEX-MOP (Mesoscale Weather Extremes - Theory, Spatial Modeling and Prediction). Quantile forecasts are derived from the raw ensemble and via quantile regression. Neighborhood method and time-lagging are effective tools to inexpensively increase the ensemble spread, which results in more reliable forecasts especially for extreme precipitation events. Since an EPS provides a large amount of potentially informative predictors, a variable selection is required in order to obtain a stable statistical model. A Bayesian formulation of quantile regression allows for inference about the selection of predictive covariates by the use of appropriate prior distributions. Moreover, the implementation of an additional process layer for the regression parameters accounts for spatial variations of the parameters. Bayesian quantile regression and its spatially adaptive extension is illustrated for the German-focused mesoscale weather prediction ensemble COSMO-DE-EPS, which runs (pre)operationally since December 2010 at the German Meteorological Service (DWD). Objective out-of-sample verification uses the quantile score (QS), a weighted absolute error between quantile forecasts and observations. The QS is a proper scoring function and can be decomposed into reliability, resolutions and uncertainty parts. A quantile reliability plot gives detailed insights in the predictive performance of the quantile forecasts.
NASA Astrophysics Data System (ADS)
Bytheway, Janice L.
Forecast models have seen vast improvements in recent years, via increased spatial and temporal resolution, rapid updating, assimilation of more observational data, and continued development and improvement of the representation of the atmosphere. One such model is the High Resolution Rapid Refresh (HRRR) model, a 3 km, hourly-updated, convection-allowing model that has been in development since 2010 and running operationally over the contiguous US since 2014. In 2013, the HRRR became the only US model to assimilate radar reflectivity via diabatic assimilation, a process in which the observed reflectivity is used to induce a latent heating perturbation in the model initial state in order to produce precipitation in those areas where it is indicated by the radar. In order to support the continued development and improvement of the HRRR model with regard to forecasts of convective precipitation, the concept of an assessment is introduced. The assessment process aims to connect model output with observations by first validating model performance then attempting to connect that performance to model assumptions, parameterizations and processes to identify areas for improvement. Observations from remote sensing platforms such as radar and satellite can provide valuable information about three-dimensional storm structure and microphysical properties for use in the assessment, including estimates of surface rainfall, hydrometeor types and size distributions, and column moisture content. A features-based methodology is used to identify warm season convective precipitating objects in the 2013, 2014, and 2015 versions of HRRR precipitation forecasts, Stage IV multisensor precipitation products, and Global Precipitation Measurement (GPM) core satellite observations. Quantitative precipitation forecasts (QPFs) are evaluated for biases in hourly rainfall intensity, total rainfall, and areal coverage in both the US Central Plains (29-49N, 85-105W) and US Mountain West (29-49N, 105-125W). Features identified in the model and Stage IV were tracked through time in order to evaluate forecasts through several hours of the forecast period. The 2013 version of the model was found to produce significantly stronger convective storms than observed, with a slight southerly displacement from the observed storms during the peak hours of convective activity (17-00 UTC). This version of the model also displayed a strong relationship between atmospheric water vapor content and cloud thickness over the central plains. In the 2014 and 2015 versions of the model, storms in the western US were found to be smaller and weaker than the observed, and satellite products (brightness temperatures and reflectivities) simulated using model output indicated that many of the forecast storms contained too much ice above the freezing level. Model upgrades intended to decrease the biases seen in early versions include changes to the reflectivity assimilation, the addition of sub-grid scale cloud parameterizations, changes to the representation of surface processes and the addition of aerosol processes to the microphysics. The effects of these changes are evident in each successive version of the model, with reduced biases in intensity, elimination of the southerly bias, and improved representation of the onset of convection.
NASA Astrophysics Data System (ADS)
Basart, Sara; Pay, María. Teresa; Pérez, Carlos; Cuevas, Emilio; Jorba, Oriol; Piot, Matthias; María Baldasano, Jose
2010-05-01
In the frame of the CALIOPE project (Baldasano et al., 2008), the Barcelona Supercomputing Center (BSC-CNS) currently operates a high-resolution air quality forecasting system based on daily photochemical forecasts in Europe (12km x 12km resolution) with the WRF-ARW/HERMES/CMAQ modelling system (http://www.bsc.es/caliope) and desert dust forecasts over Southern Europe with BSC-DREAM8b (Pérez et al., 2006; http://www.bsc.es/projects/earthscience/DREAM). High resolution simulations and forecasts are possible through their implementation on MareNostrum supercomputer at BSC-CNS. As shown in previous air quality studies (e.g. Rodríguez et al., 2001; Jiménez-Guerrero et al., 2008), the contribution of desert dust on particulate matter levels in Southern Europe is remarkable due to its proximity to African desert dust sources. When considering only anthropogenic emissions (Baldasano et al., 2008) and the current knowledge about aerosol physics and chemistry, chemistry-transport model simulations underestimate the PM10 concentrations by 30-50%. As a first approach, the natural dust contribution from BSC-DREAM8b is on-line added to the anthropogenic aerosol output of CMAQ. The aim of the present work is the quantitative evaluation of the WRF-ARW/HERMES/ CMAQ/BSC-DREAM8b forecast system to simulate the Aerosol Optical Depth (AOD) over Europe. The performance of the modelled AOD has been quantitatively evaluated with discrete and categorical (skill scores) statistics by a comparison to direct-sun AERONET observations for 2004. The contribution of different types of aerosols will be analyzed by means of the O'Neill fine mode AOD products (O'Neill et al., 2001). A previous aerosol characterization of AERONET data was performed (Basart et al., 2009) in order to discriminate the different aerosol source contributions within the study region. The results indicate a remarkable improvement in the discrete and skill-scores evaluation (accuracy, critical success index and probability of detection) of AOD when using CMAQ+DREAM8b compared to CMAQ-alone simulations. An accurate analysis of the relative contributions of anthropogenic aerosols and desert dust to AOD over Europe and their seasonality will be also presented. References: Baldasano J.M, P. Jiménez-Guerrero, O. Jorba, C. Pérez, E. López, P. Güereca, F. Martin, M. García-Vivanco, I. Palomino, X. Querol, M. Pandolfi, M.J. Sanz and J.J. Diéguez: "CALIOPE: An operational air quality forecasting system for the Iberian Peninsula, Balearic Islands and Canary Islands- First annual evaluation and ongoing developments", Adv. Sci. and Res., 2: 89-98, 2008. Baldasano J.M., L. P. Güereca, E. López, S. Gassó, P. Jimenez-Guerrero. "Development of a high resolution (1 km x 1 km, 1 h) emission model for Spain: the High-Elective Resolution Modelling Emission System (HERMES)". Atmospheric Environment, 42: 7215-7233 doi: 10.1016/j.atmosenv.2008.07.026, 2008. Basart, S., Pérez, C., Cuevas, E., Baldasano, J. M. and Gobbi, G. P. "Aerosol characterization in Northern Africa, Northeastern Atlantic, Mediterranean Basin and Middle East from direct-sun AERONET observations", Atmos. Chem. Phys.., 9, 7707-7745, 2009. Jiménez-Guerrero, P., Pérez, C., Jorba, O. and Baldasano, J. M. "Contribution of Saharan dust in an integrated air quality system and its on-line assessment", Geophys. Res. Lett., 35(3), 2008. O'Neill, N. T., Dubovik, O., and Eck, T. F.: A modified Angstrom coefficient for the characterization of sub-micron aerosols, App. Opt., 40(14), 2368-2375, 2001. Pérez, C., Nickovic, S., Pejanovic, G., Baldasano, J. M. and Ozsoy, E. "Interactive dust-radiation modeling: A step to improve weather forecasts", Geophys. Res., 11(D16206),doi:10.1029/2005JD006717, 2006. Rodríguez, S., Querol, X., Alastuey, A., Kallos, G. and Kakaliagou, O. "Saharan dust contributions to PM10 and TSP levels in Southern and Eastern Spain", Atmos. Environ., 35, 2433-2447, 2001.
2011-09-01
m b e r o f O cc u rr e n ce s 50 ( a ) Kp 0-3 (b) Kp 4-9 Figure 25. Scatter plot of...dependent physics based model that uses the Ionospheric Forecast Model ( IFM ) as a background model upon which perturbations are imposed via a Kalman filter...vertical output resolution as the IFM . GAIM-GM can also be run in a regional mode with a finer resolution (Scherliess et al., 2006). GAIM-GM is
2014-09-23
conduct simulations with a high-latitude data assimilation model. The specific objectives are to study magnetosphere-ionosphere ( M -I) coupling processes...based on three physics-based models, including a magnetosphere-ionosphere ( M -I) electrodynamics model, an ionosphere model, and a magnetic...inversion code. The ionosphere model is a high-resolution version of the Ionosphere Forecast Model ( IFM ), which is a 3-D, multi-ion model of the ionosphere
Applied Meteorology Unit Quarterly Report, Second Quarter FY-13
NASA Technical Reports Server (NTRS)
Bauman, William; Crawford, Winifred; Watson, Leela; Shafer, Jaclyn; Huddleston, Lisa
2013-01-01
The AMU team worked on six tasks for their customers: (1) Ms. Crawford continued work on the objective lightning forecast task for airports in east-central Florida, and began work on developing a dual-Doppler analysis with local Doppler radars, (2) Ms. Shafer continued work for Vandenberg Air Force Base on an automated tool to relate pressure gradients to peak winds, (3) Dr. Huddleston continued work to develop a lightning timing forecast tool for the Kennedy Space Center/Cape Canaveral Air Force Station area, (4) Dr. Bauman continued work on a severe weather forecast tool focused on east-central Florida, (5) Mr. Decker began developing a wind pairs database for the Launch Services Program to use when evaluating upper-level winds for launch vehicles, and (6) Dr. Watson began work to assimilate observational data into the high-resolution model configurations, she created for Wallops Flight Facility and the Eastern Range.
NASA Astrophysics Data System (ADS)
Wagenbrenner, N. S.; Forthofer, J.; Gibson, C.; Lamb, B. K.
2017-12-01
Frequent strong gap winds were measured in a deep, steep, wildfire-prone river canyon of central Idaho, USA during July-September 2013. Analysis of archived surface pressure data indicate that the gap wind events were driven by regional scale surface pressure gradients. The events always occurred between 0400 and 1200 LT and typically lasted 3-4 hours. The timing makes these events particularly hazardous for wildland firefighting applications since the morning is typically a period of reduced fire activity and unsuspecting firefighters could be easily endangered by the onset of strong downcanyon winds. The gap wind events were not explicitly forecast by operational numerical weather prediction (NWP) models due to the small spatial scale of the canyon ( 1-2 km wide) compared to the horizontal resolution of operational NWP models (3 km or greater). Custom WRF simulations initialized with NARR data were run at 1 km horizontal resolution to assess whether higher resolution NWP could accurately simulate the observed gap winds. Here, we show that the 1 km WRF simulations captured many of the observed gap wind events, although the strength of the events was underpredicted. We also present evidence from these WRF simulations which suggests that the Salmon River Canyon is near the threshold of WRF-resolvable terrain features when the standard WRF coordinate system and discretization schemes are used. Finally, we show that the strength of the gap wind events can be predicted reasonably well as a function of the surface pressure gradient across the gap, which could be useful in the absence of high-resolution NWP. These are important findings for wildland firefighting applications in narrow gaps where routine forecasts may not provide warning for wind effects induced by high-resolution terrain features.
NASA Astrophysics Data System (ADS)
Aguiar, Eva; Mourre, Baptiste; Heslop, Emma; Juza, Mélanie; Escudier, Romain; Tintoré, Joaquín
2017-04-01
This study focuses on the validation of the high resolution Western Mediterranean Operational model (WMOP) developed at SOCIB, the Balearic Islands Coastal Observing and Forecasting System. The Mediterranean Sea is often seen as a small scale ocean laboratory where energetic eddies, fronts and circulation features have important ecological consequences. The Medclic project is a program between "La Caixa" Foundation and SOCIB which aims at characterizing and forecasting the "oceanic weather" in the Western Mediterranean Sea, specifically investigating the interactions between the general circulation and mesoscale processes. We use a WMOP 2009-2015 free run hindcast simulation and available observational datasets (altimetry, moorings and gliders) to both assess the numerical simulation and investigate the ocean variability. WMOP has a 2-km spatial resolution and uses CMEMS Mediterranean products as initial and boundary conditions, with surface forcing from the high-resolution Spanish Meteorological Agency model HIRLAM. Different aspects of the spatial and temporal variability in the model are validated from local to regional and basin scales: (1) the principal axis of variability of the surface circulation using altimetry and moorings along the Iberian coast, (2) the inter-annual changes of the surface flows incorporating also glider data, (3) the propagation of mesoscale eddies formed in the Algerian sub-basin using altimetry, and (4) the statistical properties of eddies (number, rotation, size) applying an eddy tracker detection method in the Western Mediterranean Sea. With these key points evaluated in the model, EOF analysis of sea surface height maps are used to investigate spatial patterns of variability associated with eddies, gyres and the basis-scale circulation and so gain insight into the interconnections between sub-basins, as well as the interactions between physical processes at different scales.
NASA Astrophysics Data System (ADS)
Levelt, P.; Joiner, J.; Tamminen, J.; Veefkind, P.; Bhartia, P. K.; Court, A. J.; Vlemmix, T.
2017-12-01
Keywords: emission monitoring, air quality, climate, atmospheric composition The Ozone Monitoring Instrument (OMI), launched on board of NASA's EOS-Aura spacecraft on July 15, 2004, provides unique contributions to the monitoring of the ozone layer, air quality and climate from space. With a data record of 13 years, OMI provides the longest NO2 and SO2 record from space, which is essential to understand the changes to emissions globally. The combination of urban scale resolution (13 x 24 km2 in nadir) and daily global coverage proved to be key features for the air quality community. Due to the operational Very Fast Delivery (VFD / direct readout) and Near Real Time (NRT) availability of the data, OMI also plays an important role in the early developments of operational services in the atmospheric chemistry domain. For example, OMI data is currently used operationally for improving air quality forecasts, for inverting high-resolution emission maps, the UV forecast and for volcanic plume warning systems for aviation. An overview of air quality applications, emission inventory inversions and trend analyses based on the OMI data record will be presented. An outlook will be given on the potentials of augmenting this record with the high resolution air quality measurements of TROPOMI (3,5 x 7 km2) and new satellite instrumentation entering the imaging domain, such as the TROPOLITE instrument ( 1 x 1 km2). Potential of imaging type of NO2 measurements in the the climate and air quality domain will be given, most notably on the use of high resolution NO2 measurements for pin-pointing anthropogenic CO2 emissions.
NASA Astrophysics Data System (ADS)
Zhang, Xuezhen; Xiong, Zhe; Zheng, Jingyun; Ge, Quansheng
2018-02-01
The community of climate change impact assessments and adaptations research needs regional high-resolution (spatial) meteorological data. This study produced two downscaled precipitation datasets with spatial resolutions of as high as 3 km by 3 km for the Heihe River Basin (HRB) from 2011 to 2014 using the Weather Research and Forecast (WRF) model nested with Final Analysis (FNL) from the National Center for Environmental Prediction (NCEP) and ERA-Interim from the European Centre for Medium-Range Weather Forecasts (ECMWF) (hereafter referred to as FNLexp and ERAexp, respectively). Both of the downscaling simulations generally reproduced the observed spatial patterns of precipitation. However, users should keep in mind that the two downscaled datasets are not exactly the same in terms of observations. In comparison to the remote sensing-based estimation, the FNLexp produced a bias of heavy precipitation centers. In comparison to the ground gauge-based measurements, for the warm season (May to September), the ERAexp produced more precipitation (root-mean-square error (RMSE) = 295.4 mm, across the 43 sites) and more heavy rainfall days, while the FNLexp produced less precipitation (RMSE = 115.6 mm) and less heavy rainfall days. Both the ERAexp and FNLexp produced considerably more precipitation for the cold season (October to April) with RMSE values of 119.5 and 32.2 mm, respectively, and more heavy precipitation days. Along with simulating a higher number of heavy precipitation days, both the FNLexp and ERAexp also simulated stronger extreme precipitation. Sensitivity experiments show that the bias of these simulations is much more sensitive to micro-physical parameterizations than to the spatial resolution of topography data. For the HRB, application of the WSM3 scheme may improve the performance of the WRF model.
a 24/7 High Resolution Storm Surge, Inundation and Circulation Forecasting System for Florida Coast
NASA Astrophysics Data System (ADS)
Paramygin, V.; Davis, J. R.; Sheng, Y.
2012-12-01
A 24/7 forecasting system for Florida is needed because of the high risk of tropical storm surge-induced coastal inundation and damage, and the need to support operational management of water resources, utility infrastructures, and fishery resources. With the anticipated climate change impacts, including sea level rise, coastal areas are facing the challenges of increasing inundation risk and increasing population. Accurate 24/7 forecasting of water level, inundation, and circulation will significantly enhance the sustainability of coastal communities and environments. Supported by the Southeast Coastal Ocean Observing Regional Association (SECOORA) through NOAA IOOS, a 24/7 high-resolution forecasting system for storm surge, coastal inundation, and baroclinic circulation is being developed for Florida using CH3D Storm Surge Modeling System (CH3D-SSMS). CH3D-SSMS is based on the CH3D hydrodynamic model coupled to a coastal wave model SWAN and basin scale surge and wave models. CH3D-SSMS has been verified with surge, wave, and circulation data from several recent hurricanes in the U.S.: Isabel (2003); Charley, Dennis and Ivan (2004); Katrina and Wilma (2005); Ike and Fay (2008); and Irene (2011), as well as typhoons in the Pacific: Fanapi (2010) and Nanmadol (2011). The effects of tropical cyclones on flow and salinity distribution in estuarine and coastal waters has been simulated for Apalachicola Bay as well as Guana-Tolomato-Matanzas Estuary using CH3D-SSMS. The system successfully reproduced different physical phenomena including large waves during Ivan that damaged I-10 Bridges, a large alongshore wave and coastal flooding during Wilma, salinity drop during Fay, and flooding in Taiwan as a result of combined surge and rain effect during Fanapi. The system uses 4 domains that cover entire Florida coastline: West, which covers the Florida panhandle and Tampa Bay; Southwest spans from Florida Keys to Charlotte Harbor; Southeast, covering Biscayne Bay and Miami and East, which continues north to the Florida/Georgia border. The system has a data acquisition and processing module that is used to collect data for model runs (e.g. wind, river flow, precipitation). Depending on the domain, forecasts runs can take ~1-18 hours to complete on a single CPU (8-core) system (1-2 hrs for 2D setup and up to 18 hrs for a 3D setup) with 4 forecasts generated per day. All data is archived / catalogued and model forecast skill is continuously being evaluated. In addition to the baseline forecasts, additional forecasts are being perform using various options for wind forcing (GFS, GFDL, WRF, and parametric hurricane models), model configurations (2D/ 3D), and open boundary conditions by coupling with large scale models (ROMS, NCOM, HYCOM), as well as incorporating real-time and forecast river flow and precipitation data to better understand how to improve model skill. In addition, new forecast products (e.g. more informative inundation maps) are being developed to targeted stakeholders. To support modern data standards, CH3D-SSMS results are available online via a THREDDS server in CF-Compliant NetCDF format as well as other stakeholder-friendly (e.g. GIS) formats. The SECOORA website provides visualization of the model via GODIVA-THREDDS interface.
NASA Technical Reports Server (NTRS)
LaCasse, Katherine M.; Splitt, Michael E.; Lazarus, Steven M.; Lapenta, William M.
2008-01-01
High- and low-resolution sea surface temperature (SST) analysis products are used to initialize the Weather Research and Forecasting (WRF) Model for May 2004 for short-term forecasts over Florida and surrounding waters. Initial and boundary conditions for the simulations were provided by a combination of observations, large-scale model output, and analysis products. The impact of using a 1-km Moderate Resolution Imaging Spectroradiometer (MODIS) SST composite on subsequent evolution of the marine atmospheric boundary layer (MABL) is assessed through simulation comparisons and limited validation. Model results are presented for individual simulations, as well as for aggregates of easterly- and westerly-dominated low-level flows. The simulation comparisons show that the use of MODIS SST composites results in enhanced convergence zones. earlier and more intense horizontal convective rolls. and an increase in precipitation as well as a change in precipitation location. Validation of 10-m winds with buoys shows a slight improvement in wind speed. The most significant results of this study are that 1) vertical wind stress divergence and pressure gradient accelerations across the Florida Current region vary in importance as a function of flow direction and stability and 2) the warmer Florida Current in the MODIS product transports heat vertically and downwind of this heat source, modifying the thermal structure and the MABL wind field primarily through pressure gradient adjustments.
NASA Technical Reports Server (NTRS)
Case, Jonathan L.; Kumar, Sujay V.; Kuliogwski, Robert J.; Langston, Carrie
2013-01-01
This paper and poster presented a description of the current real-time SPoRT-LIS run over the southeastern CONUS to provide high-resolution, land surface initialization grids for local numerical model forecasts at NWS forecast offices. The LIS hourly output also offers a supplemental dataset to aid in situational awareness for convective initiation forecasts, assessing flood potential, and monitoring drought at fine scales. It is a goal of SPoRT and several NWS forecast offices to expand the LIS to an entire CONUS domain, so that LIS output can be utilized by NWS Western Region offices, among others. To make this expansion cleanly so as to provide high-quality land surface output, SPoRT tested new precipitation datasets in LIS as an alternative forcing dataset to the current radar+gauge Stage IV product. Similar to the Stage IV product, the NMQ product showed comparable patterns of precipitation and soil moisture distribution, but suffered from radar gaps in the intermountain West, and incorrectly set values to zero instead of missing in the data-void regions of Mexico and Canada. The other dataset tested was the next-generation GOES-R QPE algorithm, which experienced a high bias in both coverage and intensity of accumulated precipitation relative to the control (NLDAS2), Stage IV, and NMQ simulations. The resulting root zone soil moisture was substantially higher in most areas.
Impact of four-dimensional data assimilation (FDDA) on urban climate analysis
NASA Astrophysics Data System (ADS)
Pan, Linlin; Liu, Yubao; Liu, Yuewei; Li, Lei; Jiang, Yin; Cheng, Will; Roux, Gregory
2015-12-01
This study investigates the impact of four-dimensional data assimilation (FDDA) on urban climate analysis, which employs the NCAR (National Center for Atmospheric Research) WRF (the weather research and forecasting model) based on climate FDDA (CFDDA) technology to develop an urban-scale microclimatology database for the Shenzhen area, a rapidly developing metropolitan located along the southern coast of China, where uniquely high-density observations, including ultrahigh-resolution surface AWS (automatic weather station) network, radio sounding, wind profilers, radiometers, and other weather observation platforms, have been installed. CFDDA is an innovative dynamical downscaling regional climate analysis system that assimilates diverse regional observations; and has been employed to produce a 5 year multiscale high-resolution microclimate analysis by assimilating high-density observations at Shenzhen area. The CFDDA system was configured with four nested-grid domains at grid sizes of 27, 9, 3, and 1 km, respectively. This research evaluates the impact of assimilating high-resolution observation data on reproducing the refining features of urban-scale circulations. Two experiments were conducted with a 5 year run using CFSR (climate forecast system reanalysis) as boundary and initial conditions: one with CFDDA and the other without. The comparisons of these two experiments with observations indicate that CFDDA greatly reduces the model analysis error and is able to realistically analyze the microscale features such as urban-rural-coastal circulation, land/sea breezes, and local-hilly terrain thermal circulations. It is demonstrated that the urbanization can produce 2.5 k differences in 2 m temperatures, delays/speeds up the land/sea breeze development, and interacts with local mountain-valley circulations.
NASA Astrophysics Data System (ADS)
Gastón, Martín; Fernández-Peruchena, Carlos; Körnich, Heiner; Landelius, Tomas
2017-06-01
The present work describes the first approach of a new procedure to forecast Direct Normal Irradiance (DNI): the #hashtdim that treats to combine ground information and Numerical Weather Predictions. The system is centered in generate predictions for the very short time. It combines the outputs from the Numerical Weather Prediction Model HARMONIE with an adaptive methodology based on Machine Learning. The DNI predictions are generated with 15-minute and hourly temporal resolutions and presents 3-hourly updates. Each update offers forecasts to the next 12 hours, the first nine hours are generated with 15-minute temporal resolution meanwhile the last three hours present hourly temporal resolution. The system is proved over a Spanish emplacement with BSRN operative station in south of Spain (PSA station). The #hashtdim has been implemented in the framework of the Direct Normal Irradiance Nowcasting methods for optimized operation of concentrating solar technologies (DNICast) project, under the European Union's Seventh Programme for research, technological development and demonstration framework.
Dynamical downscaling inter-comparison for high resolution climate reconstruction
NASA Astrophysics Data System (ADS)
Ferreira, J.; Rocha, A.; Castanheira, J. M.; Carvalho, A. C.
2012-04-01
In the scope of the project: "High-resolution Rainfall EroSivity analysis and fORecasTing - RESORT", an evaluation of various methods of dynamic downscaling is presented. The methods evaluated range from the classic method of nesting a regional model results in a global model, in this case the ECMWF reanalysis, to more recently proposed methods, which consist in using Newtonian relaxation methods in order to nudge the results of the regional model to the reanalysis. The method with better results involves using a system of variational data assimilation to incorporate observational data with results from the regional model. The climatology of a simulation of 5 years using this method is tested against observations on mainland Portugal and the ocean in the area of the Portuguese Continental Shelf, which shows that the method developed is suitable for the reconstruction of high resolution climate over continental Portugal.
Reanalysis comparisons of upper tropospheric-lower stratospheric jets and multiple tropopauses
NASA Astrophysics Data System (ADS)
Manney, Gloria L.; Hegglin, Michaela I.; Lawrence, Zachary D.; Wargan, Krzysztof; Millán, Luis F.; Schwartz, Michael J.; Santee, Michelle L.; Lambert, Alyn; Pawson, Steven; Knosp, Brian W.; Fuller, Ryan A.; Daffer, William H.
2017-09-01
The representation of upper tropospheric-lower stratospheric (UTLS) jet and tropopause characteristics is compared in five modern high-resolution reanalyses for 1980 through 2014. Climatologies of upper tropospheric jet, subvortex jet (the lowermost part of the stratospheric vortex), and multiple tropopause frequency distributions in MERRA (Modern-Era Retrospective analysis for Research and Applications), ERA-I (ERA-Interim; the European Centre for Medium-Range Weather Forecasts, ECMWF, interim reanalysis), JRA-55 (the Japanese 55-year Reanalysis), and CFSR (the Climate Forecast System Reanalysis) are compared with those in MERRA-2. Differences between alternate products from individual reanalysis systems are assessed; in particular, a comparison of CFSR data on model and pressure levels highlights the importance of vertical grid spacing. Most of the differences in distributions of UTLS jets and multiple tropopauses are consistent with the differences in assimilation model grids and resolution - for example, ERA-I (with coarsest native horizontal resolution) typically shows a significant low bias in upper tropospheric jets with respect to MERRA-2, and JRA-55 (the Japanese 55-year Reanalysis) a more modest one, while CFSR (with finest native horizontal resolution) shows a high bias with respect to MERRA-2 in both upper tropospheric jets and multiple tropopauses. Vertical temperature structure and grid spacing are especially important for multiple tropopause characterizations. Substantial differences between MERRA and MERRA-2 are seen in mid- to high-latitude Southern Hemisphere (SH) winter upper tropospheric jets and multiple tropopauses as well as in the upper tropospheric jets associated with tropical circulations during the solstice seasons; some of the largest differences from the other reanalyses are seen in the same times and places. Very good qualitative agreement among the reanalyses is seen between the large-scale climatological features in UTLS jet and multiple tropopause distributions. Quantitative differences may, however, have important consequences for transport and variability studies. Our results highlight the importance of considering reanalyses differences in UTLS studies, especially in relation to resolution and model grids; this is particularly critical when using high-resolution reanalyses as an observational reference for evaluating global chemistry-climate models.
NASA Astrophysics Data System (ADS)
Federico, Ivan; Pinardi, Nadia; Coppini, Giovanni; Oddo, Paolo; Lecci, Rita; Mossa, Michele
2017-01-01
SANIFS (Southern Adriatic Northern Ionian coastal Forecasting System) is a coastal-ocean operational system based on the unstructured grid finite-element three-dimensional hydrodynamic SHYFEM model, providing short-term forecasts. The operational chain is based on a downscaling approach starting from the large-scale system for the entire Mediterranean Basin (MFS, Mediterranean Forecasting System), which provides initial and boundary condition fields to the nested system. The model is configured to provide hydrodynamics and active tracer forecasts both in open ocean and coastal waters of southeastern Italy using a variable horizontal resolution from the open sea (3-4 km) to coastal areas (50-500 m). Given that the coastal fields are driven by a combination of both local (also known as coastal) and deep-ocean forcings propagating along the shelf, the performance of SANIFS was verified both in forecast and simulation mode, first (i) on the large and shelf-coastal scales by comparing with a large-scale survey CTD (conductivity-temperature-depth) in the Gulf of Taranto and then (ii) on the coastal-harbour scale (Mar Grande of Taranto) by comparison with CTD, ADCP (acoustic doppler current profiler) and tide gauge data. Sensitivity tests were performed on initialization conditions (mainly focused on spin-up procedures) and on surface boundary conditions by assessing the reliability of two alternative datasets at different horizontal resolution (12.5 and 6.5 km). The SANIFS forecasts at a lead time of 1 day were compared with the MFS forecasts, highlighting that SANIFS is able to retain the large-scale dynamics of MFS. The large-scale dynamics of MFS are correctly propagated to the shelf-coastal scale, improving the forecast accuracy (+17 % for temperature and +6 % for salinity compared to MFS). Moreover, the added value of SANIFS was assessed on the coastal-harbour scale, which is not covered by the coarse resolution of MFS, where the fields forecasted by SANIFS reproduced the observations well (temperature RMSE equal to 0.11 °C). Furthermore, SANIFS simulations were compared with hourly time series of temperature, sea level and velocity measured on the coastal-harbour scale, showing a good agreement. Simulations in the Gulf of Taranto described a circulation mainly characterized by an anticyclonic gyre with the presence of cyclonic vortexes in shelf-coastal areas. A surface water inflow from the open sea to Mar Grande characterizes the coastal-harbour scale.
Koolhof, I S; Bettiol, S; Carver, S
2017-10-01
Health warnings of mosquito-borne disease risk require forecasts that are accurate at fine-temporal resolutions (weekly scales); however, most forecasting is coarse (monthly). We use environmental and Ross River virus (RRV) surveillance to predict weekly outbreak probabilities and incidence spanning tropical, semi-arid, and Mediterranean regions of Western Australia (1991-2014). Hurdle and linear models were used to predict outbreak probabilities and incidence respectively, using time-lagged environmental variables. Forecast accuracy was assessed by model fit and cross-validation. Residual RRV notification data were also examined against mitigation expenditure for one site, Mandurah 2007-2014. Models were predictive of RRV activity, except at one site (Capel). Minimum temperature was an important predictor of RRV outbreaks and incidence at all predicted sites. Precipitation was more likely to cause outbreaks and greater incidence among tropical and semi-arid sites. While variable, mitigation expenditure coincided positively with increased RRV incidence (r 2 = 0·21). Our research demonstrates capacity to accurately predict mosquito-borne disease outbreaks and incidence at fine-temporal resolutions. We apply our findings, developing a user-friendly tool enabling managers to easily adopt this research to forecast region-specific RRV outbreaks and incidence. Approaches here may be of value to fine-scale forecasting of RRV in other areas of Australia, and other mosquito-borne diseases.
Matching current windstorms to historical analogues
NASA Astrophysics Data System (ADS)
Becker, Bernd; Maisey, Paul; Scannell, Claire; Vanvyve, Emilie; Mitchell, Lorna; Steptoe, Hamish
2015-04-01
European windstorms are capable of producing devastating socioeconomic impacts. They are capable of causing power outages to millions of people, closing transport networks, uprooting trees, causing walls, buildings and other structures to collapse, which in the worst cases has resulted in dozens of fatalities. In Europe windstorms present the greatest natural hazard risk for primary insurers and result in the greatest aggregate loss due to the high volume of claims. In the winter of 2013/2014 alone storms Christian, Xaver, Dirk and Tini cost the insurance industry an estimated EUR 2.5 bn. Here we make use of a high resolution (4 km) historical storm footprint catalogue which contains over 6000 storms. This catalogue was created using the 35 year ERA-Interim model reanalysis dataset, downscaled to 12 km and then to 4.4 km. This approach was taken in order to provide a long term, high resolution data set, consistent with Met Office high resolution deterministic forecast capability for Europe. The footprints are defined as the maximum 3 second gust at each model grid point over a 72 hour period during each storm. Matches between current/forecast storm footprints and footprints from the historical catalogue are found using fingerprint identification techniques, by way of calculating image texture derived from the gray-level-co-occurrence matrix (Haralick, 1973). The best match is found by firstly adding the current or forecast footprints to the stack of the historical storm catalogue. An "identical twin" or "best match" of this footprint is then sought from within this stack. This search is repeated for a set of measures (15 in total) including position of the strongest gusts, storm damage potential and 13 Haralick measures. Each time a candidate is found, the nearest neighbours are noted and a rank proximity measure is calculated. Finally, the Frobenius norm (distance between the two fields at each grid-point averaged) is calculated. This provides an independent assessment of the goodness of fit made by the rank proximity measure. Using this technique a series of potential historical footprints matching the current footprint is found. Each potential match is indexed according to its closeness to the current footprint where an index rating of 0 is a perfect match or "identical twin". Such pattern matching of current and forecast windstorms against an historical archive can enable insurers estimate a rapid prediction of likely loss and aid the timely deployment of staff and funds at the right level.
NASA Astrophysics Data System (ADS)
Lee, Joseph C. Y.; Lundquist, Julie K.
2017-11-01
Forecasts of wind-power production are necessary to facilitate the integration of wind energy into power grids, and these forecasts should incorporate the impact of wind-turbine wakes. This paper focuses on a case study of four diurnal cycles with significant power production, and assesses the skill of the wind farm parameterization (WFP) distributed with the Weather Research and Forecasting (WRF) model version 3.8.1, as well as its sensitivity to model configuration. After validating the simulated ambient flow with observations, we quantify the value of the WFP as it accounts for wake impacts on power production of downwind turbines. We also illustrate with statistical significance that a vertical grid with approximately 12 m vertical resolution is necessary for reproducing the observed power production. Further, the WFP overestimates wake effects and hence underestimates downwind power production during high wind speed, highly stable, and low turbulence conditions. We also find the WFP performance is independent of the number of wind turbines per model grid cell and the upwind-downwind position of turbines. Rather, the ability of the WFP to predict power production is most dependent on the skill of the WRF model in simulating the ambient wind speed.
Lee, Joseph C. Y.; Lundquist, Julie K.
2017-11-23
Forecasts of wind-power production are necessary to facilitate the integration of wind energy into power grids, and these forecasts should incorporate the impact of wind-turbine wakes. Our paper focuses on a case study of four diurnal cycles with significant power production, and assesses the skill of the wind farm parameterization (WFP) distributed with the Weather Research and Forecasting (WRF) model version 3.8.1, as well as its sensitivity to model configuration. After validating the simulated ambient flow with observations, we quantify the value of the WFP as it accounts for wake impacts on power production of downwind turbines. We also illustratemore » with statistical significance that a vertical grid with approximately 12 m vertical resolution is necessary for reproducing the observed power production. Further, the WFP overestimates wake effects and hence underestimates downwind power production during high wind speed, highly stable, and low turbulence conditions. We also find the WFP performance is independent of the number of wind turbines per model grid cell and the upwind–downwind position of turbines. Rather, the ability of the WFP to predict power production is most dependent on the skill of the WRF model in simulating the ambient wind speed.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lee, Joseph C. Y.; Lundquist, Julie K.
Forecasts of wind-power production are necessary to facilitate the integration of wind energy into power grids, and these forecasts should incorporate the impact of wind-turbine wakes. Our paper focuses on a case study of four diurnal cycles with significant power production, and assesses the skill of the wind farm parameterization (WFP) distributed with the Weather Research and Forecasting (WRF) model version 3.8.1, as well as its sensitivity to model configuration. After validating the simulated ambient flow with observations, we quantify the value of the WFP as it accounts for wake impacts on power production of downwind turbines. We also illustratemore » with statistical significance that a vertical grid with approximately 12 m vertical resolution is necessary for reproducing the observed power production. Further, the WFP overestimates wake effects and hence underestimates downwind power production during high wind speed, highly stable, and low turbulence conditions. We also find the WFP performance is independent of the number of wind turbines per model grid cell and the upwind–downwind position of turbines. Rather, the ability of the WFP to predict power production is most dependent on the skill of the WRF model in simulating the ambient wind speed.« less
NASA Astrophysics Data System (ADS)
Wanders, Niko; Wood, Eric
2016-04-01
Sub-seasonal to seasonal weather and hydrological forecasts have the potential to provide vital information for a variety of water-related decision makers. For example, seasonal forecasts of drought risk can enable farmers to make adaptive choices on crop varieties, labour usage, and technology investments. Seasonal and sub-seasonal predictions can increase preparedness to hydrological extremes that regularly occur in all regions of the world with large impacts on society. We investigated the skill of six seasonal forecast models from the NMME-2 ensemble coupled to two global hydrological models (VIC and PCRGLOBWB) for the period 1982-2012. The 31 years of NNME-2 hindcast data is used in combination with an ensemble mean and ESP forecast, to forecast important hydrological variables (e.g. soil moisture, groundwater storage, snow, reservoir levels and river discharge). By using two global hydrological models we are able to quantify both the uncertainty in the meteorological input and the uncertainty created by the different hydrological models. We show that the NMME-2 forecast outperforms the ESP forecasts in terms of anomaly correlation and brier skill score for all forecasted hydrological variables, with a low uncertainty in the performance amongst the hydrological models. However, the continuous ranked probability score (CRPS) of the NMME-2 ensemble is inferior to the ESP due to a large spread between the individual ensemble members. We use a cost analysis to show that the damage caused by floods and droughts in large scale rivers can globally be reduced by 48% (for leads from 1-2 months) to 20% (for leads between 6-9 months) when precautions are taken based on the NMME-2 ensemble instead of an ESP forecast. In collaboration with our local partner in West Africa (AGHRYMET), we looked at the performance of the sub-seasonal forecasts for crop planting dates and high flow season in West Africa. We show that the uncertainty in the optimal planting date is reduced from 30 days to 12 days (2.5 month lead) and an increased predictability of the high flow season from 45 days to 20 days (3-4 months lead). Additionally, we show that snow accumulation and melt onset in the Northern hemisphere can be forecasted with an uncertainty of 10 days (2.5 months lead). Both the overall skill, and the skill found in these last two examples, indicates that the new NMME-2 forecast dataset is valuable for sub-seasonal forecast applications. The high temporal resolution (daily), long leads (one year leads) and large hindcast archive enable new sub-seasonal forecasting applications to be explored. We show that the NMME-2 has a large potential for sub-seasonal hydrological forecasting and other potential hydrological applications (e.g. reservoir management), which could benefit from these new forecasts.
Satellites, tweets, forecasts: the future of flood disaster management?
NASA Astrophysics Data System (ADS)
Dottori, Francesco; Kalas, Milan; Lorini, Valerio; Wania, Annett; Pappenberger, Florian; Salamon, Peter; Ramos, Maria Helena; Cloke, Hannah; Castillo, Carlos
2017-04-01
Floods have devastating effects on lives and livelihoods around the world. Structural flood defence measures such as dikes and dams can help protect people. However, it is the emerging science and technologies for flood disaster management and preparedness, such as increasingly accurate flood forecasting systems, high-resolution satellite monitoring, rapid risk mapping, and the unique strength of social media information and crowdsourcing, that are most promising for reducing the impacts of flooding. Here, we describe an innovative framework which integrates in real-time two components of the Copernicus Emergency mapping services, namely the European Flood Awareness System and the satellite-based Rapid Mapping, with new procedures for rapid risk assessment and social media and news monitoring. The integrated framework enables improved flood impact forecast, thanks to the real-time integration of forecasting and monitoring components, and increases the timeliness and efficiency of satellite mapping, with the aim of capturing flood peaks and following the evolution of flooding processes. Thanks to the proposed framework, emergency responders will have access to a broad range of timely and accurate information for more effective and robust planning, decision-making, and resource allocation.
Impact of CAMEX-4 Data Sets for Hurricane Forecasts using a Global Model
NASA Technical Reports Server (NTRS)
Kamineni, Rupa; Krishnamurti, T. N.; Pattnaik, S.; Browell, Edward V.; Ismail, Syed; Ferrare, Richard A.
2005-01-01
This study explores the impact on hurricane data assimilation and forecasts from the use of dropsondes and remote-sensed moisture profiles from the airborne Lidar Atmospheric Sensing Experiment (LASE) system. We show that the use of these additional data sets, above those from the conventional world weather watch, has a positive impact on hurricane predictions. The forecast tracks and intensity from the experiments show a marked improvement compared to the control experiment where such data sets were excluded. A study of the moisture budget in these hurricanes showed enhanced evaporation and precipitation over the storm area. This resulted in these data sets making a large impact on the estimate of mass convergence and moisture fluxes, which were much smaller in the control runs. Overall this study points to the importance of high vertical resolution humidity data sets for improved model results. We note that the forecast impact from the moisture profiling data sets for some of the storms is even larger than the impact from the use of dropwindsonde based winds.
NASA Astrophysics Data System (ADS)
Kim, Ji-in; Ryu, Kyongsik; Suh, Ae-sook
2016-04-01
In 2014, three major governmental organizations that are Korea Meteorological Administration (KMA), K-water, and Korea Rural Community Corporation have been established the Hydrometeorological Cooperation Center (HCC) to accomplish more effective water management for scarcely gauged river basins, where data are uncertain or non-consistent. To manage the optimal drought and flood control over the ungauged river, HCC aims to interconnect between weather observations and forecasting information, and hydrological model over sparse regions with limited observations sites in Korean peninsula. In this study, long-term forecasting ensemble models so called Global Seasonal forecast system version 5 (GloSea5): a high-resolution seasonal forecast system, provided by KMA was used in order to produce drought outlook. Glosea5 ensemble model prediction provides predicted drought information for 1 and 3 months ahead with drought index including Standardized Precipitation Index (SPI3) and Palmer Drought Severity Index (PDSI). Also, Global Precipitation Measurement and Global Climate Observation Measurement - Water1 satellites data products are used to estimate rainfall and soil moisture contents over the ungauged region.
NASA Astrophysics Data System (ADS)
Cai, Y.
2017-12-01
Accurately forecasting crop yields has broad implications for economic trading, food production monitoring, and global food security. However, the variation of environmental variables presents challenges to model yields accurately, especially when the lack of highly accurate measurements creates difficulties in creating models that can succeed across space and time. In 2016, we developed a sequence of machine-learning based models forecasting end-of-season corn yields for the US at both the county and national levels. We combined machine learning algorithms in a hierarchical way, and used an understanding of physiological processes in temporal feature selection, to achieve high precision in our intra-season forecasts, including in very anomalous seasons. During the live run, we predicted the national corn yield within 1.40% of the final USDA number as early as August. In the backtesting of the 2000-2015 period, our model predicts national yield within 2.69% of the actual yield on average already by mid-August. At the county level, our model predicts 77% of the variation in final yield using data through the beginning of August and improves to 80% by the beginning of October, with the percentage of counties predicted within 10% of the average yield increasing from 68% to 73%. Further, the lowest errors are in the most significant producing regions, resulting in very high precision national-level forecasts. In addition, we identify the changes of important variables throughout the season, specifically early-season land surface temperature, and mid-season land surface temperature and vegetation index. For the 2017 season, we feed 2016 data to the training set, together with additional geospatial data sources, aiming to make the current model even more precise. We will show how our 2017 US corn yield forecasts converges in time, which factors affect the yield the most, as well as present our plans for 2018 model adjustments.
SPoRT: Transitioning NASA and NOAA Experimental Data to the Operational Weather Community
NASA Technical Reports Server (NTRS)
Jedlovec, Gary J.
2013-01-01
Established in 2002 to demonstrate the weather and forecasting application of real-time EOS measurements, the NASA Short-term Prediction Research and Transition (SPoRT) program has grown to be an end-to-end research to operations activity focused on the use of advanced NASA modeling and data assimilation approaches, nowcasting techniques, and unique high-resolution multispectral data from EOS satellites to improve short-term weather forecasts on a regional and local scale. With the ever-broadening application of real-time high resolution satellite data from current EOS, Suomi NPP, and planned JPSS and GOES-R sensors to weather forecast problems, significant challenges arise in the acquisition, delivery, and integration of the new capabilities into the decision making process of the operational weather community. For polar orbiting sensors such as MODIS, AIRS, VIIRS, and CRiS, the use of direct broadcast ground stations is key to the real-time delivery of the data and derived products in a timely fashion. With the ABI on the geostationary GOES-R satellite, the data volumes will likely increase by a factor of 5-10 from current data streams. However, the high data volume and limited bandwidth of end user facilities presents a formidable obstacle to timely access to the data. This challenge can be addressed through the use of subsetting techniques, innovative web services, and the judicious selection of data formats. Many of these approaches have been implemented by SPoRT for the delivery of real-time products to NWS forecast offices and other weather entities. Once available in decision support systems like AWIPS II, these new data and products must be integrated into existing and new displays that allow for the integration of the data with existing operational products in these systems. SPoRT is leading the way in demonstrating this enhanced capability. This paper will highlight the ways SPoRT is overcoming many of the challenges presented by the enormous data volumes of current and future satellite systems to get unique high quality research data into the operational weather environment.
Challenges in Transitioning Research Data to Operations: The SPoRT Paradigm
NASA Technical Reports Server (NTRS)
Jedloved, Gary J.; Smith, Matt; McGrath, Kevin
2010-01-01
Established in 2002 to demonstrate the weather and forecasting application of real-time EOS measurements, the NASA Short-term Prediction Research and Transition (SPoRT) program has grown to be an end-to-end research to operations activity focused on the use of advanced NASA modeling and data assimilation approaches, nowcasting techniques, and unique high-resolution multispectral data from EOS satellites to improve short-term weather forecasts on a regional and local scale. With the ever-broadening application of real-time high resolution satellite data from current EOS and planned NPP, JPSS, and GOES-R sensors to weather forecast problems, significant challenges arise in the acquisition, delivery, and integration of the new capabilities into the decision making process of the operational weather community. For polar orbiting sensors such as MODIS, AIRS, VIIRS, and CRiS, the use of direct broadcast ground stations is key to the real-time delivery of the data and derived products in a timely fashion. With the ABI on the geostationary GOES-R satellite, the data volume will likely increase by a factor of 5- 10 from current data streams. However, the high data volume and limited bandwidth of end user facilities presents a formidable obstacle to timely access to the data. This challenge can be addressed through the use of subsetting techniques, innovative web services, and the judicious selection of data formats. Many of these approaches have been implemented by SPoRT for the delivery of real-time products to NWS forecast offices and other weather entities. Once available in decision support systems like AWIPS II, these new data and products must be integrated into existing and new displays that allow for the integration of the data with existing operational products in these systems. SPoRT is leading the way in demonstrating this enhanced capability. This paper will highlight the ways SPoRT is overcoming many of the challenges presented by the enormous data volumes of current and future satellite systems to get unique high quality research data into the operational weather environment.
NASA Astrophysics Data System (ADS)
Ma, M.; Wang, H.; Chen, Y.; Tang, G.; Hong, Z.; Zhang, K.; Hong, Y.
2017-12-01
Flash floods, one of the deadliest natural hazards worldwide due to their multidisciplinary nature, rank highly in terms of heavy damage and casualties. Such as in the United States, flash flood is the No.1 cause of death and the No. 2 most deadly weather-related hazard among all storm-related hazards, with approximately 100 lives lost each year. According to China Floods and Droughts Disasters Bullet in 2015 (http://www.mwr.gov.cn/zwzc/hygb/zgshzhgb), about 935 deaths per year on average were caused by flash floods from 2000 to 2015, accounting for 73 % of the fatalities due to floods. Therefore, significant efforts have been made toward understanding flash flood processes as well as modeling and forecasting them, it still remains challenging because of their short response time and limited monitoring capacity. This study advances the use of high-resolution Global Precipitation Measurement forecasts (GPMs), disaster data obtained from the government officials in 2011 and 2016, and the improved Distributed Flash Flood Guidance (DFFG) method combining the Distributed Hydrologic Model and Soil Conservation Service Curve Numbers. The objectives of this paper are (1) to examines changes in flash flood occurrence, (2) to estimate the effect of the rainfall spatial variability ,(2) to improve the lead time in flash floods warning and get the rainfall threshold, (3) to assess the DFFG method applicability in Dongchuan catchments, and (4) to yield the probabilistic information about the forecast hydrologic response that accounts for the locational uncertainties of the GPMs. Results indicate: (1) flash flood occurrence increased in the study region, (2) the occurrence of predicted flash floods show high sensitivity to total infiltration and soil water content, (3) the DFFG method is generally capable of making accurate predictions of flash flood events in terms of their locations and time of occurrence, and (4) the accumulative rainfall over a certain time span is an appropriate threshold for flash flood warnings. Finally, the article highlights the importance of accurately simulating the hydrological processes and high-resolution satellite rainfall data on the accurate forecasting of rainfall triggered flash flood events.
AROME-Arctic: New operational NWP model for the Arctic region
NASA Astrophysics Data System (ADS)
Süld, Jakob; Dale, Knut S.; Myrland, Espen; Batrak, Yurii; Homleid, Mariken; Valkonen, Teresa; Seierstad, Ivar A.; Randriamampianina, Roger
2016-04-01
In the frame of the EU-funded project ACCESS (Arctic Climate Change, Economy and Society), MET Norway aimed 1) to describe the present monitoring and forecasting capabilities in the Arctic; and 2) to identify the key factors limiting the forecasting capabilities and to give recommendations on key areas to improve the forecasting capabilities in the Arctic. We have observed that the NWP forecast quality is lower in the Arctic than in the regions further south. Earlier research indicated that one of the factors behind this is the composition of the observing system in the Arctic, in particular the scarceness of conventional observations. To further assess possible strategies for alleviating the situation and propose scenarios for a future Arctic observing system, we have performed a set of experiments to gain a more detailed insight in the contribution of the components of the present observing system in a regional state-of-the-art non-hydrostatic NWP model using the AROME physics (Seity et al, 2011) at 2.5 km horizontal resolution - AROME-Arctic. Our observing system experiment studies showed that conventional observations (Synop, Buoys) can play an important role in correcting the surface state of the model, but prove that the present upper-air conventional (Radiosondes, Aircraft) observations in the area are too scarce to have a significant effect on forecasts. We demonstrate that satellite sounding data play an important role in improving forecast quality. This is the case with satellite temperature sounding data (AMSU-A, IASI), as well as with the satellite moisture sounding data (AMSU-B/MHS, IASI). With these sets of observations, the AROME-Arctic clearly performs better in forecasting extreme events, like for example polar lows. For more details see presentation by Randriamampianina et al. in this session. The encouraging performance of AROME-Arctic lead us to implement it with more observations and improved settings into daily runs with the objective to substitute our actual operational Arctic mesoscale HIRLAM (High Resolution Limited Area Model) NWP model. This presentation will discuss in detail the operational implementation of the AROME-Arctic model together with post-processing methods. Aimed services in the Arctic region covered by the model, such as online weather forecasting (yr.no) and tracking of polar lows (barentswatch.no), is also included.
COSMO-PAFOG: Three-dimensional fog forecasting with the high-resolution COSMO-model
NASA Astrophysics Data System (ADS)
Hacker, Maike; Bott, Andreas
2017-04-01
The presence of fog can have critical impact on shipping, aviation and road traffic increasing the risk of serious accidents. Besides these negative impacts of fog, in arid regions fog is explored as a supplementary source of water for human settlements. Thus the improvement of fog forecasts holds immense operational value. The aim of this study is the development of an efficient three-dimensional numerical fog forecast model based on a mesoscale weather prediction model for the application in the Namib region. The microphysical parametrization of the one-dimensional fog forecast model PAFOG (PArameterized FOG) is implemented in the three-dimensional nonhydrostatic mesoscale weather prediction model COSMO (COnsortium for Small-scale MOdeling) developed and maintained by the German Meteorological Service. Cloud water droplets are introduced in COSMO as prognostic variables, thus allowing a detailed description of droplet sedimentation. Furthermore, a visibility parametrization depending on the liquid water content and the droplet number concentration is implemented. The resulting fog forecast model COSMO-PAFOG is run with kilometer-scale horizontal resolution. In vertical direction, we use logarithmically equidistant layers with 45 of 80 layers in total located below 2000 m. Model results are compared to satellite observations and synoptic observations of the German Meteorological Service for a domain in the west of Germany, before the model is adapted to the geographical and climatological conditions in the Namib desert. COSMO-PAFOG is able to represent the horizontal structure of fog patches reasonably well. Especially small fog patches typical of radiation fog can be simulated in agreement with observations. Ground observations of temperature are also reproduced. Simulations without the PAFOG microphysics yield unrealistically high liquid water contents. This in turn reduces the radiative cooling of the ground, thus inhibiting nocturnal temperature decrease. The simulated visibility agrees with observations. However, fog tends to be dissolved earlier than in the observation. As a result of the investigated fog events, it is concluded that the three-dimensional fog forecast model COSMO-PAFOG is able to simulate these fog events in accordance with observations. After the successful application of COSMO-PAFOG for fog events in the west of Germany, model simulations will be performed for coastal desert fog in the Namib region.
Weather Research and Forecasting Model with Vertical Nesting Capability
DOE Office of Scientific and Technical Information (OSTI.GOV)
2014-08-01
The Weather Research and Forecasting (WRF) model with vertical nesting capability is an extension of the WRF model, which is available in the public domain, from www.wrf-model.org. The new code modifies the nesting procedure, which passes lateral boundary conditions between computational domains in the WRF model. Previously, the same vertical grid was required on all domains, while the new code allows different vertical grids to be used on concurrently run domains. This new functionality improves WRF's ability to produce high-resolution simulations of the atmosphere by allowing a wider range of scales to be efficiently resolved and more accurate lateral boundarymore » conditions to be provided through the nesting procedure.« less
A look into hurricane Maria rapid intensification using Meteo-France's Arome-Antilles model.
NASA Astrophysics Data System (ADS)
Pilon, R.; Faure, G.; Dupont, T.; Chauvin, F.
2017-12-01
Category 5 Hurricane Maria created a string of humanitarian crises. It caused billions of dollars of damage over the Caribbean but is also one of the worst natural disaster in Dominica.The hurricane took approximately 29 hours to strengthen from a tropical storm to a major category 5 hurricane. Here we present real-time forecasts of high resolution (2.5 km) Arome-Antilles regional model forced by real-time ECMWF's Integrated Forecasting System. The model was able to relatively represent well the rapid intensification of the hurricane whether it was in timing or in location of the eye and strength of its eye wall.We will present an outline of results.
NASA Astrophysics Data System (ADS)
Folmer, M. J.; Berndt, E.; Malloy, K.; Mazur, K.; Sienkiewicz, J. M.; Phillips, J.; Goldberg, M.
2017-12-01
The Joint Polar Satellite System (JPSS) was added to the Satellite Proving Ground for Marine, Precipitation, and Satellite Analysis in late 2012, just in time to introduce forecasters to the very high-resolution imagery available from the Suomi-National Polar Partnership (S-NPP) Visible Infrared Imaging Radiometer Suite (VIIRS) instrument when observing and forecasting Hurricane Sandy (2012). Since that time, more polar products have been introduced to the forecast routines at the National Weather Service (NWS) Ocean Prediction Center (OPC), Weather Prediction Center (WPC), Tropical Analysis and Forecast Branch (TAFB) of the National Hurricane Center (NHC), and the Satellite Analysis Branch (SAB) of the National Environmental Satellite, Data, and Information Service (NESDIS). These new data sets have led to research projects at the OPC and TAFB that have specifically been looking into the early identification of stratospheric intrusions that lead to explosive cyclogenesis or extratropical transition of tropical cyclones. Currently NOAA Unique CrIS/ATMS Processing System (NUCAPS) temperature and moisture soundings are available in AWIPS-II as a point-based display. Traditionally soundings are used to anticipate and forecast severe convection, however unique and valuable information can be gained from soundings for other forecasting applications, such as extratropical transition, especially in data sparse regions. Additional research has been conducted to look at how JPSS CrIS/ATMS NUCAPS soundings might help forecasters identify the pre-extratropical transition or pre-explosive cyclogenesis environments, leading to earlier diagnosis and better public advisories. CrIS/ATMS NUCAPS soundings, IASI and NUCAPS ozone products, NOAA G-IV GPS dropwindsondes, the Air Mass RGB, and single water vapor channels have been analyzed to look for the precursors to these high impact events. This presentation seeks to show some early analysis and potential uses of the polar-orbiting datasets to compliment the geostationary imagery and therefore lead to earlier identification and possible warnings.
NASA Technical Reports Server (NTRS)
Zavordsky, Bradley; Case, Jonathan L.; Gotway, John H.; White, Kristopher; Medlin, Jeffrey; Wood, Lance; Radell, Dave
2014-01-01
Local modeling with a customized configuration is conducted at National Weather Service (NWS) Weather Forecast Offices (WFOs) to produce high-resolution numerical forecasts that can better simulate local weather phenomena and complement larger scale global and regional models. The advent of the Environmental Modeling System (EMS), which provides a pre-compiled version of the Weather Research and Forecasting (WRF) model and wrapper Perl scripts, has enabled forecasters to easily configure and execute the WRF model on local workstations. NWS WFOs often use EMS output to help in forecasting highly localized, mesoscale features such as convective initiation, the timing and inland extent of lake effect snow bands, lake and sea breezes, and topographically-modified winds. However, quantitatively evaluating model performance to determine errors and biases still proves to be one of the challenges in running a local model. Developed at the National Center for Atmospheric Research (NCAR), the Model Evaluation Tools (MET) verification software makes performing these types of quantitative analyses easier, but operational forecasters do not generally have time to familiarize themselves with navigating the sometimes complex configurations associated with the MET tools. To assist forecasters in running a subset of MET programs and capabilities, the Short-term Prediction Research and Transition (SPoRT) Center has developed and transitioned a set of dynamic, easily configurable Perl scripts to collaborating NWS WFOs. The objective of these scripts is to provide SPoRT collaborating partners in the NWS with the ability to evaluate the skill of their local EMS model runs in near real time with little prior knowledge of the MET package. The ultimate goal is to make these verification scripts available to the broader NWS community in a future version of the EMS software. This paper provides an overview of the SPoRT MET scripts, instructions for how the scripts are run, and example use cases.
Adaptation of Mesoscale Weather Models to Local Forecasting
NASA Technical Reports Server (NTRS)
Manobianco, John T.; Taylor, Gregory E.; Case, Jonathan L.; Dianic, Allan V.; Wheeler, Mark W.; Zack, John W.; Nutter, Paul A.
2003-01-01
Methodologies have been developed for (1) configuring mesoscale numerical weather-prediction models for execution on high-performance computer workstations to make short-range weather forecasts for the vicinity of the Kennedy Space Center (KSC) and the Cape Canaveral Air Force Station (CCAFS) and (2) evaluating the performances of the models as configured. These methodologies have been implemented as part of a continuing effort to improve weather forecasting in support of operations of the U.S. space program. The models, methodologies, and results of the evaluations also have potential value for commercial users who could benefit from tailoring their operations and/or marketing strategies based on accurate predictions of local weather. More specifically, the purpose of developing the methodologies for configuring the models to run on computers at KSC and CCAFS is to provide accurate forecasts of winds, temperature, and such specific thunderstorm-related phenomena as lightning and precipitation. The purpose of developing the evaluation methodologies is to maximize the utility of the models by providing users with assessments of the capabilities and limitations of the models. The models used in this effort thus far include the Mesoscale Atmospheric Simulation System (MASS), the Regional Atmospheric Modeling System (RAMS), and the National Centers for Environmental Prediction Eta Model ( Eta for short). The configuration of the MASS and RAMS is designed to run the models at very high spatial resolution and incorporate local data to resolve fine-scale weather features. Model preprocessors were modified to incorporate surface, ship, buoy, and rawinsonde data as well as data from local wind towers, wind profilers, and conventional or Doppler radars. The overall evaluation of the MASS, Eta, and RAMS was designed to assess the utility of these mesoscale models for satisfying the weather-forecasting needs of the U.S. space program. The evaluation methodology includes objective and subjective verification methodologies. Objective (e.g., statistical) verification of point forecasts is a stringent measure of model performance, but when used alone, it is not usually sufficient for quantifying the value of the overall contribution of the model to the weather-forecasting process. This is especially true for mesoscale models with enhanced spatial and temporal resolution that may be capable of predicting meteorologically consistent, though not necessarily accurate, fine-scale weather phenomena. Therefore, subjective (phenomenological) evaluation, focusing on selected case studies and specific weather features, such as sea breezes and precipitation, has been performed to help quantify the added value that cannot be inferred solely from objective evaluation.
Short-term Forecasting Tools for Agricultural Nutrient Management.
Easton, Zachary M; Kleinman, Peter J A; Buda, Anthony R; Goering, Dustin; Emberston, Nichole; Reed, Seann; Drohan, Patrick J; Walter, M Todd; Guinan, Pat; Lory, John A; Sommerlot, Andrew R; Sharpley, Andrew
2017-11-01
The advent of real-time, short-term farm management tools is motivated by the need to protect water quality above and beyond the general guidance offered by existing nutrient management plans. Advances in high-performance computing and hydrologic or climate modeling have enabled rapid dissemination of real-time information that can assist landowners and conservation personnel with short-term management planning. This paper reviews short-term decision support tools for agriculture that are under various stages of development and implementation in the United States: (i) Wisconsin's Runoff Risk Advisory Forecast (RRAF) System, (ii) New York's Hydrologically Sensitive Area Prediction Tool, (iii) Virginia's Saturated Area Forecast Model, (iv) Pennsylvania's Fertilizer Forecaster, (v) Washington's Application Risk Management (ARM) System, and (vi) Missouri's Design Storm Notification System. Although these decision support tools differ in their underlying model structure, the resolution at which they are applied, and the hydroclimates to which they are relevant, all provide forecasts (range 24-120 h) of runoff risk or soil moisture saturation derived from National Weather Service Forecast models. Although this review highlights the need for further development of robust and well-supported short-term nutrient management tools, their potential for adoption and ultimate utility requires an understanding of the appropriate context of application, the strategic and operational needs of managers, access to weather forecasts, scales of application (e.g., regional vs. field level), data requirements, and outreach communication structure. Copyright © by the American Society of Agronomy, Crop Science Society of America, and Soil Science Society of America, Inc.
NASA Astrophysics Data System (ADS)
Wang, Yuanbing; Liu, Zhiquan; Yang, Sen; Min, Jinzhong; Chen, Liqiang; Chen, Yaodeng; Zhang, Tao
2018-04-01
Himawari-8 is the first launched and operational new-generation geostationary meteorological satellite. The Advanced Himawari Imager (AHI) on board Himawari-8 provides continuous high-resolution observations of severe weather phenomena in space and time. In this study, the capability to assimilate AHI radiances has been developed within the Weather Research and Forecasting (WRF) model's data assimilation system. As the first attempt to assimilate AHI using WRF data assimilation at convective scales, the added value of hourly AHI clear-sky radiances from three water vapor channels on convection-permitting (3 km) analyses and forecasts of the "7.19" severe rainstorm that occurred over north China during 18-21 July 2016 was investigated. Analyses were produced hourly, and 24 h forecasts were produced every 6 h. The results showed that improved wind and humidity fields were obtained in analyses and forecasts verified against conventional observations after assimilating AHI water vapor radiances when compared to the control experiment which assimilated only conventional observations. It was also found that the assimilation of AHI water vapor radiances had a clearly positive impact on the rainfall forecast for the first 6 h lead time, especially for heavy rainfall exceeding 100 mm when verified against the observed rainfall. Furthermore, the horizontal and vertical distribution of features in the moisture fields were improved after assimilating AHI water vapor radiances, eventually contributing to a better forecast of the severe rainstorm.
NASA Astrophysics Data System (ADS)
Stephenson, S. R.; Babiker, M.; Sandven, S.; Muckenhuber, S.; Korosov, A.; Bobylev, L.; Vesman, A.; Mushta, A.; Demchev, D.; Volkov, V.; Smirnov, K.; Hamre, T.
2015-12-01
Sea ice monitoring and forecasting systems are important tools for minimizing accident risk and environmental impacts of Arctic maritime operations. Satellite data such as synthetic aperture radar (SAR), combined with atmosphere-ice-ocean forecasting models, navigation models and automatic identification system (AIS) transponder data from ships are essential components of such systems. Here we present first results from the SONARC project (project term: 2015-2017), an international multidisciplinary effort to develop novel and complementary ice monitoring and forecasting systems for vessels and offshore platforms in the Arctic. Automated classification methods (Zakhvatkina et al., 2012) are applied to Sentinel-1 dual-polarization SAR images from the Barents and Kara Sea region to identify ice types (e.g. multi-year ice, level first-year ice, deformed first-year ice, new/young ice, open water) and ridges. Short-term (1-3 days) ice drift forecasts are computed from SAR images using feature tracking and pattern tracking methods (Berg & Eriksson, 2014). Ice classification and drift forecast products are combined with ship positions based on AIS data from a selected period of 3-4 weeks to determine optimal vessel speed and routing in ice. Results illustrate the potential of high-resolution SAR data for near-real-time monitoring and forecasting of Arctic ice conditions. Over the next 3 years, SONARC findings will contribute new knowledge about sea ice in the Arctic while promoting safe and cost-effective shipping, domain awareness, resource management, and environmental protection.
Short-term ensemble radar rainfall forecasts for hydrological applications
NASA Astrophysics Data System (ADS)
Codo de Oliveira, M.; Rico-Ramirez, M. A.
2016-12-01
Flooding is a very common natural disaster around the world, putting local population and economy at risk. Forecasting floods several hours ahead and issuing warnings are of main importance to permit proper response in emergency situations. However, it is important to know the uncertainties related to the rainfall forecasting in order to produce more reliable forecasts. Nowcasting models (short-term rainfall forecasts) are able to produce high spatial and temporal resolution predictions that are useful in hydrological applications. Nonetheless, they are subject to uncertainties mainly due to the nowcasting model used, errors in radar rainfall estimation, temporal development of the velocity field and to the fact that precipitation processes such as growth and decay are not taken into account. In this study an ensemble generation scheme using rain gauge data as a reference to estimate radars errors is used to produce forecasts with up to 3h lead-time. The ensembles try to assess in a realistic way the residual uncertainties that remain even after correction algorithms are applied in the radar data. The ensembles produced are compered to a stochastic ensemble generator. Furthermore, the rainfall forecast output was used as an input in a hydrodynamic sewer network model and also in hydrological model for catchments of different sizes in north England. A comparative analysis was carried of how was carried out to assess how the radar uncertainties propagate into these models. The first named author is grateful to CAPES - Ciencia sem Fronteiras for funding this PhD research.
Cloud Forecasting and 3-D Radiative Transfer Model Validation using Citizen-Sourced Imagery
NASA Astrophysics Data System (ADS)
Gasiewski, A. J.; Heymsfield, A.; Newman Frey, K.; Davis, R.; Rapp, J.; Bansemer, A.; Coon, T.; Folsom, R.; Pfeufer, N.; Kalloor, J.
2017-12-01
Cloud radiative feedback mechanisms are one of the largest sources of uncertainty in global climate models. Variations in local 3D cloud structure impact the interpretation of NASA CERES and MODIS data for top-of-atmosphere radiation studies over clouds. Much of this uncertainty results from lack of knowledge of cloud vertical and horizontal structure. Surface-based data on 3-D cloud structure from a multi-sensor array of low-latency ground-based cameras can be used to intercompare radiative transfer models based on MODIS and other satellite data with CERES data to improve the 3-D cloud parameterizations. Closely related, forecasting of solar insolation and associated cloud cover on time scales out to 1 hour and with spatial resolution of 100 meters is valuable for stabilizing power grids with high solar photovoltaic penetrations. Data for cloud-advection based solar insolation forecasting with requisite spatial resolution and latency needed to predict high ramp rate events obtained from a bottom-up perspective is strongly correlated with cloud-induced fluctuations. The development of grid management practices for improved integration of renewable solar energy thus also benefits from a multi-sensor camera array. The data needs for both 3D cloud radiation modelling and solar forecasting are being addressed using a network of low-cost upward-looking visible light CCD sky cameras positioned at 2 km spacing over an area of 30-60 km in size acquiring imagery on 30 second intervals. Such cameras can be manufactured in quantity and deployed by citizen volunteers at a marginal cost of 200-400 and operated unattended using existing communications infrastructure. A trial phase to understand the potential utility of up-looking multi-sensor visible imagery is underway within this NASA Citizen Science project. To develop the initial data sets necessary to optimally design a multi-sensor cloud camera array a team of 100 citizen scientists using self-owned PDA cameras is being organized to collect distributed cloud data sets suitable for MODIS-CERES cloud radiation science and solar forecasting algorithm development. A low-cost and robust sensor design suitable for large scale fabrication and long term deployment has been developed during the project prototyping phase.
Real-time numerical forecast of global epidemic spreading: case study of 2009 A/H1N1pdm.
Tizzoni, Michele; Bajardi, Paolo; Poletto, Chiara; Ramasco, José J; Balcan, Duygu; Gonçalves, Bruno; Perra, Nicola; Colizza, Vittoria; Vespignani, Alessandro
2012-12-13
Mathematical and computational models for infectious diseases are increasingly used to support public-health decisions; however, their reliability is currently under debate. Real-time forecasts of epidemic spread using data-driven models have been hindered by the technical challenges posed by parameter estimation and validation. Data gathered for the 2009 H1N1 influenza crisis represent an unprecedented opportunity to validate real-time model predictions and define the main success criteria for different approaches. We used the Global Epidemic and Mobility Model to generate stochastic simulations of epidemic spread worldwide, yielding (among other measures) the incidence and seeding events at a daily resolution for 3,362 subpopulations in 220 countries. Using a Monte Carlo Maximum Likelihood analysis, the model provided an estimate of the seasonal transmission potential during the early phase of the H1N1 pandemic and generated ensemble forecasts for the activity peaks in the northern hemisphere in the fall/winter wave. These results were validated against the real-life surveillance data collected in 48 countries, and their robustness assessed by focusing on 1) the peak timing of the pandemic; 2) the level of spatial resolution allowed by the model; and 3) the clinical attack rate and the effectiveness of the vaccine. In addition, we studied the effect of data incompleteness on the prediction reliability. Real-time predictions of the peak timing are found to be in good agreement with the empirical data, showing strong robustness to data that may not be accessible in real time (such as pre-exposure immunity and adherence to vaccination campaigns), but that affect the predictions for the attack rates. The timing and spatial unfolding of the pandemic are critically sensitive to the level of mobility data integrated into the model. Our results show that large-scale models can be used to provide valuable real-time forecasts of influenza spreading, but they require high-performance computing. The quality of the forecast depends on the level of data integration, thus stressing the need for high-quality data in population-based models, and of progressive updates of validated available empirical knowledge to inform these models.
NASA Astrophysics Data System (ADS)
Ortt, D.; Chen, S. S.
2007-12-01
The interaction of the environmental water vapor distribution around a tropical cyclone (TC), rainbands, and inner- core dynamics can affect hurricane structure and intensity change, which is not well understood. Although previous studies have addressed various aspects of this problem, a full three way interaction and its implications for hurricane intensity change has not been documented. Using data collected during the Hurricane Rainband and Intensity Experiment (RAINEX) in Hurricanes Katrina and Rita, the three way interaction of the environment moisture, rainbands, and inner-core dynamics can be evaluated. The TRMM TMI total precipitable water (PW) data with 1/4 degree horizontal resolution, TRMM TMI rainrate data with a 4 km horizontal resolution and the GPS dropsondes with a ½ second temporal resolution are used to characterize the environmental moisture. The high resolution model output from the real-time MM5 forecasts of Hurricanes Katrina and Rita are used to investigate the complex interactions in both storms. The model forecasts were made using a vortex-following nested grid with horizontal resolutions of 15, 5, and 1.67km, respectively. There were 28 vertical sigma levels. The Goddard microphysics scheme was used. The TRMM PW and the GPS dropsonde data show strong moisture gradients in the outer rainband region in Rita with a dry outer environment, which may contribute to the development of outer rainbands with a high circularity. It created a secondary ring of potential vorticity (PV). In addition, the vortex Rossby waves (VRW) propagating radialy outward from the eyewall were unable to propagate beyond the secondary ring of PV. The combination of these VRW and the environmental water vapor distribution may play a role in enhancing the rainbands that developed into a secondary eyewall, which leads to a temporary weakening of the hurricane. In contrast, Katrina had a relative weak moisture gradient surrounding the storm. There were not persistent outer rainbands with high circularity, which may explain the different evolution in Katrina compared with Rita.
NASA Astrophysics Data System (ADS)
Lee, H.; Park, J.; Cho, S.; Lee, S. J.; Kim, H. S.
2017-12-01
Forest determines the amount of water available to low land ecosystems, which use the rest of water after evapotranspiration by forests. Substantial increase of drought, especially for seasonal drought, has occurred in Korea due to climate change, recently. To cope with this increasing crisis, it is necessary to predict the water use of forest. In our study, forest water use in the Gyeonggi Province in Korea was estimated using high-resolution (spatial and temporal) meteorological forecast data and localized Joint UK Land Environment Simulator (JULES) which is one of the widely used land surface models. The modeled estimation was used for developing forest drought index. The localization of the model was conducted by 1) refining the existing two tree plant functional types (coniferous and deciduous trees) into five (Quercus spp., other deciduous tree spp., Pinus spp., Larix spp., and other coniferous spp.), 2) correcting moderate resolution imaging spectroradiometer (MODIS) leaf area index (LAI) through data assimilation with in situ measured LAI, and 3) optimizing the unmeasured plant physiological parameters (e.g. leaf nitrogen contents, nitrogen distribution within canopy, light use efficiency) based on sensitivity analysis of model output values. The high-resolution (hourly and 810 × 810 m) National Center for AgroMeteorology-Land-Atmosphere Modeling Package (NCAM-LAMP) data were employed as meteorological input data in JULES. The plant functional types and soil texture of each grid cell in the same resolution with that of NCAM-LAMP was also used. The performance of the localized model in estimating forest water use was verified by comparison with the multi-year sapflow measurements and Eddy covariance data of Taehwa Mountain site. Our result can be used as referential information to estimate the forest water use change by the climate change. Moreover, the drought index can be used to foresee the drought condition and prepare to it.
USDA-ARS?s Scientific Manuscript database
Modelling the water and energy balance at the land surface is a crucial task for many applications related to crop production, water resources management, climate change studies, weather forecasting, and natural hazards assessment. To improve the modelling of evapotranspiration (ET) over structurall...
Initialization of high resolution surface wind simulations using NWS gridded data
J. Forthofer; K. Shannon; Bret Butler
2010-01-01
WindNinja is a standalone computer model designed to provide the user with simulations of surface wind flow. It is deterministic and steady state. It is currently being modified to allow the user to initialize the flow calculation using National Digital Forecast Database. It essentially allows the user to downscale the coarse scale simulations from meso-scale models to...
Development of IDEA product for GOES-R aerosol data
NASA Astrophysics Data System (ADS)
Zhang, Hai; Hoff, Raymond M.; Kondragunta, Shobha
2009-08-01
The NOAA GOES-R Advanced Baseline Imager (ABI) will have nearly the same capabilities as NASA's Moderate Resolution Imaging Spectroradiometer (MODIS) to generate multi-wavelength retrievals of aerosol optical depth (AOD) with high temporal and spatial resolution, which can be used as a surrogate of surface particulate measurements such as PM2.5 (particulate matter with diameter less than 2.5 μm). To prepare for the launch of GOES-R and its application in the air quality forecasting, we have transferred and enhanced the Infusing satellite Data into Environmental Applications (IDEA) product from University of Wisconsin to NOAA NESDIS. IDEA was created through a NASA/EPA/NOAA cooperative effort. The enhanced IDEA product provides near-real-time imagery of AOD derived from multiple satellite sensors including MODIS Terra, MODIS Aqua, GOES EAST and GOES WEST imager. Air quality forecast guidance is produced through a trajectory model initiated at locations with high AOD retrievals and/or high aerosol index (AI) from OMI (Ozone Monitoring Instrument). The product is currently running at http://www.star.nesdis.noaa.gov/smcd/spb/aq/. The IDEA system will be tested using the GOES-R ABI proxy dataset, and will be ready to operate with GOES-R aerosol data when GOES-R is launched.
Weather Research and Forecasting Model Sensitivity Comparisons for Warm Season Convective Initiation
NASA Technical Reports Server (NTRS)
Watson, Leela R.; Hoeth, Brian; Blottman, Peter F.
2007-01-01
Mesoscale weather conditions can significantly affect the space launch and landing operations at Kennedy Space Center (KSC) and Cape Canaveral Air Force Station (CCAFS). During the summer months, land-sea interactions that occur across KSC and CCAFS lead to the formation of a sea breeze, which can then spawn deep convection. These convective processes often last 60 minutes or less and pose a significant challenge to the forecasters at the National Weather Service (NWS) Spaceflight Meteorology Group (SMG). The main challenge is that a "GO" forecast for thunderstorms and precipitation is required at the 90 minute deorbit decision for End Of Mission (EOM) and at the 30 minute Return To Launch Site (RTLS) decision at the Shuttle Landing Facility. Convective initiation, timing, and mode also present a forecast challenge for the NWS in Melbourne, FL (MLB). The NWS MLB issues such tactical forecast information as Terminal Aerodrome Forecasts (TAFs), Spot Forecasts for fire weather and hazardous materials incident support, and severe/hazardous weather Watches, Warnings, and Advisories. Lastly, these forecasting challenges can also affect the 45th Weather Squadron (45 WS), which provides comprehensive weather forecasts for shuttle launch, as well as ground operations, at KSC and CCAFS. The need for accurate mesoscale model forecasts to aid in their decision making is crucial. Both the SMG and the MLB are currently implementing the Weather Research and Forecasting Environmental Modeling System (WRF EMS) software into their operations. The WRF EMS software allows users to employ both dynamical cores - the Advanced Research WRF (ARW) and the Non-hydrostatic Mesoscale Model (NMM). There are also data assimilation analysis packages available for the initialization of the WRF model- the Local Analysis and Prediction System (LAPS) and the Advanced Regional Prediction System (ARPS) Data Analysis System (ADAS). Having a series of initialization options and WRF cores, as well as many options within each core, provides SMG and NWS MLB with a lot of flexibility. It also creates challenges, such as determining which configuration options are best to address specific forecast concerns. The goal of this project is to assess the different configurations available and to determine which configuration will best predict warm season convective initiation in East-Central Florida. Four different combinations of WRF initializations will be run (ADAS-ARW, ADAS-NMM, LAPS-ARW, and LAPS-NMM) at a 4-km resolution over the Florida peninsula and adjacent coastal waters. Five candidate convective initiation days using three different flow regimes over East-Central Florida will be examined, as well as two null cases (non-convection days). Each model run will be integrated 12 hours with three runs per day, at 0900, 1200, and 1500 UTe. ADAS analyses will be generated every 30 minutes using Level II Weather Surveillance Radar-1988 Doppler (WSR-88D) data from all Florida radars to verify the convection forecast. These analyses will be run on the same domain as the four model configurations. To quantify model performance, model output will be subjectively compared to the ADAS analyses of convection to determine forecast accuracy. In addition, a subjective comparison of the performance of the ARW using a high-resolution local grid with 2-way nesting, I-way nesting, and no nesting will be made for select convective initiation cases. The inner grid will cover the East-Central Florida region at a resolution of 1.33 km. The authors will summarize the relative skill of the various WRF configurations and how each configuration behaves relative to the others, as well as determine the best model configuration for predicting warm season convective initiation over East-Central Florida.
High resolution modelling of wind fields for optimization of empirical storm flood predictions
NASA Astrophysics Data System (ADS)
Brecht, B.; Frank, H.
2014-05-01
High resolution wind fields are necessary to predict the occurrence of storm flood events and their magnitude. Deutscher Wetterdienst (DWD) created a catalogue of detailed wind fields of 39 historical storms at the German North Sea coast from the years 1962 to 2011. The catalogue is used by the Niedersächsisches Landesamt für Wasser-, Küsten- und Naturschutz (NLWKN) coastal research center to improve their flood alert service. The computation of wind fields and other meteorological parameters is based on the model chain of the DWD going from the global model GME via the limited-area model COSMO with 7 km mesh size down to a COSMO model with 2.2 km. To obtain an improved analysis COSMO runs are nudged against observations for the historical storms. The global model GME is initialised from the ERA reanalysis data of the European Centre for Medium-Range Weather Forecasts (ECMWF). As expected, we got better congruency with observations of the model for the nudging runs than the normal forecast runs for most storms. We also found during the verification process that different land use data sets could influence the results considerably.
Distant Influence of Kuroshio Eddies on North Pacific Weather Patterns?
Ma, Xiaohui; Chang, Ping; Saravanan, R.; Montuoro, Raffaele; Hsieh, Jen-Shan; Wu, Dexing; Lin, Xiaopei; Wu, Lixin; Jing, Zhao
2015-01-01
High-resolution satellite measurements of surface winds and sea-surface temperature (SST) reveal strong coupling between meso-scale ocean eddies and near-surface atmospheric flow over eddy-rich oceanic regions, such as the Kuroshio and Gulf Stream, highlighting the importance of meso-scale oceanic features in forcing the atmospheric planetary boundary layer (PBL). Here, we present high-resolution regional climate modeling results, supported by observational analyses, demonstrating that meso-scale SST variability, largely confined in the Kuroshio-Oyashio confluence region (KOCR), can further exert a significant distant influence on winter rainfall variability along the U.S. Northern Pacific coast. The presence of meso-scale SST anomalies enhances the diabatic conversion of latent heat energy to transient eddy energy, intensifying winter cyclogenesis via moist baroclinic instability, which in turn leads to an equivalent barotropic downstream anticyclone anomaly with reduced rainfall. The finding points to the potential of improving forecasts of extratropical winter cyclones and storm systems and projections of their response to future climate change, which are known to have major social and economic impacts, by improving the representation of ocean eddy–atmosphere interaction in forecast and climate models. PMID:26635077
Update of global TC simulations using a variable resolution non-hydrostatic model
NASA Astrophysics Data System (ADS)
Park, S. H.
2017-12-01
Using in a variable resolution meshes in MPAS during 2017 summer., Tropical cyclone (TC) forecasts are simulated. Two physics suite are tested to explore performance and bias of each physics suite for TC forecasting. A WRF physics suite is selected from experience on weather forecasting and CAM (Community Atmosphere Model) physics is taken from a AMIP type climate simulation. Based on the last year results from CAM5 physical parameterization package and comparing with WRF physics, we investigated a issue with intensity bias using updated version of CAM physics (CAM6). We also compared these results with coupled version of TC simulations. During this talk, TC structure will be compared specially around of boundary layer and investigate their relationship between TC intensity and different physics package.
Validation and Inter-comparison Against Observations of GODAE Ocean View Ocean Prediction Systems
NASA Astrophysics Data System (ADS)
Xu, J.; Davidson, F. J. M.; Smith, G. C.; Lu, Y.; Hernandez, F.; Regnier, C.; Drevillon, M.; Ryan, A.; Martin, M.; Spindler, T. D.; Brassington, G. B.; Oke, P. R.
2016-02-01
For weather forecasts, validation of forecast performance is done at the end user level as well as by the meteorological forecast centers. In the development of Ocean Prediction Capacity, the same level of care for ocean forecast performance and validation is needed. Herein we present results from a validation against observations of 6 Global Ocean Forecast Systems under the GODAE OceanView International Collaboration Network. These systems include the Global Ocean Ice Forecast System (GIOPS) developed by the Government of Canada, two systems PSY3 and PSY4 from the French Mercator-Ocean Ocean Forecasting Group, the FOAM system from UK met office, HYCOM-RTOFS from NOAA/NCEP/NWA of USA, and the Australian Bluelink-OceanMAPS system from the CSIRO, the Australian Meteorological Bureau and the Australian Navy.The observation data used in the comparison are sea surface temperature, sub-surface temperature, sub-surface salinity, sea level anomaly, and sea ice total concentration data. Results of the inter-comparison demonstrate forecast performance limits, strengths and weaknesses of each of the six systems. This work establishes validation protocols and routines by which all new prediction systems developed under the CONCEPTS Collaborative Network will be benchmarked prior to approval for operations. This includes anticipated delivery of CONCEPTS regional prediction systems over the next two years including a pan Canadian 1/12th degree resolution ice ocean prediction system and limited area 1/36th degree resolution prediction systems. The validation approach of comparing forecasts to observations at the time and location of the observation is called Class 4 metrics. It has been adopted by major international ocean prediction centers, and will be recommended to JCOMM-WMO as routine validation approach for operational oceanography worldwide.
North Pacific Mesoscale Coupled Air-Ocean Simulations Compared with Observations
DOE Office of Scientific and Technical Information (OSTI.GOV)
Cerovecki, Ivana; McClean, Julie; Koracin, Darko
2014-11-14
The overall objective of this study was to improve the representation of regional ocean circulation in the North Pacific by using high resolution atmospheric forcing that accurately represents mesoscale processes in ocean-atmosphere regional (North Pacific) model configuration. The goal was to assess the importance of accurate representation of mesoscale processes in the atmosphere and the ocean on large scale circulation. This is an important question, as mesoscale processes in the atmosphere which are resolved by the high resolution mesoscale atmospheric models such as Weather Research and Forecasting (WRF), are absent in commonly used atmospheric forcing such as CORE forcing, employedmore » in e.g. the Community Climate System Model (CCSM).« less
High-resolution surface analysis for extended-range downscaling with limited-area atmospheric models
NASA Astrophysics Data System (ADS)
Separovic, Leo; Husain, Syed Zahid; Yu, Wei; Fernig, David
2014-12-01
High-resolution limited-area model (LAM) simulations are frequently employed to downscale coarse-resolution objective analyses over a specified area of the globe using high-resolution computational grids. When LAMs are integrated over extended time frames, from months to years, they are prone to deviations in land surface variables that can be harmful to the quality of the simulated near-surface fields. Nudging of the prognostic surface fields toward a reference-gridded data set is therefore devised in order to prevent the atmospheric model from diverging from the expected values. This paper presents a method to generate high-resolution analyses of land-surface variables, such as surface canopy temperature, soil moisture, and snow conditions, to be used for the relaxation of lower boundary conditions in extended-range LAM simulations. The proposed method is based on performing offline simulations with an external surface model, forced with the near-surface meteorological fields derived from short-range forecast, operational analyses, and observed temperatures and humidity. Results show that the outputs of the surface model obtained in the present study have potential to improve the near-surface atmospheric fields in extended-range LAM integrations.
Doppler lidar for measurement of atmospheric wind fields
NASA Technical Reports Server (NTRS)
Menzies, Robert T.
1991-01-01
Measurements of wind fields in the earth's troposphere with daily global coverage is widely considered as a significant advance for forecasting and transport studies. For optimal use by NWP (Numerical Weather Prediction) models the horizontal and vertical resolutions should be approximately 100 km and 1 km, respectively. For boundary layer studies vertical resolution of a few hundred meters seems essential. Earth-orbiting Doppler lidar has a unique capability to measure global winds in the troposphere with the high vertical resolution required. The lidar approach depends on transmission of pulses with high spectral purity and backscattering from the atmospheric aerosol particles or layered clouds to provide a return signal. Recent field measurement campaigns using NASA research aircraft have resulted in collection of aerosol and cloud data which can be used to optimize the Doppler lidar instrument design and measurement strategy.
NASA Astrophysics Data System (ADS)
Vukicevic, T.; Uhlhorn, E.; Reasor, P.; Klotz, B.
2012-12-01
A significant potential for improving numerical model forecast skill of tropical cyclone (TC) intensity by assimilation of airborne inner core observations in high resolution models has been demonstrated in recent studies. Although encouraging , the results so far have not provided clear guidance on the critical information added by the inner core data assimilation with respect to the intensity forecast skill. Better understanding of the relationship between the intensity forecast and the value added by the assimilation is required to further the progress, including the assimilation of satellite observations. One of the major difficulties in evaluating such a relationship is the forecast verification metric of TC intensity: the maximum one-minute sustained wind speed at 10 m above surface. The difficulty results from two issues : 1) the metric refers to a practically unobservable quantity since it is an extreme value in a highly turbulent, and spatially-extensive wind field and 2) model- and observation-based estimates of this measure are not compatible in terms of spatial and temporal scales, even in high-resolution models. Although the need for predicting the extreme value of near surface wind is well justified, and the observation-based estimates that are used in practice are well thought of, a revised metric for the intensity is proposed for the purpose of numerical forecast evaluation and the impacts on the forecast. The metric should enable a robust observation- and model-resolvable and phenomenologically-based evaluation of the impacts. It is shown that the maximum intensity could be represented in terms of decomposition into deterministic and stochastic components of the wind field. Using the vortex-centric cylindrical reference frame, the deterministic component is defined as the sum of amplitudes of azimuthal wave numbers 0 and 1 at the radius of maximum wind, whereas the stochastic component is represented by a non-Gaussian PDF. This decomposition is exact and fully independent of individual TC properties. The decomposition of the maximum wind intensity was first evaluated using several sources of data including Step Frequency Microwave Radiometer surface wind speeds from NOAA and Air Force reconnaissance flights,NOAA P-3 Tail Doppler Radar measurements, and best track maximum intensity estimates as well as the simulations from Hurricane WRF Ensemble Data Assimilation System (HEDAS) experiments for 83 real data cases. The results confirmed validity of the method: the stochastic component of the maximum exibited a non-Gaussian PDF with small mean amplitude and variance that was comparable to the known best track error estimates. The results of the decomposition were then used to evaluate the impact of the improved initial conditions on the forecast. It was shown that the errors in the deterministic component of the intensity had the dominant effect on the forecast skill for the studied cases. This result suggests that the data assimilation of the inner core observations could focus primarily on improving the analysis of wave number 0 and 1 initial structure and on the mechanisms responsible for forcing the evolution of this low-wavenumber structure. For the latter analysis, the assimilation of airborne and satellite remote sensing observations could play significant role.
SPoRT's Participation in the GOES-R Proving Ground Activity
NASA Technical Reports Server (NTRS)
Jedlovec, Gary; Fuell, Kevin; Smith, Matthew; Stano, Geoffrey; Molthan, Andrew
2011-01-01
The next generation geostationary satellite, GOES-R, will carry two new instruments with unique atmospheric and surface observing capabilities, the Advanced Baseline Imager (ABI) and the Geostationary Lightning Mapper (GLM), to study short-term weather processes. The ABI will bring enhanced multispectral observing capabilities with frequent refresh rates for regional and full disk coverage to geostationary orbit to address many existing and new forecast challenges. The GLM will, for the first time, provide the continuous monitoring of total lightning flashes over a hemispherical region from space. NOAA established the GOES-R Proving Ground activity several years ago to demonstrate the new capabilities of these instruments and to prepare forecasters for their day one use. Proving Ground partners work closely with algorithm developers and the end user community to develop and transition proxy data sets representing GOES-R observing capabilities. This close collaboration helps to maximize refine algorithms leading to the delivery of a product that effectively address a forecast challenge. The NASA Short-term Prediction Research and Transition (SPoRT) program has been a participant in the NOAA GOES-R Proving Ground activity by developing and disseminating selected GOES-R proxy products to collaborating WFOs and National Centers. Established in 2002 to demonstrate the weather and forecasting application of real-time EOS measurements, the SPoRT program has grown to be an end-to-end research to operations activity focused on the use of advanced NASA modeling and data assimilation approaches, nowcasting techniques, and unique high-resolution multispectral data from EOS satellites to improve short-term weather forecasts on a regional and local scale. Participation in the Proving Ground activities extends SPoRT s activities and taps its experience and expertise in diagnostic weather analysis, short-term weather forecasting, and the transition of research and experimental data to operational decision support systems like NAWIPS, AWIPS, AWIPS2, and Google Earth. Recent SPoRT Proving Ground activities supporting the development and use of a pseudo GLM total lightning product and the transition of the AWG s Convective Initiation (CI) product, both of which were available in AWIPS and AWIPS II environments, by forecasters during the Hazardous Weather Testbed (HWT) Spring Experiment. SPoRT is also providing a suite of SEVIRI and MODIS RGB image products, and a high resolution composite SST product to several National Centers for use in there ongoing demonstration activities. Additionally, SPoRT has involved numerous WFOs in the evaluation of a GOES-MODIS hybrid product which brings ABI-like data sets in front of the forecaster for everyday use. An overview of this activity will be presented at the conference.
SPoRT's Participation in the GOES-R Proving Ground Activity
NASA Astrophysics Data System (ADS)
Jedlovec, G.; Fuell, K.; Smith, M. R.; Stano, G. T.; Molthan, A.
2011-12-01
The next generation geostationary satellite, GOES-R, will carry two new instruments with unique atmospheric and surface observing capabilities, the Advanced Baseline Imager (ABI) and the Geostationary Lightning Mapper (GLM), to study short-term weather processes. The ABI will bring enhanced multispectral observing capabilities with frequent refresh rates for regional and full disk coverage to geostationary orbit to address many existing and new forecast challenges. The GLM will, for the first time, provide the continuous monitoring of total lightning flashes over a hemispherical region from space. NOAA established the GOES-R Proving Ground activity several years ago to demonstrate the new capabilities of these instruments and to prepare forecasters for their day one use. Proving Ground partners work closely with algorithm developers and the end user community to develop and transition proxy data sets representing GOES-R observing capabilities. This close collaboration helps to maximize refine algorithms leading to the delivery of a product that effectively address a forecast challenge. The NASA Short-term Prediction Research and Transition (SPoRT) program has been a participant in the NOAA GOES-R Proving Ground activity by developing and disseminating selected GOES-R proxy products to collaborating WFOs and National Centers. Established in 2002 to demonstrate the weather and forecasting application of real-time EOS measurements, the SPoRT program has grown to be an end-to-end research to operations activity focused on the use of advanced NASA modeling and data assimilation approaches, nowcasting techniques, and unique high-resolution multispectral data from EOS satellites to improve short-term weather forecasts on a regional and local scale. Participation in the Proving Ground activities extends SPoRT's activities and taps its experience and expertise in diagnostic weather analysis, short-term weather forecasting, and the transition of research and experimental data to operational decision support systems like NAWIPS, AWIPS, AWIPS2, and Google Earth. Recent SPoRT Proving Ground activities supporting the development and use of a pseudo GLM total lightning product and the transition of the AWG's Convective Initiation (CI) product, both of which were available in AWIPS and AWIPS II environments, by forecasters during the Hazardous Weather Testbed (HWT) Spring Experiment. SPoRT is also providing a suite of SEVIRI and MODIS RGB image products, and a high resolution composite SST product to several National Centers for use in there ongoing demonstration activities. Additionally, SPoRT has involved numerous WFOs in the evaluation of a GOES-MODIS hybrid product which brings ABI-like data sets in front of the forecaster for everyday use. An overview of this activity will be presented at the conference.
Aggregation of Environmental Model Data for Decision Support
NASA Astrophysics Data System (ADS)
Alpert, J. C.
2013-12-01
Weather forecasts and warnings must be prepared and then delivered so as to reach their intended audience in good time to enable effective decision-making. An effort to mitigate these difficulties was studied at a Workshop, 'Sustaining National Meteorological Services - Strengthening WMO Regional and Global Centers' convened, June , 2013, by the World Bank, WMO and the US National Weather Service (NWS). The skill and accuracy of atmospheric forecasts from deterministic models have increased and there are now ensembles of such models that improve decisions to protect life, property and commerce. The NWS production of numerical weather prediction products result in model output from global and high resolution regional ensemble forecasts. Ensembles are constructed by changing the initial conditions to make a 'cloud' of forecasts that attempt to span the space of possible atmospheric realizations which can quantify not only the most likely forecast, but also the uncertainty. This has led to an unprecedented increase in data production and information content from higher resolution, multi-model output and secondary calculations. One difficulty is to obtain the needed subset of data required to estimate the probability of events, and report the information. The calibration required to reliably estimate the probability of events, and honing of threshold adjustments to reduce false alarms for decision makers is also needed. To meet the future needs of the ever-broadening user community and address these issues on a national and international basis, the weather service implemented the NOAA Operational Model Archive and Distribution System (NOMADS). NOMADS provides real-time and retrospective format independent access to climate, ocean and weather model data and delivers high availability content services as part of NOAA's official real time data dissemination at its new NCWCP web operations center. An important aspect of the server's abilities is to aggregate the matrix of model output offering access to probability and calibrating information for real time decision making. The aggregation content server reports over ensemble component and forecast time in addition to the other data dimensions of vertical layer and position for each variable. The unpacking, organization and reading of many binary packed files is accomplished most efficiently on the server while weather element event probability calculations, the thresholds for more accurate decision support, or display remain for the client. Our goal is to reduce uncertainty for variables of interest, e.g, agricultural importance. The weather service operational GFS model ensemble and short range ensemble forecasts can make skillful probability forecasts to alert users if and when their selected weather events will occur. A description of how this framework operates and how it can be implemented using existing NOMADS content services and applications is described.
Regional Precipitation Forecast with Atmospheric InfraRed Sounder (AIRS) Profile Assimilation
NASA Technical Reports Server (NTRS)
Chou, S.-H.; Zavodsky, B. T.; Jedloved, G. J.
2010-01-01
Advanced technology in hyperspectral sensors such as the Atmospheric InfraRed Sounder (AIRS; Aumann et al. 2003) on NASA's polar orbiting Aqua satellite retrieve higher vertical resolution thermodynamic profiles than their predecessors due to increased spectral resolution. Although these capabilities do not replace the robust vertical resolution provided by radiosondes, they can serve as a complement to radiosondes in both space and time. These retrieved soundings can have a significant impact on weather forecasts if properly assimilated into prediction models. Several recent studies have evaluated the performance of specific operational weather forecast models when AIRS data are included in the assimilation process. LeMarshall et al. (2006) concluded that AIRS radiances significantly improved 500 hPa anomaly correlations in medium-range forecasts of the Global Forecast System (GFS) model. McCarty et al. (2009) demonstrated similar forecast improvement in 0-48 hour forecasts in an offline version of the operational North American Mesoscale (NAM) model when AIRS radiances were assimilated at the regional scale. Reale et al. (2008) showed improvements to Northern Hemisphere 500 hPa height anomaly correlations in NASA's Goddard Earth Observing System Model, Version 5 (GEOS-5) global system with the inclusion of partly cloudy AIRS temperature profiles. Singh et al. (2008) assimilated AIRS temperature and moisture profiles into a regional modeling system for a study of a heavy rainfall event during the summer monsoon season in Mumbai, India. This paper describes an approach to assimilate AIRS temperature and moisture profiles into a regional configuration of the Advanced Research Weather Research and Forecasting (WRF-ARW) model using its three-dimensional variational (3DVAR) assimilation system (WRF-Var; Barker et al. 2004). Section 2 describes the AIRS instrument and how the quality indicators are used to intelligently select the highest-quality data for assimilation. Section 3 presents an overall precipitation improvement with AIRS assimilation during a 37-day case study period, and Section 4 focuses on a single case study to further investigate the meteorological impact of AIRS profiles on synoptic scale models. Finally, Section 5 provides a summary of the paper.
NASA Astrophysics Data System (ADS)
Piu NG, Chak; HAO, Song; Fat LAM, Yun
2015-04-01
Visibility is a universally critical element which affects the public in many aspects, including economic activities, health of local citizens and safety of marine transportation and aviation. The Interagency Monitoring of Protected Visual Environments (IMPROVE) visibility equation, an empirical equation developed by USEPA, has been modified by various studies to fit into the application upon the Asian continent including Hong Kong and China. Often these studies focused on the improvement of the existing IMPROVE equation by modifying its particulate speciation using local observation data. In this study, we developed an Integrated Forecast System (IFS) to predict the next-day air quality and visibility using Weather Research and Forecasting model with Building Energy Parameterization and Building Energy Model (WRF-BEP+BEM) and Community Multi-scale Air Quality Model (CMAQ). Unlike the other studies, the core of this study is to include detailed urbanization impacts with calibrated "IMPROVE equation for PRD" into the modeling system for Hong Kong's environs. The ultra-high resolution land cover information (~1km x 1km) from Google images, was digitized into the Geographic Information System (GIS) for preparing the model-ready input for IFS. The NCEP FNL (Final) Operation Global Analysis (FNL) and the Global Forecasting System (GFS) datasets were tested for both hind-cast and forecast cases, in order to calibrate the input of urban parameters in the WRF-BEP+BEM model. The evaluation of model performance with sensitivity cases was performed on sea surface temperature (SST), surface temperature (T), wind speed/direction with the major pollutants (i.e., PM10, PM2.5, NOx, SO2 and O3) using local observation and will be presented/discussed in this paper. References: 1. Y. L. Lee, R. Sequeira, Visibility degradation across Hong Kong its components and their relative contribution. Atmospheric Environment 2001, 35, 5861-5872. doi:10.1016/S1352-2310(01)00395-8 2. R. Zhang, Q. Bian, J. C. H. Fung, A. K. H. Lau, Mathematical modeling of seasonal variations in visibility in Hong Kong and the Pearl River Delta region. Atmospheric Environment 2013, 77, 803-816. http://dx.doi.org/10.1016/j.atmosenv.2013.05.048
NASA Astrophysics Data System (ADS)
Hori, Takane; Ichimura, Tsuyoshi; Takahashi, Narumi
2017-04-01
Here we propose a system for monitoring and forecasting of crustal activity, such as spatio-temporal variation in slip velocity on the plate interface including earthquakes, seismic wave propagation, and crustal deformation. Although, we can obtain continuous dense surface deformation data on land and partly on the sea floor, the obtained data are not fully utilized for monitoring and forecasting. It is necessary to develop a physics-based data analysis system including (1) a structural model with the 3D geometry of the plate interface and the material property such as elasticity and viscosity, (2) calculation code for crustal deformation and seismic wave propagation using (1), (3) inverse analysis or data assimilation code both for structure and fault slip using (1) & (2). To accomplish this, it is at least necessary to develop highly reliable large-scale simulation code to calculate crustal deformation and seismic wave propagation for 3D heterogeneous structure. Actually, Ichimura et al. (2015, SC15) has developed unstructured FE non-linear seismic wave simulation code, which achieved physics-based urban earthquake simulation enhanced by 1.08 T DOF x 6.6 K time-step. Ichimura et al. (2013, GJI) has developed high fidelity FEM simulation code with mesh generator to calculate crustal deformation in and around Japan with complicated surface topography and subducting plate geometry for 1km mesh. Fujita et al. (2016, SC16) has improved the code for crustal deformation and achieved 2.05 T-DOF with 45m resolution on the plate interface. This high-resolution analysis enables computation of change of stress acting on the plate interface. Further, for inverse analyses, Errol et al. (2012, BSSA) has developed waveform inversion code for modeling 3D crustal structure, and Agata et al. (2015, AGU Fall Meeting) has improved the high-fidelity FEM code to apply an adjoint method for estimating fault slip and asthenosphere viscosity. Hence, we have large-scale simulation and analysis tools for monitoring. Furthermore, we are developing the methods for forecasting the slip velocity variation on the plate interface. Basic concept is given in Hori et al. (2014, Oceanography) introducing ensemble based sequential data assimilation procedure. Although the prototype described there is for elastic half space model, we are applying it for 3D heterogeneous structure with the high-fidelity FE model.
NASA Astrophysics Data System (ADS)
Hori, T.; Agata, R.; Ichimura, T.; Fujita, K.; Yamaguchi, T.; Takahashi, N.
2017-12-01
Recently, we can obtain continuous dense surface deformation data on land and partly on the sea floor, the obtained data are not fully utilized for monitoring and forecasting of crustal activity, such as spatio-temporal variation in slip velocity on the plate interface including earthquakes, seismic wave propagation, and crustal deformation. For construct a system for monitoring and forecasting, it is necessary to develop a physics-based data analysis system including (1) a structural model with the 3D geometry of the plate inter-face and the material property such as elasticity and viscosity, (2) calculation code for crustal deformation and seismic wave propagation using (1), (3) inverse analysis or data assimilation code both for structure and fault slip using (1) & (2). To accomplish this, it is at least necessary to develop highly reliable large-scale simulation code to calculate crustal deformation and seismic wave propagation for 3D heterogeneous structure. Unstructured FE non-linear seismic wave simulation code has been developed. This achieved physics-based urban earthquake simulation enhanced by 1.08 T DOF x 6.6 K time-step. A high fidelity FEM simulation code with mesh generator has also been developed to calculate crustal deformation in and around Japan with complicated surface topography and subducting plate geometry for 1km mesh. This code has been improved the code for crustal deformation and achieved 2.05 T-DOF with 45m resolution on the plate interface. This high-resolution analysis enables computation of change of stress acting on the plate interface. Further, for inverse analyses, waveform inversion code for modeling 3D crustal structure has been developed, and the high-fidelity FEM code has been improved to apply an adjoint method for estimating fault slip and asthenosphere viscosity. Hence, we have large-scale simulation and analysis tools for monitoring. We are developing the methods for forecasting the slip velocity variation on the plate interface. Although the prototype is for elastic half space model, we are applying it for 3D heterogeneous structure with the high-fidelity FE model. Furthermore, large-scale simulation codes for monitoring are being implemented on the GPU clusters and analysis tools are developing to include other functions such as examination in model errors.
The GOES-R Geostationary Lightning Mapper (GLM) and the Global Observing System for Total Lightning
NASA Technical Reports Server (NTRS)
Goodman, Steven J.; Blakeslee, R. J.; Koshak, W.; Buechler, D.; Carey, L.; Chronis, T.; Mach, D.; Bateman, M.; Peterson, H.; McCaul, E. W., Jr.;
2014-01-01
for the existing GOES system currently operating over the Western Hemisphere. New and improved instrument technology will support expanded detection of environmental phenomena, resulting in more timely and accurate forecasts and warnings. Advancements over current GOES include a new capability for total lightning detection (cloud and cloud-to-ground flashes) from the Geostationary Lightning Mapper (GLM), and improved temporal, spatial, and spectral resolution for the next generation Advanced Baseline Imager (ABI). The GLM will map total lightning continuously day and night with near-uniform spatial resolution of 8 km with a product latency of less than 20 sec over the Americas and adjacent oceanic regions. This will aid in forecasting severe storms and tornado activity, and convective weather impacts on aviation safety and efficiency among a number of potential applications. The GLM will help address the National Weather Service requirement for total lightning observations globally to support warning decision-making and forecast services. Science and application development along with pre-operational product demonstrations and evaluations at NWS national centers, forecast offices, and NOAA testbeds will prepare the forecasters to use GLM as soon as possible after the planned launch and check-out of GOES-R in 2016. New applications will use GLM alone, in combination with the ABI, or integrated (fused) with other available tools (weather radar and ground strike networks, nowcasting systems, mesoscale analysis, and numerical weather prediction models) in the hands of the forecaster responsible for issuing more timely and accurate forecasts and warnings.
NASA Astrophysics Data System (ADS)
Stauch, V. J.; Gwerder, M.; Gyalistras, D.; Oldewurtel, F.; Schubiger, F.; Steiner, P.
2010-09-01
The high proportion of the total primary energy consumption by buildings has increased the public interest in the optimisation of buildings' operation and is also driving the development of novel control approaches for the indoor climate. In this context, the use of weather forecasts presents an interesting and - thanks to advances in information and predictive control technologies and the continuous improvement of numerical weather prediction (NWP) models - an increasingly attractive option for improved building control. Within the research project OptiControl (www.opticontrol.ethz.ch) predictive control strategies for a wide range of buildings, heating, ventilation and air conditioning (HVAC) systems, and representative locations in Europe are being investigated with the aid of newly developed modelling and simulation tools. Grid point predictions for radiation, temperature and humidity of the high-resolution limited area NWP model COSMO-7 (see www.cosmo-model.org) and local measurements are used as disturbances and inputs into the building system. The control task considered consists in minimizing energy consumption whilst maintaining occupant comfort. In this presentation, we use the simulation-based OptiControl methodology to investigate the impact of COSMO-7 forecasts on the performance of predictive building control and the resulting energy savings. For this, we have selected building cases that were shown to benefit from a prediction horizon of up to 3 days and therefore, are particularly suitable for the use of numerical weather forecasts. We show that the controller performance is sensitive to the quality of the weather predictions, most importantly of the incident radiation on differently oriented façades. However, radiation is characterised by a high temporal and spatial variability in part caused by small scale and fast changing cloud formation and dissolution processes being only partially represented in the COSMO-7 grid point predictions. On the other hand, buildings are affected by particularly local weather conditions at the building site. To overcome this discrepancy, we make use of local measurements to statistically adapt the COSMO-7 model output to the meteorological conditions at the building. For this, we have developed a general correction algorithm that exploits systematic properties of the COSMO-7 prediction error and explicitly estimates the degree of temporal autocorrelation using online recursive estimation. The resulting corrected predictions are improved especially for the first few hours being the most crucial for the predictive controller and, ultimately for the reduction of primary energy consumption using predictive control. The use of numerical weather forecasts in predictive building automation is one example in a wide field of weather dependent advanced energy saving technologies. Our work particularly highlights the need for the development of specifically tailored weather forecast products by (statistical) postprocessing in order to meet the requirements of specific applications.
NASA Astrophysics Data System (ADS)
Pelosi, Anna; Falanga Bolognesi, Salvatore; De Michele, Carlo; Medina Gonzalez, Hanoi; Villani, Paolo; D'Urso, Guido; Battista Chirico, Giovanni
2015-04-01
Irrigation agriculture is one the biggest consumer of water in Europe, especially in southern regions, where it accounts for up to 70% of the total water consumption. The EU Common Agricultural Policy, combined with the Water Framework Directive, imposes to farmers and irrigation managers a substantial increase of the efficiency in the use of water in agriculture for the next decade. Ensemble numerical weather predictions can be valuable data for developing operational advisory irrigation services. We propose a stochastic ensemble-based model providing spatial and temporal estimates of crop water requirements, implemented within an advisory service offering detailed maps of irrigation water requirements and crop water consumption estimates, to be used by water irrigation managers and farmers. The stochastic model combines estimates of crop potential evapotranspiration retrieved from ensemble numerical weather forecasts (COSMO-LEPS, 16 members, 7 km resolution) and canopy parameters (LAI, albedo, fractional vegetation cover) derived from high resolution satellite images in the visible and near infrared wavelengths. The service provides users with daily estimates of crop water requirements for lead times up to five days. The temporal evolution of the crop potential evapotranspiration is simulated with autoregressive models. An ensemble Kalman filter is employed for updating model states by assimilating both ground based meteorological variables (where available) and numerical weather forecasts. The model has been applied in Campania region (Southern Italy), where a satellite assisted irrigation advisory service has been operating since 2006. This work presents the results of the system performance for one year of experimental service. The results suggest that the proposed model can be an effective support for a sustainable use and management of irrigation water, under conditions of water scarcity and drought. Since the evapotranspiration term represents a staple component in the water balance of a catchment, as outstanding future development, the model could also offer an advanced support for water resources management decisions at catchment scale.
NASA Astrophysics Data System (ADS)
Smiatek, G.; Kunstmann, H.; Werhahn, J.
2012-04-01
The Ammer River catchment located in the Bavarian Ammergau Alps and alpine forelands, Germany, represents with elevations reaching 2185 m and annual mean precipitation between1100 and 2000 mm a very demanding test ground for a river runoff prediction system. Large flooding events in 1999 and 2005 motivated the development of a physically based prediction tool in this area. Such a tool is the coupled high resolution numerical weather and river runoff forecasting system AM-POE that is being studied in several configurations in various experiments starting from the year 2005. Corner stones of the coupled system are the hydrological water balance model WaSiM-ETH run at 100 m grid resolution, the numerical weather prediction model (NWP) MM5 driven at 3.5 km grid cell resolution and the Perl Object Environment (POE) framework. POE implements the input data download from various sources, the input data provision via SOAP based WEB services as well as the runs of the hydrology model both with observed and with NWP predicted meteorology input. The one way coupled system utilizes a lagged ensemble prediction system (EPS) taking into account combination of recent and previous NWP forecasts. Results obtained in the years 2005-2011 reveal that river runoff simulations depict high correlation with observed runoff when driven with monitored observations in hindcast experiments. The ability to runoff forecasts is depending on lead times in the lagged ensemble prediction and shows still limitations resulting from errors in timing and total amount of the predicted precipitation in the complex mountainous area. The presentation describes the system implementation, and demonstrates the application of the POE framework in networking, distributed computing and in the setup of various experiments as well as long term results of the system application in the years 2005 - 2011.
A Solar Time-Based Analog Ensemble Method for Regional Solar Power Forecasting
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hodge, Brian S; Zhang, Xinmin; Li, Yuan
This paper presents a new analog ensemble method for day-ahead regional photovoltaic (PV) power forecasting with hourly resolution. By utilizing open weather forecast and power measurement data, this prediction method is processed within a set of historical data with similar meteorological data (temperature and irradiance), and astronomical date (solar time and earth declination angle). Further, clustering and blending strategies are applied to improve its accuracy in regional PV forecasting. The robustness of the proposed method is demonstrated with three different numerical weather prediction models, the North American Mesoscale Forecast System, the Global Forecast System, and the Short-Range Ensemble Forecast, formore » both region level and single site level PV forecasts. Using real measured data, the new forecasting approach is applied to the load zone in Southeastern Massachusetts as a case study. The normalized root mean square error (NRMSE) has been reduced by 13.80%-61.21% when compared with three tested baselines.« less
Recent Achievements of the Collaboratory for the Study of Earthquake Predictability
NASA Astrophysics Data System (ADS)
Jordan, T. H.; Liukis, M.; Werner, M. J.; Schorlemmer, D.; Yu, J.; Maechling, P. J.; Jackson, D. D.; Rhoades, D. A.; Zechar, J. D.; Marzocchi, W.
2016-12-01
The Collaboratory for the Study of Earthquake Predictability (CSEP) supports a global program to conduct prospective earthquake forecasting experiments. CSEP testing centers are now operational in California, New Zealand, Japan, China, and Europe with 442 models under evaluation. The California testing center, started by SCEC, Sept 1, 2007, currently hosts 30-minute, 1-day, 3-month, 1-year and 5-year forecasts, both alarm-based and probabilistic, for California, the Western Pacific, and worldwide. Our tests are now based on the hypocentral locations and magnitudes of cataloged earthquakes, but we plan to test focal mechanisms, seismic hazard models, ground motion forecasts, and finite rupture forecasts as well. We have increased computational efficiency for high-resolution global experiments, such as the evaluation of the Global Earthquake Activity Rate (GEAR) model, introduced Bayesian ensemble models, and implemented support for non-Poissonian simulation-based forecasts models. We are currently developing formats and procedures to evaluate externally hosted forecasts and predictions. CSEP supports the USGS program in operational earthquake forecasting and a DHS project to register and test external forecast procedures from experts outside seismology. We found that earthquakes as small as magnitude 2.5 provide important information on subsequent earthquakes larger than magnitude 5. A retrospective experiment for the 2010-2012 Canterbury earthquake sequence showed that some physics-based and hybrid models outperform catalog-based (e.g., ETAS) models. This experiment also demonstrates the ability of the CSEP infrastructure to support retrospective forecast testing. Current CSEP development activities include adoption of the Comprehensive Earthquake Catalog (ComCat) as an authorized data source, retrospective testing of simulation-based forecasts, and support for additive ensemble methods. We describe the open-source CSEP software that is available to researchers as they develop their forecast models. We also discuss how CSEP procedures are being adapted to intensity and ground motion prediction experiments as well as hazard model testing.
Validation of Satellite-based Rainfall Estimates for Severe Storms (Hurricanes & Tornados)
NASA Astrophysics Data System (ADS)
Nourozi, N.; Mahani, S.; Khanbilvardi, R.
2005-12-01
Severe storms such as hurricanes and tornadoes cause devastating damages, almost every year, over a large section of the United States. More accurate forecasting intensity and track of a heavy storm can help to reduce if not to prevent its damages to lives, infrastructure, and economy. Estimating accurate high resolution quantitative precipitation (QPE) from a hurricane, required to improve the forecasting and warning capabilities, is still a challenging problem because of physical characteristics of the hurricane even when it is still over the ocean. Satellite imagery seems to be a valuable source of information for estimating and forecasting heavy precipitation and also flash floods, particularly for over the oceans where the traditional ground-based gauge and radar sources cannot provide any information. To improve the capability of a rainfall retrieval algorithm for estimating QPE of severe storms, its product is evaluated in this study. High (hourly 4km x 4km) resolutions satellite infrared-based rainfall products, from the NESDIS Hydro-Estimator (HE) and also PERSIANN (Precipitation Estimation from Remotely Sensed Information using an Artificial Neural Networks) algorithms, have been tested against NEXRAD stage-IV and rain gauge observations in this project. Three strong hurricanes: Charley (category 4), Jeanne (category 3), and Ivan (category 3) that caused devastating damages over Florida in the summer 2004, have been considered to be investigated. Preliminary results demonstrate that HE tends to underestimate rain rates when NEXRAD shows heavy storm (rain rates greater than 25 mm/hr) and to overestimate when NEXRAD gives low rainfall amounts, but PERSIANN tends to underestimate rain rates, in general.
NASA Technical Reports Server (NTRS)
Jones, Thomas A.; Stensrud, David; Wicker, Louis; Minnis, Patrick; Palikonda, Rabindra
2015-01-01
Assimilating high-resolution radar reflectivity and radial velocity into convection-permitting numerical weather prediction models has proven to be an important tool for improving forecast skill of convection. The use of satellite data for the application is much less well understood, only recently receiving significant attention. Since both radar and satellite data provide independent information, combing these two sources of data in a robust manner potentially represents the future of high-resolution data assimilation. This research combines Geostationary Operational Environmental Satellite 13 (GOES-13) cloud water path (CWP) retrievals with Weather Surveillance Radar-1988 Doppler (WSR-88D) reflectivity and radial velocity to examine the impacts of assimilating each for a severe weather event occurring in Oklahoma on 24 May 2011. Data are assimilated into a 3-km model using an ensemble adjustment Kalman filter approach with 36 members over a 2-h assimilation window between 1800 and 2000 UTC. Forecasts are then generated for 90 min at 5-min intervals starting at 1930 and 2000 UTC. Results show that both satellite and radar data are able to initiate convection, but that assimilating both spins up a storm much faster. Assimilating CWP also performs well at suppressing spurious precipitation and cloud cover in the model as well as capturing the anvil characteristics of developed storms. Radar data are most effective at resolving the 3D characteristics of the core convection. Assimilating both satellite and radar data generally resulted in the best model analysis and most skillful forecast for this event.
MAFALDA: An early warning modeling tool to forecast volcanic ash dispersal and deposition
NASA Astrophysics Data System (ADS)
Barsotti, S.; Nannipieri, L.; Neri, A.
2008-12-01
Forecasting the dispersal of ash from explosive volcanoes is a scientific challenge to modern volcanology. It also represents a fundamental step in mitigating the potential impact of volcanic ash on urban areas and transport routes near explosive volcanoes. To this end we developed a Web-based early warning modeling tool named MAFALDA (Modeling and Forecasting Ash Loading and Dispersal in the Atmosphere) able to quantitatively forecast ash concentrations in the air and on the ground. The main features of MAFALDA are the usage of (1) a dispersal model, named VOL-CALPUFF, that couples the column ascent phase with the ash cloud transport and (2) high-resolution weather forecasting data, the capability to run and merge multiple scenarios, and the Web-based structure of the procedure that makes it suitable as an early warning tool. MAFALDA produces plots for a detailed analysis of ash cloud dynamics and ground deposition, as well as synthetic 2-D maps of areas potentially affected by dangerous concentrations of ash. A first application of MAFALDA to the long-lasting weak plumes produced at Mt. Etna (Italy) is presented. A similar tool can be useful to civil protection authorities and volcanic observatories in reducing the impact of the eruptive events. MAFALDA can be accessed at http://mafalda.pi.ingv.it.
Decision Support on the Sediments Flushing of Aimorés Dam Using Medium-Range Ensemble Forecasts
NASA Astrophysics Data System (ADS)
Mainardi Fan, Fernando; Schwanenberg, Dirk; Collischonn, Walter; Assis dos Reis, Alberto; Alvarado Montero, Rodolfo; Alencar Siqueira, Vinicius
2015-04-01
In the present study we investigate the use of medium-range streamflow forecasts in the Doce River basin (Brazil), at the reservoir of Aimorés Hydro Power Plant (HPP). During daily operations this reservoir acts as a "trap" to the sediments that originate from the upstream basin of the Doce River. This motivates a cleaning process called "pass through" to periodically remove the sediments from the reservoir. The "pass through" or "sediments flushing" process consists of a decrease of the reservoir's water level to a certain flushing level when a determined reservoir inflow threshold is forecasted. Then, the water in the approaching inflow is used to flush the sediments from the reservoir through the spillway and to recover the original reservoir storage. To be triggered, the sediments flushing operation requires an inflow larger than 3000m³/s in a forecast horizon of 7 days. This lead-time of 7 days is far beyond the basin's concentration time (around 2 days), meaning that the forecasts for the pass through procedure highly depends on Numerical Weather Predictions (NWP) models that generate Quantitative Precipitation Forecasts (QPF). This dependency creates an environment with a high amount of uncertainty to the operator. To support the decision making at Aimorés HPP we developed a fully operational hydrological forecasting system to the basin. The system is capable of generating ensemble streamflow forecasts scenarios when driven by QPF data from meteorological Ensemble Prediction Systems (EPS). This approach allows accounting for uncertainties in the NWP at a decision making level. This system is starting to be used operationally by CEMIG and is the one shown in the present study, including a hindcasting analysis to assess the performance of the system for the specific flushing problem. The QPF data used in the hindcasting study was derived from the TIGGE (THORPEX Interactive Grand Global Ensemble) database. Among all EPS available on TIGGE, three were selected: ECMWF, GEFS, and CPTEC. As a deterministic reference forecast, we adopt the high resolution ECMWF forecast for comparison. The experiment consisted on running retrospective forecasts for a full five-year period. To verify the proposed objectives of the study, we use different metrics to evaluate the forecast: ROC Curves, Exceedance Diagrams, Forecast Convergence Score (FCS). Metrics results enabled to understand the benefits of the hydrological ensemble prediction system as a decision making tool for the HPP operation. The ROC scores indicate that the use of the lower percentiles of the ensemble scenarios issues for a true alarm rate around 0,5 to 0,8 (depending on the model and on the percentile), for the lead time of seven days. While the false alarm rate is between 0 and 0,3. Those rates were better than the ones resulting from the deterministic reference forecast. Exceedance diagrams and forecast convergence scores indicate that the ensemble scenarios provide an early signal about the threshold crossing. Furthermore, the ensemble forecasts are more consistent between two subsequent forecasts in comparison to the deterministic forecast. The assessments results also give more credibility to CEMIG in the realization and communication of flushing operation with the stakeholders involved.
NASA Astrophysics Data System (ADS)
Vandenbulcke, Luc; Barth, Alexander
2017-04-01
In the present European operational oceanography context, global and basin-scale models are run daily at different Monitoring and Forecasting Centers from the Copernicus Marine component (CMEMS). Regional forecasting centers, which run outside of CMEMS, then use these forecasts as initial conditions and/or boundary conditions for high-resolution or coastal forecasts. However, these improved simulations are lost to the basin-scale models (i.e. there is no feedback). Therefore, some potential improvements inside (and even outside) the areas covered by regional models are lost, and the risk for discrepancy between basin-scale and regional model remains high. The objective of this study is to simulate two-way nesting by extracting pseudo-observations from the regional models and assimilating them in the basin-scale models. The proposed method is called "upscaling". A ensemble of 100 one-way nested NEMO models of the Mediterranean Sea (Med) (1/16°) and the North-Western Med (1/80°) is implemented to simulate the period 2014-2015. Each member has perturbed initial conditions, atmospheric forcing fields and river discharge data. The Med model uses climatological Rhone river data, while the nested model uses measured daily discharges. The error of the pseudo-observations can be estimated by analyzing the ensemble of nested models. The pseudo-observations are then assimilated in the parent model by means of an Ensemble Kalman Filter. The experiments show that the proposed method improves different processes in the Med model, such as the position of the Northern Current and its incursion (or not) on the Gulf of Lions, the cold water mass on the shelf, and the position of the Rhone river plume. Regarding areas where no operational regional models exist, (some variables of) the parent model can still be improved by relating some resolved parameters to statistical properties of a higher-resolution simulation. This is the topic of a complementary study also presented at the EGU 2017 (Barth et al).
NASA Astrophysics Data System (ADS)
Kosovic, B.; Jimenez, P. A.; Haupt, S. E.; Martilli, A.; Olson, J.; Bao, J. W.
2017-12-01
At present, the planetary boundary layer (PBL) parameterizations available in most numerical weather prediction (NWP) models are one-dimensional. One-dimensional parameterizations are based on the assumption of horizontal homogeneity. This homogeneity assumption is appropriate for grid cell sizes greater than 10 km. However, for mesoscale simulations of flows in complex terrain with grid cell sizes below 1 km, the assumption of horizontal homogeneity is violated. Applying a one-dimensional PBL parameterization to high-resolution mesoscale simulations in complex terrain could result in significant error. For high-resolution mesoscale simulations of flows in complex terrain, we have therefore developed and implemented a three-dimensional (3D) PBL parameterization in the Weather Research and Forecasting (WRF) model. The implementation of the 3D PBL scheme is based on the developments outlined by Mellor and Yamada (1974, 1982). Our implementation in the Weather Research and Forecasting (WRF) model uses a pure algebraic model (level 2) to diagnose the turbulent fluxes. To evaluate the performance of the 3D PBL model, we use observations from the Wind Forecast Improvement Project 2 (WFIP2). The WFIP2 field study took place in the Columbia River Gorge area from 2015-2017. We focus on selected cases when physical phenomena of significance for wind energy applications such as mountain waves, topographic wakes, and gap flows were observed. Our assessment of the 3D PBL parameterization also considers a large-eddy simulation (LES). We carried out a nested LES with grid cell sizes of 30 m and 10 m covering a large fraction of the WFIP2 study area. Both LES domains were discretized using 6000 x 3000 x 200 grid cells in zonal, meridional, and vertical direction, respectively. The LES results are used to assess the relative magnitude of horizontal gradients of turbulent stresses and fluxes in comparison to vertical gradients. The presentation will highlight the advantages of the 3D PBL scheme in regions of complex terrain.
Assessment and intercomparison of numerical simulations in the Western Mediterranean Sea
NASA Astrophysics Data System (ADS)
Juza, Mélanie; Mourre, Baptiste; Renault, Lionel; Tintoré, Joaquin
2014-05-01
The Balearic Islands Coastal Observing and Forecasting System (SOCIB, www.socib.es) is developing high resolution numerical simulations (hindcasts and forecasts) in the Western Mediterranean Sea (WMOP). WMOP uses a regional configuration of the Regional Ocean Modelling System (ROMS, Shchepetkin and McWilliams, 2005) with a high spatial resolution of 1/50º (1.5-2km). Thus, theses simulations are able to reproduce mesoscale and in some cases sub-mesoscale features that are key in the Mediterranean Sea since they interact and modify the basin and sub-basin circulation. These simulations are initialized from and nested in either the Mediterranean Forecasting System (MFS, 1/16º) or Mercator-Océan simulations (MERCATOR, 1/12º). A repeated glider section in the Ibiza Channel, operated by SOCIB, has revealed significant differences between two WMOP simulations using either MFS or MERCATOR (hereafter WMOP-MFS and WMOP-MERC). In this study, MFS, MERCATOR, WMOP-MFS and WMOP-MERC are compared and evaluated using available multi-platform observations such as satellite products (Sea Level Anomaly, Sea Surface Temperature) and in situ measurements (temperature and salinity profiles from Argo floats, CTD, XBT, fixed moorings and gliders; velocity fields from HF radar and currentmeters). A quantitative comparison is necessary to evaluate the capacity of the simulations to reproduce observed ocean features, and to quantify the possible simulations biases. This will in turn allow to improve the simulations, so as to produce better ocean forecast systems, to study and better understand ocean processes and to address climate studies. Therefore, various statistical diagnostics have been developed to assess and intercompare the simulations at various spatial and temporal scales, in different sub-regions (Alboran Sea, Western and Eastern Algerian sub-basins, Balearic Sea, Gulf of Lion), in different dynamical zones (coastal areas, shelves and "open" sea), along key sections (Ibiza and Mallorca Channels, Corsica Channel, ...) and during specific events.
Liu, Yu; Xi, Du-Gang; Li, Zhao-Liang; Ji, Wei
2015-01-01
The prediction of the short-term quantitative precipitation nowcasting (QPN) from consecutive gestational satellite images has important implications for hydro-meteorological modeling and forecasting. However, the systematic analysis of the predictability of QPN is limited. The objective of this study is to evaluate effects of the forecasting model, precipitation character, and satellite resolution on the predictability of QPN using images of a Chinese geostationary meteorological satellite Fengyun-2F (FY-2F) which covered all intensive observation since its launch despite of only a total of approximately 10 days. In the first step, three methods were compared to evaluate the performance of the QPN methods: a pixel-based QPN using the maximum correlation method (PMC); the Horn-Schunck optical-flow scheme (PHS); and the Pyramid Lucas-Kanade Optical Flow method (PPLK), which is newly proposed here. Subsequently, the effect of the precipitation systems was indicated by 2338 imageries of 8 precipitation periods. Then, the resolution dependence was demonstrated by analyzing the QPN with six spatial resolutions (0.1atial, 0.3a, 0.4atial rand 0.6). The results show that the PPLK improves the predictability of QPN with better performance than the other comparison methods. The predictability of the QPN is significantly determined by the precipitation system, and a coarse spatial resolution of the satellite reduces the predictability of QPN.
Liu, Yu; Xi, Du-Gang; Li, Zhao-Liang; Ji, Wei
2015-01-01
The prediction of the short-term quantitative precipitation nowcasting (QPN) from consecutive gestational satellite images has important implications for hydro-meteorological modeling and forecasting. However, the systematic analysis of the predictability of QPN is limited. The objective of this study is to evaluate effects of the forecasting model, precipitation character, and satellite resolution on the predictability of QPN usingimages of a Chinese geostationary meteorological satellite Fengyun-2F (FY-2F) which covered all intensive observation since its launch despite of only a total of approximately 10 days. In the first step, three methods were compared to evaluate the performance of the QPN methods: a pixel-based QPN using the maximum correlation method (PMC); the Horn-Schunck optical-flow scheme (PHS); and the Pyramid Lucas-Kanade Optical Flow method (PPLK), which is newly proposed here. Subsequently, the effect of the precipitation systems was indicated by 2338 imageries of 8 precipitation periods. Then, the resolution dependence was demonstrated by analyzing the QPN with six spatial resolutions (0.1atial, 0.3a, 0.4atial rand 0.6). The results show that the PPLK improves the predictability of QPN with better performance than the other comparison methods. The predictability of the QPN is significantly determined by the precipitation system, and a coarse spatial resolution of the satellite reduces the predictability of QPN. PMID:26447470
NASA Astrophysics Data System (ADS)
Rossa, Andrea M.; Laudanna Del Guerra, Franco; Borga, Marco; Zanon, Francesco; Settin, Tommaso; Leuenberger, Daniel
2010-11-01
SummaryThis study aims to assess the feasibility of assimilating carefully checked radar rainfall estimates into a numerical weather prediction (NWP) to extend the forecasting lead time for an extreme flash flood. The hydro-meteorological modeling chain includes the convection-permitting NWP model COSMO-2 and a coupled hydrological-hydraulic model. Radar rainfall estimates are assimilated into the NWP model via the latent heat nudging method. The study is focused on 26 September 2007 extreme flash flood which impacted the coastal area of North-eastern Italy around Venice. The hydro-meteorological modeling system is implemented over the 90 km2 Dese river basin draining to the Venice Lagoon. The radar rainfall observations are carefully checked for artifacts, including rain-induced signal attenuation, by means of physics-based correction procedures and comparison with a dense network of raingauges. The impact of the radar rainfall estimates in the assimilation cycle of the NWP model is very significant. The main individual organized convective systems are successfully introduced into the model state, both in terms of timing and localization. Also, high-intensity incorrectly localized precipitation is correctly reduced to about the observed levels. On the other hand, the highest rainfall intensities computed after assimilation underestimate the observed values by 20% and 50% at a scale of 20 km and 5 km, respectively. The positive impact of assimilating radar rainfall estimates is carried over into the free forecast for about 2-5 h, depending on when the forecast was started. The positive impact is larger when the main mesoscale convective system is present in the initial conditions. The improvements in the precipitation forecasts are propagated to the river flow simulations, with an extension of the forecasting lead time up to 3 h.
Seasonal forecasting of discharge for the Raccoon River, Iowa
NASA Astrophysics Data System (ADS)
Slater, Louise; Villarini, Gabriele; Bradley, Allen; Vecchi, Gabriel
2016-04-01
The state of Iowa (central United States) is regularly afflicted by severe natural hazards such as the 2008/2013 floods and the 2012 drought. To improve preparedness for these catastrophic events and allow Iowans to make more informed decisions about the most suitable water management strategies, we have developed a framework for medium to long range probabilistic seasonal streamflow forecasting for the Raccoon River at Van Meter, a 8900-km2 catchment located in central-western Iowa. Our flow forecasts use statistical models to predict seasonal discharge for low to high flows, with lead forecasting times ranging from one to ten months. Historical measurements of daily discharge are obtained from the U.S. Geological Survey (USGS) at the Van Meter stream gage, and used to compute quantile time series from minimum to maximum seasonal flow. The model is forced with basin-averaged total seasonal precipitation records from the PRISM Climate Group and annual row crop production acreage from the U.S. Department of Agriculture's National Agricultural Statistics Services database. For the forecasts, we use corn and soybean production from the previous year (persistence forecast) as a proxy for the impacts of agricultural practices on streamflow. The monthly precipitation forecasts are provided by eight Global Climate Models (GCMs) from the North American Multi-Model Ensemble (NMME), with lead times ranging from 0.5 to 11.5 months, and a resolution of 1 decimal degree. Additionally, precipitation from the month preceding each season is used to characterize antecedent soil moisture conditions. The accuracy of our modelled (1927-2015) and forecasted (2001-2015) discharge values is assessed by comparison with the observed USGS data. We explore the sensitivity of forecast skill over the full range of lead times, flow quantiles, forecast seasons, and with each GCM. Forecast skill is also examined using different formulations of the statistical models, as well as NMME forecast weighting procedures based on the computed potential skill (historical forecast accuracy) of the different GCMs. We find that the models describe the year-to-year variability in streamflow accurately, as well as the overall tendency towards increasing (and more variable) discharge over time. Surprisingly, forecast skill does not decrease markedly with lead time, and high flows tend to be well predicted, suggesting that these forecasts may have considerable practical applications. Further, the seasonal flow forecast accuracy is substantially improved by weighting the contribution of individual GCMs to the forecasts, and also by the inclusion of antecedent precipitation. Our results can provide critical information for adaptation strategies aiming to mitigate the costs and disruptions arising from flood and drought conditions, and allow us to determine how far in advance skillful forecasts can be issued. The availability of these discharge forecasts would have major societal and economic benefits for hydrology and water resources management, agriculture, disaster forecasts and prevention, energy, finance and insurance, food security, policy-making and public authorities, and transportation.
A Wind Forecasting System for Energy Application
NASA Astrophysics Data System (ADS)
Courtney, Jennifer; Lynch, Peter; Sweeney, Conor
2010-05-01
Accurate forecasting of available energy is crucial for the efficient management and use of wind power in the national power grid. With energy output critically dependent upon wind strength there is a need to reduce the errors associated wind forecasting. The objective of this research is to get the best possible wind forecasts for the wind energy industry. To achieve this goal, three methods are being applied. First, a mesoscale numerical weather prediction (NWP) model called WRF (Weather Research and Forecasting) is being used to predict wind values over Ireland. Currently, a gird resolution of 10km is used and higher model resolutions are being evaluated to establish whether they are economically viable given the forecast skill improvement they produce. Second, the WRF model is being used in conjunction with ECMWF (European Centre for Medium-Range Weather Forecasts) ensemble forecasts to produce a probabilistic weather forecasting product. Due to the chaotic nature of the atmosphere, a single, deterministic weather forecast can only have limited skill. The ECMWF ensemble methods produce an ensemble of 51 global forecasts, twice a day, by perturbing initial conditions of a 'control' forecast which is the best estimate of the initial state of the atmosphere. This method provides an indication of the reliability of the forecast and a quantitative basis for probabilistic forecasting. The limitation of ensemble forecasting lies in the fact that the perturbed model runs behave differently under different weather patterns and each model run is equally likely to be closest to the observed weather situation. Models have biases, and involve assumptions about physical processes and forcing factors such as underlying topography. Third, Bayesian Model Averaging (BMA) is being applied to the output from the ensemble forecasts in order to statistically post-process the results and achieve a better wind forecasting system. BMA is a promising technique that will offer calibrated probabilistic wind forecasts which will be invaluable in wind energy management. In brief, this method turns the ensemble forecasts into a calibrated predictive probability distribution. Each ensemble member is provided with a 'weight' determined by its relative predictive skill over a training period of around 30 days. Verification of data is carried out using observed wind data from operational wind farms. These are then compared to existing forecasts produced by ECMWF and Met Eireann in relation to skill scores. We are developing decision-making models to show the benefits achieved using the data produced by our wind energy forecasting system. An energy trading model will be developed, based on the rules currently used by the Single Electricity Market Operator for energy trading in Ireland. This trading model will illustrate the potential for financial savings by using the forecast data generated by this research.
NASA Astrophysics Data System (ADS)
Abaza, Mabrouk; Anctil, François; Fortin, Vincent; Perreault, Luc
2017-12-01
Meteorological and hydrological ensemble prediction systems are imperfect. Their outputs could often be improved through the use of a statistical processor, opening up the question of the necessity of using both processors (meteorological and hydrological), only one of them, or none. This experiment compares the predictive distributions from four hydrological ensemble prediction systems (H-EPS) utilising the Ensemble Kalman filter (EnKF) probabilistic sequential data assimilation scheme. They differ in the inclusion or not of the Distribution Based Scaling (DBS) method for post-processing meteorological forecasts and the ensemble Bayesian Model Averaging (ensemble BMA) method for hydrological forecast post-processing. The experiment is implemented on three large watersheds and relies on the combination of two meteorological reforecast products: the 4-member Canadian reforecasts from the Canadian Centre for Meteorological and Environmental Prediction (CCMEP) and the 10-member American reforecasts from the National Oceanic and Atmospheric Administration (NOAA), leading to 14 members at each time step. Results show that all four tested H-EPS lead to resolution and sharpness values that are quite similar, with an advantage to DBS + EnKF. The ensemble BMA is unable to compensate for any bias left in the precipitation ensemble forecasts. On the other hand, it succeeds in calibrating ensemble members that are otherwise under-dispersed. If reliability is preferred over resolution and sharpness, DBS + EnKF + ensemble BMA performs best, making use of both processors in the H-EPS system. Conversely, for enhanced resolution and sharpness, DBS is the preferred method.
Mesoscale data assimilation for a local severe rainfall event with the NHM-LETKF system
NASA Astrophysics Data System (ADS)
Kunii, M.
2013-12-01
This study aims to improve forecasts of local severe weather events through data assimilation and ensemble forecasting approaches. Here, the local ensemble transform Kalman filter (LETKF) is implemented with the Japan Meteorological Agency's nonhydrostatic model (NHM). The newly developed NHM-LETKF contains an adaptive inflation scheme and a spatial covariance localization scheme with physical distance. One-way nested analysis in which a finer-resolution LETKF is conducted by using the outputs of an outer model also becomes feasible. These new contents should enhance the potential of the LETKF for convective scale events. The NHM-LETKF is applied to a local severe rainfall event in Japan in 2012. Comparison of the root mean square errors between the model first guess and analysis reveals that the system assimilates observations appropriately. Analysis ensemble spreads indicate a significant increase around the time torrential rainfall occurred, which would imply an increase in the uncertainty of environmental fields. Forecasts initialized with LETKF analyses successfully capture intense rainfalls, suggesting that the system can work effectively for local severe weather. Investigation of probabilistic forecasts by ensemble forecasting indicates that this could become a reliable data source for decision making in the future. A one-way nested data assimilation scheme is also tested. The experiment results demonstrate that assimilation with a finer-resolution model provides an advantage in the quantitative precipitation forecasting of local severe weather conditions.
Range-Specific High-resolution Mesoscale Model Setup
NASA Technical Reports Server (NTRS)
Watson, Leela R.
2013-01-01
This report summarizes the findings from an AMU task to determine the best model configuration for operational use at the ER and WFF to best predict winds, precipitation, and temperature. The AMU ran test cases in the warm and cool seasons at the ER and for the spring and fall seasons at WFF. For both the ER and WFF, the ARW core outperformed the NMM core. Results for the ER indicate that the Lin microphysical scheme and the YSU PBL scheme is the optimal model configuration for the ER. It consistently produced the best surface and upper air forecasts, while performing fairly well for the precipitation forecasts. Both the Ferrier and Lin microphysical schemes in combination with the YSU PBL scheme performed well for WFF in the spring and fall seasons. The AMU has been tasked with a follow-on modeling effort to recommended local DA and numerical forecast model design optimized for both the ER and WFF to support space launch activities. The AMU will determine the best software and type of assimilation to use, as well as determine the best grid resolution for the initialization based on spatial and temporal availability of data and the wall clock run-time of the initialization. The AMU will transition from the WRF EMS to NU-WRF, a NASA-specific version of the WRF that takes advantage of unique NASA software and datasets. 37
Forecasting of Storm-Surge Floods Using ADCIRC and Optimized DEMs
NASA Technical Reports Server (NTRS)
Valenti, Elizabeth; Fitzpatrick, Patrick
2006-01-01
Increasing the accuracy of storm-surge flood forecasts is essential for improving preparedness for hurricanes and other severe storms and, in particular, for optimizing evacuation scenarios. An interactive database, developed by WorldWinds, Inc., contains atlases of storm-surge flood levels for the Louisiana/Mississippi gulf coast region. These atlases were developed to improve forecasting of flooding along the coastline and estuaries and in adjacent inland areas. Storm-surge heights depend on a complex interaction of several factors, including: storm size, central minimum pressure, forward speed of motion, bottom topography near the point of landfall, astronomical tides, and, most importantly, maximum wind speed. The information in the atlases was generated in over 100 computational simulations, partly by use of a parallel-processing version of the ADvanced CIRCulation (ADCIRC) model. ADCIRC is a nonlinear computational model of hydrodynamics, developed by the U.S. Army Corps of Engineers and the US Navy, as a family of two- and three-dimensional finite-element-based codes. It affords a capability for simulating tidal circulation and storm-surge propagation over very large computational domains, while simultaneously providing high-resolution output in areas of complex shoreline and bathymetry. The ADCIRC finite-element grid for this project covered the Gulf of Mexico and contiguous basins, extending into the deep Atlantic Ocean with progressively higher resolution approaching the study area. The advantage of using ADCIRC over other storm-surge models, such as SLOSH, is that input conditions can include all or part of wind stress, tides, wave stress, and river discharge, which serve to make the model output more accurate. To keep the computational load manageable, this work was conducted using only the wind stress, calculated by using historical data from Hurricane Camille, as the input condition for the model. Hurricane storm-surge simulations were performed on an eight-node Linux computer cluster. Each node contained dual 2-GHz processors, 2GB of memory, and a 40GB hard drive. The digital elevation model (DEM) for this region was specified using a combination of Navy data (over water), NOAA data (for the coastline), and optimized Interferometric Synthetic Aperture Radar data (over land). This high-resolution topographical data of the Mississippi coastal region provided the ADCIRC model with improved input with which to calculate improved storm-surge forecasts.
NASA Astrophysics Data System (ADS)
Lee, P.; Pan, L.; Kim, H. C.; Chai, T.; Hu, Y.; Tong, D.; Ngan, F.; Wong, D.; Dornblaser, B.; Tanrikulu, S.; Pickering, K. E.
2012-12-01
This work presents the development and evaluation of a high-resolution air quality forecasting system to support two NASA Earth Venture campaigns (DISCOVER-AQ) in 2013. These campaigns aim to further understanding of column-integrated and vertically resolved observations in determining air pollution conditions near the surface (http://science.nasa.gov/missions/discover-aq/). The first one will be carried out in San Joaquin Valley (SJV) in winter and the second one in Houston (HOU) area in late summer. Accurate forecast of pollution plumes is critical for on-site deployment and co-ordination of the various observation platforms. We develop of a fine resolution forecasting system to provide dynamic prediction of the chemical fields over these regions. This system utilizes meteorology fields from the US National Centers for Environmental Prediction North American Model (NAM) that is equipped with an elaborative NAM Data Assimilation System (NDAS) for its Land Surface Model (LSM) and initialization processes. NAM output is used to drive the US EPA Community Multi-scale Air Quality Model (CMAQ) with identical horizontal resolution. The SJV campaign is believed to be subjected to rather high particulate matter loading and possible frequent occurrence of multiple-day fog. NDAS provides advanced methodology to constrain atmospheric stability and soil moisture characteristics. These meteorological parameters are critical for the winter campaign. Special attention is paid to emission modeling for agricultural dust aerosols, which were found important for the SJV area. In contrast to the winter campaign where strong atmospheric stability will likely be a challenge, the HOU campaign in September of 2013 will be challenged with strong atmospheric convection and rather rapid growth of and a sustained deep Planetary Boundary Layer (PBL) during mid-morning and afternoon, respectively. Convection often results in lightning. Wild-fires can contribute significantly to pollution. Therefore both climatology lightning NOx and real-time fires observed by the Hazardous Mapping System by National Environmental Satellite, Data and Information Service (NESDIS) will be included as emission sources. We have performed a real-time test for the HOU area. We will show model evaluation and post-campaign sensitivity modeling results to shed additional insight on processes responsible for the characteristics of the pollutant concentrations.
NASA Technical Reports Server (NTRS)
Mahoney, M. J.; Ismail, S.; Browell, E. V.; Ferrare, R. A.; Kooi, S. A.; Brasseur, L.; Notari, A.; Petway, L.; Brackett, V.; Clayton, M.;
2002-01-01
LASE measures high resolution moisture, aerosol, and cloud distributions not available from conventional observations. LASE water vapor measurements were compared with dropsondes to evaluate their accuracy. LASE water vapor measurements were used to assess the capability of hurricane models to improve their track accuracy by 100 km on 3 day forecasts using Florida State University models.
HYCOM High-resolution Eddying Simulations
2014-07-01
Meteorological Organization,the International Council for Science and the Intergovernmental Oceanographic Commission of UNESCO . * 2 ExciJa IJQes I I I I I...forecasting systems (Metzger et al., 2014a ). Within the framework of the multinational Global Ocean Data Assimilation Experiment (GODAE) and under the...10.1016/j.ocemod.2011.02.011. Metzger, E. J., and Coauthors, 2014a : US Navy operational global ocean and Arctic ice prediction systems. Oceanography
Fine Scale Modeling and Forecasts of Upper Atmospheric Turbulence for Operational Use
2014-11-30
Weather Center Digital Data Service (ADDS) fhttp://www.aviationweather.gov/adds, http://weather.aero/1 Graphical Turbulence Guidance product, GTG -2.5...analysis GTG - Graphical Turbulence Guidance HRMM - High Resolution Mesoscale/Microscale ICD - Interface Control Document IDE - Integrated Development...site (with GTG 2.5 data) http://www.aviationweather.gov/turbuience • ADDS Experimental site http://weather.aero/ • NCEP FNL data - http
NASA Astrophysics Data System (ADS)
Tijerina, D.; Gochis, D.; Condon, L. E.; Maxwell, R. M.
2017-12-01
Development of integrated hydrology modeling systems that couple atmospheric, land surface, and subsurface flow is growing trend in hydrologic modeling. Using an integrated modeling framework, subsurface hydrologic processes, such as lateral flow and soil moisture redistribution, are represented in a single cohesive framework with surface processes like overland flow and evapotranspiration. There is a need for these more intricate models in comprehensive hydrologic forecasting and water management over large spatial areas, specifically the Continental US (CONUS). Currently, two high-resolution, coupled hydrologic modeling applications have been developed for this domain: CONUS-ParFlow built using the integrated hydrologic model ParFlow and the National Water Model that uses the NCAR Weather Research and Forecasting hydrological extension package (WRF-Hydro). Both ParFlow and WRF-Hydro include land surface models, overland flow, and take advantage of parallelization and high-performance computing (HPC) capabilities; however, they have different approaches to overland subsurface flow and groundwater-surface water interactions. Accurately representing large domains remains a challenge considering the difficult task of representing complex hydrologic processes, computational expense, and extensive data needs; both models have accomplished this, but have differences in approach and continue to be difficult to validate. A further exploration of effective methodology to accurately represent large-scale hydrology with integrated models is needed to advance this growing field. Here we compare the outputs of CONUS-ParFlow and the National Water Model to each other and with observations to study the performance of hyper-resolution models over large domains. Models were compared over a range of scales for major watersheds within the CONUS with a specific focus on the Mississippi, Ohio, and Colorado River basins. We use a novel set of approaches and analysis for this comparison to better understand differences in process and bias. This intercomparison is a step toward better understanding how much water we have and interactions between surface and subsurface. Our goal is to advance our understanding and simulation of the hydrologic system and ultimately improve hydrologic forecasts.
WIRE: Weather Intelligence for Renewable Energies
NASA Astrophysics Data System (ADS)
Heimo, A.; Cattin, R.; Calpini, B.
2010-09-01
Renewable energies such as wind and solar energy will play an important, even decisive role in order to mitigate and adapt to the projected dramatic consequences to our society and environment due to climate change. Due to shrinking fossil resources, the transition to more and more renewable energy shares is unavoidable. But, as wind and solar energy are strongly dependent on highly variable weather processes, increased penetration rates will also lead to strong fluctuations in the electricity grid which need to be balanced. Proper and specific forecasting of ‘energy weather' is a key component for this. Therefore, it is today appropriate to scientifically address the requirements to provide the best possible specific weather information for forecasting the energy production of wind and solar power plants within the next minutes up to several days. Towards such aims, Weather Intelligence will first include developing dedicated post-processing algorithms coupled with weather prediction models and with past and/or online measurement data especially remote sensing observations. Second, it will contribute to investigate the difficult relationship between the highly intermittent weather dependent power production and concurrent capacities such as transport and distribution of this energy to the end users. Selecting, resp. developing surface-based and satellite remote sensing techniques well adapted to supply relevant information to the specific post-processing algorithms for solar and wind energy production short-term forecasts is a major task with big potential. It will lead to improved energy forecasts and help to increase the efficiency of the renewable energy productions while contributing to improve the management and presumably the design of the energy grids. The second goal will raise new challenges as this will require first from the energy producers and distributors definitions of the requested input data and new technologies dedicated to the management of power plants and electricity grids and second from the meteorological measurement community to deliver suitable, short term high quality forecasts to fulfill these requests with emphasis on highly variable weather conditions and spatially distributed energy productions often located in complex terrain. This topic has been submitted for a new COST Action under the title "Short-Term High Resolution Wind and Solar Energy Production Forecasts".
An operational wave forecasting system for the east coast of India
NASA Astrophysics Data System (ADS)
Sandhya, K. G.; Murty, P. L. N.; Deshmukh, Aditya N.; Balakrishnan Nair, T. M.; Shenoi, S. S. C.
2018-03-01
Demand for operational ocean state forecasting is increasing, owing to the ever-increasing marine activities in the context of blue economy. In the present study, an operational wave forecasting system for the east coast of India is proposed using unstructured Simulating WAves Nearshore model (UNSWAN). This modelling system uses very high resolution mesh near the Indian east coast and coarse resolution offshore, and thus avoids the necessity of nesting with a global wave model. The model is forced with European Centre for Medium-Range Weather Forecasts (ECMWF) winds and simulates wave parameters and wave spectra for the next 3 days. The spatial pictures of satellite data overlaid on simulated wave height show that the model is capable of simulating the significant wave heights and their gradients realistically. Spectral validation has been done using the available data to prove the reliability of the model. To further evaluate the model performance, the wave forecast for the entire year 2014 is evaluated against buoy measurements over the region at 4 waverider buoy locations. Seasonal analysis of significant wave height (Hs) at the four locations showed that the correlation between the modelled and observed was the highest (in the range 0.78-0.96) during the post-monsoon season. The variability of Hs was also the highest during this season at all locations. The error statistics showed clear seasonal and geographical location dependence. The root mean square error at Visakhapatnam was the same (0.25) for all seasons, but it was the smallest for pre-monsoon season (0.12 m and 0.17 m) for Puducherry and Gopalpur. The wind sea component showed higher variability compared to the corresponding swell component in all locations and for all seasons. The variability was picked by the model to a reasonable level in most of the cases. The results of statistical analysis show that the modelling system is suitable for use in the operational scenario.
Assessment of Hydrologic Response to Variable Precipitation Forcing: Russian River Case Study
NASA Astrophysics Data System (ADS)
Cifelli, R.; Hsu, C.; Johnson, L. E.
2014-12-01
NOAA Hydrometeorology Testbed (HMT) activities in California have involved deployment of advanced sensor networks to better track atmospheric river (AR) dynamics and inland penetration of high water vapor air masses. Numerical weather prediction models and decision support tools have been developed to provide forecasters a better basis for forecasting heavy precipitation and consequent flooding. The HMT also involves a joint project with California Department of Water Resources (CA-DWR) and the Scripps Institute for Oceanography (SIO) as part of CA-DWR's Enhanced Flood Response and Emergency Preparedness (EFREP) program. The HMT activities have included development and calibration of a distributed hydrologic model, the NWS Office of Hydrologic Development's (OHD) Research Distributed Hydrologic Model (RDHM), to prototype the distributed approach for flood and other water resources applications. HMT has applied RDHM to the Russian-Napa watersheds for research assessment of gap-filling weather radars for precipitation and hydrologic forecasting and for establishing a prototype to inform both the NWS Monterey Forecast Office and the California Nevada River Forecast Center (CNRFC) of RDHM capabilities. In this presentation, a variety of precipitation forcings generated with and without gap filling radar and rain gauge data are used as input to RDHM to assess the hydrologic response for selected case study events. Both the precipitation forcing and hydrologic model are run at different spatial and temporal resolution in order to examine the sensitivity of runoff to the precipitation inputs. Based on the timing of the events and the variations of spatial and temporal resolution, the parameters which dominate the hydrologic response are identified. The assessment is implemented at two USGS stations (Ukiah near Russian River and Austin Creek near Cazadero) that are minimally influenced by managed flows and objective evaluation can thus be derived. The results are assessed using statistical metrics, including daily Nash scores, Pearson Correlation, and sub daily timing errors.
An Early-Warning System for Volcanic Ash Dispersal: The MAFALDA Procedure
NASA Astrophysics Data System (ADS)
Barsotti, S.; Nannipieri, L.; Neri, A.
2006-12-01
Forecasts of the dispersal of volcanic ash is a fundamental goal in order to mitigate its potential impact on urbanized areas and transport routes surrounding explosive volcanoes. To this aim we developed an early- warning procedure named MAFALDA (Modeling And Forecasting Ash Loading and Dispersal in the Atmosphere). Such tool is able to quantitatively forecast the atmospheric concentration of ash as well as the ground deposition as a function of time over a 3D spatial domain.\\The main features of MAFALDA are: (1) the use of the hybrid Lagrangian-Eulerian code VOL-CALPUFF able to describe both the rising column phase and the atmospheric dispersal as a function of weather conditions, (2) the use of high-resolution weather forecasting data, (3) the short execution time that allows to analyse a set of scenarios and (4) the web-based CGI software application (written in Perl programming language) that shows the results in a standard graphical web interface and makes it suitable as an early-warning system during volcanic crises.\\MAFALDA is composed by a computational part that simulates the ash cloud dynamics and a graphical interface for visualizing the modelling results. The computational part includes the codes for elaborating the meteorological data, the dispersal code and the post-processing programs. These produces hourly 2D maps of aerial ash concentration at several vertical levels, extension of "threat" area on air and 2D maps of ash deposit on the ground, in addition to graphs of hourly variations of column height.\\The processed results are available on the web by the graphical interface and the users can choose, by drop-down menu, which data to visualize. \\A first partial application of the procedure has been carried out for Mt. Etna (Italy). In this case, the procedure simulates four volcanological scenarios characterized by different plume intensities and uses 48-hrs weather forecasting data with a resolution of 7 km provided by the Italian Air Force.
Assessment of simulation of radiation in NCEP Climate Forecasting System (CFS V2)
NASA Astrophysics Data System (ADS)
Goswami, Tanmoy; Rao, Suryachandra A.; Hazra, Anupam; Chaudhari, Hemantkumar S.; Dhakate, Ashish; Salunke, Kiran; Mahapatra, Somnath
2017-09-01
The objective of this study is to identify and document the radiation biases in the latest National Centers for Environment Prediction (NCEP), Climate Forecasting System (CFSv2) and to investigate the probable reasons for these biases. This analysis is made over global and Indian domain under all-sky and clear-sky conditions. The impact of increasing the horizontal resolution of the atmospheric model on these biases is also investigated by comparing results of two different horizontal resolution versions of CFSv2 namely T126 and T382. The difference between the top of the atmosphere and surface energy imbalance in T126 (T382) is 3.49 (2.78) W/m2. This reduction of bias in the high resolution model is achieved due to lesser low cloud cover, resulting more surface insolation, and due to more latent heat fluxes at the surface. Compared to clear sky simulations, all sky simulations exhibit larger biases suggesting that the cloud covers are not simulated well in the model. The annual mean high level cloud cover is over estimated over the global as well as the Indian domain. This overestimation over the Indian domain is also present during JJAS. There is also evidence that both of the models have insufficient water vapour in their atmosphere. This study suggests that in order to improve the model's mean radiation climatology, simulation of clouds in the model also needs to be improved, and future model development activities should focus on this aspect.
NASA Astrophysics Data System (ADS)
El-Samra, R.; Bou-Zeid, E.; Bangalath, H. K.; Stenchikov, G.; El-Fadel, M.
2017-12-01
A set of ten downscaling simulations at high spatial resolution (3 km horizontally) were performed using the Weather Research and Forecasting (WRF) model to generate future climate projections of annual and seasonal temperature and precipitation changes over the Eastern Mediterranean (with a focus on Lebanon). The model was driven with the High Resolution Atmospheric Model (HiRAM), running over the whole globe at a resolution of 25 km, under the conditions of two Representative Concentration Pathways (RCP) (4.5 and 8.5). Each downscaling simulation spanned one year. Two past years (2003 and 2008), also forced by HiRAM without data assimilation, were simulated to evaluate the model's ability to capture the cold and wet (2003) and hot and dry (2008) extremes. The downscaled data were in the range of recent observed climatic variability, and therefore corrected for the cold bias of HiRAM. Eight future years were then selected based on an anomaly score that relies on the mean annual temperature and accumulated precipitation to identify the worst year per decade from a water resources perspective. One hot and dry year per decade, from 2011 to 2050, and per scenario was simulated and compared to the historic 2008 reference. The results indicate that hot and dry future extreme years will be exacerbated and the study area might be exposed to a significant decrease in annual precipitation (rain and snow), reaching up to 30% relative to the current extreme conditions.
NASA Astrophysics Data System (ADS)
Jang, Sangmin; Yoon, Sunkwon; Rhee, Jinyoung; Park, Kyungwon
2016-04-01
Due to the recent extreme weather and climate change, a frequency and size of localized heavy rainfall increases and it may bring various hazards including sediment-related disasters, flooding and inundation. To prevent and mitigate damage from such disasters, very short range forecasting and nowcasting of precipitation amounts are very important. Weather radar data very useful in monitoring and forecasting because weather radar has high resolution in spatial and temporal. Generally, extrapolation based on the motion vector is the best method of precipitation forecasting using radar rainfall data for a time frame within a few hours from the present. However, there is a need for improvement due to the radar rainfall being less accurate than rain-gauge on surface. To improve the radar rainfall and to take advantage of the COMS (Communication, Ocean and Meteorological Satellite) data, a technique to blend the different data types for very short range forecasting purposes was developed in the present study. The motion vector of precipitation systems are estimated using 1.5km CAPPI (Constant Altitude Plan Position Indicator) reflectivity by pattern matching method, which indicates the systems' direction and speed of movement and blended radar-COMS rain field is used for initial data. Since the original horizontal resolution of COMS is 4 km while that of radar is about 1 km, spatial downscaling technique is used to downscale the COMS data from 4 to 1 km pixels in order to match with the radar data. The accuracies of rainfall forecasting data were verified utilizing AWS (Automatic Weather System) observed data for an extreme rainfall occurred in the southern part of Korean Peninsula on 25 August 2014. The results of this study will be used as input data for an urban stream real-time flood early warning system and a prediction model of landslide. Acknowledgement This research was supported by a grant (13SCIPS04) from Smart Civil Infrastructure Research Program funded by Ministry of Land, Infrastructure and Transport (MOLIT) of Korea government and Korea Agency for Infrastructure Technology Advancement (KAIA).
Advances in Landslide Hazard Forecasting: Evaluation of Global and Regional Modeling Approach
NASA Technical Reports Server (NTRS)
Kirschbaum, Dalia B.; Adler, Robert; Hone, Yang; Kumar, Sujay; Peters-Lidard, Christa; Lerner-Lam, Arthur
2010-01-01
A prototype global satellite-based landslide hazard algorithm has been developed to identify areas that exhibit a high potential for landslide activity by combining a calculation of landslide susceptibility with satellite-derived rainfall estimates. A recent evaluation of this algorithm framework found that while this tool represents an important first step in larger-scale landslide forecasting efforts, it requires several modifications before it can be fully realized as an operational tool. The evaluation finds that the landslide forecasting may be more feasible at a regional scale. This study draws upon a prior work's recommendations to develop a new approach for considering landslide susceptibility and forecasting at the regional scale. This case study uses a database of landslides triggered by Hurricane Mitch in 1998 over four countries in Central America: Guatemala, Honduras, EI Salvador and Nicaragua. A regional susceptibility map is calculated from satellite and surface datasets using a statistical methodology. The susceptibility map is tested with a regional rainfall intensity-duration triggering relationship and results are compared to global algorithm framework for the Hurricane Mitch event. The statistical results suggest that this regional investigation provides one plausible way to approach some of the data and resolution issues identified in the global assessment, providing more realistic landslide forecasts for this case study. Evaluation of landslide hazards for this extreme event helps to identify several potential improvements of the algorithm framework, but also highlights several remaining challenges for the algorithm assessment, transferability and performance accuracy. Evaluation challenges include representation errors from comparing susceptibility maps of different spatial resolutions, biases in event-based landslide inventory data, and limited nonlandslide event data for more comprehensive evaluation. Additional factors that may improve algorithm performance accuracy include incorporating additional triggering factors such as tectonic activity, anthropogenic impacts and soil moisture into the algorithm calculation. Despite these limitations, the methodology presented in this regional evaluation is both straightforward to calculate and easy to interpret, making results transferable between regions and allowing findings to be placed within an inter-comparison framework. The regional algorithm scenario represents an important step in advancing regional and global-scale landslide hazard assessment and forecasting.
NASA Astrophysics Data System (ADS)
Grossi, Giovanna; Caronna, Paolo; Ranzi, Roberto
2014-05-01
Within the framework of risk communication, the goal of an early warning system is to support the interaction between technicians and authorities (and subsequently population) as a prevention measure. The methodology proposed in the KULTURisk FP7 project aimed to build a closer collaboration between these actors, in the perspective of promoting pro-active actions to mitigate the effects of flood hazards. The transnational (Slovenia/ Italy) Soča/Isonzo case study focused on this concept of cooperation between stakeholders and hydrological forecasters. The DIMOSHONG_VIP hydrological model was calibrated for the Vipava/Vipacco River (650 km2), a tributary of the Soča/Isonzo River, on the basis of flood events occurred between 1998 and 2012. The European Centre for Medium-Range Weather Forecasts (ECMWF) provided the past meteorological forecasts, both deterministic (1 forecast) and probabilistic (51 ensemble members). The resolution of the ECMWF grid is currently about 15 km (Deterministic-DET) and 30 km (Ensemble Prediction System-EPS). A verification was conducted to validate the flood-forecast outputs of the DIMOSHONG_VIP+ECMWF early warning system. Basic descriptive statistics, like event probability, probability of a forecast occurrence and frequency bias were determined. Some performance measures were calculated, such as hit rate (probability of detection) and false alarm rate (probability of false detection). Relative Opening Characteristic (ROC) curves were generated both for deterministic and probabilistic forecasts. These analysis showed a good performance of the early warning system, in respect of the small size of the sample. A particular attention was spent to the design of flood-forecasting output charts, involving and inquiring stakeholders (Alto Adriatico River Basin Authority), hydrology specialists in the field, and common people. Graph types for both forecasted precipitation and discharge were set. Three different risk thresholds were identified ("attention", "pre-alarm" or "alert", "alarm"), with an "icon-style" representation, suitable for communication to civil protection stakeholders or the public. Aiming at showing probabilistic representations in a "user-friendly" way, we opted for the visualization of the single deterministic forecasted hydrograph together with the 5%, 25%, 50%, 75% and 95% percentiles bands of the Hydrological Ensemble Prediction System (HEPS). HEPS is generally used for 3-5 days hydrological forecasts, while the error due to incorrect initial data is comparable to the error due to the lower resolution with respect to the deterministic forecast. In the short term forecasting (12-48 hours) the HEPS-members show obviously a similar tendency; in this case, considering its higher resolution, the deterministic forecast is expected to be more effective. The plot of different forecasts in the same chart allows the use of model outputs from 4/5 days to few hours before a potential flood event. This framework was built to help a stakeholder, like a mayor, a civil protection authority, etc, in the flood control and management operations, and was designed to be included in a wider decision support system.
Integrated Wind Power Planning Tool
NASA Astrophysics Data System (ADS)
Rosgaard, M. H.; Giebel, G.; Nielsen, T. S.; Hahmann, A.; Sørensen, P.; Madsen, H.
2012-04-01
This poster presents the current state of the public service obligation (PSO) funded project PSO 10464, with the working title "Integrated Wind Power Planning Tool". The project commenced October 1, 2011, and the goal is to integrate a numerical weather prediction (NWP) model with purely statistical tools in order to assess wind power fluctuations, with focus on long term power system planning for future wind farms as well as short term forecasting for existing wind farms. Currently, wind power fluctuation models are either purely statistical or integrated with NWP models of limited resolution. With regard to the latter, one such simulation tool has been developed at the Wind Energy Division, Risø DTU, intended for long term power system planning. As part of the PSO project the inferior NWP model used at present will be replaced by the state-of-the-art Weather Research & Forecasting (WRF) model. Furthermore, the integrated simulation tool will be improved so it can handle simultaneously 10-50 times more turbines than the present ~ 300, as well as additional atmospheric parameters will be included in the model. The WRF data will also be input for a statistical short term prediction model to be developed in collaboration with ENFOR A/S; a danish company that specialises in forecasting and optimisation for the energy sector. This integrated prediction model will allow for the description of the expected variability in wind power production in the coming hours to days, accounting for its spatio-temporal dependencies, and depending on the prevailing weather conditions defined by the WRF output. The output from the integrated prediction tool constitute scenario forecasts for the coming period, which can then be fed into any type of system model or decision making problem to be solved. The high resolution of the WRF results loaded into the integrated prediction model will ensure a high accuracy data basis is available for use in the decision making process of the Danish transmission system operator, and the need for high accuracy predictions will only increase over the next decade as Denmark approaches the goal of 50% wind power based electricity in 2020, from the current 20%.
Unstructured-grid coastal ocean modelling in Southern Adriatic and Northern Ionian Seas
NASA Astrophysics Data System (ADS)
Federico, Ivan; Pinardi, Nadia; Coppini, Giovanni; Oddo, Paolo
2016-04-01
The Southern Adriatic Northern Ionian coastal Forecasting System (SANIFS) is a short-term forecasting system based on unstructured grid approach. The model component is built on SHYFEM finite element three-dimensional hydrodynamic model. The operational chain exploits a downscaling approach starting from the Mediterranean oceanographic-scale model MFS (Mediterranean Forecasting System, operated by INGV). The implementation set-up has been designed to provide accurate hydrodynamics and active tracer processes in the coastal waters of Southern Eastern Italy (Apulia, Basilicata and Calabria regions), where the model is characterized by a variable resolution in range of 50-500 m. The horizontal resolution is also high in open-sea areas, where the elements size is approximately 3 km. The model is forced: (i) at the lateral open boundaries through a full nesting strategy directly with the MFS (temperature, salinity, non-tidal sea surface height and currents) and OTPS (tidal forcing) fields; (ii) at surface through two alternative atmospheric forcing datasets (ECMWF and COSMOME) via MFS-bulk-formulae. Given that the coastal fields are driven by a combination of both local/coastal and deep ocean forcings propagating along the shelf, the performance of SANIFS was verified first (i) at the large and shelf-coastal scales by comparing with a large scale CTD survey and then (ii) at the coastal-harbour scale by comparison with CTD, ADCP and tide gauge data. Sensitivity tests were performed on initialization conditions (mainly focused on spin-up procedures) and on surface boundary conditions by assessing the reliability of two alternative datasets at different horizontal resolution (12.5 and 7 km). The present work highlights how downscaling could improve the simulation of the flow field going from typical open-ocean scales of the order of several km to the coastal (and harbour) scales of tens to hundreds of meters.
NASA Technical Reports Server (NTRS)
Case, Jonathan L.; Santos, Pablo; Lazarus, Steven M.; Splitt, Michael E.; Haines, Stephanie L.; Dembek, Scott R.; Lapenta, William M.
2008-01-01
Studies at the Short-term Prediction Research and Transition (SPORT) Center have suggested that the use of Moderate Resolution Imaging Spectroradiometer (MODIS) sea-surface temperature (SST) composites in regional weather forecast models can have a significant positive impact on short-term numerical weather prediction in coastal regions. Recent work by LaCasse et al (2007, Monthly Weather Review) highlights lower atmospheric differences in regional numerical simulations over the Florida offshore waters using 2-km SST composites derived from the MODIS instrument aboard the polar-orbiting Aqua and Terra Earth Observing System satellites. To help quantify the value of this impact on NWS Weather Forecast Offices (WFOs), the SPORT Center and the NWS WFO at Miami, FL (MIA) are collaborating on a project to investigate the impact of using the high-resolution MODIS SST fields within the Weather Research and Forecasting (WRF) prediction system. The project's goal is to determine whether more accurate specification of the lower-boundary forcing within WRF will result in improved land/sea fluxes and hence, more accurate evolution of coastal mesoscale circulations and the associated sensible weather elements. The NWS MIA is currently running WRF in real-time to support daily forecast operations, using the National Centers for Environmental Prediction Nonhydrostatic Mesoscale Model dynamical core within the NWS Science and Training Resource Center's Environmental Modeling System (EMS) software. Twenty-seven hour forecasts are run dally initialized at 0300, 0900, 1500, and 2100 UTC on a domain with 4-km grid spacing covering the southern half of Florida and adjacent waters of the Gulf of Mexico and Atlantic Ocean. Each model run is initialized using the Local Analysis and Prediction System (LAPS) analyses available in AWIPS. The SSTs are initialized with the NCEP Real-Time Global (RTG) analyses at 1/12deg resolution (approx.9 km); however, the RTG product does not exhibit fine-scale details consistent with its grid resolution. SPORT is conducting parallel WRF EMS runs identical to the operational runs at NWS MIA except for the use of MODIS SST composites in place of the RTG product as the initial and boundary conditions over water, The MODIS SST composites for initializing the SPORT WRF runs are generated on a 2-km grid four times daily at 0400, 0700, 1600, and 1900 UTC, based on the times of the overhead passes of the Aqua and Terra satellites. The incorporation of the MODIS SST data into the SPORT WRF runs is staggered such that SSTs are updated with a new composite every six hours in each of the WRF runs. From mid-February to July 2007, over 500 parallel WRF simulations have been collected for analysis and verification. This paper will present verification results comparing the NWS MIA operational WRF runs to the SPORT experimental runs, and highlight any substantial differences noted in the predicted mesoscale phenomena for specific cases.
Integral assessment of floodplains as a basis for spatially-explicit flood loss forecasts
NASA Astrophysics Data System (ADS)
Zischg, Andreas Paul; Mosimann, Markus; Weingartner, Rolf
2016-04-01
A key aspect of disaster prevention is flood discharge forecasting which is used for early warning and therefore as a decision support for intervention forces. Hereby, the phase between the issued forecast and the time when the expected flood occurs is crucial for an optimal planning of the intervention. Typically, river discharge forecasts cover the regional level only, i.e. larger catchments. However, it is important to note that these forecasts are not useable directly for specific target groups on local level because these forecasts say nothing about the consequences of the predicted flood in terms of affected areas, number of exposed residents and houses. For this, on one hand simulations of the flooding processes and on the other hand data of vulnerable objects are needed. Furthermore, flood modelling in a high spatial and temporal resolution is required for robust flood loss estimation. This is a resource-intensive task from a computing time point of view. Therefore, in real-time applications flood modelling in 2D is not suited. Thus, forecasting flood losses in the short-term (6h-24h in advance) requires a different approach. Here, we propose a method to downscale the river discharge forecast to a spatially-explicit flood loss forecast. The principal procedure is to generate as many flood scenarios as needed in advance to represent the flooded areas for all possible flood hydrographs, e.g. very high peak discharges of short duration vs. high peak discharges with high volumes. For this, synthetic flood hydrographs were derived from the hydrologic time series. Then, the flooded areas of each scenario were modelled with a 2D flood simulation model. All scenarios were intersected with the dataset of vulnerable objects, in our case residential, agricultural and industrial buildings with information about the number of residents, the object-specific vulnerability, and the monetary value of the objects. This dataset was prepared by a data-mining approach. For each flood scenario, the resulting number of affected residents, houses and therefore the losses are computed. This integral assessment leads to a hydro-economical characterisation of each floodplain. Based on that, a transfer function between discharge forecast and damages can be elaborated. This transfer function describes the relationship between predicted peak discharge, flood volume and the number of exposed houses, residents and the related losses. It also can be used to downscale the regional discharge forecast to a local level loss forecast. In addition, a dynamic map delimiting the probable flooded areas on the basis of the forecasted discharge can be prepared. The predicted losses and the delimited flooded areas provide a complementary information for assessing the need of preventive measures on one hand on the long-term timescale and on the other hand 6h-24h in advance of a predicted flood. To conclude, we can state that the transfer function offers the possibility for an integral assessment of floodplains as a basis for spatially-explicit flood loss forecasts. The procedure has been developed and tested in the alpine and pre-alpine environment of the Aare river catchment upstream of Bern, Switzerland.
Simulation of Wind Profile Perturbations for Launch Vehicle Design
NASA Technical Reports Server (NTRS)
Adelfang, S. I.
2004-01-01
Ideally, a statistically representative sample of measured high-resolution wind profiles with wavelengths as small as tens of meters is required in design studies to establish aerodynamic load indicator dispersions and vehicle control system capability. At most potential launch sites, high- resolution wind profiles may not exist. Representative samples of Rawinsonde wind profiles to altitudes of 30 km are more likely to be available from the extensive network of measurement sites established for routine sampling in support of weather observing and forecasting activity. Such a sample, large enough to be statistically representative of relatively large wavelength perturbations, would be inadequate for launch vehicle design assessments because the Rawinsonde system accurately measures wind perturbations with wavelengths no smaller than 2000 m (1000 m altitude increment). The Kennedy Space Center (KSC) Jimsphere wind profiles (150/month and seasonal 2 and 3.5-hr pairs) are the only adequate samples of high resolution profiles approx. 150 to 300 m effective resolution, but over-sampled at 25 m intervals) that have been used extensively for launch vehicle design assessments. Therefore, a simulation process has been developed for enhancement of measured low-resolution Rawinsonde profiles that would be applicable in preliminary launch vehicle design studies at launch sites other than KSC.
Impact of geostationary satellite water vapor channel data on weather analysis and forecasting
NASA Technical Reports Server (NTRS)
Velden, Christopher S.
1995-01-01
Preliminary results from NWP impact studies are indicating that upper-tropospheric wind information provided by tracking motions in sequences of geostationary satellite water vapor imagery can positively influence forecasts on regional scales, and possibly on global scales as well. The data are complimentary to cloud-tracked winds by providing data in cloud-free regions, as well as comparable in quality. First results from GOES-8 winds are encouraging, and further efforts and model impacts will be directed towards optimizing these data in numerical weather prediction (NWP). Assuming successful launches of GOES-J and GMS-5 satellites in 1995, high quality and resolution water vapor imagers will be available to provide nearly complete global upper-tropospheric wind coverage.
NASA Astrophysics Data System (ADS)
Xue, L.; Newman, A. J.; Ikeda, K.; Rasmussen, R.; Clark, M. P.; Monaghan, A. J.
2016-12-01
A high-resolution (a 1.5 km grid spacing domain nested within a 4.5 km grid spacing domain) 10-year regional climate simulation over the entire Hawaiian archipelago is being conducted at the National Center for Atmospheric Research (NCAR) using the Weather Research and Forecasting (WRF) model version 3.7.1. Numerical sensitivity simulations of the Hawaiian Rainband Project (HaRP, a filed experiment from July to August in 1990) showed that the simulated precipitation properties are sensitive to initial and lateral boundary conditions, sea surface temperature (SST), land surface models, vertical resolution and cloud droplet concentration. The validations of model simulated statistics of the trade wind inversion, temperature, wind field, cloud cover, and precipitation over the islands against various observations from soundings, satellites, weather stations and rain gauges during the period from 2003 to 2012 will be presented at the meeting.
NASA Astrophysics Data System (ADS)
Naulin, Jean-Philippe; Payrastre, Olivier; Gaume, Eric; Delrieu, Guy
2013-04-01
Accurate flood forecasts are crucial for an efficient flood event management. Until now, hydro-meteorological forecasts have been mainly used for early-warnings in France (Meteorological and flood vigilance maps) or over the world (Flash-flood guidances). These forecasts are generally limited to the main streams covered by the flood forecasting services or to specific watersheds with particular assets like check dams which are in most cases well gauged river sections, leaving aside large parts of the territory. A distributed hydro-meteorological forecasting approach will be presented, able to take advantage of the high spatial and temporal resolution rainfall estimates that are now available to provide information at ungauged sites. The proposed system aiming at detecting road inundation risks had been initially developed and tested in areas of limited size. Its extension to a whole region (the Gard region in the South of France) will be presented, including over 2000 crossing points between rivers and roads and its validation against a large data set of actually reported road inundations observed during recent flash-flood events. These first validation results appear promising. Such a tool would provide the necessary information for flood event management services to identify the areas at risk and to take the appropriate safety and rescue measures: pre-positioning of rescue means, stopping of the traffic on exposed roads, determination of safe accesses or evacuation routes. Moreover, beyond the specific application to the supervision of a road network, this work provides also results concerning the performances of hydro-meteorological forecasts for ungauged headwaters.
NASA Astrophysics Data System (ADS)
Zhang, X.; Cornuelle, B. D.; Martin, A.; Weihs, R. R.; Ralph, M.
2017-12-01
We evaluated the merit in coastal precipitation forecasts by inclusion of high resolution sea surface temperature (SST) from blended satellite and in situ observations as a boundary condition (BC) to the Weather Research and Forecast (WRF) mesoscale model through simple perturbation tests. Our sensitivity analyses shows that the limited improvement of watershed scale precipitation forecast is credible. When only SST BC is changed, there is an uncertainty introduced because of artificial model state equilibrium and the nonlinear nature of the WRF model system. With the change of SST on the order of a fraction of a degree centigrade, we found that the part of random perturbation forecast response is saturated after 48 hours when it reaches to the order magnitude of the linear response. It is important to update the SST at a shorter time period, so that the independent excited nonlinear modes can cancel each other. The uncertainty in our SST configuration is quantitatively equivalent to adding to a spatially uncorrelated Guasian noise of zero mean and 0.05 degree of standard deviation to the SST. At this random noise perturbation magnitude, the ensemble average behaves well within a convergent range. It is also found that the sensitivity of forecast changes in response to SST changes. This is measured by the ratio of the spatial variability of mean of the ensemble perturbations over the spatial variability of the corresponding forecast. The ratio is about 10% for surface latent heat flux, 5 % for IWV, and less than 1% for surface pressure.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lim, Kyo-Sun; Hong, Song You; Yoon, Jin-Ho
2014-10-01
The most recent version of Simplified Arakawa-Schubert (SAS) cumulus scheme in National Center for Environmental Prediction (NCEP) Global Forecast System (GFS) (GFS SAS) has been implemented into the Weather and Research Forecasting (WRF) model with a modification of triggering condition and convective mass flux to become depending on model’s horizontal grid spacing. East Asian Summer Monsoon of 2006 from June to August is selected to evaluate the performance of the modified GFS SAS scheme. Simulated monsoon rainfall with the modified GFS SAS scheme shows better agreement with observation compared to the original GFS SAS scheme. The original GFS SAS schememore » simulates the similar ratio of subgrid-scale precipitation, which is calculated from a cumulus scheme, against total precipitation regardless of model’s horizontal grid spacing. This is counter-intuitive because the portion of resolved clouds in a grid box should be increased as the model grid spacing decreases. This counter-intuitive behavior of the original GFS SAS scheme is alleviated by the modified GFS SAS scheme. Further, three different cumulus schemes (Grell and Freitas, Kain and Fritsch, and Betts-Miller-Janjic) are chosen to investigate the role of a horizontal resolution on simulated monsoon rainfall. The performance of high-resolution modeling is not always enhanced as the spatial resolution becomes higher. Even though improvement of probability density function of rain rate and long wave fluxes by the higher-resolution simulation is robust regardless of a choice of cumulus parameterization scheme, the overall skill score of surface rainfall is not monotonically increasing with spatial resolution.« less
Comparison of CMAQ Modeling Study with Discover-AQ 2014 Aircraft Measurements over Colorado
NASA Astrophysics Data System (ADS)
Tang, Y.; Pan, L.; Lee, P.; Tong, D.; Kim, H. C.; Artz, R. S.
2014-12-01
NASA and NCAR jointly led a recent multiple platform-based (space, air and ground) measurement intensive to study air quality and to validate satellite data. The Discover-AQ/FRAPPE field experiment took place along the Colorado Front Range in July and August, 2014. The air quality modeling team of the NOAA Air Resources Laboratory was one of the three teams that provided real-time air quality forecasting for the campaign. The U.S. EPA Community Multi-scale Air Quality (CMAQ) Model was used with emission inventories based on the data set used by the NOAA National Air Quality Forecasting Capacity (NAQFC). By analyzing the forecast results calculated using aircraft measurements, it was found that CO emissions tended to be overestimated, while ethane emissions were underestimated. Biogenic VOCs were also underpredicted. Due to their relatively high altitude, ozone concentrations in Denver and the surrounding areas are affected by both local emissions and transported ozone. The modeled ozone was highly dependent on the meteorological predictions over this region. The complex terrain over the Rocky Mountains also contributed to the model uncertainty. This study discussed the causes of model biases, the forecast performance under different meteorology, and results from using different model grid resolutions. Several data assimilation techniques were further tested to improve the "post-analysis" performance of the modeling system for the period.
NASA Astrophysics Data System (ADS)
Pillosu, F. M.; Hewson, T.; Mazzetti, C.
2017-12-01
Prediction of local extreme rainfall has historically been the remit of nowcasting and high resolution limited area modelling, which represent only limited areas, may not be spatially accurate, give reasonable results only for limited lead times (<2 days) and become prohibitively expensive at global scale. ECMWF/EFAS/GLOFAS have developed a novel, cost-effective and physically-based statistical post-processing software ("ecPoint-Rainfall, ecPR", operational in 2017) that uses ECMWF Ensemble (ENS) output to deliver global probabilistic rainfall forecasts for points up to day 10. Firstly, ecPR applies a new notion of "remote calibration", which 1) allows us to replicate a multi-centennial training period using only one year of data, and 2) provides forecasts for anywhere in the world. Secondly, the software applies an understanding of how different rainfall generation mechanisms lead to different degrees of sub-grid variability in rainfall totals, and of where biases in the model can be improved upon. A long-term verification has shown that the post-processed rainfall has better reliability and resolution at every lead time if compared with ENS, and for large totals, ecPR outputs have the same skill at day 5 that the raw ENS has at day 1 (ROC area metric). ecPR could be used as input for hydrological models if its probabilistic output is modified accordingly to the inputs requirements for hydrological models. Indeed, ecPR does not provide information on where the highest total is likely to occur inside the gridbox, nor on the spatial distribution of rainfall values nearby. "Scenario forecasts" could be a solution. They are derived from locating the rainfall peak in sensitive positions (e.g. urban areas), and then redistributing the remaining quantities in the gridbox modifying traditional spatial correlation characterization methodologies (e.g. variogram analysis) in order to take account, for instance, of the type of rainfall forecast (stratiform, convective). Such an approach could be a turning point in the field of medium-range global real-time riverine flood forecasts. This presentation will illustrate for ecPR 1) system calibration, 2) operational implementation, 3) long-term verification, 4) future developments, and 5) early ideas for the application of ecPR outputs in hydrological models.
Transitioning NPOESS Data to Weather Offices: The SPoRT Paradigm with EOS Data
NASA Technical Reports Server (NTRS)
Jedlovec, Gary
2009-01-01
Real-time satellite information provides one of many data sources used by NWS weather forecast offices (WFOs) to diagnose current weather conditions and to assist in short-term forecast preparation. While GOES satellite data provides relatively coarse spatial resolution coverage of the continental U.S. on a 10-15 minute repeat cycle, polar orbiting imagery has the potential to provide snapshots of weather conditions at high-resolution in many spectral channels. Additionally, polar orbiting sounding data can provide additional information on the thermodynamic structure of the atmosphere in data sparse regions of at asynoptic observation times. The NASA Short-term Prediction Research and Transition (SPoRT) project has demonstrated the utility of polar orbiting MODIS and AIRS data on the Terra and Aqua satellites to improve weather diagnostics and short-term forecasting on the regional and local scales. SPoRT scientists work directly forecasters at selected WFOS in the Southern Region (SR) to help them ingest these unique data streams into their AWIPS system, understand how to use the data (through on-site and distance learn techniques), and demonstrate the utility of these products to address significant forecast problems. This process also prepares forecasters for the use of similar observational capabilities from NPOESS operational sensors. NPOESS environmental data records (EDRs) from the Visible 1 Infrared Imager I Radiometer Suite (VIIRS), the Cross-track Infrared Sounder (CrlS) and Advanced Technology Microwave Sounder (ATMS) instruments and additional value-added products produced by NESDIS will be available in near real-time and made available to WFOs to extend their use of NASA EOS data into the NPOESS era. These new data streams will be integrated into the NWs's new AWIPS II decision support tools. The AWIPS I1 system to be unveiled in WFOs in 2009 will be a JAVA-based decision support system which preserves the functionality of the existing systems and offers unique development opportunities for new data sources and applications in the Service Orientated Architecture ISOA) environment. This paper will highlight some of the SPoRT activities leading to the integration of VllRS and CrIS/ATMS data into the display capabilities of these new systems to support short-term forecasting problems at WFOs.
NASA Technical Reports Server (NTRS)
Case, Jonathan L.; Mungai, John; Sakwa, Vincent; Kabuchanga, Eric; Zavodsky, Bradley T.; Limaye, Ashutosh S.
2014-01-01
SPoRT/SERVIR/RCMRD/KMS Collaboration: Builds off strengths of each organization. SPoRT: Transition of satellite, modeling and verification capabilities; SERVIR-Africa/RCMRD: International capacity-building expertise; KMS: Operational organization with regional weather forecasting expertise in East Africa. Hypothesis: Improved land-surface initialization over Eastern Africa can lead to better temperature, moisture, and ultimately precipitation forecasts in NWP models. KMS currently initializes Weather Research and Forecasting (WRF) model with NCEP/Global Forecast System (GFS) model 0.5-deg initial / boundary condition data. LIS will provide much higher-resolution land-surface data at a scale more representative to regional WRF configuration. Future implementation of real-time NESDIS/VIIRS vegetation fraction to further improve land surface representativeness.
The value of information as applied to the Landsat Follow-on benefit-cost analysis
NASA Technical Reports Server (NTRS)
Wood, D. B.
1978-01-01
An econometric model was run to compare the current forecasting system with a hypothetical (Landsat Follow-on) space-based system. The baseline current system was a hybrid of USDA SRS domestic forecasts and the best known foreign data. The space-based system improved upon the present Landsat by the higher spatial resolution capability of the thematic mapper. This satellite system is a major improvement for foreign forecasts but no better than SRS for domestic forecasts. The benefit analysis was concentrated on the use of Landsat Follow-on to forecast world wheat production. Results showed that it was possible to quantify the value of satellite information and that there are significant benefits in more timely and accurate crop condition information.
Addressing Common Cloud-Radiation Errors from 4-hour to 4-week Model Prediction
NASA Astrophysics Data System (ADS)
Benjamin, S.; Sun, S.; Grell, G. A.; Green, B.; Olson, J.; Kenyon, J.; James, E.; Smirnova, T. G.; Brown, J. M.
2017-12-01
Cloud-radiation representation in models for subgrid-scale clouds is a known gap from subseasonal-to-seasonal models down to storm-scale models applied for forecast duration of only a few hours. NOAA/ESRL has been applying common physical parameterizations for scale-aware deep/shallow convection and boundary-layer mixing over this wide range of time and spatial scales, with some progress to be reported in this presentation. The Grell-Freitas scheme (2014, Atmos. Chem. Phys.) and MYNN boundary-layer EDMF scheme (Olson / Benjamin et al. 2016 Mon. Wea. Rev.) have been applied and tested extensively for the NOAA hourly updated 3-km High-Resolution Rapid Refresh (HRRR) and 13-km Rapid Refresh (RAP) model/assimilation systems over the United States and North America, with targeting toward improvement to boundary-layer evolution and cloud-radiation representation in all seasons. This representation is critical for both warm-season severe convective storm forecasting and for winter-storm prediction of snow and mixed precipitation. At the same time the Grell-Freitas scheme has been applied also as an option for subseasonal forecasting toward improved US week 3-4 prediction with the FIM-HYCOM coupled model (Green et al 2017, MWR). Cloud/radiation evaluation using CERES satellite-based estimates have been applied to both 12-h RAP (13km) and also during Weeks 1-4 from 32-day FIM-HYCOM (60km) forecasts. Initial results reveal that improved cloud representation is needed for both resolutions and now is guiding further refinement for cloud representation including with the Grell-Freitas scheme and with the updated MYNN-EDMF scheme (both now also in global testing as well as with the 3km HRRR and 13km RAP models).
, effects of balloon drift in time and space included Forecast and post processing: Improved orography minor changes: Observations and analysis: Higher resolution sea ice mask Forecast and post processing . 12/04/07 12Z: Use of Unified Post Processor in GFS 12/04/07 12Z: GFS Ensemble (NAEFS/TIGGE) UPGRADE
NASA Technical Reports Server (NTRS)
Chronis, Themis; Case, Jonathan L.; Papadopoulos, Anastasios; Anagnostou, Emmanouil N.; Mecikalski, John R.; Haines, Stephanie L.
2008-01-01
Forecasting atmospheric and oceanic circulations accurately over the Eastern Mediterranean has proved to be an exceptional challenge. The existence of fine-scale topographic variability (land/sea coverage) and seasonal dynamics variations can create strong spatial gradients in temperature, wind and other state variables, which numerical models may have difficulty capturing. The Hellenic Center for Marine Research (HCMR) is one of the main operational centers for wave forecasting in the eastern Mediterranean. Currently, HCMR's operational numerical weather/ocean prediction model is based on the coupled Eta/Princeton Ocean Model (POM). Since 1999, HCMR has also operated the POSEIDON floating buoys as a means of state-of-the-art, real-time observations of several oceanic and surface atmospheric variables. This study attempts a first assessment at improving both atmospheric and oceanic prediction by initializing a regional Numerical Weather Prediction (NWP) model with high-resolution sea surface temperatures (SST) from remotely sensed platforms in order to capture the small-scale characteristics.
The impact of Sun-weather research on forecasting
NASA Technical Reports Server (NTRS)
Larsen, M. F.
1979-01-01
The possible impact of Sun-weather research on forecasting is examined. The type of knowledge of the effect is evaluated to determine if it is in a form that can be used for forecasting purposes. It is concluded that the present understanding of the effect does not lend itself readily to applications for forecast purposes. The limits of present predictive skill are examined and it is found that skill is most lacking for prediction of the smallest scales of atmospheric motion. However, it is not expected that Sun-weather research will have any significant impact on forecasting the smaller scales since predictability at these scales is limited by the finite grid size resolution and the time scales of turbulent diffusion. The predictability limits for the largest scales are on the order of several weeks although presently only a one week forecast is achievable.
NASA Astrophysics Data System (ADS)
Zhu, Kefeng; Xue, Ming
2016-11-01
On 21 July 2012, an extreme rainfall event that recorded a maximum rainfall amount over 24 hours of 460 mm, occurred in Beijing, China. Most operational models failed to predict such an extreme amount. In this study, a convective-permitting ensemble forecast system (CEFS), at 4-km grid spacing, covering the entire mainland of China, is applied to this extreme rainfall case. CEFS consists of 22 members and uses multiple physics parameterizations. For the event, the predicted maximum is 415 mm d-1 in the probability-matched ensemble mean. The predicted high-probability heavy rain region is located in southwest Beijing, as was observed. Ensemble-based verification scores are then investigated. For a small verification domain covering Beijing and its surrounding areas, the precipitation rank histogram of CEFS is much flatter than that of a reference global ensemble. CEFS has a lower (higher) Brier score and a higher resolution than the global ensemble for precipitation, indicating more reliable probabilistic forecasting by CEFS. Additionally, forecasts of different ensemble members are compared and discussed. Most of the extreme rainfall comes from convection in the warm sector east of an approaching cold front. A few members of CEFS successfully reproduce such precipitation, and orographic lift of highly moist low-level flows with a significantly southeasterly component is suggested to have played important roles in producing the initial convection. Comparisons between good and bad forecast members indicate a strong sensitivity of the extreme rainfall to the mesoscale environmental conditions, and, to less of an extent, the model physics.
Using HPC within an operational forecasting configuration
NASA Astrophysics Data System (ADS)
Jagers, H. R. A.; Genseberger, M.; van den Broek, M. A. F. H.
2012-04-01
Various natural disasters are caused by high-intensity events, for example: extreme rainfall can in a short time cause major damage in river catchments, storms can cause havoc in coastal areas. To assist emergency response teams in operational decisions, it's important to have reliable information and predictions as soon as possible. This starts before the event by providing early warnings about imminent risks and estimated probabilities of possible scenarios. In the context of various applications worldwide, Deltares has developed an open and highly configurable forecasting and early warning system: Delft-FEWS. Finding the right balance between simulation time (and hence prediction lead time) and simulation accuracy and detail is challenging. Model resolution may be crucial to capture certain critical physical processes. Uncertainty in forcing conditions may require running large ensembles of models; data assimilation techniques may require additional ensembles and repeated simulations. The computational demand is steadily increasing and data streams become bigger. Using HPC resources is a logical step; in different settings Delft-FEWS has been configured to take advantage of distributed computational resources available to improve and accelerate the forecasting process (e.g. Montanari et al, 2006). We will illustrate the system by means of a couple of practical applications including the real-time dynamic forecasting of wind driven waves, flow of water, and wave overtopping at dikes of Lake IJssel and neighboring lakes in the center of The Netherlands. Montanari et al., 2006. Development of an ensemble flood forecasting system for the Po river basin, First MAP D-PHASE Scientific Meeting, 6-8 November 2006, Vienna, Austria.
Evaluating the extreme precipitation events using a mesoscale atmopshere model
NASA Astrophysics Data System (ADS)
Yucel, I.; Onen, A.
2012-04-01
Evidence is showing that global warming or climate change has a direct influence on changes in precipitation and the hydrological cycle. Extreme weather events such as heavy rainfall and flooding are projected to become much more frequent as climate warms. Mesoscale atmospheric models coupled with land surface models provide efficient forecasts for meteorological events in high lead time and therefore they should be used for flood forecasting and warning issues as they provide more continuous monitoring of precipitation over large areas. This study examines the performance of the Weather Research and Forecasting (WRF) model in producing the temporal and spatial characteristics of the number of extreme precipitation events observed in West Black Sea Region of Turkey. Extreme precipitation events usually resulted in flood conditions as an associated hydrologic response of the basin. The performance of the WRF system is further investigated by using the three dimensional variational (3D-VAR) data assimilation scheme within WRF. WRF performance with and without data assimilation at high spatial resolution (4 km) is evaluated by making comparison with gauge precipitation and satellite-estimated rainfall data from Multi Precipitation Estimates (MPE). WRF-derived precipitation showed capabilities in capturing the timing of the precipitation extremes and in some extent spatial distribution and magnitude of the heavy rainfall events. These precipitation characteristics are enhanced with the use of 3D-VAR scheme in WRF system. Data assimilation improved area-averaged precipitation forecasts by 9 percent and at some points there exists quantitative match in precipitation events, which are critical for hydrologic forecast application.
U.S. High Seas Marine Text Forecasts by Area
Flooding Tsunamis 406 EPIRB's U.S. High Seas Marine Text Forecasts by Area OPC N.Atlantic High Seas Forecast NHC N.Atlantic High Seas Forecast OPC N.Pacific High Seas Forecast HFO N.Pacific High Seas Forecast NHC N.Pacific High Seas Forecast HFO S.Pacific High Seas Forecast U.S. High Seas Marine Text
NASA Astrophysics Data System (ADS)
Ravazzani, Giovanni; Amengual, Arnau; Ceppi, Alessandro; Romero, Romualdo; Homar, Victor; Mancini, Marco
2015-04-01
Analysis of forecasting strategies that can provide a tangible basis for flood early warning procedures and mitigation measures over the Western Mediterranean region is one of the fundamental motivations of the European HyMeX programme. Here, we examine a set of hydro-meteorological episodes that affected the Milano urban area for which the complex flood protection system of the city did not completely succeed before the occurred flash-floods. Indeed, flood damages have exponentially increased in the area during the last 60 years, due to industrial and urban developments. Thus, the improvement of the Milano flood control system needs a synergism between structural and non-structural approaches. The flood forecasting system tested in this work comprises the Flash-flood Event-based Spatially distributed rainfall-runoff Transformation, including Water Balance (FEST-WB) and the Weather Research and Forecasting (WRF) models, in order to provide a hydrological ensemble prediction system (HEPS). Deterministic and probabilistic quantitative precipitation forecasts (QPFs) have been provided by WRF model in a set of 48-hours experiments. HEPS has been generated by combining different physical parameterizations (i.e. cloud microphysics, moist convection and boundary-layer schemes) of the WRF model in order to better encompass the atmospheric processes leading to high precipitation amounts. We have been able to test the value of a probabilistic versus a deterministic framework when driving Quantitative Discharge Forecasts (QDFs). Results highlight (i) the benefits of using a high-resolution HEPS in conveying uncertainties for this complex orographic area and (ii) a better simulation of the most of extreme precipitation events, potentially enabling valuable probabilistic QDFs. Hence, the HEPS copes with the significant deficiencies found in the deterministic QPFs. These shortcomings would prevent to correctly forecast the location and timing of high precipitation rates and total amounts at the catchment scale, thus impacting heavily the deterministic QDFs. In contrast, early warnings would have been possible within a HEPS context for the Milano area, proving the suitability of such system for civil protection purposes.
Cloud Impacts on Pavement Temperature in Energy Balance Models
NASA Astrophysics Data System (ADS)
Walker, C. L.
2013-12-01
Forecast systems provide decision support for end-users ranging from the solar energy industry to municipalities concerned with road safety. Pavement temperature is an important variable when considering vehicle response to various weather conditions. A complex, yet direct relationship exists between tire and pavement temperatures. Literature has shown that as tire temperature increases, friction decreases which affects vehicle performance. Many forecast systems suffer from inaccurate radiation forecasts resulting in part from the inability to model different types of clouds and their influence on radiation. This research focused on forecast improvement by determining how cloud type impacts the amount of shortwave radiation reaching the surface and subsequent pavement temperatures. The study region was the Great Plains where surface solar radiation data were obtained from the High Plains Regional Climate Center's Automated Weather Data Network stations. Road pavement temperature data were obtained from the Meteorological Assimilation Data Ingest System. Cloud properties and radiative transfer quantities were obtained from the Clouds and Earth's Radiant Energy System mission via Aqua and Terra Moderate Resolution Imaging Spectroradiometer satellite products. An additional cloud data set was incorporated from the Naval Research Laboratory Cloud Classification algorithm. Statistical analyses using a modified nearest neighbor approach were first performed relating shortwave radiation variability with road pavement temperature fluctuations. Then statistical associations were determined between the shortwave radiation and cloud property data sets. Preliminary results suggest that substantial pavement forecasting improvement is possible with the inclusion of cloud-specific information. Future model sensitivity testing seeks to quantify the magnitude of forecast improvement.
NASA Astrophysics Data System (ADS)
McKenna, M. H.; Alter, R. E.; Swearingen, M. E.; Wilson, D. K.
2017-12-01
Many larger sources, such as volcanic eruptions and nuclear detonations, produce infrasound (acoustic waves with a frequency lower than humans can hear, namely 0.1-20 Hz) that can propagate over global scales. But many smaller infrastructure sources, such as bridges, dams, and buildings, also produce infrasound, though with a lower amplitude that tends to propagate only over regional scales (up to 150 km). In order to accurately calculate regional-scale infrasound propagation, we have incorporated high-resolution, three-dimensional forecasts from the Weather Research and Forecasting (WRF) meteorological model into a signal propagation modeling system called Environmental Awareness for Sensor and Emitter Employment (EASEE), developed at the US Army Engineer Research and Development Center. To quantify the improvement of infrasound propagation predictions with more realistic weather data, we conducted sensitivity studies with different propagation ranges and horizontal resolutions and compared them to default predictions with no weather model data. We describe the process of incorporating WRF output into EASEE for conducting these acoustic propagation simulations and present the results of the aforementioned sensitivity studies.
GPS Estimates of Integrated Precipitable Water Aid Weather Forecasters
NASA Technical Reports Server (NTRS)
Moore, Angelyn W.; Gutman, Seth I.; Holub, Kirk; Bock, Yehuda; Danielson, David; Laber, Jayme; Small, Ivory
2013-01-01
Global Positioning System (GPS) meteorology provides enhanced density, low-latency (30-min resolution), integrated precipitable water (IPW) estimates to NOAA NWS (National Oceanic and Atmospheric Adminis tration Nat ional Weather Service) Weather Forecast Offices (WFOs) to provide improved model and satellite data verification capability and more accurate forecasts of extreme weather such as flooding. An early activity of this project was to increase the number of stations contributing to the NOAA Earth System Research Laboratory (ESRL) GPS meteorology observing network in Southern California by about 27 stations. Following this, the Los Angeles/Oxnard and San Diego WFOs began using the enhanced GPS-based IPW measurements provided by ESRL in the 2012 and 2013 monsoon seasons. Forecasters found GPS IPW to be an effective tool in evaluating model performance, and in monitoring monsoon development between weather model runs for improved flood forecasting. GPS stations are multi-purpose, and routine processing for position solutions also yields estimates of tropospheric zenith delays, which can be converted into mm-accuracy PWV (precipitable water vapor) using in situ pressure and temperature measurements, the basis for GPS meteorology. NOAA ESRL has implemented this concept with a nationwide distribution of more than 300 "GPSMet" stations providing IPW estimates at sub-hourly resolution currently used in operational weather models in the U.S.
An online mineral dust model within the global/regional NMMB: current progress and plans
NASA Astrophysics Data System (ADS)
Perez, C.; Haustein, K.; Janjic, Z.; Jorba, O.; Baldasano, J. M.; Black, T.; Nickovic, S.
2008-12-01
While mineral dust distribution and effects are important on global scales, they strongly depend on dust emissions that are occurring on small spatial and temporal scales. Indeed, the accuracy of surface wind speed used in dust models is crucial. Due to the high-order power dependency on wind friction velocity and the threshold behaviour of dust emissions, small errors in surface wind speed lead to large dust emission errors. Most global dust models use prescribed wind fields provided by major meteorological centres (e.g., NCEP and ECMWF) and their spatial resolution is currently about 1 degree x 1 degree . Such wind speeds tend to be strongly underestimated over arid and semi-arid areas and do not account for mesoscale systems responsible for a significant fraction of dust emissions regionally and globally. Other significant uncertainties in dust emissions resulting from such approaches are related to the misrepresentation of high subgrid-scale spatial heterogeneity in soil and vegetation boundary conditions, mainly in semi-arid areas. In order to significantly reduce these uncertainties, the Barcelona Supercomputing Center is currently implementing a mineral dust model coupled on-line with the new global/regional NMMB atmospheric model using the ESMF framework under development in NOAA/NCEP/EMC. The NMMB is an evolution of the operational WRF-NMME extending from meso to global scales, and including non-hydrostatic option and improved tracer advection. This model is planned to become the next-generation NCEP mesoscale model for operational weather forecasting in North America. Current implementation is based on the well established regional dust model and forecast system Eta/DREAM (http://www.bsc.es/projects/earthscience/DREAM/). First successful global simulations show the potentials of such an approach and compare well with DREAM regionally. Ongoing developments include improvements in dust size distribution representation, sedimentation, dry deposition, wet scavenging and dust-radiation feedback, as well as the efficient implementation of the model on High Performance Supercomputers for global simulations and forecasts at high resolution.