Sample records for high resolution monitor

  1. Numerical Simulation and Mechanical Design for TPS Electron Beam Position Monitors

    NASA Astrophysics Data System (ADS)

    Hsueh, H. P.; Kuan, C. K.; Ueng, T. S.; Hsiung, G. Y.; Chen, J. R.

    2007-01-01

    Comprehensive study on the mechanical design and numerical simulation for the high resolution electron beam position monitors are key steps to build the newly proposed 3rd generation synchrotron radiation research facility, Taiwan Photon Source (TPS). With more advanced electromagnetic simulation tool like MAFIA tailored specifically for particle accelerator, the design for the high resolution electron beam position monitors can be tested in such environment before they are experimentally tested. The design goal of our high resolution electron beam position monitors is to get the best resolution through sensitivity and signal optimization. The definitions and differences between resolution and sensitivity of electron beam position monitors will be explained. The design consideration is also explained. Prototype deign has been carried out and the related simulations were also carried out with MAFIA. The results are presented here. Sensitivity as high as 200 in x direction has been achieved in x direction at 500 MHz.

  2. High Resolution PET Imaging Probe for the Detection, Molecular Characterization and Treatment Monitoring of Prostate Cancer

    DTIC Science & Technology

    2010-07-01

    W81XWH-09-1-0420 TITLE: High Resolution PET Imaging Probe for the Detection, Molecular Characterization and Treatment Monitoring of Prostate Cancer...4. TITLE AND SUBTITLE High-Resolution PET Imaging Probe for the Detection, Molecular Characterization and Treatment of Prostate Cancer... molecular imaging for diagnosis as well as treatment planning and monitoring in prostate cancer. This investigation hypothesizes that a dedicated

  3. Monitoring Cyanobacteria Bloom in Taihu Lake by High-Resolution Geostationary Satellite GF4

    NASA Astrophysics Data System (ADS)

    Liu, J.

    2018-04-01

    The high-resolution remote-sensing satellite, GF4 PMS, of China's geosynchronous earth orbit was successfully launched on December 29, 2015. Its high spatial resolution and high temporal resolution allow GF4 PMS to play a very important role in water environment monitoring, especially in the dynamic monitoring of lake and reservoir cyanobacteria blooms. As GF4 PMS has just been launched, there is still relatively little related research, and the practical application effect of GF4 PMS in the extraction of cyanobacteria blooms remains to be further tested. Therefore, in this study, the method and effect of GF4 PMS application in cyanobacteria bloom monitoring were studied in Taihu. It turned that GF4 PMS can be applied to the dynamic monitoring of the distribution of cyanobacteria blooms in Taihu, thereby finding the temporal and spatial variation of the distribution of cyanobacteria blooms.

  4. High Resolution Rapid Revisits Insar Monitoring of Surface Deformation

    NASA Astrophysics Data System (ADS)

    Singhroy, V.; Li, J.; Charbonneau, F.

    2014-12-01

    Monitoring surface deformation on strategic energy and transportation corridors requires high resolution spatial and temporal InSAR images for mitigation and safety purposes. High resolution air photos, lidar and other satellite images are very useful in areas where the landslides can be fatal. Recently, radar interferometry (InSAR) techniques using more rapid revisit images from several radar satellites are increasingly being used in active deformation monitoring. The Canadian RADARSAT Constellation (RCM) is a three-satellite mission that will provide rapid revisits of four days interferometric (InSAR) capabilities that will be very useful for complex deformation monitoring. For instance, the monitoring of surface deformation due to permafrost activity, complex rock slide motion and steam assisted oil extraction will benefit from this new rapid revisit capability. This paper provide examples of how the high resolution (1-3 m) rapid revisit InSAR capabilities will improve our monitoring of surface deformation and provide insights in understanding triggering mechanisms. We analysed over a hundred high resolution InSAR images over a two year period on three geologically different sites with various configurations of topography, geomorphology, and geology conditions. We show from our analysis that the more frequent InSAR acquisitions are providing more information in understanding the rates of movement and failure process of permafrost triggered retrogressive thaw flows; the complex motion of an asymmetrical wedge failure of an active rock slide and the identification of over pressure zones related to oil extraction using steam injection. Keywords: High resolution, InSAR, rapid revisits, triggering mechanisms, oil extraction.

  5. Development of high resolution target monitor.

    DOT National Transportation Integrated Search

    2008-01-01

    The proposed High-resolution Target Movement Monitor uses triangulation theory but in a unique way. Unlike the commercially available triangulation systems which use sensing diodes to perceive reflected laser signatures and are limited to very short ...

  6. Two-photon imaging of spatially extended neuronal network dynamics with high temporal resolution.

    PubMed

    Lillis, Kyle P; Eng, Alfred; White, John A; Mertz, Jerome

    2008-07-30

    We describe a simple two-photon fluorescence imaging strategy, called targeted path scanning (TPS), to monitor the dynamics of spatially extended neuronal networks with high spatiotemporal resolution. Our strategy combines the advantages of mirror-based scanning, minimized dead time, ease of implementation, and compatibility with high-resolution low-magnification objectives. To demonstrate the performance of TPS, we monitor the calcium dynamics distributed across an entire juvenile rat hippocampus (>1.5mm), at scan rates of 100 Hz, with single cell resolution and single action potential sensitivity. Our strategy for fast, efficient two-photon microscopy over spatially extended regions provides a particularly attractive solution for monitoring neuronal population activity in thick tissue, without sacrificing the signal-to-noise ratio or high spatial resolution associated with standard two-photon microscopy. Finally, we provide the code to make our technique generally available.

  7. A compact CCD-monitored atomic force microscope with optical vision and improved performances.

    PubMed

    Mingyue, Liu; Haijun, Zhang; Dongxian, Zhang

    2013-09-01

    A novel CCD-monitored atomic force microscope (AFM) with optical vision and improved performances has been developed. Compact optical paths are specifically devised for both tip-sample microscopic monitoring and cantilever's deflection detecting with minimized volume and optimal light-amplifying ratio. The ingeniously designed AFM probe with such optical paths enables quick and safe tip-sample approaching, convenient and effective tip-sample positioning, and high quality image scanning. An image stitching method is also developed to build a wider-range AFM image under monitoring. Experiments show that this AFM system can offer real-time optical vision for tip-sample monitoring with wide visual field and/or high lateral optical resolution by simply switching the objective; meanwhile, it has the elegant performances of nanometer resolution, high stability, and high scan speed. Furthermore, it is capable of conducting wider-range image measurement while keeping nanometer resolution. Copyright © 2013 Wiley Periodicals, Inc.

  8. Linking high resolution mass spectrometry data with exposure and toxicity forecasts to advance high-throughput environmental monitoring

    EPA Science Inventory

    There is a growing need in the field of exposure science for monitoring methods that rapidly screen environmental media for suspect contaminants. Measurement and analysis platforms, based on high resolution mass spectrometry (HRMS), now exist to meet this need. Here we describe r...

  9. High-resolution Mass Spectrometry of Skin Mucus for Monitoring Physiological Impacts in Fish Exposed to Wastewater Effluent at a Great Lakes AOC

    EPA Science Inventory

    High-resolution mass spectrometry is advantageous for monitoring physiological impacts and contaminant biotransformation products in fish exposed to complex wastewater effluent. We evaluated this technique using skin mucus from male and female fathead minnows (Pimephales promela...

  10. Improving crop condition monitoring at field scale by using optimal Landsat and MODIS images

    USDA-ARS?s Scientific Manuscript database

    Satellite remote sensing data at coarse resolution (kilometers) have been widely used in monitoring crop condition for decades. However, crop condition monitoring at field scale requires high resolution data in both time and space. Although a large number of remote sensing instruments with different...

  11. Satellite image time series simulation for environmental monitoring

    NASA Astrophysics Data System (ADS)

    Guo, Tao

    2014-11-01

    The performance of environmental monitoring heavily depends on the availability of consecutive observation data and it turns out an increasing demand in remote sensing community for satellite image data in the sufficient resolution with respect to both spatial and temporal requirements, which appear to be conflictive and hard to tune tradeoffs. Multiple constellations could be a solution if without concerning cost, and thus it is so far interesting but very challenging to develop a method which can simultaneously improve both spatial and temporal details. There are some research efforts to deal with the problem from various aspects, a type of approaches is to enhance the spatial resolution using techniques of super resolution, pan-sharpen etc. which can produce good visual effects, but mostly cannot preserve spectral signatures and result in losing analytical value. Another type is to fill temporal frequency gaps by adopting time interpolation, which actually doesn't increase informative context at all. In this paper we presented a novel method to generate satellite images in higher spatial and temporal details, which further enables satellite image time series simulation. Our method starts with a pair of high-low resolution data set, and then a spatial registration is done by introducing LDA model to map high and low resolution pixels correspondingly. Afterwards, temporal change information is captured through a comparison of low resolution time series data, and the temporal change is then projected onto high resolution data plane and assigned to each high resolution pixel referring the predefined temporal change patterns of each type of ground objects to generate a simulated high resolution data. A preliminary experiment shows that our method can simulate a high resolution data with a good accuracy. We consider the contribution of our method is to enable timely monitoring of temporal changes through analysis of low resolution images time series only, and usage of costly high resolution data can be reduced as much as possible, and it presents an efficient solution with great cost performance to build up an economically operational monitoring service for environment, agriculture, forest, land use investigation, and other applications.

  12. Comparison of Envisat ASAR GM, AMSR-E Passive Microwave, and MODIS Optical Remote Sensing for Flood Monitoring in Australia

    NASA Astrophysics Data System (ADS)

    Ticehurst, C. J.; Bartsch, A.; Doubkova, M.; van Dijk, A. I. J. M.

    2009-11-01

    Continuous flood monitoring can support emergency response, water management and environmental monitoring. Optical sensors such as MODIS allow inundation mapping with high spatial and temporal resolution (250-1000 m, twice daily) but are affected by cloud cover. Passive microwave sensors also acquire observations at high temporal resolution, but coarser spatial resolution (e.g. ca. 5-70 km for AMSR-E) and smaller footprints are also affected by cloud and/or rain. ScanSAR systems allow all-weather monitoring but require spatial resolution to be traded off against coverage and/or temporal resolution; e.g. the ENVISAT ASAR Global Mode observes at ca. 1 km over large regions about twice a week. The complementary role of the AMSR-E and ASAR GM data to that of MODIS is here introduced for three flood events and locations across Australia. Additional improvements can be made by integrating digital elevation models and stream flow gauging data.

  13. In-situ Fluorometers Reveal High Frequency Dynamics In Dissolved Organic Matter For Urban Rivers

    NASA Astrophysics Data System (ADS)

    Croghan, D.; Bradley, C.; Khamis, K.; Hannah, D. M.; Sadler, J. P.; Van Loon, A.

    2017-12-01

    To-date Dissolved Organic Matter (DOM) dynamics have been quantified poorly in urban rivers, despite the substantial water quality issues linked to urbanisation. Research has been hindered by the low temporal resolution of observations and over-reliance on manual sampling which often fail to capture precipitation events and diurnal dynamics. High frequency data are essential to estimate more accurately DOM fluxes/loads and to understand DOM furnishing and transport processes. Recent advances in optical sensor technology, including field deployable in-situ fluorometers, are yielding new high resolution DOM information. However, no consensus regarding the monitoring resolution required for urban systems exists, with no studies monitoring at <15 min time steps. High-frequency monitoring (5 min resolution; 4 week duration) was conducted on a headwater urban stream in Birmingham, UK (N 52.447430 W -1.936715) to determine the optimum temporal resolution for characterization of DOM event dynamics. A through-flow GGNU-30 monitored wavelengths corresponding to tryptophan-like fluorescence (TLF; Peak T1) (Ex 285 nm/ Em 345 nm) and humic-like fluorescence (HLF; Peak C) (Ex 365 nm/Em 490 nm). The results suggest that at base flow TLF and HLF are relatively stable, though episodic DOM inputs can pulse through the system, which may be missed during lower temporal resolution monitoring. High temporal variation occurs during storm events in TLF and HLF intensity: TLF intensity is highest during the rising limb of the hydrograph and can rapidly decline thereafter, indicating the importance of fast flow-path and close proximity sources to TLF dynamics. HLF intensity tracks discharge more closely, but can also quickly decline during high flow events due to dilution effects. Furthermore, the ratio of TLF:HLF when derived at high-frequency provides a useful indication of the presence and type of organic effluents in stream, which aids in the identification of Combined Sewage Overflow releases. Our work highlights the need for future studies to utilise shorter temporal scales than previously used to monitor urban DOM dynamics. The application of higher frequency monitoring enables the identification of finer-scale patterns and subsequently aids in deciphering the sources and pathways controlling urban DOM dynamics.

  14. Coordinating High-Resolution Traffic Cameras : Developing Intelligent, Collaborating Cameras for Transportation Security and Communications

    DOT National Transportation Integrated Search

    2015-08-01

    Cameras are used prolifically to monitor transportation incidents, infrastructure, and congestion. Traditional camera systems often require human monitoring and only offer low-resolution video. Researchers for the Exploratory Advanced Research (EAR) ...

  15. Data reductions and data quality for the high resolution spectrograph on the Southern African Large Telescope

    NASA Astrophysics Data System (ADS)

    Crawford, S. M.; Crause, Lisa; Depagne, Éric; Ilkiewicz, Krystian; Schroeder, Anja; Kuhn, Rudolph; Hettlage, Christian; Romero Colmenaro, Encarni; Kniazev, Alexei; Väisänen, Petri

    2016-08-01

    The High Resolution Spectrograph (HRS) on the Southern African Large Telescope (SALT) is a dual beam, fiber-fed echelle spectrograph providing high resolution capabilities to the SALT observing community. We describe the available data reduction tools and the procedures put in place for regular monitoring of the data quality from the spectrograph. Data reductions are carried out through the pyhrs package. The data characteristics and instrument stability are reported as part of the SALT Dashboard to help monitor the performance of the instrument.

  16. Integration of High-Resolution Laser Displacement Sensors and 3D Printing for Structural Health Monitoring

    PubMed Central

    Chang, Shu-Wei; Kuo, Shih-Yu; Huang, Ting-Hsuan

    2017-01-01

    This paper presents a novel experimental design for complex structural health monitoring (SHM) studies achieved by integrating 3D printing technologies, high-resolution laser displacement sensors, and multiscale entropy SHM theory. A seven-story structure with a variety of composite bracing systems was constructed using a dual-material 3D printer. A wireless Bluetooth vibration speaker was used to excite the ground floor of the structure, and high-resolution laser displacement sensors (1-μm resolution) were used to monitor the displacement history on different floors. Our results showed that the multiscale entropy SHM method could detect damage on the 3D-printed structures. The results of this study demonstrate that integrating 3D printing technologies and high-resolution laser displacement sensors enables the design of cheap, fast processing, complex, small-scale civil structures for future SHM studies. The novel experimental design proposed in this study provides a suitable platform for investigating the validity and sensitivity of SHM in different composite structures and damage conditions for real life applications in the future. PMID:29271937

  17. Integration of High-Resolution Laser Displacement Sensors and 3D Printing for Structural Health Monitoring.

    PubMed

    Chang, Shu-Wei; Lin, Tzu-Kang; Kuo, Shih-Yu; Huang, Ting-Hsuan

    2017-12-22

    This paper presents a novel experimental design for complex structural health monitoring (SHM) studies achieved by integrating 3D printing technologies, high-resolution laser displacement sensors, and multiscale entropy SHM theory. A seven-story structure with a variety of composite bracing systems was constructed using a dual-material 3D printer. A wireless Bluetooth vibration speaker was used to excite the ground floor of the structure, and high-resolution laser displacement sensors (1-μm resolution) were used to monitor the displacement history on different floors. Our results showed that the multiscale entropy SHM method could detect damage on the 3D-printed structures. The results of this study demonstrate that integrating 3D printing technologies and high-resolution laser displacement sensors enables the design of cheap, fast processing, complex, small-scale civil structures for future SHM studies. The novel experimental design proposed in this study provides a suitable platform for investigating the validity and sensitivity of SHM in different composite structures and damage conditions for real life applications in the future.

  18. Agricultural Land Use mapping by multi-sensor approach for hydrological water quality monitoring

    NASA Astrophysics Data System (ADS)

    Brodsky, Lukas; Kodesova, Radka; Kodes, Vit

    2010-05-01

    The main objective of this study is to demonstrate potential of operational use of the high and medium resolution remote sensing data for hydrological water quality monitoring by mapping agriculture intensity and crop structures. In particular use of remote sensing mapping for optimization of pesticide monitoring. The agricultural mapping task is tackled by means of medium spatial and high temporal resolution ESA Envisat MERIS FR images together with single high spatial resolution IRS AWiFS image covering the whole area of interest (the Czech Republic). High resolution data (e.g. SPOT, ALOS, Landsat) are often used for agricultural land use classification, but usually only at regional or local level due to data availability and financial constraints. AWiFS data (nominal spatial resolution 56 m) due to the wide satellite swath seems to be more suitable for use at national level. Nevertheless, one of the critical issues for such a classification is to have sufficient image acquisitions over the whole vegetation period to describe crop development in appropriate way. ESA MERIS middle-resolution data were used in several studies for crop classification. The high temporal and also spectral resolution of MERIS data has indisputable advantage for crop classification. However, spatial resolution of 300 m results in mixture signal in a single pixel. AWiFS-MERIS data synergy brings new perspectives in agricultural Land Use mapping. Also, the developed methodology procedure is fully compatible with future use of ESA (GMES) Sentinel satellite images. The applied methodology of hybrid multi-sensor approach consists of these main stages: a/ parcel segmentation and spectral pre-classification of high resolution image (AWiFS); b/ ingestion of middle resolution (MERIS) vegetation spectro-temporal features; c/ vegetation signatures unmixing; and d/ semantic object-oriented classification of vegetation classes into final classification scheme. These crop groups were selected to be classified: winter crops, spring crops, oilseed rape, legumes, summer and other crops. This study highlights operational potentials of high temporal full resolution MERIS images in agricultural land use monitoring. Practical application of this methodology is foreseen, among others, in the water quality monitoring. Effective pesticide monitoring relies also on spatial distribution of applied pesticides, which can be derived from crop - plant protection product relationship. Knowledge of areas with predominant occurrence of specific crop based on remote sensing data described above can be used for a forecast of probable plant protection product application, thus cost-effective pesticide monitoring. The remote sensing data used on a continuous basis can be used in other long-term water management issues and provide valuable data for decision makers. Acknowledgement: Authors acknowledge the financial support of the Ministry of Education, Youth and Sports of the Czech Republic (grants No. 2B06095 and No. MSM 6046070901). The study was also supported by ESA CAT-1 (ref. 4358) and SOSI projects (Spatial Observation Services and Infrastructure; ref. GSTP-RTDA-EOPG-SW-08-0004).

  19. Identifying species from the air: UAVs and the very high resolution challenge for plant conservation.

    PubMed

    Baena, Susana; Moat, Justin; Whaley, Oliver; Boyd, Doreen S

    2017-01-01

    The Pacific Equatorial dry forest of Northern Peru is recognised for its unique endemic biodiversity. Although highly threatened the forest provides livelihoods and ecosystem services to local communities. As agro-industrial expansion and climatic variation transform the region, close ecosystem monitoring is essential for viable adaptation strategies. UAVs offer an affordable alternative to satellites in obtaining both colour and near infrared imagery to meet the specific requirements of spatial and temporal resolution of a monitoring system. Combining this with their capacity to produce three dimensional models of the environment provides an invaluable tool for species level monitoring. Here we demonstrate that object-based image analysis of very high resolution UAV images can identify and quantify keystone tree species and their health across wide heterogeneous landscapes. The analysis exposes the state of the vegetation and serves as a baseline for monitoring and adaptive implementation of community based conservation and restoration in the area.

  20. Mapping evapotranspiration with high resolution aircraft imagery over vineyards using one and two source modeling schemes

    USDA-ARS?s Scientific Manuscript database

    Thermal and multispectral remote sensing data from low-altitude aircraft can provide high spatial resolution necessary for sub-field (= 10 m) and plant canopy (= 1 m) scale evapotranspiration (ET) monitoring. In this study, high resolution aircraft sub-meter scale thermal infrared and multispectral...

  1. Parallel Reaction Monitoring: A Targeted Experiment Performed Using High Resolution and High Mass Accuracy Mass Spectrometry

    PubMed Central

    Rauniyar, Navin

    2015-01-01

    The parallel reaction monitoring (PRM) assay has emerged as an alternative method of targeted quantification. The PRM assay is performed in a high resolution and high mass accuracy mode on a mass spectrometer. This review presents the features that make PRM a highly specific and selective method for targeted quantification using quadrupole-Orbitrap hybrid instruments. In addition, this review discusses the label-based and label-free methods of quantification that can be performed with the targeted approach. PMID:26633379

  2. Does the Data Resolution/origin Matter? Satellite, Airborne and Uav Imagery to Tackle Plant Invasions

    NASA Astrophysics Data System (ADS)

    Müllerová, Jana; Brůna, Josef; Dvořák, Petr; Bartaloš, Tomáš; Vítková, Michaela

    2016-06-01

    Invasive plant species represent a serious threat to biodiversity and landscape as well as human health and socio-economy. To successfully fight plant invasions, new methods enabling fast and efficient monitoring, such as remote sensing, are needed. In an ongoing project, optical remote sensing (RS) data of different origin (satellite, aerial and UAV), spectral (panchromatic, multispectral and color), spatial (very high to medium) and temporal resolution, and various technical approaches (object-, pixelbased and combined) are tested to choose the best strategies for monitoring of four invasive plant species (giant hogweed, black locust, tree of heaven and exotic knotweeds). In our study, we address trade-offs between spectral, spatial and temporal resolutions required for balance between the precision of detection and economic feasibility. For the best results, it is necessary to choose best combination of spatial and spectral resolution and phenological stage of the plant in focus. For species forming distinct inflorescences such as giant hogweed iterative semi-automated object-oriented approach was successfully applied even for low spectral resolution data (if pixel size was sufficient) whereas for lower spatial resolution satellite imagery or less distinct species with complicated architecture such as knotweed, combination of pixel and object based approaches was used. High accuracies achieved for very high resolution data indicate the possible application of described methodology for monitoring invasions and their long-term dynamics elsewhere, making management measures comparably precise, fast and efficient. This knowledge serves as a basis for prediction, monitoring and prioritization of management targets.

  3. High-resolution remote sensing of water quality in the San Francisco Bay-Delta Estuary

    USGS Publications Warehouse

    Fichot, Cédric G.; Downing, Bryan D.; Bergamaschi, Brian; Windham-Myers, Lisamarie; Marvin-DiPasquale, Mark C.; Thompson, David R.; Gierach, Michelle M.

    2015-01-01

    The San Francisco Bay–Delta Estuary watershed is a major source of freshwater for California and a profoundly human-impacted environment. The water quality monitoring that is critical to the management of this important water resource and ecosystem relies primarily on a system of fixed water-quality monitoring stations, but the limited spatial coverage often hinders understanding. Here, we show how the latest technology in visible/near-infrared imaging spectroscopy can facilitate water quality monitoring in this highly dynamic and heterogeneous system by enabling simultaneous depictions of several water quality indicators at very high spatial resolution. The airborne portable remote imaging spectrometer (PRISM) was used to derive high-spatial-resolution (2.6 × 2.6 m) distributions of turbidity, and dissolved organic carbon (DOC) and chlorophyll-a concentrations in a wetland-influenced region of this estuary. A filter-passing methylmercury vs DOC relationship was also developed using in situ samples and enabled the high-spatial-resolution depiction of surface methylmercury concentrations in this area. The results illustrate how high-resolution imaging spectroscopy can inform management and policy development in important inland and estuarine water bodies by facilitating the detection of point- and nonpoint-source pollution, and by providing data to help assess the complex impacts of wetland restoration and climate change on water quality and ecosystem productivity.

  4. Generating high temporal and spatial resolution thermal band imagery using robust sharpening approach

    USDA-ARS?s Scientific Manuscript database

    Thermal infrared band imagery provides key information for detecting wild fires, mapping land surface energy fluxes and evapotranspiration, monitoring urban heat fluxes and drought monitoring. Thermal infrared (TIR) imagery at fine resolution is required for field scale applications. However, therma...

  5. Improving catchment scale water quality modelling with continuous high resolution monitoring of metals in runoff

    NASA Astrophysics Data System (ADS)

    Saari, Markus; Rossi, Pekka; Blomberg von der Geest, Kalle; Mäkinen, Ari; Postila, Heini; Marttila, Hannu

    2017-04-01

    High metal concentrations in natural waters is one of the key environmental and health problems globally. Continuous in-situ analysis of metals from runoff water is technically challenging but essential for the better understanding of processes which lead to pollutant transport. Currently, typical analytical methods for monitoring elements in liquids are off-line laboratory methods such as ICP-OES (Inductively Coupled Plasma Optical Emission Spectroscopy) and ICP-MS (ICP combined with a mass spectrometer). Disadvantage of the both techniques is time consuming sample collection, preparation, and off-line analysis at laboratory conditions. Thus use of these techniques lack possibility for real-time monitoring of element transport. We combined a novel high resolution on-line metal concentration monitoring with catchment scale physical hydrological modelling in Mustijoki river in Southern Finland in order to study dynamics of processes and form a predictive warning system for leaching of metals. A novel on-line measurement technique based on micro plasma emission spectroscopy (MPES) is tested for on-line detection of selected elements (e.g. Na, Mg, Al, K, Ca, Fe, Ni, Cu, Cd and Pb) in runoff waters. The preliminary results indicate that MPES can sufficiently detect and monitor metal concentrations from river water. Water and Soil Assessment Tool (SWAT) catchment scale model was further calibrated with high resolution metal concentration data. We show that by combining high resolution monitoring and catchment scale physical based modelling, further process studies and creation of early warning systems, for example to optimization of drinking water uptake from rivers, can be achieved.

  6. Analysing the Advantages of High Temporal Resolution Geostationary MSG SEVIRI Data Compared to Polar Operational Environmental Satellite Data for Land Surface Monitoring in Africa

    NASA Technical Reports Server (NTRS)

    Fensholt, R.; Anyamba, A.; Huber, S.; Proud, S. R.; Tucker, C. J.; Small, J.; Pak, E.; Rasmussen, M. O.; Sandholt, I.; Shisanya, C.

    2011-01-01

    Since 1972, satellite remote sensing of the environment has been dominated by polar-orbiting sensors providing useful data for monitoring the earth s natural resources. However their observation and monitoring capacity are inhibited by daily to monthly looks for any given ground surface which often is obscured by frequent and persistent cloud cover creating large gaps in time series measurements. The launch of the Meteosat Second Generation (MSG) satellite into geostationary orbit has opened new opportunities for land surface monitoring. The Spinning Enhanced Visible and Infrared Imager (SEVIRI) instrument on-board MSG with an imaging capability every 15 minutes which is substantially greater than any temporal resolution that can be obtained from existing polar operational environmental satellites (POES) systems currently in use for environmental monitoring. Different areas of the African continent were affected by droughts and floods in 2008 caused by periods of abnormally low and high rainfall, respectively. Based on the effectiveness of monitoring these events from Earth Observation (EO) data the current analyses show that the new generation of geostationary remote sensing data can provide higher temporal resolution cloud-free (less than 5 days) measurements of the environment as compared to existing POES systems. SEVIRI MSG 5-day continental scale composites will enable rapid assessment of environmental conditions and improved early warning of disasters for the African continent such as flooding or droughts. The high temporal resolution geostationary data will complement existing higher spatial resolution polar-orbiting satellite data for various dynamic environmental and natural resource applications of terrestrial ecosystems.

  7. A method for generating high resolution satellite image time series

    NASA Astrophysics Data System (ADS)

    Guo, Tao

    2014-10-01

    There is an increasing demand for satellite remote sensing data with both high spatial and temporal resolution in many applications. But it still is a challenge to simultaneously improve spatial resolution and temporal frequency due to the technical limits of current satellite observation systems. To this end, much R&D efforts have been ongoing for years and lead to some successes roughly in two aspects, one includes super resolution, pan-sharpen etc. methods which can effectively enhance the spatial resolution and generate good visual effects, but hardly preserve spectral signatures and result in inadequate analytical value, on the other hand, time interpolation is a straight forward method to increase temporal frequency, however it increase little informative contents in fact. In this paper we presented a novel method to simulate high resolution time series data by combing low resolution time series data and a very small number of high resolution data only. Our method starts with a pair of high and low resolution data set, and then a spatial registration is done by introducing LDA model to map high and low resolution pixels correspondingly. Afterwards, temporal change information is captured through a comparison of low resolution time series data, and then projected onto the high resolution data plane and assigned to each high resolution pixel according to the predefined temporal change patterns of each type of ground objects. Finally the simulated high resolution data is generated. A preliminary experiment shows that our method can simulate a high resolution data with a reasonable accuracy. The contribution of our method is to enable timely monitoring of temporal changes through analysis of time sequence of low resolution images only, and usage of costly high resolution data can be reduces as much as possible, and it presents a highly effective way to build up an economically operational monitoring solution for agriculture, forest, land use investigation, environment and etc. applications.

  8. High-resolution near real-time drought monitoring in South Asia

    NASA Astrophysics Data System (ADS)

    Aadhar, Saran; Mishra, Vimal

    2017-10-01

    Drought in South Asia affect food and water security and pose challenges for millions of people. For policy-making, planning, and management of water resources at sub-basin or administrative levels, high-resolution datasets of precipitation and air temperature are required in near-real time. We develop a high-resolution (0.05°) bias-corrected precipitation and temperature data that can be used to monitor near real-time drought conditions over South Asia. Moreover, the dataset can be used to monitor climatic extremes (heat and cold waves, dry and wet anomalies) in South Asia. A distribution mapping method was applied to correct bias in precipitation and air temperature, which performed well compared to the other bias correction method based on linear scaling. Bias-corrected precipitation and temperature data were used to estimate Standardized precipitation index (SPI) and Standardized Precipitation Evapotranspiration Index (SPEI) to assess the historical and current drought conditions in South Asia. We evaluated drought severity and extent against the satellite-based Normalized Difference Vegetation Index (NDVI) anomalies and satellite-driven Drought Severity Index (DSI) at 0.05°. The bias-corrected high-resolution data can effectively capture observed drought conditions as shown by the satellite-based drought estimates. High resolution near real-time dataset can provide valuable information for decision-making at district and sub-basin levels.

  9. High-resolution reflectometer for monitoring of biological samples

    NASA Astrophysics Data System (ADS)

    Men, Liqiu; Lu, Ping; Chen, Qiying

    2008-06-01

    High-resolution optical low-coherence reflectometry is applied to monitor biological samples. It has been found that the reflectivity of aged cow's milk is significantly lower than that of the fresh milk with a difference of 5.35dB. During the process of heating the fresh milk at a constant temperature of 80°C, the reflectivity of the milk gradually decreases with the increase of the heating duration. The technique is proved to be effective in monitoring the change in the refractive index of the sample.

  10. Assessment of a vertical high-resolution distributed-temperature-sensing system in a shallow thermohaline environment

    NASA Astrophysics Data System (ADS)

    Suárez, F.; Aravena, J. E.; Hausner, M. B.; Childress, A. E.; Tyler, S. W.

    2011-03-01

    In shallow thermohaline-driven lakes it is important to measure temperature on fine spatial and temporal scales to detect stratification or different hydrodynamic regimes. Raman spectra distributed temperature sensing (DTS) is an approach available to provide high spatial and temporal temperature resolution. A vertical high-resolution DTS system was constructed to overcome the problems of typical methods used in the past, i.e., without disturbing the water column, and with resistance to corrosive environments. This paper describes a method to quantitatively assess accuracy, precision and other limitations of DTS systems to fully utilize the capacity of this technology, with a focus on vertical high-resolution to measure temperatures in shallow thermohaline environments. It also presents a new method to manually calibrate temperatures along the optical fiber achieving significant improved resolution. The vertical high-resolution DTS system is used to monitor the thermal behavior of a salt-gradient solar pond, which is an engineered shallow thermohaline system that allows collection and storage of solar energy for a long period of time. The vertical high-resolution DTS system monitors the temperature profile each 1.1 cm vertically and in time averages as small as 10 s. Temperature resolution as low as 0.035 °C is obtained when the data are collected at 5-min intervals.

  11. Identifying species from the air: UAVs and the very high resolution challenge for plant conservation

    PubMed Central

    Moat, Justin; Whaley, Oliver; Boyd, Doreen S.

    2017-01-01

    The Pacific Equatorial dry forest of Northern Peru is recognised for its unique endemic biodiversity. Although highly threatened the forest provides livelihoods and ecosystem services to local communities. As agro-industrial expansion and climatic variation transform the region, close ecosystem monitoring is essential for viable adaptation strategies. UAVs offer an affordable alternative to satellites in obtaining both colour and near infrared imagery to meet the specific requirements of spatial and temporal resolution of a monitoring system. Combining this with their capacity to produce three dimensional models of the environment provides an invaluable tool for species level monitoring. Here we demonstrate that object-based image analysis of very high resolution UAV images can identify and quantify keystone tree species and their health across wide heterogeneous landscapes. The analysis exposes the state of the vegetation and serves as a baseline for monitoring and adaptive implementation of community based conservation and restoration in the area. PMID:29176860

  12. Monitoring black-tailed prairie dog colonies with high-resolution satellite imagery

    USGS Publications Warehouse

    Sidle, John G.; Johnson, D.H.; Euliss, B.R.; Tooze, M.

    2002-01-01

    The United States Fish and Wildlife Service has determined that the black-tailed prairie dog (Cynomys ludovicianus) warrants listing as a threatened species under the Endangered Species Act. Central to any conservation planning for the black-tailed prairie dog is an appropriate detection and monitoring technique. Because coarse-resolution satellite imagery is not adequate to detect black-tailed prairie dog colonies, we examined the usefulness of recently available high-resolution (1-m) satellite imagery. In 6 purchased scenes of national grasslands, we were easily able to visually detect small and large colonies without using image-processing algorithms. The Ikonos (Space Imaging(tm)) satellite imagery was as adequate as large-scale aerial photography to delineate colonies. Based on the high quality of imagery, we discuss a possible monitoring program for black-tailed prairie dog colonies throughout the Great Plains, using the species' distribution in North Dakota as an example. Monitoring plots could be established and imagery acquired periodically to track the expansion and contraction of colonies.

  13. Image interpreter tool: An ArcGIS tool for estimating vegetation cover from high-resolution imagery

    USDA-ARS?s Scientific Manuscript database

    Land managers need increased temporal and spatial resolution of rangeland assessment and monitoring data. However, with flat or declining land management and monitoring agency budgets, such increases in sampling intensity are unlikely unless new methods can be developed that capture data of key rang...

  14. Assessment of ground-based monitoring techniques applied to landslide investigations

    NASA Astrophysics Data System (ADS)

    Uhlemann, S.; Smith, A.; Chambers, J.; Dixon, N.; Dijkstra, T.; Haslam, E.; Meldrum, P.; Merritt, A.; Gunn, D.; Mackay, J.

    2016-01-01

    A landslide complex in the Whitby Mudstone Formation at Hollin Hill, North Yorkshire, UK is periodically re-activated in response to rainfall-induced pore-water pressure fluctuations. This paper compares long-term measurements (i.e., 2009-2014) obtained from a combination of monitoring techniques that have been employed together for the first time on an active landslide. The results highlight the relative performance of the different techniques, and can provide guidance for researchers and practitioners for selecting and installing appropriate monitoring techniques to assess unstable slopes. Particular attention is given to the spatial and temporal resolutions offered by the different approaches that include: Real Time Kinematic-GPS (RTK-GPS) monitoring of a ground surface marker array, conventional inclinometers, Shape Acceleration Arrays (SAA), tilt meters, active waveguides with Acoustic Emission (AE) monitoring, and piezometers. High spatial resolution information has allowed locating areas of stability and instability across a large slope. This has enabled identification of areas where further monitoring efforts should be focused. High temporal resolution information allowed the capture of 'S'-shaped slope displacement-time behaviour (i.e. phases of slope acceleration, deceleration and stability) in response to elevations in pore-water pressures. This study shows that a well-balanced suite of monitoring techniques that provides high temporal and spatial resolutions on both measurement and slope scale is necessary to fully understand failure and movement mechanisms of slopes. In the case of the Hollin Hill landslide it enabled detailed interpretation of the geomorphological processes governing landslide activity. It highlights the benefit of regularly surveying a network of GPS markers to determine areas for installation of movement monitoring techniques that offer higher resolution both temporally and spatially. The small sensitivity of tilt meter measurements to translational movements limited the ability to record characteristic 'S'-shaped landslide movements at Hollin Hill, which were identified using SAA and AE measurements. This high sensitivity to landslide movements indicates the applicability of SAA and AE monitoring to be used in early warning systems, through detecting and quantifying accelerations of slope movement.

  15. Surface water classification and monitoring using polarimetric synthetic aperture radar

    NASA Astrophysics Data System (ADS)

    Irwin, Katherine Elizabeth

    Surface water classification using synthetic aperture radar (SAR) is an established practice for monitoring flood hazards due to the high temporal and spatial resolution it provides. Surface water change is a dynamic process that varies both spatially and temporally, and can occur on various scales resulting in significant impacts on affected areas. Small-scale flooding hazards, caused by beaver dam failure, is an example of surface water change, which can impact nearby infrastructure and ecosystems. Assessing these hazards is essential to transportation and infrastructure maintenance. With current satellite missions operating in multiple polarizations, spatio-temporal resolutions, and frequencies, a comprehensive comparison between SAR products for surface water monitoring is necessary. In this thesis, surface water extent models derived from high resolution single-polarization TerraSAR-X (TSX) data, medium resolution dual-polarization TSX data and low resolution quad-polarization RADARSAT-2 (RS-2) data are compared. There exists a compromise between acquiring SAR data with a high resolution or high information content. Multi-polarization data provides additional phase and intensity information, which makes it possible to better classify areas of flooded vegetation and wetlands. These locations are often where fluctuations in surface water occur and are essential for understanding dynamic underlying processes. However, often multi-polarized data is acquired at a low resolution, which cannot image these zones effectively. High spatial resolution, single-polarization TSX data provides the best model of open water. However, these single-polarization observations have limited information content and are affected by shadow and layover errors. This often hinders the classification of other land cover types. The dual-polarization TSX data allows for the classification of flooded vegetation, but classification is less accurate compared to the quad-polarization RS-2 data. The RS-2 data allows for the discrimination of open water, marshes/fields and forested areas. However, the RS-2 data is less applicable to small scale surface water monitoring (e.g. beaver dam failure), due to its low spatial resolution. By understanding the strengths and weaknesses of available SAR technology, an appropriate product can be chosen for a specific target application involving surface water change. This research benefits the eventual development of a space-based monitoring strategy over longer periods.

  16. Development of a high-resolution cavity-beam position monitor

    NASA Astrophysics Data System (ADS)

    Inoue, Yoichi; Hayano, Hitoshi; Honda, Yosuke; Takatomi, Toshikazu; Tauchi, Toshiaki; Urakawa, Junji; Komamiya, Sachio; Nakamura, Tomoya; Sanuki, Tomoyuki; Kim, Eun-San; Shin, Seung-Hwan; Vogel, Vladimir

    2008-06-01

    We have developed a high-resolution cavity-beam position monitor (BPM) to be used at the focal point of the ATF2, which is a test beam line that is now being built to demonstrate stable orbit control at ˜nanometer resolution. The design of the cavity structure was optimized for the Accelerator Test Facility (ATF) beam in various ways. For example, the cavity has a rectangular shape in order to isolate two dipole modes in orthogonal directions, and a relatively thin gap that is less sensitive to trajectory inclination. A two stage homodyne mixer with highly sensitive electronics and phase-sensitive detection was also developed. Two BPM blocks, each containing two cavity BPMs, were installed in the existing ATF beam line using a rigid support frame. After testing the basic characteristics, we measured the resolution using three BPMs. The system demonstrated 8.7 nm position resolution over a dynamic range of 5μm.

  17. Performance of a high resolution cavity beam position monitor system

    NASA Astrophysics Data System (ADS)

    Walston, Sean; Boogert, Stewart; Chung, Carl; Fitsos, Pete; Frisch, Joe; Gronberg, Jeff; Hayano, Hitoshi; Honda, Yosuke; Kolomensky, Yury; Lyapin, Alexey; Malton, Stephen; May, Justin; McCormick, Douglas; Meller, Robert; Miller, David; Orimoto, Toyoko; Ross, Marc; Slater, Mark; Smith, Steve; Smith, Tonee; Terunuma, Nobuhiro; Thomson, Mark; Urakawa, Junji; Vogel, Vladimir; Ward, David; White, Glen

    2007-07-01

    It has been estimated that an RF cavity Beam Position Monitor (BPM) could provide a position measurement resolution of less than 1 nm. We have developed a high resolution cavity BPM and associated electronics. A triplet comprised of these BPMs was installed in the extraction line of the Accelerator Test Facility (ATF) at the High Energy Accelerator Research Organization (KEK) for testing with its ultra-low emittance beam. The three BPMs were each rigidly mounted inside an alignment frame on six variable-length struts which could be used to move the BPMs in position and angle. We have developed novel methods for extracting the position and tilt information from the BPM signals including a robust calibration algorithm which is immune to beam jitter. To date, we have demonstrated a position resolution of 15.6 nm and a tilt resolution of 2.1 μrad over a dynamic range of approximately ±20 μm.

  18. Indoor air quality (IAQ) assessment in a multistorey shopping mall by high-spatial-resolution monitoring of volatile organic compounds (VOC).

    PubMed

    Amodio, M; Dambruoso, P R; de Gennaro, Gianluigi; de Gennaro, L; Loiotile, A Demarinis; Marzocca, A; Stasi, F; Trizio, L; Tutino, M

    2014-12-01

    In order to assess indoor air quality (IAQ), two 1-week monitoring campaigns of volatile organic compounds (VOC) were performed in different areas of a multistorey shopping mall. High-spatial-resolution monitoring was conducted at 32 indoor sites located in two storehouses and in different departments of a supermarket. At the same time, VOC concentrations were monitored in the mall and parking lot area as well as outdoors. VOC were sampled at 48-h periods using diffusive samplers suitable for thermal desorption. The samples were then analyzed with gas chromatography-mass spectrometry (GC-MS). The data analysis and chromatic maps indicated that the two storehouses had the highest VOC concentrations consisting principally of terpenes. These higher TVOC concentrations could be a result of the low efficiency of the air exchange and intake systems, as well as the large quantity of articles stored in these small spaces. Instead, inside the supermarket, the food department was the most critical area for VOC concentrations. To identify potential emission sources in this department, a continuous VOC analyzer was used. The findings indicated that the highest total VOC concentrations were present during cleaning activities and that these activities were carried out frequently in the food department. The study highlights the importance of conducting both high-spatial-resolution monitoring and high-temporal-resolution monitoring. The former was able to identify critical issues in environments with a complex emission scenario while the latter was useful in interpreting the dynamics of each emission source.

  19. High temporal resolution aerosol retrieval using Geostationary Ocean Color Imager: application and initial validation

    NASA Astrophysics Data System (ADS)

    Zhang, Yuhuan; Li, Zhengqiang; Zhang, Ying; Hou, Weizhen; Xu, Hua; Chen, Cheng; Ma, Yan

    2014-01-01

    The Geostationary Ocean Color Imager (GOCI) provides multispectral imagery of the East Asia region hourly from 9:00 to 16:00 local time (GMT+9) and collects multispectral imagery at eight spectral channels (412, 443, 490, 555, 660, 680, 745, and 865 nm) with a spatial resolution of 500 m. Thus, this technology brings significant advantages to high temporal resolution environmental monitoring. We present the retrieval of aerosol optical depth (AOD) in northern China based on GOCI data. Cross-calibration was performed against Moderate Resolution Imaging Spectrometer (MODIS) data in order to correct the land calibration bias of the GOCI sensor. AOD retrievals were then accomplished using a look-up table (LUT) strategy with assumptions of a quickly varying aerosol and a slowly varying surface with time. The AOD retrieval algorithm calculates AOD by minimizing the surface reflectance variations of a series of observations in a short period of time, such as several days. The monitoring of hourly AOD variations was implemented, and the retrieved AOD agreed well with AErosol RObotic NETwork (AERONET) ground-based measurements with a good R2 of approximately 0.74 at validation sites at the cities of Beijing and Xianghe, although intercept bias may be high in specific cases. The comparisons with MODIS products also show a good agreement in AOD spatial distribution. This work suggests that GOCI imagery can provide high temporal resolution monitoring of atmospheric aerosols over land, which is of great interest in climate change studies and environmental monitoring.

  20. Understanding and improving mitigation strategies for reducing catchment scale nutrient loads using high resolution observations and uncertainty analysis approaches

    NASA Astrophysics Data System (ADS)

    Collins, A.; Lloyd, C.; Freer, J. E.; Johnes, P.; Stirling, M.

    2012-12-01

    One of the biggest challenges in catchment water quality management is tackling the problem of reducing water pollution from agriculture whilst ensuring food security nationally. Improvements to catchment management plans are needed if we are to enhance biodiversity and maintain good ecological status in freshwater ecosystems, while producing enough food to support a growing global population. In order to plan for a more sustainable and secure future, research needs to quantify the uncertainties and understand the complexities in the source-mobilisation-delivery-impact continuum of pollution and nutrients at all scales. In the UK the Demonstration Test Catchment (DTC) project has been set up to improve water quality specifically from diffuse pollution from agriculture by enhanced high resolution monitoring and targeted mitigation experiments. The DTC project aims to detect shifts in the baseline trend of the most ecologically-significant pollutants resulting from targeted on-farm measures at field to farm scales and assessing their effects on ecosystem function. The DTC programme involves three catchments across the UK that are indicative of three different typologies and land uses. This paper will focus on the Hampshire Avon DTC, where a total of 12 parameters are monitored by bank-side stations at two sampling sites, including flow, turbidity, phosphate and nitrate concentrations at 30 min resolution. This monitoring is supported by daily resolution sampling at 5 other sites and storm sampling at all locations. Part of the DTC project aims to understand how observations of water quality within river systems at different temporal resolutions and types of monitoring strategies enable us to understand and detect changes over and above the natural variability. Baseline monitoring is currently underway and early results show that high-resolution data is essential at this sub-catchment scale to understand important process dynamics. This is critical if we are to design cost efficient and effective management strategies. The high-resolution dataset means that there are new opportunities to explore the associated uncertainties in monitoring water quality and assessing ecological status and how that relates to current monitoring networks. For example, concurrent grab samples at the high-resolution sampling stations allow the assessment of the uncertainties which would be generated through coarser sampling strategies. This is just the beginning of the project, however, as the project progresses, the high resolution dataset will provide higher statistical power compared with previous data collection schemes and allow the employment of more complex methods such as signal decomposition e.g. wavelet analysis, which can allow us to start to decipher the complex interactions occurring at sub-catchment scale which may not be immediately detectable in bulk signals. In this paper we outline our methodological approach, present some of the initial findings of this research and how we can quantify changes to nutrient loads whilst taking account the main uncertainties and the inherent natural variability.

  1. Analysis of the impact of spatial resolution on land/water classifications using high-resolution aerial imagery

    USGS Publications Warehouse

    Enwright, Nicholas M.; Jones, William R.; Garber, Adrienne L.; Keller, Matthew J.

    2014-01-01

    Long-term monitoring efforts often use remote sensing to track trends in habitat or landscape conditions over time. To most appropriately compare observations over time, long-term monitoring efforts strive for consistency in methods. Thus, advances and changes in technology over time can present a challenge. For instance, modern camera technology has led to an increasing availability of very high-resolution imagery (i.e. submetre and metre) and a shift from analogue to digital photography. While numerous studies have shown that image resolution can impact the accuracy of classifications, most of these studies have focused on the impacts of comparing spatial resolution changes greater than 2 m. Thus, a knowledge gap exists on the impacts of minor changes in spatial resolution (i.e. submetre to about 1.5 m) in very high-resolution aerial imagery (i.e. 2 m resolution or less). This study compared the impact of spatial resolution on land/water classifications of an area dominated by coastal marsh vegetation in Louisiana, USA, using 1:12,000 scale colour-infrared analogue aerial photography (AAP) scanned at four different dot-per-inch resolutions simulating ground sample distances (GSDs) of 0.33, 0.54, 1, and 2 m. Analysis of the impact of spatial resolution on land/water classifications was conducted by exploring various spatial aspects of the classifications including density of waterbodies and frequency distributions in waterbody sizes. This study found that a small-magnitude change (1–1.5 m) in spatial resolution had little to no impact on the amount of water classified (i.e. percentage mapped was less than 1.5%), but had a significant impact on the mapping of very small waterbodies (i.e. waterbodies ≤ 250 m2). These findings should interest those using temporal image classifications derived from very high-resolution aerial photography as a component of long-term monitoring programs.

  2. Monitoring start of season in Alaska with GLOBE, AVHRR, and MODIS data

    Treesearch

    Jessica Robin; Ralph Dubayah; Elena Sparrow; Elissa Levine

    2008-01-01

    This work evaluates whether continuity between Advanced Very High Resolution Radiometer (AVHRR) and Moderate Resolution Imaging Spectroradiometer (MODIS) normalized difference vegetation index (NDVI) is achievable for monitoring phenological changes in Alaska. This work also evaluates whether NDVI can detect changes in start of the growing season (SOS) in this region....

  3. Monitoring vegetation greenness with satellite data

    Treesearch

    Robert E. Burgan; Roberta A. Hartford

    1993-01-01

    Vegetation greenness can be monitored at 1-km resolution for the conterminous United States through data obtained from the Advanced Very High Resolution Radiometer on the NOAA-11 weather satellites. The data are used to calculate biweekly composites of the Normalized Difference Vegetation Index. The resulting composite images are updated weekly and made available to...

  4. Quality-control issues on high-resolution diagnostic monitors.

    PubMed

    Parr, L F; Anderson, A L; Glennon, B K; Fetherston, P

    2001-06-01

    Previous literature indicates a need for more data collection in the area of quality control of high-resolution diagnostic monitors. Throughout acceptance testing, which began in June 2000, stability of monitor calibration was analyzed. Although image quality on all monitors was found to be acceptable upon initial acceptance testing using VeriLUM software by Image Smiths, Inc (Germantown, MD), it was determined to be unacceptable during the clinical phase of acceptance testing. High-resolution monitors were evaluated for quality assurance on a weekly basis from installation through acceptance testing and beyond. During clinical utilization determination (CUD), monitor calibration was identified as a problem and the manufacturer returned and recalibrated all workstations. From that time through final acceptance testing, high-resolution monitor calibration and monitor failure rate remained a problem. The monitor vendor then returned to the site to address these areas. Monitor defocus was still noticeable and calibration checks were increased to three times per week. White and black level drift on medium-resolution monitors had been attributed to raster size settings. Measurements of white and black level at several different size settings were taken to determine the effect of size on white and black level settings. Black level remained steady with size change. White level appeared to increase by 2.0 cd/m2 for every 0.1 inches decrease in horizontal raster size. This was determined not to be the cause of the observed brightness drift. Frequency of calibration/testing is an issue in a clinical environment. The increased frequency required at our site cannot be sustained. The medical physics division cannot provide dedicated personnel to conduct the quality-assurance testing on all monitors at this interval due to other physics commitments throughout the hospital. Monitor access is also an issue due to radiologists' need to read images. Some workstations are in use 7 AM to 11 PM daily. An appropriate monitor calibration frequency must be established during acceptance testing to ensure unacceptable drift is not masked by excessive calibration frequency. Standards for acceptable black level and white level drift also need to be determined. The monitor vendor and hospital staff agree that currently, very small printed text is an acceptable method of determining monitor blur, however, a better method of determining monitor blur is being pursued. Although monitors may show acceptable quality during initial acceptance testing, they need to show sustained quality during the clinical acceptance-testing phase. Defocus, black level, and white level are image quality concerns, which need to be evaluated during the clinical phase of acceptance testing. Image quality deficiencies can have a negative impact on patient care and raise serious medical-legal concerns. The attention to quality control required of the hospital staff needs to be realistic and not have a significant impact on radiology workflow.

  5. High-Resolution Near Real-Time Drought Monitoring in South Asia

    NASA Astrophysics Data System (ADS)

    Aadhar, S.; Mishra, V.

    2017-12-01

    Drought in South Asia affect food and water security and pose challenges for millions of people. For policy-making, planning and management of water resources at the sub-basin or administrative levels, high-resolution datasets of precipitation and air temperature are required in near-real time. Here we develop a high resolution (0.05 degree) bias-corrected precipitation and temperature data that can be used to monitor near real-time drought conditions over South Asia. Moreover, the dataset can be used to monitor climatic extremes (heat waves, cold waves, dry and wet anomalies) in South Asia. A distribution mapping method was applied to correct bias in precipitation and air temperature (maximum and minimum), which performed well compared to the other bias correction method based on linear scaling. Bias-corrected precipitation and temperature data were used to estimate Standardized precipitation index (SPI) and Standardized Precipitation Evapotranspiration Index (SPEI) to assess the historical and current drought conditions in South Asia. We evaluated drought severity and extent against the satellite-based Normalized Difference Vegetation Index (NDVI) anomalies and satellite-driven Drought Severity Index (DSI) at 0.05˚. We find that the bias-corrected high-resolution data can effectively capture observed drought conditions as shown by the satellite-based drought estimates. High resolution near real-time dataset can provide valuable information for decision-making at district and sub- basin levels.

  6. The effect on surgical skills of expert surgeons using 3D/HD and 2D/4K resolution monitors in laparoscopic phantom tasks.

    PubMed

    Harada, Hitoshi; Kanaji, Shingo; Hasegawa, Hiroshi; Yamamoto, Masashi; Matsuda, Yoshiko; Yamashita, Kimihiro; Matsuda, Takeru; Oshikiri, Taro; Sumi, Yasuo; Nakamura, Tetsu; Suzuki, Satoshi; Kakeji, Yoshihiro

    2018-03-30

    Recently, several new imaging technologies, such as three-dimensional (3D)/high-definition (HD) stereovision and high-resolution two-dimensional (2D)/4K monitors, have been introduced in laparoscopic surgery. However, it is still unclear whether these technologies actually improve surgical performance. Participants were 11 expert laparoscopic surgeons. We designed three laparoscopic suturing tasks (task 1: simple suturing, task 2: knotting thread in a small box, and task 3: suturing in a narrow space) in training boxes. Performances were recorded by an optical position tracker. All participants first performed each task five times consecutively using a conventional 2D/HD monitor. Then they were randomly divided into two groups: six participants performed the tasks using 3D/HD before using 2D/4K; the other five participants performed the tasks using a 2D/4K monitor before the 3D/HD monitor. After the trials, we evaluated the performance scores (operative time, path length of forceps, and technical errors) and compared performance scores across all monitors. Surgical performances of participants were ranked in decreasing order: 3D/HD, 2D/4K, and 2D/HD using the total scores for each task. In task 1 (simple suturing), some surgical performances using 3D/HD were significantly better than those using 2D/4K (P = 0.017, P = 0.033, P = 0.492 for operative time, path length, and technical errors, respectively). On the other hand, with operation in narrow spaces such as in tasks 2 and 3, performances using 2D/4K were not inferior to 3D/HD performances. The high-resolution images from the 2D/4K monitor may enhance depth perception in narrow spaces and may complement stereoscopic vision almost as well as using 3D/HD. Compared to a 2D/HD monitor, a 3D/HD monitor improved the laparoscopic surgical technique of expert surgeons more than a 2D/4K monitor. However, the advantage of 2D/4K high-resolution images may be comparable to a 3D/HD monitor especially in narrow spaces.

  7. Evaluation and development of unmanned aircraft (UAV) for UDOT needs.

    DOT National Transportation Integrated Search

    2012-05-01

    This research involved the use of high-resolution aerial photography obtained from Unmanned Aerial Vehicles (UAV) to aid UDOT in monitoring and documenting State Roadway structures and associated issues. Using geo-referenced UAV high resolution aeria...

  8. Supervised Semantic Classification for Nuclear Proliferation Monitoring

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Vatsavai, Raju; Cheriyadat, Anil M; Gleason, Shaun Scott

    2010-01-01

    Existing feature extraction and classification approaches are not suitable for monitoring proliferation activity using high-resolution multi-temporal remote sensing imagery. In this paper we present a supervised semantic labeling framework based on the Latent Dirichlet Allocation method. This framework is used to analyze over 120 images collected under different spatial and temporal settings over the globe representing three major semantic categories: airports, nuclear, and coal power plants. Initial experimental results show a reasonable discrimination of these three categories even though coal and nuclear images share highly common and overlapping objects. This research also identified several research challenges associated with nuclear proliferationmore » monitoring using high resolution remote sensing images.« less

  9. Development of a high resolution plantar pressure monitoring pad based on fiber Bragg grating (FBG) sensors.

    PubMed

    Suresh, R; Bhalla, S; Hao, J; Singh, C

    2015-01-01

    High importance is given to plantar pressure monitoring in the field of biomedical engineering for the diagnosis of posture related ailments associated with diseases such as diabetes and gonarthrosis. This paper presents the proof-of-concept development of a new high resolution plantar pressure monitoring pad based on fiber Bragg grating (FBG) sensors. In the proposed configuration, the FBG sensors are embedded within layers of carbon composite material (CCM) in turn conforming to an arc shape. A total of four such arc shaped sensors are instrumented in the pad at the locations of the forefoot and the hind foot. As a test of the pad, static plantar pressure is monitored on normal subjects under various posture conditions. The pad is evaluated both as a standalone platform as well as a pad inserted inside a standard shoe. An average pressure sensitivity of 1.2 pm/kPa and a resolution of approximately 0.8 kPa is obtained in this special configuration. The pad is found to be suitable in both configurations- stand-alone pad as well as an insert inside a standard shoe. The proposed set up offers a cost-effective high resolution and accurate plantar pressure measurement system suitable for clinical deployment. The novelty of the developed pressure pad lies in its ability to be used both as platform type as well as inserted in-sole type sensor system.

  10. Integrating real-time and manual monitored data to predict hillslope soil moisture dynamics with high spatio-temporal resolution using linear and non-linear models

    USDA-ARS?s Scientific Manuscript database

    Spatio-temporal variability of soil moisture (') is a challenge that remains to be better understood. A trade-off exists between spatial coverage and temporal resolution when using the manual and real-time ' monitoring methods. This restricted the comprehensive and intensive examination of ' dynamic...

  11. a New Approach for Subway Tunnel Deformation Monitoring: High-Resolution Terrestrial Laser Scanning

    NASA Astrophysics Data System (ADS)

    Li, J.; Wan, Y.; Gao, X.

    2012-07-01

    With the improvement of the accuracy and efficiency of laser scanning technology, high-resolution terrestrial laser scanning (TLS) technology can obtain high precise points-cloud and density distribution and can be applied to high-precision deformation monitoring of subway tunnels and high-speed railway bridges and other fields. In this paper, a new approach using a points-cloud segmentation method based on vectors of neighbor points and surface fitting method based on moving least squares was proposed and applied to subway tunnel deformation monitoring in Tianjin combined with a new high-resolution terrestrial laser scanner (Riegl VZ-400). There were three main procedures. Firstly, a points-cloud consisted of several scanning was registered by linearized iterative least squares approach to improve the accuracy of registration, and several control points were acquired by total stations (TS) and then adjusted. Secondly, the registered points-cloud was resampled and segmented based on vectors of neighbor points to select suitable points. Thirdly, the selected points were used to fit the subway tunnel surface with moving least squares algorithm. Then a series of parallel sections obtained from temporal series of fitting tunnel surfaces were compared to analysis the deformation. Finally, the results of the approach in z direction were compared with the fiber optical displacement sensor approach and the results in x, y directions were compared with TS respectively, and comparison results showed the accuracy errors of x, y, z directions were respectively about 1.5 mm, 2 mm, 1 mm. Therefore the new approach using high-resolution TLS can meet the demand of subway tunnel deformation monitoring.

  12. High-resolution Interferometer Sounder (HIS), phase 2

    NASA Technical Reports Server (NTRS)

    1988-01-01

    The High-resolution Interferometer Sounder (HIS) was successfully built, tested, and flight proven on the NASA U-2/ER-2 high altitude aircraft. The HIS demonstration has shown that, by using the technology of Fourier Transform Spectroscopy (FTS), it is possible to measure the spectrum of upwelling infrared radiance needed for temperature and humidity sounding with high spectral resolution and high radiometric precision. By resolving individual carbon dioxide lines, the retrieved temperature profiles have vertical resolutions of 1 to 2 km and RMS errors less than 1 C, about 2 to 4 times better than possible with current sounders. Implementing this capability on satellite sounders will greatly enhance the dynamical information content of temperature measurements from space. The aircraft model HIS is now a resource which should be used to support field experiments in mesoscale meteorology, to monitor trace gas concentrations and to better understand their effects on climate, to monitor the surface radiation budget and the radiative effects of clouds, and to collect data for research into retrieval techniques, especially under partially cloudy conditions.

  13. Monitoring uranium, hydrogen, and lithium and their isotopes using a compact laser-induced breakdown spectroscopy (LIBS) probe and high-resolution spectrometer.

    PubMed

    Cremers, David A; Beddingfield, Alan; Smithwick, Robert; Chinni, Rosemarie C; Jones, C Randy; Beardsley, Burt; Karch, Larry

    2012-03-01

    The development of field-deployable instruments to monitor radiological, nuclear, and explosive (RNE) threats is of current interest for a number of assessment needs such as the on-site screening of suspect facilities and nuclear forensics. The presence of uranium and plutonium and radiological materials can be determined through monitoring the elemental emission spectrum using relatively low-resolution spectrometers. In addition, uranium compounds, explosives, and chemicals used in nuclear fuel processing (e.g., tributyl-phosphate) can be identified by applying chemometric analysis to the laser-induced breakdown (LIBS) spectrum recorded by these spectrometers. For nuclear forensic applications, however, isotopes of U and Pu and other elements (e.g., H and Li) must also be determined, requiring higher resolution spectrometers given the small magnitude of the isotope shifts for some of these elements (e.g., 25 pm for U and 13 pm for Pu). High-resolution spectrometers will be preferred for several reasons but these must fit into realistic field-based analysis scenarios. To address the need for field instrumentation, we evaluated a previously developed field-deployable hand-held LIBS interrogation probe combined with two relatively new high-resolution spectrometers (λ/Δλ ~75,000 and ~44,000) that have the potential to meet field-based analysis needs. These spectrometers are significantly smaller and lighter in weight than those previously used for isotopic analysis and one unit can provide simultaneous wide spectral coverage and high resolution in a relatively small package. The LIBS interrogation probe was developed initially for use with low resolution compact spectrometers in a person-portable backpack LIBS instrument. Here we present the results of an evaluation of the LIBS probe combined with a high-resolution spectrometer and demonstrate rapid detection of isotopes of uranium and hydrogen and highly enriched samples of (6)Li and (7)Li. © 2012 Society for Applied Spectroscopy

  14. Testing laser-based sensors for continuous in situ monitoring of suspended sediment in the Colorado River, Arizona

    USGS Publications Warehouse

    Melis, T.S.; Topping, D.J.; Rubin, D.M.; Bogen, J.; Fergus, T.; Walling, D.

    2003-01-01

    High-resolution monitoring of sand mass balance in the Colorado River below Glen Canyon Dam, Arizona, USA, is needed for environmental management. In the Grand Canyon, frequent collection of suspended-sediment samples from cableways is logistically complicated, costly and provides limited spatial and temporal resolution. In situ laser sensors were tested in the Colorado River as an alternative method for monitoring the river's suspended transport. LISST data were collected at a fixed-depth, near-shore site while isokinetic measurements were simultaneously made from a nearby cableway. Diurnal variations in LISST grain size and concentration data compared well with depth-integrated, cross-section data. Tbe LISST was also successfully used to electronically trigger an ISCO 6712 pump sampler to provide continuous monitoring during periods when suspended concentrations exceeded the LISST's measurement range. Initial results indicate that the LISST can provide useful high-resolution suspended-sediment data within the Colorado River, when optics are maintained on a weekly basis.

  15. High-resolution monitoring of nutrients in groundwater and surface waters: process understanding, quantification of loads and concentrations, and management applications

    NASA Astrophysics Data System (ADS)

    van Geer, Frans C.; Kronvang, Brian; Broers, Hans Peter

    2016-09-01

    Four sessions on "Monitoring Strategies: temporal trends in groundwater and surface water quality and quantity" at the EGU conferences in 2012, 2013, 2014, and 2015 and a special issue of HESS form the background for this overview of the current state of high-resolution monitoring of nutrients. The overview includes a summary of technologies applied in high-frequency monitoring of nutrients in the special issue. Moreover, we present a new assessment of the objectives behind high-frequency monitoring as classified into three main groups: (i) improved understanding of the underlying hydrological, chemical, and biological processes (PU); (ii) quantification of true nutrient concentrations and loads (Q); and (iii) operational management, including evaluation of the effects of mitigation measures (M). The contributions in the special issue focus on the implementation of high-frequency monitoring within the broader context of policy making and management of water in Europe for support of EU directives such as the Water Framework Directive, the Groundwater Directive, and the Nitrates Directive. The overview presented enabled us to highlight the typical objectives encountered in the application of high-frequency monitoring and to reflect on future developments and research needs in this growing field of expertise.

  16. The 'fine structure' of nutrient dynamics in rivers: ten years of study using high-frequency monitoring

    NASA Astrophysics Data System (ADS)

    Jordan, Phil; Melland, Alice; Shore, Mairead; Mellander, Per-Erik; Shortle, Ger; Ryan, David; Crockford, Lucy; Macintosh, Katrina; Campbell, Julie; Arnscheidt, Joerg; Cassidy, Rachel

    2014-05-01

    A complete appraisal of material fluxes in flowing waters is really only possibly with high time resolution data synchronous with measurements of discharge. Defined by Kirchner et al. (2004; Hydrological Processes, 18/7) as the high-frequency wave of the future and with regard to disentangling signal noise from process pattern, this challenge has been met in terms of nutrient flux monitoring by automated bankside analysis. In Ireland over a ten-year period, time-series nutrient data collected on a sub-hourly basis in rivers have been used to distinguish fluxes from different catchment sources and pathways and to provide more certain temporal pictures of flux for the comparative definition of catchment nutrient dynamics. In catchments where nutrient fluxes are particularly high and exhibit a mix of extreme diffuse and point source influences, high time resolution data analysis indicates that there are no satisfactory statistical proxies for seasonal or annual flux predictions that use coarse datasets. Or at least exposes the limits of statistical approaches to catchment scale and hydrological response. This has profound implications for catchment monitoring programmes that rely on modelled relationships. However, using high resolution monitoring for long term assessments of catchment mitigation measures comes with further challenges. Sustaining continuous wet chemistry analysis at river stations is resource intensive in terms of capital, maintenance and quality assurance. Furthermore, big data capture requires investment in data management systems and analysis. These two institutional challenges are magnified when considering the extended time period required to identify the influences of land-based nutrient control measures on water based systems. Separating the 'climate signal' from the 'source signal' in river nutrient flux data is a major analysis challenge; more so when tackled with anything but higher resolution data. Nevertheless, there is scope to lower costs in bankside analysis through technology development, and the scientific advantages of these data are clear and exciting. When integrating its use with policy appraisal, it must be made clear that the advances in river process understanding from high resolution monitoring data capture come as a package with the ability to make more informed decisions through an investment in better information.

  17. 4-D High-Resolution Seismic Reflection Monitoring of Miscible CO2 Injected into a Carbonate Reservoir

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Richard D. Miller; Abdelmoneam E. Raef; Alan P. Byrnes

    2005-09-01

    The objective of this research project is to acquire, process, and interpret multiple high-resolution 3-D compressional wave and 2-D, 2-C shear wave seismic data to observe changes in fluid characteristics in an oil field before, during, and after the miscible carbon dioxide (CO{sub 2}) flood that began around December 1, 2003, as part of the DOE-sponsored Class Revisit Project (DOE DE-AC26-00BC15124). Unique and key to this imaging activity is the high-resolution nature of the seismic data, minimal deployment design, and the temporal sampling throughout the flood. The 900-m-deep test reservoir is located in central Kansas oomoldic limestones of the Lansing-Kansasmore » City Group, deposited on a shallow marine shelf in Pennsylvanian time. After 18 months of seismic monitoring, one baseline and six monitor surveys clearly imaged changes that appear consistent with movement of CO{sub 2} as modeled with fluid simulators.« less

  18. High Resolution BPM for Linear Colliders

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Simon, C.; Chel, S.; Luong, M.

    2006-11-20

    A high resolution Beam Position Monitor (BPM) is necessary for the beam-based alignment systems of high energy and low emittance electron linacs. Such a monitor is developed in the framework of the European CARE/SRF programme, in a close collaboration between DESY and CEA/DSM/DAPNIA. This monitor is a radiofrequency re-entrant cavity, which can be used either at room or cryogenic temperature, in an environment where dust particle contamination has to be avoided, such as superconducting cavities in a cryomodule. A first prototype of a re-entrant BPM has already delivered measurements at 2K. inside the first cryomodule (ACC1) on the TESLA Testmore » Facility 2 (TTF2). The performances of this BPM are analyzed both experimentally and theoretically, and the limitations of this existing system clearly identified. A new cavity and new electronics have been designed in order to improve the position resolution down to 1 {mu}m and the damping time down to 10 ns.« less

  19. Next generation of global land cover characterization, mapping, and monitoring

    USGS Publications Warehouse

    Giri, Chandra; Pengra, Bruce; Long, J.; Loveland, Thomas R.

    2013-01-01

    Land cover change is increasingly affecting the biophysics, biogeochemistry, and biogeography of the Earth's surface and the atmosphere, with far-reaching consequences to human well-being. However, our scientific understanding of the distribution and dynamics of land cover and land cover change (LCLCC) is limited. Previous global land cover assessments performed using coarse spatial resolution (300 m–1 km) satellite data did not provide enough thematic detail or change information for global change studies and for resource management. High resolution (∼30 m) land cover characterization and monitoring is needed that permits detection of land change at the scale of most human activity and offers the increased flexibility of environmental model parameterization needed for global change studies. However, there are a number of challenges to overcome before producing such data sets including unavailability of consistent global coverage of satellite data, sheer volume of data, unavailability of timely and accurate training and validation data, difficulties in preparing image mosaics, and high performance computing requirements. Integration of remote sensing and information technology is needed for process automation and high-performance computing needs. Recent developments in these areas have created an opportunity for operational high resolution land cover mapping, and monitoring of the world. Here, we report and discuss these advancements and opportunities in producing the next generations of global land cover characterization, mapping, and monitoring at 30-m spatial resolution primarily in the context of United States, Group on Earth Observations Global 30 m land cover initiative (UGLC).

  20. Cavity beam position monitor system for the Accelerator Test Facility 2

    NASA Astrophysics Data System (ADS)

    Kim, Y. I.; Ainsworth, R.; Aryshev, A.; Boogert, S. T.; Boorman, G.; Frisch, J.; Heo, A.; Honda, Y.; Hwang, W. H.; Huang, J. Y.; Kim, E.-S.; Kim, S. H.; Lyapin, A.; Naito, T.; May, J.; McCormick, D.; Mellor, R. E.; Molloy, S.; Nelson, J.; Park, S. J.; Park, Y. J.; Ross, M.; Shin, S.; Swinson, C.; Smith, T.; Terunuma, N.; Tauchi, T.; Urakawa, J.; White, G. R.

    2012-04-01

    The Accelerator Test Facility 2 (ATF2) is a scaled demonstrator system for final focus beam lines of linear high energy colliders. This paper describes the high resolution cavity beam position monitor (BPM) system, which is a part of the ATF2 diagnostics. Two types of cavity BPMs are used, C-band operating at 6.423 GHz, and S-band at 2.888 GHz with an increased beam aperture. The cavities, electronics, and digital processing are described. The resolution of the C-band system with attenuators was determined to be approximately 250 nm and 1μm for the S-band system. Without attenuation the best recorded C-band cavity resolution was 27 nm.

  1. High-Resolution Time-Lapse Monitoring of Unsaturated Flow using Automated GPR Data Collection

    NASA Astrophysics Data System (ADS)

    Mangel, A. R.; Moysey, S. M.; Lytle, B. A.; Bradford, J. H.

    2015-12-01

    High-resolution ground-penetrating radar (GPR) data provide the detailed information required to image subsurface structures. Recent advances in GPR monitoring now also make it possible to study transient hydrologic processes, but high-speed data acquisition is critical for this application. We therefore highlight the capabilities of our automated system to acquire time-lapse, high-resolution multifold GPR data during infiltration of water into soils. The system design allows for fast acquisition of constant-offset (COP) and common-midpoint profiles (CMP) to monitor unsaturated flow at multiple locations. Qualitative interpretation of the unprocessed COPs can provide substantial information regarding the hydrologic response of the system, such as the complexities of patterns associated with the wetting of the soil and geophysical evidence of non-uniform propagation of a wetting front. While we find that unprocessed images are informative, we show that the spatial variability of velocity introduced by infiltration events can complicate the images and that migration of the data is an effective tool to improve interpretability of the time-lapse images. The ability of the system to collect high density CMP data also introduces the potential for improving the velocity model along with the image via reflection tomography in the post-migrated domain. We show that for both simulated and empirical time-lapse GPR profiles we can resolve a propagating wetting front in the soil that is in good agreement with the response of in-situ soil moisture measurements. The data from these experiments illustrate the importance of high-speed, high-resolution GPR data acquisition for obtaining insight about the dynamics of hydrologic events. Continuing research is aimed at improving the quantitative analysis of surface-based GPR monitoring data for identifying preferential flow in soils.

  2. Observations of volcanic hotspots with TET-1

    NASA Astrophysics Data System (ADS)

    Zakšek, Klemen; Hort, Matthias; Lorenz, Eckehard

    2016-04-01

    The most important source of uncertainties in thermal monitoring of active volcanoes from space stems from the lack of dedicated satellite instruments. Considering the currently available technology, we usually have to make a compromises between spatial and temporal resolution - if the data is available at high temporal resolution (from geostationary instruments), it is impossible to provide high spatial resolution data. The most promising solution seems to be a constellation of small satellites, for they can provide data at high spatial resolution and provide a short revisit time as there is a high number of satellites in the constellation. It is also difficult to provide narrow spectral channels at high radiometric accuracy for monitoring high and low temperatures at the same time. Instruments designed for meteorological applications are usually used in remote sensing of volcanic thermal anomalies. These instruments contain a mid-infrared channel, which provides crucial data for monitoring active volcanoes. However, the settings of meteorological instruments are optimized for monitoring low temperatures, which results in often saturated data over active volcanoes. The volcanological community can partially overcome the gap between the available meteorological satellites and its requirements with the small satellite TET-1 German abbreviation for "Technologie-Erprobungsträger 1" meaning Technology Experiment Carrier). TET-1 is the first satellite within the FireBird constellation. This consists of two small satellites which are predominantly dedicated to investigating high temperature events. They were built and are operated by the German Aerospace Center. TET-1 was launched in June 2012. Here we present the first results obtained from TET-1 data. The data were retrieved over several volcanoes: Etna, Stromboli, Bárdarbunga, etc. We show that using TET-1 data, it is possible to better constrain the time averaged lava discharge from other satellite data sources.

  3. Application of Radioxenon Stack Emission Data in High-Resolution Atmospheric Transport Modelling

    NASA Astrophysics Data System (ADS)

    Kusmierczyk-Michulec, J.; Schoeppner, M.; Kalinowski, M.; Bourgouin, P.; Kushida, N.; Barè, J.

    2017-12-01

    The Comprehensive Nuclear-Test-Ban Treaty Organisation (CTBTO) has developed the capability to run high-resolution atmospheric transport modelling by employing WRF and Flexpart-WRF. This new capability is applied to simulate the impact of stack emission data on simulated concentrations and how the availability of such data improves the overall accuracy of atmospheric transport modelling. The presented case study focuses on xenon-133 emissions from IRE, a medical isotope production facility in Belgium, and air concentrations detected at DEX33, a monitoring station close to Freiburg, Germany. The CTBTO is currently monitoring the atmospheric concentration of xenon-133 at 25 stations and will further expand the monitoring efforts to 40 stations worldwide. The incentive is the ability to detect xenon-133 that has been produced and released from a nuclear explosion. A successful detection can be used to prove the nuclear nature of an explosion and even support localization efforts. However, xenon-133 is also released from nuclear power plants and to a larger degree from medical isotope production facilities. The availability of stack emission data in combination with atmospheric transport modelling can greatly facilitate the understanding of xenon-133 concentrations detected at monitoring stations to distinguish between xenon-133 that has been emitted from a nuclear explosion and from civilian sources. Newly available stack emission data is used with a high-resolution version of the Flexpart atmospheric transport model, namely Flexpart-WRF, to assess the impact of the emissions on the detected concentrations and the advantage gained from the availability of such stack emission data. The results are analyzed with regard to spatial and time resolution of the high-resolution model and in comparison to conventional atmospheric transport models with and without stack emission data.

  4. The ASTER emergency scheduling system: A new project linking near-real-time satellite monitoring of disasters to the acquisition of high-resolution remote sensing data

    NASA Astrophysics Data System (ADS)

    Ramsey, M.; Dehn, J.; Wessels, R.; Byrnes, J.; Duda, K.; Maldonado, L.; Dwyer, J.

    2004-12-01

    Numerous government agencies and university partnerships are currently utilizing orbital instruments with high-temporal/low-spatial resolution (e.g. MODIS, AVHRR) to monitor hazards. These hazards are varied and include both natural (volcanic eruptions, severe weather, wildfires, earthquake damage) and anthropogenic (environmental damage, urban terrorism). Although monitoring a hazardous situation is critical, a key strategy of NASA's Earth science program is to develop a scientific understanding of the Earth system and its responses to changes, as well as to improve prediction of hazard onset. In order to develop a quantitative scientific basis from which to model transient geological and climatological hazards, much higher spatial/spectral resolution datasets are required. Such datasets are sparse, currently available from certain government (e.g. ASTER, Hyperion) and commercial (e.g. IKONOS, QuickBird) instruments. However, only ASTER has the capability to acquire high spatial resolution data from the visible to thermal infrared (TIR) wavelength region in conjunction with digital elevation models (DEM) generation. These capabilities are particularly useful for numerous aspects of volcanic remote sensing. For example, multispectral TIR data are critical for monitoring low temperature anomalies and mapping both chemical and textural variations on volcanic surfaces. Because ASTER data are scheduled in advance and the raw data are sent to Japan for calibration processing, rapid acquisition of hazards becomes problematic. However, a "rapid response" mode does exist for ASTER data scheduling and processing, but its availability is limited and requires significant human interaction. A newly-funded NASA ASTER science team project seeks to link this ASTER rapid response pathway to larger-scale monitoring alerts, which are already in-place and in-use by other organizations. By refining the initial event detection criteria and improving interfaces between these organizations and the ASTER project, we expect to minimize lag time and use existing monitoring tools as triggers for the emergency response of ASTER. The first phase of this project will be integrated into the Alaska Volcano Observatory's current near-real-time volcanic monitoring system, which relies on high temporal/low spatial resolution orbital data. This synergy will allow small-scale activity to be targeted for science and response, and a calibration baseline between each sensor to be established. If successful, this will be the first time that high spatial resolution, multispectral satellite data will be routinely scheduled, acquired, and analyzed in a "rapid response" mode within an existing hazard monitoring framework. Initial testing of this system is now underway using data from previous eruptions in the north Pacific region, and modifications to the rapid data flow procedure within the ASTER science and support structure has begun.

  5. Potential and Limitations of Low-Cost Unmanned Aerial Systems for Monitoring Altitudinal Vegetation Phenology in the Tropics

    NASA Astrophysics Data System (ADS)

    Silva, T. S. F.; Torres, R. S.; Morellato, P.

    2017-12-01

    Vegetation phenology is a key component of ecosystem function and biogeochemical cycling, and highly susceptible to climatic change. Phenological knowledge in the tropics is limited by lack of monitoring, traditionally done by laborious direct observation. Ground-based digital cameras can automate daily observations, but also offer limited spatial coverage. Imaging by low-cost Unmanned Aerial Systems (UAS) combines the fine resolution of ground-based methods with and unprecedented capability for spatial coverage, but challenges remain in producing color-consistent multitemporal images. We evaluated the applicability of multitemporal UAS imaging to monitor phenology in tropical altitudinal grasslands and forests, answering: 1) Can very-high resolution aerial photography from conventional digital cameras be used to reliably monitor vegetative and reproductive phenology? 2) How is UAS monitoring affected by changes in illumination and by sensor physical limitations? We flew imaging missions monthly from Feb-16 to Feb-17, using a UAS equipped with an RGB Canon SX260 camera. Flights were carried between 10am and 4pm, at 120-150m a.g.l., yielding 5-10cm spatial resolution. To compensate illumination changes caused by time of day, season and cloud cover, calibration was attempted using reference targets and empirical models, as well as color space transformations. For vegetative phenological monitoring, multitemporal response was severely affected by changes in illumination conditions, strongly confounding the phenological signal. These variations could not be adequately corrected through calibration due to sensor limitations. For reproductive phenology, the very-high resolution of the acquired imagery allowed discrimination of individual reproductive structures for some species, and its stark colorimetric differences to vegetative structures allowed detection of the reproductive timing on the HSV color space, despite illumination effects. We conclude that reliable vegetative phenology monitoring may exceed the capabilities of consumer cameras, but reproductive phenology can be successfully monitored for species with conspicuous reproductive structures. Further research is being conducted to improve calibration methods and information extraction through machine learning.

  6. External scintigraphy in monitoring the behavior of pharmaceutical formulations in vivo I: technique for acquiring high-resolution images of tablets

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Theodorakis, M.C.; Simpson, D.R.; Leung, D.M.

    1983-02-01

    A new method for monitoring tablet disintegration in vivo was developed. In this method, the tablets were labeled with a short-lived radionuclide, technetium 99m, and monitored by a gamma camera. Several innovations were introduced with this method. First, computer reconstruction algorithms were used to enhance the scintigraphic images of the disintegrating tablet in vivo. Second, the use of a four-pinhole collimator to acquire multiple views of the tablet resulted in high count rates and reduced acquisition times of the scintigraphic images. Third, the magnification of the scintigraphic images achieved by pinhole collimation led to significant improvement in resolution. Fourth, themore » radioinuclide was incorporated into the granulation so that the whole mass of the tablet was uniformly labeled with high levels of activity. This technique allowed the continuous monitoring of the disintegration process of tablets in vivo in experimental animals. Multiple pinhole collimation and the labeling process permitted the acquisition of quality scintigraphic images of the labeled tablet every 30 sec. The resolution of the method was tested in vitro and in vivo.« less

  7. Monitoring of landslide deformation based on the coherent targets of high resolution InSAR data

    NASA Astrophysics Data System (ADS)

    Fan, Jinghui; Xia, Ye; Zhao, Hongli; Li, Man; Wang, Yi; Guo, Xiaofang; Tu, Pengfei; Liu, Guang; Lin, Hao

    2014-05-01

    Landslides are a kind of typical natural disaster in China, which pose serious threats to civil lives, property and living environment. Therefore, the identification, monitoring and prevention of landslides have been considered as a long-term geological work for the public welfare. In this article, 8 TerraSAR-X high resolution strip-map mode images, acquired in the period from January to March 2012 and covering Fanjinping landslide in Zigui county, Hubei province, were used to test the usability in monitoring the deformation of single landslide. The results of two-pass DInSAR sketched the region and the shape of the deformation field of Fanjiaping landslide. Corner reflectors' linear deformation rate using CRInSAR method could be approximately validated by the in-situ GPS measurements. From the coherent pixels' linear deformation rate map, it was inferred that the deformation could be more obvious in the tail of the Muyubao landslide while the lowest frontier of this landslide might prevent the slide. Due to its shorter revisiting period and high bandwidth,,the high resolution TerraSAR-X images can keep better coherence than previous satellite SAR data in the test area and provide basic guarantee to monitor the deformation of single landslides.

  8. Very High Resolution Panoramic Photography to Improve Conventional Rangeland Monitoring 1994

    USDA-ARS?s Scientific Manuscript database

    Rangeland monitoring often includes repeat photographs as a basis for documentation and although photographic equipment and electronics have been evolving rapidly, basic rangeland photo monitoring methods have changed little over time. Ground based digital photography is underutilized, especially s...

  9. Hochauflösendes Monitoring von Karst-Grundwasserressourcen beiderseits des Jordangrabens - Konzepte und Anwendungsbeispiele

    NASA Astrophysics Data System (ADS)

    Schmidt, Sebastian; Grimmeisen, Felix; Ries, Fabian; Goldscheider, Nico; Sauter, Martin

    2018-03-01

    In the semi-arid eastern Mediterranean water supply is highly dependent on karst aquifers. The region is characterized by multi-year dry and wet cycles combined with high hydrological dynamics, especially during intense precipitation events. The investigated karst regions in the West Bank and Jordan are experiencing strong urbanization within the groundwater catchments and hence a rising impact on water quality. Therefore, high resolution monitoring data are required for the assessment of available water resources and the hydrogeological characterization of the karst systems. These measurements are focused on the (natural) meteorological input signals and the system output signals at the karst springs. Also soil moisture and ephemeral runoff dynamics are investigated. The monitoring data enable (1) hydrogeological characterization of the aquifers, (2) estimation of groundwater recharge via soil water balance and reservoir models, and (3) assessment of contamination dynamics in groundwater (e. g. nitrate and E. coli concentrations), allowing an optimized raw water management. Several examples illustrate the importance of high-resolution hydrological monitoring data.

  10. Plant respirometer enables high resolution of oxygen consumption rates

    NASA Technical Reports Server (NTRS)

    Foster, D. L.

    1966-01-01

    Plant respirometer permits high resolution of relatively small changes in the rate of oxygen consumed by plant organisms undergoing oxidative metabolism in a nonphotosynthetic state. The two stage supply and monitoring system operates by a differential pressure transducer and provides a calibrated output by digital or analog signals.

  11. Hierarchical object-based classification of ultra-high-resolution digital mapping camera (DMC) imagery for rangeland mapping and assessment

    USDA-ARS?s Scientific Manuscript database

    Ultra high resolution digital aerial photography has great potential to complement or replace ground measurements of vegetation cover for rangeland monitoring and assessment. We investigated object-based image analysis (OBIA) techniques for classifying vegetation in southwestern U.S. arid rangelands...

  12. Brillouin Optical Correlation Domain Analysis in Composite Material Beams

    PubMed Central

    Stern, Yonatan; London, Yosef; Preter, Eyal; Antman, Yair; Diamandi, Hilel Hagai; Silbiger, Maayan; Adler, Gadi; Shalev, Doron; Zadok, Avi

    2017-01-01

    Structural health monitoring is a critical requirement in many composites. Numerous monitoring strategies rely on measurements of temperature or strain (or both), however these are often restricted to point-sensing or to the coverage of small areas. Spatially-continuous data can be obtained with optical fiber sensors. In this work, we report high-resolution distributed Brillouin sensing over standard fibers that are embedded in composite structures. A phase-coded, Brillouin optical correlation domain analysis (B-OCDA) protocol was employed, with spatial resolution of 2 cm and sensitivity of 1 °K or 20 micro-strain. A portable measurement setup was designed and assembled on the premises of a composite structures manufacturer. The setup was successfully utilized in several structural health monitoring scenarios: (a) monitoring the production and curing of a composite beam over 60 h; (b) estimating the stiffness and Young’s modulus of a composite beam; and (c) distributed strain measurements across the surfaces of a model wing of an unmanned aerial vehicle. The measurements are supported by the predictions of structural analysis calculations. The results illustrate the potential added values of high-resolution, distributed Brillouin sensing in the structural health monitoring of composites. PMID:28974041

  13. Brillouin Optical Correlation Domain Analysis in Composite Material Beams.

    PubMed

    Stern, Yonatan; London, Yosef; Preter, Eyal; Antman, Yair; Diamandi, Hilel Hagai; Silbiger, Maayan; Adler, Gadi; Levenberg, Eyal; Shalev, Doron; Zadok, Avi

    2017-10-02

    Structural health monitoring is a critical requirement in many composites. Numerous monitoring strategies rely on measurements of temperature or strain (or both), however these are often restricted to point-sensing or to the coverage of small areas. Spatially-continuous data can be obtained with optical fiber sensors. In this work, we report high-resolution distributed Brillouin sensing over standard fibers that are embedded in composite structures. A phase-coded, Brillouin optical correlation domain analysis (B-OCDA) protocol was employed, with spatial resolution of 2 cm and sensitivity of 1 °K or 20 micro-strain. A portable measurement setup was designed and assembled on the premises of a composite structures manufacturer. The setup was successfully utilized in several structural health monitoring scenarios: (a) monitoring the production and curing of a composite beam over 60 h; (b) estimating the stiffness and Young's modulus of a composite beam; and (c) distributed strain measurements across the surfaces of a model wing of an unmanned aerial vehicle. The measurements are supported by the predictions of structural analysis calculations. The results illustrate the potential added values of high-resolution, distributed Brillouin sensing in the structural health monitoring of composites.

  14. Almaz

    NASA Technical Reports Server (NTRS)

    Viter, V.

    1993-01-01

    The basic data of the automatic space station ALMAZ-1B is overviewed, including the orbit parameters and maximum power. The principal technical characteristics of its remote sensing equipment is listed for the synthetic aperture and side-looking radar, optoelectronic equipment for stereophotography, high-resolution electronic scanner, middle-resolution optomechanical scanner, spectroradiometer for ocean satellite monitoring, and information transmission and reception. The main objectives and uses of the ALMAZ-1B information are cartography, land monitoring, geology, ecological monitoring, oceanology, pilotage, fishery, and information supply during an emergency such as controlling situation in natural disasters.

  15. Monitoring of experimental rat lung transplants by high-resolution flat-panel volumetric computer tomography (fpVCT).

    PubMed

    Greschus, Susanne; Kuchenbuch, Tim; Plötz, Christian; Obert, Martin; Traupe, Horst; Padberg, Winfried; Grau, Veronika; Hirschburger, Markus

    2009-01-01

    Noninvasive assessment of experimental lung transplants with high resolution would be favorable to exclude technical failure and to follow up graft outcome in the living animal. Here we describe a flat-panel Volumetric Computed Tomography (fpVCT) technique using a prototype scanner. Lung transplantation was performed in allogeneic as well as in corresponding syngeneic rat strain combinations. At different time points post-transplantation, fpVCT was performed. Lung transplants can be visualized in the living rat with high-spatial resolution. FpVCT allows a detailed analysis of the lung and the bronchi. Infiltrates developing during rejection episodes can be diagnosed and follow-up studies can easily be performed. With fpVCT it is possible to control the technical success of the surgical procedure. Graft rejection can be visualized individually in the living animal noninvasively, which is highly advantageous for studying the pathogenesis of chronic rejection or to monitor new therapies.

  16. Assessment of a vertical high-resolution distributed-temperature-sensing system in a shallow thermohaline environment

    NASA Astrophysics Data System (ADS)

    Suárez, F.; Aravena, J. E.; Hausner, M. B.; Childress, A. E.; Tyler, S. W.

    2011-01-01

    In shallow thermohaline-driven lakes it is important to measure temperature on fine spatial and temporal scales to detect stratification or different hydrodynamic regimes. Raman spectra distributed temperature sensing (DTS) is an approach available to provide high spatial and temporal temperature resolution. A vertical high-resolution DTS system was constructed to overcome the problems of typical methods used in the past, i.e., without disturbing the water column, and with resistance to corrosive environments. This system monitors the temperature profile each 1.1 cm vertically and in time averages as small as 10 s. Temperature resolution as low as 0.035 °C is obtained when the data are collected at 5-min intervals. The vertical high-resolution DTS system is used to monitor the thermal behavior of a salt-gradient solar pond, which is an engineered shallow thermohaline system that allows collection and storage of solar energy for a long period of time. This paper describes a method to quantitatively assess accuracy, precision and other limitations of DTS systems to fully utilize the capacity of this technology. It also presents, for the first time, a method to manually calibrate temperatures along the optical fiber.

  17. Telepathology. Long-distance diagnosis.

    PubMed

    Weinstein, R S; Bloom, K J; Rozek, L S

    1989-04-01

    Telepathology is defined as the practice of pathology at a distance, by visualizing an image on a video monitor rather than viewing a specimen directly through a microscope. Components of a telepathology system include the following: (1) a workstation equipped with a high-resolution video camera attached to a remote-controlled light microscope; (2) a pathologist workstation incorporating controls for manipulating the robotic microscope as well as a high-resolution video monitor; and (3) a telecommunications link. Progress has been made in designing and constructing telepathology workstations and fully motorized, computer-controlled light microscopes suitable for telepathology. In addition, components such as video signal digital encoders and decoders that produce remarkably stable, high-color fidelity, and high-resolution images have been incorporated into the workstations. Resolution requirements for the video microscopy component of telepathology have been formally examined in receiver operator characteristic (ROC) curve analyses. Test-of-concept demonstrations have been completed with the use of geostationary satellites as the broadband communication linkages for 750-line resolution video. Potential benefits of telepathology include providing a means of conveniently delivering pathology services in real-time to remote sites or underserviced areas, time-sharing of pathologists' services by multiple institutions, and increasing accessibility to specialty pathologists.

  18. Passive acoustic monitoring of bed load for fluvial applications

    USDA-ARS?s Scientific Manuscript database

    The sediment transported as bed load in streams and rivers is notoriously difficult to monitor cheaply and accurately. Passive acoustic methods are relatively simple, inexpensive, and provide spatial integration along with high temporal resolution. In 1963 work began on monitoring emissions from par...

  19. AVHRR for monitoring global tropical deforestation

    NASA Technical Reports Server (NTRS)

    Malingreau, J. P.; Laporte, N.; Tucker, C. J.

    1989-01-01

    Advanced Very High Resolution Radiometer (AVHRR) data have been used to assess the dynamics of forest trnsformations in three parts of the tropical belt. A large portion of the Amazon Basin has been systematically covered by Local Area Coverage (LAC) data in the 1985-1987 period. The analysis of the vegetation index and thermal data led to the identification and measurement of large areas of active deforestation. The Kalimantan/Borneo forest fires were monitored and their impact was evaluated using the Global Area Coverage (GAC) 4 km resolution data. Finally, High Resolution Picture Transmission (HRPT) data have provided preliminary information on current activities taking place at the boundary between the savanna and the forest in the Southern part of West Africa. The AVHRR approach is found to be a highly valuable means for carrying out deforestation assessments in regional and global perspectives.

  20. Resolution-improved in situ DNA hybridization detection based on microwave photonic interrogation.

    PubMed

    Cao, Yuan; Guo, Tuan; Wang, Xudong; Sun, Dandan; Ran, Yang; Feng, Xinhuan; Guan, Bai-ou

    2015-10-19

    In situ bio-sensing system based on microwave photonics filter (MPF) interrogation method with improved resolution is proposed and experimentally demonstrated. A microfiber Bragg grating (mFBG) is used as sensing probe for DNA hybridization detection. Different from the traditional wavelength monitoring technique, we use the frequency interrogation scheme for resolution-improved bio-sensing detection. Experimental results show that the frequency shift of MPF notch presents a linear response to the surrounding refractive index (SRI) change over the range of 1.33 to 1.38, with a SRI resolution up to 2.6 × 10(-5) RIU, which has been increased for almost two orders of magnitude compared with the traditional fundamental mode monitoring technique (~3.6 × 10(-3) RIU). Due to the high Q value (about 27), the whole process of DNA hybridization can be in situ monitored. The proposed MPF-based bio-sensing system provides a new interrogation method over the frequency domain with improved sensing resolution and rapid interrogation rate for biochemical and environmental measurement.

  1. Development and Evaluation of the Interferometric Monitor for Greenhouse Gases: a High-throughput Fourier-transform Infrared Radiometer for Nadir Earth Observation

    NASA Astrophysics Data System (ADS)

    Kobayashi, Hirokazu; Shimota, Akiro; Kondo, Kayoko; Okumura, Eisuke; Kameda, Yoshihiko; Shimoda, Haruhisa; Ogawa, Toshihiro

    1999-11-01

    The interferometric monitor for greenhouse gases (IMG) was the precursor of the high-resolution Fourier-transform infrared radiometer (FTIR) onboard a satellite for observation of the Earth. The IMG endured the stress of a rocket launch, demonstrating that the high-resolution, high-throughput spectrometer is indeed feasible for use onboard a satellite. The IMG adopted a newly developed lubricant-free magnetic suspension mechanism and a dynamic alignment system for the moving mirror with a maximum traveling distance of 10 cm. We present the instrumentation of the IMG, characteristics of the movable mirror drive system, and the evaluation results of sensor specifications during space operation.

  2. Geo-oculus: high resolution multi-spectral earth imaging mission from geostationary orbit

    NASA Astrophysics Data System (ADS)

    Vaillon, L.; Schull, U.; Knigge, T.; Bevillon, C.

    2017-11-01

    Geo-Oculus is a GEO-based Earth observation mission studied by Astrium for ESA in 2008-2009 to complement the Sentinel missions, the space component of the GMES (Global Monitoring for Environment & Security). Indeed Earth imaging from geostationary orbit offers new functionalities not covered by existing LEO observation missions, like real-time monitoring and fast revisit capability of any location within the huge area in visibility of the satellite. This high revisit capability is exploited by the Meteosat meteorogical satellites, but with a spatial resolution (500 m nadir for the third generation) far from most of GMES needs (10 to 100 m). To reach such ground resolution from GEO orbit with adequate image quality, large aperture instruments (> 1 m) and high pointing stability (<< 1 μrad) are required, which are the major challenges of such missions. To address the requirements from the GMES user community, the Geo-Oculus mission is a combination of routine observations (daily systematic coverage of European coastal waters) with "on-demand" observation for event monitoring (e.g. disasters, fires and oil slicks). The instrument is a large aperture imaging telescope (1.5 m diameter) offering a nadir spatial sampling of 10.5 m (21 m worst case over Europe, below 52.5°N) in a PAN visible channel used for disaster monitoring. The 22 multi-spectral channels have resolutions over Europe ranging from 40 m in UV/VNIR (0.3 to 1 μm) to 750 m in TIR (10-12 μm).

  3. Application of high resolution images from unmanned aerial vehicles for hydrology and range science

    USDA-ARS?s Scientific Manuscript database

    A common problem in many natural resource disciplines is the lack of high-enough spatial resolution images that can be used for monitoring and modeling purposes. Advances have been made in the utilization of Unmanned Aerial Vehicles (UAVs) in hydrology and rangeland science. By utilizing low fligh...

  4. Building Change Detection in Very High Resolution Satellite Stereo Image Time Series

    NASA Astrophysics Data System (ADS)

    Tian, J.; Qin, R.; Cerra, D.; Reinartz, P.

    2016-06-01

    There is an increasing demand for robust methods on urban sprawl monitoring. The steadily increasing number of high resolution and multi-view sensors allows producing datasets with high temporal and spatial resolution; however, less effort has been dedicated to employ very high resolution (VHR) satellite image time series (SITS) to monitor the changes in buildings with higher accuracy. In addition, these VHR data are often acquired from different sensors. The objective of this research is to propose a robust time-series data analysis method for VHR stereo imagery. Firstly, the spatial-temporal information of the stereo imagery and the Digital Surface Models (DSMs) generated from them are combined, and building probability maps (BPM) are calculated for all acquisition dates. In the second step, an object-based change analysis is performed based on the derivative features of the BPM sets. The change consistence between object-level and pixel-level are checked to remove any outlier pixels. Results are assessed on six pairs of VHR satellite images acquired within a time span of 7 years. The evaluation results have proved the efficiency of the proposed method.

  5. Development of high resolution linear-cut beam position monitor for heavy-ion synchrotron of KHIMA project

    NASA Astrophysics Data System (ADS)

    Hwang, Ji-Gwang; Yang, Tae-Keun; Forck, Peter; Noh, Seon Yeong; Hahn, Garam; Choi, Minkyoo

    2017-04-01

    A beam position monitor with high precision and resolution is required to control the beam trajectory for matching to the injection orbit and acceleration in a heavy-ion synchrotron. It will be also used for measuring the beta function, tune, and chromaticity. Since the bunch length at heavy ion synchrotron is relatively long, a few meters, a boxlike device with plates of typically 20 cm length is used to enhance the signal strength and to get a precise linear dependence with respect to the beam displacement. Especially, the linear-cut beam position monitor is adopted to satisfy the position resolution of 100 μm and accuracy of 200 μm for a nominal beam intensity in the KHIMA synchrotron of ∼ 7 ×108 particles for the carbon beams and ∼ 2 ×1010 for the proton beams. In this paper, we show the electromagnetic design of the electrode and surroundings to satisfy the resolution of 100 μm, the criteria for mechanical aspect to satisfy the position accuracy of 200 μm, the measurement results by using wire test-bench, design and measurement of a high input impedance pre-amplifier, and the beam-test results with long (∼1.6 μs) electron beam in Pohang accelerator laboratory (PAL).

  6. 4-D High-Resolution Seismic Reflection Monitoring of Miscible CO2 Injected into a Carbonate Reservoir

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Richard D. Miller; Abdelmoneam E. Raef; Alan P. Byrnes

    2007-06-30

    The objective of this research project was to acquire, process, and interpret multiple high-resolution 3-D compressional wave and 2-D, 2-C shear wave seismic data in the hopes of observing changes in fluid characteristics in an oil field before, during, and after the miscible carbon dioxide (CO{sub 2}) flood that began around December 1, 2003, as part of the DOE-sponsored Class Revisit Project (DOE No.DE-AC26-00BC15124). Unique and key to this imaging activity is the high-resolution nature of the seismic data, minimal deployment design, and the temporal sampling throughout the flood. The 900-m-deep test reservoir is located in central Kansas oomoldic limestonesmore » of the Lansing-Kansas City Group, deposited on a shallow marine shelf in Pennsylvanian time. After 30 months of seismic monitoring, one baseline and eight monitor surveys clearly detected changes that appear consistent with movement of CO{sub 2} as modeled with fluid simulators and observed in production data. Attribute analysis was a very useful tool in enhancing changes in seismic character present, but difficult to interpret on time amplitude slices. Lessons learned from and tools/techniques developed during this project will allow high-resolution seismic imaging to be routinely applied to many CO{sub 2} injection programs in a large percentage of shallow carbonate oil fields in the midcontinent.« less

  7. High-resolution ultrasound imaging and noninvasive optoacoustic monitoring of blood variables in peripheral blood vessels

    NASA Astrophysics Data System (ADS)

    Petrov, Irene Y.; Petrov, Yuriy; Prough, Donald S.; Esenaliev, Rinat O.

    2011-03-01

    Ultrasound imaging is being widely used in clinics to obtain diagnostic information non-invasively and in real time. A high-resolution ultrasound imaging platform, Vevo (VisualSonics, Inc.) provides in vivo, real-time images with exceptional resolution (up to 30 microns) using high-frequency transducers (up to 80 MHz). Recently, we built optoacoustic systems for probing radial artery and peripheral veins that can be used for noninvasive monitoring of total hemoglobin concentration, oxyhemoglobin saturation, and concentration of important endogenous and exogenous chromophores (such as ICG). In this work we used the high-resolution ultrasound imaging system Vevo 770 for visualization of the radial artery and peripheral veins and acquired corresponding optoacoustic signals from them using the optoacoustic systems. Analysis of the optoacoustic data with a specially developed algorithm allowed for measurement of blood oxygenation in the blood vessels as well as for continuous, real-time monitoring of arterial and venous blood oxygenation. Our results indicate that: 1) the optoacoustic technique (unlike pure optical approaches and other noninvasive techniques) is capable of accurate peripheral venous oxygenation measurement; and 2) peripheral venous oxygenation is dependent on skin temperature and local hemodynamics. Moreover, we performed for the first time (to the best of our knowledge) a comparative study of optoacoustic arterial oximetry and a standard pulse oximeter in humans and demonstrated superior performance of the optoacoustic arterial oximeter, in particular at low blood flow.

  8. High Resolution PET Imaging Probe for the Detection, Molecular Characterization and Treatment Monitoring of Prostate Cancer

    DTIC Science & Technology

    2012-07-01

    Jitter results from electronic noise and from the fact that the shape of the detector signal used for timing can vary considerably depending on the...photomultiplier technology, several “probe” detectors were developed. It was predicted, and subsequently shown, that probes having good position...high spatial resolution for prostate imaging. Practical proof-of-concept detectors with good depth-of-interactions resolution have been developed and

  9. The NMDB collaboration

    NASA Astrophysics Data System (ADS)

    Steigies, C. T.

    2015-12-01

    Since the International Geophysical Year (IGY) in 1957-58 cosmic rays areroutinely measured by many ground-based Neutron Monitors (NM) around theworld. The World Data Center for Cosmic Rays (WDCCR) was established as apart of this activity and is providing a database of cosmic-ray neutronobservations in unified formats. However, that standard data comprises onlyof one hour averages, whereas most NM stations have been enhanced at the endof the 20th century to provide data in one minute resolution or even better.This data was only available on the web-sites of the institutes operatingthe station, and every station invented their own data format for thehigh-resolution measurements. There were some efforts to collect data fromseveral stations, to make this data available on FTP servers, however noneof these efforts could provide real-time data for all stations.The EU FP7 project NMDB (real-time database for high-resolution NeutronMonitor measurements, http://nmdb.eu) was funded by the European Commission,and a new database was set up by several Neutron Monitor stations in Europeand Asia to store high-resolution data and to provide access to the data inreal-time (i.e. less than five minute delay). By storing the measurements ina database, a standard format for the high-resolution measurements isenforced. This database is complementary to the WDCCR, as it does not (yet)provide all historical data, but the creation of this effort has spurred anew collaboration between Neutron Monitor scientists worldwide, (new)stations have gone online (again), new projects are building on the resultsof NMDB, new users outside of the Cosmic Ray community are starting to useNM data for new applications like soil moisture measurements using cosmicrays. These applications are facilitated by the easy access to the data withthe http://nest.nmdb.eu interface that offers access to all NMDB data forall users.

  10. Determination of atmospheric moisture structure and infrared cooling rates from high resolution MAMS radiance data

    NASA Technical Reports Server (NTRS)

    Menzel, W. Paul; Moeller, Christopher C.; Smith, William L.

    1991-01-01

    This program has applied Multispectral Atmospheric Mapping Sensor (MAMS) high resolution data to the problem of monitoring atmospheric quantities of moisture and radiative flux at small spatial scales. MAMS, with 100-m horizontal resolution in its four infrared channels, was developed to study small scale atmospheric moisture and surface thermal variability, especially as related to the development of clouds, precipitation, and severe storms. High-resolution Interferometer Sounder (HIS) data has been used to develop a high spectral resolution retrieval algorithm for producing vertical profiles of atmospheric temperature and moisture. The results of this program are summarized and a list of publications resulting from this contract is presented. Selected publications are attached as an appendix.

  11. Optoacoustic Monitoring of Physiologic Variables

    PubMed Central

    Esenaliev, Rinat O.

    2017-01-01

    Optoacoustic (photoacoustic) technique is a novel diagnostic platform that can be used for noninvasive measurements of physiologic variables, functional imaging, and hemodynamic monitoring. This technique is based on generation and time-resolved detection of optoacoustic (thermoelastic) waves generated in tissue by short optical pulses. This provides probing of tissues and individual blood vessels with high optical contrast and ultrasound spatial resolution. Because the optoacoustic waves carry information on tissue optical and thermophysical properties, detection, and analysis of the optoacoustic waves allow for measurements of physiologic variables with high accuracy and specificity. We proposed to use the optoacoustic technique for monitoring of a number of important physiologic variables including temperature, thermal coagulation, freezing, concentration of molecular dyes, nanoparticles, oxygenation, and hemoglobin concentration. In this review we present origin of contrast and high spatial resolution in these measurements performed with optoacoustic systems developed and built by our group. We summarize data obtained in vitro, in experimental animals, and in humans on monitoring of these physiologic variables. Our data indicate that the optoacoustic technology may be used for monitoring of cerebral blood oxygenation in patients with traumatic brain injury and in neonatal patients, central venous oxygenation monitoring, total hemoglobin concentration monitoring, hematoma detection and characterization, monitoring of temperature, and coagulation and freezing boundaries during thermotherapy. PMID:29311964

  12. Optoacoustic Monitoring of Physiologic Variables.

    PubMed

    Esenaliev, Rinat O

    2017-01-01

    Optoacoustic (photoacoustic) technique is a novel diagnostic platform that can be used for noninvasive measurements of physiologic variables, functional imaging, and hemodynamic monitoring. This technique is based on generation and time-resolved detection of optoacoustic (thermoelastic) waves generated in tissue by short optical pulses. This provides probing of tissues and individual blood vessels with high optical contrast and ultrasound spatial resolution. Because the optoacoustic waves carry information on tissue optical and thermophysical properties, detection, and analysis of the optoacoustic waves allow for measurements of physiologic variables with high accuracy and specificity. We proposed to use the optoacoustic technique for monitoring of a number of important physiologic variables including temperature, thermal coagulation, freezing, concentration of molecular dyes, nanoparticles, oxygenation, and hemoglobin concentration. In this review we present origin of contrast and high spatial resolution in these measurements performed with optoacoustic systems developed and built by our group. We summarize data obtained in vitro , in experimental animals, and in humans on monitoring of these physiologic variables. Our data indicate that the optoacoustic technology may be used for monitoring of cerebral blood oxygenation in patients with traumatic brain injury and in neonatal patients, central venous oxygenation monitoring, total hemoglobin concentration monitoring, hematoma detection and characterization, monitoring of temperature, and coagulation and freezing boundaries during thermotherapy.

  13. Impact of the spatial resolution of satellite remote sensing sensors in the quantification of total suspended sediment concentration: A case study in turbid waters of Northern Western Australia.

    PubMed

    Dorji, Passang; Fearns, Peter

    2017-01-01

    The impact of anthropogenic activities on coastal waters is a cause of concern because such activities add to the total suspended sediment (TSS) budget of the coastal waters, which have negative impacts on the coastal ecosystem. Satellite remote sensing provides a powerful tool in monitoring TSS concentration at high spatiotemporal resolution, but coastal managers should be mindful that the satellite-derived TSS concentrations are dependent on the satellite sensor's radiometric properties, atmospheric correction approaches, the spatial resolution and the limitations of specific TSS algorithms. In this study, we investigated the impact of different spatial resolutions of satellite sensor on the quantification of TSS concentration in coastal waters of northern Western Australia. We quantified the TSS product derived from MODerate resolution Imaging Spectroradiometer (MODIS)-Aqua, Landsat-8 Operational Land Image (OLI), and WorldView-2 (WV2) at native spatial resolutions of 250 m, 30 m and 2 m respectively and coarser spatial resolution (resampled up to 5 km) to quantify the impact of spatial resolution on the derived TSS product in different turbidity conditions. The results from the study show that in the waters of high turbidity and high spatial variability, the high spatial resolution WV2 sensor reported TSS concentration as high as 160 mg L-1 while the low spatial resolution MODIS-Aqua reported a maximum TSS concentration of 23.6 mg L-1. Degrading the spatial resolution of each satellite sensor for highly spatially variable turbid waters led to variability in the TSS concentrations of 114.46%, 304.68% and 38.2% for WV2, Landsat-8 OLI and MODIS-Aqua respectively. The implications of this work are particularly relevant in the situation of compliance monitoring where operations may be required to restrict TSS concentrations to a pre-defined limit.

  14. Impact of the spatial resolution of satellite remote sensing sensors in the quantification of total suspended sediment concentration: A case study in turbid waters of Northern Western Australia

    PubMed Central

    Fearns, Peter

    2017-01-01

    The impact of anthropogenic activities on coastal waters is a cause of concern because such activities add to the total suspended sediment (TSS) budget of the coastal waters, which have negative impacts on the coastal ecosystem. Satellite remote sensing provides a powerful tool in monitoring TSS concentration at high spatiotemporal resolution, but coastal managers should be mindful that the satellite-derived TSS concentrations are dependent on the satellite sensor’s radiometric properties, atmospheric correction approaches, the spatial resolution and the limitations of specific TSS algorithms. In this study, we investigated the impact of different spatial resolutions of satellite sensor on the quantification of TSS concentration in coastal waters of northern Western Australia. We quantified the TSS product derived from MODerate resolution Imaging Spectroradiometer (MODIS)-Aqua, Landsat-8 Operational Land Image (OLI), and WorldView-2 (WV2) at native spatial resolutions of 250 m, 30 m and 2 m respectively and coarser spatial resolution (resampled up to 5 km) to quantify the impact of spatial resolution on the derived TSS product in different turbidity conditions. The results from the study show that in the waters of high turbidity and high spatial variability, the high spatial resolution WV2 sensor reported TSS concentration as high as 160 mg L-1 while the low spatial resolution MODIS-Aqua reported a maximum TSS concentration of 23.6 mg L-1. Degrading the spatial resolution of each satellite sensor for highly spatially variable turbid waters led to variability in the TSS concentrations of 114.46%, 304.68% and 38.2% for WV2, Landsat-8 OLI and MODIS-Aqua respectively. The implications of this work are particularly relevant in the situation of compliance monitoring where operations may be required to restrict TSS concentrations to a pre-defined limit. PMID:28380059

  15. Remote sensing in support of high-resolution terrestrial carbon monitoring and modeling

    NASA Astrophysics Data System (ADS)

    Hurtt, G. C.; Zhao, M.; Dubayah, R.; Huang, C.; Swatantran, A.; ONeil-Dunne, J.; Johnson, K. D.; Birdsey, R.; Fisk, J.; Flanagan, S.; Sahajpal, R.; Huang, W.; Tang, H.; Armstrong, A. H.

    2014-12-01

    As part of its Phase 1 Carbon Monitoring System (CMS) activities, NASA initiated a Local-Scale Biomass Pilot study. The goals of the pilot study were to develop protocols for fusing high-resolution remotely sensed observations with field data, provide accurate validation test areas for the continental-scale biomass product, and demonstrate efficacy for prognostic terrestrial ecosystem modeling. In Phase 2, this effort was expanded to the state scale. Here, we present results of this activity focusing on the use of remote sensing in high-resolution ecosystem modeling. The Ecosystem Demography (ED) model was implemented at 90 m spatial resolution for the entire state of Maryland. We rasterized soil depth and soil texture data from SSURGO. For hourly meteorological data, we spatially interpolated 32-km 3-hourly NARR into 1-km hourly and further corrected them at monthly level using PRISM data. NLCD data were used to mask sand, seashore, and wetland. High-resolution 1 m forest/non-forest mapping was used to define forest fraction of 90 m cells. Three alternative strategies were evaluated for initialization of forest structure using high-resolution lidar, and the model was used to calculate statewide estimates of forest biomass, carbon sequestration potential, time to reach sequestration potential, and sensitivity to future forest growth and disturbance rates, all at 90 m resolution. To our knowledge, no dynamic ecosystem model has been run at such high spatial resolution over such large areas utilizing remote sensing and validated as extensively. There are over 3 million 90 m land cells in Maryland, greater than 43 times the ~73,000 half-degree cells in a state-of-the-art global land model.

  16. Use of High Resolution Mobile Monitoring Techniques to Assess Near Road Air Quality Variability

    EPA Science Inventory

    This presentation provides a description of the techniques used to develop and conduct effective mobile monitoring studies. It also provides a summary of mobile monitoring assessment studies that have been used to assess near-road concentrations and the variability of pollutant l...

  17. Use of High Resolution Mobile Monitoring Techniques to Assess Near-Road Air Quality Variability

    EPA Science Inventory

    This presentation provides a description of the techniques used to develop and conduct effective mobile monitoring studies. It also provides a summary of mobile monitoring assessment studies that have been used to assess near-road concentrations and the variability of pollutant l...

  18. Mapping Sub-Antarctic Cushion Plants Using Random Forests to Combine Very High Resolution Satellite Imagery and Terrain Modelling

    PubMed Central

    Bricher, Phillippa K.; Lucieer, Arko; Shaw, Justine; Terauds, Aleks; Bergstrom, Dana M.

    2013-01-01

    Monitoring changes in the distribution and density of plant species often requires accurate and high-resolution baseline maps of those species. Detecting such change at the landscape scale is often problematic, particularly in remote areas. We examine a new technique to improve accuracy and objectivity in mapping vegetation, combining species distribution modelling and satellite image classification on a remote sub-Antarctic island. In this study, we combine spectral data from very high resolution WorldView-2 satellite imagery and terrain variables from a high resolution digital elevation model to improve mapping accuracy, in both pixel- and object-based classifications. Random forest classification was used to explore the effectiveness of these approaches on mapping the distribution of the critically endangered cushion plant Azorella macquariensis Orchard (Apiaceae) on sub-Antarctic Macquarie Island. Both pixel- and object-based classifications of the distribution of Azorella achieved very high overall validation accuracies (91.6–96.3%, κ = 0.849–0.924). Both two-class and three-class classifications were able to accurately and consistently identify the areas where Azorella was absent, indicating that these maps provide a suitable baseline for monitoring expected change in the distribution of the cushion plants. Detecting such change is critical given the threats this species is currently facing under altering environmental conditions. The method presented here has applications to monitoring a range of species, particularly in remote and isolated environments. PMID:23940805

  19. CO2-Tea pulse clipping using pulsed high voltage preionization for high spatial resolution I.R. Lidar systems

    NASA Astrophysics Data System (ADS)

    Gasmi, Taieb

    2018-04-01

    An extra-cavity CO2-TEA laser pulse clipper for high spatial resolution atmospheric monitoring is presented. The clipper uses pulsed high voltageto facilitate the breakdown of the gas within the clipper cell. Complete extinction of the nitrogen tail, that degrades the range resolution of LIDARS, is obtained at pressures from 375 up to 1500 Torr for nitrogen and argon gases whereas an attenuation coefficient of almost 102 is achieved for helium. Excellent energy stability and pulse width repeatability were achieved using high voltage pre-ionized gas technique.

  20. Design and performance of a high resolution, low latency stripline beam position monitor system

    NASA Astrophysics Data System (ADS)

    Apsimon, R. J.; Bett, D. R.; Blaskovic Kraljevic, N.; Burrows, P. N.; Christian, G. B.; Clarke, C. I.; Constance, B. D.; Dabiri Khah, H.; Davis, M. R.; Perry, C.; Resta López, J.; Swinson, C. J.

    2015-03-01

    A high-resolution, low-latency beam position monitor (BPM) system has been developed for use in particle accelerators and beam lines that operate with trains of particle bunches with bunch separations as low as several tens of nanoseconds, such as future linear electron-positron colliders and free-electron lasers. The system was tested with electron beams in the extraction line of the Accelerator Test Facility at the High Energy Accelerator Research Organization (KEK) in Japan. It consists of three stripline BPMs instrumented with analogue signal-processing electronics and a custom digitizer for logging the data. The design of the analogue processor units is presented in detail, along with measurements of the system performance. The processor latency is 15.6 ±0.1 ns . A single-pass beam position resolution of 291 ±10 nm has been achieved, using a beam with a bunch charge of approximately 1 nC.

  1. LASER BIOLOGY AND MEDICINE: Optoacoustic laser monitoring of cooling and freezing of tissues

    NASA Astrophysics Data System (ADS)

    Larin, Kirill V.; Larina, I. V.; Motamedi, M.; Esenaliev, R. O.

    2002-11-01

    Real-time monitoring of cooling and freezing of tissues, cells, and other biological objects with a high spatial and time resolution, which is necessary for selective destruction of cancer and benign tumours during cryotherapy, as well as for preventing any damage to the structure and functioning of biological objects in cryobiology, is considered. The optoacoustic method, based on the measurement and analysis of acoustic waves induced by short laser pulses, is proposed for monitoring the cooling and freezing of the tissue. The effect of cooling and freezing on the amplitude and time profile of acoustic signals generated in real tissues and in a model object is studied. The experimental results indicate that the optoacoustic laser technique can be used for real-time monitoring of cooling and freezing of biological objects with a submillimeter spatial resolution and a high contrast.

  2. Integrated High Resolution Monitoring of Mediterranean vegetation

    NASA Astrophysics Data System (ADS)

    Cesaraccio, Carla; Piga, Alessandra; Ventura, Andrea; Arca, Angelo; Duce, Pierpaolo; Mereu, Simone

    2017-04-01

    The study of the vegetation features in a complex and highly vulnerable ecosystems, such as Mediterranean maquis, leads to the need of using continuous monitoring systems at high spatial and temporal resolution, for a better interpretation of the mechanisms of phenological and eco-physiological processes. Near-surface remote sensing techniques are used to quantify, at high temporal resolution, and with a certain degree of spatial integration, the seasonal variations of the surface optical and radiometric properties. In recent decades, the design and implementation of global monitoring networks involved the use of non-destructive and/or cheaper approaches such as (i) continuous surface fluxes measurement stations, (ii) phenological observation networks, and (iii) measurement of temporal and spatial variations of the vegetation spectral properties. In this work preliminary results from the ECO-SCALE (Integrated High Resolution Monitoring of Mediterranean vegetation) project are reported. The project was manly aimed to develop an integrated system for environmental monitoring based on digital photography, hyperspectral radiometry , and micrometeorological techniques during three years of experimentation (2013-2016) in a Mediterranean site of Italy (Capo Caccia, Alghero). The main results concerned the analysis of chromatic coordinates indices from digital images, to characterized the phenological patterns for typical shrubland species, determining start and duration of the growing season, and the physiological status in relation to different environmental drought conditions; then the seasonal patterns of canopy phenology, was compared to NEE (Net Ecosystem Exchange) patterns, showing similarities. However, maximum values of NEE and ER (Ecosystem respiration), and short term variation, seemed mainly tuned by inter annual pattern of meteorological variables, in particular of temperature recorded in the months preceding the vegetation green-up. Finally, green signals (gcc, ExG) from digital images was also in according to the spectral signature (NDVI) obtained for single species (in particular for Juniperus phoenicea and Pistacia lentiscus). The integrated system developed during this project can provide continuous and high-resolution data, providing a valuable support for both ecological and environmental studies in particular for the analysis of phenological plants responses to environmental and climate changes, and the validation of eco-physiological models, and supporting research on climate change adaptations. This research was funded by the Regional Administration of Sardinia, RAS, L.R. 7/2007 "Scientific Research and Technological Innovation in Sardinia ".

  3. An improved RST approach for timely alert and Near Real Time monitoring of oil spill disasters by using AVHRR data

    NASA Astrophysics Data System (ADS)

    Grimaldi, C. S. L.; Casciello, D.; Coviello, I.; Lacava, T.; Pergola, N.; Tramutoli, V.

    2011-05-01

    Information acquired and provided in Near Real Time is fundamental in contributing to reduce the impact of different sea pollution sources on the maritime environment. Optical data acquired by sensors aboard meteorological satellites, thanks to their high temporal resolution as well as to their delivery policy, can be profitably used for a Near Real Time sea monitoring, provided that accurate and reliable methodologies for analysis and investigation are designed, implemented and fully assessed. In this paper, the results achieved by the application of an improved version of RST (Robust Satellite Technique) to oil spill detection and monitoring will be shown. In particular, thermal infrared data acquired by the NOAA-AVHRR (National Oceanic and Atmospheric Administration-Advanced Very High Resolution Radiometer) have been analyzed and a new RST-based change detection index applied to the case of the oil spills that occurred off the Kuwait and Saudi Arabian coasts in January 1991 and during the Lebanon War in July 2006. The results obtained, even in comparison with those achieved by other AVHRR-based techniques, confirm the unique performance of the proposed approach in automatically detecting the presence of oil spill with a high level of reliability and sensitivity. Moreover, the potential of the extension of the proposed technique to sensors onboard geostationary satellites will be discussed within the context of oil spill monitoring systems, integrating products generated by high temporal (optical) and high spatial (radar) resolution satellite systems.

  4. Tamarisk Mapping and Monitoring Using High Resolution Satellite Imagery

    Treesearch

    Jason W. San Souci; John T. Doyle

    2006-01-01

    QuickBird high resolution multispectral satellite imagery (60 cm GSD, 4 spectral bands) and calibrated products from DigitalGlobe’s AgroWatch program were used as inputs to Visual Learning System’s Feature Analyst automated feature extraction software to map localized occurrences of pervasive and aggressive Tamarisk (Tamarix ramosissima), an invasive...

  5. Unraveling the mystery of natural rubber biosythesis part I: investigation of the composition and growth of in vitro natural rubber using high resolution size exclusion chromatography

    USDA-ARS?s Scientific Manuscript database

    Monitoring the growth of in vitro natural rubberwas accomplished by high resolution size exclusion chromatography, SEC.Washed rubber particles isolated from H. brasiliensis latex, containing the rubber transferase enzyme, were used to catalyze the polymerization of synthetic isopentenyl pyrophosphat...

  6. Low-cost, high-density sensor network for urban emission monitoring: BEACO2N

    NASA Astrophysics Data System (ADS)

    Kim, J.; Shusterman, A.; Lieschke, K.; Newman, C.; Cohen, R. C.

    2017-12-01

    In urban environments, air quality is spatially and temporally heterogeneous as diverse emission sources create a high degree of variability even at the neighborhood scale. Conventional air quality monitoring relies on continuous measurements with limited spatial resolution or passive sampling with high-density and low temporal resolution. Either approach averages the air quality information over space or time and hinders our attempts to understand emissions, chemistry, and human exposure in the near-field of emission sources. To better capture the true spatio-temporal heterogeneity of urban conditions, we have deployed a low-cost, high-density air quality monitoring network in San Francisco Bay Area distributed at 2km horizontal spacing. The BErkeley Atmospheric CO2 Observation Network (BEACO2N) consists of approximately 50 sensor nodes, measuring CO2, CO, NO, NO2, O­3, and aerosol. Here we describe field-based calibration approaches that are consistent with the low-cost strategy of the monitoring network. Observations that allow inference of emission factors and identification of specific local emission sources will also be presented.

  7. Design criteria for a high energy Compton Camera and possible application to targeted cancer therapy

    NASA Astrophysics Data System (ADS)

    Conka Nurdan, T.; Nurdan, K.; Brill, A. B.; Walenta, A. H.

    2015-07-01

    The proposed research focuses on the design criteria for a Compton Camera with high spatial resolution and sensitivity, operating at high gamma energies and its possible application for molecular imaging. This application is mainly on the detection and visualization of the pharmacokinetics of tumor targeting substances specific for particular cancer sites. Expected high resolution (< 0.5 mm) permits monitoring the pharmacokinetics of labeled gene constructs in vivo in small animals with a human tumor xenograft which is one of the first steps in evaluating the potential utility of a candidate gene. The additional benefit of high sensitivity detection will be improved cancer treatment strategies in patients based on the use of specific molecules binding to cancer sites for early detection of tumors and identifying metastasis, monitoring drug delivery and radionuclide therapy for optimum cell killing at the tumor site. This new technology can provide high resolution, high sensitivity imaging of a wide range of gamma energies and will significantly extend the range of radiotracers that can be investigated and used clinically. The small and compact construction of the proposed camera system allows flexible application which will be particularly useful for monitoring residual tumor around the resection site during surgery. It is also envisaged as able to test the performance of new drug/gene-based therapies in vitro and in vivo for tumor targeting efficacy using automatic large scale screening methods.

  8. Low-cost Photoacoustic-based Measurement System for Carbon Dioxide Fluxes with the Potential for large-scale Monitoring

    NASA Astrophysics Data System (ADS)

    Scholz, L. T.; Bierer, B.; Ortiz Perez, A.; Woellenstein, J.; Sachs, T.; Palzer, S.

    2016-12-01

    The determination of carbon dioxide (CO2) fluxes between ecosystems and the atmosphere is crucial for understanding ecological processes on regional and global scales. High quality data sets with full uncertainty estimates are needed to evaluate model simulations. However, current flux monitoring techniques are unsuitable to provide reliable data of a large area at both a detailed level and an appropriate resolution, at best in combination with a high sampling rate. Currently used sensing technologies, such as non-dispersive infrared (NDIR) gas analyzers, cannot be deployed in large numbers to provide high spatial resolution due to their costs and complex maintenance requirements. Here, we propose a novel CO2 measurement system, whose gas sensing unit is made up of low-cost, low-power consuming components only, such as an IR-LED and a photoacoustic detector. The sensor offers a resolution of < 50 ppm in the interesting concentration range up to 5000 ppm and an almost linear and fast sensor response of just a few seconds. Since the sensor can be applied in-situ without special precautions, it allows for environmental monitoring in a non-invasive way. Its low energy consumption enables long-term measurements. The low overall costs favor the manufacturing in large quantities. This allows the operation of multiple sensors at a reasonable price and thus provides concentration measurements at any desired spatial coverage and at high temporal resolution. With appropriate 3D configuration of the units, vertical and horizontal fluxes can be determined. By applying a closely meshed wireless sensor network, inhomogeneities as well as CO2 sources and sinks in the lower atmosphere can be monitored. In combination with sensors for temperature, pressure and humidity, our sensor paves the way towards the reliable and extensive monitoring of ecosystem-atmosphere exchange rates. The technique can also be easily adapted to other relevant greenhouse gases.

  9. Achieving High Resolution Timer Events in Virtualized Environment.

    PubMed

    Adamczyk, Blazej; Chydzinski, Andrzej

    2015-01-01

    Virtual Machine Monitors (VMM) have become popular in different application areas. Some applications may require to generate the timer events with high resolution and precision. This however may be challenging due to the complexity of VMMs. In this paper we focus on the timer functionality provided by five different VMMs-Xen, KVM, Qemu, VirtualBox and VMWare. Firstly, we evaluate resolutions and precisions of their timer events. Apparently, provided resolutions and precisions are far too low for some applications (e.g. networking applications with the quality of service). Then, using Xen virtualization we demonstrate the improved timer design that greatly enhances both the resolution and precision of achieved timer events.

  10. Environmental monitoring of El Hierro Island submarine volcano, by combining low and high resolution satellite imagery

    NASA Astrophysics Data System (ADS)

    Eugenio, F.; Martin, J.; Marcello, J.; Fraile-Nuez, E.

    2014-06-01

    El Hierro Island, located at the Canary Islands Archipelago in the Atlantic coast of North Africa, has been rocked by thousands of tremors and earthquakes since July 2011. Finally, an underwater volcanic eruption started 300 m below sea level on October 10, 2011. Since then, regular multidisciplinary monitoring has been carried out in order to quantify the environmental impacts caused by the submarine eruption. Thanks to this natural tracer release, multisensorial satellite imagery obtained from MODIS and MERIS sensors have been processed to monitor the volcano activity and to provide information on the concentration of biological, chemical and physical marine parameters. Specifically, low resolution satellite estimations of optimal diffuse attenuation coefficient (Kd) and chlorophyll-a (Chl-a) concentration under these abnormal conditions have been assessed. These remote sensing data have played a fundamental role during field campaigns guiding the oceanographic vessel to the appropriate sampling areas. In addition, to analyze El Hierro submarine volcano area, WorldView-2 high resolution satellite spectral bands were atmospherically and deglinted processed prior to obtain a high-resolution optimal diffuse attenuation coefficient model. This novel algorithm was developed using a matchup data set with MERIS and MODIS data, in situ transmittances measurements and a seawater radiative transfer model. Multisensor and multitemporal imagery processed from satellite remote sensing sensors have demonstrated to be a powerful tool for monitoring the submarine volcanic activities, such as discolored seawater, floating material and volcanic plume, having shown the capabilities to improve the understanding of submarine volcanic processes.

  11. Shot-noise-limited monitoring and phase locking of the motion of a single trapped ion.

    PubMed

    Bushev, P; Hétet, G; Slodička, L; Rotter, D; Wilson, M A; Schmidt-Kaler, F; Eschner, J; Blatt, R

    2013-03-29

    We perform a high-resolution real-time readout of the motion of a single trapped and laser-cooled Ba+ ion. By using an interferometric setup, we demonstrate a shot-noise-limited measurement of thermal oscillations with a resolution of 4 times the standard quantum limit. We apply the real-time monitoring for phase control of the ion motion through a feedback loop, suppressing the photon recoil-induced phase diffusion. Because of the spectral narrowing in the phase-locked mode, the coherent ion oscillation is measured with a resolution of about 0.3 times the standard quantum limit.

  12. A High-Resolution Minimicroscope System for Wireless Real-Time Monitoring.

    PubMed

    Wang, Zongjie; Boddeda, Akash; Parker, Benjamin; Samanipour, Roya; Ghosh, Sanjoy; Menard, Frederic; Kim, Keekyoung

    2018-07-01

    Compact, cost-effective, and high-performance microscope that enables the real-time imaging of cells and lab-on-a-chip devices is highly demanded for cell biology and biomedical engineering. This paper aims to present the design and application of an inexpensive wireless minimicroscope with resolution up to 2592 × 1944 pixels and speed up to 90 f/s. The minimicroscope system was built on a commercial embedded system (Raspberry Pi). We modified a camera module and adopted an inverse dual lens system to obtain the clear field of view and appropriate magnification for tens of micrometer objects. The system was capable of capturing time-lapse images and transferring image data wirelessly. The entire system can be operated wirelessly and cordlessly in a conventional cell culturing incubator. The developed minimicroscope was used to monitor the attachment and proliferation of NIH-3T3 and HEK 293 cells inside an incubator for 50 h. In addition, the minimicroscope was used to monitor a droplet generation process in a microfluidic device. The high-quality images captured by the minimicroscope enabled us an automated analysis of experimental parameters. The successful applications prove the great potential of the developed minimicroscope for monitoring various biological samples and microfluidic devices. This paper presents the design of a high-resolution minimicroscope system that enables the wireless real-time imaging of cells inside the incubator. This system has been verified to be a useful tool to obtain high-quality images and videos for the automated quantitative analysis of biological samples and lab-on-a-chip devices in the long term.

  13. Development of Residual Gas Profile Monitors at GSI

    NASA Astrophysics Data System (ADS)

    Giacomini, T.; Barabin, S.; Forck, P.; Liakin, D.; Skachkov, V.

    2004-11-01

    Beam profile measurements at modern ion synchrotrons and storage rings require high timing performances on a turn-by-turn basis. High spatial resolutions are essential for cold beams and beamwidth measurings. The currently used RGM supported very interesting measurements and applications. Due to the readout technology the spatial and time resolution is limited. To meet the expanded demands a more comprehensive device is under development. It will be an all-purpose residual gas monitor to cover the wide range of beam currents and transversal particle distributions. Due to the fast profile detection it will operate on primary electrons after residual gas ionization. A magnetic field of 100 mT binds them to the ionization point inside 0.1-mm orbits. The high-resolution mode will be read out by a digital CCD camera with an upstream MCP-phosphor screen assembly. It is planned to read out the fast turn-by-turn mode by an array of 100 photodiodes with a resolution of 1 mm. Every photodiode is equipped with an amplifier-digitizer device providing a frame rate of ˜ 10 MSamples/s.

  14. Hyperresolution: an hyperspectral and high resolution imager for Earth observation

    NASA Astrophysics Data System (ADS)

    De Vidi, R.; Chiarantini, L.; Bini, A.

    2017-11-01

    Hyperspectral space imagery is an emerging technology that supports many scientific, civil, security and defence operational applications. The main advantage of this remote sensing technique is that it allows the so-called Feature Extraction: in fact the spectral signature allows the recognition of the materials composing the scene. Hyperspectral Products and their applications have been investigated in the past years by Galileo Avionica to direct the instrument characteristics design. Sample products have been identified in the civil / environment monitoring fields (such as coastal monitoring, vegetation, hot spot and urban classification) and in defense / security applications: their performances have been verified by means of airborne flight campaigns. The Hyperspectral and High Resolution Imager is a space-borne instrument that implement a pushbroom technique to get strip spectral images over the Hyperspectral VNIR and SWIR bands, with a ground sample distance at nadir of 20m in a 20 km wide ground swath, with 200 spectral channels, realizing an average spectral resolution of 10nm. The High Resolution Panchromatic Channel insists in the same swath to allow for multiresolution data fusion of hyperspectral imagery.

  15. Combining HJ CCD, GF-1 WFV and MODIS Data to Generate Daily High Spatial Resolution Synthetic Data for Environmental Process Monitoring.

    PubMed

    Wu, Mingquan; Huang, Wenjiang; Niu, Zheng; Wang, Changyao

    2015-08-20

    The limitations of satellite data acquisition mean that there is a lack of satellite data with high spatial and temporal resolutions for environmental process monitoring. In this study, we address this problem by applying the Enhanced Spatial and Temporal Adaptive Reflectance Fusion Model (ESTARFM) and the Spatial and Temporal Data Fusion Approach (STDFA) to combine Huanjing satellite charge coupled device (HJ CCD), Gaofen satellite no. 1 wide field of view camera (GF-1 WFV) and Moderate Resolution Imaging Spectroradiometer (MODIS) data to generate daily high spatial resolution synthetic data for land surface process monitoring. Actual HJ CCD and GF-1 WFV data were used to evaluate the precision of the synthetic images using the correlation analysis method. Our method was tested and validated for two study areas in Xinjiang Province, China. The results show that both the ESTARFM and STDFA can be applied to combine HJ CCD and MODIS reflectance data, and GF-1 WFV and MODIS reflectance data, to generate synthetic HJ CCD data and synthetic GF-1 WFV data that closely match actual data with correlation coefficients (r) greater than 0.8989 and 0.8643, respectively. Synthetic red- and near infrared (NIR)-band data generated by ESTARFM are more suitable for the calculation of Normalized Different Vegetation Index (NDVI) than the data generated by STDFA.

  16. Combining HJ CCD, GF-1 WFV and MODIS Data to Generate Daily High Spatial Resolution Synthetic Data for Environmental Process Monitoring

    PubMed Central

    Wu, Mingquan; Huang, Wenjiang; Niu, Zheng; Wang, Changyao

    2015-01-01

    The limitations of satellite data acquisition mean that there is a lack of satellite data with high spatial and temporal resolutions for environmental process monitoring. In this study, we address this problem by applying the Enhanced Spatial and Temporal Adaptive Reflectance Fusion Model (ESTARFM) and the Spatial and Temporal Data Fusion Approach (STDFA) to combine Huanjing satellite charge coupled device (HJ CCD), Gaofen satellite no. 1 wide field of view camera (GF-1 WFV) and Moderate Resolution Imaging Spectroradiometer (MODIS) data to generate daily high spatial resolution synthetic data for land surface process monitoring. Actual HJ CCD and GF-1 WFV data were used to evaluate the precision of the synthetic images using the correlation analysis method. Our method was tested and validated for two study areas in Xinjiang Province, China. The results show that both the ESTARFM and STDFA can be applied to combine HJ CCD and MODIS reflectance data, and GF-1 WFV and MODIS reflectance data, to generate synthetic HJ CCD data and synthetic GF-1 WFV data that closely match actual data with correlation coefficients (r) greater than 0.8989 and 0.8643, respectively. Synthetic red- and near infrared (NIR)-band data generated by ESTARFM are more suitable for the calculation of Normalized Different Vegetation Index (NDVI) than the data generated by STDFA. PMID:26308017

  17. High-resolution gas chromatography/mas spectrometry method for characterization and quantitative analysis of ginkgolic acids in ginkgo biloba plants, extracts, and dietary supplements

    USDA-ARS?s Scientific Manuscript database

    A high resolution GC/MS with Selected Ion Monitor (SIM) method focusing on the characterization and quantitative analysis of ginkgolic acids (GAs) in Ginkgo biloba L. plant materials, extracts and commercial products was developed and validated. The method involved sample extraction with (1:1) meth...

  18. NOAA AVHRR and its uses for rainfall and evapotranspiration monitoring

    NASA Technical Reports Server (NTRS)

    Kerr, Yann H.; Imbernon, J.; Dedieu, G.; Hautecoeur, O.; Lagouarde, J. P.

    1989-01-01

    NOAA-7 Advanced Very High Resolution Radiometer (AVHRR) Global Vegetation Indices (GVI) were used during the 1986 rainy season (June-September) over Senegal to monitor rainfall. The satellite data were used in conjunction with ground-based measurements so as to derive empirical relationships between rainfall and GVI. The regression obtained was then used to map the total rainfall corresponding to the growing season, yielding good results. Normalized Difference Vegetation Indices (NDVI) derived from High Resolution Picture Transmission (HRPT) data were also compared with actual evapotranspiration (ET) data and proved to be closely correlated with it with a time lapse of 20 days.

  19. Mobile Monitoring Data Processing & Analysis Strategies

    EPA Science Inventory

    The development of portable, high-time resolution instruments for measuring the concentrations of a variety of air pollutants has made it possible to collect data while in motion. This strategy, known as mobile monitoring, involves mounting air sensors on variety of different pla...

  20. Spatiotemporal norepinephrine mapping using a high-density CMOS microelectrode array.

    PubMed

    Wydallis, John B; Feeny, Rachel M; Wilson, William; Kern, Tucker; Chen, Tom; Tobet, Stuart; Reynolds, Melissa M; Henry, Charles S

    2015-10-21

    A high-density amperometric electrode array containing 8192 individually addressable platinum working electrodes with an integrated potentiostat fabricated using Complementary Metal Oxide Semiconductor (CMOS) processes is reported. The array was designed to enable electrochemical imaging of chemical gradients with high spatiotemporal resolution. Electrodes are arranged over a 2 mm × 2 mm surface area into 64 subarrays consisting of 128 individual Pt working electrodes as well as Pt pseudo-reference and auxiliary electrodes. Amperometric measurements of norepinephrine in tissue culture media were used to demonstrate the ability of the array to measure concentration gradients in complex media. Poly(dimethylsiloxane) microfluidics were incorporated to control the chemical concentrations in time and space, and the electrochemical response at each electrode was monitored to generate electrochemical heat maps, demonstrating the array's imaging capabilities. A temporal resolution of 10 ms can be achieved by simultaneously monitoring a single subarray of 128 electrodes. The entire 2 mm × 2 mm area can be electrochemically imaged in 64 seconds by cycling through all subarrays at a rate of 1 Hz per subarray. Monitoring diffusional transport of norepinephrine is used to demonstrate the spatiotemporal resolution capabilities of the system.

  1. High spatiotemporal resolution monitoring of hydrological function across degraded peatlands in the south west UK.

    NASA Astrophysics Data System (ADS)

    Ashe, Josie; Luscombe, David; Grand-Clement, Emilie; Gatis, Naomi; Anderson, Karen; Brazier, Richard

    2014-05-01

    The Exmoor/Dartmoor Mires Project is a peatland restoration programme focused on the geoclimatically marginal blanket bogs of South West England. In order to better understand the hydrological functioning of degraded/restored peatlands and support land management decisions across these uplands, this study is providing robust spatially distributed, hydrological monitoring at a high temporal resolution and in near real time. This paper presents the conceptual framework and experimental design for three hydrological monitoring arrays situated in headwater catchments dominated by eroding and drained blanket peatland. Over 250 individual measurements are collected at a high temporal resolution (15 minute time-step) via sensors integrated within a remote telemetry system. These are sent directly to a dedicated server over VHF and GPRS mobile networks. Sensors arrays are distributed at varying spatial scales throughout the studied catchments and record multiple parameters including: water table depth, channel flow, temperature, conductivity and pH measurements. A full suite of meteorological sensors and ten spatially distributed automatic flow based water samplers are also connected to the telemetry system and controlled remotely. This paper will highlight the challenges and solutions to obtaining these data in exceptionally remote and harsh field conditions over long (multi annual) temporal scales.

  2. Integrating Landsat Data and High-Resolution Imagery for Applied Conservation Assessment of Forest Cover in Latin American Heterogenous Landscapes

    NASA Astrophysics Data System (ADS)

    Thomas, N.; Rueda, X.; Lambin, E.; Mendenhall, C. D.

    2012-12-01

    Large intact forested regions of the world are known to be critical to maintaining Earth's climate, ecosystem health, and human livelihoods. Remote sensing has been successfully implemented as a tool to monitor forest cover and landscape dynamics over broad regions. Much of this work has been done using coarse resolution sensors such as AVHRR and MODIS in combination with moderate resolution sensors, particularly Landsat. Finer scale analysis of heterogeneous and fragmented landscapes is commonly performed with medium resolution data and has had varying success depending on many factors including the level of fragmentation, variability of land cover types, patch size, and image availability. Fine scale tree cover in mixed agricultural areas can have a major impact on biodiversity and ecosystem sustainability but may often be inadequately captured with the global to regional (coarse resolution and moderate resolution) satellite sensors and processing techniques widely used to detect land use and land cover changes. This study investigates whether advanced remote sensing methods are able to assess and monitor percent tree canopy cover in spatially complex human-dominated agricultural landscapes that prove challenging for traditional mapping techniques. Our study areas are in high altitude, mixed agricultural coffee-growing regions in Costa Rica and the Colombian Andes. We applied Random Forests regression tree analysis to Landsat data along with additional spectral, environmental, and spatial variables to predict percent tree canopy cover at 30m resolution. Image object-based texture, shape, and neighborhood metrics were generated at the Landsat scale using eCognition and included in the variable suite. Training and validation data was generated using high resolution imagery from digital aerial photography at 1m to 2.5 m resolution. Our results are promising with Pearson's correlation coefficients between observed and predicted percent tree canopy cover of .86 (Costa Rica) and .83 (Colombia). The tree cover mapping developed here supports two distinct projects on sustaining biodiversity and natural and human capital: in Costa Rica the tree canopy cover map is utilized to predict bird community composition; and in Colombia the mapping is performed for two time periods and used to assess the impact of coffee eco-certification programs on the landscape. This research identifies ways to leverage readily available, high quality, and cost-free Landsat data or other medium resolution satellite data sources in combination with high resolution data, such as that frequently available through Google Earth, to monitor and support sustainability efforts in fragmented and heterogeneous landscapes.

  3. Monitoring Coating Thickness During Plasma Spraying

    NASA Technical Reports Server (NTRS)

    Miller, Robert A.

    1990-01-01

    High-resolution video measures thickness accurately without interfering with process. Camera views cylindrical part through filter during plasma spraying. Lamp blacklights part, creating high-contrast silhouette on video monitor. Width analyzer counts number of lines in image of part after each pass of spray gun. Layer-by-layer measurements ensure adequate coat built up without danger of exceeding required thickness.

  4. High-resolution photo-mosaic time-series imagery for monitoring human use of an artificial reef.

    PubMed

    Wood, Georgina; Lynch, Tim P; Devine, Carlie; Keller, Krystle; Figueira, Will

    2016-10-01

    Successful marine management relies on understanding patterns of human use. However, obtaining data can be difficult and expensive given the widespread and variable nature of activities conducted. Remote camera systems are increasingly used to overcome cost limitations of conventional labour-intensive methods. Still, most systems face trade-offs between the spatial extent and resolution over which data are obtained, limiting their application. We trialed a novel methodology, CSIRO Ruggedized Autonomous Gigapixel System (CRAGS), for time series of high-resolution photo-mosaic (HRPM) imagery to estimate fine-scale metrics of human activity at an artificial reef located 1.3 km from shore. We compared estimates obtained using the novel system to those produced with a web camera that concurrently monitored the site. We evaluated the effect of day type (weekday/weekend) and time of day on each of the systems and compared to estimates obtained from binocular observations. In general, both systems delivered similar estimates for the number of boats observed and to those obtained by binocular counts; these results were also unaffected by the type of day (weekend vs. weekday). CRAGS was able to determine additional information about the user type and party size that was not possible with the lower resolution webcam system. However, there was an effect of time of day as CRAGS suffered from poor image quality in early morning conditions as a result of fixed camera settings. Our field study provides proof of concept of use of this new cost-effective monitoring tool for the remote collection of high-resolution large-extent data on patterns of human use at high temporal frequency.

  5. Determining seagrass abundance in southern New England waters using high resolution remotely sensed imagery

    EPA Science Inventory

    Advances in understanding the optics of shallow water environments, submerged vegetation canopies and seagrass physiology, combined with improved spatial resolution of remote sensing platforms, now enable eelgrass ecosystems to be monitored at a variety of time scales from earth-...

  6. Can low-resolution airborne laser scanning data be used to model stream rating curves?

    USGS Publications Warehouse

    Lyon, Steve; Nathanson, Marcus; Lam, Norris; Dahlke, Helen; Rutzinger, Martin; Kean, Jason W.; Laudon, Hjalmar

    2015-01-01

    This pilot study explores the potential of using low-resolution (0.2 points/m2) airborne laser scanning (ALS)-derived elevation data to model stream rating curves. Rating curves, which allow the functional translation of stream water depth into discharge, making them integral to water resource monitoring efforts, were modeled using a physics-based approach that captures basic geometric measurements to establish flow resistance due to implicit channel roughness. We tested synthetically thinned high-resolution (more than 2 points/m2) ALS data as a proxy for low-resolution data at a point density equivalent to that obtained within most national-scale ALS strategies. Our results show that the errors incurred due to the effect of low-resolution versus high-resolution ALS data were less than those due to flow measurement and empirical rating curve fitting uncertainties. As such, although there likely are scale and technical limitations to consider, it is theoretically possible to generate rating curves in a river network from ALS data of the resolution anticipated within national-scale ALS schemes (at least for rivers with relatively simple geometries). This is promising, since generating rating curves from ALS scans would greatly enhance our ability to monitor streamflow by simplifying the overall effort required.

  7. A high-resolution bioclimate map of the world: a unifying framework for global biodiversity research and monitoring

    USGS Publications Warehouse

    Metzger, Marc J.; Bunce, Robert G.H.; Jongman, Rob H.G.; Sayre, Roger G.; Trabucco, Antonio; Zomer, Robert

    2013-01-01

    Main conclusions: The GEnS provides a robust spatial analytical framework for the aggregation of local observations, identification of gaps in current monitoring efforts and systematic design of complementary and new monitoring and research. The dataset is available for non-commercial use through the GEO portal (http://www.geoportal.org).

  8. Employing moderate resolution sensors in human rights and international humanitarian law monitoring

    NASA Astrophysics Data System (ADS)

    Marx, Andrew J.

    Organizations concerned with human rights are increasingly using remote sensing as a tool to improve their detection of human rights and international humanitarian law violations. However, as these organizations have transitioned to human rights monitoring campaigns conducted over large regions and extended periods of time, current methods of using fine- resolution sensors and manpower-intensive analyses have become cost- prohibitive. To support the continued growth of remote sensing in human rights and international humanitarian law monitoring campaigns, this study researches how moderate resolution land observatories can provide complementary data to operational human rights monitoring efforts. This study demonstrates the capacity of moderate resolutions to provide data to monitoring efforts by developing an approach that uses Landsat Enhanced Thematic Mapper Plus (ETM+) as part of a system for the detection of village destruction in Darfur, Sudan. Village destruction is an indicator of a human rights or international humanitarian law violations in Darfur during the 2004 study period. This analysis approach capitalizes on Landsat's historical archive and systematic observations by constructing a historic spectral baseline for each village in the study area that supports automated detection of a potentially destroyed village with each new overpass of the sensor. Using Landsat's near-infrared band, the approach demonstrates high levels of accuracy when compared with a U.S. government database documenting destroyed villages. This approach is then applied to the Darfur conflict from 2002 to 2008, providing new data on when and where villages were destroyed in this widespread and long-lasting conflict. This application to the duration of a real-world conflict illustrates the abilities and shortcomings of moderate resolution sensors in human rights monitoring efforts. This study demonstrates that moderate resolution satellites have the capacity to contribute complementary data to operational human rights monitoring efforts. While this study validates this capacity for the burning of villages in arid environments, this approach can be generalized to detect other human rights violations if an observable signal that represents the violation is identified.

  9. Mobile Monitoring Data Processing and Analysis Strategies

    EPA Science Inventory

    The development of portable, high-time resolution instruments for measuring the concentrations of a variety of air pollutants has made it possible to collect data while in motion. This strategy, known as mobile monitoring, involves mounting air sensors on variety of different pla...

  10. High Frequency Electromagnetic Impedance Measurements for Characterization, Monitoring and Verification Efforts

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lee, Ki Ha; Becker, Alex; Framgos, William

    1999-06-01

    Non-invasive, high-resolution imaging of the shallow subsurface is needed for delineation of buried waste, detection of unexploded ordinance, verification and monitoring of containment structures, and other environmental applications. Electromagnetic measurements at frequencies between 1 and 100 MHz are important for such applications, because the induction number of many targets is small and the ability to determine the dielectric permittivity in addition to electrical conductivity of the subsurface is possible. Earlier workers were successful in developing systems for detecting anomalous areas, but no quantifiable information was accurately determined. For high-resolution imaging, accurate measurements are necessary so the field data can bemore » mapped into the space of the subsurface parameters. We are developing a non-invasive method for accurately imaging the electrical conductivity and dielectric permittivity of the shallow subsurface using the plane wave impedance approach. Electric and magnetic sensors are being tested in a known area against theoretical predictions, thereby insuring that the data collected with the high-frequency impedance (HFI) system will support high-resolution, multi-dimensional imaging techniques.« less

  11. High-Frequency Electromagnetic Impedance Measurements for Characterization, Monitoring and Verification Efforts

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lee, Ki Ha; Becker, Alex; Tseng, Hung-Wen

    2002-11-20

    Non-invasive, high-resolution imaging of the shallow subsurface is needed for delineation of buried waste, detection of unexploded ordinance, verification and monitoring of containment structures, and other environmental applications. Electromagnetic (EM) measurements at frequencies between 1 and 100 MHz are important for such applications, because the induction number of many targets is small and the ability to determine the dielectric permittivity in addition to electrical conductivity of the subsurface is possible. Earlier workers were successful in developing systems for detecting anomalous areas, but no quantifiable information was accurately determined. For high-resolution imaging, accurate measurements are necessary so the field data canmore » be mapped into the space of the subsurface parameters. We are developing a non-invasive method for accurately mapping the electrical conductivity and dielectric permittivity of the shallow subsurface using the EM impedance approach (Frangos, 2001; Lee and Becker, 2001; Song et al., 2002). Electric and magnetic sensors are being tested in a known area against theoretical predictions, thereby insuring that the data collected with the high-frequency impedance (HFI) system will support high-resolution, multi-dimensional imaging techniques.« less

  12. High-Frequency Electromagnetic Impedance Measurements for Characterization, Monitoring, and Verification Efforts

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lee, Ki Ha; Becker, Alex

    2000-06-01

    Non-invasive, high-resolution imaging of the shallow subsurface is needed for delineation of buried waste, detection of unexploded ordinance, verification and monitoring of containment structures, and other environmental applications. Electromagnetic measurements at frequencies between 1 and 100 MHz are important for such applications, because the induction number of many targets is small and the ability to determine the dielectric permittivity in addition to electrical conductivity of the subsurface is possible. Earlier workers were successful in developing systems for detecting anomalous areas, but no quantifiable information was accurately determined. For high-resolution imaging, accurate measurements are necessary so the field data can bemore » mapped into the space of the subsurface parameters. We are developing a non-invasive method for accurately imaging the electrical conductivity and dielectric permittivity of the shallow subsurface using the plane wave impedance approach (Song et al., 1997). Electric and magnetic sensors are being tested in a known area against theoretical predictions, thereby insuring that the data collected with the high-frequency impedance (HFI) system will support high-resolution, multi-dimensional imaging techniques.« less

  13. High-Frequency Electromagnetic Impedance Measurements for Characterization, Monitoring and Verification Efforts

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lee, Ki Ha; Becker, Alex; Tseng, Hung-Wen

    2001-06-10

    Non-invasive, high-resolution imaging of the shallow subsurface is needed for delineation of buried waste, detection of unexploded ordinance, verification and monitoring of containment structures, and other environmental applications. Electromagnetic (EM) measurements at frequencies between 1 and 100 MHz are important for such applications, because the induction number of many targets is small and the ability to determine the dielectric permittivity in addition to electrical conductivity of the subsurface is possible. Earlier workers were successful in developing systems for detecting anomalous areas, but no quantifiable information was accurately determined. For high-resolution imaging, accurate measurements are necessary so the field data canmore » be mapped into the space of the subsurface parameters. We are developing a non-invasive method for accurately mapping the electrical conductivity and dielectric permittivity of the shallow subsurface using the EM impedance approach (Frangos, 2001; Lee and Becker, 2001). Electric and magnetic sensors are being tested in a known area against theoretical predictions, thereby insuring that the data collected with the high-frequency impedance (HFI) system will support high-resolution, multi-dimensional imaging techniques.« less

  14. A novel high resolution, high sensitivity SPECT detector for molecular imaging of cardiovascular diseases

    NASA Astrophysics Data System (ADS)

    Cusanno, F.; Argentieri, A.; Baiocchi, M.; Colilli, S.; Cisbani, E.; De Vincentis, G.; Fratoni, R.; Garibaldi, F.; Giuliani, F.; Gricia, M.; Lucentini, M.; Magliozzi, M. L.; Majewski, S.; Marano, G.; Musico, P.; Musumeci, M.; Santavenere, F.; Torrioli, S.; Tsui, B. M. W.; Vitelli, L.; Wang, Y.

    2010-05-01

    Cardiovascular diseases are the most common cause of death in western countries. Understanding the rupture of vulnerable atherosclerotic plaques and monitoring the effect of innovative therapies of heart failure is of fundamental importance. A flexible, high resolution, high sensitivity detector system for molecular imaging with radionuclides on small animal models has been designed for this aim. A prototype has been built using tungsten pinhole and LaBr3(Ce) scintillator coupled to Hamamatsu Flat Panel PMTs. Compact individual-channel readout has been designed, built and tested. Measurements with phantoms as well as pilot studies on mice have been performed, the results show that the myocardial perfusion in mice can be determined with sufficient precision. The detector will be improved replacing the Hamamatsu Flat Panel with Silicon Photomultipliers (SiPMs) to allow integration of the system with MRI scanners. Application of LaBr3(Ce) scintillator coupled to photosensor with high photon detection efficiency and excellent energy resolution will allow dual-label imaging to monitor simultaneously the cardiac perfusion and the molecular targets under investigation during the heart therapy.

  15. Integrating High-Resolution Taskable Imagery into a Sensorweb for Automatic Space-Based Monitoring of Flooding in Thailand

    NASA Technical Reports Server (NTRS)

    Chien, Steve; Mclaren, David; Doubleday, Joshua; Tran, Daniel; Tanpipat, Veerachai; Chitradon, Royol; Boonya-aroonnet, Surajate; Thanapakpawin, Porranee; Mandl, Daniel

    2012-01-01

    Several space-based assets (Terra, Aqua, Earth Observing One) have been integrated into a sensorweb to monitor flooding in Thailand. In this approach, the Moderate Imaging Spectrometer (MODIS) data from Terra and Aqua is used to perform broad-scale monitoring to track flooding at the regional level (250m/pixel) and EO-1 is autonomously tasked in response to alerts to acquire higher resolution (30m/pixel) Advanced Land Imager (ALI) data. This data is then automatically processed to derive products such as surface water extent and volumetric water estimates. These products are then automatically pushed to organizations in Thailand for use in damage estimation, relief efforts, and damage mitigation. More recently, this sensorweb structure has been used to request imagery, access imagery, and process high-resolution (several m to 30m), targetable asset imagery from commercial assets including Worldview-2, Ikonos, Radarsat-2, Landsat-7, and Geo-Eye-1. We describe the overall sensorweb framework as well as new workflows and products made possible via these extensions.

  16. Long-term, high-spatial resolution carbon balance monitoring of the Amazonian frontier: Predisturbance and postdisturbance carbon emissions and uptake

    NASA Astrophysics Data System (ADS)

    Toomey, Michael; Roberts, Dar A.; Caviglia-Harris, Jill; Cochrane, Mark A.; Dewes, Candida F.; Harris, Daniel; Numata, Izaya; Sales, Marcio H.; Sills, Erin; Souza, Carlos M.

    2013-06-01

    We performed high-spatial and high-temporal resolution modeling of carbon stocks and fluxes in the state of Rondônia, Brazil for the period 1985-2009, using annual Landsat-derived land cover classifications and a modified bookkeeping modeling approach. According to these results, Rondônia contributed 3.5-4% of pantropical humid forest deforestation emissions over this period. Similar to well-known figures reported by the Brazilian Space Agency, we found a decline in deforestation rates since 2006. However, we estimate a lesser decrease, with deforestation rates continuing at levels similar to the early 2000s. Forest carbon stocks declined at an annual rate of 1.51%; emissions from postdisturbance land use nearly equaled those of the initial deforestation events. Carbon uptake by secondary forest was negligible due to limited spatial extent and high turnover rates. Net carbon emissions represented 93% of initial forest carbon stocks, due in part to repeated slash and pasture burnings and secondary forest clearing. We analyzed potential error incurred when spatially aggregating land cover by comparing results based on coarser-resolution (250 m) and full-resolution land cover products. At the coarser resolution, more than 90% of deforestation and secondary forest would be unresolvable, assuming that a 50% change threshold is necessary for detection. Therefore, we strongly suggest the use of Landsat-scale ( 30m) resolution carbon monitoring in tropical regions dominated by nonmechanized, smallholder land use change.

  17. Monitoring Tamarisk Defoliation and Scaling Evapotranspiration Using Remote Sensing Data

    NASA Astrophysics Data System (ADS)

    Dennison, P. E.; Hultine, K. R.; Nagler, P. L.; Miura, T.; Glenn, E. P.; Ehleringer, J. R.

    2008-12-01

    Non-native tamarisk (Tamarix spp.) has invaded riparian ecosystems throughout the Western United States. Another non-native species, the saltcedar leaf beetle (Diorhabda elongata), has been released in an attempt to control tamarisk infestations. Most efforts directed towards monitoring tamarisk defoliation by Diorhabda have focused on changes in leaf area or sap flux, but these measurements only give a local view of defoliation impacts. We are assessing the ability of remote sensing data for monitoring tamarisk defoliation and measuring resulting changes in evapotranspiration over space and time. Tamarisk defoliation by Diorhabda has taken place during the past two summers along the Colorado River and its tributaries near Moab, Utah. We are using 15 meter spatial resolution Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER) and 250 meter spatial resolution Moderate Resolution Imaging Spectrometer (MODIS) data to monitor tamarisk defoliation. An ASTER normalized difference vegetation index (NDVI) time series has revealed large drops in index values associated with loss of leaf area due to defoliation. MODIS data have superior temporal monitoring abilities, but at the sacrifice of much lower spatial resolution. A MODIS enhanced vegetation index time series has revealed that for pixels where the percentage of riparian cover is moderate or high, defoliation is detectable even at 250 meter spatial resolution. We are comparing MODIS vegetation index time series to site measurements of leaf area and sap flux. We are also using an evapotranspiration model to scale potential water savings resulting from the biocontrol of tamarisk.

  18. Active landslide monitoring using remote sensing data, GPS measurements and cameras on board UAV

    NASA Astrophysics Data System (ADS)

    Nikolakopoulos, Konstantinos G.; Kavoura, Katerina; Depountis, Nikolaos; Argyropoulos, Nikolaos; Koukouvelas, Ioannis; Sabatakakis, Nikolaos

    2015-10-01

    An active landslide can be monitored using many different methods: Classical geotechnical measurements like inclinometer, topographical survey measurements with total stations or GPS and photogrammetric techniques using airphotos or high resolution satellite images. As the cost of the aerial photo campaign and the acquisition of very high resolution satellite data is quite expensive the use of cameras on board UAV could be an identical solution. Small UAVs (Unmanned Aerial Vehicles) have started their development as expensive toys but they currently became a very valuable tool in remote sensing monitoring of small areas. The purpose of this work is to demonstrate a cheap but effective solution for an active landslide monitoring. We present the first experimental results of the synergistic use of UAV, GPS measurements and remote sensing data. A six-rotor aircraft with a total weight of 6 kg carrying two small cameras has been used. Very accurate digital airphotos, high accuracy DSM, DGPS measurements and the data captured from the UAV are combined and the results are presented in the current study.

  19. Improved wetland classification using eight-band high-resolution satellite imagery and a hybrid approach

    EPA Science Inventory

    Although remote sensing technology has long been used in wetland inventory and monitoring, the accuracy and detail level of derived wetland maps were limited or often unsatisfactory largely due to the relatively coarse spatial resolution of conventional satellite imagery. This re...

  20. A dense camera network for cropland (CropInsight) - developing high spatiotemporal resolution crop Leaf Area Index (LAI) maps through network images and novel satellite data

    NASA Astrophysics Data System (ADS)

    Kimm, H.; Guan, K.; Luo, Y.; Peng, J.; Mascaro, J.; Peng, B.

    2017-12-01

    Monitoring crop growth conditions is of primary interest to crop yield forecasting, food production assessment, and risk management of individual farmers and agribusiness. Despite its importance, there are limited access to field level crop growth/condition information in the public domain. This scarcity of ground truth data also hampers the use of satellite remote sensing for crop monitoring due to the lack of validation. Here, we introduce a new camera network (CropInsight) to monitor crop phenology, growth, and conditions that are designed for the US Corn Belt landscape. Specifically, this network currently includes 40 sites (20 corn and 20 soybean fields) across southern half of the Champaign County, IL ( 800 km2). Its wide distribution and automatic operation enable the network to capture spatiotemporal variations of crop growth condition continuously at the regional scale. At each site, low-maintenance, and high-resolution RGB digital cameras are set up having a downward view from 4.5 m height to take continuous images. In this study, we will use these images and novel satellite data to construct daily LAI map of the Champaign County at 30 m spatial resolution. First, we will estimate LAI from the camera images and evaluate it using the LAI data collected from LAI-2200 (LI-COR, Lincoln, NE). Second, we will develop relationships between the camera-based LAI estimation and vegetation indices derived from a newly developed MODIS-Landsat fusion product (daily, 30 m resolution, RGB + NIR + SWIR bands) and the Planet Lab's high-resolution satellite data (daily, 5 meter, RGB). Finally, we will scale up the above relationships to generate high spatiotemporal resolution crop LAI map for the whole Champaign County. The proposed work has potentials to expand to other agro-ecosystems and to the broader US Corn Belt.

  1. Global high-resolution simulations of tropospheric nitrogen dioxide using CHASER V4.0

    NASA Astrophysics Data System (ADS)

    Sekiya, Takashi; Miyazaki, Kazuyuki; Ogochi, Koji; Sudo, Kengo; Takigawa, Masayuki

    2018-03-01

    We evaluate global tropospheric nitrogen dioxide (NO2) simulations using the CHASER V4.0 global chemical transport model (CTM) at horizontal resolutions of 0.56, 1.1, and 2.8°. Model evaluation was conducted using satellite tropospheric NO2 retrievals from the Ozone Monitoring Instrument (OMI) and the Global Ozone Monitoring Experiment-2 (GOME-2) and aircraft observations from the 2014 Front Range Air Pollution and Photochemistry Experiment (FRAPPÉ). Agreement against satellite retrievals improved greatly at 1.1 and 0.56° resolutions (compared to 2.8° resolution) over polluted and biomass burning regions. The 1.1° simulation generally captured the regional distribution of the tropospheric NO2 column well, whereas 0.56° resolution was necessary to improve the model performance over areas with strong local sources, with mean bias reductions of 67 % over Beijing and 73 % over San Francisco in summer. Validation using aircraft observations indicated that high-resolution simulations reduced negative NO2 biases below 700 hPa over the Denver metropolitan area. These improvements in high-resolution simulations were attributable to (1) closer spatial representativeness between simulations and observations and (2) better representation of large-scale concentration fields (i.e., at 2.8°) through the consideration of small-scale processes. Model evaluations conducted at 0.5 and 2.8° bin grids indicated that the contributions of both these processes were comparable over most polluted regions, whereas the latter effect (2) made a larger contribution over eastern China and biomass burning areas. The evaluations presented in this paper demonstrate the potential of using a high-resolution global CTM for studying megacity-scale air pollutants across the entire globe, potentially also contributing to global satellite retrievals and chemical data assimilation.

  2. Development and field validation of a community-engaged particulate matter air quality monitoring network in Imperial, California, USA.

    PubMed

    Carvlin, Graeme N; Lugo, Humberto; Olmedo, Luis; Bejarano, Ester; Wilkie, Alexa; Meltzer, Dan; Wong, Michelle; King, Galatea; Northcross, Amanda; Jerrett, Michael; English, Paul B; Hammond, Donald; Seto, Edmund

    2017-12-01

    The Imperial County Community Air Monitoring Network was developed as part of a community-engaged research study to provide real-time particulate matter (PM) air quality information at a high spatial resolution in Imperial County, California. The network augmented the few existing regulatory monitors and increased monitoring near susceptible populations. Monitors were both calibrated and field validated, a key component of evaluating the quality of the data produced by the community monitoring network. This paper examines the performance of a customized version of the low-cost Dylos optical particle counter used in the community air monitors compared with both PM 2.5 and PM 10 (particulate matter with aerodynamic diameters <2.5 and <10 μm, respectively) federal equivalent method (FEM) beta-attenuation monitors (BAMs) and federal reference method (FRM) gravimetric filters at a collocation site in the study area. A conversion equation was developed that estimates particle mass concentrations from the native Dylos particle counts, taking into account relative humidity. The R 2 for converted hourly averaged Dylos mass measurements versus a PM 2.5 BAM was 0.79 and that versus a PM 10 BAM was 0.78. The performance of the conversion equation was evaluated at six other sites with collocated PM 2.5 environmental beta-attenuation monitors (EBAMs) located throughout Imperial County. The agreement of the Dylos with the EBAMs was moderate to high (R 2 = 0.35-0.81). The performance of low-cost air quality sensors in community networks is currently not well documented. This paper provides a methodology for quantifying the performance of a next-generation Dylos PM sensor used in the Imperial County Community Air Monitoring Network. This air quality network provides data at a much finer spatial and temporal resolution than has previously been possible with government monitoring efforts. Once calibrated and validated, these high-resolution data may provide more information on susceptible populations, assist in the identification of air pollution hotspots, and increase community awareness of air pollution.

  3. Achieving High Resolution Timer Events in Virtualized Environment

    PubMed Central

    Adamczyk, Blazej; Chydzinski, Andrzej

    2015-01-01

    Virtual Machine Monitors (VMM) have become popular in different application areas. Some applications may require to generate the timer events with high resolution and precision. This however may be challenging due to the complexity of VMMs. In this paper we focus on the timer functionality provided by five different VMMs—Xen, KVM, Qemu, VirtualBox and VMWare. Firstly, we evaluate resolutions and precisions of their timer events. Apparently, provided resolutions and precisions are far too low for some applications (e.g. networking applications with the quality of service). Then, using Xen virtualization we demonstrate the improved timer design that greatly enhances both the resolution and precision of achieved timer events. PMID:26177366

  4. Small-Scale Tropopause Dynamics and TOMS Total Ozone

    NASA Technical Reports Server (NTRS)

    Stanford, John L.

    2002-01-01

    This project used Earth Probe Total Ozone Mapping Spectrometer (EP TOMS) along-track ozone retrievals, in conjunction with ancillary meteorological fields and modeling studies, for high resolution investigations of upper troposphere and lower stratosphere dynamics. Specifically, high resolution along-track (Level 2) EP TOMS data were used to investigate the beautiful fine-scale structure in constituent and meteorological fields prominent in the evolution of highly non-linear baroclinic storm systems. Comparison was made with high resolution meteorological models. The analyses provide internal consistency checks and validation of the EP TOMS data which are vital for monitoring ozone depletion in both polar and midlatitude regions.

  5. Object-based land cover classification and change analysis in the Baltimore metropolitan area using multitemporal high resolution remote sensing data

    Treesearch

    Weiqi Zhou; Austin Troy; Morgan Grove

    2008-01-01

    Accurate and timely information about land cover pattern and change in urban areas is crucial for urban land management decision-making, ecosystem monitoring and urban planning. This paper presents the methods and results of an object-based classification and post-classification change detection of multitemporal high-spatial resolution Emerge aerial imagery in the...

  6. A Fiber-Optic Borehole Seismic Vector Sensor System for Geothermal Site Characterization and Monitoring

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Paulsson, Bjorn N.P.; Thornburg, Jon A.; He, Ruiqing

    2015-04-21

    Seismic techniques are the dominant geophysical techniques for the characterization of subsurface structures and stratigraphy. The seismic techniques also dominate the monitoring and mapping of reservoir injection and production processes. Borehole seismology, of all the seismic techniques, despite its current shortcomings, has been shown to provide the highest resolution characterization and most precise monitoring results because it generates higher signal to noise ratio and higher frequency data than surface seismic techniques. The operational environments for borehole seismic instruments are however much more demanding than for surface seismic instruments making both the instruments and the installation much more expensive. The currentmore » state-of-the-art borehole seismic instruments have not been robust enough for long term monitoring compounding the problems with expensive instruments and installations. Furthermore, they have also not been able to record the large bandwidth data available in boreholes or having the sensitivity allowing them to record small high frequency micro seismic events with high vector fidelity. To reliably achieve high resolution characterization and long term monitoring of Enhanced Geothermal Systems (EGS) sites a new generation of borehole seismic instruments must therefore be developed and deployed. To address the critical site characterization and monitoring needs for EGS programs, US Department of Energy (DOE) funded Paulsson, Inc. in 2010 to develop a fiber optic based ultra-large bandwidth clamped borehole seismic vector array capable of deploying up to one thousand 3C sensor pods suitable for deployment into ultra-high temperature and high pressure boreholes. Tests of the fiber optic seismic vector sensors developed on the DOE funding have shown that the new borehole seismic sensor technology is capable of generating outstanding high vector fidelity data with extremely large bandwidth: 0.01 – 6,000 Hz. Field tests have shown that the system can record events at magnitudes much smaller than M-2.6 at frequencies up to 2,000 Hz. The sensors have also proved to be about 100 times more sensitive than the regular coil geophones that are used in borehole seismic systems today. The fiber optic seismic sensors have furthermore been qualified to operate at temperatures over 300°C (572°F). Simultaneously with the fiber optic based seismic 3C vector sensors we are using the lead-in fiber to acquire Distributed Acoustic Sensor (DAS) data from the surface to the bottom of the vector array. While the DAS data is of much lower quality than the vector sensor data it provides a 1 m spatial sampling of the downgoing wavefield which will be used to build the high resolution velocity model which is an essential component in high resolution imaging and monitoring.« less

  7. Elevated rates of gold mining in the Amazon revealed through high-resolution monitoring.

    PubMed

    Asner, Gregory P; Llactayo, William; Tupayachi, Raul; Luna, Ernesto Ráez

    2013-11-12

    Gold mining has rapidly increased in western Amazonia, but the rates and ecological impacts of mining remain poorly known and potentially underestimated. We combined field surveys, airborne mapping, and high-resolution satellite imaging to assess road- and river-based gold mining in the Madre de Dios region of the Peruvian Amazon from 1999 to 2012. In this period, the geographic extent of gold mining increased 400%. The average annual rate of forest loss as a result of gold mining tripled in 2008 following the global economic recession, closely associated with increased gold prices. Small clandestine operations now comprise more than half of all gold mining activities throughout the region. These rates of gold mining are far higher than previous estimates that were based on traditional satellite mapping techniques. Our results prove that gold mining is growing more rapidly than previously thought, and that high-resolution monitoring approaches are required to accurately quantify human impacts on tropical forests.

  8. Elevated rates of gold mining in the Amazon revealed through high-resolution monitoring

    PubMed Central

    Asner, Gregory P.; Llactayo, William; Tupayachi, Raul; Luna, Ernesto Ráez

    2013-01-01

    Gold mining has rapidly increased in western Amazonia, but the rates and ecological impacts of mining remain poorly known and potentially underestimated. We combined field surveys, airborne mapping, and high-resolution satellite imaging to assess road- and river-based gold mining in the Madre de Dios region of the Peruvian Amazon from 1999 to 2012. In this period, the geographic extent of gold mining increased 400%. The average annual rate of forest loss as a result of gold mining tripled in 2008 following the global economic recession, closely associated with increased gold prices. Small clandestine operations now comprise more than half of all gold mining activities throughout the region. These rates of gold mining are far higher than previous estimates that were based on traditional satellite mapping techniques. Our results prove that gold mining is growing more rapidly than previously thought, and that high-resolution monitoring approaches are required to accurately quantify human impacts on tropical forests. PMID:24167281

  9. The Ozone Monitoring Instrument (OMI): towards a 14 Year Data Record and Applications in the Air Quality and Climate Domain

    NASA Astrophysics Data System (ADS)

    Levelt, P.; Joiner, J.; Tamminen, J.; Veefkind, P.; Bhartia, P. K.; Court, A. J.; Vlemmix, T.

    2017-12-01

    Keywords: emission monitoring, air quality, climate, atmospheric composition The Ozone Monitoring Instrument (OMI), launched on board of NASA's EOS-Aura spacecraft on July 15, 2004, provides unique contributions to the monitoring of the ozone layer, air quality and climate from space. With a data record of 13 years, OMI provides the longest NO2 and SO2 record from space, which is essential to understand the changes to emissions globally. The combination of urban scale resolution (13 x 24 km2 in nadir) and daily global coverage proved to be key features for the air quality community. Due to the operational Very Fast Delivery (VFD / direct readout) and Near Real Time (NRT) availability of the data, OMI also plays an important role in the early developments of operational services in the atmospheric chemistry domain. For example, OMI data is currently used operationally for improving air quality forecasts, for inverting high-resolution emission maps, the UV forecast and for volcanic plume warning systems for aviation. An overview of air quality applications, emission inventory inversions and trend analyses based on the OMI data record will be presented. An outlook will be given on the potentials of augmenting this record with the high resolution air quality measurements of TROPOMI (3,5 x 7 km2) and new satellite instrumentation entering the imaging domain, such as the TROPOLITE instrument ( 1 x 1 km2). Potential of imaging type of NO2 measurements in the the climate and air quality domain will be given, most notably on the use of high resolution NO2 measurements for pin-pointing anthropogenic CO2 emissions.

  10. Spatially explicit rangeland erosion monitoring using high-resolution digital aerial imagery

    USDA-ARS?s Scientific Manuscript database

    Nearly all of the ecosystem services supported by rangelands, including production of livestock forage, carbon sequestration, and provisioning of clean water, are negatively impacted by soil erosion. Accordingly, monitoring the severity, spatial extent, and rate of soil erosion is essential for long...

  11. Long-term monitoring on environmental disasters using multi-source remote sensing technique

    NASA Astrophysics Data System (ADS)

    Kuo, Y. C.; Chen, C. F.

    2017-12-01

    Environmental disasters are extreme events within the earth's system that cause deaths and injuries to humans, as well as causing damages and losses of valuable assets, such as buildings, communication systems, farmlands, forest and etc. In disaster management, a large amount of multi-temporal spatial data is required. Multi-source remote sensing data with different spatial, spectral and temporal resolutions is widely applied on environmental disaster monitoring. With multi-source and multi-temporal high resolution images, we conduct rapid, systematic and seriate observations regarding to economic damages and environmental disasters on earth. It is based on three monitoring platforms: remote sensing, UAS (Unmanned Aircraft Systems) and ground investigation. The advantages of using UAS technology include great mobility and availability in real-time rapid and more flexible weather conditions. The system can produce long-term spatial distribution information from environmental disasters, obtaining high-resolution remote sensing data and field verification data in key monitoring areas. It also supports the prevention and control on ocean pollutions, illegally disposed wastes and pine pests in different scales. Meanwhile, digital photogrammetry can be applied on the camera inside and outside the position parameters to produce Digital Surface Model (DSM) data. The latest terrain environment information is simulated by using DSM data, and can be used as references in disaster recovery in the future.

  12. Indicator Species Population Monitoring in Antarctica with Uav

    NASA Astrophysics Data System (ADS)

    Zmarz, A.; Korczak-Abshire, M.; Storvold, R.; Rodzewicz, M.; Kędzierska, I.

    2015-08-01

    A program to monitor bird and pinniped species in the vicinity of Arctowski Station, King George Island, South Shetlands, Antarctica, has been conducted over the past 38 years. Annual monitoring of these indicator species includes estimations of breeding population sizes of three Pygoscelis penguin species: Adélie, gentoo and chinstrap. Six penguin colonies situated on the western shores of two bays: Admiralty and King George are investigated. To study changes in penguin populations Unmanned Aerial Vehicles were used for the first time in the 2014/15 austral summer season. During photogrammetric flights the high-resolution images of eight penguin breeding colonies were taken. Obtained high resolution images were used for estimation of breeding population size and compared with the results of measurements taken at the same time from the ground. During this Antarctic expedition eight successful photogrammetry missions (total distance 1500 km) were performed. Images were taken with digital SLR Canon 700D, Nikon D5300, Nikon D5100 with a 35mm objective lens. Flights altitude at 350 - 400 AGL, allowed images to be taken with a resolution GSD (ground sample distance) less than 5 cm. The Image J software analysis method was tested to provide automatic population estimates from obtained images. The use of UAV for monitoring of indicator species, enabled data acquisition from areas inaccessible by ground methods.

  13. A metrology system for a high resolution cavity beam position monitor system

    NASA Astrophysics Data System (ADS)

    Walston, Sean; Boogert, Stewart; Chung, Carl; Fitsos, Pete; Frisch, Joe; Gronberg, Jeff; Hayano, Hitoshi; Hinton, Shantell; Honda, Yosuke; Khainovski, Oleg; Kolomensky, Yury; Loscutoff, Peter; Lyapin, Alexey; Malton, Stephen; May, Justin; McCormick, Douglas; Meller, Robert; Miller, David; Orimoto, Toyoko; Ross, Marc; Slater, Mark; Smith, Steve; Smith, Tonee; Terunuma, Nobuhiro; Thomson, Mark; Urakawa, Junji; Vogel, Vladimir; Ward, David; White, Glen

    2013-11-01

    International Linear Collider (ILC) interaction region beam sizes and component position stability requirements will likely be as small as a few nanometers. It is important to the ILC design effort to demonstrate that these tolerances can be achieved-ideally using a beam-based stability measurement. We developed a high resolution RF cavity Beam Position Monitor (BPM) system. A triplet of these BPMs, installed in the extraction line of the KEK Accelerator Test Facility (ATF) and tested with its ultra-low emittance beam, achieved a position measurement resolution of 15 nm. A metrology system for the three BPMs was subsequently installed. This system employed optical encoders to measure each BPM's position and orientation relative to a zero-coefficient of thermal expansion carbon fiber frame. We have demonstrated that the three BPMs behave as a rigid-body at the level of less than 5 nm.

  14. Monitoring sudden oak death in California using high-resolution imagery

    Treesearch

    Nina Maggi Kelly

    2002-01-01

    The Sudden Oak Death (SOD) epidemic in California is alarming for those living with, and adjacent to, the complex of oak and tanoak woodland that exist in patches along the coast. Monitoring SOD occurrence and spread is an on-going necessity. Remote sensing methods have proved to be successful in mapping and monitoring forest health and distribution when a sufficiently...

  15. Satellite snowcover and runoff monitoring in central Arizona. [Salt River Project: Salt-Verde Watershed

    NASA Technical Reports Server (NTRS)

    Schumann, H. H.; Kirdar, E.; Warskow, W. L. (Principal Investigator)

    1980-01-01

    The author has identified the following significant results. Although the very high resolution experimental LANDSAT imagery permits rapid snow cover mapping at low cost, only one observation is available very 9 days. In contrast, low resolution operational imagery acquired by the ITOS and SMS/GOES satellites provide the daily synoptic observations necessary to monitor the rapid changes in snow covered areas in the entire Salt-Verde watershed. Geometric distortions in meteorological satellite imagery require specialized optical equipment or digital image processing for snow cover mapping.

  16. Estimating NOx emissions and surface concentrations at high spatial resolution using OMI

    NASA Astrophysics Data System (ADS)

    Goldberg, D. L.; Lamsal, L. N.; Loughner, C.; Swartz, W. H.; Saide, P. E.; Carmichael, G. R.; Henze, D. K.; Lu, Z.; Streets, D. G.

    2017-12-01

    In many instances, NOx emissions are not measured at the source. In these cases, remote sensing techniques are extremely useful in quantifying NOx emissions. Using an exponential modified Gaussian (EMG) fitting of oversampled Ozone Monitoring Instrument (OMI) NO2 data, we estimate NOx emissions and lifetimes in regions where these emissions are uncertain. This work also presents a new high-resolution OMI NO2 dataset derived from the NASA retrieval that can be used to estimate surface level concentrations in the eastern United States and South Korea. To better estimate vertical profile shape factors, we use high-resolution model simulations (Community Multi-scale Air Quality (CMAQ) and WRF-Chem) constrained by in situ aircraft observations to re-calculate tropospheric air mass factors and tropospheric NO2 vertical columns during summertime. The correlation between our satellite product and ground NO2 monitors in urban areas has improved dramatically: r2 = 0.60 in new product, r2 = 0.39 in operational product, signifying that this new product is a better indicator of surface concentrations than the operational product. Our work emphasizes the need to use both high-resolution and high-fidelity models in order to re-calculate vertical column data in areas with large spatial heterogeneities in NOx emissions. The methodologies developed in this work can be applied to other world regions and other satellite data sets to produce high-quality region-specific emissions estimates.

  17. Online monitoring of fermentation processes via non-invasive low-field NMR.

    PubMed

    Kreyenschulte, Dirk; Paciok, Eva; Regestein, Lars; Blümich, Bernhard; Büchs, Jochen

    2015-09-01

    For the development of biotechnological processes in academia as well as in industry new techniques are required which enable online monitoring for process characterization and control. Nuclear magnetic resonance (NMR) spectroscopy is a promising analytical tool, which has already found broad applications in offline process analysis. The use of online monitoring, however, is oftentimes constrained by high complexity of custom-made NMR bioreactors and considerable costs for high-field NMR instruments (>US$200,000). Therefore, low-field (1) H NMR was investigated in this study in a bypass system for real-time observation of fermentation processes. The new technique was validated with two microbial systems. For the yeast Hansenula polymorpha glycerol consumption could accurately be assessed in spite of the presence of high amounts of complex constituents in the medium. During cultivation of the fungal strain Ustilago maydis, which is accompanied by the formation of several by-products, the concentrations of glucose, itaconic acid, and the relative amount of glycolipids could be quantified. While low-field spectra are characterized by reduced spectral resolution compared to high-field NMR, the compact design combined with the high temporal resolution (15 s-8 min) of spectra acquisition allowed online monitoring of the respective processes. Both applications clearly demonstrate that the investigated technique is well suited for reaction monitoring in opaque media while at the same time it is highly robust and chemically specific. It can thus be concluded that low-field NMR spectroscopy has a great potential for non-invasive online monitoring of biotechnological processes at the research and practical industrial scales. © 2015 Wiley Periodicals, Inc.

  18. Power cavitation-guided blood-brain barrier opening with focused ultrasound and microbubbles

    NASA Astrophysics Data System (ADS)

    Burgess, M. T.; Apostolakis, I.; Konofagou, E. E.

    2018-03-01

    Image-guided monitoring of microbubble-based focused ultrasound (FUS) therapies relies on the accurate localization of FUS-stimulated microbubble activity (i.e. acoustic cavitation). Passive cavitation imaging with ultrasound arrays can achieve this, but with insufficient spatial resolution. In this study, we address this limitation and perform high-resolution monitoring of acoustic cavitation-mediated blood-brain barrier (BBB) opening with a new technique called power cavitation imaging. By synchronizing the FUS transmit and passive receive acquisition, high-resolution passive cavitation imaging was achieved by using delay and sum beamforming with absolute time delays. Since the axial image resolution is now dependent on the duration of the received acoustic cavitation emission, short pulses of FUS were used to limit its duration. Image sets were acquired at high-frame rates for calculation of power cavitation images analogous to power Doppler imaging. Power cavitation imaging displays the mean intensity of acoustic cavitation over time and was correlated with areas of acoustic cavitation-induced BBB opening. Power cavitation-guided BBB opening with FUS could constitute a standalone system that may not require MRI guidance during the procedure. The same technique can be used for other acoustic cavitation-based FUS therapies, for both safety and guidance.

  19. Power cavitation-guided blood-brain barrier opening with focused ultrasound and microbubbles.

    PubMed

    Burgess, M T; Apostolakis, I; Konofagou, E E

    2018-03-15

    Image-guided monitoring of microbubble-based focused ultrasound (FUS) therapies relies on the accurate localization of FUS-stimulated microbubble activity (i.e. acoustic cavitation). Passive cavitation imaging with ultrasound arrays can achieve this, but with insufficient spatial resolution. In this study, we address this limitation and perform high-resolution monitoring of acoustic cavitation-mediated blood-brain barrier (BBB) opening with a new technique called power cavitation imaging. By synchronizing the FUS transmit and passive receive acquisition, high-resolution passive cavitation imaging was achieved by using delay and sum beamforming with absolute time delays. Since the axial image resolution is now dependent on the duration of the received acoustic cavitation emission, short pulses of FUS were used to limit its duration. Image sets were acquired at high-frame rates for calculation of power cavitation images analogous to power Doppler imaging. Power cavitation imaging displays the mean intensity of acoustic cavitation over time and was correlated with areas of acoustic cavitation-induced BBB opening. Power cavitation-guided BBB opening with FUS could constitute a standalone system that may not require MRI guidance during the procedure. The same technique can be used for other acoustic cavitation-based FUS therapies, for both safety and guidance.

  20. High Resolution BPM Upgrade for the ATF Damping Ring at KEK

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Eddy, N.; Briegel, C.; Fellenz, B.

    2011-08-17

    A beam position monitor (BPM) upgrade at the KEK Accelerator Test Facility (ATF) damping ring has been accomplished, carried out by a KEK/FNAL/SLAC collaboration under the umbrella of the global ILC R&D effort. The upgrade consists of a high resolution, high reproducibility read-out system, based on analog and digital down-conversion techniques, digital signal processing, and also implements a new automatic gain error correction schema. The technical concept and realization as well as results of beam studies are presented. The next generation of linear colliders require ultra-low vertical emittance of <2 pm-rad. The damping ring at the KEK Accelerator Test Facilitymore » (ATF) is designed to demonstrate this mission critical goal. A high resolution beam position monitor (BPM) system for the damping ring is one of the key tools for realizing this goal. The BPM system needs to provide two distnict measurements. First, a very high resolution ({approx}100-200nm) closed-orbit measurement which is averaged over many turns and realized with narrowband filter techniques - 'narrowband mode'. This is needed to monitor and steer the beam along an optimum orbit and to facilitate beam-based alignment to minimize non-linear field effects. Second, is the ability to make turn by turn (TBT) measurements to support optics studies and corrections necessary to achieve the design performance. As the TBT measurement necessitates a wider bandwidth, it is often referred to as 'wideband mode'. The BPM upgrade was initiated as a KEK/SLAC/FNAL collaboration in the frame of the Global Design Initiative of the International Linear Collider. The project was realized and completed using Japan-US funds with Fermilab as the core partner.« less

  1. Development of digital rectangular phantoms for quality controls of medical primary monitors in RIS-PACS systems

    NASA Astrophysics Data System (ADS)

    Mattacchioni, A.; Cristianini, M.; Lo Bosco, A.

    2013-03-01

    The purpose of this paper is to project digital rectangular phantoms, Di.Recta Multipurpose Phantoms (Di.Recta MP) for quality controls of primary high resolution medical monitors. The first approach for the monitors quality evaluation is represented by AAPM tests using multipurpose TG-18- CQ phantoms. The TG18-QC patterns are available in two sizes: 1024x1024 and 2048x2048 and the use of these phantoms requires a correct monitor setup. The study demonstrates that this type of phantoms is suitable for CRT monitors with adequate settings procedures. In the second step LCD monitors are analysed. Different types of primary monitors are included in a range between 2 and 5 Mp. The difference between the resolution of monitors and phantoms does not allow a complete analysis of the entire system, just moving phantoms in different positions. Of course, the analysis of images in the peripheral regions of medical monitors can not be neglected, especially because of the possible legal implications. A simpler analysis of these areas can be done through the use of rectangular phantoms in place of square ones. Furthermore, because of different technology, also different analysis patches are necessary for these types of monitors. Therefore, there are proposed digital rectangular phantoms, Di.Recta MP, compatible with the spatial resolution of most of commercial monitors. These phantoms are designed to simulate typical radiological conditions to determine the presence of significant defects using appropriate patches such as luminance, contrast, noise patterns. Finally a preliminary study of dedicate Di.Recta MP are proposed for LED monitors.

  2. Geomorphology of Impact Features on Tethys Using High Resolution Mosaics

    DTIC Science & Technology

    2017-03-01

    Space Exploration, Arizona State University, Tempe, AZ 85282 NIA 9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES) 10. SPONSOR/MONITOR’S ACRONYM...8217 coorbital moons are very likely to impact Tethys. The distribution, impact velocities, and impact angles of the debris are spatially-variable. In...particular, high-velocity debris (>5 km/s) with low impact angles are highly clustered along the equator in Tethys’ leading hemisphere. Slower impacts

  3. Real Time Monitoring of Flooding from Microwave Satellite Observations

    NASA Technical Reports Server (NTRS)

    Galantowicz, John F.; Frey, Herb (Technical Monitor)

    2002-01-01

    We have developed a new method for making high-resolution flood extent maps (e.g., at the 30-100 m scale of digital elevation models) in real-time from low-resolution (20-70 km) passive microwave observations. The method builds a "flood-potential" database from elevations and historic flood imagery and uses it to create a flood-extent map consistent with the observed open water fraction. Microwave radiometric measurements are useful for flood monitoring because they sense surface water in clear-or-cloudy conditions and can provide more timely data (e.g., compared to radars) from relatively wide swath widths and an increasing number of available platforms (DMSP, ADEOS-II, Terra, NPOESS, GPM). The chief disadvantages for flood mapping are the radiometers' low resolution and the need for local calibration of the relationship between radiances and open-water fraction. We present our method for transforming microwave sensor-scale open water fraction estimates into high-resolution flood extent maps and describe 30-day flood map sequences generated during a retrospective study of the 1993 Great Midwest Flood. We discuss the method's potential improvement through as yet unimplemented algorithm enhancements and expected advancements in microwave radiometry (e.g., improved resolution and atmospheric correction).

  4. High spatial resolution infrared camera as ISS external experiment

    NASA Astrophysics Data System (ADS)

    Eckehard, Lorenz; Frerker, Hap; Fitch, Robert Alan

    High spatial resolution infrared camera as ISS external experiment for monitoring global climate changes uses ISS internal and external resources (eg. data storage). The optical experiment will consist of an infrared camera for monitoring global climate changes from the ISS. This technology was evaluated by the German small satellite mission BIRD and further developed in different ESA projects. Compared to BIRD the presended instrument uses proven sensor advanced technologies (ISS external) and ISS on board processing and storage capabili-ties (internal). The instrument will be equipped with a serial interfaces for TM/TC and several relay commands for the power supply. For data processing and storage a mass memory is re-quired. The access to actual attitude data is highly desired to produce geo referenced maps-if possible by an on board processing.

  5. An automated image processing routine for segmentation of cell cytoplasms in high-resolution autofluorescence images

    NASA Astrophysics Data System (ADS)

    Walsh, Alex J.; Skala, Melissa C.

    2014-02-01

    The heterogeneity of genotypes and phenotypes within cancers is correlated with disease progression and drug-resistant cellular sub-populations. Therefore, robust techniques capable of probing majority and minority cell populations are important both for cancer diagnostics and therapy monitoring. Herein, we present a modified CellProfiler routine to isolate cytoplasmic fluorescence signal on a single cell level from high resolution auto-fluorescence microscopic images.

  6. Fine structure in the m/z 121 mass chromatogram of Paraho shale oil

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gallegos, E.J.

    1984-04-01

    High-resolution gas chromatography/high-resolution mass spectrometry/computer (HRGC/HRMS/C) techniques are reported here in the provisional identification of several homologous series of alkylpuridines, phenols, terpenes, and terpanes analytically isolated from Paraho shale oil. HRGC/HRMS/C techniques were also used to follow the hydrodenitrification, HDN, procedure for the removal of the heterocompounds, as well as to monitor the effect of hydrogenation on alkenes.

  7. HIGH-ENERGY X-RAY PINHOLE CAMERA FOR HIGH-RESOLUTION ELECTRON BEAM SIZE MEASUREMENTS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yang, B.; Morgan, J.; Lee, S.H.

    The Advanced Photon Source (APS) is developing a multi-bend achromat (MBA) lattice based storage ring as the next major upgrade, featuring a 20-fold reduction in emittance. Combining the reduction of beta functions, the electron beam sizes at bend magnet sources may be reduced to reach 5 – 10 µm for 10% vertical coupling. The x-ray pinhole camera currently used for beam size monitoring will not be adequate for the new task. By increasing the operating photon energy to 120 – 200 keV, the pinhole camera’s resolution is expected to reach below 4 µm. The peak height of the pinhole imagemore » will be used to monitor relative changes of the beam sizes and enable the feedback control of the emittance. We present the simulation and the design of a beam size monitor for the APS storage ring.« less

  8. Urban-scale mapping of PM2.5 distribution via data fusion between high-density sensor network and MODIS Aerosol Optical Depth

    NASA Astrophysics Data System (ADS)

    Ba, Yu Tao; xian Liu, Bao; Sun, Feng; Wang, Li hua; Tang, Yu jia; Zhang, Da wei

    2017-04-01

    High-resolution mapping of PM2.5 is the prerequisite for precise analytics and subsequent anti-pollution interventions. Considering the large variances of particulate distribution, urban-scale mapping is challenging either with ground-based fixed stations, with satellites or via models. In this study, a dynamic fusion method between high-density sensor network and MODIS Aerosol Optical Depth (AOD) was introduced. The sensor network was deployed in Beijing ( > 1000 fixed monitors across 16000 km2 area) to provide raw observations with high temporal resolution (sampling interval < 1 hour), high spatial resolution in flat areas ( < 1 km), and low spatial resolution in mountainous areas ( > 5 km). The MODIS AOD was calibrated to provide distribution map with low temporal resolution (daily) and moderate spatial resolution ( = 3 km). By encoding the data quality and defects (e.g. could, reflectance, abnormal), a hybrid interpolation procedure with cross-validation generated PM2.5 distribution with both high temporal and spatial resolution. Several no-pollutant and high-pollution periods were tested to validate the proposed fusion method for capturing the instantaneous patterns of PM2.5 emission.

  9. High-Resolution Gas Metering and Nonintrusive Appliance Load Monitoring System

    NASA Astrophysics Data System (ADS)

    Tewolde, Mahder

    This thesis deals with design and implementation of a high-resolution metering system for residential natural gas meters. Detailed experimental measurements are performed on the meter to characterize and understand its measurement properties. Results from these experiments are used to develop a simple, fast and accurate technique to non-intrusively monitor the gas consumption of individual appliances in homes by resolving small amounts of gas usage. The technique is applied on an existing meter retrofitted with a module that includes a high-resolution encoder to collect gas flow data and a microprocessor to analyze and identify appliance load profiles. This approach provides a number of appealing features including low cost, easy installation and integration with automated meter reading (AMR) systems. The application of this method to residential gas meters currently deployed is also given. This is done by performing a load simulation on realistic gas loads with the aim of identifying the necessary parameters that minimize the cost and complexity of the mechanical encoder module. The primary benefits of the system are efficiency analysis, appliance health monitoring and real-time customer feedback of gas usage. Additional benefits of include the ability to detect very small leaks and theft. This system has the potential for wide scale market adoption.

  10. Cassette Series Designed for Live-Cell Imaging of Proteins and High Resolution Techniques in Yeast

    PubMed Central

    Young, Carissa L.; Raden, David L.; Caplan, Jeffrey; Czymmek, Kirk; Robinson, Anne S.

    2012-01-01

    During the past decade, it has become clear that protein function and regulation are highly dependent upon intracellular localization. Although fluorescent protein variants are ubiquitously used to monitor protein dynamics, localization, and abundance; fluorescent light microscopy techniques often lack the resolution to explore protein heterogeneity and cellular ultrastructure. Several approaches have been developed to identify, characterize, and monitor the spatial localization of proteins and complexes at the sub-organelle level; yet, many of these techniques have not been applied to yeast. Thus, we have constructed a series of cassettes containing codon-optimized epitope tags, fluorescent protein variants that cover the full spectrum of visible light, a TetCys motif used for FlAsH-based localization, and the first evaluation in yeast of a photoswitchable variant – mEos2 – to monitor discrete subpopulations of proteins via confocal microscopy. This series of modules, complete with six different selection markers, provides the optimal flexibility during live-cell imaging and multicolor labeling in vivo. Furthermore, high-resolution imaging techniques include the yeast-enhanced TetCys motif that is compatible with diaminobenzidine photooxidation used for protein localization by electron microscopy and mEos2 that is ideal for super-resolution microscopy. We have examined the utility of our cassettes by analyzing all probes fused to the C-terminus of Sec61, a polytopic membrane protein of the endoplasmic reticulum of moderate protein concentration, in order to directly compare fluorescent probes, their utility and technical applications. Our series of cassettes expand the repertoire of molecular tools available to advance targeted spatiotemporal investigations using multiple live-cell, super-resolution or electron microscopy imaging techniques. PMID:22473760

  11. Monitoring the spatial and temporal evolution of slope instability with Digital Image Correlation

    NASA Astrophysics Data System (ADS)

    Manconi, Andrea; Glueer, Franziska; Loew, Simon

    2017-04-01

    The identification and monitoring of ground deformation is important for an appropriate analysis and interpretation of unstable slopes. Displacements are usually monitored with in-situ techniques (e.g., extensometers, inclinometers, geodetic leveling, tachymeters and D-GPS), and/or active remote sensing methods (e.g., LiDAR and radar interferometry). In particular situations, however, the choice of the appropriate monitoring system is constrained by site-specific conditions. Slope areas can be very remote and/or affected by rapid surface changes, thus hardly accessible, often unsafe, for field installations. In many cases the use of remote sensing approaches might be also hindered because of unsuitable acquisition geometries, poor spatial resolution and revisit times, and/or high costs. The increasing availability of digital imagery acquired from terrestrial photo and video cameras allows us nowadays for an additional source of data. The latter can be exploited to visually identify changes of the scene occurring over time, but also to quantify the evolution of surface displacements. Image processing analyses, such as Digital Image Correlation (known also as pixel-offset or feature-tracking), have demonstrated to provide a suitable alternative to detect and monitor surface deformation at high spatial and temporal resolutions. However, a number of intrinsic limitations have to be considered when dealing with optical imagery acquisition and processing, including the effects of light conditions, shadowing, and/or meteorological variables. Here we propose an algorithm to automatically select and process images acquired from time-lapse cameras. We aim at maximizing the results obtainable from large datasets of digital images acquired with different light and meteorological conditions, and at retrieving accurate information on the evolution of surface deformation. We show a successful example of application of our approach in the Swiss Alps, more specifically in the Great Aletsch area, where slope instability was recently reactivated due to the progressive glacier retreat. At this location, time-lapse cameras have been installed during the last two years, ranging from low-cost and low-resolution webcams to more expensive high-resolution reflex cameras. Our results confirm that time-lapse cameras provide quantitative and accurate measurements of surface deformation evolution over space and time, especially in situations when other monitoring instruments fail.

  12. Modeling vegetation heights from high resolution stereo aerial photography: an application for broad-scale rangeland monitoring

    USDA-ARS?s Scientific Manuscript database

    Vertical vegetation structure in rangeland ecosystems can be a valuable indicator for monitoring rangeland health or progress toward management objectives because of its importance for assessing riparian areas, post-fire recovery, wind erosion, and wildlife habitat. Federal land management agencies ...

  13. Improved head-controlled TV system produces high-quality remote image

    NASA Technical Reports Server (NTRS)

    Goertz, R.; Lindberg, J.; Mingesz, D.; Potts, C.

    1967-01-01

    Manipulator operator uses an improved resolution tv camera/monitor positioning system to view the remote handling and processing of reactive, flammable, explosive, or contaminated materials. The pan and tilt motions of the camera and monitor are slaved to follow the corresponding motions of the operators head.

  14. High-resolution carbon mapping on the million-hectare Island of Hawaii

    Treesearch

    Gregory P. Asner; R. Flint Hughes; Joseph Mascaro; Amanda L. Uowolo; David E. Knapp; James Jacobson; Ty Kennedy-Bowdoin; John K . Clark

    2011-01-01

    Current markets and international agreements for reducing emissions from deforestation and forest degradation (REDD) rely on carbon (C) monitoring techniques. Combining field measurements, airborne light detection and ranging (LiDAR)-based observations, and satellite-based imagery, we developed a 30-meter-resolution map of aboveground C density spanning 40 vegetation...

  15. Continuous, Large-Scale Processing of Seismic Archives for High-Resolution Monitoring of Seismic Activity and Seismogenic Properties

    NASA Astrophysics Data System (ADS)

    Waldhauser, F.; Schaff, D. P.

    2012-12-01

    Archives of digital seismic data recorded by seismometer networks around the world have grown tremendously over the last several decades helped by the deployment of seismic stations and their continued operation within the framework of monitoring earthquake activity and verification of the Nuclear Test-Ban Treaty. We show results from our continuing effort in developing efficient waveform cross-correlation and double-difference analysis methods for the large-scale processing of regional and global seismic archives to improve existing earthquake parameter estimates, detect seismic events with magnitudes below current detection thresholds, and improve real-time monitoring procedures. We demonstrate the performance of these algorithms as applied to the 28-year long seismic archive of the Northern California Seismic Network. The tools enable the computation of periodic updates of a high-resolution earthquake catalog of currently over 500,000 earthquakes using simultaneous double-difference inversions, achieving up to three orders of magnitude resolution improvement over existing hypocenter locations. This catalog, together with associated metadata, form the underlying relational database for a real-time double-difference scheme, DDRT, which rapidly computes high-precision correlation times and hypocenter locations of new events with respect to the background archive (http://ddrt.ldeo.columbia.edu). The DDRT system facilitates near-real-time seismicity analysis, including the ability to search at an unprecedented resolution for spatio-temporal changes in seismogenic properties. In areas with continuously recording stations, we show that a detector built around a scaled cross-correlation function can lower the detection threshold by one magnitude unit compared to the STA/LTA based detector employed at the network. This leads to increased event density, which in turn pushes the resolution capability of our location algorithms. On a global scale, we are currently building the computational framework for double-difference processing the combined parametric and waveform archives of the ISC, NEIC, and IRIS with over three million recorded earthquakes worldwide. Since our methods are scalable and run on inexpensive Beowulf clusters, periodic re-analysis of such archives may thus become a routine procedure to continuously improve resolution in existing global earthquake catalogs. Results from subduction zones and aftershock sequences of recent great earthquakes demonstrate the considerable social and economic impact that high-resolution images of active faults, when available in real-time, will have in the prompt evaluation and mitigation of seismic hazards. These results also highlight the need for consistent long-term seismic monitoring and archiving of records.

  16. Field assessment of innovative sensor for monitoring of sediment accumulation at inshore coral reefs.

    PubMed

    Thomas, Séverine; Ridd, Peter

    2005-01-01

    Sediment accumulation rate is a frequently required parameter in environmental and management studies, in particular near coral reefs where sediment accumulation can potentially cause severe impact. However, opportunities to obtain accurate sediment accumulation measurements are often limited by a lack of adequate instrumentation, in particular for high temporal resolution monitoring. For instance the traditional use of sediment traps, as the most widespread technique, offers poor temporal resolution (commonly of weeks) besides having significant hydrodynamic shortcomings. Therefore, a new optical backscatter sediment accumulation sensor (SAS) was developed to continuously measure in situ short-term sediment accumulation in sensitive riverine and coastal environments, enabling high temporal and vertical resolution (order of 1 h and with a deposited thickness resolution in the order of 20 microm respectively). This allows investigations of various parameters that influence accumulation: tides, current, waves, rain, or anthropogenic activity such as sediment dumping. This paper briefly describes the SAS and presents three field applications on nearshore coral reefs at Ishigaki Island (Japan), Lihir Island (Papua New Guinea), and Magnetic Island (Australia).

  17. Monitoring irrigation water consumption using high resolution NDVI image time series (Sentinel-2 like). Calibration and validation in the Kairouan plain (Tunisia)

    NASA Astrophysics Data System (ADS)

    Saadi, Sameh; Simonneaux, Vincent; Boulet, Gilles; Mougenot, Bernard; Zribi, Mehrez; Lili Chabaane, Zohra

    2015-04-01

    Water scarcity is one of the main factors limiting agricultural development in semi-arid areas. It is thus of major importance to design tools allowing a better management of this resource. Remote sensing has long been used for computing evapotranspiration estimates, which is an input for crop water balance monitoring. Up to now, only medium and low resolution data (e.g. MODIS) are available on regular basis to monitor cultivated areas. However, the increasing availability of high resolution high repetitivity VIS-NIR remote sensing, like the forthcoming Sentinel-2 mission to be lunched in 2015, offers unprecedented opportunity to improve this monitoring. In this study, regional crops water consumption was estimated with the SAMIR software (Satellite of Monitoring Irrigation) using the FAO-56 dual crop coefficient water balance model fed with high resolution NDVI image time series providing estimates of both the actual basal crop coefficient (Kcb) and the vegetation fraction cover. The model includes a soil water model, requiring the knowledge of soil water holding capacity, maximum rooting depth, and water inputs. As irrigations are usually not known on large areas, they are simulated based on rules reproducing the farmer practices. The main objective of this work is to assess the operationality and accuracy of SAMIR at plot and perimeter scales, when several land use types (winter cereals, summer vegetables…), irrigation and agricultural practices are intertwined in a given landscape, including complex canopies such as sparse orchards. Meteorological ground stations were used to compute the reference evapotranspiration and get the rainfall depths. Two time series of ten and fourteen high-resolution SPOT5 have been acquired for the 2008-2009 and 2012-2013 hydrological years over an irrigated area in central Tunisia. They span the various successive crop seasons. The images were radiometrically corrected, first, using the SMAC6s Algorithm, second, using invariant objects located on the scene, based on visual observation of the images. From these time series, a Normalized Difference Vegetation Index (NDVI) profile was generated for each pixel. SAMIR was first calibrated based on ground measurements of evapotranspiration achieved using eddy-correlation devices installed on irrigated wheat and barley plots. After calibration, the model was run to spatialize irrigation over the whole area and a validation was done using cumulated seasonal water volumes obtained from ground survey at both plot and perimeter scales. The results show that although determination of model parameters was successful at plot scale, irrigation rules required an additional calibration which was achieved at perimeter scale.

  18. Gamma ray spectroscopy monitoring method and apparatus

    DOEpatents

    Stagg, William R; Policke, Timothy A

    2017-05-16

    The present invention relates generally to the field of gamma ray spectroscopy monitoring and a system for accomplishing same to monitor one or more aspects of various isotope production processes. In one embodiment, the present invention relates to a monitoring system, and method of utilizing same, for monitoring one or more aspects of an isotope production process where the monitoring system comprises: (A) at least one sample cell; (B) at least one measuring port; (C) at least one adjustable collimator device; (D) at least one shutter; and (E) at least one high resolution gamma ray spectrometer.

  19. Conformable actively multiplexed high-density surface electrode array for brain interfacing

    DOEpatents

    Rogers, John; Kim, Dae-Hyeong; Litt, Brian; Viventi, Jonathan

    2015-01-13

    Provided are methods and devices for interfacing with brain tissue, specifically for monitoring and/or actuation of spatio-temporal electrical waveforms. The device is conformable having a high electrode density and high spatial and temporal resolution. A conformable substrate supports a conformable electronic circuit and a barrier layer. Electrodes are positioned to provide electrical contact with a brain tissue. A controller monitors or actuates the electrodes, thereby interfacing with the brain tissue. In an aspect, methods are provided to monitor or actuate spatio-temporal electrical waveform over large brain surface areas by any of the devices disclosed herein.

  20. Stereoscopic Configurations To Minimize Distortions

    NASA Technical Reports Server (NTRS)

    Diner, Daniel B.

    1991-01-01

    Proposed television system provides two stereoscopic displays. Two-camera, two-monitor system used in various camera configurations and with stereoscopic images on monitors magnified to various degrees. Designed to satisfy observer's need to perceive spatial relationships accurately throughout workspace or to perceive them at high resolution in small region of workspace. Potential applications include industrial, medical, and entertainment imaging and monitoring and control of telemanipulators, telerobots, and remotely piloted vehicles.

  1. A review of the developments of radioxenon detectors for nuclear explosion monitoring

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sivels, Ciara B.; McIntyre, Justin I.; Bowyer, Theodore W.

    Developments in radioxenon monitoring since the implementation of the International Monitoring System are reviewed with emphasis on the most current technologies to improve detector sensitivity and resolution. The nuclear detectors reviewed include combinations of plastic and NaI(Tl) detectors, high purity germanium detectors, silicon detectors, and phoswich detectors. The minimum detectable activity and calibration methods for the various detectors are also discussed.

  2. Measurements of soil, surface water, and groundwater CO2 concentration variability within Earth's critical zone: low-cost, long-term, high-temporal resolution monitoring

    NASA Astrophysics Data System (ADS)

    Blackstock, J. M.; Covington, M. D.; Williams, S. G. W.; Myre, J. M.; Rodriguez, J.

    2017-12-01

    Variability in CO2 fluxes within Earth's Critical zone occurs over a wide range of timescales. Resolving this and its drivers requires high-temporal resolution monitoring of CO2 both in the soil and aquatic environments. High-cost (> 1,000 USD) gas analyzers and data loggers present cost-barriers for investigations with limited budgets, particularly if high spatial resolution is desired. To overcome high-costs, we developed an Arduino based CO2 measuring platform (i.e. gas analyzer and data logger). The platform was deployed at multiple sites within the Critical Zone overlying the Springfield Plateau aquifer in Northwest Arkansas, USA. The CO2 gas analyzer used in this study was a relatively low-cost SenseAir K30. The analyzer's optical housing was covered by a PTFE semi-permeable membrane allowing for gas exchange between the analyzer and environment. Total approximate cost of the monitoring platform was 200 USD (2% detection limit) to 300 USD (10% detection limit) depending on the K30 model used. For testing purposes, we deployed the Arduino based platform alongside a commercial monitoring platform. CO2 concentration time series were nearly identical. Notably, CO2 cycles at the surface water site, which operated from January to April 2017, displayed a systematic increase in daily CO2 amplitude. Preliminary interpretation suggests key observation of seasonally increasing stream metabolic function. Other interpretations of observed cyclical and event-based behavior are out of the scope of the study; however, the presented method describes an accurate near-hourly characterization of CO2 variability. The new platform has been shown to be operational for several months, and we infer reliable operation for much longer deployments (> 1 year) given adequate environmental protection and power supply. Considering cost-savings, this platform is an attractive option for continuous, accurate, low-power, and low-cost CO2 monitoring for remote locations, globally.

  3. High resolution earth observation satellites and services in the next decade a European perspective

    NASA Astrophysics Data System (ADS)

    Schreier, Gunter; Dech, Stefan

    2005-07-01

    Projects to use very high resolution optical satellite sensor data started in the late 90s and are believed to be the major driver for the commercialisation of earth observation. The global political security situation and updated legislative frameworks created new opportunities for high resolution, dual use satellite systems. In addition to new optical sensors, very high resolution synthetic aperture radars will become in the next few years an important component in the imaging satellite fleet. The paper will review the development in this domain so far, and give perspectives on future emerging markets and opportunities. With dual-use satellite initiatives and new political frameworks agreed between the European Commission and the European Space Agency (ESA), the European market becomes very attractive for both service suppliers and customers. The political focus on "Global Monitoring for Environment and Security" (GMES) and the "European Defence and Security Policy" drive and amplify this demand which ranges from low resolution climate monitoring to very high resolution reconnaissance tasks. In order to create an operational and sustainable GMES in Europe by 2007, the European infrastructure need to be adapted and extended. This includes the ESA SENTINEL and OXYGEN programmes, aiming for a fleet of earth observation satellites and an open and operational earth observation ground segment. The harmonisation of national and regional geographic information is driven by the European Commission's INSPIRE programme. The necessary satellite capacity to complement existing systems in the delivery of space based data required for GMES is currently under definition. Embedded in a market with global competition and in the global political framework of a Global Earth Observation System of Systems, European companies, agencies and research institutions are now contributing to this joint undertaking. The paper addresses the chances, risks and options for the future.

  4. TEMPO Specific Photochemical Reflectance Index for Monitoring Crop Productivity

    NASA Astrophysics Data System (ADS)

    Wulamu, A.; Fishman, J.; Maimaitiyiming, M.

    2016-12-01

    Chlorophyll fluorescence and Photochemical Reflectance Index (PRI) are two key indicators of plant functional status used for early stress detection. With its less than one nanometer hyperspectral resolution and hourly revisit capabilities, NASA's Tropospheric Emissions: Monitoring of Pollution (TEMPO) sensor provides new opportunities for monitoring regional food security. Chlorophyll fluorescence can be retrieved by TEMPO using Oxygen B (O2-B) absorption region at 687 nm. The Photochemical Reflectance Index (PRI) is calculated from spectral reflectance at 531 and 570. However, TEMPO spectral range covers from 290 mm - 490 nm and 540 nm -740 nm, does not provide the 531 nm measurement band for PRI. It is imperative to develop alternate wavelengths within the TEMPO spectral range for these early stress indicators so that regional crop health can be observed by TEMPO with unparalleled spectral and temporal resolutions to address food security. Combining field and airborne remote sensing experiments and radiative transfer simulations, this work proposes a TEMPO specific PRI and demonstrates that TEMPO offers a new set of high-resolution spectral data for crop monitoring.

  5. Monitoring the Lavina di Roncovetro (RE, Italy) landslide by integrating traditional monitoring systems and multiple high-resolution topographic datasets

    NASA Astrophysics Data System (ADS)

    Fornaciai, Alessandro; Favalli, Massimiliano; Gigli, Giovanni; Nannipieri, Luca; Mucchi, Lorenzo; Intieri, Emanuele; Agostini, Andrea; Pizziolo, Marco; Bertolini, Giovanni; Trippi, Federico; Casagli, Nicola; Schina, Rosa; Carnevale, Ennio

    2016-04-01

    Tha Lavina di Roncovetro landslide is located in the Enza Valley (Reggio Emilia, Italy). It extends from the top of Mount Staffola down to the Tassobbio River. Since the clay fraction is dominant, it follows that the landslide can be considered as a fluid-viscous mudflow, which can reach a down flow maximum rate of 10 m/day. The landslide started between the middle and the end of the XIX century and since then it has had a rapid evolution mainly characterized by the rapid retrogression of the crown to the extent that now reaches the top of Mount Staffola. In the last 20 years, about 100,000 m3 of bedrock descended from the main scarp into the landslide body. The total volume of the landslide is inferred to be of ~ 3×106 m3. In the frame of EU Wireless Sensor Network for Ground Instability Monitoring - Wi-GIM project (LIFE12 ENV/IT/001033), the Roncovetro landslide is periodically monitored by traditional monitoring systems and Unmanned Aerial Vehicle (UAV) survey. In addition, an airborne LIDAR survey and a photographic acquisition from a small aircraft were carried out on April 2014 and October 2014, respectively. The traditional monitoring system consists of a terrestrial laser scanning (TLS) survey and a robotized total station (RTS). TLS acquisitions have focused on the upper and more active sector of the earthflow and were carried out since May 2014. By comparing TLS data taken at different times, the general deformational field of the landslide can be reconstructed and the displacements affecting the retaining structures built on the landslide crown quantified. The time resolution of both TLS and RTS acquisition is about 6 per year. . Three high-resolution photogrammetric surveys performed using an UAV were carried out on November 2014, July 2015 and January 2016. Starting from the acquired photos and applying photogrammetry and Structure From Motion (SFM) algorithms integrated in the Photoscan Agisoft software, the high-resolution 3D models of the Roncovetro Landslide were generated at different times. The 3D models are then georeferenced and the digital elevation models (DEMs) created. By comparing the obtained DEMs, changes in the investigated area were detected and the sediment volumes, as well as the 3D displacement at the most active parts of the landslide quantified. In this work, we test the performance of the SFM techniques applied on active landslide by comparing them with the traditional monitoring systems, highlighting the strengths and weaknesses of both methods. In addition, we show the preliminary results obtained integrating the traditional monitoring systems and the multiple high-resolution topographic datasets, over a period of more than one year, used for investigating the spatial and the temporal evolution of the upper sector of the Roncovetro landslide.

  6. High-Frequency Electromagnetic Impedance Measurements for Characterization, Monitoring and Verification Efforts

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lee, Ki Ha; Becker, Alex; Tseng, Hung-Wen

    2004-06-16

    Non-invasive, high-resolution imaging of the shallow subsurface is needed for delineation of buried waste, detection of unexploded ordinance, verification and monitoring of containment structures, and other environmental applications. Electromagnetic (EM) measurements at frequencies between 0.1 and 100 MHz are important for such applications, because the induction number of many targets is small and the ability to determine the dielectric permittivity in addition to electrical conductivity of the subsurface is possible. Earlier workers were successful in developing systems for detecting anomalous areas, but no quantifiable information was accurately determined. For high-resolution imaging, accurate measurements are necessary so the field data canmore » be mapped into the space of the subsurface parameters. We are developing a non-invasive method for accurately mapping the electrical conductivity and dielectric permittivity of the shallow subsurface using the EM impedance approach (Frangos, 2001; Lee and Becker, 2001; Song et al., 2002, Tseng et al., 2003). Electric and magnetic sensors are being tested and calibrated on sea water and in a known area against theoretical predictions, thereby insuring that the data collected with the high-frequency impedance (HFI) system will support high-resolution, multi-dimensional imaging techniques.« less

  7. Generating daily high spatial land surface temperatures by combining ASTER and MODIS land surface temperature products for environmental process monitoring.

    PubMed

    Wu, Mingquan; Li, Hua; Huang, Wenjiang; Niu, Zheng; Wang, Changyao

    2015-08-01

    There is a shortage of daily high spatial land surface temperature (LST) data for use in high spatial and temporal resolution environmental process monitoring. To address this shortage, this work used the Spatial and Temporal Adaptive Reflectance Fusion Model (STARFM), Enhanced Spatial and Temporal Adaptive Reflectance Fusion Model (ESTARFM), and the Spatial and Temporal Data Fusion Approach (STDFA) to estimate high spatial and temporal resolution LST by combining Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER) LST and Moderate Resolution Imaging Spectroradiometer (MODIS) LST products. The actual ASTER LST products were used to evaluate the precision of the combined LST images using the correlation analysis method. This method was tested and validated in study areas located in Gansu Province, China. The results show that all the models can generate daily synthetic LST image with a high correlation coefficient (r) of 0.92 between the synthetic image and the actual ASTER LST observations. The ESTARFM has the best performance, followed by the STDFA and the STARFM. Those models had better performance in desert areas than in cropland. The STDFA had better noise immunity than the other two models.

  8. Divertor impurity monitor for the International Thermonuclear Experimental Reactor

    NASA Astrophysics Data System (ADS)

    Sugie, T.; Ogawa, H.; Nishitani, T.; Kasai, S.; Katsunuma, J.; Maruo, M.; Ebisawa, K.; Ando, T.; Kita, Y.

    1999-01-01

    The divertor impurity monitoring system of the International Thermonuclear Experimental Reactor has been designed. The main functions of this system are to identify impurity species and to measure the two-dimensional distributions of the particle influxes in the divertor plasmas. The wavelength range is 200-1000 nm. The viewing fans are realized by molybdenum mirrors located in the divertor cassette. With additional viewing fans seeing through the gap between the divertor cassettes, the region approximately from the divertor leg to the x point will be observed. The light from the divertor region passes through the quartz windows on the divertor port plug and the cryostat, and goes through the dog-leg optics in the biological shield. Three different type of spectrometers: (i) survey spectrometers for impurity species monitoring, (ii) filter spectrometers for the particle influx measurement with the spatial resolution of 10 mm and the time resolution of 1 ms, and (iii) high dispersion spectrometers for high resolution wavelength measurements are designed. These spectrometers are installed just behind the biological shield (for λ<450 nm) to prevent the transmission loss in fiber and in the diagnostic room (for λ⩾450 nm) from the point of view of accessibility and flexibility. The optics have been optimized by a ray trace analysis. As a result, 10-15 mm spatial resolution will be achieved in all regions of the divertor.

  9. High-Resolution Land Use and Land Cover Mapping

    USGS Publications Warehouse

    ,

    1999-01-01

    As the Nation?s population grows, quantifying, monitoring, and managing land use becomes increasingly important. The U.S. Geological Survey (USGS) has a long heritage of leadership and innovation in land use and land cover (LULC) mapping that has been the model both nationally and internationally for over 20 years. At present, the USGS is producing high-resolution LULC data for several watershed and urban areas within the United States. This high-resolution LULC mapping is part of an ongoing USGS Land Cover Characterization Program (LCCP). The four components of the LCCP are global (1:2,000,000-scale), national (1:100,000-scale), urban (1:24,000-scale), and special projects (various scales and time periods). Within the urban and special project components, the USGS Rocky Mountain Mapping Center (RMMC) is collecting historical as well as contemporary high-resolution LULC data. RMMC?s high-resolution LULC mapping builds on the heritage and success of previous USGS LULC programs and provides LULC information to meet user requirements.

  10. Near-inertial Wave Studies Using Historical Mooring Records and a High-Resolution General Circulation Model

    DTIC Science & Technology

    2009-09-30

    Mooring Records and a High- Resolution General Circulation Model Harper Simmons School of Fisheries and Ocean Sciences 903 Koyukuk Drive Fairbanks AK...oceanographic community has been to develop a global internal wave prediction system analogous to those already in place for surface waves. Early steps have... Fisheries and Ocean Sciences,903 Koyukuk Drive,Fairbanks,AK,99775 8. PERFORMING ORGANIZATION REPORT NUMBER 9. SPONSORING/MONITORING AGENCY NAME(S) AND

  11. Sensors and OBIA synergy for operational monitoring of surface water

    NASA Astrophysics Data System (ADS)

    Masson, Eric; Thenard, Lucas

    2010-05-01

    This contribution will focus on combining Object Based Image Analysis (i.e. OBIA with e-Cognition 8) and recent sensors (i.e. Spot 5 XS, Pan and ALOS Prism, Avnir2, Palsar) to address the technical feasibility for an operational monitoring of surface water. Three cases of river meandering (India), flood mapping (Nepal) and dam's seasonal water level monitoring (Morocco) using recent sensors will present various application of surface water monitoring. The operational aspect will be demonstrated either by sensor properties (i.e. spatial resolution and bandwidth), data acquisition properties (i.e. multi sensor, return period and near real-time acquisition) but also with OBIA algorithms (i.e. fusion of multi sensors / multi resolution data and batch processes). In the first case of river meandering (India) we will address multi sensor and multi date satellite acquisition to monitor the river bed mobility within a floodplain using an ALOS dataset. It will demonstrate the possibility of an operational monitoring system that helps the geomorphologist in the analysis of fluvial dynamic and sediment budget for high energy rivers. In the second case of flood mapping (Nepal) we will address near real time Palsar data acquisition at high spatial resolution to monitor and to map a flood extension. This ALOS sensor takes benefit both from SAR and L band properties (i.e. atmospheric transparency, day/night acquisition, low sensibility to surface wind). It's a real achievement compared to optical imagery or even other high resolution SAR properties (i.e. acquisition swath, bandwidth and data price). These advantages meet the operational needs set by crisis management of hydrological disasters but also for the implementation of flood risk management plans. The last case of dam surface water monitoring (Morocco) will address an important issue of water resource management in countries affected by water scarcity. In such countries water users have to cope with over exploitation, frequent drought period and now with foreseen climate change impacts. This third case will demonstrate the efficiency of SPOT 5 programming in synergy with OBIA methodology to assess the evolution of dam surface water within a complete water cycle (i.e. 2008-09). In all those three cases image segmentation and classification algorithms developed with e-Cognition 8 software allow an easy to use implementation of simple to highly sophisticate OBIA rulsets fully operational in batch processes. Finally this contribution foresees the new opportunity of integration of Worldview 2 multispectral imagery (i.e. 8 bands) including its "coastal" band that will also find an application in continental surface water bathymetry. Worldview 2 is a recently launch satellite (e.g. October 2009) that starts to collect earth observation data since January 2010. It is therefore a promising new remote sensing tool to develop operational hydrology in combination high resolution SAR imagery and OBIA methodology. This contribution will conclude on the strong potential for operationalisation in hydrology and water resources management that recent and future sensors and image analysis methodologies are offering to water management and decision makers.

  12. Spatial and Temporal Monitoring Resolutions for CO2 Leakage Detection at Carbon Storage Sites

    NASA Astrophysics Data System (ADS)

    Yang, Y. M.; Dilmore, R. M.; Daley, T. M.; Carroll, S.; Mansoor, K.; Gasperikova, E.; Harbert, W.; Wang, Z.; Bromhal, G. S.; Small, M.

    2016-12-01

    Different leakage monitoring techniques offer different strengths in detection sensitivity, coverage, feedback time, cost, and technology availability, such that they may complement each other when applied together. This research focuses on quantifying the spatial coverage and temporal resolution of detection response for several geophysical remote monitoring and direct groundwater monitoring techniques for an optimal monitoring plan for CO2 leakage detection. Various monitoring techniques with different monitoring depths are selected: 3D time-lapse seismic survey, wellbore pressure, groundwater chemistry and soil gas. The spatial resolution in terms of leakage detectability is quantified through the effective detection distance between two adjacent monitors, given the magnitude of leakage and specified detection probability. The effective detection distances are obtained either from leakage simulations with various monitoring densities or from information garnered from field test data. These spatial leakage detection resolutions are affected by physically feasible monitoring design and detection limits. Similarly, the temporal resolution, in terms of leakage detectability, is quantified through the effective time to positive detection of a given size of leak and a specified detection probability, again obtained either from representative leakage simulations with various monitoring densities or from field test data. The effective time to positive detection is also affected by operational feedback time (associated with sampling, sample analysis and data interpretation), with values obtained mainly through expert interviews and literature review. In additional to the spatial and temporal resolutions of these monitoring techniques, the impact of CO2 plume migration speed and leakage detection sensitivity of each monitoring technique are also discussed with consideration of how much monitoring is necessary for effective leakage detection and how these monitoring techniques can be better combined in a time-space framework. The results of the spatial and temporal leakage detection resolutions for several geophysical monitoring techniques and groundwater monitoring are summarized to inform future monitoring designs at carbon storage sites.

  13. Study of Movement and Seepage Along Levees Using DINSAR and the Airborne UAVSAR Instrument

    NASA Technical Reports Server (NTRS)

    Jones, Cathleen E.; Bawden, Gerald; Deverel, Steven; Dudas, Joel; Hensley, Scott

    2012-01-01

    We have studied the utility of high resolution SAR (synthetic aperture radar) for levee monitoring using UAVSAR (Uninhabited Aerial Vehicle Synthetic Aperture Radar) data collected along the dikes and levees in California's Sacramento-San Joaquin Delta and along the lower Mississippi River. Our study has focused on detecting and tracking changes that are indicative of potential problem spots, namely deformation of the levees, subsidence along the levee toe, and seepage through the levees, making use of polarimetric and interferometric SAR techniques. Here was present some results of those studies, which show that high resolution, low noise SAR imaging could supplement more traditional ground-based monitoring methods by providing early indicators of seepage and deformation.

  14. Sub-micron resolution rf cavity beam position monitor system at the SACLA XFEL facility

    NASA Astrophysics Data System (ADS)

    Maesaka, H.; Ego, H.; Inoue, S.; Matsubara, S.; Ohshima, T.; Shintake, T.; Otake, Y.

    2012-12-01

    We have developed and constructed a C-band (4.760 GHz) rf cavity beam position monitor (RF-BPM) system for the XFEL facility at SPring-8, SACLA. The demanded position resolution of the RF-BPM is less than 1 μm, because an electron beam and x-rays must be overlapped within 4 μm precision in the undulator section for sufficient FEL interaction between the electrons and x-rays. In total, 57 RF-BPMs, including IQ demodulators and high-speed waveform digitizers for signal processing, were produced and installed into SACLA. We evaluated the position resolutions of 20 RF-BPMs in the undulator section by using a 7 GeV electron beam having a 0.1 nC bunch charge. The position resolution was measured to be less than 0.6 μm, which was sufficient for the XFEL lasing in the wavelength region of 0.1 nm, or shorter.

  15. Advanced diagnosis of the temporal characteristics of ultra-short electron beams

    NASA Astrophysics Data System (ADS)

    Otake, Yuji

    2011-05-01

    Monitoring the temporal structure of an ultra-short electron beam is an indispensable function in order to tune a machine to obtain a highly qualified beam for a recent sophisticated accelerator, such as an X-ray free electron laser (XFEL), and to maintain stable X-ray laser operation. For this purpose, various instruments, such as an HEM11-mode RF beam deflector (RFDEF), a screen monitor (SCM), an electro-optic (EO) sampling method that uses a ZnTe crystal, and a beam position monitor (BPM) have been developed. The SCM that is used to observe the deflected beam image has a position resolution of 2.5 μm, which corresponds to a temporal resolution of 0.5 fs and it is installed at a position 5 m downstream from the RFDEF. The EO sampling method showed the ability to observe an electron bunch length for up to 300 fs (FWHM) at the SCSS test accelerator. The phase reference cavity of the BPM has an additional function of providing beam arrival timing information. A test for the BPM showed temporal fluctuation of 46 fs on the beam arrival timing at the test accelerator. These monitors with high temporal resolutions allow us to achieve the fine beam tuning demanded for the XFEL. The above-mentioned activities are described in this paper as a review article.

  16. Recognize PM2.5 sources and emission patterns via high-density sensor network: An application case in Beijing

    NASA Astrophysics Data System (ADS)

    Ba, Yu tao; xian Liu, Bao; Sun, Feng; Wang, Li hua; Zhang, Da wei; Yin, Wen jun

    2017-04-01

    Beijing suffered severe air pollution during wintertime, 2016, with the unprecedented high level pollutants monitored. As the most dominant pollutant, fine particulate matter (PM2.5) was measured via high-density sensor network (>1000 fixed monitors across 16000 km2 area). This campaign provided precise observations (spatial resolution ≈ 3 km, temporal resolution = 10 min, error of measure < 5 ug/m3) to track potential emission sources. In addition, these observations coupled with WRF-Chem model (Weather Research and Forecasting model coupled with Chemistry) were analyzed to elucidate the effects of atmospheric transportations across regions, both horizontal and vertical, on emission patterns during this haze period. The results quantified the main cause of regional transport and local emission, and highlighted the importance of cross-region cooperation in anti-pollution campaigns.

  17. High resolution extensometer based on optical encoder for measurement of small landslide displacements

    NASA Astrophysics Data System (ADS)

    Afandi, M. I.; Adinanta, H.; Setiono, A.; Qomaruddin; Widiyatmoko, B.

    2018-03-01

    There are many ways to measure landslide displacement using sensors such as multi-turn potentiometer, fiber optic strain sensor, GPS, geodetic measurement, ground penetrating radar, etc. The proposed way is to use an optical encoder that produces pulse signal with high stability of measurement resolution despite voltage source instability. The landslide measurement using extensometer based on optical encoder has the ability of high resolution for wide range measurement and for a long period of time. The type of incremental optical encoder provides information about the pulse and direction of a rotating shaft by producing quadrature square wave cycle per increment of shaft movement. The result of measurement using 2,000 pulses per resolution of optical encoder has been obtained. Resolution of extensometer is 36 μm with speed limit of about 3.6 cm/s. System test in hazard landslide area has been carried out with good reliability for small landslide displacement monitoring.

  18. Thermoacoustic and photoacoustic sensing of temperature.

    PubMed

    Pramanik, Manojit; Wang, Lihong V

    2009-01-01

    We present a novel temperature-sensing technique using thermoacoustic and photoacoustic measurements. This noninvasive method has been demonstrated using a tissue phantom to have high temporal resolution and temperature sensitivity. Because both photoacoustic and thermoacoustic signal amplitudes depend on the temperature of the source object, the signal amplitudes can be used to monitor the temperature. A temperature sensitivity of 0.15 degrees C was obtained at a temporal resolution as short as 2 s, taking the average of 20 signals. The deep-tissue imaging capability of this technique can potentially lead us to in vivo temperature monitoring in thermal or cryogenic applications.

  19. High-resolution monitoring of stormwater quality in an urbanising catchment in the United Kingdom during the 2013/2014 winter storms

    NASA Astrophysics Data System (ADS)

    McGrane, S. J.; Hutchins, M. G.; Kjeldsen, T. R.; Miller, J. D.; Bussi, G.; Loewenthal, M.

    2015-12-01

    Urban areas are widely recognised as a key source of contaminants entering our freshwater systems, yet in spite of this, our understanding of stormwater quality dynamics remains limited. The development of in-situ, high-resolution monitoring equipment has revolutionised our capability to capture flow and water quality data at a sub-hourly resolution, enabling us to potentially enhance our understanding of hydrochemical variations from contrasting landscapes during storm events. During the winter of 2013/2014, the United Kingdom experienced a succession of intense storm events, where the south of the country experienced 200% of the average rainfall, resulting in widespread flooding across the Thames basin. We applied high-frequency (15 minute resolution) water quality monitoring across ten contrasting subcatchments (including rural, urban and mixed land-use catchments), seeking to classify the disparity in water quality conditions both within- and between events. Rural catchments increasingly behave like "urban" catchments as soils wet up and become increasingly responsive to subsequent events, however water quality response during the winter months remains limited. By contrast, increasingly urban catchments yield greater contaminant loads during events, and pre-event baseline chemistry highlights a resupply source in dense urban catchments. Wastewater treatment plants were shown to dominate baseline chemistry during low-flow events but also yield a considerable impact on stormwater outputs during peak-flow events, as hydraulic push results in the outflow of untreated solid wastes into the river system. Results are discussed in the context of water quality policy; urban growth scenarios and BMP for stormwater runoff in contrasting landscapes.

  20. Development of an integrated sub-picometric SWIFTS-based wavelength meter

    NASA Astrophysics Data System (ADS)

    Duchemin, Céline; Thomas, Fabrice; Martin, Bruno; Morino, Eric; Puget, Renaud; Oliveres, Robin; Bonneville, Christophe; Gonthiez, Thierry; Valognes, Nicolas

    2017-02-01

    SWIFTSTM technology has been known for over five years to offer compact and high-resolution laser spectrum analyzers. The increase of wavelength monitoring demand with even better accuracy and resolution has pushed the development of a wavelength meter based on SWIFTSTM technology, named LW-10. As a reminder, SWIFTSTM principle consists in a waveguide in which a stationary wave is created, sampled and read out by a linear image sensor array. Due to its inherent properties (non-uniform subsampling) and aliasing signal (as presented in Shannon-Nyquist criterion), the system offers short spectral window bandwidths thus needs an a priori on the working wavelength and thermal monitoring. Although SWIFTSTM-based devices are barely sensitive to atmospheric pressure, temperature control is a key factor to master both high accuracy and wavelength meter resolution. Temperature control went from passive (temperature probing only) to active control (Peltier thermoelectric cooler) with milli-degree accuracy. The software part consists in dropping the Fourier-like transform, for a least-squares method directly on the interference pattern. Moreover, the consideration of the system's chromatic behavior provides a "signature" for automated wavelength detection and discrimination. This SWIFTSTM-based new device - LW-10 - shows outstanding results in terms of absolute accuracy, wavelength meter resolution as well as calibration robustness within a compact device, compared to other existing technologies. On the 630 - 1100 nm range, the final device configuration allows pulsed or CW lasers monitoring with 20 MHz resolution and 200 MHz absolute accuracy. Non-exhaustive applications include tunable laser control and frequency locking experiments

  1. High Resolution PET Imaging Probe for the Detection, Molecular Characterization, and Treatment Monitoring of Prostate cancer

    DTIC Science & Technology

    2011-07-01

    impact on overall probe performance, including spatial resolution, energy resolution and timing resolution. We will show that 1 mm3 voxels will...ring, description of a strategy to remove scattered events, followed by characterization of impact of timing properties of the probe. In summary, the...described by the total distance d¼d1+d2 and a¼ d1=ðd1þd2Þ. We also want to account for impact angles, y1 and y2, defined versus line perpendicular to

  2. ASTER measurement of supraglacial lakes in the Mount Everest region of the Himalaya

    USGS Publications Warehouse

    Wessels, R.L.; Kargel, J.S.; Kieffer, H.H.

    2002-01-01

    We demonstrate an application of Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER) images to detect and monitor supraglacial lakes on glaciers in the Mount Everest region in Tibet (Xizang) and Nepal. ASTER offers powerful capabilities to monitor supraglacial lakes in terms of (1) surface area, growth and disappearance (spatial resolution = 15 m), (2) turbidity (15 m resolution), and (3) temperature (90 m resolution). Preliminary results show an overall similarity of supraglacial lakes on three glaciers. Lakes have widely varying turbidity as indicated by color in visible/near-infrared bands 1-3, the largest lakes being bright blue (highly turbid), cold (near 0??C) and hydrautically connected with other lakes and supraglacial streams, while small lakes are mostly dark blue (relatively clear water), warmer (>4??C), and appear hydrautically isolated. High levels of turbidity in supraglacial lakes indicate high rates of meltwater input from streams or erosion of ice cliffs, and thus are an indirect measure relating to the activity and hydraulic integration of the lake with respect to other lakes and streams in the glacier.

  3. Geoscientific process monitoring with positron emission tomography (GeoPET)

    NASA Astrophysics Data System (ADS)

    Kulenkampff, Johannes; Gründig, Marion; Zakhnini, Abdelhamid; Lippmann-Pipke, Johanna

    2016-08-01

    Transport processes in geomaterials can be observed with input-output experiments, which yield no direct information on the impact of heterogeneities, or they can be assessed by model simulations based on structural imaging using µ-CT. Positron emission tomography (PET) provides an alternative experimental observation method which directly and quantitatively yields the spatio-temporal distribution of tracer concentration. Process observation with PET benefits from its extremely high sensitivity together with a resolution that is acceptable in relation to standard drill core sizes. We strongly recommend applying high-resolution PET scanners in order to achieve a resolution on the order of 1 mm. We discuss the particularities of PET applications in geoscientific experiments (GeoPET), which essentially are due to high material density. Although PET is rather insensitive to matrix effects, mass attenuation and Compton scattering have to be corrected thoroughly in order to derive quantitative values. Examples of process monitoring of advection and diffusion processes with GeoPET illustrate the procedure and the experimental conditions, as well as the benefits and limits of the method.

  4. Monitoring the expanding distribution of non-indigenous dwarf eelgrass Zostera japonica in a Pacific Northwest USA estuary using high-resolution digital aerialphotomaps

    EPA Science Inventory

    The proliferation of non-indigenous species is a world-wide issue. Environmental managers need improved methods of detecting and monitoring the distribution of such invaders over large areas. In recent decades, numerous estuaries of the Pacific Northwest USA have experienced th...

  5. Mapping land cover change over continental Africa using Landsat and Google Earth Engine cloud computing.

    PubMed

    Midekisa, Alemayehu; Holl, Felix; Savory, David J; Andrade-Pacheco, Ricardo; Gething, Peter W; Bennett, Adam; Sturrock, Hugh J W

    2017-01-01

    Quantifying and monitoring the spatial and temporal dynamics of the global land cover is critical for better understanding many of the Earth's land surface processes. However, the lack of regularly updated, continental-scale, and high spatial resolution (30 m) land cover data limit our ability to better understand the spatial extent and the temporal dynamics of land surface changes. Despite the free availability of high spatial resolution Landsat satellite data, continental-scale land cover mapping using high resolution Landsat satellite data was not feasible until now due to the need for high-performance computing to store, process, and analyze this large volume of high resolution satellite data. In this study, we present an approach to quantify continental land cover and impervious surface changes over a long period of time (15 years) using high resolution Landsat satellite observations and Google Earth Engine cloud computing platform. The approach applied here to overcome the computational challenges of handling big earth observation data by using cloud computing can help scientists and practitioners who lack high-performance computational resources.

  6. Mapping land cover change over continental Africa using Landsat and Google Earth Engine cloud computing

    PubMed Central

    Holl, Felix; Savory, David J.; Andrade-Pacheco, Ricardo; Gething, Peter W.; Bennett, Adam; Sturrock, Hugh J. W.

    2017-01-01

    Quantifying and monitoring the spatial and temporal dynamics of the global land cover is critical for better understanding many of the Earth’s land surface processes. However, the lack of regularly updated, continental-scale, and high spatial resolution (30 m) land cover data limit our ability to better understand the spatial extent and the temporal dynamics of land surface changes. Despite the free availability of high spatial resolution Landsat satellite data, continental-scale land cover mapping using high resolution Landsat satellite data was not feasible until now due to the need for high-performance computing to store, process, and analyze this large volume of high resolution satellite data. In this study, we present an approach to quantify continental land cover and impervious surface changes over a long period of time (15 years) using high resolution Landsat satellite observations and Google Earth Engine cloud computing platform. The approach applied here to overcome the computational challenges of handling big earth observation data by using cloud computing can help scientists and practitioners who lack high-performance computational resources. PMID:28953943

  7. A beam monitor based on MPGD detectors for hadron therapy

    NASA Astrophysics Data System (ADS)

    Altieri, P. R.; Di Benedetto, D.; Galetta, G.; Intonti, R. A.; Mercadante, A.; Nuzzo, S.; Verwilligen, P.

    2018-02-01

    Remarkable scientific and technological progress during the last years has led to the construction of accelerator based facilities dedicated to hadron therapy. This kind of technology requires precise and continuous control of position, intensity and shape of the ions or protons used to irradiate cancers. Patient safety, accelerator operation and dose delivery should be optimized by a real time monitoring of beam intensity and profile during the treatment, by using non-destructive, high spatial resolution detectors. In the framework of AMIDERHA (AMIDERHA - Enhanced Radiotherapy with HAdron) project funded by the Ministero dell'Istruzione, dell'Università e della Ricerca (Italian Ministry of Education and Research) the authors are studying and developing an innovative beam monitor based on Micro Pattern Gaseous Detectors (MPDGs) characterized by a high spatial resolution and rate capability. The Monte Carlo simulation of the beam monitor prototype was carried out to optimize the geometrical set up and to predict the behavior of the detector. A first prototype has been constructed and successfully tested using 55Fe, 90Sr and also an X-ray tube. Preliminary results on both simulations and tests will be presented.

  8. Development of a spatio-temporal disaggregation method (DisNDVI) for generating a time series of fine resolution NDVI images

    NASA Astrophysics Data System (ADS)

    Bindhu, V. M.; Narasimhan, B.

    2015-03-01

    Normalized Difference Vegetation Index (NDVI), a key parameter in understanding the vegetation dynamics, has high spatial and temporal variability. However, continuous monitoring of NDVI is not feasible at fine spatial resolution (<60 m) owing to the long revisit time needed by the satellites to acquire the fine spatial resolution data. Further, the study attains significance in the case of humid tropical regions of the earth, where the prevailing atmospheric conditions restrict availability of fine resolution cloud free images at a high temporal frequency. As an alternative to the lack of high resolution images, the current study demonstrates a novel disaggregation method (DisNDVI) which integrates the spatial information from a single fine resolution image and temporal information in terms of crop phenology from time series of coarse resolution images to generate estimates of NDVI at fine spatial and temporal resolution. The phenological variation of the pixels captured at the coarser scale provides the basis for relating the temporal variability of the pixel with the NDVI available at fine resolution. The proposed methodology was tested over a 30 km × 25 km spatially heterogeneous study area located in the south of Tamil Nadu, India. The robustness of the algorithm was assessed by an independent comparison of the disaggregated NDVI and observed NDVI obtained from concurrent Landsat ETM+ imagery. The results showed good spatial agreement across the study area dominated with agriculture and forest pixels, with a root mean square error of 0.05. The validation done at the coarser scale showed that disaggregated NDVI spatially averaged to 240 m compared well with concurrent MODIS NDVI at 240 m (R2 > 0.8). The validation results demonstrate the effectiveness of DisNDVI in improving the spatial and temporal resolution of NDVI images for utility in fine scale hydrological applications such as crop growth monitoring and estimation of evapotranspiration.

  9. Potential of Sentinel Satellites for Schistosomiasis Monitoring

    NASA Astrophysics Data System (ADS)

    Li, C.-R.; Tang, L.-L.; Niu, H.-B.; Zhou, X.-N.; Liu, Z.-Y.; Ma, L.-L.; Zhou, Y.-S.

    2012-04-01

    Schistosomiasis is a parasitic disease that menaces human health. In terms of impact this disease is second only to malaria as the most devastating parasitic disease. Oncomelania hupensis is the unique intermediate host of Schistosoma, and hence monitoring and controlling of the number of oncomelania is key to reduce the risk of schistosomiasis transmission. Remote sensing technology can real-timely access the large-scale environmental factors related to oncomelania breeding and reproduction, such as temperature, moisture, vegetation, soil, and rainfall, and can also provide the efficient information to determine the location, area, and spread tendency of oncomelania. Many studies show that the correlation coefficient between oncomelania densities and remote sensing environmental factors depends largely on suitable and high quality remote sensing data used in retrieve environmental factors. Research achievements on retrieving environmental factors (which are related to the living, multiplying and transmission of oncomelania) by multi-source remote data are shown firstly, including: (a) Vegetation information (e.g., Modified Soil-Adjusted Vegetation Index, Normalized Difference Moisture Index, Fractional Vegetation Cover) extracted from optical remote sensing data, such as Landsat TM, HJ-1A/HSI image; (b) Surface temperature retrieval from Thermal Infrared (TIR) and passive-microwave remote sensing data; (c) Water region, soil moisture, forest height retrieval from synthetic aperture radar data, such as Envisat SAR, DLR's ESAR image. Base on which, the requirements of environmental factor accuracy for schistosomiasis monitoring will be analyzed and summarized. Our work on applying remote sensing technique to schistosomiasis monitoring is then presented. The fuzzy information theory is employed to analyze the sensitivity and feasibility relation between oncomelania densities and environmental factors. Then a mechanism model of predicting oncomelania distribution and densities is developed. The new model is validated with field data of Dongting Lake and the dynamic monitoring of schistosomiasis breeding in Dongting Lake region is presented. Finally, emphasis are placed on analyzing the potential of Sentinel satellites for schistosomiasis monitoring. The requirements of optical high resolution data on spectral resolution, spatial resolution, radiometric resolution/accuracy, as well as the requirements of synthetic aperture radar data on operation frequency, spatial resolution, polarization, radiometric accuracy, repeat cycle are presented and then compared with the parameters of Sentinel satellites. The parameters of Sentinel satellites are also compared with those of available remote satellites, such as Envisat, Landsat, whose data are being used for schistosomiasis monitoring. The application potential of Sentinel satellites for the schistosomiasis monitoring will be concluded in the end, which will benefit for the mission operation, model development, etc.

  10. Assessing very high resolution UAV imagery for monitoring forest health during a simulated disease outbreak

    NASA Astrophysics Data System (ADS)

    Dash, Jonathan P.; Watt, Michael S.; Pearse, Grant D.; Heaphy, Marie; Dungey, Heidi S.

    2017-09-01

    Research into remote sensing tools for monitoring physiological stress caused by biotic and abiotic factors is critical for maintaining healthy and highly-productive plantation forests. Significant research has focussed on assessing forest health using remotely sensed data from satellites and manned aircraft. Unmanned aerial vehicles (UAVs) may provide new tools for improved forest health monitoring by providing data with very high temporal and spatial resolutions. These platforms also pose unique challenges and methods for health assessments must be validated before use. In this research, we simulated a disease outbreak in mature Pinus radiata D. Don trees using targeted application of herbicide. The objective was to acquire a time-series simulated disease expression dataset to develop methods for monitoring physiological stress from a UAV platform. Time-series multi-spectral imagery was acquired using a UAV flown over a trial at regular intervals. Traditional field-based health assessments of crown health (density) and needle health (discolouration) were carried out simultaneously by experienced forest health experts. Our results showed that multi-spectral imagery collected from a UAV is useful for identifying physiological stress in mature plantation trees even during the early stages of tree stress. We found that physiological stress could be detected earliest in data from the red edge and near infra-red bands. In contrast to previous findings, red edge data did not offer earlier detection of physiological stress than the near infra-red data. A non-parametric approach was used to model physiological stress based on spectral indices and was found to provide good classification accuracy (weighted kappa = 0.694). This model can be used to map physiological stress based on high-resolution multi-spectral data.

  11. Unmanned aerial monitoring of fluvial changes in the vicinity of selected gauges of the Local System for Flood Monitoring in Klodzko County, SW Poland

    NASA Astrophysics Data System (ADS)

    Jeziorska, Justyna; Witek, Matylda; Niedzielski, Tomasz

    2013-04-01

    Only high resolution spatial data enable precise measurements of various morphometric characteristics of river channels and ensure meaningful effects of research into fluvial changes. Using ground-based measurement tools is time-consuming and expensive. Traditional photogrammetry often does not reach a desired resolution, and the technology is cost effective only for the large-area coverage. The present research introduces potentials of UAV (Unmanned Aerial Vehicle) for monitoring fluvial changes. Observations were carried out with the ultralight UAV swinglet CAM produced by senseFly. This lightweight (0,5 kg), small (wingspan: 80 cm) aircraft allowed frequent (with approximately monthly sampling resolution) and low-cost missions. Three hydrologic gauges, the surroundings of which were the target of series of photos taken by camera placed in airplane frame, belong to the Local System for Flood Monitoring in Kłodzko County (SW Poland). The only way of obtaining reliable results is an appropriate image rectification, in order to measure morphometric characteristics of terrain, free of geometrical deformations induced by the topographical relief, the tilt of the camera axis and the distortion of the optics. Commercially available software for the production of digital orthophotos and digital surface models (DSMs) from a range of uncalibrated oblique and vertical aerial images was successfully used to achieve this aim. As a result of completing the above procedure 9 orthophotos were generated (one for each of 3 study areas during 3 missions). For extraction of terrain parameters, a DSM was produced as a result of bundle block adjustment. Both products reached ultra-high resolution of 4cm/px. Various fluvial forms were classified and recognized, and a few time series of maps from each study area were compared in order to detect potential changes within the fluvial system. We inferred on the origins of the short-term responses of fluvial systems, and such an inference was feasible due to the analysis of metrological and hydrological data recorded by the Local System for Flood Monitoring in Kłodzko County. Orthophotos and DSMs, generated from imagery obtained by UAV, show high accuracy of results and are suitable for measuring fluvial changes. This approach moves beyond current restrictions of traditional data collecting, due to its unprecedented spatial and temporal resolution and low cost of application.

  12. A new concept of efficient therapeutic drug monitoring using the high-resolution continuum source absorption spectrometry and the surface enhanced Raman spectroscopy

    NASA Astrophysics Data System (ADS)

    Xing, Yanlong; Fuss, Harald; Lademann, Jürgen; Huang, Mao Dong; Becker-Ross, Helmut; Florek, Stefan; Patzelt, Alexa; Meinke, Martina C.; Jung, Sora; Esser, Norbert

    2018-04-01

    In this study, a new therapeutic drug monitoring approach has been tested based on the combination of CaF molecular absorption using high-resolution continuum source absorption spectrometry (HR-CSAS) and surface enhanced Raman spectroscopy (SERS). HR-CSAS with mini graphite tube was successfully tested for clinical therapeutic drug monitoring of the fluorine-containing drug capecitabine in sweat samples of cancer patients: It showed advantageous features of high selectivity (no interference from Cl), high sensitivity (characteristic mass of 0.1 ng at CaF 583.069 nm), low sample consumption (down to 30 nL) and fast measurement (no sample pretreatment and less than 1 min of responding time) in tracing the fluorine signal out of capecitabine. However, this technique has the disadvantage of the total loss of the drug's structure information after burning the sample at very high temperature. Therefore, a new concept of combining HR-CSAS with a non-destructive spectroscopic method (SERS) was proposed for the sensitive sensing and specific identification of capecitabine. We tested and succeed in obtaining the molecular characteristics of the metabolite of capecitabine (named 5-fluorouracil) by the non-destructive SERS technique. With the results shown in this work, it is demonstrated that the combined spectroscopic technique of HR-CSAS and SERS will be very useful in efficient therapeutic drug monitoring in the future.

  13. OH absorption spectroscopy in a flame using spatial heterodyne spectroscopy

    NASA Astrophysics Data System (ADS)

    Bartula, Renata J.; Ghandhi, Jaal B.; Sanders, Scott T.; Mierkiewicz, Edwin J.; Roesler, Fred L.; Harlander, John M.

    2007-12-01

    We demonstrate measurements of OH absorption spectra in the post-flame zone of a McKenna burner using spatial heterodyne spectroscopy (SHS). SHS permits high-resolution, high-throughput measurements. In this case the spectra span ~308-310 nm with a resolution of 0.03 nm, even though an extended source (extent of ~2×10-7 m2 rad2) was used. The high spectral resolution is important for interpreting spectra when multiple absorbers are present for inferring accurate gas temperatures from measured spectra and for monitoring weak absorbers. The present measurement paves the way for absorption spectroscopy by SHS in practical combustion devices, such as reciprocating and gas-turbine engines.

  14. Linac coherent light source (LCLS) undulator RF BPM system.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lill, R.; Waldschmidt, G.; Morrison, L.

    2006-01-01

    The Linac Coherent Light Source (LCLS) will be the world's first x-ray free-electron laser (FEL) when it becomes operational in 2009. The LCLS is currently in the construction phase. The beam position monitor (BPM) system planned for the LCLS undulator will incorporate a high-resolution X-band cavity BPM system described in this paper. The BPM system will provide high-resolution measurements of the electron beam trajectory on a pulse-to-pulse basis and over many shots. The X-band cavity BPM size, simple fabrication, and high resolution make it an ideal choice for LCLS beam position detection. We will discuss the system specifications, design, andmore » prototype test results.« less

  15. Linac Coherent Light Source Undulator RF BPM System

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lill, R.M.; Morrison, L.H.; Waldschmidt, G.J.

    2007-04-17

    The Linac Coherent Light Source (LCLS) will be the world's first x-ray free-electron laser (FEL) when it becomes operational in 2009. The LCLS is currently in the construction phase. The beam position monitor (BPM) system planned for the LCLS undulator will incorporate a high-resolution X-band cavity BPM system described in this paper. The BPM system will provide high-resolution measurements of the electron beam trajectory on a pulse-to-pulse basis and over many shots. The X-band cavity BPM size, simple fabrication, and high resolution make it an ideal choice for LCLS beam position detection. We will discuss the system specifications, design, andmore » prototype test results.« less

  16. Measurement Sets and Sites Commonly Used for High Spatial Resolution Image Product Characterization

    NASA Technical Reports Server (NTRS)

    Pagnutti, Mary

    2006-01-01

    Scientists within NASA's Applied Sciences Directorate have developed a well-characterized remote sensing Verification & Validation (V&V) site at the John C. Stennis Space Center (SSC). This site has enabled the in-flight characterization of satellite high spatial resolution remote sensing system products form Space Imaging IKONOS, Digital Globe QuickBird, and ORBIMAGE OrbView, as well as advanced multispectral airborne digital camera products. SSC utilizes engineered geodetic targets, edge targets, radiometric tarps, atmospheric monitoring equipment and their Instrument Validation Laboratory to characterize high spatial resolution remote sensing data products. This presentation describes the SSC characterization capabilities and techniques in the visible through near infrared spectrum and examples of calibration results.

  17. A Hybrid-Cloud Science Data System Enabling Advanced Rapid Imaging & Analysis for Monitoring Hazards

    NASA Astrophysics Data System (ADS)

    Hua, H.; Owen, S. E.; Yun, S.; Lundgren, P.; Moore, A. W.; Fielding, E. J.; Radulescu, C.; Sacco, G.; Stough, T. M.; Mattmann, C. A.; Cervelli, P. F.; Poland, M. P.; Cruz, J.

    2012-12-01

    Volcanic eruptions, landslides, and levee failures are some examples of hazards that can be more accurately forecasted with sufficient monitoring of precursory ground deformation, such as the high-resolution measurements from GPS and InSAR. In addition, coherence and reflectivity change maps can be used to detect surface change due to lava flows, mudslides, tornadoes, floods, and other natural and man-made disasters. However, it is difficult for many volcano observatories and other monitoring agencies to process GPS and InSAR products in an automated scenario needed for continual monitoring of events. Additionally, numerous interoperability barriers exist in multi-sensor observation data access, preparation, and fusion to create actionable products. Combining high spatial resolution InSAR products with high temporal resolution GPS products--and automating this data preparation & processing across global-scale areas of interests--present an untapped science and monitoring opportunity. The global coverage offered by satellite-based SAR observations, and the rapidly expanding GPS networks, can provide orders of magnitude more data on these hazardous events if we have a data system that can efficiently and effectively analyze the voluminous raw data, and provide users the tools to access data from their regions of interest. Currently, combined GPS & InSAR time series are primarily generated for specific research applications, and are not implemented to run on large-scale continuous data sets and delivered to decision-making communities. We are developing an advanced service-oriented architecture for hazard monitoring leveraging NASA-funded algorithms and data management to enable both science and decision-making communities to monitor areas of interests via seamless data preparation, processing, and distribution. Our objectives: * Enable high-volume and low-latency automatic generation of NASA Solid Earth science data products (InSAR and GPS) to support hazards monitoring. * Facilitate NASA-USGS collaborations to share NASA InSAR and GPS data products, which are difficult to process in high-volume and low-latency, for decision-support. * Enable interoperable discovery, access, and sharing of NASA observations and derived actionable products, and between the observation and decision-making communities. * Enable their improved understanding through visualization, mining, and cross-agency sharing. Existing InSAR & GPS processing packages and other software are integrated for generating geodetic decision support monitoring products. We employ semantic and cloud-based data management and processing techniques for handling large data volumes, reducing end product latency, codifying data system information with semantics, and deploying interoperable services for actionable products to decision-making communities.

  18. High resolution strain sensor for earthquake precursor observation and earthquake monitoring

    NASA Astrophysics Data System (ADS)

    Zhang, Wentao; Huang, Wenzhu; Li, Li; Liu, Wenyi; Li, Fang

    2016-05-01

    We propose a high-resolution static-strain sensor based on a FBG Fabry-Perot interferometer (FBG-FP) and a wavelet domain cross-correlation algorithm. This sensor is used for crust deformation measurement, which plays an important role in earthquake precursor observation. The Pound-Drever-Hall (PDH) technique based on a narrow-linewidth tunable fiber laser is used to interrogate the FBG-FPs. A demodulation algorithm based on wavelet domain cross-correlation is used to calculate the wavelength difference. The FBG-FP sensor head is fixed on the two steel alloy rods which are installed in the bedrock. The reference FBG-FP is placed in a strain-free state closely to compensate the environment temperature fluctuation. A static-strain resolution of 1.6 n(epsilon) can be achieved. As a result, clear solid tide signals and seismic signals can be recorded, which suggests that the proposed strain sensor can be applied to earthquake precursor observation and earthquake monitoring.

  19. Monitoring tumor growth and treatment in small animals with magnetic resonance and optical tomographic imaging

    NASA Astrophysics Data System (ADS)

    Masciotti, J.; Provenzano, F.; Papa, J.; Klose, A.; Hur, J.; Gu, X.; Yamashiro, D.; Kandel, J.; Hielscher, A. H.

    2006-02-01

    Small animal models are employed to simulate disease in humans and to study its progression, what factors are important to the disease process, and to study the disease treatment. Biomedical imaging modalities such as magnetic resonance imaging (MRI) and Optical Tomography make it possible to non-invasively monitor the progression of diseases in living small animals and study the efficacy of drugs and treatment protocols. MRI is an established imaging modality capable of obtaining high resolution anatomical images and along with contrast agents allow the studying of blood volume. Optical tomography, on the other hand, is an emerging imaging modality, which, while much lower in spatial resolution, can separate the effects of oxyhemoglobin, deoxyhemoglobin, and blood volume with high temporal resolution. In this study we apply these modalities to imaging the growth of kidney tumors and then there treatment by an anti-VEGF agent. We illustrate how these imaging modalities have their individual uses, but can still supplement each other and cross validation can be performed.

  20. In-vivo monitoring of development of cholangiocarcinoma induced with C. sinensis and N-nitrosodimethylamine in Syrian golen hamsters using ultrasonography and magnetic resonance imaging: a preliminary study.

    PubMed

    Woo, Hyunsik; Han, Joon Koo; Kim, Jung Hoon; Hong, Sung-Tae; Uddin, Md Hafiz; Jang, Ja-June

    2017-04-01

    The purpose of this study is to evaluate high-resolution ultrasound and magnetic resonance imaging (MRI) in monitoring of cholangiocarcinoma in the hamsters with C. sinensis infection and N-nitrosodimethylamine (NDMA). Twenty-four male Syrian golden hamsters of were divided into four groups composed of five hamsters as control, five hamsters receiving 30 metacercariae of C. sinensis per each hamster, five hamsters receiving NDMA in drinking water, and nine hamsters receiving both metacercariae and NDMA. Ultrasound was performed every other week from baseline to the 12th week of infection. MRI and histopathologic examination was done from the 4th week to 12th week. Cholangiocarcinomas appeared as early as the 6th week of infection. There were 12 cholangiocarcinomas, nine and ten of which were demonstrated by ultrasound and MRI, respectively. Ultrasound and MRI findings of cholangiocarcinomas in the hamsters were similar to those of the mass-forming intrahepatic cholangiocarcinomas in humans. Ultrasound and MRI also showed other findings of disease progression such as periductal increased echogenicity or signal intensity, ductal dilatation, complicated cysts, and sludges in the gallbladder. High-resolution ultrasound and MRI can monitor and detect the occurrence of cholangiocarcinoma in the hamsters non-invasively. • High-resolution ultrasound and MRI can monitor occurrence of cholangiocarcinoma in the hamsters. • Cholangiocarcinomas were detected as early as the 6th week after C. sinensis infection. • Axial T2-weighted MRI demonstrated cholangiocarcinomas and various inflammatory findings in the hamsters.

  1. The influence of model grid resolution on estimation of national scale nitrogen deposition and exceedance of critical levels

    NASA Astrophysics Data System (ADS)

    Dore, A. J.; Kryza, M.; Hall, J. R.; Hallsworth, S.; Keller, V. J. D.; Vieno, M.; Sutton, M. A.

    2011-12-01

    The Fine Resolution Atmospheric Multi-pollutant Exchange model (FRAME) has been applied to model the spatial distribution of nitrogen deposition and air concentration over the UK at a 1 km spatial resolution. The modelled deposition and concentration data were gridded at resolutions of 1 km, 5 km and 50 km to test the sensitivity of calculations of the exceedance of critical loads for nitrogen deposition to the deposition data resolution. The modelled concentrations of NO2 were validated by comparison with measurements from the rural sites in the national monitoring network and were found to achieve better agreement with the high resolution 1 km data. High resolution plots were found to represent a more physically realistic distribution of nitrogen air concentrations and deposition resulting from use of 1 km resolution precipitation and emissions data as compared to 5 km resolution data. Summary statistics for national scale exceedance of the critical load for nitrogen deposition were not highly sensitive to the grid resolution of the deposition data but did show greater area exceedance with coarser grid resolution due to spatial averaging of high nitrogen deposition hot spots. Local scale deposition at individual Sites of Special Scientific Interest and high precipitation upland sites was sensitive to choice of grid resolution of deposition data. Use of high resolution data tended to generate lower deposition values in sink areas for nitrogen dry deposition (Sites of Scientific Interest) and higher values in high precipitation upland areas. In areas with generally low exceedance (Scotland) and for certain vegetation types (montane), the exceedance statistics were more sensitive to model data resolution.

  2. The influence of model grid resolution on estimation of national scale nitrogen deposition and exceedance of critical loads

    NASA Astrophysics Data System (ADS)

    Dore, A. J.; Kryza, M.; Hall, J. R.; Hallsworth, S.; Keller, V. J. D.; Vieno, M.; Sutton, M. A.

    2012-05-01

    The Fine Resolution Atmospheric Multi-pollutant Exchange model (FRAME) was applied to model the spatial distribution of reactive nitrogen deposition and air concentration over the United Kingdom at a 1 km spatial resolution. The modelled deposition and concentration data were gridded at resolutions of 1 km, 5 km and 50 km to test the sensitivity of calculations of the exceedance of critical loads for nitrogen deposition to the deposition data resolution. The modelled concentrations of NO2 were validated by comparison with measurements from the rural sites in the national monitoring network and were found to achieve better agreement with the high resolution 1 km data. High resolution plots were found to represent a more physically realistic distribution of reactive nitrogen air concentrations and deposition resulting from use of 1 km resolution precipitation and emissions data as compared to 5 km resolution data. Summary statistics for national scale exceedance of the critical load for nitrogen deposition were not highly sensitive to the grid resolution of the deposition data but did show greater area exceedance with coarser grid resolution due to spatial averaging of high nitrogen deposition hot spots. Local scale deposition at individual Sites of Special Scientific Interest and high precipitation upland sites was sensitive to choice of grid resolution of deposition data. Use of high resolution data tended to generate lower deposition values in sink areas for nitrogen dry deposition (Sites of Scientific Interest) and higher values in high precipitation upland areas. In areas with generally low exceedance (Scotland) and for certain vegetation types (montane), the exceedance statistics were more sensitive to model data resolution.

  3. A climatology of visible surface reflectance spectra

    NASA Astrophysics Data System (ADS)

    Zoogman, Peter; Liu, Xiong; Chance, Kelly; Sun, Qingsong; Schaaf, Crystal; Mahr, Tobias; Wagner, Thomas

    2016-09-01

    We present a high spectral resolution climatology of visible surface reflectance as a function of wavelength for use in satellite measurements of ozone and other atmospheric species. The Tropospheric Emissions: Monitoring of Pollution (TEMPO) instrument is planned to measure backscattered solar radiation in the 290-740 nm range, including the ultraviolet and visible Chappuis ozone bands. Observation in the weak Chappuis band takes advantage of the relative transparency of the atmosphere in the visible to achieve sensitivity to near-surface ozone. However, due to the weakness of the ozone absorption features this measurement is more sensitive to errors in visible surface reflectance, which is highly variable. We utilize reflectance measurements of individual plant, man-made, and other surface types to calculate the primary modes of variability of visible surface reflectance at a high spectral resolution, comparable to that of TEMPO (0.6 nm). Using the Moderate-resolution Imaging Spectroradiometer (MODIS) Bidirection Reflectance Distribution Function (BRDF)/albedo product and our derived primary modes we construct a high spatial resolution climatology of wavelength-dependent surface reflectance over all viewing scenes and geometries. The Global Ozone Monitoring Experiment-2 (GOME-2) Lambertian Equivalent Reflectance (LER) product provides complementary information over water and snow scenes. Preliminary results using this approach in multispectral ultraviolet+visible ozone retrievals from the GOME-2 instrument show significant improvement to the fitting residuals over vegetated scenes.

  4. Exploring the Potential of PROBA-V for Evapotranspiration Monitoring in Wetlands

    NASA Astrophysics Data System (ADS)

    Barrios, Jose Miguel; Ghilain, Nicolas; Arboleda, Alirio; Gellens-Meulenberghs, Francoise

    2016-08-01

    This study aims at deriving daily evapotranspiration (ET) estimates at a convenient spatial resolution for ecosystem monitoring. The methodological approach was based on the computation of the energy balance over the study sites. The study explored the potential of integrating remote sensing (RS) products derived from the Meteosat Second Generation (MSG) satellite -in virtue of their high temporal resolution- and Proba-V data, supplying moderate spatial resolution data. This strategy was tested for the year 2014 on three wetlands sites located in Europe where eddy covariance measurements were available for validation. The modelled results correlated well with the validation data and showed the added value of combining the strengths of different satellite missions. The results open interesting perspectives for refining this approach with the upcoming Sentinel-3 datasets.

  5. Dual-comb spectroscopy of laser-induced plasmas

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bergevin, Jenna; Wu, Tsung-Han; Yeak, Jeremy

    Dual-comb spectroscopy has become a powerful spectroscopic technique in applications that rely on its broad spectral coverage combined with high frequency resolution capabilities. Experiments to date have primarily focused on detection and analysis of multiple gas species under semi-static conditions, with applications ranging from environmental monitoring of greenhouse gases to high resolution molecular spectroscopy. Here, we utilize dual-comb spectroscopy to demonstrate broadband, high-resolution, and time-resolved measurements in a laser induced plasma for the first time. As a first demonstration, we simultaneously detect trace amounts of Rb and K in solid samples with a single laser ablation shot, with transitions separatedmore » by over 6 THz (13 nm) and spectral resolution sufficient to resolve isotopic and ground state hyperfine splittings of the Rb D2 line. This new spectroscopic approach offers the broad spectral coverage found in the powerful techniques of laser-induced breakdown spectroscopy (LIBS) while providing the high-resolution and accuracy of cw laser-based spectroscopies.« less

  6. UAS close range remote sensing for mapping coastal environments

    NASA Astrophysics Data System (ADS)

    Papakonstantinou, Apostolos; Topouzelis, Kostantinos; Doukari, Michaela

    2017-09-01

    Coastline change and marine litter concentration in shoreline zones are two different emerging problems indicating the vulnerability as well as the quality of a coastal environment. Both problems present spatiotemporal changes due to weather and anthropogenic factors. Traditionally spatiotemporal changes in coastal environments are monitored using high-resolution satellite images and manned surveys. The last years, Unmanned Aerial Systems (UAS) are used as additional tool for monitoring environmental phenomena in sensitive coastal areas. In this study, two different case studies for mapping emerging coastal phenomena i.e. coastline changes and marine litter in Lesvos island, are presented. Both phenomena have increasing interest among scientists monitoring sensitive coastal areas. This paper outlines the integration of UAS for data acquisition and Structure from Motion (SfM) pipeline for the visualization of selected coastal areas in the Aegean Sea. The followed UAS-SfM methodology produces very detailed orthophoto maps. This high resolution spatial information is used for mapping and detecting primarily, marine litter on coastal and underwater zones and secondly, coastline changes and coastal erosion. More specific the produced orthophoto maps analyzed through GIS and with the use of the appropriate cartographic techniques the objective environmental parameters were mapped. Results showed that UAS-SfM pipeline produces geoinformation with high accuracy and spatial resolution that helps scientists to map with confidence environmental changes that take place in shoreline zones.

  7. Ultra-long high-sensitivity Φ-OTDR for high spatial resolution intrusion detection of pipelines.

    PubMed

    Peng, Fei; Wu, Han; Jia, Xin-Hong; Rao, Yun-Jiang; Wang, Zi-Nan; Peng, Zheng-Pu

    2014-06-02

    An ultra-long phase-sensitive optical time domain reflectometry (Φ-OTDR) that can achieve high-sensitivity intrusion detection over 131.5km fiber with high spatial resolution of 8m is presented, which is the longest Φ-OTDR reported to date, to the best of our knowledge. It is found that the combination of distributed Raman amplification with heterodyne detection can extend the sensing distance and enhances the sensitivity substantially, leading to the realization of ultra-long Φ-OTDR with high sensitivity and spatial resolution. Furthermore, the feasibility of applying such an ultra-long Φ-OTDR to pipeline security monitoring is demonstrated and the features of intrusion signal can be extracted with improved SNR by using the wavelet detrending/denoising method proposed.

  8. Pattern centric design based sensitive patterns and process monitor in manufacturing

    NASA Astrophysics Data System (ADS)

    Hsiang, Chingyun; Cheng, Guojie; Wu, Kechih

    2017-03-01

    When design rule is mitigating to smaller dimension, process variation requirement is tighter than ever and challenges the limits of device yield. Masks, lithography, etching and other processes have to meet very tight specifications in order to keep defect and CD within the margins of the process window. Conventionally, Inspection and metrology equipments are utilized to monitor and control wafer quality in-line. In high throughput optical inspection, nuisance and review-classification become a tedious labor intensive job in manufacturing. Certain high-resolution SEM images are taken to validate defects after optical inspection. These high resolution SEM images catch not only optical inspection highlighted point, also its surrounding patterns. However, this pattern information is not well utilized in conventional quality control method. Using this complementary design based pattern monitor not only monitors and analyzes the variation of patterns sensitivity but also reduce nuisance and highlight defective patterns or killer defects. After grouping in either single or multiple layers, systematic defects can be identified quickly in this flow. In this paper, we applied design based pattern monitor in different layers to monitor process variation impacts on all kinds of patterns. First, the contour of high resolutions SEM image is extracted and aligned to design with offset adjustment and fine alignment [1]. Second, specified pattern rules can be applied on design clip area, the same size as SEM image, and form POI (pattern of interest) areas. Third, the discrepancy of contour and design measurement at different pattern types in measurement blocks. Fourth, defective patterns are reported by discrepancy detection criteria and pattern grouping [4]. Meanwhile, reported pattern defects are ranked by number and severity by discrepancy. In this step, process sensitive high repeatable systematic defects can be identified quickly Through this design based process pattern monitor method, most of optical inspection nuisances can be filtered out at contour to design discrepancy measurement. Daily analysis results are stored at database as reference to compare with incoming data. Defective pattern library contains existing and known systematic defect patterns which help to catch and identify new pattern defects or process impacts. On the other hand, this defect pattern library provides extra valuable information for mask, pattern and defects verification, inspection care area generation, further OPC fix and process enhancement and investigation.

  9. Comparison of four machine learning methods for object-oriented change detection in high-resolution satellite imagery

    NASA Astrophysics Data System (ADS)

    Bai, Ting; Sun, Kaimin; Deng, Shiquan; Chen, Yan

    2018-03-01

    High resolution image change detection is one of the key technologies of remote sensing application, which is of great significance for resource survey, environmental monitoring, fine agriculture, military mapping and battlefield environment detection. In this paper, for high-resolution satellite imagery, Random Forest (RF), Support Vector Machine (SVM), Deep belief network (DBN), and Adaboost models were established to verify the possibility of different machine learning applications in change detection. In order to compare detection accuracy of four machine learning Method, we applied these four machine learning methods for two high-resolution images. The results shows that SVM has higher overall accuracy at small samples compared to RF, Adaboost, and DBN for binary and from-to change detection. With the increase in the number of samples, RF has higher overall accuracy compared to Adaboost, SVM and DBN.

  10. Blood flow changes after unilateral carotid artery ligation monitored by optical coherence tomography

    NASA Astrophysics Data System (ADS)

    Ma, Yushu; Liang, Chengbo; Suo, Yanyan; Zhao, Yuqian; Wang, Yi; Xu, Tao; Wang, Ruikang; Ma, Zhenhe

    2016-03-01

    Unilateral carotid artery ligation which could induce adaptive improvement is a classic model that has been widely used to study pathology of ischemic disease. In those studies, blood flow is an important parameter to characterize the ischemia. Optical coherence tomography (OCT) is a powerful imaging modality which can provide depth resolved images in biological tissue with high spatial and temporal resolution. SPF rats was anesthetized with isoflurane and divided into two groups. In first group, bilateral carotid artery was surgically exposed, and then left carotid artery was ligated. Blood flow changes of the contralateral carotid artery was monitored using high speed spectral domain optical coherence tomography, including the absolute flow velocity and the flow volume. In the other group, skull window was opened at the ipsilateral cerebral cortex of ligation and blood supply of small artery was measured before and after the ligation. The measured results demonstrate the blood supply compensation process after unilateral carotid artery ligation. With the superiority of high resolution, OCT is an effective technology in monitoring results of carotid artery after ligation.

  11. High Resolution Live Cell Raman Imaging Using Subcellular Organelle-Targeting SERS-Sensitive Gold Nanoparticles with Highly Narrow Intra-Nanogap

    PubMed Central

    Kang, Jeon Woong; So, Peter T. C.; Dasari, Ramachandra R.; Lim, Dong-Kwon

    2015-01-01

    We report a method to achieve high speed and high resolution live cell Raman images using small spherical gold nanoparticles with highly narrow intra-nanogap structures responding to NIR excitation (785 nm) and high-speed confocal Raman microscopy. The three different Raman-active molecules placed in the narrow intra-nanogap showed a strong and uniform Raman intensity in solution even under transient exposure time (10 ms) and low input power of incident laser (200 μW), which lead to obtain high-resolution single cell image within 30 s without inducing significant cell damage. The high resolution Raman image showed the distributions of gold nanoparticles for their targeted sites such as cytoplasm, mitochondria, or nucleus. The high speed Raman-based live cell imaging allowed us to monitor rapidly changing cell morphologies during cell death induced by the addition of highly toxic KCN solution to cells. These results strongly suggest that the use of SERS-active nanoparticle can greatly improve the current temporal resolution and image quality of Raman-based cell images enough to obtain the detailed cell dynamics and/or the responses of cells to potential drug molecules. PMID:25646716

  12. Remotely-sensed near real-time monitoring of reservoir storage in India

    NASA Astrophysics Data System (ADS)

    Tiwari, A. D.; Mishra, V.

    2017-12-01

    Real-time reservoir storage information at a high temporal resolution is crucial to mitigate the influence of extreme events like floods and droughts. Despite large implications of near real-time reservoir monitoring in India for water resources and irrigation, remotely sensed monitoring systems have been lacking. Here we develop remotely sensed real-time monitoring systems for 91 large reservoirs in India for the period from 2000 to 2017. For the reservoir storage estimation, we combined Moderate Resolution Imaging Spectroradiometer (MODIS) 8-day 250 m Enhanced Vegetation Index (EVI), and Geoscience Laser Altimeter System (GLAS) onboard the Ice, Cloud, and land Elevation Satellite (ICESat) ICESat/GLAS elevation data. Vegetation data with the highest temporal resolution available from the MODIS is at 16 days. To increase the temporal resolution to 8 days, we developed the 8-day composite of near infrared, red, and blue band surface reflectance. Surface reflectance 8-Day L3 Global 250m only have NIR band and Red band, therefore, surface reflectance of 8-Day L3 Global at 500m is used for the blue band, which was regridded to 250m spatial resolution. An area-elevation relationship was derived using area from an unsupervised classification of MODIS image followed by an image enhancement and elevation data from ICESat/GLAS. A trial and error method was used to obtain the area-elevation relationship for those reservoirs for which ICESat/GLAS data is not available. The reservoir storages results were compared with the gauge storage data from 2002 to 2009 (training period), which were then evaluated for the period of 2010 to 2016. Our storage estimates were highly correlated with observations (R2 = 0.6 to 0.96), and the normalized root mean square error (NRMSE) ranged between 10% and 50%. We also developed a relationship between precipitation and reservoir storage that can be used for prediction of storage during the dry season.

  13. High-frequency phosphorus and nitrate measurements for improved statutory water quality monitoring and management

    NASA Astrophysics Data System (ADS)

    Bieroza, Magdalena

    2017-04-01

    High-frequency nutrient (phosphorus and nitrogen) monitoring using wet-chemistry analysers and optical sensors has revolutionised the collection of biogeochemical data from streams, rivers and lakes. Matching the nutrient measurement time with timescales of hydrological responses has revealed biogeochemical patterns and nutrient hydrological responses not observed previously. Capturing a wider range of nutrient concentrations compared to traditional coarse resolution sampling enables more accurate estimation of mean concentrations and loads and thus improved water body classification. However, to date the scientific insights from the high-frequency nutrient monitoring studies have not been translated into policy and operational responses. The pertinent question is where and how often to measure nutrients to satisfy statutory monitoring requirements for the Water Framework Directive and the Nitrates Directive. Therefore this paper discusses how the reduced data uncertainty and improved process understanding obtained with the high-frequency measurements can improve statutory nutrient monitoring, using case studies from England and Sweden.

  14. A Comparison of Mangrove Canopy Height Using Multiple Independent Measurements from Land, Air, and Space.

    PubMed

    Lagomasino, David; Fatoyinbo, Temilola; Lee, SeungKuk; Feliciano, Emanuelle; Trettin, Carl; Simard, Marc

    2016-04-01

    Canopy height is one of the strongest predictors of biomass and carbon in forested ecosystems. Additionally, mangrove ecosystems represent one of the most concentrated carbon reservoirs that are rapidly degrading as a result of deforestation, development, and hydrologic manipulation. Therefore, the accuracy of Canopy Height Models (CHM) over mangrove forest can provide crucial information for monitoring and verification protocols. We compared four CHMs derived from independent remotely sensed imagery and identified potential errors and bias between measurement types. CHMs were derived from three spaceborne datasets; Very-High Resolution (VHR) stereophotogrammetry, TerraSAR-X add-on for Digital Elevation Measurement, and Shuttle Radar Topography Mission (TanDEM-X), and lidar data which was acquired from an airborne platform. Each dataset exhibited different error characteristics that were related to spatial resolution, sensitivities of the sensors, and reference frames. Canopies over 10 m were accurately predicted by all CHMs while the distributions of canopy height were best predicted by the VHR CHM. Depending on the guidelines and strategies needed for monitoring and verification activities, coarse resolution CHMs could be used to track canopy height at regional and global scales with finer resolution imagery used to validate and monitor critical areas undergoing rapid changes.

  15. [Open-path online monitoring of ambient atmospheric CO2 based on laser absorption spectrum].

    PubMed

    He, Ying; Zhang, Yu-Jun; Kan, Rui-Feng; Xia, Hui; Geng, Hui; Ruan, Jun; Wang, Min; Cui, Xiao-Juan; Liu, Wen-Qing

    2009-01-01

    With the conjunction of tunable diode laser absorption spectroscopy technology (TDLAS) and the open long optical path technology, the system designing scheme of CO2 on-line monitoring based on near infrared tunable diode laser absorption spectroscopy technology was discussed in detail, and the instrument for large-range measurement was set up. By choosing the infrared absorption line of CO2 at 1.57 microm whose line strength is strong and suitable for measurement, the ambient atmospheric CO2 was measured continuously with a 30 s temporal resolution at an suburb site in the autumn of 2007. The diurnal atmospheric variations of CO2 and continuous monitoring results were presented. The results show that the variation in CO2 concentration has an obvious diurnal periodicity in suburb where the air is free of interference and contamination. The general characteristic of diurnal variation is that the concentration is low in the daytime and high at night, so it matches the photosynthesis trend. The instrument can detect gas concentration online with high resolution, high sensitivity, high precision, short response time and many other advantages, the monitoring requires no gas sampling, the calibration is easy, and the detection limit is about 4.2 x 10(-7). It has been proved that the system and measurement project are feasible, so it is an effective method for gas flux continuous online monitoring of large range in ecosystem based on TDLAS technology.

  16. Timely detection and monitoring of oil leakage by satellite optical data.

    NASA Astrophysics Data System (ADS)

    Grimaldi, C. S. L.; Coviello, I.; Lacava, T.; Pergola, N.; Tramutoli, V.

    2009-04-01

    Sea oil pollution can derive from different sources. Accidental release of oil into the oceans caused by "human errors" (tankers collisions and/or shipwrecks) or natural hazards (hurricanes, landslides, earthquakes) have remarkable ecological impact on maritime and coastal environments. Katrina Hurricane, for example, hitting oil and gas infrastructures off USA coasts caused the destruction of more than 100 platforms and the release into the sea of more than 10,000 gallons of crude oil. In order to reduce the environmental impact of such kind of technological hazards, timely detection and continuously updated information are fundamental. Satellite remote sensing can give a significant contribution in such a direction. Nowadays, SAR (Synthetic Aperture Radar) technology has been recognized as the most efficient for oil spill detection and mapping, thanks to the high spatial resolution and all-time/weather capability of the present operational sensors. Anyway, due to their current revisiting cycles, SAR systems cannot be profitably used for a rapid detection and for a continuous and near real-time monitoring of these phenomena. Until COSMO-Skymed SAR constellation, that will be able to improve SAR observational frequency, will not be fully operational, passive optical sensors on board meteorological satellites, thanks to their high temporal resolution, may represent a suitable alternative for early detection and continuous monitoring of oil spills, provided that adequate and reliable data analysis techniques exist. Recently, an innovative technique for oil spill detection and monitoring, based on the general Robust Satellite Techniques (RST) approach, has been proposed. It exploits the multi-temporal analysis of optical data acquired by both AVHRR (Advanced Very High Resolution Radiometer) and MODIS (Moderate Resolution Imaging Spectroradiometer) sensors in order to detect, automatically and timely, the presence of oil spill over the sea surface, trying to minimize the "false-detections" possibly caused by spurious effects (e.g. clouds). In this paper, preliminary results obtained applying the proposed methodology to different test-cases are shown and discussed.

  17. Modeling vegetation heights from high resolution stereo aerial photography: an application for broad-scale rangeland monitoring.

    PubMed

    Gillan, Jeffrey K; Karl, Jason W; Duniway, Michael; Elaksher, Ahmed

    2014-11-01

    Vertical vegetation structure in rangeland ecosystems can be a valuable indicator for assessing rangeland health and monitoring riparian areas, post-fire recovery, available forage for livestock, and wildlife habitat. Federal land management agencies are directed to monitor and manage rangelands at landscapes scales, but traditional field methods for measuring vegetation heights are often too costly and time consuming to apply at these broad scales. Most emerging remote sensing techniques capable of measuring surface and vegetation height (e.g., LiDAR or synthetic aperture radar) are often too expensive, and require specialized sensors. An alternative remote sensing approach that is potentially more practical for managers is to measure vegetation heights from digital stereo aerial photographs. As aerial photography is already commonly used for rangeland monitoring, acquiring it in stereo enables three-dimensional modeling and estimation of vegetation height. The purpose of this study was to test the feasibility and accuracy of estimating shrub heights from high-resolution (HR, 3-cm ground sampling distance) digital stereo-pair aerial images. Overlapping HR imagery was taken in March 2009 near Lake Mead, Nevada and 5-cm resolution digital surface models (DSMs) were created by photogrammetric methods (aerial triangulation, digital image matching) for twenty-six test plots. We compared the heights of individual shrubs and plot averages derived from the DSMs to field measurements. We found strong positive correlations between field and image measurements for several metrics. Individual shrub heights tended to be underestimated in the imagery, however, accuracy was higher for dense, compact shrubs compared with shrubs with thin branches. Plot averages of shrub height from DSMs were also strongly correlated to field measurements but consistently underestimated. Grasses and forbs were generally too small to be detected with the resolution of the DSMs. Estimates of vertical structure will be more accurate in plots having low herbaceous cover and high amounts of dense shrubs. Through the use of statistically derived correction factors or choosing field methods that better correlate with the imagery, vegetation heights from HR DSMs could be a valuable technique for broad-scale rangeland monitoring needs. Copyright © 2014 Elsevier Ltd. All rights reserved.

  18. Modeling vegetation heights from high resolution stereo aerial photography: an application for broad-scale rangeland monitoring

    USGS Publications Warehouse

    Gillan, Jeffrey K.; Karl, Jason W.; Duniway, Michael; Elaksher, Ahmed

    2014-01-01

    Vertical vegetation structure in rangeland ecosystems can be a valuable indicator for assessing rangeland health and monitoring riparian areas, post-fire recovery, available forage for livestock, and wildlife habitat. Federal land management agencies are directed to monitor and manage rangelands at landscapes scales, but traditional field methods for measuring vegetation heights are often too costly and time consuming to apply at these broad scales. Most emerging remote sensing techniques capable of measuring surface and vegetation height (e.g., LiDAR or synthetic aperture radar) are often too expensive, and require specialized sensors. An alternative remote sensing approach that is potentially more practical for managers is to measure vegetation heights from digital stereo aerial photographs. As aerial photography is already commonly used for rangeland monitoring, acquiring it in stereo enables three-dimensional modeling and estimation of vegetation height. The purpose of this study was to test the feasibility and accuracy of estimating shrub heights from high-resolution (HR, 3-cm ground sampling distance) digital stereo-pair aerial images. Overlapping HR imagery was taken in March 2009 near Lake Mead, Nevada and 5-cm resolution digital surface models (DSMs) were created by photogrammetric methods (aerial triangulation, digital image matching) for twenty-six test plots. We compared the heights of individual shrubs and plot averages derived from the DSMs to field measurements. We found strong positive correlations between field and image measurements for several metrics. Individual shrub heights tended to be underestimated in the imagery, however, accuracy was higher for dense, compact shrubs compared with shrubs with thin branches. Plot averages of shrub height from DSMs were also strongly correlated to field measurements but consistently underestimated. Grasses and forbs were generally too small to be detected with the resolution of the DSMs. Estimates of vertical structure will be more accurate in plots having low herbaceous cover and high amounts of dense shrubs. Through the use of statistically derived correction factors or choosing field methods that better correlate with the imagery, vegetation heights from HR DSMs could be a valuable technique for broad-scale rangeland monitoring needs.

  19. High resolution upgrade of the ATF damping ring BPM system

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Terunuma, N.; Urakawa, J.; /KEK, Tsukuba

    2008-05-01

    A beam position monitor (BPM) upgrade at the KEK Accelerator Test Facility (ATF) damping ring has been accomplished in its first stage, carried out by a KEK/FNAL/SLAC collaboration under the umbrella of the global ILC R&D effort. The upgrade consists of a high resolution, high reproducibility read-out system, based on analog and digital downconversion techniques, digital signal processing, and also tests a new automatic gain error correction schema. The technical concept and realization, as well as preliminary results of beam studies are presented.

  20. Raman lidar for hydrogen gas concentration monitoring and future radioactive waste management.

    PubMed

    Liméry, Anasthase; Cézard, Nicolas; Fleury, Didier; Goular, Didier; Planchat, Christophe; Bertrand, Johan; Hauchecorne, Alain

    2017-11-27

    A multi-channel Raman lidar has been developed, allowing for the first time simultaneous and high-resolution profiling of hydrogen gas and water vapor. The lidar measures vibrational Raman scattering in the UV (355 nm) domain. It works in a high-bandwidth photon counting regime using fast SiPM detectors and takes into account the spectral overlap between hydrogen and water vapor Raman spectra. Measurement of concentration profiles of H 2 and H 2 O are demonstrated along a 5-meter-long open gas cell with 1-meter resolution at 85 meters. The instrument precision is investigated by numerical simulation to anticipate the potential performance at longer range. This lidar could find applications in the French project Cigéo for monitoring radioactive waste disposal cells.

  1. High resolution heart rate variability analysis in patients with angina pectoris during coronary artery bypass graft surgery

    NASA Astrophysics Data System (ADS)

    Mironov, V. A.; Mironova, T. F.; Kuvatov, V. A.; Nokhrina, O. Yu.; Kuvatova, E. V.

    2017-12-01

    The purpose of the study is approbation of the capabilities of high-resolution rhythmocardiography (RCG) for the determination of the actual cardiovascular status of operated patients with angina pectoris during coronary artery bypass graft surgery (CABGS) for myocardial revascularization. The research was done by means of a KAP-RK-02-Mikor hardware-software complex with a monitor record and the time- and frequency-domain analyses of heart rate variability (HRV). Monitor records were made at each stage of CABGS in 123 patients. As a result, HRV manifested itself as a fairly adequate and promising method for the determination of the cardiovascular status during CABGS. In addition, the data of the HRV study during CABGS testify to the capability of RCG to determine the high risk of life-threatening cardioarrhythmias before and during operation, to different changes in sinoatrial heart node (SN) dysregulation, and contain the HRV symptoms of a high death risk before, during and after shunting. The loss of the peripheral autonomic sympathetic and parasympathetic control in SN in the form of the autonomic cardioneuropathy syndrome is a predictor of the complications related to CABGS. The obtained data on RCG monitoring of HRV recording are suggestive of wide prospects of the high-resolution RCG method to be used in cardiac surgery as a whole. The actual multivariant dysregulations of SN pacemaker activity testify to its adequacy to the pathophysiology of each period of the cardiac operation, according to the initial ischemic damages and localization of cardiosurgical manipulations during CABGS.

  2. Effects of daily, high spatial resolution a priori profiles of satellite-derived NOx emissions

    NASA Astrophysics Data System (ADS)

    Laughner, J.; Zare, A.; Cohen, R. C.

    2016-12-01

    The current generation of space-borne NO2 column observations provides a powerful method of constraining NOx emissions due to the spatial resolution and global coverage afforded by the Ozone Monitoring Instrument (OMI). The greater resolution available in next generation instruments such as TROPOMI and the capabilities of geosynchronous platforms TEMPO, Sentinel-4, and GEMS will provide even greater capabilities in this regard, but we must apply lessons learned from the current generation of retrieval algorithms to make the best use of these instruments. Here, we focus on the effect of the resolution of the a priori NO2 profiles used in the retrieval algorithms. We show that for an OMI retrieval, using daily high-resolution a priori profiles results in changes in the retrieved VCDs up to 40% when compared to a retrieval using monthly average profiles at the same resolution. Further, comparing a retrieval with daily high spatial resolution a priori profiles to a more standard one, we show that emissions derived increase by 100% when using the optimized retrieval.

  3. Comparing the Potential of Multispectral and Hyperspectral Data for Monitoring Oil Spill Impact.

    PubMed

    Khanna, Shruti; Santos, Maria J; Ustin, Susan L; Shapiro, Kristen; Haverkamp, Paul J; Lay, Mui

    2018-02-12

    Oil spills from offshore drilling and coastal refineries often cause significant degradation of coastal environments. Early oil detection may prevent losses and speed up recovery if monitoring of the initial oil extent, oil impact, and recovery are in place. Satellite imagery data can provide a cost-effective alternative to expensive airborne imagery or labor intensive field campaigns for monitoring effects of oil spills on wetlands. However, these satellite data may be restricted in their ability to detect and map ecosystem recovery post-spill given their spectral measurement properties and temporal frequency. In this study, we assessed whether spatial and spectral resolution, and other sensor characteristics influence the ability to detect and map vegetation stress and mortality due to oil. We compared how well three satellite multispectral sensors: WorldView2, RapidEye and Landsat EMT+, match the ability of the airborne hyperspectral AVIRIS sensor to map oil-induced vegetation stress, recovery, and mortality after the DeepWater Horizon oil spill in the Gulf of Mexico in 2010. We found that finer spatial resolution (3.5 m) provided better delineation of the oil-impacted wetlands and better detection of vegetation stress along oiled shorelines in saltmarsh wetland ecosystems. As spatial resolution become coarser (3.5 m to 30 m) the ability to accurately detect and map stressed vegetation decreased. Spectral resolution did improve the detection and mapping of oil-impacted wetlands but less strongly than spatial resolution, suggesting that broad-band data may be sufficient to detect and map oil-impacted wetlands. AVIRIS narrow-band data performs better detecting vegetation stress, followed by WorldView2, RapidEye and then Landsat 15 m (pan sharpened) data. Higher quality sensor optics and higher signal-to-noise ratio (SNR) may also improve detection and mapping of oil-impacted wetlands; we found that resampled coarser resolution AVIRIS data with higher SNR performed better than either of the three satellite sensors. The ability to acquire imagery during certain times (midday, low tide, etc.) or a certain date (cloud-free, etc.) is also important in these tidal wetlands; WorldView2 imagery captured at high-tide detected a narrower band of shoreline affected by oil likely because some of the impacted wetland was below the tideline. These results suggest that while multispectral data may be sufficient for detecting the extent of oil-impacted wetlands, high spectral and spatial resolution, high-quality sensor characteristics, and the ability to control time of image acquisition may improve assessment and monitoring of vegetation stress and recovery post oil spills.

  4. Comparing the Potential of Multispectral and Hyperspectral Data for Monitoring Oil Spill Impact

    PubMed Central

    Santos, Maria J.; Ustin, Susan L.; Haverkamp, Paul J.; Lay, Mui

    2018-01-01

    Oil spills from offshore drilling and coastal refineries often cause significant degradation of coastal environments. Early oil detection may prevent losses and speed up recovery if monitoring of the initial oil extent, oil impact, and recovery are in place. Satellite imagery data can provide a cost-effective alternative to expensive airborne imagery or labor intensive field campaigns for monitoring effects of oil spills on wetlands. However, these satellite data may be restricted in their ability to detect and map ecosystem recovery post-spill given their spectral measurement properties and temporal frequency. In this study, we assessed whether spatial and spectral resolution, and other sensor characteristics influence the ability to detect and map vegetation stress and mortality due to oil. We compared how well three satellite multispectral sensors: WorldView2, RapidEye and Landsat EMT+, match the ability of the airborne hyperspectral AVIRIS sensor to map oil-induced vegetation stress, recovery, and mortality after the DeepWater Horizon oil spill in the Gulf of Mexico in 2010. We found that finer spatial resolution (3.5 m) provided better delineation of the oil-impacted wetlands and better detection of vegetation stress along oiled shorelines in saltmarsh wetland ecosystems. As spatial resolution become coarser (3.5 m to 30 m) the ability to accurately detect and map stressed vegetation decreased. Spectral resolution did improve the detection and mapping of oil-impacted wetlands but less strongly than spatial resolution, suggesting that broad-band data may be sufficient to detect and map oil-impacted wetlands. AVIRIS narrow-band data performs better detecting vegetation stress, followed by WorldView2, RapidEye and then Landsat 15 m (pan sharpened) data. Higher quality sensor optics and higher signal-to-noise ratio (SNR) may also improve detection and mapping of oil-impacted wetlands; we found that resampled coarser resolution AVIRIS data with higher SNR performed better than either of the three satellite sensors. The ability to acquire imagery during certain times (midday, low tide, etc.) or a certain date (cloud-free, etc.) is also important in these tidal wetlands; WorldView2 imagery captured at high-tide detected a narrower band of shoreline affected by oil likely because some of the impacted wetland was below the tideline. These results suggest that while multispectral data may be sufficient for detecting the extent of oil-impacted wetlands, high spectral and spatial resolution, high-quality sensor characteristics, and the ability to control time of image acquisition may improve assessment and monitoring of vegetation stress and recovery post oil spills. PMID:29439504

  5. Monitoring well utility in a heterogeneous DNAPL source zone area: Insights from proximal multilevel sampler wells and sampling capture-zone modelling

    NASA Astrophysics Data System (ADS)

    McMillan, Lindsay A.; Rivett, Michael O.; Wealthall, Gary P.; Zeeb, Peter; Dumble, Peter

    2018-03-01

    Groundwater-quality assessment at contaminated sites often involves the use of short-screen (1.5 to 3 m) monitoring wells. However, even over these intervals considerable variation may occur in contaminant concentrations in groundwater adjacent to the well screen. This is especially true in heterogeneous dense non-aqueous phase liquid (DNAPL) source zones, where cm-scale contamination variability may call into question the effectiveness of monitoring wells to deliver representative data. The utility of monitoring wells in such settings is evaluated by reference to high-resolution multilevel sampler (MLS) wells located proximally to short-screen wells, together with sampling capture-zone modelling to explore controls upon well sample provenance and sensitivity to monitoring protocols. Field data are analysed from the highly instrumented SABRE research site that contained an old trichloroethene source zone within a shallow alluvial aquifer at a UK industrial facility. With increased purging, monitoring-well samples tend to a flow-weighted average concentration but may exhibit sensitivity to the implemented protocol and degree of purging. Formation heterogeneity adjacent to the well-screen particularly, alongside pump-intake position and water level, influence this sensitivity. Purging of low volumes is vulnerable to poor reproducibility arising from concentration variability predicted over the initial 1 to 2 screen volumes purged. Marked heterogeneity may also result in limited long-term sample concentration stabilization. Development of bespoke monitoring protocols, that consider screen volumes purged, alongside water-quality indicator parameter stabilization, is recommended to validate and reduce uncertainty when interpreting monitoring-well data within source zone areas. Generalised recommendations on monitoring well based protocols are also developed. A key monitoring well utility is their proportionately greater sample draw from permeable horizons constituting a significant contaminant flux pathway and hence representative fraction of source mass flux. Acquisition of complementary, high-resolution, site monitoring data, however, vitally underpins optimal interpretation of monitoring-well datasets and appropriate advancement of a site conceptual model and remedial implementation.

  6. Species–specific contributions to moderate resolution vegetation indices derived from sub-decimeter aerial photography – Prospects for phenological monitoring

    USDA-ARS?s Scientific Manuscript database

    High spatial heterogeneity in ground cover, large amounts of exposed bare soil, and modest cover from shrubs and grasses in arid and semi-arid ecosystems challenge the integration of field observations of phenology and remotely sensed data to monitor changes in land surface phenology. This research ...

  7. Shock waves in molecular solids: ultrafast vibrational spectroscopy of the first nanosecond

    NASA Astrophysics Data System (ADS)

    Franken, J.; Hambir, S. A.; Hare, D. E.; Dlott, D. D.

    A novel technique which uses a microfabricated shock target array assembly is described, where the passage of a shock front through a thin (0.5μm) polycrystalline layer and the subsequent unloading process is monitored in real time with ultrafast coherent Raman spectroscopy. Using a high repetition rate laser shock generation technique, high resolution, coherent Raman spectra are obtained in shocked anthracene and in a high explosive material, NTO, with time resolution of 50 ps. Spectroscopic measurements are presented which yield the shock pressure (up to 5 GPa), the shock velocity ( 4 km/s), the shock front risetime (tr < 25 ps), and the temperature ( 400°C). A brief discussion is presented, how this new technique can be used to determine the Hugoniot, the equation of state, the entropy increase across the shock front, and monitor shock induced chemical reactions in real time.

  8. Linear-array based full-view high-resolution photoacoustic computed tomography of whole mouse brain functions in vivo

    NASA Astrophysics Data System (ADS)

    Li, Lei; Zhang, Pengfei; Wang, Lihong V.

    2018-02-01

    Photoacoustic computed tomography (PACT) is a non-invasive imaging technique offering high contrast, high resolution, and deep penetration in biological tissues. We report a photoacoustic computed tomography (PACT) system equipped with a high frequency linear array for anatomical and functional imaging of the mouse whole brain. The linear array was rotationally scanned in the coronal plane to achieve the full-view coverage. We investigated spontaneous neural activities in the deep brain by monitoring the hemodynamics and observed strong interhemispherical correlations between contralateral regions, both in the cortical layer and in the deep regions.

  9. Analyzing the Effects of Climate Change on Sea Surface Temperature in Monitoring Coral Reef Health in the Florida Keys Using Sea Surface Temperature Data

    NASA Technical Reports Server (NTRS)

    Jones, Jason; Burbank, Renane; Billiot, Amanda; Schultz, Logan

    2011-01-01

    This presentation discusses use of 4 kilometer satellite-based sea surface temperature (SST) data to monitor and assess coral reef areas of the Florida Keys. There are growing concerns about the impacts of climate change on coral reef systems throughout the world. Satellite remote sensing technology is being used for monitoring coral reef areas with the goal of understanding the climatic and oceanic changes that can lead to coral bleaching events. Elevated SST is a well-documented cause of coral bleaching events. Some coral monitoring studies have used 50 km data from the Advanced Very High Resolution Radiometer (AVHRR) to study the relationships of sea surface temperature anomalies to bleaching events. In partnership with NOAA's Office of National Marine Sanctuaries and the University of South Florida's Institute for Marine Remote Sensing, this project utilized higher resolution SST data from the Terra's Moderate Resolution Imaging Spectroradiometer (MODIS) and AVHRR. SST data for 2000-2010 was employed to compute sea surface temperature anomalies within the study area. The 4 km SST anomaly products enabled visualization of SST levels for known coral bleaching events from 2000-2010.

  10. Integrating Windblown Dust Forecasts with Public Safety and Health Systems

    NASA Astrophysics Data System (ADS)

    Sprigg, W. A.

    2014-12-01

    Experiments in real-time prediction of desert dust emissions and downstream plume concentrations (~ 3.5 km near-surface spatial resolution) succeed to the point of challenging public safety and public health services to beta test a dust storm warning and advisory system in lowering risks of highway and airline accidents and illnesses such as asthma and valley fever. Key beta test components are: high-resolution models of dust emission, entrainment and diffusion, integrated with synoptic weather observations and forecasts; satellite-based detection and monitoring of soil properties on the ground and elevated above; high space and time resolution for health surveillance and transportation advisories.

  11. High Data Rate Satellite Communications for Environmental Remote Sensing

    NASA Astrophysics Data System (ADS)

    Jackson, J. M.; Munger, J.; Emch, P. G.; Sen, B.; Gu, D.

    2014-12-01

    Satellite to ground communication bandwidth limitations place constraints on current earth remote sensing instruments which limit the spatial and spectral resolution of data transmitted to the ground for processing. Instruments such as VIIRS, CrIS and OMPS on the Soumi-NPP spacecraft must aggregate data both spatially and spectrally in order to fit inside current data rate constraints limiting the optimal use of the as-built sensors. Future planned missions such as HyspIRI, SLI, PACE, and NISAR will have to trade spatial and spectral resolution if increased communication band width is not made available. A number of high-impact, environmental remote sensing disciplines such as hurricane observation, mega-city air quality, wild fire detection and monitoring, and monitoring of coastal oceans would benefit dramatically from enabling the downlinking of sensor data at higher spatial and spectral resolutions. The enabling technologies of multi-Gbps Ka-Band communication, flexible high speed on-board processing, and multi-Terabit SSRs are currently available with high technological maturity enabling high data volume mission requirements to be met with minimal mission constraints while utilizing a limited set of ground sites from NASA's Near Earth Network (NEN) or TDRSS. These enabling technologies will be described in detail with emphasis on benefits to future remote sensing missions currently under consideration by government agencies.

  12. A distributed network of low-cost continuous reading sensors to measure spatiotemporal variations of PM2.5 in Xi'an, China.

    PubMed

    Gao, Meiling; Cao, Junji; Seto, Edmund

    2015-04-01

    Fine particulate matter (PM2.5) is a growing public health concern especially in industrializing countries but existing monitoring networks are unable to properly characterize human exposures due to low resolution spatiotemporal data. Low-cost portable monitors can supplement existing networks in both developed and industrializing regions to increase density of sites and data. This study tests the performance of a low-cost sensor in high concentration urban environments. Seven Portable University of Washington Particle (PUWP) monitors were calibrated with optical and gravimetric PM2.5 reference monitors in Xi'an, China in December 2013. Pairwise correlations between the raw PUWP and the reference monitors were high (R(2) = 0.86-0.89). PUWP monitors were also simultaneously deployed at eight sites across Xi'an alongside gravimetric PM2.5 monitors (R(2) = 0.53). The PUWP monitors were able to identify the High-technology Zone site as a potential PM2.5 hotspot with sustained high concentrations compared to the city average throughout the day. Copyright © 2015 The Authors. Published by Elsevier Ltd.. All rights reserved.

  13. Appalachian Mountains

    Atmospheric Science Data Center

    2014-05-15

    ... Radiance Ellipsoid Product. MISR uses this enhanced sensitivity along with the angular variation in signal to monitor particulate ... of MISR's unique capability of providing moderately high spatial resolution, calibrated imagery at very oblique angles. Gradations ...

  14. EMRinger: side chain–directed model and map validation for 3D cryo-electron microscopy

    DOE PAGES

    Barad, Benjamin A.; Echols, Nathaniel; Wang, Ray Yu-Ruei; ...

    2015-08-17

    Advances in high-resolution cryo-electron microscopy (cryo-EM) require the development of validation metrics to independently assess map quality and model geometry. We report that EMRinger is a tool that assesses the precise fitting of an atomic model into the map during refinement and shows how radiation damage alters scattering from negatively charged amino acids. EMRinger (https://github.com/fraser-lab/EMRinger) will be useful for monitoring progress in resolving and modeling high-resolution features in cryo-EM.

  15. High Resolution PET Imaging Probe for the Detection, Molecular Characterization and Treatment Monitoring of Prostate Cancer

    DTIC Science & Technology

    2012-07-01

    number of high resolution PET experiments including the dual-ring small field- of-view configuration shown at left in Figure 5 . The benchtop system...detectors having 26 x 40 arrays of 1mm x 1mm x 1mm detector elements is shown at right in Figure 5 . Detectors used for probe experiments shown in...Figure 13). In the series of experiments geared towards PET application, but with the results applicable to the present single gamma case, we have

  16. On-line coupling of a miniaturized bioreactor with capillary electrophoresis, via a membrane interface, for monitoring the production of organic acids by microorganisms.

    PubMed

    Ehala, S; Vassiljeva, I; Kuldvee, R; Vilu, R; Kaljurand, M

    2001-09-01

    Capillary electrophoresis (CE) can be a valuable tool for on-line monitoring of bioprocesses. Production of organic acids by phosphorus-solubilizing bacteria and fermentation of UHT milk were monitored and controlled by use of a membrane-interfaced dialysis device and a home-made microsampler for a capillary electrophoresis unit. Use of this specially designed sampling device enabled rapid consecutive injections without interruption of the high voltage. No additional sample preparation was required. The time resolution of monitoring in this particular work was approximately 2 h, but could be reduced to 2 min. Analytes were detected at low microg mL(-1) levels with a reproducibility of approximately 10%. To demonstrate the potential of CE in processes of biotechnological interest, results from monitoring phosphate solubilization by bacteria were submitted to qualitative and quantitative analysis. Fermentation experiments on UHT milk showed that monitoring of the processes by CE can provide good resolution of complex mixtures, although for more specific, detailed characterization the identification of individual substances is needed.

  17. Technical advances in flow cytometry-based diagnosis and monitoring of paroxysmal nocturnal hemoglobinuria

    PubMed Central

    Correia, Rodolfo Patussi; Bento, Laiz Cameirão; Bortolucci, Ana Carolina Apelle; Alexandre, Anderson Marega; Vaz, Andressa da Costa; Schimidell, Daniela; Pedro, Eduardo de Carvalho; Perin, Fabricio Simões; Nozawa, Sonia Tsukasa; Mendes, Cláudio Ernesto Albers; Barroso, Rodrigo de Souza; Bacal, Nydia Strachman

    2016-01-01

    ABSTRACT Objective: To discuss the implementation of technical advances in laboratory diagnosis and monitoring of paroxysmal nocturnal hemoglobinuria for validation of high-sensitivity flow cytometry protocols. Methods: A retrospective study based on analysis of laboratory data from 745 patient samples submitted to flow cytometry for diagnosis and/or monitoring of paroxysmal nocturnal hemoglobinuria. Results: Implementation of technical advances reduced test costs and improved flow cytometry resolution for paroxysmal nocturnal hemoglobinuria clone detection. Conclusion: High-sensitivity flow cytometry allowed more sensitive determination of paroxysmal nocturnal hemoglobinuria clone type and size, particularly in samples with small clones. PMID:27759825

  18. Advantages and Limits of 4H-SIC Detectors for High- and Low-Flux Radiations

    NASA Astrophysics Data System (ADS)

    Sciuto, A.; Torrisi, L.; Cannavò, A.; Mazzillo, M.; Calcagno, L.

    2017-11-01

    Silicon carbide (SiC) detectors based on Schottky diodes were used to monitor low and high fluxes of photons and ions. An appropriate choice of the epilayer thickness and geometry of the surface Schottky contact allows the tailoring and optimizing the detector efficiency. SiC detectors with a continuous front electrode were employed to monitor alpha particles in a low-flux regime emitted by a radioactive source with high energy (>5.0 MeV) or generated in an ion implanter with sub-MeV energy. An energy resolution value of 0.5% was measured in the high energy range, while, at energy below 1.0 MeV, the resolution becomes 10%; these values are close to those measured with a traditional silicon detector. The same SiC devices were used in a high-flux regime to monitor high-energy ions, x-rays and electrons of the plasma generated by a high-intensity (1016 W/cm2) pulsed laser. Furthermore, SiC devices with an interdigit Schottky front electrode were proposed and studied to overcome the limits of the such SiC detectors in the detection of low-energy (˜1.0 keV) ions and photons of the plasmas generated by a low-intensity (1010 W/cm2) pulsed laser. SiC detectors are expected to be a powerful tool for the monitoring of radioactive sources and ion beams produced by accelerators, for a complete characterization of radiations emitted from laser-generated plasmas at high and low temperatures, and for dosimetry in a radioprotection field.

  19. M-TraCE: a new tool for high-resolution computation and statistical elaboration of backward trajectories on the Italian domain

    NASA Astrophysics Data System (ADS)

    Vitali, Lina; Righini, Gaia; Piersanti, Antonio; Cremona, Giuseppe; Pace, Giandomenico; Ciancarella, Luisella

    2017-12-01

    Air backward trajectory calculations are commonly used in a variety of atmospheric analyses, in particular for source attribution evaluation. The accuracy of backward trajectory analysis is mainly determined by the quality and the spatial and temporal resolution of the underlying meteorological data set, especially in the cases of complex terrain. This work describes a new tool for the calculation and the statistical elaboration of backward trajectories. To take advantage of the high-resolution meteorological database of the Italian national air quality model MINNI, a dedicated set of procedures was implemented under the name of M-TraCE (MINNI module for Trajectories Calculation and statistical Elaboration) to calculate and process the backward trajectories of air masses reaching a site of interest. Some outcomes from the application of the developed methodology to the Italian Network of Special Purpose Monitoring Stations are shown to assess its strengths for the meteorological characterization of air quality monitoring stations. M-TraCE has demonstrated its capabilities to provide a detailed statistical assessment of transport patterns and region of influence of the site under investigation, which is fundamental for correctly interpreting pollutants measurements and ascertaining the official classification of the monitoring site based on meta-data information. Moreover, M-TraCE has shown its usefulness in supporting other assessments, i.e., spatial representativeness of a monitoring site, focussing specifically on the analysis of the effects due to meteorological variables.

  20. Development and Analysis of Global, High-Resolution Diagnostic Metrics for Vegetation Monitoring, Yield Estimation and Famine Mitigation

    NASA Astrophysics Data System (ADS)

    Anderson, B. T.; Zhang, P.; Myneni, R.

    2008-12-01

    Drought, through its impact on food scarcity and crop prices, can have significant economic, social, and environmental impacts - presently, up to 36 countries and 73 million people are facing food crises around the globe. Because of these adverse affects, there has been a drive to develop drought and vegetation- monitoring metrics that can quantify and predict human vulnerability/susceptibility to drought at high- resolution spatial scales over the entire globe. Here we introduce a new vegetation-monitoring index utilizing data derived from satellite-based instruments (the Moderate Resolution Imaging Spectroradiometer - MODIS) designed to identify the vulnerability of vegetation in a particular region to climate variability during the growing season. In addition, the index can quantify the percentage of annual grid-point vegetation production either gained or lost due to climatic variability in a given month. When integrated over the growing season, this index is shown to be better correlated with end-of-season crop yields than traditional remotely-sensed or meteorological indices. In addition, in-season estimates of the index, which are available in near real-time, provide yield forecasts comparable to concurrent in situ objective yield surveys, which are only available in limited regions of the world. Overall, the cost effectiveness and repetitive, near-global view of earth's surface provided by this satellite-based vegetation monitoring index can potentially improve our ability to mitigate human vulnerability/susceptibility to drought and its impacts upon vegetation and agriculture.

  1. High-resolution real-time optical studies of radiological air sample filtration processes in an environmental continuous air monitor

    NASA Astrophysics Data System (ADS)

    Rodgers, John C.; Wasiolek, Piotr T.; Schery, Stephen D.; Alcantara, Raul E.

    1999-01-01

    The need for a continuous air monitor capable of quick and accurate measurements of airborne radioactivity in close proximity to the work environment during waste management, site restoration, and D&D operations led to the Los Alamos National Laboratory development of an environmental continuous air monitor (ECAM). Monitoring the hostile work environment of waste recovery, for example, presents unique challenges for detector design for detectors previously used for the clean room conditions of the typical plutonium laboratory. The environmental and atmospheric conditions (dust, high wind, etc.) influence aerosol particle penetration into the ECAM sampling head as well as the build-up of deposits on the ECAM filter.

  2. Structure from motion, a low cost, very high resolution method for surveying glaciers using GoPros and opportunistic helicopter flights

    NASA Astrophysics Data System (ADS)

    Girod, L.; Nuth, C.; Schellenberger, T.

    2014-12-01

    The capability of structure from motion techniques to survey glaciers with a very high spatial and temporal resolution is a promising tool for better understanding the dynamic changes of glaciers. Modern software and computing power allow us to produce accurate data sets from low cost surveys, thus improving the observational capabilities on a wider range of glaciers and glacial processes. In particular, highly accurate glacier volume change monitoring and 3D movement computations will be possible Taking advantage of the helicopter flight needed to survey the ice stakes on Kronenbreen, NW Svalbard, we acquired high resolution photogrammetric data over the well-studied Midre Lovénbreen in September 2013. GoPro Hero 2 cameras were attached to the landing gear of the helicopter, acquiring two images per second. A C/A code based GPS was used for registering the stereoscopic model. Camera clock calibration is obtained through fitting together the shapes of the flight given by both the GPS logger and the relative orientation of the images. A DEM and an ortho-image are generated at 30cm resolution from 300 images collected. The comparison with a 2005 LiDAR DEM (5 meters resolution) shows an absolute error in the direct registration of about 6±3m in 3D which could be easily reduced to 1,5±1m by using fine point cloud alignment algorithms on stable ground. Due to the different nature of the acquisition method, it was not possible to use tie point based co-registration. A combination of the DEM and ortho-image is shown with the point cloud in figure below. A second photogrammetric data set will be acquired in September 2014 to survey the annual volume change and movement. These measurements will then be compared to the annual resolution glaciological stake mass balance and velocity measurements to assess the precision of the method to monitor at an annual resolution.

  3. Vegetation extraction from high-resolution satellite imagery using the Normalized Difference Vegetation Index (NDVI)

    NASA Astrophysics Data System (ADS)

    AlShamsi, Meera R.

    2016-10-01

    Over the past years, there has been various urban development all over the UAE. Dubai is one of the cities that experienced rapid growth in both development and population. That growth can have a negative effect on the surrounding environment. Hence, there has been a necessity to protect the environment from these fast pace changes. One of the major impacts this growth can have is on vegetation. As technology is evolving day by day, there is a possibility to monitor changes that are happening on different areas in the world using satellite imagery. The data from these imageries can be utilized to identify vegetation in different areas of an image through a process called vegetation detection. Being able to detect and monitor vegetation is very beneficial for municipal planning and management, and environment authorities. Through this, analysts can monitor vegetation growth in various areas and analyze these changes. By utilizing satellite imagery with the necessary data, different types of vegetation can be studied and analyzed, such as parks, farms, and artificial grass in sports fields. In this paper, vegetation features are detected and extracted through SAFIY system (i.e. the Smart Application for Feature extraction and 3D modeling using high resolution satellite ImagerY) by using high-resolution satellite imagery from DubaiSat-2 and DEIMOS-2 satellites, which provide panchromatic images of 1m resolution and spectral bands (red, green, blue and near infrared) of 4m resolution. SAFIY system is a joint collaboration between MBRSC and DEIMOS Space UK. It uses image-processing algorithms to extract different features (roads, water, vegetation, and buildings) to generate vector maps data. The process to extract green areas (vegetation) utilize spectral information (such as, the red and near infrared bands) from the satellite images. These detected vegetation features will be extracted as vector data in SAFIY system and can be updated and edited by end-users, such as governmental entities and municipalities.

  4. On the combined use of high temporal resolution, optical satellite data for flood monitoring and mapping: a possible contribution from the RST approach

    NASA Astrophysics Data System (ADS)

    Faruolo, M.; Coviello, I.; Lacava, T.; Pergola, N.; Tramutoli, V.

    2009-04-01

    Among natural disasters, floods are ones of those more common and devastating, often causing high environmental, economical and social costs. When a flooding event occurs, timely information about precise location, extent, dynamic evolution, etc., is highly required in order to effectively support civil protection activities aimed at managing the emergency. Satellite remote sensing may represent a supplementary information source, providing mapping and continuous monitoring of flooding extent as well as a quick damage assessment. Such purposes need frequently updated satellite images as well as suitable image processing techniques, able to identify flooded areas with reliability and timeliness. Recently, an innovative satellite data analysis approach (named RST, Robust Satellite Technique) has been applied to NOAA-AVHRR (Advanced Very High Resolution Radiometer) satellite data in order to dynamically map flooded areas. Thanks to a multi-temporal analysis of co-located satellite records and an automatic change detection scheme, such an approach allows to overcome major drawbacks related to the previously proposed methods (mostly not automatic and based on empirically chosen thresholds, often affected by false identifications). In this paper, RST approach has been for the first time applied to both AVHRR and EOS/MODIS (Moderate Resolution Imaging Spectroradiometer) data, in order to assess its potential - in flooded area mapping and monitoring - on different satellite packages characterized by different spectral and spatial resolutions. As a study case, the flooding event which hit the Europe in August 2002 has been selected. Preliminary results shown in this study seem to confirm the potential of such an approach in providing reliable and timely information, useful for near real time flood hazard assessment and monitoring, using both MODIS and AVHRR data. Moreover, the combined use of information coming from both satellite packages (easily achievable thanks to the intrinsic RST exportability on different sensors) significantly improves (from 6 to less than 3 hours) surface sampling rate, reducing the negative impact of cloud coverage, currently one of the main limit of this kind of satellite technology.

  5. Targeted carbon conservation at national scales with high-resolution monitoring

    PubMed Central

    Asner, Gregory P.; Knapp, David E.; Martin, Roberta E.; Tupayachi, Raul; Anderson, Christopher B.; Mascaro, Joseph; Sinca, Felipe; Chadwick, K. Dana; Higgins, Mark; Farfan, William; Llactayo, William; Silman, Miles R.

    2014-01-01

    Terrestrial carbon conservation can provide critical environmental, social, and climate benefits. Yet, the geographically complex mosaic of threats to, and opportunities for, conserving carbon in landscapes remain largely unresolved at national scales. Using a new high-resolution carbon mapping approach applied to Perú, a megadiverse country undergoing rapid land use change, we found that at least 0.8 Pg of aboveground carbon stocks are at imminent risk of emission from land use activities. Map-based information on the natural controls over carbon density, as well as current ecosystem threats and protections, revealed three biogeographically explicit strategies that fully offset forthcoming land-use emissions. High-resolution carbon mapping affords targeted interventions to reduce greenhouse gas emissions in rapidly developing tropical nations. PMID:25385593

  6. Targeted carbon conservation at national scales with high-resolution monitoring.

    PubMed

    Asner, Gregory P; Knapp, David E; Martin, Roberta E; Tupayachi, Raul; Anderson, Christopher B; Mascaro, Joseph; Sinca, Felipe; Chadwick, K Dana; Higgins, Mark; Farfan, William; Llactayo, William; Silman, Miles R

    2014-11-25

    Terrestrial carbon conservation can provide critical environmental, social, and climate benefits. Yet, the geographically complex mosaic of threats to, and opportunities for, conserving carbon in landscapes remain largely unresolved at national scales. Using a new high-resolution carbon mapping approach applied to Perú, a megadiverse country undergoing rapid land use change, we found that at least 0.8 Pg of aboveground carbon stocks are at imminent risk of emission from land use activities. Map-based information on the natural controls over carbon density, as well as current ecosystem threats and protections, revealed three biogeographically explicit strategies that fully offset forthcoming land-use emissions. High-resolution carbon mapping affords targeted interventions to reduce greenhouse gas emissions in rapidly developing tropical nations.

  7. Tracking subpixel targets in domestic environments

    NASA Astrophysics Data System (ADS)

    Govinda, V.; Ralph, J. F.; Spencer, J. W.; Goulermas, J. Y.; Smith, D. H.

    2006-05-01

    In recent years, closed circuit cameras have become a common feature of urban life. There are environments however where the movement of people needs to be monitored but high resolution imaging is not necessarily desirable: rooms where privacy is required and the occupants are not comfortable with the perceived intrusion. Examples might include domiciliary care environments, prisons and other secure facilities, and even large open plan offices. This paper discusses algorithms that allow activity within this type of sensitive environment to be monitored using data from low resolution cameras (ones where all objects of interest are sub-pixel and cannot be resolved) and other non-intrusive sensors. The algorithms are based on techniques originally developed for wide area reconnaissance and surveillance applications. Of particular importance is determining the minimum spatial resolution that is required to provide a specific level of coverage and reliability.

  8. Monitoring of tissue optical properties using OCT: application for blood glucose analysis

    NASA Astrophysics Data System (ADS)

    Larin, Kirill V.; Eledrisi, Mohsen S.; Ashitkov, Taras V.; Motamedi, Massoud; Esenaliev, Rinat O.

    2002-07-01

    Noninvasive monitoring of tissue optical properties in real time could significantly improve diagnostics and management of various diseases. Recently we proposed to use high- resolution Optical Coherence Tomography (OCT) technique for measurement of tissue scattering coefficient at the depth of up to 1mm. Our pilot studies performed in vitro and in vivo demonstrated that measurement of tissue scattering with this technique can potentially be applied for noninvasive monitoring of blood glucose concentration. High resolution and coherent photon detection of the OCT technique allowed detection of glucose-induced changes in the scattering coefficient. In this paper we report results of in vivo studies performed in dog, New Zealand rabbits, and first human subjects. OCT system with the wavelength of 1300 nm was used in our experiments. OCT signal slope was measured and compared with actual blood glucose concentration. Bolus glucose injections and glucose clamping administrations were used in animal studies. OCT signals were recorded form human subjects during oral glucose tolerance test. Results obtained form both animal and human studies show good correlation between slope of the OCT signals and actual blood glucose concentration measured using standard glucometesr. Sensitivity and accuracy of blood glucose concentrations monitoring with the OCT is discussed. Obtained result suggest that OCT is a promising technique for noninvasive monitoring of tissue analytes including glucose.

  9. Damage extraction of buildings in the 2015 Gorkha, Nepal earthquake from high-resolution SAR data

    NASA Astrophysics Data System (ADS)

    Yamazaki, Fumio; Bahri, Rendy; Liu, Wen; Sasagawa, Tadashi

    2016-05-01

    Satellite remote sensing is recognized as one of the effective tools for detecting and monitoring affected areas due to natural disasters. Since SAR sensors can capture images not only at daytime but also at nighttime and under cloud-cover conditions, they are especially useful at an emergency response period. In this study, multi-temporal high-resolution TerraSAR-X images were used for damage inspection of the Kathmandu area, which was severely affected by the April 25, 2015 Gorkha Earthquake. The SAR images obtained before and after the earthquake were utilized for calculating the difference and correlation coefficient of backscatter. The affected areas were identified by high values of the absolute difference and low values of the correlation coefficient. The post-event high-resolution optical satellite images were employed as ground truth data to verify our results. Although it was difficult to estimate the damage levels for individual buildings, the high resolution SAR images could illustrate their capability in detecting collapsed buildings at emergency response times.

  10. Near Real-Time Monitoring of Forest Disturbance: A Multi-Sensor Remote Sensing Approach and Assessment Framework

    NASA Astrophysics Data System (ADS)

    Tang, Xiaojing

    Fast and accurate monitoring of tropical forest disturbance is essential for understanding current patterns of deforestation as well as helping eliminate illegal logging. This dissertation explores the use of data from different satellites for near real-time monitoring of forest disturbance in tropical forests, including: development of new monitoring methods; development of new assessment methods; and assessment of the performance and operational readiness of existing methods. Current methods for accuracy assessment of remote sensing products do not address the priority of near real-time monitoring of detecting disturbance events as early as possible. I introduce a new assessment framework for near real-time products that focuses on the timing and the minimum detectable size of disturbance events. The new framework reveals the relationship between change detection accuracy and the time needed to identify events. In regions that are frequently cloudy, near real-time monitoring using data from a single sensor is difficult. This study extends the work by Xin et al. (2013) and develops a new time series method (Fusion2) based on fusion of Landsat and MODIS (Moderate Resolution Imaging Spectroradiometer) data. Results of three test sites in the Amazon Basin show that Fusion2 can detect 44.4% of the forest disturbance within 13 clear observations (82 days) after the initial disturbance. The smallest event detected by Fusion2 is 6.5 ha. Also, Fusion2 detects disturbance faster and has less commission error than more conventional methods. In a comparison of coarse resolution sensors, MODIS Terra and Aqua combined provides faster and more accurate detection of disturbance events than VIIRS (Visible Infrared Imaging Radiometer Suite) and MODIS single sensor data. The performance of near real-time monitoring using VIIRS is slightly worse than MODIS Terra but significantly better than MODIS Aqua. New monitoring methods developed in this dissertation provide forest protection organizations the capacity to monitor illegal logging events promptly. In the future, combining two Landsat and two Sentinel-2 satellites will provide global coverage at 30 m resolution every 4 days, and routine monitoring may be possible at high resolution. The methods and assessment framework developed in this dissertation are adaptable to newly available datasets.

  11. Measurement of tissue optical properties with optical coherence tomography: Implication for noninvasive blood glucose concentration monitoring

    NASA Astrophysics Data System (ADS)

    Larin, Kirill V.

    Approximately 14 million people in the USA and more than 140 million people worldwide suffer from diabetes mellitus. The current glucose sensing technique involves a finger puncture several times a day to obtain a droplet of blood for analysis. There have been enormous efforts by many scientific groups and companies to quantify glucose concentration noninvasively using different optical techniques. However, these techniques face limitations associated with low sensitivity, accuracy, and insufficient specificity of glucose concentrations over a physiological range. Optical coherence tomography (OCT), a new technology, is being applied for noninvasive imaging in tissues with high resolution. OCT utilizes sensitive detection of photons coherently scattered from tissue. The high resolution of this technique allows for exceptionally accurate measurement of tissue scattering from a specific layer of skin compared with other optical techniques and, therefore, may provide noninvasive and continuous monitoring of blood glucose concentration with high accuracy. In this dissertation work I experimentally and theoretically investigate feasibility of noninvasive, real-time, sensitive, and specific monitoring of blood glucose concentration using an OCT-based biosensor. The studies were performed in scattering media with stable optical properties (aqueous suspensions of polystyrene microspheres and milk), animals (New Zealand white rabbits and Yucatan micropigs), and normal subjects (during oral glucose tolerance tests). The results of these studies demonstrated: (1) capability of the OCT technique to detect changes in scattering coefficient with the accuracy of about 1.5%; (2) a sharp and linear decrease of the OCT signal slope in the dermis with the increase of blood glucose concentration; (3) the change in the OCT signal slope measured during bolus glucose injection experiments (characterized by a sharp increase of blood glucose concentration) is higher than that measured in the glucose clamping experiments (characterized by slow, controlled increase of the blood glucose concentration); and (4) the accuracy of glucose concentration monitoring may substantially be improved if optimal dimensions of the probed skin area are used. The results suggest that high-resolution OCT technique has a potential for noninvasive, accurate, and continuous glucose monitoring with high sensitivity.

  12. Characterizing Intra-Urban Air Quality Gradients with a Spatially-Distributed Network

    NASA Astrophysics Data System (ADS)

    Zimmerman, N.; Ellis, A.; Schurman, M. I.; Gu, P.; Li, H.; Snell, L.; Gu, J.; Subramanian, R.; Robinson, A. L.; Apte, J.; Presto, A. A.

    2016-12-01

    City-wide air pollution measurements have typically relied on regulatory or research monitoring sites with low spatial density to assess population-scale exposure. However, air pollutant concentrations exhibit significant spatial variability depending on local sources and features of the built environment, which may not be well captured by the existing monitoring regime. To better understand urban spatial and temporal pollution gradients at 1 km resolution, a network of 12 real-time air quality monitoring stations was deployed beginning July 2016 in Pittsburgh, PA. The stations were deployed at sites along an urban-rural transect and in urban locations with a range of traffic, restaurant, and tall building densities to examine the impact of various modifiable factors. Measurements from the stationary monitoring stations were further supported by mobile monitoring, which provided higher spatial resolution pollutant measurements on nearby roadways and enabled routine calibration checks. The stationary monitoring measurements comprise ultrafine particle number (Aerosol Dynamics "MAGIC" CPC), PM2.5 (Met One Neighborhood PM Monitor), black carbon (Met One BC 1050), and a new low-cost air quality monitor, the Real-time Affordable Multi-Pollutant (RAMP) sensor package for measuring CO, NO2, SO2, O3, CO2, temperature and relative humidity. High time-resolution (sub-minute) measurements across the distributed monitoring network enable insight into dynamic pollutant behaviour. Our preliminary findings show that our instruments are sensitive to PM2.5 gradients exceeding 2 micro-grams per cubic meter and ultrafine particle gradients exceeding 1000 particles per cubic centimeter. Additionally, we have developed rigorous calibration protocols to characterize the RAMP sensor response and drift, as well as multiple linear regression models to convert sensor response into pollutant concentrations that are comparable to reference instrumentation.

  13. The critical need for moderate to high resolution thermal infrared data for volcanic hazard mitigation and process monitoring from the micron to the kilometer scale

    NASA Astrophysics Data System (ADS)

    Ramsey, M. S.

    2006-12-01

    The use of satellite thermal infrared (TIR) data to rapidly detect and monitor transient thermal events such as volcanic eruptions commonly relies on datasets with coarse spatial resolution (1.0 - 8.0 km) and high temporal resolution (minutes to hours). However, the growing need to extract physical parameters at meter to sub- meter scales requires data with improved spectral and spatial resolution. Current orbital systems such as the Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER) and the Landsat Enhanced Thematic Mapper plus (ETM+) can provide TIR data ideal for this type of scientific analysis, assessment of hazard risks, and to perform smaller scale monitoring; but at the expense of rapid repeat observations. A potential solution to this apparent conflict is to combine the spatial and temporal scales of TIR data in order to provide the benefits of rapid detection together with the potential of detailed science return. Such a fusion is now in place using ASTER data collected in the north Pacific region to monitor the Aleutian and Kamchatka arcs. However, this approach of cross-instrument/cross-satellite monitoring is in jeopardy with the lack of planned moderate resolution TIR instruments following ETM+ and ASTER. This data collection program is also being expanded globally, and was used in 2006 to assist in the response and monitoring of the volcanic crisis at Merapi Volcano in Indonesia. Merapi Volcano is one of the most active volcanoes in the country and lies in central Java north of the densely-populated city of Yogyakarta. Pyroclastic flows and lahars are common following the growth and collapse of the summit lava dome. These flows can be fatal and were the major hazard concern during a period of renewed activity beginning in April 2006. Lava at the surface was confirmed on 25 April and ASTER was tasked with an urgent request observation, subsequently collecting data on 26 April (daytime) and 28 April (nighttime). The TIR revealed thermally-elevated pixels (max = 25.9 C) clustered near the summit with a lesser anomaly (max = 15.5 C) approximately 650 m to the southwest and down slope from the summit. Such small-scale and low-grade thermal features confirmed the increased activity state of the volcano and were only made possible with the moderate spatial, spectral, and radiometric resolution of ASTER. ASTER continued to collect data for the next 12 weeks tracking the progress of large scale pyroclastic flows, the growth of the lava dome, and the path of ash-rich plumes. Data from these observations were reported world-wide and used for evacuation and hazard planning purposes. With the pending demise of such TIR data from orbit, research is also focused on the use of handheld TIR instruments such as the forward-looking infrared radiometer (FLIR) camera. These instruments provide the highest spatial resolution in-situ TIR data and have been used to observe numerous volcanic phenomena and quantitatively model others (e.g., the rise of the magma body preceding the eruption of Mt. St. Helens Volcano; the changes on the lava dome at Bezymianny Volcano; the behavior of basalt crusts during pahoehoe flow inflation). Studies such as these confirm the utility and importance of future moderate to high resolution TIR data in order to understand volcanic processes and their accompanying hazards.

  14. Amperometric Carbon Fiber Nitrite Microsensor for In Situ Biofilm Monitoring

    EPA Science Inventory

    A highly selective needle type solid state amperometric nitrite microsensor based on direct nitrite oxidation on carbon fiber was developed using a simplified fabrication method. The microsensor’s tip diameter was approximately 7 µm, providing a high spatial resolution of at lea...

  15. Low altitude remote sensing technologies for crop stress monitoring: a case study on spatial and temporal monitoring of irrigated pinto bean

    USDA-ARS?s Scientific Manuscript database

    Site-specific crop management is a promising approach to maximize crop yield with optimal use of rapidly depleting natural resources. Availability of high resolution crop data at critical growth stages is a key for real-time data-driven decisions during the production season. The goal of this study ...

  16. High-resolution climate monitoring on a mountain island: the Saguaro National Park pilot study

    Treesearch

    Michael A. Crimmins

    2005-01-01

    A pilot project to identify climate monitoring needs within Saguaro National Park began in fall 2003. Nine weather stations were deployed across the complex topography of the park to provide insight into the spatial and temporal patterns of climate within the park management unit. This project will provide a valuable baseline for park management and may highlight...

  17. Determination of sorption isotherm and rheological properties of lysozyme using a high-resolution humidity scanning QCM-D technique.

    PubMed

    Graf, Gesche; Kocherbitov, Vitaly

    2013-08-29

    The high-resolution humidity scanning QCM-D technique enables investigation of hydration of soft matter films using a quartz crystal microbalance with dissipation monitoring (QCM-D) equipped with a humidity module. Based on a continuous increase of relative humidity, properties of soft matter films can be investigated depending on the water content of the surrounding atmosphere. Determination of complete water sorption isotherms is possible via analysis of the overtone dependence of the resonance frequencies. Rheological properties are monitored via measurement of the dissipation. The glass transition can be identified from the change of viscoelastic properties of the film reflected in changes of the dissipation. A high-resolution water sorption isotherm of lysozyme was measured and compared with results from water sorption calorimetry. Analysis of the rheological behavior during hydration of lysozyme films revealed the presence of two separate sharp transitions at the water activities 0.67 and 0.91, which are connected to the glass transition. In previous works, only the existence of a broad glass transition has been reported so far. Combining the QCM-D data with Raman scattering data presented earlier, a new mechanism of isothermal glass transition in lysozyme is proposed.

  18. High resolution critical habitat mapping and classification of tidal freshwater wetlands in the ACE Basin

    NASA Astrophysics Data System (ADS)

    Strickland, Melissa Anne

    In collaboration with the South Carolina Department of Natural Resources ACE Basin National Estuarine Research Reserve (ACE Basin NERR), the tidal freshwater ecosystems along the South Edisto River in the ACE Basin are being accurately mapped and classified using a LIDAR-Remote Sensing Fusion technique that integrates LAS LIDAR data into texture images and then merges the elevation textures and multispectral imagery for very high resolution mapping. This project discusses the development and refinement of an ArcGIS Toolbox capable of automating protocols and procedures for marsh delineation and microhabitat identification. The result is a high resolution habitat and land use map used for the identification of threatened habitat. Tidal freshwater wetlands are also a critical habitat for colonial wading birds and an accurate assessment of community diversity and acreage of this habitat type in the ACE Basin will support SCDNR's conservation and protection efforts. The maps developed by this study will be used to better monitor the freshwater/saltwater interface and establish a baseline for an ACE NERR monitoring program to track the rates and extent of alterations due to projected environmental stressors. Preliminary ground-truthing in the field will provide information about the accuracy of the mapping tool.

  19. Deformation Estimation In Non-Urban Areas Exploiting High Resolution SAR Data

    NASA Astrophysics Data System (ADS)

    Goel, Kanika; Adam, Nico

    2012-01-01

    Advanced techniques such as the Small Baseline Subset Algorithm (SBAS) have been developed for terrain motion mapping in non-urban areas with a focus on extracting information from distributed scatterers (DSs). SBAS uses small baseline differential interferograms (to limit the effects of geometric decorrelation) and these are typically multilooked to reduce phase noise, resulting in loss of resolution. Various error sources e.g. phase unwrapping errors, topographic errors, temporal decorrelation and atmospheric effects also affect the interferometric phase. The aim of our work is an improved deformation monitoring in non-urban areas exploiting high resolution SAR data. The paper provides technical details and a processing example of a newly developed technique which incorporates an adaptive spatial phase filtering algorithm for an accurate high resolution differential interferometric stacking, followed by deformation retrieval via the SBAS approach where we perform the phase inversion using a more robust L1 norm minimization.

  20. Localization-based super-resolution imaging meets high-content screening.

    PubMed

    Beghin, Anne; Kechkar, Adel; Butler, Corey; Levet, Florian; Cabillic, Marine; Rossier, Olivier; Giannone, Gregory; Galland, Rémi; Choquet, Daniel; Sibarita, Jean-Baptiste

    2017-12-01

    Single-molecule localization microscopy techniques have proven to be essential tools for quantitatively monitoring biological processes at unprecedented spatial resolution. However, these techniques are very low throughput and are not yet compatible with fully automated, multiparametric cellular assays. This shortcoming is primarily due to the huge amount of data generated during imaging and the lack of software for automation and dedicated data mining. We describe an automated quantitative single-molecule-based super-resolution methodology that operates in standard multiwell plates and uses analysis based on high-content screening and data-mining software. The workflow is compatible with fixed- and live-cell imaging and allows extraction of quantitative data like fluorophore photophysics, protein clustering or dynamic behavior of biomolecules. We demonstrate that the method is compatible with high-content screening using 3D dSTORM and DNA-PAINT based super-resolution microscopy as well as single-particle tracking.

  1. Online High Temporal Resolution Measurement of Atmospheric Sulfate and Sulfur Trioxide with a Light Emitting Diode and Liquid Core Waveguide-Based Sensor.

    PubMed

    Tian, Yong; Shen, Huiyan; Wang, Qiang; Liu, Aifeng; Gao, Wei; Chen, Xu-Wei; Chen, Ming-Li; Zhao, Zongshan

    2018-06-13

    High temporal resolution components analysis is still a great challenge for the frontier of atmospheric aerosol research. Here, an online high time resolution method for monitoring soluble sulfate and sulfur trioxide in atmospheric aerosols was developed by integrating a membrane-based parallel plate denuder, a particle collector, and a liquid waveguide capillary cell into a flow injection analysis system. The BaCl 2 solution (containing HCl, glycerin, and ethanol) was enabled to quantitatively transform sulfate into a well-distributed BaSO 4 solution for turbidimetric detection. The time resolution for monitoring the soluble sulfate and sulfur trioxide was 15 h -1 . The limits of detection were 86 and 7.3 μg L -1 ( S/ N = 3) with a 20 and 200 μL SO 4 2- solution injection, respectively. Both the interday and intraday precision values (relative standard deviation) were less than 6.0%. The analytical results of the certificated reference materials (GBW(E)08026 and GNM-M07117-2013) were identical to the certified values (no significant difference at a 95% confidence level). The validity and practicability of the developed device were also evaluated during a firecracker day and a routine day, obviously revealing the continuous variance in atmospheric sulfate and sulfur trioxide in both interday and intraday studies.

  2. Global Monitoring of Air Pollution Using Spaceborne Sensors

    NASA Technical Reports Server (NTRS)

    Chu, D. A.; Kaufman, Y. J.; Tanre, D.; Remer, L. A.; Einaudi, Franco (Technical Monitor)

    2000-01-01

    The MODIS sensor onboard EOS-Terra satellite provides not only daily global coverage but also high spectral (36 channels from 0.41 to 14 microns wavelength) and spatial (250m, 500m and 1km) resolution measurements. A similar MODIS instrument will be also configured into EOS-Aqua satellite to be launched soon. Using the complementary EOS-Terra and EOS-Aqua sun-synchronous orbits (10:30 AM and 1:30 PM equator-crossing time respectively), it enables us also to study the diurnal changes of the Earth system. It is unprecedented for the derivation of aerosol properties with such high spatial resolution and daily global converge. Aerosol optical depth and other aerosol properties, e.g., Angstrom coefficient over land and particle size over ocean, are derived as standard products at a spatial resolution of 10 x 10 sq km. The high resolution results are found surprisingly useful in detecting aerosols in both urban and rural regions as a result of urban/industrial pollution and biomass burning. For long-lived aerosols, the ability to monitoring the evolution of these aerosol events could help us to establish an system of air quality especially for highly populated areas. Aerosol scenarios with city pollution and biomass burning will be presented. Also presented are the method used in the derivation of aerosol optical properties and preliminary results will be presented, and issue as well as obstacles in validating aerosol optical depth with AERONET ground-based observations.

  3. Time-domain Astronomy with the Advanced X-ray Imaging Satellite

    NASA Astrophysics Data System (ADS)

    Winter, Lisa M.; Vestrand, Tom; Smith, Karl; Kippen, Marc; Schirato, Richard

    2018-01-01

    The Advanced X-ray Imaging Satellite (AXIS) is a concept NASA Probe class mission that will enable time-domain X-ray observations after the conclusion of the successful Swift Gamma-ray burst mission. AXIS will achieve rapid response, like Swift, with an improved X-ray monitoring capability through high angular resolution (similar to the 0.5 arc sec resolution of the Chandra X-ray Observatory) and high sensitivity (ten times the Chandra count rate) observations in the 0.3-10 keV band. In the up-coming decades, AXIS’s fast slew rate will provide the only rapid X-ray capability to study explosive transient events. Increased ground-based monitoring with next-generation survey telescopes like the Large Synoptic Survey Telescope will provide a revolution in transient science through the discovery of many new known and unknown phenomena – requiring AXIS follow-ups to establish the highest energy emission from these events. This synergy between AXIS and ground-based detections will constrain the rapid rise through decline in energetic emission from numerous transients including: supernova shock breakout winds, gamma-ray burst X-ray afterglows, ionized gas resulting from the activation of a hidden massive black hole in tidal disruption events, and intense flares from magnetic reconnection processes in stellar coronae. Additionally, the combination of high sensitivity and angular resolution will allow deeper and more precise monitoring for prompt X-ray signatures associated with gravitational wave detections. We present a summary of time-domain science with AXIS, highlighting its capabilities and expected scientific gains from rapid high quality X-ray imaging of transient phenomena.

  4. SWICS/Ulysses and MASS/wind observations of solar wind sulfur charge states

    NASA Technical Reports Server (NTRS)

    Cohen, C. M. S.; Galvin, A. B.; Hamilton, D. C.; Gloeckler, G.; Geiss, J.; Bochsler, P.

    1995-01-01

    As Ulysses journeys from the southern to the northern solar pole, the newly launched Wind spacecraft is monitoring the solar wind near 1 AU, slightly upstream of the Earth. Different solar wind structures pass over both spacecraft as coronal holes and other features rotate in and out of view. Ulysses and Wind are presently on opposing sides of the sun allowing us to monitor these streams for extended periods of time. Composition measurements made by instruments on both spacecraft provide information concerning the evolution and properties of these structures. We have combined data from the Solar Wind Ion Composition Spectrometer (SWICS) on Ulysses and the high mass resolution spectrometer (MASS) on Wind to determine the charge state distribution of sulfur in the solar wind. Both instruments employ electrostatic deflection with time-of-flight measurement. The high mass resolution of the MASS instrument (M/Delta-M approximately 100) allows sulfur to be isolated easily while the stepping energy/charge selection provides charge state information. SWICS measurements allow the unique identification of heavy ions by their mass and mass/charge with resolutions of M/Delta-M approximately 3 and M/q/Delta(M/q) approximately 20. The two instruments complement each other nicely in that MASS has the greater mass resolution while SWICS has the better mass/charge resolution and better statistics.

  5. Distributed condition monitoring techniques of optical fiber composite power cable in smart grid

    NASA Astrophysics Data System (ADS)

    Sun, Zhihui; Liu, Yuan; Wang, Chang; Liu, Tongyu

    2011-11-01

    Optical fiber composite power cable such as optical phase conductor (OPPC) is significant for the development of smart grid. This paper discusses the distributed cable condition monitoring techniques of the OPPC, which adopts embedded single-mode fiber as the sensing medium. By applying optical time domain reflection and laser Raman scattering, high-resolution spatial positioning and high-precision distributed temperature measurement is executed. And the OPPC cable condition parameters including temperature and its location, current carrying capacity, and location of fracture and loss can be monitored online. OPPC cable distributed condition monitoring experimental system is set up, and the main parts including pulsed fiber laser, weak Raman signal reception, high speed acquisition and cumulative average processing, temperature demodulation and current carrying capacity analysis are introduced. The distributed cable condition monitoring techniques of the OPPC is significant for power transmission management and security.

  6. National Scale Monitoring Reporting and Verification of Deforestation and Forest Degradation in Guyana

    NASA Astrophysics Data System (ADS)

    Bholanath, P.; Cort, K.

    2015-04-01

    Monitoring deforestation and forest degradation at national scale has been identified as a national priority under Guyana's REDD+ Programme. Based on Guyana's MRV (Monitoring Reporting and Verification) System Roadmap developed in 2009, Guyana sought to establish a comprehensive, national system to monitor, report and verify forest carbon emissions resulting from deforestation and forest degradation in Guyana. To date, four national annual assessments have been conducted: 2010, 2011, 2012 and 2013. Monitoring of forest change in 2010 was completed with medium resolution imagery, mainly Landsat 5. In 2011, assessment was conducted using a combination of Landsat (5 and 7) and for the first time, 5m high resolution imagery, with RapidEye coverage for approximately half of Guyana where majority of land use changes were taking place. Forest change in 2013 was determined using high resolution imagery for the whole of Guyana. The current method is an automated-assisted process of careful systematic manual interpretation of satellite imagery to identify deforestation based on different drivers of change. The minimum mapping unit (MMU) for deforestation is 1 ha (Guyana's forest definition) and a country-specific definition of 0.25 ha for degradation. The total forested area of Guyana is estimated as 18.39 million hectares (ha). In 2012 as planned, Guyana's forest area was reevaluated using RapidEye 5 m imagery. Deforestation in 2013 is estimated at 12 733 ha which equates to a total deforestation rate of 0.068%. Significant progress was made in 2012 and 2013, in mapping forest degradation. The area of forest degradation as measured by interpretation of 5 m RapidEye satellite imagery in 2013 was 4 352 ha. All results are subject to accuracy assessment and independent third party verification.

  7. Teshekpuk Lake, Alaska

    NASA Technical Reports Server (NTRS)

    2006-01-01

    This ASTER image of Teshekpuk Lake on Alaska's North Slope, within the National Petroleum Reserve, was acquired on August 15, 2000. It covers an area of 58.7 x 89.9 km, and is centered near 70.4 degrees north latitude, 153 degrees west longitude.

    With its 14 spectral bands from the visible to the thermal infrared wavelength region, and its high spatial resolution of 15 to 90 meters (about 50 to 300 feet), ASTER images Earth to map and monitor the changing surface of our planet.

    ASTER is one of five Earth-observing instruments launched December 18, 1999, on NASA's Terra satellite. The instrument was built by Japan's Ministry of Economy, Trade and Industry. A joint U.S./Japan science team is responsible for validation and calibration of the instrument and the data products.

    The broad spectral coverage and high spectral resolution of ASTER provides scientists in numerous disciplines with critical information for surface mapping, and monitoring of dynamic conditions and temporal change. Example applications are: monitoring glacial advances and retreats; monitoring potentially active volcanoes; identifying crop stress; determining cloud morphology and physical properties; wetlands evaluation; thermal pollution monitoring; coral reef degradation; surface temperature mapping of soils and geology; and measuring surface heat balance.

    The U.S. science team is located at NASA's Jet Propulsion Laboratory, Pasadena, Calif. The Terra mission is part of NASA's Science Mission Directorate.

    Size: 58.7 by 89.9 kilometers (36.4 by 55.7 miles) Location: 70.4 degrees North latitude, 153 degrees West longitude Orientation: North at top Image Data: ASTER Bands 3, 2, and 1 Original Data Resolution: ASTER 30 meters (98.4 feet) Dates Acquired: August 15, 2000

  8. Getting to the point: Rapid point selection and variable density InSAR time series for urban deformation monitoring

    NASA Astrophysics Data System (ADS)

    Spaans, K.; Hooper, A. J.

    2017-12-01

    The short revisit time and high data acquisition rates of current satellites have resulted in increased interest in the development of deformation monitoring and rapid disaster response capability, using InSAR. Fast, efficient data processing methodologies are required to deliver the timely results necessary for this, and also to limit computing resources required to process the large quantities of data being acquired. Contrary to volcano or earthquake applications, urban monitoring requires high resolution processing, in order to differentiate movements between buildings, or between buildings and the surrounding land. Here we present Rapid time series InSAR (RapidSAR), a method that can efficiently update high resolution time series of interferograms, and demonstrate its effectiveness over urban areas. The RapidSAR method estimates the coherence of pixels on an interferogram-by-interferogram basis. This allows for rapid ingestion of newly acquired images without the need to reprocess the earlier acquired part of the time series. The coherence estimate is based on ensembles of neighbouring pixels with similar amplitude behaviour through time, which are identified on an initial set of interferograms, and need be re-evaluated only occasionally. By taking into account scattering properties of points during coherence estimation, a high quality coherence estimate is achieved, allowing point selection at full resolution. The individual point selection maximizes the amount of information that can be extracted from each interferogram, as no selection compromise has to be reached between high and low coherence interferograms. In other words, points do not have to be coherent throughout the time series to contribute to the deformation time series. We demonstrate the effectiveness of our method over urban areas in the UK. We show how the algorithm successfully extracts high density time series from full resolution Sentinel-1 interferograms, and distinguish clearly between buildings and surrounding vegetation or streets. The fact that new interferograms can be processed separately from the remainder of the time series helps manage the high data volumes, both in space and time, generated by current missions.

  9. Large Observatory for x-ray Timing (LOFT-P): a Probe-class mission concept study

    NASA Astrophysics Data System (ADS)

    Wilson-Hodge, Colleen A.; Ray, Paul S.; Chakrabarty, Deepto; Feroci, Marco; Alvarez, Laura; Baysinger, Michael; Becker, Chris; Bozzo, Enrico; Brandt, Soren; Carson, Billy; Chapman, Jack; Dominguez, Alexandra; Fabisinski, Leo; Gangl, Bert; Garcia, Jay; Griffith, Christopher; Hernanz, Margarita; Hickman, Robert; Hopkins, Randall; Hui, Michelle; Ingram, Luster; Jenke, Peter; Korpela, Seppo; Maccarone, Tom; Michalska, Malgorzata; Pohl, Martin; Santangelo, Andrea; Schanne, Stephane; Schnell, Andrew; Stella, Luigi; van der Klis, Michiel; Watts, Anna; Winter, Berend; Zane, Silvia

    2016-07-01

    LOFT-P is a mission concept for a NASA Astrophysics Probe-Class (<$1B) X-ray timing mission, based on the LOFT M-class concept originally proposed to ESAs M3 and M4 calls. LOFT-P requires very large collecting area, high time resolution, good spectral resolution, broad-band spectral coverage (2-30 keV), highly flexible scheduling, and an ability to detect and respond promptly to time-critical targets of opportunity. It addresses science questions such as: What is the equation of state of ultra dense matter? What are the effects of strong gravity on matter spiraling into black holes? It would be optimized for sub-millisecond timing of bright Galactic X-ray sources including X-ray bursters, black hole binaries, and magnetars to study phenomena at the natural timescales of neutron star surfaces and black hole event horizons and to measure mass and spin of black holes. These measurements are synergistic to imaging and high-resolution spectroscopy instruments, addressing much smaller distance scales than are possible without very long baseline X-ray interferometry, and using complementary techniques to address the geometry and dynamics of emission regions. LOFT-P would have an effective area of >6 m2, > 10x that of the highly successful Rossi X-ray Timing Explorer (RXTE). A sky monitor (2-50 keV) acts as a trigger for pointed observations, providing high duty cycle, high time resolution monitoring of the X-ray sky with 20 times the sensitivity of the RXTE All-Sky Monitor, enabling multi-wavelength and multimessenger studies. A probe-class mission concept would employ lightweight collimator technology and large-area solid-state detectors, segmented into pixels or strips, technologies which have been recently greatly advanced during the ESA M3 Phase A study of LOFT. Given the large community interested in LOFT (>800 supporters*, the scientific productivity of this mission is expected to be very high, similar to or greater than RXTE ( 2000 refereed publications). We describe the results of a study, recently completed by the MSFC Advanced Concepts Office, that demonstrates that such a mission is feasible within a NASA probe-class mission budget.

  10. High Resolution Radioluminescence Microscopy for the Study of Prostate Tissue Slice Cell Metabolism and Monitoring of Treatment Response

    DTIC Science & Technology

    2016-12-01

    REPORT DATE : December 2016 TYPE OF REPORT: Final PREPARED FOR: U.S. Army Medical Research and Materiel Command Fort Detrick, Maryland 21702-5012...display a currently valid OMB control number. PLEASE DO NOT RETURN YOUR FORM TO THE ABOVE ADDRESS. 1. REPORT DATE (DD-MM-YYYY) December 2016 2. REPORT...TYPE Final 3. DATES COVERED (From - To) 30Sept2014 - 29Sept2016 4. TITLE AND SUBTITLE Monitoring of Treatment Response 5a. CONTRACT NUMBER High

  11. Image Fusion Applied to Satellite Imagery for the Improved Mapping and Monitoring of Coral Reefs: a Proposal

    NASA Astrophysics Data System (ADS)

    Gholoum, M.; Bruce, D.; Hazeam, S. Al

    2012-07-01

    A coral reef ecosystem, one of the most complex marine environmental systems on the planet, is defined as biologically diverse and immense. It plays an important role in maintaining a vast biological diversity for future generations and functions as an essential spawning, nursery, breeding and feeding ground for many kinds of marine species. In addition, coral reef ecosystems provide valuable benefits such as fisheries, ecological goods and services and recreational activities to many communities. However, this valuable resource is highly threatened by a number of environmental changes and anthropogenic impacts that can lead to reduced coral growth and production, mass coral mortality and loss of coral diversity. With the growth of these threats on coral reef ecosystems, there is a strong management need for mapping and monitoring of coral reef ecosystems. Remote sensing technology can be a valuable tool for mapping and monitoring of these ecosystems. However, the diversity and complexity of coral reef ecosystems, the resolution capabilities of satellite sensors and the low reflectivity of shallow water increases the difficulties to identify and classify its features. This paper reviews the methods used in mapping and monitoring coral reef ecosystems. In addition, this paper proposes improved methods for mapping and monitoring coral reef ecosystems based on image fusion techniques. This image fusion techniques will be applied to satellite images exhibiting high spatial and low to medium spectral resolution with images exhibiting low spatial and high spectral resolution. Furthermore, a new method will be developed to fuse hyperspectral imagery with multispectral imagery. The fused image will have a large number of spectral bands and it will have all pairs of corresponding spatial objects. This will potentially help to accurately classify the image data. Accuracy assessment use ground truth will be performed for the selected methods to determine the quality of the information derived from image classification. The research will be applied to the Kuwait's southern coral reefs: Kubbar and Um Al-Maradim.

  12. On the potential of RST approach for a continuous monitoring of flooded areas

    NASA Astrophysics Data System (ADS)

    Faruolo, Mariapia; Coviello, Irina; Lacava, Teodosio; Pergola, Nicola; Tramutoli, Valerio

    2010-05-01

    In recent decades many efforts have been made in the field of remote sensing for the management of flood risk. In fact, among all natural disasters floods are probably the most frequent, causing high human suffering and large losses. All activities designed to mitigate and manage flood risk, in order to be effective and to help civil protection agencies in limiting losses of life, human suffering and damages, need of timely information about the onset of floods, their extent, intensity and duration. At present, sensors aboard meteorological satellites, mainly thanks to their high temporal resolution, may furnish frequent and updated images, ensuring a continuous monitoring of areas involved by a flood. In particular, optical instruments on board polar satellites, like NOAA-AVHRR (National Oceanic and Atmospheric Administration-Advanced Very High Resolution Radiometer) and more recently EOS-MODIS (Earth Observing System-Moderate Resolution Imaging Spectroradiometer) have been used for dynamic flood monitoring. A robust methodology for satellite based flood monitoring and detection, named RST (Robust Satellite Technique), has been recently developed and implemented using data acquired by AVHRR and MODIS to identify flooded areas with reliability and timeliness. Such an approach, based on a multi-temporal analysis of co-located satellite records and an automatic change detection scheme, has been used to analyze floods occurred in different geographic areas and observational conditions. In detail, in order to identify flooded areas within the region of interest, the spectral behavior of water in the visible (VIS) and near infrared (NIR) bands of such satellite systems has been successfully exploited. Starting from these satisfactory results, the main purpose of this paper is to show, in the case of several flooding events occurred recently in different parts of the world, the achievements arising from the use of such methodology also to data acquired in the thermal infrared (TIR) region in order to guarantee a continuous monitoring of flooded areas both during night and day.

  13. High-Resolution Monitoring of Soil Water Dynamics in a Vegetated Hillslope by Active Distributed Temperature Sensing

    NASA Astrophysics Data System (ADS)

    Ciocca, F.; Krause, S.; Blaen, P.; Hannah, D. M.; Chalari, A.; Mondanos, M.; Abesser, C.

    2016-12-01

    Water and thermal conditions in the shallow vadose zone can be very complex and dynamic across a range of spatiotemporal scales. The efficient analysis of such dynamics requires technologies capable of precise and high-resolution monitoring of soil temperature and moisture across multiple scales. Optical fibre distributed temperature sensors (DTS) allows for precise temperature measurements at high spatio-temporal resolution, over several kilometres of optical fibre cable. In addition to passive temperature monitoring, hybrid optical cables with embedded metal conductors can be electrically heated and allow for distributed heat pulses. Such Active-DTS technique involves the analysis of temperatures during both heating and cooling phases of an optical fibre cable buried in the soil in order to provide distributed soil moisture estimates. In summer 2015, three loops of a 500m hybrid-optical cable have been deployed at 10cm, 25cm and 40cm depths along a hillslope with juvenile forest. Active-DTS surveys have been conducted with the aim to: (i) monitor the post-installation soil settling around the cable; (ii) analyse different heating strategies (intensity, duration) of the cable; (iii) establish a method for inferring soil moisture from Active-DTS results and validate with independent soil moisture readings from point probes; (iv) monitor the soil moisture response to short forcing events such as storms and artificial irrigation. Results from the surveys will be presented, and first assumptions on how the obtained soil water dynamics can be associated to specific triggers such as precipitation, evapotranspiration, soil inclination, will be discussed. This research is part of the British National Environmental Research Council (NERC) funded Distributed intelligent Heat Pulse System (DiHPS) project and is realised in the context of the Free Air Carbon Enrichment (FACE) experiment, in collaboration with the Birmingham Institute of Forest Research (BIFoR).

  14. Embedded Implementation of VHR Satellite Image Segmentation

    PubMed Central

    Li, Chao; Balla-Arabé, Souleymane; Ginhac, Dominique; Yang, Fan

    2016-01-01

    Processing and analysis of Very High Resolution (VHR) satellite images provide a mass of crucial information, which can be used for urban planning, security issues or environmental monitoring. However, they are computationally expensive and, thus, time consuming, while some of the applications, such as natural disaster monitoring and prevention, require high efficiency performance. Fortunately, parallel computing techniques and embedded systems have made great progress in recent years, and a series of massively parallel image processing devices, such as digital signal processors or Field Programmable Gate Arrays (FPGAs), have been made available to engineers at a very convenient price and demonstrate significant advantages in terms of running-cost, embeddability, power consumption flexibility, etc. In this work, we designed a texture region segmentation method for very high resolution satellite images by using the level set algorithm and the multi-kernel theory in a high-abstraction C environment and realize its register-transfer level implementation with the help of a new proposed high-level synthesis-based design flow. The evaluation experiments demonstrate that the proposed design can produce high quality image segmentation with a significant running-cost advantage. PMID:27240370

  15. Development of a High-Sensitivity Wireless Accelerometer for Structural Health Monitoring

    PubMed Central

    Zhu, Li; Fu, Yuguang; Chow, Raymond; Spencer, Billie F.; Park, Jong Woong; Mechitov, Kirill

    2018-01-01

    Structural health monitoring (SHM) is playing an increasingly important role in ensuring the safety of structures. A shift of SHM research away from traditional wired methods toward the use of wireless smart sensors (WSS) has been motivated by the attractive features of wireless smart sensor networks (WSSN). The progress achieved in Micro Electro-Mechanical System (MEMS) technologies and wireless data transmission, has extended the effectiveness and range of applicability of WSSNs. One of the most common sensors employed in SHM strategies is the accelerometer; however, most accelerometers in WSS nodes have inadequate resolution for measurement of the typical accelerations found in many SHM applications. In this study, a high-resolution and low-noise tri-axial digital MEMS accelerometer is incorporated in a next-generation WSS platform, the Xnode. In addition to meeting the acceleration sensing demands of large-scale civil infrastructure applications, this new WSS node provides powerful hardware and a robust software framework to enable edge computing that can deliver actionable information. Hardware and software integration challenges are presented, and the associate resolutions are discussed. The performance of the wireless accelerometer is demonstrated experimentally through comparison with high-sensitivity wired accelerometers. This new high-sensitivity wireless accelerometer will extend the use of WSSN to a broader class of SHM applications. PMID:29342102

  16. Development of a High-Sensitivity Wireless Accelerometer for Structural Health Monitoring.

    PubMed

    Zhu, Li; Fu, Yuguang; Chow, Raymond; Spencer, Billie F; Park, Jong Woong; Mechitov, Kirill

    2018-01-17

    Structural health monitoring (SHM) is playing an increasingly important role in ensuring the safety of structures. A shift of SHM research away from traditional wired methods toward the use of wireless smart sensors (WSS) has been motivated by the attractive features of wireless smart sensor networks (WSSN). The progress achieved in Micro Electro-Mechanical System (MEMS) technologies and wireless data transmission, has extended the effectiveness and range of applicability of WSSNs. One of the most common sensors employed in SHM strategies is the accelerometer; however, most accelerometers in WSS nodes have inadequate resolution for measurement of the typical accelerations found in many SHM applications. In this study, a high-resolution and low-noise tri-axial digital MEMS accelerometer is incorporated in a next-generation WSS platform, the Xnode. In addition to meeting the acceleration sensing demands of large-scale civil infrastructure applications, this new WSS node provides powerful hardware and a robust software framework to enable edge computing that can deliver actionable information. Hardware and software integration challenges are presented, and the associate resolutions are discussed. The performance of the wireless accelerometer is demonstrated experimentally through comparison with high-sensitivity wired accelerometers. This new high-sensitivity wireless accelerometer will extend the use of WSSN to a broader class of SHM applications.

  17. ASTER Images San Francisco Bay Area

    NASA Technical Reports Server (NTRS)

    2000-01-01

    This image of the San Francisco Bay region was acquired on March 3, 2000 by the Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER) on NASA's Terra satellite. With its 14 spectral bands from the visible to the thermal infrared wavelength region, and its high spatial resolution of 15 to 90 meters about 50 to 300 feet ), ASTER will image Earth for the next 6 years to map and monitor the changing surface of our planet.

    Image: This image covers an area 60 kilometers (37 miles) wide and 75 kilometers (47 miles) long in three bands of the reflected visible and infrared wavelength region. The combination of bands portrays vegetation in red, and urban areas in gray. Sediment in the Suisun Bay, San Pablo Bay, San Francisco Bay, and the Pacific Ocean shows up as lighter shades of blue. Along the west coast of the San Francisco Peninsula, strong surf can be seen as a white fringe along the shoreline. A powerful rip tide is visible extending westward from Daly City into the Pacific Ocean. In the lower right corner, the wetlands of the South San Francisco Bay National Wildlife Refuge appear as large dark blue and brown polygons. The high spatial resolution of ASTER allows fine detail to be observed in the scene. The main bridges of the area (San Mateo, San Francisco-Oakland Bay, Golden Gate, Richmond-San Rafael, Benicia-Martinez, and Carquinez) are easily picked out, connecting the different communities in the Bay area. Shadows of the towers along the Bay Bridge can be seen over the adjacent bay water. With enlargement the entire road network can be easily mapped; individual buildings are visible, including the shadows of the high-rises in downtown San Francisco.

    Inset: This enlargement of the San Francisco Airport highlights the high spatial resolution of ASTER. With further enlargement and careful examination, airplanes can be seen at the terminals.

    Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER) is one of five Earth-observing instruments launched December 18, 1999, on NASA's Terra satellite. The instrument was built by Japan's Ministry of International Trade and Industry. A joint U.S./Japan science team is responsible for validation and calibration of the instrument and the data products. Dr. Anne Kahle at NASA's Jet Propulsion Laboratory, Pasadena, California, is the U.S. Science team leader; Moshe Pniel of JPL is the project manager. ASTER is the only high resolution imaging sensor on Terra. The primary goal of the ASTER mission is to obtain high-resolution image data in 14 channels over the entire land surface, as well as black and white stereo images. With revisit time of between 4 and 16 days, ASTER will provide the capability for repeat coverage of changing areas on Earth's surface.

    The broad spectral coverage and high spectral resolution of ASTER will provide scientists in numerous disciplines with critical information for surface mapping, and monitoring dynamic conditions and temporal change. Example applications are: monitoring glacial advances and retreats; monitoring potentially active volcanoes; identifying crop stress; determining cloud morphology and physical properties; wetlands evaluation; thermal pollution monitoring; coral reef degradation; surface temperature mapping of soils and geology; and measuring surface heat balance.

  18. Monitoring the Impacts of Wildfires on Forest Ecosystems and Public Health in the Exo-Urban Environment Using High-Resolution Satellite Aerosol Products from the Visible Infrared Imaging Radiometer Suite (VIIRS).

    PubMed

    Huff, Amy K; Kondragunta, Shobha; Zhang, Hai; Hoff, Raymond M

    2015-01-01

    Increasing development of exo-urban environments and the spread of urbanization into forested areas is making humans and forest ecosystems more susceptible to the risks associated with wildfires. Larger and more damaging wildfires are having a negative impact on forest ecosystem services, and smoke from wildfires adversely affects the public health of people living in exo-urban environments. Satellite aerosol measurements are valuable tools that can track the evolution of wildfires and monitor the transport of smoke plumes. Operational users, such as air quality forecasters and fire management officials, can use satellite observations to complement ground-based and aircraft measurements of wildfire activity. To date, wildfire applications of satellite aerosol products, such as aerosol optical depth (AOD), have been limited by the relatively coarse resolution of available AOD data. However, the new Visible Infrared Imaging Radiometer Suite (VIIRS) instrument on the Suomi National Polar-orbiting Partnership (S-NPP) satellite has high-resolution AOD that is ideally suited to monitoring wildfire impacts on the exo-urban scale. Two AOD products are available from VIIRS: the 750-m × 750-m nadir resolution Intermediate Product (IP) and the 6-km × 6-km resolution Environmental Data Record product, which is aggregated from IP measurements. True color (red, green, and blue [RGB]) imagery and a smoke mask at 750-m × 750-m resolution are also available from VIIRS as decision aids for wildfire applications; they serve as counterparts to AOD measurements by providing visible information about areas of smoke in the atmosphere. To meet the needs of operational users, who do not have time to process raw data files and need access to VIIRS products in near-real time (NRT), VIIRS AOD and RGB NRT imagery are available from the Infusing satellite Data into Environmental Applications (IDEA) web site. A key feature of IDEA is an interactive visualization tool that allows users to display tailored combinations of AOD and RGB imagery, as well as overlay the VIIRS smoke mask and fire hotspots at pixel resolution (~750-m × 750-m), and zoom into the county level. Two case studies of recent wildfires in the Western US are presented to show how operational users can access and display VIIRS aerosol products to monitor the transport of smoke plumes and evolution of fires in the exo-urban environment on the regional and county scales. The new National Oceanic and Atmospheric Administration (NOAA) Western Region Fire and Smoke Initiative is also discussed, which will enhance IDEA to allow visualization of VIIRS aerosol products down to the neighborhood scale. The new high-resolution VIIRS aerosol products can be used for NRT monitoring of human exposure to smoke, and they can be used to gauge the spread of fires and, thus, provide advanced warning for evacuations and fire suppression efforts, thereby reducing risks to human populations and forest ecosystems in the exo-urban environment.

  19. Monitoring the Impacts of Wildfires on Forest Ecosystems and Public Health in the Exo-Urban Environment Using High-Resolution Satellite Aerosol Products from the Visible Infrared Imaging Radiometer Suite (VIIRS)

    PubMed Central

    Huff, Amy K; Kondragunta, Shobha; Zhang, Hai; Hoff, Raymond M

    2015-01-01

    Increasing development of exo-urban environments and the spread of urbanization into forested areas is making humans and forest ecosystems more susceptible to the risks associated with wildfires. Larger and more damaging wildfires are having a negative impact on forest ecosystem services, and smoke from wildfires adversely affects the public health of people living in exo-urban environments. Satellite aerosol measurements are valuable tools that can track the evolution of wildfires and monitor the transport of smoke plumes. Operational users, such as air quality forecasters and fire management officials, can use satellite observations to complement ground-based and aircraft measurements of wildfire activity. To date, wildfire applications of satellite aerosol products, such as aerosol optical depth (AOD), have been limited by the relatively coarse resolution of available AOD data. However, the new Visible Infrared Imaging Radiometer Suite (VIIRS) instrument on the Suomi National Polar-orbiting Partnership (S-NPP) satellite has high-resolution AOD that is ideally suited to monitoring wildfire impacts on the exo-urban scale. Two AOD products are available from VIIRS: the 750-m × 750-m nadir resolution Intermediate Product (IP) and the 6-km × 6-km resolution Environmental Data Record product, which is aggregated from IP measurements. True color (red, green, and blue [RGB]) imagery and a smoke mask at 750-m × 750-m resolution are also available from VIIRS as decision aids for wildfire applications; they serve as counterparts to AOD measurements by providing visible information about areas of smoke in the atmosphere. To meet the needs of operational users, who do not have time to process raw data files and need access to VIIRS products in near-real time (NRT), VIIRS AOD and RGB NRT imagery are available from the Infusing satellite Data into Environmental Applications (IDEA) web site. A key feature of IDEA is an interactive visualization tool that allows users to display tailored combinations of AOD and RGB imagery, as well as overlay the VIIRS smoke mask and fire hotspots at pixel resolution (~750-m × 750-m), and zoom into the county level. Two case studies of recent wildfires in the Western US are presented to show how operational users can access and display VIIRS aerosol products to monitor the transport of smoke plumes and evolution of fires in the exo-urban environment on the regional and county scales. The new National Oceanic and Atmospheric Administration (NOAA) Western Region Fire and Smoke Initiative is also discussed, which will enhance IDEA to allow visualization of VIIRS aerosol products down to the neighborhood scale. The new high-resolution VIIRS aerosol products can be used for NRT monitoring of human exposure to smoke, and they can be used to gauge the spread of fires and, thus, provide advanced warning for evacuations and fire suppression efforts, thereby reducing risks to human populations and forest ecosystems in the exo-urban environment. PMID:26078588

  20. Distribution of cattle grazing in a northeastern Oregon riparian pasture

    USDA-ARS?s Scientific Manuscript database

    Livestock grazing of a northeastern Oregon riparian pasture was monitored using high-frequency GPS tracking of cattle and high-resolution aerial photography. Tracking collars recorded positions, velocity, date, and time at 1-sec intervals. Areas where animals rested and moved were identified and re...

  1. Culturing of avian embryos for time-lapse imaging.

    PubMed

    Rupp, Paul A; Rongish, Brenda J; Czirok, Andras; Little, Charles D

    2003-02-01

    Monitoring morphogenetic processes, at high resolution over time, has been a long-standing goal of many developmental cell biologists. It is critical to image cells in their natural environment whenever possible; however, imaging many warm-blooded vertebrates, especially mammals, is problematic. At early stages of development, birds are ideal for imaging, since the avian body plan is very similar to that of mammals. We have devised a culturing technique that allows for the acquisition of high-resolution differential interference contrast and epifluorescence images of developing avian embryos in a 4-D (3-D + time) system. The resulting information, from intact embryos, is derived from an area encompassing several millimeters, at micrometer resolution for up to 30 h.

  2. High-resolution forest carbon stocks and emissions in the Amazon.

    PubMed

    Asner, Gregory P; Powell, George V N; Mascaro, Joseph; Knapp, David E; Clark, John K; Jacobson, James; Kennedy-Bowdoin, Ty; Balaji, Aravindh; Paez-Acosta, Guayana; Victoria, Eloy; Secada, Laura; Valqui, Michael; Hughes, R Flint

    2010-09-21

    Efforts to mitigate climate change through the Reduced Emissions from Deforestation and Degradation (REDD) depend on mapping and monitoring of tropical forest carbon stocks and emissions over large geographic areas. With a new integrated use of satellite imaging, airborne light detection and ranging, and field plots, we mapped aboveground carbon stocks and emissions at 0.1-ha resolution over 4.3 million ha of the Peruvian Amazon, an area twice that of all forests in Costa Rica, to reveal the determinants of forest carbon density and to demonstrate the feasibility of mapping carbon emissions for REDD. We discovered previously unknown variation in carbon storage at multiple scales based on geologic substrate and forest type. From 1999 to 2009, emissions from land use totaled 1.1% of the standing carbon throughout the region. Forest degradation, such as from selective logging, increased regional carbon emissions by 47% over deforestation alone, and secondary regrowth provided an 18% offset against total gross emissions. Very high-resolution monitoring reduces uncertainty in carbon emissions for REDD programs while uncovering fundamental environmental controls on forest carbon storage and their interactions with land-use change.

  3. A Comparison of Mangrove Canopy Height Using Multiple Independent Measurements from Land, Air, and Space

    NASA Technical Reports Server (NTRS)

    Lagomasino, David; Fatoyinbo, Temilola; Lee, SeungKuk; Feliciano, Emanuelle; Trettin, Carl; Simard, Marc

    2016-01-01

    Canopy height is one of the strongest predictors of biomass and carbon in forested ecosystems. Additionally, mangrove ecosystems represent one of the most concentrated carbon reservoirs that are rapidly degrading as a result of deforestation, development, and hydrologic manipulation. Therefore, the accuracy of Canopy Height Models (CHM) over mangrove forest can provide crucial information for monitoring and verification protocols. We compared four CHMs derived from independent remotely sensed imagery and identified potential errors and bias between measurement types. CHMs were derived from three spaceborne datasets; Very-High Resolution (VHR) stereophotogrammetry, TerraSAR-X add-on for Digital Elevation Measurement (DEM), and Shuttle Radar Topography Mission (TanDEM-X), and lidar data which was acquired from an airborne platform. Each dataset exhibited different error characteristics that were related to spatial resolution, sensitivities of the sensors, and reference frames. Canopies over 10 meters were accurately predicted by all CHMs while the distributions of canopy height were best predicted by the VHR CHM. Depending on the guidelines and strategies needed for monitoring and verification activities, coarse resolution CHMs could be used to track canopy height at regional and global scales with finer resolution imagery used to validate and monitor critical areas undergoing rapid changes.

  4. A Comparison of Mangrove Canopy Height Using Multiple Independent Measurements from Land, Air, and Space

    PubMed Central

    Lagomasino, David; Fatoyinbo, Temilola; Lee, SeungKuk; Feliciano, Emanuelle; Trettin, Carl; Simard, Marc

    2017-01-01

    Canopy height is one of the strongest predictors of biomass and carbon in forested ecosystems. Additionally, mangrove ecosystems represent one of the most concentrated carbon reservoirs that are rapidly degrading as a result of deforestation, development, and hydrologic manipulation. Therefore, the accuracy of Canopy Height Models (CHM) over mangrove forest can provide crucial information for monitoring and verification protocols. We compared four CHMs derived from independent remotely sensed imagery and identified potential errors and bias between measurement types. CHMs were derived from three spaceborne datasets; Very-High Resolution (VHR) stereophotogrammetry, TerraSAR-X add-on for Digital Elevation Measurement, and Shuttle Radar Topography Mission (TanDEM-X), and lidar data which was acquired from an airborne platform. Each dataset exhibited different error characteristics that were related to spatial resolution, sensitivities of the sensors, and reference frames. Canopies over 10 m were accurately predicted by all CHMs while the distributions of canopy height were best predicted by the VHR CHM. Depending on the guidelines and strategies needed for monitoring and verification activities, coarse resolution CHMs could be used to track canopy height at regional and global scales with finer resolution imagery used to validate and monitor critical areas undergoing rapid changes. PMID:29629207

  5. A sensitivity analysis on seismic tomography data with respect to CO2 saturation of a CO2 geological sequestration field

    NASA Astrophysics Data System (ADS)

    Park, Chanho; Nguyen, Phung K. T.; Nam, Myung Jin; Kim, Jongwook

    2013-04-01

    Monitoring CO2 migration and storage in geological formations is important not only for the stability of geological sequestration of CO2 but also for efficient management of CO2 injection. Especially, geophysical methods can make in situ observation of CO2 to assess the potential leakage of CO2 and to improve reservoir description as well to monitor development of geologic discontinuity (i.e., fault, crack, joint, etc.). Geophysical monitoring can be based on wireline logging or surface surveys for well-scale monitoring (high resolution and nallow area of investigation) or basin-scale monitoring (low resolution and wide area of investigation). In the meantime, crosswell tomography can make reservoir-scale monitoring to bridge the resolution gap between well logs and surface measurements. This study focuses on reservoir-scale monitoring based on crosswell seismic tomography aiming describe details of reservoir structure and monitoring migration of reservoir fluid (water and CO2). For the monitoring, we first make a sensitivity analysis on crosswell seismic tomography data with respect to CO2 saturation. For the sensitivity analysis, Rock Physics Models (RPMs) are constructed by calculating the values of density and P and S-wave velocities of a virtual CO2 injection reservoir. Since the seismic velocity of the reservoir accordingly changes as CO2 saturation changes when the CO2 saturation is less than about 20%, while when the CO2 saturation is larger than 20%, the seismic velocity is insensitive to the change, sensitivity analysis is mainly made when CO2 saturation is less than 20%. For precise simulation of seismic tomography responses for constructed RPMs, we developed a time-domain 2D elastic modeling based on finite difference method with a staggered grid employing a boundary condition of a convolutional perfectly matched layer. We further make comparison between sensitivities of seismic tomography and surface measurements for RPMs to analysis resolution difference between them. Moreover, assuming a similar reservoir situation to the CO2 storage site in Nagaoka, Japan, we generate time-lapse tomographic data sets for the corresponding CO2 injection process, and make a preliminary interpretation of the data sets.

  6. Robot Tracer with Visual Camera

    NASA Astrophysics Data System (ADS)

    Jabbar Lubis, Abdul; Dwi Lestari, Yuyun; Dafitri, Haida; Azanuddin

    2017-12-01

    Robot is a versatile tool that can function replace human work function. The robot is a device that can be reprogrammed according to user needs. The use of wireless networks for remote monitoring needs can be utilized to build a robot that can be monitored movement and can be monitored using blueprints and he can track the path chosen robot. This process is sent using a wireless network. For visual robot using high resolution cameras to facilitate the operator to control the robot and see the surrounding circumstances.

  7. STROBE-X: X-ray Timing & Spectroscopy on Dynamical Timescales from Milliseconds to Years

    NASA Technical Reports Server (NTRS)

    Wilson-Hodge, Colleen A.; Ray, P. S.; Maccarone, T; Chakrabarty, D.; Gendreau, K.; Arzoumanian, Z.; Jenke, P.; Ballantyne, D.; Bozzo, E.; Brandt, S.; hide

    2018-01-01

    We describe a probe-class mission concept that provides an unprecedented view of the X-ray sky, performing timing and 0.2-30 keV spectroscopy over timescales from microseconds to years. The Spectroscopic Time-Resolving Observatory for Broadband Energy X-rays (STROBE-X) comprises three primary instruments. The first uses an array of lightweight optics (3-m focal length) that concentrate incident photons onto solid state detectors with CCD-level (85-130 eV) energy resolution, 100 ns time resolution, and low background rates to cover the 0.2-12 keV band. This technology is scaled up from NICER [1], with enhanced optics to take advantage of the longer focal length of STROBE-X. The second uses large-area collimated silicon drift detectors, developed for ESA's LOFT [2], to cover the 2-30 keV band. These two instruments each provide an order of magnitude improvement in effective area compared with its predecessor (NICER and RXTE, respectively). Finally, a sensitive sky monitor triggers pointed observations, provides high duty cycle, high time resolution, high spectral resolution monitoring of the X-ray sky with approx. 20 times the sensitivity of the RXTE ASM, and enables multi-wavelength and multi-messenger studies on a continuous, rather than scanning basis. For the first time, the broad coverage provides simultaneous study of thermal components, non-thermal components, iron lines, and reflection features from a single platform for accreting black holes at all scales. The enormous collecting area allows detailed studies of the dense matter equation of state using both thermal emission from rotation-powered pulsars and harder emission from X-ray burst oscillations. The combination of the wide-field monitor and the sensitive pointed instruments enables observations of potential electromagnetic counterparts to LIGO and neutrino events. Additional extragalactic science, such as high quality spectroscopy of clusters of galaxies and unprecedented timing investigations of active galactic nuclei, is also obtained

  8. STROBE-X: X-Ray Timing Spectroscopy on Dynamical Timescales from Microseconds to Years

    NASA Technical Reports Server (NTRS)

    Wilson-Hodge, Colleen A.; Ray, P. S.; Gendreau, K.; Arzoumanian, Z.; Chakrabarty, D.; Remillard, R.; Feroci, M.; Maccarone, T.; Wood, K.; Jenke, P.

    2017-01-01

    We describe a probe-class mission concept that provides an unprecedented view of the X-ray sky, performing timing and 0.2-30 keV spectroscopy over timescales from microseconds to years. The Spectroscopic Time-Resolving Observatory for Broadband Energy X-rays (STROBE-X) comprises three primary instruments. The first uses an array of lightweight optics (3-m focal length) that concentrate incident photons onto solid state detectors with CCD-level (85-130 eV) energy resolution, 100 ns time resolution, and low background rates to cover the 0.2-12 keV band. This technology is scaled up from NICER, with enhanced optics to take advantage of the longer focal length of STROBE-X. The second uses large-area collimated silicon drift detectors, developed for ESA's LOFT, to cover the 2-30 keV band. These two instruments each provide an order of magnitude improvement in effective area compared with its predecessor (NICER and RXTE, respectively). Finally, a sensitive sky monitor triggers pointed observations, provides high duty cycle, high time resolution, high spectral resolution monitoring of the X-ray sky with approx. 20 times the sensitivity of the RXTE ASM, and enables multi-wavelength and multi-messenger studies on a continuous, rather than scanning basis.For the first time, the broad coverage provides simultaneous study of thermal components, non-thermal components, iron lines, and reflection features from a single platform for accreting black holes at all scales. The enormous collecting area allows detailed studies of the dense matter equation of state using both thermal emission from rotation-powered pulsars and harder emission from X-ray burst oscillations. The combination of the wide-field monitor and the sensitive pointed instruments enables observations of potential electromagnetic counterparts to LIGO and neutrino events. Additional extragalactic science, such as high quality spectroscopy of clusters of galaxies and unprecedented timing investigations of active galactic nuclei, is also obtained.

  9. STROBE-X: X-ray Timing & Spectroscopy on Dynamical Timescales from Microseconds to Years

    NASA Astrophysics Data System (ADS)

    Wilson-Hodge, Colleen A.; Ray, Paul S.; Gendreau, Keith; Chakrabarty, Deepto; Feroci, Marco; Maccarone, Thomas J.; Arzoumanian, Zaven; Remillard, Ronald A.; Wood, Kent; Griffith, Christopher; Jenke, Peter

    2017-08-01

    We describe a probe-class mission concept that provides an unprecedented view of the X-ray sky, performing timing and 0.2-30 keV spectroscopy over timescales from microseconds to years. The Spectroscopic Time-Resolving Observatory for Broadband Energy X-rays (STROBE-X) comprises three primary instruments. The first uses an array of lightweight optics (3-m focal length) that concentrate incident photons onto solid state detectors with CCD-level (85-130 eV) energy resolution, 100 ns time resolution, and low background rates to cover the 0.2-12 keV band. This technology is scaled up from NICER, with enhanced optics to take advantage of the longer focal length of STROBE-X. The second uses large-area collimated silicon drift detectors, developed for ESA's LOFT, to cover the 2-30 keV band. These two instruments each provide an order of magnitude improvement in effective area compared with its predecessor (NICER and RXTE, respectively). Finally, a sensitive sky monitor triggers pointed observations, provides high duty cycle, high time resolution, high spectral resolution monitoring of the X-ray sky with ~20 times the sensitivity of the RXTE ASM, and enables multi-wavelength and multi-messenger studies on a continuous, rather than scanning basis.For the first time, the broad coverage provides simultaneous study of thermal components, non-thermal components, iron lines, and reflection features from a single platform for accreting black holes at all scales. The enormous collecting area allows detailed studies of the dense matter equation of state using both thermal emission from rotation-powered pulsars and harder emission from X-ray burst oscillations. The combination of the wide-field monitor and the sensitive pointed instruments enables observations of potential electromagnetic counterparts to LIGO and neutrino events. Additional extragalactic science, such as high quality spectroscopy of clusters of galaxies and unprecedented timing investigations of active galactic nuclei, is also obtained.

  10. Radiofrequency Ablation, MR Thermometry, and High-Spatial-Resolution MR Parametric Imaging with a Single, Minimally Invasive Device.

    PubMed

    Ertürk, M Arcan; Sathyanarayana Hegde, Shashank; Bottomley, Paul A

    2016-12-01

    Purpose To develop and demonstrate in vitro and in vivo a single interventional magnetic resonance (MR)-active device that integrates the functions of precise identification of a tissue site with the delivery of radiofrequency (RF) energy for ablation, high-spatial-resolution thermal mapping to monitor thermal dose, and quantitative MR imaging relaxometry to document ablation-induced tissue changes for characterizing ablated tissue. Materials and Methods All animal studies were approved by the institutional animal care and use committee. A loopless MR imaging antenna composed of a tuned microcable either 0.8 or 2.2 mm in diameter with an extended central conductor was switched between a 3-T MR imaging unit and an RF power source to monitor and perform RF ablation in bovine muscle and human artery samples in vitro and in rabbits in vivo. High-spatial-resolution (250-300-μm) proton resonance frequency shift MR thermometry was interleaved with ablations. Quantitative spin-lattice (T1) and spin-spin (T2) relaxation time MR imaging mapping was performed before and after ablation. These maps were compared with findings from gross tissue examination of the region of ablated tissue after MR imaging. Results High-spatial-resolution MR imaging afforded temperature mapping in less than 8 seconds for monitoring ablation temperatures in excess of 85°C delivered by the same device. This produced irreversible thermal injury and necrosis. Quantitative MR imaging relaxation time maps demonstrated up to a twofold variation in mean regional T1 and T2 after ablation versus before ablation. Conclusion A simple, integrated, minimally invasive interventional probe that provides image-guided therapy delivery, thermal mapping of dose, and detection of ablation-associated MR imaging parametric changes was developed and demonstrated. With this single-device approach, coupling-related safety concerns associated with multiple conductor approaches were avoided. © RSNA, 2016 Online supplemental material is available for this article.

  11. Geostatistical uncertainty of assessing air quality using high-spatial-resolution lichen data: A health study in the urban area of Sines, Portugal.

    PubMed

    Ribeiro, Manuel C; Pinho, P; Branquinho, C; Llop, Esteve; Pereira, Maria J

    2016-08-15

    In most studies correlating health outcomes with air pollution, personal exposure assignments are based on measurements collected at air-quality monitoring stations not coinciding with health data locations. In such cases, interpolators are needed to predict air quality in unsampled locations and to assign personal exposures. Moreover, a measure of the spatial uncertainty of exposures should be incorporated, especially in urban areas where concentrations vary at short distances due to changes in land use and pollution intensity. These studies are limited by the lack of literature comparing exposure uncertainty derived from distinct spatial interpolators. Here, we addressed these issues with two interpolation methods: regression Kriging (RK) and ordinary Kriging (OK). These methods were used to generate air-quality simulations with a geostatistical algorithm. For each method, the geostatistical uncertainty was drawn from generalized linear model (GLM) analysis. We analyzed the association between air quality and birth weight. Personal health data (n=227) and exposure data were collected in Sines (Portugal) during 2007-2010. Because air-quality monitoring stations in the city do not offer high-spatial-resolution measurements (n=1), we used lichen data as an ecological indicator of air quality (n=83). We found no significant difference in the fit of GLMs with any of the geostatistical methods. With RK, however, the models tended to fit better more often and worse less often. Moreover, the geostatistical uncertainty results showed a marginally higher mean and precision with RK. Combined with lichen data and land-use data of high spatial resolution, RK is a more effective geostatistical method for relating health outcomes with air quality in urban areas. This is particularly important in small cities, which generally do not have expensive air-quality monitoring stations with high spatial resolution. Further, alternative ways of linking human activities with their environment are needed to improve human well-being. Copyright © 2016 Elsevier B.V. All rights reserved.

  12. Developing hydrological monitoring system based on HF radar for islands and reefs in the South China Sea

    NASA Astrophysics Data System (ADS)

    Li, J.; Shi, P.; Chen, J.; Zhu, Y.; Li, B.

    2016-12-01

    There are many islands (or reefs) in the South China Sea. The hydrological properties (currents and waves) around the islands are highly spatially variable compared to those of coastal region of mainland, because the shorelines are more complex with much smaller scale, and the topographies are step-shape with a much sharper slope. The currents and waves with high spatial variations may destroy the buildings or engineering on shorelines, or even influence the structural stability of reefs. Therefore, it is necessary to establish monitoring systems to obtain the high-resolution hydrological information. This study propose a plan for developing a hydrological monitoring system based on HF radar on the shoreline of a typical island in the southern South China Sea: firstly, the HF radar are integrated with auxiliary equipment (such as dynamo, fuel tank, air conditioner, communication facilities) in a container to build a whole monitoring platform; synchronously, several buoys are set within the radar visibility for data calibration and validation; and finally, the current and wave observations collected by the HF radar are assimilated with numerical models to obtain long-term and high-precision reanalysis products. To test the feasibility of this plan, our research group has built two HF radar sites at the western coastal region of Guangdong Province. The collected data were used to extract surface current information and assimilated with an ocean model. The results show that the data assimilation can highly improve the surface current simulation, especially for typhoon periods. Continuous data with intervals between 6 and 12 hour are the most suitable for ideal assimilations. On the other hand, the test also reveal that developing similar monitoring system on island environments need advanced radars that have higher resolutions and a better performance for persistent work.

  13. An Inexpensive High-Temporal Resolution Electronic Sun Journal for Monitoring Personal Day to Day Sun Exposure Patterns

    PubMed Central

    Downs, Nathan J.; Parisi, Alfio V.; Butler, Harry; Rawlings, Alex; Elrahoumi, Raja Salem

    2017-01-01

    Exposure to natural sunlight, specifically solar ultraviolet (UV) radiation contributes to lifetime risks of skin cancer, eye disease, and diseases associated with vitamin D insufficiency. Improved knowledge of personal sun exposure patterns can inform public health policy; and help target high-risk population groups. Subsequently, an extensive number of studies have been conducted to measure personal solar UV exposure in a variety of settings. Many of these studies, however, use digital or paper-based journals (self-reported volunteer recall), or employ cost prohibitive electronic UV dosimeters (that limit the size of sample populations), to estimate periods of exposure. A cost effective personal electronic sun journal (ESJ) built from readily available infrared photodiodes is presented in this research. The ESJ can be used to complement traditional UV dosimeters that measure total biologically effective exposure by providing a time-stamped sun exposure record. The ESJ can be easily attached to clothing and data logged to personal devices (including fitness monitors or smartphones). The ESJ improves upon self-reported exposure recording and is a cost effective high-temporal resolution option for monitoring personal sun exposure behavior in large population studies. PMID:29201865

  14. HPLC-high-resolution mass spectrometry with polarity switching for increasing throughput of human in vitro cocktail drug-drug interaction assay.

    PubMed

    Ramanathan, Ragu; Ghosal, Anima; Ramanathan, Lakshmi; Comstock, Kate; Shen, Helen; Ramanathan, Dil

    2018-05-01

    Evaluation of HPLC-high-resolution mass spectrometry (HPLC-HRMS) full scan with polarity switching for increasing throughput of human in vitro cocktail drug-drug interaction assay. Microsomal incubates were analyzed using a high resolution and high mass accuracy Q-Exactive mass spectrometer to collect integrated qualitative and quantitative (qual/quant) data. Within assay, positive-to-negative polarity switching HPLC-HRMS method allowed quantification of eight and two probe compounds in the positive and negative ionization modes, respectively, while monitoring for LOR and its metabolites. LOR-inhibited CYP2C19 and showed higher activity for CYP2D6, CYP2E1 and CYP3A4. Overall, LC-HRMS-based nontargeted full scan quantitation allowed to improve the throughput of the in vitro cocktail drug-drug interaction assay.

  15. Enhancing Conservation with High Resolution Productivity Datasets for the Conterminous United States

    NASA Astrophysics Data System (ADS)

    Robinson, Nathaniel Paul

    Human driven alteration of the earth's terrestrial surface is accelerating through land use changes, intensification of human activity, climate change, and other anthropogenic pressures. These changes occur at broad spatio-temporal scales, challenging our ability to effectively monitor and assess the impacts and subsequent conservation strategies. While satellite remote sensing (SRS) products enable monitoring of the earth's terrestrial surface continuously across space and time, the practical applications for conservation and management of these products are limited. Often the processes driving ecological change occur at fine spatial resolutions and are undetectable given the resolution of available datasets. Additionally, the links between SRS data and ecologically meaningful metrics are weak. Recent advances in cloud computing technology along with the growing record of high resolution SRS data enable the development of SRS products that quantify ecologically meaningful variables at relevant scales applicable for conservation and management. The focus of my dissertation is to improve the applicability of terrestrial gross and net primary productivity (GPP/NPP) datasets for the conterminous United States (CONUS). In chapter one, I develop a framework for creating high resolution datasets of vegetation dynamics. I use the entire archive of Landsat 5, 7, and 8 surface reflectance data and a novel gap filling approach to create spatially continuous 30 m, 16-day composites of the normalized difference vegetation index (NDVI) from 1986 to 2016. In chapter two, I integrate this with other high resolution datasets and the MOD17 algorithm to create the first high resolution GPP and NPP datasets for CONUS. I demonstrate the applicability of these products for conservation and management, showing the improvements beyond currently available products. In chapter three, I utilize this dataset to evaluate the relationships between land ownership and terrestrial production across the CONUS domain. The main results of this work are three publicly available datasets: 1) 30 m Landsat NDVI; 2) 250 m MODIS based GPP and NPP; and 3) 30 m Landsat based GPP and NPP. My goal is that these products prove useful for the wider scientific, conservation, and land management communities as we continue to strive for better conservation and management practices.

  16. Daily High-Resolution Flood Maps of Africa: 1992-present with Near Real Time Updates

    NASA Astrophysics Data System (ADS)

    Picton, J.; Galantowicz, J. F.; Root, B.

    2016-12-01

    The ability to characterize past and current flood extents frequently, accurately, and at high resolution is needed for many applications including risk assessment, wetlands monitoring, and emergency management. However, remote sensing methods have not been capable of meeting all of these requirements simultaneously. Cloud cover too often obscures the surface for visual and infrared sensors and observations from radar sensors are too infrequent to create consistent historical databases or monitor evolving events. Lower-resolution (10-50 km) passive microwave sensors, such as SSM/I, AMSR-E, and AMSR2, are sensitive to water cover, acquire useful data during clear and cloudy conditions, have revisit periods of up to twice daily, and provide a continuous record of data from 1992 to the present. What they lack most is the resolution needed to map flood extent. We will present results from a flood mapping system capable of producing high-resolution (90-m) flood extent depictions from lower resolution microwave data. The system uses the strong sensitivity of microwave data to surface water coverage combined with land surface and atmospheric data to derive daily flooded fraction estimates on a sensor-footprint basis. The system downscales flooded fraction to make high-resolution Boolean flood extent depictions that are spatially continuous and consistent with the lower resolution data. The downscaling step is based on a relative floodability (RF) index derived from higher-resolution topographic and hydrological data. We process RF to create a flooded fraction threshold map that relates each 90-m grid point to the surrounding terrain at the microwave scale. We have derived daily, 90-m resolution flood maps for Africa covering 1992-present using SSM/I, AMSR-E, and AMSR2 data and we are now producing new daily maps in near real time. The flood maps are being used by the African Risk Capacity (ARC) Agency to underpin an intergovernmental river flood insurance program in Africa. We will present results showing daily flood extents during major events and discuss: validation of the flood maps against MODIS-derived maps; analyses of minimum detectable flood size; aggregate analyses of flood extent over time; flood map use in ARC's insurance model; and results applying the system to the Americas.

  17. High temporal resolution delayed analysis of clinical microdialysate streams† †Electronic supplementary information (ESI) available. See DOI: 10.1039/c7an01209h

    PubMed Central

    Gowers, S. A. N.; Hamaoui, K.; Cunnea, P.; Anastasova, S.; Curto, V. F.; Vadgama, P.; Yang, G.-Z.; Papalois, V.; Drakakis, E. M.; Fotopoulou, C.; Weber, S. G.

    2018-01-01

    This paper presents the use of tubing to store clinical microdialysis samples for delayed analysis with high temporal resolution, offering an alternative to traditional discrete offline microdialysis sampling. Samples stored in this way were found to be stable for up to 72 days at –80 °C. Examples of how this methodology can be applied to glucose and lactate measurement in a wide range of in vivo monitoring experiments are presented. This paper presents a general model, which allows for an informed choice of tubing parameters for a given storage time and flow rate avoiding high back pressure, which would otherwise cause the microdialysis probe to leak, while maximising temporal resolution. PMID:29336454

  18. Micromirror structured illumination microscope for high-speed in vivo drosophila brain imaging.

    PubMed

    Masson, A; Pedrazzani, M; Benrezzak, S; Tchenio, P; Preat, T; Nutarelli, D

    2014-01-27

    Genetic tools and especially genetically encoded fluorescent reporters have given a special place to optical microscopy in drosophila neurobiology research. In order to monitor neural networks activity, high speed and sensitive techniques, with high spatial resolution are required. Structured illumination microscopies are wide-field approaches with optical sectioning ability. Despite the large progress made with the introduction of the HiLo principle, they did not meet the criteria of speed and/or spatial resolution for drosophila brain imaging. We report on a new implementation that took advantage of micromirror matrix technology to structure the illumination. Thus, we showed that the developed instrument exhibits a spatial resolution close to that of confocal microscopy but it can record physiological responses with a speed improved by more than an order a magnitude.

  19. Laser Speckle Imaging of Cerebral Blood Flow

    NASA Astrophysics Data System (ADS)

    Luo, Qingming; Jiang, Chao; Li, Pengcheng; Cheng, Haiying; Wang, Zhen; Wang, Zheng; Tuchin, Valery V.

    Monitoring the spatio-temporal characteristics of cerebral blood flow (CBF) is crucial for studying the normal and pathophysiologic conditions of brain metabolism. By illuminating the cortex with laser light and imaging the resulting speckle pattern, relative CBF images with tens of microns spatial and millisecond temporal resolution can be obtained. In this chapter, a laser speckle imaging (LSI) method for monitoring dynamic, high-resolution CBF is introduced. To improve the spatial resolution of current LSI, a modified LSI method is proposed. To accelerate the speed of data processing, three LSI data processing frameworks based on graphics processing unit (GPU), digital signal processor (DSP), and field-programmable gate array (FPGA) are also presented. Applications for detecting the changes in local CBF induced by sensory stimulation and thermal stimulation, the influence of a chemical agent on CBF, and the influence of acute hyperglycemia following cortical spreading depression on CBF are given.

  20. Tropospheric Wind Monitoring During Day-of-Launch Operations for National Aeronautics and Space Administration's Space Shuttle Program

    NASA Technical Reports Server (NTRS)

    Decker, Ryan K.; Leach, Richard

    2004-01-01

    The Environments Group at the National Aeronautics and Space Administration's Marshall Space Flight Center (NASA/MSFC) monitors the winds aloft at Kennedy Space Center (KSC) during the countdown for all Space Shuttle launches. Assessment of tropospheric winds is used to support the ascent phase of launch. Three systems at KSC are used to generate independent tropospheric wind profiles prior to launch; 1) high resolution Jimsphere balloon system, 2) 50-MHz Doppler Radar Wind Profiler (DRWP) and 3) low resolution radiosonde system. Data generated by the systems are used to assess spatial and temporal wind variability during launch countdown to ensure wind change observed does not violate wind change criteria constraints.

  1. High-resolution high-sensitivity and truly distributed optical frequency domain reflectometry for structural crack detection

    NASA Astrophysics Data System (ADS)

    Li, Wenhai; Bao, Xiaoyi; Chen, Liang

    2014-05-01

    Optical Frequency Domain Reflectometry (OFDR) with the use of polarization maintaining fiber (PMF) is capable of distinguishing strain and temperature, which is critical for successful field applications such as structural health monitoring (SHM) and smart material. Location-dependent measurement sensitivities along PMF are compensated by cross- and auto-correlations measurements of the spectra form a distributed parameter matrix. Simultaneous temperature and strain measurement accuracy of 1μstrain and 0.1°C is achieved with 2.5mm spatial resolution in over 180m range.

  2. Can the black box be cracked? The augmentation of microbial ecology by high-resolution, automated sensing technologies.

    PubMed

    Shade, Ashley; Carey, Cayelan C; Kara, Emily; Bertilsson, Stefan; McMahon, Katherine D; Smith, Matthew C

    2009-08-01

    Automated sensing technologies, 'ASTs,' are tools that can monitor environmental or microbial-related variables at increasingly high temporal resolution. Microbial ecologists are poised to use AST data to couple microbial structure, function and associated environmental observations on temporal scales pertinent to microbial processes. In the context of aquatic microbiology, we discuss three applications of ASTs: windows on the microbial world, adaptive sampling and adaptive management. We challenge microbial ecologists to push AST potential in helping to reveal relationships between microbial structure and function.

  3. OCT in Dermatology

    NASA Astrophysics Data System (ADS)

    Holmes, John; Welzel, Julia

    OCT is increasingly interesting for non-invasive skin imaging in Dermatology. Due to its resolution and imaging depth, OCT is already routinely established for diagnosis of nonmelanoma skin cancer, whereas for pigmented lesions, the resolution is still not high enough. OCT has also a high value for monitoring of treatment effects, for example to control healing after non-surgical topical treatment of basal cell carcinomas. In summary, there are several indications for applications of OCT to image skin diseases, and its importance will grow in the future due to further technical developments like speckle variance OCT.

  4. On the use of high-frequency SCADA data for improved wind turbine performance monitoring

    NASA Astrophysics Data System (ADS)

    Gonzalez, E.; Stephen, B.; Infield, D.; Melero, J. J.

    2017-11-01

    SCADA-based condition monitoring of wind turbines facilitates the move from costly corrective repairs towards more proactive maintenance strategies. In this work, we advocate the use of high-frequency SCADA data and quantile regression to build a cost effective performance monitoring tool. The benefits of the approach are demonstrated through the comparison between state-of-the-art deterministic power curve modelling techniques and the suggested probabilistic model. Detection capabilities are compared for low and high-frequency SCADA data, providing evidence for monitoring at higher resolutions. Operational data from healthy and faulty turbines are used to provide a practical example of usage with the proposed tool, effectively achieving the detection of an incipient gearbox malfunction at a time horizon of more than one month prior to the actual occurrence of the failure.

  5. Mass Spectrometry for Research and Application in Therapeutic Drug Monitoring or Clinical and Forensic Toxicology.

    PubMed

    Maurer, Hans H

    2018-04-30

    This paper reviews current applications of various hyphenated low- and high-resolution mass spectrometry techniques in the field of therapeutic drug monitoring and clinical/forensic toxicology in both research and practice. They cover gas chromatography, liquid chromatography, matrix-assisted laser desorption ionization, or paper spray ionization coupled to quadrupole, ion trap, time-of-flight, or Orbitrap mass analyzers.

  6. High-resolution time series of Pseudomonas aeruginosa gene expression and rhamnolipid secretion through growth curve synchronization.

    PubMed

    van Ditmarsch, Dave; Xavier, João B

    2011-06-17

    Online spectrophotometric measurements allow monitoring dynamic biological processes with high-time resolution. Contrastingly, numerous other methods require laborious treatment of samples and can only be carried out offline. Integrating both types of measurement would allow analyzing biological processes more comprehensively. A typical example of this problem is acquiring quantitative data on rhamnolipid secretion by the opportunistic pathogen Pseudomonas aeruginosa. P. aeruginosa cell growth can be measured by optical density (OD600) and gene expression can be measured using reporter fusions with a fluorescent protein, allowing high time resolution monitoring. However, measuring the secreted rhamnolipid biosurfactants requires laborious sample processing, which makes this an offline measurement. Here, we propose a method to integrate growth curve data with endpoint measurements of secreted metabolites that is inspired by a model of exponential cell growth. If serial diluting an inoculum gives reproducible time series shifted in time, then time series of endpoint measurements can be reconstructed using calculated time shifts between dilutions. We illustrate the method using measured rhamnolipid secretion by P. aeruginosa as endpoint measurements and we integrate these measurements with high-resolution growth curves measured by OD600 and expression of rhamnolipid synthesis genes monitored using a reporter fusion. Two-fold serial dilution allowed integrating rhamnolipid measurements at a ~0.4 h-1 frequency with high-time resolved data measured at a 6 h-1 frequency. We show how this simple method can be used in combination with mutants lacking specific genes in the rhamnolipid synthesis or quorum sensing regulation to acquire rich dynamic data on P. aeruginosa virulence regulation. Additionally, the linear relation between the ratio of inocula and the time-shift between curves produces high-precision measurements of maximum specific growth rates, which were determined with a precision of ~5.4%. Growth curve synchronization allows integration of rich time-resolved data with endpoint measurements to produce time-resolved quantitative measurements. Such data can be valuable to unveil the dynamic regulation of virulence in P. aeruginosa. More generally, growth curve synchronization can be applied to many biological systems thus helping to overcome a key obstacle in dynamic regulation: the scarceness of quantitative time-resolved data.

  7. High-frequency remote monitoring of large lakes with MODIS 500 m imagery

    USGS Publications Warehouse

    McCullough, Ian M.; Loftin, Cynthia S.; Sader, Steven A.

    2012-01-01

    Satellite-based remote monitoring programs of regional lake water quality largely have relied on Landsat Thematic Mapper (TM) owing to its long image archive, moderate spatial resolution (30 m), and wide sensitivity in the visible portion of the electromagnetic spectrum, despite some notable limitations such as temporal resolution (i.e., 16 days), data pre-processing requirements to improve data quality, and aging satellites. Moderate-Resolution Imaging Spectroradiometer (MODIS) sensors on Aqua/Terra platforms compensate for these shortcomings, although at the expense of spatial resolution. We developed and evaluated a remote monitoring protocol for water clarity of large lakes using MODIS 500 m data and compared MODIS utility to Landsat-based methods. MODIS images captured during May–September 2001, 2004 and 2010 were analyzed with linear regression to identify the relationship between lake water clarity and satellite-measured surface reflectance. Correlations were strong (R² = 0.72–0.94) throughout the study period; however, they were the most consistent in August, reflecting seasonally unstable lake conditions and inter-annual differences in algal productivity during the other months. The utility of MODIS data in remote water quality estimation lies in intra-annual monitoring of lake water clarity in inaccessible, large lakes, whereas Landsat is more appropriate for inter-annual, regional trend analyses of lakes ≥ 8 ha. Model accuracy is improved when ancillary variables are included to reflect seasonal lake dynamics and weather patterns that influence lake clarity. The identification of landscape-scale drivers of regional water quality is a useful way to supplement satellite-based remote monitoring programs relying on spectral data alone.

  8. A high-resolution and observationally constrained OMI NO 2 satellite retrieval

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Goldberg, Daniel L.; Lamsal, Lok N.; Loughner, Christopher P.

    Here, this work presents a new high-resolution NO 2 dataset derived from the NASA Ozone Monitoring Instrument (OMI) NO 2 version 3.0 retrieval that can be used to estimate surface-level concentrations. The standard NASA product uses NO 2 vertical profile shape factors from a 1.25° × 1° (~110 km × 110 km) resolution Global Model Initiative (GMI) model simulation to calculate air mass factors, a critical value used to determine observed tropospheric NO 2 vertical columns. To better estimate vertical profile shape factors, we use a high-resolution (1.33 km × 1.33 km) Community Multi-scale Air Quality (CMAQ) model simulation constrained by in situmore » aircraft observations to recalculate tropospheric air mass factors and tropospheric NO 2 vertical columns during summertime in the eastern US. In this new product, OMI NO 2 tropospheric columns increase by up to 160% in city centers and decrease by 20–50 % in the rural areas outside of urban areas when compared to the operational NASA product. Our new product shows much better agreement with the Pandora NO 2 and Airborne Compact Atmospheric Mapper (ACAM) NO 2 spectrometer measurements acquired during the DISCOVER-AQ Maryland field campaign. Furthermore, the correlation between our satellite product and EPA NO 2 monitors in urban areas has improved dramatically: r 2 = 0.60 in the new product vs. r 2 = 0.39 in the operational product, signifying that this new product is a better indicator of surface concentrations than the operational product. Our work emphasizes the need to use both high-resolution and high-fidelity models in order to recalculate satellite data in areas with large spatial heterogeneities in NO x emissions. Although the current work is focused on the eastern US, the methodology developed in this work can be applied to other world regions to produce high-quality region-specific NO 2 satellite retrievals.« less

  9. A high-resolution and observationally constrained OMI NO 2 satellite retrieval

    DOE PAGES

    Goldberg, Daniel L.; Lamsal, Lok N.; Loughner, Christopher P.; ...

    2017-09-26

    Here, this work presents a new high-resolution NO 2 dataset derived from the NASA Ozone Monitoring Instrument (OMI) NO 2 version 3.0 retrieval that can be used to estimate surface-level concentrations. The standard NASA product uses NO 2 vertical profile shape factors from a 1.25° × 1° (~110 km × 110 km) resolution Global Model Initiative (GMI) model simulation to calculate air mass factors, a critical value used to determine observed tropospheric NO 2 vertical columns. To better estimate vertical profile shape factors, we use a high-resolution (1.33 km × 1.33 km) Community Multi-scale Air Quality (CMAQ) model simulation constrained by in situmore » aircraft observations to recalculate tropospheric air mass factors and tropospheric NO 2 vertical columns during summertime in the eastern US. In this new product, OMI NO 2 tropospheric columns increase by up to 160% in city centers and decrease by 20–50 % in the rural areas outside of urban areas when compared to the operational NASA product. Our new product shows much better agreement with the Pandora NO 2 and Airborne Compact Atmospheric Mapper (ACAM) NO 2 spectrometer measurements acquired during the DISCOVER-AQ Maryland field campaign. Furthermore, the correlation between our satellite product and EPA NO 2 monitors in urban areas has improved dramatically: r 2 = 0.60 in the new product vs. r 2 = 0.39 in the operational product, signifying that this new product is a better indicator of surface concentrations than the operational product. Our work emphasizes the need to use both high-resolution and high-fidelity models in order to recalculate satellite data in areas with large spatial heterogeneities in NO x emissions. Although the current work is focused on the eastern US, the methodology developed in this work can be applied to other world regions to produce high-quality region-specific NO 2 satellite retrievals.« less

  10. A high-resolution and observationally constrained OMI NO2 satellite retrieval

    NASA Astrophysics Data System (ADS)

    Goldberg, Daniel L.; Lamsal, Lok N.; Loughner, Christopher P.; Swartz, William H.; Lu, Zifeng; Streets, David G.

    2017-09-01

    This work presents a new high-resolution NO2 dataset derived from the NASA Ozone Monitoring Instrument (OMI) NO2 version 3.0 retrieval that can be used to estimate surface-level concentrations. The standard NASA product uses NO2 vertical profile shape factors from a 1.25° × 1° (˜ 110 km × 110 km) resolution Global Model Initiative (GMI) model simulation to calculate air mass factors, a critical value used to determine observed tropospheric NO2 vertical columns. To better estimate vertical profile shape factors, we use a high-resolution (1.33 km × 1.33 km) Community Multi-scale Air Quality (CMAQ) model simulation constrained by in situ aircraft observations to recalculate tropospheric air mass factors and tropospheric NO2 vertical columns during summertime in the eastern US. In this new product, OMI NO2 tropospheric columns increase by up to 160 % in city centers and decrease by 20-50 % in the rural areas outside of urban areas when compared to the operational NASA product. Our new product shows much better agreement with the Pandora NO2 and Airborne Compact Atmospheric Mapper (ACAM) NO2 spectrometer measurements acquired during the DISCOVER-AQ Maryland field campaign. Furthermore, the correlation between our satellite product and EPA NO2 monitors in urban areas has improved dramatically: r2 = 0.60 in the new product vs. r2 = 0.39 in the operational product, signifying that this new product is a better indicator of surface concentrations than the operational product. Our work emphasizes the need to use both high-resolution and high-fidelity models in order to recalculate satellite data in areas with large spatial heterogeneities in NOx emissions. Although the current work is focused on the eastern US, the methodology developed in this work can be applied to other world regions to produce high-quality region-specific NO2 satellite retrievals.

  11. High Temporal Resolution Permafrost Monitoring Using a Multiple Stack Insar Technique

    NASA Astrophysics Data System (ADS)

    Eppler, J.; Kubanski, M.; Sharma, J.; Busler, J.

    2015-04-01

    The combined effect of climate change and accelerated economic development in Northern regions increases the threat of permafrost related surface deformation to buildings and transportation infrastructure. Satellite based InSAR provides a means for monitoring infrastructure that may be both remote and spatially extensive. However, permafrost poses challenges for InSAR monitoring due to the complex temporal deformation patterns caused by both seasonal active layer fluctuations and long-term changes in permafrost thickness. These dynamics suggest a need for increasing the temporal resolution of multi-temporal InSAR methods. To address this issue we have developed a method that combines and jointly processes two or more same side geometry InSAR stacks to provide a high-temporal resolution estimate of surface deformation. The method allows for combining stacks from more than a single SAR sensor and for a combination of frequency bands. Data for this work have been collected and analysed for an area near the community of Umiujaq, Quebec in Northern Canada and include scenes from RADARSAT-2, TerraSAR-X and COSMO-SkyMed. Multiple stack based surface deformation estimates are compared for several cases including results from the three sensors individually and for all sensors combined. The test cases show substantially similar surface deformation results which correlate well with surficial geology. The best spatial coverage of coherent targets was achieved when data from all sensors were combined. The proposed multiple stack method is demonstrated to improve the estimation of surface deformation in permafrost affected areas and shows potential for deriving InSAR based permafrost classification maps to aid in the monitoring of Northern infrastructure.

  12. Remote sensing of Sonoran Desert vegetation structure and phenology with ground-based LiDAR

    USGS Publications Warehouse

    Sankey, Joel B.; Munson, Seth M.; Webb, Robert H.; Wallace, Cynthia S.A.; Duran, Cesar M.

    2015-01-01

    Long-term vegetation monitoring efforts have become increasingly important for understanding ecosystem response to global change. Many traditional methods for monitoring can be infrequent and limited in scope. Ground-based LiDAR is one remote sensing method that offers a clear advancement to monitor vegetation dynamics at high spatial and temporal resolution. We determined the effectiveness of LiDAR to detect intra-annual variability in vegetation structure at a long-term Sonoran Desert monitoring plot dominated by cacti, deciduous and evergreen shrubs. Monthly repeat LiDAR scans of perennial plant canopies over the course of one year had high precision. LiDAR measurements of canopy height and area were accurate with respect to total station survey measurements of individual plants. We found an increase in the number of LiDAR vegetation returns following the wet North American Monsoon season. This intra-annual variability in vegetation structure detected by LiDAR was attributable to a drought deciduous shrub Ambrosia deltoidea, whereas the evergreen shrub Larrea tridentata and cactus Opuntia engelmannii had low variability. Benefits of using LiDAR over traditional methods to census desert plants are more rapid, consistent, and cost-effective data acquisition in a high-resolution, 3-dimensional context. We conclude that repeat LiDAR measurements can be an effective method for documenting ecosystem response to desert climatology and drought over short time intervals and at detailed-local spatial scale.

  13. High Resolution Land Use Land Cover Classification using Landsat Earth Observation Data for the Continental Africa

    NASA Astrophysics Data System (ADS)

    Midekisa, A.; Bennet, A.; Gething, P. W.; Holl, F.; Andrade-Pacheco, R.; Savory, D. J.; Hugh, S. J.

    2016-12-01

    Spatially detailed and temporally dynamic land use land cover data is necessary to monitor the state of the land surface for various applications. Yet, such data at a continental to global scale is lacking. Here, we developed high resolution (30 meter) annual land use land cover layers for the continental Africa using Google Earth Engine. To capture ground truth training data, high resolution satellite imageries were visually inspected and used to identify 7, 212 sample Landsat pixels that were comprised entirely of one of seven land use land cover classes (water, man-made impervious surface, high biomass, low biomass, rock, sand and bare soil). For model validation purposes, 80% of points from each class were used as training data, with 20% withheld as a validation dataset. Cloud free Landsat 7 annual composites for 2000 to 2015 were generated and spectral bands from the Landsat images were then extracted for each of the training and validation sample points. In addition to the Landsat spectral bands, spectral indices such as normalized difference vegetation index (NDVI) and normalized difference water index (NDWI) were used as covariates in the model. Additionally, calibrated night time light imageries from the National Oceanic and Atmospheric Administration (NOAA) were included as a covariate. A decision tree classification algorithm was applied to predict the 7 land cover classes for the periods 2000 to 2015 using the training dataset. Using the validation dataset, classification accuracy including omission error and commission error were computed for each land cover class. Model results showed that overall accuracy of classification was high (88%). This high resolution land cover product developed for the continental Africa will be available for public use and can potentially enhance the ability of monitoring and studying the state of the Earth's surface.

  14. The ASTER Volcano Archive (AVA): High Spatial Resolution Global Monitoring of Volcanic Eruptions

    NASA Astrophysics Data System (ADS)

    Linick, J. P.; Pieri, D. C.; Davies, A. G.; Reath, K.; Mars, J. C.; Hubbard, B. E.; Sanchez, R. M.; Tan, H. L.

    2017-12-01

    The ASTER Volcano Archive (AVA) is a data system focused on collecting and cataloguing higher level remote sensing data products for all Holocene volcanoes over the last several decades, producing volcanogenic science products for global detection, mapping, and modeling of effusive eruptions at high spatial resolution, and providing rapid bulk dissemination of relevant data products to the science community at large. Space-based optical platforms such as ASTER, EO-1, and Landsat, are a critical component for global monitoring systems to provide the capability for volcanic hazard assessment and modeling, and are a vital addition to in-situ measurements. The AVA leverages these instruments for the automated generation of lava flow emplacement maps, sulfur dioxide monitoring, thermal anomaly detection, and modeling of integrated thermal emission across the world's volcanoes. Additionally, we provide slope classified alteration and lahar inundation maps with potential inundation zones for certain relevant volcanoes. We explore the AVA's data product retrieval API, and describe how scientists can rapidly retrieve bulk products using the AVA platform with a focus on practical applications for both general analysis and hazard response.

  15. Monitoring Termite-Mediated Ecosystem Processes Using Moderate and High Resolution Satellite Imagery

    NASA Astrophysics Data System (ADS)

    Lind, B. M.; Hanan, N. P.

    2016-12-01

    Termites are considered dominant decomposers and prominent ecosystem engineers in the global tropics and they build some of the largest and architecturally most complex non-human-made structures in the world. Termite mounds significantly alter soil texture, structure, and nutrients, and have major implications for local hydrological dynamics, vegetation characteristics, and biological diversity. An understanding of how these processes change across large scales has been limited by our ability to detect termite mounds at high spatial resolutions. Our research develops methods to detect large termite mounds in savannas across extensive geographic areas using moderate and high resolution satellite imagery. We also investigate the effect of termite mounds on vegetation productivity using Landsat-8 maximum composite NDVI data as a proxy for production. Large termite mounds in arid and semi-arid Senegal generate highly reflective `mound scars' with diameters ranging from 10 m at minimum to greater than 30 m. As Sentinel-2 has several bands with 10 m resolution and Landsat-8 has improved calibration, higher radiometric resolution, 15 m spatial resolution (pansharpened), and improved contrast between vegetated and bare surfaces compared to previous Landsat missions, we found that the largest and most influential mounds in the landscape can be detected. Because mounds as small as 4 m in diameter are easily detected in high resolution imagery we used these data to validate detection results and quantify omission errors for smaller mounds.

  16. New York State

    NASA Technical Reports Server (NTRS)

    2002-01-01

    On March 26, New York Mayor Michael Bloomberg declared a drought emergency for the city and four upstate counties in response to the worst drought to hit the eastern United States in nearly 70 years. Restrictions on water use will affect more than 8 million residents of New York. The city's reservoirs, located in the Catskill Mountains, are at 52 percent capacity. One of these, Ashokan Reservoir, is seen in this pair of ASTER images acquired on September 18, 2000 and February 3, 2002.

    These images were acquired by the Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER) on NASA's Terra satellite. With its 14spectral bands from the visible to the thermal infrared wavelength region, and its high spatial resolution of 15 to 90 meters (about 50 to 300 feet), ASTER will image Earth for the next 6 years to map and monitor the changing surface of our planet.

    ASTER is one of five Earth-observing instruments launched December 18,1999, on NASA's Terra satellite. The instrument was built by Japan's Ministry of Economy, Trade and Industry. A joint U.S./Japan science team is responsible for validation and calibration of the instrument and the data products. Dr. Anne Kahle at NASA's Jet Propulsion Laboratory, Pasadena, California, is the U.S. Science team leader; Bjorn Eng of JPL is the project manager. ASTER is the only high resolution imaging sensor on Terra. The Terra mission is part of NASA's Earth Science Enterprise, along-term research and technology program designed to examine Earth's land, oceans, atmosphere, ice and life as a total integrated system.

    The broad spectral coverage and high spectral resolution of ASTER will provide scientists in numerous disciplines with critical information for surface mapping, and monitoring dynamic conditions and temporal change. Example applications are: monitoring glacial advances and retreats; monitoring potentially active volcanoes; identifying crop stress; determining cloud morphology and physical properties; wetlands evaluation; thermal pollution monitoring; coral reef degradation; surface temperature mapping of soils and geology; and measuring surface heat balance.

    Size: 16.5 x 13 km (10.2 x 8.1 miles) Location: 41.9 deg. North lat., 74.2 deg. West long. Orientation: North at top Image Data: ASTER bands 1,2, and 3. Original Data Resolution: 15 m Date Acquired: September 18, 2000 and February 3, 2002

  17. Salt Lake City, Utah, Winter 2001

    NASA Technical Reports Server (NTRS)

    2001-01-01

    The 2002 Winter Olympics are hosted by Salt Lake City at several venues within the city, in nearby cities, and within the adjacent Wasatch Mountains. This simulated natural color image presents a snowy, winter view of north central Utah that includes all of the Olympic sites. The image extends from Ogden in the north, to Provo in the south; and includes the snow-capped Wasatch Mountains and the eastern part of the Great Salt Lake.

    This image was acquired on February 8, 2001 by the Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER) on NASA's Terra satellite. With its 14 spectral bands from the visible to the thermal infrared wavelength region, and its high spatial resolution of 15 to 90 meters (about 50 to 300 feet), ASTER will image Earth for the next 6 years to map and monitor the changing surface of our planet.

    ASTER is one of five Earth-observing instruments launched December 18,1999, on NASA's Terra satellite. The instrument was built by Japan's Ministry of Economy, Trade and Industry. A joint U.S./Japan science team is responsible for validation and calibration of the instrument and the data products. Dr. Anne Kahle at NASA's Jet Propulsion Laboratory, Pasadena, California, is the U.S. Science team leader; Bjorn Eng of JPL is the project manager. ASTER is the only high resolution imaging sensor on Terra. The Terra mission is part of NASA's Earth Science Enterprise, along-term research and technology program designed to examine Earth's land, oceans, atmosphere, ice and life as a total integrated system.

    The broad spectral coverage and high spectral resolution of ASTER will provide scientists in numerous disciplines with critical information for surface mapping, and monitoring dynamic conditions and temporal change. Example applications are: monitoring glacial advances and retreats; monitoring potentially active volcanoes; identifying crop stress; determining cloud morphology and physical properties; wetlands evaluation; thermal pollution monitoring; coral reef degradation; surface temperature mapping of soils and geology; and measuring surface heat balance.

    Size: 63.5 x 123.3 km (38.1 x 74 miles) Location: 40.7 deg. North lat., 111.9 deg. West long. Orientation: North at top Image Data: ASTER bands 1,2, and 3. Original Data Resolution: 15 m Date Acquired: February 8, 2001

  18. Salt Lake City, Utah

    NASA Technical Reports Server (NTRS)

    2001-01-01

    The 2002 Winter Olympics are hosted by Salt Lake City at several venues within the city, in nearby cities, and within the adjacent Wasatch Mountains. This simulated natural color image presents a late spring view of north central Utah that includes all of the Olympic sites. The image extends from Ogden in the north, to Provo in the south; and includes the snow-capped Wasatch Mountains and the eastern part of the Great Salt Lake.

    This image was acquired on May 28, 2000 by the Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER) on NASA's Terra satellite. With its 14 spectral bands from the visible to the thermal infrared wavelength region, and its high spatial resolution of 15 to 90 meters (about 50 to 300 feet), ASTER will image Earth for the next 6 years to map and monitor the changing surface of our planet.

    ASTER is one of five Earth-observing instruments launched December 18,1999, on NASA's Terra satellite. The instrument was built by Japan's Ministry of Economy, Trade and Industry. A joint U.S./Japan science team is responsible for validation and calibration of the instrument and the data products. Dr. Anne Kahle at NASA's Jet Propulsion Laboratory, Pasadena, California, is the U.S. Science team leader; Bjorn Eng of JPL is the project manager. ASTER is the only high resolution imaging sensor on Terra. The Terra mission is part of NASA's Earth Science Enterprise, a long-term research and technology program designed to examine Earth's land, oceans, atmosphere, ice and life as a total integrated system.

    The broad spectral coverage and high spectral resolution of ASTER will provide scientists in numerous disciplines with critical information for surface mapping, and monitoring dynamic conditions and temporal change. Example applications are: monitoring glacial advances and retreats; monitoring potentially active volcanoes; identifying crop stress; determining cloud morphology and physical properties; wetlands evaluation; thermal pollution monitoring; coral reef degradation; surface temperature mapping of soils and geology; and measuring surface heat balance.

    Size: 63.5 x 123.3 km (38.1 x 74 miles) Location: 40.7 deg. North lat., 111.9 deg. West long. Orientation: North at top Image Data: ASTER bands 1,2, and 3. Original Data Resolution: 15 m Date Acquired: May 28, 2000

  19. Salt Lake City, Utah, Perspective View

    NASA Technical Reports Server (NTRS)

    2001-01-01

    The 2002 Winter Olympics are hosted by Salt Lake City at several venues within the city, in nearby cities, and within the adjacent Wasatch Mountains. This 3-D perspective view, in simulated natural colors, presents a late spring view over Salt Lake City towards the snow-capped Wasatch Mountains to the east. The image was created by draping ASTER image data over digital topography data from the US Geological Survey's National Elevation Data.

    This image was acquired on May 28, 2000 by the Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER) on NASA's Terra satellite. With its 14 spectral bands from the visible to the thermal infrared wavelength region, and its high spatial resolution of 15 to 90 meters (about 50 to 300 feet), ASTER will image Earth for the next 6 years to map and monitor the changing surface of our planet.

    ASTER is one of five Earth-observing instruments launched December 18,1999, on NASA's Terra satellite. The instrument was built by Japan's Ministry of Economy, Trade and Industry. A joint U.S./Japan science team is responsible for validation and calibration of the instrument and the data products. Dr. Anne Kahle at NASA's Jet Propulsion Laboratory, Pasadena, California, is the U.S. Science team leader; Bjorn Eng of JPL is the project manager. ASTER is the only high resolution imaging sensor on Terra. The Terra mission is part of NASA's Earth Science Enterprise, a long-term research and technology program designed to examine Earth's land, oceans, atmosphere, ice and life as a total integrated system.

    The broad spectral coverage and high spectral resolution of ASTER will provide scientists in numerous disciplines with critical information for surface mapping, and monitoring dynamic conditions and temporal change. Example applications are: monitoring glacial advances and retreats; monitoring potentially active volcanoes; identifying crop stress; determining cloud morphology and physical properties; wetlands evaluation; thermal pollution monitoring; coral reef degradation; surface temperature mapping of soils and geology; and measuring surface heat balance.

    Size: View width 15 km ( 9.2 miles); view distance 12 km (7.3 miles) Location: 40.7 deg. North lat., 111.9 deg. West long. Orientation: North at top Image Data: ASTER bands 1,2, and 3. Original Data Resolution: 15 m Date Acquired: May 28, 2000

  20. Characterization of surface properties over permafrost soils using a high resolution mid-infrared camera as part of the Carbon in the Arctic Vulnerability Experiment (CARVE)

    NASA Astrophysics Data System (ADS)

    Steiner, N.; McDonald, K. C.; Podest, E.; Dinardo, S. J.; Miller, C. E.

    2016-12-01

    Freeze/thaw and hydrologic cycling have important influence over surface processes in Arctic ecosystems and in Arctic carbon cycling. The seasonal freezing and thawing of soils bracket negative and positive modes of CO2 and CH4 flux of the bulk landscape. Hydrologic processes, such as seasonal inundation of thawed tundra create a complex microtopography where greenhouse-gas sources and sinks occur over short distances. Because of a high spatial variability hydrologic features must be mapped at fine resolution. These mappings can then be compared to local and regional scale observations of surface conditions, such as temperature and freeze/thaw state, to create better estimates of these important surface fields. The Carbon in the Arctic Vulnerability Experiment (CARVE) monitors carbon gas cycling in Alaskan using aircraft-deployed gas sampling instruments along with remote sensing observations of the land surface condition. A nadir-pointed, forward looking infrared (FLIR) imager mounted on the CARVE air-craft is used to measure upwelling mid-infrared spectral radiance at 3-5 microns. The FLIR instrument was operated during the spring, summer and fall seasons, 2013 through 2015. The instantaneous field of view (IFOV) of the FLIR instrument allows for a sub-meter resolution from a height of 500 m. High resolution data products allows for the discrimination of individual landscape components such as soil, vegetation and surface water features in the image footprint. We assess the effectiveness of the FLIR thermal images in monitoring thawing and inundation processes at very high resolutions. Analyses of FLIR datasets over focused study areas emphasizing exploration of the FLIR dataset utility for detailed land surface characterization as related to surface moisture and temperature. Emphasis is given to the Barrow CMDL station site and employ the tram-based data collections there. We will also examine potential at other high latitude sites of interest, e.g. Atqasuk, Ivotuk Alaska and tundra polygon sites under study by collaborators at UT Austin. The combination of high resolution temperature observations with associated estimates of temperature from other instruments can be used to discriminate hydrologic from temperature features in the mid-infrared to produce a high-resolution hydrology product.

  1. Second language proficiency modulates conflict-monitoring in an oculomotor Stroop task: evidence from Hindi-English bilinguals

    PubMed Central

    Singh, Niharika; Mishra, Ramesh K.

    2013-01-01

    Many studies have confirmed the presence of a bilingual advantage which is manifested as enhanced cognitive and attention control. However, very few studies have investigated the role of second language proficiency on the modulation of conflict-monitoring in bilinguals. We investigated this by comparing high and low proficient Hindi-English bilinguals on a modified saccadic arrow Stroop task under different monitoring conditions, and tested the predictions of the bilingual executive control advantage proposal. The task of the participants was to make an eye movement toward the color patch in the same color as the central arrow, ignoring the patch to which the arrow was pointing. High-proficient bilinguals had overall faster saccade latency on all types of trials as compared to the low proficient bilinguals. The overall saccadic latency for high proficiency bilinguals was similarly affected by the different types of monitoring conditions, whereas conflict resolution advantage was found only for high monitoring demanding condition. The results support a conflict-monitoring account in a novel oculomotor task and also suggest that language proficiency could modulate executive control in bilinguals. PMID:23781210

  2. Examining fire-induced forest changes using novel remote sensing technique: a case study in a mixed pine-oak forest

    NASA Astrophysics Data System (ADS)

    Meng, R.; Wu, J.; Zhao, F. R.; Cook, B.; Hanavan, R. P.; Serbin, S.

    2017-12-01

    Fire-induced forest changes has long been a central focus for forest ecology and global carbon cycling studies, and is becoming a pressing issue for global change biologists particularly with the projected increases in the frequency and intensity of fire with a warmer and drier climate. Compared with time-consuming and labor intensive field-based approaches, remote sensing offers a promising way to efficiently assess fire effects and monitor post-fire forest responses across a range of spatial and temporal scales. However, traditional remote sensing studies relying on simple optical spectral indices or coarse resolution imagery still face a number of technical challenges, including confusion or contamination of the signal by understory dynamics and mixed pixels with moderate to coarse resolution data (>= 30 m). As such, traditional remote sensing may not meet the increasing demand for more ecologically-meaningful monitoring and quantitation of fire-induced forest changes. Here we examined the use of novel remote sensing technique (i.e. airborne imaging spectroscopy and LiDAR measurement, very high spatial resolution (VHR) space-borne multi-spectral measurement, and high temporal-spatial resolution UAS-based (Unmanned Aerial System) imagery), in combination with field and phenocam measurements to map forest burn severity across spatial scales, quantify crown-scale post-fire forest recovery rate, and track fire-induced phenology changes in the burned areas. We focused on a mixed pine-oak forest undergoing multiple fire disturbances for the past several years in Long Island, NY as a case study. We demonstrate that (1) forest burn severity mapping from VHR remote sensing measurement can capture crown-scale heterogeneous fire patterns over large-scale; (2) the combination of VHR optical and structural measurements provides an efficient means to remotely sense species-level post-fire forest responses; (3) the UAS-based remote sensing enables monitoring of fire-induced forest phenology changes at unprecedented temporal and spatial resolutions. This work provides the methodological approach monitor fire-induced forest changes in a spatially explicit manner across scales, with important implications for fire-related forest management and for constraining/benchmarking process models.

  3. High-resolution satellite imagery is an important yet underutilized resource in conservation biology.

    PubMed

    Boyle, Sarah A; Kennedy, Christina M; Torres, Julio; Colman, Karen; Pérez-Estigarribia, Pastor E; de la Sancha, Noé U

    2014-01-01

    Technological advances and increasing availability of high-resolution satellite imagery offer the potential for more accurate land cover classifications and pattern analyses, which could greatly improve the detection and quantification of land cover change for conservation. Such remotely-sensed products, however, are often expensive and difficult to acquire, which prohibits or reduces their use. We tested whether imagery of high spatial resolution (≤5 m) differs from lower-resolution imagery (≥30 m) in performance and extent of use for conservation applications. To assess performance, we classified land cover in a heterogeneous region of Interior Atlantic Forest in Paraguay, which has undergone recent and dramatic human-induced habitat loss and fragmentation. We used 4 m multispectral IKONOS and 30 m multispectral Landsat imagery and determined the extent to which resolution influenced the delineation of land cover classes and patch-level metrics. Higher-resolution imagery more accurately delineated cover classes, identified smaller patches, retained patch shape, and detected narrower, linear patches. To assess extent of use, we surveyed three conservation journals (Biological Conservation, Biotropica, Conservation Biology) and found limited application of high-resolution imagery in research, with only 26.8% of land cover studies analyzing satellite imagery, and of these studies only 10.4% used imagery ≤5 m resolution. Our results suggest that high-resolution imagery is warranted yet under-utilized in conservation research, but is needed to adequately monitor and evaluate forest loss and conversion, and to delineate potentially important stepping-stone fragments that may serve as corridors in a human-modified landscape. Greater access to low-cost, multiband, high-resolution satellite imagery would therefore greatly facilitate conservation management and decision-making.

  4. Monitoring well utility in a heterogeneous DNAPL source zone area: Insights from proximal multilevel sampler wells and sampling capture-zone modelling.

    PubMed

    McMillan, Lindsay A; Rivett, Michael O; Wealthall, Gary P; Zeeb, Peter; Dumble, Peter

    2018-03-01

    Groundwater-quality assessment at contaminated sites often involves the use of short-screen (1.5 to 3 m) monitoring wells. However, even over these intervals considerable variation may occur in contaminant concentrations in groundwater adjacent to the well screen. This is especially true in heterogeneous dense non-aqueous phase liquid (DNAPL) source zones, where cm-scale contamination variability may call into question the effectiveness of monitoring wells to deliver representative data. The utility of monitoring wells in such settings is evaluated by reference to high-resolution multilevel sampler (MLS) wells located proximally to short-screen wells, together with sampling capture-zone modelling to explore controls upon well sample provenance and sensitivity to monitoring protocols. Field data are analysed from the highly instrumented SABRE research site that contained an old trichloroethene source zone within a shallow alluvial aquifer at a UK industrial facility. With increased purging, monitoring-well samples tend to a flow-weighted average concentration but may exhibit sensitivity to the implemented protocol and degree of purging. Formation heterogeneity adjacent to the well-screen particularly, alongside pump-intake position and water level, influence this sensitivity. Purging of low volumes is vulnerable to poor reproducibility arising from concentration variability predicted over the initial 1 to 2 screen volumes purged. Marked heterogeneity may also result in limited long-term sample concentration stabilization. Development of bespoke monitoring protocols, that consider screen volumes purged, alongside water-quality indicator parameter stabilization, is recommended to validate and reduce uncertainty when interpreting monitoring-well data within source zone areas. Generalised recommendations on monitoring well based protocols are also developed. A key monitoring well utility is their proportionately greater sample draw from permeable horizons constituting a significant contaminant flux pathway and hence representative fraction of source mass flux. Acquisition of complementary, high-resolution, site monitoring data, however, vitally underpins optimal interpretation of monitoring-well datasets and appropriate advancement of a site conceptual model and remedial implementation. Copyright © 2018 The Authors. Published by Elsevier B.V. All rights reserved.

  5. High-resolution single-shot spectral monitoring of hard x-ray free-electron laser radiation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Makita, M.; Karvinen, P.; Zhu, D.

    We have developed an on-line spectrometer for hard x-ray free-electron laser (XFEL) radiation based on a nanostructured diamond diffraction grating and a bent crystal analyzer. Our method provides high spectral resolution, interferes negligibly with the XFEL beam, and can withstand the intense hard x-ray pulses at high repetition rates of >100 Hz. The spectrometer is capable of providing shot-to-shot spectral information for the normalization of data obtained in scientific experiments and optimization of the accelerator operation parameters. We have demonstrated these capabilities of the setup at the Linac Coherent Light Source, in self-amplified spontaneous emission mode at full energy ofmore » >1 mJ with a 120 Hz repetition rate, obtaining a resolving power of Ε/δΕ > 3 × 10 4. In conclusion, the device was also used to monitor the effects of pulse duration down to 8 fs by analysis of the spectral spike width.« less

  6. High-resolution single-shot spectral monitoring of hard x-ray free-electron laser radiation

    DOE PAGES

    Makita, M.; Karvinen, P.; Zhu, D.; ...

    2015-10-16

    We have developed an on-line spectrometer for hard x-ray free-electron laser (XFEL) radiation based on a nanostructured diamond diffraction grating and a bent crystal analyzer. Our method provides high spectral resolution, interferes negligibly with the XFEL beam, and can withstand the intense hard x-ray pulses at high repetition rates of >100 Hz. The spectrometer is capable of providing shot-to-shot spectral information for the normalization of data obtained in scientific experiments and optimization of the accelerator operation parameters. We have demonstrated these capabilities of the setup at the Linac Coherent Light Source, in self-amplified spontaneous emission mode at full energy ofmore » >1 mJ with a 120 Hz repetition rate, obtaining a resolving power of Ε/δΕ > 3 × 10 4. In conclusion, the device was also used to monitor the effects of pulse duration down to 8 fs by analysis of the spectral spike width.« less

  7. 3D Holographic Observatory for Long-term Monitoring of Complex Behaviors in Drosophila

    NASA Astrophysics Data System (ADS)

    Kumar, S. Santosh; Sun, Yaning; Zou, Sige; Hong, Jiarong

    2016-09-01

    Drosophila is an excellent model organism towards understanding the cognitive function, aging and neurodegeneration in humans. The effects of aging and other long-term dynamics on the behavior serve as important biomarkers in identifying such changes to the brain. In this regard, we are presenting a new imaging technique for lifetime monitoring of Drosophila in 3D at spatial and temporal resolutions capable of resolving the motion of limbs and wings using holographic principles. The developed system is capable of monitoring and extracting various behavioral parameters, such as ethograms and spatial distributions, from a group of flies simultaneously. This technique can image complicated leg and wing motions of flies at a resolution, which allows capturing specific landing responses from the same data set. Overall, this system provides a unique opportunity for high throughput screenings of behavioral changes in 3D over a long term in Drosophila.

  8. Multimodal OCT for complex assessment of tumors response to therapy

    NASA Astrophysics Data System (ADS)

    Sirotkina, Marina A.; Kiseleva, Elena B.; Gubarkova, Ekaterina V.; Matveev, Lev A.; Zaitsev, Vladimir Yu.; Matveyev, Alexander L.; Shirmanova, Marina V.; Sovetsky, Alexander A.; Moiseev, Alexander A.; Zagaynova, Elena V.; Vitkin, Alex; Gladkova, Natalia D.

    2017-07-01

    Multimodal OCT is a promising tool for monitoring of individual tumor response to antitumor therapies. The changes of tumor cells, connective tissue, microcirculation and stiffness can be estimated simultaneously in real time with high resolution.

  9. NASA Remediation Technology Collaboration Development Task, Overview and Project Summaries

    NASA Technical Reports Server (NTRS)

    Romeo, James G.

    2014-01-01

    An overview presentation of NASA's Remediation Technology Collaboration Development Task including the following project summaries: in situ groundwater monitor, in situ chemical oxidation, in situ bioremediation, horizontal multi-port well, and high resolution site characterization.

  10. A solar activity monitoring platform for SCADM

    NASA Technical Reports Server (NTRS)

    Kissell, K. E.; Ratcliff, D. D.

    1980-01-01

    The adaptation of proven space probe technology is proposed as a means of providing a solar activity monitoring platform which could be injected behind the Earth's orbital position to give 3 to 6 days advanced coverage of the solar phenomenon on the backside hemisphere before it rotates into view and affects terrestrial activities. The probe would provide some three dimensional discrimination within the ecliptic latitude. This relatively simple off-Earth probe could provide very high quality data to support the SCADM program, by transmitting both high resolution video data of the solar surface and such measurements of solar activity as particle, X-ray, ultraviolet, and radio emission fluxes. Topics covered include the orbit; constraints on the spacecraft; subsystems and their embodiments; optical imaging sensors and their operation; and the radiation-pressure attitude control system are described. The platform would be capable of mapping active regions on an hourly basis with one arc-second resolution.

  11. An Electronic Pressure Profile Display system for aeronautic test facilities

    NASA Technical Reports Server (NTRS)

    Woike, Mark R.

    1990-01-01

    The NASA Lewis Research Center has installed an Electronic Pressure Profile Display system. This system provides for the real-time display of pressure readings on high resolution graphics monitors. The Electronic Pressure Profile Display system will replace manometer banks currently used in aeronautic test facilities. The Electronic Pressure Profile Display system consists of an industrial type Digital Pressure Transmitter (DPI) unit which interfaces with a host computer. The host computer collects the pressure data from the DPI unit, converts it into engineering units, and displays the readings on a high resolution graphics monitor in bar graph format. Software was developed to accomplish the above tasks and also draw facility diagrams as background information on the displays. Data transfer between host computer and DPT unit is done with serial communications. Up to 64 channels are displayed with one second update time. This paper describes the system configuration, its features, and its advantages over existing systems.

  12. An electronic pressure profile display system for aeronautic test facilities

    NASA Technical Reports Server (NTRS)

    Woike, Mark R.

    1990-01-01

    The NASA Lewis Research Center has installed an Electronic Pressure Profile Display system. This system provides for the real-time display of pressure readings on high resolution graphics monitors. The Electronic Pressure Profile Display system will replace manometer banks currently used in aeronautic test facilities. The Electronic Pressure Profile Display system consists of an industrial type Digital Pressure Transmitter (DPT) unit which interfaces with a host computer. The host computer collects the pressure data from the DPT unit, converts it into engineering units, and displays the readings on a high resolution graphics monitor in bar graph format. Software was developed to accomplish the above tasks and also draw facility diagrams as background information on the displays. Data transfer between host computer and DPT unit is done with serial communications. Up to 64 channels are displayed with one second update time. This paper describes the system configuration, its features, and its advantages over existing systems.

  13. A novel application of point-of-sales grocery transaction data to enhance community nutrition monitoring.

    PubMed

    Mamiya, Hiroshi; Moodie, Erica E M; Buckeridge, David L

    2017-01-01

    Unhealthy eating is the most important preventable cause of global death and disability. Effective development and evaluation of preventive initiatives and the identification of disparities in dietary patterns require surveillance of nutrition at a community level. However, nutrition monitoring currently relies on dietary surveys, which cannot efficiently assess food selection at high spatial resolution. However, marketing companies continuously collect and centralize digital grocery transaction data from a geographically representative sample of chain retail food outlets through scanner technologies. We used these data to develop a model to predict store-level sales of carbonated soft drinks, which was applied to all chain food outlets in Montreal, Canada. The resulting map of purchase patterns provides a foundation for developing novel, high-resolution nutrition indicators that reflect dietary preferences at a community level. These detailed nutrition portraits will allow health agencies to tailor healthy eating interventions and promotion programs precisely to meet specific community needs.

  14. Coastal and Inland Water Applications of High Resolution Optical Satellite Data from Landsat-8 and Sentinel-2

    NASA Astrophysics Data System (ADS)

    Vanhellemont, Q.

    2016-02-01

    Since the launch of Landsat-8 (L8) in 2013, a joint NASA/USGS programme, new applications of high resolution imagery for coastal and inland waters have become apparent. The optical imaging instrument on L8, the Operational Land Imager (OLI), is much improved compared to its predecessors on L5 and L7, especially with regards to SNR and digitization, and is therefore well suited for retrieving water reflectances and derived parameters such as turbidity and suspended sediment concentration. In June 2015, the European Space Agency (ESA) successfully launched a similar instrument, the MultiSpectral Imager (MSI), on board of Sentinel-2A (S2A). Imagery from both L8 and S2A are free of charge and publicly available (S2A starting at the end of 2015). Atmospheric correction schemes and processing software is under development in the EC-FP7 HIGHROC project. The spatial resolution of these instruments (10-60 m) is a great improvement over typical moderate resolution ocean colour sensors such as MODIS and MERIS (0.25 - 1 km). At higher resolution, many more lakes, rivers, ports and estuaries are spatially resolved, and can thus now be studied using satellite data, unlocking potential for mandatory monitoring e.g. under European Directives such as the Marine Strategy Framework Directive and the Water Framework Directive. We present new applications of these high resolution data, such as monitoring of offshore constructions, wind farms, sediment transport, dredging and dumping, shipping and fishing activities. The spatial variability at sub moderate resolution (0.25 - 1 km) scales can be assessed, as well as the impact of sub grid scale variability (including ships and platforms used for validation) on the moderate pixel retrieval. While the daily revisit time of the moderate resolution sensors is vastly superior to those of the high resolution satellites, at the equator respectively 16 and 10 days for L8 and S2A, the low revisit times can be partially mitigated by combining data streams. Time-series of L8 and S2A imagery are presented to show the power of combining the two satellite missions. With the launch of Sentinel-2B (expected mid-2016), the time-series will be extended with another high resolution sensor. S2B will be on the same orbit as S2A, spaced 180 degrees apart, bringing the S2A+B combined revisit time down to 5 days.

  15. High-throughput metabarcoding of eukaryotic diversity for environmental monitoring of offshore oil-drilling activities.

    PubMed

    Lanzén, Anders; Lekang, Katrine; Jonassen, Inge; Thompson, Eric M; Troedsson, Christofer

    2016-09-01

    As global exploitation of available resources increases, operations extend towards sensitive and previously protected ecosystems. It is important to monitor such areas in order to detect, understand and remediate environmental responses to stressors. The natural heterogeneity and complexity of communities means that accurate monitoring requires high resolution, both temporally and spatially, as well as more complete assessments of taxa. Increased resolution and taxonomic coverage is economically challenging using current microscopy-based monitoring practices. Alternatively, DNA sequencing-based methods have been suggested for cost-efficient monitoring, offering additional insights into ecosystem function and disturbance. Here, we applied DNA metabarcoding of eukaryotic communities in marine sediments, in areas of offshore drilling on the Norwegian continental shelf. Forty-five samples, collected from seven drilling sites in the Troll/Oseberg region, were assessed, using the small subunit ribosomal RNA gene as a taxonomic marker. In agreement with results based on classical morphology-based monitoring, we were able to identify changes in sediment communities surrounding oil platforms. In addition to overall changes in community structure, we identified several potential indicator taxa, responding to pollutants associated with drilling fluids. These included the metazoan orders Macrodasyida, Macrostomida and Ceriantharia, as well as several ciliates and other protist taxa, typically not targeted by environmental monitoring programmes. Analysis of a co-occurrence network to study the distribution of taxa across samples provided a framework for better understanding the impact of anthropogenic activities on the benthic food web, generating novel, testable hypotheses of trophic interactions structuring benthic communities. © 2016 The Authors. Molecular Ecology Published by John Wiley & Sons Ltd.

  16. Opportunistic mobile air pollution monitoring: A case study with city wardens in Antwerp

    NASA Astrophysics Data System (ADS)

    Van den Bossche, Joris; Theunis, Jan; Elen, Bart; Peters, Jan; Botteldooren, Dick; De Baets, Bernard

    2016-09-01

    The goal of this paper is to explore the potential of opportunistic mobile monitoring to map the exposure to air pollution in the urban environment at a high spatial resolution. Opportunistic mobile monitoring makes use of existing mobile infrastructure or people's common daily routines to move measurement devices around. Opportunistic mobile monitoring can also play a crucial role in participatory monitoring campaigns as a typical way to gather data. A case study to measure black carbon was set up in Antwerp, Belgium, with the collaboration of city employees (city wardens). The Antwerp city wardens are outdoors for a large part of the day on surveillance tours by bicycle or on foot, and gathered a total of 393 h of measurements. The data collection is unstructured both in space and time, leading to sampling bias. A temporal adjustment can only partly counteract this bias. Although a high spatial coverage was obtained, there is still a rather large uncertainty on the average concentration levels at a spatial resolution of 50 m due to a limited number of measurements and sampling bias. Despite of this uncertainty, large spatial patterns within the city are clearly captured. This study illustrates the potential of campaigns with unstructured opportunistic mobile monitoring, including participatory monitoring campaigns. The results demonstrate that such an approach can indeed be used to identify broad spatial trends over a wider area, enabling applications including hotspot identification, personal exposure studies, regression mapping, etc. But, they also emphasize the need for repeated measurements and careful processing and interpretation of the data.

  17. The Effect of Remote Sensor Spatial Resolution in Monitoring U.S. Army Training Maneuver Sites

    DTIC Science & Technology

    1990-12-01

    THE EFFECT OF REMOTE SENSOR SPATIAL RESOLUTION IN MONITORING U.S. ARMY...Multispectral Scanner with 6.5 meter spatial resolution provided the most effective digital data set for enhancing tank trails. However, this Airborne Scanner...primary objective of this research was to determine the capabilities and limitations of remote sensor systems having different spatial resolutions to

  18. Experimental investigation of leak detection using mobile distributed monitoring system

    NASA Astrophysics Data System (ADS)

    Chen, Jiang; Zheng, Junli; Xiong, Feng; Ge, Qi; Yan, Qixiang; Cheng, Fei

    2018-01-01

    The leak detection of rockfill dams is currently hindered by spatial and temporal randomness and wide monitoring range. The spatial resolution of fiber Bragg grating (FBG) temperature sensing technology is related to the distance between measuring points. As a result, the number of measuring points should be increased to ensure that the precise location of the leak is detected. However, this leads to a higher monitoring cost. Consequently, it is difficult to promote and apply this technology to effectively monitor rockfill dam leakage. In this paper, a practical mobile distributed monitoring system with dual-tubes is used by combining the FBG sensing system and hydrothermal cycling system. This dual-tube structure is composed of an outer polyethylene of raised temperature resistance heating pipe, an inner polytetrafluoroethylene tube, and a FBG sensor string, among which, the FBG sensor string can be dragged freely in the internal tube to change the position of the measuring points and improve the spatial resolution. In order to test the effectiveness of the system, the large-scale model test of concentrated leakage in 13 working conditions is carried out by identifying the location, quantity, and leakage rate of leakage passage. Based on Newton’s law of cooling, the leakage state is identified using the seepage identification index ζ v that was confirmed according to the cooling curve. Results suggested that the monitoring system shows high sensitivity and can improve the spatial resolution with limited measuring points, and thus better locate the leakage area. In addition, the seepage identification index ζ v correlated well with the leakage rate qualitatively.

  19. Super-resolution Time-Lapse Seismic Waveform Inversion

    NASA Astrophysics Data System (ADS)

    Ovcharenko, O.; Kazei, V.; Peter, D. B.; Alkhalifah, T.

    2017-12-01

    Time-lapse seismic waveform inversion is a technique, which allows tracking changes in the reservoirs over time. Such monitoring is relatively computationally extensive and therefore it is barely feasible to perform it on-the-fly. Most of the expenses are related to numerous FWI iterations at high temporal frequencies, which is inevitable since the low-frequency components can not resolve fine scale features of a velocity model. Inverted velocity changes are also blurred when there is noise in the data, so the problem of low-resolution images is widely known. One of the problems intensively tackled by computer vision research community is the recovering of high-resolution images having their low-resolution versions. Usage of artificial neural networks to reach super-resolution from a single downsampled image is one of the leading solutions for this problem. Each pixel of the upscaled image is affected by all the pixels of its low-resolution version, which enables the workflow to recover features that are likely to occur in the corresponding environment. In the present work, we adopt machine learning image enhancement technique to improve the resolution of time-lapse full-waveform inversion. We first invert the baseline model with conventional FWI. Then we run a few iterations of FWI on a set of the monitoring data to find desired model changes. These changes are blurred and we enhance their resolution by using a deep neural network. The network is trained to map low-resolution model updates predicted by FWI into the real perturbations of the baseline model. For supervised training of the network we generate a set of random perturbations in the baseline model and perform FWI on the noisy data from the perturbed models. We test the approach on a realistic perturbation of Marmousi II model and demonstrate that it outperforms conventional convolution-based deblurring techniques.

  20. Radiation imaging with optically read out GEM-based detectors

    NASA Astrophysics Data System (ADS)

    Brunbauer, F. M.; Lupberger, M.; Oliveri, E.; Resnati, F.; Ropelewski, L.; Streli, C.; Thuiner, P.; van Stenis, M.

    2018-02-01

    Modern imaging sensors allow for high granularity optical readout of radiation detectors such as MicroPattern Gaseous Detectors (MPGDs). Taking advantage of the high signal amplification factors achievable by MPGD technologies such as Gaseous Electron Multipliers (GEMs), highly sensitive detectors can be realised and employing gas mixtures with strong scintillation yield in the visible wavelength regime, optical readout of such detectors can provide high-resolution event representations. Applications from X-ray imaging to fluoroscopy and tomography profit from the good spatial resolution of optical readout and the possibility to obtain images without the need for extensive reconstruction. Sensitivity to low-energy X-rays and energy resolution permit energy resolved imaging and material distinction in X-ray fluorescence measurements. Additionally, the low material budget of gaseous detectors and the possibility to couple scintillation light to imaging sensors via fibres or mirrors makes optically read out GEMs an ideal candidate for beam monitoring detectors in high energy physics as well as radiotherapy. We present applications and achievements of optically read out GEM-based detectors including high spatial resolution imaging and X-ray fluorescence measurements as an alternative readout approach for MPGDs. A detector concept for low intensity applications such as X-ray crystallography, which maximises detection efficiency with a thick conversion region but mitigates parallax-induced broadening is presented and beam monitoring capabilities of optical readout are explored. Augmenting high resolution 2D projections of particle tracks obtained with optical readout with timing information from fast photon detectors or transparent anodes for charge readout, 3D reconstruction of particle trajectories can be performed and permits the realisation of optically read out time projection chambers. Combining readily available high performance imaging sensors with compatible scintillating gases and the strong signal amplification factors achieved by MPGDs makes optical readout an attractive alternative to the common concept of electronic readout of radiation detectors. Outstanding signal-to-noise ratios and robustness against electronic noise allow unprecedented imaging capabilities for various applications in fields ranging from high energy physics to medical instrumentation.

  1. New developments in fabrication of high-energy-resolution analyzers for inelastic x-ray spectroscopy.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Said, A. H.; Sinn, H.; Divan, R.

    2011-05-01

    In this work new improvements related to the fabrication of spherical bent analyzers for 1 meV energy-resolution inelastic X-ray scattering spectroscopy are presented. The new method includes the use of a two-dimensional bender to achieve the required radius of curvature for X-ray analyzers. The advantage of this method is the ability to monitor the focus during bending, which leads to higher-efficiency analyzers.

  2. High spatial resolution imaging for structural health monitoring based on virtual time reversal

    NASA Astrophysics Data System (ADS)

    Cai, Jian; Shi, Lihua; Yuan, Shenfang; Shao, Zhixue

    2011-05-01

    Lamb waves are widely used in structural health monitoring (SHM) of plate-like structures. Due to the dispersion effect, Lamb wavepackets will be elongated and the resolution for damage identification will be strongly affected. This effect can be automatically compensated by the time reversal process (TRP). However, the time information of the compensated waves is also removed at the same time. To improve the spatial resolution of Lamb wave detection, virtual time reversal (VTR) is presented in this paper. In VTR, a changing-element excitation and reception mechanism (CERM) rather than the traditional fixed excitation and reception mechanism (FERM) is adopted for time information conservation. Furthermore, the complicated TRP procedure is replaced by simple signal operations which can make savings in the hardware cost for recording and generating the time-reversed Lamb waves. After the effects of VTR for dispersive damage scattered signals are theoretically analyzed, the realization of VTR involving the acquisition of the transfer functions of damage detecting paths under step pulse excitation is discussed. Then, a VTR-based imaging method is developed to improve the spatial resolution of the delay-and-sum imaging with a sparse piezoelectric (PZT) wafer array. Experimental validation indicates that the damage scattered wavepackets of A0 mode in an aluminum plate are partly recompressed and focalized with their time information preserved by VTR. Both the single damage and the dual adjacent damages in the plate can be clearly displayed with high spatial resolution by the proposed VTR-based imaging method.

  3. Ultra-sensitive wide dynamic range temperature sensor based on in-fiber Lyot interferometer

    NASA Astrophysics Data System (ADS)

    Nikbakht, Hamed; Poorghdiri Isfahani, Mohamad Hosein; Latifi, Hamid

    2017-04-01

    An in-fiber Lyot interferometer for temperature measurement is presented. The sensor utilizes high temperature-dependence of the birefringence in Panda polarization maintaining fibers to achieve high resolution in temperature measurements. Temperature variation modulates the phase difference between the polarization modes propagating in different modes of the Panda fiber. The Lyot interferometer produces a spectrum which varies with the phase difference. Therefore, by monitoring this spectrum a high resolution of 0.003°C was achieved. A fiber Bragg grating is added to the setup to expand its dynamic range. This sensor does not need complicated fabrication process and can be implemented in many applications.

  4. The Development of a Scanning Soft X-Ray Microscope.

    NASA Astrophysics Data System (ADS)

    Rarback, Harvey Miles

    We have developed a scanning soft X-ray microscope, which can be used to image natural biological specimens at high resolution and with less damage than electron microscopy. The microscope focuses a monochromatic beam of synchrotron radiation to a nearly diffraction limited spot with the aid of a high resolution Fresnel zone plate, specially fabricated for us at the IBM Watson Research Center. The specimen at one atmosphere is mechanically scanned through the spot and the transmitted radiation is efficiently detected with a flow proportional counter. A computer forms a realtime transmission image of the specimen which is displayed on a color monitor. Our first generation optics have produced images of natural wet specimens at a resolution of 300 nm.

  5. A hybrid analog-digital phase-locked loop for frequency mode non-contact scanning probe microscopy.

    PubMed

    Mehta, M M; Chandrasekhar, V

    2014-01-01

    Non-contact scanning probe microscopy (SPM) has developed into a powerful technique to image many different properties of samples. The conventional method involves monitoring the amplitude, phase, or frequency of a cantilever oscillating at or near its resonant frequency as it is scanned across the surface of a sample. For high Q factor cantilevers, monitoring the resonant frequency is the preferred method in order to obtain reasonable scan times. This can be done by using a phase-locked-loop (PLL). PLLs can be obtained as commercial integrated circuits, but these do not have the frequency resolution required for SPM. To increase the resolution, all-digital PLLs requiring sophisticated digital signal processors or field programmable gate arrays have also been implemented. We describe here a hybrid analog/digital PLL where most of the components are implemented using discrete analog integrated circuits, but the frequency resolution is provided by a direct digital synthesis chip controlled by a simple peripheral interface controller (PIC) microcontroller. The PLL has excellent frequency resolution and noise, and can be controlled and read by a computer via a universal serial bus connection.

  6. A hybrid analog-digital phase-locked loop for frequency mode non-contact scanning probe microscopy

    NASA Astrophysics Data System (ADS)

    Mehta, M. M.; Chandrasekhar, V.

    2014-01-01

    Non-contact scanning probe microscopy (SPM) has developed into a powerful technique to image many different properties of samples. The conventional method involves monitoring the amplitude, phase, or frequency of a cantilever oscillating at or near its resonant frequency as it is scanned across the surface of a sample. For high Q factor cantilevers, monitoring the resonant frequency is the preferred method in order to obtain reasonable scan times. This can be done by using a phase-locked-loop (PLL). PLLs can be obtained as commercial integrated circuits, but these do not have the frequency resolution required for SPM. To increase the resolution, all-digital PLLs requiring sophisticated digital signal processors or field programmable gate arrays have also been implemented. We describe here a hybrid analog/digital PLL where most of the components are implemented using discrete analog integrated circuits, but the frequency resolution is provided by a direct digital synthesis chip controlled by a simple peripheral interface controller (PIC) microcontroller. The PLL has excellent frequency resolution and noise, and can be controlled and read by a computer via a universal serial bus connection.

  7. BioMon: A Google Earth Based Continuous Biomass Monitoring System (Demo Paper)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Vatsavai, Raju

    2009-01-01

    We demonstrate a Google Earth based novel visualization system for continuous monitoring of biomass at regional and global scales. This system is integrated with a back-end spatiotemporal data mining system that continuously detects changes using high temporal resolution MODIS images. In addition to the visualization, we demonstrate novel query features of the system that provides insights into the current conditions of the landscape.

  8. Use of airborne near-infrared LiDAR for determining channel cross-section characteristics and monitoring aquatic habitat in Pacific Northwest rivers: A preliminary analysis [Chapter 6

    Treesearch

    Russell N. Faux; John M. Buffington; M. German Whitley; Steve H. Lanigan; Brett B. Roper

    2009-01-01

    Aquatic habitat monitoring is being conducted by numerous organizations in many parts of the Pacific Northwest to document physical and biological conditions of stream reaches as part of legal- and policy-mandated environmental assessments. Remote sensing using discrete-return, near-infrared, airborne LiDAR (Light Detection and Ranging) and high-resolution digital...

  9. Influence of climate drivers on colonization and extinction dynamics of wetland-dependent species

    USGS Publications Warehouse

    Ray, Andrew M.; Gould, William R.; Hossack, Blake R.; Sepulveda, Adam; Thoma, David P.; Patla, Debra A.; Daley, Rob; Al-Chokhachy, Robert K.

    2016-01-01

    Freshwater wetlands are particularly vulnerable to climate change. Specifically, changes in temperature, precipitation, and evapotranspiration (i.e., climate drivers) are likely to alter flooding regimes of wetlands and affect the vital rates, abundance, and distributions of wetland-dependent species. Amphibians may be among the most climate-sensitive wetland-dependent groups, as many species rely on shallow or intermittently flooded wetland habitats for breeding. Here, we integrated multiple years of high-resolution gridded climate and amphibian monitoring data from Grand Teton and Yellowstone National Parks to explicitly model how variations in climate drivers and habitat conditions affect the occurrence and breeding dynamics (i.e., annual extinction and colonization rates) of amphibians. Our results showed that models incorporating climate drivers outperformed models of amphibian breeding dynamics that were exclusively habitat based. Moreover, climate-driven variation in extinction rates, but not colonization rates, disproportionately influenced amphibian occupancy in monitored wetlands. Long-term monitoring from national parks coupled with high-resolution climate data sets will be crucial to describing population dynamics and characterizing the sensitivity of amphibians and other wetland-dependent species to climate change. Further, long-term monitoring of wetlands in national parks will help reduce uncertainty surrounding wetland resources and strengthen opportunities to make informed, science-based decisions that have far-reaching benefits.

  10. Flood monitoring in a semi-arid environment using spatially high resolution radar and optical data.

    PubMed

    Seiler, Ralf; Schmidt, Jana; Diallo, Ousmane; Csaplovics, Elmar

    2009-05-01

    The geographic term "Niger Inland Delta" stands for a vast plain of approximately 40,000 km(2), which is situated in the western Sahel (Republic of Mali). The Inland Delta is affected by yearly inundation through the variable water levels of the Niger-Bani river system. Due to a good availability of (surface) water, the ecosystem at the Niger Inland Delta serves as resting place stop-over for many migrating birds and other wildlife species as well as economic base for farmers and pastoral people. To foster the sustainable usage of its natural resources and to protect this natural heritage, the entire Niger Inland Delta became RAMSAR site in 2004. This paper aims to test to which extent texture analysis can improve the quality of flood monitoring in a semi-arid environment using spatially high resolution ASAR imaging mode data. We found the Gray Level Dependence Method (GLDM) was most suitable proceeding for our data. Several statistical parameters were calculated via co-occurrence matrices and were used to classify the images in different gradation of soil moisture classes. In a second step we used additional information from spatially high resolution optical data (ASTER) to improve the separability of open water areas from moisture/vegetated areas.

  11. Toward continuous 4D microgravity monitoring of volcanoes

    USGS Publications Warehouse

    Williams-Jones, G.; Rymer, H.; Mauri, G.; Gottsmann, J.; Poland, M.; Carbone, D.

    2008-01-01

    Four-dimensional or time-lapse microgravity monitoring has been used effectively on volcanoes for decades to characterize the changes in subsurface volcanic systems. With measurements typically lasting from a few days to weeks and then repeated a year later, the spatial resolution of theses studies is often at the expense of temporal resolution and vice versa. Continuous gravity studies with one to two instruments operating for a short period of time (weeks to months) have shown enticing evidence of very rapid changes in the volcanic plumbing system (minutes to hours) and in one case precursory signals leading to eruptive activity were detected. The need for true multi-instrument networks is clear if we are to have both the temporal and spatial reso-lution needed for effective volcano monitoring. However, the high cost of these instruments is currently limiting the implementation of continuous microgravity networks. An interim approach to consider is the development of a collaborative network of researchers able to bring multiple instruments together at key volcanoes to investigate multitemporal physical changes in a few type volcanoes. However, to truly move forward, it is imperative that new low-cost instruments are developed to increase the number of instruments available at a single site. Only in this way can both the temporal and spatial integrity of monitoring be maintained. Integration of these instruments into a multiparameter network of continuously recording sensors is essential for effective volcano monitoring and hazard mitigation. ?? 2008 Society of Exploration Geophysicists. All rights reserved.

  12. Scalable Adaptive Graphics Environment (SAGE) Software for the Visualization of Large Data Sets on a Video Wall

    NASA Technical Reports Server (NTRS)

    Jedlovec, Gary; Srikishen, Jayanthi; Edwards, Rita; Cross, David; Welch, Jon; Smith, Matt

    2013-01-01

    The use of collaborative scientific visualization systems for the analysis, visualization, and sharing of "big data" available from new high resolution remote sensing satellite sensors or four-dimensional numerical model simulations is propelling the wider adoption of ultra-resolution tiled display walls interconnected by high speed networks. These systems require a globally connected and well-integrated operating environment that provides persistent visualization and collaboration services. This abstract and subsequent presentation describes a new collaborative visualization system installed for NASA's Shortterm Prediction Research and Transition (SPoRT) program at Marshall Space Flight Center and its use for Earth science applications. The system consists of a 3 x 4 array of 1920 x 1080 pixel thin bezel video monitors mounted on a wall in a scientific collaboration lab. The monitors are physically and virtually integrated into a 14' x 7' for video display. The display of scientific data on the video wall is controlled by a single Alienware Aurora PC with a 2nd Generation Intel Core 4.1 GHz processor, 32 GB memory, and an AMD Fire Pro W600 video card with 6 mini display port connections. Six mini display-to-dual DVI cables are used to connect the 12 individual video monitors. The open source Scalable Adaptive Graphics Environment (SAGE) windowing and media control framework, running on top of the Ubuntu 12 Linux operating system, allows several users to simultaneously control the display and storage of high resolution still and moving graphics in a variety of formats, on tiled display walls of any size. The Ubuntu operating system supports the open source Scalable Adaptive Graphics Environment (SAGE) software which provides a common environment, or framework, enabling its users to access, display and share a variety of data-intensive information. This information can be digital-cinema animations, high-resolution images, high-definition video-teleconferences, presentation slides, documents, spreadsheets or laptop screens. SAGE is cross-platform, community-driven, open-source visualization and collaboration middleware that utilizes shared national and international cyberinfrastructure for the advancement of scientific research and education.

  13. Scalable Adaptive Graphics Environment (SAGE) Software for the Visualization of Large Data Sets on a Video Wall

    NASA Astrophysics Data System (ADS)

    Jedlovec, G.; Srikishen, J.; Edwards, R.; Cross, D.; Welch, J. D.; Smith, M. R.

    2013-12-01

    The use of collaborative scientific visualization systems for the analysis, visualization, and sharing of 'big data' available from new high resolution remote sensing satellite sensors or four-dimensional numerical model simulations is propelling the wider adoption of ultra-resolution tiled display walls interconnected by high speed networks. These systems require a globally connected and well-integrated operating environment that provides persistent visualization and collaboration services. This abstract and subsequent presentation describes a new collaborative visualization system installed for NASA's Short-term Prediction Research and Transition (SPoRT) program at Marshall Space Flight Center and its use for Earth science applications. The system consists of a 3 x 4 array of 1920 x 1080 pixel thin bezel video monitors mounted on a wall in a scientific collaboration lab. The monitors are physically and virtually integrated into a 14' x 7' for video display. The display of scientific data on the video wall is controlled by a single Alienware Aurora PC with a 2nd Generation Intel Core 4.1 GHz processor, 32 GB memory, and an AMD Fire Pro W600 video card with 6 mini display port connections. Six mini display-to-dual DVI cables are used to connect the 12 individual video monitors. The open source Scalable Adaptive Graphics Environment (SAGE) windowing and media control framework, running on top of the Ubuntu 12 Linux operating system, allows several users to simultaneously control the display and storage of high resolution still and moving graphics in a variety of formats, on tiled display walls of any size. The Ubuntu operating system supports the open source Scalable Adaptive Graphics Environment (SAGE) software which provides a common environment, or framework, enabling its users to access, display and share a variety of data-intensive information. This information can be digital-cinema animations, high-resolution images, high-definition video-teleconferences, presentation slides, documents, spreadsheets or laptop screens. SAGE is cross-platform, community-driven, open-source visualization and collaboration middleware that utilizes shared national and international cyberinfrastructure for the advancement of scientific research and education.

  14. Retrieval of total suspended matter concentrations from high resolution WorldView-2 imagery: a case study of inland rivers

    NASA Astrophysics Data System (ADS)

    Shi, Liangliang; Mao, Zhihua; Wang, Zheng

    2018-02-01

    Satellite imagery has played an important role in monitoring water quality of lakes or coastal waters presently, but scarcely been applied in inland rivers. This paper presents an attempt of feasibility to apply regression model to quantify and map the concentrations of total suspended matter (CTSM) in inland rivers which have a large scale of spatial and a high CTSM dynamic range by using high resolution satellite remote sensing data, WorldView-2. An empirical approach to quantify CTSM by integrated use of high resolution WorldView-2 multispectral data and 21 in situ CTSM measurements. Radiometric correction, geometric and atmospheric correction involved in image processing procedure is carried out for deriving the surface reflectance to correlate the CTSM and satellite data by using single-variable and multivariable regression technique. Results of regression model show that the single near-infrared (NIR) band 8 of WorldView-2 have a relative strong relationship (R2=0.93) with CTSM. Different prediction models were developed on various combinations of WorldView-2 bands, the Akaike Information Criteria approach was used to choose the best model. The model involving band 1, 3, 5, and 8 of WorldView-2 had a best performance, whose R2 reach to 0.92, with SEE of 53.30 g/m3. The spatial distribution maps were produced by using the best multiple regression model. The results of this paper indicated that it is feasible to apply the empirical model by using high resolution satellite imagery to retrieve CTSM of inland rivers in routine monitoring of water quality.

  15. Mobile patient monitoring based on impedance-loaded SAW-sensors.

    PubMed

    Karilainen, Anna; Finnberg, Thomas; Uelzen, Thorsten; Dembowski, Klaus; Müller, Jörg

    2004-11-01

    A remotely requestable, passive, short-range sensor network for measuring small voltages is presented. The sensor system is able to simultaneously monitor six small voltages in millivolt-range, and it can be used for Holter-electrocardiogram (ECG) and other biopotential monitoring, or in industrial applications. The sensors are based on a surface acoustic wave (SAW) delay line with voltage-dependent, impedance loading on a reflector interdigital transducer (IDT). The load circuit impedance is varied by the capacitance of the voltage-controlled varactor. High resolution is achieved by developing a MOS-capacitor with a thin oxide, low flat-band voltage, and zero-voltage capacitance in the space-charge region, as well as a high-Q-microcoil by thick metal electroplating. Simultaneous monitoring of multiple potentials is realized by time-division-multiplexing of different sensor signals.

  16. High-Resolution Forest Carbon Monitoring and Modeling: Continued Prototype Development and Deployment Across The Tri-state Area (MD, PA, DE), USA

    NASA Astrophysics Data System (ADS)

    Hurtt, G. C.; Birdsey, R.; Campbell, E.; Dolan, K. A.; Dubayah, R.; Escobar, V. M.; Finley, A. O.; Flanagan, S.; Huang, W.; Johnson, K.; Lister, A.; ONeil-Dunne, J.; Sepulveda Carlo, E.; Zhao, M.

    2017-12-01

    Local, national and international programs have increasing need for precise and accurate estimates of forest carbon and structure to support greenhouse gas reduction plans, climate initiatives, and other international climate treaty frameworks. In 2010 Congress directed NASA to initiate research towards the development of Carbon Monitoring Systems (CMS). In response, our team has worked to develop a robust, replicable framework to produce maps of high-resolution carbon stocks and future carbon sequestration potential. High-resolution (30m) maps of carbon stocks and uncertainty were produced by linking national 1m-resolution imagery and existing wall-to-wall airborne lidar to spatially explicit in-situ field observations such as the USFS Forest Inventory and Analysis (FIA) network. These same data, characterizing forest extent and vertical structure, were used to drive a prognostic ecosystem model to predict carbon fluxes and carbon sequestration potential at unprecedented spatial resolution and scale (90m), more than 100,000 times the spatial resolution of standard global models. Through project development, the domain of this research has expanded from two counties in MD (2,181 km2), to the entire state (32,133 km2), to the tri-state region of MD, PA, and DE (157,868 km2), covering forests in four major USDA ecological providences (Eastern Broadleaf, Northeastern Mixed, Outer Coastal Plain, and Central Appalachian). Across the region, we estimate 694 Tg C (14 DE, 113 MD, 567 PA) in above ground biomass, and estimate a carbon sequestration potential more than twice that amount. Empirical biomass products enhance existing approaches though high resolution accounting for trees outside traditional forest maps. Modeling products move beyond traditional MRV, and map future afforestation and reforestation potential for carbon at local actionable spatial scales. These products are relevant to multiple stakeholder needs in the region as discussed through the Tri-sate Working Group, and are actively being used to inform the state of MD's Greenhouse Gas Reduction Act. The approach is scalable, and provides a protoype framework for application in other domains and for future spaceborne lidar missions.

  17. Air Pollution Measurements by Citizen Scientists and NASA Satellites: Data Integration and Analysis

    NASA Astrophysics Data System (ADS)

    Gupta, P.; Maibach, J.; Levy, R. C.; Doraiswamy, P.; Pikelnaya, O.; Feenstra, B.; Polidori, A.

    2017-12-01

    PM2.5, or fine particulate matter, is a category of air pollutant consisting of solid particles with effective aerodynamic diameter of less than 2.5 microns. These particles are hazardous to human health, as their small size allows them to penetrate deep into the lungs. Since the late 1990's, the US Environmental Protection Agency has been monitoring PM2.5 using a network of ground-level sensors. Due to cost and space restrictions, the EPA monitoring network remains spatially sparse. That is, while the network spans the extent of the US, the distance between sensors is large enough that significant spatial variation in PM concentration can go undetected. To increase the spatial resolution of monitoring, previous studies have used satellite data to estimate ground-level PM concentrations. From imagery, one can create a measure of haziness due to aerosols, called aerosol optical depth (AOD), which then can be used to estimate PM concentrations using statistical and physical modeling. Additionally, previous research has identified a number of meteorological variables, such as relative humidity and mixing height, which aide in estimating PM concentrations from AOD. Although the high spatial resolution of satellite data is valuable alone for forecasting air quality, higher resolution ground-level data is needed to effectively study the relationship between PM2.5 concentrations and AOD. To this end, we discuss a citizen-science PM monitoring network deployed in California. Using low-cost PM sensors, this network achieves higher spatial resolution. We additionally discuss a software pipeline for integrating resulting PM measurements with satellite data, as well as initial data analysis.

  18. Design of a tissue oxygenation monitor and verification on human skin

    NASA Astrophysics Data System (ADS)

    Liu, Hongyuan; Kohl-Bareis, Matthias; Huang, Xiabing

    2011-07-01

    We report the design of a tissue oxygen and temperature monitor. The non-invasive, fibre based device monitors tissue haemoglobin (Hb) and oxygen saturation (SO2) and is based on white-light reflectance spectroscopy.Visible light with wavelengths in the 500 - 650nm range is utilized. The spectroscopic algorithm takes into account the tissue scattering and melanin absorption for the calculation of tissue haemoglobin concentration and oxygen saturation. The monitor can probe superficial layers of tissue with a high spatial resolution (mm3) and a high temporal resolution (40 Hz). It provides an accurate measurement with the accuracy of SO2 at 2 % and high reliability with less than 2 % variation of continuous SO2 measurement over 12 hours. It can also form a modular system when used in conjunction with a laser Doppler monitor, enabling simultaneous measurements of Hb, SO2 and blood flow. We found experimentally that the influence of the source-detector separation on the haemoglobin parameters is small. This finding is discussed by Monte Carlo simulations for the depth sensitivity profile. The influence of probe pressure and the skin pigmentation on the measurement parameters are assessed before in vivo experimental data is presented. The combination with laser Doppler flowmetry demonstrates the importance of a measurement of both the haemoglobin and the blood flow parameters for a full description of blood tissue perfusion. This is discussed in experimental data on human skin during cuff occlusion and after hyperemisation by a pharmacological cream. Strong correlation is observed between tissue oxygen (Hb and SO2) and blood flow measurements.

  19. HIGH RESOLTUION GEOELECTRICAL MEASUREMENTS OF BIODEGRADATION AND SURFACTANT REMEDIATION: LAB AND FIELD STUDES AND A NEW CHARACTERIZATION TEST CELL FIELD RESEARCH SITE

    EPA Science Inventory

    Laboratory and field high vertical resolution geophysical research has shown that geoelectrical measurements can detect and monitor the natural attenuation of petroleum hydrocarbons. These results have lead to the continued development and refinement of the conductive model for h...

  20. Real-time monitoring of laser powder bed fusion process using high-speed X-ray imaging and diffraction

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhao, Cang; Fezzaa, Kamel; Cunningham, Ross W.

    Here, we employ the high-speed synchrotron hard X-ray imaging and diffraction techniques to monitor the laser powder bed fusion (LPBF) process of Ti-6Al-4V in situ and in real time. We demonstrate that many scientifically and technologically significant phenomena in LPBF, including melt pool dynamics, powder ejection, rapid solidification, and phase transformation, can be probed with unprecedented spatial and temporal resolutions. In particular, the keyhole pore formation is experimentally revealed with high spatial and temporal resolutions. The solidification rate is quantitatively measured, and the slowly decrease in solidification rate during the relatively steady state could be a manifestation of the recalescencemore » phenomenon. The high-speed diffraction enables a reasonable estimation of the cooling rate and phase transformation rate, and the diffusionless transformation from β to α’ phase is evident. The data present here will facilitate the understanding of dynamics and kinetics in metal LPBF process, and the experiment platform established will undoubtedly become a new paradigm for future research and development of metal additive manufacturing.« less

  1. Real-time monitoring of laser powder bed fusion process using high-speed X-ray imaging and diffraction

    DOE PAGES

    Zhao, Cang; Fezzaa, Kamel; Cunningham, Ross W.; ...

    2017-06-15

    Here, we employ the high-speed synchrotron hard X-ray imaging and diffraction techniques to monitor the laser powder bed fusion (LPBF) process of Ti-6Al-4V in situ and in real time. We demonstrate that many scientifically and technologically significant phenomena in LPBF, including melt pool dynamics, powder ejection, rapid solidification, and phase transformation, can be probed with unprecedented spatial and temporal resolutions. In particular, the keyhole pore formation is experimentally revealed with high spatial and temporal resolutions. The solidification rate is quantitatively measured, and the slowly decrease in solidification rate during the relatively steady state could be a manifestation of the recalescencemore » phenomenon. The high-speed diffraction enables a reasonable estimation of the cooling rate and phase transformation rate, and the diffusionless transformation from β to α’ phase is evident. The data present here will facilitate the understanding of dynamics and kinetics in metal LPBF process, and the experiment platform established will undoubtedly become a new paradigm for future research and development of metal additive manufacturing.« less

  2. Power quality considerations for nuclear spectroscopy applications: Grounding

    NASA Astrophysics Data System (ADS)

    García-Hernández, J. M.; Ramírez-Jiménez, F. J.; Mondragón-Contreras, L.; López-Callejas, R.; Torres-Bribiesca, M. A.; Peña-Eguiluz, R.

    2013-11-01

    Traditionally the electrical installations are designed for supplying power and to assure the personnel safety. In nuclear analysis laboratories, additional issues about grounding also must be considered for proper operation of high resolution nuclear spectroscopy systems. This paper shows the traditional ways of grounding nuclear spectroscopy systems and through different scenarios, it shows the effects on the more sensitive parameter of these systems: the energy resolution, it also proposes the constant monitoring of a power quality parameter as a way to preserve or to improve the resolution of the systems, avoiding the influence of excessive extrinsic noise.

  3. Employing unmanned aerial vehicle to monitor the health condition of wind turbines

    NASA Astrophysics Data System (ADS)

    Huang, Yishuo; Chiang, Chih-Hung; Hsu, Keng-Tsang; Cheng, Chia-Chi

    2018-04-01

    Unmanned aerial vehicle (UAV) can gather the spatial information of huge structures, such as wind turbines, that can be difficult to obtain with traditional approaches. In this paper, the UAV used in the experiments is equipped with high resolution camera and thermal infrared camera. The high resolution camera can provide a series of images with resolution up to 10 Megapixels. Those images can be used to form the 3D model using the digital photogrammetry technique. By comparing the 3D scenes of the same wind turbine at different times, possible displacement of the supporting tower of the wind turbine, caused by ground movement or foundation deterioration may be determined. The recorded thermal images are analyzed by applying the image segmentation methods to the surface temperature distribution. A series of sub-regions are separated by the differences of the surface temperature. The high-resolution optical image and the segmented thermal image are fused such that the surface anomalies are more easily identified for wind turbines.

  4. Analysis of high-resolution spectra from a hybrid interferometric/dispersive spectrometer

    DOE PAGES

    Ko, Phyllis; Scott, Jill R.; Jovanovic, Igor

    2015-09-05

    To fully take advantage of a low-cost, small footprint hybrid interferometric/dispersive spectrometer, a math- ematical reconstruction technique was developed to accurately capture the high-resolution and relative peak intensities from complex patterns. A Fabry-Perot etalon was coupled to a Czerny-Turner spectrometer, in- creasing spectral resolution by an order of magnitude without the commensurate increase in spectrometer size. Measurement of the industry standard Hg 313.1555/313.1844 nm doublet yielded a ratio of 0.682 with 1.8%error, which agreed well with an independent measurement and literature values. The doublet separation (29 pm), is similar to the U isotope shift (25 pm) at 424.437 nm thatmore » is of interest to monitoring nuclear nonpro-liferation activities. Additionally, the technique was applied to a LIBS measurement of the mineral cinnabar (HgS) and resulted in a ratio of 0.681. In addition, this reconstruction method could enable significantly smaller, portable high-resolution instruments with isotopic specificity, benefiting a variety of spectroscopic applications.« less

  5. Assessment of Spatiotemporal Fusion Algorithms for Planet and Worldview Images

    PubMed Central

    Zhu, Xiaolin; Gao, Feng; Chou, Bryan; Li, Jiang; Shen, Yuzhong; Koperski, Krzysztof; Marchisio, Giovanni

    2018-01-01

    Although Worldview-2 (WV) images (non-pansharpened) have 2-m resolution, the re-visit times for the same areas may be seven days or more. In contrast, Planet images are collected using small satellites that can cover the whole Earth almost daily. However, the resolution of Planet images is 3.125 m. It would be ideal to fuse these two satellites images to generate high spatial resolution (2 m) and high temporal resolution (1 or 2 days) images for applications such as damage assessment, border monitoring, etc. that require quick decisions. In this paper, we evaluate three approaches to fusing Worldview (WV) and Planet images. These approaches are known as Spatial and Temporal Adaptive Reflectance Fusion Model (STARFM), Flexible Spatiotemporal Data Fusion (FSDAF), and Hybrid Color Mapping (HCM), which have been applied to the fusion of MODIS and Landsat images in recent years. Experimental results using actual Planet and Worldview images demonstrated that the three aforementioned approaches have comparable performance and can all generate high quality prediction images. PMID:29614745

  6. Assessment of Spatiotemporal Fusion Algorithms for Planet and Worldview Images.

    PubMed

    Kwan, Chiman; Zhu, Xiaolin; Gao, Feng; Chou, Bryan; Perez, Daniel; Li, Jiang; Shen, Yuzhong; Koperski, Krzysztof; Marchisio, Giovanni

    2018-03-31

    Although Worldview-2 (WV) images (non-pansharpened) have 2-m resolution, the re-visit times for the same areas may be seven days or more. In contrast, Planet images are collected using small satellites that can cover the whole Earth almost daily. However, the resolution of Planet images is 3.125 m. It would be ideal to fuse these two satellites images to generate high spatial resolution (2 m) and high temporal resolution (1 or 2 days) images for applications such as damage assessment, border monitoring, etc. that require quick decisions. In this paper, we evaluate three approaches to fusing Worldview (WV) and Planet images. These approaches are known as Spatial and Temporal Adaptive Reflectance Fusion Model (STARFM), Flexible Spatiotemporal Data Fusion (FSDAF), and Hybrid Color Mapping (HCM), which have been applied to the fusion of MODIS and Landsat images in recent years. Experimental results using actual Planet and Worldview images demonstrated that the three aforementioned approaches have comparable performance and can all generate high quality prediction images.

  7. Application of high-resolution subsurface imaging techniques to water resource investigations. Final report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sternberg, B.K.; Thomas, S.J.

    1992-12-01

    The overall objective of the project was to apply a new high-resolution imaging system to water resource investigations. This imaging system measures the ellipticity of received magnetic-field components. The source of the magnetic field is a long-line transmitter emitting frequencies from 30 Hz to 30 kHz. A new high-accuracy calibration method was used to enhance the resolution of the measurements. The specific objectives included: (1) refine the system hardware and software based on these investigations, (2) learn the limitations of this technology in practical water resource investigations, and (3) improve interpretation techniques to extract the highest possible resolution. Successful fieldmore » surveys were run at: (1) San Xavier Mine, Arizona - flow of injected fluid was monitored with the system. (2) Avra Valley, Arizona - subsurface stratigraphy was imaged. A survey at a third site was less successful; interpreted resistivity section does not agree with nearby well logs. Surveys are continuing at this site.« less

  8. Depth-resolved monitoring of analytes diffusion in ocular tissues

    NASA Astrophysics Data System (ADS)

    Larin, Kirill V.; Ghosn, Mohamad G.; Tuchin, Valery V.

    2007-02-01

    Optical coherence tomography (OCT) is a noninvasive imaging technique with high in-depth resolution. We employed OCT technique for monitoring and quantification of analyte and drug diffusion in cornea and sclera of rabbit eyes in vitro. Different analytes and drugs such as metronidazole, dexamethasone, ciprofloxacin, mannitol, and glucose solution were studied and whose permeability coefficients were calculated. Drug diffusion monitoring was performed as a function of time and as a function of depth. Obtained results suggest that OCT technique might be used for analyte diffusion studies in connective and epithelial tissues.

  9. Towards fish-eye camera based in-home activity assessment.

    PubMed

    Bas, Erhan; Erdogmus, Deniz; Ozertem, Umut; Pavel, Misha

    2008-01-01

    Indoors localization, activity classification, and behavioral modeling are increasingly important for surveillance applications including independent living and remote health monitoring. In this paper, we study the suitability of fish-eye cameras (high-resolution CCD sensors with very-wide-angle lenses) for the purpose of monitoring people in indoors environments. The results indicate that these sensors are very useful for automatic activity monitoring and people tracking. We identify practical and mathematical problems related to information extraction from these video sequences and identify future directions to solve these issues.

  10. Fusion of multi-source remote sensing data for agriculture monitoring tasks

    NASA Astrophysics Data System (ADS)

    Skakun, S.; Franch, B.; Vermote, E.; Roger, J. C.; Becker Reshef, I.; Justice, C. O.; Masek, J. G.; Murphy, E.

    2016-12-01

    Remote sensing data is essential source of information for enabling monitoring and quantification of crop state at global and regional scales. Crop mapping, state assessment, area estimation and yield forecasting are the main tasks that are being addressed within GEO-GLAM. Efficiency of agriculture monitoring can be improved when heterogeneous multi-source remote sensing datasets are integrated. Here, we present several case studies of utilizing MODIS, Landsat-8 and Sentinel-2 data along with meteorological data (growing degree days - GDD) for winter wheat yield forecasting, mapping and area estimation. Archived coarse spatial resolution data, such as MODIS, VIIRS and AVHRR, can provide daily global observations that coupled with statistical data on crop yield can enable the development of empirical models for timely yield forecasting at national level. With the availability of high-temporal and high spatial resolution Landsat-8 and Sentinel-2A imagery, course resolution empirical yield models can be downscaled to provide yield estimates at regional and field scale. In particular, we present the case study of downscaling the MODIS CMG based generalized winter wheat yield forecasting model to high spatial resolution data sets, namely harmonized Landsat-8 - Sentinel-2A surface reflectance product (HLS). Since the yield model requires corresponding in season crop masks, we propose an automatic approach to extract winter crop maps from MODIS NDVI and MERRA2 derived GDD using Gaussian mixture model (GMM). Validation for the state of Kansas (US) and Ukraine showed that the approach can yield accuracies > 90% without using reference (ground truth) data sets. Another application of yearly derived winter crop maps is their use for stratification purposes within area frame sampling for crop area estimation. In particular, one can simulate the dependence of error (coefficient of variation) on the number of samples and strata size. This approach was used for estimating the area of winter crops in Ukraine for 2013-2016. The GMM-GDD approach is further extended for HLS data to provide automatic winter crop mapping at 30 m resolution for crop yield model and area estimation. In case of persistent cloudiness, addition of Sentinel-1A synthetic aperture radar (SAR) images is explored for automatic winter crop mapping.

  11. Tropospheric Wind Monitoring During Day-of-Launch Operations for NASA's Space Shuttle Program

    NASA Technical Reports Server (NTRS)

    Decker, Ryan; Leach, Richard

    2004-01-01

    The Environments Group at the National Aeronautics and Space Administration's Marshall Space Flight Center monitors the winds aloft above Kennedy Space Center (KSC) in support of the Space Shuttle Program day-of-launch operations. Assessment of tropospheric winds is used to support the ascent phase of launch. Three systems at KSC are used to generate independent tropospheric wind profiles prior to launch; 1) high resolution jimsphere balloon system, 2) 50-MHz Doppler Radar Wind Profiler (DRWP) and 3) low resolution radiosonde system. All independent sources are compared against each other for accuracy. To assess spatial and temporal wind variability during launch countdown each jimsphere profile is compared against a design wind database to ensure wind change does not violate wind change criteria.

  12. Modeling diurnal land temperature cycles over Los Angeles using downscaled GOES imagery

    NASA Astrophysics Data System (ADS)

    Weng, Qihao; Fu, Peng

    2014-11-01

    Land surface temperature is a key parameter for monitoring urban heat islands, assessing heat related risks, and estimating building energy consumption. These environmental issues are characterized by high temporal variability. A possible solution from the remote sensing perspective is to utilize geostationary satellites images, for instance, images from Geostationary Operational Environmental System (GOES) and Meteosat Second Generation (MSG). These satellite systems, however, with coarse spatial but high temporal resolution (sub-hourly imagery at 3-10 km resolution), often limit their usage to meteorological forecasting and global climate modeling. Therefore, how to develop efficient and effective methods to disaggregate these coarse resolution images to a proper scale suitable for regional and local studies need be explored. In this study, we propose a least square support vector machine (LSSVM) method to achieve the goal of downscaling of GOES image data to half-hourly 1-km LSTs by fusing it with MODIS data products and Shuttle Radar Topography Mission (SRTM) digital elevation data. The result of downscaling suggests that the proposed method successfully disaggregated GOES images to half-hourly 1-km LSTs with accuracy of approximately 2.5 K when validated against with MODIS LSTs at the same over-passing time. The synthetic LST datasets were further explored for monitoring of surface urban heat island (UHI) in the Los Angeles region by extracting key diurnal temperature cycle (DTC) parameters. It is found that the datasets and DTC derived parameters were more suitable for monitoring of daytime- other than nighttime-UHI. With the downscaled GOES 1-km LSTs, the diurnal temperature variations can well be characterized. An accuracy of about 2.5 K was achieved in terms of the fitted results at both 1 km and 5 km resolutions.

  13. Monitoring African savanna water use and water stress from local to regional scale: supporting rangeland management (pilot experience in Kruger National Park, South Africa).

    NASA Astrophysics Data System (ADS)

    Andreu, Ana; Dube, Timothy; Nieto, Hector; González-Dugo, Maria P.; Hülsmann, Stephan

    2017-04-01

    Drought periods and erratic rainfall patterns across large parts of Africa result in water-limited environments like savannas, highly sensitive to land management practices and changes in climate. Over the Southern part of the continent, savannas are key productive landscapes supporting livestock, crops and rural livelihoods. Monitoring water use and the natural vegetation stress over these semi-arid complex ecosystems can support rangeland management, to maintain long-term productivity. However, the precision/resolution/accuracy of the information required for management will differ at each scale: farm-local (e.g. evaluating the effect of management practices, livestock densities, crop production and grazing), to watershed (e.g. evaluating the effect of fire, detection of vulnerable areas) and regional (e.g. early prediction of drought). To overcome these constrains, TIGER project 401 combines two approaches that take advantage of different conceptual and operational capabilities of Earth Observation data sources. Sentinel 2 high spatial (10 m) and temporal ( 5 days) resolution VIS/NIR images are used for a continuous monitoring of vegetation cover and unstressed evapotranspiration (ET - using Kc-FAO56 method). This methodology will provide the required resolution for farm-local scales, tracking separately the seasonal variations of each canopy layer growth (grass and trees). Meanwhile, lower spatial resolution (1 km) MODIS thermal data allow to determine a regional water stress index (ratio between actual ET, estimated using Two Source Energy Balance-TSEB, and potential ET), supporting the detection of vulnerable areas. The model framework was tested and validated over savanna-type experimental areas (Skukuza & Malopeni), and later applied over the whole Kruger National Park during 2015-2016.

  14. Blinded evaluation of the effects of high definition and magnification on perceived image quality in laryngeal imaging.

    PubMed

    Otto, Kristen J; Hapner, Edie R; Baker, Michael; Johns, Michael M

    2006-02-01

    Advances in commercial video technology have improved office-based laryngeal imaging. This study investigates the perceived image quality of a true high-definition (HD) video camera and the effect of magnification on laryngeal videostroboscopy. We performed a prospective, dual-armed, single-blinded analysis of a standard laryngeal videostroboscopic examination comparing 3 separate add-on camera systems: a 1-chip charge-coupled device (CCD) camera, a 3-chip CCD camera, and a true 720p (progressive scan) HD camera. Displayed images were controlled for magnification and image size (20-inch [50-cm] display, red-green-blue, and S-video cable for 1-chip and 3-chip cameras; digital visual interface cable and HD monitor for HD camera). Ten blinded observers were then asked to rate the following 5 items on a 0-to-100 visual analog scale: resolution, color, ability to see vocal fold vibration, sense of depth perception, and clarity of blood vessels. Eight unblinded observers were then asked to rate the difference in perceived resolution and clarity of laryngeal examination images when displayed on a 10-inch (25-cm) monitor versus a 42-inch (105-cm) monitor. A visual analog scale was used. These monitors were controlled for actual resolution capacity. For each item evaluated, randomized block design analysis demonstrated that the 3-chip camera scored significantly better than the 1-chip camera (p < .05). For the categories of color and blood vessel discrimination, the 3-chip camera scored significantly better than the HD camera (p < .05). For magnification alone, observers rated the 42-inch monitor statistically better than the 10-inch monitor. The expense of new medical technology must be judged against its added value. This study suggests that HD laryngeal imaging may not add significant value over currently available video systems, in perceived image quality, when a small monitor is used. Although differences in clarity between standard and HD cameras may not be readily apparent on small displays, a large display size coupled with HD technology may impart improved diagnosis of subtle vocal fold lesions and vibratory anomalies.

  15. Performance of a reentrant cavity beam position monitor

    NASA Astrophysics Data System (ADS)

    Simon, Claire; Luong, Michel; Chel, Stéphane; Napoly, Olivier; Novo, Jorge; Roudier, Dominique; Rouvière, Nelly; Baboi, Nicoleta; Mildner, Nils; Nölle, Dirk

    2008-08-01

    The beam-based alignment and feedback systems, essential operations for the future colliders, require high resolution beam position monitors (BPMs). In the framework of the European CARE/SRF program, a reentrant cavity BPM with its associated electronics was developed by the CEA/DSM/Irfu in collaboration with DESY. The design, the fabrication, and the beam test of this monitor are detailed within this paper. This BPM is designed to be inserted in a cryomodule, work at cryogenic temperature in a clean environment. It has achieved a resolution better than 10μm and has the possibility to perform bunch to bunch measurements for the x-ray free electron laser (X-FEL) and the International Linear Collider (ILC). Its other features are a small size of the rf cavity, a large aperture (78 mm), and an excellent linearity. A first prototype of a reentrant cavity BPM was installed in the free electron laser in Hamburg (FLASH), at Deutsches Elektronen-Synchrotron (DESY) and demonstrated its operation at cryogenic temperature inside a cryomodule. The second, installed, also, in the FLASH linac to be tested with beam, measured a resolution of approximately 4μm over a dynamic range ±5mm in single bunch.

  16. Combat vehicle crew helmet-mounted display: next generation high-resolution head-mounted display

    NASA Astrophysics Data System (ADS)

    Nelson, Scott A.

    1994-06-01

    The Combat Vehicle Crew Head-Mounted Display (CVC HMD) program is an ARPA-funded, US Army Natick Research, Development, and Engineering Center monitored effort to develop a high resolution, flat panel HMD for the M1 A2 Abrams main battle tank. CVC HMD is part of the ARPA High Definition Systems (HDS) thrust to develop and integrate small (24 micrometers square pels), high resolution (1280 X 1024 X 6-bit grey scale at 60 frame/sec) active matrix electroluminescent (AMEL) and active matrix liquid crystal displays (AMLCD) for head mounted and projection applications. The Honeywell designed CVC HMD is a next generation head-mounted display system that includes advanced flat panel image sources, advanced digital display driver electronics, high speed (> 1 Gbps) digital interconnect electronics, and light weight, high performance optical and mechanical designs. The resulting dramatic improvements in size, weight, power, and cost have already led to program spin offs for both military and commercial applications.

  17. Unravelling earth flow dynamics with 3-D time series derived from UAV-SfM models

    NASA Astrophysics Data System (ADS)

    Clapuyt, François; Vanacker, Veerle; Schlunegger, Fritz; Van Oost, Kristof

    2017-12-01

    Accurately assessing geo-hazards and quantifying landslide risks in mountainous environments are gaining importance in the context of the ongoing global warming. For an in-depth understanding of slope failure mechanisms, accurate monitoring of the mass movement topography at high spatial and temporal resolutions remains essential. The choice of the acquisition framework for high-resolution topographic reconstructions will mainly result from the trade-off between the spatial resolution needed and the extent of the study area. Recent advances in the development of unmanned aerial vehicle (UAV)-based image acquisition combined with the structure-from-motion (SfM) algorithm for three-dimensional (3-D) reconstruction make the UAV-SfM framework a competitive alternative to other high-resolution topographic techniques. In this study, we aim at gaining in-depth knowledge of the Schimbrig earthflow located in the foothills of the Central Swiss Alps by monitoring ground surface displacements at very high spatial and temporal resolution using the efficiency of the UAV-SfM framework. We produced distinct topographic datasets for three acquisition dates between 2013 and 2015 in order to conduct a comprehensive 3-D analysis of the landslide. Therefore, we computed (1) the sediment budget of the hillslope, and (2) the horizontal and (3) the three-dimensional surface displacements. The multitemporal UAV-SfM based topographic reconstructions allowed us to quantify rates of sediment redistribution and surface movements. Our data show that the Schimbrig earthflow is very active, with mean annual horizontal displacement ranging between 6 and 9 m. Combination and careful interpretation of high-resolution topographic analyses reveal the internal mechanisms of the earthflow and its complex rotational structure. In addition to variation in horizontal surface movements through time, we interestingly showed that the configuration of nested rotational units changes through time. Although there are major changes in the internal structure of the earthflow in the 2013-2015 period, the sediment budget of the drainage basin is nearly in equilibrium. As a consequence, our data show that the time lag between sediment mobilization by landslides and enhanced sediment fluxes in the river network can be considerable.

  18. Evaluation of High-Resolution Melting Curve Analysis of Ligation-Mediated Real-Time PCR, a Rapid Method for Epidemiological Typing of ESKAPE (Enterococcus faecium, Staphylococcus aureus, Klebsiella pneumoniae, Acinetobacter baumannii, Pseudomonas aeruginosa, and Enterobacter Species) Pathogens

    PubMed Central

    Ryberg, Anna; Billström, Hanna; Hällgren, Anita; Nilsson, Lennart E.; Marklund, Britt-Inger; Olsson-Liljequist, Barbro; Schön, Thomas

    2014-01-01

    A single-tube method, ligation-mediated real-time PCR high-resolution melt analysis (LMqPCR HRMA), was modified for the rapid typing of Enterococcus faecium, Staphylococcus aureus, Klebsiella pneumoniae, Acinetobacter baumannii, Pseudomonas aeruginosa, and Enterobacter spp. (ESKAPE) pathogens. A 97% agreement (60/62 isolates) was achieved in comparison to pulsed-field gel electrophoresis (PFGE) results, which indicates that LMqPCR HRMA is a rapid and accurate screening tool for monitoring nosocomial outbreaks. PMID:25232168

  19. Massive photometry of low-altitude artificial satellites on Mini-Mega-TORTORA

    NASA Astrophysics Data System (ADS)

    Karpov, S.; Katkova, E.; Beskin, G.; Biryukov, A.; Bondar, S.; Davydov, E.; Ivanov, E.; Perkov, A.; Sasyuk, V.

    2016-12-01

    The nine-channel Mini-Mega-TORTORA (MMT-9) optical wide-field monitoring system with high temporal resolution system is in operation since June 2014. The system has 0.1 s temporal resolution and effective detection limit around 10 mag (calibrated to V filter) for fast-moving objects on this timescale. In addition to its primary scientific operation, the system detects 200-500 tracks of satellites every night, both on low-altitude and high ellipticity orbits. Using these data we created and support the public database of photometric characteristics for these satellites, available online.

  20. A Refined Crop Drought Monitoring Method Based on the Chinese GF-1 Wide Field View Data

    PubMed Central

    Chang, Sheng; Wu, Bingfang; Yan, Nana; Zhu, Jianjun; Wen, Qi; Xu, Feng

    2018-01-01

    In this study, modified perpendicular drought index (MPDI) models based on the red-near infrared spectral space are established for the first time through the analysis of the spectral characteristics of GF-1 wide field view (WFV) data, with a high spatial resolution of 16 m and the highest frequency as high as once every 4 days. GF-1 data was from the Chinese-made, new-generation high-resolution GF-1 remote sensing satellites. Soil-type spatial data are introduced for simulating soil lines in different soil types for reducing errors of using same soil line. Multiple vegetation indices are employed to analyze the response to the MPDI models. Relative soil moisture content (RSMC) and precipitation data acquired at selected stations are used to optimize the drought models, and the best one is the Two-band enhanced vegetation index (EVI2)-based MPDI model. The crop area that was statistically significantly affected by drought from a local governmental department, and used for validation. High correlations and small differences in drought-affected crop area was detected between the field observation data from the local governmental department and the EVI2-based MPDI results. The percentage of bias is between −21.8% and 14.7% in five sub-areas, with an accuracy above 95% when evaluating the performance via the data for the whole study region. Generally the proposed EVI2-based MPDI for GF-1 WFV data has great potential for reliably monitoring crop drought at a relatively high frequency and spatial scale. Currently there is almost no drought model based on GF-1 data, a full exploitation of the advantages of GF-1 satellite data and further improvement of the capacity to observe ground surface objects can provide high temporal and spatial resolution data source for refined monitoring of crop droughts. PMID:29690639

  1. A Refined Crop Drought Monitoring Method Based on the Chinese GF-1 Wide Field View Data.

    PubMed

    Chang, Sheng; Wu, Bingfang; Yan, Nana; Zhu, Jianjun; Wen, Qi; Xu, Feng

    2018-04-23

    In this study, modified perpendicular drought index (MPDI) models based on the red-near infrared spectral space are established for the first time through the analysis of the spectral characteristics of GF-1 wide field view (WFV) data, with a high spatial resolution of 16 m and the highest frequency as high as once every 4 days. GF-1 data was from the Chinese-made, new-generation high-resolution GF-1 remote sensing satellites. Soil-type spatial data are introduced for simulating soil lines in different soil types for reducing errors of using same soil line. Multiple vegetation indices are employed to analyze the response to the MPDI models. Relative soil moisture content (RSMC) and precipitation data acquired at selected stations are used to optimize the drought models, and the best one is the Two-band enhanced vegetation index (EVI2)-based MPDI model. The crop area that was statistically significantly affected by drought from a local governmental department, and used for validation. High correlations and small differences in drought-affected crop area was detected between the field observation data from the local governmental department and the EVI2-based MPDI results. The percentage of bias is between −21.8% and 14.7% in five sub-areas, with an accuracy above 95% when evaluating the performance via the data for the whole study region. Generally the proposed EVI2-based MPDI for GF-1 WFV data has great potential for reliably monitoring crop drought at a relatively high frequency and spatial scale. Currently there is almost no drought model based on GF-1 data, a full exploitation of the advantages of GF-1 satellite data and further improvement of the capacity to observe ground surface objects can provide high temporal and spatial resolution data source for refined monitoring of crop droughts.

  2. High-rate RTK and PPP multi-GNSS positioning for small-scale dynamic displacements monitoring

    NASA Astrophysics Data System (ADS)

    Paziewski, Jacek; Sieradzki, Rafał; Baryła, Radosław; Wielgosz, Pawel

    2017-04-01

    The monitoring of dynamic displacements and deformations of engineering structures such as buildings, towers and bridges is of great interest due to several practical and theoretical reasons. The most important is to provide information required for safe maintenance of the constructions. High temporal resolution and precision of GNSS observations predestine this technology to be applied to most demanding application in terms of accuracy, availability and reliability. GNSS technique supported by appropriate processing methodology may meet the specific demands and requirements of ground and structures monitoring. Thus, high-rate multi-GNSS signals may be used as reliable source of information on dynamic displacements of ground and engineering structures, also in real time applications. In this study we present initial results of application of precise relative GNSS positioning for detection of small scale (cm level) high temporal resolution dynamic displacements. Methodology and algorithms applied in self-developed software allowing for relative positioning using high-rate dual-frequency phase and pseudorange GPS+Galileo observations are also given. Additionally, an approach was also made to use the Precise Point Positioning technique to such application. In the experiment were used the observations obtained from high-rate (20 Hz) geodetic receivers. The dynamic displacements were simulated using specially constructed device moving GNSS antenna with dedicated amplitude and frequency. The obtained results indicate on possibility of detection of dynamic displacements of the GNSS antenna even at the level of few millimetres using both relative and Precise Point Positioning techniques after suitable signals processing.

  3. Monitoring rangeland dynamics in Senegal with advanced very high resolution radiometer data

    USGS Publications Warehouse

    Tappan, G. Gray; Tyler, Dean J.; Wehde, M. E.; Moore, Donald G.

    1992-01-01

    Time‐series Normalized Difference Vegetation Index (NDVI) data, computed from Advanced Very High Resolution Radiometer data, are being used by regional and national programs in the African Sahel to monitor seasonal rangeland conditions. The data are often used as indicators of grazing conditions and drought. However, distinguishing rangelands from other vegetation cover types on NDVI images is difficult. A second complication is that rangeland types and their associated productivity vary geographically by soil type. To effectively assess rangeland conditions, seasonal fluctuations (due to climatic cycles) must be isolated from long‐term production characteristics associated with vegetation type and soil differences. Rangeland NDVI dynamics, including qualitative assessments of rangeland production, and the timing and length of the growing season in Senegal were examined by using 7.4‐km global area coverage satellite data. Analyses were based on 10‐day NDVI composite image data from 1982 through 1989. The NDVI image data were stratified by rangeland and soil polygons derived from locally available resource maps. Time‐series NDVI statistics were calculated from the resource polygons that had been interpreted into high, medium, and low production rangelands. Analysts monitoring rangeland conditions can better identify seasonal anomalies such as drought by comparing production potential within homogeneous; resource polygons with the current NDVI data.

  4. Global Characterization and Monitoring of Forest Cover Using Landsat Data: Opportunities and Challenges

    NASA Technical Reports Server (NTRS)

    Townshend, John R.; Masek, Jeffrey G.; Huang, ChengQuan; Vermote, Eric F.; Gao, Feng; Channan, Saurabh; Sexton, Joseph O.; Feng, Min; Narasimhan, Ramghuram; Kim, Dohyung; hide

    2012-01-01

    The compilation of global Landsat data-sets and the ever-lowering costs of computing now make it feasible to monitor the Earth's land cover at Landsat resolutions of 30 m. In this article, we describe the methods to create global products of forest cover and cover change at Landsat resolutions. Nevertheless, there are many challenges in ensuring the creation of high-quality products. And we propose various ways in which the challenges can be overcome. Among the challenges are the need for atmospheric correction, incorrect calibration coefficients in some of the data-sets, the different phenologies between compilations, the need for terrain correction, the lack of consistent reference data for training and accuracy assessment, and the need for highly automated characterization and change detection. We propose and evaluate the creation and use of surface reflectance products, improved selection of scenes to reduce phenological differences, terrain illumination correction, automated training selection, and the use of information extraction procedures robust to errors in training data along with several other issues. At several stages we use Moderate Resolution Spectroradiometer data and products to assist our analysis. A global working prototype product of forest cover and forest cover change is included.

  5. Soil water sensor response to bulk electrical conductivity

    USDA-ARS?s Scientific Manuscript database

    Soil water monitoring using electromagnetic (EM) sensors can facilitate observations of water content at high temporal and spatial resolutions. These sensors measure soil dielectric permittivity (Ka) which is largely a function of volumetric water content. However, bulk electrical conductivity BEC c...

  6. Terrestrial photography as a complementary measurement in weather stations for snow monitoring

    NASA Astrophysics Data System (ADS)

    Pimentel, Rafael; José Pérez-Palazón, María; Herrero, Javier; José Polo, María

    2015-04-01

    Snow monitoring constitutes a basic key to know snow behaviour and evolution, which have particular features in semiarid regions (i.e. highly strong spatiotemporal variability, and the occurrence of several accumulation-melting cycles throughout the year). On one hand, traditional snow observation, such as snow surveys and snow pillows have the inconvenience of a limited accessibility during snow season and the impossibility to cover a vast extension. On the other hand, satellite remote sensing techniques, largely employed in medium to large scale regional studies, has the disadvantage of a fixed spatial and temporal resolutions which in some cases are not able to reproduce snow processes at small scale. An economic alternative is the use of terrestrial photography which scales are adapted to the study problem. At the microscale resolution permits the continuous monitoring of snow, adapting the resolution of the observation to the scales of the processes. Besides its use as raw observation datasets to calibrate and validate models' results, terrestrial photography constitutes valuable information to complement weather stations observations. It allows the discriminating possible mistakes in meteorological observations (i.e. overestimation on rain measurements) and a better understanding of snow behaviour against certain weather agents (i.e. blowing snow). Thus, terrestrial photography is a feasible and convenient technique to be included in weather monitoring stations in mountainous areas in semiarid regions.

  7. Combining environment and health information systems for the assessment of atmospheric pollution on human health.

    PubMed

    Skouloudis, Andreas N; Kassomenos, Pavlos

    2014-08-01

    The use of emerging technologies for environmental monitoring with satellite and in-situ sensors have become essential instruments for assessing the impact of environmental pollution on human health, especially in areas that require high spatial and temporal resolution. This was until recently a rather difficult problem. Regrettably, with classical approaches the spatial resolution is frequently inadequate in reporting environmental causes and health effects in the same time scale. This work examines with new tools different levels of air-quality with sensor monitoring with the aim to associate those with severe health effects. The process established here facilitates the precise representation of human exposure with the population attributed in a fine spatial grid and taking into account environmental stressors of human exposure. These stressors can be monitored with innovative sensor units with a temporal resolution that accurately describes chronic and acute environmental burdens. The current understanding of the situation in densely populated areas can be properly analyzed, before commitments are made for reductions in total emissions as well as for assessing the effects of reduced trans-boundary fluxes. In addition, the data processed here with in-situ sensors can assist in establishing more effective regulatory policies for the protection of vulnerable population groups and the satellite monitoring instruments permit abatement strategies that are close to real-time over large geographical areas. Copyright © 2014 Elsevier B.V. All rights reserved.

  8. Toward daily monitoring of vegetation conditions at field scale through fusing data from multiple sensors

    USDA-ARS?s Scientific Manuscript database

    Vegetation monitoring requires remote sensing data at fine spatial and temporal resolution. While imagery from coarse resolution sensors such as MODIS/VIIRS can provide daily observations, they lack spatial detail to capture surface features for crop and rangeland monitoring. The Landsat satellite s...

  9. Daily monitoring of vegetation conditions and evapotranspiration at field scale by fusing multi-satellite images

    USDA-ARS?s Scientific Manuscript database

    Vegetation monitoring requires frequent remote sensing observations. While imagery from coarse resolution sensors such as MODIS/VIIRS can provide daily observations, they lack spatial detail to capture surface features for vegetation monitoring. The medium spatial resolution (10-100m) sensors are su...

  10. Compressed Sensing for Resolution Enhancement of Hyperpolarized 13C Flyback 3D-MRSI

    PubMed Central

    Hu, Simon; Lustig, Michael; Chen, Albert P.; Crane, Jason; Kerr, Adam; Kelley, Douglas A.C.; Hurd, Ralph; Kurhanewicz, John; Nelson, Sarah J.; Pauly, John M.; Vigneron, Daniel B.

    2008-01-01

    High polarization of nuclear spins in liquid state through dynamic nuclear polarization has enabled the direct monitoring of 13C metabolites in vivo at very high signal to noise, allowing for rapid assessment of tissue metabolism. The abundant SNR afforded by this hyperpolarization technique makes high resolution 13C 3D-MRSI feasible. However, the number of phase encodes that can be fit into the short acquisition time for hyperpolarized imaging limits spatial coverage and resolution. To take advantage of the high SNR available from hyperpolarization, we have applied compressed sensing to achieve a factor of 2 enhancement in spatial resolution without increasing acquisition time or decreasing coverage. In this paper, the design and testing of compressed sensing suited for a flyback 13C 3D-MRSI sequence are presented. The key to this design was the undersampling of spectral k-space using a novel blipped scheme, thus taking advantage of the considerable sparsity in typical hyperpolarized 13C spectra. Phantom tests validated the accuracy of the compressed sensing approach and initial mouse experiments demonstrated in vivo feasibility. PMID:18367420

  11. Measurements of OH(X2pi) in the stratosphere by high resolution UV spectroscopy

    NASA Technical Reports Server (NTRS)

    Torr, D. G.; Swift, W.; Fennelly, J.; Liu, G.; Torr, M. R.

    1987-01-01

    This paper reports the first results obtained using high spectral resolution imaging ultraviolet spectroscopy to observe multiple rotational lines of OH A2 Sigma-X2pi (0-0) band. A 9.2 A spectral segment from 3075.8 A to 3085.0 A is imaged at 0.08 A FWHM spectral resolution, allowing the simultaneous acquisition of six of the brightest OH resonance fluorescence emission lines. The high spectral resolution and low scattered light design of the instrument allows these lines to be detected above the Rayleigh scattered sunlight background. The technique permits remote sensing of stratospheric OH from a high altitude instrument. The instrument was flown to an altitude of 40 km on Aug. 25, 1983, and again on June 12, 1986, on scientific balloons from Palestine, TX. The OH profiles inverted from the limb scans made during these flights are reported here. These profiles represent the first measurements of the temporal variation of OH over an extended height range. The results demonstrate that the technique can be used to monitor OH from orbit.

  12. Remote monitoring of tamarisk defoliation and evapotranspiration following saltcedar leaf beetle attack

    USGS Publications Warehouse

    Dennison, P.E.; Nagler, P.L.; Hultine, K.R.; Glenn, E.P.; Ehleringer, J.R.

    2009-01-01

    Tamarisk (Tamarix spp.) has invaded riparian ecosystems throughout the Western United States, including significant portions of riparian ecosystems within U.S. National Parks and Monuments. Recently, the saltcedar leaf beetle (Diorhabda elongata) was released as a tamarisk biocontrol agent. Although initial releases have been monitored, no comprehensive program is currently in place to monitor the rapid spread of Diorhabda that has resulted from numerous subsequent releases by county and state agencies. Long term monitoring of tamarisk defoliation and its impacts on habitat and water resources is needed. This study examines the potential for using higher spatial resolution Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER) data and lower spatial resolution Moderate Resolution Imaging Spectroradiometer (MODIS) data for monitoring defoliation caused by Diorhabda and subsequent changes in evapotranspiration (ET). Widespread tamarisk defoliation was observed in an eastern Utah study area during summer 2007. ASTER normalized difference vegetation index (NDVI) showed only minor changes between 2005 and 2006, but a significant drop in NDVI was found within riparian areas between 2006 and 2007. The decrease in NDVI caused by defoliation was apparent despite partial refoliation within the study area. MODIS time series data revealed that absolute decline in EVI varied by site, but that the timing of EVI decline during summer 2007 was early with respect to phenological patterns from 2001 through 2006. Defoliation caused decreases in ET values estimated from both ASTER and MODIS data. MODIS estimated ET declined earlier than in previous years, although annual ET was not significantly different than ET in previous years due to high year-to-year variability. Challenges to detection and monitoring of tamarisk defoliation include spectral mixing of tamarisk and other cover types at subpixel spatial resolution, spatial coregistration of time series images, the timing of image acquisition, and changes unrelated to defoliation in non-tamarisk land cover over time. Continued development of the techniques presented in this paper may allow monitoring the spread of Diorhabda and assessment of potential water salvage resulting from biocontrol of tamarisk. ?? 2009 Elsevier Inc.

  13. Using a crowdsourced approach for monitoring water level in a remote Kenyan catchment

    NASA Astrophysics Data System (ADS)

    Weeser, Björn; Jacobs, Suzanne; Rufino, Mariana; Breuer, Lutz

    2017-04-01

    Hydrological models or effective water management strategies only succeed if they are based on reliable data. Decreasing costs of technical equipment lower the barrier to create comprehensive monitoring networks and allow both spatial and temporal high-resolution measurements. However, these networks depend on specialised equipment, supervision, and maintenance producing high running expenses. This becomes particularly challenging for remote areas. Low income countries often do not have the capacity to run such networks. Delegating simple measurements to citizens living close to relevant monitoring points may reduce costs and increase the public awareness. Here we present our experiences of using a crowdsourced approach for monitoring water levels in remote catchments in Kenya. We established a low-cost system consisting of thirteen simple water level gauges and a Raspberry Pi based SMS-Server for data handling. Volunteers determine the water level and transmit their records using a simple text message. These messages are automatically processed and real-time feedback on the data quality is given. During the first year, more than 1200 valid records with high quality have been collected. In summary, the simple techniques for data collecting, transmitting and processing created an open platform that has the potential for reaching volunteers without the need for special equipment. Even though the temporal resolution of measurements cannot be controlled and peak flows might be missed, this data can still be considered as a valuable enhancement for developing management strategies or for hydrological modelling.

  14. Human immunodeficiency virus atropy induces modification of subcutaneous adipose tissue architecture: in vivo visualization by high-resolution magnetic resonance imaging.

    PubMed

    Josse, G; Gensanne, D; Aquilina, C; Bernard, J; Saint-Martory, C; Lagarde, J M; Schmitt, A M

    2009-04-01

    Human immunodeficiency virus (HIV) infection generally induces lipodystrophy. For targeted treatment a better understanding of its development is necessary. The utility of high-resolution magnetic resonance imaging (MRI) is explored. The present study presents a way to visualize the adipose tissue architecture in vivo and to inspect modifications associated with the atrophy. High-resolution MRI scans with surface coils were performed on the calf and at the lumbar region of three groups of patients: HIV patients with lipoatrophy, HIV patients without lipoatrophy and healthy volunteers. All patients underwent a clinical examination. In addition, dual energy X-ray absorptiometry (DEXA) measurements were taken. On the MRI scans adipose tissue thickness and adipose nodule size were measured. Results High-resolution MRI enabled identification of a clear disorganization of adipose tissue in patients with lipoatrophy. In addition, these patients presented a very small adipose tissue thickness on the calf and a very small nodule size. led to the hypothesis that adipose tissue disorganization appears before changes in DEXA measurements or clinically visible modifications. High-resolution MRI enabled visualization in vivo of precise changes in tissue organization due to HIV lipoatrophy. This imaging technique should be very informative for better monitoring of the atrophy.

  15. Phenological dynamics of arctic tundra vegetation and its implications on satellite imagery interpretation

    NASA Astrophysics Data System (ADS)

    Juutinen, Sari; Aurela, Mika; Mikola, Juha; Räsänen, Aleksi; Virtanen, Tarmo

    2016-04-01

    Remote sensing is a key methodology when monitoring the responses of arctic ecosystems to climatic warming. The short growing season and rapid vegetation development, however, set demands to the timing of image acquisition in the arctic. We used multispectral very high spatial resolution satellite images to study the effect of vegetation phenology on the spectral reflectance and image interpretation in the low arctic tundra in coastal Siberia (Tiksi, 71°35'39"N, 128°53'17"E). The study site mainly consists of peatlands, tussock, dwarf shrub, and grass tundra, and stony areas with some lichen and shrub patches. We tested the hypotheses that (1) plant phenology is responsive to the interannual weather variation and (2) the phenological state of vegetation has an impact on satellite image interpretation and the ability to distinguish between the plant communities. We used an empirical transfer function with temperature sums as drivers to reconstruct daily leaf area index (LAI) for the different plant communities for years 2005, and 2010-2014 based on measured LAI development in summer 2014. Satellite images, taken during growing seasons, were acquired for two years having late and early spring, and short and long growing season, respectively. LAI dynamics showed considerable interannual variation due to weather variation, and particularly the relative contribution of graminoid dominated communities was sensitive to these phenology shifts. We have also analyzed the differences in the reflectance values between the two satellite images taking account the LAI dynamics. These results will increase our understanding of the pitfalls that may arise from the timing of image acquisition when interpreting the vegetation structure in a heterogeneous tundra landscape. Very high spatial resolution multispectral images are available at reasonable cost, but not in high temporal resolution, which may lead to compromises when matching ground truth and the imagery. On the other hand, to identify existing plant communities, high resolution images are needed due fragmented nature of tundra vegetation communities. Temporal differences in the phenology among different plant functional types may also obscure the image interpretations when using spatially low resolution images in heterogeneous landscapes. Phenological features of plant communities should be acknowledged, when plant functional or community type based classifications are used in models to estimate global greenhouse gas emissions and when monitoring changes in vegetation are monitored, for example to indicate permafrost thawing or changes in growing season lengths.

  16. New and Improved Remotely Sensed Products and Tools for Agricultural Monitoring Applications in Support of Famine Early Warning

    NASA Astrophysics Data System (ADS)

    Budde, M. E.; Rowland, J.; Senay, G. B.; Funk, C. C.; Pedreros, D.; Husak, G. J.; Bohms, S.

    2011-12-01

    The high global food prices in 2008 led to the acknowledgement that there is a need to monitor the inter-connectivity of global and regional markets and their potential impacts on food security in many more regions than previously considered. The crisis prompted an expansion of monitoring by the Famine Early Warning Systems Network (FEWS NET) to include additional countries, beyond those where food security has long been of concern. Scientists at the U.S. Geological Survey (USGS) Earth Resources Observation and Science (EROS) Center and the University of California Santa Barbara Climate Hazards Group have provided new and improved data products as well as visualization and analysis tools in support of this increased mandate for remote monitoring. We present a new product for measuring actual evapotranspiration (ETa) based on the implementation of a surface energy balance model and site improvements of two standard FEWS NET monitoring products: normalized difference vegetation index (NDVI) and satellite-based rainfall estimates. USGS FEWS NET has implemented a simplified surface energy balance model to produce operational ETa anomalies for Africa. During the growing season, ETa anomalies express surplus or deficit crop water use which is directly related to crop condition and biomass. The expedited Moderate Resolution Imaging Spectroradiometer (eMODIS) production system provides FEWS NET with a much improved NDVI dataset for crop and rangeland monitoring. eMODIS NDVI provides a reliable data stream with a vastly improved spatial resolution (250-m) and short latency period (less than 12 hours) which allows for better operational vegetation monitoring. FEWS NET uses satellite rainfall estimates as inputs for monitoring agricultural food production. By combining high resolution (0.05 deg) rainfall mean fields with Tropical Rainfall Measuring Mission rainfall estimates and infrared temperature data, we provide pentadal (5-day) rainfall fields suitable for crop monitoring and modeling. We also present two new monitoring tools, the Early Warning eXplorer (EWX) and the Decision Support Interface (DSI). The EWX is a data analysis tool which provides the ability to rapidly visualize multiple remote sensing datasets and compare standardized anomaly maps and time series. The DSI uses remote sensing data in an automated fashion to map areas of drought concern and ranks their severity at both crop zone and administrative levels. New and improved data products and more targeted analysis tools are a necessity as food security monitoring requirements expand and resources become limited.

  17. High resolution remote sensing of densely urbanised regions: a case study of Hong Kong.

    PubMed

    Nichol, Janet E; Wong, Man Sing

    2009-01-01

    Data on the urban environment such as climate or air quality is usually collected at a few point monitoring stations distributed over a city. However, the synoptic viewpoint of satellites where a whole city is visible on a single image permits the collection of spatially comprehensive data at city-wide scale. In spite of rapid developments in remote sensing systems, deficiencies in image resolution and algorithm development still exist for applications such as air quality monitoring and urban heat island analysis. This paper describes state-of-the-art techniques for enhancing and maximising the spatial detail available from satellite images, and demonstrates their applications to the densely urbanised environment of Hong Kong. An Emissivity Modulation technique for spatial enhancement of thermal satellite images permits modelling of urban microclimate in combination with other urban structural parameters at local scale. For air quality monitoring, a Minimum Reflectance Technique (MRT) has been developed for MODIS 500 m images. The techniques described can promote the routine utilization of remotely sensed images for environmental monitoring in cities of the 21(st) century.

  18. Vegetation monitoring for Guatemala: a comparison between simulated VIIRS and MODIS satellite data

    USGS Publications Warehouse

    Boken, Vijendra K.; Easson, Gregory L.; Rowland, James

    2010-01-01

    The advanced very high resolution radiometer (AVHRR) and moderate resolution imaging spectroradiometer (MODIS) data are being widely used for vegetation monitoring across the globe. However, sensors will discontinue collecting these data in the near future. National Aeronautics and Space Administration is planning to launch a new sensor, visible infrared imaging radiometer suite (VIIRS), to continue to provide satellite data for vegetation monitoring. This article presents a case study of Guatemala and compares the simulated VIIRS-Normalized Difference Vegetation Index (NDVI) with MODIS-NDVI for four different dates each in 2003 and 2005. The dissimilarity between VIIRS-NDVI and MODIS-NDVI was examined on the basis of the percent difference, the two-tailed student's t-test, and the coefficient of determination, R 2. The per cent difference was found to be within 3%, the p-value ranged between 0.52 and 0.99, and R 2 exceeded 0.88 for all major types of vegetation (basic grains, rubber, sugarcane, coffee and forests) found in Guatemala. It was therefore concluded that VIIRS will be almost equally capable of vegetation monitoring as MODIS.

  19. Non-Destructive Monitoring of Charge-Discharge Cycles on Lithium Ion Batteries using 7Li Stray-Field Imaging

    PubMed Central

    Tang, Joel A.; Dugar, Sneha; Zhong, Guiming; Dalal, Naresh S.; Zheng, Jim P.; Yang, Yong; Fu, Riqiang

    2013-01-01

    Magnetic resonance imaging provides a noninvasive method for in situ monitoring of electrochemical processes involved in charge/discharge cycling of batteries. Determining how the electrochemical processes become irreversible, ultimately resulting in degraded battery performance, will aid in developing new battery materials and designing better batteries. Here we introduce the use of an alternative in situ diagnostic tool to monitor the electrochemical processes. Utilizing a very large field-gradient in the fringe field of a magnet, stray-field-imaging (STRAFI) technique significantly improves the image resolution. These STRAFI images enable the real time monitoring of the electrodes at a micron level. It is demonstrated by two prototype half-cells, graphite∥Li and LiFePO4∥Li, that the high-resolution 7Li STRAFI profiles allow one to visualize in situ Li-ions transfer between the electrodes during charge/discharge cyclings as well as the formation and changes of irreversible microstructures of the Li components, and particularly reveal a non-uniform Li-ion distribution in the graphite. PMID:24005580

  20. High Resolution Remote Sensing of Densely Urbanised Regions: a Case Study of Hong Kong

    PubMed Central

    Nichol, Janet E.; Wong, Man Sing

    2009-01-01

    Data on the urban environment such as climate or air quality is usually collected at a few point monitoring stations distributed over a city. However, the synoptic viewpoint of satellites where a whole city is visible on a single image permits the collection of spatially comprehensive data at city-wide scale. In spite of rapid developments in remote sensing systems, deficiencies in image resolution and algorithm development still exist for applications such as air quality monitoring and urban heat island analysis. This paper describes state-of-the-art techniques for enhancing and maximising the spatial detail available from satellite images, and demonstrates their applications to the densely urbanised environment of Hong Kong. An Emissivity Modulation technique for spatial enhancement of thermal satellite images permits modelling of urban microclimate in combination with other urban structural parameters at local scale. For air quality monitoring, a Minimum Reflectance Technique (MRT) has been developed for MODIS 500 m images. The techniques described can promote the routine utilization of remotely sensed images for environmental monitoring in cities of the 21st century. PMID:22408549

  1. Space volcano observatory (SVO): a metric resolution system on-board a micro/mini-satellite

    NASA Astrophysics Data System (ADS)

    Briole, P.; Cerutti-Maori, G.; Kasser, M.

    2017-11-01

    1500 volcanoes on the Earth are potentially active, one third of them have been active during this century and about 70 are presently erupting. At the beginning of the third millenium, 10% of the world population will be living in areas directly threatened by volcanoes, without considering the effects of eruptions on climate or air-trafic for example. The understanding of volcanic eruptions, a major challenge in geoscience, demands continuous monitoring of active volcanoes. The only way to provide global, continuous, real time and all-weather information on volcanoes is to set up a Space Volcano Observatory closely connected to the ground observatories. Spaceborne observations are mandatory and implement the ground ones as well as airborne ones that can be implemented on a limited set of volcanoes. SVO goal is to monitor both the deformations and the changes in thermal radiance at optical wavelengths from high temperature surfaces of the active volcanic zones. For that, we propose to map at high resolution (1 to 1,5 m pixel size) the topography (stereoscopic observation) and the thermal anomalies (pixel-integrated temperatures above 450°C) of active volcanic areas in a size of 6 x 6 km to 12 x 12 km, large enough for monitoring most of the target features. A return time of 1 to 3 days will allow to get a monitoring useful for hazard mitigation. The paper will present the concept of the optical payload, compatible with a micro/mini satellite (mass in the range 100 - 400 kg), budget for the use of Proteus platform in the case of minisatellite approach will be given and also in the case of CNES microsat platform family. This kind of design could be used for other applications like high resolution imagery on a limited zone for military purpose, GIS, evolution cadaster…

  2. Oahu, Hawaii

    NASA Technical Reports Server (NTRS)

    2000-01-01

    This 60 by 55 km ASTER scene shows almost the entire island of Oahu, Hawaii on June 3, 2000. The data were processed to produce a simulated natural color presentation. Oahu is the commercial center of Hawaii and is important to United States defense in the Pacific. Pearl Harbor naval base is situated here. The chief agricultural industries are the growing and processing of pineapples and sugarcane. Tourism also is important to the economy. Among the many popular beaches is the renowned Waikiki Beach, backed by the famous Diamond Head, an extinct volcano. The largest community, Honolulu, is the state capital.

    The image is located at 21.5 degrees north latitude and 158 degrees west longitude.

    Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER) is one of five Earth-observing instruments launched December 18, 1999, on NASA's Terra satellite. The instrument was built by Japan's Ministry of International Trade and Industry. A joint U.S./Japan science team is responsible for validation and calibration of the instrument and the data products. Dr. Anne Kahle at NASA's Jet Propulsion Laboratory, Pasadena, Calif., is the U.S. Science team leader; Moshe Pniel of JPL is the project manager. ASTER is the only high resolution imaging sensor on Terra. The primary goal of the ASTER mission is to obtain high-resolution image data in 14 channels over the entire land surface, as well as black and white stereo images. With revisit time of between 4 and 16 days, ASTER will provide the capability for repeat coverage of changing areas on Earth's surface.

    The broad spectral coverage and high spectral resolution of ASTER will provide scientists in numerous disciplines with critical information for surface mapping, and monitoring dynamic conditions and temporal change. Example applications are: monitoring glacial advances and retreats, monitoring potentially active volcanoes, identifying crop stress, determining cloud morphology and physical properties, wetlands Evaluation, thermal pollution monitoring, coral reef degradation, surface temperature mapping of soils and geology, and measuring surface heat balance.

  3. Los Angeles from Space

    NASA Technical Reports Server (NTRS)

    2001-01-01

    This ASTER image was acquired on July 23, 2001 and covers an area of 64 x 72 km. The data were processed to create a simulated natural color image. From its start as a sleepy Spanish pueblo in 1781, LA and its metropolitan area has grown to become an ethnically diverse, semitropical megalopolis, laying claim as the principal center of the western US and the nation's second largest urban area. The city's economy is based on international trade, aerospace, agriculture, tourism, and filmmaking. LA provides a glimpse of the typically cosmopolitan and global city of the future.

    The image is located at 34.1 degrees north latitude and 118.2 degrees west longitude.

    Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER) is one of five Earth-observing instruments launched December 18, 1999, on NASA's Terra satellite. The instrument was built by Japan's Ministry of International Trade and Industry. A joint U.S./Japan science team is responsible for validation and calibration of the instrument and the data products. Dr. Anne Kahle at NASA's Jet Propulsion Laboratory, Pasadena, Calif., is the U.S. Science team leader; Moshe Pniel of JPL is the project manager. ASTER is the only high resolution imaging sensor on Terra. The primary goal of the ASTER mission is to obtain high-resolution image data in 14 channels over the entire land surface, as well as black and white stereo images. With revisit time of between 4 and 16 days, ASTER will provide the capability for repeat coverage of changing areas on Earth's surface. The broad spectral coverage and high spectral resolution of ASTER will provide scientists in numerous disciplines with critical information for surface mapping, and monitoring dynamic conditions and temporal change. Example applications are: monitoring glacial advances and retreats, monitoring potentially active volcanoes, identifying crop stress, determining cloud morphology and physical properties, wetlands Evaluation, thermal pollution monitoring, coral reef degradation, surface temperature mapping of soils and geology, and measuring surface heat balance.

  4. ASTER View of Sharm El Sheik, Egypt

    NASA Technical Reports Server (NTRS)

    2000-01-01

    The Red Sea golf resort in Sharm El Sheik, Egypt, where President Clinton met with Israeli Prime Minister Ehud Barak and Palestinian Authority President Yasser Arafat, stands out against the desert landscape in this image acquired on August 25, 2000.

    This image of the southern tip of the Sinai Peninsula shows an area about 30 by 40 kilometers (19 by 25 miles) in the visible and near infrared wavelength region. Vegetation appears in red. The blue areas in the water at the top and bottom of the image are coral reefs. The airport is visible just to the north of the golf resort.

    Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER) is one of five Earth-observing instruments launched December 18, 1999, on NASA's Terra satellite. The instrument was built by Japan's Ministry of International Trade and Industry. A joint U.S./Japan science team is responsible for validation and calibration of the instrument and the data products. Dr. Anne Kahle at NASA's Jet Propulsion Laboratory, Pasadena, Calif., is the U.S. Science team leader; Moshe Pniel of JPL is the project manager. ASTER is the only high resolution imaging sensor on Terra. The primary goal of the ASTER mission is to obtain high-resolution image data in 14 channels over the entire land surface, as well as black and white stereo images. With revisit time of between 4 and 16 days, ASTER will provide the capability for repeat coverage of changing areas on Earth's surface.

    The broad spectral coverage and high spectral resolution of ASTER will provide scientists in numerous disciplines with critical information for surface mapping, and monitoring dynamic conditions and temporal change. Example applications are: monitoring glacial advances and retreats, monitoring potentially active volcanoes, identifying crop stress, determining cloud morphology and physical properties, wetlands Evaluation, thermal pollution monitoring, coral reef degradation, surface temperature mapping of soils and geology, and measuring surface heat balance.

  5. Great Wall of China

    NASA Technical Reports Server (NTRS)

    2001-01-01

    This ASTER sub-image covers a 12 x 12 km area in northern Shanxi Province, China, and was acquired January 9, 2001. The low sun angle, and light snow cover highlight a section of the Great Wall, visible as a black line running diagonally through the image from lower left to upper right. The Great Wall is over 2000 years old and was built over a period of 1000 years. Stretching 4500 miles from Korea to the Gobi Desert it was first built to protect China from marauders from the north.

    This image is located at 40.2 degrees north latitude and 112.8 degrees east longitude.

    Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER) is one of five Earth-observing instruments launched December 18, 1999, on NASA's Terra satellite. The instrument was built by Japan's Ministry of International Trade and Industry. A joint U.S./Japan science team is responsible for validation and calibration of the instrument and the data products. Dr. Anne Kahle at NASA's Jet Propulsion Laboratory, Pasadena, Calif., is the U.S. Science team leader; Moshe Pniel of JPL is the project manager. ASTER is the only high resolution imaging sensor on Terra. The primary goal of the ASTER mission is to obtain high-resolution image data in 14 channels over the entire land surface, as well as black and white stereo images. With revisit time of between 4 and 16 days, ASTER will provide the capability for repeat coverage of changing areas on Earth's surface.

    The broad spectral coverage and high spectral resolution of ASTER will provide scientists in numerous disciplines with critical information for surface mapping, and monitoring dynamic conditions and temporal change. Example applications are: monitoring glacial advances and retreats, monitoring potentially active volcanoes, identifying crop stress, determining cloud morphology and physical properties, wetlands Evaluation, thermal pollution monitoring, coral reef degradation, surface temperature mapping of soils and geology, and measuring surface heat balance.

  6. Patagonia Glacier, Chile

    NASA Technical Reports Server (NTRS)

    2000-01-01

    This ASTER images was acquired on May 2, 2000 over the North Patagonia Ice Sheet, Chile near latitude 47 degrees south, longitude 73 degrees west. The image covers 36 x 30 km. The false color composite displays vegetation in red. The image dramatically shows a single large glacier, covered with crevasses. A semi-circular terminal moraine indicates that the glacier was once more extensive than at present. ASTER data are being acquired over hundreds of glaciers worldwide to measure their changes over time. Since glaciers are sensitive indicators of warming or cooling, this program can provide global data set critical to understand climate change.

    This image is located at 46.5 degrees south latitude and 73.9 degrees west longitude.

    Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER) is one of five Earth-observing instruments launched December 18, 1999, on NASA's Terra satellite. The instrument was built by Japan's Ministry of International Trade and Industry. A joint U.S./Japan science team is responsible for validation and calibration of the instrument and the data products. Dr. Anne Kahle at NASA's Jet Propulsion Laboratory, Pasadena, Calif., is the U.S. Science team leader; Moshe Pniel of JPL is the project manager. ASTER is the only high resolution imaging sensor on Terra. The primary goal of the ASTER mission is to obtain high-resolution image data in 14 channels over the entire land surface, as well as black and white stereo images. With revisit time of between 4 and 16 days, ASTER will provide the capability for repeat coverage of changing areas on Earth's surface.

    The broad spectral coverage and high spectral resolution of ASTER will provide scientists in numerous disciplines with critical information for surface mapping, and monitoring dynamic conditions and temporal change. Example applications are: monitoring glacial advances and retreats, monitoring potentially active volcanoes, identifying crop stress, determining cloud morphology and physical properties, wetlands Evaluation, thermal pollution monitoring, coral reef degradation, surface temperature mapping of soils and geology, and measuring surface heat balance.

  7. In house validation of a high resolution mass spectrometry Orbitrap-based method for multiple allergen detection in a processed model food.

    PubMed

    Pilolli, Rosa; De Angelis, Elisabetta; Monaci, Linda

    2018-02-13

    In recent years, mass spectrometry (MS) has been establishing its role in the development of analytical methods for multiple allergen detection, but most analyses are being carried out on low-resolution mass spectrometers such as triple quadrupole or ion traps. In this investigation, performance provided by a high resolution (HR) hybrid quadrupole-Orbitrap™ MS platform for the multiple allergens detection in processed food matrix is presented. In particular, three different acquisition modes were compared: full-MS, targeted-selected ion monitoring with data-dependent fragmentation (t-SIM/dd2), and parallel reaction monitoring. In order to challenge the HR-MS platform, the sample preparation was kept as simple as possible, limited to a 30-min ultrasound-aided protein extraction followed by clean-up with disposable size exclusion cartridges. Selected peptide markers tracing for five allergenic ingredients namely skim milk, whole egg, soy flour, ground hazelnut, and ground peanut were monitored in home-made cookies chosen as model processed matrix. Timed t-SIM/dd2 was found the best choice as a good compromise between sensitivity and accuracy, accomplishing the detection of 17 peptides originating from the five allergens in the same run. The optimized method was validated in-house through the evaluation of matrix and processing effects, recoveries, and precision. The selected quantitative markers for each allergenic ingredient provided quantification of 60-100 μg ingred /g allergenic ingredient/matrix in incurred cookies.

  8. Mapping Snow Depth with Automated Terrestrial Laser Scanning - Investigating Potential Applications

    NASA Astrophysics Data System (ADS)

    Adams, M. S.; Gigele, T.; Fromm, R.

    2017-11-01

    This contribution presents an automated terrestrial laser scanning (ATLS) setup, which was used during the winter 2016/17 to monitor the snow depth distribution on a NW-facing slope at a high-alpine study site. We collected data at high temporal [(sub-)daily] and spatial resolution (decimetre-range) over 0.8 km² with a Riegl LPM-321, set in a weather-proof glass fibre enclosure. Two potential ATLS-applications are investigated here: monitoring medium-sized snow avalanche events, and tracking snow depth change caused by snow drift. The results show the ATLS data's high explanatory power and versatility for different snow research questions.

  9. Monitoring flood extent and area through multi-sensor, multi-temporal remote sensing: the Strymonas (Greece) river flood

    NASA Astrophysics Data System (ADS)

    Refice, Alberto; Tijani, Khalid; Lovergine, Francesco P.; D'Addabbo, Annarita; Nutricato, Raffaele; Morea, Alberto

    2017-04-01

    Satellite monitoring of flood events at high spatial and temporal resolution is considered a difficult problem, mainly due to the lack of data with sufficient acquisition frequency and timeliness. The problem is worsened by the typically cloudy weather conditions associated to floods, which obstacle the propagation of e.m. waves in the optical spectral range, forbidding acquisitions by optical sensors. This problem is not present for longer wavelengths, so that radar imaging sensors are recognized as viable solutions for long-term flood monitoring. In selected cases, however, weather conditions may remain clear for sufficient amounts of time, enabling monitoring of the evolution of flood events through long time series of satellite images, both optical and radar. In this contribution, we present a case study of long-term integrated monitoring of a flood event which affected part of the Strymonas river basin, a transboundary river with source in Bulgaria, which flows then through Greece up to the Aegean Sea. The event, which affected the floodplain close to the river mouth, started at the beginning of April 2015, due to heavy rain, and lasted for several months, with some water pools still present at the beginning of September. Due to the arid climate characterizing the area, weather conditions were cloud-free for most of the period covering the event. We collected one high-resolution, X-band, COSMO-SkyMed, 5 C-band, Sentinel-1 SAR images, and 11 optical Landsat-8 images of the area. SAR images were calibrated, speckle-filtered and precisely geocoded; optical images were radiometrically corrected to obtain ground reflectance values from which NDVI maps were derived. The images were then thresholded to obtain binary flood maps for each day. Threshold values for microwave and optical data were calibrated by comparing one SAR and one optical image acquired on the same date. Results allow to draw a multi-temporal map of the flood evolution with high temporal resolution. The extension of flooded area can also be tracked in time, allowing to envisage testing of evapotranspiration/absorption models.

  10. Aftermath of Hurricane Ike along Texas Coast

    NASA Technical Reports Server (NTRS)

    2008-01-01

    Three weeks after Hurricane Ike came ashore near Galveston, TX, residents returned to find their houses in ruins. From the coast to over 15 km inland, salt water saturated the soil as a result of the 7m storm surge pushed ashore by the force of the hurricane. The right image was acquired on September 28; the left image was acquired August 15, 2006. Vegetation is displayed in red, and inundated areas are in blue-green. Within the inundated area are several small 'red islands' of high ground where salt domes raised the level of the land, and protected the vegetation.

    With its 14 spectral bands from the visible to the thermal infrared wavelength region, and its high spatial resolution of 15 to 90 meters (about 50 to 300 feet), ASTER images Earth to map and monitor the changing surface of our planet.

    ASTER is one of five Earth-observing instruments launched December 18, 1999, on NASA's Terra satellite. The instrument was built by Japan's Ministry of Economy, Trade and Industry. A joint U.S./Japan science team is responsible for validation and calibration of the instrument and the data products.

    The broad spectral coverage and high spectral resolution of ASTER provides scientists in numerous disciplines with critical information for surface mapping, and monitoring of dynamic conditions and temporal change. Example applications are: monitoring glacial advances and retreats; monitoring potentially active volcanoes; identifying crop stress; determining cloud morphology and physical properties; wetlands evaluation; thermal pollution monitoring; coral reef degradation; surface temperature mapping of soils and geology; and measuring surface heat balance.

    The U.S. science team is located at NASA's Jet Propulsion Laboratory, Pasadena, Calif. The Terra mission is part of NASA's Science Mission Directorate.

    Size: 37 by 49.5 kilometers (22.8 by 30.6 miles) Location: 29.8 degrees North latitude, 94.4 degrees West longitude Orientation: North at top Image Data: ASTER Bands 3, 2, and 1 Original Data Resolution: 15 meters (49.2 feet) Date Acquired: September 28, 2008

  11. Combining multiple approaches and optimized data resolution for an improved understanding of stream temperature dynamics of a forested headwater basin in the Southern Appalachians

    NASA Astrophysics Data System (ADS)

    Belica, L.; Mitasova, H.; Caldwell, P.; McCarter, J. B.; Nelson, S. A. C.

    2017-12-01

    Thermal regimes of forested headwater streams continue to be an area of active research as climatic, hydrologic, and land cover changes can influence water temperature, a key aspect of aquatic ecosystems. Widespread monitoring of stream temperatures have provided an important data source, yielding insights on the temporal and spatial patterns and the underlying processes that influence stream temperature. However, small forested streams remain challenging to model due to the high spatial and temporal variability of stream temperatures and the climatic and hydrologic conditions that drive them. Technological advances and increased computational power continue to provide new tools and measurement methods and have allowed spatially explicit analyses of dynamic natural systems at greater temporal resolutions than previously possible. With the goal of understanding how current stream temperature patterns and processes may respond to changing landcover and hydroclimatoligical conditions, we combined high-resolution, spatially explicit geospatial modeling with deterministic heat flux modeling approaches using data sources that ranged from traditional hydrological and climatological measurements to emerging remote sensing techniques. Initial analyses of stream temperature monitoring data revealed that high temporal resolution (5 minutes) and measurement resolutions (<0.1°C) were needed to adequately describe diel stream temperature patterns and capture the differences between paired 1st order and 4th order forest streams draining north and south facing slopes. This finding along with geospatial models of subcanopy solar radiation and channel morphology were used to develop hypotheses and guide field data collection for further heat flux modeling. By integrating multiple approaches and optimizing data resolution for the processes being investigated, small, but ecologically significant differences in stream thermal regimes were revealed. In this case, multi-approach research contributed to the identification of the dominant mechanisms driving stream temperature in the study area and advanced our understanding of the current thermal fluxes and how they may change as environmental conditions change in the future.

  12. Monitoring Snow and Land Ice Using Satellite data in the GMES Project CryoLand

    NASA Astrophysics Data System (ADS)

    Bippus, Gabriele; Nagler, Thomas

    2013-04-01

    The main objectives of the project "CryoLand - GMES Service Snow and Land Ice" are to develop, implement and validate services for snow, glaciers and lake and river ice products as a Downstream Service within the Global Monitoring for Environment and Security (GMES) program of the European Commission. CryoLand exploits Earth Observation data from current optical and microwave sensors and of the upcoming GMES Sentinel satellite family. The project prepares also the basis for the cryospheric component of the GMES Land Monitoring services. The CryoLand project team consists of 10 partner organisations from Austria, Finland, Norway, Sweden, Switzerland and Romania and is funded by the 7th Framework Program of the European Commission. The CryoLand baseline products for snow include fractional snow extent from optical satellite data, the extent of melting snow from SAR data, and coarse resolution snow water equivalent maps from passive microwave data. Experimental products include maps of snow surface wetness and temperature. The products range from large scale coverage at medium resolution to regional products with high resolution, in order to address a wide user community. Medium resolution optical data (e.g. MODIS, in the near future Sentinel-3) and SAR (ENVISAT ASAR, in the near future Sentinel-1) are the main sources of EO data for generating large scale products in near real time. For generation of regional products high resolution satellite data are used. Glacier products are based on high resolution optical (e.g. SPOT-5, in the near future Sentinel-2) and SAR (TerraSAR-X, in the near future Sentinel-1) data and include glacier outlines, mapping of glacier facies, glacier lakes and ice velocity. The glacier products are generated on users demand. Current test areas are located in the Alps, Norway, Greenland and the Himalayan Mountains. The lake and river ice products include ice extent and its temporal changes and snow extent on ice. The algorithms for these products are in development. One major task of CryoLand is the performance assessment of the products, which is carried out in different environments, climate zones and land cover types, selected jointly with users. Accuracy assessment is done for test areas using in-situ data and very high resolution satellite data. This presentation gives an overview on the processing lines and demonstration products for snow, glacier and lake ice parameters including examples of the product accuracy assessment. An important point of the CryoLand project is the use of advanced information technology, which is applied to process and distribute snow and land ice products in near real time.

  13. Three Gorges Dam, China

    NASA Technical Reports Server (NTRS)

    2002-01-01

    This ASTER image shows a 60 km stretch of the Yangtze River in China, including the Xiling Gorge, the eastern of the three gorges. In the left part of the image is the construction site of the Three Gorges Dam, the world's largest.

    This image was acquired on July 20, 2000 by the Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER) on NASA's Terra satellite. With its 14 spectral bands from the visible to the thermal infrared wavelength region, and its high spatial resolution of 15 to 90 meters (about 50 to 300 feet), ASTER will image Earth for the next 6 years to map and monitor the changing surface of our planet.

    ASTER is one of five Earth-observing instruments launched December 18, 1999, on NASA's Terra satellite. The instrument was built by Japan's Ministry of Economy, Trade and Industry. A joint U.S./Japan science team is responsible for validation and calibration of the instrument and the data products. Dr. Anne Kahle at NASA's Jet Propulsion Laboratory, Pasadena, California, is the U.S. Science team leader; Bjorn Eng of JPL is the project manager. The Terra mission is part of NASA's Earth Science Enterprise, a long-term research and technology program designed to examine Earth's land, oceans, atmosphere, ice and life as a total integrated system.

    The broad spectral coverage and high spectral resolution of ASTER will provide scientists in numerous disciplines with critical information for surface mapping, and monitoring dynamic conditions and temporal change. Example applications are: monitoring glacial advances and retreats; monitoring potentially active volcanoes; identifying crop stress; determining cloud morphology and physical properties; wetlands evaluation; thermal pollution monitoring; coral reef degradation; surface temperature mapping of soils and geology; and measuring surface heat balance.

    Size: 60 x 24 km (36 x 15 miles) Location: 30.6 deg. North lat., 111.2 deg. East long. Orientation: North at top Image Data: ASTER bands 1,2, and 3. Original Data Resolution: 15 m Date Acquired: July 20, 2000

  14. A Total Validation Approach for assessing the RST technique in forest fire detection and monitoring

    NASA Astrophysics Data System (ADS)

    Mazzeo, Giuseppe; Baldassarre, Giuseppe; Corrado, Rosita; Filizzola, Carolina; Genzano, Nicola; Marchese, Francesco; Paciello, Rossana; Pergola, Nicola; Tramutoli, Valerio

    2010-05-01

    Several studies have shown that high temporal resolution sensors such as AVHRR (Advanced Very High Resolution Radiometer) aboard NOAA (National Oceanic and Atmospheric Administration) satellites, MODIS (Moderate Resolution Imaging Spectroradiometer) aboard EOS (Earth Observing System) satellites and, more recently, SEVIRI (Spinning Enhanced Visible and Infrared Imager) aboard MSG (Meteosat Second Generation) platforms, are suitable for detecting and monitoring forest fires. At the same time, many satellite-based techniques have been proposed for fire detection, but most of them, based on single image fixed-thresholds, often generate false alarms mainly due to the contribution of the reflected solar radiation in daytime, atmospheric effects, etc., so that they result to have scarce reliability when applied in an operational scenario. Other algorithms, which are quite reliable thanks to their multitemporal and/or contextual nature, may turn out to be hardly applicable so that they cannot be inserted in whatever operative schemes. An innovative approach, named RST - Robust Satellite Technique, already applied for the monitoring of major natural and environmental risks has been recently used for fire detection and monitoring. The RST approach is based on local (in space and time) thresholds which are automatically computed on the basis of long temporal series of satellite data. It demonstrated already good performances in many cases of applications, but recently for the first time a total validation approach (TVA) was experimented in collaboration with administrators, decision makers and local agencies, in order to evaluate the actual reliability and sensitivity of RST in a pre-operational context. TVA, based on a systematic study of the origin of each hot spot identified by RST, allowed us to recognize most of them as actual thermal anomalies (associated to small fires, to variations of thermal emission in industrial plants, etc.) and not as false alarms simply because not associated to officially documented forest fires. Some results of recent campaigns both of winter and summer fire detection and monitoring in Italy will be shown and discussed.

  15. John F. Kennedy Space Center

    NASA Technical Reports Server (NTRS)

    2006-01-01

    The John F. Kennedy Space Center, America's spaceport, is located along Florida's eastern shore on Cape Canaveral. Established as NASA's Launch Operations Center on July 1, 1962, the center has been the site of launching all U.S. human space flight missions, from the early days of Project Mercury to the space shuttle and the next generation of vehicles. In addition, the center is home to NASA's Launch Services Program, which coordinates all expendable vehicle launches carrying a NASA payload.

    With its 14 spectral bands from the visible to the thermal infrared wavelength region, and its high spatial resolution of 15 to 90 meters (about 50 to 300 feet), ASTER images Earth to map and monitor the changing surface of our planet.

    ASTER is one of five Earth-observing instruments launched December 18, 1999, on NASA's Terra satellite. The instrument was built by Japan's Ministry of Economy, Trade and Industry. A joint U.S./Japan science team is responsible for validation and calibration of the instrument and the data products.

    The broad spectral coverage and high spectral resolution of ASTER provides scientists in numerous disciplines with critical information for surface mapping, and monitoring of dynamic conditions and temporal change. Example applications are: monitoring glacial advances and retreats; monitoring potentially active volcanoes; identifying crop stress; determining cloud morphology and physical properties; wetlands evaluation; thermal pollution monitoring; coral reef degradation; surface temperature mapping of soils and geology; and measuring surface heat balance.

    The U.S. science team is located at NASA's Jet Propulsion Laboratory, Pasadena, Calif. The Terra mission is part of NASA's Science Mission Directorate.

    Size: 32.6 by 51.2 kilometers (20.2 by 32.2 miles) Location: 28.6 degrees North latitude, 80.6 degrees West longitude Orientation: North at top Image Data: ASTER bands 3, 2, and 1 Original Data Resolution: 15 meters (49.2 feet) Dates Acquired: April 26, 2006

  16. Internal Ocean Waves

    NASA Technical Reports Server (NTRS)

    2006-01-01

    Internal waves are waves that travel within the interior of a fluid. The waves propagate at the interface or boundary between two layers with sharp density differences, such as temperature. They occur wherever strong tides or currents and stratification occur in the neighborhood of irregular topography. They can propagate for several hundred kilometers. The ASTER false-color VNIR image off the island of Tsushima in the Korea Strait shows the signatures of several internal wave packets, indicating a northern propagation direction.

    With its 14 spectral bands from the visible to the thermal infrared wavelength region, and its high spatial resolution of 15 to 90 meters (about 50 to 300 feet), ASTER images Earth to map and monitor the changing surface of our planet.

    ASTER is one of five Earth-observing instruments launched December 18, 1999, on NASA's Terra satellite. The instrument was built by Japan's Ministry of Economy, Trade and Industry. A joint U.S./Japan science team is responsible for validation and calibration of the instrument and the data products.

    The broad spectral coverage and high spectral resolution of ASTER provides scientists in numerous disciplines with critical information for surface mapping, and monitoring of dynamic conditions and temporal change. Example applications are: monitoring glacial advances and retreats; monitoring potentially active volcanoes; identifying crop stress; determining cloud morphology and physical properties; wetlands evaluation; thermal pollution monitoring; coral reef degradation; surface temperature mapping of soils and geology; and measuring surface heat balance.

    The U.S. science team is located at NASA's Jet Propulsion Laboratory, Pasadena, Calif. The Terra mission is part of NASA's Science Mission Directorate.

    Size: 60 by 120 kilometers (37.2 by 74.4 miles) Location: 34.6 degrees North latitude, 129.5 degrees East longitude Orientation: North at top Image Data: ASTER bands 3, 2, and 1 Original Data Resolution: 90 meters (295 feet) Dates Acquired: July 4, 2000

  17. Damage by Hurricane Ivan over Pensacola Bay, Florida

    NASA Technical Reports Server (NTRS)

    2004-01-01

    Interstate 10 across Pensacola Bay, Florida was severely damaged by Hurricane Ivan. The ASTER image acquired September 21 (left) clearly shows the destruction, compared with an image acquired September 28, 2003 (right). The Florida Department of Transportation awarded a contract to repair the twin bridges that connect Escambia and Santa Rosa Counties. Traffic could resume crossing the bay in mid-October. These images display vegetation in red, buildings and roads in white and gray, and water in dark blue and green.

    With its 14 spectral bands from the visible to the thermal infrared wavelength region, and its high spatial resolution of 15 to 90 meters (about 50 to 300 feet), ASTER images Earth to map and monitor the changing surface of our planet.

    ASTER is one of five Earth-observing instruments launched December 18, 1999, on NASA's Terra satellite. The instrument was built by Japan's Ministry of Economy, Trade and Industry. A joint U.S./Japan science team is responsible for validation and calibration of the instrument and the data products.

    The broad spectral coverage and high spectral resolution of ASTER provides scientists in numerous disciplines with critical information for surface mapping, and monitoring of dynamic conditions and temporal change. Example applications are: monitoring glacial advances and retreats; monitoring potentially active volcanoes; identifying crop stress; determining cloud morphology and physical properties; wetlands evaluation; thermal pollution monitoring; coral reef degradation; surface temperature mapping of soils and geology; and measuring surface heat balance.

    The U.S. Science Team is located at NASA's Jet Propulsion Laboratory (JPL), Pasadena, Calif. The Terra mission is part of NASA's Science Mission Directorate..

    Size: 6 by 6.5 kilometers (3.7 x 4 miles) Location: 30.5 degrees North latitude, 87.1 degrees West longitude Orientation: North at top Image Data: ASTER bands 3,2, and 1 Original Data Resolution: 15 meters (49.2 feet) Dates Acquired: September 21, 2004, and September 28, 2003

  18. Mount St. Helens

    NASA Technical Reports Server (NTRS)

    2005-01-01

    This Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER) image of Mount St. Helens was captured one week after the March 8, 2005, ash and steam eruption, the latest activity since the volcano's reawakening in September 2004. The new lava dome in the southeast part of the crater is clearly visible, highlighted by red areas where ASTER's infrared channels detected hot spots from incandescent lava. The new lava dome is 155 meters (500 feet) higher than the old lava dome, and still growing.

    With its 14 spectral bands from the visible to the thermal infrared wavelength region, and its high spatial resolution of 15 to 90 meters (about 50 to 300 feet), ASTER images Earth to map and monitor the changing surface of our planet.

    ASTER is one of five Earth-observing instruments launched December 18, 1999, on NASA's Terra satellite. The instrument was built by Japan's Ministry of Economy, Trade and Industry. A joint U.S./Japan science team is responsible for validation and calibration of the instrument and the data products.

    The broad spectral coverage and high spectral resolution of ASTER provides scientists in numerous disciplines with critical information for surface mapping, and monitoring of dynamic conditions and temporal change. Example applications are: monitoring glacial advances and retreats; monitoring potentially active volcanoes; identifying crop stress; determining cloud morphology and physical properties; wetlands evaluation; thermal pollution monitoring; coral reef degradation; surface temperature mapping of soils and geology; and measuring surface heat balance.

    The U.S. science team is located at NASA's Jet Propulsion Laboratory, Pasadena, Calif. The Terra mission is part of NASA's Science Mission Directorate.

    Size: 21.9 by 24.4 kilometers (13.6 by 15.1 miles) Location: 46.2 degrees North latitude, 122.2 degrees West longitude Orientation: North at top Image Data: ASTER bands 8, 3, and 1 Original Data Resolution: 15 meters (49.2 feet) Dates Acquired: March 15, 2005

  19. World Cup Final

    NASA Technical Reports Server (NTRS)

    2006-01-01

    On July 9, hundreds of millions of fans worldwide will be glued to their television sets watching the final match of the 2006 FIFA World Cup, played in Berlin's Olympic stadium (Olympiastadion). The stadium was originally built for the 1936 Summer Olympics. The Olympic Stadium seats 76,000,; its roof rises 68 meters over the seats and is made up of transparent panels that allow sunlight to stream in during the day.

    With its 14 spectral bands from the visible to the thermal infrared wavelength region, and its high spatial resolution of 15 to 90 meters (about 50 to 300 feet), ASTER images Earth to map and monitor the changing surface of our planet.

    ASTER is one of five Earth-observing instruments launched December 18, 1999, on NASA's Terra satellite. The instrument was built by Japan's Ministry of Economy, Trade and Industry. A joint U.S./Japan science team is responsible for validation and calibration of the instrument and the data products.

    The broad spectral coverage and high spectral resolution of ASTER provides scientists in numerous disciplines with critical information for surface mapping, and monitoring of dynamic conditions and temporal change. Example applications are: monitoring glacial advances and retreats; monitoring potentially active volcanoes; identifying crop stress; determining cloud morphology and physical properties; wetlands evaluation; thermal pollution monitoring; coral reef degradation; surface temperature mapping of soils and geology; and measuring surface heat balance.

    The U.S. science team is located at NASA's Jet Propulsion Laboratory, Pasadena, Calif. The Terra mission is part of NASA's Science Mission Directorate.

    Size: 12.1 by 15.9 kilometers (7.5 by 9.5 miles) Location: 52.5 degrees North latitude, 13.3 degrees East longitude Orientation: North at top Image Data: ASTER bands 3, 2, and 1 Original Data Resolution: 15 meters (49.2 feet) Dates Acquired: October 15, 2005

  20. Detecting and tracking dust outbreaks by using high temporal resolution satellite data

    NASA Astrophysics Data System (ADS)

    Sannazzaro, Filomena; Marchese, Francesco; Filizzola, Carolina; Tramutoli, Valerio; Pergola, Nicola; Mazzeo, Giuseppe; Paciello, Rossana

    2013-04-01

    A dust storm is a meteorological phenomenon generated by the action of wind, mainly in arid and semi-arid regions of the planet, particularly at subtropical latitudes. Dust outbreaks, of which frequency increases from year to year concurrently with climate change and reduction of moisture in the soil, may strongly impact on human activity as well as on environment and climate. Efficient early warning systems are then required to monitor them and to mitigate their effects. Satellite remote sensing thanks to a global coverage, to a high frequency of observation and low costs of data represents an important tool for studying and monitoring dust outbreaks. Several techniques have been then proposed to detect and monitor these phenomena from space, analyzing signal in different bands of the electromagnetic spectrum. In particular, methods based on the reverse absorption behaviour of silicate particles in comparison with ice crystals and water droplets, at 11 and 12 micron wavelengths, have been largely employed for detecting dust, although some important issues both in terms of reliability and sensitivity still remain. In this work, an optimized configuration of an innovative algorithm for dust detection, based on the largely accepted Robust Satellite Techniques (RST) multi-temporal approach, is then presented. This optimized algorithm configuration is tested here on Spinning Enhanced Visible and Infrared Imager (SEVIRI) data, analyzing some important dust events affecting Mediterranean basin in recent years. Results of this study, assessed on the basis of independent satellite-based aerosol products, generated by using the Total Ozone Mapping Spectrometer (TOMS), the Ozone Monitoring Instrument (OMI), and the Moderate Resolution Imaging Spectroradiometer (MODIS) data, show that when the spectral resolution of SEVIRI is properly exploited dust and meteorological clouds may be better discriminated. These results encourage further experimentations of the proposed algorithm in view of a possible future implementation in operational monitoring systems.

  1. Monitoring land surface albedo and vegetation dynamics using high spatial and temporal resolution synthetic data from Landsat and MODIS BRDF/albedo product

    USDA-ARS?s Scientific Manuscript database

    Climate warming over the past half century has led to observable changes in vegetation phenology and growing season length; which can be measured globally using remote sensing derived vegetation indices. Previous studies in mid- and high northern latitude systems show temperature driven earlier spri...

  2. The application of unmanned aerial vehicle remote sensing for monitoring secondary geological disasters after earthquakes

    NASA Astrophysics Data System (ADS)

    Lei, Tianjie; Zhang, Yazhen; Wang, Xingyong; Fu, Jun'e.; Li, Lin; Pang, Zhiguo; Zhang, Xiaolei; Kan, Guangyuan

    2017-07-01

    Remote sensing system fitted on Unmanned Aerial Vehicle (UAV) can obtain clear images and high-resolution aerial photographs. It has advantages of strong real-time, flexibility and convenience, free from influence of external environment, low cost, low-flying under clouds and ability to work full-time. When an earthquake happened, it could go deep into the places safely and reliably which human staff can hardly approach, such as secondary geological disasters hit areas. The system can be timely precise in response to secondary geological disasters monitoring by a way of obtaining first-hand information as quickly as possible, producing a unique emergency response capacity to provide a scientific basis for overall decision-making processes. It can greatly enhance the capability of on-site disaster emergency working team in data collection and transmission. The great advantages of UAV remote sensing system played an irreplaceable role in monitoring secondary geological disaster dynamics and influences. Taking the landslides and barrier lakes for example, the paper explored the basic application and process of UAV remote sensing in the disaster emergency relief. UAV high-resolution remote sensing images had been exploited to estimate the situation of disaster-hit areas and monitor secondary geological disasters rapidly, systematically and continuously. Furthermore, a rapid quantitative assessment on the distribution and size of landslides and barrier lakes was carried out. Monitoring results could support relevant government departments and rescue teams, providing detailed and reliable scientific evidence for disaster relief and decision-making.

  3. Imaging thermal conductivity with nanoscale resolution using a scanning spin probe

    DOE PAGES

    Laraoui, Abdelghani; Aycock-Rizzo, Halley; Gao, Yang; ...

    2015-11-20

    The ability to probe nanoscale heat flow in a material is often limited by lack of spatial resolution. Here, we use a diamond-nanocrystal-hosted nitrogen-vacancy centre attached to the apex of a silicon thermal tip as a local temperature sensor. We apply an electrical current to heat up the tip and rely on the nitrogen vacancy to monitor the thermal changes the tip experiences as it is brought into contact with surfaces of varying thermal conductivity. By combining atomic force and confocal microscopy, we image phantom microstructures with nanoscale resolution, and attain excellent agreement between the thermal conductivity and topographic maps.more » The small mass and high thermal conductivity of the diamond host make the time response of our technique short, which we demonstrate by monitoring the tip temperature upon application of a heat pulse. Our approach promises multiple applications, from the investigation of phonon dynamics in nanostructures to the characterization of heterogeneous phase transitions and chemical reactions in various solid-state systems.« less

  4. Merging climate and multi-sensor time-series data in real-time drought monitoring across the U.S.A.

    USGS Publications Warehouse

    Brown, Jesslyn F.; Miura, T.; Wardlow, B.; Gu, Yingxin

    2011-01-01

    Droughts occur repeatedly in the United States resulting in billions of dollars of damage. Monitoring and reporting on drought conditions is a necessary function of government agencies at multiple levels. A team of Federal and university partners developed a drought decision- support tool with higher spatial resolution relative to traditional climate-based drought maps. The Vegetation Drought Response Index (VegDRI) indicates general canopy vegetation condition assimilation of climate, satellite, and biophysical data via geospatial modeling. In VegDRI, complementary drought-related data are merged to provide a comprehensive, detailed representation of drought stress on vegetation. Time-series data from daily polar-orbiting earth observing systems [Advanced Very High Resolution Radiometer (AVHRR) and Moderate Resolution Imaging Spectroradiometer (MODIS)] providing global measurements of land surface conditions are ingested into VegDRI. Inter-sensor compatibility is required to extend multi-sensor data records; thus, translations were developed using overlapping observations to create consistent, long-term data time series. 

  5. The value of Doppler LiDAR systems to monitor turbulence intensity during storm events in order to enhance aviation safety in Iceland

    NASA Astrophysics Data System (ADS)

    Yang, Shu; Nína Petersen, Guðrún; Finger, David C.

    2017-04-01

    Turbulence and wind shear are a major natural hazards for aviation safety in Iceland. The temporal and spatial scale of atmospheric turbulence is very dynamic, requiring an adequate method to detect and monitor turbulence with high resolution. The Doppler Light Detection and Ranging (LiDAR) system can provide continuous information about the wind field using the Doppler effect form emitted light signals. In this study, we use a Leosphere Windcube 200s LiDAR systems stationed near Reykjavik city Airport and at Keflavik International Airport, Iceland, to evaluate turbulence intensity by estimating eddy dissipation rate (EDR). For this purpose, we retrieved radial wind velocity observations from Velocity Azimuth Display (VAD) scans (360°scans at 15° and 75° elevation angle) to compute EDR. The method was used to monitor and characterize storm events in fall 2016 and the following winter. The preliminary result reveal that the LiDAR observations can detect and quantify atmospheric turbulence with high spatial and temporal resolution. This finding is an important step towards enhanced aviation safety in subpolar climate characterized by sever wind turbulence.

  6. Development of a high spectral resolution lidar based on confocal Fabry-Perot spectral filters.

    PubMed

    Hoffman, David S; Repasky, Kevin S; Reagan, John A; Carlsten, John L

    2012-09-01

    The high spectral resolution lidar (HSRL) instrument described in this paper utilizes the fundamental and second-harmonic output from an injection seeded Nd:YAG laser as the laser transmitter. The light scattered in the atmosphere is collected using a commercial Schmidt-Cassegrain telescope with the optical receiver train first splitting the fundamental and second-harmonic return signal with the fundament light monitored using an avalanche photodiode. The second-harmonic return signal is mode matched into a tunable confocal Fabry-Perot (CFP) interferometer with a free spectral range of 7.5 GHz and a finesse of 50.7 (312) at 532 nm (1064 nm) placed in the optical receiver for spectrally filtering the molecular and aerosol return signals. The light transmitted through the CFP is used to monitor the aerosol return signal while the light reflected from the CFP is used to monitor the molecular return signal. Data collected with the HSRL are presented and inversion results are compared to a co-located solar radiometer, demonstrating the successful operation of the instrument. The CFP-based filtering technique successfully employed by this HSRL instrument is easily portable to other arbitrary wavelengths, thus allowing for the future development of multiwavelength HSRL instruments.

  7. Measurements of atmospheric mercury with high time resolution: recent applications in environmental research and monitoring.

    PubMed

    Ebinghaus, R; Kock, H H; Schmolke, S R

    2001-11-01

    In the past five years automated high time-resolution measurements of mercury species in ambient air have promoted remarkable progress in the understanding of the spatial distribution, short-term variability, and fate of this priority pollutant in the lower troposphere. Examples show the wide range of possible applications of these techniques in environmental research and monitoring. Presented applications of measurement methods for total gaseous mercury (TGM) include long-term monitoring of atmospheric mercury at a coastal station, simultaneous measurements during a south-to-north transect measurement campaign covering a distance of approximately 800 km, the operation on board of a research aircraft, and the quantification of mercury emissions from naturally enriched surface soils. First results obtained with a new method for the determination of reactive gaseous mercury (RGM) are presented. Typical background concentrations of TGM are between 1.5 and 2 ng m(-3) in the lower troposphere. Concentrations of RGM have been determined at a rural site in Germany between 2 and 35 pg m(-3). Flux measurements over naturally enriched surface soils in the Western U.S.A. have revealed emission fluxes of up to 200 ng Hg m(-1) h(-1) under dry conditions.

  8. Gauge-adjusted rainfall estimates from commercial microwave links

    NASA Astrophysics Data System (ADS)

    Fencl, Martin; Dohnal, Michal; Rieckermann, Jörg; Bareš, Vojtěch

    2017-01-01

    Increasing urbanization makes it more and more important to have accurate stormwater runoff predictions, especially with potentially severe weather and climatic changes on the horizon. Such stormwater predictions in turn require reliable rainfall information. Especially for urban centres, the problem is that the spatial and temporal resolution of rainfall observations should be substantially higher than commonly provided by weather services with their standard rainfall monitoring networks. Commercial microwave links (CMLs) are non-traditional sensors, which have been proposed about a decade ago as a promising solution. CMLs are line-of-sight radio connections widely used by operators of mobile telecommunication networks. They are typically very dense in urban areas and can provide path-integrated rainfall observations at sub-minute resolution. Unfortunately, quantitative precipitation estimates (QPEs) from CMLs are often highly biased due to several epistemic uncertainties, which significantly limit their usability. In this manuscript we therefore suggest a novel method to reduce this bias by adjusting QPEs to existing rain gauges. The method has been specifically designed to produce reliable results even with comparably distant rain gauges or cumulative observations. This eliminates the need to install reference gauges and makes it possible to work with existing information. First, the method is tested on data from a dedicated experiment, where a CML has been specifically set up for rainfall monitoring experiments, as well as operational CMLs from an existing cellular network. Second, we assess the performance for several experimental layouts of ground truth from rain gauges (RGs) with different spatial and temporal resolutions. The results suggest that CMLs adjusted by RGs with a temporal aggregation of up to 1 h (i) provide precise high-resolution QPEs (relative error < 7 %, Nash-Sutcliffe efficiency coefficient > 0.75) and (ii) that the combination of both sensor types clearly outperforms each individual monitoring system. Unfortunately, adjusting CML observations to RGs with longer aggregation intervals of up to 24 h has drawbacks. Although it substantially reduces bias, it unfavourably smoothes out rainfall peaks of high intensities, which is undesirable for stormwater management. A similar, but less severe, effect occurs due to spatial averaging when CMLs are adjusted to remote RGs. Nevertheless, even here, adjusted CMLs perform better than RGs alone. Furthermore, we provide first evidence that the joint use of multiple CMLs together with RGs also reduces bias in their QPEs. In summary, we believe that our adjustment method has great potential to improve the space-time resolution of current urban rainfall monitoring networks. Nevertheless, future work should aim to better understand the reason for the observed systematic error in QPEs from CMLs.

  9. Drought impacts and resilience on crops via evapotranspiration estimations

    NASA Astrophysics Data System (ADS)

    Timmermans, Joris; Asadollahi Dolatabad, Saeid

    2015-04-01

    Currently, the global needs for food and water is at a critical level. It has been estimated that 12.5 % of the global population suffers from malnutrition and 768 million people still do not have access to clean drinking water. This need is increasing because of population growth but also by climate change. Changes in precipitation patterns will result either in flooding or droughts. Consequently availability, usability and affordability of water is becoming challenge and efficient use of water and water management is becoming more important, particularly during severe drought events. Drought monitoring for agricultural purposes is very hard. While meteorological drought can accurately be monitored using precipitation only, estimating agricultural drought is more difficult. This is because agricultural drought is dependent on the meteorological drought, the impacts on the vegetation, and the resilience of the crops. As such not only precipitation estimates are required but also evapotranspiration at plant/plot scale. Evapotranspiration (ET) describes the amount of water evaporated from soil and vegetation. As 65% of precipitation is lost by ET, drought severity is highly linked with this variable. In drought research, the precise quantification of ET and its spatio-temporal variability is therefore essential. In this view, remote sensing based models to estimate ET, such as SEBAL and SEBS, are of high value. However the resolution of current evapotranspiration products are not good enough for monitoring the impact of the droughts on the specific crops. This limitation originates because plot scales are in general smaller than the resolution of the available satellite ET products. As such remote sensing estimates of evapotranspiration are always a combination of different land surface types and cannot be used for plant health and drought resilience studies. The goal of this research is therefore to enable adequate resolutions of daily evapotranspiration estimates for monitoring crop health during the severe drought events. The presentation will provide results of the investigation into Droughts using time series of coarse resolution daily evapotranspiration produced from the SEBS remote sensing model, on basis of MODIS data. The evapotranspiration will be converted into drought severity using the evapotranspiration deficit index (ETDI). Afterwards the disaggregation to plot scale will be investigated. This disaggregation will be performed as a weighted filtering on basis of crop-coefficient at high resolution. These growth stage of the vegeation (needed for the estimation of the crop coefficients) are estimated on basis of Normalized Difference Vegetation Index (NDVI) using Landsat 5,7 and 8 observations. The final result of the research provides good statistical information about drought resilience and crop health.

  10. Evaluation of microvascular anastomosis using real-time ultrahigh resolution Fourier domain Doppler optical coherence tomography

    PubMed Central

    Huang, Yong; Tong, Dedi; Zhu, Shan; Wu, Lehao; Mao, Qi; Ibrahim, Zuhaib; Lee, WP Andrew; Brandacher, Gerald; Kang, Jin U.

    2014-01-01

    Background Evolution and improvements in microsurgical techniques and tools have paved the way for super-microsurgical anastomoses with vessel diameters often approaching below 0.8 mm in the clinical realm and even smaller (0.2–0.3 mm) in murine models. Several imaging and monitoring devices have been introduced for post-operative monitoring but intra-operative guidance, assessment and predictability have remained limited to binocular optical microscope and surgeon’s experience. We present a high-resolution real time 3D imaging modality for intra-operative evaluation of luminal narrowing, thrombus formation and flow alterations. Methods An imaging modality that provides immediate, in-depth high resolution 3D structure view and flow information of the anastomosed site called phase resolved Doppler optical coherence tomography (PRDOCT) was developed. 22 mouse femoral artery anastomoses and 17 mouse venous anastomoses were performed and evaluated with PRDOCT. Flow status, vessel inner lumen 3D structure, and early thrombus detection were analyzed based on PRDOCT imaging results. Initial PRDOCT based predictions were correlated with actual long term surgical outcomes. Eventually four cases of mouse orthotopic limb transplantation were carried out and PRDOCT predicted long term patency were confirmed by actual results. Results PRDOCT was able to provide high-resolution 3D visualization of the vessel flow status and vessel inner lumen. The assessments based on PRDOCT visualization shows a 92% sensitivity and 90% specificity for arterial anastomoses and 90% sensitivity and 86% specificity for venous anastomoses. Conclusions PRDOCT is an effective evaluation tool for microvascular anastomosis. It can predict the long term vessel patency with high sensitivity and specificity. PMID:25811583

  11. Crocus sativus Petals: Waste or Valuable Resource? The Answer of High-Resolution and High-Resolution Magic Angle Spinning Nuclear Magnetic Resonance.

    PubMed

    Righi, Valeria; Parenti, Francesca; Tugnoli, Vitaliano; Schenetti, Luisa; Mucci, Adele

    2015-09-30

    Intact Crocus sativus petals were studied for the first time by high-resolution magic angle spinning nuclear magnetic resonance (HR-MAS NMR) spectroscopy, revealing the presence of kinsenoside (2) and goodyeroside A (3), together with 3-hydroxy-γ-butyrolactone (4). These findings were confirmed by HR-NMR analysis of the ethanol extract of fresh petals and showed that, even though carried out rapidly, partial hydrolysis of glucopyranosyloxybutanolides occurs during extraction. On the other hand, kaempferol 3-O-sophoroside (1), which is "NMR-silent" in intact petals, is present in extracts. These results suggest to evaluate the utilization of saffron petals for phytopharmaceutical and nutraceutical purposes to exploit a waste product of massive production of commercial saffron and point to the application of HR-MAS NMR for monitoring bioactive compounds directly on intact petals, avoiding the extraction procedure and the consequent hydrolysis reaction.

  12. Two-Dimensional Micro-/Nanoradian Angle Generator with High Resolution and Repeatability Based on Piezo-Driven Double-Axis Flexure Hinge and Three Capacitive Sensors.

    PubMed

    Tan, Xinran; Zhu, Fan; Wang, Chao; Yu, Yang; Shi, Jian; Qi, Xue; Yuan, Feng; Tan, Jiubin

    2017-11-19

    This study presents a two-dimensional micro-/nanoradian angle generator (2D-MNAG) that achieves high angular displacement resolution and repeatability using a piezo-driven flexure hinge for two-dimensional deflections and three capacitive sensors for output angle monitoring and feedback control. The principal error of the capacitive sensor for precision microangle measurement is analyzed and compensated for; so as to achieve a high angle output resolution of 10 nrad (0.002 arcsec) and positioning repeatability of 120 nrad (0.024 arcsec) over a large angular range of ±4363 μrad (±900 arcsec) for the 2D-MNAG. The impact of each error component, together with the synthetic error of the 2D-MNAG after principal error compensation are determined using Monte Carlo simulation for further improvement of the 2D-MNAG.

  13. High-speed X-ray microscopy by use of high-resolution zone plates and synchrotron radiation.

    PubMed

    Hou, Qiyue; Wang, Zhili; Gao, Kun; Pan, Zhiyun; Wang, Dajiang; Ge, Xin; Zhang, Kai; Hong, Youli; Zhu, Peiping; Wu, Ziyu

    2012-09-01

    X-ray microscopy based on synchrotron radiation has become a fundamental tool in biology and life sciences to visualize the morphology of a specimen. These studies have particular requirements in terms of radiation damage and the image exposure time, which directly determines the total acquisition speed. To monitor and improve these key parameters, we present a novel X-ray microscopy method using a high-resolution zone plate as the objective and the matching condenser. Numerical simulations based on the scalar wave field theory validate the feasibility of the method and also indicate the performance of X-ray microscopy is optimized most with sub-10-nm-resolution zone plates. The proposed method is compatible with conventional X-ray microscopy techniques, such as computed tomography, and will find wide applications in time-resolved and/or dose-sensitive studies such as living cell imaging.

  14. Two-Dimensional Micro-/Nanoradian Angle Generator with High Resolution and Repeatability Based on Piezo-Driven Double-Axis Flexure Hinge and Three Capacitive Sensors

    PubMed Central

    Tan, Xinran; Zhu, Fan; Wang, Chao; Yu, Yang; Shi, Jian; Qi, Xue; Yuan, Feng; Tan, Jiubin

    2017-01-01

    This study presents a two-dimensional micro-/nanoradian angle generator (2D-MNAG) that achieves high angular displacement resolution and repeatability using a piezo-driven flexure hinge for two-dimensional deflections and three capacitive sensors for output angle monitoring and feedback control. The principal error of the capacitive sensor for precision microangle measurement is analyzed and compensated for; so as to achieve a high angle output resolution of 10 nrad (0.002 arcsec) and positioning repeatability of 120 nrad (0.024 arcsec) over a large angular range of ±4363 μrad (±900 arcsec) for the 2D-MNAG. The impact of each error component, together with the synthetic error of the 2D-MNAG after principal error compensation are determined using Monte Carlo simulation for further improvement of the 2D-MNAG. PMID:29156595

  15. Space to Think: Large, High-Resolution Displays for Sensemaking

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Andrews, Christopher P.; Endert, Alexander; North, Chris

    2010-05-05

    Space supports human cognitive abilities in a myriad of ways. The note attached to the side of the monitor, the papers spread out on the desk, diagrams scrawled on a whiteboard, and even the keys left out on the counter are all examples of using space to recall, reveal relationships, and think. Technological advances have made it possible to construct large display environments in which space has real meaning. This paper examines how increased space affects the way displays are regarded and used within the context of the cognitively demanding task of sensemaking. A study was conducted observing analysts usingmore » a prototype large, high-resolution display to solve an analytic problem. This paper reports on the results of this study and suggests a number of potential design criteria for future sensemaking tools developed for large, high-resolution displays.« less

  16. Meniscus Imaging for Crystal-Growth Control

    NASA Technical Reports Server (NTRS)

    Sachs, E. M.

    1983-01-01

    Silicon crystal growth monitored by new video system reduces operator stress and improves conditions for observation and control of growing process. System optics produce greater magnification vertically than horizontally, so entire meniscus and melt is viewed with high resolution in both width and height dimensions.

  17. Space processing of crystalline materials: A study of known methods of electrical characterization of semiconductors: Bibliography

    NASA Technical Reports Server (NTRS)

    Castle, J. G.

    1976-01-01

    A selective bibliography is given on electrical characterization techniques for semiconductors. Emphasis is placed on noncontacting techniques for the standard electrical parameters for monitoring crystal growth in space, preferably in real time with high resolution.

  18. Australian radio observations of SN1987A - A progress report

    NASA Technical Reports Server (NTRS)

    Reynolds, John E.; Jauncey, David L.; Preston, Robert A.; Mutel, Robert L.; Livermore, R. W.

    1987-01-01

    Regular monitoring of SN 1987A in the radio spectrum is being conducted at a number of Australian observatories. Although no emission is detectable at present, a VLBI network has been established to map a possible major outburst at high resolution.

  19. Mobile Air Quality Monitoring for Local High-Resolution Characterization of Vehicle-Sourced Criteria Pollutant

    DOT National Transportation Integrated Search

    2017-06-19

    Transportation-related emissions are a major source of air pollution in many urban areas. Human exposure to this pollution is related to their proximity to major roadways, yet federal and state Environmental Protection Agencies (EPAs) conduct regulat...

  20. High resolution X-ray CT for advanced electronics packaging

    NASA Astrophysics Data System (ADS)

    Oppermann, M.; Zerna, T.

    2017-02-01

    Advanced electronics packaging is a challenge for non-destructive Testing (NDT). More, smaller and mostly hidden interconnects dominate modern electronics components and systems. To solve the demands of customers to get products with a high functionality by low volume, weight and price (e.g. mobile phones, personal medical monitoring systems) often the designers use System-in-Package solutions (SiP). The non-destructive testing of such devices is a big challenge. So our paper will impart fundamentals and applications for non-destructive evaluation of inner structures of electronics packaging for quality assurance and reliability investigations with a focus on X-ray methods, especially on high resolution X-ray computed tomography (CT).

  1. Volcanic Eruptions in Kamchatka

    NASA Technical Reports Server (NTRS)

    2007-01-01

    [figure removed for brevity, see original site] [figure removed for brevity, see original site] Sheveluch Stratovolcano Click on the image for full resolution TIFF Klyuchevskoy Stratovolcano Click on the image for full resolution TIFF

    One of the most volcanically active regions of the world is the Kamchatka Peninsula in eastern Siberia, Russia. It is not uncommon for several volcanoes to be erupting at the same time. On April 26, 2007, the Advanced Spaceborne Thermal Emission and Reflection Radioneter (ASTER) on NASA's Terra spacecraft captured these images of the Klyuchevskoy and Sheveluch stratovolcanoes, erupting simultaneously, and 80 kilometers (50 miles) apart. Over Klyuchevskoy, the thermal infrared data (overlaid in red) indicates that two open-channel lava flows are descending the northwest flank of the volcano. Also visible is an ash-and-water plume extending to the east. Sheveluch volcano is partially cloud-covered. The hot flows highlighted in red come from a lava dome at the summit. They are avalanches of material from the dome, and pyroclastic flows.

    With its 14 spectral bands from the visible to the thermal infrared wavelength region, and its high spatial resolution of 15 to 90 meters (about 50 to 300 feet), ASTER images Earth to map and monitor the changing surface of our planet.

    ASTER is one of five Earth-observing instruments launched December 18, 1999, on NASA's Terra spacecraft. The instrument was built by Japan's Ministry of Economy, Trade and Industry. A joint U.S./Japan science team is responsible for validation and calibration of the instrument and the data products.

    The broad spectral coverage and high spectral resolution of ASTER provides scientists in numerous disciplines with critical information for surface mapping, and monitoring of dynamic conditions and temporal change. Example applications are: monitoring glacial advances and retreats; monitoring potentially active volcanoes; identifying crop stress; determining cloud morphology and physical properties; wetlands evaluation; thermal pollution monitoring; coral reef degradation; surface temperature mapping of soils and geology; and measuring surface heat balance.

    The U.S. science team is located at NASA's Jet Propulsion Laboratory, Pasadena, Calif. The Terra mission is part of NASA's Science Mission Directorate.

    Size: 19.2 by 21 kilometers (11.9 by 13.0 miles) Location: 57 degrees North latitude, 161 degrees East longitude Orientation: North at top Image Data: ASTER Bands 3, 2, and 1, and 12 in red Original Data Resolution: ASTER 15 meters (49.2 feet) visible; 90 meters (295.2 feet) thermal infrared Date Acquired: April 26, 2007

  2. High spatial resolution fiber optical sensors for simultaneous temperature and chemical sensing for energy industries

    NASA Astrophysics Data System (ADS)

    Yan, Aidong; Huang, Sheng; Li, Shuo; Zaghloul, Mohamed; Ohodnicki, Paul; Buric, Michael; Chen, Kevin P.

    2017-05-01

    This paper demonstrates optical fibers as high-temperature sensor platforms. Through engineering and onfiber integration of functional metal oxide sensory materials, we report the development of an integrated sensor solution to perform temperature and chemical measurements for high-temperature energy applications. Using the Rayleigh optical frequency domain reflectometry (OFDR) distributed sensing scheme, the temperature and hydrogen concentration were measured along the fiber. To overcome the weak Rayleighbackscattering intensity exhibited by conventional optical fibers, an ultrafast laser was used to enhance the Rayleigh scattering by a direct laser writing method. Using the Rayleigh-enhanced fiber as sensor platform, both temperature and hydrogen reaction were monitored at high temperature up to 750°C with 4-mm spatial resolution.

  3. High Resolution, High Frame Rate Video Technology

    NASA Technical Reports Server (NTRS)

    1990-01-01

    Papers and working group summaries presented at the High Resolution, High Frame Rate Video (HHV) Workshop are compiled. HHV system is intended for future use on the Space Shuttle and Space Station Freedom. The Workshop was held for the dual purpose of: (1) allowing potential scientific users to assess the utility of the proposed system for monitoring microgravity science experiments; and (2) letting technical experts from industry recommend improvements to the proposed near-term HHV system. The following topics are covered: (1) State of the art in the video system performance; (2) Development plan for the HHV system; (3) Advanced technology for image gathering, coding, and processing; (4) Data compression applied to HHV; (5) Data transmission networks; and (6) Results of the users' requirements survey conducted by NASA.

  4. Lead screening in DBS by solid sampling high-resolution continuum source graphite furnace atomic absorption spectrometry: application to newborns and pregnant women.

    PubMed

    Rello, Luis; Aramendía, Maite; Belarra, Miguel A; Resano, Martín

    2015-01-01

    DBS have become a clinical specimen especially adequate for establishing home-based collection protocols. In this work, high-resolution continuum source graphite furnace atomic absorption spectrometry is evaluated for the direct monitoring of Pb in DBS, both as a quantitative tool and a screening method. The development of the screening model is based on the establishment of the unreliability region around the threshold limits, 100 or 50 μg l(-1). More than 500 samples were analyzed to validate the model. The screening method demonstrated high sensitivity (the rate of true positives detected was always higher than 95%), an excellent LOD (1 µg l(-1)) and high throughput (10 min per sample).

  5. STROBE-X: X-ray Timing & Spectroscopy on Dynamical Timescales from Microseconds to Years

    NASA Astrophysics Data System (ADS)

    Wilson-Hodge, Colleen A.; Ray, Paul S.; Maccarone, Thomas J.; Chakrabarty, Deepto; Gendreau, Keith C.; Arzoumanian, Zaven; Jenke, Peter; Ballantyne, David; Bozzo, Enrico; Brandt, Soren; Brenneman, Laura; Christophersen, Marc; DeRosa, Alessandra; Feroci, Marco; Goldstein, Adam; Hartmann, Dieter; Hernanz, Margarita; McDonald, Michael; Phlips, Bernard; Remillard, Ronald; Stevens, Abigail; Tomsick, John; Watts, Anna; Wood, Kent S.; Zane, Silvia; STROBE-X Collaboration

    2018-01-01

    We describe a probe-class mission concept that provides an unprecedented view of the X-ray sky, performing timing and 0.2-30 keV spectroscopy over timescales from microseconds to years. The Spectroscopic Time-Resolving Observatory for Broadband Energy X-rays (STROBE-X) comprises three primary instruments. The first uses an array of lightweight optics (3-m focal length) that concentrate incident photons onto solid state detectors with CCD-level (85-130 eV) energy resolution, 100 ns time resolution, and low background rates to cover the 0.2-12 keV band. This technology is scaled up from NICER, with enhanced optics to take advantage of the longer focal length of STROBE-X. The second uses large-area collimated silicon drift detectors, developed for ESA's LOFT, to cover the 2-30 keV band. These two instruments each provide an order of magnitude improvement in effective area compared with its predecessor (NICER and RXTE, respectively). Finally, a sensitive sky monitor triggers pointed observations, provides high duty cycle, high time resolution, high spectral resolution monitoring of the X-ray sky with ~20 times the sensitivity of the RXTE ASM, and enables multi-wavelength and multi-messenger studies on a continuous, rather than scanning basis. We include updated instrument designs resulting from the GSFC IDL run in November 2017.For the first time, the broad coverage provides simultaneous study of thermal components, non-thermal components, iron lines, and reflection features from a single platform for accreting black holes at all scales. The enormous collecting area allows detailed studies of the dense matter equation of state using both thermal emission from rotation-powered pulsars and harder emission from X-ray burst oscillations. The combination of the wide-field monitor and the sensitive pointed instruments enables observations of potential electromagnetic counterparts to LIGO/Virgo and neutrino events. Extragalactic science, such as constraining bulk metalicity of medium to high redshift clusters and nearby compact groups and unprecedented timing investigations of active galactic nuclei, is also obtained.

  6. Timing Is Important: Unmanned Aircraft vs. Satellite Imagery in Plant Invasion Monitoring

    PubMed Central

    Müllerová, Jana; Brůna, Josef; Bartaloš, Tomáš; Dvořák, Petr; Vítková, Michaela; Pyšek, Petr

    2017-01-01

    The rapid spread of invasive plants makes their management increasingly difficult. Remote sensing offers a means of fast and efficient monitoring, but still the optimal methodologies remain to be defined. The seasonal dynamics and spectral characteristics of the target invasive species are important factors, since, at certain time of the vegetation season (e.g., at flowering or senescing), plants are often more distinct (or more visible beneath the canopy). Our aim was to establish fast, repeatable and a cost-efficient, computer-assisted method applicable over larger areas, to reduce the costs of extensive field campaigns. To achieve this goal, we examined how the timing of monitoring affects the detection of noxious plant invaders in Central Europe, using two model herbaceous species with markedly different phenological, structural, and spectral characteristics. They are giant hogweed (Heracleum mantegazzianum), a species with very distinct flowering phase, and the less distinct knotweeds (Fallopia japonica, F. sachalinensis, and their hybrid F. × bohemica). The variety of data generated, such as imagery from purposely-designed, unmanned aircraft vehicle (UAV), and VHR satellite, and aerial color orthophotos enabled us to assess the effects of spectral, spatial, and temporal resolution (i.e., the target species' phenological state) for successful recognition. The demands for both spatial and spectral resolution depended largely on the target plant species. In the case that a species was sampled at the most distinct phenological phase, high accuracy was achieved even with lower spectral resolution of our low-cost UAV. This demonstrates that proper timing can to some extent compensate for the lower spectral resolution. The results of our study could serve as a basis for identifying priorities for management, targeted at localities with the greatest risk of invasive species' spread and, once eradicated, to monitor over time any return. The best mapping strategy should reflect morphological and structural features of the target plant and choose appropriate spatial, spectral, and temporal resolution. The UAV enables flexible data acquisition for required time periods at low cost and is, therefore, well-suited for targeted monitoring; while satellite imagery provides the best solution for larger areas. Nonetheless, users must be aware of their limits. PMID:28620399

  7. Patients with symptoms of delayed gastric emptying have a high prevalence of oesophageal dysmotility, irrespective of scintigraphic evidence of gastroparesis.

    PubMed

    Triadafilopoulos, George; Nguyen, Linda; Clarke, John O

    2017-01-01

    Patients with symptoms suggestive of gastroparesis exhibit several symptoms, such as epigastric pain, postprandial fullness, bloating and regurgitation. It is uncertain if such symptoms reflect underlying oesophageal motor disorder. To examine whether patients with epigastric pain and postprandial distress syndrome suggestive of functional dyspepsia and/or gastroparesis also have concomitant oesophageal motility abnormalities and, if so, whether there are any associations between these disturbances. In this retrospective cohort study, consecutive patients with functional gastrointestinal symptoms suggestive of gastric neuromuscular dysfunction (gastroparesis or functional dyspepsia) underwent clinical assessment, gastric scintigraphy, oesophageal high-resolution manometry and ambulatory pH monitoring using standard protocols. We studied 61 patients with various functional upper gastrointestinal symptoms who underwent gastric scintigraphy, oesophageal high-resolution manometry and ambulatory pH monitoring. Forty-four patients exhibited gastroparesis by gastric scintigraphy. Oesophageal motility disorders were found in 68% and 42% of patients with or without scintigraphic evidence of gastroparesis respectively, suggesting of overlapping gastric and oesophageal neuromuscular disorder. Forty-three per cent of patients with gastroparesis had abnormal oesophageal acid exposure with mean % pH <4.0 of 7.5 in contrast to 38% of those symptomatic controls with normal gastric emptying, with mean %pH <4.0 of 5.4 (NS). Symptoms of epigastric pain, heartburn/regurgitation, bloating, nausea, vomiting, dysphagia, belching and weight loss could not distinguish patients with or without gastroparesis, although weight loss was significantly more prevalent and severe (p<0.002) in patients with gastroparesis. There was no relationship between oesophageal symptoms and motor or pH abnormalities in either groups. Irrespective of gastric emptying delay by scintigraphy, patients with symptoms suggestive of gastric neuromuscular dysfunction have a high prevalence of oesophageal motor disorder and pathological oesophageal acid exposure that may contribute to their symptoms and may require therapy. High-resolution oesophageal manometry and pH monitoring are non-invasive and potentially useful in the assessment and management of these patients.

  8. Mapping invasive wetland plants in the Hudson River National Estuarine Research Reserve using quickbird satellite imagery

    USGS Publications Warehouse

    Laba, M.; Downs, R.; Smith, S.; Welsh, S.; Neider, C.; White, S.; Richmond, M.; Philpot, W.; Baveye, P.

    2008-01-01

    The National Estuarine Research Reserve (NERR) program is a nationally coordinated research and monitoring program that identifies and tracks changes in ecological resources of representative estuarine ecosystems and coastal watersheds. In recent years, attention has focused on using high spatial and spectral resolution satellite imagery to map and monitor wetland plant communities in the NERRs, particularly invasive plant species. The utility of this technology for that purpose has yet to be assessed in detail. To that end, a specific high spatial resolution satellite imagery, QuickBird, was used to map plant communities and monitor invasive plants within the Hudson River NERR (HRNERR). The HRNERR contains four diverse tidal wetlands (Stockport Flats, Tivoli Bays, Iona Island, and Piermont), each with unique water chemistry (i.e., brackish, oligotrophic and fresh) and, consequently, unique assemblages of plant communities, including three invasive plants (Trapa natans, Phragmites australis, and Lythrum salicaria). A maximum-likelihood classification was used to produce 20-class land cover maps for each of the four marshes within the HRNERR. Conventional contingency tables and a fuzzy set analysis served as a basis for an accuracy assessment of these maps. The overall accuracies, as assessed by the contingency tables, were 73.6%, 68.4%, 67.9%, and 64.9% for Tivoli Bays, Stockport Flats, Piermont, and Iona Island, respectively. Fuzzy assessment tables lead to higher estimates of map accuracies of 83%, 75%, 76%, and 76%, respectively. In general, the open water/tidal channel class was the most accurately mapped class and Scirpus sp. was the least accurately mapped. These encouraging accuracies suggest that high-resolution satellite imagery offers significant potential for the mapping of invasive plant species in estuarine environments. ?? 2007 Elsevier Inc. All rights reserved.

  9. Longitudinal in vivo microcomputed tomography of mouse lungs: No evidence for radiotoxicity

    PubMed Central

    Vande Velde, Greetje; De Langhe, Ellen; Poelmans, Jennifer; Bruyndonckx, Peter; d'Agostino, Emiliano; Verbeken, Erik; Bogaerts, Ria; Himmelreich, Uwe

    2015-01-01

    Before microcomputed tomography (micro-CT) can be exploited to its full potential for longitudinal monitoring of transgenic and experimental mouse models of lung diseases, radiotoxic side effects such as inflammation or fibrosis must be considered. We evaluated dose and potential radiotoxicity to the lungs for long-term respiratory-gated high-resolution micro-CT protocols. Free-breathing C57Bl/6 mice underwent four different retrospectively respiratory gated micro-CT imaging schedules of repeated scans during 5 or 12 wk, followed by ex vivo micro-CT and detailed histological and biochemical assessment of lung damage. Radiation exposure, dose, and absorbed dose were determined by ionization chamber, thermoluminescent dosimeter measurements and Monte Carlo calculations. Despite the relatively large radiation dose delivered per micro-CT acquisition, mice did not show any signs of radiation-induced lung damage or fibrosis when scanned weekly during 5 and up to 12 wk. Doubling the scanning frequency and once tripling the radiation dose as to mimic the instant repetition of a failed scan also stayed without detectable toxicity after 5 wk of scanning. Histological analyses confirmed the absence of radiotoxic damage to the lungs, thereby demonstrating that long-term monitoring of mouse lungs using high-resolution micro-CT is safe. This opens perspectives for longitudinal monitoring of (transgenic) mouse models of lung diseases and therapeutic response on an individual basis with high spatial and temporal resolution, without concerns for radiation toxicity that could potentially influence the readout of micro-CT-derived lung biomarkers. This work further supports the introduction of micro-CT for routine use in the preclinical pulmonary research field where postmortem histological approaches are still the gold standard. PMID:26024893

  10. Integrated satellite data fusion and mining for monitoring lake water quality status of the Albufera de Valencia in Spain.

    PubMed

    Doña, Carolina; Chang, Ni-Bin; Caselles, Vicente; Sánchez, Juan M; Camacho, Antonio; Delegido, Jesús; Vannah, Benjamin W

    2015-03-15

    Lake eutrophication is a critical issue in the interplay of water supply, environmental management, and ecosystem conservation. Integrated sensing, monitoring, and modeling for a holistic lake water quality assessment with respect to multiple constituents is in acute need. The aim of this paper is to develop an integrated algorithm for data fusion and mining of satellite remote sensing images to generate daily estimates of some water quality parameters of interest, such as chlorophyll a concentrations and water transparency, to be applied for the assessment of the hypertrophic Albufera de Valencia. The Albufera de Valencia is the largest freshwater lake in Spain, which can often present values of chlorophyll a concentration over 200 mg m(-3) and values of transparency (Secchi Disk, SD) as low as 20 cm. Remote sensing data from Moderate Resolution Imaging Spectroradiometer (MODIS) and Landsat Thematic Mapper (TM) and Enhance Thematic Mapper (ETM+) images were fused to carry out an integrative near-real time water quality assessment on a daily basis. Landsat images are useful to study the spatial variability of the water quality parameters, due to its spatial resolution of 30 m, in comparison to the low spatial resolution (250/500 m) of MODIS. While Landsat offers a high spatial resolution, the low temporal resolution of 16 days is a significant drawback to achieve a near real-time monitoring system. This gap may be bridged by using MODIS images that have a high temporal resolution of 1 day, in spite of its low spatial resolution. Synthetic Landsat images were fused for dates with no Landsat overpass over the study area. Finally, with a suite of ground truth data, a few genetic programming (GP) models were derived to estimate the water quality using the fused surface reflectance data as inputs. The GP model for chlorophyll a estimation yielded a R(2) of 0.94, with a Root Mean Square Error (RMSE) = 8 mg m(-3), and the GP model for water transparency estimation using Secchi disk showed a R(2) of 0.89, with an RMSE = 4 cm. With this effort, the spatiotemporal variations of water transparency and chlorophyll a concentrations may be assessed simultaneously on a daily basis throughout the lake for environmental management. Copyright © 2014 Elsevier Ltd. All rights reserved.

  11. The investigation of using 5G millimeter-wave communications links for environmental monitoring

    NASA Astrophysics Data System (ADS)

    Han, Congzheng

    2017-04-01

    There has been significantly increasing recognition that millimeter waves from 30 GHz to 300 GHz as carriers for future 5G cellular networks. This is good for high speed, line-of-sight communication, potentially using very densely deployed infrastructure involving many small cells. High resolution, continuous and accurate monitoring of environmental conditions, such as rainfall and water vapor are of great important to meteorology, hydrology (e.g. flood warning), agriculture, environmental policy (e.g. pollution regulation) and weather forecasting. We have built a 28GHz measurement link at our research institute in central Beijing, China. This work will study the potential of using millimeter wave based wireless links to monitor environmental conditions including rainfall and water vapor.

  12. Tunable diode-laser absorption measurements of methane at elevated temperatures

    NASA Astrophysics Data System (ADS)

    Nagali, V.; Chou, S. I.; Baer, D. S.; Hanson, R. K.; Segall, J.

    1996-07-01

    A diode-laser sensor system based on absorption spectroscopy techniques has been developed to monitor CH4 nonintrusively in high-temperature environments. Fundamental spectroscopic parameters, including the line strengths of the transitions in the R(6) manifold of the 2 nu 3 band near 1.646 mu m, have been determined from high-resolution absorption measurements in a heated static cell. In addition, a corrected expression for the CH 4 partition function has been validated experimentally over the temperature range from 400 to 915 K. Potential applications of the diode-laser sensor system include process control, combustion measurements, and atmospheric monitoring.

  13. An Overview of the CBERS-2 Satellite and Comparison of the CBERS-2 CCD Data with the L5 TM Data

    NASA Technical Reports Server (NTRS)

    Chandler, Gyanesh

    2007-01-01

    CBERS satellite carries on-board a multi sensor payload with different spatial resolutions and collection frequencies. HRCCD (High Resolution CCD Camera), IRMSS (Infrared Multispectral Scanner), and WFI (Wide-Field Imager). The CCD and the WFI camera operate in the VNIR regions, while the IRMSS operates in SWIR and thermal region. In addition to the imaging payload, the satellite carries a Data Collection System (DCS) and Space Environment Monitor (SEM).

  14. Determination of glucose concentrations using photonic crystal LEDs

    NASA Astrophysics Data System (ADS)

    Liao, Yu-Yang; Chen, Yung-Tsan; Chang, Cheng-Yu; Lan, Wen-Yi; Huang, Jian-Jang

    2016-09-01

    As internet of things (IOT) has become a popular topic in current consumer electronics, there is a demand for cost-effective sensors to monitor bio-signals. Traditional optical sensors employ low-dimensional gratings and high-resolution spectrometers to detect the refractive index changes of the solutions. In this work, we develop an alternative approach to correlate the concentration of molecules to the band diagrams of the photonic crystals. A relatively low-resolution spectrum analyzer can be employed, yet achieves higher sensitivity than traditional approaches.

  15. Ion kinetic scale in the solar wind observed.

    PubMed

    Śafránková, Jana; Němeček, Zdeněk; Přech, Lubomír; Zastenker, Georgy N

    2013-01-11

    This Letter shows the first results from the solar wind monitor onboard the Spektr-R spacecraft which measures plasma moments with a time resolution of 31 ms. This high-time resolution allows us to make direct observations of solar wind turbulence below ion kinetic length scales. We present examples of the frequency spectra of the density, velocity, and thermal velocity. Our study reveals that although these parameters exhibit the same behavior at the magnetohydrodynamic scale, their spectra are remarkably different at the kinetic scale.

  16. Ground-based measurements of ionospheric dynamics

    NASA Astrophysics Data System (ADS)

    Kouba, Daniel; Chum, Jaroslav

    2018-05-01

    Different methods are used to research and monitor the ionospheric dynamics using ground measurements: Digisonde Drift Measurements (DDM) and Continuous Doppler Sounding (CDS). For the first time, we present comparison between both methods on specific examples. Both methods provide information about the vertical drift velocity component. The DDM provides more information about the drift velocity vector and detected reflection points. However, the method is limited by the relatively low time resolution. In contrast, the strength of CDS is its high time resolution. The discussed methods can be used for real-time monitoring of medium scale travelling ionospheric disturbances. We conclude that it is advantageous to use both methods simultaneously if possible. The CDS is then applied for the disturbance detection and analysis, and the DDM is applied for the reflection height control.

  17. Resolving Single Molecule Lysozyme Dynamics with a Carbon Nanotube Electronic Circuit

    NASA Astrophysics Data System (ADS)

    Choi, Yongki; Moody, Issa S.; Perez, Israel; Sheps, Tatyana; Weiss, Gregory A.; Collins, Philip G.

    2011-03-01

    High resolution, real-time monitoring of a single lysozyme molecule is demonstrated by fabricating nanoscale electronic devices based on single-walled carbon nanotubes (SWCNT). In this sensor platform, a biomolecule of interest is attached to a single SWCNT device. The electrical conductance transduces chemical events with single molecule sensitivity and 10 microsecond resolution. In this work, enzymatic turnover by lysozyme is investigated, because the mechanistic details for its processivity and dynamics remain incompletely understood. Stochastically distributed binding events between a lysozyme and its binding substrate, peptidoglycan, are monitored via the sensor conductance. Furthermore, the magnitude and repetition rate of these events varies with pH and the presence of inhibitors or denaturation agents. Changes in the conductance signal are analyzed in terms of lysozyme's internal hinge motion, binding events, and enzymatic processing.

  18. A prototype of an automated high resolution InSAR volcano-monitoring system in the MED-SUV project

    NASA Astrophysics Data System (ADS)

    Chowdhury, Tanvir A.; Minet, Christian; Fritz, Thomas

    2016-04-01

    Volcanic processes which produce a variety of geological and hydrological hazards are difficult to predict and capable of triggering natural disasters on regional to global scales. Therefore it is important to monitor volcano continuously and with a high spatial and temporal sampling rate. The monitoring of active volcanoes requires the reliable measurement of surface deformation before, during and after volcanic activities and it helps for the better understanding and modelling of the involved geophysical processes. Space-borne synthetic aperture radar (SAR) interferometry (InSAR), persistent scatterer interferometry (PSI) and small baseline subset algorithm (SBAS) provide a powerful tool for observing the eruptive activities and measuring the surface changes of millimetre accuracy. All the mentioned techniques with deformation time series extraction address the challenges by exploiting medium to large SAR image stacks. The process of selecting, ordering, downloading, storing, logging, extracting and preparing the data for processing is very time consuming has to be done manually for every single data-stack. In many cases it is even an iterative process which has to be done regularly and continuously. Therefore, data processing becomes slow which causes significant delays in data delivery. The SAR Satellite based High Resolution Data Acquisition System, which will be developed at DLR, will automate this entire time consuming tasks and allows an operational volcano monitoring system. Every 24 hours the system runs for searching new acquired scene over the volcanoes and keeps track of the data orders, log the status and download the provided data via ftp-transfer including E-Mail alert. Furthermore, the system will deliver specified reports and maps to a database for review and use by specialists. The user interaction will be minimized and iterative processes will be totally avoided. In this presentation, a prototype of SAR Satellite based High Resolution Data Acquisition System, which is developed and operated by DLR, will be described in detail. The workflow of the developed system is described which allow a meaningful contribution of SAR for monitoring volcanic eruptive activities. A more robust and efficient InSAR data processing in IWAP processor will be introduced in the framework of a remote sensing task of MED-SUV project. An application of the developed prototype system to a historic eruption of Mount Etna and Piton de la Fournaise will be depicted in the last part of the presentation.

  19. Monitoring of injury induced brain regeneration of the adult zebrafish by using optical coherence tomography

    NASA Astrophysics Data System (ADS)

    Yuan, Zhen; Zhang, Jian

    2018-02-01

    The adult zebrafish has pronounced regenerative capacity of the brain, which makes it an ideal model organism of vertebrate biology for the investigation of recovery of central nervous system injuries. The aim of this study was to employ spectral-domain optical coherence tomography (SD-OCT) system for long-term in vivo monitoring of tissue regeneration using an adult zebrafish model of brain injury. Based on a 1325 nm light source and two high-speed galvo mirrors, the SD-OCT system can offer a large field of view of the three-dimensional (3D) brain structures with high imaging resolution (12 μm axial and 13 μm lateral) at video rate. In vivo experiments based on this system were conducted to monitor the regeneration process of zebrafish brain after injury during a period of 43 days. To monitor and detect the process of tissue regeneration, we performed 3D in vivo imaging in a zebrafish model of adult brain injury during a period of 43 days. The coronal and sagittal views of the injured zebrafish brain at each time point (0 days, 10 days, 20 days and 43 days postlesion) were presented to show the changes of the brain lesion in detail. In addition, the 3D SD-OCT images for an injured zebrafish brain were also reconstructed at days 0 and days 43 post-lesion. We found that SD-OCT is able to effectively and noninvasively monitor the regeneration of the adult zebrafish brain after injury in real time with high 3D spatial resolution and good penetration depth. Our findings also suggested that the adult zebrafish has the extraordinary capability of brain regeneration and is able to repair itself after brain injury.

  20. Malaspina Glacier, Alaska

    NASA Technical Reports Server (NTRS)

    2001-01-01

    This image from the Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER) instrument on NASA's Terra satellite covers an area of 55 by 40 kilometers (34 by 25 miles) over the southwest part of the Malaspina Glacier and Icy Bay in Alaska. The composite of infrared and visible bands results in the snow and ice appearing light blue, dense vegetation is yellow-orange and green, and less vegetated, gravelly areas are in orange. According to Dr. Dennis Trabant (U.S. Geological Survey, Fairbanks, Alaska), the Malaspina Glacier is thinning. Its terminal moraine protects it from contact with the open ocean; without the moraine, or if sea level rises sufficiently to reconnect the glacier with the ocean, the glacier would start calving and retreat significantly. ASTER data are being used to help monitor the size and movement of some 15,000 tidal and piedmont glaciers in Alaska. Evidence derived from ASTER and many other satellite and ground-based measurements suggests that only a few dozen Alaskan glaciers are advancing. The overwhelming majority of them are retreating.

    This ASTER image was acquired on June 8, 2001. With its 14 spectral bands from the visible to the thermal infrared wavelength region, and its high spatial resolution of 15 to 90 meters (about 50 to 300 feet), ASTER will image Earth for the next six years to map and monitor the changing surface of our planet.

    ASTER is one of five Earth-observing instruments launched December 18,1999, on NASA's Terra satellite. The instrument was built by Japan's Ministry of Economy, Trade and Industry. A joint U.S./Japan science team is responsible for validation and calibration of the instrument and the data products. Dr. Anne Kahle at NASA's Jet Propulsion Laboratory, Pasadena, Calif., is the U.S. science team leader; Bjorn Eng of JPL is the project manager. ASTER is the only high-resolution imaging sensor on Terra. The Terra mission is part of NASA's Earth Science Enterprise, along-term research and technology program designed to examine Earth's land, oceans, atmosphere, ice and life as a total integrated system.

    The broad spectral coverage and high spectral resolution of ASTER will provide scientists in numerous disciplines with critical information for surface mapping, and monitoring dynamic conditions and temporal change. Example applications are: monitoring glacial advances and retreats; monitoring potentially active volcanoes; identifying crop stress; determining cloud morphology and physical properties; wetlands evaluation; thermal pollution monitoring; coral reef degradation; surface temperature mapping of soils and geology; and measuring surface heat balance.

    Size: 55 by 40 kilometers (34 by 25 miles) Location: 60.0 degrees North latitude, 140.7 degrees West longitude Orientation: North at top Image Data: ASTER bands 2, 3 and 4 Original Data Resolution: 15 meters (49 feet) Date Acquired: June 8, 2001

  1. Evaluating Sentinel-2 for Lakeshore Habitat Mapping Based on Airborne Hyperspectral Data.

    PubMed

    Stratoulias, Dimitris; Balzter, Heiko; Sykioti, Olga; Zlinszky, András; Tóth, Viktor R

    2015-09-11

    Monitoring of lakeshore ecosystems requires fine-scale information to account for the high biodiversity typically encountered in the land-water ecotone. Sentinel-2 is a satellite with high spatial and spectral resolution and improved revisiting frequency and is expected to have significant potential for habitat mapping and classification of complex lakeshore ecosystems. In this context, investigations of the capabilities of Sentinel-2 in regard to the spatial and spectral dimensions are needed to assess its potential and the quality of the expected output. This study presents the first simulation of the high spatial resolution (i.e., 10 m and 20 m) bands of Sentinel-2 for lakeshore mapping, based on the satellite's Spectral Response Function and hyperspectral airborne data collected over Lake Balaton, Hungary in August 2010. A comparison of supervised classifications of the simulated products is presented and the information loss from spectral aggregation and spatial upscaling in the context of lakeshore vegetation classification is discussed. We conclude that Sentinel-2 imagery has a strong potential for monitoring fine-scale habitats, such as reed beds.

  2. The capacity of radar, crowdsourced personal weather stations and commercial microwave links to monitor small scale urban rainfall

    NASA Astrophysics Data System (ADS)

    Uijlenhoet, R.; de Vos, L. W.; Leijnse, H.; Overeem, A.; Raupach, T. H.; Berne, A.

    2017-12-01

    For the purpose of urban rainfall monitoring high resolution rainfall measurements are desirable. Typically C-band radar can provide rainfall intensities at km grid cells every 5 minutes. Opportunistic sensing with commercial microwave links yields rainfall intensities over link paths within cities. Additionally, recent developments have made it possible to obtain large amounts of urban in situ measurements from weather amateurs in near real-time. With a known high resolution simulated rainfall event the accuracy of these three techniques is evaluated, taking into account their respective existing layouts and sampling methods. Under ideal measurement conditions, the weather station networks proves to be most promising. For accurate estimation with radar, an appropriate choice for Z-R relationship is vital. Though both the microwave links and the weather station networks are quite dense, both techniques will underestimate rainfall if not at least one link path / station captures the high intensity rainfall peak. The accuracy of each technique improves when considering rainfall at larger scales, especially by increasing time intervals, with the steepest improvements found in microwave links.

  3. Evaluating Sentinel-2 for Lakeshore Habitat Mapping Based on Airborne Hyperspectral Data

    PubMed Central

    Stratoulias, Dimitris; Balzter, Heiko; Sykioti, Olga; Zlinszky, András; Tóth, Viktor R.

    2015-01-01

    Monitoring of lakeshore ecosystems requires fine-scale information to account for the high biodiversity typically encountered in the land-water ecotone. Sentinel-2 is a satellite with high spatial and spectral resolution and improved revisiting frequency and is expected to have significant potential for habitat mapping and classification of complex lakeshore ecosystems. In this context, investigations of the capabilities of Sentinel-2 in regard to the spatial and spectral dimensions are needed to assess its potential and the quality of the expected output. This study presents the first simulation of the high spatial resolution (i.e., 10 m and 20 m) bands of Sentinel-2 for lakeshore mapping, based on the satellite’s Spectral Response Function and hyperspectral airborne data collected over Lake Balaton, Hungary in August 2010. A comparison of supervised classifications of the simulated products is presented and the information loss from spectral aggregation and spatial upscaling in the context of lakeshore vegetation classification is discussed. We conclude that Sentinel-2 imagery has a strong potential for monitoring fine-scale habitats, such as reed beds. PMID:26378538

  4. High-resolution monitoring across the soil-groundwater interface - Revealing small-scale hydrochemical patterns with a novel multi-level well

    NASA Astrophysics Data System (ADS)

    Gassen, Niklas; Griebler, Christian; Stumpp, Christine

    2016-04-01

    Biogeochemical turnover processes in the subsurface are highly variable both in time and space. In order to capture this variability, high resolution monitoring systems are required. Particular in riparian zones the understanding of small-scale biogeochemical processes is of interest, as they are regarded as important buffer zones for nutrients and contaminants with high turnover rates. To date, riparian research has focused on influences of groundwater-surface water interactions on element cycling, but little is known about processes occurring at the interface between the saturated and the unsaturated zone during dynamic flow conditions. Therefore, we developed a new type of high resolution multi-level well (HR-MLW) that has been installed in the riparian zone of the Selke river. This HR-MLW for the first time enables to derive water samples both from the unsaturated and the saturated zone across one vertical profile with a spatial vertical resolution of 0.05 to 0.5 m to a depth of 4 m b.l.s. Water samples from the unsaturated zone are extracted via suction cup sampling. Samples from the saturated zone are withdrawn through glass filters and steel capillaries. Both, ceramic cups and glass filters, are installed along a 1" HDPE piezometer tube. First high resolution hydrochemical profiles revealed a distinct depth-zonation in the riparian alluvial aquifer. A shallow zone beneath the water table carried a signature isotopically and hydrochemically similar to the nearby river, while layers below 1.5 m were influenced by regional groundwater. This zonation showed temporal dynamics related to groundwater table fluctuations and microbial turnover processes. The HR-MLW delivered new insight into mixing and turnover processes between riverwater and groundwater in riparian zones, both in a temporal and spatial dimension. With these new insights, we are able to improve our understanding of dynamic turnover processes at the soil - groundwater interface and of surface -groundwater interactions in riparian zones. In the future, a better prediction and targeted management of buffer mechanisms in riparian zones will be possible.

  5. Benefits and shortcomings of non-destructive benthic imagery for monitoring hard-bottom habitats.

    PubMed

    Beisiegel, Kolja; Darr, Alexander; Gogina, Mayya; Zettler, Michael L

    2017-08-15

    Hard-bottom habitats with complex topography and fragile epibenthic communities are still not adequately considered in benthic monitoring programs, despite their potential ecological importance. While indicators of ecosystem health are defined by major EU directives, methods commonly used to measure them are deficient in quantification of biota on hard surfaces. We address the suitability of seafloor imaging for monitoring activities. We compared the ability of high-resolution imagery and physical sampling methods (grab, dredge, SCUBA-diving) to detect taxonomic and functional components of epibenthos. Results reveal that (1) with minimal habitat disturbance on large spatial scales, imagery provides valuable, cost-effective assessment of rocky reef habitat features and community structure, (2) despite poor taxonomic resolution, image-derived data for habitat-forming taxa might be sufficient to infer richness of small sessile and mobile fauna, (3) physical collections are necessary to develop a robust record of species richness, including species-level taxonomic identifications, and to establish a baseline. Copyright © 2017. Published by Elsevier Ltd.

  6. Exocomet Signatures Around the A-shell Star Phi Leonis

    NASA Technical Reports Server (NTRS)

    Eiroa, C.; Rebollido, I.; Montesinos, B.; Villaver, E.; Absil, O.; Henning, Th.; Bayo, A.; Canovas, H.; Carmona, A.; Chen, Ch.; hide

    2016-01-01

    We present an intensive monitoring of high-resolution spectra of the Ca II K line in the A7IV shell star Phi Leonis at very short (minutes, hours), short (night to night), and medium (weeks, months) timescales. The spectra show remarkable variable absorptions on timescales of hours, days, and months. The characteristics of these sporadic events are very similar to most that are observed toward the debris disk host star Beta Pictoris, which are commonly interpreted as signs of the evaporation of solid, comet-like bodies grazing or falling onto the star. Therefore, our results suggest the presence of solid bodies around Phi Leonis. To our knowledge, with the exception of Beta Pictoris, our monitoring has the best time resolution at the mentioned timescales for a star with events attributed to exocomets. Assuming the cometary scenario and considering the timescales of our monitoring, our results indicate that Phi Leonis presents the richest environment with comet-like events known to date, second only to Beta Pictoris.

  7. [Remote sensing monitoring and screening for urban black and odorous water body: A review.

    PubMed

    Shen, Qian; Zhu, Li; Cao, Hong Ye

    2017-10-01

    Continuous improvement of urban water environment and overall control of black and odorous water body are not merely national strategic needs with the action plan for prevention and treatment of water pollution, but also the hot issues attracting the attention of people. Most previous researches concentrated on the study of cause, evaluation and treatment measures of this phenomenon, and there are few researches on the monitoring using remote sensing, which is often a strain to meet the national needs of operational monitoring. This paper mainly summarized the urgent research problems, mainly including the identification and classification standard, research on the key technologies, and the frame of remote sensing screening systems for the urban black and odorous water body. The main key technologies were concluded too, including the high spatial resolution image preprocessing and extraction technique for black and odorous water body, the extraction of water information in city zones, the classification of the black and odorous water, and the identification and classification technique based on satellite-sky-ground remote sensing. This paper summarized the research progress and put forward research ideas of monitoring and screening urban black and odorous water body via high spatial resolution remote sensing technology, which would be beneficial to having an overall grasp of spatial distribution and improvement progress of black and odorous water body, and provide strong technical support for controlling urban black and odorous water body.

  8. Time-resolved High Spectral Resolution Observation of 2MASSW J0746425+200032AB

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wang, Ji; Mawet, Dimitri; Prato, Lisa, E-mail: ji.wang@caltech.edu

    Many brown dwarfs (BDs) exhibit photometric variability at levels from tenths to tens of percents. The photometric variability is related to magnetic activity or patchy cloud coverage, characteristic of BDs near the L–T transition. Time-resolved spectral monitoring of BDs provides diagnostics of cloud distribution and condensate properties. However, current time-resolved spectral studies of BDs are limited to low spectral resolution ( R ∼ 100) with the exception of the study of Luhman 16 AB at a resolution of 100,000 using the VLT+CRIRES. This work yielded the first map of BD surface inhomogeneity, highlighting the importance and unique contribution of highmore » spectral resolution observations. Here, we report on the time-resolved high spectral resolution observations of a nearby BD binary, 2MASSW J0746425+200032AB. We find no coherent spectral variability that is modulated with rotation. Based on simulations, we conclude that the coverage of a single spot on 2MASSW J0746425+200032AB is smaller than 1% or 6.25% if spot contrast is 50% or 80% of its surrounding flux, respectively. Future high spectral resolution observations aided by adaptive optics systems can put tighter constraints on the spectral variability of 2MASSW J0746425+200032AB and other nearby BDs.« less

  9. Kinota: An Open-Source NoSQL implementation of OGC SensorThings for large-scale high-resolution real-time environmental monitoring

    NASA Astrophysics Data System (ADS)

    Miles, B.; Chepudira, K.; LaBar, W.

    2017-12-01

    The Open Geospatial Consortium (OGC) SensorThings API (STA) specification, ratified in 2016, is a next-generation open standard for enabling real-time communication of sensor data. Building on over a decade of OGC Sensor Web Enablement (SWE) Standards, STA offers a rich data model that can represent a range of sensor and phenomena types (e.g. fixed sensors sensing fixed phenomena, fixed sensors sensing moving phenomena, mobile sensors sensing fixed phenomena, and mobile sensors sensing moving phenomena) and is data agnostic. Additionally, and in contrast to previous SWE standards, STA is developer-friendly, as is evident from its convenient JSON serialization, and expressive OData-based query language (with support for geospatial queries); with its Message Queue Telemetry Transport (MQTT), STA is also well-suited to efficient real-time data publishing and discovery. All these attributes make STA potentially useful for use in environmental monitoring sensor networks. Here we present Kinota(TM), an Open-Source NoSQL implementation of OGC SensorThings for large-scale high-resolution real-time environmental monitoring. Kinota, which roughly stands for Knowledge from Internet of Things Analyses, relies on Cassandra its underlying data store, which is a horizontally scalable, fault-tolerant open-source database that is often used to store time-series data for Big Data applications (though integration with other NoSQL or rational databases is possible). With this foundation, Kinota can scale to store data from an arbitrary number of sensors collecting data every 500 milliseconds. Additionally, Kinota architecture is very modular allowing for customization by adopters who can choose to replace parts of the existing implementation when desirable. The architecture is also highly portable providing the flexibility to choose between cloud providers like azure, amazon, google etc. The scalable, flexible and cloud friendly architecture of Kinota makes it ideal for use in next-generation large-scale and high-resolution real-time environmental monitoring networks used in domains such as hydrology, geomorphology, and geophysics, as well as management applications such as flood early warning, and regulatory enforcement.

  10. On the soil moisture estimate at basin scale in Mediterranean basins with the ASAR sensor: the Mulargia basin case study

    NASA Astrophysics Data System (ADS)

    Fois, Laura; Montaldo, Nicola

    2017-04-01

    Soil moisture plays a key role in water and energy exchanges between soil, vegetation and atmosphere. For water resources planning and managementthesoil moistureneeds to be accurately and spatially monitored, specially where the risk of desertification is high, such as Mediterranean basins. In this sense active remote sensors are very attractive for soil moisture monitoring. But Mediterranean basinsaretypicallycharacterized by strong topography and high spatial variability of physiographic properties, and only high spatial resolution sensorsare potentially able to monitor the strong soil moisture spatial variability.In this regard the Envisat ASAR (Advanced Synthetic Aperture Radar) sensor offers the attractive opportunity ofsoil moisture mapping at fine spatial and temporal resolutions(up to 30 m, every 30 days). We test the ASAR sensor for soil moisture estimate in an interesting Sardinian case study, the Mulargia basin withan area of about 70 sq.km. The position of the Sardinia island in the center of the western Mediterranean Sea basin, its low urbanization and human activity make Sardinia a perfect reference laboratory for Mediterranean hydrologic studies. The Mulargia basin is a typical Mediterranean basinin water-limited conditions, and is an experimental basin from 2003. For soil moisture mapping23 satellite ASAR imagery at single and dual polarization were acquired for the 2003-2004period.Satellite observationsmay bevalidated through spatially distributed soil moisture ground-truth data, collected over the whole basin using the TDR technique and the gravimetric method, in days with available radar images. The results show that ASAR sensor observations can be successfully used for soil moisture mapping at different seasons, both wet and dry, but an accurate calibration with field data is necessary. We detect a strong relationship between the soil moisture spatial variability and the physiographic properties of the basin, such as soil water storage capacity, deep and texture of soils, type and density of vegetation, and topographic parameters. Finally we demonstrate that the high resolution ASAR imagery are an attractive tool for estimating surface soil moisture at basin scale, offering a unique opportunity for monitoring the soil moisture spatial variability in typical Mediterranean basins.

  11. A New Hybrid Spatio-temporal Model for Estimating Daily Multi-year PM2.5 Concentrations Across Northeastern USA Using High Resolution Aerosol Optical Depth Data

    NASA Technical Reports Server (NTRS)

    Kloog, Itai; Chudnovsky, Alexandra A.; Just, Allan C.; Nordio, Francesco; Koutrakis, Petros; Coull, Brent A.; Lyapustin, Alexei; Wang, Yujie; Schwartz, Joel

    2014-01-01

    The use of satellite-based aerosol optical depth (AOD) to estimate fine particulate matter PM(sub 2.5) for epidemiology studies has increased substantially over the past few years. These recent studies often report moderate predictive power, which can generate downward bias in effect estimates. In addition, AOD measurements have only moderate spatial resolution, and have substantial missing data. We make use of recent advances in MODIS satellite data processing algorithms (Multi-Angle Implementation of Atmospheric Correction (MAIAC), which allow us to use 1 km (versus currently available 10 km) resolution AOD data.We developed and cross validated models to predict daily PM(sub 2.5) at a 1X 1 km resolution across the northeastern USA (New England, New York and New Jersey) for the years 2003-2011, allowing us to better differentiate daily and long term exposure between urban, suburban, and rural areas. Additionally, we developed an approach that allows us to generate daily high-resolution 200 m localized predictions representing deviations from the area 1 X 1 km grid predictions. We used mixed models regressing PM(sub 2.5) measurements against day-specific random intercepts, and fixed and random AOD and temperature slopes. We then use generalized additive mixed models with spatial smoothing to generate grid cell predictions when AOD was missing. Finally, to get 200 m localized predictions, we regressed the residuals from the final model for each monitor against the local spatial and temporal variables at each monitoring site. Our model performance was excellent (mean out-of-sample R(sup 2) = 0.88). The spatial and temporal components of the out-of-sample results also presented very good fits to the withheld data (R(sup 2) = 0.87, R(sup)2 = 0.87). In addition, our results revealed very little bias in the predicted concentrations (Slope of predictions versus withheld observations = 0.99). Our daily model results show high predictive accuracy at high spatial resolutions and will be useful in reconstructing exposure histories for epidemiological studies across this region.

  12. A New Hybrid Spatio-Temporal Model For Estimating Daily Multi-Year PM2.5 Concentrations Across Northeastern USA Using High Resolution Aerosol Optical Depth Data.

    PubMed

    Kloog, Itai; Chudnovsky, Alexandra A; Just, Allan C; Nordio, Francesco; Koutrakis, Petros; Coull, Brent A; Lyapustin, Alexei; Wang, Yujie; Schwartz, Joel

    2014-10-01

    The use of satellite-based aerosol optical depth (AOD) to estimate fine particulate matter (PM 2.5 ) for epidemiology studies has increased substantially over the past few years. These recent studies often report moderate predictive power, which can generate downward bias in effect estimates. In addition, AOD measurements have only moderate spatial resolution, and have substantial missing data. We make use of recent advances in MODIS satellite data processing algorithms (Multi-Angle Implementation of Atmospheric Correction (MAIAC), which allow us to use 1 km (versus currently available 10 km) resolution AOD data. We developed and cross validated models to predict daily PM 2.5 at a 1×1km resolution across the northeastern USA (New England, New York and New Jersey) for the years 2003-2011, allowing us to better differentiate daily and long term exposure between urban, suburban, and rural areas. Additionally, we developed an approach that allows us to generate daily high-resolution 200 m localized predictions representing deviations from the area 1×1 km grid predictions. We used mixed models regressing PM 2.5 measurements against day-specific random intercepts, and fixed and random AOD and temperature slopes. We then use generalized additive mixed models with spatial smoothing to generate grid cell predictions when AOD was missing. Finally, to get 200 m localized predictions, we regressed the residuals from the final model for each monitor against the local spatial and temporal variables at each monitoring site. Our model performance was excellent (mean out-of-sample R 2 =0.88). The spatial and temporal components of the out-of-sample results also presented very good fits to the withheld data (R 2 =0.87, R 2 =0.87). In addition, our results revealed very little bias in the predicted concentrations (Slope of predictions versus withheld observations = 0.99). Our daily model results show high predictive accuracy at high spatial resolutions and will be useful in reconstructing exposure histories for epidemiological studies across this region.

  13. Enabling high grayscale resolution displays and accurate response time measurements on conventional computers.

    PubMed

    Li, Xiangrui; Lu, Zhong-Lin

    2012-02-29

    Display systems based on conventional computer graphics cards are capable of generating images with 8-bit gray level resolution. However, most experiments in vision research require displays with more than 12 bits of luminance resolution. Several solutions are available. Bit++ (1) and DataPixx (2) use the Digital Visual Interface (DVI) output from graphics cards and high resolution (14 or 16-bit) digital-to-analog converters to drive analog display devices. The VideoSwitcher (3) described here combines analog video signals from the red and blue channels of graphics cards with different weights using a passive resister network (4) and an active circuit to deliver identical video signals to the three channels of color monitors. The method provides an inexpensive way to enable high-resolution monochromatic displays using conventional graphics cards and analog monitors. It can also provide trigger signals that can be used to mark stimulus onsets, making it easy to synchronize visual displays with physiological recordings or response time measurements. Although computer keyboards and mice are frequently used in measuring response times (RT), the accuracy of these measurements is quite low. The RTbox is a specialized hardware and software solution for accurate RT measurements. Connected to the host computer through a USB connection, the driver of the RTbox is compatible with all conventional operating systems. It uses a microprocessor and high-resolution clock to record the identities and timing of button events, which are buffered until the host computer retrieves them. The recorded button events are not affected by potential timing uncertainties or biases associated with data transmission and processing in the host computer. The asynchronous storage greatly simplifies the design of user programs. Several methods are available to synchronize the clocks of the RTbox and the host computer. The RTbox can also receive external triggers and be used to measure RT with respect to external events. Both VideoSwitcher and RTbox are available for users to purchase. The relevant information and many demonstration programs can be found at http://lobes.usc.edu/.

  14. A New Hybrid Spatio-Temporal Model For Estimating Daily Multi-Year PM2.5 Concentrations Across Northeastern USA Using High Resolution Aerosol Optical Depth Data

    PubMed Central

    Kloog, Itai; Chudnovsky, Alexandra A.; Just, Allan C.; Nordio, Francesco; Koutrakis, Petros; Coull, Brent A.; Lyapustin, Alexei; Wang, Yujie; Schwartz, Joel

    2017-01-01

    Background The use of satellite-based aerosol optical depth (AOD) to estimate fine particulate matter (PM2.5) for epidemiology studies has increased substantially over the past few years. These recent studies often report moderate predictive power, which can generate downward bias in effect estimates. In addition, AOD measurements have only moderate spatial resolution, and have substantial missing data. Methods We make use of recent advances in MODIS satellite data processing algorithms (Multi-Angle Implementation of Atmospheric Correction (MAIAC), which allow us to use 1 km (versus currently available 10 km) resolution AOD data. We developed and cross validated models to predict daily PM2.5 at a 1×1km resolution across the northeastern USA (New England, New York and New Jersey) for the years 2003–2011, allowing us to better differentiate daily and long term exposure between urban, suburban, and rural areas. Additionally, we developed an approach that allows us to generate daily high-resolution 200 m localized predictions representing deviations from the area 1×1 km grid predictions. We used mixed models regressing PM2.5 measurements against day-specific random intercepts, and fixed and random AOD and temperature slopes. We then use generalized additive mixed models with spatial smoothing to generate grid cell predictions when AOD was missing. Finally, to get 200 m localized predictions, we regressed the residuals from the final model for each monitor against the local spatial and temporal variables at each monitoring site. Results Our model performance was excellent (mean out-of-sample R2=0.88). The spatial and temporal components of the out-of-sample results also presented very good fits to the withheld data (R2=0.87, R2=0.87). In addition, our results revealed very little bias in the predicted concentrations (Slope of predictions versus withheld observations = 0.99). Conclusion Our daily model results show high predictive accuracy at high spatial resolutions and will be useful in reconstructing exposure histories for epidemiological studies across this region. PMID:28966552

  15. [Estimation of desert vegetation coverage based on multi-source remote sensing data].

    PubMed

    Wan, Hong-Mei; Li, Xia; Dong, Dao-Rui

    2012-12-01

    Taking the lower reaches of Tarim River in Xinjiang of Northwest China as study areaAbstract: Taking the lower reaches of Tarim River in Xinjiang of Northwest China as study area and based on the ground investigation and the multi-source remote sensing data of different resolutions, the estimation models for desert vegetation coverage were built, with the precisions of different estimation methods and models compared. The results showed that with the increasing spatial resolution of remote sensing data, the precisions of the estimation models increased. The estimation precision of the models based on the high, middle-high, and middle-low resolution remote sensing data was 89.5%, 87.0%, and 84.56%, respectively, and the precisions of the remote sensing models were higher than that of vegetation index method. This study revealed the change patterns of the estimation precision of desert vegetation coverage based on different spatial resolution remote sensing data, and realized the quantitative conversion of the parameters and scales among the high, middle, and low spatial resolution remote sensing data of desert vegetation coverage, which would provide direct evidence for establishing and implementing comprehensive remote sensing monitoring scheme for the ecological restoration in the study area.

  16. First characterization of a static Fourier transform spectrometer

    NASA Astrophysics Data System (ADS)

    Lacan, A.; Bréon, F.-M.; Rosak, A.; Pierangelo, C.

    2017-11-01

    A new instrument concept for a Static Fourier Transform Spectrometer has been developed and characterized by CNES. This spectrometer is based on a Michelson interferometer concept, but a system of stepped mirrors generates all interference path differences simultaneously, without any moving parts. The instrument permits high spectral resolution measurements (≍0.1 cm-1) adapted to the sounding and the monitoring of atmospheric gases. Moreover, its overall dimensions are compatible with a micro satellite platform. The stepped mirrors are glued using a molecular bonding technique. An interference filter selects a waveband only a few nanometers wide. It limits the number of sampling points (and consequently the steps number) necessary to achieve the high resolution. The instrument concept can be optimized for the detection and the monitoring of various atmospheric constituents. CNES has developed a version whose measurements are centered on the CO2 absorption lines at 1573 nm (6357 cm-1). This model has a theoretical resolution of 40 pm (0.15 cm-1) within a 5 nm (22.5 cm-1) wide spectral window. It is aimed at the feasibility demonstration for atmospheric CO2 column measurements with a very demanding accuracy of better than 1%. Preliminary measurements indicate that, although high quality spectra are obtained, the theoretical performances are not yet achieved. We discuss the causes for the achieved performances and describe foreseen methods for their improvements.

  17. Application of Multi-Source Remote Sensing Image in Yunnan Province Grassland Resources Investigation

    NASA Astrophysics Data System (ADS)

    Li, J.; Wen, G.; Li, D.

    2018-04-01

    Trough mastering background information of Yunnan province grassland resources utilization and ecological conditions to improves grassland elaborating management capacity, it carried out grassland resource investigation work by Yunnan province agriculture department in 2017. The traditional grassland resource investigation method is ground based investigation, which is time-consuming and inefficient, especially not suitable for large scale and hard-to-reach areas. While remote sensing is low cost, wide range and efficient, which can reflect grassland resources present situation objectively. It has become indispensable grassland monitoring technology and data sources and it has got more and more recognition and application in grassland resources monitoring research. This paper researches application of multi-source remote sensing image in Yunnan province grassland resources investigation. First of all, it extracts grassland resources thematic information and conducts field investigation through BJ-2 high space resolution image segmentation. Secondly, it classifies grassland types and evaluates grassland degradation degree through high resolution characteristics of Landsat 8 image. Thirdly, it obtained grass yield model and quality classification through high resolution and wide scanning width characteristics of MODIS images and sample investigate data. Finally, it performs grassland field qualitative analysis through UAV remote sensing image. According to project area implementation, it proves that multi-source remote sensing data can be applied to the grassland resources investigation in Yunnan province and it is indispensable method.

  18. Acoustic Observation of Living Organisms Reveals the Upper Limit of the Oxygen Minimum Zone

    PubMed Central

    Bertrand, Arnaud; Ballón, Michael; Chaigneau, Alexis

    2010-01-01

    Background Oxygen minimum zones (OMZs) are expanding in the World Ocean as a result of climate change and direct anthropogenic influence. OMZ expansion greatly affects biogeochemical processes and marine life, especially by constraining the vertical habitat of most marine organisms. Currently, monitoring the variability of the upper limit of the OMZs relies on time intensive sampling protocols, causing poor spatial resolution. Methodology/Principal Findings Using routine underwater acoustic observations of the vertical distribution of marine organisms, we propose a new method that allows determination of the upper limit of the OMZ with a high precision. Applied in the eastern South-Pacific, this original sampling technique provides high-resolution information on the depth of the upper OMZ allowing documentation of mesoscale and submesoscale features (e.g., eddies and filaments) that structure the upper ocean and the marine ecosystems. We also use this information to estimate the habitable volume for the world's most exploited fish, the Peruvian anchovy (Engraulis ringens). Conclusions/Significance This opportunistic method could be implemented on any vessel geared with multi-frequency echosounders to perform comprehensive high-resolution monitoring of the upper limit of the OMZ. Our approach is a novel way of studying the impact of physical processes on marine life and extracting valid information about the pelagic habitat and its spatial structure, a crucial aspect of Ecosystem-based Fisheries Management in the current context of climate change. PMID:20442791

  19. The direct influence of ship traffic on atmospheric PM2.5, PM10 and PAH in Venice.

    PubMed

    Contini, D; Gambaro, A; Belosi, F; De Pieri, S; Cairns, W R L; Donateo, A; Zanotto, E; Citron, M

    2011-09-01

    The direct influence of ship traffic on atmospheric levels of coarse and fine particulate matter (PM(2.5), PM(10)) and fifteen polycyclic aromatic hydrocarbons (PAHs) has been estimated in the urban area of Venice. Data analysis has been performed on results collected at three sites over the summer, when ship traffic is at a maximum. Results indicate that monitoring of the PM daily concentrations is not sufficiently detailed for the evaluation of this contribution, even though it could be useful for specific markers such as PAHs. Therefore a new methodology, based on high temporal resolution measurements coupled with wind direction information and the database of ship passages of the Harbour Authority of Venice has been developed. The sampling sites were monitored with optical detectors (DustTrack(®) and Mie pDR-1200) operating at a high temporal resolution (20s and 1s respectively) for PM(2.5) and PM(10). PAH in the particulate and gas phases were recovered from quartz fibre filters and polyurethane foam plugs using pressurised solvent extraction, the extracts were then analysed by gas chromatography- high-resolution mass spectrometry. Our results shows that the direct contribution of ships traffic to PAHs in the gas phase is 10% while the contribution to PM(2.5) and to PM(10) is from 1% up to 8%. Copyright © 2011 Elsevier Ltd. All rights reserved.

  20. Nyiragonga Volcano

    NASA Technical Reports Server (NTRS)

    2001-01-01

    This image of the Nyiragonga volcano eruption in the Congo was acquired on January 28, 2002 by the Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER) on NASA's Terra satellite. With its 14spectral bands from the visible to the thermal infrared wavelength region, and its high spatial resolution of 15 to 90 meters about 50 to 300 feet ), ASTER will image Earth for the next 6 years to map and monitor the changing surface of our planet.

    Image: A river of molten rock poured from the Nyiragongo volcano in the Congo on January 18, 2002, a day after it erupted, killing dozens, swallowing buildings and forcing hundreds of thousands to flee the town of Goma. The flow continued into Lake Kivu. The lave flows are depicted in red on the image indicating they are still hot. Two of them flowed south form the volcano's summit and went through the town of Goma. Another flow can be seen at the top of the image, flowing towards the northwest. One of Africa's most notable volcanoes, Nyiragongo contained an active lava lake in its deep summit crater that drained catastrophically through its outer flanks in 1977. Extremely fluid, fast-moving lava flows draining from the summit lava lake in 1977 killed 50 to 100 people, and several villages were destroyed. The image covers an area of 21 x 24 km and combines a thermal band in red, and two infrared bands in green and blue.

    Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER) is one of five Earth-observing instruments launched December 18, 1999, on NASA's Terra satellite. The instrument was built by Japan's Ministry of International Trade and Industry. A joint U.S./Japan science team is responsible for validation and calibration of the instrument and the data products. Dr. Anne Kahle at NASA's Jet Propulsion Laboratory, Pasadena, California, is the U.S. Science team leader; Moshe Pniel of JPL is the project manager. ASTER is the only high resolution imaging sensor on Terra. The primary goal of the ASTER mission is to obtain high-resolution image data in 14 channels over the entire land surface, as well as black and white stereo images. With revisit time of between 4 and 16 days, ASTER will provide the capability for repeat coverage of changing areas on Earth's surface.

    The broad spectral coverage and high spectral resolution of ASTER will provide scientists in numerous disciplines with critical information for surface mapping, and monitoring dynamic conditions and temporal change. Example applications are: monitoring glacial advances and retreats; monitoring potentially active volcanoes; identifying crop stress; determining cloud morphology and physical properties; wetlands evaluation; thermal pollution monitoring; coral reef degradation; surface temperature mapping of soils and geology; and measuring surface heat balance.

Top