Hypernuclear Spectroscopy at JLab Hall C
NASA Astrophysics Data System (ADS)
Hashimoto, O.; Chiba, A.; Doi, D.; Fujii, Y.; Gogami, T.; Kanda, H.; Kaneta, M.; Kawama, D.; Maeda, K.; Maruta, T.; Matsumura, A.; Nagao, S.; Nakamura, S. N.; Shichijo, A.; Tamura, H.; Taniya, N.; Yamamoto, T.; Yokota, K.; Kato, S.; Sato, Y.; Takahashi, T.; Noumi, H.; Motoba, T.; Hiyama, E.; Albayrak, I.; Ates, O.; Chen, C.; Christy, M.; Keppel, C.; Kohl, M.; Li, Y.; Liyanage, A.; Tang, L.; Walton, T.; Ye, Z.; Yuan, L.; Zhu, L.; Baturin, P.; Boeglin, W.; Dhamija, S.; Markowitz, P.; Raue, B.; Reinhold, J.; Hungerford, Ed. V.; Ent, R.; Fenker, H.; Gaskell, D.; Horn, T.; Jones, M.; Smith, G.; Vulcan, W.; Wood, S. A.; Johnston, C.; Simicevic, N.; Wells, S.; Samanta, C.; Hu, B.; Shen, J.; Wang, W.; Zhang, X.; Zhang, Y.; Feng, J.; Fu, Y.; Zhou, J.; Zhou, S.; Jiang, Y.; Lu, H.; Yan, X.; Ye, Y.; Gan, L.; Ahmidouch, A.; Danagoulian, S.; Gasparian, A.; Elaasar, M.; Wesselmann, F. R.; Asaturyan, A.; Margaryan, A.; Mkrtchyan, A.; Mkrtchyan, H.; Tadevosyan, V.; Androic, D.; Furic, M.; Petkovic, T.; Seva, T.; Niculescu, G.; Niculescu, I.; Rodriguez, V. M.; Cisbani, E.; Cusanno, F.; Garibaldi, F.; Uuciuoli, G. M.; De Leo, R.; Maronne, S.; Achenback, P.; Pochodzala, J.
2010-04-01
Since the 1st generation experiment, E89-009, which was successfully carried out as a pilot experiment of (e,e'K+) hypernuclear spectroscopy at JLab Hall C in 2000, precision hypernuclear spectroscopy by the (e,e'K+) reactions made considerable progress. It has evolved to the 2nd generation experiment, E01-011, in which a newly constructed high resolution kaon spectrometer (HKS) was installed and the "Tilt method" was adopted in order to suppress large electromagnetic background and to run with high luminosity. Preliminary high-resolution spectra of 7ΛHe and 28ΛAl together with that of 12ΛB that achieved resolution better than 500 keV(FWHM) were obtained. The third generation experiment, E05-115, has completed data taking with an experimental setup combining a new splitter magnet, high resolution electron spectrometer (HES) and the HKS used in the 2nd generation experiment. The data were accumulated with targets of 7Li, 9Be, 10B, 12C and 52Cr as well as with those of CH 2 and H 2O for calibration. The analysis is under way with particular emphasis of determining precision absolute hypernuclear masses. In this article, hypernuclear spectroscopy program in the wide mass range at JLab Hall C that has undergone three generation is described.
NASA Astrophysics Data System (ADS)
Kawama, D.; Fujii, Y.; Gogami, T.; Hashimoto, O.; Kanda, H.; Maruta, T.; Matsumura, A.; Nakamura, S. N.; Shichijo, A.; Taniya, N.; Yamamoto, T.; Yokota, K.; Kato, S.; Tang, L.; Chen, C.; Ye, Z.; Yuan, L.; Reinhold, J.
2010-10-01
We are now preparing for the third generation (e, e'K+) Λ hypernuclear spectroscopic experiment at Hall C, Jefferson Lab (USA). The goal of the experiment is the precise spectroscopy of hypernuclei in wide mass region. We have constructed a new high resolution electron spectrometer "HES" dedicated to (e, e'K+) hypernuclear study. We can expect the total energy resolution of the experiment is about 350 keV(FWHM).
High Resolution Λ Hypernuclear Spectroscopy with Electron Beams
NASA Astrophysics Data System (ADS)
Gogami, T.; Achenbach, P.; Ahmidouch, A.; Albayrak, I.; Androic, D.; Asaturyan, A.; Asaturyan, R.; Ates, O.; Baturin, P.; Badui, R.; Boeglin, W.; Bono, J.; Brash, E.; Carter, P.; Chen, C.; Chiba, A.; Christy, E.; Danagoulian, S.; De Leo, R.; Doi, D.; Elaasar, M.; Ent, R.; Fujii, Y.; Fujita, M.; Furic, M.; Gabrielyan, M.; Gan, L.; Garibaldi, F.; Gaskell, D.; Gasparian, A.; Hashimoto, O.; Horn, T.; Hu, B.; Hungerford, Ed. V.; Jones, M.; Kanda, H.; Kaneta, M.; Kato, S.; Kawai, M.; Kawama, D.; Khanal, H.; Kohl, M.; Liyanage, A.; Luo, W.; Maeda, K.; Margaryan, A.; Markowitz, P.; Maruta, T.; Matsumura, A.; Maxwell, V.; Mkrtchyan, A.; Mkrtchyan, H.; Nagao, S.; Nakamura, S. N.; Narayan, A.; Neville, C.; Niculescu, G.; Niculescu, M. I.; Nunez, A.; Nuruzzaman; Okayasu, Y.; Petkovic, T.; Pochodzalla, J.; Qiu, X.; Reinhold, J.; Rodriguez, V. M.; Samanta, C.; Sawatzky, B.; Seva, T.; Shichijo, A.; Tadevosyan, V.; Tang, L.; Taniya, N.; Tsukada, K.; Veilleux, M.; Vulcan, W.; Wesselmann, F. R.; Wood, S. A.; Yamamoto, T.; Ya, L.; Ye, Z.; Yokota, K.; Yuan, L.; Zhamkochyan, S.; Zhu, L.
JLab E05-115 which is an experiment for Λ hypernuclear spectroscopy with electron beams was carried out at Jefferson Lab (JLab) in 2009. In the experiment, Λ 7He, Λ 9Li, Λ 10Be, Λ 12B and Λ 52V were measured by new magnetic spectrometer systems (SPL+HES+HKS) which were necessary for spectroscopy with high energy resolution of sub-MeV (FWHM). This is the first attempt to measure a Λ hypernucleus with up to medium-heavy mass region by the (e,e' K + ) reaction, overcoming high rate and high multiplicity conditions due to electromagnetic background particles. An overview of the hypernuclear experiments at JLab Hall-C and preliminary binding energy spectrum of Λ 10Be are shown.
Hypernuclear Spectroscopy with Electron Beam at JLab Hall C
NASA Astrophysics Data System (ADS)
Fujii, Y.; Chiba, A.; Doi, D.; Gogami, T.; Hashimoto, O.; Kanda, H.; Kaneta, M.; Kawama, D.; Maeda, K.; Maruta, T.; Matsumura, A.; Nagao, S.; Nakamura, S. N.; Shichijo, A.; Tamura, H.; Taniya, N.; Yamamoto, T.; Yokota, K.; Kato, S.; Sato, Y.; Takahashi, T.; Noumi, H.; Motoba, T.; Hiyama, E.; Albayrak, I.; Ates, O.; Chen, C.; Christy, M.; Keppel, C.; Kohl, M.; Li, Y.; Liyanage, A.; Tang, L.; Walton, T.; Ye, Z.; Yuan, L.; Zhu, L.; Baturin, P.; Boeglin, W.; Dhamija, S.; Markowitz, P.; Raue, B.; Reinhold, J.; Hungerford, Ed. V.; Ent, R.; Fenker, H.; Gaskell, D.; Horn, T.; Jones, M.; Smith, G.; Vulcan, W.; Wood, S. A.; Johnston, C.; Simicevic, N.; Wells, S.; Samanta, C.; Hu, B.; Shen, J.; Wang, W.; Zhang, X.; Zhang, Y.; Feng, J.; Fu, Y.; Zhou, J.; Zhou, S.; Jiang, Y.; Lu, H.; Yan, X.; Ye, Y.; Gan, L.; Ahmidouch, A.; Danagoulian, S.; Gasparian, A.; Elaasar, M.; Wesselmann, F. R.; Asaturyan, A.; Margaryan, A.; Mkrtchyan, A.; Mkrtchyan, H.; Tadevosyan, V.; Androic, D.; Furic, M.; Petkovic, T.; Seva, T.; Niculescu, G.; Niculescu, I.; López, V. M. Rodríguez; Cisbani, E.; Cusanno, F.; Garibaldi, F.; Uuciuoli, G. M.; de Leo, R.; Maronne, S.
2010-10-01
Hypernuclear spectroscopy with electron beam at JLab Hall C has been studied since 2000. The first experiment, JLab E89-009, demonstrated the possibility of the (e,e'K+) reaction for hypernuclear spectroscopy by achieving an energy resolution of better than 1 MeV (FWHM). The second experiment, JLab E01-011 employed a newly constructed high resolution kaon spectrometer and introduced a vertically tilted electron arm setup to avoid electrons from bremsstrahlung and Moeller scattering. The setup allowed us to have 10 times yield rate and 4 times better signal to accidental ratio with expected energy resolution of 400 keV (FWHM). The third experiment, JLab E05-11B will be performed in 2009 with employing newly constructed high resolution electron spectrometer and a new charge-separation magnet. With the fully customized third generation experimental setup, we can study a variety of targets up to medium-heavy ones such as 52Cr.
Hypernuclear Spectroscopy with Electron Beam at JLab Hall C
NASA Astrophysics Data System (ADS)
Fujii, Y.; Chiba, A.; Doi, D.; Gogami, T.; Hashimoto, O.; Kanda, H.; Kaneta, M.; Kawama, D.; Maeda, K.; Maruta, T.; Matsumura, A.; Nagao, S.; Nakamura, S. N.; Shichijo, A.; Tamura, H.; Taniya, N.; Yamamoto, T.; Yokota, K.; Kato, S.; Sato, Y.; Takahashi, T.; Noumi, H.; Motoba, T.; Hiyama, E.; Albayrak, I.; Ates, O.; Chen, C.; Christy, M.; Keppel, C.; Kohl, M.; Li, Y.; Liyanage, A.; Tang, L.; Walton, T.; Ye, Z.; Yuan, L.; Zhu, L.; Baturin, P.; Boeglin, W.; Dhamija, S.; Markowitz, P.; Raue, B.; Reinhold, J.; Hungerford, Ed. V.; Ent, R.; Fenker, H.; Gaskell, D.; Horn, T.; Jones, M.; Smith, G.; Vulcan, W.; Wood, S. A.; Johnston, C.; Simicevic, N.; Wells, S.; Samanta, C.; Hu, B.; Shen, J.; Wang, W.; Zhang, X.; Zhang, Y.; Feng, J.; Fu, Y.; Zhou, J.; Zhou, S.; Jiang, Y.; Lu, H.; Yan, X.; Ye, Y.; Gan, L.; Ahmidouch, A.; Danagoulian, S.; Gasparian, A.; Elaasar, M.; Wesselmann, F. R.; Asaturyan, A.; Margaryan, A.; Mkrtchyan, A.; Mkrtchyan, H.; Tadevosyan, V.; Androic, D.; Furic, M.; Petkovic, T.; Seva, T.; Niculescu, G.; Niculescu, I.; Rodríguez López, V. M.; Cisbani, E.; Cusanno, F.; Garibaldi, F.; Uuciuoli, G. M.; de Leo, R.; Maronne, S.
Hypernuclear spectroscopy with electron beam at JLab Hall C has been studied since 2000. The first experiment, JLab E89-009, demonstrated the possibility of the (e, e‧ K+) reaction for hypernuclear spectroscopy by achieving an energy resolution of better than 1 MeV (FWHM). The second experiment, JLab E01-011 employed a newly constructed high resolution kaon spectrometer and introduced a vertically tilted electron arm setup to avoid electrons from bremsstrahlung and Moeller scattering. The setup allowed us to have 10 times yield rate and 4 times better signal to accidental ratio with expected energy resolution of 400 keV (FWHM). The third experiment, JLab E05-115 will be performed in 2009 with employing newly constructed high resolution electron spectrometer and a new charge-separation magnet. With the fully customized third generation experimental setup, we can study a variety of targets up to medium-heavy ones such as 52Cr.
High resolution spectroscopy of the 12Lambda B hypernucleus produced by the (e,e'K+) reaction.
Miyoshi, T; Sarsour, M; Yuan, L; Zhu, X; Ahmidouch, A; Ambrozewicz, P; Androic, D; Angelescu, T; Asaturyan, R; Avery, S; Baker, O K; Bertovic, I; Breuer, H; Carlini, R; Cha, J; Chrien, R; Christy, M; Cole, L; Danagoulian, S; Dehnhard, D; Elaasar, M; Empl, A; Ent, R; Fenker, H; Fujii, Y; Furic, M; Gan, L; Garrow, K; Gasparian, A; Gueye, P; Harvey, M; Hashimoto, O; Hinton, W; Hu, B; Hungerford, E; Jackson, C; Johnston, K; Juengst, H; Keppel, C; Lan, K; Liang, Y; Likhachev, V P; Liu, J H; Mack, D; Margaryan, A; Markowitz, P; Martoff, J; Mkrtchyan, H; Nakamura, S N; Petkovic, T; Reinhold, J; Roche, J; Sato, Y; Sawafta, R; Simicevic, N; Smith, G; Stepanyan, S; Tadevosyan, V; Takahashi, T; Tanida, K; Tang, L; Ukai, M; Uzzle, A; Vulcan, W; Wells, S; Wood, S; Xu, G; Yamaguchi, H; Yan, C
2003-06-13
High-energy, cw electron beams at new accelerator facilities allow electromagnetic production and precision study of hypernuclear structure, and we report here on the first experiment demonstrating the potential of the (e,e'K+) reaction for hypernuclear spectroscopy. This experiment is also the first to take advantage of the enhanced virtual photon flux available when electrons are scattered at approximately zero degrees. The observed energy resolution was found to be approximately 900 keV for the (12)(Lambda)B spectrum, and is substantially better than any previous hypernuclear experiment using magnetic spectrometers. The positions of the major excitations are found to be in agreement with a theoretical prediction and with a previous binding energy measurement, but additional structure is also observed in the core excited region, underlining the future promise of this technique.
Observation of the Λ⁷He Hypernucleus by the (e, e'K⁺) Reaction
Nakamura, S. N.; Matsumura, A.; Okayasu, Y.; ...
2013-01-02
An experiment with a newly developed high-resolution kaon spectrometer and a scattered electron spectrometer with a novel configuration was performed in Hall C at Jefferson Lab. The ground state of a neutron-rich hypernucleus, He Λ⁷, was observed for the first time with the (e, e'K⁺) reaction with an energy resolution of ~0.6 MeV. This resolution is the best reported to date for hypernuclear reaction spectroscopy. The He Λ⁷ binding energy supplies the last missing information of the A=7, T=1 hypernuclear isotriplet, providing a new input for the charge symmetry breaking effect of the ΛN potential.
Spectroscopic study of the Lambda hypernuclei by the (e,e'K +) reaction
DOE Office of Scientific and Technical Information (OSTI.GOV)
Miyoshi, Toshinobu
Hypernuclear spectroscopy study via the (e,e'K +) reaction has been carried out for the first time, establishing a new technique to study Lambda hypernuclei. The high quality electron beam at Jefferson Lab made it possible to measure Lambda hypernuclear spectra with an energy resolution better than 1 MeV (FWHM). The present experiment was designed to make full use of the virtual photon flux, which peaks at very forward angles, by detecting scattered electrons at 0 degrees. Scattered positive kaons were also detected near 0 degrees, where the cross section of the kaon photo-production is maximized. This unique kinematical configuration was realized with the HyperNuclear Spectrometer System (HNSS), which consisted of the Short-Orbit Spectrometer, the Enge Split-Pole Spectrometer, and the splitter magnet. Themore » $$12\\atop{Λ}$$B mass spectrum was measured in the 12C(e,e'K +)$$12\\atop{Λ}$$ reaction with 0.9 MeV (FWHM) energy resolution. The averaged binding energy of the $$12\\atop{Λ}$$B ground state doublet was obtained to be 11.7 ± 0.1 (statistical) ± 0.3 (systematic) MeV, which is consistent with emulsion data. The general spectral structure of the 12C(e,e'K +) $$12\\atop{Λ}$$B reaction was found to be similar to that of the 12C(Λ +,K +)$$12\\atop{Λ}$$C reaction, showing characteristic peaks corresponding to sLambda and pLambda orbits, as well as a few core-excited states. The cross section of the $$12\\atop{Λ}$$B ground state doublet was derived to be 117 ± 13 (statistical) ± 14 (systematic) nb/sr. The theoretical prediction of the cross section was consistent with the present result, validating DWIA calculation for hypernuclear yields. The present study proved the effectiveness of the (e,e'K +) reaction for future Lambda hypernuclear spectroscopy studies.« less
NASA Astrophysics Data System (ADS)
Tang, L.; Chen, C.; Gogami, T.; Kawama, D.; Han, Y.; Yuan, L.; Matsumura, A.; Okayasu, Y.; Seva, T.; Rodriguez, V. M.; Baturin, P.; Acha, A.; Achenbach, P.; Ahmidouch, A.; Albayrak, I.; Androic, D.; Asaturyan, A.; Asaturyan, R.; Ates, O.; Badui, R.; Baker, O. K.; Benmokhtar, F.; Boeglin, W.; Bono, J.; Bosted, P.; Brash, E.; Carter, P.; Carlini, R.; Chiba, A.; Christy, M. E.; Cole, L.; Dalton, M. M.; Danagoulian, S.; Daniel, A.; De Leo, R.; Dharmawardane, V.; Doi, D.; Egiyan, K.; Elaasar, M.; Ent, R.; Fenker, H.; Fujii, Y.; Furic, M.; Gabrielyan, M.; Gan, L.; Garibaldi, F.; Gaskell, D.; Gasparian, A.; Gibson, E. F.; Gueye, P.; Hashimoto, O.; Honda, D.; Horn, T.; Hu, B.; Hungerford, Ed V.; Jayalath, C.; Jones, M.; Johnston, K.; Kalantarians, N.; Kanda, H.; Kaneta, M.; Kato, F.; Kato, S.; Kawai, M.; Keppel, C.; Khanal, H.; Kohl, M.; Kramer, L.; Lan, K. J.; Li, Y.; Liyanage, A.; Luo, W.; Mack, D.; Maeda, K.; Malace, S.; Margaryan, A.; Marikyan, G.; Markowitz, P.; Maruta, T.; Maruyama, N.; Maxwell, V.; Millener, D. J.; Miyoshi, T.; Mkrtchyan, A.; Mkrtchyan, H.; Motoba, T.; Nagao, S.; Nakamura, S. N.; Narayan, A.; Neville, C.; Niculescu, G.; Niculescu, M. I.; Nunez, A.; Nuruzzaman, Nomura, H.; Nonaka, K.; Ohtani, A.; Oyamada, M.; Perez, N.; Petkovic, T.; Pochodzalla, J.; Qiu, X.; Randeniya, S.; Raue, B.; Reinhold, J.; Rivera, R.; Roche, J.; Samanta, C.; Sato, Y.; Sawatzky, B.; Segbefia, E. K.; Schott, D.; Shichijo, A.; Simicevic, N.; Smith, G.; Song, Y.; Sumihama, M.; Tadevosyan, V.; Takahashi, T.; Taniya, N.; Tsukada, K.; Tvaskis, V.; Veilleux, M.; Vulcan, W.; Wells, S.; Wesselmann, F. R.; Wood, S. A.; Yamamoto, T.; Yan, C.; Ye, Z.; Yokota, K.; Zhamkochyan, S.; Zhu, L.; HKS JLab E05-115; E01-011 Collaborations
2014-09-01
Since the pioneering experiment E89-009 studying hypernuclear spectroscopy using the (e,e'K+) reaction was completed, two additional experiments, E01-011 and E05-115, were performed at Jefferson Lab. These later experiments used a modified experimental design, the "tilt method," to dramatically suppress the large electromagnetic background, and allowed for a substantial increase in luminosity. Additionally, a new kaon spectrometer, HKS (E01-011), a new electron spectrometer, HES, and a new splitting magnet (E05-115) were added to produce new data sets of precision, high-resolution hypernuclear spectroscopy. All three experiments obtained a spectrum for Λ12B, which is the most characteristic p-shell hypernucleus and is commonly used for calibration. Independent analyses of these different experiments demonstrate excellent consistency and provide the clearest level structure to date of this hypernucleus as produced by the (e,e'K+) reaction. This paper presents details of these experiments, and the extraction and analysis of the observed Λ12B spectrum.
Hypernuclear physics studies of the PANDA experiment at FAIR
NASA Astrophysics Data System (ADS)
Sanchez Lorente, Alicia
2014-09-01
Hypernuclear research will be one of the main topics addressed by the PANDA experiment at the planned Facility for Antiproton and Ion Research FAIR at Darmstadt (Germany). http://www. gsi.de, http://www.gsi.de/fair/. Thanks to the use of stored overline {p} beams, copious production of double Λ hypernuclei is expected at the PANDA experiment, which will enable high precision γ spectroscopy of such nuclei for the first time, and consequently a unique chance to explore the hyperon-hyperon interaction. In particular, ambiguities of past experiments in determining the strength of the ΛΛ interaction will be avoided thanks to the excellent energy precision of a few keV (FWHM) achieved by germanium detectors. Such a resolution capability is particularly needed to resolve the small energy spacing of the order of (10-100) keV, which is characteristic from the spin doublet in hypernuclei the so -called "hypernuclear fine structure". In comparison to previous experiments, PANDA will benefit from a novel technique to assign the various observable γ-transitions in a unique way to specific double hypernuclei by exploring various light targets. Nevertheless, the ability to carry out unique assignments requires a devoted hypernuclear detector setup. This consists of a primary nuclear target for the production of {Ξ }-+overline {Ξ } pairs, a secondary active target for the hypernuclei formation and the identification of associated decay products and a germanium array detector to perform γ spectroscopy. Moreover, one of the most challenging issues of this project is the fact that all detector systems need to operate in the presence of a high magnetic field and a large hadronic background. Accordingly, the need of an innovative detector concept will require dramatic improvements to fulfil these conditions and that will likely lead to a new generation of detectors. In the present talk details concerning the current status of the activities related to the detector developments for this challenging programme will be given. Among these improvements is the new concept for a cooling system for the germanium detector based on a electro-mechanical device. In the present work, the cooling efficiency of such devices has been successfully tested, showing their capability to reach liquid nitrogen temperatures and therefore the possibility to use them as a good alternative to the standard liquid nitrogen dewars. Furthermore, since the momentum resolution of low momentum particles is crucial for the unique identification of hypernuclei, an analysis procedure for improving the momentum resolution in few layer silicon based trackers is presented.
Hypernuclear physics studies of the P̅ANDA experiment at FAIR
NASA Astrophysics Data System (ADS)
Sanchez Lorente, Alicia
2015-05-01
Hypernuclear research will be one of the main topics addressed by the PANDA experiment at the planned Facility for Antiproton and Ion Research FAIR at Darmstadt (Germany). [1, 2] Thanks to the use of stored p̅ beams, copious production of double Λ hypernuclei is expected at the PANDA experiment, which will enable high precision γ spectroscopy of such nuclei for the first time, and consequently a unique chance to explore the hyperon-hyperon interaction. In particular, ambiguities of past experiments in determining the strength of the ΛΛ interaction will be avoided thanks to the excellent energy precision of a few keV (FWHM) achieved by germanium detectors. Such a resolution capability is particularly needed to resolve the small energy spacing of the order of (10-100) keV, which is characteristic from the spin doublet in hypernuclei the so -called "hypernuclear fine structure". In comparison to previous experiments, PANDA will benefit from a novel technique to assign the various observable γ-transitions in a unique way to specific double hypernuclei by exploring various light targets. Nevertheless, the ability to carry out unique assignments requires a devoted hypernuclear detector setup. This consists of a primary nuclear target for the production of Ξ- + overline Xi pairs, a secondary active target for the hypernuclei formation and the identification of associated decay products and a germanium array detector to perform γ spectroscopy. Moreover, one of the most challenging issues of this project is the fact that all detector systems need to operate in the presence of a high magnetic field and a large hadronic background. Accordingly, the need of an innovative detector concept will require dramatic improvements to fulfil these conditions and that will likely lead to a new generation of detectors. In the present work details concerning the current status of the activities related to the detector developments for this challenging programme will be given. Among these improvements is the new concept for a cooling system for the germanium detector based on a electro-mechanical device. In the present work, the cooling efficiency of such devices has been successfully tested, showing their capability to reach liquid nitrogen temperatures and therefore the possibility to use them as a good alternative to the standard liquid nitrogen dewars. Furthermore, since the momentum resolution of low momentum particles is crucial for the unique identification of hypernuclei, an analysis procedure for improving the momentum resolution in few layer silicon based trackers is presented.
Spectroscopic Investigation of p-Shell Lambda Hypernuclei by the (e,e'K +) Reaction
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chen, Chunhua
2014-08-01
Hypernuclear spectroscopy is a powerful tool to investigate Lambda-N interaction. Compared with other Lambda hypernuclei productions, electroproduction via the (e,e'K+) reaction has the advantage of exciting states deeply inside of the hypernucleus and achieving sub-MeV energy resolution. The E05-115 experiment, which was successfully performed in 2009, is the third generation hypernuclear experiment in JLab Hall C. A new splitter magnet and electron spectrometer were installed, and beam energy of 2.344 GeV was selected in this experiment. These new features gave better field uniformity, optics quality and made the tilt method more effective in improving yield-to-background ratio. The magnetic optics ofmore » the spectrometers were carefully studied with GEANT simulation, and corrections were applied to compensate for the fringe field cross talk between the compact spectrometer magnets. The non-linear least chi-squared method was used to further calibrate the spectrometer with the events from Lambda, Sigma0 and B12Lambda and uniform magnetic optics as well as precise kinematics were achieved. Several p-shell Lambda hypernuclear spectra, including B 12 Λ, Be 10 Λ, He 7 Λ, were obtained with high energy resolution and good accuracy. For B 12 Λ, eight peaks were recognized with the resolution of ~540keV (FWHM), and the ground state binding energy was obtained as 11.529 ± 0.012(stat.) ± 0.110(syst.) MeV. Be 10 Λ, twelve peaks were recognized with the resolution of ~520keV (FWHM), and the binding energy of the ground state was determined as 8.710 ± 0.059(stat.) ± 0.114(syst.) MeV. For He 7 Λ, three peaks were recognized with the resolution of ~730keV, and the ground state binding energy was obtained as 5.510 ± 0.050(stat.) ± 0.120(syst.) MeV. Compared with the published data of B 12 Λ from the JLab Hall A experiment, four extra peaks were fitted and interpreted thanks to the highest ever energy resolution and sufficient statistics. The determined binding energy of Be 10 Λ provides new information on charge symmetry breaking effect in the Lambda-N interaction. Compared with the results of He7Lambda from the E01-011 experiment, the ground state position is consistent with 4 times more statistics, and two extra peaks corresponding to excited states were recognized.« less
Hartree-Fock studies of hypernuclear properties
NASA Astrophysics Data System (ADS)
Lanskoy, D. E.
1998-08-01
The Skyrme-Hartree-Fock approach is approved as a powerful tool to reproduce general properties of Λ hypernuclear spectra [1-4] and to relate hypernuclear observables to effective interaction features. In this contribution, we consider briefly some less common hypernuclear systems, which appear to be quite sensitive to details of the relevant interactions. Particularly, we address possible manifestations of the polarization of a hypernuclear core (i.e. core distortion due to hyperon addition), which is driven in terms of the Skyrme force mainly by counterbalance between the two-body ΛN force and the three-body ΛNN (or density-dependent ΛN) one.
High resolution spectroscopic study of Be Λ 10
Gogami, T.; Chen, C.; Kawama, D.; ...
2016-03-10
Spectroscopy of amore » $$^{10}_{\\Lambda}$$Be hypernucleus was carried out at JLab Hall C using the $$(e,e^{\\prime}K^{+})$$ reaction. A new magnetic spectrometer system (SPL+HES+HKS), specifically designed for high resolution hypernuclear spectroscopy, was used to obtain an energy spectrum with a resolution of 0.78 MeV (FWHM). The well-calibrated spectrometer system of the present experiment using the $$p(e,e^{\\prime}K^{+})\\Lambda,\\Sigma^{0}$$ reactions allowed us to determine the energy levels, and the binding energy of the ground state peak (mixture of 1$$^{-}$$ and 2$$^{-}$$ states) was obtained to be B$$_{\\Lambda}$$=8.55$$\\pm$$0.07(stat.)$$\\pm$$0.11(sys.) MeV. Furthermore, the result indicates that the ground state energy is shallower than that of an emulsion study by about 0.5 MeV which provides valuable experimental information on charge symmetry breaking effect in the $$\\Lambda N$$ interaction.« less
High resolution spectroscopic study of Be10Lambda;
NASA Astrophysics Data System (ADS)
Gogami, T.; Chen, C.; Kawama, D.; Achenbach, P.; Ahmidouch, A.; Albayrak, I.; Androic, D.; Asaturyan, A.; Asaturyan, R.; Ates, O.; Baturin, P.; Badui, R.; Boeglin, W.; Bono, J.; Brash, E.; Carter, P.; Chiba, A.; Christy, E.; Danagoulian, S.; de Leo, R.; Doi, D.; Elaasar, M.; Ent, R.; Fujii, Y.; Fujita, M.; Furic, M.; Gabrielyan, M.; Gan, L.; Garibaldi, F.; Gaskell, D.; Gasparian, A.; Han, Y.; Hashimoto, O.; Horn, T.; Hu, B.; Hungerford, Ed. V.; Jones, M.; Kanda, H.; Kaneta, M.; Kato, S.; Kawai, M.; Khanal, H.; Kohl, M.; Liyanage, A.; Luo, W.; Maeda, K.; Margaryan, A.; Markowitz, P.; Maruta, T.; Matsumura, A.; Maxwell, V.; Mkrtchyan, A.; Mkrtchyan, H.; Nagao, S.; Nakamura, S. N.; Narayan, A.; Neville, C.; Niculescu, G.; Niculescu, M. I.; Nunez, A.; Nuruzzaman, Okayasu, Y.; Petkovic, T.; Pochodzalla, J.; Qiu, X.; Reinhold, J.; Rodriguez, V. M.; Samanta, C.; Sawatzky, B.; Seva, T.; Shichijo, A.; Tadevosyan, V.; Tang, L.; Taniya, N.; Tsukada, K.; Veilleux, M.; Vulcan, W.; Wesselmann, F. R.; Wood, S. A.; Yamamoto, T.; Ya, L.; Ye, Z.; Yokota, K.; Yuan, L.; Zhamkochyan, S.; Zhu, L.; Hksjlab E05-115 Collaboration
2016-03-01
Spectroscopy of a Be10Lambda; hypernucleus was carried out at JLab Hall C using the (e ,e'K+) reaction. A new magnetic spectrometer system (SPL+HES+HKS), specifically designed for high resolution hypernuclear spectroscopy, was used to obtain an energy spectrum with a resolution of ˜0.78 MeV (FWHM). The well-calibrated spectrometer system of the present experiment using p (e ,e'K+)Λ ,Σ0 reactions allowed us to determine the energy levels; and the binding energy of the ground-state peak (mixture of 1- and 2- states) was found to be BΛ=8.55 ±0.07 (stat . ) ±0.11 (sys . ) MeV. The result indicates that the ground-state energy is shallower than that of an emulsion study by about 0.5 MeV which provides valuable experimental information on the charge symmetry breaking effect in the Λ N interaction.
Electroproduction of hyperons at low momentum transfer
NASA Astrophysics Data System (ADS)
Acha, Armando R.
A high resolution study of the H(e,e'K+)Λ,Sigma 0 reaction was performed at Hall A, TJNAF as part of the hypernuclear experiment E94-107. One important ingredient to the measurement of the hypernuclear cross section is the elementary cross section for production of hyperons, Λ and Sigma0. This reaction was studied using a hydrogen (i.e. a proton) target. Data were taken at very low Q2 (˜0.07 (GeV/c) 2) and W˜2.2 GeV. Kaons were detected along the direction of q, the momentum transferred by the incident electron (thetaCM˜6°). In addition, there are few data available regarding electroproduction of hyperons at low Q2 and thetaCM and the available theoretical models differ significantly in this kinematical region of W. The measurement of the elementary cross section was performed by scaling the Monte Carlo cross section (MCEEP) with the experimental-to-simulated yield ratio. The Monte Carlo cross section includes an experimental fit and extrapolation from the existing data for electroproduction of hyperons. Moreover, the estimated transverse component of the electroproduction cross section of H(e,e'K+)Λ was compared to the different predictions of the theoretical models and exisiting data curves for photoproductions of hyperons. None of the models fully describe the cross-section results over the entire angular range. Furthermore, measurements of the Sigma 0/Λ production ratio were performed at theta CM˜6°, where data are not available. Finally, data for the measurements of the differential cross sections and the Sigma 0/Λ production were binned in Q2, W and thetaCM to understand the dependence on these variables. These results are not only a fundamental contribution to the hypernuclear spectroscopy studies but also an important experimental measurement to constrain existing theoretical models for the elementary reaction.
NASA Astrophysics Data System (ADS)
Itonaga, K.; Motoba, T.
The recent theoretical studies of Lambda-hypernuclear weak decaysof the nonmesonic and pi-mesonic ones are developed with the aim to disclose the link between the experimental decay observables and the underlying basic weak decay interactions and the weak decay mechanisms. The expressions of the nonmesonic decay rates Gamma_{nm} and the decay asymmetry parameter alpha_1 of protons from the polarized hypernuclei are presented in the shell model framework. We then introduce the meson theoretical Lambda N -> NN interactions which include the one-meson exchanges, the correlated-2pi exchanges, and the chiral-pair-meson exchanges. The features of meson exchange potentials and their roles on the nonmesonic decays are discussed. With the adoption of the pi + 2pi/rho + 2pi/sigma + omega + K + rhopi/a_1 + sigmapi/a_1 exchange potentials, we have carried out the systematic calculations of the nonmesonic decay observables for light-to-heavy hypernuclei. The present model can account for the available experimental data of the decay rates, Gamma_n/Gamma_p ratios, and the intrinsic asymmetry parameters alpha_Lambda (alpha_Lambda is related to alpha_1) of emitted protons well and consistently within the error bars. The hypernuclear lifetimes are evaluated by converting the total weak decay rates Gamma_{tot} = Gamma_pi + Gamma_{nm} to tau, which exhibit saturation property for the hypernuclear mass A ≥ 30 and agree grossly well with experimental data for the mass range from light to heavy hypernuclei except for the very light ones. Future extensions of the model and the remaining problems are also mentioned. The pi-mesonic weak processes are briefly surveyed, and the calculations and predictions are compared and confirmed by the recent high precision FINUDA pi-mesonic decay data. This shows that the theoretical basis seems to be firmly grounded.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Korotkova, Anna M.; Lukstins, Juris
2010-01-05
Search of the decay vertex is an important part of the hypernuclear experiment, carried out of the Dubna nuclotron accelerator. The decay vertex is reconstructed from data from two sets of proportional chambers. The distribution of the vertex of decay of the hypernucleus allows to measure the lifetime of the hypernuclei. Algorithm for searches and automatically calculates the decay vertex has been written.
Strangeness in nuclei and neutron stars
NASA Astrophysics Data System (ADS)
Lonardoni, Diego
2017-01-01
The presence of exotic particles in the core of neutron stars (NS) has been questioned for a long time. At present, it is still an unsolved problem that drives intense research efforts, both theoretical and experimental. The appearance of strange baryons in the inner regions of a NS, where the density can exceed several times the nuclear saturation density, is likely to happen due to energetic considerations. The onset of strange degrees of freedom is considered as an effective mechanism to soften the equation of state (EoS). This softening affects the entire structure of the star, reducing the pressure and therefore the maximum mass that the star can stably support. The observation of two very massive NS with masses of the order of 2M⊙ seems instead to rule out soft EoS, apparently excluding the possibility of hyperon formation in the core of the star. This inconsistency, usually referred to as the hyperon puzzle, is based on what we currently know about the interaction between strange particles and normal nucleons. The combination of a poor knowledge of the hypernuclear interactions and the difficulty of obtaining clear astrophysical evidence of the presence of hyperons in NS makes the understanding of the behavior of strange degrees of freedom in NS an intriguing theoretical challenge. We give our contribution to the discussion by studying the general problem of the hyperon-nucleon interaction. We attack this issue by employing a quantum Monte Carlo (QMC) technique, that has proven to be successful in the description of strongly correlated Fermion systems, to the study of finite size nuclear systems including strange degrees of freedom, i.e. hypernuclei. We show that many-body hypernuclear forces are fundamental to properly reproduce the ground state physics of Λ hypernuclei from light- to medium-heavy. However, the poor abundance of experimental data on strange nuclei leaves room for a good deal of indetermination in the construction of hypernuclear potential models. This lack of accuracy leads to uncertainties in the prediction of NS properties. We apply the same QMC algorithm and the same hypernuclear interactions to the study an infinite system of neutrons and Λ particles, deriving NS observables. We show how the appearance of hyperons in the inner core of NS is strongly dependent on the details of the underlying many-body hypernuclear interactions, that at present cannot be accurately derived from the scarce hypernuclear experimental data. Our results suggest that more experimental and/or observational constraints are needed to pin down the essential features of the hypernuclear forces and thus to draw conclusions on the role played by hyperons in NS. This work is supported by the U.S. Department of Energy, Office of Science, Office of Nuclear Physics, under the award DE-SC0013617 titled ``FRIB Theory Center - A path for the science at FRIB'' and under the NUCLEI SciDAC-3 grant.
A RICH detector for hadron identification at Jlab
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mammoliti, Francesco; Cisbani, Evaristo; Cusanno, Francesco
2011-08-01
The “standard” Hall A apparatus at Jefferson Lab (TOF and aerogel threshold Cherenkov detectors) does not provide complete identification for proton, kaon and pion. To this aim, a proximity focusing C6F14/CsI RICH (Ring Image Cherenkov) detector has been designed, built, tested and operated to separate kaons from pions with a pion contamination of a few percent up to 2.4 GeV/c. Two quite different experimental investigations have benefitted of the RICH identification: on one side, the high-resolution hypernuclear spectroscopy series of experiments on carbon, beryllium and oxygen, devoted to the study of the lambda-nucleon potential. On the other side, the measurementsmore » of the single spin asymmetries of pion and kaon on a transversely polarized 3He target are of utmost interest in understanding QCD dynamics in the nucleon. We present the technical features of such a RICH detector and comment on the presently achieved performance in hadron identification.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
De Conti, C.; Barbero, C.; Galeão, A. P.
In this work we compute the one-nucleon-induced nonmesonic hypernuclear decay rates of {sub Λ}{sup 5}He, {sub Λ}{sup 12}C and {sub Λ}{sup 13}C using a formalism based on the independent particle shell model in terms of laboratory coordinates. To ascertain the correctness and precision of the method, these results are compared with those obtained using a formalism in terms of center-of-mass coordinates, which has been previously reported in the literature. The formalism in terms of laboratory coordinates will be useful in the shell-model approach to two-nucleon-induced transitions.
Cooling of hypernuclear compact stars
NASA Astrophysics Data System (ADS)
Raduta, Adriana R.; Sedrakian, Armen; Weber, Fridolin
2018-04-01
We study the thermal evolution of hypernuclear compact stars constructed from covariant density functional theory of hypernuclear matter and parametrizations which produce sequences of stars containing two-solar-mass objects. For the input in the simulations, we solve the Bardeen-Cooper-Schrieffer gap equations in the hyperonic sector and obtain the gaps in the spectra of Λ, Ξ0, and Ξ- hyperons. For the models with masses M/M⊙ ≥ 1.5 the neutrino cooling is dominated by hyperonic direct Urca processes in general. In the low-mass stars the (Λp) plus leptons channel is the dominant direct Urca process, whereas for more massive stars the purely hyperonic channels (Σ-Λ) and (Ξ-Λ) are dominant. Hyperonic pairing strongly suppresses the processes on Ξ-s and to a lesser degree on Λs. We find that intermediate-mass 1.5 ≤ M/M⊙ ≤ 1.8 models have surface temperatures which lie within the range inferred from thermally emitting neutron stars, if the hyperonic pairing is taken into account. Most massive models with M/M⊙ ≃ 2 may cool very fast via the direct Urca process through the (Λp) channel because they develop inner cores where the S-wave pairing of Λs and proton is absent.
Direct measurements of the lifetime of medium-heavy hypernuclei
NASA Astrophysics Data System (ADS)
Qiu, X.; Tang, L.; Chen, C.; Margaryan, A.; Wood, S. A.; Achenbach, P.; Ahmidouch, A.; Albayrak, I.; Androic, D.; Asaturyan, A.; Asaturyan, R.; Ates, O.; Badui, R.; Baturin, P.; Boeglin, W.; Bono, J.; Brash, E.; Carter, P.; Chen, X.; Chiba, A.; Christy, M. E.; Dalton, M. M.; Danagoulian, S.; De Leo, R.; Doi, D.; Elaasar, M.; Ent, R.; Fenker, H.; Fujii, Y.; Furic, M.; Gabrielyan, M.; Gan, L.; Garibaldi, F.; Gaskell, D.; Gasparian, A.; Gogami, T.; Hashimoto, O.; Horn, T.; Hu, B.; Hungerford, Ed V.; Jones, M.; Kanda, H.; Kaneta, M.; Kawama, D.; Khanal, H.; Kohl, M.; Liyanage, A.; Luo, W.; Maeda, K.; Markowitz, P.; Marikyan, G.; Maruta, T.; Matsumura, A.; Maxwell, V.; Mkrtchyan, A.; Mkrtchyan, H.; Nagao, S.; Nakamura, S. N.; Narayan, A.; Neville, C.; Niculescu, G.; Niculescu, M. I.; Nunez, A.; Nuruzzaman; Okayasu, Y.; Petkovic, T.; Pochodzalla, J.; Reinhold, J.; Rodriguez, V. M.; Samanta, C.; Sawatzky, B.; Seva, T.; Shichijo, A.; Tadevosyan, V.; Taniya, N.; Tsukada, K.; Veilleux, M.; Vulcan, W.; Wesselmann, F. R.; Yamamoto, T.; Ye, Z.; Yokota, K.; Yuan, L.; Zhamkochyan, S.; Zhu, L.; HKS (JLab E02-017) Collaboration
2018-05-01
The lifetime of a Λ particle embedded in a nucleus (hypernucleus) decreases from that of free Λ decay mainly due to the opening of the ΛN → NN weak decay channel. However, it is generally believed that the lifetime of a hypernucleus attains a constant value (saturation) for medium to heavy hypernuclear masses, yet this hypothesis has been difficult to verify. This paper presents a direct measurement of the lifetime of medium-heavy hypernuclei that were hyper-fragments produced by fission or break-up from heavy hypernuclei initially produced with a 2.34 GeV photon-beam incident on thin Fe, Cu, Ag, and Bi target foils. For each event, fragments were detected in coincident pairs by a low-pressure multi-wire proportional chamber system. The lifetime was extracted from decay time spectrum formed by the difference of the time zeros between the pairs. The measured lifetime from each target is actually a statistical average over a range of mass with mean about 1/2 of the target mass and appears to be a constant of about 200 ps. Although this result cannot exclude unexpected shorter or longer lifetimes for some specific hypernuclei or hypernuclear states, it shows that a systematic decrease in lifetime as hypernuclear mass increases is not a general feature for hypernuclei with mean mass up to A ≈ 130. On the other hand, the success of this experiment and its technique shows that the time delayed fissions observed and used by all the lifetime measurements done so far on heavy hypernuclei could likely have originated from hyper-fragments lighter than the assumed masses.
Baryons and baryon resonances in nuclear matter
NASA Astrophysics Data System (ADS)
Lenske, Horst; Dhar, Madhumita; Gaitanos, Theodoros; Cao, Xu
2018-01-01
Theoretical approaches to the production of hyperons and baryon resonances in elementary hadronic reactions and heavy ion collisions are reviewed. The focus is on the production and interactions of baryons in the lowest SU(3) flavor octet and states from the next higher SU(3) flavor decuplet. Approaches using the SU(3) formalism for interactions of mesons and baryons and effective field theory for hyperons are discussed. An overview of application to free space and in-medium baryon-baryon interactions is given and the relation to a density functional theory is indicated. The intimate connection between baryon resonances and strangeness production is shown first for reactions on the nucleon. Pion-induced hypernuclear reactions are shown to proceed essentially through the excitation of intermediate nucleon resonances. Transport theory in conjunction with a statistical fragmentation model is an appropriate description of hypernuclear production in antiproton and heavy ion induced fragmentation reactions. The excitation of subnuclear degrees of freedom in peripheral heavy ion collisions at relativistic energies is reviewed. The status of in-medium resonance physics is discussed.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Umeya, Atsushi; Harada, Toru; Research Center for Physics and Mathematics, Osaka Electro-Communication University, Neyagawa, Osaka 572-8530
2011-03-15
We theoretically investigate energy spacings of doublets in {sub {Lambda}L}i hypernuclear isotopes with A=7-10 in shell-model calculations with a {Lambda}N-{Sigma}N coupling effect. The calculated results show that the energy shifts are {Delta}{epsilon}=0.09-0.28 MeV and the {Sigma}-mixing probabilities are P{sub {Sigma}}=0.10%-0.34% in {Lambda} ground states for the isotopes because of the {Lambda}N-{Sigma}N coupling in the first-order perturbation. It is found that the energy spacing of the doublet is enhanced as a neutron number N increases; the contribution of the {Lambda}N-{Sigma}N coupling interaction is comparable to that of the {Lambda}N interaction in the neutron-rich {Lambda} hypernuclei. The coherent mechanism of this doublet-spacingmore » enhancement is also discussed in terms of Fermi-type and Gamow-Teller-type {Lambda}N-{Sigma}N couplings.« less
NASA Astrophysics Data System (ADS)
Mei, H.; Hagino, K.; Yao, J. M.; Motoba, T.
2015-06-01
We present a detailed formalism of the microscopic particle-rotor model for hypernuclear low-lying states based on a covariant density functional theory. In this method, the hypernuclear states are constructed by coupling a hyperon to low-lying states of the core nucleus, which are described by the generator coordinate method (GCM) with the particle number and angular momentum projections. We apply this method to study in detail the low-lying spectrum of C13
Experimental medium energy physics
DOE Office of Scientific and Technical Information (OSTI.GOV)
Barnes, P.D.
1991-01-01
This report discusses the following topics: Search for the H Dibaryon at the AGS; Hypernuclear Weak Decay Studies at the AGS; Relativistic Proton-Nucleus and Heavy Ion-Nucleus Collisions at the SPS; Hyperon-Antihyperon Production studies at LEAR; Hyperon Photoproduction at CEBAF; Double Lambda Hypernuclei; Weak Decay of Light Hypernuclei; and {pi}{sup 0}/{gamma}Detection with the CMU Scintillator Arrays.
Summary of the HypHI Phase 0 experiment and future plans with FRS at GSI (FAIR Phase 0)
NASA Astrophysics Data System (ADS)
Saito, T. R.; Rappold, C.; Bertini, O.; Bianchin, S.; Bozkurt, V.; Geissel, H.; Kavatsyuk, M.; Kim, E.; Ma, Y.; Maas, F.; Minami, S.; Nakajima, D.; Nociforo, C.; Özel-Tashenov, B.; Pochodzalla, J.; Scheidenberger, C.; Yoshida, K.
2016-10-01
Results of the HypHI Phase 0 experiment with the reaction of 6Li+12C at 2 A GeV are summarised. Invariant mass distributions as well as the lifetime measurements for 3ΛH and 4ΛH are discussed. The lifetime values for both the hypernuclei are respectively observed to be 183+42-32 ps and 140+48-33 ps, being significantly shorter than those of the Λ-hyperon. Statistical analyses of existing lifetime data for 3ΛH up to 2014 confirm a significantly short lifetime of 3ΛH, which is not explained by present models. Observed hypernuclear production cross section values for 3ΛH and 4ΛH are also summarised. In addition, observed signals for the final states of d +π- and t +π- are discussed. All the discussions on the results of the HypHI Phase 0 experiment in this article are based on [1-4]. We also present a new proposed experiment with the FRS (FRagment Separator) at GSI (FAIR Phase 0) to improve the precision of the hypernuclear spectroscopy with peripheral heavy ion induced reactions.
Strangeness in nuclei and neutron stars: A challenging puzzle
Lonardoni, Diego; Lovato, Alessandro; Gandolfi, Stefano; ...
2016-03-25
The prediction of neutron stars properties is strictly connected to the employed nuclear interactions. The appearance of hyperons in the inner core of the star is strongly dependent on the details of the underlying hypernuclear force. Here, we summarize our recent quantum Monte Carlo results on the development of realistic two- and threebody hyperon-nucleon interactions based on the available experimental data for light- and medium-heavy hypernuclei.
Structure of Be9Λ and 10Be Λ Λ using the beyond-mean-field Skyrme-Hartree-Fock approach
NASA Astrophysics Data System (ADS)
Li, Wen-Ying; Cui, Ji-Wei; Zhou, Xian-Rong
2018-03-01
Based on the beyond-mean-field Skyrme-Hartree-Fock model, the up-to-date Skyrme-type N Λ interaction, SLL4, is used to investigate the properties of Be9Λ comprehensively. Energies of different configurations, such as 8Be⊗Λ [000 ] 1 /2+ , 8Be⊗Λ [110 ] 1 /2- , 8Be⊗Λ [101 ] 3 /2- , and 8Be⊗Λ [101 ] 1 /2- are given and used to study the effects of Λ occupying different orbitals. The calculated energy spectra, including both positive- and negative-parity levels, are given and compared to the experimental data. The observed positive-parity spin doublets (3 /2+,5 /2+ ) are successfully reproduced, but the energy difference needs further investigation. The two well-known band structures corresponding to the genuine hypernuclear states and the 9Be-analog states are also obtained and compared with the observed ones. The shrinkage effect of Λ occupying Λ [000 ] 1 /2+ is investigated through the density distributions of nuclear core. And finally, the E 2 transition rates are given and compared with the observed data and with the results of the hypernuclear particle-rotor model. Properties of 10Be Λ Λ are also studied to show the completeness of this current model.
Processes of hypernuclei formation in relativistic ion collisions
NASA Astrophysics Data System (ADS)
Botvina, Alexander; Bleicher, Marcus
2018-02-01
The study of hypernuclei in relativistic ion collisions open new opportunities for nuclear and particle physics. The main processes leading to the production of hypernuclei in these reactions are the disintegration of large excited hyper-residues (target- and projectile-like), and the coalescence of hyperons with other baryons into light clusters. We use the transport, coalescence and statistical models to describe the whole reaction, and demonstrate the effectiveness of this approach: These reactions lead to the abundant production of multi-strange nuclei and new hypernuclear states. A broad distribution of predicted hypernuclei in masses and isospin allows for investigating properties of exotic hypernuclei, as well as the hypermatter both at high and low temperatures. There is a saturation of the hypernuclei production at high energies, therefore, the optimal way to pursue this experimental research is to use the accelerator facilities of intermediate energies, like FAIR (Darmstadt) and NICA (Dubna).
DOE Office of Scientific and Technical Information (OSTI.GOV)
Grace, R.
1983-01-01
The Moby Dick spectrometer (at BNL) in coincidence with a range spectrometer and a TOF neutron detector will be used to study the weak decay modes of /sup 12/C. The Moby Dick spectrometer will be used to reconstruct and tag events in which specific hypernuclear states are formed in the reaction K/sup -/ + /sup 12/C ..-->.. ..pi../sup -/ + /sup 12/C. Subsequent emission of decay products (pions, protons and neutrons) in coincidence with the fast forward pion will be detected in a time and range spectrometer, and a neutron detector.
Effective-range parameters and vertex constants for Λ-nuclear systems
NASA Astrophysics Data System (ADS)
Rakityansky, S. A.; Gopane, I. M.
For a wide range of the core-nuclei (6 ≤ A ≤ 207), the scattering lengths, effective radii, and the other effective-range parameters (up to the order ˜ k8) for the angular momentum ℓ = 0, 1, 2 are calculated within a two-body ΛA-model. For the same hypernuclear systems, the S-matrix residues as well as the corresponding Nuclear-Vertex and Asymptotic-Normalization constants (NVC’s and ANC’s) for the bound states are also found.
Experiments in intermediate energy physics
DOE Office of Scientific and Technical Information (OSTI.GOV)
Dehnhard, D.
Research in experimental nuclear physics was done from 1979 to 2002 primarily at intermediate energy facilities that provide pion, proton, and kaon beams. Particularly successful has been the work at the Los Alamos Meson Physics Facility (LAMPF) on unraveling the neutron and proton contributions to nuclear ground state and transition densities. This work was done on a wide variety of nuclei and with great detail on the carbon, oxygen, and helium isotopes. Some of the investigations involved the use of polarized targets which allowed the extraction of information on the spin-dependent part of the triangle-nucleon interaction. At the Indiana Universitymore » Cyclotron Facility (IUCF) we studied proton-induced charge exchange reactions with results of importance to astrophysics and the nuclear few-body problem. During the first few years, the analysis of heavy-ion nucleus scattering data that had been taken prior to 1979 was completed. During the last few years we created hypernuclei by use of a kaon beam at Brookhaven National Laboratory (BNL) and an electron beam at Jefferson Laboratory (JLab). The data taken at BNL for a study of the non-mesonic weak decay of the A particle in a nucleus are still under analysis by our collaborators. The work at JLab resulted in the best resolution hypernuclear spectra measured thus far with magnetic spectrometers.« less
Hypertriton and light nuclei production at Λ-production subthreshold energy in heavy-ion collisions
NASA Astrophysics Data System (ADS)
Zhang, Song; Chen, Jin-Hui; Ma, Yu-Gang; Xu, Zhang-Bu; Cai, Xiang-Zhou; Ma, Guo-Liang; Zhong, Chen
2011-08-01
High-energy heavy-ion collisions produce abundant hyperons and nucleons. A dynamical coalescence model coupled with the ART model is employed to study the production probabilities of light clusters, deuteron (d), triton (t), helion (3He), and hypertriton (3ΛH) at subthreshold energy of Aproduction (≈ 1 GeV per nucleon). We study the dependence on the reaction system size of the coalescence penalty factor per additional nucleon and entropy per nucleon. The Strangeness Population Factor shows an extra suppression of hypertriton comparing to light clusters of the same mass number. This model predicts a hypertriton production cross-section of a few μb in 36Ar+36Ar, 40Ca+40Ca and 56Ni+56Ni in 1 A GeV reactions. The production rate is as high as a few hypertritons per million collisions, which shows that the fixed-target heavy-ion collisions at CSR (Lanzhou/China) at Λ subthreshold energy are suitable for breaking new ground in hypernuclear physics.
Benchmark results for few-body hypernuclei
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ruffino, Fabrizio Ferrari; Lonardoni, Diego; Barnea, Nir
2017-03-16
Here, the Non-Symmetrized Hyperspherical Harmonics method (NSHH) is introduced in the hypernuclear sector and benchmarked with three different ab-initio methods, namely the Auxiliary Field Diffusion Monte Carlo method, the Faddeev–Yakubovsky approach and the Gaussian Expansion Method. Binding energies and hyperon separation energies of three- to five-body hypernuclei are calculated by employing the two-body ΛN component of the phenomenological Bodmer–Usmani potential, and a hyperon-nucleon interaction simulating the scattering phase shifts given by NSC97f. The range of applicability of the NSHH method is briefly discussed.
Bucking coil implementation on PMT for active canceling of magnetic field
NASA Astrophysics Data System (ADS)
Gogami, T.; Asaturyan, A.; Bono, J.; Baturin, P.; Chen, C.; Chiba, A.; Chiga, N.; Fujii, Y.; Hashimoto, O.; Kawama, D.; Maruta, T.; Maxwell, V.; Mkrtchyan, A.; Nagao, S.; Nakamura, S. N.; Reinhold, J.; Shichijo, A.; Tang, L.; Taniya, N.; Wood, S. A.; Ye, Z.
2013-11-01
Aerogel and water Čherenkov detectors were employed to tag kaons for a Λ hypernuclear spectroscopic experiment which used the (e,e‧K+) reaction in experimental Hall C at Jefferson Lab (JLab E05-115). Fringe fields from the kaon spectrometer magnet yielded ~5 gauss at the photomultiplier tubes for these detectors. These fields, which could not be easily passively shielded, would result in a lowered kaon detection efficiency if not mitigated. A bucking coil was placed on each photomultiplier tube to actively cancel this magnetic field, thus recovering kaon detection efficiency.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gogami, Toshiyuki
In 2009 (August-November), the E05-115 experiment was carried out at JLab to investigate L hypernuclei in the wide mass region up to A = 52 (more » $$7\\atop{Λ}$$He, $$10\\atop{Λ}$$Be, $$12\\atop{Λ}$$B and $$52\\atop{Λ}$$V) with the (e,e'K +) reaction. This is the first attempt to investigate a medium heavy L hypernucleus with the (e,e'K +) reaction. Experimentally, it is difficult to measure heavier L hypernuclei as background rates of particles which originate from electromagnetic processes are roughly in proportion to Z2 (Z: target proton number) in the (e,e'K +) experiment. To perform the experiment, many experimental techniques have been developed and introduced such as optimization of the electron spectrometer configuration (tilt method), clean kaon identification, particle tracking under high multiplicity environment, precise energy scale calibration and so on. In the present thesis, experimental results of the elementary process of p(e,e'K +)L, L hypernuclei of $$7\\atop{Λ}$$He, $$10\\atop{Λ}$$Be, $$12\\atop{Λ}$$B and $$52\\atop{Λ}$$V are shown. Elementary processes of the electroproduction of L and Σ 0, p(e,e'K +)L, Σ 0 were used for the absolute energy scale calibration of our spectrometer systems. A careful Monte Carlo simulation shows that the binding energy can be obtained with a systematic error of 0.11 MeV with our energy scale calibration method. A study of the elementary process of L is important to understand L hypernuclei as it is essential for theoretical calculations of L hypernuclei. The differential cross section of the p(e,e'K +)L reaction at the small K + scattering angle (theta-CM/gamma-K approx. 15.5°), the small Q 2 (approx 0.01 [GeV/c] 2) and the total energy of W = 1.92 GeV, where no experimental data exists was obtained to be 235 ± 13$$+28\\atop{-24}$$ nb/sr. The ground state (1/2 +) binding energy of $$7\\atop{Λ}$$He was already measured in JLab E01-011 (2005). In the present work, the binding energy of 1/2 + state was determined to be B Λ = 5.55 ± 0.10 ±0.11 MeV with five times more statistic and smaller systematic errors than those of the previous experiment. The ground state binding energy is important to test the phe- nomenologically introduced CSB (Charge Symmetry Breaking) LN interaction for A = 7, T = 1 hypernuclear systems. In addition, a peak which is interpreted as 3/2 + and 5/2 + states was measured to be B Λ = 3.65 ± 0.20 ±0.11 MeV with sufficient statistic for the first time. Only three events of the ground state of $$10\\atop{Λ}$$ Be had been observed in the emulsion experiments. The present experiment is the first spectroscopic measurement of 10/L-Be, and the detailed structures have been successfully measured for the first time. About three times better energy resolution was achieved in the present experiment (0.78 MeV in FWHM) than that of the mirror L hy- pernucleus, $$10\\atop{Λ}$$B (2.2 MeV in FWHM) which was measured in the (π +,K +) experiment at KEK. The result of the ground state binding energy was obtained to be B Λ = 8.55 ± 0.07 ± 0.11 MeV which serves also to discuss about the CSB effect in the LN interaction. $$12\\atop{Λ}$$B has been measured with the world best energy resolution of 0:5 MeV (FWHM) among the reaction spectroscopy of L hypernuclei. The results of $$12\\atop{Λ}$$B are compared with the experimental results in the previous experiments to confirm the consistency. Furthermore, the obtained ground state binding energies of $$12\\atop{Λ}$$B (B Λ= 11.38 ± 0.02 ± 0.11 MeV) and $$52\\atop{Λ}$$V (B Λ = 21.88 ± 0.59 ± 0.11 MeV) indicate that the reported value of 12/L-C which has been used as a reference of binding energy measurements for the (π +,K +) experiments would be shallower by ~ 0.5 MeV. A pilot study for investigation in the medium-heavy mass region with the (e,e'K +) experiment was performed by measuring $$52\\atop{Λ}$$V. The ground state binding energy of $$52\\atop{Λ}$$V has been measured, overcoming high multiplicity environment. The results are discussed with the ex- perimental results of 51/L-V measured at KEK. The present result is the first measurement of L's binding energy of the ground state without the emulsion reference in the medium-heavy mass region, which could be a substantial improvement in the information needed for understanding the single particle potential of L. In the present experiment, L hypernuclear measurement with a small systematic error of ~ 0.1 MeV by the (e,e'K +) reaction has been established. Moreover, the present work opened a door to the heavier L hypernuclear measurement with the (e,e'K +) reaction in the future.« less
{sigma} Hyperons in the Nucleus
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bart, S.; Chrien, R. E.; Franklin, W. A.
1999-12-20
A search for {sigma} hypernuclear states in p -shell hypernuclei has been performed with the Moby Dick spectrometer and the low energy separated beam (LESB-2) at the Brookhaven Alternating Gradient Synchrotron (BNL AGS). Unlike some previously published reports, no narrow states have been observed for targets of {sup 6}Li and {sup 9}Be in (K{sup -}, {pi}{sup {+-}}) reactions, either for bound state or continuum regions. Together with the previously reported J=0 , T=1/2 bound state in {sup 4}{sub {sigma}} He , these results demonstrate the crucial role of isospin in {sigma} hypernuclei. (c) 1999 The American Physical Society.
Exotic nuclear systems with strangeness: Hypernuclei and Kaonic nuclei
DOE Office of Scientific and Technical Information (OSTI.GOV)
Dote, Akinobu
2010-05-12
Nuclear systems with strangeness, hypernuclei and kaonic nuclei, are expected to have lots of interesting properties. In this article, after the recent development of hypernuclear study is reviewed, we report two results of our study of hypernuclei with antisymmetrized molecular dynamics; 1) impurity effect of LAMBDA on {sub L}AMBDA{sup 20}Ne, and 2){sub X}I{sup 12}Be studied with three kinds of XIN potentials. The current status of studies of kaonic nuclei is also introduced and our study with a phenomenological and a chiral-based K-barN potential are reported.
The Capabilities of the upgraded MIPP experiment with respect to Hypernuclear physics
DOE Office of Scientific and Technical Information (OSTI.GOV)
Raja, Rajendran
2012-01-01
We describe the state of analysis of the MIPP experiment, its plans to upgrade the experiment and the impact such an upgraded experiment will have on hypernuclear physics. The upgraded MIPP experiment is designed to measure the properties of strong interaction spectra form beams {pi}{sup {+-}}, K{sup {+-}}, and p{sup {+-}}, for momenta ranging from 1 GeV/c to 120 GeV/c. The layout of the apparatus in the data taken so far can be seen in Figure 1. The centerpiece of the experiment is the time projection chamber, which is followed by the time of flight counter, a multi-cell Cerenkov detectormore » and the RICH detector. The TPC can identify charged particles with momenta less than 1 GeV/c using dE/dx, the time of flight will identify particles below approximately 2 GeV/c, the multi-cell Cerenkov detector is operational from 2.5 GeV/c to 14 GeV/c and the RICH detector can identify particles up to 120 GeVc. Following this is an EM and hadronic calorimeter capable of detecting forward going neutrons and photons. The experiment has been busy analyzing its data taken on various nuclei and beam conditions. The table 2 shows the data taken by MIPP I to date. We have almost complete acceptance in the forward hemisphere in the lab using the TPC. The reconstruction capabilities of the TPC can be seen in Figure 3. The particle identification capabilities of the TPC can be seen in Figure 4. The time of flight system provides further measurement of the particles with momenta less than 2 GeV/c. Figure 5 shows the time of flight data where a kaon peak is clearly visible.« less
Electroproduction of K+ Λ at JLab Hall-C
NASA Astrophysics Data System (ADS)
Gogami, T.; Achenbach, P.; Ahmidouch, A.; Albayrak, I.; Androic, D.; Asaturyan, A.; Asaturyan, R.; Ates, O.; Baturin, P.; Badui, R.; Boeglin, W.; Bono, J.; Brash, E.; Carter, P.; Chen, C.; Chiba, A.; Christy, E.; Dalton, M.; Danagoulian, S.; De Leo, R.; Doi, D.; Elaasar, M.; Ent, R.; Fujii, Y.; Furic, M.; Gabrielyan, M.; Gan, L.; Garibaldi, F.; Gaskell, D.; Gasparian, A.; Hashimoto, O.; Horn, T.; Hu, B.; Hungerford, Ed. V.; Jones, M.; Kanda, H.; Kaneta, M.; Kato, S.; Kawai, M.; Kawama, D.; Khanal, H.; Kohl, M.; Liyanage, A.; Luo, W.; Maeda, K.; Margaryan, A.; Markowitz, P.; Maruta, T.; Matsumura, A.; Maxwell, V.; Mkrtchyan, A.; Mkrtchyan, H.; Nagao, S.; Nakamura, S. N.; Narayan, A.; Neville, C.; Niculescu, G.; Niculescu, M. I.; Nunez, A.; Nuruzzaman; Okayasu, Y.; Petkovic, T.; Pochodzalla, J.; Qiu, X.; Reinhold, J.; Rodriguez, V. M.; Samanta, C.; Sawatzky, B.; Seva, T.; Shichijo, A.; Tadevosyan, V.; Tang, L.; Taniya, N.; Tsukada, K.; Veilleux, M.; Vulcan, W.; Wesselmann, F. R.; Wood, S. A.; Yamamoto, T.; Ya, L.; Ye, Z.; Yokota, K.; Yuan, L.; Zhamkochyan, S.; Zhu, L.
2013-08-01
A Λ hypernuclear spectroscopic experiment, JLab E05-115 was performed at JLab Hall-C in 2009 by the (e, e'K+) reaction. Data of Λ hypernuclei with mass numbers from A = 7 to A = 52 were successfully taken, and the analyses are in progress. A polyethylene (CH2) target was used as a proton target to calibrate energy scales, and to study elementary process of the p(e, e'K+) Λ, Σ0 reaction. A preliminary differential cross section of K+ Λ electro-production at low Q2 [~0.01 (GeV/c)2] and at small kaon angles is reported in the present article.
NASA Astrophysics Data System (ADS)
Shyam, R.; Tsushima, K.
2018-05-01
We study the production of charmed baryons in the antiproton-proton and antiproton-nucleus interactions within a fully covariant model that is based on an effective Lagrangian approach. The baryon production proceeds via the t-channel D^0 and D^{*0} meson-exchange diagrams. We have also explored the production of the charm-baryon hypernucleus ^{16}_{Λ_c^+}O in the antiproton-^{16}O collisions. For antiproton beam momenta of interest to the {\\bar{P}}ANDA experiment, the 0° differential cross sections for the formation of ^{16}_{Λ_c^+}O hypernuclear states with simple particle-hole configurations, have magnitudes in the range of a few μ b/sr.
Spectroscopic Research of Lambda Hypdernuclei at JLab Hall C
NASA Astrophysics Data System (ADS)
Gogami, T.; Achenbach, P.; Ahmidouch, A.; Albayrak, I.; Androic, D.; Asaturyan, A.; Asaturyan, R.; Ates, O.; Baturin, P.; Badui, R.; Boeglin, W.; Bono, J.; Brash, E.; Carter, P.; Chen, C.; Chiba, A.; Christy, E.; Dalton, M.; Danagoulian, S.; De Leo, R.; Doi, D.; Elaasar, M.; Ent, R.; Fujii, Y.; Furic, M.; Gabrielyan, M.; Gan, L.; Garibaldi, F.; Gaskell, D.; Gasparian, A.; Hashimoto, O.; Horn, T.; Hu, B.; Hungerford, Ed. V.; Jones, M.; Kanda, H.; Kaneta, M.; Kato, S.; Kawai, M.; Kawama, D.; Khanal, H.; Kohl, M.; Liyanage, A.; Luo, W.; Maeda, K.; Margaryan, A.; Markowitz, P.; Maruta, T.; Matsumura, A.; Maxwell, V.; Mkrtchyan, A.; Mkrtchyan, H.; Nagao, S.; Nakamura, S. N.; Narayan, A.; Neville, C.; Niculescu, G.; Niculescu, M. I.; Nunez, A.; Nuruzzaman; Okayasu, Y.; Petkovic, T.; Pochodzalla, J.; Qiu, X.; Reinhold, J.; Rodriguez, V. M.; Samanta, C.; Sawatzky, B.; Seva, T.; Shichijo, A.; Tadevosyan, V.; Tang, L.; Taniya, N.; Tsukada, K.; Veilleux, M.; Vulcan, W.; Wesselmann, F. R.; Wood, S. A.; Yamamoto, T.; Ya, L.; Ye, Z.; Yokota, K.; Yuan, L.; Zhamkochyan, S.; Zhu, L.
A Λ hyperon which has a strangeness can be bound in deep inside of a nucleus since a Λ does not suffer from the Pauli exclusion principle from nucleons. Thus, a Λ could be a useful tool to investigate inside of a nucleus. Since 2000, Λ hypernuclear spectroscopic experiments by the (e,e'k) reaction have been performed at the experimental hall C in Thomas Jefferson National Accelerator Facility (JLab Hall C). An experiment, JLab E05-115 was carried out to investigate Λ hypernuclei with a wide mass range (the mass number, A = 7, 9, 10, 12, 52). The latest analysis status of JLab E05-115 experiment is discussed in the present article.
Strangeness S =-1 hyperon-nucleon interactions: Chiral effective field theory versus lattice QCD
NASA Astrophysics Data System (ADS)
Song, Jing; Li, Kai-Wen; Geng, Li-Sheng
2018-06-01
Hyperon-nucleon interactions serve as basic inputs to studies of hypernuclear physics and dense (neutron) stars. Unfortunately, a precise understanding of these important quantities has lagged far behind that of the nucleon-nucleon interaction due to lack of high-precision experimental data. Historically, hyperon-nucleon interactions are either formulated in quark models or meson exchange models. In recent years, lattice QCD simulations and chiral effective field theory approaches start to offer new insights from first principles. In the present work, we contrast the state-of-the-art lattice QCD simulations with the latest chiral hyperon-nucleon forces and show that the leading order relativistic chiral results can already describe the lattice QCD data reasonably well. Given the fact that the lattice QCD simulations are performed with pion masses ranging from the (almost) physical point to 700 MeV, such studies provide a useful check on both the chiral effective field theory approaches as well as lattice QCD simulations. Nevertheless more precise lattice QCD simulations are eagerly needed to refine our understanding of hyperon-nucleon interactions.
Microscopic particle-rotor model for the low-lying spectrum of Λ hypernuclei
NASA Astrophysics Data System (ADS)
Mei, H.; Hagino, K.; Yao, J. M.; Motoba, T.
2014-12-01
We propose a novel method for low-lying states of hypernuclei based on the particle-rotor model, in which hypernuclear states are constructed by coupling the hyperon to low-lying states of the core nucleus. In contrast to the conventional particle-rotor model, we employ a microscopic approach for the core states; that is, the generator coordinate method (GCM) with the particle number and angular momentum projections. We apply this microscopic particle-rotor model to Λ9Be as an example employing a point-coupling version of the relativistic mean-field Lagrangian. A reasonable agreement with the experimental data for the low-spin spectrum is achieved using the Λ N coupling strengths determined to reproduce the binding energy of the Λ particle.
Spectroscopic Research of Lambda Hypdernuclei at JLab Hall C
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gogami, Toshiyuki; et. al.,
2014-03-01
A Lambda hyperon which has a strangeness can be bound in deep inside of a nucleus since a Λ does not suffer from the Pauli exclusion principle from nucleons. Thus, a Λ could be a useful tool to investigate inside of a nucleus. Since 2000, Lambda hypernuclear spectroscopic experiments by the (e,e'k) reaction have been performed at the experimental hall C in Thomas Jefferson National Accelerator Facility (JLab Hall C). An experiment, JLab E05-115 was carried out to investigate Lambda hypernuclei with a wide mass range (the mass number, A = 7, 9, 10, 12, 52). The latest analysis statusmore » of JLab E05-115 experiment is discussed in the present article.« less
Baryon interactions from lattice QCD with physical masses —S = -3 sector: Ξ∑ and Ξ∑-Λ∑—
NASA Astrophysics Data System (ADS)
Ishii, Noriyoshi; Aoki, Sinya; Doi, Takumi; Gongyo, Shinya; Hatsuda, Tetsuo; Ikeda, Yoichi; Inoue, Takashi; Iritani, Takumi; Miyamoto, Takaya; Nemura, Hidekatsu; Sasaki, Kenji
2018-03-01
Hyperon-nucleon and hyperon-hyperon interactions are important in studying the properties of hypernuclei in hypernuclear physics. However, unlike the nucleons which are quite stable, hyperons are unstable so that the direct scattering experiments are difficult, which leads to the large uncertainty in the phenomenological determination of hyperon potentials. In this talk, we use the gauge configurations generated at the (almost) physical point (mπ = 146 MeV) on a huge spatial volume (8:1fm)4 to present our latest result on the hyperon-hyperon potentials in S = -3 sector (Ξ∑ single channel and Ξ∑- ΞΛ; coupled channel) from the Nambu-Bethe-Salpeter wave functions based on the HAL QCD method with improved statistics.
A PARMELA model of the CEBAF injector valid over a wide range of beam parameters
DOE Office of Scientific and Technical Information (OSTI.GOV)
Yuhong Zhang; Kevin Beard; Jay Benesch
A PARMELA model of the CEBAF injector valid over a wide range of beam parameters Yuhong Zhang, Kevin Beard, Jay Benesch, Yu-Chiu Chao, Arne Freyberger, Joseph Grames, Reza Kazimi, Geoff Krafft, Rui Li, Lia Merminga, Matt Poelker, Michael Tiefenback, Byung Yunn Thomas Jefferson National Accelerator Facility 12000 Jefferson Avenue, Newport News, VA 23606 USA An earlier PARMELA model of the Jefferson Lab CEBAF photoinjector was recently revised. The initial phase space distribution of an electron bunch was determined by measuring spot size and pulselength of the driver laser and by beam emittance measurements. The improved model has been used formore » simulations of the simultaneous delivery of the Hall A beam required for a hypernuclear experiment, and the Hall C beam required for the G0 parity violation experiment.« less
Ξ-P Scattering and STOPPED-Ξ-12C Reaction
NASA Astrophysics Data System (ADS)
Ahn, J. K.; Aoki, S.; Chung, K. S.; Chung, M. S.; En'yo, H.; Fukuda, T.; Funahashi, H.; Goto, Y.; Higashi, A.; Ieiri, M.; Iijima, T.; Iinuma, M.; Imai, K.; Itow, Y.; Lee, J. M.; Makino, S.; Masaike, A.; Matsuda, Y.; Matsuyama, Y.; Mihara, S.; Nagoshi, C.; Nomura, I.; Park, I. S.; Saito, N.; Sekimoto, M.; Shin, Y. M.; Sim, K. S.; Susukita, R.; Takashima, R.; Takeutchi, F.; Tlustý, P.; Weibe, S.; Yokkaichi, S.; Yoshida, K.; Yoshida, M.; Yoshida, T.; Yamashita, S.
2000-09-01
We report upper limits on the cross sections for the Ξ-p elastic and conversion processes based on the observation of one Ξ-p elastic scattering events with an invisible Λ decay. The cross section for the Ξ-p elastic scattering is, for simplicity, assumming an isotropic angular distribution, found to be 40 mb at 90% confidence level, whereas that for the Ξ-p → ΛΛ reaction is 11 mb at 90% confidence level. While the results on the elastic cross section give no stringent constraint on theoretical estimates, the upper limit on the conversion process suggests that the estimate of the RGM-F model prediction could be ruled out. We also report some preliminary results on the obervation of the stopped-Ξ- hyperon-nucleus interaction with respect to hypernuclear production and existence of doubly-strange H-dibaryon.
Spectroscopy of the neutron-rich hypernucleus He7Λ from electron scattering
NASA Astrophysics Data System (ADS)
Gogami, T.; Chen, C.; Kawama, D.; Achenbach, P.; Ahmidouch, A.; Albayrak, I.; Androic, D.; Asaturyan, A.; Asaturyan, R.; Ates, O.; Baturin, P.; Badui, R.; Boeglin, W.; Bono, J.; Brash, E.; Carter, P.; Chiba, A.; Christy, E.; Danagoulian, S.; De Leo, R.; Doi, D.; Elaasar, M.; Ent, R.; Fujii, Y.; Fujita, M.; Furic, M.; Gabrielyan, M.; Gan, L.; Garibaldi, F.; Gaskell, D.; Gasparian, A.; Han, Y.; Hashimoto, O.; Horn, T.; Hu, B.; Hungerford, Ed. V.; Jones, M.; Kanda, H.; Kaneta, M.; Kato, S.; Kawai, M.; Khanal, H.; Kohl, M.; Liyanage, A.; Luo, W.; Maeda, K.; Margaryan, A.; Markowitz, P.; Maruta, T.; Matsumura, A.; Maxwell, V.; Mkrtchyan, A.; Mkrtchyan, H.; Nagao, S.; Nakamura, S. N.; Narayan, A.; Neville, C.; Niculescu, G.; Niculescu, M. I.; Nunez, A.; Nuruzzaman, Okayasu, Y.; Petkovic, T.; Pochodzalla, J.; Qiu, X.; Reinhold, J.; Rodriguez, V. M.; Samanta, C.; Sawatzky, B.; Seva, T.; Shichijo, A.; Tadevosyan, V.; Tang, L.; Taniya, N.; Tsukada, K.; Veilleux, M.; Vulcan, W.; Wesselmann, F. R.; Wood, S. A.; Yamamoto, T.; Ya, L.; Ye, Z.; Yokota, K.; Yuan, L.; Zhamkochyan, S.; Zhu, L.; HKS JLab E05-115 Collaboration
2016-08-01
The missing mass spectroscopy of the He7Λ hypernucleus was performed using the 7Li(e ,e'K+) He7Λ reaction at the Thomas Jefferson National Accelerator Facility Hall C. The Λ -binding energy of the ground-state (1 /2+ ) was determined with a smaller error than that of the previous measurement, being BΛ=5.55 ±0 .10stat .±0 .11sys .MeV . The experiment also provided new insight into charge symmetry breaking in p -shell hypernuclear systems. Finally, a peak at BΛ=3.65 ±0 .20stat .±0 .11sys .MeV was observed and assigned as a mixture of 3 /2+ and 5 /2+ states, confirming the "gluelike" behavior of Λ , which makes an unstable state in 6He stable against neutron emission.
Spectroscopy of the neutron-rich hypernucleus He Λ 7 from electron scattering
Gogami, T.; Chen, C.; Kawama, D.; ...
2016-08-12
Here, the missing mass spectroscopy of themore » $$^{7}_{\\Lambda}$$He hypernucleus was performed, using the $$^{7}$$Li$$(e,e^{\\prime}K^{+})^{7}_{\\Lambda}$$He reaction at the Thomas Jefferson National Accelerator Facility Hall C. The $$\\Lambda$$ binding energy of the ground state (1/2$$^{+}$$) was determined with a smaller error than that of the previous measurement, being $$B_{\\Lambda}$$ = 5.55 $$\\pm$$ 0.10(stat.) $$\\pm$$ 0.11(sys.) MeV. The experiment also provided new insight into charge symmetry breaking in p-shell hypernuclear systems. Finally, a peak at $$B_{\\Lambda}$$ = 3.65 $$\\pm$$ 0.20(stat.) $$\\pm$$ 0.11(sys.) MeV was observed and assigned as a mixture of 3/2$$^{+}$$ and 5/2$$^{+}$$ states, confirming the "gluelike" behavior of $$\\Lambda$$, which makes an unstable state in $$^{6}$$He stable against neutron emission.« less
Ab initio description of p-shell hypernuclei.
Wirth, Roland; Gazda, Daniel; Navrátil, Petr; Calci, Angelo; Langhammer, Joachim; Roth, Robert
2014-11-07
We present the first ab initio calculations for p-shell single-Λ hypernuclei. For the solution of the many-baryon problem, we develop two variants of the no-core shell model with explicit Λ and Σ(+),Σ(0),Σ(-) hyperons including Λ-Σ conversion, optionally supplemented by a similarity renormalization group transformation to accelerate model-space convergence. In addition to state-of-the-art chiral two- and three-nucleon interactions, we use leading-order chiral hyperon-nucleon interactions and a recent meson-exchange hyperon-nucleon interaction. We validate the approach for s-shell hypernuclei and apply it to p-shell hypernuclei, in particular to (Λ)(7)Li, (Λ)(9)Be, and (Λ)(13)C. We show that the chiral hyperon-nucleon interactions provide ground-state and excitation energies that generally agree with experiment within the cutoff dependence. At the same time we demonstrate that hypernuclear spectroscopy provides tight constraints on the hyperon-nucleon interactions.
Relativistic excited state binding energies and RMS radii of Λ-hypernuclei
NASA Astrophysics Data System (ADS)
Nejad, S. Mohammad Moosavi; Armat, A.
2018-02-01
Using an analytical solution for the relativistic equation of single Λ-hypernuclei in the presence of Woods-Saxon (WS) potential we present, for the first time, an analytical form for the excited state binding energies of 1p, 1d, 1f and 1g shells of a number of hypernuclei. Based on phenomenological analysis of the Λ binding energies in a set of Λ-hypernuclei, the WS potential parameters are obtained phenomenologically for the set of Λ-hypernuclei. Systematic study of the energy levels of single Λ-hypernuclei enables us to extract more detailed information about the Λ-nucleon interaction. We also study the root mean square (RMS) radii of the Λ orbits in the hypernuclear ground states. Our results are presented for several hypernuclei and it is shown that our results for the binding energies are in good agreement with experimental data.
On the binding energy and the charge symmetry breaking in A ≤ 16 Λ-hypernuclei
NASA Astrophysics Data System (ADS)
Botta, E.; Bressani, T.; Feliciello, A.
2017-04-01
In recent years, several experiments using magnetic spectrometers provided high precision results in the field of Hypernuclear Physics. In particular, the accurate determination of the Λ-binding energy, BΛ, contributed to stimulate considerably the discussion about the Charge Symmetry Breaking effect in Λ-hypernuclei isomultiplets. We have reorganized the results from the FINUDA experiment and we have obtained a series of BΛ values for Λ-hypernuclei with A≤ 16 by taking into account data only from magnetic spectrometers implementing an absolute calibration of the energy scale (FINUDA at DAΦNE and electroproduction experiments at JLab and at MaMi). We have then critically revisited the results obtained at KEK by the SKS Collaboration in order to make possible a direct comparison between data from experiments with and without such an absolute energy scale. A synopsis of recent spectrometric measurements of BΛ is presented, including also emulsion experiment results. Several interesting conclusions are drawn, among which the equality within the errors of BΛ for the A = 7 , 12 , 16 isomultiplets, based only on recent spectrometric data. This observation is in nice agreement with a recent theoretical prediction. Ideas for possible new measurements which should improve the present experimental knowledge are finally put forward.
Induced Hyperon-Nucleon-Nucleon Interactions and the Hyperon Puzzle.
Wirth, Roland; Roth, Robert
2016-10-28
We present the first ab initio calculations for p-shell hypernuclei including hyperon-nucleon-nucleon (YNN) contributions induced by a similarity renormalization group transformation of the initial hyperon-nucleon interaction. The transformation including the YNN terms conserves the spectrum of the Hamiltonian while drastically improving model-space convergence of the importance-truncated no-core model, allowing a precise extraction of binding and excitation energies. Results using a hyperon-nucleon interaction at leading order in chiral effective field theory for lower- to mid-p-shell hypernuclei show a good reproduction of experimental excitation energies while hyperon separation energies are typically overestimated. The induced YNN contributions are strongly repulsive and we show that they are related to a decoupling of the Σ hyperons from the hypernuclear system, i.e., a suppression of the Λ-Σ conversion terms in the Hamiltonian. This is linked to the so-called hyperon puzzle in neutron-star physics and provides a basic mechanism for the explanation of strong ΛNN three-baryon forces.
First Determination of the Level Structure of an s d -Shell Hypernucleus, F19Λ
NASA Astrophysics Data System (ADS)
Yang, S. B.; Ahn, J. K.; Akazawa, Y.; Aoki, K.; Chiga, N.; Ekawa, H.; Evtoukhovitch, P.; Feliciello, A.; Fujita, M.; Hasegawa, S.; Hayakawa, S.; Hayakawa, T.; Honda, R.; Hosomi, K.; Hwang, S. H.; Ichige, N.; Ichikawa, Y.; Ikeda, M.; Imai, K.; Ishimoto, S.; Kanatsuki, S.; Kim, S. H.; Kinbara, S.; Kobayashi, K.; Koike, T.; Lee, J. Y.; Miwa, K.; Moon, T. J.; Nagae, T.; Nakada, Y.; Nakagawa, M.; Ogura, Y.; Sakaguchi, A.; Sako, H.; Sasaki, Y.; Sato, S.; Shirotori, K.; Sugimura, H.; Suto, S.; Suzuki, S.; Takahashi, T.; Tamura, H.; Tanida, K.; Togawa, Y.; Tsamalaidze, Z.; Ukai, M.; Wang, T. F.; Yamamoto, T. O.; J-PARC E13 Collaboration
2018-03-01
We report on the first observation of γ rays emitted from an s d -shell hypernucleus, F19Λ . The energy spacing between the ground state doublet, 1 /2+ and 3 /2+ states, of F19Λ is determined to be 315.5 ±0.4 (stat )-0.5+0.6(syst ) keV by measuring the γ -ray energy of the M 1 (3 /2+→1 /2+) transition. In addition, three γ -ray peaks are observed and assigned as E 2 (5 /2+→1 /2+), E 1 (1 /2-→1 /2+), and E 1 (1 /2-→3 /2+) transitions. The excitation energies of the 5 /2+ and 1 /2- states are determined to be 895.2 ±0.3 (stat )±0.5 (syst ) and 1265.6 ±1.2 (stat )-0.5+0.7(syst ) keV , respectively. It is found that the ground state doublet spacing is well described by theoretical models based on existing s - and p -shell hypernuclear data.
Light neutron-rich hypernuclei from the importance-truncated no-core shell model
NASA Astrophysics Data System (ADS)
Wirth, Roland; Roth, Robert
2018-04-01
We explore the systematics of ground-state and excitation energies in singly-strange hypernuclei throughout the helium and lithium isotopic chains - from He5Λ to He11Λ and from Li7Λ to Li12Λ - in the ab initio no-core shell model with importance truncation. All calculations are based on two- and three-baryon interaction from chiral effective field theory and we employ a similarity renormalization group transformation consistently up to the three-baryon level to improve the model-space convergence. While the absolute energies of hypernuclear states show a systematic variation with the regulator cutoff of the hyperon-nucleon interaction, the resulting neutron separation energies are very stable and in good agreement with available data for both nucleonic parents and their daughter hypernuclei. We provide predictions for the neutron separation energies and the spectra of neutron-rich hypernuclei that have not yet been observed experimentally. Furthermore, we find that the neutron drip lines in the helium and lithium isotopic chains are not changed by the addition of a hyperon.
An {alpha}-cluster model for {sub {Lambda}}{sup 9}Be spectroscopy
DOE Office of Scientific and Technical Information (OSTI.GOV)
Filikhin, I. N., E-mail: ifilikhin@nccu.edu; Suslov, V. M.; Vlahovic, B.
An {alpha}-cluster model is applied to study low-lying spectrum of the {sub {Lambda}}{sup 9}Be hypernucleus. The three-body {alpha}{alpha}{Lambda} problem is numerically solved by the Faddeev equations in configuration space using phenomenological pair potentials. We found a set of the potentials that reproduces experimental data for the ground state (1/2{sup +}) binding energy and excitation energy of the 5/2{sup +} and 3/2{sup +} states, simultaneously. This set includes the Ali-Bodmer potential of the version 'e' for {alpha}{alpha} and modified Tang-Herndon potential for {alpha}{Lambda} interactions. The spin-orbit {alpha}{Lambda} interaction is given by modified Scheerbaum potential. Low-lying energy levels are evaluated applying amore » variant of the analytical continuation method in the coupling constant. It is shown that the spectral properties of {sub {Lambda}}{sup 9}Be can be classified as an analog of {sup 9}Be spectrum with the exception of several 'genuine hypernuclear states'. This agrees qualitatively with previous studies. The results are compared with experimental data and new interpretation of the spectral structure is discussed.« less
High resolution time interval meter
Martin, A.D.
1986-05-09
Method and apparatus are provided for measuring the time interval between two events to a higher resolution than reliability available from conventional circuits and component. An internal clock pulse is provided at a frequency compatible with conventional component operating frequencies for reliable operation. Lumped constant delay circuits are provided for generating outputs at delay intervals corresponding to the desired high resolution. An initiation START pulse is input to generate first high resolution data. A termination STOP pulse is input to generate second high resolution data. Internal counters count at the low frequency internal clock pulse rate between the START and STOP pulses. The first and second high resolution data are logically combined to directly provide high resolution data to one counter and correct the count in the low resolution counter to obtain a high resolution time interval measurement.
Performance studies of the P barANDA planar GEM-tracking detector in physics simulations
NASA Astrophysics Data System (ADS)
Divani Veis, Nazila; Firoozabadi, Mohammad M.; Karabowicz, Radoslaw; Maas, Frank; Saito, Takehiko R.; Voss, Bernd; ̅PANDA Gem-Tracker Subgroup
2018-03-01
The P barANDA experiment will be installed at the future facility for antiproton and ion research (FAIR) in Darmstadt, Germany, to study events from the annihilation of protons and antiprotons. The P barANDA detectors can cover a wide physics program about baryon spectroscopy and nucleon structure as well as the study of hadrons and hypernuclear physics including the study of excited hyperon states. One very specific feature of most hyperon ground states is the long decay length of several centimeters in the forward direction. The central tracking detectors of the P barANDA setup are not sufficiently optimized for these long decay lengths. Therefore, using a set of the planar GEM-tracking detectors in the forward region of interest can improve the results in the hyperon physics-benchmark channel. The current conceptual designed P barANDA GEM-tracking stations contribute the measurement of the particles emitted in the polar angles between about 2 to 22 degrees. For this designed detector performance and acceptance, studies have been performed using one of the important hyperonic decay channel p bar p → Λ bar Λ → p bar pπ+π- in physics simulations. The simulations were carried out using the PandaRoot software packages based on the FairRoot framework.
NASA Astrophysics Data System (ADS)
Leung, L.; Hagos, S. M.; Rauscher, S.; Ringler, T.
2012-12-01
This study compares two grid refinement approaches using global variable resolution model and nesting for high-resolution regional climate modeling. The global variable resolution model, Model for Prediction Across Scales (MPAS), and the limited area model, Weather Research and Forecasting (WRF) model, are compared in an idealized aqua-planet context with a focus on the spatial and temporal characteristics of tropical precipitation simulated by the models using the same physics package from the Community Atmosphere Model (CAM4). For MPAS, simulations have been performed with a quasi-uniform resolution global domain at coarse (1 degree) and high (0.25 degree) resolution, and a variable resolution domain with a high-resolution region at 0.25 degree configured inside a coarse resolution global domain at 1 degree resolution. Similarly, WRF has been configured to run on a coarse (1 degree) and high (0.25 degree) resolution tropical channel domain as well as a nested domain with a high-resolution region at 0.25 degree nested two-way inside the coarse resolution (1 degree) tropical channel. The variable resolution or nested simulations are compared against the high-resolution simulations that serve as virtual reality. Both MPAS and WRF simulate 20-day Kelvin waves propagating through the high-resolution domains fairly unaffected by the change in resolution. In addition, both models respond to increased resolution with enhanced precipitation. Grid refinement induces zonal asymmetry in precipitation (heating), accompanied by zonal anomalous Walker like circulations and standing Rossby wave signals. However, there are important differences between the anomalous patterns in MPAS and WRF due to differences in the grid refinement approaches and sensitivity of model physics to grid resolution. This study highlights the need for "scale aware" parameterizations in variable resolution and nested regional models.
A method for generating high resolution satellite image time series
NASA Astrophysics Data System (ADS)
Guo, Tao
2014-10-01
There is an increasing demand for satellite remote sensing data with both high spatial and temporal resolution in many applications. But it still is a challenge to simultaneously improve spatial resolution and temporal frequency due to the technical limits of current satellite observation systems. To this end, much R&D efforts have been ongoing for years and lead to some successes roughly in two aspects, one includes super resolution, pan-sharpen etc. methods which can effectively enhance the spatial resolution and generate good visual effects, but hardly preserve spectral signatures and result in inadequate analytical value, on the other hand, time interpolation is a straight forward method to increase temporal frequency, however it increase little informative contents in fact. In this paper we presented a novel method to simulate high resolution time series data by combing low resolution time series data and a very small number of high resolution data only. Our method starts with a pair of high and low resolution data set, and then a spatial registration is done by introducing LDA model to map high and low resolution pixels correspondingly. Afterwards, temporal change information is captured through a comparison of low resolution time series data, and then projected onto the high resolution data plane and assigned to each high resolution pixel according to the predefined temporal change patterns of each type of ground objects. Finally the simulated high resolution data is generated. A preliminary experiment shows that our method can simulate a high resolution data with a reasonable accuracy. The contribution of our method is to enable timely monitoring of temporal changes through analysis of time sequence of low resolution images only, and usage of costly high resolution data can be reduces as much as possible, and it presents a highly effective way to build up an economically operational monitoring solution for agriculture, forest, land use investigation, environment and etc. applications.
Single sensor processing to obtain high resolution color component signals
NASA Technical Reports Server (NTRS)
Glenn, William E. (Inventor)
2010-01-01
A method for generating color video signals representative of color images of a scene includes the following steps: focusing light from the scene on an electronic image sensor via a filter having a tri-color filter pattern; producing, from outputs of the sensor, first and second relatively low resolution luminance signals; producing, from outputs of the sensor, a relatively high resolution luminance signal; producing, from a ratio of the relatively high resolution luminance signal to the first relatively low resolution luminance signal, a high band luminance component signal; producing, from outputs of the sensor, relatively low resolution color component signals; and combining each of the relatively low resolution color component signals with the high band luminance component signal to obtain relatively high resolution color component signals.
Image resolution enhancement via image restoration using neural network
NASA Astrophysics Data System (ADS)
Zhang, Shuangteng; Lu, Yihong
2011-04-01
Image super-resolution aims to obtain a high-quality image at a resolution that is higher than that of the original coarse one. This paper presents a new neural network-based method for image super-resolution. In this technique, the super-resolution is considered as an inverse problem. An observation model that closely follows the physical image acquisition process is established to solve the problem. Based on this model, a cost function is created and minimized by a Hopfield neural network to produce high-resolution images from the corresponding low-resolution ones. Not like some other single frame super-resolution techniques, this technique takes into consideration point spread function blurring as well as additive noise and therefore generates high-resolution images with more preserved or restored image details. Experimental results demonstrate that the high-resolution images obtained by this technique have a very high quality in terms of PSNR and visually look more pleasant.
NASA Astrophysics Data System (ADS)
Unnikrishnan, C. K.; Rajeevan, M.; Rao, S. Vijaya Bhaskara
2016-06-01
The direct impact of high resolution land surface initialization on the forecast bias in a regional climate model in recent years over Indian summer monsoon region is investigated. Two sets of regional climate model simulations are performed, one with a coarse resolution land surface initial conditions and second one used a high resolution land surface data for initial condition. The results show that all monsoon years respond differently to the high resolution land surface initialization. The drought monsoon year 2009 and extended break periods were more sensitive to the high resolution land surface initialization. These results suggest that the drought monsoon year predictions can be improved with high resolution land surface initialization. Result also shows that there are differences in the response to the land surface initialization within the monsoon season. Case studies of heat wave and a monsoon depression simulation show that, the model biases were also improved with high resolution land surface initialization. These results show the need for a better land surface initialization strategy in high resolution regional models for monsoon forecasting.
NASA Technical Reports Server (NTRS)
Mareboyana, Manohar; Le Moigne-Stewart, Jacqueline; Bennett, Jerome
2016-01-01
In this paper, we demonstrate a simple algorithm that projects low resolution (LR) images differing in subpixel shifts on a high resolution (HR) also called super resolution (SR) grid. The algorithm is very effective in accuracy as well as time efficiency. A number of spatial interpolation techniques using nearest neighbor, inverse-distance weighted averages, Radial Basis Functions (RBF) etc. used in projection yield comparable results. For best accuracy of reconstructing SR image by a factor of two requires four LR images differing in four independent subpixel shifts. The algorithm has two steps: i) registration of low resolution images and (ii) shifting the low resolution images to align with reference image and projecting them on high resolution grid based on the shifts of each low resolution image using different interpolation techniques. Experiments are conducted by simulating low resolution images by subpixel shifts and subsampling of original high resolution image and the reconstructing the high resolution images from the simulated low resolution images. The results of accuracy of reconstruction are compared by using mean squared error measure between original high resolution image and reconstructed image. The algorithm was tested on remote sensing images and found to outperform previously proposed techniques such as Iterative Back Projection algorithm (IBP), Maximum Likelihood (ML), and Maximum a posterior (MAP) algorithms. The algorithm is robust and is not overly sensitive to the registration inaccuracies.
NASA Astrophysics Data System (ADS)
Roesler, E. L.; Bosler, P. A.; Taylor, M.
2016-12-01
The impact of strong extratropical storms on coastal communities is large, and the extent to which storms will change with a warming Arctic is unknown. Understanding storms in reanalysis and in climate models is important for future predictions. We know that the number of detected Arctic storms in reanalysis is sensitive to grid resolution. To understand Arctic storm sensitivity to resolution in climate models, we describe simulations designed to identify and compare Arctic storms at uniform low resolution (1 degree), at uniform high resolution (1/8 degree), and at variable resolution (1 degree to 1/8 degree). High-resolution simulations resolve more fine-scale structure and extremes, such as storms, in the atmosphere than a uniform low-resolution simulation. However, the computational cost of running a globally uniform high-resolution simulation is often prohibitive. The variable resolution tool in atmospheric general circulation models permits regional high-resolution solutions at a fraction of the computational cost. The storms are identified using the open-source search algorithm, Stride Search. The uniform high-resolution simulation has over 50% more storms than the uniform low-resolution and over 25% more storms than the variable resolution simulations. Storm statistics from each of the simulations is presented and compared with reanalysis. We propose variable resolution as a cost-effective means of investigating physics/dynamics coupling in the Arctic environment. Future work will include comparisons with observed storms to investigate tuning parameters for high resolution models. Sandia National Laboratories is a multi-program laboratory managed and operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin Corporation, for the U.S. Department of Energy's National Nuclear Security Administration under contract DE-AC04-94AL85000. SAND2016-7402 A
Attention Modifies Spatial Resolution According to Task Demands.
Barbot, Antoine; Carrasco, Marisa
2017-03-01
How does visual attention affect spatial resolution? In texture-segmentation tasks, exogenous (involuntary) attention automatically increases resolution at the attended location, which improves performance where resolution is too low (at the periphery) but impairs performance where resolution is already too high (at central locations). Conversely, endogenous (voluntary) attention improves performance at all eccentricities, which suggests a more flexible mechanism. Here, using selective adaptation to spatial frequency, we investigated the mechanism by which endogenous attention benefits performance in resolution tasks. Participants detected a texture target that could appear at several eccentricities. Adapting to high or low spatial frequencies selectively affected performance in a manner consistent with changes in resolution. Moreover, adapting to high, but not low, frequencies mitigated the attentional benefit at central locations where resolution was too high; this shows that attention can improve performance by decreasing resolution. Altogether, our results indicate that endogenous attention benefits performance by modulating the contribution of high-frequency information in order to flexibly adjust spatial resolution according to task demands.
Attention Modifies Spatial Resolution According to Task Demands
Barbot, Antoine; Carrasco, Marisa
2017-01-01
How does visual attention affect spatial resolution? In texture-segmentation tasks, exogenous (involuntary) attention automatically increases resolution at the attended location, which improves performance where resolution is too low (at the periphery) but impairs performance where resolution is already too high (at central locations). Conversely, endogenous (voluntary) attention improves performance at all eccentricities, which suggests a more flexible mechanism. Here, using selective adaptation to spatial frequency, we investigated the mechanism by which endogenous attention benefits performance in resolution tasks. Participants detected a texture target that could appear at several eccentricities. Adapting to high or low spatial frequencies selectively affected performance in a manner consistent with changes in resolution. Moreover, adapting to high, but not low, frequencies mitigated the attentional benefit at central locations where resolution was too high; this shows that attention can improve performance by decreasing resolution. Altogether, our results indicate that endogenous attention benefits performance by modulating the contribution of high-frequency information in order to flexibly adjust spatial resolution according to task demands. PMID:28118103
A digital gigapixel large-format tile-scan camera.
Ben-Ezra, M
2011-01-01
Although the resolution of single-lens reflex (SLR) and medium-format digital cameras has increased in recent years, applications for cultural-heritage preservation and computational photography require even higher resolutions. Addressing this issue, a large-format cameras' large image planes can achieve very high resolution without compromising pixel size and thus can provide high-quality, high-resolution images.This digital large-format tile scan camera can acquire high-quality, high-resolution images of static scenes. It employs unique calibration techniques and a simple algorithm for focal-stack processing of very large images with significant magnification variations. The camera automatically collects overlapping focal stacks and processes them into a high-resolution, extended-depth-of-field image.
CNV detection method optimized for high-resolution arrayCGH by normality test.
Ahn, Jaegyoon; Yoon, Youngmi; Park, Chihyun; Park, Sanghyun
2012-04-01
High-resolution arrayCGH platform makes it possible to detect small gains and losses which previously could not be measured. However, current CNV detection tools fitted to early low-resolution data are not applicable to larger high-resolution data. When CNV detection tools are applied to high-resolution data, they suffer from high false-positives, which increases validation cost. Existing CNV detection tools also require optimal parameter values. In most cases, obtaining these values is a difficult task. This study developed a CNV detection algorithm that is optimized for high-resolution arrayCGH data. This tool operates up to 1500 times faster than existing tools on a high-resolution arrayCGH of whole human chromosomes which has 42 million probes whose average length is 50 bases, while preserving false positive/negative rates. The algorithm also uses a normality test, thereby removing the need for optimal parameters. To our knowledge, this is the first formulation for CNV detecting problems that results in a near-linear empirical overall complexity for real high-resolution data. Copyright © 2012 Elsevier Ltd. All rights reserved.
Lee, N J; Chung, M S; Jung, S C; Kim, H S; Choi, C-G; Kim, S J; Lee, D H; Suh, D C; Kwon, S U; Kang, D-W; Kim, J S
2016-12-01
High-resolution MR imaging has recently been introduced as a promising diagnostic modality in intracranial artery disease. Our aim was to compare high-resolution MR imaging with digital subtraction angiography for the characterization and diagnosis of various intracranial artery diseases. Thirty-seven patients who had undergone both high-resolution MR imaging and DSA for intracranial artery disease were enrolled in our study (August 2011 to April 2014). The time interval between the high-resolution MR imaging and DSA was within 1 month. The degree of stenosis and the minimal luminal diameter were independently measured by 2 observers in both DSA and high-resolution MR imaging, and the results were compared. Two observers independently diagnosed intracranial artery diseases on DSA and high-resolution MR imaging. The time interval between the diagnoses on DSA and high-resolution MR imaging was 2 weeks. Interobserver diagnostic agreement for each technique and intermodality diagnostic agreement for each observer were acquired. High-resolution MR imaging showed moderate-to-excellent agreement (interclass correlation coefficient = 0.892-0.949; κ = 0.548-0.614) and significant correlations (R = 0.766-892) with DSA on the degree of stenosis and minimal luminal diameter. The interobserver diagnostic agreement was good for DSA (κ = 0.643) and excellent for high-resolution MR imaging (κ = 0.818). The intermodality diagnostic agreement was good (κ = 0.704) for observer 1 and moderate (κ = 0.579) for observer 2, respectively. High-resolution MR imaging may be an imaging method comparable with DSA for the characterization and diagnosis of various intracranial artery diseases. © 2016 by American Journal of Neuroradiology.
Whole-animal imaging with high spatio-temporal resolution
NASA Astrophysics Data System (ADS)
Chhetri, Raghav; Amat, Fernando; Wan, Yinan; Höckendorf, Burkhard; Lemon, William C.; Keller, Philipp J.
2016-03-01
We developed isotropic multiview (IsoView) light-sheet microscopy in order to image fast cellular dynamics, such as cell movements in an entire developing embryo or neuronal activity throughput an entire brain or nervous system, with high resolution in all dimensions, high imaging speeds, good physical coverage and low photo-damage. To achieve high temporal resolution and high spatial resolution at the same time, IsoView microscopy rapidly images large specimens via simultaneous light-sheet illumination and fluorescence detection along four orthogonal directions. In a post-processing step, these four views are then combined by means of high-throughput multiview deconvolution to yield images with a system resolution of ≤ 450 nm in all three dimensions. Using IsoView microscopy, we performed whole-animal functional imaging of Drosophila embryos and larvae at a spatial resolution of 1.1-2.5 μm and at a temporal resolution of 2 Hz for up to 9 hours. We also performed whole-brain functional imaging in larval zebrafish and multicolor imaging of fast cellular dynamics across entire, gastrulating Drosophila embryos with isotropic, sub-cellular resolution. Compared with conventional (spatially anisotropic) light-sheet microscopy, IsoView microscopy improves spatial resolution at least sevenfold and decreases resolution anisotropy at least threefold. Compared with existing high-resolution light-sheet techniques, such as lattice lightsheet microscopy or diSPIM, IsoView microscopy effectively doubles the penetration depth and provides subsecond temporal resolution for specimens 400-fold larger than could previously be imaged.
NASA Astrophysics Data System (ADS)
Zarzycki, C. M.; Gettelman, A.; Callaghan, P.
2017-12-01
Accurately predicting weather extremes such as precipitation (floods and droughts) and temperature (heat waves) requires high resolution to resolve mesoscale dynamics and topography at horizontal scales of 10-30km. Simulating such resolutions globally for climate scales (years to decades) remains computationally impractical. Simulating only a small region of the planet is more tractable at these scales for climate applications. This work describes global simulations using variable-resolution static meshes with multiple dynamical cores that target the continental United States using developmental versions of the Community Earth System Model version 2 (CESM2). CESM2 is tested in idealized, aquaplanet and full physics configurations to evaluate variable mesh simulations against uniform high and uniform low resolution simulations at resolutions down to 15km. Different physical parameterization suites are also evaluated to gauge their sensitivity to resolution. Idealized variable-resolution mesh cases compare well to high resolution tests. More recent versions of the atmospheric physics, including cloud schemes for CESM2, are more stable with respect to changes in horizontal resolution. Most of the sensitivity is due to sensitivity to timestep and interactions between deep convection and large scale condensation, expected from the closure methods. The resulting full physics model produces a comparable climate to the global low resolution mesh and similar high frequency statistics in the high resolution region. Some biases are reduced (orographic precipitation in the western United States), but biases do not necessarily go away at high resolution (e.g. summertime JJA surface Temp). The simulations are able to reproduce uniform high resolution results, making them an effective tool for regional climate studies and are available in CESM2.
NASA Astrophysics Data System (ADS)
Dore, A. J.; Kryza, M.; Hall, J. R.; Hallsworth, S.; Keller, V. J. D.; Vieno, M.; Sutton, M. A.
2011-12-01
The Fine Resolution Atmospheric Multi-pollutant Exchange model (FRAME) has been applied to model the spatial distribution of nitrogen deposition and air concentration over the UK at a 1 km spatial resolution. The modelled deposition and concentration data were gridded at resolutions of 1 km, 5 km and 50 km to test the sensitivity of calculations of the exceedance of critical loads for nitrogen deposition to the deposition data resolution. The modelled concentrations of NO2 were validated by comparison with measurements from the rural sites in the national monitoring network and were found to achieve better agreement with the high resolution 1 km data. High resolution plots were found to represent a more physically realistic distribution of nitrogen air concentrations and deposition resulting from use of 1 km resolution precipitation and emissions data as compared to 5 km resolution data. Summary statistics for national scale exceedance of the critical load for nitrogen deposition were not highly sensitive to the grid resolution of the deposition data but did show greater area exceedance with coarser grid resolution due to spatial averaging of high nitrogen deposition hot spots. Local scale deposition at individual Sites of Special Scientific Interest and high precipitation upland sites was sensitive to choice of grid resolution of deposition data. Use of high resolution data tended to generate lower deposition values in sink areas for nitrogen dry deposition (Sites of Scientific Interest) and higher values in high precipitation upland areas. In areas with generally low exceedance (Scotland) and for certain vegetation types (montane), the exceedance statistics were more sensitive to model data resolution.
NASA Astrophysics Data System (ADS)
Dore, A. J.; Kryza, M.; Hall, J. R.; Hallsworth, S.; Keller, V. J. D.; Vieno, M.; Sutton, M. A.
2012-05-01
The Fine Resolution Atmospheric Multi-pollutant Exchange model (FRAME) was applied to model the spatial distribution of reactive nitrogen deposition and air concentration over the United Kingdom at a 1 km spatial resolution. The modelled deposition and concentration data were gridded at resolutions of 1 km, 5 km and 50 km to test the sensitivity of calculations of the exceedance of critical loads for nitrogen deposition to the deposition data resolution. The modelled concentrations of NO2 were validated by comparison with measurements from the rural sites in the national monitoring network and were found to achieve better agreement with the high resolution 1 km data. High resolution plots were found to represent a more physically realistic distribution of reactive nitrogen air concentrations and deposition resulting from use of 1 km resolution precipitation and emissions data as compared to 5 km resolution data. Summary statistics for national scale exceedance of the critical load for nitrogen deposition were not highly sensitive to the grid resolution of the deposition data but did show greater area exceedance with coarser grid resolution due to spatial averaging of high nitrogen deposition hot spots. Local scale deposition at individual Sites of Special Scientific Interest and high precipitation upland sites was sensitive to choice of grid resolution of deposition data. Use of high resolution data tended to generate lower deposition values in sink areas for nitrogen dry deposition (Sites of Scientific Interest) and higher values in high precipitation upland areas. In areas with generally low exceedance (Scotland) and for certain vegetation types (montane), the exceedance statistics were more sensitive to model data resolution.
Very high resolution aerial films
NASA Astrophysics Data System (ADS)
Becker, Rolf
1986-11-01
The use of very high resolution aerial films in aerial photography is evaluated. Commonly used panchromatic, color, and CIR films and their high resolution equivalents are compared. Based on practical experience and systematic investigations, the very high image quality and improved height accuracy that can be achieved using these films are demonstrated. Advantages to be gained from this improvement and operational restrictions encountered when using high resolution film are discussed.
Hu, Zhen-Hua; Huang, Teng; Wang, Ying-Ping; Ding, Lei; Zheng, Hai-Yang; Fang, Li
2011-06-01
Taking solar source as radiation in the near-infrared high-resolution absorption spectrum is widely used in remote sensing of atmospheric parameters. The present paper will take retrieval of the concentration of CO2 for example, and study the effect of solar spectra resolution. Retrieving concentrations of CO2 by using high resolution absorption spectra, a method which uses the program provided by AER to calculate the solar spectra at the top of atmosphere as radiation and combine with the HRATS (high resolution atmospheric transmission simulation) to simulate retrieving concentration of CO2. Numerical simulation shows that the accuracy of solar spectrum is important to retrieval, especially in the hyper-resolution spectral retrieavl, and the error of retrieval concentration has poor linear relation with the resolution of observation, but there is a tendency that the decrease in the resolution requires low resolution of solar spectrum. In order to retrieve the concentration of CO2 of atmosphere, the authors' should take full advantage of high-resolution solar spectrum at the top of atmosphere.
NASA Astrophysics Data System (ADS)
Joers, James M.
The use of magic angle spinning to obtain high resolution solid state spectra has been well documented. This resolution occurs by coherently averaging the chemical shift anisotropy and dipolar interactions to zero over the period of a full rotation. While this allows for higher resolution, the structural information is seemingly lost to the spectrometer eye. Thus, high resolution spectra and structural information appear to be mutually exlusive. Recently, the push in solid state NMR is the development of recoupling techniques which afford both high resolution and structural information. The following dissertation demonstrates the feasibility of implementing such experiments in solving real world problems, and is centered on devising a method to recover homonuclear dipolar interactions in the high resolution regime.
Satellite image fusion based on principal component analysis and high-pass filtering.
Metwalli, Mohamed R; Nasr, Ayman H; Allah, Osama S Farag; El-Rabaie, S; Abd El-Samie, Fathi E
2010-06-01
This paper presents an integrated method for the fusion of satellite images. Several commercial earth observation satellites carry dual-resolution sensors, which provide high spatial resolution or simply high-resolution (HR) panchromatic (pan) images and low-resolution (LR) multi-spectral (MS) images. Image fusion methods are therefore required to integrate a high-spectral-resolution MS image with a high-spatial-resolution pan image to produce a pan-sharpened image with high spectral and spatial resolutions. Some image fusion methods such as the intensity, hue, and saturation (IHS) method, the principal component analysis (PCA) method, and the Brovey transform (BT) method provide HR MS images, but with low spectral quality. Another family of image fusion methods, such as the high-pass-filtering (HPF) method, operates on the basis of the injection of high frequency components from the HR pan image into the MS image. This family of methods provides less spectral distortion. In this paper, we propose the integration of the PCA method and the HPF method to provide a pan-sharpened MS image with superior spatial resolution and less spectral distortion. The experimental results show that the proposed fusion method retains the spectral characteristics of the MS image and, at the same time, improves the spatial resolution of the pan-sharpened image.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Jun, Ji Hyun; Song, Zhihong; Liu, Zhenjiu
High-spatial resolution and high-mass resolution techniques are developed and adopted for the mass spectrometric imaging of epicuticular lipids on the surface of Arabidopsis thaliana. Single cell level spatial resolution of {approx}12 {micro}m was achieved by reducing the laser beam size by using an optical fiber with 25 {micro}m core diameter in a vacuum matrix-assisted laser desorption ionization-linear ion trap (vMALDI-LTQ) mass spectrometer and improved matrix application using an oscillating capillary nebulizer. Fine chemical images of a whole flower were visualized in this high spatial resolution showing substructure of an anther and single pollen grains at the stigma and anthers. Themore » LTQ-Orbitrap with a MALDI ion source was adopted to achieve MS imaging in high mass resolution. Specifically, isobaric silver ion adducts of C29 alkane (m/z 515.3741) and C28 aldehyde (m/z 515.3377), indistinguishable in low-resolution LTQ, can now be clearly distinguished and their chemical images could be separately constructed. In the application to roots, the high spatial resolution allowed molecular MS imaging of secondary roots and the high mass resolution allowed direct identification of lipid metabolites on root surfaces.« less
Guner, Huseyin; Close, Patrick L; Cai, Wenxuan; Zhang, Han; Peng, Ying; Gregorich, Zachery R; Ge, Ying
2014-03-01
The rapid advancements in mass spectrometry (MS) instrumentation, particularly in Fourier transform (FT) MS, have made the acquisition of high-resolution and high-accuracy mass measurements routine. However, the software tools for the interpretation of high-resolution MS data are underdeveloped. Although several algorithms for the automatic processing of high-resolution MS data are available, there is still an urgent need for a user-friendly interface with functions that allow users to visualize and validate the computational output. Therefore, we have developed MASH Suite, a user-friendly and versatile software interface for processing high-resolution MS data. MASH Suite contains a wide range of features that allow users to easily navigate through data analysis, visualize complex high-resolution MS data, and manually validate automatically processed results. Furthermore, it provides easy, fast, and reliable interpretation of top-down, middle-down, and bottom-up MS data. MASH Suite is convenient, easily operated, and freely available. It can greatly facilitate the comprehensive interpretation and validation of high-resolution MS data with high accuracy and reliability.
Resolution Enhancement of Hyperion Hyperspectral Data using Ikonos Multispectral Data
2007-09-01
spatial - resolution hyperspectral image to produce a sharpened product. The result is a product that has the spectral properties of the ...multispectral sensors. In this work, we examine the benefits of combining data from high- spatial - resolution , low- spectral - resolution spectral imaging...sensors with data obtained from high- spectral - resolution , low- spatial - resolution spectral imaging sensors.
NASA Astrophysics Data System (ADS)
Luo, Shouhua; Shen, Tao; Sun, Yi; Li, Jing; Li, Guang; Tang, Xiangyang
2018-04-01
In high resolution (microscopic) CT applications, the scan field of view should cover the entire specimen or sample to allow complete data acquisition and image reconstruction. However, truncation may occur in projection data and results in artifacts in reconstructed images. In this study, we propose a low resolution image constrained reconstruction algorithm (LRICR) for interior tomography in microscopic CT at high resolution. In general, the multi-resolution acquisition based methods can be employed to solve the data truncation problem if the project data acquired at low resolution are utilized to fill up the truncated projection data acquired at high resolution. However, most existing methods place quite strict restrictions on the data acquisition geometry, which greatly limits their utility in practice. In the proposed LRICR algorithm, full and partial data acquisition (scan) at low and high resolutions, respectively, are carried out. Using the image reconstructed from sparse projection data acquired at low resolution as the prior, a microscopic image at high resolution is reconstructed from the truncated projection data acquired at high resolution. Two synthesized digital phantoms, a raw bamboo culm and a specimen of mouse femur, were utilized to evaluate and verify performance of the proposed LRICR algorithm. Compared with the conventional TV minimization based algorithm and the multi-resolution scout-reconstruction algorithm, the proposed LRICR algorithm shows significant improvement in reduction of the artifacts caused by data truncation, providing a practical solution for high quality and reliable interior tomography in microscopic CT applications. The proposed LRICR algorithm outperforms the multi-resolution scout-reconstruction method and the TV minimization based reconstruction for interior tomography in microscopic CT.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wei, Zhiliang; Lin, Liangjie; Lin, Yanqin, E-mail: linyq@xmu.edu.cn, E-mail: chenz@xmu.edu.cn
2014-09-29
In nuclear magnetic resonance (NMR) technique, it is of great necessity and importance to obtain high-resolution spectra, especially under inhomogeneous magnetic fields. In this study, a method based on partial homogeneity is proposed for retrieving high-resolution one-dimensional NMR spectra under inhomogeneous fields. Signals from series of small voxels, which characterize high resolution due to small sizes, are recorded simultaneously. Then, an inhomogeneity correction algorithm is developed based on pattern recognition to correct the influence brought by field inhomogeneity automatically, thus yielding high-resolution information. Experiments on chemical solutions and fish spawn were carried out to demonstrate the performance of the proposedmore » method. The proposed method serves as a single radiofrequency pulse high-resolution NMR spectroscopy under inhomogeneous fields and may provide an alternative of obtaining high-resolution spectra of in vivo living systems or chemical-reaction systems, where performances of conventional techniques are usually degenerated by field inhomogeneity.« less
Von Dreele, Robert B.; D'Amico, Kevin
2006-10-31
A process is provided for the high throughput screening of binding of ligands to macromolecules using high resolution powder diffraction data including producing a first sample slurry of a selected polycrystalline macromolecule material and a solvent, producing a second sample slurry of a selected polycrystalline macromolecule material, one or more ligands and the solvent, obtaining a high resolution powder diffraction pattern on each of said first sample slurry and the second sample slurry, and, comparing the high resolution powder diffraction pattern of the first sample slurry and the high resolution powder diffraction pattern of the second sample slurry whereby a difference in the high resolution powder diffraction patterns of the first sample slurry and the second sample slurry provides a positive indication for the formation of a complex between the selected polycrystalline macromolecule material and at least one of the one or more ligands.
NASA Technical Reports Server (NTRS)
1987-01-01
The high-resolution imaging spectrometer (HIRIS) is an Earth Observing System (EOS) sensor developed for high spatial and spectral resolution. It can acquire more information in the 0.4 to 2.5 micrometer spectral region than any other sensor yet envisioned. Its capability for critical sampling at high spatial resolution makes it an ideal complement to the MODIS (moderate-resolution imaging spectrometer) and HMMR (high-resolution multifrequency microwave radiometer), lower resolution sensors designed for repetitive coverage. With HIRIS it is possible to observe transient processes in a multistage remote sensing strategy for Earth observations on a global scale. The objectives, science requirements, and current sensor design of the HIRIS are discussed along with the synergism of the sensor with other EOS instruments and data handling and processing requirements.
Image quality improvement in cone-beam CT using the super-resolution technique.
Oyama, Asuka; Kumagai, Shinobu; Arai, Norikazu; Takata, Takeshi; Saikawa, Yusuke; Shiraishi, Kenshiro; Kobayashi, Takenori; Kotoku, Jun'ichi
2018-04-05
This study was conducted to improve cone-beam computed tomography (CBCT) image quality using the super-resolution technique, a method of inferring a high-resolution image from a low-resolution image. This technique is used with two matrices, so-called dictionaries, constructed respectively from high-resolution and low-resolution image bases. For this study, a CBCT image, as a low-resolution image, is represented as a linear combination of atoms, the image bases in the low-resolution dictionary. The corresponding super-resolution image was inferred by multiplying the coefficients and the high-resolution dictionary atoms extracted from planning CT images. To evaluate the proposed method, we computed the root mean square error (RMSE) and structural similarity (SSIM). The resulting RMSE and SSIM between the super-resolution images and the planning CT images were, respectively, as much as 0.81 and 1.29 times better than those obtained without using the super-resolution technique. We used super-resolution technique to improve the CBCT image quality.
Using high spectral resolution spectrophotometry to study broad mineral absorption features on Mars
NASA Technical Reports Server (NTRS)
Blaney, D. L.; Crisp, D.
1993-01-01
Traditionally telescopic measurements of mineralogic absorption features have been made using relatively low to moderate (R=30-300) spectral resolution. Mineralogic absorption features tend to be broad so high resolution spectroscopy (R greater than 10,000) does not provide significant additional compositional information. Low to moderate resolution spectroscopy allows an observer to obtain data over a wide wavelength range (hundreds to thousands of wavenumbers) compared to the several wavenumber intervals that are collected using high resolution spectrometers. However, spectrophotometry at high resolution has major advantages over lower resolution spectroscopy in situations that are applicable to studies of the Martian surface, i.e., at wavelengths where relatively weak surface absorption features and atmospheric gas absorption features both occur.
Image super-resolution via sparse representation.
Yang, Jianchao; Wright, John; Huang, Thomas S; Ma, Yi
2010-11-01
This paper presents a new approach to single-image super-resolution, based on sparse signal representation. Research on image statistics suggests that image patches can be well-represented as a sparse linear combination of elements from an appropriately chosen over-complete dictionary. Inspired by this observation, we seek a sparse representation for each patch of the low-resolution input, and then use the coefficients of this representation to generate the high-resolution output. Theoretical results from compressed sensing suggest that under mild conditions, the sparse representation can be correctly recovered from the downsampled signals. By jointly training two dictionaries for the low- and high-resolution image patches, we can enforce the similarity of sparse representations between the low resolution and high resolution image patch pair with respect to their own dictionaries. Therefore, the sparse representation of a low resolution image patch can be applied with the high resolution image patch dictionary to generate a high resolution image patch. The learned dictionary pair is a more compact representation of the patch pairs, compared to previous approaches, which simply sample a large amount of image patch pairs, reducing the computational cost substantially. The effectiveness of such a sparsity prior is demonstrated for both general image super-resolution and the special case of face hallucination. In both cases, our algorithm generates high-resolution images that are competitive or even superior in quality to images produced by other similar SR methods. In addition, the local sparse modeling of our approach is naturally robust to noise, and therefore the proposed algorithm can handle super-resolution with noisy inputs in a more unified framework.
Assessment of prediction skill in equatorial Pacific Ocean in high resolution model of CFS
NASA Astrophysics Data System (ADS)
Arora, Anika; Rao, Suryachandra A.; Pillai, Prasanth; Dhakate, Ashish; Salunke, Kiran; Srivastava, Ankur
2018-01-01
The effect of increasing atmospheric resolution on prediction skill of El Niño southern oscillation phenomenon in climate forecast system model is explored in this paper. Improvement in prediction skill for sea surface temperature (SST) and winds at all leads compared to low resolution model in the tropical Indo-Pacific basin is observed. High resolution model is able to capture extreme events reasonably well. As a result, the signal to noise ratio is improved in the high resolution model. However, spring predictability barrier (SPB) for summer months in Nino 3 and Nino 3.4 region is stronger in high resolution model, in spite of improvement in overall prediction skill and dynamics everywhere else. Anomaly correlation coefficient of SST in high resolution model with observations in Nino 3.4 region targeting boreal summer months when predicted at lead times of 3-8 months in advance decreased compared its lower resolution counterpart. It is noted that higher variance of winds predicted in spring season over central equatorial Pacific compared to observed variance of winds results in stronger than normal response on subsurface ocean, hence increases SPB for boreal summer months in high resolution model.
An atlas of high-resolution IRAS maps on nearby galaxies
NASA Technical Reports Server (NTRS)
Rice, Walter
1993-01-01
An atlas of far-infrared IRAS maps with near 1 arcmin angular resolution of 30 optically large galaxies is presented. The high-resolution IRAS maps were produced with the Maximum Correlation Method (MCM) image construction and enhancement technique developed at IPAC. The MCM technique, which recovers the spatial information contained in the overlapping detector data samples of the IRAS all-sky survey scans, is outlined and tests to verify the structural reliability and photometric integrity of the high-resolution maps are presented. The infrared structure revealed in individual galaxies is discussed. The atlas complements the IRAS Nearby Galaxy High-Resolution Image Atlas, the high-resolution galaxy images encoded in FITS format, which is provided to the astronomical community as an IPAC product.
NREL: International Activities - Afghanistan Resource Maps
facilities, load centers, terrain conditions, and land use. The high-resolution (1-km) annual wind power maps . The high-resolution (10-km) annual and seasonal solar resource maps were developed using weather -km Resolution Annual Maps (Direct) Low-Res (JPG 104 KB) | High-Res (ZIP 330 KB) 40-km Resolution
The effect of horizontal resolution on simulation quality in the Community Atmospheric Model, CAM5.1
Wehner, Michael F.; Reed, Kevin A.; Li, Fuyu; ...
2014-10-13
We present an analysis of version 5.1 of the Community Atmospheric Model (CAM5.1) at a high horizontal resolution. Intercomparison of this global model at approximately 0.25°, 1°, and 2° is presented for extreme daily precipitation as well as for a suite of seasonal mean fields. In general, extreme precipitation amounts are larger in high resolution than in lower-resolution configurations. In many but not all locations and/or seasons, extreme daily precipitation rates in the high-resolution configuration are higher and more realistic. The high-resolution configuration produces tropical cyclones up to category 5 on the Saffir-Simpson scale and a comparison to observations revealsmore » both realistic and unrealistic model behavior. In the absence of extensive model tuning at high resolution, simulation of many of the mean fields analyzed in this study is degraded compared to the tuned lower-resolution public released version of the model.« less
Machine Learning Predictions of a Multiresolution Climate Model Ensemble
NASA Astrophysics Data System (ADS)
Anderson, Gemma J.; Lucas, Donald D.
2018-05-01
Statistical models of high-resolution climate models are useful for many purposes, including sensitivity and uncertainty analyses, but building them can be computationally prohibitive. We generated a unique multiresolution perturbed parameter ensemble of a global climate model. We use a novel application of a machine learning technique known as random forests to train a statistical model on the ensemble to make high-resolution model predictions of two important quantities: global mean top-of-atmosphere energy flux and precipitation. The random forests leverage cheaper low-resolution simulations, greatly reducing the number of high-resolution simulations required to train the statistical model. We demonstrate that high-resolution predictions of these quantities can be obtained by training on an ensemble that includes only a small number of high-resolution simulations. We also find that global annually averaged precipitation is more sensitive to resolution changes than to any of the model parameters considered.
Higashiura, Akifumi; Ohta, Kazunori; Masaki, Mika; Sato, Masaru; Inaka, Koji; Tanaka, Hiroaki; Nakagawa, Atsushi
2013-11-01
Recently, many technical improvements in macromolecular X-ray crystallography have increased the number of structures deposited in the Protein Data Bank and improved the resolution limit of protein structures. Almost all high-resolution structures have been determined using a synchrotron radiation source in conjunction with cryocooling techniques, which are required in order to minimize radiation damage. However, optimization of cryoprotectant conditions is a time-consuming and difficult step. To overcome this problem, the high-pressure cryocooling method was developed (Kim et al., 2005) and successfully applied to many protein-structure analyses. In this report, using the high-pressure cryocooling method, the X-ray crystal structure of bovine H-protein was determined at 0.86 Å resolution. Structural comparisons between high- and ambient-pressure cryocooled crystals at ultra-high resolution illustrate the versatility of this technique. This is the first ultra-high-resolution X-ray structure obtained using the high-pressure cryocooling method.
NASA Astrophysics Data System (ADS)
Ogawa, Masahiko; Shidoji, Kazunori
2011-03-01
High-resolution stereoscopic images are effective for use in virtual reality and teleoperation systems. However, the higher the image resolution, the higher is the cost of computer processing and communication. To reduce this cost, numerous earlier studies have suggested the use of multi-resolution images, which have high resolution in region of interests and low resolution in other areas. However, observers can perceive unpleasant sensations and incorrect depth because they can see low-resolution areas in their field of vision. In this study, we conducted an experiment to research the relationship between the viewing field and the perception of image resolution, and determined respective thresholds of image-resolution perception for various positions of the viewing field. The results showed that participants could not distinguish between the high-resolution stimulus and the decreased stimulus, 63 ppi, at positions more than 8 deg outside the gaze point. Moreover, with positions shifted a further 11 and 13 deg from the gaze point, participants could not distinguish between the high-resolution stimulus and the decreased stimuli whose resolution densities were 42 and 25 ppi. Hence, we will propose the composition of multi-resolution images in which observers do not perceive unpleasant sensations and incorrect depth with data reduction (compression).
Single image super-resolution via an iterative reproducing kernel Hilbert space method.
Deng, Liang-Jian; Guo, Weihong; Huang, Ting-Zhu
2016-11-01
Image super-resolution, a process to enhance image resolution, has important applications in satellite imaging, high definition television, medical imaging, etc. Many existing approaches use multiple low-resolution images to recover one high-resolution image. In this paper, we present an iterative scheme to solve single image super-resolution problems. It recovers a high quality high-resolution image from solely one low-resolution image without using a training data set. We solve the problem from image intensity function estimation perspective and assume the image contains smooth and edge components. We model the smooth components of an image using a thin-plate reproducing kernel Hilbert space (RKHS) and the edges using approximated Heaviside functions. The proposed method is applied to image patches, aiming to reduce computation and storage. Visual and quantitative comparisons with some competitive approaches show the effectiveness of the proposed method.
High Efficiency Multi-shot Interleaved Spiral-In/Out Acquisition for High Resolution BOLD fMRI
Jung, Youngkyoo; Samsonov, Alexey A.; Liu, Thomas T.; Buracas, Giedrius T.
2012-01-01
Growing demand for high spatial resolution BOLD functional MRI faces a challenge of the spatial resolution vs. coverage or temporal resolution tradeoff, which can be addressed by methods that afford increased acquisition efficiency. Spiral acquisition trajectories have been shown to be superior to currently prevalent echo-planar imaging in terms of acquisition efficiency, and high spatial resolution can be achieved by employing multiple-shot spiral acquisition. The interleaved spiral in-out trajectory is preferred over spiral-in due to increased BOLD signal CNR and higher acquisition efficiency than that of spiral-out or non-interleaved spiral in/out trajectories (1), but to date applicability of the multi-shot interleaved spiral in-out for high spatial resolution imaging has not been studied. Herein we propose multi-shot interleaved spiral in-out acquisition and investigate its applicability for high spatial resolution BOLD fMRI. Images reconstructed from interleaved spiral-in and -out trajectories possess artifacts caused by differences in T2* decay, off-resonance and k-space errors associated with the two trajectories. We analyze the associated errors and demonstrate that application of conjugate phase reconstruction and spectral filtering can substantially mitigate these image artifacts. After applying these processing steps, the multishot interleaved spiral in-out pulse sequence yields high BOLD CNR images at in-plane resolution below 1x1 mm while preserving acceptable temporal resolution (4 s) and brain coverage (15 slices of 2 mm thickness). Moreover, this method yields sufficient BOLD CNR at 1.5 mm isotropic resolution for detection of activation in hippocampus associated with cognitive tasks (Stern memory task). The multi-shot interleaved spiral in-out acquisition is a promising technique for high spatial resolution BOLD fMRI applications. PMID:23023395
NASA Astrophysics Data System (ADS)
Singh, G.; Das, N. N.; Panda, R. K.; Mohanty, B.; Entekhabi, D.; Bhattacharya, B. K.
2016-12-01
Soil moisture status at high resolution (1-10 km) is vital for hydrological, agricultural and hydro-metrological applications. The NASA Soil Moisture Active Passive (SMAP) mission had potential to provide reliable soil moisture estimate at finer spatial resolutions (3 km and 9 km) at the global extent, but suffered a malfunction of its radar, consequently making the SMAP mission observations only from radiometer that are of coarse spatial resolution. At present, the availability of high-resolution soil moisture product is limited, especially in developing countries like India, which greatly depends on agriculture for sustaining a huge population. Therefore, an attempt has been made in the reported study to combine the C-band synthetic aperture radar (SAR) data from Radar Imaging Satellite (RISAT) of the Indian Space Research Organization (ISRO) with the SMAP mission L-band radiometer data to obtain high-resolution (1 km and 3 km) soil moisture estimates. In this study, a downscaling approach (Active-Passive Algorithm) implemented for the SMAP mission was used to disaggregate the SMAP radiometer brightness temperature (Tb) using the fine resolution SAR backscatter (σ0) from RISAT. The downscaled high-resolution Tb was then subjected to tau-omega model in conjunction with high-resolution ancillary data to retrieve soil moisture at 1 and 3 km scale. The retrieved high-resolution soil moisture estimates were then validated with ground based soil moisture measurement under different hydro-climatic regions of India. Initial results show tremendous potential and reasonable accuracy for the retrieved soil moisture at 1 km and 3 km. It is expected that ISRO will implement this approach to produce high-resolution soil moisture estimates for the Indian subcontinent.
A novel ToF-SIMS operation mode for sub 100 nm lateral resolution: Application and performance.
Kubicek, Markus; Holzlechner, Gerald; Opitz, Alexander K; Larisegger, Silvia; Hutter, Herbert; Fleig, Jürgen
2014-01-15
A novel operation mode for time of flight-secondary ion mass spectrometry (ToF-SIMS) is described for a TOF.SIMS 5 instrument with a Bi-ion gun. It features sub 100 nm lateral resolution, adjustable primary ion currents and the possibility to measure with high lateral resolution as well as high mass resolution. The adjustment and performance of the novel operation mode are described and compared to established ToF-SIMS operation modes. Several examples of application featuring novel scientific results show the capabilities of the operation mode in terms of lateral resolution, accuracy of isotope analysis of oxygen, and combination of high lateral and mass resolution. The relationship between high lateral resolution and operation of SIMS in static mode is discussed.
Gas scintillation glass GEM detector for high-resolution X-ray imaging and CT
NASA Astrophysics Data System (ADS)
Fujiwara, T.; Mitsuya, Y.; Fushie, T.; Murata, K.; Kawamura, A.; Koishikawa, A.; Toyokawa, H.; Takahashi, H.
2017-04-01
A high-spatial-resolution X-ray-imaging gaseous detector has been developed with a single high-gas-gain glass gas electron multiplier (G-GEM), scintillation gas, and optical camera. High-resolution X-ray imaging of soft elements is performed with a spatial resolution of 281 μm rms and an effective area of 100×100 mm. In addition, high-resolution X-ray 3D computed tomography (CT) is successfully demonstrated with the gaseous detector. It shows high sensitivity to low-energy X-rays, which results in high-contrast radiographs of objects containing elements with low atomic numbers. In addition, the high yield of scintillation light enables fast X-ray imaging, which is an advantage for constructing CT images with low-energy X-rays.
Evaluating an image-fusion algorithm with synthetic-image-generation tools
NASA Astrophysics Data System (ADS)
Gross, Harry N.; Schott, John R.
1996-06-01
An algorithm that combines spectral mixing and nonlinear optimization is used to fuse multiresolution images. Image fusion merges images of different spatial and spectral resolutions to create a high spatial resolution multispectral combination. High spectral resolution allows identification of materials in the scene, while high spatial resolution locates those materials. In this algorithm, conventional spectral mixing estimates the percentage of each material (called endmembers) within each low resolution pixel. Three spectral mixing models are compared; unconstrained, partially constrained, and fully constrained. In the partially constrained application, the endmember fractions are required to sum to one. In the fully constrained application, all fractions are additionally required to lie between zero and one. While negative fractions seem inappropriate, they can arise from random spectral realizations of the materials. In the second part of the algorithm, the low resolution fractions are used as inputs to a constrained nonlinear optimization that calculates the endmember fractions for the high resolution pixels. The constraints mirror the low resolution constraints and maintain consistency with the low resolution fraction results. The algorithm can use one or more higher resolution sharpening images to locate the endmembers to high spatial accuracy. The algorithm was evaluated with synthetic image generation (SIG) tools. A SIG developed image can be used to control the various error sources that are likely to impair the algorithm performance. These error sources include atmospheric effects, mismodeled spectral endmembers, and variability in topography and illumination. By controlling the introduction of these errors, the robustness of the algorithm can be studied and improved upon. The motivation for this research is to take advantage of the next generation of multi/hyperspectral sensors. Although the hyperspectral images will be of modest to low resolution, fusing them with high resolution sharpening images will produce a higher spatial resolution land cover or material map.
Olivier, Scot S.; Werner, John S.; Zawadzki, Robert J.; Laut, Sophie P.; Jones, Steven M.
2010-09-07
This invention permits retinal images to be acquired at high speed and with unprecedented resolution in three dimensions (4.times.4.times.6 .mu.m). The instrument achieves high lateral resolution by using adaptive optics to correct optical aberrations of the human eye in real time. High axial resolution and high speed are made possible by the use of Fourier-domain optical coherence tomography. Using this system, we have demonstrated the ability to image microscopic blood vessels and the cone photoreceptor mosaic.
O-space with high resolution readouts outperforms radial imaging.
Wang, Haifeng; Tam, Leo; Kopanoglu, Emre; Peters, Dana C; Constable, R Todd; Galiana, Gigi
2017-04-01
While O-Space imaging is well known to accelerate image acquisition beyond traditional Cartesian sampling, its advantages compared to undersampled radial imaging, the linear trajectory most akin to O-Space imaging, have not been detailed. In addition, previous studies have focused on ultrafast imaging with very high acceleration factors and relatively low resolution. The purpose of this work is to directly compare O-Space and radial imaging in their potential to deliver highly undersampled images of high resolution and minimal artifacts, as needed for diagnostic applications. We report that the greatest advantages to O-Space imaging are observed with extended data acquisition readouts. A sampling strategy that uses high resolution readouts is presented and applied to compare the potential of radial and O-Space sequences to generate high resolution images at high undersampling factors. Simulations and phantom studies were performed to investigate whether use of extended readout windows in O-Space imaging would increase k-space sampling and improve image quality, compared to radial imaging. Experimental O-Space images acquired with high resolution readouts show fewer artifacts and greater sharpness than radial imaging with equivalent scan parameters. Radial images taken with longer readouts show stronger undersampling artifacts, which can cause small or subtle image features to disappear. These features are preserved in a comparable O-Space image. High resolution O-Space imaging yields highly undersampled images of high resolution and minimal artifacts. The additional nonlinear gradient field improves image quality beyond conventional radial imaging. Copyright © 2016 Elsevier Inc. All rights reserved.
Enhancing SMAP Soil Moisture Retrievals via Superresolution Techniques
NASA Astrophysics Data System (ADS)
Beale, K. D.; Ebtehaj, A. M.; Romberg, J. K.; Bras, R. L.
2017-12-01
Soil moisture is a key state variable that modulates land-atmosphere interactions and its high-resolution global scale estimates are essential for improved weather forecasting, drought prediction, crop management, and the safety of troop mobility. Currently, NASA's Soil Moisture Active/Passive (SMAP) satellite provides a global picture of soil moisture variability at a resolution of 36 km, which is prohibitive for some hydrologic applications. The goal of this research is to enhance the resolution of SMAP passive microwave retrievals by a factor of 2 to 4 using modern superresolution techniques that rely on the knowledge of high-resolution land surface models. In this work, we explore several super-resolution techniques including an empirical dictionary method, a learned dictionary method, and a three-layer convolutional neural network. Using a year of global high-resolution land surface model simulations as training set, we found that we are able to produce high-resolution soil moisture maps that outperform the original low-resolution observations both qualitatively and quantitatively. In particular, on a patch-by-patch basis we are able to produce estimates of high-resolution soil moisture maps that improve on the original low-resolution patches by on average 6% in terms of mean-squared error, and 14% in terms of the structural similarity index.
Collection and Analysis of Crowd Data with Aerial, Rooftop, and Ground Views
2014-11-10
collected these datasets using different aircrafts. Erista 8 HL OctaCopter is a heavy-lift aerial platform capable of using high-resolution cinema ...is another high-resolution camera that is cinema grade and high quality, with the capability of capturing videos with 4K resolution at 30 frames per...292.58 Imaging Systems and Accessories Blackmagic Production Camera 4 Crowd Counting using 4K Cameras High resolution cinema grade digital video
a Spiral-Based Downscaling Method for Generating 30 M Time Series Image Data
NASA Astrophysics Data System (ADS)
Liu, B.; Chen, J.; Xing, H.; Wu, H.; Zhang, J.
2017-09-01
The spatial detail and updating frequency of land cover data are important factors influencing land surface dynamic monitoring applications in high spatial resolution scale. However, the fragmentized patches and seasonal variable of some land cover types (e. g. small crop field, wetland) make it labor-intensive and difficult in the generation of land cover data. Utilizing the high spatial resolution multi-temporal image data is a possible solution. Unfortunately, the spatial and temporal resolution of available remote sensing data like Landsat or MODIS datasets can hardly satisfy the minimum mapping unit and frequency of current land cover mapping / updating at the same time. The generation of high resolution time series may be a compromise to cover the shortage in land cover updating process. One of popular way is to downscale multi-temporal MODIS data with other high spatial resolution auxiliary data like Landsat. But the usual manner of downscaling pixel based on a window may lead to the underdetermined problem in heterogeneous area, result in the uncertainty of some high spatial resolution pixels. Therefore, the downscaled multi-temporal data can hardly reach high spatial resolution as Landsat data. A spiral based method was introduced to downscale low spatial and high temporal resolution image data to high spatial and high temporal resolution image data. By the way of searching the similar pixels around the adjacent region based on the spiral, the pixel set was made up in the adjacent region pixel by pixel. The underdetermined problem is prevented to a large extent from solving the linear system when adopting the pixel set constructed. With the help of ordinary least squares, the method inverted the endmember values of linear system. The high spatial resolution image was reconstructed on the basis of high spatial resolution class map and the endmember values band by band. Then, the high spatial resolution time series was formed with these high spatial resolution images image by image. Simulated experiment and remote sensing image downscaling experiment were conducted. In simulated experiment, the 30 meters class map dataset Globeland30 was adopted to investigate the effect on avoid the underdetermined problem in downscaling procedure and a comparison between spiral and window was conducted. Further, the MODIS NDVI and Landsat image data was adopted to generate the 30m time series NDVI in remote sensing image downscaling experiment. Simulated experiment results showed that the proposed method had a robust performance in downscaling pixel in heterogeneous region and indicated that it was superior to the traditional window-based methods. The high resolution time series generated may be a benefit to the mapping and updating of land cover data.
Beyond Population Distribution: Enhancing Sociocultural Resolution from Remote Sensing
NASA Astrophysics Data System (ADS)
Bhaduri, B. L.; Rose, A.
2017-12-01
At Oak Ridge National Laboratory, since late 1990s, we have focused on developing high resolution population distribution and dynamics data from local to global scales. Increasing resolutions of geographic data has been mirrored by population data sets developed across the community. However, attempts to increase temporal and sociocultural resolutions have been limited given the lack of high resolution data on human settlements and activities. While recent advancements in moderate to high resolution earth observation have led to better physiographic data, the approach of exploiting very high resolution (sub-meter resolution) imagery has also proven useful for generating accurate human settlement maps. It allows potential (social and vulnerability) characterization of population from settlement structures by exploiting image texture and spectral features. Our recent research utilizing machine learning and geocomputation has not only validated "poverty mapping from imagery" hypothesis, but has delineated a new paradigm of rapid analysis of high resolution imagery to enhance such "neighborhood" mapping techniques. Such progress in GIScience is allowing us to move towards the goal of creating a global foundation level database for impervious surfaces and "neighborhoods," and holds tremendous promise for key applications focusing on sustainable development including many social science applications.
NASA Astrophysics Data System (ADS)
Yin, Leilei; Chen, Ying-Chieh; Gelb, Jeff; Stevenson, Darren M.; Braun, Paul A.
2010-09-01
High resolution x-ray computed tomography is a powerful non-destructive 3-D imaging method. It can offer superior resolution on objects that are opaque or low contrast for optical microscopy. Synchrotron based x-ray computed tomography systems have been available for scientific research, but remain difficult to access for broader users. This work introduces a lab-based high-resolution x-ray nanotomography system with 50nm resolution in absorption and Zernike phase contrast modes. Using this system, we have demonstrated high quality 3-D images of polymerized photonic crystals which have been analyzed for band gap structures. The isotropic volumetric data shows excellent consistency with other characterization results.
High Resolution PET with 250 micrometer LSO Detectors and Adaptive Zoom
DOE Office of Scientific and Technical Information (OSTI.GOV)
Cherry, Simon R.; Qi, Jinyi
2012-01-08
There have been impressive improvements in the performance of small-animal positron emission tomography (PET) systems since their first development in the mid 1990s, both in terms of spatial resolution and sensitivity, which have directly contributed to the increasing adoption of this technology for a wide range of biomedical applications. Nonetheless, current systems still are largely dominated by the size of the scintillator elements used in the detector. Our research predicts that developing scintillator arrays with an element size of 250 {micro}m or smaller will lead to an image resolution of 500 {micro}m when using 18F- or 64Cu-labeled radiotracers, giving amore » factor of 4-8 improvement in volumetric resolution over the highest resolution research systems currently in existence. This proposal had two main objectives: (i) To develop and evaluate much higher resolution and efficiency scintillator arrays that can be used in the future as the basis for detectors in a small-animal PET scanner where the spatial resolution is dominated by decay and interaction physics rather than detector size. (ii) To optimize one such high resolution, high sensitivity detector and adaptively integrate it into the existing microPET II small animal PET scanner as a 'zoom-in' detector that provides higher spatial resolution and sensitivity in a limited region close to the detector face. The knowledge gained from this project will provide valuable information for building future PET systems with a complete ring of very high-resolution detector arrays and also lay the foundations for utilizing high-resolution detectors in combination with existing PET systems for localized high-resolution imaging.« less
NASA Technical Reports Server (NTRS)
Putman, William P.
2012-01-01
Using a high-resolution non-hydrostatic version of GEOS-5 with the cubed-sphere finite-volume dynamical core, the impact of spatial and temporal resolution on cloud properties will be evaluated. There are indications from examining convective cluster development in high resolution GEOS-5 forecasts that the temporal resolution within the model may playas significant a role as horizontal resolution. Comparing modeled convective cloud clusters versus satellite observations of brightness temperature, we have found that improved. temporal resolution in GEOS-S accounts for a significant portion of the improvements in the statistical distribution of convective cloud clusters. Using satellite simulators in GEOS-S we will compare the cloud optical properties of GEOS-S at various spatial and temporal resolutions with those observed from MODIS. The potential impact of these results on tropical cyclone formation and intensity will be examined as well.
Recent applications of gas chromatography with high-resolution mass spectrometry.
Špánik, Ivan; Machyňáková, Andrea
2018-01-01
Gas chromatography coupled to high-resolution mass spectrometry is a powerful analytical method that combines excellent separation power of gas chromatography with improved identification based on an accurate mass measurement. These features designate gas chromatography with high-resolution mass spectrometry as the first choice for identification and structure elucidation of unknown volatile and semi-volatile organic compounds. Gas chromatography with high-resolution mass spectrometry quantitative analyses was previously focused on the determination of dioxins and related compounds using magnetic sector type analyzers, a standing requirement of many international standards. The introduction of a quadrupole high-resolution time-of-flight mass analyzer broadened interest in this method and novel applications were developed, especially for multi-target screening purposes. This review is focused on the development and the most interesting applications of gas chromatography coupled to high-resolution mass spectrometry towards analysis of environmental matrices, biological fluids, and food safety since 2010. The main attention is paid to various approaches and applications of gas chromatography coupled to high-resolution mass spectrometry for non-target screening to identify contaminants and to characterize the chemical composition of environmental, food, and biological samples. The most interesting quantitative applications, where a significant contribution of gas chromatography with high-resolution mass spectrometry over the currently used methods is expected, will be discussed as well. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Luo, Y.; Xia, J.; Miller, R.D.; Liu, J.; Xu, Y.; Liu, Q.
2008-01-01
Multichannel Analysis of Surface Waves (MASW) analysis is an efficient tool to obtain the vertical shear-wave profile. One of the key steps in the MASW method is to generate an image of dispersive energy in the frequency-velocity domain, so dispersion curves can be determined by picking peaks of dispersion energy. In this paper, we image Rayleigh-wave dispersive energy and separate multimodes from a multichannel record by high-resolution linear Radon transform (LRT). We first introduce Rayleigh-wave dispersive energy imaging by high-resolution LRT. We then show the process of Rayleigh-wave mode separation. Results of synthetic and real-world examples demonstrate that (1) compared with slant stacking algorithm, high-resolution LRT can improve the resolution of images of dispersion energy by more than 50% (2) high-resolution LRT can successfully separate multimode dispersive energy of Rayleigh waves with high resolution; and (3) multimode separation and reconstruction expand frequency ranges of higher mode dispersive energy, which not only increases the investigation depth but also provides a means to accurately determine cut-off frequencies.
High resolution surface plasmon microscopy for cell imaging
NASA Astrophysics Data System (ADS)
Argoul, F.; Monier, K.; Roland, T.; Elezgaray, J.; Berguiga, L.
2010-04-01
We introduce a new non-labeling high resolution microscopy method for cellular imaging. This method called SSPM (Scanning Surface Plasmon Microscopy) pushes down the resolution limit of surface plasmon resonance imaging (SPRi) to sub-micronic scales. High resolution SPRi is obtained by the surface plasmon lauching with a high numerical aperture objective lens. The advantages of SPPM compared to other high resolution SPRi's rely on three aspects; (i) the interferometric detection of the back reflected light after plasmon excitation, (ii) the twodimensional scanning of the sample for image reconstruction, (iii) the radial polarization of light, enhancing both resolution and sensitivity. This microscope can afford a lateral resolution of - 150 nm in liquid environment and - 200 nm in air. We present in this paper images of IMR90 fibroblasts obtained with SSPM in dried environment. Internal compartments such as nucleus, nucleolus, mitochondria, cellular and nuclear membrane can be recognized without labelling. We propose an interpretation of the ability of SSPM to reveal high index contrast zones by a local decomposition of the V (Z) function describing the response of the SSPM.
2007-03-01
time. This is a very powerful tool in determining fine spatial resolution , as boundary conditions are not only updated at every timestep, but the ...HIGH RESOLUTION MESOSCALE WEATHER DATA IMPROVEMENT TO SPATIAL EFFECTS FOR DOSE-RATE CONTOUR PLOT PREDICTIONS THESIS Christopher P...11 1 HIGH RESOLUTION MESOSCALE WEATHER DATA IMPROVEMENT TO SPATIAL EFFECTS FOR DOSE-RATE CONTOUR PLOT
NASA Astrophysics Data System (ADS)
Rimac, Antonija; von Storch, Jin-Song; Eden, Carsten
2013-04-01
The estimated power required to sustain global general circulation in the ocean is about 2 TW. This power is supplied with wind stress and tides. Energy spectrum shows pronounced maxima at near-inertial frequency. Near-inertial waves excited by high-frequency winds represent an important source for deep ocean mixing since they can propagate into the deep ocean and dissipate far away from the generation sites. The energy input by winds to near-inertial waves has been studied mostly using slab ocean models and wind stress forcing with coarse temporal resolution (e.g. 6-hourly). Slab ocean models lack the ability to reproduce fundamental aspects of kinetic energy balance and systematically overestimate the wind work. Also, slab ocean models do not account the energy used for the mixed layer deepening or the energy radiating downward into the deep ocean. Coarse temporal resolution of the wind forcing strongly underestimates the near-inertial energy. To overcome this difficulty we use an eddy permitting ocean model with high-frequency wind forcing. We establish the following model setup: We use the Max Planck Institute Ocean Model (MPIOM) on a tripolar grid with 45 km horizontal resolution and 40 vertical levels. We run the model with wind forcings that vary in horizontal and temporal resolution. We use high-resolution (1-hourly with 35 km horizontal resolution) and low-resolution winds (6-hourly with 250 km horizontal resolution). We address the following questions: Is the kinetic energy of near-inertial waves enhanced when high-resolution wind forcings are used? If so, is this due to higher level of overall wind variability or higher spatial or temporal resolution of wind forcing? How large is the power of near-inertial waves generated by winds? Our results show that near-inertial waves are enhanced and the near-inertial kinetic energy is two times higher (in the storm track regions 3.5 times higher) when high-resolution winds are used. Filtering high-resolution winds in space and time, the near-inertial kinetic energy reduces. The reduction is faster when a temporal filter is used suggesting that the high-frequency wind forcing is more efficient in generating near-inertial wave energy than the small-scale wind forcing. Using low-resolution wind forcing the wind generated power to near-inertial waves is 0.55 TW. When we use high-resolution wind forcing the result is 1.6 TW meaning that the result increases by 300%.
Crawshaw, Benjamin P; Russ, Andrew J; Stein, Sharon L; Reynolds, Harry L; Marderstein, Eric L; Delaney, Conor P; Champagne, Bradley J
2015-01-01
High-resolution anoscopy has been shown to improve identification of anal intraepithelial neoplasia but a reduction in progression to anal squamous-cell cancer has not been substantiated when serial high-resolution anoscopy is compared with traditional expectant management. The aim of this study was to compare high-resolution anoscopy versus expectant management for the surveillance of anal intraepithelial neoplasia and the prevention of anal cancer. This is a retrospective review of all patients who presented with anal squamous dysplasia, positive anal Pap smears, or anal squamous-cell cancer from 2007 to 2013. This study was performed in the colorectal department of a university-affiliated, tertiary care hospital. Included patients had biopsy-proven anal intraepithelial neoplasia from 2007 to 2013. Patients were treated with high-resolution anoscopy with ablation or standard anoscopy with ablation. Both groups were treated with imiquimod and followed every 6 months indefinitely. The incidence of anal squamous-cell cancer in each group was the primary end point. From 2007 to 2013, 424 patients with anal squamous dysplasia were seen in the clinic (high-resolution anoscopy, 220; expectant management, 204). Three patients (high-resolution anoscopy, 1; expectant management, 2) progressed to anal squamous-cell cancer; 2 were noncompliant with follow-up and with HIV treatment, and the third was allergic to imiquimod and refused to take topical 5-fluorouracil. The 5-year progression rate was 6.0% (95% CI, 1.5-24.6) for expectant management and 4.5% (95% CI, 0.7-30.8) for high-resolution anoscopy (p = 0.37). This was a retrospective review. There is potential for selection and referral bias. Because of the rarity of the outcome, the study may be underpowered. Patients with squamous-cell dysplasia followed with expectant management or high-resolution anoscopy rarely develop squamous-cell cancer if they are compliant with the protocol. The cost, morbidity, and value of high-resolution anoscopy should be further evaluated in lieu of these findings.
NASA Astrophysics Data System (ADS)
Ba, Yu Tao; xian Liu, Bao; Sun, Feng; Wang, Li hua; Tang, Yu jia; Zhang, Da wei
2017-04-01
High-resolution mapping of PM2.5 is the prerequisite for precise analytics and subsequent anti-pollution interventions. Considering the large variances of particulate distribution, urban-scale mapping is challenging either with ground-based fixed stations, with satellites or via models. In this study, a dynamic fusion method between high-density sensor network and MODIS Aerosol Optical Depth (AOD) was introduced. The sensor network was deployed in Beijing ( > 1000 fixed monitors across 16000 km2 area) to provide raw observations with high temporal resolution (sampling interval < 1 hour), high spatial resolution in flat areas ( < 1 km), and low spatial resolution in mountainous areas ( > 5 km). The MODIS AOD was calibrated to provide distribution map with low temporal resolution (daily) and moderate spatial resolution ( = 3 km). By encoding the data quality and defects (e.g. could, reflectance, abnormal), a hybrid interpolation procedure with cross-validation generated PM2.5 distribution with both high temporal and spatial resolution. Several no-pollutant and high-pollution periods were tested to validate the proposed fusion method for capturing the instantaneous patterns of PM2.5 emission.
Liu, Danzhou; Hua, Kien A; Sugaya, Kiminobu
2008-09-01
With the advances in medical imaging devices, large volumes of high-resolution 3-D medical image data have been produced. These high-resolution 3-D data are very large in size, and severely stress storage systems and networks. Most existing Internet-based 3-D medical image interactive applications therefore deal with only low- or medium-resolution image data. While it is possible to download the whole 3-D high-resolution image data from the server and perform the image visualization and analysis at the client site, such an alternative is infeasible when the high-resolution data are very large, and many users concurrently access the server. In this paper, we propose a novel framework for Internet-based interactive applications of high-resolution 3-D medical image data. Specifically, we first partition the whole 3-D data into buckets, remove the duplicate buckets, and then, compress each bucket separately. We also propose an index structure for these buckets to efficiently support typical queries such as 3-D slicer and region of interest, and only the relevant buckets are transmitted instead of the whole high-resolution 3-D medical image data. Furthermore, in order to better support concurrent accesses and to improve the average response time, we also propose techniques for efficient query processing, incremental transmission, and client sharing. Our experimental study in simulated and realistic environments indicates that the proposed framework can significantly reduce storage and communication requirements, and can enable real-time interaction with remote high-resolution 3-D medical image data for many concurrent users.
Van de Kamer, J B; Lagendijk, J J W
2002-05-21
SAR distributions in a healthy female adult head as a result of a radiating vertical dipole antenna (frequency 915 MHz) representing a hand-held mobile phone have been computed for three different resolutions: 2 mm, 1 mm and 0.4 mm. The extremely high resolution of 0.4 mm was obtained with our quasistatic zooming technique, which is briefly described in this paper. For an effectively transmitted power of 0.25 W, the maximum averaged SAR values in both cubic- and arbitrary-shaped volumes are, respectively, about 1.72 and 2.55 W kg(-1) for 1 g and 0.98 and 1.73 W kg(-1) for 10 g of tissue. These numbers do not vary much (<8%) for the different resolutions, indicating that SAR computations at a resolution of 2 mm are sufficiently accurate to describe the large-scale distribution. However, considering the detailed SAR pattern in the head, large differences may occur if high-resolution computations are performed rather than low-resolution ones. These deviations are caused by both increased modelling accuracy and improved anatomical description in higher resolution simulations. For example, the SAR profile across a boundary between tissues with high dielectric contrast is much more accurately described at higher resolutions. Furthermore, low-resolution dielectric geometries may suffer from loss of anatomical detail, which greatly affects small-scale SAR distributions. Thus. for strongly inhomogeneous regions high-resolution SAR modelling is an absolute necessity.
SPARTAN II: An Instructional High Resolution Land Combat Model
1993-03-01
93M-09 SPARTAN II: AN INSTRUCTIONAL HIGH RESOLUTION LAND COMBAT MODEL THESIS DWquALfl’ 4 Presented to the Faculty of the School of Engineering of the...ADVISOR NAJ Edward Negrelli/ENS REALDER MAJ Bruce Marl an/MA LD1 { The goal of this thesis was to improve SPARTAN, a high resolution land combat model...should serve as a useful tool for learning about the advantages and disadvantages of high resolution combat modeling. I wish to thank I4AJ Edward
High-Resolution Array with Prony, MUSIC, and ESPRIT Algorithms
1992-08-25
N avalI Research La bora tory AD-A255 514 Washington, DC 20375-5320 NRL/FR/5324-92-9397 High-resolution Array with Prony, music , and ESPRIT...unlimited t"orm n pprovoiREPORT DOCUMENTATION PAGE OMB. o 0 104 0188 4. TITLE AND SUBTITLE S. FUNDING NUMBERS High-resolution Array with Prony. MUSIC . and...the array high-resolution properties of three algorithms: the Prony algo- rithm, the MUSIC algorithm, and the ESPRIT algorithm. MUSIC has been much
High efficiency multishot interleaved spiral-in/out: acquisition for high-resolution BOLD fMRI.
Jung, Youngkyoo; Samsonov, Alexey A; Liu, Thomas T; Buracas, Giedrius T
2013-08-01
Growing demand for high spatial resolution blood oxygenation level dependent (BOLD) functional magnetic resonance imaging faces a challenge of the spatial resolution versus coverage or temporal resolution tradeoff, which can be addressed by methods that afford increased acquisition efficiency. Spiral acquisition trajectories have been shown to be superior to currently prevalent echo-planar imaging in terms of acquisition efficiency, and high spatial resolution can be achieved by employing multiple-shot spiral acquisition. The interleaved spiral in/out trajectory is preferred over spiral-in due to increased BOLD signal contrast-to-noise ratio (CNR) and higher acquisition efficiency than that of spiral-out or noninterleaved spiral in/out trajectories (Law & Glover. Magn Reson Med 2009; 62:829-834.), but to date applicability of the multishot interleaved spiral in/out for high spatial resolution imaging has not been studied. Herein we propose multishot interleaved spiral in/out acquisition and investigate its applicability for high spatial resolution BOLD functional magnetic resonance imaging. Images reconstructed from interleaved spiral-in and -out trajectories possess artifacts caused by differences in T2 decay, off-resonance, and k-space errors associated with the two trajectories. We analyze the associated errors and demonstrate that application of conjugate phase reconstruction and spectral filtering can substantially mitigate these image artifacts. After applying these processing steps, the multishot interleaved spiral in/out pulse sequence yields high BOLD CNR images at in-plane resolution below 1 × 1 mm while preserving acceptable temporal resolution (4 s) and brain coverage (15 slices of 2 mm thickness). Moreover, this method yields sufficient BOLD CNR at 1.5 mm isotropic resolution for detection of activation in hippocampus associated with cognitive tasks (Stern memory task). The multishot interleaved spiral in/out acquisition is a promising technique for high spatial resolution BOLD functional magnetic resonance imaging applications. © 2012 Wiley Periodicals, Inc.
Introducing Graduate Students to High-Resolution Mass Spectrometry (HRMS) Using a Hands-On Approach
ERIC Educational Resources Information Center
Stock, Naomi L.
2017-01-01
High-resolution mass spectrometry (HRMS) features both high resolution and high mass accuracy and is a powerful tool for the analysis and quantitation of compounds, determination of elemental compositions, and identification of unknowns. A hands-on laboratory experiment for upper-level undergraduate and graduate students to investigate HRMS is…
Transmission/Scanning Transmission Electron Microscopy | Materials Science
imaging such as high resolution TEM. Transmission electron diffraction patterns help to determine the microstructure of a material and its defects. Phase-contrast imaging or high-resolution (HR) TEM imaging gives high scattering angle can be collected to form high-resolution, chemically sensitive, atomic number (Z
NREL: International Activities - Pakistan Resource Maps
. The high-resolution (1-km) annual wind power maps were developed using a numerical modeling approach along with NREL's empirical validation methodology. The high-resolution (10-km) annual and seasonal KB) | High-Res (ZIP 281 KB) 40-km Resolution Annual Maps (Direct) Low-Res (JPG 156 KB) | High-Res
Sheng, Duo; Lai, Hsiu-Fan; Chan, Sheng-Min; Hong, Min-Rong
2015-02-13
An all-digital on-chip delay sensor (OCDS) circuit with high delay-measurement resolution and low supply-voltage sensitivity for efficient detection and diagnosis in high-performance electronic system applications is presented. Based on the proposed delay measurement scheme, the quantization resolution of the proposed OCDS can be reduced to several picoseconds. Additionally, the proposed cascade-stage delay measurement circuit can enhance immunity to supply-voltage variations of the delay measurement resolution without extra self-biasing or calibration circuits. Simulation results show that the delay measurement resolution can be improved to 1.2 ps; the average delay resolution variation is 0.55% with supply-voltage variations of ±10%. Moreover, the proposed delay sensor can be implemented in an all-digital manner, making it very suitable for high-performance electronic system applications as well as system-level integration.
Klein, Isabelle F; Lavallée, Philippa C; Mazighi, Mikael; Schouman-Claeys, Elisabeth; Labreuche, Julien; Amarenco, Pierre
2010-07-01
Pontine infarction is most often related to basilar artery atherosclerosis when the lesion abuts on the basal surface (paramedian pontine infarction), whereas small medial pontine lesion is usually attributed to small vessel lipohyalinosis. A previous study has found that high-resolution MRI can detect basilar atherosclerotic plaques in up to 70% of patient with paramedian pontine infarction, even in patients with normal angiograms, but none has evaluated the presence of basilar artery plaque by high-resolution MRI in patients with small medial pontine lesion in the medial part of the pons. Consecutive patients with pontine infarction underwent basilar angiography using time-of-flight and contrast-enhanced 3-dimensional MR angiography to assess the presence of basilar artery stenosis and high-resolution MRI to assess the presence of atherosclerotic plaque. Basilar artery angiogram was scored as "normal," "irregular," or "stenosed" >or=30%" and basilar artery by high-resolution MRI was scored as "normal" or "presence of plaque." Medial pontine infarcts were divided into paramedian pontine infarction and small medial pontine lesion groups. Forty-one patients with pontine infarction were included, 26 with paramedian pontine infarction and 15 with small medial pontine lesion. High-resolution MRI detected basilar artery atherosclerosis in 42% of patients with a pontine infarction and normal basilar angiograms. Among patients with paramedian pontine infarction, 65% had normal basilar angiograms but 77% had basilar artery atherosclerosis detected on high-resolution MRI. Among patients with small medial pontine lesion, 46% had normal basilar angiograms but 73% had basilar artery plaques detected on by high-resolution MRI. This study suggests that medial pontine lacunes may be due to a penetrating artery disease secondary to basilar artery atherosclerosis. High-resolution MRI could help precise stroke subtyping.
B. W. Butler; N. S. Wagenbrenner; J. M. Forthofer; B. K. Lamb; K. S. Shannon; D. Finn; R. M. Eckman; K. Clawson; L. Bradshaw; P. Sopko; S. Beard; D. Jimenez; C. Wold; M. Vosburgh
2015-01-01
A number of numerical wind flow models have been developed for simulating wind flow at relatively fine spatial resolutions (e.g., 100 m); however, there are very limited observational data available for evaluating these high-resolution models. This study presents high-resolution surface wind data sets collected from an isolated mountain and a steep river canyon. The...
John T. Abatzoglou; Solomon Z. Dobrowski; Sean A. Parks; Katherine C. Hegewisch
2018-01-01
We present TerraClimate, a dataset of high-spatial resolution (1/24°, ~4-km) monthly climate and climatic water balance for global terrestrial surfaces from 1958â2015. TerraClimate uses climatically aided interpolation, combining high-spatial resolution climatological normals from the WorldClim dataset, with coarser resolution time varying (i.e., monthly) data from...
NASA Astrophysics Data System (ADS)
Suárez, F.; Aravena, J. E.; Hausner, M. B.; Childress, A. E.; Tyler, S. W.
2011-03-01
In shallow thermohaline-driven lakes it is important to measure temperature on fine spatial and temporal scales to detect stratification or different hydrodynamic regimes. Raman spectra distributed temperature sensing (DTS) is an approach available to provide high spatial and temporal temperature resolution. A vertical high-resolution DTS system was constructed to overcome the problems of typical methods used in the past, i.e., without disturbing the water column, and with resistance to corrosive environments. This paper describes a method to quantitatively assess accuracy, precision and other limitations of DTS systems to fully utilize the capacity of this technology, with a focus on vertical high-resolution to measure temperatures in shallow thermohaline environments. It also presents a new method to manually calibrate temperatures along the optical fiber achieving significant improved resolution. The vertical high-resolution DTS system is used to monitor the thermal behavior of a salt-gradient solar pond, which is an engineered shallow thermohaline system that allows collection and storage of solar energy for a long period of time. The vertical high-resolution DTS system monitors the temperature profile each 1.1 cm vertically and in time averages as small as 10 s. Temperature resolution as low as 0.035 °C is obtained when the data are collected at 5-min intervals.
Zhang, Qi; Yang, Xiong; Hu, Qinglei; Bai, Ke; Yin, Fangfang; Li, Ning; Gang, Yadong; Wang, Xiaojun; Zeng, Shaoqun
2017-01-01
To resolve fine structures of biological systems like neurons, it is required to realize microscopic imaging with sufficient spatial resolution in three dimensional systems. With regular optical imaging systems, high lateral resolution is accessible while high axial resolution is hard to achieve in a large volume. We introduce an imaging system for high 3D resolution fluorescence imaging of large volume tissues. Selective plane illumination was adopted to provide high axial resolution. A scientific CMOS working in sub-array mode kept the imaging area in the sample surface, which restrained the adverse effect of aberrations caused by inclined illumination. Plastic embedding and precise mechanical sectioning extended the axial range and eliminated distortion during the whole imaging process. The combination of these techniques enabled 3D high resolution imaging of large tissues. Fluorescent bead imaging showed resolutions of 0.59 μm, 0.47μm, and 0.59 μm in the x, y, and z directions, respectively. Data acquired from the volume sample of brain tissue demonstrated the applicability of this imaging system. Imaging of different depths showed uniform performance where details could be recognized in either the near-soma area or terminal area, and fine structures of neurons could be seen in both the xy and xz sections. PMID:29296503
High resolution land surface geophysical parameters estimation from ALOS PALSAR data
USDA-ARS?s Scientific Manuscript database
High resolution land surface geophysical products, such as soil moisture, surface roughness and vegetation water content, are essential for a variety of applications ranging from water management to regional climate predictions. In India high resolution geophysical products, in particular soil moist...
Automatic optimization high-speed high-resolution OCT retinal imaging at 1μm
NASA Astrophysics Data System (ADS)
Cua, Michelle; Liu, Xiyun; Miao, Dongkai; Lee, Sujin; Lee, Sieun; Bonora, Stefano; Zawadzki, Robert J.; Mackenzie, Paul J.; Jian, Yifan; Sarunic, Marinko V.
2015-03-01
High-resolution OCT retinal imaging is important in providing visualization of various retinal structures to aid researchers in better understanding the pathogenesis of vision-robbing diseases. However, conventional optical coherence tomography (OCT) systems have a trade-off between lateral resolution and depth-of-focus. In this report, we present the development of a focus-stacking optical coherence tomography (OCT) system with automatic optimization for high-resolution, extended-focal-range clinical retinal imaging. A variable-focus liquid lens was added to correct for de-focus in real-time. A GPU-accelerated segmentation and optimization was used to provide real-time layer-specific enface visualization as well as depth-specific focus adjustment. After optimization, multiple volumes focused at different depths were acquired, registered, and stitched together to yield a single, high-resolution focus-stacked dataset. Using this system, we show high-resolution images of the ONH, from which we extracted clinically-relevant parameters such as the nerve fiber layer thickness and lamina cribrosa microarchitecture.
Single-shot and single-sensor high/super-resolution microwave imaging based on metasurface.
Wang, Libo; Li, Lianlin; Li, Yunbo; Zhang, Hao Chi; Cui, Tie Jun
2016-06-01
Real-time high-resolution (including super-resolution) imaging with low-cost hardware is a long sought-after goal in various imaging applications. Here, we propose broadband single-shot and single-sensor high-/super-resolution imaging by using a spatio-temporal dispersive metasurface and an imaging reconstruction algorithm. The metasurface with spatio-temporal dispersive property ensures the feasibility of the single-shot and single-sensor imager for super- and high-resolution imaging, since it can convert efficiently the detailed spatial information of the probed object into one-dimensional time- or frequency-dependent signal acquired by a single sensor fixed in the far-field region. The imaging quality can be improved by applying a feature-enhanced reconstruction algorithm in post-processing, and the desired imaging resolution is related to the distance between the object and metasurface. When the object is placed in the vicinity of the metasurface, the super-resolution imaging can be realized. The proposed imaging methodology provides a unique means to perform real-time data acquisition, high-/super-resolution images without employing expensive hardware (e.g. mechanical scanner, antenna array, etc.). We expect that this methodology could make potential breakthroughs in the areas of microwave, terahertz, optical, and even ultrasound imaging.
NASA Astrophysics Data System (ADS)
Lefebvre, Joël.; Castonguay, Alexandre; Lesage, Frédéric
2018-02-01
High resolution imaging of whole rodent brains using serial OCT scanners is a promising method to investigate microstructural changes in tissue related to the evolution of neuropathologies. Although micron to sub-micron sampling resolution can be obtained by using high numerical aperture objectives and dynamic focusing, such an imaging system is not adapted to whole brain imaging. This is due to the large amount of data it generates and the significant computational resources required for reconstructing such volumes. To address this limitation, a dual resolution serial OCT scanner was developed. The optical setup consists in a swept-source OCT made of two sample and reference arms, each arm being coupled with different microscope objectives (3X / 40X). Motorized flip mirrors were used to switch between each OCT arm, thus allowing low and high resolution acquisitions within the same sample. The low resolution OCT volumes acquired with the 3X arm were stitched together, providing a 3D map of the whole mouse brain. This brain can be registered to an OCT brain template to enable neurological structures localization. The high resolution volumes acquired with the 40X arm were also stitched together to create local high resolution 3D maps of the tissue microstructure. The 40X data can be acquired at any arbitrary location in the sample, thus limiting storage-heavy high resolution data to application restricted to specific regions of interest. By providing dual-resolution OCT data, this setup can be used to validate diffusion MRI with tissue microstructure derived metrics measured at any location in ex vivo brains.
A compact high-resolution 3-D imaging spectrometer for discovering Oases on Mars
Ge, J.; Ren, D.; Lunine, J.I.; Brown, R.H.; Yelle, R.V.; Soderblom, L.A.; ,
2002-01-01
A new design for a very lightweight, very high throughput reflectance sectrometer enabled by two new technologies being developed is presented. These new technologies include integral field unit optics to enable simultaneous imaging and spectroscopy at high spatial resolution with an infrared (IR) array, and silicon grisms to enable compact and high-resolution spectroscopy.
NASA Technical Reports Server (NTRS)
Desai, U. D.; Orwig, Larry E.
1988-01-01
In the areas of high spatial resolution, the evaluation of a hard X-ray detector with 65 micron spatial resolution for operation in the energy range from 30 to 400 keV is proposed. The basic detector is a thick large-area scintillator faceplate, composed of a matrix of high-density scintillating glass fibers, attached to a proximity type image intensifier tube with a resistive-anode digital readout system. Such a detector, combined with a coded-aperture mask, would be ideal for use as a modest-sized hard X-ray imaging instrument up to X-ray energies as high as several hundred keV. As an integral part of this study it was also proposed that several techniques be critically evaluated for X-ray image coding which could be used with this detector. In the area of high spectral resolution, it is proposed to evaluate two different types of detectors for use as X-ray spectrometers for solar flares: planar silicon detectors and high-purity germanium detectors (HPGe). Instruments utilizing these high-spatial-resolution detectors for hard X-ray imaging measurements from 30 to 400 keV and high-spectral-resolution detectors for measurements over a similar energy range would be ideally suited for making crucial solar flare observations during the upcoming maximum in the solar cycle.
Umehara, Kensuke; Ota, Junko; Ishida, Takayuki
2017-10-18
In this study, the super-resolution convolutional neural network (SRCNN) scheme, which is the emerging deep-learning-based super-resolution method for enhancing image resolution in chest CT images, was applied and evaluated using the post-processing approach. For evaluation, 89 chest CT cases were sampled from The Cancer Imaging Archive. The 89 CT cases were divided randomly into 45 training cases and 44 external test cases. The SRCNN was trained using the training dataset. With the trained SRCNN, a high-resolution image was reconstructed from a low-resolution image, which was down-sampled from an original test image. For quantitative evaluation, two image quality metrics were measured and compared to those of the conventional linear interpolation methods. The image restoration quality of the SRCNN scheme was significantly higher than that of the linear interpolation methods (p < 0.001 or p < 0.05). The high-resolution image reconstructed by the SRCNN scheme was highly restored and comparable to the original reference image, in particular, for a ×2 magnification. These results indicate that the SRCNN scheme significantly outperforms the linear interpolation methods for enhancing image resolution in chest CT images. The results also suggest that SRCNN may become a potential solution for generating high-resolution CT images from standard CT images.
Yuan, Baohong; Pei, Yanbo; Kandukuri, Jayanth
2013-01-01
Our recently developed ultrasound-switchable fluorescence (USF) imaging technique showed that it was feasible to conduct high-resolution fluorescence imaging in a centimeter-deep turbid medium. Because the spatial resolution of this technique highly depends on the ultrasound-induced temperature focal size (UTFS), minimization of UTFS becomes important for further improving the spatial resolution USF technique. In this study, we found that UTFS can be significantly reduced below the diffraction-limited acoustic intensity focal size via nonlinear acoustic effects and thermal confinement by appropriately controlling ultrasound power and exposure time, which can be potentially used for deep-tissue high-resolution imaging. PMID:23479498
Mesosacle eddies in a high resolution OGCM and coupled ocean-atmosphere GCM
NASA Astrophysics Data System (ADS)
Yu, Y.; Liu, H.; Lin, P.
2017-12-01
The present study described high-resolution climate modeling efforts including oceanic, atmospheric and coupled general circulation model (GCM) at the state key laboratory of numerical modeling for atmospheric sciences and geophysical fluid dynamics (LASG), Institute of Atmospheric Physics (IAP). The high-resolution OGCM is established based on the latest version of the LASG/IAP Climate system Ocean Model (LICOM2.1), but its horizontal resolution and vertical resolution are increased to 1/10° and 55 layers, respectively. Forced by the surface fluxes from the reanalysis and observed data, the model has been integrated for approximately more than 80 model years. Compared with the simulation of the coarse-resolution OGCM, the eddy-resolving OGCM not only better simulates the spatial-temporal features of mesoscale eddies and the paths and positions of western boundary currents but also reproduces the large meander of the Kuroshio Current and its interannual variability. Another aspect, namely, the complex structures of equatorial Pacific currents and currents in the coastal ocean of China, are better captured due to the increased horizontal and vertical resolution. Then we coupled the high resolution OGCM to NCAR CAM4 with 25km resolution, in which the mesoscale air-sea interaction processes are better captured.
Chang, Hing-Chiu; Sundman, Mark; Petit, Laurent; Guhaniyogi, Shayan; Chu, Mei-Lan; Petty, Christopher; Song, Allen W.; Chen, Nan-kuei
2015-01-01
The advantages of high-resolution diffusion tensor imaging (DTI) have been demonstrated in a recent post-mortem human brain study (Miller et al., NeuroImage 2011;57(1):167–181), showing that white matter fiber tracts can be much more accurately detected in data at submillimeter isotropic resolution. To our knowledge, in vivo human brain DTI at submillimeter isotropic resolution has not been routinely achieved yet because of the difficulty in simultaneously achieving high resolution and high signal-to-noise ratio (SNR) in DTI scans. Here we report a 3D multi-slab interleaved EPI acquisition integrated with multiplexed sensitivity encoded (MUSE) reconstruction, to achieve high-quality, high-SNR and submillimeter isotropic resolution (0.85 × 0.85 × 0.85 mm3) in vivo human brain DTI on a 3 Tesla clinical MRI scanner. In agreement with the previously reported post-mortem human brain DTI study, our in vivo data show that the structural connectivity networks of human brains can be mapped more accurately and completely with high-resolution DTI as compared with conventional DTI (e.g., 2 × 2 × 2 mm3). PMID:26072250
Fuzzy Classification of High Resolution Remote Sensing Scenes Using Visual Attention Features.
Li, Linyi; Xu, Tingbao; Chen, Yun
2017-01-01
In recent years the spatial resolutions of remote sensing images have been improved greatly. However, a higher spatial resolution image does not always lead to a better result of automatic scene classification. Visual attention is an important characteristic of the human visual system, which can effectively help to classify remote sensing scenes. In this study, a novel visual attention feature extraction algorithm was proposed, which extracted visual attention features through a multiscale process. And a fuzzy classification method using visual attention features (FC-VAF) was developed to perform high resolution remote sensing scene classification. FC-VAF was evaluated by using remote sensing scenes from widely used high resolution remote sensing images, including IKONOS, QuickBird, and ZY-3 images. FC-VAF achieved more accurate classification results than the others according to the quantitative accuracy evaluation indices. We also discussed the role and impacts of different decomposition levels and different wavelets on the classification accuracy. FC-VAF improves the accuracy of high resolution scene classification and therefore advances the research of digital image analysis and the applications of high resolution remote sensing images.
Fuzzy Classification of High Resolution Remote Sensing Scenes Using Visual Attention Features
Xu, Tingbao; Chen, Yun
2017-01-01
In recent years the spatial resolutions of remote sensing images have been improved greatly. However, a higher spatial resolution image does not always lead to a better result of automatic scene classification. Visual attention is an important characteristic of the human visual system, which can effectively help to classify remote sensing scenes. In this study, a novel visual attention feature extraction algorithm was proposed, which extracted visual attention features through a multiscale process. And a fuzzy classification method using visual attention features (FC-VAF) was developed to perform high resolution remote sensing scene classification. FC-VAF was evaluated by using remote sensing scenes from widely used high resolution remote sensing images, including IKONOS, QuickBird, and ZY-3 images. FC-VAF achieved more accurate classification results than the others according to the quantitative accuracy evaluation indices. We also discussed the role and impacts of different decomposition levels and different wavelets on the classification accuracy. FC-VAF improves the accuracy of high resolution scene classification and therefore advances the research of digital image analysis and the applications of high resolution remote sensing images. PMID:28761440
High-resolution dynamic 31 P-MRSI using a low-rank tensor model.
Ma, Chao; Clifford, Bryan; Liu, Yuchi; Gu, Yuning; Lam, Fan; Yu, Xin; Liang, Zhi-Pei
2017-08-01
To develop a rapid 31 P-MRSI method with high spatiospectral resolution using low-rank tensor-based data acquisition and image reconstruction. The multidimensional image function of 31 P-MRSI is represented by a low-rank tensor to capture the spatial-spectral-temporal correlations of data. A hybrid data acquisition scheme is used for sparse sampling, which consists of a set of "training" data with limited k-space coverage to capture the subspace structure of the image function, and a set of sparsely sampled "imaging" data for high-resolution image reconstruction. An explicit subspace pursuit approach is used for image reconstruction, which estimates the bases of the subspace from the "training" data and then reconstructs a high-resolution image function from the "imaging" data. We have validated the feasibility of the proposed method using phantom and in vivo studies on a 3T whole-body scanner and a 9.4T preclinical scanner. The proposed method produced high-resolution static 31 P-MRSI images (i.e., 6.9 × 6.9 × 10 mm 3 nominal resolution in a 15-min acquisition at 3T) and high-resolution, high-frame-rate dynamic 31 P-MRSI images (i.e., 1.5 × 1.5 × 1.6 mm 3 nominal resolution, 30 s/frame at 9.4T). Dynamic spatiospectral variations of 31 P-MRSI signals can be efficiently represented by a low-rank tensor. Exploiting this mathematical structure for data acquisition and image reconstruction can lead to fast 31 P-MRSI with high resolution, frame-rate, and SNR. Magn Reson Med 78:419-428, 2017. © 2017 International Society for Magnetic Resonance in Medicine. © 2017 International Society for Magnetic Resonance in Medicine.
Experimental Nuclear Physics Activity in Italy
NASA Astrophysics Data System (ADS)
Chiavassa, E.; de Marco, N.
2003-04-01
The experimental Nuclear Physics activity of the Italian researchers is briefly reviewed. The experiments, that are financially supported by the INFN, are done in strict collaboration by more than 500 INFN and University researchers. The experiments cover all the most important field of the modern Nuclear Physics with probes extremely different in energy and interactions. Researches are done in all the four National Laboratories of the INFN even if there is a deeper involvement of the two national laboratories expressly dedicated to Nuclear Physics: the LNL (Laboratorio Nazionale di Legnaro) and LNS (Laboratorio Nazionale del Sud) where nuclear spectroscopy and reaction dynamics are investigated. All the activities with electromagnetic probes develops in abroad laboratories as TJNAF, DESY, MAMI, ESFR and are dedicated to the studies of the spin physics and of the nucleon resonance; hypernuclear and kaon physics is investigated at LNF. A strong community of researchers work in the relativistic and ultra-relativistic heavy ions field in particular at CERN with the SPS Pb beam and in the construction of the ALICE detector for heavy-ion physics at the LHC collider. Experiments of astrophysical interest are done with ions of very low energy; in particular the LUNA accelerator facility at LNGS (Laboratorio Nazionale del Gran Sasso) succeeded measuring cross section at solar energies, below or near the solar Gamow peak. Interdisciplinary researches on anti-hydrogen atom spectroscopy and on measurements of neutron cross sections of interest for ADS development are also supported.
40 CFR 766.16 - Developing the analytical test method.
Code of Federal Regulations, 2011 CFR
2011-07-01
... Resolution Gas Chromatography (HRGC) with High Resolution Mass Spectrometry (HRMS) is the method of choice... meet the requirements of the chemical matrix. (d) Analysis. The method of choice is High Resolution Gas...
40 CFR 766.16 - Developing the analytical test method.
Code of Federal Regulations, 2010 CFR
2010-07-01
... Resolution Gas Chromatography (HRGC) with High Resolution Mass Spectrometry (HRMS) is the method of choice... meet the requirements of the chemical matrix. (d) Analysis. The method of choice is High Resolution Gas...
High Spatial Resolution Commercial Satellite Imaging Product Characterization
NASA Technical Reports Server (NTRS)
Ryan, Robert E.; Pagnutti, Mary; Blonski, Slawomir; Ross, Kenton W.; Stnaley, Thomas
2005-01-01
NASA Stennis Space Center's Remote Sensing group has been characterizing privately owned high spatial resolution multispectral imaging systems, such as IKONOS, QuickBird, and OrbView-3. Natural and man made targets were used for spatial resolution, radiometric, and geopositional characterizations. Higher spatial resolution also presents significant adjacency effects for accurate reliable radiometry.
The investigation of classification methods of high-resolution imagery
Tracey S. Frescino; Gretchen G. Moisen; Larry DeBlander; Michel Guerin
2007-01-01
As remote-sensing technology advances, high-resolution imagery, such as Quickbird and photography from the National Agriculture Imagery Program (NAIP), is becoming more readily available for use in forestry applications. Quickbird imagery is currently the highest resolution imagery commercially available. It consists of 2.44-m (8-ft) resolution multispectral bands...
A 4.5 km resolution Arctic Ocean simulation with the global multi-resolution model FESOM 1.4
NASA Astrophysics Data System (ADS)
Wang, Qiang; Wekerle, Claudia; Danilov, Sergey; Wang, Xuezhu; Jung, Thomas
2018-04-01
In the framework of developing a global modeling system which can facilitate modeling studies on Arctic Ocean and high- to midlatitude linkage, we evaluate the Arctic Ocean simulated by the multi-resolution Finite Element Sea ice-Ocean Model (FESOM). To explore the value of using high horizontal resolution for Arctic Ocean modeling, we use two global meshes differing in the horizontal resolution only in the Arctic Ocean (24 km vs. 4.5 km). The high resolution significantly improves the model's representation of the Arctic Ocean. The most pronounced improvement is in the Arctic intermediate layer, in terms of both Atlantic Water (AW) mean state and variability. The deepening and thickening bias of the AW layer, a common issue found in coarse-resolution simulations, is significantly alleviated by using higher resolution. The topographic steering of the AW is stronger and the seasonal and interannual temperature variability along the ocean bottom topography is enhanced in the high-resolution simulation. The high resolution also improves the ocean surface circulation, mainly through a better representation of the narrow straits in the Canadian Arctic Archipelago (CAA). The representation of CAA throughflow not only influences the release of water masses through the other gateways but also the circulation pathways inside the Arctic Ocean. However, the mean state and variability of Arctic freshwater content and the variability of freshwater transport through the Arctic gateways appear not to be very sensitive to the increase in resolution employed here. By highlighting the issues that are independent of model resolution, we address that other efforts including the improvement of parameterizations are still required.
High-resolution harmonic motion imaging (HR-HMI) for tissue biomechanical property characterization
Ma, Teng; Qian, Xuejun; Chiu, Chi Tat; Yu, Mingyue; Jung, Hayong; Tung, Yao-Sheng; Shung, K. Kirk
2015-01-01
Background Elastography, capable of mapping the biomechanical properties of biological tissues, serves as a useful technique for clinicians to perform disease diagnosis and determine stages of many diseases. Many acoustic radiation force (ARF) based elastography, including acoustic radiation force impulse (ARFI) imaging and harmonic motion imaging (HMI), have been developed to remotely assess the elastic properties of tissues. However, due to the lower operating frequencies of these approaches, their spatial resolutions are insufficient for revealing stiffness distribution on small scale applications, such as cancerous tumor margin detection, atherosclerotic plaque composition analysis and ophthalmologic tissue characterization. Though recently developed ARF-based optical coherence elastography (OCE) methods open a new window for the high resolution elastography, shallow imaging depths significantly limit their usefulness in clinics. Methods The aim of this study is to develop a high-resolution HMI method to assess the tissue biomechanical properties with acceptable field of view (FOV) using a 4 MHz ring transducer for efficient excitation and a 40 MHz needle transducer for accurate detection. Under precise alignment of two confocal transducers, the high-resolution HMI system has a lateral resolution of 314 µm and an axial resolution of 147 µm with an effective FOV of 2 mm in depth. Results The performance of this high resolution imaging system was validated on the agar-based tissue mimicking phantoms with different stiffness distributions. These data demonstrated the imaging system’s improved resolution and sensitivity on differentiating materials with varying stiffness. In addition, ex vivo imaging of a human atherosclerosis coronary artery demonstrated the capability of high resolution HMI in identifying layer-specific structures and characterizing atherosclerotic plaques based on their stiffness differences. Conclusions All together high resolution HMI appears to be a promising ultrasound-only technology for characterizing tissue biomechanical properties at the microstructural level to improve the image-based diseases diagnosis in multiple clinical applications. PMID:25694960
High-resolution harmonic motion imaging (HR-HMI) for tissue biomechanical property characterization.
Ma, Teng; Qian, Xuejun; Chiu, Chi Tat; Yu, Mingyue; Jung, Hayong; Tung, Yao-Sheng; Shung, K Kirk; Zhou, Qifa
2015-02-01
Elastography, capable of mapping the biomechanical properties of biological tissues, serves as a useful technique for clinicians to perform disease diagnosis and determine stages of many diseases. Many acoustic radiation force (ARF) based elastography, including acoustic radiation force impulse (ARFI) imaging and harmonic motion imaging (HMI), have been developed to remotely assess the elastic properties of tissues. However, due to the lower operating frequencies of these approaches, their spatial resolutions are insufficient for revealing stiffness distribution on small scale applications, such as cancerous tumor margin detection, atherosclerotic plaque composition analysis and ophthalmologic tissue characterization. Though recently developed ARF-based optical coherence elastography (OCE) methods open a new window for the high resolution elastography, shallow imaging depths significantly limit their usefulness in clinics. The aim of this study is to develop a high-resolution HMI method to assess the tissue biomechanical properties with acceptable field of view (FOV) using a 4 MHz ring transducer for efficient excitation and a 40 MHz needle transducer for accurate detection. Under precise alignment of two confocal transducers, the high-resolution HMI system has a lateral resolution of 314 µm and an axial resolution of 147 µm with an effective FOV of 2 mm in depth. The performance of this high resolution imaging system was validated on the agar-based tissue mimicking phantoms with different stiffness distributions. These data demonstrated the imaging system's improved resolution and sensitivity on differentiating materials with varying stiffness. In addition, ex vivo imaging of a human atherosclerosis coronary artery demonstrated the capability of high resolution HMI in identifying layer-specific structures and characterizing atherosclerotic plaques based on their stiffness differences. All together high resolution HMI appears to be a promising ultrasound-only technology for characterizing tissue biomechanical properties at the microstructural level to improve the image-based diseases diagnosis in multiple clinical applications.
NASA Astrophysics Data System (ADS)
Yu, Karen; Jacob, Daniel J.; Fisher, Jenny A.; Kim, Patrick S.; Marais, Eloise A.; Miller, Christopher C.; Travis, Katherine R.; Zhu, Lei; Yantosca, Robert M.; Sulprizio, Melissa P.; Cohen, Ron C.; Dibb, Jack E.; Fried, Alan; Mikoviny, Tomas; Ryerson, Thomas B.; Wennberg, Paul O.; Wisthaler, Armin
2016-04-01
Formation of ozone and organic aerosol in continental atmospheres depends on whether isoprene emitted by vegetation is oxidized by the high-NOx pathway (where peroxy radicals react with NO) or by low-NOx pathways (where peroxy radicals react by alternate channels, mostly with HO2). We used mixed layer observations from the SEAC4RS aircraft campaign over the Southeast US to test the ability of the GEOS-Chem chemical transport model at different grid resolutions (0.25° × 0.3125°, 2° × 2.5°, 4° × 5°) to simulate this chemistry under high-isoprene, variable-NOx conditions. Observations of isoprene and NOx over the Southeast US show a negative correlation, reflecting the spatial segregation of emissions; this negative correlation is captured in the model at 0.25° × 0.3125° resolution but not at coarser resolutions. As a result, less isoprene oxidation takes place by the high-NOx pathway in the model at 0.25° × 0.3125° resolution (54 %) than at coarser resolution (59 %). The cumulative probability distribution functions (CDFs) of NOx, isoprene, and ozone concentrations show little difference across model resolutions and good agreement with observations, while formaldehyde is overestimated at coarse resolution because excessive isoprene oxidation takes place by the high-NOx pathway with high formaldehyde yield. The good agreement of simulated and observed concentration variances implies that smaller-scale non-linearities (urban and power plant plumes) are not important on the regional scale. Correlations of simulated vs. observed concentrations do not improve with grid resolution because finer modes of variability are intrinsically more difficult to capture. Higher model resolution leads to decreased conversion of NOx to organic nitrates and increased conversion to nitric acid, with total reactive nitrogen oxides (NOy) changing little across model resolutions. Model concentrations in the lower free troposphere are also insensitive to grid resolution. The overall low sensitivity of modeled concentrations to grid resolution implies that coarse resolution is adequate when modeling continental boundary layer chemistry for global applications.
Conductive Atomic Force Microscopy | Materials Science | NREL
electrical measurement techniques is the high spatial resolution. For example, C-AFM measurements on : High-resolution image of a sample semiconductor device; the image shows white puff-like clusters on a dark background and was obtained using atomic force microscopy. Bottom: High-resolution image of the
SALT high resolution spectroscopy of GX339-4 in outburst
NASA Astrophysics Data System (ADS)
Buckley, D. A. H.; Aydi, E.; Kotze, M. M.; Gandhi, P.; Altamirano, D.; Charles, P. A.; Russell, D.
2017-10-01
High resolution (R = 15,000) spectroscopy of the current outbursting black hole transient GX339-4 (ATel #10797) was obtained with the SALT High Resolution Spectrograph (HRS; Crause et al. 2014, Proc SPIE, 91476) on 2017-09-29 starting at 17:28 UTC, during evening twilight.
Application and evaluation of high-resolution WRF-CMAQ with simple urban parameterization.
The 2-way coupled WRF-CMAQ meteorology and air quality modeling system is evaluated for high-resolution applications by comparing to a regional air quality field study (Discover-AQ). The model was modified to better account for the effects of urban environments. High-resolution...
USDA-ARS?s Scientific Manuscript database
Thermal and multispectral remote sensing data from low-altitude aircraft can provide high spatial resolution necessary for sub-field (= 10 m) and plant canopy (= 1 m) scale evapotranspiration (ET) monitoring. In this study, high resolution aircraft sub-meter scale thermal infrared and multispectral...
Application and evaluation of high-resolution WRF-CMAQ with simple urban parameterization
The 2-way coupled WRF-CMAQ meteorology and air quality modeling system is evaluated for high-resolution applications by comparing to a regional air quality field study (Discover-AQ). The model was modified to better account for the effects of urban environments. High-resolution...
Waveform digitization for high resolution timing detectors with silicon photomultipliers
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ronzhin, A.; Albrow, M. G.; Los, S.
2012-03-01
The results of time resolution studies with silicon photomultipliers (SiPMs) read out with high bandwidth constant fraction discrimination electronics were presented earlier [1-3]. Here we describe the application of fast waveform digitization readout based on the DRS4 chip [4], a switched capacitor array (SCA) produced by the Paul Scherrer Institute, to further our goal of developing high time resolution detectors based on SiPMs. The influence of the SiPM signal shape on the time resolution was investigated. Different algorithms to obtain the best time resolution are described, and test beam results are presented.
Dual-axis confocal microscope for high-resolution in vivo imaging
Wang, Thomas D.; Mandella, Michael J.; Contag, Christopher H.; Kino, Gordon S.
2007-01-01
We describe a novel confocal microscope that uses separate low-numerical-aperture objectives with the illumination and collection axes crossed at angle θ from the midline. This architecture collects images in scattering media with high transverse and axial resolution, long working distance, large field of view, and reduced noise from scattered light. We measured transverse and axial (FWHM) resolution of 1.3 and 2.1 μm, respectively, in free space, and confirm subcellular resolution in excised esophageal mucosa. The optics may be scaled to millimeter dimensions and fiber coupled for collection of high-resolution images in vivo. PMID:12659264
Refinement procedure for the image alignment in high-resolution electron tomography.
Houben, L; Bar Sadan, M
2011-01-01
High-resolution electron tomography from a tilt series of transmission electron microscopy images requires an accurate image alignment procedure in order to maximise the resolution of the tomogram. This is the case in particular for ultra-high resolution where even very small misalignments between individual images can dramatically reduce the fidelity of the resultant reconstruction. A tomographic-reconstruction based and marker-free method is proposed, which uses an iterative optimisation of the tomogram resolution. The method utilises a search algorithm that maximises the contrast in tomogram sub-volumes. Unlike conventional cross-correlation analysis it provides the required correlation over a large tilt angle separation and guarantees a consistent alignment of images for the full range of object tilt angles. An assessment based on experimental reconstructions shows that the marker-free procedure is competitive to the reference of marker-based procedures at lower resolution and yields sub-pixel accuracy even for simulated high-resolution data. Copyright © 2011 Elsevier B.V. All rights reserved.
Transmission of digital images within the NTSC analog format
Nickel, George H.
2004-06-15
HDTV and NTSC compatible image communication is done in a single NTSC channel bandwidth. Luminance and chrominance image data of a scene to be transmitted is obtained. The image data is quantized and digitally encoded to form digital image data in HDTV transmission format having low-resolution terms and high-resolution terms. The low-resolution digital image data terms are transformed to a voltage signal corresponding to NTSC color subcarrier modulation with retrace blanking and color bursts to form a NTSC video signal. The NTSC video signal and the high-resolution digital image data terms are then transmitted in a composite NTSC video transmission. In a NTSC receiver, the NTSC video signal is processed directly to display the scene. In a HDTV receiver, the NTSC video signal is processed to invert the color subcarrier modulation to recover the low-resolution terms, where the recovered low-resolution terms are combined with the high-resolution terms to reconstruct the scene in a high definition format.
NASA Astrophysics Data System (ADS)
Zhang, Kai; Zhu, Yongtian; Hu, Zhongwen
2016-08-01
The Maunakea Spectroscopic Explorer (MSE) project will transform the CFHT 3.6m optical telescope into a 10m class dedicated multi-object spectroscopic facility, with an ability to simultaneously measure thousands of objects with a spectral resolution range spanning 2,000 to 40,000. MSE will develop two spectrographic facilities to meet the science requirements. These are respectively, the Low/Medium Resolution spectrographs (LMRS) and High Resolution spectrographs (HRS). Multi-object high resolution spectrographs with total of 1,156 fibers is a big challenge, one that has never been attempted for a 10m class telescope. To date, most spectral survey facilities work in single order low/medium resolution mode, and only a few Wide Field Spectrographs (WFS) provide a cross-dispersion high resolution mode with a limited number of orders. Nanjing Institute of Astronomical Optics and Technology (NIAOT) propose a conceptual design with the use of novel image slicer arrays and single order immersed Volume Phase Holographic (VPH) grating for the MSE multi-object high resolution spectrographs. The conceptual scheme contains six identical fiber-link spectrographs, each of which simultaneously covers three restricted bands (λ/30, λ/30, λ/15) in the optical regime, with spectral resolution of 40,000 in Blue/Visible bands (400nm / 490nm) and 20,000 in Red band (650nm). The details of the design is presented in this paper.
Christopher Daly; Jonathan W. Smith; Joseph I. Smith; Robert B. McKane
2007-01-01
High-quality daily meteorological data at high spatial resolution are essential for a variety of hydrologic and ecological modeling applications that support environmental risk assessments and decisionmaking. This paper describes the development. application. and assessment of methods to construct daily high resolution (~50-m cell size) meteorological grids for the...
Patch-Based Super-Resolution of MR Spectroscopic Images: Application to Multiple Sclerosis
Jain, Saurabh; Sima, Diana M.; Sanaei Nezhad, Faezeh; Hangel, Gilbert; Bogner, Wolfgang; Williams, Stephen; Van Huffel, Sabine; Maes, Frederik; Smeets, Dirk
2017-01-01
Purpose: Magnetic resonance spectroscopic imaging (MRSI) provides complementary information to conventional magnetic resonance imaging. Acquiring high resolution MRSI is time consuming and requires complex reconstruction techniques. Methods: In this paper, a patch-based super-resolution method is presented to increase the spatial resolution of metabolite maps computed from MRSI. The proposed method uses high resolution anatomical MR images (T1-weighted and Fluid-attenuated inversion recovery) to regularize the super-resolution process. The accuracy of the method is validated against conventional interpolation techniques using a phantom, as well as simulated and in vivo acquired human brain images of multiple sclerosis subjects. Results: The method preserves tissue contrast and structural information, and matches well with the trend of acquired high resolution MRSI. Conclusions: These results suggest that the method has potential for clinically relevant neuroimaging applications. PMID:28197066
Rayleigh-wave mode separation by high-resolution linear radon transform
Luo, Y.; Xia, J.; Miller, R.D.; Xu, Y.; Liu, J.; Liu, Q.
2009-01-01
Multichannel analysis of surface waves (MASW) method is an effective tool for obtaining vertical shear wave profiles from a single non-invasive measurement. One key step of the MASW method is generation of a dispersion image and extraction of a reliable dispersion curve from raw multichannel shot records. Because different Rayleigh-wave modes normally interfere with each other in the time and space domain, it is necessary to perform mode separation and reconstruction to increase the accuracy of phase velocities determined from a dispersion image. In this paper, we demonstrate the effectiveness of high-resolution linear Radon transform (LRT) as a means of separating and reconstructing multimode, dispersive Rayleigh-wave energy. We first introduce high-resolution LRT methods and Rayleigh-wave mode separation using high-resolution LRT. Next, we use synthetic data and a real-world example to demonstrate the effectiveness of Rayleigh-wave mode separation using high-resolution LRT. Our synthetic and real-world results demonstrate that (1) high-resolution LRT successfully separates and reconstructs multimode dispersive Rayleigh-wave energy with high resolution allowing the multimode energy to be more accurately determined. The horizontal resolution of the Rayleigh-wave method can be increased by extraction of dispersion curves from a pair of traces in the mode-separated shot gather and (2) multimode separation and reconstruction expand the usable frequency range of higher mode dispersive energy, which increases the depth of investigation and provides a means for accurately determining cut-off frequencies. ?? 2009 The Authors Journal compilation ?? 2009 RAS.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Williams, Stuart S; Samulski, Edward; Lopez, Renee
2010-01-01
ABSTRACT. Described herein is the development and investigation of PFPE-based elastomers for high resolution replica molding applications. The modulus of the elastomeric materials was increased through synthetic and additive approaches while maintaining relatively low surface energies (<25 mN/m). Using practically relevant large area master templates, we show that the resolution of the molds is strongly dependant upon the elastomeric mold modulus. A composite mold approach was used to form flexible molds out of stiff, high modulus materials that allow for replication of sub-20 nm post structures. Sub-100 nm line grating master templates, formed using e-beam lithography, were used to determinemore » the experimental stability of the molding materials. It was observed that as the feature spacing decreased, high modulus composite molds were able to effectively replicate the nano-grating structures without cracking or tear-out defects that typically occur with high modulus elastomers.« less
Liss, K D; Royer, A; Tschentscher, T; Suortti, P; Williams, A P
1998-03-01
High-energy X-rav diffraction by means of triple-crystal techniques is a powerful tool for investigating dislocations and strain in bulk materials. Radiation with an energy typically higher than 80 keV combines the advantage of low attenuation with high resolution at large momentum transfers. The triple-crystal diffractometer at the High Energy Beamline of the European Synchrotron Radiation Facility is described. It is shown how the transverse and longitudinal resolution depend on the choice of the crystal reflection, and how the orientation of a reciprocal-lattice distortion in an investigated sample towards the resolution element of the instrument can play an important role. This effect is demonstrated on a single crystal of silicon where a layer of macro pores reveals satellites around the Bragg reflection. The resulting longitudinal distortion can be investigated using the high transverse resolution of the instrument when choosing an appropriate reflection.
MRI Superresolution Using Self-Similarity and Image Priors
Manjón, José V.; Coupé, Pierrick; Buades, Antonio; Collins, D. Louis; Robles, Montserrat
2010-01-01
In Magnetic Resonance Imaging typical clinical settings, both low- and high-resolution images of different types are routinarily acquired. In some cases, the acquired low-resolution images have to be upsampled to match with other high-resolution images for posterior analysis or postprocessing such as registration or multimodal segmentation. However, classical interpolation techniques are not able to recover the high-frequency information lost during the acquisition process. In the present paper, a new superresolution method is proposed to reconstruct high-resolution images from the low-resolution ones using information from coplanar high resolution images acquired of the same subject. Furthermore, the reconstruction process is constrained to be physically plausible with the MR acquisition model that allows a meaningful interpretation of the results. Experiments on synthetic and real data are supplied to show the effectiveness of the proposed approach. A comparison with classical state-of-the-art interpolation techniques is presented to demonstrate the improved performance of the proposed methodology. PMID:21197094
Satellite image time series simulation for environmental monitoring
NASA Astrophysics Data System (ADS)
Guo, Tao
2014-11-01
The performance of environmental monitoring heavily depends on the availability of consecutive observation data and it turns out an increasing demand in remote sensing community for satellite image data in the sufficient resolution with respect to both spatial and temporal requirements, which appear to be conflictive and hard to tune tradeoffs. Multiple constellations could be a solution if without concerning cost, and thus it is so far interesting but very challenging to develop a method which can simultaneously improve both spatial and temporal details. There are some research efforts to deal with the problem from various aspects, a type of approaches is to enhance the spatial resolution using techniques of super resolution, pan-sharpen etc. which can produce good visual effects, but mostly cannot preserve spectral signatures and result in losing analytical value. Another type is to fill temporal frequency gaps by adopting time interpolation, which actually doesn't increase informative context at all. In this paper we presented a novel method to generate satellite images in higher spatial and temporal details, which further enables satellite image time series simulation. Our method starts with a pair of high-low resolution data set, and then a spatial registration is done by introducing LDA model to map high and low resolution pixels correspondingly. Afterwards, temporal change information is captured through a comparison of low resolution time series data, and the temporal change is then projected onto high resolution data plane and assigned to each high resolution pixel referring the predefined temporal change patterns of each type of ground objects to generate a simulated high resolution data. A preliminary experiment shows that our method can simulate a high resolution data with a good accuracy. We consider the contribution of our method is to enable timely monitoring of temporal changes through analysis of low resolution images time series only, and usage of costly high resolution data can be reduced as much as possible, and it presents an efficient solution with great cost performance to build up an economically operational monitoring service for environment, agriculture, forest, land use investigation, and other applications.
NASA Astrophysics Data System (ADS)
Vrieling, Anton; Skidmore, Andrew K.; Wang, Tiejun; Meroni, Michele; Ens, Bruno J.; Oosterbeek, Kees; O'Connor, Brian; Darvishzadeh, Roshanak; Heurich, Marco; Shepherd, Anita; Paganini, Marc
2017-07-01
Vegetation indices derived from satellite image time series have been extensively used to estimate the timing of phenological events like season onset. Medium spatial resolution (≥250 m) satellite sensors with daily revisit capability are typically employed for this purpose. In recent years, phenology is being retrieved at higher resolution (≤30 m) in response to increasing availability of high-resolution satellite data. To overcome the reduced acquisition frequency of such data, previous attempts involved fusion between high- and medium-resolution data, or combinations of multi-year acquisitions in a single phenological reconstruction. The objectives of this study are to demonstrate that phenological parameters can now be retrieved from single-season high-resolution time series, and to compare these retrievals against those derived from multi-year high-resolution and single-season medium-resolution satellite data. The study focuses on the island of Schiermonnikoog, the Netherlands, which comprises a highly-dynamic saltmarsh, dune vegetation, and agricultural land. Combining NDVI series derived from atmospherically-corrected images from RapidEye (5 m-resolution) and the SPOT5 Take5 experiment (10m-resolution) acquired between March and August 2015, phenological parameters were estimated using a function fitting approach. We then compared results with phenology retrieved from four years of 30 m Landsat 8 OLI data, and single-year 100 m Proba-V and 250 m MODIS temporal composites of the same period. Retrieved phenological parameters from combined RapidEye/SPOT5 displayed spatially consistent results and a large spatial variability, providing complementary information to existing vegetation community maps. Retrievals that combined four years of Landsat observations into a single synthetic year were affected by the inclusion of years with warmer spring temperatures, whereas adjustment of the average phenology to 2015 observations was only feasible for a few pixels due to cloud cover around phenological transition dates. The Proba-V and MODIS phenology retrievals scaled poorly relative to their high-resolution equivalents, indicating that medium-resolution phenology retrievals need to be interpreted with care, particularly in landscapes with fine-scale land cover variability.
Boyle, Sarah A; Kennedy, Christina M; Torres, Julio; Colman, Karen; Pérez-Estigarribia, Pastor E; de la Sancha, Noé U
2014-01-01
Technological advances and increasing availability of high-resolution satellite imagery offer the potential for more accurate land cover classifications and pattern analyses, which could greatly improve the detection and quantification of land cover change for conservation. Such remotely-sensed products, however, are often expensive and difficult to acquire, which prohibits or reduces their use. We tested whether imagery of high spatial resolution (≤5 m) differs from lower-resolution imagery (≥30 m) in performance and extent of use for conservation applications. To assess performance, we classified land cover in a heterogeneous region of Interior Atlantic Forest in Paraguay, which has undergone recent and dramatic human-induced habitat loss and fragmentation. We used 4 m multispectral IKONOS and 30 m multispectral Landsat imagery and determined the extent to which resolution influenced the delineation of land cover classes and patch-level metrics. Higher-resolution imagery more accurately delineated cover classes, identified smaller patches, retained patch shape, and detected narrower, linear patches. To assess extent of use, we surveyed three conservation journals (Biological Conservation, Biotropica, Conservation Biology) and found limited application of high-resolution imagery in research, with only 26.8% of land cover studies analyzing satellite imagery, and of these studies only 10.4% used imagery ≤5 m resolution. Our results suggest that high-resolution imagery is warranted yet under-utilized in conservation research, but is needed to adequately monitor and evaluate forest loss and conversion, and to delineate potentially important stepping-stone fragments that may serve as corridors in a human-modified landscape. Greater access to low-cost, multiband, high-resolution satellite imagery would therefore greatly facilitate conservation management and decision-making.
Single-shot and single-sensor high/super-resolution microwave imaging based on metasurface
Wang, Libo; Li, Lianlin; Li, Yunbo; Zhang, Hao Chi; Cui, Tie Jun
2016-01-01
Real-time high-resolution (including super-resolution) imaging with low-cost hardware is a long sought-after goal in various imaging applications. Here, we propose broadband single-shot and single-sensor high-/super-resolution imaging by using a spatio-temporal dispersive metasurface and an imaging reconstruction algorithm. The metasurface with spatio-temporal dispersive property ensures the feasibility of the single-shot and single-sensor imager for super- and high-resolution imaging, since it can convert efficiently the detailed spatial information of the probed object into one-dimensional time- or frequency-dependent signal acquired by a single sensor fixed in the far-field region. The imaging quality can be improved by applying a feature-enhanced reconstruction algorithm in post-processing, and the desired imaging resolution is related to the distance between the object and metasurface. When the object is placed in the vicinity of the metasurface, the super-resolution imaging can be realized. The proposed imaging methodology provides a unique means to perform real-time data acquisition, high-/super-resolution images without employing expensive hardware (e.g. mechanical scanner, antenna array, etc.). We expect that this methodology could make potential breakthroughs in the areas of microwave, terahertz, optical, and even ultrasound imaging. PMID:27246668
NASA Technical Reports Server (NTRS)
Menzel, W. Paul; Moeller, Christopher C.; Smith, William L.
1991-01-01
This program has applied Multispectral Atmospheric Mapping Sensor (MAMS) high resolution data to the problem of monitoring atmospheric quantities of moisture and radiative flux at small spatial scales. MAMS, with 100-m horizontal resolution in its four infrared channels, was developed to study small scale atmospheric moisture and surface thermal variability, especially as related to the development of clouds, precipitation, and severe storms. High-resolution Interferometer Sounder (HIS) data has been used to develop a high spectral resolution retrieval algorithm for producing vertical profiles of atmospheric temperature and moisture. The results of this program are summarized and a list of publications resulting from this contract is presented. Selected publications are attached as an appendix.
Photoionization Rate of Atomic Oxygen
NASA Astrophysics Data System (ADS)
Meier, R. R.; McLaughlin, B. M.; Warren, H. P.; Bishop, J.
2006-05-01
Accurate knowledge of the photoionization rate of atomic oxygen is important for the study and understanding of the ionospheres and emission processes of terrestrial, planetary, and cometary atmospheres. Past calculations of the photoionization rate have been carried out at various spectral resolutions, but none were at sufficiently high resolution to accommodate accidental resonances between solar emission lines and highly structured auto-ionization features in the photoionization cross section. A new version of the NRLEUV solar spectral irradiance model (at solar minimum) and a new model of the O photoionization cross section enable calculations at very high spectral resolution. We find unattenuated photoionization rates computed at 0.001 nm resolution are larger than those at moderate resolution (0.1 nm) by amounts approaching 20%. Allowing for attenuation in the terrestrial atmosphere, we find differences in photoionization rates computed at high and moderate resolution to vary with altitude, especially below 200 km where deviations of plus or minus 20% occur between the two cases.
[Possibile application of X-ray and high resolution CT in pneumoconiosis management].
Vlasov, V G; Laptev, V Ia; Logvinenko, I I; Smirnova, E L; Brovchenko, E P; Mironova, M V
2011-01-01
The article covers results of clinical and roentgenologic data analysis. The data were obtained in the study that covered 447 pneumoconiosis patients, 75 of which were subjected to high resolution CT. If compared to chest X-ray, high resolution CT helps more precise forecast of further course in pneumoconiosis.
Urban cover mapping using digital, high-resolution aerial imagery
Soojeong Myeong; David J. Nowak; Paul F. Hopkins; Robert H. Brock
2003-01-01
High-spatial resolution digital color-infrared aerial imagery of Syracuse, NY was analyzed to test methods for developing land cover classifications for an urban area. Five cover types were mapped: tree/shrub, grass/herbaceous, bare soil, water and impervious surface. Challenges in high-spatial resolution imagery such as shadow effect and similarity in spectral...
High resolution manometry findings in patients with esophageal epiphrenic diverticula.
Vicentine, Fernando P P; Herbella, Fernando A M; Silva, Luciana C; Patti, Marco G
2011-12-01
The pathophysiology of esophageal epiphrenic diverticula is still uncertain even though a concomitant motility disorder is found in the majority of patients in different series. High resolution manometry may allow detection of motor abnormalities in a higher number of patients with esophageal epiphrenic diverticula compared with conventional manometry. This study aims to evaluate the high resolution manometry findings in patients with esophageal epiphrenic diverticula. Nine individuals (mean age 63 ± 10 years, 4 females) with esophageal epiphrenic diverticula underwent high resolution manometry. A single diverticulum was observed in eight patients and multiple diverticula in one. Visual analysis of conventional tracings and color pressure plots for identification of segmental abnormalities was performed by two researchers experienced in high resolution manometry. Upper esophageal sphincter was normal in all patients. Esophageal body was abnormal in eight patients; lower esophageal sphincter was abnormal in seven patients. Named esophageal motility disorders were found in seven patients: achalasia in six, diffuse esophageal spasm in one. In one patient, a segmental hypercontractile zone was noticed with pressure of 196 mm Hg. High resolution manometry demonstrated motor abnormalities in all patients with esophageal epiphrenic diverticula.
NASA Astrophysics Data System (ADS)
Yao, C.; Zhang, Y.; Zhang, Y.; Liu, H.
2017-09-01
With the rapid development of Precision Agriculture (PA) promoted by high-resolution remote sensing, it makes significant sense in management and estimation of agriculture through crop classification of high-resolution remote sensing image. Due to the complex and fragmentation of the features and the surroundings in the circumstance of high-resolution, the accuracy of the traditional classification methods has not been able to meet the standard of agricultural problems. In this case, this paper proposed a classification method for high-resolution agricultural remote sensing images based on convolution neural networks(CNN). For training, a large number of training samples were produced by panchromatic images of GF-1 high-resolution satellite of China. In the experiment, through training and testing on the CNN under the toolbox of deep learning by MATLAB, the crop classification finally got the correct rate of 99.66 % after the gradual optimization of adjusting parameter during training. Through improving the accuracy of image classification and image recognition, the applications of CNN provide a reference value for the field of remote sensing in PA.
NASA Astrophysics Data System (ADS)
Ota, Junko; Umehara, Kensuke; Ishimaru, Naoki; Ohno, Shunsuke; Okamoto, Kentaro; Suzuki, Takanori; Shirai, Naoki; Ishida, Takayuki
2017-02-01
As the capability of high-resolution displays grows, high-resolution images are often required in Computed Tomography (CT). However, acquiring high-resolution images takes a higher radiation dose and a longer scanning time. In this study, we applied the Sparse-coding-based Super-Resolution (ScSR) method to generate high-resolution images without increasing the radiation dose. We prepared the over-complete dictionary learned the mapping between low- and highresolution patches and seek a sparse representation of each patch of the low-resolution input. These coefficients were used to generate the high-resolution output. For evaluation, 44 CT cases were used as the test dataset. We up-sampled images up to 2 or 4 times and compared the image quality of the ScSR scheme and bilinear and bicubic interpolations, which are the traditional interpolation schemes. We also compared the image quality of three learning datasets. A total of 45 CT images, 91 non-medical images, and 93 chest radiographs were used for dictionary preparation respectively. The image quality was evaluated by measuring peak signal-to-noise ratio (PSNR) and structure similarity (SSIM). The differences of PSNRs and SSIMs between the ScSR method and interpolation methods were statistically significant. Visual assessment confirmed that the ScSR method generated a high-resolution image with sharpness, whereas conventional interpolation methods generated over-smoothed images. To compare three different training datasets, there were no significance between the CT, the CXR and non-medical datasets. These results suggest that the ScSR provides a robust approach for application of up-sampling CT images and yields substantial high image quality of extended images in CT.
Ultra high spatial and temporal resolution breast imaging at 7T.
van de Bank, B L; Voogt, I J; Italiaander, M; Stehouwer, B L; Boer, V O; Luijten, P R; Klomp, D W J
2013-04-01
There is a need to obtain higher specificity in the detection of breast lesions using MRI. To address this need, Dynamic Contrast-Enhanced (DCE) MRI has been combined with other structural and functional MRI techniques. Unfortunately, owing to time constraints structural images at ultra-high spatial resolution can generally not be obtained during contrast uptake, whereas the relatively low spatial resolution of functional imaging (e.g. diffusion and perfusion) limits the detection of small lesions. To be able to increase spatial as well as temporal resolution simultaneously, the sensitivity of MR detection needs to increase as well as the ability to effectively accelerate the acquisition. The required gain in signal-to-noise ratio (SNR) can be obtained at 7T, whereas acceleration can be obtained with high-density receiver coil arrays. In this case, morphological imaging can be merged with DCE-MRI, and other functional techniques can be obtained at higher spatial resolution, and with less distortion [e.g. Diffusion Weighted Imaging (DWI)]. To test the feasibility of this concept, we developed a unilateral breast coil for 7T. It comprises a volume optimized dual-channel transmit coil combined with a 30-channel receive array coil. The high density of small coil elements enabled efficient acceleration in any direction to acquire ultra high spatial resolution MRI of close to 0.6 mm isotropic detail within a temporal resolution of 69 s, high spatial resolution MRI of 1.5 mm isotropic within an ultra high temporal resolution of 6.7 s and low distortion DWI at 7T, all validated in phantoms, healthy volunteers and a patient with a lesion in the right breast classified as Breast Imaging Reporting and Data System (BI-RADS) IV. Copyright © 2012 John Wiley & Sons, Ltd.
FALCON: fast and unbiased reconstruction of high-density super-resolution microscopy data
NASA Astrophysics Data System (ADS)
Min, Junhong; Vonesch, Cédric; Kirshner, Hagai; Carlini, Lina; Olivier, Nicolas; Holden, Seamus; Manley, Suliana; Ye, Jong Chul; Unser, Michael
2014-04-01
Super resolution microscopy such as STORM and (F)PALM is now a well known method for biological studies at the nanometer scale. However, conventional imaging schemes based on sparse activation of photo-switchable fluorescent probes have inherently slow temporal resolution which is a serious limitation when investigating live-cell dynamics. Here, we present an algorithm for high-density super-resolution microscopy which combines a sparsity-promoting formulation with a Taylor series approximation of the PSF. Our algorithm is designed to provide unbiased localization on continuous space and high recall rates for high-density imaging, and to have orders-of-magnitude shorter run times compared to previous high-density algorithms. We validated our algorithm on both simulated and experimental data, and demonstrated live-cell imaging with temporal resolution of 2.5 seconds by recovering fast ER dynamics.
FALCON: fast and unbiased reconstruction of high-density super-resolution microscopy data
Min, Junhong; Vonesch, Cédric; Kirshner, Hagai; Carlini, Lina; Olivier, Nicolas; Holden, Seamus; Manley, Suliana; Ye, Jong Chul; Unser, Michael
2014-01-01
Super resolution microscopy such as STORM and (F)PALM is now a well known method for biological studies at the nanometer scale. However, conventional imaging schemes based on sparse activation of photo-switchable fluorescent probes have inherently slow temporal resolution which is a serious limitation when investigating live-cell dynamics. Here, we present an algorithm for high-density super-resolution microscopy which combines a sparsity-promoting formulation with a Taylor series approximation of the PSF. Our algorithm is designed to provide unbiased localization on continuous space and high recall rates for high-density imaging, and to have orders-of-magnitude shorter run times compared to previous high-density algorithms. We validated our algorithm on both simulated and experimental data, and demonstrated live-cell imaging with temporal resolution of 2.5 seconds by recovering fast ER dynamics. PMID:24694686
The Joint Astrophysical Plasmadynamic Experiment (J-PEX): a high-resolution rocket spectrometer
NASA Astrophysics Data System (ADS)
Barstow, Martin A.; Bannister, Nigel P.; Cruddace, Raymond G.; Kowalski, Michael P.; Wood, Kent S.; Yentis, Daryl J.; Gursky, Herbert; Barbee, Troy W., Jr.; Goldstein, William H.; Kordas, Joseph F.; Fritz, Gilbert G.; Culhane, J. Leonard; Lapington, Jonathan S.
2003-02-01
We report on the successful sounding rocket flight of the high resolution (R=3000-4000) J-PEX EUV spectrometer. J-PEX is a novel normal incidence instrument, which combines the focusing and dispersive elements of the spectrometer into a single optical element, a multilayer-coated grating. The high spectral resolution achieved has had to be matched by unprecedented high spatial resolution in the imaging microchannel plate detector used to record the data. We illustrate the performance of the complete instrument through an analysis of the 220-245Å spectrum of the white dwarf G191-B2B obtained with a 300 second exposure. The high resolution allows us to detect a low-density ionized helium component along the line of sight to the star and individual absorption lines from heavier elements in the photosphere.
Flat field concave holographic grating with broad spectral region and moderately high resolution.
Wu, Jian Fen; Chen, Yong Yan; Wang, Tai Sheng
2012-02-01
In order to deal with the conflicts between broad spectral region and high resolution in compact spectrometers based on a flat field concave holographic grating and line array CCD, we present a simple and practical method to design a flat field concave holographic grating that is capable of imaging a broad spectral region at a moderately high resolution. First, we discuss the principle of realizing a broad spectral region and moderately high resolution. Second, we provide the practical method to realize our ideas, in which Namioka grating theory, a genetic algorithm, and ZEMAX are used to reach this purpose. Finally, a near-normal-incidence example modeled in ZEMAX is shown to verify our ideas. The results show that our work probably has a general applicability in compact spectrometers with a broad spectral region and moderately high resolution.
Impacts of high resolution data on traveler compliance levels in emergency evacuation simulations
Lu, Wei; Han, Lee D.; Liu, Cheng; ...
2016-05-05
In this article, we conducted a comparison study of evacuation assignment based on Traffic Analysis Zones (TAZ) and high resolution LandScan USA Population Cells (LPC) with detailed real world roads network. A platform for evacuation modeling built on high resolution population distribution data and activity-based microscopic traffic simulation was proposed. This platform can be extended to any cities in the world. The results indicated that evacuee compliance behavior affects evacuation efficiency with traditional TAZ assignment, but it did not significantly compromise the performance with high resolution LPC assignment. The TAZ assignment also underestimated the real travel time during evacuation. Thismore » suggests that high data resolution can improve the accuracy of traffic modeling and simulation. The evacuation manager should consider more diverse assignment during emergency evacuation to avoid congestions.« less
NASA Astrophysics Data System (ADS)
Watanabe, A.; Furukawa, H.
2018-04-01
The resolution of multichannel Fourier transform (McFT) spectroscopy is insufficient for many applications despite its extreme advantage of high throughput. We propose an improved configuration to realise both performance using a two-dimensional area sensor. For the spectral resolution, we obtained the interferogram of a larger optical path difference by shifting the area sensor without altering any optical components. The non-linear phase error of the interferometer was successfully corrected using a phase-compensation calculation. Warping compensation was also applied to realise a higher throughput to accumulate the signal between vertical pixels. Our approach significantly improved the resolution and signal-to-noise ratio by factors of 1.7 and 34, respectively. This high-resolution and high-sensitivity McFT spectrometer will be useful for detecting weak light signals such as those in non-invasive diagnosis.
X-ray structure determination at low resolution
DOE Office of Scientific and Technical Information (OSTI.GOV)
Brunger, Axel T., E-mail: brunger@stanford.edu; Department of Molecular and Cellular Physiology, Stanford University; Department of Neurology and Neurological Sciences, Stanford University
2009-02-01
Refinement is meaningful even at 4 Å or lower, but with present methodologies it should start from high-resolution crystal structures whenever possible. As an example of structure determination in the 3.5–4.5 Å resolution range, crystal structures of the ATPase p97/VCP, consisting of an N-terminal domain followed by a tandem pair of ATPase domains (D1 and D2), are discussed. The structures were originally solved by molecular replacement with the high-resolution structure of the N-D1 fragment of p97/VCP, whereas the D2 domain was manually built using its homology to the D1 domain as a guide. The structure of the D2 domain alonemore » was subsequently solved at 3 Å resolution. The refined model of D2 and the high-resolution structure of the N-D1 fragment were then used as starting models for re-refinement against the low-resolution diffraction data for full-length p97. The re-refined full-length models showed significant improvement in both secondary structure and R values. The free R values dropped by as much as 5% compared with the original structure refinements, indicating that refinement is meaningful at low resolution and that there is information in the diffraction data even at ∼4 Å resolution that objectively assesses the quality of the model. It is concluded that de novo model building is problematic at low resolution and refinement should start from high-resolution crystal structures whenever possible.« less
Large Area Field of View for Fast Temporal Resolution Astronomy
NASA Astrophysics Data System (ADS)
Covarrubias, Ricardo A.
2018-01-01
Scientific CMOS (sCMOS) technology is especially relevant for high temporal resolution astronomy combining high resolution, large field of view with very fast frame rates, without sacrificing ultra-low noise performance. Solar Astronomy, Near Earth Object detections, Space Debris Tracking, Transient Observations or Wavefront Sensing are among the many applications this technology can be utilized. Andor Technology is currently developing the next-generation, very large area sCMOS camera with an extremely low noise, rapid frame rates, high resolution and wide dynamic range.
Current position of high-resolution MS for drug quantification in clinical & forensic toxicology.
Meyer, Markus R; Helfer, Andreas G; Maurer, Hans H
2014-08-01
This paper reviews high-resolution MS approaches published from January 2011 until March 2014 for the quantification of drugs (of abuse) and/or their metabolites in biosamples using LC-MS with time-of-flight or Orbitrap™ mass analyzers. Corresponding approaches are discussed including sample preparation and mass spectral settings. The advantages and limitations of high-resolution MS for drug quantification, as well as the demand for a certain resolution or a specific mass accuracy are also explored.
Fiber optic cable-based high-resolution, long-distance VGA extenders
NASA Astrophysics Data System (ADS)
Rhee, Jin-Geun; Lee, Iksoo; Kim, Heejoon; Kim, Sungjoon; Koh, Yeon-Wan; Kim, Hoik; Lim, Jiseok; Kim, Chur; Kim, Jungwon
2013-02-01
Remote transfer of high-resolution video information finds more applications in detached display applications for large facilities such as theaters, sports complex, airports, and security facilities. Active optical cables (AOCs) provide a promising approach for enhancing both the transmittable resolution and distance that standard copper-based cables cannot reach. In addition to the standard digital formats such as HDMI, the high-resolution, long-distance transfer of VGA format signals is important for applications where high-resolution analog video ports should be also supported, such as military/defense applications and high-resolution video camera links. In this presentation we present the development of a compressionless, high-resolution (up to WUXGA, 1920x1200), long-distance (up to 2 km) VGA extenders based on serialized technique. We employed asynchronous serial transmission and clock regeneration techniques, which enables lower cost implementation of VGA extenders by removing the necessity for clock transmission and large memory at the receiver. Two 3.125-Gbps transceivers are used in parallel to meet the required maximum video data rate of 6.25 Gbps. As the data are transmitted asynchronously, 24-bit pixel clock time stamp is employed to regenerate video pixel clock accurately at the receiver side. In parallel to the video information, stereo audio and RS-232 control signals are transmitted as well.
NASA Astrophysics Data System (ADS)
Sedano, Fernando; Kempeneers, Pieter; Strobl, Peter; Kucera, Jan; Vogt, Peter; Seebach, Lucia; San-Miguel-Ayanz, Jesús
2011-09-01
This study presents a novel cloud masking approach for high resolution remote sensing images in the context of land cover mapping. As an advantage to traditional methods, the approach does not rely on thermal bands and it is applicable to images from most high resolution earth observation remote sensing sensors. The methodology couples pixel-based seed identification and object-based region growing. The seed identification stage relies on pixel value comparison between high resolution images and cloud free composites at lower spatial resolution from almost simultaneously acquired dates. The methodology was tested taking SPOT4-HRVIR, SPOT5-HRG and IRS-LISS III as high resolution images and cloud free MODIS composites as reference images. The selected scenes included a wide range of cloud types and surface features. The resulting cloud masks were evaluated through visual comparison. They were also compared with ad-hoc independently generated cloud masks and with the automatic cloud cover assessment algorithm (ACCA). In general the results showed an agreement in detected clouds higher than 95% for clouds larger than 50 ha. The approach produced consistent results identifying and mapping clouds of different type and size over various land surfaces including natural vegetation, agriculture land, built-up areas, water bodies and snow.
NASA Astrophysics Data System (ADS)
Descloux, A.; Grußmayer, K. S.; Bostan, E.; Lukes, T.; Bouwens, A.; Sharipov, A.; Geissbuehler, S.; Mahul-Mellier, A.-L.; Lashuel, H. A.; Leutenegger, M.; Lasser, T.
2018-03-01
Super-resolution fluorescence microscopy provides unprecedented insight into cellular and subcellular structures. However, going `beyond the diffraction barrier' comes at a price, since most far-field super-resolution imaging techniques trade temporal for spatial super-resolution. We propose the combination of a novel label-free white light quantitative phase imaging with fluorescence to provide high-speed imaging and spatial super-resolution. The non-iterative phase retrieval relies on the acquisition of single images at each z-location and thus enables straightforward 3D phase imaging using a classical microscope. We realized multi-plane imaging using a customized prism for the simultaneous acquisition of eight planes. This allowed us to not only image live cells in 3D at up to 200 Hz, but also to integrate fluorescence super-resolution optical fluctuation imaging within the same optical instrument. The 4D microscope platform unifies the sensitivity and high temporal resolution of phase imaging with the specificity and high spatial resolution of fluorescence microscopy.
NASA Astrophysics Data System (ADS)
Boon, Choong S.; Guleryuz, Onur G.; Kawahara, Toshiro; Suzuki, Yoshinori
2006-08-01
We consider the mobile service scenario where video programming is broadcast to low-resolution wireless terminals. In such a scenario, broadcasters utilize simultaneous data services and bi-directional communications capabilities of the terminals in order to offer substantially enriched viewing experiences to users by allowing user participation and user tuned content. While users immediately benefit from this service when using their phones in mobile environments, the service is less appealing in stationary environments where a regular television provides competing programming at much higher display resolutions. We propose a fast super-resolution technique that allows the mobile terminals to show a much enhanced version of the broadcast video on nearby high-resolution devices, extending the appeal and usefulness of the broadcast service. The proposed single frame super-resolution algorithm uses recent sparse recovery results to provide high quality and high-resolution video reconstructions based solely on individual decoded frames provided by the low-resolution broadcast.
NASA Astrophysics Data System (ADS)
Mondal, Sudip; Hegarty, Evan; Martin, Chris; Gökçe, Sertan Kutal; Ghorashian, Navid; Ben-Yakar, Adela
2016-10-01
Next generation drug screening could benefit greatly from in vivo studies, using small animal models such as Caenorhabditis elegans for hit identification and lead optimization. Current in vivo assays can operate either at low throughput with high resolution or with low resolution at high throughput. To enable both high-throughput and high-resolution imaging of C. elegans, we developed an automated microfluidic platform. This platform can image 15 z-stacks of ~4,000 C. elegans from 96 different populations using a large-scale chip with a micron resolution in 16 min. Using this platform, we screened ~100,000 animals of the poly-glutamine aggregation model on 25 chips. We tested the efficacy of ~1,000 FDA-approved drugs in improving the aggregation phenotype of the model and identified four confirmed hits. This robust platform now enables high-content screening of various C. elegans disease models at the speed and cost of in vitro cell-based assays.
Dorji, Passang; Fearns, Peter
2017-01-01
The impact of anthropogenic activities on coastal waters is a cause of concern because such activities add to the total suspended sediment (TSS) budget of the coastal waters, which have negative impacts on the coastal ecosystem. Satellite remote sensing provides a powerful tool in monitoring TSS concentration at high spatiotemporal resolution, but coastal managers should be mindful that the satellite-derived TSS concentrations are dependent on the satellite sensor's radiometric properties, atmospheric correction approaches, the spatial resolution and the limitations of specific TSS algorithms. In this study, we investigated the impact of different spatial resolutions of satellite sensor on the quantification of TSS concentration in coastal waters of northern Western Australia. We quantified the TSS product derived from MODerate resolution Imaging Spectroradiometer (MODIS)-Aqua, Landsat-8 Operational Land Image (OLI), and WorldView-2 (WV2) at native spatial resolutions of 250 m, 30 m and 2 m respectively and coarser spatial resolution (resampled up to 5 km) to quantify the impact of spatial resolution on the derived TSS product in different turbidity conditions. The results from the study show that in the waters of high turbidity and high spatial variability, the high spatial resolution WV2 sensor reported TSS concentration as high as 160 mg L-1 while the low spatial resolution MODIS-Aqua reported a maximum TSS concentration of 23.6 mg L-1. Degrading the spatial resolution of each satellite sensor for highly spatially variable turbid waters led to variability in the TSS concentrations of 114.46%, 304.68% and 38.2% for WV2, Landsat-8 OLI and MODIS-Aqua respectively. The implications of this work are particularly relevant in the situation of compliance monitoring where operations may be required to restrict TSS concentrations to a pre-defined limit.
Fearns, Peter
2017-01-01
The impact of anthropogenic activities on coastal waters is a cause of concern because such activities add to the total suspended sediment (TSS) budget of the coastal waters, which have negative impacts on the coastal ecosystem. Satellite remote sensing provides a powerful tool in monitoring TSS concentration at high spatiotemporal resolution, but coastal managers should be mindful that the satellite-derived TSS concentrations are dependent on the satellite sensor’s radiometric properties, atmospheric correction approaches, the spatial resolution and the limitations of specific TSS algorithms. In this study, we investigated the impact of different spatial resolutions of satellite sensor on the quantification of TSS concentration in coastal waters of northern Western Australia. We quantified the TSS product derived from MODerate resolution Imaging Spectroradiometer (MODIS)-Aqua, Landsat-8 Operational Land Image (OLI), and WorldView-2 (WV2) at native spatial resolutions of 250 m, 30 m and 2 m respectively and coarser spatial resolution (resampled up to 5 km) to quantify the impact of spatial resolution on the derived TSS product in different turbidity conditions. The results from the study show that in the waters of high turbidity and high spatial variability, the high spatial resolution WV2 sensor reported TSS concentration as high as 160 mg L-1 while the low spatial resolution MODIS-Aqua reported a maximum TSS concentration of 23.6 mg L-1. Degrading the spatial resolution of each satellite sensor for highly spatially variable turbid waters led to variability in the TSS concentrations of 114.46%, 304.68% and 38.2% for WV2, Landsat-8 OLI and MODIS-Aqua respectively. The implications of this work are particularly relevant in the situation of compliance monitoring where operations may be required to restrict TSS concentrations to a pre-defined limit. PMID:28380059
Multibeam interferometric illumination as the primary source of resolution in optical microscopy
NASA Astrophysics Data System (ADS)
Ryu, J.; Hong, S. S.; Horn, B. K. P.; Freeman, D. M.; Mermelstein, M. S.
2006-04-01
High-resolution images of a fluorescent target were obtained using a low-resolution optical detector by illuminating the target with interference patterns produced with 31 coherent beams. The beams were arranged in a cone with 78° half angle to produce illumination patterns consistent with a numerical aperture of 0.98. High-resolution images were constructed from low-resolution images taken with 930 different illumination patterns. Results for optical detectors with numerical apertures of 0.1 and 0.2 were similar, demonstrating that the resolution is primarily determined by the illuminator and not by the low-resolution detector. Furthermore, the long working distance, large depth of field, and large field of view of the low-resolution detector are preserved.
NASA Astrophysics Data System (ADS)
Krishnamurthy, Lakshmi; Muñoz, Ángel G.; Vecchi, Gabriel A.; Msadek, Rym; Wittenberg, Andrew T.; Stern, Bill; Gudgel, Rich; Zeng, Fanrong
2018-05-01
The Caribbean low-level jet (CLLJ) is an important component of the atmospheric circulation over the Intra-Americas Sea (IAS) which impacts the weather and climate both locally and remotely. It influences the rainfall variability in the Caribbean, Central America, northern South America, the tropical Pacific and the continental Unites States through the transport of moisture. We make use of high-resolution coupled and uncoupled models from the Geophysical Fluid Dynamics Laboratory (GFDL) to investigate the simulation of the CLLJ and its teleconnections and further compare with low-resolution models. The high-resolution coupled model FLOR shows improvements in the simulation of the CLLJ and its teleconnections with rainfall and SST over the IAS compared to the low-resolution coupled model CM2.1. The CLLJ is better represented in uncoupled models (AM2.1 and AM2.5) forced with observed sea-surface temperatures (SSTs), emphasizing the role of SSTs in the simulation of the CLLJ. Further, we determine the forecast skill for observed rainfall using both high- and low-resolution predictions of rainfall and SSTs for the July-August-September season. We determine the role of statistical correction of model biases, coupling and horizontal resolution on the forecast skill. Statistical correction dramatically improves area-averaged forecast skill. But the analysis of spatial distribution in skill indicates that the improvement in skill after statistical correction is region dependent. Forecast skill is sensitive to coupling in parts of the Caribbean, Central and northern South America, and it is mostly insensitive over North America. Comparison of forecast skill between high and low-resolution coupled models does not show any dramatic difference. However, uncoupled models show improvement in the area-averaged skill in the high-resolution atmospheric model compared to lower resolution model. Understanding and improving the forecast skill over the IAS has important implications for highly vulnerable nations in the region.
2016-06-16
procedure. The predictive capabilities of the high-resolution computational fluid dynamics ( CFD ) simulations of urban flow are validated against a very...turbulence over a 2D building array using high-resolution CFD and a distributed drag force approach a Department of Mechanical Engineering, University
Analyzing and leveraging self-similarity for variable resolution atmospheric models
NASA Astrophysics Data System (ADS)
O'Brien, Travis; Collins, William
2015-04-01
Variable resolution modeling techniques are rapidly becoming a popular strategy for achieving high resolution in a global atmospheric models without the computational cost of global high resolution. However, recent studies have demonstrated a variety of resolution-dependent, and seemingly artificial, features. We argue that the scaling properties of the atmosphere are key to understanding how the statistics of an atmospheric model should change with resolution. We provide two such examples. In the first example we show that the scaling properties of the cloud number distribution define how the ratio of resolved to unresolved clouds should increase with resolution. We show that the loss of resolved clouds, in the high resolution region of variable resolution simulations, with the Community Atmosphere Model version 4 (CAM4) is an artifact of the model's treatment of condensed water (this artifact is significantly reduced in CAM5). In the second example we show that the scaling properties of the horizontal velocity field, combined with the incompressibility assumption, necessarily result in an intensification of vertical mass flux as resolution increases. We show that such an increase is present in a wide variety of models, including CAM and the regional climate models of the ENSEMBLES intercomparision. We present theoretical arguments linking this increase to the intensification of precipitation with increasing resolution.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zhu, Fan, E-mail: zf5016@126.com; Center of Ultra-precision Optoelectronic Instrument Engineering, Harbin Institute of Technology, Harbin 150080; Tan, Xinran
An autocollimation (AC) setup with ultra-high resolution and stability for micro-angle measurement is presented. The telephoto objective, which is characterized in long focal length at a compact structure size, and the optical enlargement unit, which can magnify the image displacement to improve its measurement resolution and accuracy, are used to obtain an ultra-high measurement resolution of the AC. The common-path beam drift compensation is used to suppress the drift of measurement results, which is evident in the high-resolution AC, thus to obtain a high measurement stability. Experimental results indicate that an effective resolution of better than 0.0005 arc sec (2.42more » nrad) over a measurement range of ±30 arc sec and a 2-h stability of 0.0061 arc sec (29.57 nrad) can be achieved.« less
Donegan, Ryan J; Stauffer, Anthony; Heaslet, Michael; Poliskie, Michael
Plantar plate pathology has gained noticeable attention in recent years as an etiology of lesser metatarsophalangeal joint pain. The heightened clinical awareness has led to the need for more effective diagnostic imaging accuracy. Numerous reports have established the accuracy of both magnetic resonance imaging and ultrasonography for the diagnosis of plantar plate pathology. However, no conclusions have been made regarding which is the superior imaging modality. The present study reports a case series directly comparing high-resolution dynamic ultrasonography and magnetic resonance imaging. A multicenter retrospective comparison of magnetic resonance imaging versus high-resolution dynamic ultrasonography to evaluate plantar plate pathology with surgical confirmation was conducted. The sensitivity, specificity, and positive and negative predictive values for magnetic resonance imaging were 60%, 100%, 100%, and 33%, respectively. The overall diagnostic accuracy compared with the intraoperative findings was 66%. The sensitivity, specificity, and positive and negative predictive values for high-resolution dynamic ultrasound imaging were 100%, 100%, 100%, and 100%, respectively. The overall diagnostic accuracy compared with the intraoperative findings was 100%. The p value using Fisher's exact test for magnetic resonance imaging and high-resolution dynamic ultrasonography was p = .45, a difference that was not statistically significant. High-resolution dynamic ultrasonography had greater accuracy than magnetic resonance imaging in diagnosing lesser metatarsophalangeal joint plantar plate pathology, although the difference was not statistically significant. The present case series suggests that high-resolution dynamic ultrasonography can be considered an equally accurate imaging modality for plantar plate pathology at a potential cost savings compared with magnetic resonance imaging. Therefore, high-resolution dynamic ultrasonography warrants further investigation in a prospective study. Copyright © 2016 American College of Foot and Ankle Surgeons. Published by Elsevier Inc. All rights reserved.
Adaptive optics high-resolution IR spectroscopy with silicon grisms and immersion gratings
NASA Astrophysics Data System (ADS)
Ge, Jian; McDavitt, Daniel L.; Chakraborty, Abhijit; Bernecker, John L.; Miller, Shane
2003-02-01
The breakthrough of silicon immersion grating technology at Penn State has the ability to revolutionize high-resolution infrared spectroscopy when it is coupled with adaptive optics at large ground-based telescopes. Fabrication of high quality silicon grism and immersion gratings up to 2 inches in dimension, less than 1% integrated scattered light, and diffraction-limited performance becomes a routine process thanks to newly developed techniques. Silicon immersion gratings with etched dimensions of ~ 4 inches are being developed at Penn State. These immersion gratings will be able to provide a diffraction-limited spectral resolution of R = 300,000 at 2.2 micron, or 130,000 at 4.6 micron. Prototype silicon grisms have been successfully used in initial scientific observations at the Lick 3m telescope with adaptive optics. Complete K band spectra of a total of 6 T Tauri and Ae/Be stars and their close companions at a spectral resolution of R ~ 3000 were obtained. This resolving power was achieved by using a silicon echelle grism with a 5 mm pupil diameter in an IR camera. These results represent the first scientific observations conducted by the high-resolution silicon grisms, and demonstrate the extremely high dispersing power of silicon-based gratings. New discoveries from this high spatial and spectral resolution IR spectroscopy will be reported. The future of silicon-based grating applications in ground-based AO IR instruments is promising. Silicon immersion gratings will make very high-resolution spectroscopy (R > 100,000) feasible with compact instruments for implementation on large telescopes. Silicon grisms will offer an efficient way to implement low-cost medium to high resolution IR spectroscopy (R ~ 1000-50000) through the conversion of existing cameras into spectrometers by locating a grism in the instrument's pupil location.
High Resolution CryoFESEM of Microbial Surfaces
NASA Astrophysics Data System (ADS)
Erlandsen, Stanley; Lei, Ming; Martin-Lacave, Ines; Dunny, Gary; Wells, Carol
2003-08-01
The outer surfaces of three microorganisms, Giardia lamblia, Enterococcus faecalis, and Proteus mirabilis, were investigated by cryo-immobilization followed by sublimation of extracellular ice and cryocoating with either Pt alone or Pt plus carbon. Cryocoated samples were examined at [minus sign]125°C in either an in-lens field emission SEM or a below-the-lens field emission SEM. Cryocoating with Pt alone was sufficient for low magnification observation, but attempts to do high-resolution imaging resulted in radiolysis and cracking of the specimen surface. Double coating with Pt and carbon, in combination with high resolution backscatter electron detectors, enabled high-resolution imaging of the glycocalyx of bacteria, revealing a sponge-like network over the surface. High resolution examination of bacterial flagella also revealed a periodic substructure. Common artifacts included radiolysis leading to “cracking” of the surface, and insufficient deposition of Pt resulting in the absence of detectable surface topography.
Research relative to high resolution camera on the advanced X-ray astrophysics facility
NASA Technical Reports Server (NTRS)
1986-01-01
The HRC (High Resolution Camera) is a photon counting instrument to be flown on the Advanced X-Ray Astrophysics Facility (AXAF). It is a large field of view, high angular resolution, detector for the x-ray telescope. The HRC consists of a CsI coated microchannel plate (MCP) acting as a soft x-ray photocathode, followed by a second MCP for high electronic gain. The MCPs are readout by a crossed grid of resistively coupled wires to provide high spatial resolution along with timing and pulse height data. The instrument will be used in two modes, as a direct imaging detector with a limiting sensitivity of 10 to the -15 ergs sq cm sec in a 10 to the 5th second exposure, and as a readout for an objective transmission grating providing spectral resolution of several hundreds to thousands.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Smith, Donald F.; Schulz, Carl; Konijnenburg, Marco
High-resolution Fourier transform ion cyclotron resonance (FT-ICR) mass spectrometry imaging enables the spatial mapping and identification of biomolecules from complex surfaces. The need for long time-domain transients, and thus large raw file sizes, results in a large amount of raw data (“big data”) that must be processed efficiently and rapidly. This can be compounded by largearea imaging and/or high spatial resolution imaging. For FT-ICR, data processing and data reduction must not compromise the high mass resolution afforded by the mass spectrometer. The continuous mode “Mosaic Datacube” approach allows high mass resolution visualization (0.001 Da) of mass spectrometry imaging data, butmore » requires additional processing as compared to featurebased processing. We describe the use of distributed computing for processing of FT-ICR MS imaging datasets with generation of continuous mode Mosaic Datacubes for high mass resolution visualization. An eight-fold improvement in processing time is demonstrated using a Dutch nationally available cloud service.« less
High Resolution Tissue Imaging Using the Single-probe Mass Spectrometry under Ambient Conditions
NASA Astrophysics Data System (ADS)
Rao, Wei; Pan, Ning; Yang, Zhibo
2015-06-01
Ambient mass spectrometry imaging (MSI) is an emerging field with great potential for the detailed spatial analysis of biological samples with minimal pretreatment. We have developed a miniaturized sampling and ionization device, the Single-probe, which uses in-situ surface micro-extraction to achieve high detection sensitivity and spatial resolution during MSI experiments. The Single-probe was coupled to a Thermo LTQ Orbitrap XL mass spectrometer and was able to create high spatial and high mass resolution MS images at 8 ± 2 and 8.5 μm on flat polycarbonate microscope slides and mouse kidney sections, respectively, which are among the highest resolutions available for ambient MSI techniques. Our proof-of-principle experiments indicate that the Single-probe MSI technique has the potential to obtain ambient MS images with very high spatial resolutions with minimal sample preparation, which opens the possibility for subcellular ambient tissue MSI to be performed in the future.
High spatial resolution compressed sensing (HSPARSE) functional MRI.
Fang, Zhongnan; Van Le, Nguyen; Choy, ManKin; Lee, Jin Hyung
2016-08-01
To propose a novel compressed sensing (CS) high spatial resolution functional MRI (fMRI) method and demonstrate the advantages and limitations of using CS for high spatial resolution fMRI. A randomly undersampled variable density spiral trajectory enabling an acceleration factor of 5.3 was designed with a balanced steady state free precession sequence to achieve high spatial resolution data acquisition. A modified k-t SPARSE method was then implemented and applied with a strategy to optimize regularization parameters for consistent, high quality CS reconstruction. The proposed method improves spatial resolution by six-fold with 12 to 47% contrast-to-noise ratio (CNR), 33 to 117% F-value improvement and maintains the same temporal resolution. It also achieves high sensitivity of 69 to 99% compared the original ground-truth, small false positive rate of less than 0.05 and low hemodynamic response function distortion across a wide range of CNRs. The proposed method is robust to physiological noise and enables detection of layer-specific activities in vivo, which cannot be resolved using the highest spatial resolution Nyquist acquisition. The proposed method enables high spatial resolution fMRI that can resolve layer-specific brain activity and demonstrates the significant improvement that CS can bring to high spatial resolution fMRI. Magn Reson Med 76:440-455, 2016. © 2015 The Authors. Magnetic Resonance in Medicine published by Wiley Periodicals, Inc. on behalf of International Society for Magnetic Resonance in Medicine. This is an open access article under the terms of the Creative Commons Attribution-NonCommercial-NoDerivs License, which permits use and distribution in any medium, provided the original work is properly cited, the use is non-commercial and no modifications or adaptations are made. © 2015 The Authors. Magnetic Resonance in Medicine published by Wiley Periodicals, Inc. on behalf of International Society for Magnetic Resonance in Medicine.
Meza, Daphne; Wang, Danni; Wang, Yu; Borwege, Sabine; Sanai, Nader; Liu, Jonathan T C
2015-04-01
Fluorescence image-guided surgery (FIGS), with contrast provided by 5-ALA-induced PpIX, has been shown to enable a higher extent of resection of high-grade gliomas. However, conventional FIGS with low-power microscopy lacks the sensitivity to aid in low-grade glioma (LGG) resection because PpIX signal is weak and sparse in such tissues. Intraoperative high-resolution microscopy of PpIX fluorescence has been proposed as a method to guide LGG resection, where sub-cellular resolution allows for the visualization of sparse and punctate mitochondrial PpIX production in tumor cells. Here, we assess the performance of three potentially portable high-resolution microscopy techniques that may be used for the intraoperative imaging of human LGG tissue samples with PpIX contrast: high-resolution fiber-optic microscopy (HRFM), high-resolution wide-field microscopy (WFM), and dual-axis confocal (DAC) microscopy. Thick unsectioned human LGG tissue samples (n = 7) with 5-ALA-induced PpIX contrast were imaged using three imaging techniques (HRFM, WFM, DAC). The average signal-to-background ratio (SBR) was then calculated for each imaging modality (5 images per tissue, per modality). HRFM provides the ease of use and portability of a flexible fiber bundle, and is simple and inexpensive to build. However, in most cases (6/7), HRFM is not capable of detecting PpIX signal from LGGs due to high autofluorescence, generated by the fiber bundle under laser illumination at 405 nm, which overwhelms the PpIX signal and impedes its visualization. WFM is a camera-based method possessing high lateral resolution but poor axial resolution, resulting in sub-optimal image contrast. Consistent successful detection of PpIX signal throughout our human LGG tissue samples (n = 7), with an acceptable image contrast (SBR >2), was only achieved using DAC microscopy, which offers superior image resolution and contrast that is comparable to histology, but requires a laser-scanning mechanism to achieve optical sectioning. © 2015 Wiley Periodicals, Inc.
Submicron-resolution photoacoustic microscopy of endogenous light-absorbing biomolecules
NASA Astrophysics Data System (ADS)
Zhang, Chi
Photoacoustic imaging in biomedicine has the unique advantage of probing endogenous light absorbers at various length scales with a 100% relative sensitivity. Among the several modalities of photoacoustic imaging, optical-resolution photoacoustic microscopy (OR-PAM) can achieve high spatial resolution, on the order of optical wavelength, at <1 mm depth in biological tissue (the optical ballistic regime). OR-PAM has been applied successfully to structural and functional imaging of blood vasculature and red blood cells in vivo. Any molecules which absorb sufficient light at certain wavelengths can potentially be imaged by PAM. Compared with pure optical imaging, which typically targets fluorescent markers, label-free PAM avoids the major concerns that the fluorescent labeling probes may disturb the function of biomolecules and may have an insufficient density. This dissertation aims to advance label-free OR-PAM to the subcellular scale. The first part of this dissertation describes the technological advancement of PAM yielding high spatial resolution in 3D. The lateral resolution was improved by using optical objectives with high numerical apertures for optical focusing. The axial resolution was improved by using broadband ultrasonic transducers for ultrasound detection. We achieved 220 nm lateral resolution in transmission mode, 0.43 microm lateral resolution in reflection mode, 7.6 microm axial resolution in normal tissue, and 5.8 microm axial resolution with silicone oil immersion/injection. The achieved lateral resolution and axial resolution were the finest reported at the time. With high-resolution in 3D, PAM was demonstrated to resolve cellular and subcellular structures in vivo, such as red blood cells and melanosomes in melanoma cells. Compared with previous PAM systems, our high-resolution PAM could resolve capillaries in mouse ears more clearly. As an example application, we demonstrated intracellular temperature imaging, assisted by fluorescence signal detection, with sub-degree temperature resolution and sub-micron lateral resolution. The second part of this dissertation describes the exploration of endogenous light-absorbing biomolecules for PAM. We demonstrated cytochromes and myoglobin as new absorption contrasts for PAM and identified the corresponding optimal wavelengths for imaging. Fixed fibroblasts on slides and mouse ear sections were imaged by PAM at 422 nm and 250 nm wavelengths to reveal cytoplasms and nuclei, respectively, as confirmed by standard hematoxylin and eosin (H&E) histology. By imaging a blood-perfused mouse heart at 532 nm down to 150 microm in depth, we derived the myocardial sheet thickness and the cleavage height from an undehydrated heart for the first time. The findings promote PAM at new wavelengths and open up new possibilities for characterizing biological tissue. Of particular interest, dual-wavelength PAM around 250 nm and 420 nm wavelengths is analogous to H&E histology. The last part of this dissertation describes the development of sectioning photoacoustic microscopy (SPAM), based on the advancement in spatial resolution and new contrasts for PAM, with applications in brain histology. Label-free SPAM, assisted by a microtome, acquires serial distortion-free images of a specimen on the surface. By exciting cell nuclei at 266 nm wavelength with high resolution, SPAM could pinpoint cell nuclei sensitively and specifically in the mouse brain section, as confirmed by H&E histology. SPAM was demonstrated to generate high-resolution 3D images, highlighting cell nuclei, of formalin-fixed paraffin-embedded mouse brains without tissue staining or clearing. SPAM can potentially serve as a high-throughput and minimal-artifact substitute for histology, probe many other biomolecules and cells, and become a universal tool for animal or human whole-organ microscopy, with diverse applications in life sciences.
Effects of spatial resolution ratio in image fusion
Ling, Y.; Ehlers, M.; Usery, E.L.; Madden, M.
2008-01-01
In image fusion, the spatial resolution ratio can be defined as the ratio between the spatial resolution of the high-resolution panchromatic image and that of the low-resolution multispectral image. This paper attempts to assess the effects of the spatial resolution ratio of the input images on the quality of the fused image. Experimental results indicate that a spatial resolution ratio of 1:10 or higher is desired for optimal multisensor image fusion provided the input panchromatic image is not downsampled to a coarser resolution. Due to the synthetic pixels generated from resampling, the quality of the fused image decreases as the spatial resolution ratio decreases (e.g. from 1:10 to 1:30). However, even with a spatial resolution ratio as small as 1:30, the quality of the fused image is still better than the original multispectral image alone for feature interpretation. In cases where the spatial resolution ratio is too small (e.g. 1:30), to obtain better spectral integrity of the fused image, one may downsample the input high-resolution panchromatic image to a slightly lower resolution before fusing it with the multispectral image.
NASA Astrophysics Data System (ADS)
Husain, S. Z.; Separovic, L.; Yu, W.; Fernig, D.
2014-12-01
Extended-range high-resolution mesoscale simulations with limited-area atmospheric models when applied to downscale regional analysis fields over large spatial domains can provide valuable information for many applications including the weather-dependent renewable energy industry. Long-term simulations over a continental-scale spatial domain, however, require mechanisms to control the large-scale deviations in the high-resolution simulated fields from the coarse-resolution driving fields. As enforcement of the lateral boundary conditions is insufficient to restrict such deviations, large scales in the simulated high-resolution meteorological fields are therefore spectrally nudged toward the driving fields. Different spectral nudging approaches, including the appropriate nudging length scales as well as the vertical profiles and temporal relaxations for nudging, have been investigated to propose an optimal nudging strategy. Impacts of time-varying nudging and generation of hourly analysis estimates are explored to circumvent problems arising from the coarse temporal resolution of the regional analysis fields. Although controlling the evolution of the atmospheric large scales generally improves the outputs of high-resolution mesoscale simulations within the surface layer, the prognostically evolving surface fields can nevertheless deviate from their expected values leading to significant inaccuracies in the predicted surface layer meteorology. A forcing strategy based on grid nudging of the different surface fields, including surface temperature, soil moisture, and snow conditions, toward their expected values obtained from a high-resolution offline surface scheme is therefore proposed to limit any considerable deviation. Finally, wind speed and temperature at wind turbine hub height predicted by different spectrally nudged extended-range simulations are compared against observations to demonstrate possible improvements achievable using higher spatiotemporal resolution.
The fusion of satellite and UAV data: simulation of high spatial resolution band
NASA Astrophysics Data System (ADS)
Jenerowicz, Agnieszka; Siok, Katarzyna; Woroszkiewicz, Malgorzata; Orych, Agata
2017-10-01
Remote sensing techniques used in the precision agriculture and farming that apply imagery data obtained with sensors mounted on UAV platforms became more popular in the last few years due to the availability of low- cost UAV platforms and low- cost sensors. Data obtained from low altitudes with low- cost sensors can be characterised by high spatial and radiometric resolution but quite low spectral resolution, therefore the application of imagery data obtained with such technology is quite limited and can be used only for the basic land cover classification. To enrich the spectral resolution of imagery data acquired with low- cost sensors from low altitudes, the authors proposed the fusion of RGB data obtained with UAV platform with multispectral satellite imagery. The fusion is based on the pansharpening process, that aims to integrate the spatial details of the high-resolution panchromatic image with the spectral information of lower resolution multispectral or hyperspectral imagery to obtain multispectral or hyperspectral images with high spatial resolution. The key of pansharpening is to properly estimate the missing spatial details of multispectral images while preserving their spectral properties. In the research, the authors presented the fusion of RGB images (with high spatial resolution) obtained with sensors mounted on low- cost UAV platforms and multispectral satellite imagery with satellite sensors, i.e. Landsat 8 OLI. To perform the fusion of UAV data with satellite imagery, the simulation of the panchromatic bands from RGB data based on the spectral channels linear combination, was conducted. Next, for simulated bands and multispectral satellite images, the Gram-Schmidt pansharpening method was applied. As a result of the fusion, the authors obtained several multispectral images with very high spatial resolution and then analysed the spatial and spectral accuracies of processed images.
High-resolution ultrashort echo time (UTE) imaging on human knee with AWSOS sequence at 3.0 T.
Qian, Yongxian; Williams, Ashley A; Chu, Constance R; Boada, Fernando E
2012-01-01
To demonstrate the technical feasibility of high-resolution (0.28-0.14 mm) ultrashort echo time (UTE) imaging on human knee at 3T with the acquisition-weighted stack of spirals (AWSOS) sequence. Nine human subjects were scanned on a 3T MRI scanner with an 8-channel knee coil using the AWSOS sequence and isocenter positioning plus manual shimming. High-resolution UTE images were obtained on the subject knees at TE = 0.6 msec with total acquisition time of 5.12 minutes for 60 slices at an in-plane resolution of 0.28 mm and 10.24 minutes for 40 slices at an in-plane resolution of 0.14 mm. Isocenter positioning, manual shimming, and the 8-channel array coil helped minimize image distortion and achieve high signal-to-noise ratio (SNR). It is technically feasible on a clinical 3T MRI scanner to perform UTE imaging on human knee at very high spatial resolutions (0.28-0.14 mm) within reasonable scan time (5-10 min) using the AWSOS sequence. Copyright © 2011 Wiley Periodicals, Inc.
High-resolution DEM Effects on Geophysical Flow Models
NASA Astrophysics Data System (ADS)
Williams, M. R.; Bursik, M. I.; Stefanescu, R. E. R.; Patra, A. K.
2014-12-01
Geophysical mass flow models are numerical models that approximate pyroclastic flow events and can be used to assess the volcanic hazards certain areas may face. One such model, TITAN2D, approximates granular-flow physics based on a depth-averaged analytical model using inputs of basal and internal friction, material volume at a coordinate point, and a GIS in the form of a digital elevation model (DEM). The volume of modeled material propagates over the DEM in a way that is governed by the slope and curvature of the DEM surface and the basal and internal friction angles. Results from TITAN2D are highly dependent upon the inputs to the model. Here we focus on a single input: the DEM, which can vary in resolution. High resolution DEMs are advantageous in that they contain more surface details than lower-resolution models, presumably allowing modeled flows to propagate in a way more true to the real surface. However, very high resolution DEMs can create undesirable artifacts in the slope and curvature that corrupt flow calculations. With high-resolution DEMs becoming more widely available and preferable for use, determining the point at which high resolution data is less advantageous compared to lower resolution data becomes important. We find that in cases of high resolution, integer-valued DEMs, very high-resolution is detrimental to good model outputs when moderate-to-low (<10-15°) slope angles are involved. At these slope angles, multiple adjacent DEM cell elevation values are equal due to the need for the DEM to approximate the low slope with a limited set of integer values for elevation. The first derivative of the elevation surface thus becomes zero. In these cases, flow propagation is inhibited by these spurious zero-slope conditions. Here we present evidence for this "terracing effect" from 1) a mathematically defined simulated elevation model, to demonstrate the terracing effects of integer valued data, and 2) a real-world DEM where terracing must be addressed. We discuss the effect on the flow model output and present possible solutions for rectification of the problem.
Stickel, Jennifer R; Qi, Jinyi; Cherry, Simon R
2007-01-01
With the increasing use of in vivo imaging in mouse models of disease, there are many interesting applications that demand imaging of organs and tissues with submillimeter resolution. Though there are other contributing factors, the spatial resolution in small-animal PET is still largely determined by the detector pixel dimensions. In this work, a pair of lutetium oxyorthosilicate (LSO) arrays with 0.5-mm pixels was coupled to multichannel photomultiplier tubes and evaluated for use as high-resolution PET detectors. Flood histograms demonstrated that most crystals were clearly identifiable. Energy resolution varied from 22% to 38%. The coincidence timing resolution was 1.42-ns full width at half maximum (FWHM). The intrinsic spatial resolution was 0.68-mm FWHM as measured with a 30-gauge needle filled with (18)F. The improvement in spatial resolution in a tomographic setting is demonstrated using images of a line source phantom reconstructed with filtered backprojection and compared with images obtained from 2 dedicated small-animal PET scanners. Finally, a projection image of the mouse foot is shown to demonstrate the application of these 0.5-mm LSO detectors to a biologic task. A pair of highly pixelated LSO detections has been constructed and characterized for use as high-spatial-resolution PET detectors. It appears that small-animal PET systems capable of a FWHM spatial resolution of 600 microm or less are feasible and should be pursued.
FDR-controlled metabolite annotation for high-resolution imaging mass spectrometry.
Palmer, Andrew; Phapale, Prasad; Chernyavsky, Ilya; Lavigne, Regis; Fay, Dominik; Tarasov, Artem; Kovalev, Vitaly; Fuchser, Jens; Nikolenko, Sergey; Pineau, Charles; Becker, Michael; Alexandrov, Theodore
2017-01-01
High-mass-resolution imaging mass spectrometry promises to localize hundreds of metabolites in tissues, cell cultures, and agar plates with cellular resolution, but it is hampered by the lack of bioinformatics tools for automated metabolite identification. We report pySM, a framework for false discovery rate (FDR)-controlled metabolite annotation at the level of the molecular sum formula, for high-mass-resolution imaging mass spectrometry (https://github.com/alexandrovteam/pySM). We introduce a metabolite-signal match score and a target-decoy FDR estimate for spatial metabolomics.
NASA Astrophysics Data System (ADS)
Nocente, M.; Tardocchi, M.; Olariu, A.; Olariu, S.; Pereira, R. C.; Chugunov, I. N.; Fernandes, A.; Gin, D. B.; Grosso, G.; Kiptily, V. G.; Neto, A.; Shevelev, A. E.; Silva, M.; Sousa, J.; Gorini, G.
2013-04-01
High resolution γ-ray spectroscopy measurements at MHz counting rates were carried out at nuclear accelerators, combining a LaBr 3(Ce) detector with dedicated hardware and software solutions based on digitization and off-line analysis. Spectra were measured at counting rates up to 4 MHz, with little or no degradation of the energy resolution, adopting a pile up rejection algorithm. The reported results represent a step forward towards the final goal of high resolution γ-ray spectroscopy measurements on a burning plasma device.
NASA Astrophysics Data System (ADS)
Cooper, R. J.; Amman, M.; Vetter, K.
2018-04-01
High-resolution gamma-ray spectrometers are required for applications in nuclear safeguards, emergency response, and fundamental nuclear physics. To overcome one of the shortcomings of conventional High Purity Germanium (HPGe) detectors, we have developed a prototype device capable of achieving high event throughput and high energy resolution at very high count rates. This device, the design of which we have previously reported on, features a planar HPGe crystal with a reduced-capacitance strip electrode geometry. This design is intended to provide good energy resolution at the short shaping or digital filter times that are required for high rate operation and which are enabled by the fast charge collection afforded by the planar geometry crystal. In this work, we report on the initial performance of the system at count rates up to and including two million counts per second.
High-Resolution of Electron Microscopy of Montmorillonite and Montmorillonite/Epoxy Nanocomposites
2005-01-01
AFRL-ML-WP-TP-2006-464 HIGH-RESOLUTION OF ELECTRON MICROSCOPY OF MONTMORILLONITE AND MONTMORILLONITE /EPOXY NANOCOMPOSITES Lawrence F...HIGH-RESOLUTION OF ELECTRON MICROSCOPY OF MONTMORILLONITE AND MONTMORILLONITE /EPOXY NANOCOMPOSITES 5c. PROGRAM ELEMENT NUMBER 62102F 5d...transmission electron microscopy the structure and morphology of montmorillonite (MMT), a material of current interest for use in polymer nanocomposites, was
High resolution scintillation detector with semiconductor readout
Levin, Craig S.; Hoffman, Edward J.
2000-01-01
A novel high resolution scintillation detector array for use in radiation imaging such as high resolution Positron Emission Tomography (PET) which comprises one or more parallelepiped crystals with at least one long surface of each crystal being in intimate contact with a semiconductor photodetector such that photons generated within each crystal by gamma radiation passing therethrough is detected by the photodetector paired therewith.
High-resolution ground-based spectroscopy: where and how ?
NASA Astrophysics Data System (ADS)
Pallavicini, R.
2002-07-01
An overview is presented of high-resolution optical spectrographs in operation or under development at large telescopes, with emphasis on those facilities best suited for the study of late-type stars and stellar surface inhomogeneities. Plans for the development of new high-resolution spectroscopic instruments are discussed with emphasis on the ICE spectrograph for the PEPSI spectropolarimeter at the LBT.
Microdome-gooved Gd(2)O(2)S:Tb scintillator for flexible and high resolution digital radiography.
Jung, Phill Gu; Lee, Chi Hoon; Bae, Kong Myeong; Lee, Jae Min; Lee, Sang Min; Lim, Chang Hwy; Yun, Seungman; Kim, Ho Kyung; Ko, Jong Soo
2010-07-05
A flexible microdome-grooved Gd(2)O(2)S:Tb scintillator is simulated, fabricated, and characterized for digital radiography applications. According to Monte Carlo simulation results, the dome-grooved structure has a high spatial resolution, which is verified by X-ray image performance of the scintillator. The proposed scintillator has lower X-ray sensitivity than a nonstructured scintillator but almost two times higher spatial resolution at high spatial frequency. Through evaluation of the X-ray performance of the fabricated scintillators, we confirm that the microdome-grooved scintillator can be applied to next-generation flexible digital radiography systems requiring high spatial resolution.
Beyer, Hannes; Wagner, Tino; Stemmer, Andreas
2016-01-01
Frequency-modulation atomic force microscopy has turned into a well-established method to obtain atomic resolution on flat surfaces, but is often limited to ultra-high vacuum conditions and cryogenic temperatures. Measurements under ambient conditions are influenced by variations of the dew point and thin water layers present on practically every surface, complicating stable imaging with high resolution. We demonstrate high-resolution imaging in air using a length-extension resonator operating at small amplitudes. An additional slow feedback compensates for changes in the free resonance frequency, allowing stable imaging over a long period of time with changing environmental conditions.
Zook, James D.; Molugu, Trivikram R.; Jacobsen, Neil E.; Lin, Guangxin; Soll, Jürgen; Cherry, Brian R.; Brown, Michael F.; Fromme, Petra
2013-01-01
Solving high-resolution structures for membrane proteins continues to be a daunting challenge in the structural biology community. In this study we report our high-resolution NMR results for a transmembrane protein, outer envelope protein of molar mass 16 kDa (OEP16), an amino acid transporter from the outer membrane of chloroplasts. Three-dimensional, high-resolution NMR experiments on the 13C, 15N, 2H-triply-labeled protein were used to assign protein backbone resonances and to obtain secondary structure information. The results yield over 95% assignment of N, HN, CO, Cα, and Cβ chemical shifts, which is essential for obtaining a high resolution structure from NMR data. Chemical shift analysis from the assignment data reveals experimental evidence for the first time on the location of the secondary structure elements on a per residue basis. In addition T 1Z and T2 relaxation experiments were performed in order to better understand the protein dynamics. Arginine titration experiments yield an insight into the amino acid residues responsible for protein transporter function. The results provide the necessary basis for high-resolution structural determination of this important plant membrane protein. PMID:24205117
The implementation of sea ice model on a regional high-resolution scale
NASA Astrophysics Data System (ADS)
Prasad, Siva; Zakharov, Igor; Bobby, Pradeep; McGuire, Peter
2015-09-01
The availability of high-resolution atmospheric/ocean forecast models, satellite data and access to high-performance computing clusters have provided capability to build high-resolution models for regional ice condition simulation. The paper describes the implementation of the Los Alamos sea ice model (CICE) on a regional scale at high resolution. The advantage of the model is its ability to include oceanographic parameters (e.g., currents) to provide accurate results. The sea ice simulation was performed over Baffin Bay and the Labrador Sea to retrieve important parameters such as ice concentration, thickness, ridging, and drift. Two different forcing models, one with low resolution and another with a high resolution, were used for the estimation of sensitivity of model results. Sea ice behavior over 7 years was simulated to analyze ice formation, melting, and conditions in the region. Validation was based on comparing model results with remote sensing data. The simulated ice concentration correlated well with Advanced Microwave Scanning Radiometer for EOS (AMSR-E) and Ocean and Sea Ice Satellite Application Facility (OSI-SAF) data. Visual comparison of ice thickness trends estimated from the Soil Moisture and Ocean Salinity satellite (SMOS) agreed with the simulation for year 2010-2011.
Fei, Chunlong; Chiu, Chi Tat; Chen, Xiaoyang; Chen, Zeyu; Ma, Jianguo; Zhu, Benpeng; Shung, K. Kirk; Zhou, Qifa
2016-01-01
High resolution ultrasonic imaging requires high frequency wide band ultrasonic transducers, which produce short pulses and highly focused beam. However, currently the frequency of ultrasonic transducers is limited to below 100 MHz, mainly because of the challenge in precise control of fabrication parameters. This paper reports the design, fabrication, and characterization of sensitive broadband lithium niobate (LiNbO3) single element ultrasonic transducers in the range of 100–300 MHz, as well as their applications in high resolution imaging. All transducers were built for an f-number close to 1.0, which was achieved by press-focusing the piezoelectric layer into a spherical curvature. Characterization results demonstrated their high sensitivity and a −6 dB bandwidth greater than 40%. Resolutions better than 6.4 μm in the lateral direction and 6.2 μm in the axial direction were achieved by scanning a 4 μm tungsten wire target. Ultrasonic biomicroscopy images of zebrafish eyes were obtained with these transducers which demonstrate the feasibility of high resolution imaging with a performance comparable to optical resolution. PMID:27329379
Wavelength scanning achieves pixel super-resolution in holographic on-chip microscopy
NASA Astrophysics Data System (ADS)
Luo, Wei; Göröcs, Zoltan; Zhang, Yibo; Feizi, Alborz; Greenbaum, Alon; Ozcan, Aydogan
2016-03-01
Lensfree holographic on-chip imaging is a potent solution for high-resolution and field-portable bright-field imaging over a wide field-of-view. Previous lensfree imaging approaches utilize a pixel super-resolution technique, which relies on sub-pixel lateral displacements between the lensfree diffraction patterns and the image sensor's pixel-array, to achieve sub-micron resolution under unit magnification using state-of-the-art CMOS imager chips, commonly used in e.g., mobile-phones. Here we report, for the first time, a wavelength scanning based pixel super-resolution technique in lensfree holographic imaging. We developed an iterative super-resolution algorithm, which generates high-resolution reconstructions of the specimen from low-resolution (i.e., under-sampled) diffraction patterns recorded at multiple wavelengths within a narrow spectral range (e.g., 10-30 nm). Compared with lateral shift-based pixel super-resolution, this wavelength scanning approach does not require any physical shifts in the imaging setup, and the resolution improvement is uniform in all directions across the sensor-array. Our wavelength scanning super-resolution approach can also be integrated with multi-height and/or multi-angle on-chip imaging techniques to obtain even higher resolution reconstructions. For example, using wavelength scanning together with multi-angle illumination, we achieved a halfpitch resolution of 250 nm, corresponding to a numerical aperture of 1. In addition to pixel super-resolution, the small scanning steps in wavelength also enable us to robustly unwrap phase, revealing the specimen's optical path length in our reconstructed images. We believe that this new wavelength scanning based pixel super-resolution approach can provide competitive microscopy solutions for high-resolution and field-portable imaging needs, potentially impacting tele-pathology applications in resource-limited-settings.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chiswell, S
2009-01-11
Assimilation of radar velocity and precipitation fields into high-resolution model simulations can improve precipitation forecasts with decreased 'spin-up' time and improve short-term simulation of boundary layer winds (Benjamin, 2004 & 2007; Xiao, 2008) which is critical to improving plume transport forecasts. Accurate description of wind and turbulence fields is essential to useful atmospheric transport and dispersion results, and any improvement in the accuracy of these fields will make consequence assessment more valuable during both routine operation as well as potential emergency situations. During 2008, the United States National Weather Service (NWS) radars implemented a significant upgrade which increased the real-timemore » level II data resolution to 8 times their previous 'legacy' resolution, from 1 km range gate and 1.0 degree azimuthal resolution to 'super resolution' 250 m range gate and 0.5 degree azimuthal resolution (Fig 1). These radar observations provide reflectivity, velocity and returned power spectra measurements at a range of up to 300 km (460 km for reflectivity) at a frequency of 4-5 minutes and yield up to 13.5 million point observations per level in super-resolution mode. The migration of National Weather Service (NWS) WSR-88D radars to super resolution is expected to improve warning lead times by detecting small scale features sooner with increased reliability; however, current operational mesoscale model domains utilize grid spacing several times larger than the legacy data resolution, and therefore the added resolution of radar data is not fully exploited. The assimilation of super resolution reflectivity and velocity data into high resolution numerical weather model forecasts where grid spacing is comparable to the radar data resolution is investigated here to determine the impact of the improved data resolution on model predictions.« less
Survey of currently available high-resolution raster graphics systems
NASA Technical Reports Server (NTRS)
Jones, Denise R.
1987-01-01
Presented are data obtained on high-resolution raster graphics engines currently available on the market. The data were obtained through survey responses received from various vendors and also from product literature. The questionnaire developed for this survey was basically a list of characteristics desired in a high performance color raster graphics system which could perform real-time aircraft simulations. Several vendors responded to the survey, with most reporting on their most advanced high-performance, high-resolution raster graphics engine.
Bibliography of In-House and Contract Reports. Supplement 17
1991-10-01
Area Exit Pupil Viewer ETL-0399 1985 63 TILE REPORT NO. YEAR Extension of Kendall’s Concordance Test Where ETL-0316 1983 Ties are Allowed, An Extraction...Phase 11 ETL-0360 1984 High Resolution Optical Power Spectrum Analyzer ETL-0127 1978 High Resolution Orthophoto Output Table (HIROOT) AD 856 731L 1969...High Resolution Orthophoto Output Table ETL-ETR-72-3 1972 High Speed Disc Memory and a Color Image AD 878 975L 1970 Display for a Small Computer High
Kang, Jeon Woong; So, Peter T. C.; Dasari, Ramachandra R.; Lim, Dong-Kwon
2015-01-01
We report a method to achieve high speed and high resolution live cell Raman images using small spherical gold nanoparticles with highly narrow intra-nanogap structures responding to NIR excitation (785 nm) and high-speed confocal Raman microscopy. The three different Raman-active molecules placed in the narrow intra-nanogap showed a strong and uniform Raman intensity in solution even under transient exposure time (10 ms) and low input power of incident laser (200 μW), which lead to obtain high-resolution single cell image within 30 s without inducing significant cell damage. The high resolution Raman image showed the distributions of gold nanoparticles for their targeted sites such as cytoplasm, mitochondria, or nucleus. The high speed Raman-based live cell imaging allowed us to monitor rapidly changing cell morphologies during cell death induced by the addition of highly toxic KCN solution to cells. These results strongly suggest that the use of SERS-active nanoparticle can greatly improve the current temporal resolution and image quality of Raman-based cell images enough to obtain the detailed cell dynamics and/or the responses of cells to potential drug molecules. PMID:25646716
High-resolution MRI in detecting subareolar breast abscess.
Fu, Peifen; Kurihara, Yasuyuki; Kanemaki, Yoshihide; Okamoto, Kyoko; Nakajima, Yasuo; Fukuda, Mamoru; Maeda, Ichiro
2007-06-01
Because subareolar breast abscess has a high recurrence rate, a more effective imaging technique is needed to comprehensively visualize the lesions and guide surgery. We performed a high-resolution MRI technique using a microscopy coil to reveal the characteristics and extent of subareolar breast abscess. High-resolution MRI has potential diagnostic value in subareolar breast abscess. This technique can be used to guide surgery with the aim of reducing the recurrence rate.
Evaluating the Value of High Spatial Resolution in National Capacity Expansion Models using ReEDS
DOE Office of Scientific and Technical Information (OSTI.GOV)
Krishnan, Venkat; Cole, Wesley
2016-11-14
Power sector capacity expansion models (CEMs) have a broad range of spatial resolutions. This paper uses the Regional Energy Deployment System (ReEDS) model, a long-term national scale electric sector CEM, to evaluate the value of high spatial resolution for CEMs. ReEDS models the United States with 134 load balancing areas (BAs) and captures the variability in existing generation parameters, future technology costs, performance, and resource availability using very high spatial resolution data, especially for wind and solar modeled at 356 resource regions. In this paper we perform planning studies at three different spatial resolutions--native resolution (134 BAs), state-level, and NERCmore » region level--and evaluate how results change under different levels of spatial aggregation in terms of renewable capacity deployment and location, associated transmission builds, and system costs. The results are used to ascertain the value of high geographically resolved models in terms of their impact on relative competitiveness among renewable energy resources.« less
NASA Astrophysics Data System (ADS)
Marchand, Paul J.; Szlag, Daniel; Bouwens, Arno; Lasser, Theo
2018-03-01
Visible light optical coherence tomography has shown great interest in recent years for spectroscopic and high-resolution retinal and cerebral imaging. Here, we present an extended-focus optical coherence microscopy system operating from the visible to the near-infrared wavelength range for high axial and lateral resolution imaging of cortical structures in vivo. The system exploits an ultrabroad illumination spectrum centered in the visible wavelength range (λc = 650 nm, Δλ ˜ 250 nm) offering a submicron axial resolution (˜0.85 μm in water) and an extended-focus configuration providing a high lateral resolution of ˜1.4 μm maintained over ˜150 μm in depth in water. The system's axial and lateral resolution are first characterized using phantoms, and its imaging performance is then demonstrated by imaging the vasculature, myelinated axons, and neuronal cells in the first layers of the somatosensory cortex of mice in vivo.
Using High Spatial Resolution to Improve BOLD fMRI Detection at 3T
Claise, Béatrice; Jean, Betty
2015-01-01
For different functional magnetic resonance imaging experiments using blood oxygenation level-dependent (BOLD) contrast, the acquisition of T 2*-weighted scans at a high spatial resolution may be advantageous in terms of time-course signal-to-noise ratio and of BOLD sensitivity when the regions are prone to susceptibility artifacts. In this study, we explore this solution by examining how spatial resolution influences activations elicited when appetizing food pictures are viewed. Twenty subjects were imaged at 3 T with two different voxel volumes, 3.4 μl and 27 μl. Despite the diminution of brain coverage, we found that high-resolution acquisition led to a better detection of activations. Though known to suffer to different degrees from susceptibility artifacts, the activations detected by high spatial resolution were notably consistent with those reported in published activation likelihood estimation meta-analyses, corresponding to taste-responsive regions. Furthermore, these regions were found activated bilaterally, in contrast with previous findings. Both the reduction of partial volume effect, which improves BOLD contrast, and the mitigation of susceptibility artifact, which boosts the signal to noise ratio in certain regions, explained the better detection noted with high resolution. The present study provides further evidences that high spatial resolution is a valuable solution for human BOLD fMRI, especially for studying food-related stimuli. PMID:26550990
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zhao, Chun; Leung, L. Ruby; Park, Sang-Hun
Advances in computing resources are gradually moving regional and global numerical forecasting simulations towards sub-10 km resolution, but global high resolution climate simulations remain a challenge. The non-hydrostatic Model for Prediction Across Scales (MPAS) provides a global framework to achieve very high resolution using regional mesh refinement. Previous studies using the hydrostatic version of MPAS (H-MPAS) with the physics parameterizations of Community Atmosphere Model version 4 (CAM4) found notable resolution dependent behaviors. This study revisits the resolution sensitivity using the non-hydrostatic version of MPAS (NH-MPAS) with both CAM4 and CAM5 physics. A series of aqua-planet simulations at global quasi-uniform resolutionsmore » ranging from 240 km to 30 km and global variable resolution simulations with a regional mesh refinement of 30 km resolution over the tropics are analyzed, with a primary focus on the distinct characteristics of NH-MPAS in simulating precipitation, clouds, and large-scale circulation features compared to H-MPAS-CAM4. The resolution sensitivity of total precipitation and column integrated moisture in NH-MPAS is smaller than that in H-MPAS-CAM4. This contributes importantly to the reduced resolution sensitivity of large-scale circulation features such as the inter-tropical convergence zone and Hadley circulation in NH-MPAS compared to H-MPAS. In addition, NH-MPAS shows almost no resolution sensitivity in the simulated westerly jet, in contrast to the obvious poleward shift in H-MPAS with increasing resolution, which is partly explained by differences in the hyperdiffusion coefficients used in the two models that influence wave activity. With the reduced resolution sensitivity, simulations in the refined region of the NH-MPAS global variable resolution configuration exhibit zonally symmetric features that are more comparable to the quasi-uniform high-resolution simulations than those from H-MPAS that displays zonal asymmetry in simulations inside the refined region. Overall, NH-MPAS with CAM5 physics shows less resolution sensitivity compared to CAM4. These results provide a reference for future studies to further explore the use of NH-MPAS for high-resolution climate simulations in idealized and realistic configurations.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ogura, Toshihiko, E-mail: t-ogura@aist.go.jp
Scanning electron microscopy (SEM) has been widely used to examine biological specimens of bacteria, viruses and proteins. Until now, atmospheric and/or wet biological specimens have been examined using various atmospheric holders or special equipment involving SEM. Unfortunately, they undergo heavy radiation damage by the direct electron beam. In addition, images of unstained biological samples in water yield poor contrast. We recently developed a new analytical technology involving a frequency transmission electric-field (FTE) method based on thermionic SEM. This method is suitable for high-contrast imaging of unstained biological specimens. Our aim was to optimise the method. Here we describe a high-resolutionmore » FTE system based on field-emission SEM; it allows for imaging and nanoscale examination of various biological specimens in water without radiation damage. The spatial resolution is 8 nm, which is higher than 41 nm of the existing FTE system. Our new method can be easily utilised for examination of unstained biological specimens including bacteria, viruses and protein complexes. Furthermore, our high-resolution FTE system can be used for diverse liquid samples across a broad range of scientific fields, e.g. nanoparticles, nanotubes and organic and catalytic materials. - Highlights: • We developed a high-resolution frequency transmission electric-field (FTE) system. • High-resolution FTE system is introduced in the field-emission SEM. • The spatial resolution of high-resolution FTE method is 8 nm. • High-resolution FTE system enables observation of the intact IgM particles in water.« less
NASA Astrophysics Data System (ADS)
Hong, Liang
2013-10-01
The availability of high spatial resolution remote sensing data provides new opportunities for urban land-cover classification. More geometric details can be observed in the high resolution remote sensing image, Also Ground objects in the high resolution remote sensing image have displayed rich texture, structure, shape and hierarchical semantic characters. More landscape elements are represented by a small group of pixels. Recently years, the an object-based remote sensing analysis methodology is widely accepted and applied in high resolution remote sensing image processing. The classification method based on Geo-ontology and conditional random fields is presented in this paper. The proposed method is made up of four blocks: (1) the hierarchical ground objects semantic framework is constructed based on geoontology; (2) segmentation by mean-shift algorithm, which image objects are generated. And the mean-shift method is to get boundary preserved and spectrally homogeneous over-segmentation regions ;(3) the relations between the hierarchical ground objects semantic and over-segmentation regions are defined based on conditional random fields framework ;(4) the hierarchical classification results are obtained based on geo-ontology and conditional random fields. Finally, high-resolution remote sensed image data -GeoEye, is used to testify the performance of the presented method. And the experimental results have shown the superiority of this method to the eCognition method both on the effectively and accuracy, which implies it is suitable for the classification of high resolution remote sensing image.
Multiple Sensor Camera for Enhanced Video Capturing
NASA Astrophysics Data System (ADS)
Nagahara, Hajime; Kanki, Yoshinori; Iwai, Yoshio; Yachida, Masahiko
A resolution of camera has been drastically improved under a current request for high-quality digital images. For example, digital still camera has several mega pixels. Although a video camera has the higher frame-rate, the resolution of a video camera is lower than that of still camera. Thus, the high-resolution is incompatible with the high frame rate of ordinary cameras in market. It is difficult to solve this problem by a single sensor, since it comes from physical limitation of the pixel transfer rate. In this paper, we propose a multi-sensor camera for capturing a resolution and frame-rate enhanced video. Common multi-CCDs camera, such as 3CCD color camera, has same CCD for capturing different spectral information. Our approach is to use different spatio-temporal resolution sensors in a single camera cabinet for capturing higher resolution and frame-rate information separately. We build a prototype camera which can capture high-resolution (2588×1958 pixels, 3.75 fps) and high frame-rate (500×500, 90 fps) videos. We also proposed the calibration method for the camera. As one of the application of the camera, we demonstrate an enhanced video (2128×1952 pixels, 90 fps) generated from the captured videos for showing the utility of the camera.
Automatic public access to documents and maps stored on and internal secure system.
NASA Astrophysics Data System (ADS)
Trench, James; Carter, Mary
2013-04-01
The Geological Survey of Ireland operates a Document Management System for providing documents and maps stored internally in high resolution and in a high level secure environment, to an external service where the documents are automatically presented in a lower resolution to members of the public. Security is devised through roles and Individual Users where role level and folder level can be set. The application is an electronic document/data management (EDM) system which has a Geographical Information System (GIS) component integrated to allow users to query an interactive map of Ireland for data that relates to a particular area of interest. The data stored in the database consists of Bedrock Field Sheets, Bedrock Notebooks, Bedrock Maps, Geophysical Surveys, Geotechnical Maps & Reports, Groundwater, GSI Publications, Marine, Mine Records, Mineral Localities, Open File, Quaternary and Unpublished Reports. The Konfig application Tool is both an internal and public facing application. It acts as a tool for high resolution data entry which are stored in a high resolution vault. The public facing application is a mirror of the internal application and differs only in that the application furnishes high resolution data into low resolution format which is stored in a low resolution vault thus, making the data web friendly to the end user for download.
Gao, Mingxing; Xu, Xiwei; Klinger, Yann; van der Woerd, Jerome; Tapponnier, Paul
2017-08-15
The recent dramatic increase in millimeter- to centimeter- resolution topographic datasets obtained via multi-view photogrammetry raises the possibility of mapping detailed offset geomorphology and constraining the spatial characteristics of active faults. Here, for the first time, we applied this new method to acquire high-resolution imagery and generate topographic data along the Altyn Tagh fault, which is located in a remote high elevation area and shows preserved ancient earthquake surface ruptures. A digital elevation model (DEM) with a resolution of 0.065 m and an orthophoto with a resolution of 0.016 m were generated from these images. We identified piercing markers and reconstructed offsets based on both the orthoimage and the topography. The high-resolution UAV data were used to accurately measure the recent seismic offset. We obtained the recent offset of 7 ± 1 m. Combined with the high resolution satellite image, we measured cumulative offsets of 15 ± 2 m, 20 ± 2 m, 30 ± 2 m, which may be due to multiple paleo-earthquakes. Therefore, UAV mapping can provide fine-scale data for the assessment of the seismic hazards.
TandemPET-A High Resolution, Small Animal, Virtual Pinhole-Based PET Scanner: Initial Design Study
NASA Astrophysics Data System (ADS)
Raylman, Raymond R.; Stolin, Alexander V.; Martone, Peter F.; Smith, Mark F.
2016-02-01
Mice are the perhaps the most common species of rodents used in biomedical research, but many of the current generation of small animal PET scanners are non-optimal for imaging these small rodents due to their relatively low resolution. Consequently, a number of researchers have investigated the development of high-resolution scanners to address this need. In this investigation, the design of a novel, high-resolution system based on the dual-detector, virtual-pinhole PET concept was explored via Monte Carlo simulations. Specifically, this system, called TandemPET, consists of a 5 cm × 5 cm high-resolution detector made-up of a 90 × 90 array of 0.5 mm × 0.5 × 10 mm (pitch = 0.55 mm) LYSO detector elements in coincidence with a lower resolution detector consisting of a 68 × 68 array of 1.5 mm × 1.5 mm × 10 mm LYSO detector elements (total size = 10.5 cm × 10.5 cm). Analyses indicated that TandemPET's optimal geometry is to position the high-resolution detector 3 cm from the center-of-rotation, with the lower resolution detector positioned 9 cm from center. Measurements using modified NEMA NU4-2008-based protocols revealed that the spatial resolution of the system is 0.5 mm FWHM, after correction of positron range effects. Peak sensitivity is 2.1%, which is comparable to current small animal PET scanners. Images from a digital mouse brain phantom demonstrated the potential of the system for identifying important neurological structures.
A new omni-directional multi-camera system for high resolution surveillance
NASA Astrophysics Data System (ADS)
Cogal, Omer; Akin, Abdulkadir; Seyid, Kerem; Popovic, Vladan; Schmid, Alexandre; Ott, Beat; Wellig, Peter; Leblebici, Yusuf
2014-05-01
Omni-directional high resolution surveillance has a wide application range in defense and security fields. Early systems used for this purpose are based on parabolic mirror or fisheye lens where distortion due to the nature of the optical elements cannot be avoided. Moreover, in such systems, the image resolution is limited to a single image sensor's image resolution. Recently, the Panoptic camera approach that mimics the eyes of flying insects using multiple imagers has been presented. This approach features a novel solution for constructing a spherically arranged wide FOV plenoptic imaging system where the omni-directional image quality is limited by low-end sensors. In this paper, an overview of current Panoptic camera designs is provided. New results for a very-high resolution visible spectrum imaging and recording system inspired from the Panoptic approach are presented. The GigaEye-1 system, with 44 single cameras and 22 FPGAs, is capable of recording omni-directional video in a 360°×100° FOV at 9.5 fps with a resolution over (17,700×4,650) pixels (82.3MP). Real-time video capturing capability is also verified at 30 fps for a resolution over (9,000×2,400) pixels (21.6MP). The next generation system with significantly higher resolution and real-time processing capacity, called GigaEye-2, is currently under development. The important capacity of GigaEye-1 opens the door to various post-processing techniques in surveillance domain such as large perimeter object tracking, very-high resolution depth map estimation and high dynamicrange imaging which are beyond standard stitching and panorama generation methods.
Spatial and temporal resolution effects on urban catchments with different imperviousness degrees
NASA Astrophysics Data System (ADS)
Cristiano, Elena; ten Veldhuis, Marie-Claire; van de Giesen, Nick C.
2015-04-01
One of the main problems in urban hydrological analysis is to measure the rainfall at urban scale with high resolution and use these measurements to model urban runoff processes to predict flows and reduce flood risk. With the aim of building a semi-distribute hydrological sewer model for an urban catchment, high resolution rainfall data are required as input. In this study, the sensitivity of hydrological response to high resolution precipitation data for hydrodynamic models at urban scale is evaluated with different combinations of spatial and temporal resolutions. The aim is to study sensitivity in relation to catchment characteristics, especially drainage area size, imperviousness degree and hydraulic properties such as special structures (weirs, pumping stations). Rainfall data of nine storms are considered with 4 different spatial resolutions (3000m, 1000m, 500m and 100m) combined with 4 different temporal resolutions (10min, 5min, 3min and 1min). The dual polarimetric X-band weather radar, located in the Cabauw Experimental Site for Atmospheric Research (CESAR) provided the high resolution rainfall data of these rainfall events, used to improve the sewer model. The effects of spatial-temporal rainfall input resolution on response is studied in three Districts of Rotterdam (NL): Kralingen, Spaanse Polder and Centrum district. These catchments have different average drainage area size (from 2km2 to 7km2), and different general characteristics. Centrum district and Kralingen are, indeed, more various and include residential and commercial areas, big green areas and a small industrial area, while Spaanse Polder is a industrial area, densely urbanized, and presents a high percentage of imperviousness.
2017-01-26
Naval Research Laboratory Washington, DC 20375-5320 NRL/MR/5514--17-9692 High Resolution Bathymetry Estimation Improvement with Single Image Super...collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources...gathering and maintaining the data needed, and completing and reviewing this collection of information. Send comments regarding this burden estimate
Los Angeles megacity: a high-resolution land–atmosphere modelling system for urban CO 2 emissions
Feng, Sha; Lauvaux, Thomas; Newman, Sally; ...
2016-07-22
Megacities are major sources of anthropogenic fossil fuel CO 2 (FFCO 2) emissions. The spatial extents of these large urban systems cover areas of 10 000 km 2 or more with complex topography and changing landscapes. We present a high-resolution land–atmosphere modelling system for urban CO 2 emissions over the Los Angeles (LA) megacity area. The Weather Research and Forecasting (WRF)-Chem model was coupled to a very high-resolution FFCO 2 emission product, Hestia-LA, to simulate atmospheric CO 2 concentrations across the LA megacity at spatial resolutions as fine as ~1 km. We evaluated multiple WRF configurations, selecting one that minimizedmore » errors in wind speed, wind direction, and boundary layer height as evaluated by its performance against meteorological data collected during the CalNex-LA campaign (May–June 2010). Our results show no significant difference between moderate-resolution (4 km) and high-resolution (1.3 km) simulations when evaluated against surface meteorological data, but the high-resolution configurations better resolved planetary boundary layer heights and vertical gradients in the horizontal mean winds. We coupled our WRF configuration with the Vulcan 2.2 (10 km resolution) and Hestia-LA (1.3 km resolution) fossil fuel CO 2 emission products to evaluate the impact of the spatial resolution of the CO 2 emission products and the meteorological transport model on the representation of spatiotemporal variability in simulated atmospheric CO 2 concentrations. We find that high spatial resolution in the fossil fuel CO 2 emissions is more important than in the atmospheric model to capture CO 2 concentration variability across the LA megacity. Finally, we present a novel approach that employs simultaneous correlations of the simulated atmospheric CO 2 fields to qualitatively evaluate the greenhouse gas measurement network over the LA megacity. Spatial correlations in the atmospheric CO 2 fields reflect the coverage of individual measurement sites when a statistically significant number of sites observe emissions from a specific source or location. We conclude that elevated atmospheric CO 2 concentrations over the LA megacity are composed of multiple fine-scale plumes rather than a single homogenous urban dome. Furthermore, we conclude that FFCO 2 emissions monitoring in the LA megacity requires FFCO 2 emissions modelling with ~1 km resolution because coarser-resolution emissions modelling tends to overestimate the observational constraints on the emissions estimates.« less
Los Angeles megacity: a high-resolution land–atmosphere modelling system for urban CO 2 emissions
DOE Office of Scientific and Technical Information (OSTI.GOV)
Feng, Sha; Lauvaux, Thomas; Newman, Sally
Megacities are major sources of anthropogenic fossil fuel CO 2 (FFCO 2) emissions. The spatial extents of these large urban systems cover areas of 10 000 km 2 or more with complex topography and changing landscapes. We present a high-resolution land–atmosphere modelling system for urban CO 2 emissions over the Los Angeles (LA) megacity area. The Weather Research and Forecasting (WRF)-Chem model was coupled to a very high-resolution FFCO 2 emission product, Hestia-LA, to simulate atmospheric CO 2 concentrations across the LA megacity at spatial resolutions as fine as ~1 km. We evaluated multiple WRF configurations, selecting one that minimizedmore » errors in wind speed, wind direction, and boundary layer height as evaluated by its performance against meteorological data collected during the CalNex-LA campaign (May–June 2010). Our results show no significant difference between moderate-resolution (4 km) and high-resolution (1.3 km) simulations when evaluated against surface meteorological data, but the high-resolution configurations better resolved planetary boundary layer heights and vertical gradients in the horizontal mean winds. We coupled our WRF configuration with the Vulcan 2.2 (10 km resolution) and Hestia-LA (1.3 km resolution) fossil fuel CO 2 emission products to evaluate the impact of the spatial resolution of the CO 2 emission products and the meteorological transport model on the representation of spatiotemporal variability in simulated atmospheric CO 2 concentrations. We find that high spatial resolution in the fossil fuel CO 2 emissions is more important than in the atmospheric model to capture CO 2 concentration variability across the LA megacity. Finally, we present a novel approach that employs simultaneous correlations of the simulated atmospheric CO 2 fields to qualitatively evaluate the greenhouse gas measurement network over the LA megacity. Spatial correlations in the atmospheric CO 2 fields reflect the coverage of individual measurement sites when a statistically significant number of sites observe emissions from a specific source or location. We conclude that elevated atmospheric CO 2 concentrations over the LA megacity are composed of multiple fine-scale plumes rather than a single homogenous urban dome. Furthermore, we conclude that FFCO 2 emissions monitoring in the LA megacity requires FFCO 2 emissions modelling with ~1 km resolution because coarser-resolution emissions modelling tends to overestimate the observational constraints on the emissions estimates.« less
NASA Astrophysics Data System (ADS)
Zhou, Tingting; Gu, Lingjia; Ren, Ruizhi; Cao, Qiong
2016-09-01
With the rapid development of remote sensing technology, the spatial resolution and temporal resolution of satellite imagery also have a huge increase. Meanwhile, High-spatial-resolution images are becoming increasingly popular for commercial applications. The remote sensing image technology has broad application prospects in intelligent traffic. Compared with traditional traffic information collection methods, vehicle information extraction using high-resolution remote sensing image has the advantages of high resolution and wide coverage. This has great guiding significance to urban planning, transportation management, travel route choice and so on. Firstly, this paper preprocessed the acquired high-resolution multi-spectral and panchromatic remote sensing images. After that, on the one hand, in order to get the optimal thresholding for image segmentation, histogram equalization and linear enhancement technologies were applied into the preprocessing results. On the other hand, considering distribution characteristics of road, the normalized difference vegetation index (NDVI) and normalized difference water index (NDWI) were used to suppress water and vegetation information of preprocessing results. Then, the above two processing result were combined. Finally, the geometric characteristics were used to completed road information extraction. The road vector extracted was used to limit the target vehicle area. Target vehicle extraction was divided into bright vehicles extraction and dark vehicles extraction. Eventually, the extraction results of the two kinds of vehicles were combined to get the final results. The experiment results demonstrated that the proposed algorithm has a high precision for the vehicle information extraction for different high resolution remote sensing images. Among these results, the average fault detection rate was about 5.36%, the average residual rate was about 13.60% and the average accuracy was approximately 91.26%.
Masoudi, Ali; Newson, Trevor P
2017-01-15
A distributed optical fiber dynamic strain sensor with high spatial and frequency resolution is demonstrated. The sensor, which uses the ϕ-OTDR interrogation technique, exhibited a higher sensitivity thanks to an improved optical arrangement and a new signal processing procedure. The proposed sensing system is capable of fully quantifying multiple dynamic perturbations along a 5 km long sensing fiber with a frequency and spatial resolution of 5 Hz and 50 cm, respectively. The strain resolution of the sensor was measured to be 40 nε.
BLIPPED (BLIpped Pure Phase EncoDing) high resolution MRI with low amplitude gradients
NASA Astrophysics Data System (ADS)
Xiao, Dan; Balcom, Bruce J.
2017-12-01
MRI image resolution is proportional to the maximum k-space value, i.e. the temporal integral of the magnetic field gradient. High resolution imaging usually requires high gradient amplitudes and/or long spatial encoding times. Special gradient hardware is often required for high amplitudes and fast switching. We propose a high resolution imaging sequence that employs low amplitude gradients. This method was inspired by the previously proposed PEPI (π Echo Planar Imaging) sequence, which replaced EPI gradient reversals with multiple RF refocusing pulses. It has been shown that when the refocusing RF pulse is of high quality, i.e. sufficiently close to 180°, the magnetization phase introduced by the spatial encoding magnetic field gradient can be preserved and transferred to the following echo signal without phase rewinding. This phase encoding scheme requires blipped gradients that are identical for each echo, with low and constant amplitude, providing opportunities for high resolution imaging. We now extend the sequence to 3D pure phase encoding with low amplitude gradients. The method is compared with the Hybrid-SESPI (Spin Echo Single Point Imaging) technique to demonstrate the advantages in terms of low gradient duty cycle, compensation of concomitant magnetic field effects and minimal echo spacing, which lead to superior image quality and high resolution. The 3D imaging method was then applied with a parallel plate resonator RF probe, achieving a nominal spatial resolution of 17 μm in one dimension in the 3D image, requiring a maximum gradient amplitude of only 5.8 Gauss/cm.
High-resolution high-efficiency multilayer Fresnel zone plates for soft and hard x-rays
NASA Astrophysics Data System (ADS)
Sanli, Umut T.; Keskinbora, Kahraman; Gregorczyk, Keith; Leister, Jonas; Teeny, Nicolas; Grévent, Corinne; Knez, Mato; Schütz, Gisela
2015-09-01
X-ray microscopy enables high spatial resolutions, high penetration depths and characterization of a broad range of materials. Calculations show that nanometer range resolution is achievable in the hard X-ray regime by using Fresnel zone plates (FZPs) if certain conditions are satisfied. However, this requires, among other things, aspect ratios of several thousands. The multilayer (ML) type FZPs, having virtually unlimited aspect ratios, are strong candidates to achieve single nanometer resolutions. Our research is focused on the fabrication of ML-FZPs which encompasses deposition of multilayers over a glass fiber via the atomic layer deposition (ALD), which is subsequently sliced in the optimum thickness for the X-ray energy by a focused ion beam (FIB). We recently achieved aberration free imaging by resolving 21 nm features with an efficiency of up to 12.5 %, the highest imaging resolution achieved by an ML-FZP. We also showed efficient focusing of 7.9 keV X-rays down to 30 nm focal spot size (FWHM). For resolutions below ~10 nm, efficiencies would decrease significantly due to wave coupling effects. To compensate this effect high efficiency, low stress materials have to be researched, as lower intrinsic stresses will allow fabrication of larger FZPs with higher number of zones, leading to high light intensity at the focus. As a first step we fabricated an ML-FZP with a diameter of 62 μm, an outermost zone width of 12 nm and 452 active zones. Further strategies for fabrication of high resolution high efficiency multilayer FZPs will also be discussed.
NASA Technical Reports Server (NTRS)
Obrien, S. O. (Principal Investigator)
1980-01-01
The program, LACVIN, calculates vegetative indexes numbers on limited area coverage/high resolution picture transmission data for selected IJ grid sections. The IJ grid sections were previously extracted from the full resolution data tapes and stored on disk files.
Heidemann, Robin M; Anwander, Alfred; Feiweier, Thorsten; Knösche, Thomas R; Turner, Robert
2012-04-02
There is ongoing debate whether using a higher spatial resolution (sampling k-space) or a higher angular resolution (sampling q-space angles) is the better way to improve diffusion MRI (dMRI) based tractography results in living humans. In both cases, the limiting factor is the signal-to-noise ratio (SNR), due to the restricted acquisition time. One possible way to increase the spatial resolution without sacrificing either SNR or angular resolution is to move to a higher magnetic field strength. Nevertheless, dMRI has not been the preferred application for ultra-high field strength (7 T). This is because single-shot echo-planar imaging (EPI) has been the method of choice for human in vivo dMRI. EPI faces several challenges related to the use of a high resolution at high field strength, for example, distortions and image blurring. These problems can easily compromise the expected SNR gain with field strength. In the current study, we introduce an adapted EPI sequence in conjunction with a combination of ZOOmed imaging and Partially Parallel Acquisition (ZOOPPA). We demonstrate that the method can produce high quality diffusion-weighted images with high spatial and angular resolution at 7 T. We provide examples of in vivo human dMRI with isotropic resolutions of 1 mm and 800 μm. These data sets are particularly suitable for resolving complex and subtle fiber architectures, including fiber crossings in the white matter, anisotropy in the cortex and fibers entering the cortex. Copyright © 2011 Elsevier Inc. All rights reserved.
Midekisa, Alemayehu; Holl, Felix; Savory, David J; Andrade-Pacheco, Ricardo; Gething, Peter W; Bennett, Adam; Sturrock, Hugh J W
2017-01-01
Quantifying and monitoring the spatial and temporal dynamics of the global land cover is critical for better understanding many of the Earth's land surface processes. However, the lack of regularly updated, continental-scale, and high spatial resolution (30 m) land cover data limit our ability to better understand the spatial extent and the temporal dynamics of land surface changes. Despite the free availability of high spatial resolution Landsat satellite data, continental-scale land cover mapping using high resolution Landsat satellite data was not feasible until now due to the need for high-performance computing to store, process, and analyze this large volume of high resolution satellite data. In this study, we present an approach to quantify continental land cover and impervious surface changes over a long period of time (15 years) using high resolution Landsat satellite observations and Google Earth Engine cloud computing platform. The approach applied here to overcome the computational challenges of handling big earth observation data by using cloud computing can help scientists and practitioners who lack high-performance computational resources.
Holl, Felix; Savory, David J.; Andrade-Pacheco, Ricardo; Gething, Peter W.; Bennett, Adam; Sturrock, Hugh J. W.
2017-01-01
Quantifying and monitoring the spatial and temporal dynamics of the global land cover is critical for better understanding many of the Earth’s land surface processes. However, the lack of regularly updated, continental-scale, and high spatial resolution (30 m) land cover data limit our ability to better understand the spatial extent and the temporal dynamics of land surface changes. Despite the free availability of high spatial resolution Landsat satellite data, continental-scale land cover mapping using high resolution Landsat satellite data was not feasible until now due to the need for high-performance computing to store, process, and analyze this large volume of high resolution satellite data. In this study, we present an approach to quantify continental land cover and impervious surface changes over a long period of time (15 years) using high resolution Landsat satellite observations and Google Earth Engine cloud computing platform. The approach applied here to overcome the computational challenges of handling big earth observation data by using cloud computing can help scientists and practitioners who lack high-performance computational resources. PMID:28953943
Beamline P02.1 at PETRA III for high-resolution and high-energy powder diffraction
Dippel, Ann-Christin; Liermann, Hanns-Peter; Delitz, Jan Torben; Walter, Peter; Schulte-Schrepping, Horst; Seeck, Oliver H.; Franz, Hermann
2015-01-01
Powder X-ray diffraction techniques largely benefit from the superior beam quality provided by high-brilliance synchrotron light sources in terms of photon flux and angular resolution. The High Resolution Powder Diffraction Beamline P02.1 at the storage ring PETRA III (DESY, Hamburg, Germany) combines these strengths with the power of high-energy X-rays for materials research. The beamline is operated at a fixed photon energy of 60 keV (0.207 Å wavelength). A high-resolution monochromator generates the highly collimated X-ray beam of narrow energy bandwidth. Classic crystal structure determination in reciprocal space at standard and non-ambient conditions are an essential part of the scientific scope as well as total scattering analysis using the real space information of the pair distribution function. Both methods are complemented by in situ capabilities with time-resolution in the sub-second regime owing to the high beam intensity and the advanced detector technology for high-energy X-rays. P02.1’s efficiency in solving chemical and crystallographic problems is illustrated by presenting key experiments that were carried out within these fields during the early stage of beamline operation. PMID:25931084
NASA Technical Reports Server (NTRS)
Ziemke, Robert A.
1990-01-01
The objective of the High Resolution, High Frame Rate Video Technology (HHVT) development effort is to provide technology advancements to remove constraints on the amount of high speed, detailed optical data recorded and transmitted for microgravity science and application experiments. These advancements will enable the development of video systems capable of high resolution, high frame rate video data recording, processing, and transmission. Techniques such as multichannel image scan, video parameter tradeoff, and the use of dual recording media were identified as methods of making the most efficient use of the near-term technology.
High-Resolution X-Ray Telescopes
NASA Technical Reports Server (NTRS)
ODell, Stephen L.; Brissenden, Roger J.; Davis, William; Elsner, Ronald F.; Elvis, Martin; Freeman, Mark; Gaetz, Terry; Gorenstein, Paul; Gubarev, Mikhail V.
2010-01-01
Fundamental needs for future x-ray telescopes: a) Sharp images => excellent angular resolution. b) High throughput => large aperture areas. Generation-X optics technical challenges: a) High resolution => precision mirrors & alignment. b) Large apertures => lots of lightweight mirrors. Innovation needed for technical readiness: a) 4 top-level error terms contribute to image size. b) There are approaches to controlling those errors. Innovation needed for manufacturing readiness. Programmatic issues are comparably challenging.
Using High Spatial Resolution Digital Imagery
2005-02-01
digital base maps were high resolution U.S. Geological Survey (USGS) Digital Orthophoto Quarter Quadrangles (DOQQ). The Root Mean Square Errors (RMSE...next step was to assign real world coordinates to the linear im- age. The mosaics were geometrically registered to the panchromatic orthophotos ...useable thematic map from high-resolution imagery. A more practical approach may be to divide the Refuge into a set of smaller areas, or tiles
High Resolution Near Real Time Image Processing and Support for MSSS Modernization
2012-09-01
00-00-2012 to 00-00-2012 4 . TITLE AND SUBTITLE High Resolution Near Real Time Image Processing and Support for MSSS Modernization 5a. CONTRACT...This current CONOPS is depicted in Fig. 4 . Fig. 4 . PCID/ASPIRE High Resolution Post...experiments were performed, and subsequently addressed in papers and presentations [3, 4 ,] that demonstrated system behavior; with details of the
High Spatiotemporal Resolution Prostate MRI
2016-09-01
1 AD AWARD NUMBER: W81XWH-15-1-0341 TITLE: High Spatiotemporal Resolution Prostate MRI PRINCIPAL INVESTIGATOR: Stephen J. Riederer CONTRACTING...REPORT TYPE Annual 3. DATES COVERED 15 Aug 2015 - 14 Aug 2016 4. TITLE AND SUBTITLE High Spatiotemporal Resolution Prostate MRI 5a. CONTRACT NUMBER...improved means using MRI for detecting prostate cancer with the potential for differentiating disease aggressiveness. The hypothesis is that dynamic
Koen, Joshua D; Borders, Alyssa A; Petzold, Michael T; Yonelinas, Andrew P
2017-02-01
The medial temporal lobe (MTL) plays a critical role in episodic long-term memory, but whether the MTL is necessary for visual short-term memory is controversial. Some studies have indicated that MTL damage disrupts visual short-term memory performance whereas other studies have failed to find such evidence. To account for these mixed results, it has been proposed that the hippocampus is critical in supporting short-term memory for high resolution complex bindings, while the cortex is sufficient to support simple, low resolution bindings. This hypothesis was tested in the current study by assessing visual short-term memory in patients with damage to the MTL and controls for high resolution and low resolution object-location and object-color associations. In the location tests, participants encoded sets of two or four objects in different locations on the screen. After each set, participants performed a two-alternative forced-choice task in which they were required to discriminate the object in the target location from the object in a high or low resolution lure location (i.e., the object locations were very close or far away from the target location, respectively). Similarly, in the color tests, participants were presented with sets of two or four objects in a different color and, after each set, were required to discriminate the object in the target color from the object in a high or low resolution lure color (i.e., the lure color was very similar or very different, respectively, to the studied color). The patients were significantly impaired in visual short-term memory, but importantly, they were more impaired for high resolution object-location and object-color bindings. The results are consistent with the proposal that the hippocampus plays a critical role in forming and maintaining complex, high resolution bindings. © 2016 Wiley Periodicals, Inc. © 2016 Wiley Periodicals, Inc.
NASA Astrophysics Data System (ADS)
Quiers, M.; Perrette, Y.; Etienne, D.; Develle, A. L.; Jacq, K.
2017-12-01
The use of organic proxies increases in paleoenvironmental reconstructions from natural archives. Major advances have been achieved by the development of new highly informative molecular proxies usually linked to specific compounds. While studies focused on targeted compounds, offering a high information degree, advances on bulk organic matter are limited. However, this bulk is the main contributor to carbon cycle and has been shown to be a driver of many mineral or organic compounds transfer and record. Development of target proxies need complementary information on bulk organic matter to understand biases link to controlling factors or analytical methods, and provide a robust interpretation. Fluorescence methods have often been employed to characterize and quantify organic matter. However, these technics are mainly developed for liquid samples, inducing material and resolution loss when working on natural archives (either stalagmite or sediments). High-resolution solid phase fluorescence (SPF) was developed on speleothems. This method allows now to analyse organic matter quality and quantity if procedure to constrain the optical density are adopted. In fact, a calibration method using liquid phase fluorescence (LPF) was developed for speleothem, allowing to quantify organic carbon at high-resolution. We report here an application of such a procedure SPF/LPF measurements on lake sediments. In order to avoid sediment matrix effects on the fluorescence signal, a calibration using LPF measurements was realised. First results using this method provided organic matter quality record of different organic matter compounds (humic-like, protein-like and chlorophylle-like compounds) at high resolution for the sediment core. High resolution organic matter fluxes are obtained in a second time, applying pragmatic chemometrics model (non linear models, partial least square models) on high resolution fluorescence data. SPF method can be considered as a promising tool for high resolution record on organic matter quality and quantity. Potential application of this method will be evocated (lake ecosystem dynamic, changes in trophic levels)
An infrared high resolution silicon immersion grating spectrometer for airborne and space missions
NASA Astrophysics Data System (ADS)
Ge, Jian; Zhao, Bo; Powell, Scott; Jiang, Peng; Uzakbaiuly, Berik; Tanner, David
2014-08-01
Broad-band infrared (IR) spectroscopy, especially at high spectral resolution, is a largely unexplored area for the far IR (FIR) and submm wavelength region due to the lack of proper grating technology to produce high resolution within the very constrained volume and weight required for space mission instruments. High resolution FIR spectroscopy is an essential tool to resolve many atomic and molecular lines to measure physical and chemical conditions and processes in the environments where galaxy, star and planets form. A silicon immersion grating (SIG), due to its over three times high dispersion over a traditional reflective grating, offers a compact and low cost design of new generation IR high resolution spectrographs for space missions. A prototype SIG high resolution spectrograph, called Florida IR Silicon immersion grating spectromeTer (FIRST), has been developed at UF and was commissioned at a 2 meter robotic telescope at Fairborn Observatory in Arizona. The SIG with 54.74 degree blaze angle, 16.1 l/mm groove density, and 50x86 mm2 grating area has produced R=50,000 in FIRST. The 1.4-1.8 um wavelength region is completely covered in a single exposure with a 2kx2k H2RG IR array. The on-sky performance meets the science requirements for ground-based high resolution spectroscopy. Further studies show that this kind of SIG spectrometer with an airborne 2m class telescope such as SOFIA can offer highly sensitive spectroscopy with R~20,000-30,000 at 20 to 55 microns. Details about the on-sky measurement performance of the FIRST prototype SIG spectrometer and its predicted performance with the SOFIA 2.4m telescope are introduced.
Graphene-enabled electron microscopy and correlated super-resolution microscopy of wet cells.
Wojcik, Michal; Hauser, Margaret; Li, Wan; Moon, Seonah; Xu, Ke
2015-06-11
The application of electron microscopy to hydrated biological samples has been limited by high-vacuum operating conditions. Traditional methods utilize harsh and laborious sample dehydration procedures, often leading to structural artefacts and creating difficulties for correlating results with high-resolution fluorescence microscopy. Here, we utilize graphene, a single-atom-thick carbon meshwork, as the thinnest possible impermeable and conductive membrane to protect animal cells from vacuum, thus enabling high-resolution electron microscopy of wet and untreated whole cells with exceptional ease. Our approach further allows for facile correlative super-resolution and electron microscopy of wet cells directly on the culturing substrate. In particular, individual cytoskeletal actin filaments are resolved in hydrated samples through electron microscopy and well correlated with super-resolution results.
NASA Astrophysics Data System (ADS)
Yilmaz, Hasan
2016-03-01
Structured illumination enables high-resolution fluorescence imaging of nanostructures [1]. We demonstrate a new high-resolution fluorescence imaging method that uses a scattering layer with a high-index substrate as a solid immersion lens [2]. Random scattering of coherent light enables a speckle pattern with a very fine structure that illuminates the fluorescent nanospheres on the back surface of the high-index substrate. The speckle pattern is raster-scanned over the fluorescent nanospheres using a speckle correlation effect known as the optical memory effect. A series of standard-resolution fluorescence images per each speckle pattern displacement are recorded by an electron-multiplying CCD camera using a commercial microscope objective. We have developed a new phase-retrieval algorithm to reconstruct a high-resolution, wide-field image from several standard-resolution wide-field images. We have introduced phase information of Fourier components of standard-resolution images as a new constraint in our algorithm which discards ambiguities therefore ensures convergence to a unique solution. We demonstrate two-dimensional fluorescence images of a collection of nanospheres with a deconvolved Abbe resolution of 116 nm and a field of view of 10 µm × 10 µm. Our method is robust against optical aberrations and stage drifts, therefore excellent for imaging nanostructures under ambient conditions. [1] M. G. L. Gustafsson, J. Microsc. 198, 82-87 (2000). [2] H. Yilmaz, E. G. van Putten, J. Bertolotti, A. Lagendijk, W. L. Vos, and A. P. Mosk, Optica 2, 424-429 (2015).
NASA Astrophysics Data System (ADS)
Scaduto, David A.; Lubinsky, Anthony R.; Rowlands, John A.; Kenmotsu, Hidenori; Nishimoto, Norihito; Nishino, Takeshi; Tanioka, Kenkichi; Zhao, Wei
2014-03-01
We have previously proposed SAPHIRE (scintillator avalanche photoconductor with high resolution emitter readout), a novel detector concept with potentially superior spatial resolution and low-dose performance compared with existing flat-panel imagers. The detector comprises a scintillator that is optically coupled to an amorphous selenium photoconductor operated with avalanche gain, known as high-gain avalanche rushing photoconductor (HARP). High resolution electron beam readout is achieved using a field emitter array (FEA). This combination of avalanche gain, allowing for very low-dose imaging, and electron emitter readout, providing high spatial resolution, offers potentially superior image quality compared with existing flat-panel imagers, with specific applications to fluoroscopy and breast imaging. Through the present collaboration, a prototype HARP sensor with integrated electrostatic focusing and nano- Spindt FEA readout technology has been fabricated. The integrated electron-optic focusing approach is more suitable for fabricating large-area detectors. We investigate the dependence of spatial resolution on sensor structure and operating conditions, and compare the performance of electrostatic focusing with previous technologies. Our results show a clear dependence of spatial resolution on electrostatic focusing potential, with performance approaching that of the previous design with external mesh-electrode. Further, temporal performance (lag) of the detector is evaluated and the results show that the integrated electrostatic focusing design exhibits comparable or better performance compared with the mesh-electrode design. This study represents the first technical evaluation and characterization of the SAPHIRE concept with integrated electrostatic focusing.
MSE spectrograph optical design: a novel pupil slicing technique
NASA Astrophysics Data System (ADS)
Spanò, P.
2014-07-01
The Maunakea Spectroscopic Explorer shall be mainly devoted to perform deep, wide-field, spectroscopic surveys at spectral resolutions from ~2000 to ~20000, at visible and near-infrared wavelengths. Simultaneous spectral coverage at low resolution is required, while at high resolution only selected windows can be covered. Moreover, very high multiplexing (3200 objects) must be obtained at low resolution. At higher resolutions a decreased number of objects (~800) can be observed. To meet such high demanding requirements, a fiber-fed multi-object spectrograph concept has been designed by pupil-slicing the collimated beam, followed by multiple dispersive and camera optics. Different resolution modes are obtained by introducing anamorphic lenslets in front of the fiber arrays. The spectrograph is able to switch between three resolution modes (2000, 6500, 20000) by removing the anamorphic lenses and exchanging gratings. Camera lenses are fixed in place to increase stability. To enhance throughput, VPH first-order gratings has been preferred over echelle gratings. Moreover, throughput is kept high over all wavelength ranges by splitting light into more arms by dichroic beamsplitters and optimizing efficiency for each channel by proper selection of glass materials, coatings, and grating parameters.
NASA Astrophysics Data System (ADS)
Welle, Paul D.; Mauter, Meagan S.
2017-09-01
This work introduces a generalizable approach for estimating the field-scale agricultural yield losses due to soil salinization. When integrated with regional data on crop yields and prices, this model provides high-resolution estimates for revenue losses over large agricultural regions. These methods account for the uncertainty inherent in model inputs derived from satellites, experimental field data, and interpreted model results. We apply this method to estimate the effect of soil salinity on agricultural outputs in California, performing the analysis with both high-resolution (i.e. field scale) and low-resolution (i.e. county-scale) data sources to highlight the importance of spatial resolution in agricultural analysis. We estimate that soil salinity reduced agricultural revenues by 3.7 billion (1.7-7.0 billion) in 2014, amounting to 8.0 million tons of lost production relative to soil salinities below the crop-specific thresholds. When using low-resolution data sources, we find that the costs of salinization are underestimated by a factor of three. These results highlight the need for high-resolution data in agro-environmental assessment as well as the challenges associated with their integration.
Ultra-High Spectral Resolution Observations of Fragmentation in Dark Cloud Cores
NASA Technical Reports Server (NTRS)
Velusamy, T.; Langer, W.; Kuiper, T; Levin, S.; Olsen, E.
1993-01-01
This paper presents new evidence of the fragmentary structure of dense cores in dark clouds using the high resolution spectra of the carbon chain molecule CCS transition (J subscript N = 2 subscript 1 - 1 subscript o) at 22.344033 GHz with 0.008 km s superscript -1 resolution.
A high-resolution cattle CNV map by population-scale genome sequencing
USDA-ARS?s Scientific Manuscript database
Copy Number Variations (CNVs) are common genomic structural variations that have been linked to human diseases and phenotypic traits. Prior studies in cattle have produced low-resolution CNV maps. We constructed a draft, high-resolution map of cattle CNVs based on whole genome sequencing data from 7...
Given the relatively high cost of mapping impervious surfaces at regional scales, substantial effort is being expended in the development of moderate-resolution, satellite-based methods for estimating impervious surface area (ISA). To rigorously assess the accuracy of these data ...
USDA-ARS?s Scientific Manuscript database
Many societal applications of soil moisture data products require high spatial resolution and numerical accuracy. Current thermal geostationary satellite sensors (GOES Imager and GOES-R ABI) could produce 2-16km resolution soil moisture proxy data. Passive microwave satellite radiometers (e.g. AMSR...
Super-resolution biomolecular crystallography with low-resolution data.
Schröder, Gunnar F; Levitt, Michael; Brunger, Axel T
2010-04-22
X-ray diffraction plays a pivotal role in the understanding of biological systems by revealing atomic structures of proteins, nucleic acids and their complexes, with much recent interest in very large assemblies like the ribosome. As crystals of such large assemblies often diffract weakly (resolution worse than 4 A), we need methods that work at such low resolution. In macromolecular assemblies, some of the components may be known at high resolution, whereas others are unknown: current refinement methods fail as they require a high-resolution starting structure for the entire complex. Determining the structure of such complexes, which are often of key biological importance, should be possible in principle as the number of independent diffraction intensities at a resolution better than 5 A generally exceeds the number of degrees of freedom. Here we introduce a method that adds specific information from known homologous structures but allows global and local deformations of these homology models. Our approach uses the observation that local protein structure tends to be conserved as sequence and function evolve. Cross-validation with R(free) (the free R-factor) determines the optimum deformation and influence of the homology model. For test cases at 3.5-5 A resolution with known structures at high resolution, our method gives significant improvements over conventional refinement in the model as monitored by coordinate accuracy, the definition of secondary structure and the quality of electron density maps. For re-refinements of a representative set of 19 low-resolution crystal structures from the Protein Data Bank, we find similar improvements. Thus, a structure derived from low-resolution diffraction data can have quality similar to a high-resolution structure. Our method is applicable to the study of weakly diffracting crystals using X-ray micro-diffraction as well as data from new X-ray light sources. Use of homology information is not restricted to X-ray crystallography and cryo-electron microscopy: as optical imaging advances to subnanometre resolution, it can use similar tools.
Enwright, Nicholas M.; Jones, William R.; Garber, Adrienne L.; Keller, Matthew J.
2014-01-01
Long-term monitoring efforts often use remote sensing to track trends in habitat or landscape conditions over time. To most appropriately compare observations over time, long-term monitoring efforts strive for consistency in methods. Thus, advances and changes in technology over time can present a challenge. For instance, modern camera technology has led to an increasing availability of very high-resolution imagery (i.e. submetre and metre) and a shift from analogue to digital photography. While numerous studies have shown that image resolution can impact the accuracy of classifications, most of these studies have focused on the impacts of comparing spatial resolution changes greater than 2 m. Thus, a knowledge gap exists on the impacts of minor changes in spatial resolution (i.e. submetre to about 1.5 m) in very high-resolution aerial imagery (i.e. 2 m resolution or less). This study compared the impact of spatial resolution on land/water classifications of an area dominated by coastal marsh vegetation in Louisiana, USA, using 1:12,000 scale colour-infrared analogue aerial photography (AAP) scanned at four different dot-per-inch resolutions simulating ground sample distances (GSDs) of 0.33, 0.54, 1, and 2 m. Analysis of the impact of spatial resolution on land/water classifications was conducted by exploring various spatial aspects of the classifications including density of waterbodies and frequency distributions in waterbody sizes. This study found that a small-magnitude change (1–1.5 m) in spatial resolution had little to no impact on the amount of water classified (i.e. percentage mapped was less than 1.5%), but had a significant impact on the mapping of very small waterbodies (i.e. waterbodies ≤ 250 m2). These findings should interest those using temporal image classifications derived from very high-resolution aerial photography as a component of long-term monitoring programs.
Kok, H P; de Greef, M; Bel, A; Crezee, J
2009-08-01
In regional hyperthermia, optimization is useful to obtain adequate applicator settings. A speed-up of the previously published method for high resolution temperature based optimization is proposed. Element grouping as described in literature uses selected voxel sets instead of single voxels to reduce computation time. Elements which achieve their maximum heating potential for approximately the same phase/amplitude setting are grouped. To form groups, eigenvalues and eigenvectors of precomputed temperature matrices are used. At high resolution temperature matrices are unknown and temperatures are estimated using low resolution (1 cm) computations and the high resolution (2 mm) temperature distribution computed for low resolution optimized settings using zooming. This technique can be applied to estimate an upper bound for high resolution eigenvalues. The heating potential of elements was estimated using these upper bounds. Correlations between elements were estimated with low resolution eigenvalues and eigenvectors, since high resolution eigenvectors remain unknown. Four different grouping criteria were applied. Constraints were set to the average group temperatures. Element grouping was applied for five patients and optimal settings for the AMC-8 system were determined. Without element grouping the average computation times for five and ten runs were 7.1 and 14.4 h, respectively. Strict grouping criteria were necessary to prevent an unacceptable exceeding of the normal tissue constraints (up to approximately 2 degrees C), caused by constraining average instead of maximum temperatures. When strict criteria were applied, speed-up factors of 1.8-2.1 and 2.6-3.5 were achieved for five and ten runs, respectively, depending on the grouping criteria. When many runs are performed, the speed-up factor will converge to 4.3-8.5, which is the average reduction factor of the constraints and depends on the grouping criteria. Tumor temperatures were comparable. Maximum exceeding of the constraint in a hot spot was 0.24-0.34 degree C; average maximum exceeding over all five patients was 0.09-0.21 degree C, which is acceptable. High resolution temperature based optimization using element grouping can achieve a speed-up factor of 4-8, without large deviations from the conventional method.
Development of a high resolution optical-fiber tilt sensor by F-P filter
NASA Astrophysics Data System (ADS)
Pan, Jianjun; Nan, Qiuming; Li, Shujie; Hao, Zhonghua
2017-04-01
A high-resolution tilt sensor is developed, which is composed of a pair of optical fiber collimators and a simple pendulum with an F-P filter. The tilt angle is measured by demodulating the shift of center wavelength of F-P filter, which is caused by incidence angle changing. The relationship between tilted angle and the center wavelength is deduced. Calibration experiment results also confirm the deduction, and show that it is easy to obtain a high resolution. Setting the initial angle to 6degree, the measurement range is ±3degree, its average sensitivity is 1104pm/degree, and its average resolution is as high as 0.0009degree.
High Spatial Resolution Thermal Satellite Technologies
NASA Technical Reports Server (NTRS)
Ryan, Robert
2003-01-01
This document in the form of viewslides, reviews various low-cost alternatives to high spatial resolution thermal satellite technologies. There exists no follow-on to Landsat 7 or ASTER high spatial resolution thermal systems. This document reviews the results of the investigation in to the use of new technologies to create a low-cost useful alternative. Three suggested technologies are examined. 1. Conventional microbolometer pushbroom modes offers potential for low cost Landsat Data Continuity Mission (LDCM) thermal or ASTER capability with at least 60-120 ground sampling distance (GSD). 2. Backscanning could produce MultiSpectral Thermal Imager performance without cooled detectors. 3. Cooled detector could produce hyperspectral thermal class system or extremely high spatial resolution class instrument.
Fabrication of [001]-oriented tungsten tips for high resolution scanning tunneling microscopy
Chaika, A. N.; Orlova, N. N.; Semenov, V. N.; Postnova, E. Yu.; Krasnikov, S. A.; Lazarev, M. G.; Chekmazov, S. V.; Aristov, V. Yu.; Glebovsky, V. G.; Bozhko, S. I.; Shvets, I. V.
2014-01-01
The structure of the [001]-oriented single crystalline tungsten probes sharpened in ultra-high vacuum using electron beam heating and ion sputtering has been studied using scanning and transmission electron microscopy. The electron microscopy data prove reproducible fabrication of the single-apex tips with nanoscale pyramids grained by the {011} planes at the apexes. These sharp, [001]-oriented tungsten tips have been successfully utilized in high resolution scanning tunneling microscopy imaging of HOPG(0001), SiC(001) and graphene/SiC(001) surfaces. The electron microscopy characterization performed before and after the high resolution STM experiments provides direct correlation between the tip structure and picoscale spatial resolution achieved in the experiments. PMID:24434734
Re-scan confocal microscopy: scanning twice for better resolution.
De Luca, Giulia M R; Breedijk, Ronald M P; Brandt, Rick A J; Zeelenberg, Christiaan H C; de Jong, Babette E; Timmermans, Wendy; Azar, Leila Nahidi; Hoebe, Ron A; Stallinga, Sjoerd; Manders, Erik M M
2013-01-01
We present a new super-resolution technique, Re-scan Confocal Microscopy (RCM), based on standard confocal microscopy extended with an optical (re-scanning) unit that projects the image directly on a CCD-camera. This new microscope has improved lateral resolution and strongly improved sensitivity while maintaining the sectioning capability of a standard confocal microscope. This simple technology is typically useful for biological applications where the combination high-resolution and high-sensitivity is required.
High-resolution scanning precession electron diffraction: Alignment and spatial resolution.
Barnard, Jonathan S; Johnstone, Duncan N; Midgley, Paul A
2017-03-01
Methods are presented for aligning the pivot point of a precessing electron probe in the scanning transmission electron microscope (STEM) and for assessing the spatial resolution in scanning precession electron diffraction (SPED) experiments. The alignment procedure is performed entirely in diffraction mode, minimising probe wander within the bright-field (BF) convergent beam electron diffraction (CBED) disk and is used to obtain high spatial resolution SPED maps. Through analysis of the power spectra of virtual bright-field images extracted from the SPED data, the precession-induced blur was measured as a function of precession angle. At low precession angles, SPED spatial resolution was limited by electronic noise in the scan coils; whereas at high precession angles SPED spatial resolution was limited by tilt-induced two-fold astigmatism caused by the positive spherical aberration of the probe-forming lens. Copyright © 2016 Elsevier B.V. All rights reserved.
High-resolution terahertz inline digital holography based on quantum cascade laser
NASA Astrophysics Data System (ADS)
Deng, Qinghua; Li, Weihua; Wang, Xuemin; Li, Zeyu; Huang, Haochong; Shen, Changle; Zhan, Zhiqiang; Zou, Ruijiao; Jiang, Tao; Wu, Weidong
2017-11-01
A key requirement to put terahertz (THz) imaging systems into applications is high resolution. Based on a self-developed THz quantum cascade laser (QCL), we demonstrate a THz inline digital holography imaging system with high lateral resolution. In our case, the lateral resolution of this holography imaging system is pushed to about 70 μm, which is close to the intrinsic resolution limit of this system. To the best of our knowledge, this is much smaller than what has been reported up to now. This is attributed to a series of improvements, such as shortening the QCL wavelength, increasing Nx and Ny by the synthetic aperture method, smoothing the source beam profile, and diminishing vibration due to the cryorefrigeration device. This kind of holography system with a resolution smaller than 100 μm opens the door for many imaging experiments. It will turn the THz imaging systems into applications.
High-resolution ab initio three-dimensional x-ray diffraction microscopy
Chapman, Henry N.; Barty, Anton; Marchesini, Stefano; ...
2006-01-01
Coherent x-ray diffraction microscopy is a method of imaging nonperiodic isolated objects at resolutions limited, in principle, by only the wavelength and largest scattering angles recorded. We demonstrate x-ray diffraction imaging with high resolution in all three dimensions, as determined by a quantitative analysis of the reconstructed volume images. These images are retrieved from the three-dimensional diffraction data using no a priori knowledge about the shape or composition of the object, which has never before been demonstrated on a nonperiodic object. We also construct two-dimensional images of thick objects with greatly increased depth of focus (without loss of transverse spatialmore » resolution). These methods can be used to image biological and materials science samples at high resolution with x-ray undulator radiation and establishes the techniques to be used in atomic-resolution ultrafast imaging at x-ray free-electron laser sources.« less
Robust isotropic super-resolution by maximizing a Laplace posterior for MRI volumes
NASA Astrophysics Data System (ADS)
Han, Xian-Hua; Iwamoto, Yutaro; Shiino, Akihiko; Chen, Yen-Wei
2014-03-01
Magnetic resonance imaging can only acquire volume data with finite resolution due to various factors. In particular, the resolution in one direction (such as the slice direction) is much lower than others (such as the in-plane direction), yielding un-realistic visualizations. This study explores to reconstruct MRI isotropic resolution volumes from three orthogonal scans. This proposed super- resolution reconstruction is formulated as a maximum a posterior (MAP) problem, which relies on the generation model of the acquired scans from the unknown high-resolution volumes. Generally, the deviation ensemble of the reconstructed high-resolution (HR) volume from the available LR ones in the MAP is represented as a Gaussian distribution, which usually results in some noise and artifacts in the reconstructed HR volume. Therefore, this paper investigates a robust super-resolution by formulating the deviation set as a Laplace distribution, which assumes sparsity in the deviation ensemble based on the possible insight of the appeared large values only around some unexpected regions. In addition, in order to achieve reliable HR MRI volume, we integrates the priors such as bilateral total variation (BTV) and non-local mean (NLM) into the proposed MAP framework for suppressing artifacts and enriching visual detail. We validate the proposed robust SR strategy using MRI mouse data with high-definition resolution in two direction and low-resolution in one direction, which are imaged in three orthogonal scans: axial, coronal and sagittal planes. Experiments verifies that the proposed strategy can achieve much better HR MRI volumes than the conventional MAP method even with very high-magnification factor: 10.
Resolution analysis of archive films for the purpose of their optimal digitization and distribution
NASA Astrophysics Data System (ADS)
Fliegel, Karel; Vítek, Stanislav; Páta, Petr; Myslík, Jiří; Pecák, Josef; Jícha, Marek
2017-09-01
With recent high demand for ultra-high-definition (UHD) content to be screened in high-end digital movie theaters but also in the home environment, film archives full of movies in high-definition and above are in the scope of UHD content providers. Movies captured with the traditional film technology represent a virtually unlimited source of UHD content. The goal to maintain complete image information is also related to the choice of scanning resolution and spatial resolution for further distribution. It might seem that scanning the film material in the highest possible resolution using state-of-the-art film scanners and also its distribution in this resolution is the right choice. The information content of the digitized images is however limited, and various degradations moreover lead to its further reduction. Digital distribution of the content in the highest image resolution might be therefore unnecessary or uneconomical. In other cases, the highest possible resolution is inevitable if we want to preserve fine scene details or film grain structure for archiving purposes. This paper deals with the image detail content analysis of archive film records. The resolution limit in captured scene image and factors which lower the final resolution are discussed. Methods are proposed to determine the spatial details of the film picture based on the analysis of its digitized image data. These procedures allow determining recommendations for optimal distribution of digitized video content intended for various display devices with lower resolutions. Obtained results are illustrated on spatial downsampling use case scenario, and performance evaluation of the proposed techniques is presented.
Ultra-high resolution coded wavefront sensor.
Wang, Congli; Dun, Xiong; Fu, Qiang; Heidrich, Wolfgang
2017-06-12
Wavefront sensors and more general phase retrieval methods have recently attracted a lot of attention in a host of application domains, ranging from astronomy to scientific imaging and microscopy. In this paper, we introduce a new class of sensor, the Coded Wavefront Sensor, which provides high spatio-temporal resolution using a simple masked sensor under white light illumination. Specifically, we demonstrate megapixel spatial resolution and phase accuracy better than 0.1 wavelengths at reconstruction rates of 50 Hz or more, thus opening up many new applications from high-resolution adaptive optics to real-time phase retrieval in microscopy.
NASA Astrophysics Data System (ADS)
Gilra, D. P.; Pwa, T. H.; Arnal, E. M.; de Vries, J.
1982-06-01
In order to process and analyze high resolution IUE data on a large number of interstellar lines in a large number of images for a large number of stars, computer programs were developed for 115 lines in the short wavelength range and 40 in the long wavelength range. Programs include extraction, processing, plotting, averaging, and profile fitting. Wavelength calibration in high resolution spectra, fixed pattern noise, instrument profile and resolution, and the background problem in the region where orders are crowding are discussed. All the expected lines are detected in at least one spectrum.
Reproducibility and calibration of MMC-based high-resolution gamma detectors
Bates, C. R.; Pies, C.; Kempf, S.; ...
2016-07-15
Here, we describe a prototype γ-ray detector based on a metallic magnetic calorimeter with an energy resolution of 46 eV at 60 keV and a reproducible response function that follows a simple second-order polynomial. The simple detector calibration allows adding high-resolution spectra from different pixels and different cool-downs without loss in energy resolution to determine γ-ray centroids with high accuracy. As an example of an application in nuclear safeguards enabled by such a γ-ray detector, we discuss the non-destructive assay of 242Pu in a mixed-isotope Pu sample.
Spatial resolution limitation of liquid crystal spatial light modulator
NASA Astrophysics Data System (ADS)
Wang, Xinghua; Wang, Bin; McManamon, Paul F., III; Pouch, John J.; Miranda, Felix A.; Anderson, James E.; Bos, Philip J.
2004-10-01
The effect of fringing electric fields in a liquid crystal (LC) Optical Phased Array (OPA), also referred to as a spatial light modulator (SLM), is a governing factor that determines the diffraction efficiency (DE) of the LC OPA for high resolution spatial phase modulation. In this article, the fringing field effect in a high resolution LC OPA is studied by accurate modeling the DE of the LC blazed gratings by LC director simulation and Finite Difference Time Domain (FDTD) simulation. Influence factors that contribute significantly to the DE are discussed. Such results provide fundamental understanding for high resolution LC devices.
NASA Technical Reports Server (NTRS)
Byer, R. L.
1982-01-01
The measurement of high resolution pulsed and continuous wave (CW) coherent anti-Stokes Raman spectroscopy (CARS) measurements in pulsed and steady state supersonic expansions were demonstrated. Pulsed molecular beam sources were characterized, and saturation of a Raman transition and, for the first time, the Raman spectrum of a complex molecular cluster were observed. The observation of CW CARS spectra in a molecular expansion and the effects of transit time broadening is described. Supersonic expansion is established as a viable technique for high resolution Raman spectroscopy of cold molecules with resolutions of 100 MH2.
The high-resolution spectrum of the pulsating, pre-white dwarf star PG 1159-035 (GW VIR)
NASA Technical Reports Server (NTRS)
Liebert, James; Wesemael, F.; Husfeld, D.; Wehrse, R.; Starrfield, S. G.
1989-01-01
High-resolution and low-resolution UV spectra and a high-resolution optical spectrum were obtained for PG 1159-035, revealing apparent photospheric absorption features with defined cores from N V 1240 A, N IV 1270 A, O V 1371 A, and C IV 1550 A. The photospheric velocity derived using all of these lines except for C IV is about +35 km/s. Equivalent-width measurements determined for all of the features may provide a tighter constraint on the photospheric temperature in a detailed model atmosphere analysis treating the CNO ions.
Yang, Liyu; Amad, Ma'an; Winnik, Witold M; Schoen, Alan E; Schweingruber, Hans; Mylchreest, Iain; Rudewicz, Patrick J
2002-01-01
Triple quadrupole mass spectrometers, when operated in multiple reaction monitoring (MRM) mode, offer a unique combination of sensitivity, specificity, and dynamic range. Consequently, the triple quadrupole is the workhorse for high-throughput quantitation within the pharmaceutical industry. However, in the past, the unit mass resolution of quadrupole instruments has been a limitation when interference from matrix or metabolites cannot be eliminated. With recent advances in instrument design, triple quadrupole instruments now afford mass resolution of less than 0.1 Dalton (Da) full width at half maximum (FWHM). This paper describes the evaluation of an enhanced resolution triple quadrupole mass spectrometer for high-throughput bioanalysis with emphasis on comparison of selectivity, sensitivity, dynamic range, precision, accuracy, and stability under both unit mass (1 Da FWHM) and enhanced (
Weber, Stefan A L; Kilpatrick, Jason I; Brosnan, Timothy M; Jarvis, Suzanne P; Rodriguez, Brian J
2014-05-02
Atomic force microscopy (AFM) is widely used in liquid environments, where true atomic resolution at the solid-liquid interface can now be routinely achieved. It is generally expected that AFM operation in more viscous environments results in an increased noise contribution from the thermal motion of the cantilever, thereby reducing the signal-to-noise ratio (SNR). Thus, viscous fluids such as ionic and organic liquids have been generally avoided for high-resolution AFM studies despite their relevance to, e.g. energy applications. Here, we investigate the thermal noise limitations of dynamic AFM operation in both low and high viscosity environments theoretically, deriving expressions for the amplitude, phase and frequency noise resulting from the thermal motion of the cantilever, thereby defining the performance limits of amplitude modulation, phase modulation and frequency modulation AFM. We show that the assumption of a reduced SNR in viscous environments is not inherent to the technique and demonstrate that SNR values comparable to ultra-high vacuum systems can be obtained in high viscosity environments under certain conditions. Finally, we have obtained true atomic resolution images of highly ordered pyrolytic graphite and mica surfaces, thus revealing the potential of high-resolution imaging in high viscosity environments.
NASA Astrophysics Data System (ADS)
Weber, Stefan A. L.; Kilpatrick, Jason I.; Brosnan, Timothy M.; Jarvis, Suzanne P.; Rodriguez, Brian J.
2014-05-01
Atomic force microscopy (AFM) is widely used in liquid environments, where true atomic resolution at the solid-liquid interface can now be routinely achieved. It is generally expected that AFM operation in more viscous environments results in an increased noise contribution from the thermal motion of the cantilever, thereby reducing the signal-to-noise ratio (SNR). Thus, viscous fluids such as ionic and organic liquids have been generally avoided for high-resolution AFM studies despite their relevance to, e.g. energy applications. Here, we investigate the thermal noise limitations of dynamic AFM operation in both low and high viscosity environments theoretically, deriving expressions for the amplitude, phase and frequency noise resulting from the thermal motion of the cantilever, thereby defining the performance limits of amplitude modulation, phase modulation and frequency modulation AFM. We show that the assumption of a reduced SNR in viscous environments is not inherent to the technique and demonstrate that SNR values comparable to ultra-high vacuum systems can be obtained in high viscosity environments under certain conditions. Finally, we have obtained true atomic resolution images of highly ordered pyrolytic graphite and mica surfaces, thus revealing the potential of high-resolution imaging in high viscosity environments.
Light sheet theta microscopy for rapid high-resolution imaging of large biological samples.
Migliori, Bianca; Datta, Malika S; Dupre, Christophe; Apak, Mehmet C; Asano, Shoh; Gao, Ruixuan; Boyden, Edward S; Hermanson, Ola; Yuste, Rafael; Tomer, Raju
2018-05-29
Advances in tissue clearing and molecular labeling methods are enabling unprecedented optical access to large intact biological systems. These developments fuel the need for high-speed microscopy approaches to image large samples quantitatively and at high resolution. While light sheet microscopy (LSM), with its high planar imaging speed and low photo-bleaching, can be effective, scaling up to larger imaging volumes has been hindered by the use of orthogonal light sheet illumination. To address this fundamental limitation, we have developed light sheet theta microscopy (LSTM), which uniformly illuminates samples from the same side as the detection objective, thereby eliminating limits on lateral dimensions without sacrificing the imaging resolution, depth, and speed. We present a detailed characterization of LSTM, and demonstrate its complementary advantages over LSM for rapid high-resolution quantitative imaging of large intact samples with high uniform quality. The reported LSTM approach is a significant step for the rapid high-resolution quantitative mapping of the structure and function of very large biological systems, such as a clarified thick coronal slab of human brain and uniformly expanded tissues, and also for rapid volumetric calcium imaging of highly motile animals, such as Hydra, undergoing non-isomorphic body shape changes.
High-Resolution Land Use and Land Cover Mapping
,
1999-01-01
As the Nation?s population grows, quantifying, monitoring, and managing land use becomes increasingly important. The U.S. Geological Survey (USGS) has a long heritage of leadership and innovation in land use and land cover (LULC) mapping that has been the model both nationally and internationally for over 20 years. At present, the USGS is producing high-resolution LULC data for several watershed and urban areas within the United States. This high-resolution LULC mapping is part of an ongoing USGS Land Cover Characterization Program (LCCP). The four components of the LCCP are global (1:2,000,000-scale), national (1:100,000-scale), urban (1:24,000-scale), and special projects (various scales and time periods). Within the urban and special project components, the USGS Rocky Mountain Mapping Center (RMMC) is collecting historical as well as contemporary high-resolution LULC data. RMMC?s high-resolution LULC mapping builds on the heritage and success of previous USGS LULC programs and provides LULC information to meet user requirements.
MPGD for breast cancer prevention: a high resolution and low dose radiation medical imaging
NASA Astrophysics Data System (ADS)
Gutierrez, R. M.; Cerquera, E. A.; Mañana, G.
2012-07-01
Early detection of small calcifications in mammograms is considered the best preventive tool of breast cancer. However, existing digital mammography with relatively low radiation skin exposure has limited accessibility and insufficient spatial resolution for small calcification detection. Micro Pattern Gaseous Detectors (MPGD) and associated technologies, increasingly provide new information useful to generate images of microscopic structures and make more accessible cutting edge technology for medical imaging and many other applications. In this work we foresee and develop an application for the new information provided by a MPGD camera in the form of highly controlled images with high dynamical resolution. We present a new Super Detail Image (S-DI) that efficiently profits of this new information provided by the MPGD camera to obtain very high spatial resolution images. Therefore, the method presented in this work shows that the MPGD camera with SD-I, can produce mammograms with the necessary spatial resolution to detect microcalcifications. It would substantially increase efficiency and accessibility of screening mammography to highly improve breast cancer prevention.
NASA Astrophysics Data System (ADS)
Widmann, K.; Beiersdorfer, P.; Magee, E. W.; Boyle, D. P.; Kaita, R.; Majeski, R.
2014-11-01
We have constructed a high-resolution grazing-incidence spectrometer designed for measuring the ion temperature of low-Z elements, such as Li+ or Li2 +, which radiate near 199 Å and 135 Å, respectively. Based on measurements at the Livermore Electron Beam Ion Trap we have shown that the instrumental resolution is better than 48 mÅ at the 200 Å setting and better than 40 mÅ for the 135-Å range. Such a high spectral resolution corresponds to an instrumental limit for line-width based temperature measurements of about 45 eV for the 199 Å Li+ and 65 eV for the 135 Å Li2 + lines. Recently obtained survey spectra from the Lithium Tokamak Experiment at the Princeton Plasma Physics Laboratory show the presence of these lithium emission lines and the expected core ion temperature of approximately 70 eV is sufficiently high to demonstrate the feasibility of utilizing our high-resolution spectrometer as an ion-temperature diagnostic.
Feng, Wei; Zhang, Fumin; Qu, Xinghua; Zheng, Shiwei
2016-01-01
High-speed photography is an important tool for studying rapid physical phenomena. However, low-frame-rate CCD (charge coupled device) or CMOS (complementary metal oxide semiconductor) camera cannot effectively capture the rapid phenomena with high-speed and high-resolution. In this paper, we incorporate the hardware restrictions of existing image sensors, design the sampling functions, and implement a hardware prototype with a digital micromirror device (DMD) camera in which spatial and temporal information can be flexibly modulated. Combined with the optical model of DMD camera, we theoretically analyze the per-pixel coded exposure and propose a three-element median quicksort method to increase the temporal resolution of the imaging system. Theoretically, this approach can rapidly increase the temporal resolution several, or even hundreds, of times without increasing bandwidth requirements of the camera. We demonstrate the effectiveness of our method via extensive examples and achieve 100 fps (frames per second) gain in temporal resolution by using a 25 fps camera. PMID:26959023
Feng, Wei; Zhang, Fumin; Qu, Xinghua; Zheng, Shiwei
2016-03-04
High-speed photography is an important tool for studying rapid physical phenomena. However, low-frame-rate CCD (charge coupled device) or CMOS (complementary metal oxide semiconductor) camera cannot effectively capture the rapid phenomena with high-speed and high-resolution. In this paper, we incorporate the hardware restrictions of existing image sensors, design the sampling functions, and implement a hardware prototype with a digital micromirror device (DMD) camera in which spatial and temporal information can be flexibly modulated. Combined with the optical model of DMD camera, we theoretically analyze the per-pixel coded exposure and propose a three-element median quicksort method to increase the temporal resolution of the imaging system. Theoretically, this approach can rapidly increase the temporal resolution several, or even hundreds, of times without increasing bandwidth requirements of the camera. We demonstrate the effectiveness of our method via extensive examples and achieve 100 fps (frames per second) gain in temporal resolution by using a 25 fps camera.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Deng, B. H., E-mail: bdeng@trialphaenergy.com; Beall, M.; Schroeder, J.
2016-11-15
A high sensitivity multi-channel far infrared laser diagnostics with switchable interferometry and polarimetry operation modes for the advanced neutral beam-driven C-2U field-reversed configuration (FRC) plasmas is described. The interferometer achieved superior resolution of 1 × 10{sup 16} m{sup −2} at >1.5 MHz bandwidth, illustrated by measurement of small amplitude high frequency fluctuations. The polarimetry achieved 0.04° instrument resolution and 0.1° actual resolution in the challenging high density gradient environment with >0.5 MHz bandwidth, making it suitable for weak internal magnetic field measurements in the C-2U plasmas, where the maximum Faraday rotation angle is less than 1°. The polarimetry resolution datamore » is analyzed, and high resolution Faraday rotation data in C-2U is presented together with direct evidences of field reversal in FRC magnetic structure obtained for the first time by a non-perturbative method.« less
Gerbich, Therese M.; Rana, Kishan; Suzuki, Aussie; Schaefer, Kristina N.; Heppert, Jennifer K.; Boothby, Thomas C.; Allbritton, Nancy L.; Gladfelter, Amy S.; Maddox, Amy S.
2018-01-01
Fluorescence microscopy is a powerful approach for studying subcellular dynamics at high spatiotemporal resolution; however, conventional fluorescence microscopy techniques are light-intensive and introduce unnecessary photodamage. Light-sheet fluorescence microscopy (LSFM) mitigates these problems by selectively illuminating the focal plane of the detection objective by using orthogonal excitation. Orthogonal excitation requires geometries that physically limit the detection objective numerical aperture (NA), thereby limiting both light-gathering efficiency (brightness) and native spatial resolution. We present a novel live-cell LSFM method, lateral interference tilted excitation (LITE), in which a tilted light sheet illuminates the detection objective focal plane without a sterically limiting illumination scheme. LITE is thus compatible with any detection objective, including oil immersion, without an upper NA limit. LITE combines the low photodamage of LSFM with high resolution, high brightness, and coverslip-based objectives. We demonstrate the utility of LITE for imaging animal, fungal, and plant model organisms over many hours at high spatiotemporal resolution. PMID:29490939
High resolution NMR imaging using a high field yokeless permanent magnet.
Kose, Katsumi; Haishi, Tomoyuki
2011-01-01
We measured the homogeneity and stability of the magnetic field of a high field (about 1.04 tesla) yokeless permanent magnet with 40-mm gap for high resolution nuclear magnetic resonance (NMR) imaging. Homogeneity was evaluated using a 3-dimensional (3D) lattice phantom and 3D spin-echo imaging sequences. In the central sphere (20-mm diameter), peak-to-peak magnetic field inhomogeneity was about 60 ppm, and the root-mean-square was 8 ppm. We measured room temperature, magnet temperature, and NMR frequency of the magnet simultaneously every minute for about 68 hours with and without the thermal insulator of the magnet. A simple mathematical model described the magnet's thermal property. Based on magnet performance, we performed high resolution (up to [20 µm](2)) imaging with internal NMR lock sequences of several biological samples. Our results demonstrated the usefulness of the high field small yokeless permanent magnet for high resolution NMR imaging.
Fabrication of Ultrasensitive TES Bolometric Detectors for HIRMES
NASA Astrophysics Data System (ADS)
Brown, Ari-David; Brekosky, Regis; Franz, David; Hsieh, Wen-Ting; Kutyrev, Alexander; Mikula, Vilem; Miller, Timothy; Moseley, S. Harvey; Oxborrow, Joseph; Rostem, Karwan; Wollack, Edward
2018-04-01
The high-resolution mid-infrared spectrometer (HIRMES) is a high resolving power (R 100,000) instrument operating in the 25-122 μm spectral range and will fly on board the Stratospheric Observatory for Far-Infrared Astronomy in 2019. Central to HIRMES are its two transition edge sensor (TES) bolometric cameras, an 8 × 16 detector high-resolution array and a 64 × 16 detector low-resolution array. Both types of detectors consist of Mo/Au TES fabricated on leg-isolated Si membranes. Whereas the high-resolution detectors, with a noise equivalent power (NEP) 1.5 × 10-18 W/rt (Hz), are fabricated on 0.45 μm Si substrates, the low-resolution detectors, with NEP 1.0 × 10-17 W/rt (Hz), are fabricated on 1.40 μm Si. Here, we discuss the similarities and differences in the fabrication methodologies used to realize the two types of detectors.
Panretinal, high-resolution color photography of the mouse fundus.
Paques, Michel; Guyomard, Jean-Laurent; Simonutti, Manuel; Roux, Michel J; Picaud, Serge; Legargasson, Jean-François; Sahel, José-Alain
2007-06-01
To analyze high-resolution color photographs of the mouse fundus. A contact fundus camera based on topical endoscopy fundus imaging (TEFI) was built. Fundus photographs of C57 and Balb/c mice obtained by TEFI were qualitatively analyzed. High-resolution digital imaging of the fundus, including the ciliary body, was routinely obtained. The reflectance and contrast of retinal vessels varied significantly with the amount of incident and reflected light and, thus, with the degree of fundus pigmentation. The combination of chromatic and spherical aberration favored blue light imaging, in term of both field and contrast. TEFI is a small, low-cost system that allows high-resolution color fundus imaging and fluorescein angiography in conscious mice. Panretinal imaging is facilitated by the presence of the large rounded lens. TEFI significantly improves the quality of in vivo photography of retina and ciliary process of mice. Resolution is, however, affected by chromatic aberration, and should be improved by monochromatic imaging.
NASA Astrophysics Data System (ADS)
Pani, R.; Gonzalez, A. J.; Bettiol, M.; Fabbri, A.; Cinti, M. N.; Preziosi, E.; Borrazzo, C.; Conde, P.; Pellegrini, R.; Di Castro, E.; Majewski, S.
2015-06-01
The proposal of Mindview European Project concerns with the development of a very high resolution and high efficiency brain dedicated PET scanner simultaneously working with a Magnetic Resonance scanner, that expects to visualize neurotransmitter pathways and their disruptions in the quest to better diagnose schizophrenia. On behalf of this project, we propose a low cost PET module for the first prototype, based on monolithic crystals, suitable to be integrated with a head Radio Frequency (RF) coil. The aim of the suggested module is to achieve high performances in terms of efficiency, planar spatial resolution (expected about 1 mm) and discrimination of gamma Depth Of Interaction (DOI) in order to reduce the parallax error. Our preliminary results are very promising: a DOI resolution of about 3 mm, a spatial resolution ranging from about 1 to 1.5 mm and a good position linearity.
Numerical Simulation and Mechanical Design for TPS Electron Beam Position Monitors
NASA Astrophysics Data System (ADS)
Hsueh, H. P.; Kuan, C. K.; Ueng, T. S.; Hsiung, G. Y.; Chen, J. R.
2007-01-01
Comprehensive study on the mechanical design and numerical simulation for the high resolution electron beam position monitors are key steps to build the newly proposed 3rd generation synchrotron radiation research facility, Taiwan Photon Source (TPS). With more advanced electromagnetic simulation tool like MAFIA tailored specifically for particle accelerator, the design for the high resolution electron beam position monitors can be tested in such environment before they are experimentally tested. The design goal of our high resolution electron beam position monitors is to get the best resolution through sensitivity and signal optimization. The definitions and differences between resolution and sensitivity of electron beam position monitors will be explained. The design consideration is also explained. Prototype deign has been carried out and the related simulations were also carried out with MAFIA. The results are presented here. Sensitivity as high as 200 in x direction has been achieved in x direction at 500 MHz.
Two-photon imaging of spatially extended neuronal network dynamics with high temporal resolution.
Lillis, Kyle P; Eng, Alfred; White, John A; Mertz, Jerome
2008-07-30
We describe a simple two-photon fluorescence imaging strategy, called targeted path scanning (TPS), to monitor the dynamics of spatially extended neuronal networks with high spatiotemporal resolution. Our strategy combines the advantages of mirror-based scanning, minimized dead time, ease of implementation, and compatibility with high-resolution low-magnification objectives. To demonstrate the performance of TPS, we monitor the calcium dynamics distributed across an entire juvenile rat hippocampus (>1.5mm), at scan rates of 100 Hz, with single cell resolution and single action potential sensitivity. Our strategy for fast, efficient two-photon microscopy over spatially extended regions provides a particularly attractive solution for monitoring neuronal population activity in thick tissue, without sacrificing the signal-to-noise ratio or high spatial resolution associated with standard two-photon microscopy. Finally, we provide the code to make our technique generally available.
Fusion of spectral and panchromatic images using false color mapping and wavelet integrated approach
NASA Astrophysics Data System (ADS)
Zhao, Yongqiang; Pan, Quan; Zhang, Hongcai
2006-01-01
With the development of sensory technology, new image sensors have been introduced that provide a greater range of information to users. But as the power limitation of radiation, there will always be some trade-off between spatial and spectral resolution in the image captured by specific sensors. Images with high spatial resolution can locate objects with high accuracy, whereas images with high spectral resolution can be used to identify the materials. Many applications in remote sensing require fusing low-resolution imaging spectral images with panchromatic images to identify materials at high resolution in clutter. A pixel-based false color mapping and wavelet transform integrated fusion algorithm is presented in this paper, the resulting images have a higher information content than each of the original images and retain sensor-specific image information. The simulation results show that this algorithm can enhance the visibility of certain details and preserve the difference of different materials.
Fabrication of Ultrasensitive Transition Edge Sensor Bolometric Detectors for HIRMES
NASA Technical Reports Server (NTRS)
Brown, Ari-David; Brekosky, Regis; Franz, David; Hsieh, Wen-Ting; Kutyrev, Alexander; Mikula, Vilem; Miller, Timothy; Moseley, S. Harvey; Oxborrow, Joseph; Rostem, Karwan;
2017-01-01
The high resolution mid-infrared spectrometer (HIRMES) is a high resolving power (R approx. 100,000) instrument operating in the 25-122 micron spectral range and will fly on board the Stratospheric Observatory for Far-Infrared Astronomy (SOFIA) in 2019. Central ot HIRMES are its two transition edge sensor (TES) bolometric cameras, an 8x16 detector high resolution array and a 64x16 detector low resolution array. Both types of detectors consist of MoAu TES fabricated on leg-isolated Si membranes. Whereas the high resolution detectors, with noise equivalent power (NEP) approx. 2 aW/square root of (Hz), are fabricated on 0.45 micron Si substrates, the low resolution detectors, with NEP approx. 10 aW/square root of (Hz), are fabricated on 1.40 micron Si. Here we discuss the similarities and difference in the fabrication methodologies used to realize the two types of detectors.
NASA Astrophysics Data System (ADS)
Erskine, David J.; Edelstein, J.; Sirk, M.; Wishnow, E.; Ishikawa, Y.; McDonald, E.; Shourt, W. V.
2014-07-01
High resolution broad-band spectroscopy at near-infrared wavelengths has been performed using externally dis- persed interferometry (EDI) at the Hale telescope at Mt. Palomar. The EDI technique uses a field-widened Michelson interferometer in series with a dispersive spectrograph, and is able to recover a spectrum with a resolution 4 to 10 times higher than the existing grating spectrograph. This method increases the resolution well beyond the classical limits enforced by the slit width and the detector pixel Nyquist limit and, in principle, decreases the effect of pupil variation on the instrument line-shape function. The EDI technique permits arbi- trarily higher resolution measurements using the higher throughput, lower weight, size, and expense of a lower resolution spectrograph. Observations of many stars were performed with the TEDI interferometer mounted within the central hole of the 200 inch primary mirror. Light from the interferometer was then dispersed by the TripleSpec near-infrared echelle spectrograph. Continuous spectra between 950 and 2450 nm with a resolution as high as ~27,000 were recovered from data taken with TripleSpec at a native resolution of ˜2,700. Aspects of data analysis for interferometric spectral reconstruction are described. This technique has applications in im- proving measurements of high-resolution stellar template spectra, critical for precision Doppler velocimetry using conventional spectroscopic methods. A new interferometer to be applied for this purpose at visible wavelengths is under construction.
Improving axial resolution in confocal microscopy with new high refractive index mounting media.
Fouquet, Coralie; Gilles, Jean-François; Heck, Nicolas; Dos Santos, Marc; Schwartzmann, Richard; Cannaya, Vidjeacoumary; Morel, Marie-Pierre; Davidson, Robert Stephen; Trembleau, Alain; Bolte, Susanne
2015-01-01
Resolution, high signal intensity and elevated signal to noise ratio (SNR) are key issues for biologists who aim at studying the localisation of biological structures at the cellular and subcellular levels using confocal microscopy. The resolution required to separate sub-cellular biological structures is often near to the resolving power of the microscope. When optimally used, confocal microscopes may reach resolutions of 180 nm laterally and 500 nm axially, however, axial resolution in depth is often impaired by spherical aberration that may occur due to refractive index mismatches. Spherical aberration results in broadening of the point-spread function (PSF), a decrease in peak signal intensity when imaging in depth and a focal shift that leads to the distortion of the image along the z-axis and thus in a scaling error. In this study, we use the novel mounting medium CFM3 (Citifluor Ltd., UK) with a refractive index of 1.518 to minimize the effects of spherical aberration. This mounting medium is compatible with most common fluorochromes and fluorescent proteins. We compare its performance with established mounting media, harbouring refractive indices below 1.500, by estimating lateral and axial resolution with sub-resolution fluorescent beads. We show furthermore that the use of the high refractive index media renders the tissue transparent and improves considerably the axial resolution and imaging depth in immuno-labelled or fluorescent protein labelled fixed mouse brain tissue. We thus propose to use those novel high refractive index mounting media, whenever optimal axial resolution is required.
NASA Astrophysics Data System (ADS)
Yamamoto, Seiichi; Kawaguchi, Wataru
2018-06-01
For precise distribution measurements of alpha particles, a high-resolution alpha particle imaging detector is required. Although combining a thin scintillator with a silicon photomultiplier (Si-PM) array is a promising method for achieving high resolution, the spatial resolution is limited. Reducing the size of the Si-PM array is a possible approach to improving the spatial resolution of the alpha particle imaging detector. Consequently, we employed a 1 mm channel size Si-PM array combined with a thin ZnS(Ag) sheet to form an alpha particle imaging detector and evaluated the performance. For the developed alpha particle imaging detector, an Si-PM array with 1 mm x 1 mm channel size arranged 8 x 8 was optically coupled to a ZnS(Ag) sheet with a 1-mm-thick light guide between them. The size of the alpha particle imaging detector was 9.5 mm x 9.5 mm. The spatial resolution of the developed alpha particle imaging detector was 0.14 mm FWHM, and the energy resolution was 74% FWHM for 5.5 MeV alpha particles. The uniformity of the imaging detector at the central part of the field of view (FOV) was ±4.7%. The background count rate was 0.06 counts/min. We obtained various high-resolution phantom images for alpha particles with the developed system. We conclude that the developed imaging detector is promising for high-resolution distribution measurements of alpha particles.
Bibliography of In-House and Contract Reports. Supplement 16
1989-10-01
Differences from ETL-71-CR-10 1971 Grav,t% and Gravity Gradients 54 TiLE REPORT NO. YEAR Determination of Level Sensitivity (Field ETL-RN-74-4 1974...Data Base Study, Phase II ETL-0360 1984 High Resolution Optical Power Spectrum Analyzer ETL-0127 1978 High Resolution Orthophoto Output Table (HIROOT...AD 856 731L 1969 High Resolution Orthophoto Output Table ETL-ETR-72-3 1972 High Speed Disc Memory and a Color Image AD 878 975L 1970 Display for a
AVHRR/1-FM Advanced Very High Resolution Radiometer
NASA Technical Reports Server (NTRS)
1979-01-01
The advanced very high resolution radiometer is discussed. The program covers design, construction, and test of a breadboard model, engineering model, protoflight model, mechanical/structural model, and a life test model. Special bench test and calibration equipment was developed for use on the program. The flight model program objectives were to fabricate, assemble and test four of the advanced very high resolution radiometers along with a bench cooler and collimator.
High resolution studies of the solar X-ray corona from Aerobee rockets
NASA Technical Reports Server (NTRS)
Davis, J. M.; Haggerty, R.; Krieger, A. S.; Manko, H.; Sherman, G.; Ting, J. W. S.; Vaiana, G. S.
1973-01-01
The research in high resolution solar X-ray astronomy is reported. The payload for the Aerobee 150 launch vehicle, which included a 23 cm diameter mirror whose polished surface was a nickel-phosphorus alloy is discussed along with the high resolution measurements, by Flight 13.028 CS, of the temperature and density structure of the lower corona. Flight 13.029 CS is also discussed.
2010-07-01
W81XWH-09-1-0420 TITLE: High Resolution PET Imaging Probe for the Detection, Molecular Characterization and Treatment Monitoring of Prostate Cancer...4. TITLE AND SUBTITLE High-Resolution PET Imaging Probe for the Detection, Molecular Characterization and Treatment of Prostate Cancer... molecular imaging for diagnosis as well as treatment planning and monitoring in prostate cancer. This investigation hypothesizes that a dedicated
2010-10-14
High-Resolution Functional Mapping of the Venezuelan Equine Encephalitis Virus Genome by Insertional Mutagenesis and Massively Parallel Sequencing...Venezuelan equine encephalitis virus (VEEV) genome. We initially used a capillary electrophoresis method to gain insight into the role of the VEEV...Smith JM, Schmaljohn CS (2010) High-Resolution Functional Mapping of the Venezuelan Equine Encephalitis Virus Genome by Insertional Mutagenesis and
NASA Technical Reports Server (NTRS)
Pagnutti, Mary
2006-01-01
This viewgraph presentation reviews the creation of a prototype algorithm for atmospheric correction using high spatial resolution earth observing imaging systems. The objective of the work was to evaluate accuracy of a prototype algorithm that uses satellite-derived atmospheric products to generate scene reflectance maps for high spatial resolution (HSR) systems. This presentation focused on preliminary results of only the satellite-based atmospheric correction algorithm.
Extension of least squares spectral resolution algorithm to high-resolution lipidomics data.
Zeng, Ying-Xu; Mjøs, Svein Are; David, Fabrice P A; Schmid, Adrien W
2016-03-31
Lipidomics, which focuses on the global study of molecular lipids in biological systems, has been driven tremendously by technical advances in mass spectrometry (MS) instrumentation, particularly high-resolution MS. This requires powerful computational tools that handle the high-throughput lipidomics data analysis. To address this issue, a novel computational tool has been developed for the analysis of high-resolution MS data, including the data pretreatment, visualization, automated identification, deconvolution and quantification of lipid species. The algorithm features the customized generation of a lipid compound library and mass spectral library, which covers the major lipid classes such as glycerolipids, glycerophospholipids and sphingolipids. Next, the algorithm performs least squares resolution of spectra and chromatograms based on the theoretical isotope distribution of molecular ions, which enables automated identification and quantification of molecular lipid species. Currently, this methodology supports analysis of both high and low resolution MS as well as liquid chromatography-MS (LC-MS) lipidomics data. The flexibility of the methodology allows it to be expanded to support more lipid classes and more data interpretation functions, making it a promising tool in lipidomic data analysis. Copyright © 2016 Elsevier B.V. All rights reserved.
Circuit for high resolution decoding of multi-anode microchannel array detectors
NASA Technical Reports Server (NTRS)
Kasle, David B. (Inventor)
1995-01-01
A circuit for high resolution decoding of multi-anode microchannel array detectors consisting of input registers accepting transient inputs from the anode array; anode encoding logic circuits connected to the input registers; midpoint pipeline registers connected to the anode encoding logic circuits; and pixel decoding logic circuits connected to the midpoint pipeline registers is described. A high resolution algorithm circuit operates in parallel with the pixel decoding logic circuit and computes a high resolution least significant bit to enhance the multianode microchannel array detector's spatial resolution by halving the pixel size and doubling the number of pixels in each axis of the anode array. A multiplexer is connected to the pixel decoding logic circuit and allows a user selectable pixel address output according to the actual multi-anode microchannel array detector anode array size. An output register concatenates the high resolution least significant bit onto the standard ten bit pixel address location to provide an eleven bit pixel address, and also stores the full eleven bit pixel address. A timing and control state machine is connected to the input registers, the anode encoding logic circuits, and the output register for managing the overall operation of the circuit.
Zhu, Hongchun; Cai, Lijie; Liu, Haiying; Huang, Wei
2016-01-01
Multi-scale image segmentation and the selection of optimal segmentation parameters are the key processes in the object-oriented information extraction of high-resolution remote sensing images. The accuracy of remote sensing special subject information depends on this extraction. On the basis of WorldView-2 high-resolution data, the optimal segmentation parameters methodof object-oriented image segmentation and high-resolution image information extraction, the following processes were conducted in this study. Firstly, the best combination of the bands and weights was determined for the information extraction of high-resolution remote sensing image. An improved weighted mean-variance method was proposed andused to calculatethe optimal segmentation scale. Thereafter, the best shape factor parameter and compact factor parameters were computed with the use of the control variables and the combination of the heterogeneity and homogeneity indexes. Different types of image segmentation parameters were obtained according to the surface features. The high-resolution remote sensing images were multi-scale segmented with the optimal segmentation parameters. Ahierarchical network structure was established by setting the information extraction rules to achieve object-oriented information extraction. This study presents an effective and practical method that can explain expert input judgment by reproducible quantitative measurements. Furthermore the results of this procedure may be incorporated into a classification scheme. PMID:27362762
Zhu, Hongchun; Cai, Lijie; Liu, Haiying; Huang, Wei
2016-01-01
Multi-scale image segmentation and the selection of optimal segmentation parameters are the key processes in the object-oriented information extraction of high-resolution remote sensing images. The accuracy of remote sensing special subject information depends on this extraction. On the basis of WorldView-2 high-resolution data, the optimal segmentation parameters methodof object-oriented image segmentation and high-resolution image information extraction, the following processes were conducted in this study. Firstly, the best combination of the bands and weights was determined for the information extraction of high-resolution remote sensing image. An improved weighted mean-variance method was proposed andused to calculatethe optimal segmentation scale. Thereafter, the best shape factor parameter and compact factor parameters were computed with the use of the control variables and the combination of the heterogeneity and homogeneity indexes. Different types of image segmentation parameters were obtained according to the surface features. The high-resolution remote sensing images were multi-scale segmented with the optimal segmentation parameters. Ahierarchical network structure was established by setting the information extraction rules to achieve object-oriented information extraction. This study presents an effective and practical method that can explain expert input judgment by reproducible quantitative measurements. Furthermore the results of this procedure may be incorporated into a classification scheme.
Evacuee Compliance Behavior Analysis using High Resolution Demographic Information
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lu, Wei; Han, Lee; Liu, Cheng
2014-01-01
The purpose of this study is to examine whether evacuee compliance behavior with route assignments from different resolutions of demographic data would impact the evacuation performance. Most existing evacuation strategies assume that travelers will follow evacuation instructions, while in reality a certain percent of evacuees do not comply with prescribed instructions. In this paper, a comparison study of evacuation assignment based on Traffic Analysis Zones (TAZ) and high resolution LandScan USA Population Cells (LPC) were conducted for the detailed road network representing Alexandria, Virginia. A revised platform for evacuation modeling built on high resolution demographic data and activity-based microscopic trafficmore » simulation is proposed. The results indicate that evacuee compliance behavior affects evacuation efficiency with traditional TAZ assignment, but it does not significantly compromise the efficiency with high resolution LPC assignment. The TAZ assignment also underestimates the real travel time during evacuation, especially for high compliance simulations. This suggests that conventional evacuation studies based on TAZ assignment might not be effective at providing efficient guidance to evacuees. From the high resolution data perspective, traveler compliance behavior is an important factor but it does not impact the system performance significantly. The highlight of evacuee compliance behavior analysis should be emphasized on individual evacuee level route/shelter assignments, rather than the whole system performance.« less
New concept high-speed and high-resolution color scanner
NASA Astrophysics Data System (ADS)
Nakashima, Keisuke; Shinoda, Shin'ichi; Konishi, Yoshiharu; Sugiyama, Kenji; Hori, Tetsuya
2003-05-01
We have developed a new concept high-speed and high-resolution color scanner (Blinkscan) using digital camera technology. With our most advanced sub-pixel image processing technology, approximately 12 million pixel image data can be captured. High resolution imaging capability allows various uses such as OCR, color document read, and document camera. The scan time is only about 3 seconds for a letter size sheet. Blinkscan scans documents placed "face up" on its scan stage and without any special illumination lights. Using Blinkscan, a high-resolution color document can be easily inputted into a PC at high speed, a paperless system can be built easily. It is small, and since the occupancy area is also small, setting it on an individual desk is possible. Blinkscan offers the usability of a digital camera and accuracy of a flatbed scanner with high-speed processing. Now, about several hundred of Blinkscan are mainly shipping for the receptionist operation in a bank and a security. We will show the high-speed and high-resolution architecture of Blinkscan. Comparing operation-time with conventional image capture device, the advantage of Blinkscan will make clear. And image evaluation for variety of environment, such as geometric distortions or non-uniformity of brightness, will be made.
High resolution digital delay timer
Martin, Albert D.
1988-01-01
Method and apparatus are provided for generating an output pulse following a trigger pulse at a time delay interval preset with a resolution which is high relative to a low resolution available from supplied clock pulses. A first lumped constant delay (20) provides a first output signal (24) at predetermined interpolation intervals corresponding to the desired high resolution time interval. Latching circuits (26, 28) latch the high resolution data (24) to form a first synchronizing data set (60). A selected time interval has been preset to internal counters (142, 146, 154) and corrected for circuit propagation delay times having the same order of magnitude as the desired high resolution. Internal system clock pulses (32, 34) count down the counters to generate an internal pulse delayed by an interval which is functionally related to the preset time interval. A second LCD (184) corrects the internal signal with the high resolution time delay. A second internal pulse is then applied to a third LCD (74) to generate a second set of synchronizing data (76) which is complementary with the first set of synchronizing data (60) for presentation to logic circuits (64). The logic circuits (64) further delay the internal output signal (72) to obtain a proper phase relationship of an output signal (80) with the internal pulses (32, 34). The final delayed output signal (80) thereafter enables the output pulse generator (82) to produce the desired output pulse (84) at the preset time delay interval following input of the trigger pulse (10, 12).
The impact of high-resolution ultrasound in the differential diagnosis of non-hemolytic jaundice.
Rauh, Peter; Neye, Holger; Mönkemüller, Klaus; Malfertheiner, Peter; Rickes, Steffen
2010-12-01
Because jaundice is a common reason for hospital admission. A fast and correct differential diagnosis is very important to increase treatment efficacy. The aim of our study was to evaluate the impact of the high-resolution ultrasound in this kind of clinical setting. In a prospective study we included 30 patients and we divided them in patients with extrahepatic jaundice and patients with intrahepatic jaundice. We observed a high accuracy of the high-resolution sonography, with a sensitivity of 95% and a specificity of 100% for extrahepatic jaundice, and a sensitivity of 100% and a specificity of 95% for intrahepatic jaundice. We conclude that the high-resolution ultrasound should be used in the very beginning of the diagnostic algorithm for the evaluation of patients with unclear jaundice.
X-ray Optics Development at MSFC
NASA Technical Reports Server (NTRS)
Sharma, Dharma P.
2017-01-01
Development of high resolution focusing telescopes has led to a tremendous leap in sensitivity, revolutionizing observational X-ray astronomy. High sensitivity and high spatial resolution X-ray observations have been possible due to use of grazing incidence optics (paraboloid/hyperboloid) coupled with high spatial resolution and high efficiency detectors/imagers. The best X-ray telescope flown so far is mounted onboard Chandra observatory launched on July 23,1999. The telescope has a spatial resolution of 0.5 arc seconds with compatible imaging instruments in the energy range of 0.1 to 10 keV. The Chandra observatory has been responsible for a large number of discoveries and has provided X-ray insights on a large number of celestial objects including stars, supernova remnants, pulsars, magnetars, black holes, active galactic nuclei, galaxies, clusters and our own solar system.
NASA Astrophysics Data System (ADS)
Cecilia, A.; Rack, A.; Douissard, P.-A.; Martin, T.; Dos Santos Rolo, T.; Vagovič, P.; Hamann, E.; van de Kamp, T.; Riedel, A.; Fiederle, M.; Baumbach, T.
2011-08-01
Within the project ScinTAX of the 6th framework program (FP6) of the European Commission (SCINTAX—STRP 033 427) we have developed a new thin single crystal scintillator for high-resolution X-ray imaging. The scintillator is based on a Tb-doped Lu2SiO5 (LSO) film epitaxially grown on an adapted substrate. The high density, effective atomic number and light yield of the scintillating LSO significantly improves the efficiency of the X-ray imaging detectors currently used in synchrotron micro-imaging applications. In this work we present the characterization of the scintillating LSO films in terms of their spatial resolution performance and we provide two examples of high spatial and high temporal resolution applications.
Xenia Mission: Spacecraft Design Concept
NASA Technical Reports Server (NTRS)
Hopkins, R. C.; Johnson, C. L.; Kouveliotou, C.; Jones, D.; Baysinger, M.; Bedsole, T.; Maples, C. C.; Benfield, P. J.; Turner, M.; Capizzo, P.;
2009-01-01
The proposed Xenia mission will, for the first time, chart the chemical and dynamical state of the majority of baryonic matter in the universe. using high-resolution spectroscopy, Xenia will collect essential information from major traces of the formation and evolution of structures from the early universe to the present time. The mission is based on innovative instrumental and observational approaches: observing with fast reaction gamma-ray bursts (GRBs) with a high spectral resolution. This enables the study of their (star-forming) environment from the dark to the local universe and the use of GRBs as backlight of large-scale cosmological structures, observing and surveying extended sources with high sensitivity using two wide field-of-view x-ray telescopes - one with a high angular resolution and the other with a high spectral resolution.
Nishizawa, N; Chen, Y; Hsiung, P; Ippen, E P; Fujimoto, J G
2004-12-15
Real-time, ultrahigh-resolution optical coherence tomography (OCT) is demonstrated in the 1.4-1.7-microm wavelength region with a stretched-pulse, passively mode-locked, Er-doped fiber laser and highly nonlinear fiber. The fiber laser generates 100-mW, linearly chirped pulses at a 51-MHz repetition rate. The pulses are compressed and then coupled into a normally dispersive highly nonlinear fiber to generate a low-noise supercontinuum with a 180-nm FWHM bandwidth and 38 mW of output power. This light source is stable, compact, and broadband, permitting high-speed, real-time, high-resolution OCT imaging. In vivo high-speed OCT imaging of human skin with approximately 5.5-microm resolution and 99-dB sensitivity is demonstrated.
NASA Astrophysics Data System (ADS)
Chen, Hao; Zhang, Xinggan; Bai, Yechao; Tang, Lan
2017-01-01
In inverse synthetic aperture radar (ISAR) imaging, the migration through resolution cells (MTRCs) will occur when the rotation angle of the moving target is large, thereby degrading image resolution. To solve this problem, an ISAR imaging method based on segmented preprocessing is proposed. In this method, the echoes of large rotating target are divided into several small segments, and every segment can generate a low-resolution image without MTRCs. Then, each low-resolution image is rotated back to the original position. After image registration and phase compensation, a high-resolution image can be obtained. Simulation and real experiments show that the proposed algorithm can deal with the radar system with different range and cross-range resolutions and significantly compensate the MTRCs.
Evaluation of coarse scale land surface remote sensing albedo product over rugged terrain
NASA Astrophysics Data System (ADS)
Wen, J.; Xinwen, L.; You, D.; Dou, B.
2017-12-01
Satellite derived Land surface albedo is an essential climate variable which controls the earth energy budget and it can be used in applications such as climate change, hydrology, and numerical weather prediction. The accuracy and uncertainty of surface albedo products should be evaluated with a reliable reference truth data prior to applications. And more literatures investigated the validation methods about the albedo validation in a flat or homogenous surface. However, the albedo performance over rugged terrain is still unknow due to the validation method limited. A multi-validation strategy is implemented to give a comprehensive albedo validation, which will involve the high resolution albedo processing, high resolution albedo validation based on in situ albedo, and the method to upscale the high resolution albedo to a coarse scale albedo. Among them, the high resolution albedo generation and the upscale method is the core step for the coarse scale albedo validation. In this paper, the high resolution albedo is generated by Angular Bin algorithm. And a albedo upscale method over rugged terrain is developed to obtain the coarse scale albedo truth. The in situ albedo located 40 sites in mountain area are selected globally to validate the high resolution albedo, and then upscaled to the coarse scale albedo by the upscale method. This paper takes MODIS and GLASS albedo product as a example, and the prelimarily results show the RMSE of MODIS and GLASS albedo product over rugged terrain are 0.047 and 0.057, respectively under the RMSE with 0.036 of high resolution albedo.
Near-real-time mosaics from high-resolution side-scan sonar
Danforth, William W.; O'Brien, Thomas F.; Schwab, W.C.
1991-01-01
High-resolution side-scan sonar has proven to be a very effective tool for stuyding and understanding the surficial geology of the seafloor. Since the mid-1970s, the US Geological Survey has used high-resolution side-scan sonar systems for mapping various areas of the continental shelf. However, two problems typically encountered included the short range and the high sampling rate of high-resolution side-scan sonar systems and the acquisition and real-time processing of the enormous volume of sonar data generated by high-resolution suystems. These problems were addressed and overcome in August 1989 when the USGS conducted a side-scan sonar and bottom sampling survey of a 1000-sq-km section of the continental shelf in the Gulf of Farallones located offshore of San Francisco. The primary goal of this survey was to map an area of critical interest for studying continental shelf sediment dynamics. This survey provided an opportunity to test an image processing scheme that enabled production of a side-scan sonar hard-copy mosaic during the cruise in near real-time.
NASA Astrophysics Data System (ADS)
Hester, David Barry
The objective of this research was to develop methods for urban land cover analysis using QuickBird high spatial resolution satellite imagery. Such imagery has emerged as a rich commercially available remote sensing data source and has enjoyed high-profile broadcast news media and Internet applications, but methods of quantitative analysis have not been thoroughly explored. The research described here consists of three studies focused on the use of pan-sharpened 61-cm spatial resolution QuickBird imagery, the spatial resolution of which is the highest of any commercial satellite. In the first study, a per-pixel land cover classification method is developed for use with this imagery. This method utilizes a per-pixel classification approach to generate an accurate six-category high spatial resolution land cover map of a developing suburban area. The primary objective of the second study was to develop an accurate land cover change detection method for use with QuickBird land cover products. This work presents an efficient fuzzy framework for transforming map uncertainty into accurate and meaningful high spatial resolution land cover change analysis. The third study described here is an urban planning application of the high spatial resolution QuickBird-based land cover product developed in the first study. This work both meaningfully connects this exciting new data source to urban watershed management and makes an important empirical contribution to the study of suburban watersheds. Its analysis of residential roads and driveways as well as retail parking lots sheds valuable light on the impact of transportation-related land use on the suburban landscape. Broadly, these studies provide new methods for using state-of-the-art remote sensing data to inform land cover analysis and urban planning. These methods are widely adaptable and produce land cover products that are both meaningful and accurate. As additional high spatial resolution satellites are launched and the cost of high resolution imagery continues to decline, this research makes an important contribution to this exciting era in the science of remote sensing.
Single Photon Counting Large Format Imaging Sensors with High Spatial and Temporal Resolution
NASA Astrophysics Data System (ADS)
Siegmund, O. H. W.; Ertley, C.; Vallerga, J. V.; Cremer, T.; Craven, C. A.; Lyashenko, A.; Minot, M. J.
High time resolution astronomical and remote sensing applications have been addressed with microchannel plate based imaging, photon time tagging detector sealed tube schemes. These are being realized with the advent of cross strip readout techniques with high performance encoding electronics and atomic layer deposited (ALD) microchannel plate technologies. Sealed tube devices up to 20 cm square have now been successfully implemented with sub nanosecond timing and imaging. The objective is to provide sensors with large areas (25 cm2 to 400 cm2) with spatial resolutions of <20 μm FWHM and timing resolutions of <100 ps for dynamic imaging. New high efficiency photocathodes for the visible regime are discussed, which also allow response down below 150nm for UV sensing. Borosilicate MCPs are providing high performance, and when processed with ALD techniques are providing order of magnitude lifetime improvements and enhanced photocathode stability. New developments include UV/visible photocathodes, ALD MCPs, and high resolution cross strip anodes for 100 mm detectors. Tests with 50 mm format cross strip readouts suitable for Planacon devices show spatial resolutions better than 20 μm FWHM, with good image linearity while using low gain ( 106). Current cross strip encoding electronics can accommodate event rates of >5 MHz and event timing accuracy of 100 ps. High-performance ASIC versions of these electronics are in development with better event rate, power and mass suitable for spaceflight instruments.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kim, Jungho
Hard x-ray resonant inelastic x-ray scattering (RIXS) is a promising x-ray spectroscopic tool for measuring low-energy excitation spectra at high pressure which have been stymied heretofore by the technical difficulties inherent in measuring a sample held at high pressure in a diamond anvil cell. The currently available facilities of high resolution (< 200 meV) RIXS has been used to probe low-energy excitation spectra from the diamond anvil cell, by virtue of advanced photon detection instrumentations of high-brilliance synchrotron x-ray radiation sources. Compared to a structural elastic scattering and x-ray emission, RIXS is a photon hungry technique and high-resolution RIXS undermore » high pressure is at its infancy stage. In this review, the fundamentals of RIXS including instrumentation of high-resolution RIXS are presented and then experimental details of diamond anvil cell, sample preparation and measurement geometry are discussed. Experimental data of 3d and 5d transition metal oxides are presented. Finally, future improvements in high-resolution RIXS instrumentation for the high pressure experiment is discussed.« less
DMI's Baltic Sea Coastal operational forecasting system
NASA Astrophysics Data System (ADS)
Murawski, Jens; Berg, Per; Weismann Poulsen, Jacob
2017-04-01
Operational forecasting is challenged with bridging the gap between the large scales of the driving weather systems and the local, human scales of the model applications. The limit of what can be represented by local model has been continuously shifted to higher and higher spatial resolution, with the aim to better resolve the local dynamic and to make it possible to describe processes that could only be parameterised in older versions, with the ultimate goal to improve the quality of the forecast. Current hardware trends demand a str onger focus on the development of efficient, highly parallelised software and require a refactoring of the code with a solid focus on portable performance. The gained performance can be used for running high resolution model with a larger coverage. Together with the development of efficient two-way nesting routines, this has made it possible to approach the near-coastal zone with model applications that can run in a time effective way. Denmarks Meteorological Institute uses the HBM(1) ocean circulation model for applications that covers the entire Baltic Sea and North Sea with an integrated model set-up that spans the range of horizontal resolution from 1nm for the entire Baltic Sea to approx. 200m resolution in local fjords (Limfjord). For the next model generation, the high resolution set-ups are going to be extended and new high resolution domains in coastal zones are either implemented or tested for operational use. For the first time it will be possible to cover large stretches of the Baltic coastal zone with sufficiently high resolution to model the local hydrodynamic adequately. (1) HBM stands for HIROMB-BOOS-Model, whereas HIROMB stands for "High Resolution Model for the Baltic Sea" and BOOS stands for "Baltic Operational Oceanography System".
Remote sensing in support of high-resolution terrestrial carbon monitoring and modeling
NASA Astrophysics Data System (ADS)
Hurtt, G. C.; Zhao, M.; Dubayah, R.; Huang, C.; Swatantran, A.; ONeil-Dunne, J.; Johnson, K. D.; Birdsey, R.; Fisk, J.; Flanagan, S.; Sahajpal, R.; Huang, W.; Tang, H.; Armstrong, A. H.
2014-12-01
As part of its Phase 1 Carbon Monitoring System (CMS) activities, NASA initiated a Local-Scale Biomass Pilot study. The goals of the pilot study were to develop protocols for fusing high-resolution remotely sensed observations with field data, provide accurate validation test areas for the continental-scale biomass product, and demonstrate efficacy for prognostic terrestrial ecosystem modeling. In Phase 2, this effort was expanded to the state scale. Here, we present results of this activity focusing on the use of remote sensing in high-resolution ecosystem modeling. The Ecosystem Demography (ED) model was implemented at 90 m spatial resolution for the entire state of Maryland. We rasterized soil depth and soil texture data from SSURGO. For hourly meteorological data, we spatially interpolated 32-km 3-hourly NARR into 1-km hourly and further corrected them at monthly level using PRISM data. NLCD data were used to mask sand, seashore, and wetland. High-resolution 1 m forest/non-forest mapping was used to define forest fraction of 90 m cells. Three alternative strategies were evaluated for initialization of forest structure using high-resolution lidar, and the model was used to calculate statewide estimates of forest biomass, carbon sequestration potential, time to reach sequestration potential, and sensitivity to future forest growth and disturbance rates, all at 90 m resolution. To our knowledge, no dynamic ecosystem model has been run at such high spatial resolution over such large areas utilizing remote sensing and validated as extensively. There are over 3 million 90 m land cells in Maryland, greater than 43 times the ~73,000 half-degree cells in a state-of-the-art global land model.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Li Dan; Zhao Wei
2008-07-15
An indirect flat panel imager (FPI) with programmable avalanche gain and field emitter array (FEA) readout is being investigated for low-dose and high resolution x-ray imaging. It is made by optically coupling a structured x-ray scintillator, e.g., thallium (Tl) doped cesium iodide (CsI), to an amorphous selenium (a-Se) avalanche photoconductor called high-gain avalanche rushing amorphous photoconductor (HARP). The charge image created by the scintillator/HARP (SHARP) combination is read out by the electron beams emitted from the FEA. The proposed detector is called scintillator avalanche photoconductor with high resolution emitter readout (SAPHIRE). The programmable avalanche gain of HARP can improve themore » low dose performance of indirect FPI while the FEA can be made with pixel sizes down to 50 {mu}m. Because of the avalanche gain, a high resolution type of CsI (Tl), which has not been widely used in indirect FPI due to its lower light output, can be used to improve the high spatial frequency performance. The purpose of the present article is to investigate the factors affecting the spatial resolution of SAPHIRE. Since the resolution performance of the SHARP combination has been well studied, the focus of the present work is on the inherent resolution of the FEA readout method. The lateral spread of the electron beam emitted from a 50 {mu}mx50 {mu}m pixel FEA was investigated with two different electron-optical designs: mesh-electrode-only and electrostatic focusing. Our results showed that electrostatic focusing can limit the lateral spread of electron beams to within the pixel size of down to 50 {mu}m. Since electrostatic focusing is essentially independent of signal intensity, it will provide excellent spatial uniformity.« less
Sub-micron resolution selected area electron channeling patterns.
Guyon, J; Mansour, H; Gey, N; Crimp, M A; Chalal, S; Maloufi, N
2015-02-01
Collection of selected area channeling patterns (SACPs) on a high resolution FEG-SEM is essential to carry out quantitative electron channeling contrast imaging (ECCI) studies, as it facilitates accurate determination of the crystal plane normal with respect to the incident beam direction and thus allows control the electron channeling conditions. Unfortunately commercial SACP modes developed in the past were limited in spatial resolution and are often no longer offered. In this contribution we present a novel approach for collecting high resolution SACPs (HR-SACPs) developed on a Gemini column. This HR-SACP technique combines the first demonstrated sub-micron spatial resolution with high angular accuracy of about 0.1°, at a convenient working distance of 10mm. This innovative approach integrates the use of aperture alignment coils to rock the beam with a digitally calibrated beam shift procedure to ensure the rocking beam is maintained on a point of interest. Moreover a new methodology to accurately measure SACP spatial resolution is proposed. While column considerations limit the rocking angle to 4°, this range is adequate to index the HR-SACP in conjunction with the pattern simulated from the approximate orientation deduced by EBSD. This new technique facilitates Accurate ECCI (A-ECCI) studies from very fine grained and/or highly strained materials. It offers also new insights for developing HR-SACP modes on new generation high-resolution electron columns. Copyright © 2014 Elsevier B.V. All rights reserved.
High-resolution compact shear stress sensor for direct measurement of skin friction in fluid flow
NASA Astrophysics Data System (ADS)
Xu, Muchen; Kim, Chang-Jin ``Cj''
2015-11-01
The high-resolution measurement of skin friction in complex flows has long been of great interest but also a challenge in fluid mechanics. Compared with indirect measurement methods (e.g., laser Doppler velocimetry), direct measurement methods (e.g., floating element) do not involve any analogy and assumption but tend to suffer from instrumentation challenges, such as low sensing resolution or misalignments. Recently, silicon micromachined floating plates showed good resolution and perfect alignment but were too small for general purposes and too fragile to attach other surface samples repeatedly. In this work, we report a skin friction sensor consisting of a monolithic floating plate and a high-resolution optical encoder to measure its displacement. The key for the high resolution is in the suspension beams, which are very narrow (e.g., 0.25 mm) to sense small frictions along the flow direction but thick (e.g., 5 mm) to be robust along all other directions. This compact, low profile, and complete sensor is easy to use and allows repeated attachment and detachment of surface samples. The sheer-stress sensor has been tested in water tunnel and towing tank at different flow conditions, showing high sensing resolution for skin friction measurement. Supported by National Science Foundation (NSF) (No. 1336966) and Defense Advanced Research Projects Agency (DARPA) (No. HR0011-15-2-0021).
Monitoring Termite-Mediated Ecosystem Processes Using Moderate and High Resolution Satellite Imagery
NASA Astrophysics Data System (ADS)
Lind, B. M.; Hanan, N. P.
2016-12-01
Termites are considered dominant decomposers and prominent ecosystem engineers in the global tropics and they build some of the largest and architecturally most complex non-human-made structures in the world. Termite mounds significantly alter soil texture, structure, and nutrients, and have major implications for local hydrological dynamics, vegetation characteristics, and biological diversity. An understanding of how these processes change across large scales has been limited by our ability to detect termite mounds at high spatial resolutions. Our research develops methods to detect large termite mounds in savannas across extensive geographic areas using moderate and high resolution satellite imagery. We also investigate the effect of termite mounds on vegetation productivity using Landsat-8 maximum composite NDVI data as a proxy for production. Large termite mounds in arid and semi-arid Senegal generate highly reflective `mound scars' with diameters ranging from 10 m at minimum to greater than 30 m. As Sentinel-2 has several bands with 10 m resolution and Landsat-8 has improved calibration, higher radiometric resolution, 15 m spatial resolution (pansharpened), and improved contrast between vegetated and bare surfaces compared to previous Landsat missions, we found that the largest and most influential mounds in the landscape can be detected. Because mounds as small as 4 m in diameter are easily detected in high resolution imagery we used these data to validate detection results and quantify omission errors for smaller mounds.
Kuribayashi, Ryuma; Nittono, Hiroshi
2017-01-01
High-resolution audio has a higher sampling frequency and a greater bit depth than conventional low-resolution audio such as compact disks. The higher sampling frequency enables inaudible sound components (above 20 kHz) that are cut off in low-resolution audio to be reproduced. Previous studies of high-resolution audio have mainly focused on the effect of such high-frequency components. It is known that alpha-band power in a human electroencephalogram (EEG) is larger when the inaudible high-frequency components are present than when they are absent. Traditionally, alpha-band EEG activity has been associated with arousal level. However, no previous studies have explored whether sound sources with high-frequency components affect the arousal level of listeners. The present study examined this possibility by having 22 participants listen to two types of a 400-s musical excerpt of French Suite No. 5 by J. S. Bach (on cembalo, 24-bit quantization, 192 kHz A/D sampling), with or without inaudible high-frequency components, while performing a visual vigilance task. High-alpha (10.5-13 Hz) and low-beta (13-20 Hz) EEG powers were larger for the excerpt with high-frequency components than for the excerpt without them. Reaction times and error rates did not change during the task and were not different between the excerpts. The amplitude of the P3 component elicited by target stimuli in the vigilance task increased in the second half of the listening period for the excerpt with high-frequency components, whereas no such P3 amplitude change was observed for the other excerpt without them. The participants did not distinguish between these excerpts in terms of sound quality. Only a subjective rating of inactive pleasantness after listening was higher for the excerpt with high-frequency components than for the other excerpt. The present study shows that high-resolution audio that retains high-frequency components has an advantage over similar and indistinguishable digital sound sources in which such components are artificially cut off, suggesting that high-resolution audio with inaudible high-frequency components induces a relaxed attentional state without conscious awareness.
Re-scan confocal microscopy: scanning twice for better resolution
De Luca, Giulia M.R.; Breedijk, Ronald M.P.; Brandt, Rick A.J.; Zeelenberg, Christiaan H.C.; de Jong, Babette E.; Timmermans, Wendy; Azar, Leila Nahidi; Hoebe, Ron A.; Stallinga, Sjoerd; Manders, Erik M.M.
2013-01-01
We present a new super-resolution technique, Re-scan Confocal Microscopy (RCM), based on standard confocal microscopy extended with an optical (re-scanning) unit that projects the image directly on a CCD-camera. This new microscope has improved lateral resolution and strongly improved sensitivity while maintaining the sectioning capability of a standard confocal microscope. This simple technology is typically useful for biological applications where the combination high-resolution and high-sensitivity is required. PMID:24298422
High resolution frequency analysis techniques with application to the redshift experiment
NASA Technical Reports Server (NTRS)
Decher, R.; Teuber, D.
1975-01-01
High resolution frequency analysis methods, with application to the gravitational probe redshift experiment, are discussed. For this experiment a resolution of .00001 Hz is required to measure a slowly varying, low frequency signal of approximately 1 Hz. Major building blocks include fast Fourier transform, discrete Fourier transform, Lagrange interpolation, golden section search, and adaptive matched filter technique. Accuracy, resolution, and computer effort of these methods are investigated, including test runs on an IBM 360/65 computer.
Mesoscale landscape model of gypsy moth phenology
Joseph M. Russo; John G. W. Kelley; Andrew M. Liebhold
1991-01-01
A recently-developed high resolution climatological temperature data base was input into a gypsy moth phenology model. The high resolution data were created from a coupling of 30-year averages of station observations and digital elevation data. The resultant maximum and minimum temperatures have about a 1 km resolution which represents meteorologically the mesoscale....
A key factor for improving models of ecosystem benefits is the availability of high quality spatial data. High resolution LIDAR data are now commonly available and can be used to produce more accurate model outputs. However, increased resolution leads to higher computer resource...
Reproducible high-resolution multispectral image acquisition in dermatology
NASA Astrophysics Data System (ADS)
Duliu, Alexandru; Gardiazabal, José; Lasser, Tobias; Navab, Nassir
2015-07-01
Multispectral image acquisitions are increasingly popular in dermatology, due to their improved spectral resolution which enables better tissue discrimination. Most applications however focus on restricted regions of interest, imaging only small lesions. In this work we present and discuss an imaging framework for high-resolution multispectral imaging on large regions of interest.
Super resolution reconstruction of μ-CT image of rock sample using neighbour embedding algorithm
NASA Astrophysics Data System (ADS)
Wang, Yuzhu; Rahman, Sheik S.; Arns, Christoph H.
2018-03-01
X-ray computed tomography (μ-CT) is considered to be the most effective way to obtain the inner structure of rock sample without destructions. However, its limited resolution hampers its ability to probe sub-micro structures which is critical for flow transportation of rock sample. In this study, we propose an innovative methodology to improve the resolution of μ-CT image using neighbour embedding algorithm where low frequency information is provided by μ-CT image itself while high frequency information is supplemented by high resolution scanning electron microscopy (SEM) image. In order to obtain prior for reconstruction, a large number of image patch pairs contain high- and low- image patches are extracted from the Gaussian image pyramid generated by SEM image. These image patch pairs contain abundant information about tomographic evolution of local porous structures under different resolution spaces. Relying on the assumption of self-similarity of porous structure, this prior information can be used to supervise the reconstruction of high resolution μ-CT image effectively. The experimental results show that the proposed method is able to achieve the state-of-the-art performance.
Calibration of Fuji BAS-SR type imaging plate as high spatial resolution x-ray radiography recorder
NASA Astrophysics Data System (ADS)
Yan, Ji; Zheng, Jianhua; Zhang, Xing; Chen, Li; Wei, Minxi
2017-05-01
Image Plates as x-ray recorder have advantages including reusable, high dynamic range, large active area, and so on. In this work, Fuji BAS-SR type image plate combined with BAS-5000 scanner is calibrated. The fade rates of Image Plates has been measured using x-ray diffractometric in different room temperature; the spectral response of Image Plates has been measured using 241Am radioactive sealed source and fitting with linear model; the spatial resolution of Image Plates has been measured using micro-focus x-ray tube. The results show that Image Plates has an exponent decade curve and double absorption edge response curve. The spatial resolution of Image Plates with 25μ/50μ scanner resolution is 6.5lp/mm, 11.9lp/mm respectively and gold grid radiography is collected with 80lp/mm spatial resolution using SR-type Image Plates. BAS-SR type Image Plates can do high spatial resolution and quantitative radiographic works. It can be widely used in High energy density physics (HEDP), inertial confinement fusion (ICF) and laboratory astronomy physics.
High-resolution Bent-crystal Spectrometer for the Ultra-soft X-ray Region
DOE R&D Accomplishments Database
Beiersdorfer, P.; von Goeler, S.; Bitter, M.; Hill, K. W.; Hulse, R. A.; Walling, R. S.
1988-10-01
A multichannel vacuum Brag-crystal spectrometer has been developed for high-resolution measurements of the line emission from tokamak plasmas in the wavelength region between 4 and 25 angstrom. The spectrometer employs a bent crystal in Johann geometry and a microchannel-plate intensified photodiode array. The instrument is capable of measuring high-resolution spectra (lambda/..delta..lambda approx. 3000) with fast time resolution (4 msec per spectrum) and good spatial resolution (3 cm). The spectral bandwidth is ..delta..lambda/lambda{sub 0} = 8 angstrom. A simple tilt mechanism allows access to different wavelength intervals. In order to illustrate the utility of the new spectrometer, time- and space-resolved measurements of the n = 3 to n = 2 spectrum of selenium from the Princeton Large Torus tokamak plasmas are presented. The data are used to determine the plasma transport parameters and to infer the radial distribution of fluorinelike, neonlike, and sodiumlike ions of selenium in the plasma. The new ultra-soft x-ray spectrometer has thus enabled us to demonstrate the utility of high-resolution L-shell spectroscopy of neonlike ions as a fusion diagnostic.
NASA Astrophysics Data System (ADS)
von Storch, Jin-Song
2014-05-01
The German consortium STORM was built to explore high-resolution climate simulations using the high-performance computer stored at the German Climate Computer Center (DKRZ). One of the primary goals is to quantify the effect of unresolved (and parametrized) processes on climate sensitivity. We use ECHAM6/MPIOM, the coupled atmosphere-ocean model developed at the Max-Planck Institute for Meteorology. The resolution is T255L95 for the atmosphere and 1/10 degree and 80 vertical levels for the ocean. We discuss results of stand-alone runs, i.e. the ocean-only simulation driven by the NCEP/NCAR renalaysis and the atmosphere-only AMIP-type of simulation. Increasing resolution leads to a redistribution of biases, even though some improvements, both in the atmosphere and in the ocean, can clearly be attributed to the increase in resolution. We represent also new insights on ocean meso-scale eddies, in particular their effects on the ocean's energetics. Finally, we discuss the status and problems of the coupled high-resolution runs.
Abatzoglou, John T; Dobrowski, Solomon Z; Parks, Sean A; Hegewisch, Katherine C
2018-01-09
We present TerraClimate, a dataset of high-spatial resolution (1/24°, ~4-km) monthly climate and climatic water balance for global terrestrial surfaces from 1958-2015. TerraClimate uses climatically aided interpolation, combining high-spatial resolution climatological normals from the WorldClim dataset, with coarser resolution time varying (i.e., monthly) data from other sources to produce a monthly dataset of precipitation, maximum and minimum temperature, wind speed, vapor pressure, and solar radiation. TerraClimate additionally produces monthly surface water balance datasets using a water balance model that incorporates reference evapotranspiration, precipitation, temperature, and interpolated plant extractable soil water capacity. These data provide important inputs for ecological and hydrological studies at global scales that require high spatial resolution and time varying climate and climatic water balance data. We validated spatiotemporal aspects of TerraClimate using annual temperature, precipitation, and calculated reference evapotranspiration from station data, as well as annual runoff from streamflow gauges. TerraClimate datasets showed noted improvement in overall mean absolute error and increased spatial realism relative to coarser resolution gridded datasets.
NASA Astrophysics Data System (ADS)
Abatzoglou, John T.; Dobrowski, Solomon Z.; Parks, Sean A.; Hegewisch, Katherine C.
2018-01-01
We present TerraClimate, a dataset of high-spatial resolution (1/24°, ~4-km) monthly climate and climatic water balance for global terrestrial surfaces from 1958-2015. TerraClimate uses climatically aided interpolation, combining high-spatial resolution climatological normals from the WorldClim dataset, with coarser resolution time varying (i.e., monthly) data from other sources to produce a monthly dataset of precipitation, maximum and minimum temperature, wind speed, vapor pressure, and solar radiation. TerraClimate additionally produces monthly surface water balance datasets using a water balance model that incorporates reference evapotranspiration, precipitation, temperature, and interpolated plant extractable soil water capacity. These data provide important inputs for ecological and hydrological studies at global scales that require high spatial resolution and time varying climate and climatic water balance data. We validated spatiotemporal aspects of TerraClimate using annual temperature, precipitation, and calculated reference evapotranspiration from station data, as well as annual runoff from streamflow gauges. TerraClimate datasets showed noted improvement in overall mean absolute error and increased spatial realism relative to coarser resolution gridded datasets.
Wang, Sheng; Ding, Miao; Chen, Xuanze; Chang, Lei; Sun, Yujie
2017-01-01
Direct visualization of protein-protein interactions (PPIs) at high spatial and temporal resolution in live cells is crucial for understanding the intricate and dynamic behaviors of signaling protein complexes. Recently, bimolecular fluorescence complementation (BiFC) assays have been combined with super-resolution imaging techniques including PALM and SOFI to visualize PPIs at the nanometer spatial resolution. RESOLFT nanoscopy has been proven as a powerful live-cell super-resolution imaging technique. With regard to the detection and visualization of PPIs in live cells with high temporal and spatial resolution, here we developed a BiFC assay using split rsEGFP2, a highly photostable and reversibly photoswitchable fluorescent protein previously developed for RESOLFT nanoscopy. Combined with parallelized RESOLFT microscopy, we demonstrated the high spatiotemporal resolving capability of a rsEGFP2-based BiFC assay by detecting and visualizing specifically the heterodimerization interactions between Bcl-xL and Bak as well as the dynamics of the complex on mitochondria membrane in live cells. PMID:28663931
Estimation of size of cord blood inventory based on high-resolution typing of HLAs.
Song, E Y; Huh, J Y; Kim, S Y; Kim, T G; Oh, S; Yoon, J H; Roh, E Y; Park, M H; Kang, M S; Shin, S
2014-07-01
Methods for estimating the cord blood (CB) inventory size required vary according to the ethnic diversity of the HLA, degree of HLA matching and HLA-typing resolution. We estimated the CB inventory size required using 7190 stored CB units (CBU) and 2450 patients who were awaiting or underwent allogeneic hematopoietic stem cell transplantation. With high-resolution typing of HLA-A, B and DRB1, 94.6% of Korean patients could find CBUs in 100 000 CBUs with a 5/6 match, and 95.7% could find CBUs in 5000 CBUs with a 4/6 match. With low-resolution typing of HLA-A and B and high-resolution typing of leukocyte antigen-DRB1, 95% of patients could find CBUs in 50 000 CBUs with a 5/6 match, and 96.7% could find CBUs in 3000 CBUs with a 4/6 match. With additional high-resolution typing for HLA-A and B, which could improve transplantation outcome, the size of the CB inventory would need to increase twofold for Koreans.
Automated brain tumor segmentation using spatial accuracy-weighted hidden Markov Random Field.
Nie, Jingxin; Xue, Zhong; Liu, Tianming; Young, Geoffrey S; Setayesh, Kian; Guo, Lei; Wong, Stephen T C
2009-09-01
A variety of algorithms have been proposed for brain tumor segmentation from multi-channel sequences, however, most of them require isotropic or pseudo-isotropic resolution of the MR images. Although co-registration and interpolation of low-resolution sequences, such as T2-weighted images, onto the space of the high-resolution image, such as T1-weighted image, can be performed prior to the segmentation, the results are usually limited by partial volume effects due to interpolation of low-resolution images. To improve the quality of tumor segmentation in clinical applications where low-resolution sequences are commonly used together with high-resolution images, we propose the algorithm based on Spatial accuracy-weighted Hidden Markov random field and Expectation maximization (SHE) approach for both automated tumor and enhanced-tumor segmentation. SHE incorporates the spatial interpolation accuracy of low-resolution images into the optimization procedure of the Hidden Markov Random Field (HMRF) to segment tumor using multi-channel MR images with different resolutions, e.g., high-resolution T1-weighted and low-resolution T2-weighted images. In experiments, we evaluated this algorithm using a set of simulated multi-channel brain MR images with known ground-truth tissue segmentation and also applied it to a dataset of MR images obtained during clinical trials of brain tumor chemotherapy. The results show that more accurate tumor segmentation results can be obtained by comparing with conventional multi-channel segmentation algorithms.
Texton-based super-resolution for achieving high spatiotemporal resolution in hybrid camera system
NASA Astrophysics Data System (ADS)
Kamimura, Kenji; Tsumura, Norimichi; Nakaguchi, Toshiya; Miyake, Yoichi
2010-05-01
Many super-resolution methods have been proposed to enhance the spatial resolution of images by using iteration and multiple input images. In a previous paper, we proposed the example-based super-resolution method to enhance an image through pixel-based texton substitution to reduce the computational cost. In this method, however, we only considered the enhancement of a texture image. In this study, we modified this texton substitution method for a hybrid camera to reduce the required bandwidth of a high-resolution video camera. We applied our algorithm to pairs of high- and low-spatiotemporal-resolution videos, which were synthesized to simulate a hybrid camera. The result showed that the fine detail of the low-resolution video can be reproduced compared with bicubic interpolation and the required bandwidth could be reduced to about 1/5 in a video camera. It was also shown that the peak signal-to-noise ratios (PSNRs) of the images improved by about 6 dB in a trained frame and by 1.0-1.5 dB in a test frame, as determined by comparison with the processed image using bicubic interpolation, and the average PSNRs were higher than those obtained by the well-known Freeman’s patch-based super-resolution method. Compared with that of the Freeman’s patch-based super-resolution method, the computational time of our method was reduced to almost 1/10.
Baryon-baryon interactions and spin-flavor symmetry from lattice quantum chromodynamics
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wagman, Michael L.; Winter, Frank; Chang, Emmanuel
Lattice quantum chromodynamics is used to constrain the interactions of two octet baryons at the SU(3) flavor-symmetric point, with quark masses that are heavier than those in nature (equal to that of the physical strange quark mass and corresponding to a pion mass ofmore » $$\\approx 806~\\tt{MeV}$$). Specifically, the S-wave scattering phase shifts of two-baryon systems at low energies are obtained with the application of L\\"uscher's formalism, mapping the energy eigenvalues of two interacting baryons in a finite volume to the two-particle scattering amplitudes below the relevant inelastic thresholds. The values of the leading-order low-energy scattering parameters in the irreducible representations of SU(3) are consistent with an approximate SU(6) spin-flavor symmetry in the nuclear and hypernuclear forces that is predicted in the large-$$N_c$$ limit of QCD. The two distinct SU(6)-invariant interactions between two baryons are constrained at this value of the quark masses, and their values indicate an approximate accidental SU(16) symmetry. The SU(3) irreducible representations containing the $$NN~({^1}S_0)$$, $$NN~({^3}S_1)$$ and $$\\frac{1}{\\sqrt{2}}(\\Xi^0n+\\Xi^-p)~({^3}S_1)$$ channels unambiguously exhibit a single bound state, while the irreducible representation containing the $$\\Sigma^+ p~({^3}S_1)$$ channel exhibits a state that is consistent with either a bound state or a scattering state close to threshold. These results are in agreement with the previous conclusions of the NPLQCD collaboration regarding the existence of two-nucleon bound states at this value of the quark masses.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kohno, M.; Fujiwara, Y.
Localized single-particle potentials for all octet baryons, N, {lambda}, {sigma}, and {xi}, in finite nuclei, {sup 12}C, {sup 16}O, {sup 28}Si, {sup 40}Ca, {sup 56}Fe, and {sup 90}Zr, are calculated using the quark-model baryon-baryon interactions. G matrices evaluated in symmetric nuclear matter in the lowest order Brueckner theory (LOBT) are applied to finite nuclei in local density approximation. Nonlocal potentials are localized by a zero-momentum Wigner transformation. Empirical single-particle properties of the nucleon and the {lambda} hyperon in a nuclear medium have been known to be explained semiquantitatively in the LOBT framework. Attention is focused in the present consideration onmore » predictions for the {sigma} and {xi} hyperons. The unified description for the octet baryon-baryon interactions by the SU{sub 6} quark model enables us to obtain less ambiguous extrapolation to the S=-1 and S=-2 sectors based on the knowledge in the NN sector than other potential models. The {sigma} mean field is shown to be weakly attractive at the surface, but turns out to be repulsive inside, which is consistent with the experimental evidence. The {xi} hyperon s.p. potential is also attractive at the nuclear surface region, and inside it fluctuates around zero. Hence {xi} hypernuclear bound states are unlikely. We also evaluate energy shifts of the {sigma}{sup -} and {xi}{sup -} atomic levels in {sup 28}Si and {sup 56}Fe, using the calculated s.p. potentials.« less
Baryon-baryon interactions and spin-flavor symmetry from lattice quantum chromodynamics
Wagman, Michael L.; Winter, Frank; Chang, Emmanuel; ...
2017-12-28
Lattice quantum chromodynamics is used to constrain the interactions of two octet baryons at the SU(3) flavor-symmetric point, with quark masses that are heavier than those in nature (equal to that of the physical strange quark mass and corresponding to a pion mass ofmore » $$\\approx 806~\\tt{MeV}$$). Specifically, the S-wave scattering phase shifts of two-baryon systems at low energies are obtained with the application of L\\"uscher's formalism, mapping the energy eigenvalues of two interacting baryons in a finite volume to the two-particle scattering amplitudes below the relevant inelastic thresholds. The values of the leading-order low-energy scattering parameters in the irreducible representations of SU(3) are consistent with an approximate SU(6) spin-flavor symmetry in the nuclear and hypernuclear forces that is predicted in the large-$$N_c$$ limit of QCD. The two distinct SU(6)-invariant interactions between two baryons are constrained at this value of the quark masses, and their values indicate an approximate accidental SU(16) symmetry. The SU(3) irreducible representations containing the $$NN~({^1}S_0)$$, $$NN~({^3}S_1)$$ and $$\\frac{1}{\\sqrt{2}}(\\Xi^0n+\\Xi^-p)~({^3}S_1)$$ channels unambiguously exhibit a single bound state, while the irreducible representation containing the $$\\Sigma^+ p~({^3}S_1)$$ channel exhibits a state that is consistent with either a bound state or a scattering state close to threshold. These results are in agreement with the previous conclusions of the NPLQCD collaboration regarding the existence of two-nucleon bound states at this value of the quark masses.« less
Light-sheet enhanced resolution of light field microscopy for rapid imaging of large volumes
NASA Astrophysics Data System (ADS)
Madrid Wolff, Jorge; Castro, Diego; Arbeláez, Pablo; Forero-Shelton, Manu
2018-02-01
Whole-brain imaging is challenging because it demands microscopes with high temporal and spatial resolution, which are often at odds, especially in the context of large fields of view. We have designed and built a light-sheet microscope with digital micromirror illumination and light-field detection. On the one hand, light sheets provide high resolution optical sectioning on live samples without compromising their viability. On the other hand, light field imaging makes it possible to reconstruct full volumes of relatively large fields of view from a single camera exposure; however, its enhanced temporal resolution comes at the expense of spatial resolution, limiting its applicability. We present an approach to increase the resolution of light field images using DMD-based light sheet illumination. To that end, we develop a method to produce synthetic resolution targets for light field microscopy and a procedure to correct the depth at which planes are refocused with rendering software. We measured the axial resolution as a function of depth and show a three-fold potential improvement with structured illumination, albeit by sacrificing some temporal resolution, also three-fold. This results in an imaging system that may be adjusted to specific needs without having to reassemble and realign it. This approach could be used to image relatively large samples at high rates.
Measuring the performance of super-resolution reconstruction algorithms
NASA Astrophysics Data System (ADS)
Dijk, Judith; Schutte, Klamer; van Eekeren, Adam W. M.; Bijl, Piet
2012-06-01
For many military operations situational awareness is of great importance. This situational awareness and related tasks such as Target Acquisition can be acquired using cameras, of which the resolution is an important characteristic. Super resolution reconstruction algorithms can be used to improve the effective sensor resolution. In order to judge these algorithms and the conditions under which they operate best, performance evaluation methods are necessary. This evaluation, however, is not straightforward for several reasons. First of all, frequency-based evaluation techniques alone will not provide a correct answer, due to the fact that they are unable to discriminate between structure-related and noise-related effects. Secondly, most super-resolution packages perform additional image enhancement techniques such as noise reduction and edge enhancement. As these algorithms improve the results they cannot be evaluated separately. Thirdly, a single high-resolution ground truth is rarely available. Therefore, evaluation of the differences in high resolution between the estimated high resolution image and its ground truth is not that straightforward. Fourth, different artifacts can occur due to super-resolution reconstruction, which are not known on forehand and hence are difficult to evaluate. In this paper we present a set of new evaluation techniques to assess super-resolution reconstruction algorithms. Some of these evaluation techniques are derived from processing on dedicated (synthetic) imagery. Other evaluation techniques can be evaluated on both synthetic and natural images (real camera data). The result is a balanced set of evaluation algorithms that can be used to assess the performance of super-resolution reconstruction algorithms.
Evaluation of the Timing Properties of a High Quantum Efficiency Photomultiplier Tube
NASA Astrophysics Data System (ADS)
Peng, Qiyu; Choong, Woon-Seng; Moses, W. William
2013-10-01
We measured the timing resolution of 189 R9800-100 photomultiplier tubes (PMTs), which are a SBA (Super Bialkali, high quantum efficiency) variant of the R9800 high-performance PMT manufactured by Hamamatsu Photonics, and correlated their timing resolutions with various measures of PMT performance, namely Cathode Luminous Sensitivity (CLS), Anode Luminous Sensitivity (ALS), Gain times Collection Efficiency (GCE), Cathode Blue Sensitivity Index (CBSI), Anode Blue Sensitivity Index (ABSI) and dark current. The correlation results show: (1) strong correlations between timing resolution and ALS, ABSI, and GCE; (2) moderate correlations between timing resolution and CBSI; and (3) weak or no correlations between timing resolution and dark current and CLS. The results disclosed that all three measures that include data collected from the anode (ALS, ABSI, and GCE) affect the timing resolution more than either of the two measures that only include photocathode data (CBSI and CLS). We conclude that: (1) the photocathode Quantum Efficiency (QE) and the product of the Gain and the Collection Efficiency (GCE) are the two dominant factors that affect the timing resolution, (2) the GCE variation affects the timing resolution more than the QE variation in the R9800 PMT, and (3) the performance depends on photocathode position.
Study of a high-resolution, 3D positioning cadmium zinc telluride detector for PET.
Gu, Y; Matteson, J L; Skelton, R T; Deal, A C; Stephan, E A; Duttweiler, F; Gasaway, T M; Levin, C S
2011-03-21
This paper investigates the performance of 1 mm resolution cadmium zinc telluride (CZT) detectors for positron emission tomography (PET) capable of positioning the 3D coordinates of individual 511 keV photon interactions. The detectors comprise 40 mm × 40 mm × 5 mm monolithic CZT crystals that employ a novel cross-strip readout with interspersed steering electrodes to obtain high spatial and energy resolution. The study found a single anode FWHM energy resolution of 3.06 ± 0.39% at 511 keV throughout most of the detector volume. Improved resolution is expected with properly shielded front-end electronics. Measurements made using a collimated beam established the efficacy of the steering electrodes in facilitating enhanced charge collection across anodes, as well as a spatial resolution of 0.44 ± 0.07 mm in the direction orthogonal to the electrode planes. Finally, measurements based on coincidence electronic collimation yielded a point spread function with 0.78 ± 0.10 mm FWHM, demonstrating 1 mm spatial resolution capability transverse to the anodes-as expected from the 1 mm anode pitch. These findings indicate that the CZT-based detector concept has excellent performance and shows great promise for a high-resolution PET system.
Visual working memory capacity for color is independent of representation resolution.
Ye, Chaoxiong; Zhang, Lingcong; Liu, Taosheng; Li, Hong; Liu, Qiang
2014-01-01
The relationship between visual working memory (VWM) capacity and resolution of representation have been extensively investigated. Several recent ERP studies using orientation (or arrow) stimuli suggest that there is an inverse relationship between VWM capacity and representation resolution. However, different results have been obtained in studies using color stimuli. This could be due to important differences in the experimental paradigms used in previous studies. We examined whether the same relationship between capacity and resolution holds for color information. Participants performed a color change detection task while their electroencephalography was recorded. We manipulated representation resolution by asking participants to detect either a salient change (low-resolution) or a subtle change (high-resolution) in color. We used an ERP component known as contralateral delay activity (CDA) to index the amount of information maintained in VWM. The result demonstrated the same pattern for both low- and high-resolution conditions, with no difference between conditions. This result suggests that VWM always represents a fixed number of approximately 3-4 colors regardless of the resolution of representation.
Roberts, N.A.; Noh, J.H.; Lassiter, M.G.; Guo, S.; Kalinin, S.V.; Rack, P.D.
2012-01-01
High resolution and isolated scanning probe microscopy (SPM) is in demand for continued development of energy storage and conversion systems involving chemical reactions at the nanoscale as well as an improved understanding of biological systems. Carbon nanotubes (CNTs) have large aspect ratios and, if leveraged properly, can be used to develop high resolution SPM probes. Isolation of SPM probes can be achieved by deposited a dielectric film and selectively etching at the apex of the probe. In this paper the fabrication of a high resolution and isolated SPM tip is demonstrated using electron beam induced etching of a dielectric film deposited onto an SPM tip with an attached CNT at the apex. PMID:22433664
Roberts, N A; Noh, J H; Lassiter, M G; Guo, S; Kalinin, S V; Rack, P D
2012-04-13
High resolution and isolated scanning probe microscopy (SPM) is in demand for continued development of energy storage and conversion systems involving chemical reactions at the nanoscale as well as an improved understanding of biological systems. Carbon nanotubes (CNTs) have large aspect ratios and, if leveraged properly, can be used to develop high resolution SPM probes. Isolation of SPM probes can be achieved by depositing a dielectric film and selectively etching at the apex of the probe. In this paper the fabrication of a high resolution and isolated SPM tip is demonstrated using electron beam induced etching of a dielectric film deposited onto an SPM tip with an attached CNT at the apex.
NASA Technical Reports Server (NTRS)
Tarbell, Theodore D.
1993-01-01
Technical studies of the feasibility of balloon flights of the former Spacelab instrument, the Solar Optical Universal Polarimeter, with a modern charge-coupled device (CCD) camera, to study the structure and evolution of solar active regions at high resolution, are reviewed. In particular, different CCD cameras were used at ground-based solar observatories with the SOUP filter, to evaluate their performance and collect high resolution images. High resolution movies of the photosphere and chromosphere were successfully obtained using four different CCD cameras. Some of this data was collected in coordinated observations with the Yohkoh satellite during May-July, 1992, and they are being analyzed scientifically along with simultaneous X-ray observations.
High-Resolution Adaptive Optics Test-Bed for Vision Science
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wilks, S C; Thomspon, C A; Olivier, S S
2001-09-27
We discuss the design and implementation of a low-cost, high-resolution adaptive optics test-bed for vision research. It is well known that high-order aberrations in the human eye reduce optical resolution and limit visual acuity. However, the effects of aberration-free eyesight on vision are only now beginning to be studied using adaptive optics to sense and correct the aberrations in the eye. We are developing a high-resolution adaptive optics system for this purpose using a Hamamatsu Parallel Aligned Nematic Liquid Crystal Spatial Light Modulator. Phase-wrapping is used to extend the effective stroke of the device, and the wavefront sensing and wavefrontmore » correction are done at different wavelengths. Issues associated with these techniques will be discussed.« less
Creation of a Multiresolution and Multiaccuracy Dtm: Problems and Solutions for Heli-Dem Case Study
NASA Astrophysics Data System (ADS)
Biagi, L.; Carcano, L.; Lucchese, A.; Negretti, M.
2013-01-01
The work is part of "HELI-DEM" (HELvetia-Italy Digital Elevation Model) project, funded by the European Regional Development Fund within the Italy-Switzerland cooperation program. The aim of the project is the creation of a unique DTM for the alpine and subalpine area between Italy (Piedmont, Lombardy) and Switzerland (Ticino and Grisons Cantons); at present, different DTMs, that are in different reference frames and have been obtained with different technologies, accuracies, and resolutions, have been acquired. The final DTM should be correctly georeferenced and produced validating and integrating the data that are available for the project. DTMs are fundamental in hydrogeological studies, especially in alpine areas where hydrogeological risks may exist. Moreover, when an event, like for example a landslide, happens at the border between countries, a unique and integrated DTM which covers the interest area is useful to analyze the scenario. In this sense, HELI-DEM project is helpful. To perform analyses along the borders between countries, transnational geographic information is needed: a transnational DTM can be obtained by merging regional low resolution DTMs. Moreover high resolution local DTMs should be used where they are available. To be merged, low and high resolution DTMs should be in the same three dimensional reference frame, should not present biases and should be consistent in the overlapping areas. Cross-validation between the different DTMs is therefore needed. Two different problems should be solved: the merging of regional, partly overlapping low and medium resolution DTMs into a unique low/medium resolution DTM and the merging with other local high resolution/high accuracy height data. This paper discusses the preliminary processing of the data for the fusion of low and high resolution DTMs in a study-case area within the Lombardy region: Valtellina valley. In this region the Lombardy regional low resolution DTM is available, with a horizontal resolution of 20 meters; in addition a LiDAR DTM with a horizontal resolution of 1 meter, which covers only the main hydrographic basins, is also available. The two DTMs have been transformed into the same reference frame. The cross-validation of the two datasets has been performed comparing the low resolution DTM with the local high resolution DTM. Then, where significant differences are present, GPS survey have been used as external validation. The results are presented. Moreover, a possible strategy for the future fusion of the data, is shortly summarized at the end of the paper.
Mastering high resolution tip-enhanced Raman spectroscopy: towards a shift of perception.
Richard-Lacroix, Marie; Zhang, Yao; Dong, Zhenchao; Deckert, Volker
2017-07-03
Recent years have seen tremendous improvement of our understanding of high resolution reachable in TERS experiments, forcing us to re-evaluate our understanding of the intrinsic limits of this field, but also exposing several inconsistencies. On the one hand, more and more recent experimental results have provided us with clear indications of spatial resolutions down to a few nanometres or even on the subnanometre scale. Moreover, lessons learned from recent theoretical investigations clearly support such high resolutions, and vice versa the obvious theoretical impossibility to evade high resolution from a purely plasmonic point of view. On the other hand, most of the published TERS results still, to date, claim a resolution on the order of tens of nanometres that would be somehow limited by the tip apex, a statement well accepted for the past 2 decades. Overall, this now leads the field to a fundamental question: how can this divergence be justified? The answer to this question brings up an equally critical one: how can this gap be bridged? This review aims at raising a fundamental discussion related to the resolution limits of tip-enhanced Raman spectroscopy, at revisiting our comprehension of the factors limiting it both from a theoretical and an experimental point of view and at providing indications on how to move the field ahead. It is our belief that a much deeper understanding of the real accessible lateral resolution in TERS and the practical factors that limit them will simultaneously help us to fully explore the potential of this technique for studying nanoscale features in organic, inorganic and biological systems, and also to improve both the reproducibility and the accuracy of routine TERS studies. A significant improvement of our comprehension of the accessible resolution in TERS is thus critical for a broad audience, even in certain contexts where high resolution TERS is not the desired outcome.
High-resolution absorption measurements of NH3 at high temperatures: 500-2100 cm-1
NASA Astrophysics Data System (ADS)
Barton, Emma J.; Yurchenko, Sergei N.; Tennyson, Jonathan; Clausen, Sønnik; Fateev, Alexander
2015-12-01
High-resolution absorption spectra of NH3 in the region 500-2100 cm-1 at temperatures up to 1027 °C and approximately atmospheric pressure (1013±20 mbar) are measured. NH3 concentrations of 1000 ppm, 0.5% and 1% in volume fraction were used in the measurements. Spectra are recorded in high temperature gas flow cells using a Fourier Transform Infrared (FTIR) spectrometer at a nominal resolution of 0.09 cm-1. Measurements at 22.7 °C are compared to high-resolution cross sections available from the Pacific Northwest National Laboratory (PNNL). The higher temperature spectra are analysed by comparison to a variational line list, BYTe, and experimental energy levels determined using the MARVEL procedure. Approximately 2000 lines have been assigned, of which 851 are newly assigned to mainly hot bands involving vibrational states as high as v2=5.
Effects of daily, high spatial resolution a priori profiles of satellite-derived NOx emissions
NASA Astrophysics Data System (ADS)
Laughner, J.; Zare, A.; Cohen, R. C.
2016-12-01
The current generation of space-borne NO2 column observations provides a powerful method of constraining NOx emissions due to the spatial resolution and global coverage afforded by the Ozone Monitoring Instrument (OMI). The greater resolution available in next generation instruments such as TROPOMI and the capabilities of geosynchronous platforms TEMPO, Sentinel-4, and GEMS will provide even greater capabilities in this regard, but we must apply lessons learned from the current generation of retrieval algorithms to make the best use of these instruments. Here, we focus on the effect of the resolution of the a priori NO2 profiles used in the retrieval algorithms. We show that for an OMI retrieval, using daily high-resolution a priori profiles results in changes in the retrieved VCDs up to 40% when compared to a retrieval using monthly average profiles at the same resolution. Further, comparing a retrieval with daily high spatial resolution a priori profiles to a more standard one, we show that emissions derived increase by 100% when using the optimized retrieval.
Patterned thin metal film for the lateral resolution measurement of photoacoustic tomography
2012-01-01
Background Image quality assessment method of photoacoustic tomography has not been completely standardized yet. Due to the combined nature of photonic signal generation and ultrasonic signal transmission in biological tissue, neither optical nor ultrasonic traditional methods can be used without modification. An optical resolution measurement technique was investigated for its feasibility for resolution measurement of photoacoustic tomography. Methods A patterned thin metal film deposited on silica glass provides high contrast in optical imaging due to high reflectivity from the metal film and high transmission from the glass. It provides high contrast when it is used for photoacoustic tomography because thin metal film can absorb pulsed laser energy. An US Air Force 1951 resolution target was used to generate patterned photoacoustic signal to measure the lateral resolution. Transducer with 2.25 MHz bandwidth and a sample submerged in water and gelatinous block were tested for lateral resolution measurement. Results Photoacoustic signal generated from a thin metal film deposited on a glass can propagate along the surface or through the surrounding medium. First, a series of experiments with tilted sample confirmed that the measured photoacoustic signal is what is propagating through the medium. Lateral resolution of the photoacoustic tomography system was successfully measured for water and gelatinous block as media: 0.33 mm and 0.35 mm in water and gelatinous material, respectively, when 2.25 MHz transducer was used. Chicken embryo was tested for biomedical applications. Conclusions A patterned thin metal film sample was tested for its feasibility of measuring lateral resolution of a photoacoustic tomography system. Lateral resolutions in water and gelatinous material were successfully measured using the proposed method. Measured resolutions agreed well with theoretical values. PMID:22794510
Sakaguchi, Koichi; Lu, Jian; Leung, L. Ruby; ...
2016-10-22
Impacts of regional grid refinement on large-scale circulations (“upscale effects”) were detected in a previous study that used the Model for Prediction Across Scales-Atmosphere coupled to the physics parameterizations of the Community Atmosphere Model version 4. The strongest upscale effect was identified in the Southern Hemisphere jet during austral winter. This study examines the detailed underlying processes by comparing two simulations at quasi-uniform resolutions of 30 and 120 km to three variable-resolution simulations in which the horizontal grids are regionally refined to 30 km in North America, South America, or Asia from 120 km elsewhere. In all the variable-resolution simulations,more » precipitation increases in convective areas inside the high-resolution domains, as in the reference quasi-uniform high-resolution simulation. With grid refinement encompassing the tropical Americas, the increased condensational heating expands the local divergent circulations (Hadley cell) meridionally such that their descending branch is shifted poleward, which also pushes the baroclinically unstable regions, momentum flux convergence, and the eddy-driven jet poleward. This teleconnection pathway is not found in the reference high-resolution simulation due to a strong resolution sensitivity of cloud radiative forcing that dominates the aforementioned teleconnection signals. The regional refinement over Asia enhances Rossby wave sources and strengthens the upper level southerly flow, both facilitating the cross-equatorial propagation of stationary waves. Evidence indicates that this teleconnection pathway is also found in the reference high-resolution simulation. Lastly, the result underlines the intricate diagnoses needed to understand the upscale effects in global variable-resolution simulations, with implications for science investigations using the computationally efficient modeling framework.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sakaguchi, Koichi; Lu, Jian; Leung, L. Ruby
Impacts of regional grid refinement on large-scale circulations (“upscale effects”) were detected in a previous study that used the Model for Prediction Across Scales-Atmosphere coupled to the physics parameterizations of the Community Atmosphere Model version 4. The strongest upscale effect was identified in the Southern Hemisphere jet during austral winter. This study examines the detailed underlying processes by comparing two simulations at quasi-uniform resolutions of 30 and 120 km to three variable-resolution simulations in which the horizontal grids are regionally refined to 30 km in North America, South America, or Asia from 120 km elsewhere. In all the variable-resolution simulations,more » precipitation increases in convective areas inside the high-resolution domains, as in the reference quasi-uniform high-resolution simulation. With grid refinement encompassing the tropical Americas, the increased condensational heating expands the local divergent circulations (Hadley cell) meridionally such that their descending branch is shifted poleward, which also pushes the baroclinically unstable regions, momentum flux convergence, and the eddy-driven jet poleward. This teleconnection pathway is not found in the reference high-resolution simulation due to a strong resolution sensitivity of cloud radiative forcing that dominates the aforementioned teleconnection signals. The regional refinement over Asia enhances Rossby wave sources and strengthens the upper level southerly flow, both facilitating the cross-equatorial propagation of stationary waves. Evidence indicates that this teleconnection pathway is also found in the reference high-resolution simulation. Lastly, the result underlines the intricate diagnoses needed to understand the upscale effects in global variable-resolution simulations, with implications for science investigations using the computationally efficient modeling framework.« less
A Pitch Extraction Method with High Frequency Resolution for Singing Evaluation
NASA Astrophysics Data System (ADS)
Takeuchi, Hideyo; Hoguro, Masahiro; Umezaki, Taizo
This paper proposes a pitch estimation method suitable for singing evaluation incorporable in KARAOKE machines. Professional singers and musicians have sharp hearing for music and singing voice. They recognize that singer's voice pitch is “a little off key” or “be in tune”. In the same way, the pitch estimation method that has high frequency resolution is necessary in order to evaluate singing. This paper proposes a pitch estimation method with high frequency resolution utilizing harmonic characteristic of autocorrelation function. The proposed method can estimate a fundamental frequency in the range 50 ∼ 1700[Hz] with resolution less than 3.6 cents in light processing.
Very high resolution UV and X-ray spectroscopy and imagery of solar active regions
NASA Technical Reports Server (NTRS)
Bruner, M.; Brown, W. A.; Haisch, B. M.
1987-01-01
A scientific investigation of the physics of the solar atmosphere, which uses the techniques of high resolution soft X-ray spectroscopy and high resolution UV imagery, is described. The experiments were conducted during a series of three sounding rocket flights. All three flights yielded excellent images in the UV range, showing unprecedented spatial resolution. The second flight recorded the X-ray spectrum of a solar flare, and the third that of an active region. A normal incidence multi-layer mirror was used during the third flight to make the first astronomical X-ray observations using this new technique.
Optic for an endoscope/borescope having high resolution and narrow field of view
Stone, Gary F.; Trebes, James E.
2003-10-28
An optic having optimized high spatial resolution, minimal nonlinear magnification distortion while at the same time having a limited chromatic focal shift or chromatic aberrations. The optic located at the distal end of an endoscopic inspection tool permits a high resolution, narrow field of view image for medical diagnostic applications, compared to conventional optics for endoscopic instruments which provide a wide field of view, low resolution image. The image coverage is over a narrow (<20 degrees) field of view with very low optical distortion (<5% pin cushion or barrel distortion. The optic is also optimized for best color correction as well as to aid medical diagnostics.
Improved Resolution Optical Time Stretch Imaging Based on High Efficiency In-Fiber Diffraction.
Wang, Guoqing; Yan, Zhijun; Yang, Lei; Zhang, Lin; Wang, Chao
2018-01-12
Most overlooked challenges in ultrafast optical time stretch imaging (OTSI) are sacrificed spatial resolution and higher optical loss. These challenges are originated from optical diffraction devices used in OTSI, which encode image into spectra of ultrashort optical pulses. Conventional free-space diffraction gratings, as widely used in existing OTSI systems, suffer from several inherent drawbacks: limited diffraction efficiency in a non-Littrow configuration due to inherent zeroth-order reflection, high coupling loss between free-space gratings and optical fibers, bulky footprint, and more importantly, sacrificed imaging resolution due to non-full-aperture illumination for individual wavelengths. Here we report resolution-improved and diffraction-efficient OTSI using in-fiber diffraction for the first time to our knowledge. The key to overcome the existing challenges is a 45° tilted fiber grating (TFG), which serves as a compact in-fiber diffraction device offering improved diffraction efficiency (up to 97%), inherent compatibility with optical fibers, and improved imaging resolution owning to almost full-aperture illumination for all illumination wavelengths. 50 million frames per second imaging of fast moving object at 46 m/s with improved imaging resolution has been demonstrated. This conceptually new in-fiber diffraction design opens the way towards cost-effective, compact and high-resolution OTSI systems for image-based high-throughput detection and measurement.
NASA Astrophysics Data System (ADS)
Liu, Gang; Wen, Desheng; Song, Zongxi
2017-10-01
With the development of aeronautics and astronautics, higher resolution requirement of the telescope was necessary. However, the increase in resolution of conventional telescope required larger apertures, whose size, weight and power consumption could be prohibitively expensive. This limited the further development of the telescope. This paper introduced a new imaging technology using interference—Compact Passive Interference Imaging Technology with High Resolution, and proposed a rearranging method for the arrangement of the lenslet array to obtain continuously object spatial frequency.
How to squeeze high quantum efficiency and high time resolution out of a SPAD
NASA Technical Reports Server (NTRS)
Lacaita, A.; Zappa, F.; Cova, Sergio; Ripamonti, Giancarlo; Spinelli, A.
1993-01-01
We address the issue whether Single-Photon Avalanche Diodes (SPADs) can be suitably designed to achieve a trade-off between quantum efficiency and time resolution performance. We briefly recall the physical mechanisms setting the time resolution of avalanche photodiodes operated in single-photon counting, and we give some criteria for the design of SPADs with a quantum efficiency better than l0 percent at 1064 nm together with a time resolution below 50 ps rms.
NASA Astrophysics Data System (ADS)
Gasmi, Taieb
2018-04-01
An extra-cavity CO2-TEA laser pulse clipper for high spatial resolution atmospheric monitoring is presented. The clipper uses pulsed high voltageto facilitate the breakdown of the gas within the clipper cell. Complete extinction of the nitrogen tail, that degrades the range resolution of LIDARS, is obtained at pressures from 375 up to 1500 Torr for nitrogen and argon gases whereas an attenuation coefficient of almost 102 is achieved for helium. Excellent energy stability and pulse width repeatability were achieved using high voltage pre-ionized gas technique.
Computational high-resolution optical imaging of the living human retina
NASA Astrophysics Data System (ADS)
Shemonski, Nathan D.; South, Fredrick A.; Liu, Yuan-Zhi; Adie, Steven G.; Scott Carney, P.; Boppart, Stephen A.
2015-07-01
High-resolution in vivo imaging is of great importance for the fields of biology and medicine. The introduction of hardware-based adaptive optics (HAO) has pushed the limits of optical imaging, enabling high-resolution near diffraction-limited imaging of previously unresolvable structures. In ophthalmology, when combined with optical coherence tomography, HAO has enabled a detailed three-dimensional visualization of photoreceptor distributions and individual nerve fibre bundles in the living human retina. However, the introduction of HAO hardware and supporting software adds considerable complexity and cost to an imaging system, limiting the number of researchers and medical professionals who could benefit from the technology. Here we demonstrate a fully automated computational approach that enables high-resolution in vivo ophthalmic imaging without the need for HAO. The results demonstrate that computational methods in coherent microscopy are applicable in highly dynamic living systems.
Multi-Resolution Analysis of MODIS and ASTER Satellite Data for Water Classification
2006-09-01
spectral bands, but also with different pixel resolutions . The overall goal... the total water surface. Due to the constraint that high spatial resolution satellite images are low temporal resolution , one needs a reliable method...at 15 m resolution , were processed. We used MODIS reflectance data from MOD02 Level 1B data. Even the spatial resolution of the 1240 nm
High-Resolution Global Soil Moisture Map
2015-05-19
High-resolution global soil moisture map from NASA SMAP combined radar and radiometer instruments, acquired between May 4 and May 11, 2015 during SMAP commissioning phase. The map has a resolution of 5.6 miles (9 kilometers). The data gap is due to turning the instruments on and off during testing. http://photojournal.jpl.nasa.gov/catalog/PIA19337
USDA-ARS?s Scientific Manuscript database
High resolution x-ray computed tomography (HRCT) is a non-destructive diagnostic imaging technique with sub-micron resolution capability that is now being used to evaluate the structure and function of plant xylem network in three dimensions (3D). HRCT imaging is based on the same principles as medi...
High Resolution Model Intercomparison Project (HighResMIP v1.0) for CMIP6
NASA Astrophysics Data System (ADS)
Haarsma, Reindert J.; Roberts, Malcolm J.; Vidale, Pier Luigi; Senior, Catherine A.; Bellucci, Alessio; Bao, Qing; Chang, Ping; Corti, Susanna; Fučkar, Neven S.; Guemas, Virginie; von Hardenberg, Jost; Hazeleger, Wilco; Kodama, Chihiro; Koenigk, Torben; Leung, L. Ruby; Lu, Jian; Luo, Jing-Jia; Mao, Jiafu; Mizielinski, Matthew S.; Mizuta, Ryo; Nobre, Paulo; Satoh, Masaki; Scoccimarro, Enrico; Semmler, Tido; Small, Justin; von Storch, Jin-Song
2016-11-01
Robust projections and predictions of climate variability and change, particularly at regional scales, rely on the driving processes being represented with fidelity in model simulations. The role of enhanced horizontal resolution in improved process representation in all components of the climate system is of growing interest, particularly as some recent simulations suggest both the possibility of significant changes in large-scale aspects of circulation as well as improvements in small-scale processes and extremes. However, such high-resolution global simulations at climate timescales, with resolutions of at least 50 km in the atmosphere and 0.25° in the ocean, have been performed at relatively few research centres and generally without overall coordination, primarily due to their computational cost. Assessing the robustness of the response of simulated climate to model resolution requires a large multi-model ensemble using a coordinated set of experiments. The Coupled Model Intercomparison Project 6 (CMIP6) is the ideal framework within which to conduct such a study, due to the strong link to models being developed for the CMIP DECK experiments and other model intercomparison projects (MIPs). Increases in high-performance computing (HPC) resources, as well as the revised experimental design for CMIP6, now enable a detailed investigation of the impact of increased resolution up to synoptic weather scales on the simulated mean climate and its variability. The High Resolution Model Intercomparison Project (HighResMIP) presented in this paper applies, for the first time, a multi-model approach to the systematic investigation of the impact of horizontal resolution. A coordinated set of experiments has been designed to assess both a standard and an enhanced horizontal-resolution simulation in the atmosphere and ocean. The set of HighResMIP experiments is divided into three tiers consisting of atmosphere-only and coupled runs and spanning the period 1950-2050, with the possibility of extending to 2100, together with some additional targeted experiments. This paper describes the experimental set-up of HighResMIP, the analysis plan, the connection with the other CMIP6 endorsed MIPs, as well as the DECK and CMIP6 historical simulations. HighResMIP thereby focuses on one of the CMIP6 broad questions, "what are the origins and consequences of systematic model biases?", but we also discuss how it addresses the World Climate Research Program (WCRP) grand challenges.
Nano-Computed Tomography: Technique and Applications.
Kampschulte, M; Langheinirch, A C; Sender, J; Litzlbauer, H D; Althöhn, U; Schwab, J D; Alejandre-Lafont, E; Martels, G; Krombach, G A
2016-02-01
Nano-computed tomography (nano-CT) is an emerging, high-resolution cross-sectional imaging technique and represents a technical advancement of the established micro-CT technology. Based on the application of a transmission target X-ray tube, the focal spot size can be decreased down to diameters less than 400 nanometers (nm). Together with specific detectors and examination protocols, a superior spatial resolution up to 400 nm (10 % MTF) can be achieved, thereby exceeding the resolution capacity of typical micro-CT systems. The technical concept of nano-CT imaging as well as the basics of specimen preparation are demonstrated exemplarily. Characteristics of atherosclerotic plaques (intraplaque hemorrhage and calcifications) in a murine model of atherosclerosis (ApoE (-/-)/LDLR(-/-) double knockout mouse) are demonstrated in the context of superior spatial resolution in comparison to micro-CT. Furthermore, this article presents the application of nano-CT for imaging cerebral microcirculation (murine), lung structures (porcine), and trabecular microstructure (ovine) in contrast to micro-CT imaging. This review shows the potential of nano-CT as a radiological method in biomedical basic research and discusses the application of experimental, high resolution CT techniques in consideration of other high resolution cross-sectional imaging techniques. Nano-computed tomography is a high resolution CT-technology for 3D imaging at sub-micrometer resolution. The technical concept bases on a further development of the established ex-vivo-micro-CT technology. By improvement of the spatial resolution, structures at a cellular level become visible (e.g. osteocyte lacunae). © Georg Thieme Verlag KG Stuttgart · New York.
Improving Axial Resolution in Confocal Microscopy with New High Refractive Index Mounting Media
Fouquet, Coralie; Gilles, Jean-François; Heck, Nicolas; Dos Santos, Marc; Schwartzmann, Richard; Cannaya, Vidjeacoumary; Morel, Marie-Pierre; Davidson, Robert Stephen; Trembleau, Alain; Bolte, Susanne
2015-01-01
Resolution, high signal intensity and elevated signal to noise ratio (SNR) are key issues for biologists who aim at studying the localisation of biological structures at the cellular and subcellular levels using confocal microscopy. The resolution required to separate sub-cellular biological structures is often near to the resolving power of the microscope. When optimally used, confocal microscopes may reach resolutions of 180 nm laterally and 500 nm axially, however, axial resolution in depth is often impaired by spherical aberration that may occur due to refractive index mismatches. Spherical aberration results in broadening of the point-spread function (PSF), a decrease in peak signal intensity when imaging in depth and a focal shift that leads to the distortion of the image along the z-axis and thus in a scaling error. In this study, we use the novel mounting medium CFM3 (Citifluor Ltd., UK) with a refractive index of 1.518 to minimize the effects of spherical aberration. This mounting medium is compatible with most common fluorochromes and fluorescent proteins. We compare its performance with established mounting media, harbouring refractive indices below 1.500, by estimating lateral and axial resolution with sub-resolution fluorescent beads. We show furthermore that the use of the high refractive index media renders the tissue transparent and improves considerably the axial resolution and imaging depth in immuno-labelled or fluorescent protein labelled fixed mouse brain tissue. We thus propose to use those novel high refractive index mounting media, whenever optimal axial resolution is required. PMID:25822785
Fusing Unmanned Aerial Vehicle Imagery with High Resolution Hydrologic Modeling (Invited)
NASA Astrophysics Data System (ADS)
Vivoni, E. R.; Pierini, N.; Schreiner-McGraw, A.; Anderson, C.; Saripalli, S.; Rango, A.
2013-12-01
After decades of development and applications, high resolution hydrologic models are now common tools in research and increasingly used in practice. More recently, high resolution imagery from unmanned aerial vehicles (UAVs) that provide information on land surface properties have become available for civilian applications. Fusing the two approaches promises to significantly advance the state-of-the-art in terms of hydrologic modeling capabilities. This combination will also challenge assumptions on model processes, parameterizations and scale as land surface characteristics (~0.1 to 1 m) may now surpass traditional model resolutions (~10 to 100 m). Ultimately, predictions from high resolution hydrologic models need to be consistent with the observational data that can be collected from UAVs. This talk will describe our efforts to develop, utilize and test the impact of UAV-derived topographic and vegetation fields on the simulation of two small watersheds in the Sonoran and Chihuahuan Deserts at the Santa Rita Experimental Range (Green Valley, AZ) and the Jornada Experimental Range (Las Cruces, NM). High resolution digital terrain models, image orthomosaics and vegetation species classification were obtained from a fixed wing airplane and a rotary wing helicopter, and compared to coarser analyses and products, including Light Detection and Ranging (LiDAR). We focus the discussion on the relative improvements achieved with UAV-derived fields in terms of terrain-hydrologic-vegetation analyses and summer season simulations using the TIN-based Real-time Integrated Basin Simulator (tRIBS) model. Model simulations are evaluated at each site with respect to a high-resolution sensor network consisting of six rain gauges, forty soil moisture and temperature profiles, four channel runoff flumes, a cosmic-ray soil moisture sensor and an eddy covariance tower over multiple summer periods. We also discuss prospects for the fusion of high resolution models with novel observations from UAVs, including synthetic aperture radar and multispectral imagery.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Foxley, Sean, E-mail: sean.foxley@ndcn.ox.ac.uk; Karczmar, Gregory S.; Domowicz, Miriam
Purpose: Widely used MRI methods show brain morphology both in vivo and ex vivo at very high resolution. Many of these methods (e.g., T{sub 2}{sup *}-weighted imaging, phase-sensitive imaging, or susceptibility-weighted imaging) are sensitive to local magnetic susceptibility gradients produced by subtle variations in tissue composition. However, the spectral resolution of commonly used methods is limited to maintain reasonable run-time combined with very high spatial resolution. Here, the authors report on data acquisition at increased spectral resolution, with 3-dimensional high spectral and spatial resolution MRI, in order to analyze subtle variations in water proton resonance frequency and lineshape that reflectmore » local anatomy. The resulting information compliments previous studies based on T{sub 2}{sup *} and resonance frequency. Methods: The proton free induction decay was sampled at high resolution and Fourier transformed to produce a high-resolution water spectrum for each image voxel in a 3D volume. Data were acquired using a multigradient echo pulse sequence (i.e., echo-planar spectroscopic imaging) with a spatial resolution of 50 × 50 × 70 μm{sup 3} and spectral resolution of 3.5 Hz. Data were analyzed in the spectral domain, and images were produced from the various Fourier components of the water resonance. This allowed precise measurement of local variations in water resonance frequency and lineshape, at the expense of significantly increased run time (16–24 h). Results: High contrast T{sub 2}{sup *}-weighted images were produced from the peak of the water resonance (peak height image), revealing a high degree of anatomical detail, specifically in the hippocampus and cerebellum. In images produced from Fourier components of the water resonance at −7.0 Hz from the peak, the contrast between deep white matter tracts and the surrounding tissue is the reverse of the contrast in water peak height images. This indicates the presence of a shoulder in the water resonance that is not present at +7.0 Hz and may be specific to white matter anatomy. Moreover, a frequency shift of 6.76 ± 0.55 Hz was measured between the molecular and granular layers of the cerebellum. This shift is demonstrated in corresponding spectra; water peaks from voxels in the molecular and granular layers are consistently 2 bins apart (7.0 Hz, as dictated by the spectral resolution) from one another. Conclusions: High spectral and spatial resolution MR imaging has the potential to accurately measure the changes in the water resonance in small voxels. This information can guide optimization and interpretation of more commonly used, more rapid imaging methods that depend on image contrast produced by local susceptibility gradients. In addition, with improved sampling methods, high spectral and spatial resolution data could be acquired in reasonable run times, and used for in vivo scans to increase sensitivity to variations in local susceptibility.« less
High quality transmission Kikuchi diffraction analysis of deformed alloys - Case study
DOE Office of Scientific and Technical Information (OSTI.GOV)
Tokarski, Tomasz, E-mail: tokarski@agh.edu.pl
Modern scanning electron microscopes (SEM) equipped with thermally assisted field emission guns (Schottky FEG) are capable of imaging with a resolution in the range of several nanometers or better. Simultaneously, the high electron beam current can be used, which enables fast chemical and crystallographic analysis with a higher resolution than is normally offered by SEM with a tungsten cathode. The current resolution that limits the EDS and EBSD analysis is related to materials' physics, particularly to the electron-specimen interaction volume. The application of thin, electron-transparent specimens, instead of bulk samples, improves the resolution and allows for the detailed analysis ofmore » very fine microstructural features. Beside the typical imaging mode, it is possible to use a standard EBSD camera in such a configuration that only transmitted and scattered electrons are detected. This modern approach was successfully applied to various materials giving rise to significant resolution improvement, especially for the light element magnesium based alloys. This paper presents an insight into the application of the transmission Kikuchi diffraction (TKD) technique applied to the most troublesome, heavily-deformed materials. In particular, the values of the highest possible acquisition rates for high resolution and high quality mapping were estimated within typical imaging conditions of stainless steel and magnesium-yttrium alloy. - Highlights: •Monte Carlo simulations were used to simulate EBSD camera intensity for various measuring conditions. •Transmission Kikuchi diffraction parameters were evaluated for highly deformed, light and heavy elements based alloys. •High quality maps with 20 nm spatial resolution were acquired for Mg and Fe based alloys. •High speed TKD measurements were performed at acquisition rates comparable to the reflection EBSD.« less
High Spectral Resolution, High Cadence, Imaging X-Ray Microcalorimeters for Solar Physics
NASA Technical Reports Server (NTRS)
Bandler, Simon R.; Bailey, Catherine N.; Bookbinder, Jay A.; DeLuca, Edward E.; Chervenak, Jay A.; Eckart, Megan E.; Finkbeiner, Fred M.; Kelley, Daniel P.; Kelley, Richard L.; Kilbourne, Caroline A.;
2010-01-01
High spectral resolution, high cadence, imaging x-ray spectroscopy has the potential to revolutionize the study of the solar corona. To that end we have been developing transition-edge-sensor (TES) based x-ray micro calorimeter arrays for future solar physics missions where imaging and high energy resolution spectroscopy will enable previously impossible studies of the dynamics and energetics of the solar corona. The characteristics of these x-ray microcalorimeters are significantly different from conventional micro calorimeters developed for astrophysics because they need to accommodate much higher count rates (300-1000 cps) while maintaining high energy resolution of less than 4 eV FWHM in the X-ray energy band of 0.2-10 keV. The other main difference is a smaller pixel size (less than 75 x 75 square microns) than is typical for x-ray micro calorimeters in order to provide angular resolution less than 1 arcsecond. We have achieved at energy resolution of 2.15 eV at 6 keV in a pixel with a 12 x 12 square micron TES sensor and 34 x 34 x 9.1 micron gold absorber, and a resolution of 2.30 eV at 6 keV in a pixel with a 35 x 35 micron TES and a 57 x 57 x 9.1 micron gold absorber. This performance has been achieved in pixels that are fabricated directly onto solid substrates, ie. they are not supported by silicon nitride membranes. We present the results from these detectors, the expected performance at high count-rates, and prospects for the use of this technology for future Solar missions.
NASA Astrophysics Data System (ADS)
Kimball, H.; Selmants, P. C.; Running, S. W.; Moreno, A.; Giardina, C. P.
2016-12-01
In this study we evaluate the influence of spatial data product accuracy and resolution on the application of global models for smaller scale heterogeneous landscapes. In particular, we assess the influence of locally specific land cover and high-resolution climate data products on estimates of Gross Primary Production (GPP) for the Hawaiian Islands using the MOD17 model. The MOD17 GPP algorithm uses a measure of the fraction of absorbed photosynthetically active radiation from the National Aeronautics and Space Administration's Earth Observation System. This direct measurement is combined with global land cover (500-m resolution) and climate models ( 1/2-degree resolution) to estimate GPP. We first compared the alignment between the global land cover model used in MOD17 with a Hawaii specific land cover data product. We found that there was a 51.6% overall agreement between the two land cover products. We then compared four MOD17 GPP models: A global model that used the global land cover and low-resolution global climate data products, a model produced using the Hawaii specific land cover and low-resolution global climate data products, a model with global land cover and high-resolution climate data products, and finally, a model using both Hawaii specific land cover and high-resolution climate data products. We found that including either the Hawaii specific land cover or the high-resolution Hawaii climate data products with MOD17 reduced overall estimates of GPP by 8%. When both were used, GPP estimates were reduced by 16%. The reduction associated with land cover is explained by a reduction of the total area designated as evergreen broad leaf forest and an increase in the area designated as barren or sparsely vegetated in the Hawaii land cover product as compared to the global product. The climate based reduction is explained primarily by the spatial resolution and distribution of solar radiation in the Hawaiian Islands. This study highlights the importance of accuracy and resolution when applying global models to highly variable landscapes and provides an estimate of the influence of land cover and climate data products on estimates of GPP using MOD17.
Achieving High Resolution Timer Events in Virtualized Environment.
Adamczyk, Blazej; Chydzinski, Andrzej
2015-01-01
Virtual Machine Monitors (VMM) have become popular in different application areas. Some applications may require to generate the timer events with high resolution and precision. This however may be challenging due to the complexity of VMMs. In this paper we focus on the timer functionality provided by five different VMMs-Xen, KVM, Qemu, VirtualBox and VMWare. Firstly, we evaluate resolutions and precisions of their timer events. Apparently, provided resolutions and precisions are far too low for some applications (e.g. networking applications with the quality of service). Then, using Xen virtualization we demonstrate the improved timer design that greatly enhances both the resolution and precision of achieved timer events.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Erickson III, David J
The climate of the last glacial maximum (LGM) is simulated with a high-resolution atmospheric general circulation model, the NCAR CCM3 at spectral truncation of T170, corresponding to a grid cell size of roughly 75 km. The purpose of the study is to assess whether there are significant benefits from the higher resolution simulation compared to the lower resolution simulation associated with the role of topography. The LGM simulations were forced with modified CLIMAP sea ice distribution and sea surface temperatures (SST) reduced by 1 C, ice sheet topography, reduced CO{sub 2}, and 21,000 BP orbital parameters. The high-resolution model capturesmore » modern climate reasonably well, in particular the distribution of heavy precipitation in the tropical Pacific. For the ice age case, surface temperature simulated by the high-resolution model agrees better with those of proxy estimates than does the low-resolution model. Despite the fact that tropical SSTs were only 2.1 C less than the control run, there are many lowland tropical land areas 4-6 C colder than present. Comparison of T170 model results with the best constrained proxy temperature estimates (noble gas concentrations in groundwater) now yield no significant differences between model and observations. There are also significant upland temperature changes in the best resolved tropical mountain belt (the Andes). We provisionally attribute this result in part as resulting from decreased lateral mixing between ocean and land in a model with more model grid cells. A longstanding model-data discrepancy therefore appears to be resolved without invoking any unusual model physics. The response of the Asian summer monsoon can also be more clearly linked to local geography in the high-resolution model than in the low-resolution model; this distinction should enable more confident validation of climate proxy data with the high-resolution model. Elsewhere, an inferred salinity increase in the subtropical North Atlantic may have significant implications for ocean circulation changes during the LGM. A large part of the Amazon and Congo Basins are simulated to be substantially drier in the ice age - consistent with many (but not all) paleo data. These results suggest that there are considerable benefits derived from high-resolution model regarding regional climate responses, and that observationalists can now compare their results with models that resolve geography at a resolution comparable to that which the proxy data represent.« less
The Substructure of the Solar Corona Observed in the Hi-C Telescope
NASA Technical Reports Server (NTRS)
Winebarger, A.; Cirtain, J.; Golub, L.; DeLuca, E.; Savage, S.; Alexander, C.; Schuler, T.
2014-01-01
In the summer of 2012, the High-resolution Coronal Imager (Hi-C) flew aboard a NASA sounding rocket and collected the highest spatial resolution images ever obtained of the solar corona. One of the goals of the Hi-C flight was to characterize the substructure of the solar corona. We therefore calculate how the intensity scales from a low-resolution (AIA) pixels to high-resolution (Hi-C) pixels for both the dynamic events and "background" emission (meaning, the steady emission over the 5 minutes of data acquisition time). We find there is no evidence of substructure in the background corona; the intensity scales smoothly from low-resolution to high-resolution Hi-C pixels. In transient events, however, the intensity observed with Hi-C is, on average, 2.6 times larger than observed with AIA. This increase in intensity suggests that AIA is not resolving these events. This result suggests a finely structured dynamic corona embedded in a smoothly varying background.
NASA Technical Reports Server (NTRS)
Kim, Dongchul; Chin, Mian; Kemp, Eric M.; Tao, Zhining; Peters-Lidard, Christa D.; Ginoux, Paul
2017-01-01
A high-resolution dynamic dust source has been developed in the NASA Unified-Weather Research and Forecasting (NU-WRF) model to improve the existing coarse static dust source. In the new dust source map, topographic depression is in 1-km resolution and surface bareness is derived using the Normalized Difference Vegetation Index (NDVI) data from Moderate Resolution Imaging Spectroradiometer (MODIS). The new dust source better resolves the complex topographic distribution over the Western United States where its magnitude is higher than the existing, coarser resolution static source. A case study is conducted with an extreme dust storm that occurred in Phoenix, Arizona in 0203 UTC July 6, 2011. The NU-WRF model with the new high-resolution dynamic dust source is able to successfully capture the dust storm, which was not achieved with the old source identification. However the case study also reveals several challenges in reproducing the time evolution of the short-lived, extreme dust storm events.
Towards native-state imaging in biological context in the electron microscope
Weston, Anne E.; Armer, Hannah E. J.
2009-01-01
Modern cell biology is reliant on light and fluorescence microscopy for analysis of cells, tissues and protein localisation. However, these powerful techniques are ultimately limited in resolution by the wavelength of light. Electron microscopes offer much greater resolution due to the shorter effective wavelength of electrons, allowing direct imaging of sub-cellular architecture. The harsh environment of the electron microscope chamber and the properties of the electron beam have led to complex chemical and mechanical preparation techniques, which distance biological samples from their native state and complicate data interpretation. Here we describe recent advances in sample preparation and instrumentation, which push the boundaries of high-resolution imaging. Cryopreparation, cryoelectron microscopy and environmental scanning electron microscopy strive to image samples in near native state. Advances in correlative microscopy and markers enable high-resolution localisation of proteins. Innovation in microscope design has pushed the boundaries of resolution to atomic scale, whilst automatic acquisition of high-resolution electron microscopy data through large volumes is finally able to place ultrastructure in biological context. PMID:19916039
Kim, Dongchul; Chin, Mian; Kemp, Eric M.; Tao, Zhining; Peters-Lidard, Christa D.; Ginoux, Paul
2018-01-01
A high-resolution dynamic dust source has been developed in the NASA Unified-Weather Research and Forecasting (NU-WRF) model to improve the existing coarse static dust source. In the new dust source map, topographic depression is in 1-km resolution and surface bareness is derived using the Normalized Difference Vegetation Index (NDVI) data from Moderate Resolution Imaging Spectroradiometer (MODIS). The new dust source better resolves the complex topographic distribution over the Western United States where its magnitude is higher than the existing, coarser resolution static source. A case study is conducted with an extreme dust storm that occurred in Phoenix, Arizona in 02-03 UTC July 6, 2011. The NU-WRF model with the new high-resolution dynamic dust source is able to successfully capture the dust storm, which was not achieved with the old source identification. However the case study also reveals several challenges in reproducing the time evolution of the short-lived, extreme dust storm events. PMID:29632432
Kim, Dongchul; Chin, Mian; Kemp, Eric M; Tao, Zhining; Peters-Lidard, Christa D; Ginoux, Paul
2017-06-01
A high-resolution dynamic dust source has been developed in the NASA Unified-Weather Research and Forecasting (NU-WRF) model to improve the existing coarse static dust source. In the new dust source map, topographic depression is in 1-km resolution and surface bareness is derived using the Normalized Difference Vegetation Index (NDVI) data from Moderate Resolution Imaging Spectroradiometer (MODIS). The new dust source better resolves the complex topographic distribution over the Western United States where its magnitude is higher than the existing, coarser resolution static source. A case study is conducted with an extreme dust storm that occurred in Phoenix, Arizona in 02-03 UTC July 6, 2011. The NU-WRF model with the new high-resolution dynamic dust source is able to successfully capture the dust storm, which was not achieved with the old source identification. However the case study also reveals several challenges in reproducing the time evolution of the short-lived, extreme dust storm events.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gao, Yanhong; Leung, Lai-Yung R.; Zhang, Yongxin
2015-05-15
Net precipitation (precipitation minus evapotranspiration, P-E) changes between 1979 and 2011 from a high resolution regional climate simulation and its reanalysis forcing are analyzed over the Tibet Plateau (TP) and compared to the global land data assimilation system (GLDAS) product. The high resolution simulation better resolves precipitation changes than its coarse resolution forcing, which contributes dominantly to the improved P-E change in the regional simulation compared to the global reanalysis. Hence, the former may provide better insights about the drivers of P-E changes. The mechanism behind the P-E changes is explored by decomposing the column integrated moisture flux convergence intomore » thermodynamic, dynamic, and transient eddy components. High-resolution climate simulation improves the spatial pattern of P-E changes over the best available global reanalysis. High-resolution climate simulation also facilitates new and substantial findings regarding the role of thermodynamics and transient eddies in P-E changes reflected in observed changes in major river basins fed by runoff from the TP. The analysis revealed the contrasting convergence/divergence changes between the northwestern and southeastern TP and feedback through latent heat release as an important mechanism leading to the mean P-E changes in the TP.« less
Chemical speciation using high energy resolution PIXE spectroscopy in the tender X-ray range
NASA Astrophysics Data System (ADS)
Kavčič, Matjaž; Petric, Marko; Vogel-Mikuš, Katarina
2018-02-01
High energy resolution X-ray emission spectroscopy employing wavelength dispersive (WDS) crystal spectrometers can provide energy resolution on the level of core-hole lifetime broadening of the characteristic emission lines. While crystal spectrometers have been traditionally used in combination with electron excitation for major and minor element analysis, they have been rarely considered in proton induced X-ray emission (PIXE) trace element analysis mainly due to low detection efficiency. Compared to the simplest flat crystal WDS spectrometer the efficiency can be improved by employing cylindrically or even spherically curved crystals in combination with position sensitive X-ray detectors. When such spectrometer is coupled to MeV proton excitation, chemical bonding effects are revealed in the high energy resolution spectra yielding opportunity to extend the analytical capabilities of PIXE technique also towards chemical state analysis. In this contribution we will focus on the high energy resolution PIXE (HR-PIXE) spectroscopy in the tender X-ray range performed in our laboratory with our home-built tender X-ray emission spectrometer. Some general properties of high energy resolution PIXE spectroscopy in the tender X-ray range are presented followed by an example of sulfur speciation in biological tissue illustrating the capabilities as well as limitations of HR-PIXE method used for chemical speciation in the tender X-ray range.
Kaur, Parminder; Kiselar, Janna; Yang, Sichun; Chance, Mark R.
2015-01-01
Hydroxyl radical footprinting based MS for protein structure assessment has the goal of understanding ligand induced conformational changes and macromolecular interactions, for example, protein tertiary and quaternary structure, but the structural resolution provided by typical peptide-level quantification is limiting. In this work, we present experimental strategies using tandem-MS fragmentation to increase the spatial resolution of the technique to the single residue level to provide a high precision tool for molecular biophysics research. Overall, in this study we demonstrated an eightfold increase in structural resolution compared with peptide level assessments. In addition, to provide a quantitative analysis of residue based solvent accessibility and protein topography as a basis for high-resolution structure prediction; we illustrate strategies of data transformation using the relative reactivity of side chains as a normalization strategy and predict side-chain surface area from the footprinting data. We tested the methods by examination of Ca+2-calmodulin showing highly significant correlations between surface area and side-chain contact predictions for individual side chains and the crystal structure. Tandem ion based hydroxyl radical footprinting-MS provides quantitative high-resolution protein topology information in solution that can fill existing gaps in structure determination for large proteins and macromolecular complexes. PMID:25687570
NASA Astrophysics Data System (ADS)
Elarab, Manal; Ticlavilca, Andres M.; Torres-Rua, Alfonso F.; Maslova, Inga; McKee, Mac
2015-12-01
Precision agriculture requires high-resolution information to enable greater precision in the management of inputs to production. Actionable information about crop and field status must be acquired at high spatial resolution and at a temporal frequency appropriate for timely responses. In this study, high spatial resolution imagery was obtained through the use of a small, unmanned aerial system called AggieAirTM. Simultaneously with the AggieAir flights, intensive ground sampling for plant chlorophyll was conducted at precisely determined locations. This study reports the application of a relevance vector machine coupled with cross validation and backward elimination to a dataset composed of reflectance from high-resolution multi-spectral imagery (VIS-NIR), thermal infrared imagery, and vegetative indices, in conjunction with in situ SPAD measurements from which chlorophyll concentrations were derived, to estimate chlorophyll concentration from remotely sensed data at 15-cm resolution. The results indicate that a relevance vector machine with a thin plate spline kernel type and kernel width of 5.4, having LAI, NDVI, thermal and red bands as the selected set of inputs, can be used to spatially estimate chlorophyll concentration with a root-mean-squared-error of 5.31 μg cm-2, efficiency of 0.76, and 9 relevance vectors.
A high-resolution imaging technique using a whole-body, research photon counting detector CT system
NASA Astrophysics Data System (ADS)
Leng, S.; Yu, Z.; Halaweish, A.; Kappler, S.; Hahn, K.; Henning, A.; Li, Z.; Lane, J.; Levin, D. L.; Jorgensen, S.; Ritman, E.; McCollough, C.
2016-03-01
A high-resolution (HR) data collection mode has been introduced to a whole-body, research photon-counting-detector CT system installed in our laboratory. In this mode, 64 rows of 0.45 mm x 0.45 mm detector pixels were used, which corresponded to a pixel size of 0.25 mm x 0.25 mm at the iso-center. Spatial resolution of this HR mode was quantified by measuring the MTF from a scan of a 50 micron wire phantom. An anthropomorphic lung phantom, cadaveric swine lung, temporal bone and heart specimens were scanned using the HR mode, and image quality was subjectively assessed by two experienced radiologists. High spatial resolution of the HR mode was evidenced by the MTF measurement, with 15 lp/cm and 20 lp/cm at 10% and 2% modulation. Images from anthropomorphic phantom and cadaveric specimens showed clear delineation of small structures, such as lung vessels, lung nodules, temporal bone structures, and coronary arteries. Temporal bone images showed critical anatomy (i.e. stapes superstructure) that was clearly visible in the PCD system. These results demonstrated the potential application of this imaging mode in lung, temporal bone, and vascular imaging. Other clinical applications that require high spatial resolution, such as musculoskeletal imaging, may also benefit from this high resolution mode.
Martin, A.D.
1986-05-09
Method and apparatus are provided for generating an output pulse following a trigger pulse at a time delay interval preset with a resolution which is high relative to a low resolution available from supplied clock pulses. A first lumped constant delay provides a first output signal at predetermined interpolation intervals corresponding to the desired high resolution time interval. Latching circuits latch the high resolution data to form a first synchronizing data set. A selected time interval has been preset to internal counters and corrected for circuit propagation delay times having the same order of magnitude as the desired high resolution. Internal system clock pulses count down the counters to generate an internal pulse delayed by an internal which is functionally related to the preset time interval. A second LCD corrects the internal signal with the high resolution time delay. A second internal pulse is then applied to a third LCD to generate a second set of synchronizing data which is complementary with the first set of synchronizing data for presentation to logic circuits. The logic circuits further delay the internal output signal with the internal pulses. The final delayed output signal thereafter enables the output pulse generator to produce the desired output pulse at the preset time delay interval following input of the trigger pulse.
High resolution modelling and observation of wind-driven surface currents in a semi-enclosed estuary
NASA Astrophysics Data System (ADS)
Nash, S.; Hartnett, M.; McKinstry, A.; Ragnoli, E.; Nagle, D.
2012-04-01
Hydrodynamic circulation in estuaries is primarily driven by tides, river inflows and surface winds. While tidal and river data can be quite easily obtained for input to hydrodynamic models, sourcing accurate surface wind data is problematic. Firstly, the wind data used in hydrodynamic models is usually measured on land and can be quite different in magnitude and direction from offshore winds. Secondly, surface winds are spatially-varying but due to a lack of data it is common practice to specify a non-varying wind speed and direction across the full extents of a model domain. These problems can lead to inaccuracies in the surface currents computed by three-dimensional hydrodynamic models. In the present research, a wind forecast model is coupled with a three-dimensional numerical model of Galway Bay, a semi-enclosed estuary on the west coast of Ireland, to investigate the effect of surface wind data resolution on model accuracy. High resolution and low resolution wind fields are specified to the model and the computed surface currents are compared with high resolution surface current measurements obtained from two high frequency SeaSonde-type Coastal Ocean Dynamics Applications Radars (CODAR). The wind forecast models used for the research are Harmonie cy361.3, running on 2.5 and 0.5km spatial grids for the low resolution and high resolution models respectively. The low-resolution model runs over an Irish domain on 540x500 grid points with 60 vertical levels and a 60s timestep and is driven by ECMWF boundary conditions. The nested high-resolution model uses 300x300 grid points on 60 vertical levels and a 12s timestep. EFDC (Environmental Fluid Dynamics Code) is used for the hydrodynamic model. The Galway Bay model has ten vertical layers and is resolved spatially and temporally at 150m and 4 sec respectively. The hydrodynamic model is run for selected hindcast dates when wind fields were highly energetic. Spatially- and temporally-varying wind data is provided by offline coupling with the wind forecast models. Modelled surface currents show good correlation with CODAR observed currents and the resolution of the surface wind data is shown to be important for model accuracy.
A Procedure for High Resolution Satellite Imagery Quality Assessment
Crespi, Mattia; De Vendictis, Laura
2009-01-01
Data products generated from High Resolution Satellite Imagery (HRSI) are routinely evaluated during the so-called in-orbit test period, in order to verify if their quality fits the desired features and, if necessary, to obtain the image correction parameters to be used at the ground processing center. Nevertheless, it is often useful to have tools to evaluate image quality also at the final user level. Image quality is defined by some parameters, such as the radiometric resolution and its accuracy, represented by the noise level, and the geometric resolution and sharpness, described by the Modulation Transfer Function (MTF). This paper proposes a procedure to evaluate these image quality parameters; the procedure was implemented in a suitable software and tested on high resolution imagery acquired by the QuickBird, WorldView-1 and Cartosat-1 satellites. PMID:22412312
THz holography in reflection using a high resolution microbolometer array.
Zolliker, Peter; Hack, Erwin
2015-05-04
We demonstrate a digital holographic setup for Terahertz imaging of surfaces in reflection. The set-up is based on a high-power continuous wave (CW) THz laser and a high-resolution (640 × 480 pixel) bolometer detector array. Wave propagation to non-parallel planes is used to reconstruct the object surface that is rotated relative to the detector plane. In addition we implement synthetic aperture methods for resolution enhancement and compare Fourier transform phase retrieval to phase stepping methods. A lateral resolution of 200 μm and a relative phase sensitivity of about 0.4 rad corresponding to a depth resolution of 6 μm are estimated from reconstructed images of two specially prepared test targets, respectively. We highlight the use of digital THz holography for surface profilometry as well as its potential for video-rate imaging.
Widmann, K.; Beiersdorfer, P.; Magee, E. W.; ...
2014-09-19
In this paper, we have constructed a high-resolution grazing-incidence spectrometer designed for measuring the ion temperature of low-Z elements, such as Li + or Li 2 +, which radiate near 199 Å and 135 Å, respectively. Based on measurements at the Livermore Electron Beam Ion Trap we have shown that the instrumental resolution is better than 48 mÅ at the 200 Å setting and better than 40 mÅ for the 135-Å range. Such a high spectral resolution corresponds to an instrumental limit for line-width based temperature measurements of about 45 eV for the 199 Å Li+ and 65 eV formore » the 135 Å Li 2 + lines. Finally, recently obtained survey spectra from the Lithium Tokamak Experiment at the Princeton Plasma Physics Laboratory show the presence of these lithium emission lines and the expected core ion temperature of approximately 70 eV is sufficiently high to demonstrate the feasibility of utilizing our high-resolution spectrometer as an ion-temperature diagnostic.« less
High resolution estimates of the corrosion risk for cultural heritage in Italy.
De Marco, Alessandra; Screpanti, Augusto; Mircea, Mihaela; Piersanti, Antonio; Proietti, Chiara; Fornasier, M Francesca
2017-07-01
Air pollution plays a pivotal role in the deterioration of many materials used in buildings and cultural monuments causing an inestimable damage. This study aims to estimate the impacts of air pollution (SO 2 , HNO 3 , O 3 , PM 10 ) and meteorological conditions (temperature, precipitation, relative humidity) on limestone, copper and bronze based on high resolution air quality data-base produced with AMS-MINNI modelling system over the Italian territory over the time period 2003-2010. A comparison between high resolution data (AMS-MINNI grid, 4 × 4 km) and low resolution data (EMEP grid, 50 × 50 km) has been performed. Our results pointed out that the corrosion levels for limestone, copper and bronze are decreased in Italy from 2003 to 2010 in relation to decrease of pollutant concentrations. However, some problem related to air pollution persists especially in Northern and Southern Italy. In particular, PM 10 and HNO 3 are considered the main responsible for limestone corrosion. Moreover, the high resolution data (AMS-MINNI) allowed the identification of risk areas that are not visible with the low resolution data (EMEP modelling system) in all considered years and, especially, in the limestone case. Consequently, high resolution air quality simulations are suitable to provide concrete benefits in providing information for national effective policy against corrosion risk for cultural heritage, also in the context of climate changes that are affecting strongly Mediterranean basin. Copyright © 2017 Elsevier Ltd. All rights reserved.
[Polymorphism of HLA-B* 40 gene family in Chinese Han population].
Li, Zhen; Jin, Shi-Zheng; Cheng, Liang-Hong; Wang, Da-Ming; Zhou, Dan; Zou, Hong-Yan; Wu, Guo-Guang
2005-04-01
To investigate the allele distribution of HLA-B* 40 gene family in Chinese Han population and to study its influence on the selection of clinical transplantation donor, the HLA-B genetypes of 381 individuals randomly selected from Chinese National Marrow Donor Project were identified by PCR-SSO, and then all the HLA-B* 40 positive samples from the above population and the B* 40 homozygote samples received from another 1 270 registered donors were analyzed by PCR-SBT and PCR-SSP at high resolution. The results showed that the population of 381 registered donors was examined at HLA-B locus by using Hardy-Weinberg equilibrium, the gene frequency of HLA-B* 40 was 0.1692. Four different HLA-B* 40 alleles (B* 4001, B* 4002, B* 4003, B* 4006) were identified, and the serological specificity was B60 and B61 respectively. The relative frequency of each allele was 0.1192 for B* 4001, 0.0154 for B* 4002, 0.0038 for B* 4003, 0.0308 for B* 4006. The distribution of B* 40 homozygote revealed a certain regularity at high-resolution, B* 40XX (B* 4001 group), at low-resolution; B* 4001 at high resolution; B* 40XX (B* 4002 group), at low-resolution; B* 4002 or B* 4006 or heterozygote of both at high-resolution. It is concluded that in Chinese Han population, predominant allele in HLA-B* 40 gene family is B* 4001, the high-resolution typing may be recommended to use for the selection of clinical transplantation donor.
Chung, Euiheon; Kim, Daekeun; Cui, Yan; Kim, Yang-Hyo; So, Peter T. C.
2007-01-01
The development of high resolution, high speed imaging techniques allows the study of dynamical processes in biological systems. Lateral resolution improvement of up to a factor of 2 has been achieved using structured illumination. In a total internal reflection fluorescence microscope, an evanescence excitation field is formed as light is total internally reflected at an interface between a high and a low index medium. The <100 nm penetration depth of evanescence field ensures a thin excitation region resulting in low background fluorescence. We present even higher resolution wide-field biological imaging by use of standing wave total internal reflection fluorescence (SW-TIRF). Evanescent standing wave (SW) illumination is used to generate a sinusoidal high spatial frequency fringe pattern on specimen for lateral resolution enhancement. To prevent thermal drift of the SW, novel detection and estimation of the SW phase with real-time feedback control is devised for the stabilization and control of the fringe phase. SW-TIRF is a wide-field superresolution technique with resolution better than a fifth of emission wavelength or ∼100 nm lateral resolution. We demonstrate the performance of the SW-TIRF microscopy using one- and two-directional SW illumination with a biological sample of cellular actin cytoskeleton of mouse fibroblast cells as well as single semiconductor nanocrystal molecules. The results confirm the superior resolution of SW-TIRF in addition to the merit of a high signal/background ratio from TIRF microscopy. PMID:17483188
NASA Astrophysics Data System (ADS)
McAlister, Harold A.
1992-11-01
The Center for High Angular Resolution Astronomy (CHARA) was established in the College of Arts and Sciences at Georgia State University in 1984 with the goals of designing, constructing, and then operating a facility for very high spatial resolution astronomy. The interest in such a facility grew out of the participants' decade of activity in speckle interferometry. Although speckle interferometry continues to provide important astrophysical measurements of a variety of objects, many pressing problems require resolution far beyond that which can be expected from single aperture telescopes. In early 1986, CHARA received a grant from the National Science Foundation which has permitted a detailed exploration of the feasibility of constructing a facility which will provide a hundred-fold increase in angular resolution over what is possible by speckle interferometry at the largest existing telescopes. The design concept for the CHARA Array was developed initially with the contractural collaboration of United Technologies Optical Systems, Inc., in West Palm Beach, Florida, an arrangement that expired in August 1987. In late November 1987, the Georgia Tech Research Institute joined with CHARA to continue and complete the design concept study. Very high-resolution imaging at optical wavelengths is clearly coming of age in astronomy. The CHARA Array and other related projects will be important and necessary milestones along the way toward the development of a major national facility for high-resolution imaging--a true optical counterpart to the Very Large Array. Ground-based arrays and their scientific output will lead to high resolution facilities in space and, ultimately, on the Moon.
Flexible high-resolution display systems for the next generation of radiology reading rooms
NASA Astrophysics Data System (ADS)
Caban, Jesus J.; Wood, Bradford J.; Park, Adrian
2007-03-01
A flexible, scalable, high-resolution display system is presented to support the next generation of radiology reading rooms or interventional radiology suites. The project aims to create an environment for radiologists that will simultaneously facilitate image interpretation, analysis, and understanding while lowering visual and cognitive stress. Displays currently in use present radiologists with technical challenges to exploring complex datasets that we seek to address. These include resolution and brightness, display and ambient lighting differences, and degrees of complexity in addition to side-by-side comparison of time-variant and 2D/3D images. We address these issues through a scalable projector-based system that uses our custom-designed geometrical and photometrical calibration process to create a seamless, bright, high-resolution display environment that can reduce the visual fatigue commonly experienced by radiologists. The system we have designed uses an array of casually aligned projectors to cooperatively increase overall resolution and brightness. Images from a set of projectors in their narrowest zoom are combined at a shared projection surface, thus increasing the global "pixels per inch" (PPI) of the display environment. Two primary challenges - geometric calibration and photometric calibration - remained to be resolved before our high-resolution display system could be used in a radiology reading room or procedure suite. In this paper we present a method that accomplishes those calibrations and creates a flexible high-resolution display environment that appears seamless, sharp, and uniform across different devices.
Dual-resolution image reconstruction for region-of-interest CT scan
NASA Astrophysics Data System (ADS)
Jin, S. O.; Shin, K. Y.; Yoo, S. K.; Kim, J. G.; Kim, K. H.; Huh, Y.; Lee, S. Y.; Kwon, O.-K.
2014-07-01
In ordinary CT scan, so called full field-of-view (FFOV) scan, in which the x-ray beam span covers the whole section of the body, a large number of projections are necessary to reconstruct high resolution images. However, excessive x-ray dose is a great concern in FFOV scan. Region-of-interest (ROI) scan is a method to visualize the ROI in high resolution while reducing the x-ray dose. But, ROI scan suffers from bright-band artifacts which may hamper CT-number accuracy. In this study, we propose an image reconstruction method to eliminate the band artifacts in the ROI scan. In addition to the ROI scan with high sampling rate in the view direction, we get FFOV projection data with much lower sampling rate. Then, we reconstruct images in the compressed sensing (CS) framework with dual resolutions, that is, high resolution in the ROI and low resolution outside the ROI. For the dual-resolution image reconstruction, we implemented the dual-CS reconstruction algorithm in which data fidelity and total variation (TV) terms were enforced twice in the framework of adaptive steepest descent projection onto convex sets (ASD-POCS). The proposed method has remarkably reduced the bright-band artifacts at around the ROI boundary, and it has also effectively suppressed the streak artifacts over the entire image. We expect the proposed method can be greatly used for dual-resolution imaging with reducing the radiation dose, artifacts and scan time.
Retinal optical coherence tomography at 1 μm with dynamic focus control and axial motion tracking
NASA Astrophysics Data System (ADS)
Cua, Michelle; Lee, Sujin; Miao, Dongkai; Ju, Myeong Jin; Mackenzie, Paul J.; Jian, Yifan; Sarunic, Marinko V.
2016-02-01
High-resolution optical coherence tomography (OCT) retinal imaging is important to noninvasively visualize the various retinal structures to aid in better understanding of the pathogenesis of vision-robbing diseases. However, conventional OCT systems have a trade-off between lateral resolution and depth-of-focus. In this report, we present the development of a focus-stacking OCT system with automatic focus optimization for high-resolution, extended-focal-range clinical retinal imaging by incorporating a variable-focus liquid lens into the sample arm optics. Retinal layer tracking and selection was performed using a graphics processing unit accelerated processing platform for focus optimization, providing real-time layer-specific en face visualization. After optimization, multiple volumes focused at different depths were acquired, registered, and stitched together to yield a single, high-resolution focus-stacked dataset. Using this system, we show high-resolution images of the retina and optic nerve head, from which we extracted clinically relevant parameters such as the nerve fiber layer thickness and lamina cribrosa microarchitecture.
Electro-optical design of a long slit streak tube
NASA Astrophysics Data System (ADS)
Tian, Liping; Tian, Jinshou; Wen, Wenlong; Chen, Ping; Wang, Xing; Hui, Dandan; Wang, Junfeng
2017-11-01
A small size and long slit streak tube with high spatial resolution was designed and optimized. Curved photocathode and screen were adopted to increase the photocathode working area and spatial resolution. High physical temporal resolution obtained by using a slit accelerating electrode. Deflection sensitivity of the streak tube was improved by adopting two-folded deflection plates. The simulations indicate that the photocathode effective working area can reach 30mm × 5mm. The static spatial resolution is higher than 40lp/mm and 12lp/mm along scanning and slit directions respectively while the physical temporal resolution is higher than 60ps. The magnification is 0.75 and 0.77 in scanning and slit directions. And also, the deflection sensitivity is as high as 37mm/kV. The external dimension of the streak tube are only ∅74mm×231mm. Thus, it can be applied to laser imaging radar system for large field of view and high range precision detection.
Sakadzić, Sava; Roussakis, Emmanuel; Yaseen, Mohammad A; Mandeville, Emiri T; Srinivasan, Vivek J; Arai, Ken; Ruvinskaya, Svetlana; Devor, Anna; Lo, Eng H; Vinogradov, Sergei A; Boas, David A
2010-09-01
Measurements of oxygen partial pressure (pO(2)) with high temporal and spatial resolution in three dimensions is crucial for understanding oxygen delivery and consumption in normal and diseased brain. Among existing pO(2) measurement methods, phosphorescence quenching is optimally suited for the task. However, previous attempts to couple phosphorescence with two-photon laser scanning microscopy have faced substantial difficulties because of extremely low two-photon absorption cross-sections of conventional phosphorescent probes. Here we report to our knowledge the first practical in vivo two-photon high-resolution pO(2) measurements in small rodents' cortical microvasculature and tissue, made possible by combining an optimized imaging system with a two-photon-enhanced phosphorescent nanoprobe. The method features a measurement depth of up to 250 microm, sub-second temporal resolution and requires low probe concentration. The properties of the probe allowed for direct high-resolution measurement of cortical extravascular (tissue) pO(2), opening many possibilities for functional metabolic brain studies.
Retinal optical coherence tomography at 1 μm with dynamic focus control and axial motion tracking.
Cua, Michelle; Lee, Sujin; Miao, Dongkai; Ju, Myeong Jin; Mackenzie, Paul J; Jian, Yifan; Sarunic, Marinko V
2016-02-01
High-resolution optical coherence tomography (OCT) retinal imaging is important to noninvasively visualize the various retinal structures to aid in better understanding of the pathogenesis of vision-robbing diseases. However, conventional OCT systems have a trade-off between lateral resolution and depth-of-focus. In this report, we present the development of a focus-stacking OCT system with automatic focus optimization for high-resolution, extended-focal-range clinical retinal imaging by incorporating a variable-focus liquid lens into the sample arm optics. Retinal layer tracking and selection was performed using a graphics processing unit accelerated processing platform for focus optimization, providing real-time layer-specific en face visualization. After optimization, multiple volumes focused at different depths were acquired, registered, and stitched together to yield a single, high-resolution focus-stacked dataset. Using this system, we show high-resolution images of the retina and optic nerve head, from which we extracted clinically relevant parameters such as the nerve fiber layer thickness and lamina cribrosa microarchitecture.
NASA Astrophysics Data System (ADS)
Ni, Guangming; Liu, Lin; Zhang, Jing; Liu, Juanxiu; Liu, Yong
2018-01-01
With the development of the liquid crystal display (LCD) module industry, LCD modules become more and more precise with larger sizes, which demands harsh imaging requirements for automated optical inspection (AOI). Here, we report a high-resolution and clearly focused imaging optomechatronics for precise LCD module bonding AOI inspection. It first presents and achieves high-resolution imaging for LCD module bonding AOI inspection using a line scan camera (LSC) triggered by a linear optical encoder, self-adaptive focusing for the whole large imaging region using LSC, and a laser displacement sensor, which reduces the requirements of machining, assembly, and motion control of AOI devices. Results show that this system can directly achieve clearly focused imaging for AOI inspection of large LCD module bonding with 0.8 μm image resolution, 2.65-mm scan imaging width, and no limited imaging width theoretically. All of these are significant for AOI inspection in the LCD module industry and other fields that require imaging large regions with high resolution.
Dual-comb spectroscopy of laser-induced plasmas
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bergevin, Jenna; Wu, Tsung-Han; Yeak, Jeremy
Dual-comb spectroscopy has become a powerful spectroscopic technique in applications that rely on its broad spectral coverage combined with high frequency resolution capabilities. Experiments to date have primarily focused on detection and analysis of multiple gas species under semi-static conditions, with applications ranging from environmental monitoring of greenhouse gases to high resolution molecular spectroscopy. Here, we utilize dual-comb spectroscopy to demonstrate broadband, high-resolution, and time-resolved measurements in a laser induced plasma for the first time. As a first demonstration, we simultaneously detect trace amounts of Rb and K in solid samples with a single laser ablation shot, with transitions separatedmore » by over 6 THz (13 nm) and spectral resolution sufficient to resolve isotopic and ground state hyperfine splittings of the Rb D2 line. This new spectroscopic approach offers the broad spectral coverage found in the powerful techniques of laser-induced breakdown spectroscopy (LIBS) while providing the high-resolution and accuracy of cw laser-based spectroscopies.« less
High-resolution seismic reflection profiling for mapping shallow aquifers in Lee County, Florida
Missimer, T.M.; Gardner, Richard Alfred
1976-01-01
High-resolution continuous seismic reflection profiling equipment was utilized to define the configuration of sedimentary layers underlying part of Lee County, Florida. About 45 miles (72 kilometers) of profile were made on the Caloosahatchee River Estuary and San Carlos Bay. Two different acoustic energy sources, a high resolution boomer and a 45-electrode high resolution sparker, both having a power input of 300 joules, were used to obtain both adequate penetration and good resolution. The seismic profiles show that much of the strata of middle Miocene to Holocene age apparently are extensively folded but not faulted. Initial interpretations indicate that: (1) the top of the Hawthorn Formation (which contains the upper Hawthorn aquifer) has much relief due chiefly to apparent folding; (2) the limestone, sandstone, and unconsolidated sand and phosphorite, which together compose the sandstone aquifer, appear to be discontinuous; (3) the green clay unit of the Tamiami Formation contains large scale angular beds dipping eastward; and (4) numerous deeply cut alluvium-filled paleochannels underlie the Caloosahatchee River. (Woodard-USGS)
Rayleigh-wave dispersive energy imaging using a high-resolution linear radon transform
Luo, Y.; Xia, J.; Miller, R.D.; Xu, Y.; Liu, J.; Liu, Q.
2008-01-01
Multichannel Analysis of Surface Waves (MASW) analysis is an efficient tool to obtain the vertical shear-wave profile. One of the key steps in the MASW method is to generate an image of dispersive energy in the frequency-velocity domain, so dispersion curves can be determined by picking peaks of dispersion energy. In this paper, we propose to image Rayleigh-wave dispersive energy by high-resolution linear Radon transform (LRT). The shot gather is first transformed along the time direction to the frequency domain and then the Rayleigh-wave dispersive energy can be imaged by high-resolution LRT using a weighted preconditioned conjugate gradient algorithm. Synthetic data with a set of linear events are presented to show the process of generating dispersive energy. Results of synthetic and real-world examples demonstrate that, compared with the slant stacking algorithm, high-resolution LRT can improve the resolution of images of dispersion energy by more than 50%. ?? Birkhaueser 2008.
High-Resolution Remote Sensing Image Building Extraction Based on Markov Model
NASA Astrophysics Data System (ADS)
Zhao, W.; Yan, L.; Chang, Y.; Gong, L.
2018-04-01
With the increase of resolution, remote sensing images have the characteristics of increased information load, increased noise, more complex feature geometry and texture information, which makes the extraction of building information more difficult. To solve this problem, this paper designs a high resolution remote sensing image building extraction method based on Markov model. This method introduces Contourlet domain map clustering and Markov model, captures and enhances the contour and texture information of high-resolution remote sensing image features in multiple directions, and further designs the spectral feature index that can characterize "pseudo-buildings" in the building area. Through the multi-scale segmentation and extraction of image features, the fine extraction from the building area to the building is realized. Experiments show that this method can restrain the noise of high-resolution remote sensing images, reduce the interference of non-target ground texture information, and remove the shadow, vegetation and other pseudo-building information, compared with the traditional pixel-level image information extraction, better performance in building extraction precision, accuracy and completeness.
Imaging X-ray spectrophotometers
NASA Technical Reports Server (NTRS)
Hailey, C. J.; Hamilton, T. T.; Ku, W. H.-M.
1981-01-01
A new instrument which combines the good energy resolution of the gas scintillation proportional counter with the high position resolution of the microchannel plate is proposed. A study of the factors which determine the combined energy and position resolution of the new instrument is discussed. Submillimeter position resolution along with good energy resolution (8% fwhm at 6 keV) should be achievable.
Fractional screen video enhancement apparatus
Spletzer, Barry L [Albuquerque, NM; Davidson, George S [Albuquerque, NM; Zimmerer, Daniel J [Tijeras, NM; Marron, Lisa C [Albuquerque, NM
2005-07-19
The present invention provides a method and apparatus for displaying two portions of an image at two resolutions. For example, the invention can display an entire image at a first resolution, and a subset of the image at a second, higher resolution. Two inexpensive, low resolution displays can be used to produce a large image with high resolution only where needed.
Larsson, Daniel H; Lundström, Ulf; Westermark, Ulrica K; Arsenian Henriksson, Marie; Burvall, Anna; Hertz, Hans M
2013-02-01
Small-animal studies require images with high spatial resolution and high contrast due to the small scale of the structures. X-ray imaging systems for small animals are often limited by the microfocus source. Here, the authors investigate the applicability of liquid-metal-jet x-ray sources for such high-resolution small-animal imaging, both in tomography based on absorption and in soft-tissue tumor imaging based on in-line phase contrast. The experimental arrangement consists of a liquid-metal-jet x-ray source, the small-animal object on a rotating stage, and an imaging detector. The source-to-object and object-to-detector distances are adjusted for the preferred contrast mechanism. Two different liquid-metal-jet sources are used, one circulating a Ga∕In∕Sn alloy and the other an In∕Ga alloy for higher penetration through thick tissue. Both sources are operated at 40-50 W electron-beam power with ∼7 μm x-ray spots, providing high spatial resolution in absorption imaging and high spatial coherence for the phase-contrast imaging. High-resolution absorption imaging is demonstrated on mice with CT, showing 50 μm bone details in the reconstructed slices. High-resolution phase-contrast soft-tissue imaging shows clear demarcation of mm-sized tumors at much lower dose than is required in absorption. This is the first application of liquid-metal-jet x-ray sources for whole-body small-animal x-ray imaging. In absorption, the method allows high-resolution tomographic skeletal imaging with potential for significantly shorter exposure times due to the power scalability of liquid-metal-jet sources. In phase contrast, the authors use a simple in-line arrangement to show distinct tumor demarcation of few-mm-sized tumors. This is, to their knowledge, the first small-animal tumor visualization with a laboratory phase-contrast system.
High-resolution regional climate model evaluation using variable-resolution CESM over California
NASA Astrophysics Data System (ADS)
Huang, X.; Rhoades, A.; Ullrich, P. A.; Zarzycki, C. M.
2015-12-01
Understanding the effect of climate change at regional scales remains a topic of intensive research. Though computational constraints remain a problem, high horizontal resolution is needed to represent topographic forcing, which is a significant driver of local climate variability. Although regional climate models (RCMs) have traditionally been used at these scales, variable-resolution global climate models (VRGCMs) have recently arisen as an alternative for studying regional weather and climate allowing two-way interaction between these domains without the need for nudging. In this study, the recently developed variable-resolution option within the Community Earth System Model (CESM) is assessed for long-term regional climate modeling over California. Our variable-resolution simulations will focus on relatively high resolutions for climate assessment, namely 28km and 14km regional resolution, which are much more typical for dynamically downscaled studies. For comparison with the more widely used RCM method, the Weather Research and Forecasting (WRF) model will be used for simulations at 27km and 9km. All simulations use the AMIP (Atmospheric Model Intercomparison Project) protocols. The time period is from 1979-01-01 to 2005-12-31 (UTC), and year 1979 was discarded as spin up time. The mean climatology across California's diverse climate zones, including temperature and precipitation, is analyzed and contrasted with the Weather Research and Forcasting (WRF) model (as a traditional RCM), regional reanalysis, gridded observational datasets and uniform high-resolution CESM at 0.25 degree with the finite volume (FV) dynamical core. The results show that variable-resolution CESM is competitive in representing regional climatology on both annual and seasonal time scales. This assessment adds value to the use of VRGCMs for projecting climate change over the coming century and improve our understanding of both past and future regional climate related to fine-scale processes. This assessment is also relevant for addressing the scale limitation of current RCMs or VRGCMs when next-generation model resolution increases to ~10km and beyond.
Lee, D K; Song, Y K; Park, B W; Cho, H P; Yeom, J S; Cho, G; Cho, H
2018-04-15
To evaluate the robustness of MR transverse relaxation times of trabecular bone from spin-echo and gradient-echo acquisitions at multiple spatial resolutions of 7 T. The effects of MRI resolutions to T 2 and T2* of trabecular bone were numerically evaluated by Monte Carlo simulations. T 2 , T2*, and trabecular structural indices from multislice multi-echo and UTE acquisitions were measured in defatted human distal femoral condyles on a 7 T scanner. Reference structural indices were extracted from high-resolution microcomputed tomography images. For bovine knee trabecular samples with intact bone marrow, T 2 and T2* were measured by degrading spatial resolutions on a 7 T system. In the defatted trabecular experiment, both T 2 and T2* values showed strong ( |r| > 0.80) correlations with trabecular spacing and number, at a high spatial resolution of 125 µm 3 . The correlations for MR image-segmentation-derived structural indices were significantly degraded ( |r| < 0.50) at spatial resolutions of 250 and 500 µm 3 . The correlations for T2* rapidly dropped ( |r| < 0.50) at a spatial resolution of 500 µm 3 , whereas those for T 2 remained consistently high ( |r| > 0.85). In the bovine trabecular experiments with intact marrow, low-resolution (approximately 1 mm 3 , 2 minutes) T 2 values did not shorten ( |r| > 0.95 with respect to approximately 0.4 mm 3 , 11 minutes) and maintained consistent correlations ( |r| > 0.70) with respect to trabecular spacing (turbo spin echo, 22.5 minutes). T 2 measurements of trabeculae at 7 T are robust with degrading spatial resolution and may be preferable in assessing trabecular spacing index with reduced scan time, when high-resolution 3D micro-MRI is difficult to obtain. © 2018 International Society for Magnetic Resonance in Medicine.
NASA Astrophysics Data System (ADS)
Davini, Paolo; von Hardenberg, Jost; Corti, Susanna; Subramanian, Aneesh; Weisheimer, Antje; Christensen, Hannah; Juricke, Stephan; Palmer, Tim
2016-04-01
The PRACE Climate SPHINX project investigates the sensitivity of climate simulations to model resolution and stochastic parameterization. The EC-Earth Earth-System Model is used to explore the impact of stochastic physics in 30-years climate integrations as a function of model resolution (from 80km up to 16km for the atmosphere). The experiments include more than 70 simulations in both a historical scenario (1979-2008) and a climate change projection (2039-2068), using RCP8.5 CMIP5 forcing. A total amount of 20 million core hours will be used at end of the project (March 2016) and about 150 TBytes of post-processed data will be available to the climate community. Preliminary results show a clear improvement in the representation of climate variability over the Euro-Atlantic following resolution increase. More specifically, the well-known atmospheric blocking negative bias over Europe is definitely resolved. High resolution runs also show improved fidelity in representation of tropical variability - such as the MJO and its propagation - over the low resolution simulations. It is shown that including stochastic parameterization in the low resolution runs help to improve some of the aspects of the MJO propagation further. These findings show the importance of representing the impact of small scale processes on the large scale climate variability either explicitly (with high resolution simulations) or stochastically (in low resolution simulations).
Shen, Kai; Lu, Hui; Baig, Sarfaraz; Wang, Michael R
2017-11-01
The multi-frame superresolution technique is introduced to significantly improve the lateral resolution and image quality of spectral domain optical coherence tomography (SD-OCT). Using several sets of low resolution C-scan 3D images with lateral sub-spot-spacing shifts on different sets, the multi-frame superresolution processing of these sets at each depth layer reconstructs a higher resolution and quality lateral image. Layer by layer processing yields an overall high lateral resolution and quality 3D image. In theory, the superresolution processing including deconvolution can solve the diffraction limit, lateral scan density and background noise problems together. In experiment, the improved lateral resolution by ~3 times reaching 7.81 µm and 2.19 µm using sample arm optics of 0.015 and 0.05 numerical aperture respectively as well as doubling the image quality has been confirmed by imaging a known resolution test target. Improved lateral resolution on in vitro skin C-scan images has been demonstrated. For in vivo 3D SD-OCT imaging of human skin, fingerprint and retina layer, we used the multi-modal volume registration method to effectively estimate the lateral image shifts among different C-scans due to random minor unintended live body motion. Further processing of these images generated high lateral resolution 3D images as well as high quality B-scan images of these in vivo tissues.
Detector motion method to increase spatial resolution in photon-counting detectors
NASA Astrophysics Data System (ADS)
Lee, Daehee; Park, Kyeongjin; Lim, Kyung Taek; Cho, Gyuseong
2017-03-01
Medical imaging requires high spatial resolution of an image to identify fine lesions. Photon-counting detectors in medical imaging have recently been rapidly replacing energy-integrating detectors due to the former`s high spatial resolution, high efficiency and low noise. Spatial resolution in a photon counting image is determined by the pixel size. Therefore, the smaller the pixel size, the higher the spatial resolution that can be obtained in an image. However, detector redesigning is required to reduce pixel size, and an expensive fine process is required to integrate a signal processing unit with reduced pixel size. Furthermore, as the pixel size decreases, charge sharing severely deteriorates spatial resolution. To increase spatial resolution, we propose a detector motion method using a large pixel detector that is less affected by charge sharing. To verify the proposed method, we utilized a UNO-XRI photon-counting detector (1-mm CdTe, Timepix chip) at the maximum X-ray tube voltage of 80 kVp. A similar spatial resolution of a 55- μm-pixel image was achieved by application of the proposed method to a 110- μm-pixel detector with a higher signal-to-noise ratio. The proposed method could be a way to increase spatial resolution without a pixel redesign when pixels severely suffer from charge sharing as pixel size is reduced.
High-resolution streaming video integrated with UGS systems
NASA Astrophysics Data System (ADS)
Rohrer, Matthew
2010-04-01
Imagery has proven to be a valuable complement to Unattended Ground Sensor (UGS) systems. It provides ultimate verification of the nature of detected targets. However, due to the power, bandwidth, and technological limitations inherent to UGS, sacrifices have been made to the imagery portion of such systems. The result is that these systems produce lower resolution images in small quantities. Currently, a high resolution, wireless imaging system is being developed to bring megapixel, streaming video to remote locations to operate in concert with UGS. This paper will provide an overview of how using Wifi radios, new image based Digital Signal Processors (DSP) running advanced target detection algorithms, and high resolution cameras gives the user an opportunity to take high-powered video imagers to areas where power conservation is a necessity.
Song, Jung-Hwan; Lee, Kee-Woong; Lee, Woo-Kyung; Jung, Chul-Ho
2017-01-01
A high resolution inverse synthetic aperture radar (ISAR) technique is presented using modified Doppler history based motion compensation. To this purpose, a novel wideband ISAR system is developed that accommodates parametric processing over extended aperture length. The proposed method is derived from an ISAR-to-SAR approach that makes use of high resolution spotlight SAR and sub-aperture recombination. It is dedicated to wide aperture ISAR imaging and exhibits robust performance against unstable targets having non-linear motions. We demonstrate that the Doppler histories of the full aperture ISAR echoes from disturbed targets are efficiently retrieved with good fitting models. Experiments have been conducted on real aircraft targets and the feasibility of the full aperture ISAR processing is verified through the acquisition of high resolution ISAR imagery. PMID:28555036
NASA Astrophysics Data System (ADS)
Tang, U. W.; Wang, Z. S.
2008-10-01
Each city has its unique urban form. The importance of urban form on sustainable development has been recognized in recent years. Traditionally, air quality modelling in a city is in a mesoscale with grid resolution of kilometers, regardless of its urban form. This paper introduces a GIS-based air quality and noise model system developed to study the built environment of highly compact urban forms. Compared with traditional mesoscale air quality model system, the present model system has a higher spatial resolution down to individual buildings along both sides of the street. Applying the developed model system in the Macao Peninsula with highly compact urban forms, the average spatial resolution of input and output data is as high as 174 receptor points per km2. Based on this input/output dataset with a high spatial resolution, this study shows that even the highly compact urban forms can be fragmented into a very small geographic scale of less than 3 km2. This is due to the significant temporal variation of urban development. The variation of urban form in each fragment in turn affects air dispersion, traffic condition, and thus air quality and noise in a measurable scale.
Okutan, Leyla; Kongstad, Kenneth T; Jäger, Anna K; Staerk, Dan
2014-11-26
Type 2 diabetes affects millions of people worldwide, and new improved drugs or functional foods containing selective α-amylase inhibitors are needed for improved management of blood glucose. In this article the development of a microplate-based high-resolution α-amylase inhibition assay with direct photometric measurement of α-amylase activity is described. The inhibition assay is based on porcine pancreatic α-amylase with 2-chloro-4-nitrophenyl-α-D-maltotriose as substrate, which this gives a stable, sensitive, and cheap inhibition assay as requested for high-resolution purposes. In combination with HPLC-HRMS-SPE-NMR, this provides an analytical platform that allows simultaneous chemical and biological profiling of α-amylase inhibitors in plant extracts. Proof-of-concept with an artificial mixture of six compounds-of which three are known α-amylase inhibitors-showed that the high-resolution α-amylase inhibition profiles allowed detection of sub-microgram amounts of the α-amylase inhibitors. Furthermore, the high-resolution α-amylase inhibition assay/HPLC-HRMS-SPE-NMR platform allowed identification of cinnamaldehyde as the α-amylase inhibitor in cinnamon (Cinnamomum verum Presl.).
NASA Astrophysics Data System (ADS)
Benhalouche, Fatima Zohra; Karoui, Moussa Sofiane; Deville, Yannick; Ouamri, Abdelaziz
2017-04-01
This paper proposes three multisharpening approaches to enhance the spatial resolution of urban hyperspectral remote sensing images. These approaches, related to linear-quadratic spectral unmixing techniques, use a linear-quadratic nonnegative matrix factorization (NMF) multiplicative algorithm. These methods begin by unmixing the observable high-spectral/low-spatial resolution hyperspectral and high-spatial/low-spectral resolution multispectral images. The obtained high-spectral/high-spatial resolution features are then recombined, according to the linear-quadratic mixing model, to obtain an unobservable multisharpened high-spectral/high-spatial resolution hyperspectral image. In the first designed approach, hyperspectral and multispectral variables are independently optimized, once they have been coherently initialized. These variables are alternately updated in the second designed approach. In the third approach, the considered hyperspectral and multispectral variables are jointly updated. Experiments, using synthetic and real data, are conducted to assess the efficiency, in spatial and spectral domains, of the designed approaches and of linear NMF-based approaches from the literature. Experimental results show that the designed methods globally yield very satisfactory spectral and spatial fidelities for the multisharpened hyperspectral data. They also prove that these methods significantly outperform the used literature approaches.
NASA Astrophysics Data System (ADS)
Li, C.; Zhou, X.; Tang, D.; Zhu, Z.
2018-04-01
Resolution and sidelobe are mutual restrict for SAR image. Usually sidelobe suppression is based on resolution reduction. This paper provide a method for resolution enchancement using sidelobe opposition speciality of hanning window and SAR image. The method can keep high resolution on the condition of sidelobe suppression. Compare to traditional method, this method can enchance 50 % resolution when sidelobe is -30dB.
Statistical Examination of the Resolution of a Block-Scale Urban Drainage Model
NASA Astrophysics Data System (ADS)
Goldstein, A.; Montalto, F. A.; Digiovanni, K. A.
2009-12-01
Stormwater drainage models are utilized by cities in order to plan retention systems to prevent combined sewage overflows and design for development. These models aggregate subcatchments and ignore small pipelines providing a coarse representation of a sewage network. This study evaluates the importance of resolution by comparing two models developed on a neighborhood scale for predicting the total quantity and peak flow of runoff to observed runoff measured at the site. The low and high resolution models were designed for a 2.6 ha block in Bronx, NYC in EPA Stormwater Management Model (SWMM) using a single catchment and separate subcatchments based on surface cover, respectively. The surface covers represented included sidewalks, street, buildings, and backyards. Characteristics for physical surfaces and the infrastructure in the high resolution mode were determined from site visits, sewer pipe maps, aerial photographs, and GIS data-sets provided by the NYC Department of City Planning. Since the low resolution model was depicted at a coarser scale, generalizations were assumed about the overall average characteristics of the catchment. Rainfall and runoff data were monitored over a four month period during the summer rainy season. A total of 53 rain fall events were recorded but only 29 storms produced significant amount of runoffs to be evaluated in the simulations. To determine which model was more accurate at predicting the observed runoff, three characteristics for each storm were compared: peak runoff, total runoff, and time to peak. Two statistical tests were used to determine the significance of the results: the percent difference for each storm and the overall Chi-squared Goodness of Fit distribution for both the low and high resolution model. These tests will evaluate if there is a statistical difference depending on the resolution of scale of the stormwater model. The scale of representation is being evaluated because it could have a profound impact on how low-impact development strategies are assessed. Rerouting flows to delay the time of entry into the combined sewage is the primary goal of stormwater source controls which may be better differentiated in a high resolution as opposed to low resolution model. The preliminary hypothesis is that the low resolution model simplifies watershed by defining attributes uniformly across the watershed. In the high resolution model, the physical flow can be more accurate depicted by connected the various subcatchments. For example, the runoff from buildings can directly be routed to the backyard. The main drawback to the high resolution model is the risk of adding uncertainty due to the number of parameters.
A high-resolution time-to-digital converter using a three-level resolution
NASA Astrophysics Data System (ADS)
Dehghani, Asma; Saneei, Mohsen; Mahani, Ali
2016-08-01
In this article, a three-level resolution Vernier delay line time-to-digital converter (TDC) was proposed. The proposed TDC core was based on the pseudo-differential digital architecture that made it insensitive to nMOS and pMOS transistor mismatches. It also employed a Vernier delay line (VDL) in conjunction with an asynchronous read-out circuitry. The time interval resolution was equal to the difference of delay between buffers of upper and lower chains. Then, via the extra chain included in the lower delay line, resolution was controlled and power consumption was reduced. This method led to high resolution and low power consumption. The measurement results of TDC showed a resolution of 4.5 ps, 12-bit output dynamic range, and integral nonlinearity of 1.5 least significant bits. This TDC achieved the consumption of 68.43 µW from 1.1-V supply.
High Resolution Infrared Radiation Sounder (HIRS) for the Nimbus F Spacecraft
NASA Technical Reports Server (NTRS)
Koenig, E. W.
1975-01-01
Flown on Nimbus F in June 1975, the high resolution infrared radiation sounder (HIRS) scans with a geographical resolution of 23KM and samples radiance in seventeen selected spectral channels from visible (.7 micron) to far IR (15 micron). Vertical temperature profiles and atmospheric moisture content can be inferred from the output. System operation and test results are described.
ERIC Educational Resources Information Center
Deutsch, Morton
This paper is a summary report of a study of the effects of training in conflict resolution and cooperative learning in an alternative high school in New York City. Three of the school's four campuses participated, with Campus A receiving conflict resolution training, Campus C receiving cooperative learning training, and Campus B receiving…
Gamma-Ray Imager With High Spatial And Spectral Resolution
NASA Technical Reports Server (NTRS)
Callas, John L.; Varnell, Larry S.; Wheaton, William A.; Mahoney, William A.
1996-01-01
Gamma-ray instrument developed to enable both two-dimensional imaging at relatively high spatial resolution and spectroscopy at fractional-photon-energy resolution of about 10 to the negative 3rd power in photon-energy range from 10 keV to greater than 10 MeV. In its spectroscopic aspect, instrument enables identification of both narrow and weak gamma-ray spectral peaks.
L. Arroyo; S.P. Healey; W.B. Cohen; D. Cocero; J.A. Manzanera
2006-01-01
Knowledge of fuel load and composition is critical in fighting, preventing, and understanding wildfires. Commonly, the generation of fuel maps from remotely sensed imagery has made use of medium-resolution sensors such as Landsat. This paper presents a methodology to generate fuel type maps from high spatial resolution satellite data through object-oriented...
NASA Technical Reports Server (NTRS)
Rigney, Matt; Jedlovec, Gary; LaFontaine, Frank; Shafer, Jaclyn
2010-01-01
Heat and moisture exchange between ocean surface and atmosphere plays an integral role in short-term, regional NWP. Current SST products lack both spatial and temporal resolution to accurately capture small-scale features that affect heat and moisture flux. NASA satellite is used to produce high spatial and temporal resolution SST analysis using an OI technique.
High-Resolution Autoradiography
NASA Technical Reports Server (NTRS)
Towe, George C; Gomberg, Henry J; Freemen, J W
1955-01-01
This investigation was made to adapt wet-process autoradiography to metallurgical samples to obtain high resolution of segregated radioactive elements in microstructures. Results are confined to development of the technique, which was perfected to a resolution of less than 10 microns. The radioactive samples included carbon-14 carburized iron and steel, nickel-63 electroplated samples, a powder product containing nickel-63, and tungsten-185 in N-155 alloy.
Development of a superconducting bulk magnet for NMR and MRI.
Nakamura, Takashi; Tamada, Daiki; Yanagi, Yousuke; Itoh, Yoshitaka; Nemoto, Takahiro; Utumi, Hiroaki; Kose, Katsumi
2015-10-01
A superconducting bulk magnet composed of six vertically stacked annular single-domain c-axis-oriented Eu-Ba-Cu-O crystals was energized to 4.74 T using a conventional superconducting magnet for high-resolution NMR spectroscopy. Shim coils, gradient coils, and radio frequency coils for high resolution NMR and MRI were installed in the 23 mm-diameter room-temperature bore of the bulk magnet. A 6.9 ppm peak-to-peak homogeneous region suitable for MRI was achieved in the central cylindrical region (6.2 mm diameter, 9.1 mm length) of the bulk magnet by using a single layer shim coil. A 21 Hz spectral resolution that can be used for high resolution NMR spectroscopy was obtained in the central cylindrical region (1.3 mm diameter, 4 mm length) of the bulk magnet by using a multichannel shim coil. A clear 3D MR image dataset of a chemically fixed mouse fetus with (50 μm)(3) voxel resolution was obtained in 5.5 h. We therefore concluded that the cryogen-free superconducting bulk magnet developed in this study is useful for high-resolution desktop NMR, MRI and mobile NMR device. Copyright © 2015 Elsevier Inc. All rights reserved.
High-resolution EEG (HR-EEG) and magnetoencephalography (MEG).
Gavaret, M; Maillard, L; Jung, J
2015-03-01
High-resolution EEG (HR-EEG) and magnetoencephalography (MEG) allow the recording of spontaneous or evoked electromagnetic brain activity with excellent temporal resolution. Data must be recorded with high temporal resolution (sampling rate) and high spatial resolution (number of channels). Data analyses are based on several steps with selection of electromagnetic signals, elaboration of a head model and use of algorithms in order to solve the inverse problem. Due to considerable technical advances in spatial resolution, these tools now represent real methods of ElectroMagnetic Source Imaging. HR-EEG and MEG constitute non-invasive and complementary examinations, characterized by distinct sensitivities according to the location and orientation of intracerebral generators. In the presurgical assessment of drug-resistant partial epilepsies, HR-EEG and MEG can characterize and localize interictal activities and thus the irritative zone. HR-EEG and MEG often yield significant additional data that are complementary to other presurgical investigations and particularly relevant in MRI-negative cases. Currently, the determination of the epileptogenic zone and functional brain mapping remain rather less well-validated indications. In France, in 2014, HR-EEG is now part of standard clinical investigation of epilepsy, while MEG remains a research technique. Copyright © 2015 Elsevier Masson SAS. All rights reserved.
A Virtual Study of Grid Resolution on Experiments of a Highly-Resolved Turbulent Plume
NASA Astrophysics Data System (ADS)
Maisto, Pietro M. F.; Marshall, Andre W.; Gollner, Michael J.; Fire Protection Engineering Department Collaboration
2017-11-01
An accurate representation of sub-grid scale turbulent mixing is critical for modeling fire plumes and smoke transport. In this study, PLIF and PIV diagnostics are used with the saltwater modeling technique to provide highly-resolved instantaneous field measurements in unconfined turbulent plumes useful for statistical analysis, physical insight, and model validation. The effect of resolution was investigated employing a virtual interrogation window (of varying size) applied to the high-resolution field measurements. Motivated by LES low-pass filtering concepts, the high-resolution experimental data in this study can be analyzed within the interrogation windows (i.e. statistics at the sub-grid scale) and on interrogation windows (i.e. statistics at the resolved scale). A dimensionless resolution threshold (L/D*) criterion was determined to achieve converged statistics on the filtered measurements. Such a criterion was then used to establish the relative importance between large and small-scale turbulence phenomena while investigating specific scales for the turbulent flow. First order data sets start to collapse at a resolution of 0.3D*, while for second and higher order statistical moments the interrogation window size drops down to 0.2D*.
Huang, Wei; Xiao, Liang; Liu, Hongyi; Wei, Zhihui
2015-01-19
Due to the instrumental and imaging optics limitations, it is difficult to acquire high spatial resolution hyperspectral imagery (HSI). Super-resolution (SR) imagery aims at inferring high quality images of a given scene from degraded versions of the same scene. This paper proposes a novel hyperspectral imagery super-resolution (HSI-SR) method via dictionary learning and spatial-spectral regularization. The main contributions of this paper are twofold. First, inspired by the compressive sensing (CS) framework, for learning the high resolution dictionary, we encourage stronger sparsity on image patches and promote smaller coherence between the learned dictionary and sensing matrix. Thus, a sparsity and incoherence restricted dictionary learning method is proposed to achieve higher efficiency sparse representation. Second, a variational regularization model combing a spatial sparsity regularization term and a new local spectral similarity preserving term is proposed to integrate the spectral and spatial-contextual information of the HSI. Experimental results show that the proposed method can effectively recover spatial information and better preserve spectral information. The high spatial resolution HSI reconstructed by the proposed method outperforms reconstructed results by other well-known methods in terms of both objective measurements and visual evaluation.
NASA Astrophysics Data System (ADS)
Senanayake, I. P.; Yeo, I. Y.; Tangdamrongsub, N.; Willgoose, G. R.; Hancock, G. R.; Wells, T.; Fang, B.; Lakshmi, V.
2017-12-01
Long-term soil moisture datasets at high spatial resolution are important in agricultural, hydrological, and climatic applications. The soil moisture estimates can be achieved using satellite remote sensing observations. However, the satellite soil moisture data are typically available at coarse spatial resolutions ( several tens of km), therefore require further downscaling. Different satellite soil moisture products have to be conjointly employed in developing a consistent time-series of high resolution soil moisture, while the discrepancies amongst different satellite retrievals need to be resolved. This study aims to downscale three different satellite soil moisture products, the Soil Moisture and Ocean Salinity (SMOS, 25 km), the Soil Moisture Active Passive (SMAP, 36 km) and the SMAP-Enhanced (9 km), and to conduct an inter-comparison of the downscaled results. The downscaling approach is developed based on the relationship between the diurnal temperature difference and the daily mean soil moisture content. The approach is applied to two sub-catchments (Krui and Merriwa River) of the Goulburn River catchment in the Upper Hunter region (NSW, Australia) to estimate soil moisture at 1 km resolution for 2015. The three coarse spatial resolution soil moisture products and their downscaled results will be validated with the in-situ observations obtained from the Scaling and Assimilation of Soil Moisture and Streamflow (SASMAS) network. The spatial and temporal patterns of the downscaled results will also be analysed. This study will provide the necessary insights for data selection and bias corrections to maintain the consistency of a long-term high resolution soil moisture dataset. The results will assist in developing a time-series of high resolution soil moisture data over the south-eastern Australia.
Effects of Drake Passage on a strongly eddying global ocean
NASA Astrophysics Data System (ADS)
Viebahn, Jan; von der Heydt, Anna S.; Dijkstra, Henk A.
2015-04-01
During the past 65 Million (Ma) years, Earth's climate has undergone a major change from warm 'greenhouse' to colder 'icehouse' conditions with extensive ice sheets in the polar regions of both hemispheres. The Eocene-Oligocene (~34 Ma) and Oligocene-Miocene (~23 Ma) boundaries reflect major transitions in Cenozoic global climate change. Proposed mechanisms of these transitions include reorganization of ocean circulation due to critical gateway opening/deepening, changes in atmospheric CO2-concentration, and feedback mechanisms related to land-ice formation. Drake Passage (DP) is an intensively studied gateway because it plays a central role in closing the transport pathways of heat and chemicals in the ocean. The climate response to a closed DP has been explored with a variety of general circulation models, however, all of these models employ low model-grid resolutions such that the effects of subgrid-scale fluctuations ('eddies') are parameterized. We present results of the first high-resolution (0.1° horizontally) realistic global ocean model simulation with a closed DP in which the eddy field is largely resolved. The simulation extends over more than 200 years such that the strong transient adjustment process is passed and a near-equilibrium ocean state is reached. The effects of DP are diagnosed by comparing with both an open DP high-resolution control simulation (of same length) and corresponding low-resolution simulations. By focussing on the heat/tracer transports we demonstrate that the results are twofold: Considering spatially integrated transports the overall response to a closed DP is well captured by low-resolution simulations. However, looking at the actual spatial distributions drastic differences appear between far-scattered high-resolution and laminar-uniform low-resolution fields. We conclude that sparse and highly localized tracer proxy observations have to be interpreted carefully with the help of high-resolution model simulations.
Ultra high resolution imaging of the human head at 8 tesla: 2K x 2K for Y2K.
Robitaille, P M; Abduljalil, A M; Kangarlu, A
2000-01-01
To acquire ultra high resolution MRI images of the human brain at 8 Tesla within a clinically acceptable time frame. Gradient echo images were acquired from the human head of normal subjects using a transverse electromagnetic resonator operating in quadrature and tuned to 340 MHz. In each study, a group of six images was obtained containing a total of 208 MB of unprocessed information. Typical acquisition parameters were as follows: matrix = 2,000 x 2,000, field of view = 20 cm, slice thickness = 2 mm, number of excitations (NEX) = 1, flip angle = 45 degrees, TR = 750 ms, TE = 17 ms, receiver bandwidth = 69.4 kHz. This resulted in a total scan time of 23 minutes, an in-plane resolution of 100 microm, and a pixel volume of 0.02 mm3. The ultra high resolution images acquired in this study represent more than a 50-fold increase in in-plane resolution relative to conventional 256 x 256 images obtained with a 20 cm field of view and a 5 mm slice thickness. Nonetheless, the ultra high resolution images could be acquired both with adequate image quality and signal to noise. They revealed numerous small venous structures throughout the image plane and provided reasonable delineation between gray and white matter. The elevated signal-to-noise ratio observed in ultra high field magnetic resonance imaging can be utilized to acquire images with a level of resolution approaching the histological level under in vivo conditions. However, brain motion is likely to degrade the useful resolution. This situation may be remedied in part with cardiac gating. Nonetheless, these images represent a significant advance in our ability to examine small anatomical features with noninvasive imaging methods.
Reconstruction of full high-resolution HSQC using signal split in aliased spectra.
Foroozandeh, Mohammadali; Jeannerat, Damien
2015-11-01
Resolution enhancement is a long-sought goal in NMR spectroscopy. In conventional multidimensional NMR experiments, such as the (1) H-(13) C HSQC, the resolution in the indirect dimensions is typically 100 times lower as in 1D spectra because it is limited by the experimental time. Reducing the spectral window can significantly increase the resolution but at the cost of ambiguities in frequencies as a result of spectral aliasing. Fortunately, this information is not completely lost and can be retrieved using methods in which chemical shifts are encoded in the aliased spectra and decoded after processing to reconstruct high-resolution (1) H-(13) C HSQC spectrum with full spectral width and a resolution similar to that of 1D spectra. We applied a new reconstruction method, RHUMBA (reconstruction of high-resolution using multiplet built on aliased spectra), to spectra obtained from the differential evolution for non-ambiguous aliasing-HSQC and the new AMNA (additional modulation for non-ambiguous aliasing)-HSQC experiments. The reconstructed spectra significantly facilitate both manual and automated spectral analyses and structure elucidation based on heteronuclear 2D experiments. The resolution is enhanced by two orders of magnitudes without the usual complications due to spectral aliasing. Copyright © 2015 John Wiley & Sons, Ltd.
Study of a high-resolution, 3-D positioning cadmium zinc telluride detector for PET
Gu, Y; Matteson, J L; Skelton, R T; Deal, A C; Stephan, E A; Duttweiler, F; Gasaway, T M; Levin, C S
2011-01-01
This paper investigates the performance of 1 mm resolution Cadmium Zinc Telluride (CZT) detectors for positron emission tomography (PET) capable of positioning the 3-D coordinates of individual 511 keV photon interactions. The detectors comprise 40 mm × 40 mm × 5 mm monolithic CZT crystals that employ a novel cross-strip readout with interspersed steering electrodes to obtain high spatial and energy resolution. The study found a single anode FWHM energy resolution of 3.06±0.39% at 511 keV throughout most the detector volume. Improved resolution is expected with properly shielded front-end electronics. Measurements made using a collimated beam established the efficacy of the steering electrodes in facilitating enhanced charge collection across anodes, as well as a spatial resolution of 0.44±0.07 mm in the direction orthogonal to the electrode planes. Finally, measurements based on coincidence electronic collimation yielded a point spread function with 0.78±0.10 mm FWHM, demonstrating 1 mm spatial resolution capability transverse to the anodes – as expected from the 1 mm anode pitch. These findings indicate that the CZT-based detector concept has excellent performance and shows great promise for a high-resolution PET system. PMID:21335649
Next Generation X-Ray Observatory: New Mission Concepts in Astrophysics
NASA Technical Reports Server (NTRS)
Cash, Webster
1998-01-01
This grant was to review the impact and possibilities for high resolution imaging as the theme for a new observatory early in the 21st Century. We proposed to investigate the suitability of a new approach to high resolution x-ray optics and investigate the range of science it might support. There is no question that high resolution x-ray imaging would lead to exciting, fundamental new discoveries. We demonstrated in this study that the technology already exists to improve imaging in the x-ray by up to six orders of magnitude. This would make the x-ray band the highest resolution band instead of its current status as second worst, behind gamma rays.
Label-free imaging of cellular malformation using high resolution photoacoustic microscopy
NASA Astrophysics Data System (ADS)
Chen, Zhongjiang; Li, Bingbing; Yang, Sihua
2014-09-01
A label-free high resolution photoacoustic microscopy (PAM) system for imaging cellular malformation is presented. The carbon fibers were used to testify the lateral resolution of the PAM. Currently, the lateral resolution is better than 2.7 μm. The human normal red blood cells (RBCs) were used to prove the imaging capability of the system, and a single red blood cell was mapped with high contrast. Moreover, the iron deficiency anemia RBCs were clearly distinguished from the cell morphology by using the PAM. The experimental results demonstrate that the photoacoustic microscopy system can accomplish label-free photoacoustic imaging and that it has clinical potential for use in the detection of erythrocytes and blood vessels malformation.
High resolution spectroscopy in the microwave and far infrared
NASA Technical Reports Server (NTRS)
Pickett, Herbert M.
1990-01-01
High resolution rotational spectroscopy has long been central to remote sensing techniques in atmospheric sciences and astronomy. As such, laboratory measurements must supply the required data to make direct interpretation of data for instruments which sense atmospheres using rotational spectra. Spectral measurements in the microwave and far infrared regions are also very powerful tools when combined with infrared measurements for characterizing the rotational structure of vibrational spectra. In the past decade new techniques were developed which have pushed high resolution spectroscopy into the wavelength region between 25 micrometers and 2 mm. Techniques to be described include: (1) harmonic generation of microwave sources, (2) infrared laser difference frequency generation, (3) laser sideband generation, and (4) ultrahigh resolution interferometers.
Architecture and applications of a high resolution gated SPAD image sensor
Burri, Samuel; Maruyama, Yuki; Michalet, Xavier; Regazzoni, Francesco; Bruschini, Claudio; Charbon, Edoardo
2014-01-01
We present the architecture and three applications of the largest resolution image sensor based on single-photon avalanche diodes (SPADs) published to date. The sensor, fabricated in a high-voltage CMOS process, has a resolution of 512 × 128 pixels and a pitch of 24 μm. The fill-factor of 5% can be increased to 30% with the use of microlenses. For precise control of the exposure and for time-resolved imaging, we use fast global gating signals to define exposure windows as small as 4 ns. The uniformity of the gate edges location is ∼140 ps (FWHM) over the whole array, while in-pixel digital counting enables frame rates as high as 156 kfps. Currently, our camera is used as a highly sensitive sensor with high temporal resolution, for applications ranging from fluorescence lifetime measurements to fluorescence correlation spectroscopy and generation of true random numbers. PMID:25090572
Dedicated mobile high resolution prostate PET imager with an insertable transrectal probe
Majewski, Stanislaw; Proffitt, James
2010-12-28
A dedicated mobile PET imaging system to image the prostate and surrounding organs. The imaging system includes an outside high resolution PET imager placed close to the patient's torso and an insertable and compact transrectal probe that is placed in close proximity to the prostate and operates in conjunction with the outside imager. The two detector systems are spatially co-registered to each other. The outside imager is mounted on an open rotating gantry to provide torso-wide 3D images of the prostate and surrounding tissue and organs. The insertable probe provides closer imaging, high sensitivity, and very high resolution predominately 2D view of the prostate and immediate surroundings. The probe is operated in conjunction with the outside imager and a fast data acquisition system to provide very high resolution reconstruction of the prostate and surrounding tissue and organs.
Megahertz-resolution programmable microwave shaper.
Li, Jilong; Dai, Yitang; Yin, Feifei; Li, Wei; Li, Ming; Chen, Hongwei; Xu, Kun
2018-04-15
A novel microwave shaper is proposed and demonstrated, of which the microwave spectral transfer function could be fully programmable with high resolution. We achieve this by bandwidth-compressed mapping a programmable optical wave-shaper, which has a lower frequency resolution of tens of gigahertz, to a microwave one with resolution of tens of megahertz. This is based on a novel technology of "bandwidth scaling," which employs bandwidth-stretched electronic-to-optical conversion and bandwidth-compressed optical-to-electronic conversion. We demonstrate the high resolution and full reconfigurability experimentally. Furthermore, we show the group delay variation could be greatly enlarged after mapping; this is then verified by the experiment with an enlargement of 194 times. The resolution improvement and group delay magnification significantly distinguish our proposal from previous optics-to-microwave spectrum mapping.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Swartz, J.D.; Goodman, R.S.; Russell, K.B.
1983-08-01
High-resolution computed tomography (CT) provides an excellent method for examination of the surgically altered middle ear and mastoid. Closed-cavity and open-cavity types of mastoidectomy are illustrated. Recurrent cholesteatoma in the mastoid bowl is easily diagnosed. Different types of tympanoplasty are discussed and illustrated, as are tympanostomy tubes and various ossicular reconstructive procedures. Baseline high-resolution CT of the postoperative middle ear and mastoid is recommended at approximately 3 months following the surgical procedure.
High Resolution Higher Energy X-ray Microscope for Mesoscopic Materials
NASA Astrophysics Data System (ADS)
Snigireva, I.; Snigirev, A.
2013-10-01
We developed a novel X-ray microscopy technique to study mesoscopically structured materials, employing compound refractive lenses. The easily seen advantage of lens-based methodology is the possibility to retrieve high resolution diffraction pattern and real-space images in the same experimental setup. Methodologically the proposed approach is similar to the studies of crystals by high resolution transmission electron microscopy. The proposed microscope was applied for studying of mesoscopic materials such as natural and synthetic opals, inverted photonic crystals.
NASA Astrophysics Data System (ADS)
Takei, Satoshi; Hanabata, Makoto
2017-03-01
We report high-resolution (150 nm) nanopatterning of biodegradable polylactide by thermal nanoimprint lithography using dichloromethane as a volatile solvent for improving the liquidity and a porous cyclodextrin-based gas-permeable mold. This study demonstrates the high-resolution patterning of polylactic acid and other non-liquid functional materials with poor fluidity by thermal nanoimprinting. Such a patterning is expected to expand the utility of thermal nanoimprint lithography and fabricate non-liquid functional materials suitable for eco-friendly and biomedical applications.
High-Resolution Electron Energy-Loss Spectroscopy (HREELS) Using a Monochromated TEM/STEM
NASA Technical Reports Server (NTRS)
Sai, Z. R.; Bradley, J. P.; Erni, R.; Browning, N.
2005-01-01
A 200 keV FEI TF20 XT monochromated (scanning) transmission electron microscope funded by NASA's SRLIDAP program is undergoing installation at Lawrence Livermore National Laboratory. Instrument specifications in STEM mode are Cs =1.0 mm, Cc =1.2 mm, image resolution =0.18 nm, and in TEM mode Cs =1.3 mm, Cc =1.3 mm, information limit =0.14 nm. Key features of the instrument are a voltage-stabilized high tension (HT) supply, a monochromator, a high-resolution electron energy-loss spectrometer/energy filter, a high-resolution annular darkfield detector, and a solid-state x-ray energy-dispersive spectrometer. The high-tension tank contains additional sections for 60Hz and high frequency filtering, resulting in an operating voltage of 200 kV plus or minus 0.005V, a greater than 10-fold improvement over earlier systems. The monochromator is a single Wien filter design. The energy filter is a Gatan model 866 Tridiem-ERS high resolution GIF spec d for less than or equal to 0.15 eV energy resolution with 29 pA of current in a 2 nm diameter probe. 0.13 eV has already been achieved during early installation. The x-ray detector (EDAX/Genesis 4000) has a take-off angle of 20 degrees, an active area of 30 square millimeters, and a solid angle of 0.3 steradians. The higher solid angle is possible because the objective pole-piece allows the detector to be positioned as close as 9.47 mm from the specimen. The voltage-stabilized HT supply, monochromator and GIF enable high-resolution electron energy-loss spectroscopy (HREELS) with energy resolution comparable to synchrotron XANES, but with approximately 100X better spatial resolution. The region between 0 and 100 eV is called the low-loss or valence electron energy-loss spectroscopy (VEELS) region where features due to collective plasma oscillations and single electron transitions of valence electrons are observed. Most of the low-loss VEELS features we are detecting are being observed for the first time in IDPs. A major focus of our research is to understand the origin and significance of these features and how they might be exploited to gain insight about IDPs and other meteoritic materials.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Li, Fuyu; Collins, William D.; Wehner, Michael F.
High-resolution climate models have been shown to improve the statistics of tropical storms and hurricanes compared to low-resolution models. The impact of increasing horizontal resolution in the tropical storm simulation is investigated exclusively using a series of Atmospheric Global Climate Model (AGCM) runs with idealized aquaplanet steady-state boundary conditions and a fixed operational storm-tracking algorithm. The results show that increasing horizontal resolution helps to detect more hurricanes, simulate stronger extreme rainfall, and emulate better storm structures in the models. However, increasing model resolution does not necessarily produce stronger hurricanes in terms of maximum wind speed, minimum sea level pressure, andmore » mean precipitation, as the increased number of storms simulated by high-resolution models is mainly associated with weaker storms. The spatial scale at which the analyses are conducted appears to have more important control on these meteorological statistics compared to horizontal resolution of the model grid. When the simulations are analyzed on common low-resolution grids, the statistics of the hurricanes, particularly the hurricane counts, show reduced sensitivity to the horizontal grid resolution and signs of scale invariant.« less
& Legislation Links Discussion Lists Quick Links AAPT eMentoring ComPADRE Review of High School Take Physics" Poster Why Physics Poster Thumbnail Download normal resolution JPEG Download high resolution JPEG Download Spanish Version Recruiting Physics Students in High School (FED newsletter article
Rapid calibrated high-resolution hyperspectral imaging using tunable laser source
NASA Astrophysics Data System (ADS)
Nguyen, Lam K.; Margalith, Eli
2009-05-01
We present a novel hyperspectral imaging technique based on tunable laser technology. By replacing the broadband source and tunable filters of a typical NIR imaging instrument, several advantages are realized, including: high spectral resolution, highly variable field-of-views, fast scan-rates, high signal-to-noise ratio, and the ability to use optical fiber for efficient and flexible sample illumination. With this technique, high-resolution, calibrated hyperspectral images over the NIR range can be acquired in seconds. The performance of system features will be demonstrated on two example applications: detecting melamine contamination in wheat gluten and separating bovine protein from wheat protein in cattle feed.
A New High Resolution Climate Dataset for Climate Change Impacts Assessments in New England
NASA Astrophysics Data System (ADS)
Komurcu, M.; Huber, M.
2016-12-01
Assessing regional impacts of climate change (such as changes in extreme events, land surface hydrology, water resources, energy, ecosystems and economy) requires much higher resolution climate variables than those available from global model projections. While it is possible to run global models in higher resolution, the high computational cost associated with these simulations prevent their use in such manner. To alleviate this problem, dynamical downscaling offers a method to deliver higher resolution climate variables. As part of an NSF EPSCoR funded interdisciplinary effort to assess climate change impacts on New Hampshire ecosystems, hydrology and economy (the New Hampshire Ecosystems and Society project), we create a unique high-resolution climate dataset for New England. We dynamically downscale global model projections under a high impact emissions scenario using the Weather Research and Forecasting model (WRF) with three nested grids of 27, 9 and 3 km horizontal resolution with the highest resolution innermost grid focusing over New England. We prefer dynamical downscaling over other methods such as statistical downscaling because it employs physical equations to progressively simulate climate variables as atmospheric processes interact with surface processes, emissions, radiation, clouds, precipitation and other model components, hence eliminates fix relationships between variables. In addition to simulating mean changes in regional climate, dynamical downscaling also allows for the simulation of climate extremes that significantly alter climate change impacts. We simulate three time slices: 2006-2015, 2040-2060 and 2080-2100. This new high-resolution climate dataset (with more than 200 variables saved in hourly (six hourly) intervals for the highest resolution domain (outer two domains)) along with model input and restart files used in our WRF simulations will be publicly available for use to the broader scientific community to support in-depth climate change impacts assessments for New England. We present results focusing on future changes in New England extreme events.
NASA Astrophysics Data System (ADS)
Nadeem, Imran; Formayer, Herbert
2016-11-01
A suite of high-resolution (10 km) simulations were performed with the International Centre for Theoretical Physics (ICTP) Regional Climate Model (RegCM3) to study the effect of various lateral boundary conditions (LBCs), domain size, and intermediate domains on simulated precipitation over the Great Alpine Region. The boundary conditions used were ECMWF ERA-Interim Reanalysis with grid spacing 0.75∘, the ECMWF ERA-40 Reanalysis with grid spacing 1.125 and 2.5∘, and finally the 2.5∘ NCEP/DOE AMIP-II Reanalysis. The model was run in one-way nesting mode with direct nesting of the high-resolution RCM (horizontal grid spacing Δx = 10 km) with driving reanalysis, with one intermediate resolution nest (Δx = 30 km) between high-resolution RCM and reanalysis forcings, and also with two intermediate resolution nests (Δx = 90 km and Δx = 30 km) for simulations forced with LBC of resolution 2.5∘. Additionally, the impact of domain size was investigated. The results of multiple simulations were evaluated using different analysis techniques, e.g., Taylor diagram and a newly defined useful statistical parameter, called Skill-Score, for evaluation of daily precipitation simulated by the model. It has been found that domain size has the major impact on the results, while different resolution and versions of LBCs, e.g., 1.125∘ ERA40 and 0.7∘ ERA-Interim, do not produce significantly different results. It is also noticed that direct nesting with reasonable domain size, seems to be the most adequate method for reproducing precipitation over complex terrain, while introducing intermediate resolution nests seems to deteriorate the results.
Unraveling the martian water cycle with high-resolution global climate simulations
NASA Astrophysics Data System (ADS)
Pottier, Alizée; Forget, François; Montmessin, Franck; Navarro, Thomas; Spiga, Aymeric; Millour, Ehouarn; Szantai, André; Madeleine, Jean-Baptiste
2017-07-01
Global climate modeling of the Mars water cycle is usually performed at relatively coarse resolution (200 - 300km), which may not be sufficient to properly represent the impact of waves, fronts, topography effects on the detailed structure of clouds and surface ice deposits. Here, we present new numerical simulations of the annual water cycle performed at a resolution of 1° × 1° (∼ 60 km in latitude). The model includes the radiative effects of clouds, whose influence on the thermal structure and atmospheric dynamics is significant, thus we also examine simulations with inactive clouds to distinguish the direct impact of resolution on circulation and winds from the indirect impact of resolution via water ice clouds. To first order, we find that the high resolution does not dramatically change the behavior of the system, and that simulations performed at ∼ 200 km resolution capture well the behavior of the simulated water cycle and Mars climate. Nevertheless, a detailed comparison between high and low resolution simulations, with reference to observations, reveal several significant changes that impact our understanding of the water cycle active today on Mars. The key northern cap edge dynamics are affected by an increase in baroclinic wave strength, with a complication of northern summer dynamics. South polar frost deposition is modified, with a westward longitudinal shift, since southern dynamics are also influenced. Baroclinic wave mode transitions are observed. New transient phenomena appear, like spiral and streak clouds, already documented in the observations. Atmospheric circulation cells in the polar region exhibit a large variability and are fine structured, with slope winds. Most modeled phenomena affected by high resolution give a picture of a more turbulent planet, inducing further variability. This is challenging for long-period climate studies.
LOR-interleaving image reconstruction for PET imaging with fractional-crystal collimation
NASA Astrophysics Data System (ADS)
Li, Yusheng; Matej, Samuel; Karp, Joel S.; Metzler, Scott D.
2015-01-01
Positron emission tomography (PET) has become an important modality in medical and molecular imaging. However, in most PET applications, the resolution is still mainly limited by the physical crystal sizes or the detector’s intrinsic spatial resolution. To achieve images with better spatial resolution in a central region of interest (ROI), we have previously proposed using collimation in PET scanners. The collimator is designed to partially mask detector crystals to detect lines of response (LORs) within fractional crystals. A sequence of collimator-encoded LORs is measured with different collimation configurations. This novel collimated scanner geometry makes the reconstruction problem challenging, as both detector and collimator effects need to be modeled to reconstruct high-resolution images from collimated LORs. In this paper, we present a LOR-interleaving (LORI) algorithm, which incorporates these effects and has the advantage of reusing existing reconstruction software, to reconstruct high-resolution images for PET with fractional-crystal collimation. We also develop a 3D ray-tracing model incorporating both the collimator and crystal penetration for simulations and reconstructions of the collimated PET. By registering the collimator-encoded LORs with the collimator configurations, high-resolution LORs are restored based on the modeled transfer matrices using the non-negative least-squares method and EM algorithm. The resolution-enhanced images are then reconstructed from the high-resolution LORs using the MLEM or OSEM algorithm. For validation, we applied the LORI method to a small-animal PET scanner, A-PET, with a specially designed collimator. We demonstrate through simulated reconstructions with a hot-rod phantom and MOBY phantom that the LORI reconstructions can substantially improve spatial resolution and quantification compared to the uncollimated reconstructions. The LORI algorithm is crucial to improve overall image quality of collimated PET, which can have significant implications in preclinical and clinical ROI imaging applications.
Full Spatial Resolution Infrared Sounding Application in the Preconvection Environment
NASA Astrophysics Data System (ADS)
Liu, C.; Liu, G.; Lin, T.
2013-12-01
Advanced infrared (IR) sounders such as the Atmospheric Infrared Sounder (AIRS) and Infrared Atmospheric Sounding Interferometer (IASI) provide atmospheric temperature and moisture profiles with high vertical resolution and high accuracy in preconvection environments. The derived atmospheric stability indices such as convective available potential energy (CAPE) and lifted index (LI) from advanced IR soundings can provide critical information 1 ; 6 h before the development of severe convective storms. Three convective storms are selected for the evaluation of applying AIRS full spatial resolution soundings and the derived products on providing warning information in the preconvection environments. In the first case, the AIRS full spatial resolution soundings revealed local extremely high atmospheric instability 3 h ahead of the convection on the leading edge of a frontal system, while the second case demonstrates that the extremely high atmospheric instability is associated with the local development of severe thunderstorm in the following hours. The third case is a local severe storm that occurred on 7-8 August 2010 in Zhou Qu, China, which caused more than 1400 deaths and left another 300 or more people missing. The AIRS full spatial resolution LI product shows the atmospheric instability 3.5 h before the storm genesis. The CAPE and LI from AIRS full spatial resolution and operational AIRS/AMSU soundings along with Geostationary Operational Environmental Satellite (GOES) Sounder derived product image (DPI) products were analyzed and compared. Case studies show that full spatial resolution AIRS retrievals provide more useful warning information in the preconvection environments for determining favorable locations for convective initiation (CI) than do the coarser spatial resolution operational soundings and lower spectral resolution GOES Sounder retrievals. The retrieved soundings are also tested in a regional data assimilation WRF 3D-var system to evaluate the potential assist in the NWP model.
High resolution A/D conversion based on piecewise conversion at lower resolution
Terwilliger, Steve [Albuquerque, NM
2012-06-05
Piecewise conversion of an analog input signal is performed utilizing a plurality of relatively lower bit resolution A/D conversions. The results of this piecewise conversion are interpreted to achieve a relatively higher bit resolution A/D conversion without sampling frequency penalty.
Ultrahigh-resolution endoscopic optical coherence tomography
NASA Astrophysics Data System (ADS)
Chen, Yu; Herz, Paul R.; Hsiung, Pei-Lin; Aguirre, Aaron D.; Mashimo, Hiroshi; Desai, Saleem; Pedrosa, Macos; Koski, Amanda; Schmitt, Joseph M.; Fujimoto, James G.
2005-01-01
Early detection of gastrointestinal cancer is essential for the patient treatment and medical care. Endoscopically guided biopsy is currently the gold standard for the diagnosis of early esophageal cancer, but can suffer from high false negative rates due to sampling errors. Optical coherence tomography (OCT) is an emerging medical imaging technology which can generate high resolution, cross-sectional images of tissue in situ and in real time, without the removal of tissue specimen. Although endoscopic OCT has been used successfully to identify certain pathologies in the gastrointestinal tract, the resolution of current endoscopic OCT systems has been limited to 10 - 15 m for clinical procedures. In this study, in vivo imaging of the gastrointestinal tract is demonstrated at a three-fold higher resolution (< 5 m), using a portable, broadband, Cr4+:Forsterite laser as the optical light source. Images acquired from the esophagus, gastro-esophageal junction and colon on animal model display tissue microstructures and architectural details at high resolution, and the features observed in the OCT images are well-matched with histology. The clinical feasibility study is conducted through delivering OCT imaging catheter using standard endoscope. OCT images of normal esophagus, Barrett's esophagus, and esophageal cancers are demonstrated with distinct features. The ability of high resolution endoscopic OCT to image tissue morphology at an unprecedented resolution in vivo would facilitate the development of OCT as a potential imaging modality for early detection of neoplastic changes.
Design and performance of a high spatial resolution, time-of-flight PET detector
Krishnamoorthy, Srilalan; LeGeyt, Benjamin; Werner, Matthew E.; Kaul, Madhuri; Newcomer, F. M.; Karp, Joel S.; Surti, Suleman
2014-01-01
This paper describes the design and performance of a high spatial resolution PET detector with time-of-flight capabilities. With an emphasis on high spatial resolution and sensitivity, we initially evaluated the performance of several 1.5 × 1.5 and 2.0 × 2.0 mm2 and 12–15 mm long LYSO crystals read out by several appropriately sized PMTs. Experiments to evaluate the impact of reflector on detector performance were performed and the final detector consisted of a 32 × 32 array of 1.5 × 1.5 × 15 mm3 LYSO crystals packed with a diffuse reflector and read out by a single Hamamatsu 64 channel multi-anode PMT. Such a design made it compact, modular and offered a cost-effective solution to obtaining excellent energy and timing resolution. To minimize the number of readout signals, a compact front-end readout electronics that summed anode signals along each of the orthogonal directions was also developed. Experimental evaluation of detector performance demonstrates clear discrimination of the crystals within the detector. An average energy resolution (FWHM) of 12.7 ± 2.6% and average coincidence timing resolution (FWHM) of 348 ps was measured, demonstrating suitability for use in the development of a high spatial resolution time-of-flight scanner for dedicated breast PET imaging. PMID:25246711
NASA Astrophysics Data System (ADS)
Du, Junwei; Bai, Xiaowei; Gola, Alberto; Acerbi, Fabio; Ferri, Alessandro; Piemonte, Claudio; Yang, Yongfeng; Cherry, Simon R.
2018-02-01
The goal of this study was to exploit the excellent spatial resolution characteristics of a position-sensitive silicon photomultiplier (SiPM) and develop a high-resolution depth-of-interaction (DOI) encoding positron emission tomography (PET) detector module. The detector consists of a 30 × 30 array of 0.445 × 0.445 × 20 mm3 polished LYSO crystals coupled to two 15.5 × 15.5 mm2 linearly-graded SiPM (LG-SiPM) arrays at both ends. The flood histograms show that all the crystals in the LYSO array can be resolved. The energy resolution, the coincidence timing resolution and the DOI resolution were 21.8 ± 5.8%, 1.23 ± 0.10 ns and 3.8 ± 1.2 mm, respectively, at a temperature of -10 °C and a bias voltage of 35.0 V. The performance did not degrade significantly for event rates of up to 130 000 counts s-1. This detector represents an attractive option for small-bore PET scanner designs that simultaneously emphasize high spatial resolution and high detection efficiency, important, for example, in preclinical imaging of the rodent brain with neuroreceptor ligands.
Spatial, Temporal and Spectral Satellite Image Fusion via Sparse Representation
NASA Astrophysics Data System (ADS)
Song, Huihui
Remote sensing provides good measurements for monitoring and further analyzing the climate change, dynamics of ecosystem, and human activities in global or regional scales. Over the past two decades, the number of launched satellite sensors has been increasing with the development of aerospace technologies and the growing requirements on remote sensing data in a vast amount of application fields. However, a key technological challenge confronting these sensors is that they tradeoff between spatial resolution and other properties, including temporal resolution, spectral resolution, swath width, etc., due to the limitations of hardware technology and budget constraints. To increase the spatial resolution of data with other good properties, one possible cost-effective solution is to explore data integration methods that can fuse multi-resolution data from multiple sensors, thereby enhancing the application capabilities of available remote sensing data. In this thesis, we propose to fuse the spatial resolution with temporal resolution and spectral resolution, respectively, based on sparse representation theory. Taking the study case of Landsat ETM+ (with spatial resolution of 30m and temporal resolution of 16 days) and MODIS (with spatial resolution of 250m ~ 1km and daily temporal resolution) reflectance, we propose two spatial-temporal fusion methods to combine the fine spatial information of Landsat image and the daily temporal resolution of MODIS image. Motivated by that the images from these two sensors are comparable on corresponding bands, we propose to link their spatial information on available Landsat- MODIS image pair (captured on prior date) and then predict the Landsat image from the MODIS counterpart on prediction date. To well-learn the spatial details from the prior images, we use a redundant dictionary to extract the basic representation atoms for both Landsat and MODIS images based on sparse representation. Under the scenario of two prior Landsat-MODIS image pairs, we build the corresponding relationship between the difference images of MODIS and ETM+ by training a low- and high-resolution dictionary pair from the given prior image pairs. In the second scenario, i.e., only one Landsat- MODIS image pair being available, we directly correlate MODIS and ETM+ data through an image degradation model. Then, the fusion stage is achieved by super-resolving the MODIS image combining the high-pass modulation in a two-layer fusion framework. Remarkably, the proposed spatial-temporal fusion methods form a unified framework for blending remote sensing images with phenology change or land-cover-type change. Based on the proposed spatial-temporal fusion models, we propose to monitor the land use/land cover changes in Shenzhen, China. As a fast-growing city, Shenzhen faces the problem of detecting the rapid changes for both rational city planning and sustainable development. However, the cloudy and rainy weather in region Shenzhen located makes the capturing circle of high-quality satellite images longer than their normal revisit periods. Spatial-temporal fusion methods are capable to tackle this problem by improving the spatial resolution of images with coarse spatial resolution but frequent temporal coverage, thereby making the detection of rapid changes possible. On two Landsat-MODIS datasets with annual and monthly changes, respectively, we apply the proposed spatial-temporal fusion methods to the task of multiple change detection. Afterward, we propose a novel spatial and spectral fusion method for satellite multispectral and hyperspectral (or high-spectral) images based on dictionary-pair learning and sparse non-negative matrix factorization. By combining the spectral information from hyperspectral image, which is characterized by low spatial resolution but high spectral resolution and abbreviated as LSHS, and the spatial information from multispectral image, which is featured by high spatial resolution but low spectral resolution and abbreviated as HSLS, this method aims to generate the fused data with both high spatial and high spectral resolutions. Motivated by the observation that each hyperspectral pixel can be represented by a linear combination of a few endmembers, this method first extracts the spectral bases of LSHS and HSLS images by making full use of the rich spectral information in LSHS data. The spectral bases of these two categories data then formulate a dictionary-pair due to their correspondence in representing each pixel spectra of LSHS data and HSLS data, respectively. Subsequently, the LSHS image is spatially unmixed by representing the HSLS image with respect to the corresponding learned dictionary to derive its representation coefficients. Combining the spectral bases of LSHS data and the representation coefficients of HSLS data, we finally derive the fused data characterized by the spectral resolution of LSHS data and the spatial resolution of HSLS data.
The validation process for a moderate resolution leaf area index (LAI) product (i.e., MODIS) involves the creation of a high spatial resolution LAI reference map (Lai-RM), which when scaled to the moderate LAI resolution (i.e., >1 km) allows for comparison and analysis with this ...
High-resolution land cover classification using low resolution global data
NASA Astrophysics Data System (ADS)
Carlotto, Mark J.
2013-05-01
A fusion approach is described that combines texture features from high-resolution panchromatic imagery with land cover statistics derived from co-registered low-resolution global databases to obtain high-resolution land cover maps. The method does not require training data or any human intervention. We use an MxN Gabor filter bank consisting of M=16 oriented bandpass filters (0-180°) at N resolutions (3-24 meters/pixel). The size range of these spatial filters is consistent with the typical scale of manmade objects and patterns of cultural activity in imagery. Clustering reduces the complexity of the data by combining pixels that have similar texture into clusters (regions). Texture classification assigns a vector of class likelihoods to each cluster based on its textural properties. Classification is unsupervised and accomplished using a bank of texture anomaly detectors. Class likelihoods are modulated by land cover statistics derived from lower resolution global data over the scene. Preliminary results from a number of Quickbird scenes show our approach is able to classify general land cover features such as roads, built up area, forests, open areas, and bodies of water over a wide range of scenes.
High density event-related potential data acquisition in cognitive neuroscience.
Slotnick, Scott D
2010-04-16
Functional magnetic resonance imaging (fMRI) is currently the standard method of evaluating brain function in the field of Cognitive Neuroscience, in part because fMRI data acquisition and analysis techniques are readily available. Because fMRI has excellent spatial resolution but poor temporal resolution, this method can only be used to identify the spatial location of brain activity associated with a given cognitive process (and reveals virtually nothing about the time course of brain activity). By contrast, event-related potential (ERP) recording, a method that is used much less frequently than fMRI, has excellent temporal resolution and thus can track rapid temporal modulations in neural activity. Unfortunately, ERPs are under utilized in Cognitive Neuroscience because data acquisition techniques are not readily available and low density ERP recording has poor spatial resolution. In an effort to foster the increased use of ERPs in Cognitive Neuroscience, the present article details key techniques involved in high density ERP data acquisition. Critically, high density ERPs offer the promise of excellent temporal resolution and good spatial resolution (or excellent spatial resolution if coupled with fMRI), which is necessary to capture the spatial-temporal dynamics of human brain function.
NASA Astrophysics Data System (ADS)
Huang, Danqing; Yan, Peiwen; Zhu, Jian; Zhang, Yaocun; Kuang, Xueyuan; Cheng, Jing
2018-04-01
The uncertainty of global summer precipitation simulated by the 23 CMIP5 CGCMs and the possible impacts of model resolutions are investigated in this study. Large uncertainties exist over the tropical and subtropical regions, which can be mainly attributed to convective precipitation simulation. High-resolution models (HRMs) and low-resolution models (LRMs) are further investigated to demonstrate their different contributions to the uncertainties of the ensemble mean. It shows that the high-resolution model ensemble means (HMME) and low-resolution model ensemble mean (LMME) mitigate the biases between the MME and observation over most continents and oceans, respectively. The HMME simulates more precipitation than the LMME over most oceans, but less precipitation over some continents. The dominant precipitation category in the HRMs (LRMs) is the heavy precipitation (moderate precipitation) over the tropic regions. The combinations of convective and stratiform precipitation are also quite different: the HMME has much higher ratio of stratiform precipitation while the LMME has more convective precipitation. Finally, differences in precipitation between the HMME and LMME can be traced to their differences in the SST simulations via the local and remote air-sea interaction.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Krishnan, Venkat; Cole, Wesley
Power sector capacity expansion models (CEMs) have a broad range of spatial resolutions. This paper uses the Regional Energy Deployment System (ReEDS) model, a long-term national scale electric sector CEM, to evaluate the value of high spatial resolution for CEMs. ReEDS models the United States with 134 load balancing areas (BAs) and captures the variability in existing generation parameters, future technology costs, performance, and resource availability using very high spatial resolution data, especially for wind and solar modeled at 356 resource regions. In this paper we perform planning studies at three different spatial resolutions--native resolution (134 BAs), state-level, and NERCmore » region level--and evaluate how results change under different levels of spatial aggregation in terms of renewable capacity deployment and location, associated transmission builds, and system costs. The results are used to ascertain the value of high geographically resolved models in terms of their impact on relative competitiveness among renewable energy resources.« less
NASA Astrophysics Data System (ADS)
Afandi, M. I.; Adinanta, H.; Setiono, A.; Qomaruddin; Widiyatmoko, B.
2018-03-01
There are many ways to measure landslide displacement using sensors such as multi-turn potentiometer, fiber optic strain sensor, GPS, geodetic measurement, ground penetrating radar, etc. The proposed way is to use an optical encoder that produces pulse signal with high stability of measurement resolution despite voltage source instability. The landslide measurement using extensometer based on optical encoder has the ability of high resolution for wide range measurement and for a long period of time. The type of incremental optical encoder provides information about the pulse and direction of a rotating shaft by producing quadrature square wave cycle per increment of shaft movement. The result of measurement using 2,000 pulses per resolution of optical encoder has been obtained. Resolution of extensometer is 36 μm with speed limit of about 3.6 cm/s. System test in hazard landslide area has been carried out with good reliability for small landslide displacement monitoring.
Meng, Lingyan; Yang, Zhilin; Chen, Jianing; Sun, Mengtao
2015-01-01
Tip-enhanced Raman spectroscopy (TERS) with sub-nanometer spatial resolution has been recently demonstrated experimentally. However, the physical mechanism underlying is still under discussion. Here we theoretically investigate the electric field gradient of a coupled tip-substrate system. Our calculations suggest that the ultra-high spatial resolution of TERS can be partially attributed to the electric field gradient effect owning to its tighter spatial confinement and sensitivity to the infrared (IR)-active of molecules. Particularly, in the case of TERS of flat-lying H2TBPP molecules,we find the electric field gradient enhancement is the dominating factor for the high spatial resolution, which qualitatively coincides with previous experimental report. Our theoretical study offers a new paradigm for understanding the mechanisms of the ultra-high spatial resolution demonstrated in tip-enhanced spectroscopy which is of importance but neglected. PMID:25784161
IMART software for correction of motion artifacts in images collected in intravital microscopy
Dunn, Kenneth W; Lorenz, Kevin S; Salama, Paul; Delp, Edward J
2014-01-01
Intravital microscopy is a uniquely powerful tool, providing the ability to characterize cell and organ physiology in the natural context of the intact, living animal. With the recent development of high-resolution microscopy techniques such as confocal and multiphoton microscopy, intravital microscopy can now characterize structures at subcellular resolution and capture events at sub-second temporal resolution. However, realizing the potential for high resolution requires remarkable stability in the tissue. Whereas the rigid structure of the skull facilitates high-resolution imaging of the brain, organs of the viscera are free to move with respiration and heartbeat, requiring additional apparatus for immobilization. In our experience, these methods are variably effective, so that many studies are compromised by residual motion artifacts. Here we demonstrate the use of IMART, a software tool for removing motion artifacts from intravital microscopy images collected in time series or in three dimensions. PMID:26090271
Resolution enhancement of low-quality videos using a high-resolution frame
NASA Astrophysics Data System (ADS)
Pham, Tuan Q.; van Vliet, Lucas J.; Schutte, Klamer
2006-01-01
This paper proposes an example-based Super-Resolution (SR) algorithm of compressed videos in the Discrete Cosine Transform (DCT) domain. Input to the system is a Low-Resolution (LR) compressed video together with a High-Resolution (HR) still image of similar content. Using a training set of corresponding LR-HR pairs of image patches from the HR still image, high-frequency details are transferred from the HR source to the LR video. The DCT-domain algorithm is much faster than example-based SR in spatial domain 6 because of a reduction in search dimensionality, which is a direct result of the compact and uncorrelated DCT representation. Fast searching techniques like tree-structure vector quantization 16 and coherence search1 are also key to the improved efficiency. Preliminary results on MJPEG sequence show promising result of the DCT-domain SR synthesis approach.
Radar/radiometer facilities for precipitation measurements
NASA Technical Reports Server (NTRS)
Hodge, D. B.; Taylor, R. C.
1973-01-01
The OSU ElectroScience Laboratory Radar/Radiometer Facilities are described. This instrumentation includes a high-resolution radar/radiometer system, a fully automated low-resolution radar system, and a small surveillance radar system. The high-resolution radar/radiometer system operates at 3, 9, and 15 GHz using two 9.1 m and one 4.6 m parabolic antennas, respectively. The low-resolution and surveillance radars operate at 9 and 15 GHz, respectively. Both the high- and low-resolution systems are interfaced to real-time digital processing and recording systems. This capability was developed for the measurement of the temporal and spatial characteristics of precipitation in conjunction with millimeter wavelength propagation studies utilizing the Advanced Technology Satellites. Precipitation characteristics derived from these measurements could also be of direct benefit in such diverse areas as: the atmospheric sciences, meteorology, water resources, flood control and warning, severe storm warning, agricultural crop studies, and urban and regional planning.
NASA Astrophysics Data System (ADS)
Preissner, M.; Murrie, R. P.; Pinar, I.; Werdiger, F.; Carnibella, R. P.; Zosky, G. R.; Fouras, A.; Dubsky, S.
2018-04-01
We have developed an x-ray imaging system for in vivo four-dimensional computed tomography (4DCT) of small animals for pre-clinical lung investigations. Our customized laboratory facility is capable of high resolution in vivo imaging at high frame rates. Characterization using phantoms demonstrate a spatial resolution of slightly below 50 μm at imaging rates of 30 Hz, and the ability to quantify material density differences of at least 3%. We benchmark our system against existing small animal pre-clinical CT scanners using a quality factor that combines spatial resolution, image noise, dose and scan time. In vivo 4DCT images obtained on our system demonstrate resolution of important features such as blood vessels and small airways, of which the smallest discernible were measured as 55–60 μm in cross section. Quantitative analysis of the images demonstrate regional differences in ventilation between injured and healthy lungs.
Development of a high-resolution cavity-beam position monitor
NASA Astrophysics Data System (ADS)
Inoue, Yoichi; Hayano, Hitoshi; Honda, Yosuke; Takatomi, Toshikazu; Tauchi, Toshiaki; Urakawa, Junji; Komamiya, Sachio; Nakamura, Tomoya; Sanuki, Tomoyuki; Kim, Eun-San; Shin, Seung-Hwan; Vogel, Vladimir
2008-06-01
We have developed a high-resolution cavity-beam position monitor (BPM) to be used at the focal point of the ATF2, which is a test beam line that is now being built to demonstrate stable orbit control at ˜nanometer resolution. The design of the cavity structure was optimized for the Accelerator Test Facility (ATF) beam in various ways. For example, the cavity has a rectangular shape in order to isolate two dipole modes in orthogonal directions, and a relatively thin gap that is less sensitive to trajectory inclination. A two stage homodyne mixer with highly sensitive electronics and phase-sensitive detection was also developed. Two BPM blocks, each containing two cavity BPMs, were installed in the existing ATF beam line using a rigid support frame. After testing the basic characteristics, we measured the resolution using three BPMs. The system demonstrated 8.7 nm position resolution over a dynamic range of 5μm.