NASA Astrophysics Data System (ADS)
Nystuen, Jeffrey A.; Amitai, Eyal
2003-04-01
The underwater sound generated by raindrop splashes on a water surface is loud and unique allowing detection, classification and quantification of rainfall. One of the advantages of the acoustic measurement is that the listening area, an effective catchment area, is proportional to the depth of the hydrophone and can be orders of magnitude greater than other in situ rain gauges. This feature allows high temporal resolution of the rainfall measurement. A series of rain events with extremely high rainfall rates, over 100 mm/hr, is examined acoustically. Rapid onset and cessation of rainfall intensity are detected within the convective cells of these storms with maximum 5-s resolution values exceeding 1000 mm/hr. The probability distribution functions (pdf) for rainfall rate occurrence and water volume using the longer temporal resolutions typical of other instruments do not include these extreme values. The variance of sound intensity within different acoustic frequency bands can be used as an aid to classify rainfall type. Objective acoustic classification algorithms are proposed. Within each rainfall classification the relationship between sound intensity and rainfall rate is nearly linear. The reflectivity factor, Z, also has a linear relationship with rainfall rate, R, for each rainfall classification.
NASA Astrophysics Data System (ADS)
Peleg, Nadav; Blumensaat, Frank; Molnar, Peter; Fatichi, Simone; Burlando, Paolo
2016-04-01
Urban drainage response is highly dependent on the spatial and temporal structure of rainfall. Therefore, measuring and simulating rainfall at a high spatial and temporal resolution is a fundamental step to fully assess urban drainage system reliability and related uncertainties. This is even more relevant when considering extreme rainfall events. However, the current space-time rainfall models have limitations in capturing extreme rainfall intensity statistics for short durations. Here, we use the STREAP (Space-Time Realizations of Areal Precipitation) model, which is a novel stochastic rainfall generator for simulating high-resolution rainfall fields that preserve the spatio-temporal structure of rainfall and its statistical characteristics. The model enables a generation of rain fields at 102 m and minute scales in a fast and computer-efficient way matching the requirements for hydrological analysis of urban drainage systems. The STREAP model was applied successfully in the past to generate high-resolution extreme rainfall intensities over a small domain. A sub-catchment in the city of Luzern (Switzerland) was chosen as a case study to: (i) evaluate the ability of STREAP to disaggregate extreme rainfall intensities for urban drainage applications; (ii) assessing the role of stochastic climate variability of rainfall in flow response and (iii) evaluate the degree of non-linearity between extreme rainfall intensity and system response (i.e. flow) for a small urban catchment. The channel flow at the catchment outlet is simulated by means of a calibrated hydrodynamic sewer model.
NASA Astrophysics Data System (ADS)
Uijlenhoet, R.; Brauer, C.; Overeem, A.; Sassi, M.; Rios Gaona, M. F.
2014-12-01
Several rainfall measurement techniques are available for hydrological applications, each with its own spatial and temporal resolution. We investigated the effect of these spatiotemporal resolutions on discharge simulations in lowland catchments by forcing a novel rainfall-runoff model (WALRUS) with rainfall data from gauges, radars and microwave links. The hydrological model used for this analysis is the recently developed Wageningen Lowland Runoff Simulator (WALRUS). WALRUS is a rainfall-runoff model accounting for hydrological processes relevant to areas with shallow groundwater (e.g. groundwater-surface water feedback). Here, we used WALRUS for case studies in a freely draining lowland catchment and a polder with controlled water levels. We used rain gauge networks with automatic (hourly resolution but low spatial density) and manual gauges (high spatial density but daily resolution). Operational (real-time) and climatological (gauge-adjusted) C-band radar products and country-wide rainfall maps derived from microwave link data from a cellular telecommunication network were also used. Discharges simulated with these different inputs were compared to observations. We also investigated the effect of spatiotemporal resolution with a high-resolution X-band radar data set for catchments with different sizes. Uncertainty in rainfall forcing is a major source of uncertainty in discharge predictions, both with lumped and with distributed models. For lumped rainfall-runoff models, the main source of input uncertainty is associated with the way in which (effective) catchment-average rainfall is estimated. When catchments are divided into sub-catchments, rainfall spatial variability can become more important, especially during convective rainfall events, leading to spatially varying catchment wetness and spatially varying contribution of quick flow routes. Improving rainfall measurements and their spatiotemporal resolution can improve the performance of rainfall-runoff models, indicating their potential for reducing flood damage through real-time control.
NASA Astrophysics Data System (ADS)
Croghan, Danny; Van Loon, Anne; Bradley, Chris; Sadler, Jon; Hannnah, David
2017-04-01
Studies relating rainfall events to river water quality are frequently hindered by the lack of high resolution rainfall data. Local studies are particularly vulnerable due to the spatial variability of precipitation, whilst studies in urban environments require precipitation data at high spatial and temporal resolutions. The use of point-source data makes identifying causal effects of storms on water quality problematic and can lead to erroneous interpretations. High spatial and temporal resolution rainfall radar data offers great potential to address these issues. Here we use rainfall radar data with a 1km spatial resolution and 5 minute temporal resolution sourced from the UK Met Office Nimrod system to study the effects of storm events on water temperature (WTemp) in Birmingham, UK. 28 WTemp loggers were placed over 3 catchments on a rural-urban land use gradient to identify trends in WTemp during extreme events within urban environments. Using GIS, the catchment associated with each logger was estimated, and 5 min. rainfall totals and intensities were produced for each sub-catchment. Comparisons of rainfall radar data to meteorological stations in the same grid cell revealed the high accuracy of rainfall radar data in our catchments (<5% difference for studied months). The rainfall radar data revealed substantial differences in rainfall quantity between the three adjacent catchments. The most urban catchment generally received more rainfall, with this effect greatest in the highest intensity storms, suggesting the possibility of urban heat island effects on precipitation dynamics within the catchment. Rainfall radar data provided more accurate sub-catchment rainfall totals allowing better modelled estimates of storm flow, whilst spatial fluctuations in both discharge and WTemp can be simply related to precipitation intensity. Storm flow inputs for each sub-catchment were estimated and linked to changes in WTemp. WTemp showed substantial fluctuations (>1 °C) over short durations (<30 minutes) during storm events in urbanised sub-catchments, however WTemp recovery times were more prolonged. Use of the rainfall radar data allowed increased accuracy in estimates of storm flow timings and rainfall quantities at each sub-catchment, from which the impact of storm flow on WTemp could be quantified. We are currently using the radar data to derive thresholds for rainfall amount and intensity at which these storm deviations occur for each logger, from which the relative effects of land use and other catchment characteristics in each sub-catchment can be assessed. Our use of the rainfall radar data calls into question the validity of using station based data for small scale studies, particularly in urban areas, with high variation apparent in rainfall intensity both spatially and temporally. Variation was particularly high within the heavily urbanised catchment. For water quality studies, high resolution rainfall radar can be implemented to increase the reliability of interpretations of the response of water quality variables to storm water inputs in urban catchments.
Spatial and temporal resolution effects on urban catchments with different imperviousness degrees
NASA Astrophysics Data System (ADS)
Cristiano, Elena; ten Veldhuis, Marie-Claire; van de Giesen, Nick C.
2015-04-01
One of the main problems in urban hydrological analysis is to measure the rainfall at urban scale with high resolution and use these measurements to model urban runoff processes to predict flows and reduce flood risk. With the aim of building a semi-distribute hydrological sewer model for an urban catchment, high resolution rainfall data are required as input. In this study, the sensitivity of hydrological response to high resolution precipitation data for hydrodynamic models at urban scale is evaluated with different combinations of spatial and temporal resolutions. The aim is to study sensitivity in relation to catchment characteristics, especially drainage area size, imperviousness degree and hydraulic properties such as special structures (weirs, pumping stations). Rainfall data of nine storms are considered with 4 different spatial resolutions (3000m, 1000m, 500m and 100m) combined with 4 different temporal resolutions (10min, 5min, 3min and 1min). The dual polarimetric X-band weather radar, located in the Cabauw Experimental Site for Atmospheric Research (CESAR) provided the high resolution rainfall data of these rainfall events, used to improve the sewer model. The effects of spatial-temporal rainfall input resolution on response is studied in three Districts of Rotterdam (NL): Kralingen, Spaanse Polder and Centrum district. These catchments have different average drainage area size (from 2km2 to 7km2), and different general characteristics. Centrum district and Kralingen are, indeed, more various and include residential and commercial areas, big green areas and a small industrial area, while Spaanse Polder is a industrial area, densely urbanized, and presents a high percentage of imperviousness.
NASA Astrophysics Data System (ADS)
Cui, Y.; Zhao, P.; Hong, Y.; Fan, W.; Yan, B.; Xie, H.
2017-12-01
Abstract: As an important compont of evapotranspiration, vegetation rainfall interception is the proportion of gross rainfall that is intercepted, stored and subsequently evaporated from all parts of vegetation during or following rainfall. Accurately quantifying the vegetation rainfall interception at a high resolution is critical for rainfall-runoff modeling and flood forecasting, and is also essential for understanding its further impact on local, regional, and even global water cycle dynamics. In this study, the Remote Sensing-based Gash model (RS-Gash model) is developed based on a modified Gash model for interception loss estimation using remote sensing observations at the regional scale, and has been applied and validated in the upper reach of the Heihe River Basin of China for different types of vegetation. To eliminate the scale error and the effect of mixed pixels, the RS-Gash model is applied at a fine scale of 30 m with the high resolution vegetation area index retrieved by using the unified model of bidirectional reflectance distribution function (BRDF-U) for the vegetation canopy. Field validation shows that the RMSE and R2 of the interception ratio are 3.7% and 0.9, respectively, indicating the model's strong stability and reliability at fine scale. The temporal variation of vegetation rainfall interception loss and its relationship with precipitation are further investigated. In summary, the RS-Gash model has demonstrated its effectiveness and reliability in estimating vegetation rainfall interception. When compared to the coarse resolution results, the application of this model at 30-m fine resolution is necessary to resolve the scaling issues as shown in this study. Keywords: rainfall interception; remote sensing; RS-Gash analytical model; high resolution
Extreme flood event analysis in Indonesia based on rainfall intensity and recharge capacity
NASA Astrophysics Data System (ADS)
Narulita, Ida; Ningrum, Widya
2018-02-01
Indonesia is very vulnerable to flood disaster because it has high rainfall events throughout the year. Flood is categorized as the most important hazard disaster because it is causing social, economic and human losses. The purpose of this study is to analyze extreme flood event based on satellite rainfall dataset to understand the rainfall characteristic (rainfall intensity, rainfall pattern, etc.) that happened before flood disaster in the area for monsoonal, equatorial and local rainfall types. Recharge capacity will be analyzed using land cover and soil distribution. The data used in this study are CHIRPS rainfall satellite data on 0.05 ° spatial resolution and daily temporal resolution, and GSMap satellite rainfall dataset operated by JAXA on 1-hour temporal resolution and 0.1 ° spatial resolution, land use and soil distribution map for recharge capacity analysis. The rainfall characteristic before flooding, and recharge capacity analysis are expected to become the important information for flood mitigation in Indonesia.
NASA Astrophysics Data System (ADS)
Kobayashi, Kenichiro; Otsuka, Shigenori; Apip; Saito, Kazuo
2016-08-01
This paper presents a study on short-term ensemble flood forecasting specifically for small dam catchments in Japan. Numerical ensemble simulations of rainfall from the Japan Meteorological Agency nonhydrostatic model (JMA-NHM) are used as the input data to a rainfall-runoff model for predicting river discharge into a dam. The ensemble weather simulations use a conventional 10 km and a high-resolution 2 km spatial resolutions. A distributed rainfall-runoff model is constructed for the Kasahori dam catchment (approx. 70 km2) and applied with the ensemble rainfalls. The results show that the hourly maximum and cumulative catchment-average rainfalls of the 2 km resolution JMA-NHM ensemble simulation are more appropriate than the 10 km resolution rainfalls. All the simulated inflows based on the 2 and 10 km rainfalls become larger than the flood discharge of 140 m3 s-1, a threshold value for flood control. The inflows with the 10 km resolution ensemble rainfall are all considerably smaller than the observations, while at least one simulated discharge out of 11 ensemble members with the 2 km resolution rainfalls reproduces the first peak of the inflow at the Kasahori dam with similar amplitude to observations, although there are spatiotemporal lags between simulation and observation. To take positional lags into account of the ensemble discharge simulation, the rainfall distribution in each ensemble member is shifted so that the catchment-averaged cumulative rainfall of the Kasahori dam maximizes. The runoff simulation with the position-shifted rainfalls shows much better results than the original ensemble discharge simulations.
Influence of high resolution rainfall data on the hydrological response of urban flat catchments
NASA Astrophysics Data System (ADS)
Cristiano, Elena; ten Veldhuis, Marie-claire; van de Giesen, Nick
2016-04-01
In the last decades, cities have become more and more urbanized and population density in urban areas is increased. At the same time, due to the climate changes, rainfall events present higher intensity and shorter duration than in the past. The increase of imperviousness degree, due to urbanization, combined with short and intense rainfall events, determinates a fast hydrological response of the urban catchment and in some cases it can lead to flooding. Urban runoff processes are sensitive to rainfall spatial and temporal variability and, for this reason, high resolution rainfall data are required as input for the hydrological model. A better knowledge of the hydrological response of system can help to prevent damages caused by flooding. This study aims to evaluate the sensitivity of urban hydrological response to spatial and temporal rainfall variability in urban areas, focusing especially on understanding the hydrological behaviour in lowland areas. In flat systems, during intense rainfall events, the flow in the sewer network can be pressurized and it can change direction, depending on the setting of pumping stations and CSOs (combined sewer overflow). In many cases these systems are also looped and it means that the water can follow different paths, depending on the pipe filling process. For these reasons, hydrological response of flat and looped catchments is particularly complex and it can be difficult characterize and predict it. A new dual polarimetric X-band weather radar, able to measure rainfall with temporal resolution of 1 min and spatial resolution of 100mX100m, was recently installed in the city of Rotterdam (NL). With this instrument, high resolution rainfall data were measured and used, in this work, as input for the hydrodynamic model. High detailed, semi-distributed hydrodynamic models of some districts of Rotterdam were used to investigate the hydrological response of flat catchments to high resolution rainfall data. In particular, the hydrological response of some subcatchments of the district of Kralingen was studied. Rainfall data were combined with level and discharge measurements at the pumping station that connects the sewer system with the waste water treatment plane. Using this data it was possible to study the water balance and to have a better idea of the amount of water that leave the system during a specific rainfall events. Results show that the hydrological response of flat and looped catchments is sensitive to spatial and temporal rainfall variability and it can be strongly influenced by rainfall event characteristics, such as intensity, velocity and intermittency of the storm.
NASA Astrophysics Data System (ADS)
Krishnamurthy, Lakshmi; Muñoz, Ángel G.; Vecchi, Gabriel A.; Msadek, Rym; Wittenberg, Andrew T.; Stern, Bill; Gudgel, Rich; Zeng, Fanrong
2018-05-01
The Caribbean low-level jet (CLLJ) is an important component of the atmospheric circulation over the Intra-Americas Sea (IAS) which impacts the weather and climate both locally and remotely. It influences the rainfall variability in the Caribbean, Central America, northern South America, the tropical Pacific and the continental Unites States through the transport of moisture. We make use of high-resolution coupled and uncoupled models from the Geophysical Fluid Dynamics Laboratory (GFDL) to investigate the simulation of the CLLJ and its teleconnections and further compare with low-resolution models. The high-resolution coupled model FLOR shows improvements in the simulation of the CLLJ and its teleconnections with rainfall and SST over the IAS compared to the low-resolution coupled model CM2.1. The CLLJ is better represented in uncoupled models (AM2.1 and AM2.5) forced with observed sea-surface temperatures (SSTs), emphasizing the role of SSTs in the simulation of the CLLJ. Further, we determine the forecast skill for observed rainfall using both high- and low-resolution predictions of rainfall and SSTs for the July-August-September season. We determine the role of statistical correction of model biases, coupling and horizontal resolution on the forecast skill. Statistical correction dramatically improves area-averaged forecast skill. But the analysis of spatial distribution in skill indicates that the improvement in skill after statistical correction is region dependent. Forecast skill is sensitive to coupling in parts of the Caribbean, Central and northern South America, and it is mostly insensitive over North America. Comparison of forecast skill between high and low-resolution coupled models does not show any dramatic difference. However, uncoupled models show improvement in the area-averaged skill in the high-resolution atmospheric model compared to lower resolution model. Understanding and improving the forecast skill over the IAS has important implications for highly vulnerable nations in the region.
NASA Astrophysics Data System (ADS)
Skinner, Christopher; Peleg, Nadav; Quinn, Niall
2017-04-01
The use of Landscape Evolution Models often requires a timeseries of rainfall to drive the model. The spatial and temporal resolution of the driving data has an impact on several model outputs, including the shape of the landscape itself. Attempts to compensate for the spatiotemporal smoothing of local rainfall intensities are insufficient and may exacerbate these issues, meaning that to produce the best results the model needs to be run with data of highest spatial and temporal resolutions available. Some rainfall generators are able to produce timeseries with high spatial and temporal resolution. Observed data is used for the calibration of these generators. However, rainfall observations are highly uncertain and vary between different products (e.g. raingauges, weather radar) which may cascade through the Landscape Evolution Model. Here, we used the STREAP rainfall generator to produce high spatial (1km) and temporal (hourly) resolution ensembles of rainfall for a 50-year period, and used these to drive the CAESAR-Lisflood Landscape Evolution Model for a test catchment. Three different calibrations of STREAP were used against different products: gridded raingauge (TBR), weather radar (NIMROD), and a merged of the two. Analysis of the discharge and sediment yields from the model runs showed that the models run by STREAP calibrated by the different products were statistically significantly different, with the raingauge calibration producing 12.4 % more sediment on average over the 50-year period. The merged product produced results which were between the raingauge and radar products. The results demonstrate the importance of considering the selection of rainfall driving data on Landscape Evolution Modelling. Rainfall products are highly uncertain, different instruments will observe rainfall differently, and these uncertainties are clearly shown to cascade through the calibration of the rainfall generator and the Landscape Evolution Model. Merging raingauge and radar products is a common practise operationally, and by using features of both to calibrate the rainfall generator it is likely a more robust rainfall timeseries is produced.
NASA Astrophysics Data System (ADS)
Mamalakis, Antonios; Langousis, Andreas; Deidda, Roberto; Marrocu, Marino
2017-03-01
Distribution mapping has been identified as the most efficient approach to bias-correct climate model rainfall, while reproducing its statistics at spatial and temporal resolutions suitable to run hydrologic models. Yet its implementation based on empirical distributions derived from control samples (referred to as nonparametric distribution mapping) makes the method's performance sensitive to sample length variations, the presence of outliers, the spatial resolution of climate model results, and may lead to biases, especially in extreme rainfall estimation. To address these shortcomings, we propose a methodology for simultaneous bias correction and high-resolution downscaling of climate model rainfall products that uses: (a) a two-component theoretical distribution model (i.e., a generalized Pareto (GP) model for rainfall intensities above a specified threshold u*, and an exponential model for lower rainrates), and (b) proper interpolation of the corresponding distribution parameters on a user-defined high-resolution grid, using kriging for uncertain data. We assess the performance of the suggested parametric approach relative to the nonparametric one, using daily raingauge measurements from a dense network in the island of Sardinia (Italy), and rainfall data from four GCM/RCM model chains of the ENSEMBLES project. The obtained results shed light on the competitive advantages of the parametric approach, which is proved more accurate and considerably less sensitive to the characteristics of the calibration period, independent of the GCM/RCM combination used. This is especially the case for extreme rainfall estimation, where the GP assumption allows for more accurate and robust estimates, also beyond the range of the available data.
NASA Astrophysics Data System (ADS)
Uijlenhoet, R.; de Vos, L. W.; Leijnse, H.; Overeem, A.; Raupach, T. H.; Berne, A.
2017-12-01
For the purpose of urban rainfall monitoring high resolution rainfall measurements are desirable. Typically C-band radar can provide rainfall intensities at km grid cells every 5 minutes. Opportunistic sensing with commercial microwave links yields rainfall intensities over link paths within cities. Additionally, recent developments have made it possible to obtain large amounts of urban in situ measurements from weather amateurs in near real-time. With a known high resolution simulated rainfall event the accuracy of these three techniques is evaluated, taking into account their respective existing layouts and sampling methods. Under ideal measurement conditions, the weather station networks proves to be most promising. For accurate estimation with radar, an appropriate choice for Z-R relationship is vital. Though both the microwave links and the weather station networks are quite dense, both techniques will underestimate rainfall if not at least one link path / station captures the high intensity rainfall peak. The accuracy of each technique improves when considering rainfall at larger scales, especially by increasing time intervals, with the steepest improvements found in microwave links.
NASA Astrophysics Data System (ADS)
Mascaro, G.; Vivoni, E. R.; Gochis, D. J.; Watts, C. J.; Rodriguez, J. C.
2013-12-01
In northwest Mexico, the statistical properties of rainfall at high temporal resolution (up to 1 min) have been poorly characterized, mainly due to a lack of observations. Under a combined effort of US and Mexican institutions initiated during the North American Monsoon-Soil Moisture Experiment in 2004 (NAME-SMEX04), a network of 8 tipping-bucket rain gauges were installed across a topographic transect in the Sierra Los Locos basin of Sonora, Mexico. The transect spans a distance of ~14 km and an elevation difference of 748 m, thus including valley, mid-elevation and ridge sites where rainfall generation mechanisms in the summer and winter seasons are potentially affected by orography. In this study, we used the data collected during the period of 2007-2010 to characterize the rainfall statistical properties in a wide range of time scales (1 min to ~45 days) and analyzed how these properties change as a function of elevation, the gauge separation distance, and the summer and winter seasons. We found that the total summer (winter) rainfall decreases (increases) with elevation, and that rainfall has a clear diurnal cycle in the summertime, with a peak around 9 pm at all gauges. The correlation structure across the transect indicates that: (i) when times series are aggregated at a resolution greater than 3 hours, the correlation distance is greater than the maximum separation distance (~14 km), while it dramatically decreases for lower time resolutions (e.g., it is ~1.5 km when the resolution is 10 min). Consistent with other semiarid regions, spectral and scale invariance analyses show the presence of different scaling regimes, which are associated to single convective events and larger stratiform systems, with different intermittency properties dependent on the rainfall season. Results of this work are useful for the interpretation of storm generation mechanisms and hydrologic response in the region, as well as for the calibration of high-resolution, stochastic rainfall models used in climate, hydrology, and engineering applications.
NASA Astrophysics Data System (ADS)
Haruki, W.; Iseri, Y.; Takegawa, S.; Sasaki, O.; Yoshikawa, S.; Kanae, S.
2016-12-01
Natural disasters caused by heavy rainfall occur every year in Japan. Effective countermeasures against such events are important. In 2015, a catastrophic flood occurred in Kinu river basin, which locates in the northern part of Kanto region. The remarkable feature of this flood event was not only in the intensity of rainfall but also in the spatial characteristics of heavy rainfall area. The flood was caused by continuous overlapping of heavy rainfall area over the Kinu river basin, suggesting consideration of spatial extent is quite important to assess impacts of heavy rainfall events. However, the spatial extent of heavy rainfall events cannot be properly measured through rainfall measurement by rain gauges at observation points. On the other hand, rainfall measurements by radar observations provide spatially and temporarily high resolution rainfall data which would be useful to catch the characteristics of heavy rainfall events. For long term effective countermeasure, extreme heavy rainfall scenario considering rainfall area and distribution is required. In this study, a new method for generating extreme heavy rainfall events using Monte Carlo Simulation has been developed in order to produce extreme heavy rainfall scenario. This study used AMeDAS analyzed precipitation data which is high resolution grid precipitation data made by Japan Meteorological Agency. Depth area duration (DAD) analysis has been conducted to extract extreme rainfall events in the past, considering time and spatial scale. In the Monte Carlo Simulation, extreme rainfall event is generated based on events extracted by DAD analysis. Extreme heavy rainfall events are generated in specific region in Japan and the types of generated extreme heavy rainfall events can be changed by varying the parameter. For application of this method, we focused on Kanto region in Japan. As a result, 3000 years rainfall data are generated. 100 -year probable rainfall and return period of flood in Kinu River Basin (2015) are obtained using generated data. We compared 100-year probable rainfall calculated by this method with other traditional method. New developed method enables us to generate extreme rainfall events considering time and spatial scale and produce extreme rainfall scenario.
NOAA AVHRR and its uses for rainfall and evapotranspiration monitoring
NASA Technical Reports Server (NTRS)
Kerr, Yann H.; Imbernon, J.; Dedieu, G.; Hautecoeur, O.; Lagouarde, J. P.
1989-01-01
NOAA-7 Advanced Very High Resolution Radiometer (AVHRR) Global Vegetation Indices (GVI) were used during the 1986 rainy season (June-September) over Senegal to monitor rainfall. The satellite data were used in conjunction with ground-based measurements so as to derive empirical relationships between rainfall and GVI. The regression obtained was then used to map the total rainfall corresponding to the growing season, yielding good results. Normalized Difference Vegetation Indices (NDVI) derived from High Resolution Picture Transmission (HRPT) data were also compared with actual evapotranspiration (ET) data and proved to be closely correlated with it with a time lapse of 20 days.
Rainfall estimation from microwave links in São Paulo, Brazil.
NASA Astrophysics Data System (ADS)
Rios Gaona, Manuel Felipe; Overeem, Aart; Leijnse, Hidde; Uijlenhoet, Remko
2017-04-01
Rainfall estimation from microwave link networks has been successfully demonstrated in countries such as the Netherlands, Israel and Germany. The path-averaged rainfall intensity can be computed from the signal attenuation between cell phone towers. Although this technique is still in development, it offers great opportunities to retrieve rainfall rates at high spatiotemporal resolutions very close to the ground surface. High spatiotemporal resolutions and closer-to-ground measurements are highly appreciated, especially in urban catchments where high-impact events such as flash-floods develop in short time scales. We evaluate here this rainfall measurement technique for a tropical climate, something that has hardly been done previously. This is highly relevant since many countries with few surface rainfall observations are located in the tropics. The test-bed is the Brazilian city of São Paulo. The performance of 16 microwave links was evaluated, from a network of 200 links, for the last 3 months of 2014. The open software package RAINLINK was employed to obtain link rainfall estimates. The evaluation was done through a dense automatic gauge network. Results are promising and encouraging, especially for short links for which a high correlation (> 0.9) and a low bias (< 5%) were obtained.
Satellite-based high-resolution mapping of rainfall over southern Africa
NASA Astrophysics Data System (ADS)
Meyer, Hanna; Drönner, Johannes; Nauss, Thomas
2017-06-01
A spatially explicit mapping of rainfall is necessary for southern Africa for eco-climatological studies or nowcasting but accurate estimates are still a challenging task. This study presents a method to estimate hourly rainfall based on data from the Meteosat Second Generation (MSG) Spinning Enhanced Visible and Infrared Imager (SEVIRI). Rainfall measurements from about 350 weather stations from 2010-2014 served as ground truth for calibration and validation. SEVIRI and weather station data were used to train neural networks that allowed the estimation of rainfall area and rainfall quantities over all times of the day. The results revealed that 60 % of recorded rainfall events were correctly classified by the model (probability of detection, POD). However, the false alarm ratio (FAR) was high (0.80), leading to a Heidke skill score (HSS) of 0.18. Estimated hourly rainfall quantities were estimated with an average hourly correlation of ρ = 0. 33 and a root mean square error (RMSE) of 0.72. The correlation increased with temporal aggregation to 0.52 (daily), 0.67 (weekly) and 0.71 (monthly). The main weakness was the overestimation of rainfall events. The model results were compared to the Integrated Multi-satellitE Retrievals for GPM (IMERG) of the Global Precipitation Measurement (GPM) mission. Despite being a comparably simple approach, the presented MSG-based rainfall retrieval outperformed GPM IMERG in terms of rainfall area detection: GPM IMERG had a considerably lower POD. The HSS was not significantly different compared to the MSG-based retrieval due to a lower FAR of GPM IMERG. There were no further significant differences between the MSG-based retrieval and GPM IMERG in terms of correlation with the observed rainfall quantities. The MSG-based retrieval, however, provides rainfall in a higher spatial resolution. Though estimating rainfall from satellite data remains challenging, especially at high temporal resolutions, this study showed promising results towards improved spatio-temporal estimates of rainfall over southern Africa.
NASA Astrophysics Data System (ADS)
Ichiba, Abdellah; Gires, Auguste; Tchiguirinskaia, Ioulia; Bompard, Philippe; Schertzer, Daniel
2015-04-01
Urban water management is becoming increasingly complex, due to the rapid increase of impervious areas, and the potential effects of climate change. The large amount of water generated in a very short period of time and the limited capacity of sewer systems increase the vulnerability of urban environments to flooding risk and make it necessary to implement specific devices in order to handle the volume of water generated. This complex situation in urban environments makes the use of hydrological models as well as the implementation of more accurate and reliable tools for flow and rainfall measurements essential for a good pluvial network management, the use of decision support tools such as real-time radar forecasting system, the developpement of general public communication and warning systems, and the implementation of management strategy participate on limiting the flood damages. The very high spatial variability characteristic of urban environments makes it necessary to integrate the variability of physical properties and precipitation at fine scales in modeling processes, suggesting a high resolution modeling approach. In this paper we suggest a comparison between two modeling approaches and their sensitivity to small-scale rainfall variability on a 2.15 km2 urban area located in the County of Val-de-Marne (South-East of Paris, France). The first model used in this study is CANOE, which is a semi-distributed model widely used in France by practitioners for urban hydrology and urban water management. Two configurations of this model are be used in this study, the first one integrate 9 sub-catchments with sizes range from (1ha to 76ha), in the second configuration, the spatial resolution of this model has been improved with 45 sub-catchments with sizes range from (1ha to 14ha), the aim is to see how the semi-distributed model resolution affects it sensitivity to rainfall variability. The second model is Multi-Hydro fully distributed model developed at the Ecole des Ponts ParisTech. It is an interacting core between open source software packages, each of them representing a portion of the water cycle in urban environment. Multi-Hydro has been set up at two resolutions, 10m and 5m. The validation of these two models is performed using 5 rainfall events that occurred between 2010 and 2013. Radar data comes from the Météo-France radar mosaic and the resolution is 1 km in space and 5 min in time. Raingauge and flow measurements data comes from the General Council of Val-de-Marne County. In this validation part, the hydrological responses given by two models and the different configurations are compared to flow measurements. It appears that CANOE gives better results than Multi-Hydro model, especially when using raingauge data. For some events, we noticed that model responses given when using raingauge and radar data are different, suggesting a sign of sensitivity to the spatial variability of rainfall. 10 high-resolution rainfall events are used in the second part to study the sensitivity of each modeling approach to high rainfall variability. Radar data was available at four spatial resolutions (100, 200, 500 and 1000m) and two temporal resolutions (1min and 5min), for each event, two rainfall directions (parallel and perpendicular) are used, meaning that 16 hydrological responses are simulated for each event and the variability within it analyzed. First results suggest that the fully distributed model is more sensitive to high rainfall variability than the semi-distributed one, the increase of both hydrological model spatial resolution improves their sensitivity to rainfall variability. This study highlights some technical challenges facing the high-resolution modeling, especially the difficulty to obtain reliable input data at an acceptable resolution and also the high computation time noticed particularly for the semi-distributed model making it difficult to use it in real time. The authors greatly acknowledge partial financial support from the project RainGain (http://www.raingain.eu) of the EU Interreg program.
Global rainfall erosivity assessment based on high-temporal resolution rainfall records.
Panagos, Panos; Borrelli, Pasquale; Meusburger, Katrin; Yu, Bofu; Klik, Andreas; Jae Lim, Kyoung; Yang, Jae E; Ni, Jinren; Miao, Chiyuan; Chattopadhyay, Nabansu; Sadeghi, Seyed Hamidreza; Hazbavi, Zeinab; Zabihi, Mohsen; Larionov, Gennady A; Krasnov, Sergey F; Gorobets, Andrey V; Levi, Yoav; Erpul, Gunay; Birkel, Christian; Hoyos, Natalia; Naipal, Victoria; Oliveira, Paulo Tarso S; Bonilla, Carlos A; Meddi, Mohamed; Nel, Werner; Al Dashti, Hassan; Boni, Martino; Diodato, Nazzareno; Van Oost, Kristof; Nearing, Mark; Ballabio, Cristiano
2017-06-23
The exposure of the Earth's surface to the energetic input of rainfall is one of the key factors controlling water erosion. While water erosion is identified as the most serious cause of soil degradation globally, global patterns of rainfall erosivity remain poorly quantified and estimates have large uncertainties. This hampers the implementation of effective soil degradation mitigation and restoration strategies. Quantifying rainfall erosivity is challenging as it requires high temporal resolution(<30 min) and high fidelity rainfall recordings. We present the results of an extensive global data collection effort whereby we estimated rainfall erosivity for 3,625 stations covering 63 countries. This first ever Global Rainfall Erosivity Database was used to develop a global erosivity map at 30 arc-seconds(~1 km) based on a Gaussian Process Regression(GPR). Globally, the mean rainfall erosivity was estimated to be 2,190 MJ mm ha -1 h -1 yr -1 , with the highest values in South America and the Caribbean countries, Central east Africa and South east Asia. The lowest values are mainly found in Canada, the Russian Federation, Northern Europe, Northern Africa and the Middle East. The tropical climate zone has the highest mean rainfall erosivity followed by the temperate whereas the lowest mean was estimated in the cold climate zone.
Assessing the quality of rainfall data when aiming to achieve flood resilience
NASA Astrophysics Data System (ADS)
Hoang, C. T.; Tchiguirinskaia, I.; Schertzer, D.; Lovejoy, S.
2012-04-01
A new EU Floods Directive entered into force five years ago. This Directive requires Member States to coordinate adequate measures to reduce flood risk. European flood management systems require reliable rainfall statistics, e.g. the Intensity-duration-Frequency curves for shorter and shorter durations and for a larger and larger range of return periods. Preliminary studies showed that the number of floods was lower when using low time resolution data of high intensity rainfall events, compared to estimates obtained with the help of higher time resolution data. These facts suggest that a particular attention should be paid to the rainfall data quality in order to adequately investigate flood risk aiming to achieve flood resilience. The potential consequences of changes in measuring and recording techniques have been somewhat discussed in the literature with respect to a possible introduction of artificial inhomogeneities in time series. In this paper, we discuss how to detect another artificiality: most of the rainfall time series have a lower recording frequency than that is assumed, furthermore the effective high-frequency limit often depends on the recording year due to algorithm changes. This question is particularly important for operational hydrology, because an error on the effective recording high frequency introduces biases in the corresponding statistics. In this direction, we developed a first version of a SERQUAL procedure to automatically detect the effective time resolution of highly mixed data. Being applied to the 166 rainfall time series in France, the SERQUAL procedure has detected that most of them have an effective hourly resolution, rather than a 5 minutes resolution. Furthermore, series having an overall 5 minute resolution do not have it for all years. These results raise serious concerns on how to benchmark stochastic rainfall models at a sub-hourly resolution, which are particularly desirable for operational hydrology. Therefore, database quality must be checked before use. Due to the fact that the multiple scales and possible scaling behaviour of hydrological data are particularly important for many applications, including flood resilience research, this paper first investigates the sensitivity of the scaling estimates and methods to the deficit of short duration rainfall data, and consequently propose a few simple criteria for a reliable evaluation of the data quality. Then we showed that our procedure SERQUAL enable us to extract high quality sub-series from longer time series that will be much more reliable to calibrate and/or validate short duration quantiles and hydrological models.
NASA Astrophysics Data System (ADS)
Chandra, Chandrasekar V.; Chen*, Haonan
2015-04-01
Urban flash flood is one of the most commonly encountered hazardous weather phenomena. Unfortunately, the rapid urbanization has made the densely populated areas even more vulnerable to flood risks. Hence, accurate and timely monitoring of rainfall at high spatiotemporal resolution is critical to severe weather warning and civil defense, especially in urban areas. However, it is still challenging to produce high-resolution products based on the large S-band National Weather Service (NWS) Next-Generation Weather Radar (NEXRAD), due to the sampling limitations and Earth curvature effect. Since 2012, the U.S. National Science Foundation Engineering Research Center (NSF-ERC) for Collaborative Adaptive Sensing of the Atmosphere (CASA) has initiated the development of Dallas-Fort Worth (DFW) radar remote sensing network for urban weather hazards mitigation. The DFW urban radar network consists of a combination of high-resolution X-band radars and a standard NWS NEXRAD radar operating at S-band frequency. High-resolution quantitative precipitation estimation (QPE) is one of the major research goals in the deployment of this urban radar network. It has been shown in the literature that the dual-polarization radar techniques can improve the QPE accuracy over traditional single-polarization radars by rendering more measurements to enhance the data quality, providing more information about rain drop size distribution (DSD), and implying more characteristics of different hydrometeor types. This paper will present the real-time dual-polarization CASA DFW QPE system, which is developed via fusion of observations from both the high-resolution X band radar network and the S-band NWS radar. The specific dual-polarization rainfall algorithms at different frequencies (i.e., S- and X-band) will be described in details. In addition, the fusion methodology combining observations at different temporal resolution will be presented. In order to demonstrate the capability of rainfall estimation of the CASA DFW QPE system, rainfall measurements from ground rain gauges will be used for evaluation purposes. This high-resolution QPE system is used for urban flash flood forecasting when coupled with hydrological models.
NASA Astrophysics Data System (ADS)
Rajesh, P. V.; Pattnaik, S.; Mohanty, U. C.; Rai, D.; Baisya, H.; Pandey, P. C.
2017-12-01
Monsoon depressions (MDs) constitute a large fraction of the total rainfall during the Indian summer monsoon season. In this study, the impact of high-resolution land state is addressed by assessing the evolution of inland moving depressions formed over the Bay of Bengal using a mesoscale modeling system. Improved land state is generated using High Resolution Land Data Assimilation System employing Noah-MP land-surface model. Verification of soil moisture using Soil Moisture and Ocean Salinity (SMOS) and soil temperature using tower observations demonstrate promising results. Incorporating high-resolution land state yielded least root mean squared errors with higher correlation coefficient in the surface and mid tropospheric parameters. Rainfall forecasts reveal that simulations are spatially and quantitatively in accordance with observations and provide better skill scores. The improved land surface characteristics have brought about the realistic evolution of surface, mid-tropospheric parameters, vorticity and moist static energy that facilitates the accurate MDs dynamics in the model. Composite moisture budget analysis reveals that the surface evaporation is negligible compared to moisture flux convergence of water vapor, which supplies moisture into the MDs over land. The temporal relationship between rainfall and moisture convergence show high correlation, suggesting a realistic representation of land state help restructure the moisture inflow into the system through rainfall-moisture convergence feedback.
Flood and Landslide Applications of High Time Resolution Satellite Rain Products
NASA Technical Reports Server (NTRS)
Adler, Robert F.; Hong, Yang; Huffman, George J.
2006-01-01
Experimental, potentially real-time systems to detect floods and landslides related to heavy rain events are described. A key basis for these applications is high time resolution satellite rainfall analyses. Rainfall is the primary cause for devastating floods across the world. However, in many countries, satellite-based precipitation estimation may be the best source of rainfall data due to insufficient ground networks and absence of data sharing along many trans-boundary river basins. Remotely sensed precipitation from the NASA's TRMM Multi-satellite Precipitation Analysis (TMPA) operational system (near real-time precipitation at a spatial-temporal resolution of 3 hours and 0.25deg x 0.25deg) is used to monitor extreme precipitation events. Then these data are ingested into a macro-scale hydrological model which is parameterized using spatially distributed elevation, soil and land cover datasets available globally from satellite remote sensing. Preliminary flood results appear reasonable in terms of location and frequency of events, with implementation on a quasi-global basis underway. With the availability of satellite rainfall analyses at fine time resolution, it has also become possible to assess landslide risk on a near-global basis. Early results show that landslide occurrence is closely associated with the spatial patterns and temporal distribution of TRMM rainfall characteristics. Particularly, the number of landslides triggered by rainfall is related to rainfall climatology, antecedent rainfall accumulation, and intensity-duration of rainstorms. For the purpose of prediction, an empirical TMPA-based rainfall intensity-duration threshold is developed and shown to have skill in determining potential areas of landslides. These experimental findings, in combination with landslide surface susceptibility information based on satellite-based land surface information, form a starting point towards a potential operational landslide monitoring/warning system around the globe.
NASA Astrophysics Data System (ADS)
Williams, C.; Kniveton, D.; Layberry, R.
2009-04-01
It is increasingly accepted that any possible climate change will not only have an influence on mean climate but may also significantly alter climatic variability. A change in the distribution and magnitude of extreme rainfall events (associated with changing variability), such as droughts or flooding, may have a far greater impact on human and natural systems than a changing mean. This issue is of particular importance for environmentally vulnerable regions such as southern Africa. The subcontinent is considered especially vulnerable to and ill-equipped (in terms of adaptation) for extreme events, due to a number of factors including extensive poverty, famine, disease and political instability. Rainfall variability is a function of scale, so high spatial and temporal resolution data are preferred to identify extreme events and accurately predict future variability. In this research, high resolution satellite derived rainfall data from the Microwave Infra-Red Algorithm (MIRA) are used as a basis for undertaking model experiments using a state-of-the-art regional climate model. The MIRA dataset covers the period from 1993-2002 and the whole of southern Africa at a spatial resolution of 0.1 degree longitude/latitude. Once the model's ability to reproduce extremes has been assessed, idealised regions of sea surface temperature (SST) anomalies are used to force the model, with the overall aim of investigating the ways in which SST anomalies influence rainfall extremes over southern Africa. In this paper, results from sensitivity testing of the regional climate model's domain size are briefly presented, before a comparison of simulated daily rainfall from the model with the satellite-derived dataset. Secondly, simulations of current climate and rainfall extremes from the model are compared to the MIRA dataset at daily timescales. Finally, the results from the idealised SST experiments are presented, suggesting highly nonlinear associations between rainfall extremes remote SST anomalies.
NASA Astrophysics Data System (ADS)
Mamgain, Ashu; Rajagopal, E. N.; Mitra, A. K.; Webster, S.
2018-03-01
There are increasing efforts towards the prediction of high-impact weather systems and understanding of related dynamical and physical processes. High-resolution numerical model simulations can be used directly to model the impact at fine-scale details. Improvement in forecast accuracy can help in disaster management planning and execution. National Centre for Medium Range Weather Forecasting (NCMRWF) has implemented high-resolution regional unified modeling system with explicit convection embedded within coarser resolution global model with parameterized convection. The models configurations are based on UK Met Office unified seamless modeling system. Recent land use/land cover data (2012-2013) obtained from Indian Space Research Organisation (ISRO) are also used in model simulations. Results based on short-range forecast of both the global and regional models over India for a month indicate that convection-permitting simulations by the high-resolution regional model is able to reduce the dry bias over southern parts of West Coast and monsoon trough zone with more intense rainfall mainly towards northern parts of monsoon trough zone. Regional model with explicit convection has significantly improved the phase of the diurnal cycle of rainfall as compared to the global model. Results from two monsoon depression cases during study period show substantial improvement in details of rainfall pattern. Many categories in rainfall defined for operational forecast purposes by Indian forecasters are also well represented in case of convection-permitting high-resolution simulations. For the statistics of number of days within a range of rain categories between `No-Rain' and `Heavy Rain', the regional model is outperforming the global model in all the ranges. In the very heavy and extremely heavy categories, the regional simulations show overestimation of rainfall days. Global model with parameterized convection have tendency to overestimate the light rainfall days and underestimate the heavy rain days compared to the observation data.
Global rainfall erosivity assessment based on high-temporal resolution rainfall records
USDA-ARS?s Scientific Manuscript database
Rainfall erosivity quantifies the climatic effect on water erosion. In the framework of the Universal Soil Loss Equation, rainfall erosivity, also known as the R-factor, is defined as the mean annual sum of event erosivity values. For a new global soil erosion assessment, also in the broad context...
NASA Astrophysics Data System (ADS)
Kouadio, K.; Konare, A.; Bastin, S.; Ajayi, V. O.
2016-12-01
This research work focused on the thorny problem of the representation of rainfall over West Africa and particularly in the Gulf of Guinea and its surroundings by Regional Climate Models (RCMs). The sensitivities of Weather Research and Forecasting (WRF) Model are tested for changes in horizontal resolution (convective permitting versus parameterized) on the replication of West African Climate in year 2014 and also changes in microphysics (MP) and planetary boundary layer (PBL) schemes on June 2014. The sensitivity to horizontal resolution study show that both runs at 24km and 4km (explicit convection) resolution fairly replicate the general distribution of the rainfall over West African region. The analysis also reveals a good replication of the dynamical features of West African monsoon system including Tropical Easterly Jet (TEJ), African Easterly Jet (AEJ), monsoon flow and the West African Heat Low (WAHL). Some differences have been noticed between WRF and ERA-interim outputs irrespective to the spectral nudging used in the experiment which then suggest strong interactions between scales. The link between the seasonal displacement of the WAHL and the spatial distribution of the rainfall and the Sahelian onset is confirmed in this study. The results also show an improvement on the replication of rainfall with the very high resolution run observed at daily scale over the Sahel while a dry bias is observed in WRF simulations of the rainfall over Ivorian Coast and in the Gulf of Guinea. Generally, over the Guinean coast the high resolution run did not provide subsequent improvement on the replication of rainfall. The sensitivity of WRF to MP and PBL on rainfall replication study reveals that the most significant added value over the Guinean coast and surroundings area is provided by the configurations that used the PBL Asymmetric Convective Model V2 (ACM2) suggesting more influence of the PBL compared to MP. The change on microphysics and planetary boundary layer schemes in general, seems to have less effect on the explicit runs into the replication of the rainfall over the Gulf of Guinea and the surroundings seaboard.
NASA Astrophysics Data System (ADS)
Gagnon, Patrick; Rousseau, Alain N.; Charron, Dominique; Fortin, Vincent; Audet, René
2017-11-01
Several businesses and industries rely on rainfall forecasts to support their day-to-day operations. To deal with the uncertainty associated with rainfall forecast, some meteorological organisations have developed products, such as ensemble forecasts. However, due to the intensive computational requirements of ensemble forecasts, the spatial resolution remains coarse. For example, Environment and Climate Change Canada's (ECCC) Global Ensemble Prediction System (GEPS) data is freely available on a 1-degree grid (about 100 km), while those of the so-called High Resolution Deterministic Prediction System (HRDPS) are available on a 2.5-km grid (about 40 times finer). Potential users are then left with the option of using either a high-resolution rainfall forecast without uncertainty estimation and/or an ensemble with a spectrum of plausible rainfall values, but at a coarser spatial scale. The objective of this study was to evaluate the added value of coupling the Gibbs Sampling Disaggregation Model (GSDM) with ECCC products to provide accurate, precise and consistent rainfall estimates at a fine spatial resolution (10-km) within a forecast framework (6-h). For 30, 6-h, rainfall events occurring within a 40,000-km2 area (Québec, Canada), results show that, using 100-km aggregated reference rainfall depths as input, statistics of the rainfall fields generated by GSDM were close to those of the 10-km reference field. However, in forecast mode, GSDM outcomes inherit of the ECCC forecast biases, resulting in a poor performance when GEPS data were used as input, mainly due to the inherent rainfall depth distribution of the latter product. Better performance was achieved when the Regional Deterministic Prediction System (RDPS), available on a 10-km grid and aggregated at 100-km, was used as input to GSDM. Nevertheless, most of the analyzed ensemble forecasts were weakly consistent. Some areas of improvement are identified herein.
High resolution land surface response of inland moving Indian monsoon depressions over Bay of Bengal
NASA Astrophysics Data System (ADS)
Rajesh, P. V.; Pattnaik, S.
2016-05-01
During Indian summer monsoon (ISM) season, nearly about half of the monsoonal rainfall is brought inland by the low pressure systems called as Monsoon Depressions (MDs). These systems bear large amount of rainfall and frequently give copious amount of rainfall over land regions, therefore accurate forecast of these synoptic scale systems at short time scale can help in disaster management, flood relief, food safety. The goal of this study is to investigate, whether an accurate moisture-rainfall feedback from land surface can improve the prediction of inland moving MDs. High Resolution Land Data Assimilation System (HRLDAS) is used to generate improved land state .i.e. soil moisture and soil temperature profiles by means of NOAH-MP land-surface model. Validation of the model simulated basic atmospheric parameters at surface layer and troposphere reveals that the incursion of high resolution land state yields least Root Mean Squared Error (RMSE) with a higher correlation coefficient and facilitates accurate depiction of MDs. Rainfall verification shows that HRLDAS simulations are spatially and quantitatively in more agreement with the observations and the improved surface characteristics could result in the realistic reproduction of the storm spatial structure, movement as well as intensity. These results signify the necessity of investigating more into the land surface-rainfall feedbacks through modifications in moisture flux convergence within the storm.
NASA Astrophysics Data System (ADS)
Pohle, Ina; Niebisch, Michael; Zha, Tingting; Schümberg, Sabine; Müller, Hannes; Maurer, Thomas; Hinz, Christoph
2017-04-01
Rainfall variability within a storm is of major importance for fast hydrological processes, e.g. surface runoff, erosion and solute dissipation from surface soils. To investigate and simulate the impacts of within-storm variabilities on these processes, long time series of rainfall with high resolution are required. Yet, observed precipitation records of hourly or higher resolution are in most cases available only for a small number of stations and only for a few years. To obtain long time series of alternating rainfall events and interstorm periods while conserving the statistics of observed rainfall events, the Poisson model can be used. Multiplicative microcanonical random cascades have been widely applied to disaggregate rainfall time series from coarse to fine temporal resolution. We present a new coupling approach of the Poisson rectangular pulse model and the multiplicative microcanonical random cascade model that preserves the characteristics of rainfall events as well as inter-storm periods. In the first step, a Poisson rectangular pulse model is applied to generate discrete rainfall events (duration and mean intensity) and inter-storm periods (duration). The rainfall events are subsequently disaggregated to high-resolution time series (user-specified, e.g. 10 min resolution) by a multiplicative microcanonical random cascade model. One of the challenges of coupling these models is to parameterize the cascade model for the event durations generated by the Poisson model. In fact, the cascade model is best suited to downscale rainfall data with constant time step such as daily precipitation data. Without starting from a fixed time step duration (e.g. daily), the disaggregation of events requires some modifications of the multiplicative microcanonical random cascade model proposed by Olsson (1998): Firstly, the parameterization of the cascade model for events of different durations requires continuous functions for the probabilities of the multiplicative weights, which we implemented through sigmoid functions. Secondly, the branching of the first and last box is constrained to preserve the rainfall event durations generated by the Poisson rectangular pulse model. The event-based continuous time step rainfall generator has been developed and tested using 10 min and hourly rainfall data of four stations in North-Eastern Germany. The model performs well in comparison to observed rainfall in terms of event durations and mean event intensities as well as wet spell and dry spell durations. It is currently being tested using data from other stations across Germany and in different climate zones. Furthermore, the rainfall event generator is being applied in modelling approaches aimed at understanding the impact of rainfall variability on hydrological processes. Reference Olsson, J.: Evaluation of a scaling cascade model for temporal rainfall disaggregation, Hydrology and Earth System Sciences, 2, 19.30
NASA Astrophysics Data System (ADS)
Ichiba, Abdellah; Gires, Auguste; Tchiguirinskaia, Ioulia; Schertzer, Daniel; Bompard, Philippe; Ten Veldhuis, Marie-Claire
2017-04-01
Nowadays, there is a growing interest on small-scale rainfall information, provided by weather radars, to be used in urban water management and decision-making. Therefore, an increasing interest is in parallel devoted to the development of fully distributed and grid-based models following the increase of computation capabilities, the availability of high-resolution GIS information needed for such models implementation. However, the choice of an appropriate implementation scale to integrate the catchment heterogeneity and the whole measured rainfall variability provided by High-resolution radar technologies still issues. This work proposes a two steps investigation of scale effects in urban hydrology and its effects on modeling works. In the first step fractal tools are used to highlight the scale dependency observed within distributed data used to describe the catchment heterogeneity, both the structure of the sewer network and the distribution of impervious areas are analyzed. Then an intensive multi-scale modeling work is carried out to understand scaling effects on hydrological model performance. Investigations were conducted using a fully distributed and physically based model, Multi-Hydro, developed at Ecole des Ponts ParisTech. The model was implemented at 17 spatial resolutions ranging from 100 m to 5 m and modeling investigations were performed using both rain gauge rainfall information as well as high resolution X band radar data in order to assess the sensitivity of the model to small scale rainfall variability. Results coming out from this work demonstrate scale effect challenges in urban hydrology modeling. In fact, fractal concept highlights the scale dependency observed within distributed data used to implement hydrological models. Patterns of geophysical data change when we change the observation pixel size. The multi-scale modeling investigation performed with Multi-Hydro model at 17 spatial resolutions confirms scaling effect on hydrological model performance. Results were analyzed at three ranges of scales identified in the fractal analysis and confirmed in the modeling work. The sensitivity of the model to small-scale rainfall variability was discussed as well.
Caster, Joshua J.; Sankey, Joel B.
2016-04-11
In this study, we examine rainfall datasets of varying temporal length, resolution, and spatial distribution to characterize rainfall depth, intensity, and seasonality for monitoring stations along the Colorado River within Marble and Grand Canyons. We identify maximum separation distances between stations at which rainfall measurements might be most useful for inferring rainfall characteristics at other locations. We demonstrate a method for applying relations between daily rainfall depth and intensity, from short-term high-resolution data to lower-resolution longer-term data, to synthesize a long-term record of daily rainfall intensity from 1950–2012. We consider the implications of our spatio-temporal characterization of rainfall for understanding local landscape change in sedimentary deposits and archaeological sites, and for better characterizing past and present rainfall and its potential role in overland flow erosion within the canyons. We find that rainfall measured at stations within the river corridor is spatially correlated at separation distances of tens of kilometers, and is not correlated at the large elevation differences that separate stations along the Colorado River from stations above the canyon rim. These results provide guidance for reasonable separation distances at which rainfall measurements at stations within the Grand Canyon region might be used to infer rainfall at other nearby locations along the river. Like other rugged landscapes, spatial variability between rainfall measured at monitoring stations appears to be influenced by canyon and rim physiography and elevation, with preliminary results suggesting the highest elevation landform in the region, the Kaibab Plateau, may function as an important orographic influence. Stations at specific locations within the canyons and along the river, such as in southern (lower) Marble Canyon and eastern (upper) Grand Canyon, appear to have strong potential to receive high-intensity rainfall that can generate runoff which may erode alluvium. The characterization of past and present rainfall variability in this study will be useful for future studies that evaluate more spatially continuous datasets in order to better understand the rainfall dynamics within this, and potentially other, deep canyons.
NASA Astrophysics Data System (ADS)
Sperber, K. R.; Palmer, T. N.
1996-11-01
The interannual variability of rainfall over the Indian subcontinent, the African Sahel, and the Nordeste region of Brazil have been evaluated in 32 models for the period 1979-88 as part of the Atmospheric Model Intercomparison Project (AMIP). The interannual variations of Nordeste rainfall are the most readily captured, owing to the intimate link with Pacific and Atlantic sea surface temperatures. The precipitation variations over India and the Sahel are less well simulated. Additionally, an Indian monsoon wind shear index was calculated for each model. Evaluation of the interannual variability of a wind shear index over the summer monsoon region indicates that the models exhibit greater fidelity in capturing the large-scale dynamic fluctuations than the regional-scale rainfall variations. A rainfall/SST teleconnection quality control was used to objectively stratify model performance. Skill scores improved for those models that qualitatively simulated the observed rainfall/El Niño- Southern Oscillation SST correlation pattern. This subset of models also had a rainfall climatology that was in better agreement with observations, indicating a link between systematic model error and the ability to simulate interannual variations.A suite of six European Centre for Medium-Range Weather Forecasts (ECMWF) AMIP runs (differing only in their initial conditions) have also been examined. As observed, all-India rainfall was enhanced in 1988 relative to 1987 in each of these realizations. All-India rainfall variability during other years showed little or no predictability, possibly due to internal chaotic dynamics associated with intraseasonal monsoon fluctuations and/or unpredictable land surface process interactions. The interannual variations of Nordeste rainfall were best represented. The State University of New York at Albany/National Center for Atmospheric Research Genesis model was run in five initial condition realizations. In this model, the Nordeste rainfall variability was also best reproduced. However, for all regions the skill was less than that of the ECMWF model.The relationships of the all-India and Sahel rainfall/SST teleconnections with horizontal resolution, convection scheme closure, and numerics have been evaluated. Models with resolution T42 performed more poorly than lower-resolution models. The higher resolution models were predominantly spectral. At low resolution, spectral versus gridpoint numerics performed with nearly equal verisimilitude. At low resolution, moisture convergence closure was slightly more preferable than other convective closure techniques. At high resolution, the models that used moisture convergence closure performed very poorly, suggesting that moisture convergence may be problematic for models with horizontal resolution T42.
NASA Astrophysics Data System (ADS)
Gao, S.; Fang, N. Z.
2017-12-01
A previously developed Dynamic Moving Storm (DMS) generator is a multivariate rainfall model simulating the complex nature of precipitation field: spatial variability, temporal variability, and storm movement. Previous effort by the authors has investigated the sensitivity of DMS parameters on corresponding hydrologic responses by using synthetic storms. In this study, the DMS generator has been upgraded to generate more realistic precipitation field. The dependence of hydrologic responses on rainfall features was investigated by dissecting the precipitation field into rain cells and modifying their spatio-temporal specification individually. To retrieve DMS parameters from radar rainfall data, rain cell segmentation and tracking algorithms were respectively developed and applied on high resolution radar rainfall data (1) to spatially determine the rain cells within individual radar image and (2) to temporally analyze their dynamic behavior. Statistics of DMS parameters were established by processing a long record of rainfall data (10 years) to keep the modification on real storms within the limit of regional climatology. Empirical distributions of the DMS parameters were calculated to reveal any preferential pattern and seasonality. Subsequently, the WRF-Hydro model forced by the remodeled and modified precipitation was used for hydrologic simulation. The study area was the Upper Trinity River Basin (UTRB) watershed, Texas; and two kinds of high resolution radar data i.e. the Next-Generation Radar (NEXRAD) level III Digital Hybrid Reflectivity (DHR) product and Multi-Radar Multi-Sensor (MRMS) precipitation rate product, were utilized to establish parameter statistics and to recreate/remodel historical events respectively. The results demonstrated that rainfall duration is a significant linkage between DMS parameters and their hydrologic impacts—any combination of spatiotemporal characteristics that keep rain cells longer over the catchment will produce higher peak discharge.
First Evaluation of Rainfall Derived from Commercial Microwave Links in São Paulo, Brazil
NASA Astrophysics Data System (ADS)
Uijlenhoet, R.; Rios Gaona, M. F.; Overeem, A.; Leijnse, H.; Raupach, T.
2017-12-01
Rainfall estimation from commercial microwave link (CML) networks has gained a lot of attention from the hydrometeorological community in the last decade. Path-averaged rainfall intensities can be retrieved from the signal attenuation between cell phone towers. Such a technique offers rainfall retrievals at high spatiotemporal resolutions. High spatiotemporal rainfall measurements are highly important for urban hydrology, given the often deadly impact of flash floods to society. This study evaluates CML rainfall retrievals for a subtropical climate. Rainfall estimation for subtropical climates is highly relevant, since many countries with few surface rainfall observations are located in such areas. The evaluation is done for the Brazilian city of São Paulo. RAINLINK (the open-source algorithm) retrieves rainfall intensities from attenuation measurements. We evaluated CMLs in the São Paulo metropolitan area for 81 days between October 2014 and January 2015. The evaluation was done against a dense automatic gauge network. High correlations (>0.9) and low biases ( 30%) are obtained, especially for short CMLs.
Critical Phenomena of Rainfall in Ecuador
NASA Astrophysics Data System (ADS)
Serrano, Sh.; Vasquez, N.; Jacome, P.; Basile, L.
2014-02-01
Self-organized criticality (SOC) is characterized by a power law behavior over complex systems like earthquakes and avalanches. We study rainfall using data of one day, 3 hours and 10 min temporal resolution from INAMHI (Instituto Nacional de Meteorologia e Hidrologia) station at Izobamba, DMQ (Metropolitan District of Quito), satellite data over Ecuador from Tropical Rainfall Measure Mission (TRMM,) and REMMAQ (Red Metropolitana de Monitoreo Atmosferico de Quito) meteorological stations over, respectively. Our results show a power law behavior of the number of rain events versus mm of rainfall measured for the high resolution case (10 min), and as the resolution decreases this behavior gets lost. This statistical property is the fingerprint of a self-organized critical process (Peter and Christensen, 2002) and may serve as a benchmark for models of precipitation based in phase transitions between water vapor and precipitation (Peter and Neeling, 2006).
NASA Astrophysics Data System (ADS)
Panagos, Panos; Ballabio, Cristiano; Borrelli, Pasquale; Meusburger, Katrin; Alewell, Christine
2016-04-01
The erosive force of rainfall is expressed as rainfall erosivity. Rainfall erosivity considers the rainfall amount and intensity, and is most commonly expressed as the R-factor in the (R)USLE model. The R-factor is calculated from a series of single storm events by multiplying the total storm kinetic energy with the measured maximum 30-minutes rainfall intensity. This estimation requests high temporal resolution (e.g. 30 minutes) rainfall data for sufficiently long time periods (i.e. 20 years) which are not readily available at European scale. The European Commission's Joint Research Centre(JRC) in collaboration with national/regional meteorological services and Environmental Institutions made an extensive data collection of high resolution rainfall data in the 28 Member States of the European Union plus Switzerland in order to estimate rainfall erosivity in Europe. This resulted in the Rainfall Erosivity Database on the European Scale (REDES) which included 1,541 rainfall stations in 2014 and has been updated with 134 additional stations in 2015. The interpolation of those point R-factor values with a Gaussian Process Regression (GPR) model has resulted in the first Rainfall Erosivity map of Europe (Science of the Total Environment, 511, 801-815). The intra-annual variability of rainfall erosivity is crucial for modelling soil erosion on a monthly and seasonal basis. The monthly feature of rainfall erosivity has been added in 2015 as an advancement of REDES and the respective mean annual R-factor map. Almost 19,000 monthly R-factor values of REDES contributed to the seasonal and monthly assessments of rainfall erosivity in Europe. According to the first results, more than 50% of the total rainfall erosivity in Europe takes place in the period from June to September. The spatial patterns of rainfall erosivity have significant differences between Northern and Southern Europe as summer is the most erosive period in Central and Northern Europe and autumn in the Mediterranean area. This spatio-temporal analysis of rainfall erosivity at European scale is very important for policy makers and farmers for soil conservation, optimization of agricultural land use and natural hazards prediction. REDES is also used in combination with future rainfall data from WorldClim to run climate change scenarios. The projection of REDES combined with climate change scenarios (HADGEM2, RCP4.5) and using a robust geo-statistical model resulted in a 10-20% increase of the R-factor in Europe till 2050.
TRMM- and GPM-based precipitation analysis and modelling in the Tropical Andes
NASA Astrophysics Data System (ADS)
Manz, Bastian; Buytaert, Wouter; Zulkafli, Zed; Onof, Christian
2016-04-01
Despite wide-spread applications of satellite-based precipitation products (SPPs) throughout the TRMM-era, the scarcity of ground-based in-situ data (high density gauge networks, rainfall radar) in many hydro-meteorologically important regions, such as tropical mountain environments, has limited our ability to evaluate both SPPs and individual satellite-based sensors as well as accurately model or merge rainfall at high spatial resolutions, particularly with respect to extremes. This has restricted both the understanding of sensor behaviour and performance controls in such regions as well as the accuracy of precipitation estimates and respective hydrological applications ranging from water resources management to early warning systems. Here we report on our recent research into precipitation analysis and modelling using various TRMM and GPM products (2A25, 3B42 and IMERG) in the tropical Andes. In an initial study, 78 high-frequency (10-min) recording gauges in Colombia and Ecuador are used to generate a ground-based validation dataset for evaluation of instantaneous TRMM Precipitation Radar (TPR) overpasses from the 2A25 product. Detection ability, precipitation time-series, empirical distributions and statistical moments are evaluated with respect to regional climatological differences, seasonal behaviour, rainfall types and detection thresholds. Results confirmed previous findings from extra-tropical regions of over-estimation of low rainfall intensities and under-estimation of the highest 10% of rainfall intensities by the TPR. However, in spite of evident regionalised performance differences as a function of local climatological regimes, the TPR provides an accurate estimate of climatological annual and seasonal rainfall means. On this basis, high-resolution (5 km) climatological maps are derived for the entire tropical Andes. The second objective of this work is to improve the local precipitation estimation accuracy and representation of spatial patterns of extreme rainfall probabilities over the region. For this purpose, an ensemble of high-resolution rainfall fields is generated by stochastic simulation using space-time averaged, coarse-scale (daily, 0.25°) satellite-based rainfall inputs (TRMM 3B42/ -RT) and the high-resolution climatological information derived from the TPR as spatial disaggregation proxies. For evaluation and merging, gridded ground-based rainfall fields are generated from gauge data using sequential simulation. Satellite and ground-based ensembles are subsequently merged using an inverse error weighting scheme. The model was tested over a case study in the Colombian Andes with optional coarse-scale bias correction prior to disaggregation and merging. The resulting outputs were assessed in the context of Generalized Extreme Value theory and showed improved estimation of extreme rainfall probabilities compared to the original TMPA inputs. Initial findings using GPM-IMERG inputs are also presented.
NASA Astrophysics Data System (ADS)
Acierto, R. A. E.; Kawasaki, A.
2017-12-01
Perennial flooding due to heavy rainfall events causes strong impacts on the society and economy. With increasing pressures of rapid development and potential for climate change impacts, Myanmar experiences a rapid increase in disaster risk. Heavy rainfall hazard assessment is key on quantifying such disaster risk in both current and future conditions. Downscaling using Regional Climate Models (RCM) such as Weather Research and Forecast model have been used extensively for assessing such heavy rainfall events. However, usage of convective parameterizations can introduce large errors in simulating rainfall. Convective-permitting simulations have been used to deal with this problem by increasing the resolution of RCMs to 4km. This study focuses on the heavy rainfall events during the six-year (2010-2015) wet period season from May to September in Myanmar. The investigation primarily utilizes rain gauge observation for comparing downscaled heavy rainfall events in 4km resolution using ERA-Interim as boundary conditions using 12km-4km one-way nesting method. The study aims to provide basis for production of high-resolution climate projections over Myanmar in order to contribute for flood hazard and risk assessment.
NASA Astrophysics Data System (ADS)
Oigawa, Masanori; Tsuda, Toshitaka; Seko, Hiromu; Shoji, Yoshinori; Realini, Eugenio
2018-05-01
We studied the assimilation of high-resolution precipitable water vapor (PWV) data derived from a hyper-dense global navigation satellite system network around Uji city, Kyoto, Japan, which had a mean inter-station distance of about 1.7 km. We focused on a heavy rainfall event that occurred on August 13-14, 2012, around Uji city. We employed a local ensemble transform Kalman filter as the data assimilation method. The inhomogeneity of the observed PWV increased on a scale of less than 10 km in advance of the actual rainfall detected by the rain gauge. Zenith wet delay data observed by the Uji network showed that the characteristic length scale of water vapor distribution during the rainfall ranged from 1.9 to 3.5 km. It is suggested that the assimilation of PWV data with high horizontal resolution (a few km) improves the forecast accuracy. We conducted the assimilation experiment of high-resolution PWV data, using both small horizontal localization radii and a conventional horizontal localization radius. We repeated the sensitivity experiment, changing the mean horizontal spacing of the PWV data from 1.7 to 8.0 km. When the horizontal spacing of assimilated PWV data was decreased from 8.0 to 3.5 km, the accuracy of the simulated hourly rainfall amount worsened in the experiment that used the conventional localization radius for the assimilation of PWV. In contrast, the accuracy of hourly rainfall amounts improved when we applied small horizontal localization radii. In the experiment that used the small horizontal localization radii, the accuracy of the hourly rainfall amount was most improved when the horizontal resolution of the assimilated PWV data was 3.5 km. The optimum spatial resolution of PWV data was related to the characteristic length scale of water vapor variability.[Figure not available: see fulltext.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Yan, Eugene; Pierce, Julia; Mahat, Vinod
This project is a part of the Regional Resiliency Assessment Program, led by the Department of Homeland Security, to address flooding hazards of regional significance for Portland, Maine. The pilot study was performed by Argonne National Laboratory to identify differences in spatial rainfall distributions between the radar-derived and rain-gauge rainfall datasets and to evaluate their impacts on urban flooding. The flooding impact analysis utilized a high-resolution 2-dimensional (2-D) hydrodynamic model (15 ft by 15 ft) incorporating the buildings, streets, stream channels, hydraulic structures, an existing city storm drain system, and assuming a storm surge along the coast coincident with amore » heavy rainfall event. Two historical storm events from April 16, 2007, and September 29, 2015, were selected for evaluation. The radar-derived rainfall data at a 200-m resolution provide spatially-varied rainfall patterns with a wide range of intensities for each event. The resultant maximum flood depth using data from a single rain gauge within the study area could be off (either under- or over-estimated) by more than 10% in the 2007 storm and more than 60% in the 2015 storm compared to the radar-derived rainfall data. The model results also suggest that the inundation area with a flow depth at or greater than 0.5 ft could reach 11% (2007 storm) and 17% (2015 storm) of the total study area, respectively. The lowland areas within the neighborhoods of North Deering, East Deering, East and West Baysides and northeastern Parkside, appear to be more vulnerable to the flood hazard in both storm events. The high-resolution 2-D hydrodynamic model with high-resolution radar-derived rainfall data provides an excellent tool for detailed urban flood analysis and vulnerability assessment. The model developed in this study could be potentially used to evaluate any proposed mitigation measures and optimize their effects in the future for Portland, ME.« less
Estimating Vegetation Structure in African Savannas using High Spatial Resolution Imagery
NASA Astrophysics Data System (ADS)
Axelsson, C.; Hanan, N. P.
2016-12-01
High spatial resolution satellite imagery allows for detailed mapping of trees in savanna landscapes, including estimates of woody cover, tree densities, crown sizes, and the spatial pattern of trees. By linking these vegetation parameters to rainfall and soil properties we gain knowledge of how the local environment influences vegetation. A thorough understanding of the underlying ecosystem processes is key to assessing the future productivity and stability of these ecosystems. In this study, we have processed and analyzed hundreds of sites sampled from African savannas across a wide range of rainfall and soil conditions. The vegetation at each site is classified using unsupervised classification with manual assignment into woody, herbaceous and bare cover classes. A crown delineation method further divides the woody areas into individual tree crowns. The results show that rainfall, soil, and topography interactively influence vegetation structure. We see that both total rainfall and rainfall seasonality play important roles and that soil type influences woody cover and the sizes of tree crowns.
High Resolution Monthly Oceanic Rainfall Based on Microwave Brightness Temperature Histograms
NASA Astrophysics Data System (ADS)
Shin, D.; Chiu, L. S.
2005-12-01
A statistical emission-based passive microwave retrieval algorithm has been developed by Wilheit, Chang and Chiu (1991) to estimate space/time oceanic rainfall. The algorithm has been applied to Special Sensor Microwave Imager (SSM/I) data taken on board the Defense Meteorological Satellite Program (DMSP) satellites to provide monthly oceanic rainfall over 2.5ox2.5o and 5ox5o latitude-longitude boxes by the Global Precipitation Climatology Project-Polar Satellite Precipitation Data Center (GPCP-PSPDC, URL: http://gpcp-pspdc.gmu.edu/) as part of NASA's contribution to the GPCP. The algorithm has been modified and applied to the Tropical Rainfall Measuring Mission (TRMM) Microwave Imager (TMI) data to produce a TRMM Level 3 standard product (3A11) over 5ox5o latitude/longitude boxes. In this study, the algorithm code is modified to retrieve rain rates at 2.5ox2.5o and 1ox1o resolutions for TMI. Two months of TMI data have been tested and the results compared with the monthly mean rain rates derived from TRMM Level 2 TMI rain profile algorithm (2A12) and the original 5ox5o data from 3A11. The rainfall pattern is very similar to the monthly average of 2A12, although the intensity is slightly higher. Details in the rain pattern, such as rain shadow due to island blocking, which were not discernible from the low resolution products, are now easily discernible. The spatial average of the higher resolution rain rates are in general slightly higher than lower resolution rain rates, although a Student-t test shows no significant difference. This high resolution product will be useful for the calibration of IR rain estimates for the production of the GPCP merge rain product.
NASA Astrophysics Data System (ADS)
Park, Shinju; Berenguer, Marc; Sempere-Torres, Daniel; Baugh, Calum; Smith, Paul
2017-04-01
Flash floods induced by heavy rain are one of the hazardous natural events that significantly affect human lives. Because flash floods are characterized by their rapid onset, forecasting flash flood to lead an effective response requires accurate rainfall predictions with high spatial and temporal resolution and adequate representation of the hydrologic and hydraulic processes within a catchment that determine rainfall-runoff accumulations. We present extreme flash flood cases which occurred throughout Europe in 2015-2016 that were identified and forecasted by two real-time approaches: 1) the European Rainfall-Induced Hazard Assessment System (ERICHA) and 2) the European Runoff Index based on Climatology (ERIC). ERICHA is based on the nowcasts of accumulated precipitation generated from the pan-European radar composites produced by the EUMETNET project OPERA. It has the advantage of high-resolution precipitation inputs and rapidly updated forecasts (every 15 minutes), but limited forecast lead time (up to 8 hours). ERIC, on the other hand, provides 5-day forecasts based on the COSMO-LEPS NWP simulations updated 2 times a day but is only produced at a 7 km resolution. We compare the products from both systems and focus on showing the advantages, limitations and complementarities of ERICHA and ERIC for seamless high-resolution flash flood forecasting.
The Role of Rainfall Patterns in Seasonal Malaria Transmission
NASA Astrophysics Data System (ADS)
Bomblies, A.
2010-12-01
Seasonal total precipitation is well known to affect malaria transmission because Anopheles mosquitoes depend on standing water for breeding habitat. However, the within-season temporal pattern of the rainfall influences persistence of standing water and thus rainfall patterns also affect mosquito population dynamics. In this talk, I show that intraseasonal rainfall pattern describes 40% of the variance in simulated mosquito abundance in a Niger Sahel village where malaria is endemic but highly seasonal, demonstrating the necessity for detailed distributed hydrology modeling to explain the variance from this important effect. I apply a field validated, high spatial- and temporal-resolution hydrology model coupled with an entomology model. Using synthetic rainfall time series generated using a stationary first-order Markov Chain model, I hold all variables except hourly rainfall constant, thus isolating the contribution of rainfall pattern to variance in mosquito abundance. I further show the utility of hydrology modeling to assess precipitation effects by analyzing collected water. Time-integrated surface area of pools explains 70% of the variance in mosquito abundance, and time-integrated surface area of pools persisting longer than seven days explains 82% of the variance, showing an improved predictive ability when pool persistence is explicitly modeled at high spatio-temporal resolution. I extend this analysis to investigate the impacts of this effect on malaria vector mosquito populations under climate shift scenarios, holding all climate variables except precipitation constant. In these scenarios, rainfall mean and variance change with climatic change, and the modeling approach evaluates the impact of non-stationarity in rainfall and the associated rainfall patterns on expected mosquito activity.
NASA Astrophysics Data System (ADS)
Beria, H.; Nanda, T., Sr.; Bisht, D. S.; Chatterjee, C.
2016-12-01
Increasing hydrologic extremes in a changing climate with lack of quality rainfall forcings have inspired the development of a number of satellite and reanalysis based precipitation products in the past decade. Tropical Rainfall Measuring Mission (TRMM) has emerged as the front runner in this race, providing high quality precipitation forcings in the tropical part of the world. However, TRMM is known to suffer from its poor sensitivity to low rainfall intensities due to limited resolving power of its sensors, and is also not known to accurately resolve topography in its rainfall estimates. The Global Precipitation Mission (GPM), a follow-up mission of TRMM, promises enhanced spatio-temporal resolution along with upgrades in sensors and rainfall estimation techniques. In this study, the rainfall estimates of Integrated Multi-satellitE Retrievals for GPM (IMERG), was compared with those of TRMM for the major basins in India for the year 2014. IMERG depicted higher skill (in terms of correlation) for the majority of basins at all rainfall intensities, with a drastic improvement in low rainfall estimates (smaller biases in 75 out of 86 basins). IMERG was found to improve the topographic resolution, with lower error in high elevation basins. IMERG could better resolve the sharp topographic gradient in the Western Ghat region of India. However, IMERG suffered from poor skill in the semi-arid basins of Rajasthan, at all rainfall intensities. Rainfall-runoff exercise over Mahanadi River basin (a flood prone basin on the Eastern coast of India) using Variable Infiltration Capacity Model (VIC) showed better simulations with TRMM, mainly due to the overestimation of low rainfall events by IMERG. Also, the calibration scheme could be put to fault as the period of availability of IMERG is rather small, and more in-depth hydrologic analysis could only be carried out with sufficiently longer time series. Overall, the fine spatial and temporal resolution along with improved accuracy, promises new horizons in hydrologic forecasting under data scarcity.
Exploring Agro-Climatic Trends in Ethiopia Using CHIRPS
NASA Astrophysics Data System (ADS)
Pedreros, D. H.; Funk, C. C.; Brown, M. E.; Korecha, D.; Seid, Y. M.
2015-12-01
The Famine Early Warning Systems Network (FEWS NET) uses the Climate Hazards Group Infrared Precipitation with Stations (CHIRPS) to monitor agricultural food production in different regions of the world. CHIRPS is a 1981-present, 5 day, approximately 5km resolution, rainfall product based on a combination of geostationary satellite observations, a high resolution climatology and in situ station observations. Furthermore, FEWS NET has developed a gridded implementation of the Water Requirement Satisfaction Index (WRSI), a water balance measurement indicator of crop performance. This study takes advantage of the CHIRPS' long term period of record and high spatial and temporal resolution to examine agro-climatic trends in Ethiopia. We use the CHIRPS rainfall dataset to calculate the WRSI for the boreal spring and summer crop seasons, as well as for spring-summer rangelands conditions. We find substantial long term rainfall declines in the spring and summer seasons across southeastern and northeastern Ethiopia. Crop Model results indicate that rainfall declines in the cropped regions have been associated with water deficits during the critical grain filling periods in well populated and/or highly vulnerable parts of eastern Ethiopia. WRSI results in the pastoral areas indicate substantial reductions in rangeland health during the later part of the growing seasons. These health declines correspond to the regions of Somaliland and Afar that have experienced chronic severe food insecurity since 2010. Key words: CHIRPS, satellite estimated rainfall, agricultural production
NASA Astrophysics Data System (ADS)
Singh, K. S.; Bonthu, Subbareddy; Purvaja, R.; Robin, R. S.; Kannan, B. A. M.; Ramesh, R.
2018-04-01
This study attempts to investigate the real-time prediction of a heavy rainfall event over the Chennai Metropolitan City, Tamil Nadu, India that occurred on 01 December 2015 using Advanced Research Weather Research and Forecasting (WRF-ARW) model. The study evaluates the impact of six microphysical (Lin, WSM6, Goddard, Thompson, Morrison and WDM6) parameterization schemes of the model on prediction of heavy rainfall event. In addition, model sensitivity has also been evaluated with six Planetary Boundary Layer (PBL) and two Land Surface Model (LSM) schemes. Model forecast was carried out using nested domain and the impact of model horizontal grid resolutions were assessed at 9 km, 6 km and 3 km. Analysis of the synoptic features using National Center for Environmental Prediction Global Forecast System (NCEP-GFS) analysis data revealed strong upper-level divergence and high moisture content at lower level were favorable for the occurrence of heavy rainfall event over the northeast coast of Tamil Nadu. The study signified that forecasted rainfall was more sensitive to the microphysics and PBL schemes compared to the LSM schemes. The model provided better forecast of the heavy rainfall event using the logical combination of Goddard microphysics, YSU PBL and Noah LSM schemes, and it was mostly attributed to timely initiation and development of the convective system. The forecast with different horizontal resolutions using cumulus parameterization indicated that the rainfall prediction was not well represented at 9 km and 6 km. The forecast with 3 km horizontal resolution provided better prediction in terms of timely initiation and development of the event. The study highlights that forecast of heavy rainfall events using a high-resolution mesoscale model with suitable representations of physical parameterization schemes are useful for disaster management and planning to minimize the potential loss of life and property.
A Multiplicative Cascade Model for High-Resolution Space-Time Downscaling of Rainfall
NASA Astrophysics Data System (ADS)
Raut, Bhupendra A.; Seed, Alan W.; Reeder, Michael J.; Jakob, Christian
2018-02-01
Distributions of rainfall with the time and space resolutions of minutes and kilometers, respectively, are often needed to drive the hydrological models used in a range of engineering, environmental, and urban design applications. The work described here is the first step in constructing a model capable of downscaling rainfall to scales of minutes and kilometers from time and space resolutions of several hours and a hundred kilometers. A multiplicative random cascade model known as the Short-Term Ensemble Prediction System is run with parameters from the radar observations at Melbourne (Australia). The orographic effects are added through multiplicative correction factor after the model is run. In the first set of model calculations, 112 significant rain events over Melbourne are simulated 100 times. Because of the stochastic nature of the cascade model, the simulations represent 100 possible realizations of the same rain event. The cascade model produces realistic spatial and temporal patterns of rainfall at 6 min and 1 km resolution (the resolution of the radar data), the statistical properties of which are in close agreement with observation. In the second set of calculations, the cascade model is run continuously for all days from January 2008 to August 2015 and the rainfall accumulations are compared at 12 locations in the greater Melbourne area. The statistical properties of the observations lie with envelope of the 100 ensemble members. The model successfully reproduces the frequency distribution of the 6 min rainfall intensities, storm durations, interarrival times, and autocorrelation function.
NASA Astrophysics Data System (ADS)
Panagos, Panos; Ballabio, Cristiano; Borrelli, Pasquale; Meusburger, Katrin; Alewell, Christine
2015-04-01
Rainfall erosivity (R-factor) is among the 6 input factors in estimating soil erosion risk by using the empirical Revised Universal Soil Loss Equation (RUSLE). R-factor is a driving force for soil erosion modelling and potentially can be used in flood risk assessments, landslides susceptibility, post-fire damage assessment, application of agricultural management practices and climate change modelling. The rainfall erosivity is extremely difficult to model at large scale (national, European) due to lack of high temporal resolution precipitation data which cover long-time series. In most cases, R-factor is estimated based on empirical equations which take into account precipitation volume. The Rainfall Erosivity Database on the European Scale (REDES) is the output of an extensive data collection of high resolution precipitation data in the 28 Member States of the European Union plus Switzerland taking place during 2013-2014 in collaboration with national meteorological/environmental services. Due to different temporal resolutions of the data (5, 10, 15, 30, 60 minutes), conversion equations have been applied in order to homogenise the database at 30-minutes interval. The 1,541 stations included in REDES have been interpolated using the Gaussian Process Regression (GPR) model using as covariates the climatic data (monthly precipitation, monthly temperature, wettest/driest month) from WorldClim Database, Digital Elevation Model and latitude/longitude. GPR has been selected among other candidate models (GAM, Regression Kriging) due the best performance both in cross validation (R2=0.63) and in fitting dataset (R2=0.72). The highest uncertainty has been noticed in North-western Scotland, North Sweden and Finland due to limited number of stations in REDES. Also, in highlands such as Alpine arch and Pyrenees the diversity of environmental features forced relatively high uncertainty. The rainfall erosivity map of Europe available at 500m resolution plus the standard error and the erosivity density (Rainfall erosivity per mm of precipitation) are available in the European Soil Data Centre (ESDAC). The highest erosivity has been found in the mediterrean countries (Italy, Western Greece, Spain, Northern Portugal), South Austria, Slovenia, Croatia and Western United Kingdom.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kooperman, Gabriel J.; Pritchard, Michael S.; Burt, Melissa A.
Changes in the character of rainfall are assessed using a holistic set of statistics based on rainfall frequency and amount distributions in climate change experiments with three conventional and superparameterized versions of the Community Atmosphere Model (CAM and SPCAM). Previous work has shown that high-order statistics of present-day rainfall intensity are significantly improved with superparameterization, especially in regions of tropical convection. Globally, the two modeling approaches project a similar future increase in mean rainfall, especially across the Inter-Tropical Convergence Zone (ITCZ) and at high latitudes, but over land, SPCAM predicts a smaller mean change than CAM. Changes in high-order statisticsmore » are similar at high latitudes in the two models but diverge at lower latitudes. In the tropics, SPCAM projects a large intensification of moderate and extreme rain rates in regions of organized convection associated with the Madden Julian Oscillation, ITCZ, monsoons, and tropical waves. In contrast, this signal is missing in all versions of CAM, which are found to be prone to predicting increases in the amount but not intensity of moderate rates. Predictions from SPCAM exhibit a scale-insensitive behavior with little dependence on horizontal resolution for extreme rates, while lower resolution (~2°) versions of CAM are not able to capture the response simulated with higher resolution (~1°). Furthermore, moderate rain rates analyzed by the “amount mode” and “amount median” are found to be especially telling as a diagnostic for evaluating climate model performance and tracing future changes in rainfall statistics to tropical wave modes in SPCAM.« less
Kooperman, Gabriel J.; Pritchard, Michael S.; O'Brien, Travis A.; ...
2018-04-01
Deficiencies in the parameterizations of convection used in global climate models often lead to a distorted representation of the simulated rainfall intensity distribution (i.e., too much rainfall from weak rain rates). While encouraging improvements in high percentile rainfall intensity have been found as the horizontal resolution of the Community Atmosphere Model is increased to ~25 km, we demonstrate no corresponding improvement in the moderate rain rates that generate the majority of accumulated rainfall. Using a statistical framework designed to emphasize links between precipitation intensity and accumulated rainfall beyond just the frequency distribution, we show that CAM cannot realistically simulate moderatemore » rain rates, and cannot capture their intensification with climate change, even as resolution is increased. However, by separating the parameterized convective and large-scale resolved contributions to total rainfall, we find that the intensity, geographic pattern, and climate change response of CAM's large-scale rain rates are more consistent with observations (TRMM 3B42), superparameterization, and theoretical expectations, despite issues with parameterized convection. Increasing CAM's horizontal resolution does improve the representation of total rainfall intensity, but not due to changes in the intensity of large-scale rain rates, which are surprisingly insensitive to horizontal resolution. Rather, improvements occur through an increase in the relative contribution of the large-scale component to the total amount of accumulated rainfall. Analysis of sensitivities to convective timescale and entrainment rate confirm the importance of these parameters in the possible development of scale-aware parameterizations, but also reveal unrecognized trade-offs from the entanglement of precipitation frequency and total amount.« less
NASA Astrophysics Data System (ADS)
Kooperman, Gabriel J.; Pritchard, Michael S.; O'Brien, Travis A.; Timmermans, Ben W.
2018-04-01
Deficiencies in the parameterizations of convection used in global climate models often lead to a distorted representation of the simulated rainfall intensity distribution (i.e., too much rainfall from weak rain rates). While encouraging improvements in high percentile rainfall intensity have been found as the horizontal resolution of the Community Atmosphere Model is increased to ˜25 km, we demonstrate no corresponding improvement in the moderate rain rates that generate the majority of accumulated rainfall. Using a statistical framework designed to emphasize links between precipitation intensity and accumulated rainfall beyond just the frequency distribution, we show that CAM cannot realistically simulate moderate rain rates, and cannot capture their intensification with climate change, even as resolution is increased. However, by separating the parameterized convective and large-scale resolved contributions to total rainfall, we find that the intensity, geographic pattern, and climate change response of CAM's large-scale rain rates are more consistent with observations (TRMM 3B42), superparameterization, and theoretical expectations, despite issues with parameterized convection. Increasing CAM's horizontal resolution does improve the representation of total rainfall intensity, but not due to changes in the intensity of large-scale rain rates, which are surprisingly insensitive to horizontal resolution. Rather, improvements occur through an increase in the relative contribution of the large-scale component to the total amount of accumulated rainfall. Analysis of sensitivities to convective timescale and entrainment rate confirm the importance of these parameters in the possible development of scale-aware parameterizations, but also reveal unrecognized trade-offs from the entanglement of precipitation frequency and total amount.
Pritchard, Michael S.; O'Brien, Travis A.; Timmermans, Ben W.
2018-01-01
Abstract Deficiencies in the parameterizations of convection used in global climate models often lead to a distorted representation of the simulated rainfall intensity distribution (i.e., too much rainfall from weak rain rates). While encouraging improvements in high percentile rainfall intensity have been found as the horizontal resolution of the Community Atmosphere Model is increased to ∼25 km, we demonstrate no corresponding improvement in the moderate rain rates that generate the majority of accumulated rainfall. Using a statistical framework designed to emphasize links between precipitation intensity and accumulated rainfall beyond just the frequency distribution, we show that CAM cannot realistically simulate moderate rain rates, and cannot capture their intensification with climate change, even as resolution is increased. However, by separating the parameterized convective and large‐scale resolved contributions to total rainfall, we find that the intensity, geographic pattern, and climate change response of CAM's large‐scale rain rates are more consistent with observations (TRMM 3B42), superparameterization, and theoretical expectations, despite issues with parameterized convection. Increasing CAM's horizontal resolution does improve the representation of total rainfall intensity, but not due to changes in the intensity of large‐scale rain rates, which are surprisingly insensitive to horizontal resolution. Rather, improvements occur through an increase in the relative contribution of the large‐scale component to the total amount of accumulated rainfall. Analysis of sensitivities to convective timescale and entrainment rate confirm the importance of these parameters in the possible development of scale‐aware parameterizations, but also reveal unrecognized trade‐offs from the entanglement of precipitation frequency and total amount. PMID:29861837
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kooperman, Gabriel J.; Pritchard, Michael S.; O'Brien, Travis A.
Deficiencies in the parameterizations of convection used in global climate models often lead to a distorted representation of the simulated rainfall intensity distribution (i.e., too much rainfall from weak rain rates). While encouraging improvements in high percentile rainfall intensity have been found as the horizontal resolution of the Community Atmosphere Model is increased to ~25 km, we demonstrate no corresponding improvement in the moderate rain rates that generate the majority of accumulated rainfall. Using a statistical framework designed to emphasize links between precipitation intensity and accumulated rainfall beyond just the frequency distribution, we show that CAM cannot realistically simulate moderatemore » rain rates, and cannot capture their intensification with climate change, even as resolution is increased. However, by separating the parameterized convective and large-scale resolved contributions to total rainfall, we find that the intensity, geographic pattern, and climate change response of CAM's large-scale rain rates are more consistent with observations (TRMM 3B42), superparameterization, and theoretical expectations, despite issues with parameterized convection. Increasing CAM's horizontal resolution does improve the representation of total rainfall intensity, but not due to changes in the intensity of large-scale rain rates, which are surprisingly insensitive to horizontal resolution. Rather, improvements occur through an increase in the relative contribution of the large-scale component to the total amount of accumulated rainfall. Analysis of sensitivities to convective timescale and entrainment rate confirm the importance of these parameters in the possible development of scale-aware parameterizations, but also reveal unrecognized trade-offs from the entanglement of precipitation frequency and total amount.« less
Panagos, Panos; Ballabio, Cristiano; Borrelli, Pasquale; Meusburger, Katrin; Klik, Andreas; Rousseva, Svetla; Tadić, Melita Perčec; Michaelides, Silas; Hrabalíková, Michaela; Olsen, Preben; Aalto, Juha; Lakatos, Mónika; Rymszewicz, Anna; Dumitrescu, Alexandru; Beguería, Santiago; Alewell, Christine
2015-04-01
Rainfall is one the main drivers of soil erosion. The erosive force of rainfall is expressed as rainfall erosivity. Rainfall erosivity considers the rainfall amount and intensity, and is most commonly expressed as the R-factor in the USLE model and its revised version, RUSLE. At national and continental levels, the scarce availability of data obliges soil erosion modellers to estimate this factor based on rainfall data with only low temporal resolution (daily, monthly, annual averages). The purpose of this study is to assess rainfall erosivity in Europe in the form of the RUSLE R-factor, based on the best available datasets. Data have been collected from 1541 precipitation stations in all European Union (EU) Member States and Switzerland, with temporal resolutions of 5 to 60 min. The R-factor values calculated from precipitation data of different temporal resolutions were normalised to R-factor values with temporal resolutions of 30 min using linear regression functions. Precipitation time series ranged from a minimum of 5 years to a maximum of 40 years. The average time series per precipitation station is around 17.1 years, the most datasets including the first decade of the 21st century. Gaussian Process Regression (GPR) has been used to interpolate the R-factor station values to a European rainfall erosivity map at 1 km resolution. The covariates used for the R-factor interpolation were climatic data (total precipitation, seasonal precipitation, precipitation of driest/wettest months, average temperature), elevation and latitude/longitude. The mean R-factor for the EU plus Switzerland is 722 MJ mm ha(-1) h(-1) yr(-1), with the highest values (>1000 MJ mm ha(-1) h(-1) yr(-1)) in the Mediterranean and alpine regions and the lowest (<500 MJ mm ha(-1) h(-1) yr(-1)) in the Nordic countries. The erosivity density (erosivity normalised to annual precipitation amounts) was also the highest in Mediterranean regions which implies high risk for erosive events and floods. Copyright © 2015 The Authors. Published by Elsevier B.V. All rights reserved.
Kooperman, Gabriel J.; Pritchard, Michael S.; Burt, Melissa A.; ...
2016-09-26
Changes in the character of rainfall are assessed using a holistic set of statistics based on rainfall frequency and amount distributions in climate change experiments with three conventional and superparameterized versions of the Community Atmosphere Model (CAM and SPCAM). Previous work has shown that high-order statistics of present-day rainfall intensity are significantly improved with superparameterization, especially in regions of tropical convection. Globally, the two modeling approaches project a similar future increase in mean rainfall, especially across the Inter-Tropical Convergence Zone (ITCZ) and at high latitudes, but over land, SPCAM predicts a smaller mean change than CAM. Changes in high-order statisticsmore » are similar at high latitudes in the two models but diverge at lower latitudes. In the tropics, SPCAM projects a large intensification of moderate and extreme rain rates in regions of organized convection associated with the Madden Julian Oscillation, ITCZ, monsoons, and tropical waves. In contrast, this signal is missing in all versions of CAM, which are found to be prone to predicting increases in the amount but not intensity of moderate rates. Predictions from SPCAM exhibit a scale-insensitive behavior with little dependence on horizontal resolution for extreme rates, while lower resolution (~2°) versions of CAM are not able to capture the response simulated with higher resolution (~1°). Furthermore, moderate rain rates analyzed by the “amount mode” and “amount median” are found to be especially telling as a diagnostic for evaluating climate model performance and tracing future changes in rainfall statistics to tropical wave modes in SPCAM.« less
Can we improve streamflow simulation by using higher resolution rainfall information?
NASA Astrophysics Data System (ADS)
Lobligeois, Florent; Andréassian, Vazken; Perrin, Charles
2013-04-01
The catchment response to rainfall is the interplay between space-time variability of precipitation, catchment characteristics and antecedent hydrological conditions. Precipitation dominates the high frequency hydrological response, and its simulation is thus dependent on the way rainfall is represented. One of the characteristics which distinguishes distributed from lumped models is their ability to represent explicitly the spatial variability of precipitation and catchment characteristics. The sensitivity of runoff hydrographs to the spatial variability of forcing data has been a major concern of researchers over the last three decades. However, although the literature on the relationship between spatial rainfall and runoff response is abundant, results are contrasted and sometimes contradictory. Several studies concluded that including information on rainfall spatial distribution improves discharge simulation (e.g. Ajami et al., 2004, among others) whereas other studies showed the lack of significant improvement in simulations with better information on rainfall spatial pattern (e.g. Andréassian et al., 2004, among others). The difficulties to reach a clear consensus is mainly due to the fact that each modeling study is implemented only on a few catchments whereas the impact of the spatial distribution of rainfall on runoff is known to be catchment and event characteristics-dependent. Many studies are virtual experiments and only compare flow simulations, which makes it difficult to reach conclusions transposable to real-life case studies. Moreover, the hydrological rainfall-runoff models differ between the studies and the parameterization strategies sometimes tend to advantage the distributed approach (or the lumped one). Recently, Météo-France developed a rainfall reanalysis over the whole French territory at the 1-kilometer resolution and the hourly time step over a 10-year period combining radar data and raingauge measurements: weather radar data were corrected and adjusted with both hourly and daily raingauge data. Based on this new high resolution product, we propose a framework to evaluate the improvements in streamflow simulation by using higher resolution rainfall information. Semi-distributed modelling is performed for different spatial resolution of precipitation forcing: from lumped to semi-distributed simulations. Here we do not work on synthetic (simulated) streamflow, but with actual measurements, on a large set of 181 French catchments representing a variety of size and climate. The rainfall-runoff model is re-calibrated for each resolution of rainfall spatial distribution over a 5-year sub-period and evaluated on the complementary sub-period in validation mode. The results are analysed by catchment classes based on catchment area and for various types of rainfall events based on the spatial variability of precipitation. References Ajami, N. K., Gupta, H. V, Wagener, T. & Sorooshian, S. (2004) Calibration of a semi-distributed hydrologic model for streamflow estimation along a river system. Journal of Hydrology 298(1-4), 112-135. Andréassian, V., Oddos, A., Michel, C., Anctil, F., Perrin, C. & Loumagne, C. (2004) Impact of spatial aggregation of inputs and parameters on the efficiency of rainfall-runoff models: A theoretical study using chimera watersheds. Water Resources Research 40(5), 1-9.
Urban rainfall estimation employing commercial microwave links
NASA Astrophysics Data System (ADS)
Overeem, Aart; Leijnse, Hidde; Uijlenhoet, Remko; ten Veldhuis, Marie-claire
2015-04-01
Urban areas often lack rainfall information. To increase the number of rainfall observations in cities, microwave links from operational cellular telecommunication networks may be employed. Although this new potential source of rainfall information has been shown to be promising, its quality needs to be demonstrated more extensively. In the Rain Sense kickstart project of the Amsterdam Institute for Advanced Metropolitan Solutions (AMS), sensors and citizens are preparing Amsterdam for future weather. Part of this project is rainfall estimation using new measurement techniques. Innovative sensing techniques will be utilized such as rainfall estimation from microwave links, umbrellas for weather sensing, low-cost sensors at lamp posts and in drainage pipes for water level observation. These will be combined with information provided by citizens in an active way through smartphone apps and in a passive way through social media posts (Twitter, Flickr etc.). Sensor information will be integrated, visualized and made accessible to citizens to help raise citizen awareness of urban water management challenges and promote resilience by providing information on how citizens can contribute in addressing these. Moreover, citizens and businesses can benefit from reliable weather information in planning their social and commercial activities. In the end city-wide high-resolution rainfall maps will be derived, blending rainfall information from microwave links and weather radars. This information will be used for urban water management. This presentation focuses on rainfall estimation from commercial microwave links. Received signal levels from tens of microwave links within the Amsterdam region (roughly 1 million inhabitants) in the Netherlands are utilized to estimate rainfall with high spatial and temporal resolution. Rainfall maps will be presented and compared to a gauge-adjusted radar rainfall data set. Rainfall time series from gauge(s), radars and links will be compared.
NASA Astrophysics Data System (ADS)
Deng, L.; Stenchikov, G. L.; McCabe, M. F.; Bangalath, H. K.
2014-12-01
Recently, the modulation of subtropical rainfall by the dominant tropical intraseasonal signal of the Madden-Julian Oscillation (MJO), has been explored through the discussion of the MJO-convection-induced Kelvin and Rossby wave related teleconnection patterns. Our study focuses on characterizing the modulation of heavy rainfall in the Middle East and North Africa (MENA) region by the MJO, using the Geophysical Fluid Dynamics Laboratory (GFDL) global High Resolution Atmospheric Model (HIRAM) simulations (25-km; 1979-2012) and a combination of available atmospheric products from satellite, in-situ and reanalysis data. The observed Hadley Centre Global Sea Ice and Sea Surface Temperature (HadISST) and the simulated SST from GFDL's global coupled carbon-climate Earth System Models (ESM2M) are employed in HIRAM to investigate the sensitivity of the simulated heavy rainfall and MJO to SST. The future trend of the extreme rainfalls and their links to the MJO response to climate change are examined using HIRAM simulations of 2012-2050 with the RCP4.5 and RCP 8.5 scenarios to advance the possibility of characterization and forecasting of future extreme rainfall events in the MENA region.
A gridded hourly rainfall dataset for the UK applied to a national physically-based modelling system
NASA Astrophysics Data System (ADS)
Lewis, Elizabeth; Blenkinsop, Stephen; Quinn, Niall; Freer, Jim; Coxon, Gemma; Woods, Ross; Bates, Paul; Fowler, Hayley
2016-04-01
An hourly gridded rainfall product has great potential for use in many hydrological applications that require high temporal resolution meteorological data. One important example of this is flood risk management, with flooding in the UK highly dependent on sub-daily rainfall intensities amongst other factors. Knowledge of sub-daily rainfall intensities is therefore critical to designing hydraulic structures or flood defences to appropriate levels of service. Sub-daily rainfall rates are also essential inputs for flood forecasting, allowing for estimates of peak flows and stage for flood warning and response. In addition, an hourly gridded rainfall dataset has significant potential for practical applications such as better representation of extremes and pluvial flash flooding, validation of high resolution climate models and improving the representation of sub-daily rainfall in weather generators. A new 1km gridded hourly rainfall dataset for the UK has been created by disaggregating the daily Gridded Estimates of Areal Rainfall (CEH-GEAR) dataset using comprehensively quality-controlled hourly rain gauge data from over 1300 observation stations across the country. Quality control measures include identification of frequent tips, daily accumulations and dry spells, comparison of daily totals against the CEH-GEAR daily dataset, and nearest neighbour checks. The quality control procedure was validated against historic extreme rainfall events and the UKCP09 5km daily rainfall dataset. General use of the dataset has been demonstrated by testing the sensitivity of a physically-based hydrological modelling system for Great Britain to the distribution and rates of rainfall and potential evapotranspiration. Of the sensitivity tests undertaken, the largest improvements in model performance were seen when an hourly gridded rainfall dataset was combined with potential evapotranspiration disaggregated to hourly intervals, with 61% of catchments showing an increase in NSE between observed and simulated streamflows as a result of more realistic sub-daily meteorological forcing.
NASA Astrophysics Data System (ADS)
Marra, Francesco; Morin, Efrat
2018-02-01
Small scale rainfall variability is a key factor driving runoff response in fast responding systems, such as mountainous, urban and arid catchments. In this paper, the spatial-temporal autocorrelation structure of convective rainfall is derived with extremely high resolutions (60 m, 1 min) using estimates from an X-Band weather radar recently installed in a semiarid-arid area. The 2-dimensional spatial autocorrelation of convective rainfall fields and the temporal autocorrelation of point-wise and distributed rainfall fields are examined. The autocorrelation structures are characterized by spatial anisotropy, correlation distances 1.5-2.8 km and rarely exceeding 5 km, and time-correlation distances 1.8-6.4 min and rarely exceeding 10 min. The observed spatial variability is expected to negatively affect estimates from rain gauges and microwave links rather than satellite and C-/S-Band radars; conversely, the temporal variability is expected to negatively affect remote sensing estimates rather than rain gauges. The presented results provide quantitative information for stochastic weather generators, cloud-resolving models, dryland hydrologic and agricultural models, and multi-sensor merging techniques.
Seasonal variation and climate change impact in Rainfall Erosivity across Europe
NASA Astrophysics Data System (ADS)
Panagos, Panos; Borrelli, Pasquale; Meusburger, Katrin; Alewell, Christine; Ballabio, Cristiano
2017-04-01
Rainfall erosivity quantifies the climatic effect on water erosion and is of high importance for soil scientists, land use planners, agronomists, hydrologists and environmental scientists in general. The rainfall erosivity combines the influence of rainfall duration, magnitude, frequency and intensity. Rainfall erosivity is calculated from a series of single storm events by multiplying the total storm kinetic energy with the measured maximum 30-minute rainfall intensity. This estimation requests high temporal resolution (e.g. 30 minutes) rainfall data for sufficiently long time periods (i.e. 20 years). The European Commission's Joint Research Centr(JRC) in collaboration with national/regional meteorological services and Environmental Institutions made an extensive data collection of high resolution rainfall data in the 28 Member States of the European Union plus Switzerland to estimate rainfall erosivity in Europe. This resulted in the Rainfall Erosivity Database on the European Scale (REDES) which included 1,675 stations. The interpolation of those point erosivity values with a Gaussian Process Regression (GPR) model has resulted in the first Rainfall Erosivity map of Europe (Science of the Total Environment, 511: 801-815). In 2016, REDES extended with a monthly component, which allowed developing monthly and seasonal erosivity maps and assessing rainfall erosivity both spatially and temporally for European Union and Switzerland. The monthly erosivity maps have been used to develop composite indicators that map both intra-annual variability and concentration of erosive events (Science of the Total Environment, 579: 1298-1315). Consequently, spatio-temporal mapping of rainfall erosivity permits to identify the months and the areas with highest risk of soil loss where conservation measures should be applied in different seasons of the year. Finally, the identification of the most erosive month allows recommending certain agricultural management practices (crop residues, reduced tillage) in regions with high erosivity. Besides soil erosion mapping, the intra-annual analysis of rainfall erosivity is an important step towards flood prevention, hazard mitigation, ecosystem services, land use change and agricultural production. The application of REDES in combination with moderate climate change scenarios scenario (HadGEM RCP 4.5) resulted in predictions of erosivity in 2050. The overall increase of rainfall erosivity in Europe by 18% until 2050 are in line with projected increases of 17% for the U.S.A. The predicted mean rise of erosivity is also expected to increase the threat of soil erosion in Europe. The most noticeable increase of erosivity is projected for North-Central Europe, the English Channel, The Netherlands and Northern France. On the contrary, the Mediterranean basin show mixed trends. The success story with the compilation of REDES and first rainfall erosivity map of Europe was a driver to implement a Global Rainfall Erosivity Database (GloREDa). During the last 3 years, JRC was leading an effort to collect high temporal resolution rainfall data worldwide. In collaboration with 50 scientists worldwide and 100+ Meteorological and environmental Organisations, we have developed a Global Erosivity Database. In this database, we managed to include calculated erosivity values for 3,625 stations covering 63 countries worldwide.
An Ultra-high Resolution Synthetic Precipitation Data for Ungauged Sites
NASA Astrophysics Data System (ADS)
Kim, Hong-Joong; Choi, Kyung-Min; Oh, Jai-Ho
2018-05-01
Despite the enormous damage caused by record heavy rainfall, the amount of precipitation in areas without observation points cannot be known precisely. One way to overcome these difficulties is to estimate meteorological data at ungauged sites. In this study, we have used observation data over Seoul city to calculate high-resolution (250-meter resolution) synthetic precipitation over a 10-year (2005-2014) period. Furthermore, three cases are analyzed by evaluating the rainfall intensity and performing statistical analysis over the 10-year period. In the case where the typhoon "Meari" passed to the west coast during 28-30 June 2011, the Pearson correlation coefficient was 0.93 for seven validation points, which implies that the temporal correlation between the observed precipitation and synthetic precipitation was very good. It can be confirmed that the time series of observation and synthetic precipitation in the period almost completely matches the observed rainfall. On June 28-29, 2011, the estimation of 10 to 30 mm h-1 of continuous strong precipitation was correct. In addition, it is shown that the synthetic precipitation closely follows the observed precipitation for all three cases. Statistical analysis of 10 years of data reveals a very high correlation coefficient between synthetic precipitation and observed rainfall (0.86). Thus, synthetic precipitation data show good agreement with the observations. Therefore, the 250-m resolution synthetic precipitation amount calculated in this study is useful as basic data in weather applications, such as urban flood detection.
Gauge-adjusted rainfall estimates from commercial microwave links
NASA Astrophysics Data System (ADS)
Fencl, Martin; Dohnal, Michal; Rieckermann, Jörg; Bareš, Vojtěch
2017-01-01
Increasing urbanization makes it more and more important to have accurate stormwater runoff predictions, especially with potentially severe weather and climatic changes on the horizon. Such stormwater predictions in turn require reliable rainfall information. Especially for urban centres, the problem is that the spatial and temporal resolution of rainfall observations should be substantially higher than commonly provided by weather services with their standard rainfall monitoring networks. Commercial microwave links (CMLs) are non-traditional sensors, which have been proposed about a decade ago as a promising solution. CMLs are line-of-sight radio connections widely used by operators of mobile telecommunication networks. They are typically very dense in urban areas and can provide path-integrated rainfall observations at sub-minute resolution. Unfortunately, quantitative precipitation estimates (QPEs) from CMLs are often highly biased due to several epistemic uncertainties, which significantly limit their usability. In this manuscript we therefore suggest a novel method to reduce this bias by adjusting QPEs to existing rain gauges. The method has been specifically designed to produce reliable results even with comparably distant rain gauges or cumulative observations. This eliminates the need to install reference gauges and makes it possible to work with existing information. First, the method is tested on data from a dedicated experiment, where a CML has been specifically set up for rainfall monitoring experiments, as well as operational CMLs from an existing cellular network. Second, we assess the performance for several experimental layouts of ground truth
from rain gauges (RGs) with different spatial and temporal resolutions. The results suggest that CMLs adjusted by RGs with a temporal aggregation of up to 1 h (i) provide precise high-resolution QPEs (relative error < 7 %, Nash-Sutcliffe efficiency coefficient > 0.75) and (ii) that the combination of both sensor types clearly outperforms each individual monitoring system. Unfortunately, adjusting CML observations to RGs with longer aggregation intervals of up to 24 h has drawbacks. Although it substantially reduces bias, it unfavourably smoothes out rainfall peaks of high intensities, which is undesirable for stormwater management. A similar, but less severe, effect occurs due to spatial averaging when CMLs are adjusted to remote RGs. Nevertheless, even here, adjusted CMLs perform better than RGs alone. Furthermore, we provide first evidence that the joint use of multiple CMLs together with RGs also reduces bias in their QPEs. In summary, we believe that our adjustment method has great potential to improve the space-time resolution of current urban rainfall monitoring networks. Nevertheless, future work should aim to better understand the reason for the observed systematic error in QPEs from CMLs.
NASA Astrophysics Data System (ADS)
McKinney, E.; Moon, S.
2017-12-01
Tectonically active, soil mantled, and often fire-scorched landscapes of the Los Angeles region are susceptible to slope failures, such as mudflow and landslides, during high-intensity precipitation events. During 2016-2017, this area received a precipitation rate that was 90 mm higher than the long-term precipitation rates averaged over 30 years. These precipitation rates were 24 % higher than the long-term averages and 245 % higher than those over the 2011-2016 period of drought. In this study, we examined the occurrences of slopes failures near Los Angeles in response to high rainfall rates over 2016-2017. We composited time series of high-resolution Planetscope satellite images with resolutions of 3 - 4 m/pixel for 4 selected locations after reviewing 190,000 km2 area in total. We mapped the surface changes by comparing satellite images before and after the winter 2016-2017. Preliminary analysis using spectral bands highlighted the surface changes made by mudflows, landslides, lake levels and land developments. We compared these changes across 2016-2017 with those over a period of recent drought (2011-2016) to assess the influence of high rainfall rates on slope failures.
Adjusting Satellite Rainfall Error in Mountainous Areas for Flood Modeling Applications
NASA Astrophysics Data System (ADS)
Zhang, X.; Anagnostou, E. N.; Astitha, M.; Vergara, H. J.; Gourley, J. J.; Hong, Y.
2014-12-01
This study aims to investigate the use of high-resolution Numerical Weather Prediction (NWP) for evaluating biases of satellite rainfall estimates of flood-inducing storms in mountainous areas and associated improvements in flood modeling. Satellite-retrieved precipitation has been considered as a feasible data source for global-scale flood modeling, given that satellite has the spatial coverage advantage over in situ (rain gauges and radar) observations particularly over mountainous areas. However, orographically induced heavy precipitation events tend to be underestimated and spatially smoothed by satellite products, which error propagates non-linearly in flood simulations.We apply a recently developed retrieval error and resolution effect correction method (Zhang et al. 2013*) on the NOAA Climate Prediction Center morphing technique (CMORPH) product based on NWP analysis (or forecasting in the case of real-time satellite products). The NWP rainfall is derived from the Weather Research and Forecasting Model (WRF) set up with high spatial resolution (1-2 km) and explicit treatment of precipitation microphysics.In this study we will show results on NWP-adjusted CMORPH rain rates based on tropical cyclones and a convective precipitation event measured during NASA's IPHEX experiment in the South Appalachian region. We will use hydrologic simulations over different basins in the region to evaluate propagation of bias correction in flood simulations. We show that the adjustment reduced the underestimation of high rain rates thus moderating the strong rainfall magnitude dependence of CMORPH rainfall bias, which results in significant improvement in flood peak simulations. Further study over Blue Nile Basin (western Ethiopia) will be investigated and included in the presentation. *Zhang, X. et al. 2013: Using NWP Simulations in Satellite Rainfall Estimation of Heavy Precipitation Events over Mountainous Areas. J. Hydrometeor, 14, 1844-1858.
NASA Astrophysics Data System (ADS)
Bartos, M. D.; Kerkez, B.; Noh, S.; Seo, D. J.
2017-12-01
In this study, we develop and evaluate a high resolution urban flash flood monitoring system using a wireless sensor network (WSN), a real-time rainfall-runoff model, and spatially-explicit radar rainfall predictions. Flooding is the leading cause of natural disaster fatalities in the US, with flash flooding in particular responsible for a majority of flooding deaths. While many riverine flood models have been operationalized into early warning systems, there is currently no model that is capable of reliably predicting flash floods in urban areas. Urban flash floods are particularly difficult to model due to a lack of rainfall and runoff data at appropriate scales. To address this problem, we develop a wide-area flood-monitoring wireless sensor network for the Dallas-Fort Worth metroplex, and use this network to characterize rainfall-runoff response over multiple heterogeneous catchments. First, we deploy a network of 22 wireless sensor nodes to collect real-time stream stage measurements over catchments ranging from 2-80 km2 in size. Next, we characterize the rainfall-runoff response of each catchment by combining stream stage data with gage and radar-based precipitation measurements. Finally, we demonstrate the potential for real-time flash flood prediction by joining the derived rainfall-runoff models with real-time radar rainfall predictions. We find that runoff response is highly heterogeneous among catchments, with large variabilities in runoff response detected even among nearby gages. However, when spatially-explicit rainfall fields are included, spatial variability in runoff response is largely captured. This result highlights the importance of increased spatial coverage for flash flood prediction.
NASA Astrophysics Data System (ADS)
Ghosh, Prosenjit; Rangarajan, Ravi; Thirumalai, Kaustubh; Naggs, Fred
2017-11-01
Indian summer monsoon (ISM) rainfall lasts for a period of 4 months with large variations recorded in terms of rainfall intensity during its period between June and September. Proxy reconstructions of past ISM rainfall variability are required due to the paucity of long instrumental records. However, reconstructing subseasonal rainfall is extremely difficult using conventional hydroclimate proxies due to inadequate sample resolution. Here, we demonstrate the utility of the stable oxygen isotope composition of gastropod shells in reconstructing past rainfall on subseasonal timescales. We present a comparative isotopic study on present day rainwater and stable isotope ratios of precipitate found in the incremental growth bands of giant African land snail Lissachatina fulica (Bowdich) from modern day (2009) and in the historical past (1918). Isotopic signatures present in the growth bands allowed for the identification of ISM rainfall variability in terms of its active and dry spells in the modern as well as past gastropod record. Our results demonstrate the utility of gastropod growth band stable isotope ratios in semiquantitative reconstructions of seasonal rainfall patterns. High resolution climate records extracted from gastropod growth band stable isotopes (museum and archived specimens) can expand the scope for understanding past subseasonal-to-seasonal climate variability.
NASA Astrophysics Data System (ADS)
Nord, G.; Braud, I.; Boudevillain, B.; Gérard, S.; Molinié, G.; Vandervaere, J. P.; Huza, J.; Le Coz, J.; Dramais, G.; Legout, C.; Berne, A.; Grazioli, J.; Raupach, T.; Van Baelen, J.; Wijbrans, A.; Delrieu, G.; Andrieu, J.; Caliano, M.; Aubert, C.; Teuling, R.; Le Boursicaud, R.; Branger, F.; Vincendon, B.; Horner, I.
2014-12-01
A comprehensive hydrometeorological dataset is presented spanning the period 1 Jan 2011-31 Dec 2014 to improve the understanding and simulation of the hydrological processes leading to flash floods in a mesoscale catchment (Auzon, 116 km2) of the Mediterranean region. The specificity of the dataset is its high space-time resolution, especially concerning rainfall and the hydrological response which is particularly adapted to the highly spatially variable rainfall events that may occur in this region. This type of dataset is rare in scientific literature because of the quantity and type of sensors for meteorology and surface hydrology. Rainfall data include continuous precipitation measured by rain-gages (5 min time step for the research network of 21 rain-gages and 1h time step for the operational network of 9 rain-gages), S-band Doppler dual-polarization radar (1 km2, 5 min resolution), and disdrometers (11 sensors working at 1 min time step). During the special observation period (SOP-1) and enhanced observation period (Sep-Dec 2012, Sep-Dec 2013) of the HyMeX (Hydrological Cycle in the Mediterranean Experiment) project, two X-band radars provided precipitation measurements at very fine spatial and temporal scales (1 ha, 5 min). Meteorological data are taken from the operational surface weather observation stations of Meteo France at the hourly time resolution (6 stations in the region of interest). The monitoring of surface hydrology and suspended sediment is multi-scale and based on nested catchments. Three hydrometric stations measure water discharge and additional physico-chemical variables at a 2-10 min time resolution. Two experimental plots monitor overland flow and erosion at 1 min time resolution on a hillslope with vineyard. A network of 11 gauges continuously measures water level and temperature in headwater subcatchments at a time resolution of 2-5 min. A network of soil moisture sensors enable the continuous measurement of soil volumetric water content at 20 min time resolution at 9 sites. Additionally, opportunistic observations (soil moisture measurements and stream gauging) were performed during floods between 2012 and 2014. The data are appropriate for understanding rainfall variability, improving areal rainfall estimations and progress in distributed hydrological modelling.
NASA Astrophysics Data System (ADS)
Nord, G.; Braud, I.; Boudevillain, B.; Gérard, S.; Molinié, G.; Vandervaere, J. P.; Huza, J.; Le Coz, J.; Dramais, G.; Legout, C.; Berne, A.; Grazioli, J.; Raupach, T.; Van Baelen, J.; Wijbrans, A.; Delrieu, G.; Andrieu, J.; Caliano, M.; Aubert, C.; Teuling, R.; Le Boursicaud, R.; Branger, F.; Vincendon, B.; Horner, I.
2015-12-01
A comprehensive hydrometeorological dataset is presented spanning the period 1 Jan 2011-31 Dec 2014 to improve the understanding and simulation of the hydrological processes leading to flash floods in a mesoscale catchment (Auzon, 116 km2) of the Mediterranean region. The specificity of the dataset is its high space-time resolution, especially concerning rainfall and the hydrological response which is particularly adapted to the highly spatially variable rainfall events that may occur in this region. This type of dataset is rare in scientific literature because of the quantity and type of sensors for meteorology and surface hydrology. Rainfall data include continuous precipitation measured by rain-gages (5 min time step for the research network of 21 rain-gages and 1h time step for the operational network of 9 rain-gages), S-band Doppler dual-polarization radar (1 km2, 5 min resolution), and disdrometers (11 sensors working at 1 min time step). During the special observation period (SOP-1) and enhanced observation period (Sep-Dec 2012, Sep-Dec 2013) of the HyMeX (Hydrological Cycle in the Mediterranean Experiment) project, two X-band radars provided precipitation measurements at very fine spatial and temporal scales (1 ha, 5 min). Meteorological data are taken from the operational surface weather observation stations of Meteo France at the hourly time resolution (6 stations in the region of interest). The monitoring of surface hydrology and suspended sediment is multi-scale and based on nested catchments. Three hydrometric stations measure water discharge and additional physico-chemical variables at a 2-10 min time resolution. Two experimental plots monitor overland flow and erosion at 1 min time resolution on a hillslope with vineyard. A network of 11 gauges continuously measures water level and temperature in headwater subcatchments at a time resolution of 2-5 min. A network of soil moisture sensors enable the continuous measurement of soil volumetric water content at 20 min time resolution at 9 sites. Additionally, opportunistic observations (soil moisture measurements and stream gauging) were performed during floods between 2012 and 2014. The data are appropriate for understanding rainfall variability, improving areal rainfall estimations and progress in distributed hydrological modelling.
NASA Astrophysics Data System (ADS)
Oh, Sungmin; Hohmann, Clara; Foelsche, Ulrich; Fuchsberger, Jürgen; Rieger, Wolfgang; Kirchengast, Gottfried
2017-04-01
WegenerNet Feldbach region (WEGN), a pioneering experiment for weather and climate observations, has recently completed its first 10-year precipitation measurement cycle. The WEGN has measured precipitation, temperature, humidity, and other parameters since the beginning of 2007, supporting local-level monitoring and modeling studies, over an area of about 20 km x 15 km centered near the City of Feldbach (46.93 ˚ N, 15.90 ˚ E) in the Alpine forelands of southeast Austria. All the 151 stations in the network are now equipped with high-quality Meteoservis sensors as of August 2016, following an equipment with Friedrichs sensors at most stations before, and continue to provide high-resolution (2 km2/5-min) gauge based precipitation measurements for interested users in hydro-meteorological communities. Here we will present overall characteristics of the WEGN, with a focus on sub-daily precipitation measurements, from the data processing (data quality control, gridded data products generation, etc.) to data applications (e.g., ground validation of satellite estimates). The latter includes our recent study on the propagation of uncertainty from rainfall to runoff. The study assesses responses of small-catchment runoff to spatial rainfall variability in the WEGN region over the Raab valley, using a physics-based distributed hydrological model; Water Flow and Balance Simulation Model (WaSiM), developed at ETH Zurich (Schulla, ETH Zurich, 1997). Given that uncertainty due to resolution of rainfall measurements is believed to be a significant source of error in hydrologic modeling especially for convective rainfall that dominates in the region during summer, the high-resolution of WEGN data furnishes a great opportunity to analyze effects of rainfall events on the runoff at different spatial resolutions. Furthermore, the assessment can be conducted not only for the lower Raab catchment (area of about 500 km2) but also for its sub-catchments (areas of about 30-70 km2). Beside the question how many stations are necessary for reliable hydrological modeling, different interpolation methods like Inverse Distance Interpolation, Elevation Dependent Regression, and combinations will be tested. This presentation will show the first results from a scale-depending analysis of spatial and temporal structures of heavy rainfall events and responses of simulated runoff at the event scale in the WEGN region.
Ghumman, Abul Razzaq; Al-Salamah, Ibrahim Saleh; AlSaleem, Saleem Saleh; Haider, Husnain
2017-02-01
Geomorphological instantaneous unit hydrograph (GIUH) usually uses geomorphologic parameters of catchment estimated from digital elevation model (DEM) for rainfall-runoff modeling of ungauged watersheds with limited data. Higher resolutions (e.g., 5 or 10 m) of DEM play an important role in the accuracy of rainfall-runoff models; however, such resolutions are expansive to obtain and require much greater efforts and time for preparation of inputs. In this research, a modeling framework is developed to evaluate the impact of lower resolutions (i.e., 30 and 90 m) of DEM on the accuracy of Clark GIUH model. Observed rainfall-runoff data of a 202-km 2 catchment in a semiarid region was used to develop direct runoff hydrographs for nine rainfall events. Geographical information system was used to process both the DEMs. Model accuracy and errors were estimated by comparing the model results with the observed data. The study found (i) high model efficiencies greater than 90% for both the resolutions, and (ii) that the efficiency of Clark GIUH model does not significantly increase by enhancing the resolution of the DEM from 90 to 30 m. Thus, it is feasible to use lower resolutions (i.e., 90 m) of DEM in the estimation of peak runoff in ungauged catchments with relatively less efforts. Through sensitivity analysis (Monte Carlo simulations), the kinematic wave parameter and stream length ratio are found to be the most significant parameters in velocity and peak flow estimations, respectively; thus, they need to be carefully estimated for calculation of direct runoff in ungauged watersheds using Clark GIUH model.
NASA Astrophysics Data System (ADS)
Beria, H.; Nanda, T., Sr.; Chatterjee, C.
2015-12-01
High resolution satellite precipitation products such as Tropical Rainfall Measuring Mission (TRMM), Climate Forecast System Reanalysis (CFSR), European Centre for Medium-Range Weather Forecasts (ECMWF), etc., offer a promising alternative to flood forecasting in data scarce regions. At the current state-of-art, these products cannot be used in the raw form for flood forecasting, even at smaller lead times. In the current study, these precipitation products are bias corrected using statistical techniques, such as additive and multiplicative bias corrections, and wavelet multi-resolution analysis (MRA) with India Meteorological Department (IMD) gridded precipitation product,obtained from gauge-based rainfall estimates. Neural network based rainfall-runoff modeling using these bias corrected products provide encouraging results for flood forecasting upto 48 hours lead time. We will present various statistical and graphical interpretations of catchment response to high rainfall events using both the raw and bias corrected precipitation products at different lead times.
Merging of rain gauge and radar data for urban hydrological modelling
NASA Astrophysics Data System (ADS)
Berndt, Christian; Haberlandt, Uwe
2015-04-01
Urban hydrological processes are generally characterised by short response times and therefore rainfall data with a high resolution in space and time are required for their modelling. In many smaller towns, no recordings of rainfall data exist within the urban catchment. Precipitation radar helps to provide extensive rainfall data with a temporal resolution of five minutes, but the rainfall amounts can be highly biased and hence the data should not be used directly as a model input. However, scientists proposed several methods for adjusting radar data to station measurements. This work tries to evaluate rainfall inputs for a hydrological model regarding the following two different applications: Dimensioning of urban drainage systems and analysis of single event flow. The input data used for this analysis can be divided into two groups: Methods, which rely on station data only (Nearest Neighbour Interpolation, Ordinary Kriging), and methods, which incorporate station as well as radar information (Conditional Merging, Bias correction of radar data based on quantile mapping with rain gauge recordings). Additionally, rainfall intensities that were directly obtained from radar reflectivities are used. A model of the urban catchment of the city of Brunswick (Lower Saxony, Germany) is utilised for the evaluation. First results show that radar data cannot help with the dimensioning task of sewer systems since rainfall amounts of convective events are often overestimated. Gauges in catchment proximity can provide more reliable rainfall extremes. Whether radar data can be helpful to simulate single event flow depends strongly on the data quality and thus on the selected event. Ordinary Kriging is often not suitable for the interpolation of rainfall data in urban hydrology. This technique induces a strong smoothing of rainfall fields and therefore a severe underestimation of rainfall intensities for convective events.
NASA Astrophysics Data System (ADS)
Massimo Rossa, Andrea; Laudanna Del Guerra, Franco; Borga, Marco; Zanon, Francesco; Settin, Tommaso; Leuenberger, Daniel
2010-05-01
Space and time scales of flash floods are such that flash flood forecasting and warning systems depend upon the accurate real-time provision of rainfall information, high-resolution numerical weather prediction (NWP) forecasts and the use of hydrological models. Currently available high-resolution NWP model models can potentially provide warning forecasters information on the future evolution of storms and their internal structure, thereby increasing convective-scale warning lead times. However, it is essential that the model be started with a very accurate representation of on-going convection, which calls for assimilation of high-resolution rainfall data. This study aims to assess the feasibility of using carefully checked radar-derived quantitative precipitation estimates (QPE) for assimilation into NWP and hydrological models. The hydrometeorological modeling chain includes the convection-permitting NWP model COSMO-2 and a hydrologic-hydraulic models built upon the concept of geomorphological transport. Radar rainfall observations are assimilated into the NWP model via the latent heat nudging method. The study is focused on 26 September 2007 extreme flash flood event which impacted the coastal area of north-eastern Italy around Venice. The hydro-meteorological modeling system is implemented over the Dese river, a 90 km2 catchment flowing to the Venice lagoon. The radar rainfall observations are carefully checked for artifacts, including beam attenuation, by means of physics-based correction procedures and comparison with a dense network of raingauges. The impact of the radar QPE in the assimilation cycle of the NWP model is very significant, in that the main individual organized convective systems were successfully introduced into the model state, both in terms of timing and localization. Also, incorrectly localized precipitation in the model reference run without rainfall assimilation was correctly reduced to about the observed levels. On the other hand, the highest rainfall intensities were underestimated by 20% at a scale of 1000 km2, and the local peaks by 50%. The positive impact of the assimilated radar rainfall was carried over into the free forecast for about 2-5 hours, depending on when this forecast was started, and was larger, when the main mesoscale convective system was present in the initial conditions. The improvements of the meteorological model simulations were directly propagated to the river flow simulations, with an extension of the warning lead time up to three hours.
NASA Astrophysics Data System (ADS)
Krietemeyer, Andreas; ten Veldhuis, Marie-claire; van de Giesen, Nick
2017-04-01
Recent research has shown that assimilation of Precipitable Water Vapor (PWV) measurements into numerical weather predictions models improve the quality of rainfall now- and forecasting. Local PWV fluctuations may be related with water vapor increases in the lower troposphere which lead to deep convection. Prior studies show that about 20 minutes before rain occurs, the amount of water vapor in the atmosphere at 1 km height increases. Monitoring the small-scale temporal and spatial variability of PWV is therefore crucial to improve the weather now- and forecasting for convective storms, that are typically critical for urban stormwater systems. One established technique to obtain PWV measurements in the atmosphere is to exploit signal delays from GNSS satellites to dual-frequency receivers on the ground. Existing dual-frequency receiver networks typically have inter-station distances in the order of tens of kilometers, which is not sufficiently dense to capture the small-scale PWV variations. In this study, we will add low-cost, single-frequency GNSS receivers to an existing dual-frequency receiver network to obtain an inter-station distance of about 1 km in the Rotterdam area (Netherlands). The aim is to investigate the spatial variability of PWV in the atmosphere at this scale. We use the surrounding dual-frequency network (distributed over a radius of approximately 25 km) to apply an ionospheric delay model that accounts for the delay in the ionosphere (50-1000 km altitude) that cannot be eliminated by single-frequency receivers. The results are validated by co-aligning a single-frequency receiver to a dual-frequency receiver. In the next steps, we will investigate how the high temporal and increased spatial resolution network can help to improve high-resolution rainfall forecasts. Their supposed improved forecasting results will be evaluated based on high-resolution rainfall estimates from a polarimetric X-band rainfall radar installed in the city of Rotterdam.
NASA Astrophysics Data System (ADS)
Derin, Y.; Anagnostou, E. N.; Anagnostou, M.; Kalogiros, J. A.; Casella, D.; Marra, A. C.; Panegrossi, G.; Sanò, P.
2017-12-01
Difficulties in representation of high rainfall variability over mountainous areas using ground based sensors make satellite remote sensing techniques attractive for hydrologic studies over these regions. Even though satellite-based rainfall measurements are quasi global and available at high spatial resolution, these products have uncertainties that necessitate use of error characterization and correction procedures based upon more accurate in situ rainfall measurements. Such measurements can be obtained from field campaigns facilitated by research quality sensors such as locally deployed weather radar and in situ weather stations. This study uses such high quality and resolution rainfall estimates derived from dual-polarization X-band radar (XPOL) observations from three field experiments in Mid-Atlantic US East Coast (NASA IPHEX experiment), the Olympic Peninsula of Washington State (NASA OLYMPEX experiment), and the Mediterranean to characterize the error characteristics of multiple passive microwave (PMW) sensor retrievals. The study first conducts an independent error analysis of the XPOL radar reference rainfall fields against in situ rain gauges and disdrometer observations available by the field experiments. Then the study evaluates different PMW precipitation products using the XPOL datasets (GR) over the three aforementioned complex terrain study areas. We extracted matchups of PMW/GR rainfall based on a matching methodology that identifies GR volume scans coincident with PMW field-of-view sampling volumes, and scaled GR parameters to the satellite products' nominal spatial resolution. The following PMW precipitation retrieval algorithms are evaluated: the NASA Goddard PROFiling algorithm (GPROF), standard and climatology-based products (V 3, 4 and 5) from four PMW sensors (SSMIS, MHS, GMI, and AMSR2), and the precipitation products based on the algorithms Cloud Dynamics and Radiation Database (CDRD) for SSMIS and Passive microwave Neural network Precipitation Retrieval (PNPR) for AMSU/MHS, developed at ISAC-CNR within the EUMETSAT H-SAF. We will present error analysis results for the different PMW rainfall retrievals and discuss dependences on precipitation type, elevation and precipitation microphysics (derived from XPOL).
Automatic Extraction of High-Resolution Rainfall Series from Rainfall Strip Charts
NASA Astrophysics Data System (ADS)
Saa-Requejo, Antonio; Valencia, Jose Luis; Garrido, Alberto; Tarquis, Ana M.
2015-04-01
Soil erosion is a complex phenomenon involving the detachment and transport of soil particles, storage and runoff of rainwater, and infiltration. The relative magnitude and importance of these processes depends on a host of factors, including climate, soil, topography, cropping and land management practices among others. Most models for soil erosion or hydrological processes need an accurate storm characterization. However, this data are not always available and in some cases indirect models are generated to fill this gap. In Spain, the rain intensity data known for time periods less than 24 hours back to 1924 and many studies are limited by it. In many cases this data is stored in rainfall strip charts in the meteorological stations but haven't been transfer in a numerical form. To overcome this deficiency in the raw data a process of information extraction from large amounts of rainfall strip charts is implemented by means of computer software. The method has been developed that largely automates the intensive-labour extraction work based on van Piggelen et al. (2011). The method consists of the following five basic steps: 1) scanning the charts to high-resolution digital images, 2) manually and visually registering relevant meta information from charts and pre-processing, 3) applying automatic curve extraction software in a batch process to determine the coordinates of cumulative rainfall lines on the images (main step), 4) post processing the curves that were not correctly determined in step 3, and 5) aggregating the cumulative rainfall in pixel coordinates to the desired time resolution. A colour detection procedure is introduced that automatically separates the background of the charts and rolls from the grid and subsequently the rainfall curve. The rainfall curve is detected by minimization of a cost function. Some utilities have been added to improve the previous work and automates some auxiliary processes: readjust the bands properly, merge bands when those have been scanned in two parts, detect and cut the borders of bands not used (demanded by the software). Also some variations in which colour system is tried basing in HUE or RGB colour have been included. Thanks to apply this digitization rainfall strip charts 209 station-years of three locations in the centre of Spain have been transformed to long-term rainfall time series with 5-min resolution. References van Piggelen, H.E., T. Brandsma, H. Manders, and J. F. Lichtenauer, 2011: Automatic Curve Extraction for Digitizing Rainfall Strip Charts. J. Atmos. Oceanic Technol., 28, 891-906. Acknowledgements Financial support for this research by DURERO Project (Env.C1.3913442) is greatly appreciated.
Comparison of online and offline based merging methods for high resolution rainfall intensities
NASA Astrophysics Data System (ADS)
Shehu, Bora; Haberlandt, Uwe
2016-04-01
Accurate rainfall intensities with high spatial and temporal resolution are crucial for urban flow prediction. Commonly, raw or bias corrected radar fields are used for forecasting, while different merging products are employed for simulation. The merging products are proven to be adequate for rainfall intensities estimation, however their application in forecasting is limited as they are developed for offline mode. This study aims at adapting and refining the offline merging techniques for the online implementation, and at comparing the performance of these methods for high resolution rainfall data. Radar bias correction based on mean fields and quantile mapping are analyzed individually and also are implemented in conditional merging. Special attention is given to the impact of different spatial and temporal filters on the predictive skill of all methods. Raw radar data and kriging interpolation of station data are considered as a reference to check the benefit of the merged products. The methods are applied for several extreme events in the time period 2006-2012 caused by different meteorological conditions, and their performance is evaluated by split sampling. The study area is located within the 112 km radius of Hannover radar in Lower Saxony, Germany and the data set constitutes of 80 recording stations in 5 min time steps. The results of this study reveal how the performance of the methods is affected by the adjustment of radar data, choice of merging method and selected event. Merging techniques can be used to improve the performance of online rainfall estimation, which gives way to the application of merging products in forecasting.
Stable Isotope Anatomy of Tropical Cyclone Ita, North-Eastern Australia, April 2014
Munksgaard, Niels C.; Zwart, Costijn; Kurita, Naoyuki; Bass, Adrian; Nott, Jon; Bird, Michael I.
2015-01-01
The isotope signatures registered in speleothems during tropical cyclones (TC) provides information about the frequency and intensity of past TCs but the precise relationship between isotopic composition and the meteorology of TCs remain uncertain. Here we present continuous δ18O and δ2H data in rainfall and water vapour, as well as in discrete rainfall samples, during the passage of TC Ita and relate the evolution in isotopic compositions to local and synoptic scale meteorological observations. High-resolution data revealed a close relationship between isotopic compositions and cyclonic features such as spiral rainbands, periods of stratiform rainfall and the arrival of subtropical and tropical air masses with changing oceanic and continental moisture sources. The isotopic compositions in discrete rainfall samples were remarkably constant along the ~450 km overland path of the cyclone when taking into account the direction and distance to the eye of the cyclone at each sampling time. Near simultaneous variations in δ18O and δ2H values in rainfall and vapour and a near-equilibrium rainfall-vapour isotope fractionation indicates strong isotopic exchange between rainfall and surface inflow of vapour during the approach of the cyclone. In contrast, after the passage of spiral rainbands close to the eye of the cyclone, different moisture sources for rainfall and vapour are reflected in diverging d-excess values. High-resolution isotope studies of modern TCs refine the interpretation of stable isotope signatures found in speleothems and other paleo archives and should aim to further investigate the influence of cyclone intensity and longevity on the isotopic composition of associated rainfall. PMID:25742628
Comparisons of Rain Estimates from Ground Radar and Satellite Over Mountainous Regions
NASA Technical Reports Server (NTRS)
Lin, Xin; Kidd, Chris; Tao, Jing; Barros, Ana
2016-01-01
A high-resolution rainfall product merging surface radar and an enhanced gauge network is used as a reference to examine two operational surface radar rainfall products over mountain areas. The two operational rainfall products include radar-only and conventional-gauge-corrected radar rainfall products. Statistics of rain occurrence and rain amount including their geographical, seasonal, and diurnal variations are examined using 3-year data. It is found that the three surface radar rainfall products in general agree well with one another over mountainous regions in terms of horizontal mean distributions of rain occurrence and rain amount. Frequency of rain occurrence and fraction of rain amount also indicate similar distribution patterns as a function of rain intensity. The diurnal signals of precipitation over mountain ridges are well captured and joint distributions of coincident raining samples indicate reasonable correlations during both summer and winter. Factors including undetected low-level precipitation, limited availability of gauges for correcting the Z-R relationship over the mountains, and radar beam blocking by mountains are clearly noticed in the two conventional radar rainfall products. Both radar-only and conventional-gauge-corrected radar rainfall products underestimate the rain occurrence and fraction of rain amount at intermediate and heavy rain intensities. Comparison of PR and TMI against a surface radar-only rainfall product indicates that the PR performs equally well with the high-resolution radar-only rainfall product over complex terrains at intermediate and heavy rain intensities during the summer and winter. TMI, on the other hand, requires improvement to retrieve wintertime precipitation over mountain areas.
Missing pieces of the puzzle: understanding decadal variability of Sahel Rainfall
NASA Astrophysics Data System (ADS)
Vellinga, Michael; Roberts, Malcolm; Vidale, Pier-Luigi; Mizielinski, Matthew; Demory, Marie-Estelle; Schiemann, Reinhard; Strachan, Jane; Bain, Caroline
2015-04-01
The instrumental record shows that substantial decadal fluctuations affected Sahel rainfall from the West African monsoon throughout the 20th century. Climate models generally underestimate the magnitude of decadal Sahel rainfall changes compared to observations. This shows that the processes that control low-frequency Sahel rainfall change are misrepresented in most CMIP5-era climate models. Reliable climate information of future low-frequency rainfall changes thus remains elusive. Here we identify key processes that control the magnitude of the decadal rainfall recovery in the Sahel since the mid-1980s. We show its sensitivity to model resolution and physics in a suite of experiments with global HadGEM3 model configurations at resolutions between 130-25 km. The decadal rainfall trend increases with resolution and at 60-25 km falls within the observed range. Higher resolution models have stronger increases of moisture supply and of African Easterly wave activity. Easterly waves control the occurrence of strong organised rainfall events which carry most of the decadal trend. Weak rainfall events occur too frequently at all resolutions and at low resolution contribute substantially to the decadal trend. All of this behaviour is seen across CMIP5, including future scenarios. Additional simulations with a global 12km version of HadGEM3 show that treating convection explicitly dramatically improves the properties of Sahel rainfall systems. We conclude that interaction between convective scale and global scale processes is key to decadal rainfall changes in the Sahel. This work is distributed under the Creative Commons Attribution 3.0 Unported License together with an author copyright. This license does not conflict with the regulations of the Crown Copyright.Crown Copyright
Evaluating RGB photogrammetry and multi-temporal digital surface models for detecting soil erosion
NASA Astrophysics Data System (ADS)
Anders, Niels; Keesstra, Saskia; Seeger, Manuel
2013-04-01
Photogrammetry is a widely used tool for generating high-resolution digital surface models. Unmanned Aerial Vehicles (UAVs), equipped with a Red Green Blue (RGB) camera, have great potential in quickly acquiring multi-temporal high-resolution orthophotos and surface models. Such datasets would ease the monitoring of geomorphological processes, such as local soil erosion and rill formation after heavy rainfall events. In this study we test a photogrammetric setup to determine data requirements for soil erosion studies with UAVs. We used a rainfall simulator (5 m2) and above a rig with attached a Panasonic GX1 16 megapixel digital camera and 20mm lens. The soil material in the simulator consisted of loamy sand at an angle of 5 degrees. Stereo pair images were taken before and after rainfall simulation with 75-85% overlap. Acquired images were automatically mosaicked to create high-resolution orthorectified images and digital surface models (DSM). We resampled the DSM to different spatial resolutions to analyze the effect of cell size to the accuracy of measured rill depth and soil loss estimations, and determined an optimal cell size (thus flight altitude). Furthermore, the high spatial accuracy of the acquired surface models allows further analysis of rill formation and channel initiation related to e.g. surface roughness. We suggest implementing near-infrared and temperature sensors to combine soil moisture and soil physical properties with surface morphology for future investigations.
Realism of Indian Summer Monsoon Simulation in a Quarter Degree Global Climate Model
NASA Astrophysics Data System (ADS)
Salunke, P.; Mishra, S. K.; Sahany, S.; Gupta, K.
2017-12-01
This study assesses the fidelity of Indian Summer Monsoon (ISM) simulations using a global model at an ultra-high horizontal resolution (UHR) of 0.25°. The model used was the atmospheric component of the Community Earth System Model version 1.2.0 (CESM 1.2.0) developed at the National Center for Atmospheric Research (NCAR). Precipitation and temperature over the Indian region were analyzed for a wide range of space and time scales to evaluate the fidelity of the model under UHR, with special emphasis on the ISM simulations during the period of June-through-September (JJAS). Comparing the UHR simulations with observed data from the India Meteorological Department (IMD) over the Indian land, it was found that 0.25° resolution significantly improved spatial rainfall patterns over many regions, including the Western Ghats and the South-Eastern peninsula as compared to the standard model resolution. Convective and large-scale rainfall components were analyzed using the European Centre for Medium Range Weather Forecast (ECMWF) Re-Analysis (ERA)-Interim (ERA-I) data and it was found that at 0.25° resolution, there was an overall increase in the large-scale component and an associated decrease in the convective component of rainfall as compared to the standard model resolution. Analysis of the diurnal cycle of rainfall suggests a significant improvement in the phase characteristics simulated by the UHR model as compared to the standard model resolution. Analysis of the annual cycle of rainfall, however, failed to show any significant improvement in the UHR model as compared to the standard version. Surface temperature analysis showed small improvements in the UHR model simulations as compared to the standard version. Thus, one may conclude that there are some significant improvements in the ISM simulations using a 0.25° global model, although there is still plenty of scope for further improvement in certain aspects of the annual cycle of rainfall.
North Indian heavy rainfall event during June 2013: diagnostics and extended range prediction
NASA Astrophysics Data System (ADS)
Joseph, Susmitha; Sahai, A. K.; Sharmila, S.; Abhilash, S.; Borah, N.; Chattopadhyay, R.; Pillai, P. A.; Rajeevan, M.; Kumar, Arun
2015-04-01
The Indian summer monsoon of 2013 covered the entire country by 16 June, one month earlier than its normal date. Around that period, heavy rainfall was experienced in the north Indian state of Uttarakhand, which is situated on the southern slope of Himalayan Ranges. The heavy rainfall and associated landslides caused serious damages and claimed many lives. This study investigates the scientific rationale behind the incidence of the extreme rainfall event in the backdrop of large scale monsoon environment. It is found that a monsoonal low pressure system that provided increased low level convergence and abundant moisture, and a midlatitude westerly trough that generated strong upper level divergence, interacted with each other and helped monsoon to cover the entire country and facilitated the occurrence of the heavy rainfall event in the orographic region. The study also examines the skill of an ensemble prediction system (EPS) in predicting the Uttarakhand event on extended range time scale. The EPS is implemented on both high (T382) and low (T126) resolution versions of the coupled general circulation model CFSv2. Although the models predicted the event 10-12 days in advance, they failed to predict the midlatitude influence on the event. Possible reasons for the same are also discussed. In both resolutions of the model, the event was triggered by the generation and northwestward movement of a low pressure system developed over the Bay of Bengal. The study advocates the usefulness of high resolution models in predicting extreme events.
NASA Astrophysics Data System (ADS)
Atencia, A.; Llasat, M. C.; Garrote, L.; Mediero, L.
2010-10-01
The performance of distributed hydrological models depends on the resolution, both spatial and temporal, of the rainfall surface data introduced. The estimation of quantitative precipitation from meteorological radar or satellite can improve hydrological model results, thanks to an indirect estimation at higher spatial and temporal resolution. In this work, composed radar data from a network of three C-band radars, with 6-minutal temporal and 2 × 2 km2 spatial resolution, provided by the Catalan Meteorological Service, is used to feed the RIBS distributed hydrological model. A Window Probability Matching Method (gage-adjustment method) is applied to four cases of heavy rainfall to improve the observed rainfall sub-estimation in both convective and stratiform Z/R relations used over Catalonia. Once the rainfall field has been adequately obtained, an advection correction, based on cross-correlation between two consecutive images, was introduced to get several time resolutions from 1 min to 30 min. Each different resolution is treated as an independent event, resulting in a probable range of input rainfall data. This ensemble of rainfall data is used, together with other sources of uncertainty, such as the initial basin state or the accuracy of discharge measurements, to calibrate the RIBS model using probabilistic methodology. A sensitivity analysis of time resolutions was implemented by comparing the various results with real values from stream-flow measurement stations.
NASA Astrophysics Data System (ADS)
Li, Puxi; Zhou, Tianjun; Zou, Liwei
2016-04-01
The authors evaluated the performance of Meteorological Research Institute (MRI) AGCM3.2 models in the simulations of climatology and interannual variability of the Spring Persistent Rains (SPR) over southeastern China. The possible impacts of different horizontal resolutions were also investigated based on the experiments with three different horizontal resolutions (i.e., 120, 60, and 20km). The model could reasonably reproduce the main rainfall center over southeastern China in boreal spring under the three different resolutions. In comparison with 120 simulation, it revealed that 60km and 20km simulations show the superiority in simulating rainfall centers anchored by the Nanling-Wuyi Mountains, but overestimate rainfall intensity. Water vapor budget diagnosis showed that, the 60km and 20km simulations tended to overestimate the water vapor convergence over southeastern China, which leads to wet biases. In the aspect of interannual variability of SPR, the model could reasonably reproduce the anomalous lower-tropospheric anticyclone in the western North Pacific (WNPAC) and positive precipitation anomalies over southeastern China in El Niño decaying spring. Compared with the 120km resolution, the large positive biases are substantially reduced in the mid and high resolution models which evidently improve the simulation of horizontal moisture advection in El Niño decaying spring. We highlight the importance of developing high resolution climate model as it could potentially improve the climatology and interannual variability of SPR.
Censored rainfall modelling for estimation of fine-scale extremes
NASA Astrophysics Data System (ADS)
Cross, David; Onof, Christian; Winter, Hugo; Bernardara, Pietro
2018-01-01
Reliable estimation of rainfall extremes is essential for drainage system design, flood mitigation, and risk quantification. However, traditional techniques lack physical realism and extrapolation can be highly uncertain. In this study, we improve the physical basis for short-duration extreme rainfall estimation by simulating the heavy portion of the rainfall record mechanistically using the Bartlett-Lewis rectangular pulse (BLRP) model. Mechanistic rainfall models have had a tendency to underestimate rainfall extremes at fine temporal scales. Despite this, the simple process representation of rectangular pulse models is appealing in the context of extreme rainfall estimation because it emulates the known phenomenology of rainfall generation. A censored approach to Bartlett-Lewis model calibration is proposed and performed for single-site rainfall from two gauges in the UK and Germany. Extreme rainfall estimation is performed for each gauge at the 5, 15, and 60 min resolutions, and considerations for censor selection discussed.
Signal to Noise Ratio for Different Gridded Rainfall Products of Indian Monsoon
NASA Astrophysics Data System (ADS)
Nehra, P.; Shastri, H. K.; Ghosh, S.; Mishra, V.; Murtugudde, R. G.
2014-12-01
Gridded rainfall datasets provide useful information of spatial and temporal distribution of precipitation over a region. For India, there are 3 gridded rainfall data products available from India Meteorological Department (IMD), Tropical Rainfall Measurement Mission (TRMM) and Asian Precipitation - Highly Resolved Observational Data Integration towards Evaluation of Water Resources (APHRODITE), these compile precipitation information obtained through satellite based measurement and ground station based data. The gridded rainfall data from IMD is available at spatial resolution of 1°, 0.5° and 0.25° where as TRMM and APHRODITE is available at 0.25°. Here, we employ 7 years (1998-2004) of common time period amongst the 3 data products for the south-west monsoon season, i.e., the months June to September. We examine temporal mean and standard deviation of these 3 products to observe substantial variation amongst them at 1° resolution whereas for 0.25° resolution, all the data types are nearly identical. We determine the Signal to Noise Ratio (SNR) of the 3 products at 1° and 0.25° resolution based on noise separation technique adopting horizontal separation of the power spectrum generated with the Fast Fourier Transformation (FFT). A methodology is developed for threshold based separation of signal and noise from the power spectrum, treating the noise as white. The variance of signal to that of noise is computed to obtain SNR. Determination of SNR for different regions over the country shows the highest SNR with APHRODITE at 0.25° resolution. It is observed that the eastern part of India has the highest SNR in all cases considered whereas the northern and southern most Indian regions have lowest SNR. An incremental linear trend is observed among the SNR values and the spatial variance of corresponding region. Relationship between the computed SNR values and the interpolation method used with the dataset is analyzed. The SNR analysis provides an effective tool to evaluate the gridded precipitation data products. However detailed analysis is needed to determine the processes that lead to these SNR distributions so that the quality of the gridded rainfall data products can be further improved and transferability of the gridding algorithms can be explored to produce a unified high-quality rainfall dataset.
NASA Astrophysics Data System (ADS)
Zhou, Y.; Tao, W.; Hou, A. Y.; Zeng, X.; Shie, C.
2007-12-01
The cloud and precipitation statistics simulated by 3D Goddard Cumulus Ensemble (GCE) model for different environmental conditions, i.e., the South China Sea Monsoon Experiment (SCSMEX), CRYSTAL-FACE, and KAWJEX are compared with Tropical Rainfall Measuring Mission (TRMM) TMI and PR rainfall measurements and as well as cloud observations from the Earth's Radiant Energy System (CERES) and the Moderate Resolution Imaging Spectroradiometer (MODIS) instruments. It is found that GCE is capable of simulating major convective system development and reproducing total surface rainfall amount as compared with rainfall estimated from the soundings. The model presents large discrepancies in rain spectrum and vertical hydrometer profiles. The discrepancy in the precipitation field is also consistent with the cloud and radiation observations. The study will focus on the effects of large scale forcing and microphysics to the simulated model- observation discrepancies.
NASA Astrophysics Data System (ADS)
Cristiano, Elena; ten Veldhuis, Marie-claire; van de Giesen, Nick
2017-07-01
In urban areas, hydrological processes are characterized by high variability in space and time, making them sensitive to small-scale temporal and spatial rainfall variability. In the last decades new instruments, techniques, and methods have been developed to capture rainfall and hydrological processes at high resolution. Weather radars have been introduced to estimate high spatial and temporal rainfall variability. At the same time, new models have been proposed to reproduce hydrological response, based on small-scale representation of urban catchment spatial variability. Despite these efforts, interactions between rainfall variability, catchment heterogeneity, and hydrological response remain poorly understood. This paper presents a review of our current understanding of hydrological processes in urban environments as reported in the literature, focusing on their spatial and temporal variability aspects. We review recent findings on the effects of rainfall variability on hydrological response and identify gaps where knowledge needs to be further developed to improve our understanding of and capability to predict urban hydrological response.
NASA Astrophysics Data System (ADS)
Lee, Huikyo; Waliser, Duane E.; Ferraro, Robert; Iguchi, Takamichi; Peters-Lidard, Christa D.; Tian, Baijun; Loikith, Paul C.; Wright, Daniel B.
2017-07-01
Accurate simulation of extreme precipitation events remains a challenge in climate models. This study utilizes hourly precipitation data from ground stations and satellite instruments to evaluate rainfall characteristics simulated by the NASA-Unified Weather Research and Forecasting (NU-WRF) regional climate model at horizontal resolutions of 4, 12, and 24 km over the Great Plains of the United States. We also examined the sensitivity of the simulated precipitation to different spectral nudging approaches and the cumulus parameterizations. The rainfall characteristics in the observations and simulations were defined as an hourly diurnal cycle of precipitation and a joint probability distribution function (JPDF) between duration and peak intensity of precipitation events over the Great Plains in summer. We calculated a JPDF for each data set and the overlapping area between observed and simulated JPDFs to measure the similarity between the two JPDFs. Comparison of the diurnal precipitation cycles between observations and simulations does not reveal the added value of high-resolution simulations. However, the performance of NU-WRF simulations measured by the JPDF metric strongly depends on horizontal resolution. The simulation with the highest resolution of 4 km shows the best agreement with the observations in simulating duration and intensity of wet spells. Spectral nudging does not affect the JPDF significantly. The effect of cumulus parameterizations on the JPDFs is considerable but smaller than that of horizontal resolution. The simulations with lower resolutions of 12 and 24 km show reasonable agreement but only with the high-resolution observational data that are aggregated into coarse resolution and spatially averaged.
In an earlier study, Puente and Obregón [Water Resour. Res. 32(1996)2825] reported on the usage of a deterministic fractal–multifractal (FM) methodology to faithfully describe an 8.3 h high-resolution rainfall time series in Boston, gathered every 15 s ...
Models for estimating daily rainfall erosivity in China
NASA Astrophysics Data System (ADS)
Xie, Yun; Yin, Shui-qing; Liu, Bao-yuan; Nearing, Mark A.; Zhao, Ying
2016-04-01
The rainfall erosivity factor (R) represents the multiplication of rainfall energy and maximum 30 min intensity by event (EI30) and year. This rainfall erosivity index is widely used for empirical soil loss prediction. Its calculation, however, requires high temporal resolution rainfall data that are not readily available in many parts of the world. The purpose of this study was to parameterize models suitable for estimating erosivity from daily rainfall data, which are more widely available. One-minute resolution rainfall data recorded in sixteen stations over the eastern water erosion impacted regions of China were analyzed. The R-factor ranged from 781.9 to 8258.5 MJ mm ha-1 h-1 y-1. A total of 5942 erosive events from one-minute resolution rainfall data of ten stations were used to parameterize three models, and 4949 erosive events from the other six stations were used for validation. A threshold of daily rainfall between days classified as erosive and non-erosive was suggested to be 9.7 mm based on these data. Two of the models (I and II) used power law functions that required only daily rainfall totals. Model I used different model coefficients in the cool season (Oct.-Apr.) and warm season (May-Sept.), and Model II was fitted with a sinusoidal curve of seasonal variation. Both Model I and Model II estimated the erosivity index for average annual, yearly, and half-month temporal scales reasonably well, with the symmetric mean absolute percentage error MAPEsym ranging from 10.8% to 32.1%. Model II predicted slightly better than Model I. However, the prediction efficiency for the daily erosivity index was limited, with the symmetric mean absolute percentage error being 68.0% (Model I) and 65.7% (Model II) and Nash-Sutcliffe model efficiency being 0.55 (Model I) and 0.57 (Model II). Model III, which used the combination of daily rainfall amount and daily maximum 60-min rainfall, improved predictions significantly, and produced a Nash-Sutcliffe model efficiency for daily erosivity index prediction of 0.93. Thus daily rainfall data was generally sufficient for estimating annual average, yearly, and half-monthly time scales, while sub-daily data was needed when estimating daily erosivity values.
A two-parameter design storm for Mediterranean convective rainfall
NASA Astrophysics Data System (ADS)
García-Bartual, Rafael; Andrés-Doménech, Ignacio
2017-05-01
The following research explores the feasibility of building effective design storms for extreme hydrological regimes, such as the one which characterizes the rainfall regime of the east and south-east of the Iberian Peninsula, without employing intensity-duration-frequency (IDF) curves as a starting point. Nowadays, after decades of functioning hydrological automatic networks, there is an abundance of high-resolution rainfall data with a reasonable statistic representation, which enable the direct research of temporal patterns and inner structures of rainfall events at a given geographic location, with the aim of establishing a statistical synthesis directly based on those observed patterns. The authors propose a temporal design storm defined in analytical terms, through a two-parameter gamma-type function. The two parameters are directly estimated from 73 independent storms identified from rainfall records of high temporal resolution in Valencia (Spain). All the relevant analytical properties derived from that function are developed in order to use this storm in real applications. In particular, in order to assign a probability to the design storm (return period), an auxiliary variable combining maximum intensity and total cumulated rainfall is introduced. As a result, for a given return period, a set of three storms with different duration, depth and peak intensity are defined. The consistency of the results is verified by means of comparison with the classic method of alternating blocks based on an IDF curve, for the above mentioned study case.
NASA Astrophysics Data System (ADS)
Bal, Prasanta Kumar; Ramachandran, A.; Geetha, R.; Bhaskaran, B.; Thirumurugan, P.; Indumathi, J.; Jayanthi, N.
2016-02-01
In this paper, we present regional climate change projections for the Tamil Nadu state of India, simulated by the Met Office Hadley Centre regional climate model. The model is run at 25 km horizontal resolution driven by lateral boundary conditions generated by a perturbed physical ensemble of 17 simulations produced by a version of Hadley Centre coupled climate model, known as HadCM3Q under A1B scenario. The large scale features of these 17 simulations were evaluated for the target region to choose lateral boundary conditions from six members that represent a range of climate variations over the study region. The regional climate, known as PRECIS, was then run 130 years from 1970. The analyses primarily focus on maximum and minimum temperatures and rainfall over the region. For the Tamil Nadu as a whole, the projections of maximum temperature show an increase of 1.0, 2.2 and 3.1 °C for the periods 2020s (2005-2035), 2050s (2035-2065) and 2080s (2065-2095), respectively, with respect to baseline period (1970-2000). Similarly, the projections of minimum temperature show an increase of 1.1, 2.4 and 3.5 °C, respectively. This increasing trend is statistically significant (Mann-Kendall trend test). The annual rainfall projections for the same periods indicate a general decrease in rainfall of about 2-7, 1-4 and 4-9 %, respectively. However, significant exceptions are noticed over some pockets of western hilly areas and high rainfall areas where increases in rainfall are seen. There are also indications of increasing heavy rainfall events during the northeast monsoon season and a slight decrease during the southwest monsoon season. Such an approach of using climate models may maximize the utility of high-resolution climate change information for impact-adaptation-vulnerability assessments.
NASA Astrophysics Data System (ADS)
Silvestro, Francesco; Parodi, Antonio; Campo, Lorenzo
2017-04-01
The characterization of the hydrometeorological extremes, both in terms of rainfall and streamflow, in a given region plays a key role in the environmental monitoring provided by the flood alert services. In last years meteorological simulations (both near real-time and historical reanalysis) were available at increasing spatial and temporal resolutions, making possible long-period hydrological reanalysis in which the meteo dataset is used as input in distributed hydrological models. In this work, a very high resolution meteorological reanalysis dataset, namely Express-Hydro (CIMA, ISAC-CNR, GAUSS Special Project PR45DE), was employed as input in the hydrological model Continuum in order to produce long time series of streamflows in the Liguria territory, located in the Northern part of Italy. The original dataset covers the whole Europe territory in the 1979-2008 period, at 4 km of spatial resolution and 3 hours of time resolution. Analyses in terms of comparison between the rainfall estimated by the dataset and the observations (available from the local raingauges network) were carried out, and a bias correction was also performed in order to better match the observed climatology. An extreme analysis was eventually carried on the streamflows time series obtained by the simulations, by comparing them with the results of the same hydrological model fed with the observed time series of rainfall. The results of the analysis are shown and discussed.
Meteorological impact assessment of possible large scale irrigation in Southwest Saudi Arabia
NASA Astrophysics Data System (ADS)
Ter Maat, H. W.; Hutjes, R. W. A.; Ohba, R.; Ueda, H.; Bisselink, B.; Bauer, T.
2006-11-01
On continental to regional scales feedbacks between landuse and landcover change and climate have been widely documented over the past 10-15 years. In the present study we explore the possibility that also vegetation changes over much smaller areas may affect local precipitation regimes. Large scale (˜ 10 5 ha) irrigated plantations in semi-arid environments under particular conditions may affect local circulations and induce additional rainfall. Capturing this rainfall 'surplus' could then reduce the need for external irrigation sources and eventually lead to self-sustained water cycling. This concept is studied in the coastal plains in South West Saudi Arabia where the mountains of the Asir region exhibit the highest rainfall of the peninsula due to orographic lifting and condensation of moisture imported with the Indian Ocean monsoon and with disturbances from the Mediterranean Sea. We use a regional atmospheric modeling system (RAMS) forced by ECMWF analysis data to resolve the effect of complex surface conditions in high resolution (Δ x = 4 km). After validation, these simulations are analysed with a focus on the role of local processes (sea breezes, orographic lifting and the formation of fog in the coastal mountains) in generating rainfall, and on how these will be affected by large scale irrigated plantations in the coastal desert. The validation showed that the model simulates the regional and local weather reasonably well. The simulations exhibit a slightly larger diurnal temperature range than those captured by the observations, but seem to capture daily sea-breeze phenomena well. Monthly rainfall is well reproduced at coarse resolutions, but appears more localized at high resolutions. The hypothetical irrigated plantation (3.25 10 5 ha) has significant effects on atmospheric moisture, but due to weakened sea breezes this leads to limited increases of rainfall. In terms of recycling of irrigation gifts the rainfall enhancement in this particular setting is rather insignificant.
Rainfall Estimates from the TMI and the SSM/I
NASA Technical Reports Server (NTRS)
Hong, Ye; Kummerow, Christian D.; Olson, William S.; Viltard, Nicolas
1999-01-01
The Tropical Rainfall Measuring Mission (TRMM), which is a joint Japan-U.S. Earth observing satellite, has been successfully launched from Japan on November 27, 1997. The main purpose of the TRMM is to measure quantitatively rainfall over the tropics for the research of climate and weather. One of three rainfall measuring instruments abroad the TRMM is the high resolution TRMM Microwave Imager (TMI). The TMI instrument is essentially the copy of the SSM/I with a dual-polarized pair of 10.7 GHz channels added to increase the dynamic range of rainfall estimates. In addition, the 21.3 GHz water vapor absorption channel is designed in the TMI as opposed to the 22.235 GHz in the SSM/I to avoid saturation in the tropics. This paper will present instantaneous rain rates estimated from the coincident TMI and SSM/I observations. The algorithm for estimating instantaneous rainfall rates from both sensors is the Goddard Profiling algorithm (Gprof). The Gprof algorithm is a physically based, multichannel rainfall retrieval algorithm, The algorithm is very portable and can be used for various sensors with different channels and resolutions. The comparison of rain rates estimated from TMI and SSM/I on the same rain regions will be performed. The results from the comparison and the insight of tile retrieval algorithm will be given.
Evaluating rainfall kinetic energy - intensity relationships with observed disdrometric data
NASA Astrophysics Data System (ADS)
Angulo-Martinez, Marta; Begueria, Santiago; Latorre, Borja
2016-04-01
Rainfall kinetic energy is required for determining erosivity, the ability of rainfall to detach soil particles and initiate erosion. Its determination relay on the use of disdrometers, i.e. devices capable of measuring the drop size distribution and velocity of falling raindrops. In the absence of such devices, rainfall kinetic energy is usually estimated with empirical expressions relating rainfall energy and intensity. We evaluated the performance of 14 rainfall energy equations in estimating one-minute rainfall energy and event total energy, in comparison with observed data from 821 rainfall episodes (more than 100 thousand one-minute observations) by means of an optical disdrometer. In addition, two sources of bias when using such relationships were evaluated: i) the influence of using theoretical terminal raindrop fall velocities instead of measured values; and ii) the influence of time aggregation (rainfall intensity data every 5-, 10-, 15-, 30-, and 60-minutes). Empirical relationships did a relatively good job when complete events were considered (R2 > 0.82), but offered poorer results for within-event (one-minute resolution) variation. Also, systematic biases where large for many equations. When raindrop size distribution was known, estimating the terminal fall velocities by empirical laws produced good results even at fine time resolution. The influence of time aggregation was very high in the estimated kinetic energy, although linear scaling may allow empirical correction. This results stress the importance of considering all these effects when rainfall energy needs to be estimated from more standard precipitation records. , and recommends the use of disdrometer data to locally determine rainfall kinetic energy.
NASA Astrophysics Data System (ADS)
Bookhagen, B.; Boers, N.; Marwan, N.; Malik, N.; Kurths, J.
2013-12-01
Monsoonal rainfall is the crucial component for more than half of the world's population. Runoff associated with monsoon systems provide water resources for agriculture, hydropower, drinking-water generation, recreation, and social well-being and are thus a fundamental part of human society. However, monsoon systems are highly stochastic and show large variability on various timescales. Here, we use various rainfall datasets to characterize spatiotemporal rainfall patterns using traditional as well as new approaches emphasizing nonlinear spatial correlations from a complex networks perspective. Our analyses focus on the South American (SAMS) and Indian (ISM) Monsoon Systems on the basis of Tropical Rainfall Measurement Mission (TRMM) using precipitation radar and passive-microwave products with horizontal spatial resolutions of ~5x5 km^2 (products 2A25, 2B31) and 25x25 km^2 (3B42) and interpolated rainfall-gauge data for the ISM (APHRODITE, 25x25 km^2). The eastern slopes of the Andes of South America and the southern front of the Himalaya are characterized by significant orographic barriers that intersect with the moisture-bearing, monsoonal wind systems. We demonstrate that topography exerts a first-order control on peak rainfall amounts on annual timescales in both mountain belts. Flooding in the downstream regions is dominantly caused by heavy rainfall storms that propagate deep into the mountain range and reach regions that are arid and without vegetation cover promoting rapid runoff. These storms exert a significantly different spatial distribution than average-rainfall conditions and assessing their recurrence intervals and prediction is key in understanding flooding for these regions. An analysis of extreme-value distributions of our high-spatial resolution data reveal that semi-arid areas are characterized by low-frequency/high-magnitude events (i.e., are characterized by a ';heavy tail' distribution), whereas regions with high mean annual rainfall have a less skewed distribution. In a second step, an analysis of the spatial characteristics of extreme rainfall synchronicity by means of complex networks reveals patterns of the propagation of extreme rainfall events. These patterns differ substantially from those obtained from the mean annual rainfall distribution. In addition, we have developed a scheme to predict rainfall extreme events in the eastern Central Andes based on event synchronization and spatial patterns of complex networks. The presented methods and result will allow to critically evaluate data and models in space and time.
NASA Astrophysics Data System (ADS)
Yamana, Teresa K.; Eltahir, Elfatih A. B.
2011-02-01
This paper describes the use of satellite-based estimates of rainfall to force the Hydrology, Entomology and Malaria Transmission Simulator (HYDREMATS), a hydrology-based mechanistic model of malaria transmission. We first examined the temporal resolution of rainfall input required by HYDREMATS. Simulations conducted over Banizoumbou village in Niger showed that for reasonably accurate simulation of mosquito populations, the model requires rainfall data with at least 1 h resolution. We then investigated whether HYDREMATS could be effectively forced by satellite-based estimates of rainfall instead of ground-based observations. The Climate Prediction Center morphing technique (CMORPH) precipitation estimates distributed by the National Oceanic and Atmospheric Administration are available at a 30 min temporal resolution and 8 km spatial resolution. We compared mosquito populations simulated by HYDREMATS when the model is forced by adjusted CMORPH estimates and by ground observations. The results demonstrate that adjusted rainfall estimates from satellites can be used with a mechanistic model to accurately simulate the dynamics of mosquito populations.
Skill of Predicting Heavy Rainfall Over India: Improvement in Recent Years Using UKMO Global Model
NASA Astrophysics Data System (ADS)
Sharma, Kuldeep; Ashrit, Raghavendra; Bhatla, R.; Mitra, A. K.; Iyengar, G. R.; Rajagopal, E. N.
2017-11-01
The quantitative precipitation forecast (QPF) performance for heavy rains is still a challenge, even for the most advanced state-of-art high-resolution Numerical Weather Prediction (NWP) modeling systems. This study aims to evaluate the performance of UK Met Office Unified Model (UKMO) over India for prediction of high rainfall amounts (>2 and >5 cm/day) during the monsoon period (JJAS) from 2007 to 2015 in short range forecast up to Day 3. Among the various modeling upgrades and improvements in the parameterizations during this period, the model horizontal resolution has seen an improvement from 40 km in 2007 to 17 km in 2015. Skill of short range rainfall forecast has improved in UKMO model in recent years mainly due to increased horizontal and vertical resolution along with improved physics schemes. Categorical verification carried out using the four verification metrics, namely, probability of detection (POD), false alarm ratio (FAR), frequency bias (Bias) and Critical Success Index, indicates that QPF has improved by >29 and >24% in case of POD and FAR. Additionally, verification scores like EDS (Extreme Dependency Score), EDI (Extremal Dependence Index) and SEDI (Symmetric EDI) are used with special emphasis on verification of extreme and rare rainfall events. These scores also show an improvement by 60% (EDS) and >34% (EDI and SEDI) during the period of study, suggesting an improved skill of predicting heavy rains.
An Investigation on the Sensitivity of the Parameters of Urban Flood Model
NASA Astrophysics Data System (ADS)
M, A. B.; Lohani, B.; Jain, A.
2015-12-01
Global climatic change has triggered weather patterns which lead to heavy and sudden rainfall in different parts of world. The impact of heavy rainfall is severe especially on urban areas in the form of urban flooding. In order to understand the effect of heavy rainfall induced flooding, it is necessary to model the entire flooding scenario more accurately, which is now becoming possible with the availability of high resolution airborne LiDAR data and other real time observations. However, there is not much understanding on the optimal use of these data and on the effect of other parameters on the performance of the flood model. This study aims at developing understanding on these issues. In view of the above discussion, the aim of this study is to (i) understand that how the use of high resolution LiDAR data improves the performance of urban flood model, and (ii) understand the sensitivity of various hydrological parameters on urban flood modelling. In this study, modelling of flooding in urban areas due to heavy rainfall is carried out considering Indian Institute of Technology (IIT) Kanpur, India as the study site. The existing model MIKE FLOOD, which is accepted by Federal Emergency Management Agency (FEMA), is used along with the high resolution airborne LiDAR data. Once the model is setup it is made to run by changing the parameters such as resolution of Digital Surface Model (DSM), manning's roughness, initial losses, catchment description, concentration time, runoff reduction factor. In order to realize this, the results obtained from the model are compared with the field observations. The parametric study carried out in this work demonstrates that the selection of catchment description plays a very important role in urban flood modelling. Results also show the significant impact of resolution of DSM, initial losses and concentration time on urban flood model. This study will help in understanding the effect of various parameters that should be part of a flood model for its accurate performance.
Hydrometeorological and statistical analyses of heavy rainfall in Midwestern USA
NASA Astrophysics Data System (ADS)
Thorndahl, S.; Smith, J. A.; Krajewski, W. F.
2012-04-01
During the last two decades the mid-western states of the United States of America has been largely afflicted by heavy flood producing rainfall. Several of these storms seem to have similar hydrometeorological properties in terms of pattern, track, evolution, life cycle, clustering, etc. which raise the question if it is possible to derive general characteristics of the space-time structures of these heavy storms. This is important in order to understand hydrometeorological features, e.g. how storms evolve and with what frequency we can expect extreme storms to occur. In the literature, most studies of extreme rainfall are based on point measurements (rain gauges). However, with high resolution and quality radar observation periods exceeding more than two decades, it is possible to do long-term spatio-temporal statistical analyses of extremes. This makes it possible to link return periods to distributed rainfall estimates and to study precipitation structures which cause floods. However, doing these statistical frequency analyses of rainfall based on radar observations introduces some different challenges, converting radar reflectivity observations to "true" rainfall, which are not problematic doing traditional analyses on rain gauge data. It is for example difficult to distinguish reflectivity from high intensity rain from reflectivity from other hydrometeors such as hail, especially using single polarization radars which are used in this study. Furthermore, reflectivity from bright band (melting layer) should be discarded and anomalous propagation should be corrected in order to produce valid statistics of extreme radar rainfall. Other challenges include combining observations from several radars to one mosaic, bias correction against rain gauges, range correction, ZR-relationships, etc. The present study analyzes radar rainfall observations from 1996 to 2011 based the American NEXRAD network of radars over an area covering parts of Iowa, Wisconsin, Illinois, and Lake Michigan. The radar observations are processed using Hydro-NEXRAD algorithms in order to produce rainfall estimates with a spatial resolution of 1 km and a temporal resolution of 15 min. The rainfall estimates are bias-corrected on a daily basis using a network of rain gauges. Besides a thorough evaluation of the different challenges in investigating heavy rain as described above the study includes suggestions for frequency analysis methods as well as studies of hydrometeorological features of single events.
NASA Astrophysics Data System (ADS)
Velasco, David; Sempere-Torres, Daniel; Corral, Carles; Llort, Xavier; Velasco, Enrique
2010-05-01
Early Warning Systems (EWS) are commonly identified as the most efficient tools in order to improve the preparedness and risk management against heavy rains and Flash Floods (FF) with the objective of reducing economical losses and human casualties. In particular, flash floods affecting torrential Mediterranean catchments are a key element to be incorporated within operational EWSs. The characteristic high spatial and temporal variability of the storms requires high-resolution data and methods to monitor/forecast the evolution of rainfall and its hydrological impact in small and medium torrential basins. A first version of an operational FF-EWS has been implemented in Catalonia (NE Spain) under the name of EHIMI system (Integrated Tool for Hydrometeorological Forecasting) with the support of the Catalan Water Agency (ACA) and the Meteorological Service of Catalonia (SMC). Flash flood warnings are issued based on radar-rainfall estimates. Rainfall estimation is performed on radar observations with high spatial and temporal resolution (1km2 and 10 minutes) in order to adapt the warning scale to the 1-km grid of the EWS. The method is based on comparing observed accumulated rainfall against rainfall thresholds provided by the regional Intensity-Duration-Frequency (IDF) curves. The so-called "aggregated rainfall warning" at every river cell is obtained as the spatially averaged rainfall over its associated upstream draining area. Regarding the time aggregation of rainfall, the critical duration is thought to be an accumulation period similar to the concentration time of each cachtment. The warning is issued once the forecasted rainfall accumulation exceeds the rainfall thresholds mentioned above, which are associated to certain probability of occurrence. Finally, the hazard warning is provided and shown to the decision-maker in terms of exceeded return periods at every river cell covering the whole area of Catalonia. The objective of the present work includes the probabilistic component to the FF-EWS. As a first step, we have incorporated the uncertainty in rainfall estimates and forecasts based on an ensemble of equiprobable rainfall scenarios. The presented study has focused on a number of rainfall events and the performance of the FF-EWS evaluated in terms of its ability to produce probabilistic hazard warnings for decision-making support.
NASA Astrophysics Data System (ADS)
Williams, C.; Kniveton, D.; Layberry, R.
2009-04-01
It is increasingly accepted that any possible climate change will not only have an influence on mean climate but may also significantly alter climatic variability. A change in the distribution and magnitude of extreme rainfall events (associated with changing variability), such as droughts or flooding, may have a far greater impact on human and natural systems than a changing mean. This issue is of particular importance for environmentally vulnerable regions such as southern Africa. The subcontinent is considered especially vulnerable to and ill-equipped (in terms of adaptation) for extreme events, due to a number of factors including extensive poverty, famine, disease and political instability. Rainfall variability is a function of scale, so high spatial and temporal resolution data are preferred to identify extreme events and accurately predict future variability. In this research, satellite-derived rainfall data are used as a basis for undertaking model experiments using a state-of-the-art climate model, run at both high and low spatial resolution. Once the model's ability to reproduce extremes has been assessed, idealised regions of sea surface temperature (SST) anomalies are used to force the model, with the overall aim of investigating the ways in which SST anomalies influence rainfall extremes over southern Africa. In this paper, a brief overview is given of the authors' research to date, pertaining to southern African rainfall. This covers (i) a description of present-day rainfall variability over southern Africa; (ii) a comparison of model simulated daily rainfall with the satellite-derived dataset; (iii) results from sensitivity testing of the model's domain size; and (iv) results from the idealised SST experiments.
Validation Of TRMM For Hazard Assessment In The Remote Context Of Tropical Africa
NASA Astrophysics Data System (ADS)
Monsieurs, E.; Kirschbaum, D.; Tan, J.; Jacobs, L.; Kervyn, M.; Demoulin, A.; Dewitte, O.
2017-12-01
Accurate rainfall data is fundamental for understanding and mitigating the disastrous effects of many rainfall-triggered hazards, especially when one considers the challenges arising from climate change and rainfall variability. In tropical Africa in particular, the sparse operational rainfall gauging network hampers the ability to understand these hazards. Satellite rainfall estimates (SRE) can therefore be of great value. Yet, rigorous validation is required to identify the uncertainties when using SRE for hazard applications. We evaluated the Tropical Rainfall Measuring Mission (TRMM) Multi-satellite Precipitation Analysis (TMPA) 3B42 Research Derived Daily Product from 1998 to 2017, at 0.25° x 0.25° spatial and 24 h temporal resolution. The validation was done over the western branch of the East African Rift, with the perspective of regional landslide hazard assessment in mind. Even though we collected an unprecedented dataset of 47 gauges with a minimum temporal resolution of 24 h, the sparse and heterogeneous temporal coverage in a region with high rainfall variability poses challenges for validation. In addition, the discrepancy between local-scale gauge data and spatially averaged ( 775 km²) TMPA data in the context of local convective storms and orographic rainfall is a crucial source of uncertainty. We adopted a flexible framework for SRE validation that fosters explorative research in a remote context. Results show that TMPA performs reasonably well during the rainy seasons for rainfall intensities <20 mm/day. TMPA systematically underestimates rainfall, but most problematic is the decreasing probability of detection of high intensity rainfalls. We suggest that landslide hazard might be efficiently assessed if we take account of the systematic biases in TMPA data and determine rainfall thresholds modulated by controls on, and uncertainties of, TMPA revealed in this study. Moreover, it is found relevant in mapping regional-scale rainfall-triggered hazards that are in any case poorly covered by the sparse available gauges. We anticipate validation of TMPA's successor (Integrated Multi-satellitE Retrievals for Global Precipitation Measurement; 10 km × 10 km, half-hourly) using the proposed framework, as soon as this product will be available in early 2018 for the 1998-present period.
A Monte-Carlo Bayesian framework for urban rainfall error modelling
NASA Astrophysics Data System (ADS)
Ochoa Rodriguez, Susana; Wang, Li-Pen; Willems, Patrick; Onof, Christian
2016-04-01
Rainfall estimates of the highest possible accuracy and resolution are required for urban hydrological applications, given the small size and fast response which characterise urban catchments. While significant progress has been made in recent years towards meeting rainfall input requirements for urban hydrology -including increasing use of high spatial resolution radar rainfall estimates in combination with point rain gauge records- rainfall estimates will never be perfect and the true rainfall field is, by definition, unknown [1]. Quantifying the residual errors in rainfall estimates is crucial in order to understand their reliability, as well as the impact that their uncertainty may have in subsequent runoff estimates. The quantification of errors in rainfall estimates has been an active topic of research for decades. However, existing rainfall error models have several shortcomings, including the fact that they are limited to describing errors associated to a single data source (i.e. errors associated to rain gauge measurements or radar QPEs alone) and to a single representative error source (e.g. radar-rain gauge differences, spatial temporal resolution). Moreover, rainfall error models have been mostly developed for and tested at large scales. Studies at urban scales are mostly limited to analyses of propagation of errors in rain gauge records-only through urban drainage models and to tests of model sensitivity to uncertainty arising from unmeasured rainfall variability. Only few radar rainfall error models -originally developed for large scales- have been tested at urban scales [2] and have been shown to fail to well capture small-scale storm dynamics, including storm peaks, which are of utmost important for urban runoff simulations. In this work a Monte-Carlo Bayesian framework for rainfall error modelling at urban scales is introduced, which explicitly accounts for relevant errors (arising from insufficient accuracy and/or resolution) in multiple data sources (in this case radar and rain gauge estimates typically available at present), while at the same time enabling dynamic combination of these data sources (thus not only quantifying uncertainty, but also reducing it). This model generates an ensemble of merged rainfall estimates, which can then be used as input to urban drainage models in order to examine how uncertainties in rainfall estimates propagate to urban runoff estimates. The proposed model is tested using as case study a detailed rainfall and flow dataset, and a carefully verified urban drainage model of a small (~9 km2) pilot catchment in North-East London. The model has shown to well characterise residual errors in rainfall data at urban scales (which remain after the merging), leading to improved runoff estimates. In fact, the majority of measured flow peaks are bounded within the uncertainty area produced by the runoff ensembles generated with the ensemble rainfall inputs. REFERENCES: [1] Ciach, G. J. & Krajewski, W. F. (1999). On the estimation of radar rainfall error variance. Advances in Water Resources, 22 (6), 585-595. [2] Rico-Ramirez, M. A., Liguori, S. & Schellart, A. N. A. (2015). Quantifying radar-rainfall uncertainties in urban drainage flow modelling. Journal of Hydrology, 528, 17-28.
NASA Astrophysics Data System (ADS)
Gunkel, Anne; Lange, Jens
2010-05-01
The Middle East is characterized by a high temporal and spatial variability of rainfall. As a result, water resources are not reliable and severe drought events are frequent, worsening the natural water scarcity. Single high magnitude events may dominate the water balance of entire seasons - a fact that is poorly represented in the assessments of available water resources that are normally based on long term averages. Therefore, a distributed hydrological model with a high temporal and spatial resolution is applied to the Lower Jordan River basin (LJRB). The focus is hereby to capture the variability of rainfall and to investigate how this signal is amplified in the hydrological cycle in this arid and semi arid environment. Rainfall variability is addressed through a volume scanning rainfall radar providing precipitation data with a resolution of 5 minutes for entire seasons that serves as input to a conceptual hydrological model. The raw radar data recorded by a C-Band system was pre-corrected by a multiple regression approach prior to regionalization to the LJRB, ground truthing with rainfall station data and conditional merging. Despite certain uncertainties, the data documents the accentuated rainfall variability in the entire LJRB. In order to include the full range of present rainfall variability, one average and two extreme seasons (wet and dry) are studied. Hydrological modelling is undertaken with a new modelling tool created by coupling two hydrological models, TRAIN and ZIN, complementing each other in respect to the addressed processes and water fluxes. The resulting modelling tool enables conceptual modelling of the processes relevant for semi-arid / arid environments with a high temporal and spatial resolution. The model is applied to the large scale LJRB (16,000 km²) in order to simulate all components of the water balance for three rainy seasons representing the present climate variability. Under given conditions of low data availability, the results give a basin wide view on the availability of surface water resources without human intervention with a high resolution in time (5 min) and space (up to 250 x 250 m²). The scarcity of water resources in many areas within the region is illustrated and detailed maps of the water balance components reveal spatial pattern of water availability characterizing the different potentials of regions or sub basins for water management options. Moreover, comparing different climate conditions provides valuable information for water management, including insights into the relation between green and blue water. For instance, runoff generation and percolation react stronger to changes in precipitation than evapotranspiration and the changes in runoff and percolation are considerably higher than the differences in rainfall between the three years. This amplification of rainfall variability by the hydrological cycle is significant for water management. Based on the results for current conditions, the impact of different scenarios and management options is analyzed, e.g. the effect of land use changes or the suitability of different regions for rainwater harvesting, one of the urgently needed new water sources.
NASA Astrophysics Data System (ADS)
Brett, M.; Mattey, D.; Stephens, M.
2015-12-01
Oxygen isotopes in speleothem provide opportunities to construct precisely dated records of palaeoclimate variability, underpinned by an understanding of both the regional climate and local controls on isotopes in rainfall and groundwater. For tropical islands, a potential means to reconstruct past rainfall variability is to exploit the generally high correlation between rainfall amount and δ18O: the 'amount effect'. The GNIP program provides δ18O data at monthly resolution for several tropical Pacific islands but there are few data for precipitation isotopes at daily resolution, for investigating the amount effect over different timescales in a tropical maritime setting. Timescales are important since meteoric water feeding a speleothem has undergone storage and mixing in the aquifer system and understanding how the isotope amount effect is preserved in aquifer recharge has fundamental implications on the interpretation of speleothem δ18O in terms of palaeo-precipitation. The islands of Fiji host speleothem caves. Seasonal precipitation is related to the movement of the South Pacific Convergence Zone, and interannual variations in rainfall are coupled to ENSO behaviour. Individual rainfall events are stratiform or convective, with proximal moisture sources. We have daily resolution isotope data for rainfall collected at the University of the South Pacific in Suva, covering every rain event in 2012 and 2013. δ18O varies between -18‰ and +3‰ with the annual weighted averages at -7.6‰ and -6.8‰ respectively, while total recorded rainfall amount is similar in both years. We shall present analysis of our data compared with GNIP, meteorological data and back trajectory analyses to demonstrate the nature of the relationship between rainfall amount and isotopic signatures over this short timescale. Comparison with GNIP data for 2012-13 will shed light on the origin of the amount effect at monthly and seasonal timescales in convective, maritime, tropical climates.
An improved rainfall disaggregation technique for GCMs
NASA Astrophysics Data System (ADS)
Onof, C.; Mackay, N. G.; Oh, L.; Wheater, H. S.
1998-08-01
Meteorological models represent rainfall as a mean value for a grid square so that when the latter is large, a disaggregation scheme is required to represent the spatial variability of rainfall. In general circulation models (GCMs) this is based on an assumption of exponentiality of rainfall intensities and a fixed value of areal rainfall coverage, dependent on rainfall type. This paper examines these two assumptions on the basis of U.K. and U.S. radar data. Firstly, the coverage of an area is strongly dependent on its size, and this dependence exhibits a scaling law over a range of sizes. Secondly, the coverage is, of course, dependent on the resolution at which it is measured, although this dependence is weak at high resolutions. Thirdly, the time series of rainfall coverages has a long-tailed autocorrelation function which is comparable to that of the mean areal rainfalls. It is therefore possible to reproduce much of the temporal dependence of coverages by using a regression of the log of the mean rainfall on the log of the coverage. The exponential assumption is satisfactory in many cases but not able to reproduce some of the long-tailed dependence of some intensity distributions. Gamma and lognormal distributions provide a better fit in these cases, but they have their shortcomings and require a second parameter. An improved disaggregation scheme for GCMs is proposed which incorporates the previous findings to allow the coverage to be obtained for any area and any mean rainfall intensity. The parameters required are given and some of their seasonal behavior is analyzed.
NASA Technical Reports Server (NTRS)
Turner, B. J.; Austin, G. L.
1993-01-01
Three-dimensional radar data for three summer Florida storms are used as input to a microwave radiative transfer model. The model simulates microwave brightness observations by a 19-GHz, nadir-pointing, satellite-borne microwave radiometer. The statistical distribution of rainfall rates for the storms studied, and therefore the optimal conversion between microwave brightness temperatures and rainfall rates, was found to be highly sensitive to the spatial resolution at which observations were made. The optimum relation between the two quantities was less sensitive to the details of the vertical profile of precipitation. Rainfall retrievals were made for a range of microwave sensor footprint sizes. From these simulations, spatial sampling-error estimates were made for microwave radiometers over a range of field-of-view sizes. The necessity of matching the spatial resolution of ground truth to radiometer footprint size is emphasized. A strategy for the combined use of raingages, ground-based radar, microwave, and visible-infrared (VIS-IR) satellite sensors is discussed.
Critical scales to explain urban hydrological response: an application in Cranbrook, London
NASA Astrophysics Data System (ADS)
Cristiano, Elena; ten Veldhuis, Marie-Claire; Gaitan, Santiago; Ochoa Rodriguez, Susana; van de Giesen, Nick
2018-04-01
Rainfall variability in space and time, in relation to catchment characteristics and model complexity, plays an important role in explaining the sensitivity of hydrological response in urban areas. In this work we present a new approach to classify rainfall variability in space and time and we use this classification to investigate rainfall aggregation effects on urban hydrological response. Nine rainfall events, measured with a dual polarimetric X-Band radar instrument at the CAESAR site (Cabauw Experimental Site for Atmospheric Research, NL), were aggregated in time and space in order to obtain different resolution combinations. The aim of this work was to investigate the influence that rainfall and catchment scales have on hydrological response in urban areas. Three dimensionless scaling factors were introduced to investigate the interactions between rainfall and catchment scale and rainfall input resolution in relation to the performance of the model. Results showed that (1) rainfall classification based on cluster identification well represents the storm core, (2) aggregation effects are stronger for rainfall than flow, (3) model complexity does not have a strong influence compared to catchment and rainfall scales for this case study, and (4) scaling factors allow the adequate rainfall resolution to be selected to obtain a given level of accuracy in the calculation of hydrological response.
Rainfall estimation using microwave links. Results from an experimental setup in Luxembourg
NASA Astrophysics Data System (ADS)
Fenicia, Fabrizio; Matgen, Patrick; Pfister, Laurent
2010-05-01
Microwave links represent a valid alternative to traditional rainfall estimation methods. They are commonly used in mobile phone communication, and they constitute built-in widely distributed networks. Due to their ability of providing high temporal and spatial resolution measurements, their use is particularly suitable in urban settings. We here show results from an experimental setup in Luxembourg City, where two dual frequency links have been installed. The links cover a distance of about 4km, and measure power attenuation at 1 min. timestep. The links have been equipped with several recording raingauges, which measure rainfall in real-time communicating through a wireless connection. This set-up has been used to analyze in detail the mapping between attenuation and rainfall intensity, and gain insights into the potential accuracy of these instruments. In addition, we investigated the relation between rainfall and discharge response of the urban area of Luxembourg, which shows the potential utility of high frequency rainfall measurements for urban environments.
Systematic Anomalies in Rainfall Intensity Estimates Over the Continental U.S.
NASA Technical Reports Server (NTRS)
Amitai, Eyal; Petersen, Walter Arthur; Llort, Xavier; Vasiloff, Steve
2010-01-01
Rainfall intensities during extreme events over the continental U.S. are compared for several advanced radar products. These products include: 1) TRMM spaceborne radar (PR) near surface estimates; 2) NOAA Next-Generation Quantitative Precipitation Estimation (QPE) very high-resolution (1 km) radar-only national mosaics (Q2); 3) very high-resolution instantaneous gauge adjusted radar national mosaics, which we have developed by applying gauge correction on the Q2 instantaneous radar-only products; and 4) several independent C-band dual-polarimetric radar-estimated rainfall samples collected with the ARMOR radar in northern Alabama. Though accumulated rainfall amounts are often similar, we find the satellite and the ground radar rain rate pdfs to be quite different. PR pdfs are shifted towards lower rain rates, implying a much larger stratiform/convective rain ratio than do ground radar products. The shift becomes more evident during strong continental convective storms and much less during tropical storms. Resolving the continental/maritime regime behavior and other large discrepancies between the products presents an important challenge. A challenge to improve our understanding of the source of the discrepancies, to determine the uncertainties of the estimates, and to improve remote-sensing estimates of precipitation in general.
NASA Astrophysics Data System (ADS)
Martin, Gill; Levine, Richard; Klingaman, Nicholas; Bush, Stephanie; Turner, Andrew; Woolnough, Steven
2015-04-01
Despite considerable efforts worldwide to improve model simulations of the Asian summer monsoon, significant biases still remain in climatological seasonal mean rainfall distribution, timing of the onset, and northward and eastward extent of the monsoon domain (Sperber et al., 2013). Many modelling studies have shown sensitivity to convection and boundary layer parameterization, cloud microphysics and land surface properties, as well as model resolution. Here we examine the problems in representing short-timescale rainfall variability (related to convection parameterization), problems in representing synoptic-scale systems such as monsoon depressions (related to model resolution), and the relationship of each of these with longer-term systematic biases. Analysis of the spatial distribution of rainfall intensity on a range of timescales ranging from ~30 minutes to daily, in the MetUM and in observations (where available), highlights how rainfall biases in the South Asian monsoon region on different timescales in different regions can be achieved in models through a combination of the incorrect frequency and/or intensity of rainfall. Over the Indian land area, the typical dry bias is related to sub-daily rainfall events being too infrequent, despite being too intense when they occur. In contrast, the wet bias regions over the equatorial Indian Ocean are mainly related to too frequent occurrence of lower-than-observed 3-hourly rainfall accumulations which result in too frequent occurrence of higher-than-observed daily rainfall accumulations. This analysis sheds light on the model deficiencies behind the climatological seasonal mean rainfall biases that many models exhibit in this region. Changing physical parameterizations alters this behaviour, with associated adjustments in the climatological rainfall distribution, although the latter is not always improved (Bush et al., 2014). This suggests a more complex interaction between the diabatic heating and the large-scale circulation than is indicated by the intensity and frequency of rainfall alone. Monsoon depressions and low pressure systems are important contributors to monsoon rainfall over central and northern India, areas where MetUM climate simulations typically show deficient monsoon rainfall. Analysis of MetUM climate simulations at resolutions ranging from N96 (~135km) to N512 (~25km) suggests that at lower resolution the numbers and intensities of monsoon depressions and low pressure systems and their associated rainfall are very low compared with re-analyses/observations. We show that there are substantial increases with horizontal resolution, but resolution is not the only factor. Idealised simulations, either using nudged atmospheric winds or initialised coupled hindcasts, which improve (strengthen) the mean state monsoon and cyclonic circulation over the Indian peninsula, also result in a substantial increase in monsoon depressions and associated rainfall. This suggests that a more realistic representation of monsoon depressions is possible even at lower resolution if the larger-scale systematic error pattern in the monsoon is improved.
Analysis and simulation of mesoscale convective systems accompanying heavy rainfall: The goyang case
NASA Astrophysics Data System (ADS)
Choi, Hyun-Young; Ha, Ji-Hyun; Lee, Dong-Kyou; Kuo, Ying-Hwa
2011-05-01
We investigated a torrential rainfall case with a daily rainfall amount of 379 mm and a maximum hourly rain rate of 77.5 mm that took place on 12 July 2006 at Goyang in the middlewestern part of the Korean Peninsula. The heavy rainfall was responsible for flash flooding and was highly localized. High-resolution Doppler radar data from 5 radar sites located over central Korea were analyzed. Numerical simulations using the Weather Research and Forecasting (WRF) model were also performed to complement the high-resolution observations and to further investigate the thermodynamic structure and development of the convective system. The grid nudging method using the Global Final (FNL) Analyses data was applied to the coarse model domain (30 km) in order to provide a more realistic and desirable initial and boundary conditions for the nested model domains (10 km, 3.3 km). The mesoscale convective system (MCS) which caused flash flooding was initiated by the strong low level jet (LLJ) at the frontal region of high equivalent potential temperature (θe) near the west coast over the Yellow Sea. The ascending of the warm and moist air was induced dynamically by the LLJ. The convective cells were triggered by small thermal perturbations and abruptly developed by the warm θe inflow. Within the MCS, several convective cells responsible for the rainfall peak at Goyang simultaneously developed with neighboring cells and interacted with each other. Moist absolutely unstable layers (MAULs) were seen at the lower troposphere with the very moist environment adding the instability for the development of the MCS.
NASA Astrophysics Data System (ADS)
Jayakumar, A.; Mamgain, Ashu; Jisesh, A. S.; Mohandas, Saji; Rakhi, R.; Rajagopal, E. N.
2016-05-01
Representation of rainfall distribution and monsoon circulation in the high resolution versions of NCMRWF Unified model (NCUM-REG) for the short-range forecasting of extreme rainfall event is vastly dependent on the key factors such as vertical cloud distribution, convection and convection/cloud relationship in the model. Hence it is highly relevant to evaluate the vertical structure of cloud and precipitation of the model over the monsoon environment. In this regard, we utilized the synergy of the capabilities of CloudSat data for long observational period, by conditioning it for the synoptic situation of the model simulation period. Simulations were run at 4-km grid length with the convective parameterization effectively switched off and on. Since the sample of CloudSat overpasses through the monsoon domain is small, the aforementioned methodology may qualitatively evaluate the vertical cloud structure for the model simulation period. It is envisaged that the present study will open up the possibility of further improvement in the high resolution version of NCUM in the tropics for the Indian summer monsoon associated rainfall events.
Spatio-temporal trends of rainfall across Indian river basins
NASA Astrophysics Data System (ADS)
Bisht, Deepak Singh; Chatterjee, Chandranath; Raghuwanshi, Narendra Singh; Sridhar, Venkataramana
2018-04-01
Daily gridded high-resolution rainfall data of India Meteorological Department at 0.25° spatial resolution (1901-2015) was analyzed to detect the trend in seasonal, annual, and maximum cumulative rainfall for 1, 2, 3, and 5 days. The present study was carried out for 85 river basins of India during 1901-2015 and pre- and post-urbanization era, i.e., 1901-1970 and 1971-2015, respectively. Mann-Kendall ( α = 0.05) and Theil-Sen's tests were employed for detecting the trend and percentage of change over the period of time, respectively. Daily extreme rainfall events, above 95 and 99 percentile threshold, were also analyzed to detect any trend in their magnitude and number of occurrences. The upward trend was found for the majority of the sub-basins for 1-, 2-, 3-, and 5-day maximum cumulative rainfall during the post-urbanization era. The magnitude of extreme threshold events is also found to be increasing in the majority of the river basins during the post-urbanization era. A 30-year moving window analysis further revealed a widespread upward trend in a number of extreme threshold rainfall events possibly due to urbanization and climatic factors. Overall trends studied against intra-basin trend across Ganga basin reveal the mixed pattern of trends due to inherent spatial heterogeneity of rainfall, therefore, highlighting the importance of scale for such studies.
Rainfall disaggregation for urban hydrology: Effects of spatial consistence
NASA Astrophysics Data System (ADS)
Müller, Hannes; Haberlandt, Uwe
2015-04-01
For urban hydrology rainfall time series with a high temporal resolution are crucial. Observed time series of this kind are very short in most cases, so they cannot be used. On the contrary, time series with lower temporal resolution (daily measurements) exist for much longer periods. The objective is to derive time series with a long duration and a high resolution by disaggregating time series of the non-recording stations with information of time series of the recording stations. The multiplicative random cascade model is a well-known disaggregation model for daily time series. For urban hydrology it is often assumed, that a day consists of only 1280 minutes in total as starting point for the disaggregation process. We introduce a new variant for the cascade model, which is functional without this assumption and also outperforms the existing approach regarding time series characteristics like wet and dry spell duration, average intensity, fraction of dry intervals and extreme value representation. However, in both approaches rainfall time series of different stations are disaggregated without consideration of surrounding stations. This yields in unrealistic spatial patterns of rainfall. We apply a simulated annealing algorithm that has been used successfully for hourly values before. Relative diurnal cycles of the disaggregated time series are resampled to reproduce the spatial dependence of rainfall. To describe spatial dependence we use bivariate characteristics like probability of occurrence, continuity ratio and coefficient of correlation. Investigation area is a sewage system in Northern Germany. We show that the algorithm has the capability to improve spatial dependence. The influence of the chosen disaggregation routine and the spatial dependence on overflow occurrences and volumes of the sewage system will be analyzed.
NASA Astrophysics Data System (ADS)
Vannametee, E.; Karssenberg, D.; Hendriks, M. R.; de Jong, S. M.; Bierkens, M. F. P.
2010-05-01
We propose a modelling framework for distributed hydrological modelling of 103-105 km2 catchments by discretizing the catchment in geomorphologic units. Each of these units is modelled using a lumped model representative for the processes in the unit. Here, we focus on the development and parameterization of this lumped model as a component of our framework. The development of the lumped model requires rainfall-runoff data for an extensive set of geomorphological units. Because such large observational data sets do not exist, we create artificial data. With a high-resolution, physically-based, rainfall-runoff model, we create artificial rainfall events and resulting hydrographs for an extensive set of different geomorphological units. This data set is used to identify the lumped model of geomorphologic units. The advantage of this approach is that it results in a lumped model with a physical basis, with representative parameters that can be derived from point-scale measurable physical parameters. The approach starts with the development of the high-resolution rainfall-runoff model that generates an artificial discharge dataset from rainfall inputs as a surrogate of a real-world dataset. The model is run for approximately 105 scenarios that describe different characteristics of rainfall, properties of the geomorphologic units (i.e. slope gradient, unit length and regolith properties), antecedent moisture conditions and flow patterns. For each scenario-run, the results of the high-resolution model (i.e. runoff and state variables) at selected simulation time steps are stored in a database. The second step is to develop the lumped model of a geomorphological unit. This forward model consists of a set of simple equations that calculate Hortonian runoff and state variables of the geomorphologic unit over time. The lumped model contains only three parameters: a ponding factor, a linear reservoir parameter, and a lag time. The model is capable of giving an appropriate representation of the transient rainfall-runoff relations that exist in the artificial data set generated with the high-resolution model. The third step is to find the values of empirical parameters in the lumped forward model using the artificial dataset. For each scenario of the high-resolution model run, a set of lumped model parameters is determined with a fitting method using the corresponding time series of state variables and outputs retrieved from the database. Thus, the parameters in the lumped model can be estimated by using the artificial data set. The fourth step is to develop an approach to assign lumped model parameters based upon the properties of the geomorphological unit. This is done by finding relationships between the measurable physical properties of geomorphologic units (i.e. slope gradient, unit length, and regolith properties) and the lumped forward model parameters using multiple regression techniques. In this way, a set of lumped forward model parameters can be estimated as a function of morphology and physical properties of the geomorphologic units. The lumped forward model can then be applied to different geomorphologic units. Finally, the performance of the lumped forward model is evaluated; the outputs of the lumped forward model are compared with the results of the high-resolution model. Our results show that the lumped forward model gives the best estimates of total discharge volumes and peak discharges when rain intensities are not significantly larger than the infiltration capacities of the units and when the units are small with a flat gradient. Hydrograph shapes are fairly well reproduced for most cases except for flat and elongated units with large runoff volumes. The results of this study provide a first step towards developing low-dimensional models for large ungauged basins.
Does the Madden-Julian Oscillation influence aerosol variability?
NASA Astrophysics Data System (ADS)
Tian, Baijun; Waliser, Duane E.; Kahn, Ralph A.; Li, Qinbin; Yung, Yuk L.; Tyranowski, Tomasz; Geogdzhayev, Igor V.; Mishchenko, Michael I.; Torres, Omar; Smirnov, Alexander
2008-06-01
We investigate the modulation of aerosols by the Madden-Julian Oscillation (MJO) using multiple, global satellite aerosol products: aerosol index (AI) from the Total Ozone Mapping Spectrometer (TOMS) on Nimbus-7, and aerosol optical thickness (AOT) from the Moderate Resolution Imaging Spectroradiometer (MODIS) on Terra and Aqua and the Advanced Very High Resolution Radiometer (AVHRR) on NOAA satellites. A composite MJO analysis indicates that large variations in the TOMS AI and MODIS/AVHRR AOT are found over the equatorial Indian and western Pacific Oceans where MJO convection is active, as well as the tropical Africa and Atlantic Ocean where MJO convection is weak but the background aerosol level is high. A strong inverse linear relationship between the TOMS AI and rainfall anomalies, but a weaker, less coherent positive correlation between the MODIS/AVHRR AOT and rainfall anomalies, were found. The MODIS/AVHRR pattern is consistent with ground-based Aerosol Robotic Network data. These results indicate that the MJO and its associated cloudiness, rainfall, and circulation variability systematically influence the variability in remote sensing aerosol retrieval results. Several physical and retrieval algorithmic factors that may contribute to the observed aerosol-rainfall relationships are discussed. Preliminary analysis indicates that cloud contamination in the aerosol retrievals is likely to be a major contributor to the observed relationships, although we cannot exclude possible contributions from other physical mechanisms. Future research is needed to fully understand these complex aerosol-rainfall relationships.
Evaluation and intercomparison of GPM-IMERG and TRMM 3B42 daily precipitation products over Greece
NASA Astrophysics Data System (ADS)
Kazamias, A. P.; Sapountzis, M.; Lagouvardos, K.
2017-09-01
Accurate precipitation data at high temporal and spatial resolutions are needed for numerous applications in hydrology, water resources management and flood risk management. Satellite-based precipitation estimations/products offer a potential alternative source of rainfall data for regions with sparse rain gauge network. The recently launched Global Precipitation Measurement (GPM) mission is the successor of Tropical Rainfall Measuring Mission (TRMM) providing global precipitation estimates at spatial resolution of 0.1 degree x 0.1 degree and half-hourly temporal resolution. This study aims at evaluating the accuracy of the Integrated Multi-satellite Retrievals for GPM (IMERG) near-real-time daily product (GPM-3IMERGDL) against rain gauge observations from a network of stations distributed across Greece for the year 2016. Moreover, the GPM-IMERG product is also compared with its predecessor, the Version-7 near-real-time (3B42RT) daily product of TRMM Multisatellite Precipitation Analysis (TMPA). Several statistical metrics are used to quantitatively evaluate the performance of the satellite-based precipitation estimates against rain gauge observations. In addition, categorical statistical indices are used to assess rain detection capabilities of the two satellite products. The GPM-IMERG daily product shows reasonable agreement (CC=0.60) against rain gauge observations, with the exception of coastal areas in which low correlations are achieved. The GPM-IMERG daily precipitation product tends to overestimate rainfall, especially in complex terrain areas with high annual precipitation. In particular, rainfall estimates in western Greece have a strong positive bias. On the other hand, the TRMM 3B42 product shows low correlation (CC=0.45) against rain gauge observations and slightly underestimates rainfall. This study is a first attempt to evaluate and compare the newly introduced GPM-IMERG and the TRMM 3B42 rainfall products at daily timescale over Greece.
Impact of Urbanization on Spatial Variability of Rainfall-A case study of Mumbai city with WRF Model
NASA Astrophysics Data System (ADS)
Mathew, M.; Paul, S.; Devanand, A.; Ghosh, S.
2015-12-01
Urban precipitation enhancement has been identified over many cities in India by previous studies conducted. Anthropogenic effects such as change in land cover from hilly forest areas to flat topography with solid concrete infrastructures has certain effect on the local weather, the same way the greenhouse gas has on climate change. Urbanization could alter the large scale forcings to such an extent that it may bring about temporal and spatial changes in the urban weather. The present study investigate the physical processes involved in urban forcings, such as the effect of sudden increase in wind velocity travelling through the channel space in between the dense array of buildings, which give rise to turbulence and air mass instability in urban boundary layer and in return alters the rainfall distribution as well as rainfall initiation. A numerical model study is conducted over Mumbai metropolitan city which lies on the west coast of India, to assess the effect of urban morphology on the increase in number of extreme rainfall events in specific locations. An attempt has been made to simulate twenty extreme rainfall events that occurred over the summer monsoon period of the year 2014 using high resolution WRF-ARW (Weather Research and Forecasting-Advanced Research WRF) model to assess the urban land cover mechanisms that influences precipitation variability over this spatially varying urbanized region. The result is tested against simulations with altered land use. The correlation of precipitation with spatial variability of land use is found using a detailed urban land use classification. The initial and boundary conditions for running the model were obtained from the global model ECMWF(European Centre for Medium Range Weather Forecast) reanalysis data having a horizontal resolution of 0.75 °x 0.75°. The high resolution simulations show significant spatial variability in the accumulated rainfall, within a few kilometers itself. Understanding the spatial variability of precipitation will help in the planning and management of the built environment more efficiently.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lim, Kyo-Sun; Hong, Song You; Yoon, Jin-Ho
2014-10-01
The most recent version of Simplified Arakawa-Schubert (SAS) cumulus scheme in National Center for Environmental Prediction (NCEP) Global Forecast System (GFS) (GFS SAS) has been implemented into the Weather and Research Forecasting (WRF) model with a modification of triggering condition and convective mass flux to become depending on model’s horizontal grid spacing. East Asian Summer Monsoon of 2006 from June to August is selected to evaluate the performance of the modified GFS SAS scheme. Simulated monsoon rainfall with the modified GFS SAS scheme shows better agreement with observation compared to the original GFS SAS scheme. The original GFS SAS schememore » simulates the similar ratio of subgrid-scale precipitation, which is calculated from a cumulus scheme, against total precipitation regardless of model’s horizontal grid spacing. This is counter-intuitive because the portion of resolved clouds in a grid box should be increased as the model grid spacing decreases. This counter-intuitive behavior of the original GFS SAS scheme is alleviated by the modified GFS SAS scheme. Further, three different cumulus schemes (Grell and Freitas, Kain and Fritsch, and Betts-Miller-Janjic) are chosen to investigate the role of a horizontal resolution on simulated monsoon rainfall. The performance of high-resolution modeling is not always enhanced as the spatial resolution becomes higher. Even though improvement of probability density function of rain rate and long wave fluxes by the higher-resolution simulation is robust regardless of a choice of cumulus parameterization scheme, the overall skill score of surface rainfall is not monotonically increasing with spatial resolution.« less
NASA Astrophysics Data System (ADS)
da Silva Rocha Paz, Igor; Ichiba, Abdellah; Skouri-Plakali, Ilektra; Lee, Jisun; Gires, Auguste; Tchiguirinskaia, Ioulia; Schertzer, Daniel
2017-04-01
Climate change and global warming are expected to make precipitation events more frequent, more severe and more local. This may have serious consequences for human health, the environment, cultural heritage, economic activities, utilities and public service providers. Then precipitation risk and water management is a key challenge for densely populated urban areas. Applications derived from high (time and space) resolution observation of precipitations are to make our cities more weather-ready. Finer resolution data available from X-band dual radar measurements enhance engineering tools as used for urban planning policies as well as protection (mitigation/adaptation) strategies to tackle climate-change related weather events. For decades engineering tools have been developed to work conveniently either with very local rain gauge networks, or with mainly C-band weather radars that have gradually been set up for space-time remote sensing of precipitation. Most of the time, the C-band weather radars continue to be calibrated by the existing rain gauge networks. Inhomogeneous distributions of rain gauging networks lead to only a partial information on the rainfall fields. In fact, the statistics of measured rainfall is strongly biased by the fractality of the measuring networks. This fractality needs to be properly taken in to account to retrieve the original properties of the rainfall fields, in spite of the radar data calibration. In this presentation, with the help of multifractal analysis, we first demonstrate that the semi-distributed hydrological models statistically reduce the rainfall fields into rainfall measured by a much scarcer network of virtual rain gauges. For this purpose, we use C-band and X-band radar data. The first has a resolution of 1 km in space and 5 min in time and is in fact a product provided by RHEA SAS after treating the Météo-France C-band radar data. The latter is measured by the radar operated at Ecole des Ponts and has a resolution of 250 m in space and 3.4 min in time. The obtained results suggest that a proper rainfall data re-normalisation is needed either when comparing gauged rainfall with the radar data, or when quantifying the impacts of space-time variability within hydrological modelling. Then, we used the semi-distributed hydrological model InfoWorks CS operated by Veolia over the Bièvre catchment (Paris region) with the same two types of rainfall data as inputs. We simulated six events and analysed the hydrographs resulted from simulations with both data types to show the impacts of initially different resolutions of rainfall fields over the same catchment, especially in respect to the small-scale variability not measured by the C-band radar data. These results encourage us not only to argue the use of higher resolution rainfall data, compare to that has been so claimed in the literature, but also to emphasise the important role of nonlinear geophysics' methods in taking reliable decisions.
NASA Astrophysics Data System (ADS)
Krämer, Stefan; Rohde, Sophia; Schröder, Kai; Belli, Aslan; Maßmann, Stefanie; Schönfeld, Martin; Henkel, Erik; Fuchs, Lothar
2015-04-01
The design of urban drainage systems with numerical simulation models requires long, continuous rainfall time series with high temporal resolution. However, suitable observed time series are rare. As a result, usual design concepts often use uncertain or unsuitable rainfall data, which renders them uneconomic or unsustainable. An expedient alternative to observed data is the use of long, synthetic rainfall time series as input for the simulation models. Within the project SYNOPSE, several different methods to generate synthetic rainfall data as input for urban drainage modelling are advanced, tested, and compared. Synthetic rainfall time series of three different precipitation model approaches, - one parametric stochastic model (alternating renewal approach), one non-parametric stochastic model (resampling approach), one downscaling approach from a regional climate model-, are provided for three catchments with different sewer system characteristics in different climate regions in Germany: - Hamburg (northern Germany): maritime climate, mean annual rainfall: 770 mm; combined sewer system length: 1.729 km (City center of Hamburg), storm water sewer system length (Hamburg Harburg): 168 km - Brunswick (Lower Saxony, northern Germany): transitional climate from maritime to continental, mean annual rainfall: 618 mm; sewer system length: 278 km, connected impervious area: 379 ha, height difference: 27 m - Friburg in Brisgau (southern Germany): Central European transitional climate, mean annual rainfall: 908 mm; sewer system length: 794 km, connected impervious area: 1 546 ha, height difference 284 m Hydrodynamic models are set up for each catchment to simulate rainfall runoff processes in the sewer systems. Long term event time series are extracted from the - three different synthetic rainfall time series (comprising up to 600 years continuous rainfall) provided for each catchment and - observed gauge rainfall (reference rainfall) according national hydraulic design standards. The synthetic and reference long term event time series are used as rainfall input for the hydrodynamic sewer models. For comparison of the synthetic rainfall time series against the reference rainfall and against each other the number of - surcharged manholes, - surcharges per manhole, - and the average surcharge volume per manhole are applied as hydraulic performance criteria. The results are discussed and assessed to answer the following questions: - Are the synthetic rainfall approaches suitable to generate high resolution rainfall series and do they produce, - in combination with numerical rainfall runoff models - valid results for design of urban drainage systems? - What are the bounds of uncertainty in the runoff results depending on the synthetic rainfall model and on the climate region? The work is carried out within the SYNOPSE project, funded by the German Federal Ministry of Education and Research (BMBF).
The impact of mesoscale convective systems on global precipitation: A modeling study
NASA Astrophysics Data System (ADS)
Tao, Wei-Kuo
2017-04-01
The importance of precipitating mesoscale convective systems (MCSs) has been quantified from TRMM precipitation radar and microwave imager retrievals. MCSs generate more than 50% of the rainfall in most tropical regions. Typical MCSs have horizontal scales of a few hundred kilometers (km); therefore, a large domain and high resolution are required for realistic simulations of MCSs in cloud-resolving models (CRMs). Almost all traditional global and climate models do not have adequate parameterizations to represent MCSs. Typical multi-scale modeling frameworks (MMFs) with 32 CRM grid points and 4 km grid spacing also might not have sufficient resolution and domain size for realistically simulating MCSs. In this study, the impact of MCSs on precipitation processes is examined by conducting numerical model simulations using the Goddard Cumulus Ensemble model (GCE) and Goddard MMF (GMMF). The results indicate that both models can realistically simulate MCSs with more grid points (i.e., 128 and 256) and higher resolutions (1 or 2 km) compared to those simulations with less grid points (i.e., 32 and 64) and low resolution (4 km). The modeling results also show that the strengths of the Hadley circulations, mean zonal and regional vertical velocities, surface evaporation, and amount of surface rainfall are either weaker or reduced in the GMMF when using more CRM grid points and higher CRM resolution. In addition, the results indicate that large-scale surface evaporation and wind feed back are key processes for determining the surface rainfall amount in the GMMF. A sensitivity test with reduced sea surface temperatures (SSTs) is conducted and results in both reduced surface rainfall and evaporation.
The Soil Moisture Dependence of TRMM Microwave Imager Rainfall Estimates
NASA Astrophysics Data System (ADS)
Seyyedi, H.; Anagnostou, E. N.
2011-12-01
This study presents an in-depth analysis of the dependence of overland rainfall estimates from the Tropical Rainfall Measuring Mission (TRMM) Microwave Imager (TMI) on the soil moisture conditions at the land surface. TMI retrievals are verified against rainfall fields derived from a high resolution rain-gauge network (MESONET) covering Oklahoma. Soil moisture (SOM) patterns are extracted based on recorded data from 2000-2007 with 30 minutes temporal resolution. The area is divided into wet and dry regions based on normalized SOM (Nsom) values. Statistical comparison between two groups is conducted based on recorded ground station measurements and the corresponding passive microwave retrievals from TMI overpasses at the respective MESONET station location and time. The zero order error statistics show that the Probability of Detection (POD) for the wet regions (higher Nsom values) is higher than the dry regions. The Falls Alarm Ratio (FAR) and volumetric FAR is lower for the wet regions. The volumetric missed rain for the wet region is lower than dry region. Analysis of the MESONET-to-TMI ratio values shows that TMI tends to overestimate for surface rainfall intensities less than 12 (mm/h), however the magnitude of the overestimation over the wet regions is lower than the dry regions.
NASA Astrophysics Data System (ADS)
Kretzschmar, Ann; Tych, Wlodek; Beven, Keith; Chappell, Nick
2017-04-01
Flooding is the most widely occurring natural disaster affecting thousands of lives and businesses worldwide each year, and the size and frequency of flood-events are predicted to increase with climate change. The main input-variable for models used in flood prediction is rainfall. Estimating the rainfall input is often based on a sparse network of raingauges, which may or may not be representative of the salient rainfall characteristics responsible for generating of storm-hydrographs. A method based on Reverse Hydrology (Kretzschmar et al 2014 Environ Modell Softw) has been developed and is being tested using the intensively-instrumented Brue catchment (Southwest England) to explore the spatiotemporal structure of the rainfall-field (using 23 rain gauges over the 135.2 km2 basin). We compare how well the rainfall measured at individual gauges, or averaged over the basin, represent the rainfall inferred from the streamflow signal. How important is it to get the detail of the spatiotemporal rainfall structure right? Rainfall is transformed by catchment processes as it moves to streams, so exact duplication of the structure may not be necessary. 'True' rainfall estimated using 23 gauges / 135.2 km2 is likely to be a good estimate of the overall-catchment-rainfall, however, the integration process 'smears' the rainfall patterns in time, i.e. reduces the number of and lengthens rain-events as they travel across the catchment. This may have little impact on the simulation of stream-hydrographs when events are extensive across the catchment (e.g., frontal rainfall events) but may be significant for high-intensity, localised convective events. The Reverse Hydrology approach uses the streamflow record to infer a rainfall sequence with a lower time-resolution than the original input time-series. The inferred rainfall series is, however, able simulate streamflow as well as the observed, high resolution rainfall (Kretzschmar et al 2015 Hydrol Res). Most gauged catchments in the UK of a similar size would only have data available for 1 to 3 raingauges. The high density of the Brue raingauge network allows a good estimate of the 'True' catchment rainfall to be made and compared with data from an individual raingauge as if that was the only data available. In addition the rainfall from each raingauge is compared with rainfall inferred from streamflow using data from the selected individual raingauge, and also inferred from the full catchment network. The stochastic structure of the rainfall from all of these datasets is compared using a combination of traditional statistical measures, i.e., the first 4 moments of rainfall totals and its residuals; plus the number, length and distribution of wet and dry periods; rainfall intensity characteristics; and their ability to generate the observed stream hydrograph. Reverse Hydrology, which utilises information present in both the input rainfall and the output hydrograph, has provided a method of investigating the quality of the information each gauge adds to the catchment-average (Kretzschmar et al 2016 Procedia Eng.). Further, it has been used to ascertain how important reproducing the detailed rainfall structure really is, when used for flow prediction.
NASA Astrophysics Data System (ADS)
Garcia Galiano, S. G.; Giraldo Osorio, J. D.; Nguyen, P.; Hsu, K. L.; Braithwaite, D.; Olmos, P.; Sorooshian, S.
2015-12-01
Studying Spain's long-term variability and changing trends in rainfall, due to its unique position in the Mediterranean basin (i.e., the latitudinal gradient from North to South and its orographic variation), can provide a valuable insight into how hydroclimatology of the region has changed. A recently released high resolution satellite-based global daily precipitation climate dataset PERSIANN-CDR (Precipitation Estimation from Remotely Sensed Information using Artificial Neural Network - Climate Data Record), provided the opportunity to conduct such study. It covers the period 01/01/1983 - to date, at 0.25° resolution. In areas without a dense network of rain-gauges, the PERSIANN-CDR dataset could be useful for identifying the reliability of regional climate models (RCMs), in order to build robust RCMs ensemble for reducing the uncertainties in the climate and hydrological projections. However, before using this data set for RCM evaluation, an assessment of performance of PERSIANN-CDR dataset against in-situ observations is necessary. The high-resolution gridded daily rain-gauge dataset, named Spain02, was employed in this study. The variable Dry Spell Lengths (DSL) considering 1 mm and 10 mm as thresholds of daily rainfall, and the time period 1988-2007 was defined for the study. A procedure for improving the consistency and homogeneity between the two datasets was applied. The assessment is based on distributional similarity and the well-known statistical tests (Smirnov-Kolmogorov of two samples and Chi-Square) are used as fitting criteria. The results demonstrate good fit of PERSIANN-CDR over whole Spain, for threshold 10 mm/day. However, for threshold 1 mm/day PERSIANN-CDR compares well with Spain02 dataset for areas with high values of rainfall (North of Spain); while in semiarid areas (South East of Spain) there is strong overestimation of short DSLs. Overall, PERSIANN-CDR demonstrate its robustness in the simulation of DSLs for the highest thresholds.
NASA Astrophysics Data System (ADS)
Karbalaee, Negar; Hsu, Kuolin; Sorooshian, Soroosh; Braithwaite, Dan
2017-04-01
This study explores using Passive Microwave (PMW) rainfall estimation for spatial and temporal adjustment of Precipitation Estimation from Remotely Sensed Information using Artificial Neural Networks-Cloud Classification System (PERSIANN-CCS). The PERSIANN-CCS algorithm collects information from infrared images to estimate rainfall. PERSIANN-CCS is one of the algorithms used in the Integrated Multisatellite Retrievals for GPM (Global Precipitation Mission) estimation for the time period PMW rainfall estimations are limited or not available. Continued improvement of PERSIANN-CCS will support Integrated Multisatellite Retrievals for GPM for current as well as retrospective estimations of global precipitation. This study takes advantage of the high spatial and temporal resolution of GEO-based PERSIANN-CCS estimation and the more effective, but lower sample frequency, PMW estimation. The Probability Matching Method (PMM) was used to adjust the rainfall distribution of GEO-based PERSIANN-CCS toward that of PMW rainfall estimation. The results show that a significant improvement of global PERSIANN-CCS rainfall estimation is obtained.
NASA Astrophysics Data System (ADS)
Bitew, M. M.; Goodrich, D. C.; Demaria, E.; Heilman, P.; Kautz, M. A.
2017-12-01
Walnut Gulch is a semi-arid environment experimental watershed and Long Term Agro-ecosystem Research (LTAR) site managed by USDA-ARS Southwest Watershed Research Center for which high-resolution long-term hydro-climatic data are available across its 150 km2 drainage area. In this study, we present the analysis of 50 years of continuous hourly rainfall data to evaluate runoff control and generation processes for improving the QA-QC plans of Walnut Gulch to create high-quality data set that is critical for reducing water balance uncertainties. Multiple linear regression models were developed to relate rainfall properties, runoff characteristics and watershed properties. The rainfall properties were summarized to event based total depth, maximum intensity, duration, the location of the storm center with respect to the outlet, and storm size normalized to watershed area. We evaluated the interaction between the runoff and rainfall and runoff as antecedent moisture condition (AMC), antecedent runoff condition (ARC) and, runoff depth and duration for each rainfall events. We summarized each of the watershed properties such as contributing area, slope, shape, channel length, stream density, channel flow area, and percent of the area of retention stock ponds for each of the nested catchments in Walnut Gulch. The evaluation of the model using basic and categorical statistics showed good predictive skill throughout the watersheds. The model produced correlation coefficients ranging from 0.4-0.94, Nash efficiency coefficients up to 0.77, and Kling-Gupta coefficients ranging from 0.4 to 0.98. The model predicted 92% of all runoff generations and 98% of no-runoff across all sub-watersheds in Walnut Gulch. The regression model also indicated good potential to complement the QA-QC procedures in place for Walnut Gulch dataset publications developed over the years since the 1960s through identification of inconsistencies in rainfall and runoff relations.
NASA Astrophysics Data System (ADS)
Nord, Guillaume; Boudevillain, Brice; Berne, Alexis; Branger, Flora; Braud, Isabelle; Dramais, Guillaume; Gérard, Simon; Le Coz, Jérôme; Legoût, Cédric; Molinié, Gilles; Van Baelen, Joel; Vandervaere, Jean-Pierre; Andrieu, Julien; Aubert, Coralie; Calianno, Martin; Delrieu, Guy; Grazioli, Jacopo; Hachani, Sahar; Horner, Ivan; Huza, Jessica; Le Boursicaud, Raphaël; Raupach, Timothy H.; Teuling, Adriaan J.; Uber, Magdalena; Vincendon, Béatrice; Wijbrans, Annette
2017-03-01
A comprehensive hydrometeorological dataset is presented spanning the period 1 January 2011-31 December 2014 to improve the understanding of the hydrological processes leading to flash floods and the relation between rainfall, runoff, erosion and sediment transport in a mesoscale catchment (Auzon, 116 km2) of the Mediterranean region. Badlands are present in the Auzon catchment and well connected to high-gradient channels of bedrock rivers which promotes the transfer of suspended solids downstream. The number of observed variables, the various sensors involved (both in situ and remote) and the space-time resolution ( ˜ km2, ˜ min) of this comprehensive dataset make it a unique contribution to research communities focused on hydrometeorology, surface hydrology and erosion. Given that rainfall is highly variable in space and time in this region, the observation system enables assessment of the hydrological response to rainfall fields. Indeed, (i) rainfall data are provided by rain gauges (both a research network of 21 rain gauges with a 5 min time step and an operational network of 10 rain gauges with a 5 min or 1 h time step), S-band Doppler dual-polarization radars (1 km2, 5 min resolution), disdrometers (16 sensors working at 30 s or 1 min time step) and Micro Rain Radars (5 sensors, 100 m height resolution). Additionally, during the special observation period (SOP-1) of the HyMeX (Hydrological Cycle in the Mediterranean Experiment) project, two X-band radars provided precipitation measurements at very fine spatial and temporal scales (1 ha, 5 min). (ii) Other meteorological data are taken from the operational surface weather observation stations of Météo-France (including 2 m air temperature, atmospheric pressure, 2 m relative humidity, 10 m wind speed and direction, global radiation) at the hourly time resolution (six stations in the region of interest). (iii) The monitoring of surface hydrology and suspended sediment is multi-scale and based on nested catchments. Three hydrometric stations estimate water discharge at a 2-10 min time resolution. Two of these stations also measure additional physico-chemical variables (turbidity, temperature, conductivity) and water samples are collected automatically during floods, allowing further geochemical characterization of water and suspended solids. Two experimental plots monitor overland flow and erosion at 1 min time resolution on a hillslope with vineyard. A network of 11 sensors installed in the intermittent hydrographic network continuously measures water level and water temperature in headwater subcatchments (from 0.17 to 116 km2) at a time resolution of 2-5 min. A network of soil moisture sensors enables the continuous measurement of soil volumetric water content at 20 min time resolution at 9 sites. Additionally, concomitant observations (soil moisture measurements and stream gauging) were performed during floods between 2012 and 2014. Finally, this dataset is considered appropriate for understanding the rainfall variability in time and space at fine scales, improving areal rainfall estimations and progressing in distributed hydrological and erosion modelling. DOI of the referenced dataset: doi:10.6096/MISTRALS-HyMeX.1438.
Signature of present and projected climate change at an urban scale: The case of Addis Ababa
NASA Astrophysics Data System (ADS)
Arsiso, Bisrat Kifle; Mengistu Tsidu, Gizaw; Stoffberg, Gerrit Hendrik
2018-06-01
Understanding climate change and variability at an urban scale is essential for water resource management, land use planning, development of adaption plans, mitigation of air and water pollution. However, there are serious challenges to meet these goals due to unavailability of observed and/or simulated high resolution spatial and temporal climate data. The statistical downscaling of general circulation climate model, for instance, is usually driven by sparse observational data hindering the use of downscaled data to investigate urban scale climate variability and change in the past. Recently, these challenges are partly resolved by concerted international effort to produce global and high spatial resolution climate data. In this study, the 1 km2 high resolution NIMR-HadGEM2-AO simulations for future projections under Representative Concentration Pathways (RCP4.5 and RCP8.5) scenarios and gridded observations provided by Worldclim data center are used to assess changes in rainfall, minimum and maximum temperature expected under the two scenarios over Addis Ababa city. The gridded 1 km2 observational data set for the base period (1950-2000) is compared to observation from a meteorological station in the city in order to assess its quality for use as a reference (baseline) data. The comparison revealed that the data set has a very good quality. The rainfall anomalies under RCPs scenarios are wet in the 2030s (2020-2039), 2050s (2040-2069) and 2080s (2070-2099). Both minimum and maximum temperature anomalies under RCPs are successively getting warmer during these periods. Thus, the projected changes under RCPs scenarios show a general increase in rainfall and temperatures with strong variabilities in rainfall during rainy season implying level of difficulty in water resource use and management as well as land use planning and management.
Increasing summer rainfall in arid eastern-Central Asia over the past 8500 years
Hong, Bing; Gasse, Françoise; Uchida, Masao; Hong, Yetang; Leng, Xuetian; Shibata, Yasuyuki; An, Ning; Zhu, Yongxuan; Wang, Yu
2014-01-01
A detailed and well-dated proxy record of summer rainfall variation in arid Central Asia is lacking. Here, we report a long-term, high resolution record of summer rainfall extracted from a peat bog in arid eastern-Central Asia (AECA). The record indicates a slowly but steadily increasing trend of summer rainfall in the AECA over the past 8500 years. On this long-term trend are superimposed several abrupt increases in rainfall on millennial timescales that correspond to rapid cooling events in the North Atlantic. During the last millennium, the hydrological climate pattern of the AECA underwent a major change. The rainfall in the past century has reached its highest level over the 8500-year history, highlighting the significant impact of the human-induced greenhouse effect on the hydrological climate in the AECA. Our results demonstrate that even in very dry eastern-Central Asia, the climate can become wetter under global warming. PMID:24923304
NASA Astrophysics Data System (ADS)
Barman, S.; Bhattacharjya, R. K.
2017-12-01
The River Subansiri is the major north bank tributary of river Brahmaputra. It originates from the range of Himalayas beyond the Great Himalayan range at an altitude of approximately 5340m. Subansiri basin extends from tropical to temperate zones and hence exhibits a great diversity in rainfall characteristics. In the Northern and Central Himalayan tracts, precipitation is scarce on account of high altitudes. On the other hand, Southeast part of the Subansiri basin comprising the sub-Himalayan and the plain tract in Arunachal Pradesh and Assam, lies in the tropics. Due to Northeast as well as Southwest monsoon, precipitation occurs in this region in abundant quantities. Particularly, Southwest monsoon causes very heavy precipitation in the entire Subansiri basin during May to October. In this study, the rainfall over Subansiri basin has been studied at 24 different locations by multiple linear and non-linear regression based statistical downscaling techniques and by Artificial Neural Network based model. APHRODITE's gridded rainfall data of 0.25˚ x 0.25˚ resolutions and climatic parameters of HadCM3 GCM of resolution 2.5˚ x 3.75˚ (latitude by longitude) have been used in this study. It has been found that multiple non-linear regression based statistical downscaling technique outperformed the other techniques. Using this method, the future rainfall pattern over the Subansiri basin has been analyzed up to the year 2099 for four different time periods, viz., 2020-39, 2040-59, 2060-79, and 2080-99 at all the 24 locations. On the basis of historical rainfall, the months have been categorized as wet months, months with moderate rainfall and dry months. The spatial changes in rainfall patterns for all these three types of months have also been analyzed over the basin. Potential decrease of rainfall in the wet months and months with moderate rainfall and increase of rainfall in the dry months are observed for the future rainfall pattern of the Subansiri basin.
NASA Astrophysics Data System (ADS)
Müller, Eva; Pfister, Angela; Gerd, Büger; Maik, Heistermann; Bronstert, Axel
2015-04-01
Hydrological extreme events can be triggered by rainfall on different spatiotemporal scales: river floods are typically caused by event durations of between hours and days, while urban flash floods as well as soil erosion or contaminant transport rather result from storms events of very short duration (minutes). Still, the analysis of climate change impacts on rainfall-induced extreme events is usually carried out using daily precipitation data at best. Trend analyses of extreme rainfall at sub-daily or even sub-hourly time scales are rare. In this contribution two lines of research are combined: first, we analyse sub-hourly rainfall data for several decades in three European regions.Second, we investigate the scaling behaviour of heavy short-term precipitation with temperature, i.e. the dependence of high intensity rainfall on the atmospheric temperature at that particular time and location. The trend analysis of high-resolution rainfall data shows for the first time that the frequency of short and intensive storm events in the temperate lowland regions in Germany has increased by up to 0.5 events per year over the last decades. I.e. this trend suggests that the occurrence of these types of storms have multiplied over only a few decades. Parallel to the changes in the rainfall regime, increases in the annual and seasonal average temperature and changes in the occurrence of circulation patterns responsible for the generation of high-intensity storms have been found. The analysis of temporally highly resolved rainfall records from three European regions further indicates that extreme precipitation events are more intense with warmer temperatures during the rainfall event. These observations follow partly the Clausius-Clapeyron relation. Based on this relation one may derive a general rule of maximum rainfall intensity associated to the event temperature, roughly following the Clausius-Clapeyron (CC) relation. This rule might be used for scenarios of future maximum rainfall intensities under a warming climate.
A national-scale seasonal hydrological forecast system: development and evaluation over Britain
NASA Astrophysics Data System (ADS)
Bell, Victoria A.; Davies, Helen N.; Kay, Alison L.; Brookshaw, Anca; Scaife, Adam A.
2017-09-01
Skilful winter seasonal predictions for the North Atlantic circulation and northern Europe have now been demonstrated and the potential for seasonal hydrological forecasting in the UK is now being explored. One of the techniques being used combines seasonal rainfall forecasts provided by operational weather forecast systems with hydrological modelling tools to provide estimates of seasonal mean river flows up to a few months ahead. The work presented here shows how spatial information contained in a distributed hydrological model typically requiring high-resolution (daily or better) rainfall data can be used to provide an initial condition for a much simpler forecast model tailored to use low-resolution monthly rainfall forecasts. Rainfall forecasts (hindcasts
) from the GloSea5 model (1996 to 2009) are used to provide the first assessment of skill in these national-scale flow forecasts. The skill in the combined modelling system is assessed for different seasons and regions of Britain, and compared to what might be achieved using other approaches such as use of an ensemble of historical rainfall in a hydrological model, or a simple flow persistence forecast. The analysis indicates that only limited forecast skill is achievable for Spring and Summer seasonal hydrological forecasts; however, Autumn and Winter flows can be reasonably well forecast using (ensemble mean) rainfall forecasts based on either GloSea5 forecasts or historical rainfall (the preferred type of forecast depends on the region). Flow forecasts using ensemble mean GloSea5 rainfall perform most consistently well across Britain, and provide the most skilful forecasts overall at the 3-month lead time. Much of the skill (64 %) in the 1-month ahead seasonal flow forecasts can be attributed to the hydrological initial condition (particularly in regions with a significant groundwater contribution to flows), whereas for the 3-month ahead lead time, GloSea5 forecasts account for ˜ 70 % of the forecast skill (mostly in areas of high rainfall to the north and west) and only 30 % of the skill arises from hydrological memory (typically groundwater-dominated areas). Given the high spatial heterogeneity in typical patterns of UK rainfall and evaporation, future development of skilful spatially distributed seasonal forecasts could lead to substantial improvements in seasonal flow forecast capability, potentially benefitting practitioners interested in predicting hydrological extremes, not only in the UK but also across Europe.
A laboratory assessment of the measurement accuracy of weighing type rainfall intensity gauges
NASA Astrophysics Data System (ADS)
Colli, M.; Chan, P. W.; Lanza, L. G.; La Barbera, P.
2012-04-01
In recent years the WMO Commission for Instruments and Methods of Observation (CIMO) fostered noticeable advancements in the accuracy of precipitation measurement issue by providing recommendations on the standardization of equipment and exposure, instrument calibration and data correction as a consequence of various comparative campaigns involving manufacturers and national meteorological services from the participating countries (Lanza et al., 2005; Vuerich et al., 2009). Extreme events analysis is proven to be highly affected by the on-site RI measurement accuracy (see e.g. Molini et al., 2004) and the time resolution of the available RI series certainly constitutes another key-factor in constructing hyetographs that are representative of real rain events. The OTT Pluvio2 weighing gauge (WG) and the GEONOR T-200 vibrating-wire precipitation gauge demonstrated very good performance under previous constant flow rate calibration efforts (Lanza et al., 2005). Although WGs do provide better performance than more traditional Tipping Bucket Rain gauges (TBR) under continuous and constant reference intensity, dynamic effects seem to affect the accuracy of WG measurements under real world/time varying rainfall conditions (Vuerich et al., 2009). The most relevant is due to the response time of the acquisition system and the derived systematic delay of the instrument in assessing the exact weight of the bin containing cumulated precipitation. This delay assumes a relevant role in case high resolution rain intensity time series are sought from the instrument, as is the case of many hydrologic and meteo-climatic applications. This work reports the laboratory evaluation of Pluvio2 and T-200 rainfall intensity measurements accuracy. Tests are carried out by simulating different artificial precipitation events, namely non-stationary rainfall intensity, using a highly accurate dynamic rainfall generator. Time series measured by an Ogawa drop counter (DC) at a field test site located within the Hong Kong International Airport (HKIA) were aggregated at a 1-minute scale and used as reference for the artificial rain generation (Colli et al., 2012). The preliminary development and validation of the rainfall simulator for the generation of variable time steps reference intensities is also shown. The generator is characterized by a sufficiently short time response with respect to the expected weighing gauges behavior in order to ensure effective comparison of the measured/reference intensity at very high resolution in time.
A new, long-term daily satellite-based rainfall dataset for operational monitoring in Africa
NASA Astrophysics Data System (ADS)
Maidment, Ross I.; Grimes, David; Black, Emily; Tarnavsky, Elena; Young, Matthew; Greatrex, Helen; Allan, Richard P.; Stein, Thorwald; Nkonde, Edson; Senkunda, Samuel; Alcántara, Edgar Misael Uribe
2017-05-01
Rainfall information is essential for many applications in developing countries, and yet, continually updated information at fine temporal and spatial scales is lacking. In Africa, rainfall monitoring is particularly important given the close relationship between climate and livelihoods. To address this information gap, this paper describes two versions (v2.0 and v3.0) of the TAMSAT daily rainfall dataset based on high-resolution thermal-infrared observations, available from 1983 to the present. The datasets are based on the disaggregation of 10-day (v2.0) and 5-day (v3.0) total TAMSAT rainfall estimates to a daily time-step using daily cold cloud duration. This approach provides temporally consistent historic and near-real time daily rainfall information for all of Africa. The estimates have been evaluated using ground-based observations from five countries with contrasting rainfall climates (Mozambique, Niger, Nigeria, Uganda, and Zambia) and compared to other satellite-based rainfall estimates. The results indicate that both versions of the TAMSAT daily estimates reliably detects rainy days, but have less skill in capturing rainfall amount—results that are comparable to the other datasets.
NASA Astrophysics Data System (ADS)
Delitala, Alessandro M. S.; Deidda, Roberto; Mascaro, Giuseppe; Piga, Enrico; Querzoli, Giorgio
2010-05-01
During most of the 20th century, precipitation has been continuously measured by means of the so-called "pluviographs", i.e. rain gauges including a mechanical apparatus for continuously recording the depth of water from precipitation on specific strip charts, usually on a weekly basis. The signal recorded on such strips was visually examined by trained personnel on a regular basis, in order to extract the daily precipitation totals and the maximum precipitation intensities over short periods (from a few minutes to hours). The rest of the high-resolution information contained in the signal was usually not extracted, except for specific cases. A systematic recovering of the entire information at high temporal resolution contained in these precipitation signals would provide a fundamental database to improve the characterization of historical rainfall climatology during the previous century. The Department of Land Engineering of the University of Cagliari has recently developed and tested an automatic software, based on image analysis techniques, which is able to acquire the scanned images of the pluviograph strip charts, to automatically digitise the signal and to produce a digital database of continuous precipitation records at the highest possible temporal resolution, i.e. 5 to 10 minutes. Along with that, a significant amount of daily precipitation totals from the late 19th and the 20th century, either elaborated from pluviograph strip charts or simply derived from bucket rain gauges, still exists in paper form, but it has never been digitalized. Within a project partly-funded by the Operational Programme of the European Union "Italia-Francia Marittimo", the Regional Environmental Protection Agency of Sardinia and the University of Cagliari will recover both the high-resolution rainfall signals and the older time series of daily totals recorded by a large number of pluviographs belonging to the historical monitoring networks of the island of Sardinia. Such data will then be used to construct the high-resolution climatology of precipitation over Sardinia, both assuming stationary climate and slowly varying climate. Specific attention will be devoted to a set of critical hydrological basins, often affected by intense precipitation and flash floods. All information will then be made available to researchers, regional officers, technicians (e.g. hydraulic engineers) and the greater public interested into such information. The present poster describes the general scope of the E.U. project and the specific activities in the field of climatology of Sardinia rainfall that will be conducted as well as the expected results. A section will be dedicated to show how the pluviograph strips are automatically digitized.
Evaluation of Bias Correction Method for Satellite-Based Rainfall Data
Bhatti, Haris Akram; Rientjes, Tom; Haile, Alemseged Tamiru; Habib, Emad; Verhoef, Wouter
2016-01-01
With the advances in remote sensing technology, satellite-based rainfall estimates are gaining attraction in the field of hydrology, particularly in rainfall-runoff modeling. Since estimates are affected by errors correction is required. In this study, we tested the high resolution National Oceanic and Atmospheric Administration’s (NOAA) Climate Prediction Centre (CPC) morphing technique (CMORPH) satellite rainfall product (CMORPH) in the Gilgel Abbey catchment, Ethiopia. CMORPH data at 8 km-30 min resolution is aggregated to daily to match in-situ observations for the period 2003–2010. Study objectives are to assess bias of the satellite estimates, to identify optimum window size for application of bias correction and to test effectiveness of bias correction. Bias correction factors are calculated for moving window (MW) sizes and for sequential windows (SW’s) of 3, 5, 7, 9, …, 31 days with the aim to assess error distribution between the in-situ observations and CMORPH estimates. We tested forward, central and backward window (FW, CW and BW) schemes to assess the effect of time integration on accumulated rainfall. Accuracy of cumulative rainfall depth is assessed by Root Mean Squared Error (RMSE). To systematically correct all CMORPH estimates, station based bias factors are spatially interpolated to yield a bias factor map. Reliability of interpolation is assessed by cross validation. The uncorrected CMORPH rainfall images are multiplied by the interpolated bias map to result in bias corrected CMORPH estimates. Findings are evaluated by RMSE, correlation coefficient (r) and standard deviation (SD). Results showed existence of bias in the CMORPH rainfall. It is found that the 7 days SW approach performs best for bias correction of CMORPH rainfall. The outcome of this study showed the efficiency of our bias correction approach. PMID:27314363
The collaborative historical African rainfall model: description and evaluation
Funk, Christopher C.; Michaelsen, Joel C.; Verdin, James P.; Artan, Guleid A.; Husak, Gregory; Senay, Gabriel B.; Gadain, Hussein; Magadazire, Tamuka
2003-01-01
In Africa the variability of rainfall in space and time is high, and the general availability of historical gauge data is low. This makes many food security and hydrologic preparedness activities difficult. In order to help overcome this limitation, we have created the Collaborative Historical African Rainfall Model (CHARM). CHARM combines three sources of information: climatologically aided interpolated (CAI) rainfall grids (monthly/0.5° ), National Centers for Environmental Prediction reanalysis precipitation fields (daily/1.875° ) and orographic enhancement estimates (daily/0.1° ). The first set of weights scales the daily reanalysis precipitation fields to match the gridded CAI monthly rainfall time series. This produces data with a daily/0.5° resolution. A diagnostic model of orographic precipitation, VDELB—based on the dot-product of the surface wind V and terrain gradient (DEL) and atmospheric buoyancy B—is then used to estimate the precipitation enhancement produced by complex terrain. Although the data are produced on 0.1° grids to facilitate integration with satellite-based rainfall estimates, the ‘true’ resolution of the data will be less than this value, and varies with station density, topography, and precipitation dynamics. The CHARM is best suited, therefore, to applications that integrate rainfall or rainfall-driven model results over large regions. The CHARM time series is compared with three independent datasets: dekadal satellite-based rainfall estimates across the continent, dekadal interpolated gauge data in Mali, and daily interpolated gauge data in western Kenya. These comparisons suggest reasonable accuracies (standard errors of about half a standard deviation) when data are aggregated to regional scales, even at daily time steps. Thus constrained, numerical weather prediction precipitation fields do a reasonable job of representing large-scale diurnal variations.
Evaluation of Bias Correction Method for Satellite-Based Rainfall Data.
Bhatti, Haris Akram; Rientjes, Tom; Haile, Alemseged Tamiru; Habib, Emad; Verhoef, Wouter
2016-06-15
With the advances in remote sensing technology, satellite-based rainfall estimates are gaining attraction in the field of hydrology, particularly in rainfall-runoff modeling. Since estimates are affected by errors correction is required. In this study, we tested the high resolution National Oceanic and Atmospheric Administration's (NOAA) Climate Prediction Centre (CPC) morphing technique (CMORPH) satellite rainfall product (CMORPH) in the Gilgel Abbey catchment, Ethiopia. CMORPH data at 8 km-30 min resolution is aggregated to daily to match in-situ observations for the period 2003-2010. Study objectives are to assess bias of the satellite estimates, to identify optimum window size for application of bias correction and to test effectiveness of bias correction. Bias correction factors are calculated for moving window (MW) sizes and for sequential windows (SW's) of 3, 5, 7, 9, …, 31 days with the aim to assess error distribution between the in-situ observations and CMORPH estimates. We tested forward, central and backward window (FW, CW and BW) schemes to assess the effect of time integration on accumulated rainfall. Accuracy of cumulative rainfall depth is assessed by Root Mean Squared Error (RMSE). To systematically correct all CMORPH estimates, station based bias factors are spatially interpolated to yield a bias factor map. Reliability of interpolation is assessed by cross validation. The uncorrected CMORPH rainfall images are multiplied by the interpolated bias map to result in bias corrected CMORPH estimates. Findings are evaluated by RMSE, correlation coefficient (r) and standard deviation (SD). Results showed existence of bias in the CMORPH rainfall. It is found that the 7 days SW approach performs best for bias correction of CMORPH rainfall. The outcome of this study showed the efficiency of our bias correction approach.
Improving PERSIANN-CCS rain estimation using probabilistic approach and multi-sensors information
NASA Astrophysics Data System (ADS)
Karbalaee, N.; Hsu, K. L.; Sorooshian, S.; Kirstetter, P.; Hong, Y.
2016-12-01
This presentation discusses the recent implemented approaches to improve the rainfall estimation from Precipitation Estimation from Remotely Sensed Information using Artificial Neural Network-Cloud Classification System (PERSIANN-CCS). PERSIANN-CCS is an infrared (IR) based algorithm being integrated in the IMERG (Integrated Multi-Satellite Retrievals for the Global Precipitation Mission GPM) to create a precipitation product in 0.1x0.1degree resolution over the chosen domain 50N to 50S every 30 minutes. Although PERSIANN-CCS has a high spatial and temporal resolution, it overestimates or underestimates due to some limitations.PERSIANN-CCS can estimate rainfall based on the extracted information from IR channels at three different temperature threshold levels (220, 235, and 253k). This algorithm relies only on infrared data to estimate rainfall indirectly from this channel which cause missing the rainfall from warm clouds and false estimation for no precipitating cold clouds. In this research the effectiveness of using other channels of GOES satellites such as visible and water vapors has been investigated. By using multi-sensors the precipitation can be estimated based on the extracted information from multiple channels. Also, instead of using the exponential function for estimating rainfall from cloud top temperature, the probabilistic method has been used. Using probability distributions of precipitation rates instead of deterministic values has improved the rainfall estimation for different type of clouds.
NASA Astrophysics Data System (ADS)
Lee, Y. H.; Min, K. H.
2017-12-01
We investigated the ability of high-resolution numerical weather prediction (NWP) model (nested grid spacing at 500 m) in simulating convective precipitation event over the Seoul metropolitan area on 16 August 2015. Intense rainfall occurred from 0930 UTC to 1030 UTC and subsequent trailing precipitation lasted until 1400 UTC. The synoptic condition for the convective event was characterized by a large value of convective available potential energy (CAPE) at the outer edge of a meso-high pressure system. Observational analysis showed that triggering mechanism for convective rainfall was provided by the convergence of northeasterly wind which was driven by a cold pool in the northeastern Kyonggi province. The cold pool formed after heavy rain occurred in northeastern Kyonggi province at 0500UTC. Several experiments were performed in order to evaluate the sensitivity of different initial conditions (IC12, IC18, IC00, IC06) and the impact of data assimilation (IC06A) on simulating the convective event. The quantitative precipitation forecasts (QPF) appeared to vary widely among the experiments, depending on the timing of ICs that were chosen. QPF amount was underestimated in all experiments when data assimilation was not performed. Among the four experiments, QPF amounts and locations were better simulated in the 1200 UTC 15 August (IC12) run due to large values of CAPE in late afternoon and the presence of low-level convergence zone in the metropolitan area. Although 0600 UTC 16 August (IC06) run simulated the largest CAPE in late afternoon, the location and amount of heavy rainfall were significantly different from observations. IC06 did not simulate the convergence of low-level wind associated with the mesoscale cold pool. However, when assimilation of surface observations and radar data at 0600 UTC was performed (IC06A), the simulation reproduced the location and amount of rainfall reasonably well, indicating that high-resolution NWP model with data assimilation can predict the local convective precipitation event with a short-life time (1 3 hours) effectively within 6 hours.
The impact of soil moisture extremes and their spatiotemporal variability on Zambian maize yields
NASA Astrophysics Data System (ADS)
Zhao, Y.; Estes, L. D.; Vergopolan, N.
2017-12-01
Food security in sub-Saharan Africa is highly sensitive to climate variability. While it is well understood that extreme heat has substantial negative impacts on crop yield, the impacts of precipitation extremes, particularly over large spatial extents, are harder to quantify. There are three primary reasons for this difficulty, which are (1) lack of high quality, high resolution precipitation data, (2) rainfall data provide incomplete information on plant water availability, the variable that most directly affects crop performance, and (3) the type of rainfall extreme that most affects crop yields varies throughout the crop development stage. With respect to the first reason, the spatial and temporal variation of precipitation is much greater than that of temperature, yet the spatial resolution of rainfall data is typically even coarser than it is for temperature, particularly within Africa. Even if there were high-resolution rainfall data, the amount of water available to crops also depends on other physical factors that affect evapotranspiration, which are strongly influenced by heterogeneity in the land surface related to topography, soil properties, and land cover. In this context, soil moisture provides a better measure of crop water availability than rainfall. Furthermore, soil moisture has significantly different influences on crop yield depending on the crop's growth stage. The goal of this study is to understand how the spatiotemporal scales of soil moisture extremes interact with crops, more specifically, the timing and the spatial scales of extreme events like droughts and flooding. In this study, we simulate daily-1km soil moisture using HydroBlocks - a physically based land surface model - and compare it with precipitation and remote sensing derived maize yields between 2000 and 2016 in Zambia. We use a novel combination of the SCYM (scalable satellite-based yield mapper) method with DSSAT crop model, which is a mechanistic model responsive to water stress. Understanding the relationships between soil moisture spatiotemporal variability and yields can help to improve agricultural drought risk assessment and seasonal crop yield forecasting as well as early season warning of potential famines.
Rainfall erosivity estimation based on rainfall data collected over a range of temporal resolutions
USDA-ARS?s Scientific Manuscript database
Rainfall erosivity is the power of rainfall to cause soil erosion by water. The rainfall erosivity index for a rainfall event, EI30, is calculated from the total kinetic energy and maximum 30 minute intensity of individual events. However, these data are often unavailable in many areas of the worl...
Thorndahl, Søren; Nielsen, Jesper Ellerbæk; Jensen, David Getreuer
2016-12-01
Flooding produced by high-intensive local rainfall and drainage system capacity exceedance can have severe impacts in cities. In order to prepare cities for these types of flood events - especially in the future climate - it is valuable to be able to simulate these events numerically, both historically and in real-time. There is a rather untested potential in real-time prediction of urban floods. In this paper, radar data observations with different spatial and temporal resolution, radar nowcasts of 0-2 h leadtime, and numerical weather models with leadtimes up to 24 h are used as inputs to an integrated flood and drainage systems model in order to investigate the relative difference between different inputs in predicting future floods. The system is tested on the small town of Lystrup in Denmark, which was flooded in 2012 and 2014. Results show it is possible to generate detailed flood maps in real-time with high resolution radar rainfall data, but rather limited forecast performance in predicting floods with leadtimes more than half an hour.
NASA Astrophysics Data System (ADS)
Shimizu, Y.; Ishizuka, T.; Osanai, N.; Okazumi, T.
2014-12-01
In this study, the sediment-related disaster prediction method which based ground gauged rainfall-data, currently practiced in Japan was coupled with satellite rainfall data and applied to domestic large-scale sediment-related disasters. The study confirmed the feasibility of this integrated method. In Asia, large-scale sediment-related disasters which can sweep away an entire settlement occur frequently. Leyte Island suffered from a huge landslide in 2004, and Typhoon Molakot in 2009 caused huge landslides in Taiwan. In the event of these sediment-related disasters, immediate responses by central and local governments are crucial in crisis management. In general, there are not enough rainfall gauge stations in developing countries. Therefore national and local governments have little information to determine the risk level of water induced disasters in their service areas. In the Japanese methodology, a criterion is set by combining two indices: the short-term rainfall index and long-term rainfall index. The short-term rainfall index is defined as the 60-minute total rainfall; the long-term rainfall index as the soil-water index, which is an estimation of the retention status of fallen rainfall in soil. In July 2009, a high-density sediment related disaster, or a debris flow, occurred in Hofu City of Yamaguchi Prefecture, in the western region of Japan. This event was calculated by the Japanese standard methodology, and then analyzed for its feasibility. Hourly satellite based rainfall has underestimates compared with ground based rainfall data. Long-term index correlates with each other. Therefore, this study confirmed that it is possible to deliver information on the risk level of sediment-related disasters such as shallow landslides and debris flows. The prediction method tested in this study is expected to assist for timely emergency responses to rainfall-induced natural disasters in sparsely gauged areas. As the Global Precipitation Measurement (GPM) Plan progresses, spatial resolution, time resolution and accuracy of rainfall data should be further improved and will be more effective in practical use.
Reconstruction of rainfall in Zafra (southwest Spain) from 1750 to 1840 from documentary sources
NASA Astrophysics Data System (ADS)
Fernández-Fernández, M. I.; Gallego, M. C.; Domínguez-Castro, F.; Vaquero, J. M.; Moreno González, J. M.; Castillo Durán, J.
2011-11-01
This work presents the first high-resolution reconstruction of rainfall in southwestern Spain during the period 1750-1840. The weather descriptions used are weekly reports describing the most relevant events that occurred in the Duchy of Feria. An index was defined to characterise the weekly rainfall. Monthly indices were obtained by summing the corresponding weekly indices, obtaining cumulative monthly rainfall indices. The reconstruction method consisted of establishing a linear correlation between the monthly rainfall index and monthly instrumental data (1960-1990). The correlation coefficients were greater than 0.80 for all months. The rainfall reconstruction showed major variability similar to natural variability. The reconstructed rainfall series in Zafra was compared with the rainfall series of Cadiz, Gibraltar and Lisbon for the period 1750-1840, with all four series found to have a similar pattern. The influence of the North Atlantic Oscillation (NAO) on the winter rainfall reconstruction was found to behave similarly to that of modern times. Other studies described are of the SLP values over the entire North Atlantic in the months with extreme values of rainfall, and unusual meteorological events (hail, frost, storms and snowfall) in the reports of the Duchy of Feria.
NASA Astrophysics Data System (ADS)
Bytheway, J. L.; Biswas, S.; Cifelli, R.; Hughes, M.
2017-12-01
The Russian River carves a 110 mile path through Mendocino and Sonoma counties in western California, providing water for thousands of residents and acres of agriculture as well as a home for several species of endangered fish. The Russian River basin receives almost all of its precipitation during the October through March wet season, and the systems bringing this precipitation are often impacted by atmospheric river events as well as the complex topography of the region. This study will examine the performance of several high resolution (hourly, < 5km) estimates of precipitation from observational products and forecasts over the 2015-2016 and 2016-2017 wet seasons. Comparisons of event total rainfall as well as hourly rainfall will be performed using 1) rain gauges operated by the National Oceanic and Atmospheric Administration (NOAA) Physical Sciences Division (PSD), 2) products from the Multi-Radar/Multi-Sensor (MRMS) QPE dataset, and 3) quantitative precipitation forecasts from the High Resolution Rapid Refresh (HRRR) model at 1, 3, 6, and 12 hour lead times. Further attention will be given to cases or locations representing large disparities between the estimates.
NASA Technical Reports Server (NTRS)
Negri, Andrew J.; Anagnostou, Emmanouil; Adler, Robert F.
1999-01-01
Over 10 years of continuous data from the Special Sensor microwave Imager (SSM/I) aboard a series of Defense Department satellites has made it possible to construct regional rainfall climatologies at high spatial resolution. Using the Goddard Profiling Algorithm (GPROF), monthly estimates of precipitation were made over the region of northern Brazil, including the Amazon Basin, for 1987 to 1998. GPROF is a physical approach to passive microwave precipitation retrieval, which uses the Goddard Cumulus Ensemble (cloud) model to establish prior probability densities of precipitation structures. Precipitation fields from GPROF were stratified into morning and evening satellite overpasses, and accumulated at monthly intervals at 0.5 degree spatial resolution. Important diurnal effects were noted in the analysis, the most pronounced being a land/sea breeze circulation along the northern coast of Brazil and a mountain/valley circulation along the Andes. There were also indications of morning rainfall maxima along the major rivers, and evening maxima between the rivers. The addition of simultaneous geosynchronous infrared (IR) data leads to the current technique, which takes advantage of the 30 minute sampling and 4 km spatial resolution of the infrared channel and the better physics of the microwave retrieval. The resultant IR method is subsequently used to derive the diurnal variability of rainfall over the Amazon basin, and further, to investigate the relative contribution from its convective and stratiform components.
Rainfall control of debris-flow triggering in the Réal Torrent, Southern French Prealps
NASA Astrophysics Data System (ADS)
Bel, Coraline; Liébault, Frédéric; Navratil, Oldrich; Eckert, Nicolas; Bellot, Hervé; Fontaine, Firmin; Laigle, Dominique
2017-08-01
This paper investigates the occurrence of debris flow due to rainfall forcing in the Réal Torrent, a very active debris flow-prone catchment in the Southern French Prealps. The study is supported by a 4-year record of flow responses and rainfall events, from three high-frequency monitoring stations equipped with geophones, flow stage sensors, digital cameras, and rain gauges measuring rainfall at 5-min intervals. The classic method of rainfall intensity-duration (ID) threshold was used, and a specific emphasis was placed on the objective identification of rainfall events, as well as on the discrimination of flow responses observed above the ID threshold. The results show that parameters used to identify rainfall events significantly affect the ID threshold and are likely to explain part of the threshold variability reported in the literature. This is especially the case regarding the minimum duration of rain interruption (MDRI) between two distinct rainfall events. In the Réal Torrent, a 3-h MDRI appears to be representative of the local rainfall regime. A systematic increase in the ID threshold with drainage area was also observed from the comparison of the three stations, as well as from the compilation of data from experimental debris-flow catchments. A logistic regression used to separate flow responses above the ID threshold, revealed that the best predictors are the 5-min maximum rainfall intensity, the 48-h antecedent rainfall, the rainfall amount and the number of days elapsed since the end of winter (used as a proxy of sediment supply). This emphasizes the critical role played by short intense rainfall sequences that are only detectable using high time-resolution rainfall records. It also highlights the significant influence of antecedent conditions and the seasonal fluctuations of sediment supply.
Capabilities of stochastic rainfall models as data providers for urban hydrology
NASA Astrophysics Data System (ADS)
Haberlandt, Uwe
2017-04-01
For planning of urban drainage systems using hydrological models, long, continuous precipitation series with high temporal resolution are needed. Since observed time series are often too short or not available everywhere, the use of synthetic precipitation is a common alternative. This contribution compares three precipitation models regarding their suitability to provide 5 minute continuous rainfall time series for a) sizing of drainage networks for urban flood protection and b) dimensioning of combined sewage systems for pollution reduction. The rainfall models are a parametric stochastic model (Haberlandt et al., 2008), a non-parametric probabilistic approach (Bárdossy, 1998) and a stochastic downscaling of dynamically simulated rainfall (Berg et al., 2013); all models are operated both as single site and multi-site generators. The models are applied with regionalised parameters assuming that there is no station at the target location. Rainfall and discharge characteristics are utilised for evaluation of the model performance. The simulation results are compared against results obtained from reference rainfall stations not used for parameter estimation. The rainfall simulations are carried out for the federal states of Baden-Württemberg and Lower Saxony in Germany and the discharge simulations for the drainage networks of the cities of Hamburg, Brunswick and Freiburg. Altogether, the results show comparable simulation performance for the three models, good capabilities for single site simulations but low skills for multi-site simulations. Remarkably, there is no significant difference in simulation performance comparing the tasks flood protection with pollution reduction, so the models are finally able to simulate both the extremes and the long term characteristics of rainfall equally well. Bárdossy, A., 1998. Generating precipitation time series using simulated annealing. Wat. Resour. Res., 34(7): 1737-1744. Berg, P., Wagner, S., Kunstmann, H., Schädler, G., 2013. High resolution regional climate model simulations for Germany: part I — validation. Climate Dynamics, 40(1): 401-414. Haberlandt, U., Ebner von Eschenbach, A.-D., Buchwald, I., 2008. A space-time hybrid hourly rainfall model for derived flood frequency analysis. Hydrol. Earth Syst. Sci., 12: 1353-1367.
Quantification of Holocene Asian monsoon rainfall from spatially separated cave records
NASA Astrophysics Data System (ADS)
Hu, Chaoyong; Henderson, Gideon M.; Huang, Junhua; Xie, Shucheng; Sun, Ying; Johnson, Kathleen R.
2008-02-01
A reconstruction of Holocene rainfall is presented for southwest China — an area prone to drought and flooding due to variability in the East Asian monsoon. The reconstruction is derived by comparing a new high-resolution stalagmite δ18O record with an existing record from the same moisture transport pathway. The new record is from Heshang Cave (30°27'N, 110°25'E; 294 m) and shows no sign of kinetic or evaporative effects so can be reliably interpreted as a record of local rainfall composition and temperature. Heshang lies 600 km downwind from Dongge Cave which has a published high-resolution δ18O record (Wang, Y.J., Cheng, H., Edwards, R.L., He, Y.Q., Kong, X.G., An, Z.S., Wu, J.Y., Kelly, M.J., Dykoski, C.A., Li, X.D., 2005. The Holocene Asian monsoon: links to solar changes and North Atlantic climate. Science 308, 854-857). By differencing co-eval δ18O values for the two caves, secondary controls on δ18O (e.g. moisture source, moisture transport, non-local rainfall, temperature) are circumvented and the resulting Δ δ18O signal is controlled directly by the amount of rain falling between the two sites. This is confirmed by comparison with rainfall data from the instrumental record, which also allows a calibration of the Δ δ18O proxy. The calibrated Δ δ18O record provides a quantitative history of rainfall in southwest China which demonstrates that rainfall was 8% higher than today during the Holocene climatic optimum (≈ 6 ka), but only 3% higher during the early Holocene. Significant multi-centennial variability also occurred, with notable dry periods at 8.2 ka, 4.8-4.1 ka, 3.7-3.1 ka, 1.4-1.0 ka and during the Little Ice Age. This Holocene rainfall record provides a good target with which to test climate models. The approach used here, of combining stalagmite records from more than one location, will also allow quantification of rainfall patterns for past times in other regions.
NASA Astrophysics Data System (ADS)
Fouchier, Catherine; Maire, Alexis; Arnaud, Patrick; Cantet, Philippe; Odry, Jean
2016-04-01
The starting point of our study was the availability of maps of rainfall quantiles available for the entire French mainland territory at the spatial resolution of 1 km². These maps display the rainfall amounts estimated for different rainfall durations (from 15 minutes to 72 hours) and different return periods (from 2 years up to 1 000 years). They are provided by a regionalized stochastic hourly point rainfall generator, the SHYREG method which was previously developed by Irstea (Arnaud et al., 2007; Cantet and Arnaud, 2014). Being calibrated independently on numerous raingauges data (with an average density across the country of 1 raingauge per 200 km²), this method suffers from a limitation common to point-process rainfall generators: it can only reproduce point rainfall patterns and has no capacity to generate rainfall fields. It can't hence provide areal rainfall quantiles, the estimation of the latter being however needed for the construction of design rainfall or for the diagnostic of observed events. One means of bridging this gap between our local rainfall quantiles and areal rainfall quantiles is given by the concept of probabilistic areal reduction factors of rainfall (ARF) as defined by Omolayo (1993). This concept enables to estimate areal rainfall of a particular frequency within a certain amount of time from point rainfalls of the same frequency and duration. Assessing such ARF for the whole French territory is of particular interest since it should allow us to compute areal rainfall quantiles, and eventually watershed rainfall quantiles, by using the already available grids of statistical point rainfall of the SHYREG method. Our purpose was then to assess these ARF thanks to long time-series of spatial rainfall data. We have used two sets of rainfall fields: i) hourly rainfall fields from a 10-year reference database of Quantitative Precipitation Estimation (QPE) over France (Tabary et al., 2012), ii) daily rainfall fields resulting from a 53-year high-resolution atmospheric reanalysis over France with the SAFRAN-gauge-based analysis system (Vidal et al., 2010). We have then built samples of maximal rainfalls for each cell location (the "point" rainfalls) and for different areas centered on each cell location (the areal rainfalls) of these gridded data. To compute rainfall quantiles, we have fitted a Gumbel law, with the L-moment method, on each of these samples. Our daily and hourly ARF have then shown four main trends: i) a sensitivity to the return period, with ARF values decreasing when the return period increases; ii) a sensitivity to the rainfall duration, with ARF values decreasing when the rainfall duration decreases; iii) a sensitivity to the season, with ARF values smaller for the summer period than for the winter period; iv) a sensitivity to the geographical location, with low ARF values in the French Mediterranean area and ARF values close to 1 for the climatic zones of Northern and Western France (oceanic to semi-continental climate). The results of this data-intensive study led for the first time on the whole French territory are in agreement with studies led abroad (e.g. Allen and DeGaetano 2005, Overeem et al. 2010) and confirm and widen the results of previous studies that were carried out in France on smaller areas and with fewer rainfall durations (e.g. Ramos et al., 2006, Neppel et al., 2003). References Allen R. J. and DeGaetano A. T. (2005). Areal reduction factors for two eastern United States regions with high rain-gauge density. Journal of Hydrologic Engineering 10(4): 327-335. Arnaud P., Fine J.-A. and Lavabre J. (2007). An hourly rainfall generation model applicable to all types of climate. Atmospheric Research 85(2): 230-242. Cantet, P. and Arnaud, P. (2014). Extreme rainfall analysis by a stochastic model: impact of the copula choice on the sub-daily rainfall generation, Stochastic Environmental Research and Risk Assessment, Springer Berlin Heidelberg, 28(6), 1479-1492. Neppel L., Bouvier C. and Lavabre J. (2003). Areal reduction factor probabilities for rainfall in Languedoc Roussillon. IAHS-AISH Publication (278): 276-283. Omolayo, A. S. (1993). On the transposition of areal reduction factors for rainfall frequency estimation. Journal of Hydrology 145 (1-2): 191-205. Overeem A., Buishand T. A., Holleman I. and Uijlenhoet R. (2010). Extreme value modeling of areal rainfall from weather radar. Water Resources Research 46(9): 10 p. Ramos M.-H., Leblois E., Creutin J.-D. (2006). From point to areal rainfall: Linking the different approaches for the frequency characterisation of rainfalls in urban areas. Water Science and Technology. 54(6-7): 33-40. Tabary P., Dupuy P., L'Henaff G., Gueguen C., Moulin L., Laurantin O., Merlier C., Soubeyroux J. M. (2012). A 10-year (1997-2006) reanalysis of Quantitative Precipitation Estimation over France: methodology and first results. IAHS-AISH Publication (351) : 255-260. Vidal J.-P., Martin E., Franchistéguy L., Baillon M. and Soubeyroux J.-M. (2010). A 50-year high-resolution atmospheric reanalysis over France with the Safran system. International Journal of Climatology 30(11): 1627-1644.
Yao, Yibin; Shan, Lulu; Zhao, Qingzhi
2017-09-29
Global Navigation Satellite System (GNSS) can effectively retrieve precipitable water vapor (PWV) with high precision and high-temporal resolution. GNSS-derived PWV can be used to reflect water vapor variation in the process of strong convection weather. By studying the relationship between time-varying PWV and rainfall, it can be found that PWV contents increase sharply before raining. Therefore, a short-term rainfall forecasting method is proposed based on GNSS-derived PWV. Then the method is validated using hourly GNSS-PWV data from Zhejiang Continuously Operating Reference Station (CORS) network of the period 1 September 2014 to 31 August 2015 and its corresponding hourly rainfall information. The results show that the forecasted correct rate can reach about 80%, while the false alarm rate is about 66%. Compared with results of the previous studies, the correct rate is improved by about 7%, and the false alarm rate is comparable. The method is also applied to other three actual rainfall events of different regions, different durations, and different types. The results show that the method has good applicability and high accuracy, which can be used for rainfall forecasting, and in the future study, it can be assimilated with traditional weather forecasting techniques to improve the forecasted accuracy.
REAL-TIME high-resolution urban surface water flood mapping to support flood emergency management
NASA Astrophysics Data System (ADS)
Guan, M.; Yu, D.; Wilby, R.
2016-12-01
Strong evidence has shown that urban flood risks will substantially increase because of urbanisation, economic growth, and more frequent weather extremes. To effectively manage these risks require not only traditional grey engineering solutions, but also a green management solution. Surface water flood risk maps based on return period are useful for planning purposes, but are limited for application in flood emergencies, because of the spatiotemporal heterogeneity of rainfall and complex urban topography. Therefore, a REAL-TIME urban surface water mapping system is highly beneficial to increasing urban resilience to surface water flooding. This study integrated numerical weather forecast and high-resolution urban surface water modelling into a real-time multi-level surface water mapping system for Leicester City in the UK. For rainfall forecast, the 1km composite rain radar from the Met Office was used, and we used the advanced rainfall-runoff model - FloodMap to predict urban surface water at both city-level (10m-20m) and street-level (2m-5m). The system is capable of projecting 3-hour urban surface water flood, driven by rainfall derived from UK Met Office radar. Moreover, this system includes real-time accessibility mapping to assist the decision-making of emergency responders. This will allow accessibility (e.g. time to travel) from individual emergency service stations (e.g. Fire & Rescue; Ambulance) to vulnerable places to be evaluated. The mapping results will support contingency planning by emergency responders ahead of potential flood events.
Atmospheric water budget over the South Asian summer monsoon region
NASA Astrophysics Data System (ADS)
Unnikrishnan, C. K.; Rajeevan, M.
2018-04-01
High resolution hybrid atmospheric water budget over the South Asian monsoon region is examined. The regional characteristics, variability, regional controlling factors and the interrelations of the atmospheric water budget components are investigated. The surface evapotranspiration was created using the High Resolution Land Data Assimilation System (HRLDAS) with the satellite-observed rainfall and vegetation fraction. HRLDAS evapotranspiration shows significant similarity with in situ observations and MODIS satellite-observed evapotranspiration. Result highlights the fundamental importance of evapotranspiration over northwest and southeast India on atmospheric water balance. The investigation shows that the surface net radiation controls the annual evapotranspiration over those regions, where the surface evapotranspiration is lower than 550 mm. The rainfall and evapotranspiration show a linear relation over the low-rainfall regions (<500 mm/year). Similar result is observed in in NASA GLDAS data (1980-2014). The atmospheric water budget shows annual, seasonal, and intra-seasonal variations. Evapotranspiration does not show a high intra-seasonal variability as compared to other water budget components. The coupling among the water budget anomalies is investigated. The results show that regional inter-annual evapotranspiration anomalies are not exactly in phase with rainfall anomalies; it is strongly influenced by the surface conditions and other atmospheric forcing (like surface net radiation). The lead and lag correlation of water budget components show that the water budget anomalies are interrelated in the monsoon season even up to 4 months lead. These results show the important regional interrelation of water budget anomalies on south Asian monsoon.
NASA Technical Reports Server (NTRS)
Grecu, Mircea; Anagnostou, Emmanouil N.; Olson, William S.; Starr, David OC. (Technical Monitor)
2002-01-01
In this study, a technique for estimating vertical profiles of precipitation from multifrequency, multiresolution active and passive microwave observations is investigated using both simulated and airborne data. The technique is applicable to the Tropical Rainfall Measuring Mission (TRMM) satellite multi-frequency active and passive observations. These observations are characterized by various spatial and sampling resolutions. This makes the retrieval problem mathematically more difficult and ill-determined because the quality of information decreases with decreasing resolution. A model that, given reflectivity profiles and a small set of parameters (including the cloud water content, the intercept drop size distribution, and a variable describing the frozen hydrometeor properties), simulates high-resolution brightness temperatures is used. The high-resolution simulated brightness temperatures are convolved at the real sensor resolution. An optimal estimation procedure is used to minimize the differences between simulated and observed brightness temperatures. The retrieval technique is investigated using cloud model synthetic and airborne data from the Fourth Convection And Moisture Experiment. Simulated high-resolution brightness temperatures and reflectivities and airborne observation strong are convolved at the resolution of the TRMM instruments and retrievals are performed and analyzed relative to the reference data used in observations synthesis. An illustration of the possible use of the technique in satellite rainfall estimation is presented through an application to TRMM data. The study suggests improvements in combined active and passive retrievals even when the instruments resolutions are significantly different. Future work needs to better quantify the retrievals performance, especially in connection with satellite applications, and the uncertainty of the models used in retrieval.
Mentoring Temporal and Spatial Variations in Rainfall across Wadi Ar-Rumah, Saudi Arabia
NASA Astrophysics Data System (ADS)
Alharbi, T.; Ahmed, M.
2015-12-01
Across the Kingdom of Saudi Arabia (KSA), the fresh water resources are limited only to those found in aquifer systems. Those aquifers were believed to be recharged during the previous wet climatic period but still receiving modest local recharge in interleaving dry periods such as those prevailing at present. Quantifying temporal and spatial variabilities in rainfall patterns, magnitudes, durations, and frequencies is of prime importance when it comes to sustainable management of such aquifer systems. In this study, an integrated approach, using remote sensing and field data, was used to assess the past, the current, and the projected spatial and temporal variations in rainfall over one of the major watersheds in KSA, Wadi Ar-Rumah. This watershed was selected given its larger areal extent and population intensity. Rainfall data were extracted from (1) the Climate Prediction Centers (CPC) Merged Analysis of Precipitation (CMAP; spatial coverage: global; spatial resolution: 2.5° × 2.5°; temporal coverage: January 1979 to April 2015; temporal resolution: monthly), and (2) the Tropical Rainfall Measuring Mission (TRMM; spatial coverage: 50°N to 50°S; spatial resolution: 0.25° × 0.25°; temporal coverage: January 1998 to March 2015; temporal resolution: 3 hours) and calibrated against rainfall measurements extracted from rain gauges. Trends in rainfall patterns were examined over four main investigation periods: period I (01/1979 to 12/1985), period II (01/1986 to 12/1992), period III (01/1993 to 12/2002), and period IV (01/2003 to 12/2014). Our findings indicate: (1) a significant increase (+14.19 mm/yr) in rainfall rates were observed during period I, (2) a significant decrease in rainfall rates were observed during periods II (-5.80 mm/yr), III (-9.38 mm/yr), and IV (-2.46 mm/yr), and (3) the observed variations in rainfall rates are largely related to the temporal variations in the northerlies (also called northwesterlies) and the monsoonal wind regimes.
NASA Astrophysics Data System (ADS)
Harding, Keith J.; Snyder, Peter K.; Liess, Stefan
2013-11-01
supporting exceptionally productive agricultural lands, the Central U.S. is susceptible to severe droughts and floods. Such precipitation extremes are expected to worsen with climate change. However, future projections are highly uncertain as global climate models (GCMs) generally fail to resolve precipitation extremes. In this study, we assess how well models from the Coupled Model Intercomparison Project Phase 5 (CMIP5) simulate summer means, variability, extremes, and the diurnal cycle of Central U.S. summer rainfall. Output from a subset of historical CMIP5 simulations are used to drive the Weather Research and Forecasting model to determine whether dynamical downscaling improves the representation of Central U.S. rainfall. We investigate which boundary conditions influence dynamically downscaled precipitation estimates and identify GCMs that can reasonably simulate precipitation when downscaled. The CMIP5 models simulate the seasonal mean and variability of summer rainfall reasonably well but fail to resolve extremes, the diurnal cycle, and the dynamic forcing of precipitation. Downscaling to 30 km improves these characteristics of precipitation, with the greatest improvement in the representation of extremes. Additionally, sizeable diurnal cycle improvements occur with higher (10 km) resolution and convective parameterization disabled, as the daily rainfall peak shifts 4 h closer to observations than 30 km resolution simulations. This lends greater confidence that the mechanisms responsible for producing rainfall are better simulated. Because dynamical downscaling can more accurately simulate these aspects of Central U.S. summer rainfall, policymakers can have added confidence in dynamically downscaled rainfall projections, allowing for more targeted adaptation and mitigation.
NASA Astrophysics Data System (ADS)
Hanshaw, M. N.; Schmidt, K. M.; Jorgensen, D. P.; Stock, J. D.
2007-12-01
Constraining the distribution of rainfall is essential to evaluating the post-fire mass-wasting response of steep soil-mantled landscapes. As part of a pilot early-warning project for flash floods and debris flows, NOAA deployed a portable truck-mounted Shared Mobile Atmospheric Research and Teaching Radar (SMART-R) to the 2006 Day fire in the Transverse Ranges of Southern California. In conjunction with a dense array of ground- based instruments, including 8 tipping-bucket rain gages located within an area of 170 km2, this C-band mobile Doppler radar provided 200-m grid cell estimates of precipitation data at fine temporal and spatial scales in burned steeplands at risk from hazardous flash floods and debris flows. To assess the utility of using this data in process models for flood and debris flow initiation, we converted grids of radar reflectivity to hourly time-steps of precipitation using an empirical relationship for convective storms, sampling the radar data at the locations of each rain gage as determined by GPS. The SMART-R was located 14 km from the farthest rain gage, but <10 km away from our intensive research area, where 5 gages are located within <1-2 km of each other. Analyses of the nine storms imaged by radar throughout the 2006/2007 winter produced similar cumulative rainfall totals between the gages and their SMART-R grid location over the entire season which correlate well on the high side, with gages recording the most precipitation agreeing to within 11% of the SMART-R. In contrast, on the low rainfall side, totals between the two recording systems are more variable, with a 62% variance between the minimums. In addition, at the scale of individual storms, a correlation between ground-based rainfall measurements and radar-based rainfall estimates is less evident, with storm totals between the gages and the SMART-R varying between 7 and 88%, a possible result of these being relatively small, fast-moving storms in an unusually dry winter. The SMART-R also recorded higher seasonal cumulative rainfall than the terrestrial gages, perhaps indicating that not all precipitation reached the ground. For one storm in particular, time-lapse photographs of the ground document snow. This could explain, in part, the discrepancy between storm-specific totals when the rain gages recorded significantly lower totals than the SMART-R. For example, during the storm where snow was observed, the SMART-R recorded a maximum of 66% higher rainfall than the maximum recorded by the gages. Unexpectedly, the highest elevation gage, located in a pre-fire coniferous vegetation community, consistently recorded the lowest precipitation, whereas gages in the lower elevation pre- fire chaparral community recorded the highest totals. The spatial locations of the maximum rainfall inferred by the SMART-R and the terrestrial gages are also offset by 1.6 km, with terrestrial values shifted easterly. The observation that the SMART-R images high rainfall intensities recorded by rain gages suggests that this technology has the ability to quantitatively estimate the spatial distribution over larger areas at a high resolution. Discrepancies on the storm scale, however, need to be investigated further, but we are optimistic that such high resolution data from the SMART-R and the terrestrial gages may lead to the effective application of a prototype debris-flow warning system where such processes put lives at risk.
NASA Astrophysics Data System (ADS)
Caumont, Olivier; Hally, Alan; Garrote, Luis; Richard, Évelyne; Weerts, Albrecht; Delogu, Fabio; Fiori, Elisabetta; Rebora, Nicola; Parodi, Antonio; Mihalović, Ana; Ivković, Marija; Dekić, Ljiljana; van Verseveld, Willem; Nuissier, Olivier; Ducrocq, Véronique; D'Agostino, Daniele; Galizia, Antonella; Danovaro, Emanuele; Clematis, Andrea
2015-04-01
The FP7 DRIHM (Distributed Research Infrastructure for Hydro-Meteorology, http://www.drihm.eu, 2011-2015) project intends to develop a prototype e-Science environment to facilitate the collaboration between meteorologists, hydrologists, and Earth science experts for accelerated scientific advances in Hydro-Meteorology Research (HMR). As the project comes to its end, this presentation will summarize the HMR results that have been obtained in the framework of DRIHM. The vision shaped and implemented in the framework of the DRIHM project enables the production and interpretation of numerous, complex compositions of hydrometeorological simulations of flood events from rainfall, either simulated or modelled, down to discharge. Each element of a composition is drawn from a set of various state-of-the-art models. Atmospheric simulations providing high-resolution rainfall forecasts involve different global and limited-area convection-resolving models, the former being used as boundary conditions for the latter. Some of these models can be run as ensembles, i.e. with perturbed boundary conditions, initial conditions and/or physics, thus sampling the probability density function of rainfall forecasts. In addition, a stochastic downscaling algorithm can be used to create high-resolution rainfall ensemble forecasts from deterministic lower-resolution forecasts. All these rainfall forecasts may be used as input to various rainfall-discharge hydrological models that compute the resulting stream flows for catchments of interest. In some hydrological simulations, physical parameters are perturbed to take into account model errors. As a result, six different kinds of rainfall data (either deterministic or probabilistic) can currently be compared with each other and combined with three different hydrological model engines running either in deterministic or probabilistic mode. HMR topics which are allowed or facilitated by such unprecedented sets of hydrometerological forecasts include: physical process studies, intercomparison of models and ensembles, sensitivity studies to a particular component of the forecasting chain, and design of flash-flood early-warning systems. These benefits will be illustrated with the different key cases that have been under investigation in the course of the project. These are four catastrophic cases of flooding, namely the case of 4 November 2011 in Genoa, Italy, 6 November 2011 in Catalonia, Spain, 13-16 May 2014 in eastern Europe, and 9 October 2014, again in Genoa, Italy.
A new, long-term daily satellite-based rainfall dataset for operational monitoring in Africa
Maidment, Ross I.; Grimes, David; Black, Emily; Tarnavsky, Elena; Young, Matthew; Greatrex, Helen; Allan, Richard P.; Stein, Thorwald; Nkonde, Edson; Senkunda, Samuel; Alcántara, Edgar Misael Uribe
2017-01-01
Rainfall information is essential for many applications in developing countries, and yet, continually updated information at fine temporal and spatial scales is lacking. In Africa, rainfall monitoring is particularly important given the close relationship between climate and livelihoods. To address this information gap, this paper describes two versions (v2.0 and v3.0) of the TAMSAT daily rainfall dataset based on high-resolution thermal-infrared observations, available from 1983 to the present. The datasets are based on the disaggregation of 10-day (v2.0) and 5-day (v3.0) total TAMSAT rainfall estimates to a daily time-step using daily cold cloud duration. This approach provides temporally consistent historic and near-real time daily rainfall information for all of Africa. The estimates have been evaluated using ground-based observations from five countries with contrasting rainfall climates (Mozambique, Niger, Nigeria, Uganda, and Zambia) and compared to other satellite-based rainfall estimates. The results indicate that both versions of the TAMSAT daily estimates reliably detects rainy days, but have less skill in capturing rainfall amount—results that are comparable to the other datasets. PMID:28534868
The structure and rainfall features of Tropical Cyclone Rammasun (2002)
NASA Astrophysics Data System (ADS)
Ma, Leiming; Duan, Yihong; Zhu, Yongti
2004-12-01
Tropical Rainfall Measuring Mission (TRMM) data [TRMM Microwave Imager/Precipitation Radar/Visible and Infrared Scanner (TMI/PR/VIRS)] and a numerical model are used to investigate the structure and rainfall features of Tropical Cyclone (TC) Rammasun (2002). Based on the analysis of TRMM data, which are diagnosed together with NCEP/AVN [Aviation (global model)] analysis data, some typical features of TC structure and rainfall are preliminary discovered. Since the limitations of TRMM data are considered for their time resolution and coverage, the world observed by TRMM at several moments cannot be taken as the representation of the whole period of the TC lifecycle, therefore the picture should be reproduced by a numerical model of high quality. To better understand the structure and rainfall features of TC Rammasun, a numerical simulation is carried out with mesoscale model MM5 in which the validations have been made with the data of TRMM and NCEP/AVN analysis.
Chen, Sheng; Liu, Huijuan; You, Yalei; Mullens, Esther; Hu, Junjun; Yuan, Ye; Huang, Mengyu; He, Li; Luo, Yongming; Zeng, Xingji; Tang, Guoqiang; Hong, Yang
2014-01-01
Satellite-based precipitation estimates products, CMORPH and PERSIANN-CCS, were evaluated with a dense rain gauge network over Beijing and adjacent regions for an extremely heavy precipitation event on July 21 2012. CMORPH and PEERSIANN-CSS misplaced the region of greatest rainfall accumulation, and failed to capture the spatial pattern of precipitation, evidenced by a low spatial correlation coefficient (CC). CMORPH overestimated the daily accumulated rainfall by 22.84% while PERSIANN-CCS underestimated by 72.75%. In the rainfall center, both CMORPH and PERSIANN-CCS failed to capture the temporal variation of the rainfall, and underestimated rainfall amounts by 43.43% and 87.26%, respectively. Based on our results, caution should be exercised when using CMORPH and PERSIANN-CCS as input for monitoring and forecasting floods in Beijing urban areas, and the potential for landslides in the mountainous zones west and north of Beijing. PMID:24691358
Chen, Sheng; Liu, Huijuan; You, Yalei; Mullens, Esther; Hu, Junjun; Yuan, Ye; Huang, Mengyu; He, Li; Luo, Yongming; Zeng, Xingji; Tang, Guoqiang; Hong, Yang
2014-01-01
Satellite-based precipitation estimates products, CMORPH and PERSIANN-CCS, were evaluated with a dense rain gauge network over Beijing and adjacent regions for an extremely heavy precipitation event on July 21 2012. CMORPH and PEERSIANN-CSS misplaced the region of greatest rainfall accumulation, and failed to capture the spatial pattern of precipitation, evidenced by a low spatial correlation coefficient (CC). CMORPH overestimated the daily accumulated rainfall by 22.84% while PERSIANN-CCS underestimated by 72.75%. In the rainfall center, both CMORPH and PERSIANN-CCS failed to capture the temporal variation of the rainfall, and underestimated rainfall amounts by 43.43% and 87.26%, respectively. Based on our results, caution should be exercised when using CMORPH and PERSIANN-CCS as input for monitoring and forecasting floods in Beijing urban areas, and the potential for landslides in the mountainous zones west and north of Beijing.
Determining hydroclimatic extreme events over the south-central Andes
NASA Astrophysics Data System (ADS)
RamezaniZiarani, Maryam; Bookhagen, Bodo; Schmidt, Torsten; Wickert, Jens; de la Torre, Alejandro; Volkholz, Jan
2017-04-01
The south-central Andes in NW Argentina are characterized by a strong rainfall asymmetry. In the east-west direction exists one of the steepest rainfall gradients on Earth, resulting from the large topographic differences in this region. In addition, in the north-south direction the rainfall intensity varies as the climatic regime shifts from the tropical central Andes to the subtropical south-central Andes. In this study, we investigate hydroclimatic extreme events over the south-central Andes using ERA-Interim reanalysis data of the ECMWF (European Centre for Medium-Range Weather Forecasts), the high resolution regional climate model (COSMO-CLM) data and TRMM (Tropical Rainfall Measuring Mission) data. We divide the area in three different study regions based on elevation: The high-elevation Altiplano-Puna plateau, an intermediate area characterized by intramontane basins, and the foreland area. We analyze the correlations between climatic variables, such as specific humidity, zonal wind component, meridional wind component and extreme rainfall events in all three domains. The results show that there is a high positive temporal correlation between extreme rainfall events (90th and 99th percentile rainfall) and extreme specific humidity events (90th and 99th percentile specific humidity). In addition, the temporal variations analysis represents a trend of increasing specific humidity with time during time period (1994-2013) over the Altiplano-Puna plateau which is in agreement with rainfall trend. Regarding zonal winds, our results indicate that 99th percentile rainfall events over the Altiplano-Puna plateau coincide temporally with strong easterly winds from intermountain and foreland regions in the east. In addition, the results regarding the meridional wind component represent strong northerly winds in the foreland region coincide temporally with 99th percentile rainfall over the Altiplano-Puna plateau.
NASA Astrophysics Data System (ADS)
Bechet, Jacques; Duc, Julien; Loye, Alexandre; Jaboyedoff, Michel; Mathys, Nicolle; Malet, Jean-Philippe; Klotz, Sébastien; Le Bouteiller, Caroline; Rudaz, Benjamin; Travelletti, Julien
2016-10-01
The Roubine catchment located in the experimental research station of Draix-Bléone (south French Alps) is situated in Callovo-Oxfordian black marls, a lithology particularly prone to erosion and weathering processes. For 30 years, this small watershed (0.13 ha) has been monitored for analysing hillslope processes on the scale of elementary gullies. Since 2007, surface changes have been monitored by comparing high-resolution digital elevation models (HRDEMs) produced from terrestrial laser scanner (TLS). The objectives are (1) to detect and (2) to quantify the sediment production and the evolution of the gully morphology in terms of sediment availability/transport capacity vs. rainfall and runoff generation. Time series of TLS observations have been acquired periodically based on the seasonal runoff activity with a very high point cloud density ensuring a resolution of the digital elevation model (DEM) on the centimetre scale. The topographic changes over a time span of 2 years are analysed. Quantitative analyses of the seasonal erosion activity and of the sediment fluxes show and confirm that during winter, loose regolith is created by mechanical weathering, and it is eroded and accumulates in the rills and gullies. Because of limited rainfall intensity in spring, part of the material is transported in the main gullies, which are assumed to be a transport-limited erosion system. In the late spring and summer the rainfall intensities increase, allowing the regolith, weathered and accumulated in the gullies and rills during the earlier seasons, to be washed out. Later in the year the catchment acts as a sediment-limited system because no more loose regolith is available. One interesting result is the fact that in the gullies the erosion-deposition processes are more active around the slope angle value of 35°, which probably indicates a behaviour close to dry granular material. It is also observed that there exist thresholds for the rainfall events that are able to trigger significant erosion; they are above 9 mm rainfall or of an intensity of more than 1 mm min-1, values which can vary if antecedent precipitation is significant within the last 5 days.
This study improves knowledge of the spatial distribution of erosion seasonality in badlands and demonstrates the potential of careful 3-D high-resolution topography using TLS to improve the understanding of erosive processes.
Mapping Dependence Between Extreme Rainfall and Storm Surge
NASA Astrophysics Data System (ADS)
Wu, Wenyan; McInnes, Kathleen; O'Grady, Julian; Hoeke, Ron; Leonard, Michael; Westra, Seth
2018-04-01
Dependence between extreme storm surge and rainfall can have significant implications for flood risk in coastal and estuarine regions. To supplement limited observational records, we use reanalysis surge data from a hydrodynamic model as the basis for dependence mapping, providing information at a resolution of approximately 30 km along the Australian coastline. We evaluated this approach by comparing the dependence estimates from modeled surge to that calculated using historical surge records from 79 tide gauges around Australia. The results show reasonable agreement between the two sets of dependence values, with the exception of lower seasonal variation in the modeled dependence values compared to the observed data, especially at locations where there are multiple processes driving extreme storm surge. This is due to the combined impact of local bathymetry as well as the resolution of the hydrodynamic model and its meteorological inputs. Meteorological drivers were also investigated for different combinations of extreme rainfall and surge—namely rain-only, surge-only, and coincident extremes—finding that different synoptic patterns are responsible for each combination. The ability to supplement observational records with high-resolution modeled surge data enables a much more precise quantification of dependence along the coastline, strengthening the physical basis for assessments of flood risk in coastal regions.
NASA Astrophysics Data System (ADS)
Surendran, Sajani; Gadgil, Sulochana; Rajendran, Kavirajan; Varghese, Stella Jes; Kitoh, Akio
2018-03-01
Recent years have witnessed large interannual variation of all-India rainfall (AIR) in June, with intermittent large deficits and excesses. Variability of June AIR is found to have the strongest link with variation of rainfall over northwest tropical Pacific (NWTP), with AIR deficit (excess) associated with enhancement (suppression) of NWTP rainfall. This association is investigated using high-resolution Meteorological Research Institute model which shows high skill in simulating important features of Asian summer monsoon, its variability and the inverse relationship between NWTP rainfall and AIR. Analysis of the variation of NWTP rainfall shows that it is associated with a change in the latitudinal position of subtropical westerly jet over the region stretching from West of Tibetan Plateau (WTP) to NWTP and the phase of Rossby wave steered in it with centres over NWTP and WTP. In years with large rainfall excess/deficit, the strong link between AIR and NWTP rainfall exists through differences in Rossby wave phase steered in the jet. The positive phase of the WTP-NWTP pattern, with troughs over WTP and west of NWTP, tends to be associated with increased rainfall over NWTP and decreased AIR. This scenario is reversed in the opposite phase. Thus, the teleconnection between NWTP rainfall and AIR is a manifestation of the difference in the phase of Rossby wave between excess and deficit years, with centres over WTP and NWTP. This brings out the importance of prediction of phase of Rossby waves over WTP and NWTP in advance, for prediction of June rainfall over India.
Observations of Heavy Rainfall in a Post Wildland Fire Area Using X-Band Polarimetric Radar
NASA Astrophysics Data System (ADS)
Cifelli, R.; Matrosov, S. Y.; Gochis, D. J.; Kennedy, P.; Moody, J. A.
2011-12-01
Polarimetric X-band radar systems have been used increasingly over the last decade for rainfall measurements. Since X-band radar systems are generally less costly, more mobile, and have narrower beam widths (for same antenna sizes) than those operating at lower frequencies (e.g., C and S-bands), they can be used for the "gap-filling" purposes for the areas when high resolution rainfall measurements are needed and existing operational radars systems lack adequate coverage and/or resolution for accurate quantitative precipitation estimation (QPE). The main drawback of X-band systems is attenuation of radar signals, which is significantly stronger compared to frequencies used by "traditional" precipitation radars operating at lower frequencies. The use of different correction schemes based on polarimetric data can, to a certain degree, overcome this drawback when attenuation does not cause total signal extinction. This presentation will focus on examining the use of high-resolution data from the NOAA Earth System Research Laboratory (ESRL) mobile X-band dual polarimetric radar for the purpose of estimating precipitation in a post-wildland fire area. The NOAA radar was deployed in the summer of 2011 to examine the impact of gap-fill radar on QPE and the resulting hydrologic response during heavy rain events in the Colorado Front Range in collaboration with colleagues from the National Center for Atmospheric Research (NCAR), Colorado State University (CSU), and the U.S. Geological Survey (USGS). A network of rain gauges installed by NCAR, the Denver Urban Drainage Flood Control District (UDFCD), and the USGS are used to compare with the radar estimates. Supplemental data from NEXRAD and the CSU-CHILL dual polarimetric radar are also used to compare with the NOAA X-band and rain gauges. It will be shown that rainfall rates and accumulations estimated from specific differential phase measurements (KDP) at X-band are in good agreement with the measurements from the gauge network during heavy rain and rain/hail mixture events. The X-band radar measurements also were generally successful in capturing the high spatial variability in convective rainfall, which caused post-fire debris flows.
NASA Astrophysics Data System (ADS)
Oo, Sungmin; Foelsche, Ulrich; Kirchengast, Gottfried; Fuchsberger, Jürgen
2016-04-01
The research level products of the Integrated Multi-Satellite Retrievals for Global Precipitation Measurement (IMERG "Final" run datasets) were compared with rainfall measurements from the WegenerNet high density network as part of ground validation (GV) projects of GPM missions. The WegenerNet network comprises 151 ground level weather stations in an area of 15 km × 20 km in south-eastern Austria (Feldbach region, ˜46.93° N, ˜15.90° E) designed to serve as a long-term monitoring and validation facility for weather and climate research and applications. While the IMERG provides rainfall estimations every half hour at 0.1° resolution, the WegenerNet network measures rainfall every 5 minutes at around 2 km2 resolution and produces 200 m × 200 m gridded datasets. The study was conducted on the domain of the WegenerNet network; eight IMERG grids are overlapped with the network, two of which are entirely covered by the WegenerNet (40 and 39 stations in each grid). We investigated data from April to September of the years 2014 to 2015; the date of first two years after the launch of the GPM Core Observatory. Since the network has a flexibility to work with various spatial and temporal scales, the comparison could be conducted on average-points to pixel basis at both sub-daily and daily timescales. This presentation will summarize the first results of the comparison and future plans to explore the characteristics of errors in the IMERG datasets.
NASA Astrophysics Data System (ADS)
Or, D.; von Ruette, J.; Lehmann, P.
2017-12-01
Landslides and subsequent debris-flows initiated by rainfall represent a common natural hazard in mountainous regions. We integrated a landslide hydro-mechanical triggering model with a simple model for debris flow runout pathways and developed a graphical user interface (GUI) to represent these natural hazards at catchment scale at any location. The STEP-TRAMM GUI provides process-based estimates of the initiation locations and sizes of landslides patterns based on digital elevation models (SRTM) linked with high resolution global soil maps (SoilGrids 250 m resolution) and satellite based information on rainfall statistics for the selected region. In the preprocessing phase the STEP-TRAMM model estimates soil depth distribution to supplement other soil information for delineating key hydrological and mechanical properties relevant to representing local soil failure. We will illustrate this publicly available GUI and modeling platform to simulate effects of deforestation on landslide hazards in several regions and compare model outcome with satellite based information.
NASA Astrophysics Data System (ADS)
Leonarduzzi, Elena; Molnar, Peter; McArdell, Brian W.
2017-08-01
A high-resolution gridded daily precipitation data set was combined with a landslide inventory containing over 2000 events in the period 1972-2012 to analyze rainfall thresholds which lead to landsliding in Switzerland. We colocated triggering rainfall to landslides, developed distributions of triggering and nontriggering rainfall event properties, and determined rainfall thresholds and intensity-duration ID curves and validated their performance. The best predictive performance was obtained by the intensity-duration ID threshold curve, followed by peak daily intensity Imax and mean event intensity Imean. Event duration by itself had very low predictive power. A single country-wide threshold of Imax = 28 mm/d was extended into space by regionalization based on surface erodibility and local climate (mean daily precipitation). It was found that wetter local climate and lower erodibility led to significantly higher rainfall thresholds required to trigger landslides. However, we showed that the improvement in model performance due to regionalization was marginal and much lower than what can be achieved by having a high-quality landslide database. Reference cases in which the landslide locations and timing were randomized and the landslide sample size was reduced showed the sensitivity of the Imax rainfall threshold model. Jack-knife and cross-validation experiments demonstrated that the model was robust. The results reported here highlight the potential of using rainfall ID threshold curves and rainfall threshold values for predicting the occurrence of landslides on a country or regional scale with possible applications in landslide warning systems, even with daily data.
Ellis, Sian R; Hodson, Mark E; Wege, Phil
2010-08-01
Carbendazim is highly toxic to earthworms and is used as a standard control substance when running field-based trials of pesticides, but results using carbendazim are highly variable. In the present study, impacts of timing of rainfall events following carbendazim application on earthworms were investigated. Lumbricus terrestris were maintained in soil columns to which carbendazim and then deionized water (a rainfall substitute) were applied. Carbendazim was applied at 4 kg/ha, the rate recommended in pesticide field trials. Three rainfall regimes were investigated: initial and delayed heavy rainfall 24 h and 6 d after carbendazim application, and frequent rainfall every 48 h. Earthworm mortality and movement of carbendazim through the soil was assessed 14 d after carbendazim application. No detectable movement of carbendazim occurred through the soil in any of the treatments or controls. Mortality in the initial heavy and frequent rainfall was significantly higher (approximately 55%) than in the delayed rainfall treatment (approximately 25%). This was due to reduced bioavailability of carbendazim in the latter treatment due to a prolonged period of sorption of carbendazim to soil particles before rainfall events. The impact of carbendazim application on earthworm surface activity was assessed using video cameras. Carbendazim applications significantly reduced surface activity due to avoidance behavior of the earthworms. Surface activity reductions were least in the delayed rainfall treatment due to the reduced bioavailability of the carbendazim. The nature of rainfall events' impacts on the response of earthworms to carbendazim applications, and details of rainfall events preceding and following applications during field trials should be made at a higher level of resolution than is currently practiced according to standard International Organization for Standardization protocols. Copyright 2010 SETAC
Pluviometric characterization of the Coca river basin by using a stochastic rainfall model
NASA Astrophysics Data System (ADS)
González-Zeas, Dunia; Chávez-Jiménez, Adriadna; Coello-Rubio, Xavier; Correa, Ángel; Martínez-Codina, Ángela
2014-05-01
An adequate design of the hydraulic infrastructures, as well as, the prediction and simulation of a river basin require historical records with a greater temporal and spatial resolution. However, the lack of an extensive network of precipitation data, the short time scale data and the incomplete information provided by the available rainfall stations limit the analysis and design of complex hydraulic engineering systems. As a consequence, it is necessary to develop new quantitative tools in order to face this obstacle imposed by ungauged or poorly gauged basins. In this context, the use of a spatial-temporal rainfall model allows to simulate the historical behavior of the precipitation and at the same time, to obtain long-term synthetic series that preserve the extremal behavior. This paper provides a characterization of the precipitation in the Coca river basin located in Ecuador by using RainSim V3, a robust and well tested stochastic rainfall model based on a spatial-temporal Neyman-Scott rectangular pulses process. A preliminary consistency analysis of the historical rainfall data available has been done in order to identify climatic regions with similar precipitation behavior patterns. Mean and maximum yearly and monthly fields of precipitation of high resolution spaced grids have been obtained through the use of interpolation techniques. According to the climatological similarity, long time series of daily temporal resolution of precipitation have been generated in order to evaluate the model skill in capturing the structure of daily observed precipitation. The results show a good performance of the model in reproducing very well the gross statistics, including the extreme values of rainfall at daily scale. The spatial pattern represented by the observed and simulated precipitation fields highlights the existence of two important regions characterized by different pluviometric comportment, with lower precipitation in the upper part of the basin and higher precipitation in the lower part of the basin.
NASA Astrophysics Data System (ADS)
Wei, Chiang; Yeh, Hui-Chung; Chen, Yen-Chang
2017-04-01
This study addressed the relationship between rainfall and cloud top temperature (CCT) from new generation satellite Himawari-8 imagery at different spatiotemporal scale. This satellite provides higher band, more bits for data format, spatial and temporal resolution compared with previous GMS series. The multi-infrared channels with 10-minute and 1-2 km resolution make it possible for rainfall estimating/forecasting in small/medium watershed. The preliminary result investigated at Chenyulan watershed (443.6 square kilometer) of Central Taiwan in 2016 Typhoon Megi shows the regression coefficient fitted by negative exponential equation of largest rainfall vs. CCT (B8 band) at pixel scale increases as time scales enlarges and reach 0.462 for 120-minute accumulative rainfall; the value (CTT of B15 band) decreases from 0.635 for 10-minute to 0.423 for 120-minute accumulative rainfall at basin-wide scale. More rainfall events for different regime are yet to evaluate to get solid results.
Validation of the CHIRPS Satellite Rainfall Estimates over Eastern of Africa
NASA Astrophysics Data System (ADS)
Dinku, T.; Funk, C. C.; Tadesse, T.; Ceccato, P.
2017-12-01
Long and temporally consistent rainfall time series are essential in climate analyses and applications. Rainfall data from station observations are inadequate over many parts of the world due to sparse or non-existent observation networks, or limited reporting of gauge observations. As a result, satellite rainfall estimates have been used as an alternative or as a supplement to station observations. However, many satellite-based rainfall products with long time series suffer from coarse spatial and temporal resolutions and inhomogeneities caused by variations in satellite inputs. There are some satellite rainfall products with reasonably consistent time series, but they are often limited to specific geographic areas. The Climate Hazards Group Infrared Precipitation (CHIRP) and CHIRP combined with station observations (CHIRPS) are recently produced satellite-based rainfall products with relatively high spatial and temporal resolutions and quasi-global coverage. In this study, CHIRP and CHIRPS were evaluated over East Africa at daily, dekadal (10-day) and monthly time scales. The evaluation was done by comparing the satellite products with rain gauge data from about 1200 stations. The is unprecedented number of validation stations for this region covering. The results provide a unique region-wide understanding of how satellite products perform over different climatic/geographic (low lands, mountainous regions, and coastal) regions. The CHIRP and CHIRPS products were also compared with two similar satellite rainfall products: the African Rainfall Climatology version 2 (ARC2) and the latest release of the Tropical Applications of Meteorology using Satellite data (TAMSAT). The results show that both CHIRP and CHIRPS products are significantly better than ARC2 with higher skill and low or no bias. These products were also found to be slightly better than the latest version of the TAMSAT product. A comparison was also done between the latest release of the TAMSAT product (TAMSAT3) and the earlier version(TAMSAT2), which has shown that the latest version is a substantial improvement over the previous one, particularly with regards to the bias statistics.
NASA Astrophysics Data System (ADS)
Ma, M.; Wang, H.; Chen, Y.; Tang, G.; Hong, Z.; Zhang, K.; Hong, Y.
2017-12-01
Flash floods, one of the deadliest natural hazards worldwide due to their multidisciplinary nature, rank highly in terms of heavy damage and casualties. Such as in the United States, flash flood is the No.1 cause of death and the No. 2 most deadly weather-related hazard among all storm-related hazards, with approximately 100 lives lost each year. According to China Floods and Droughts Disasters Bullet in 2015 (http://www.mwr.gov.cn/zwzc/hygb/zgshzhgb), about 935 deaths per year on average were caused by flash floods from 2000 to 2015, accounting for 73 % of the fatalities due to floods. Therefore, significant efforts have been made toward understanding flash flood processes as well as modeling and forecasting them, it still remains challenging because of their short response time and limited monitoring capacity. This study advances the use of high-resolution Global Precipitation Measurement forecasts (GPMs), disaster data obtained from the government officials in 2011 and 2016, and the improved Distributed Flash Flood Guidance (DFFG) method combining the Distributed Hydrologic Model and Soil Conservation Service Curve Numbers. The objectives of this paper are (1) to examines changes in flash flood occurrence, (2) to estimate the effect of the rainfall spatial variability ,(2) to improve the lead time in flash floods warning and get the rainfall threshold, (3) to assess the DFFG method applicability in Dongchuan catchments, and (4) to yield the probabilistic information about the forecast hydrologic response that accounts for the locational uncertainties of the GPMs. Results indicate: (1) flash flood occurrence increased in the study region, (2) the occurrence of predicted flash floods show high sensitivity to total infiltration and soil water content, (3) the DFFG method is generally capable of making accurate predictions of flash flood events in terms of their locations and time of occurrence, and (4) the accumulative rainfall over a certain time span is an appropriate threshold for flash flood warnings. Finally, the article highlights the importance of accurately simulating the hydrological processes and high-resolution satellite rainfall data on the accurate forecasting of rainfall triggered flash flood events.
Remote rainfall sensing for landslide hazard analysis
Wieczorek, Gerald F.; McWreath, Harry; Davenport, Clay
2001-01-01
Methods of assessing landslide hazards and providing warnings are becoming more advanced as remote sensing of rainfall provides more detailed temporal and spatial data on rainfall distribution. Two recent landslide disasters are examined noting the potential for using remotely sensed rainfall data for landslide hazard analysis. For the June 27, 1995, storm in Madison County, Virginia, USA, National Weather Service WSR-88D Doppler radar provided rainfall estimates based on a relation between cloud reflectivity and moisture content on a 1 sq. km. resolution every 6 minutes. Ground-based measurements of rainfall intensity and precipitation total, in addition to landslide timing and distribution, were compared with the radar-derived rainfall data. For the December 14-16, 1999, storm in Vargas State, Venezuela, infrared sensing from the GOES-8 satellite of cloud top temperatures provided the basis for NOAA/NESDIS rainfall estimates on a 16 sq. km. resolution every 30 minutes. These rainfall estimates were also compared with ground-based measurements of rainfall and landslide distribution. In both examples, the remotely sensed data either overestimated or underestimated ground-based values by up to a factor of 2. The factors that influenced the accuracy of rainfall data include spatial registration and map projection, as well as prevailing wind direction, cloud orientation, and topography.
Studying the Diurnal Cycle of Convection Using a TRMM-Calibrated Infrared Rain Algorithm
NASA Technical Reports Server (NTRS)
Negri, Andrew J.
2005-01-01
The development of a satellite infrared (IR) technique for estimating convective and stratiform rainfall and its application in studying the diurnal variability of rainfall on a global scale is presented. The Convective-Stratiform Technique (CST), calibrated by coincident, physically retrieved rain rates from the Tropical Rainfall Measuring Mission (TRMM) Precipitation Radar (PR), is applied over the global tropics. The technique makes use of the IR data from the TRMM Visible/Infrared Scanner (VIRS) before application to global geosynchronous satellite data. The calibrated CST technique has the advantages of high spatial resolution (4 km), filtering of nonraining cirrus clouds, and the stratification of the rainfall into its convective and stratiform components, the last being important for the calculation of vertical profiles of latent heating. The diurnal cycle of rainfall, as well as the division between convective and Stratiform rainfall will be presented. The technique is validated using available data sets and compared to other global rainfall products such as Global Precipitation Climatology Project (GPCP) IR product, calibrated with TRMM Microwave Imager (TMI) data. Results from five years of PR data will show the global-tropical partitioning of convective and stratiform rainfall.
NASA Astrophysics Data System (ADS)
Jury, Mark R.
2016-11-01
Climate variability in the eastern Antilles island chain is analyzed via principal component analysis of high-resolution monthly rainfall in the period 1981-2013. The second mode reflecting higher rainfall in July-October season between Martinique and Grenada is the focus of this study. Higher rainfall corresponds with a weakened trade wind and boundary current along the southern edge of the Caribbean. This quells the coastal upwelling off Venezuela and builds the freshwater plume east of Trinidad. There is corresponding upper easterly wind flow that intensifies passing tropical waves. During a storm event over the Antilles on 4-5 October 2010, there was inflow from east of Guyana where low salinity and high sea temperatures enable surplus latent heat fluxes. A N-S convective rain band forms ˜500 km east of the cyclonic vortex. Many features at the weather timescale reflect the seasonal correlation and composite difference maps and El Nino Southern Oscillation (ENSO) modulation of oceanic inter-basin transfers.
NASA Astrophysics Data System (ADS)
ten Veldhuis, Marie-claire; van Riemsdijk, Birna
2013-04-01
Hydrological analysis of urban catchments requires high resolution rainfall and catchment information because of the small size of these catchments, high spatial variability of the urban fabric, fast runoff processes and related short response times. Rainfall information available from traditional radar and rain gauge networks does no not meet the relevant scales of urban hydrology. A new type of weather radars, based on X-band frequency and equipped with Doppler and dual polarimetry capabilities, promises to provide more accurate rainfall estimates at the spatial and temporal scales that are required for urban hydrological analysis. Recently, the RAINGAIN project was started to analyse the applicability of this new type of radars in the context of urban hydrological modelling. In this project, meteorologists and hydrologists work closely together in several stages of urban hydrological analysis: from the acquisition procedure of novel and high-end radar products to data acquisition and processing, rainfall data retrieval, hydrological event analysis and forecasting. The project comprises of four pilot locations with various characteristics of weather radar equipment, ground stations, urban hydrological systems, modelling approaches and requirements. Access to data processing and modelling software is handled in different ways in the pilots, depending on ownership and user context. Sharing of data and software among pilots and with the outside world is an ongoing topic of discussion. The availability of high resolution weather data augments requirements with respect to the resolution of hydrological models and input data. This has led to the development of fully distributed hydrological models, the implementation of which remains limited by the unavailability of hydrological input data. On the other hand, if models are to be used in flood forecasting, hydrological models need to be computationally efficient to enable fast responses to extreme event conditions. This presentation will highlight ICT-related requirements and limitations in high resolution urban hydrological modelling and analysis. Further ICT challenges arise in provision of high resolution radar data for diverging information needs as well as in combination with other data sources in the urban environment. Different types of information are required for such diverse activities as operational flood protection, traffic management, large event organisation, business planning in shopping districts and restaurants, timing of family activities. These different information needs may require different configurations and data processing for radars and other data sources. An ICT challenge is to develop techniques for deciding how to automatically respond to these diverging information needs (e.g., through (semi-)automated negotiation). Diverse activities also provide a wide variety of information resources that can supplement traditional networks of weather sensors, such as rain sensors on cars and social media. Another ICT challenge is how to combine data from these different sources for answering a particular information need. Examples will be presented of solutions are currently being explored.
Assessment of a climate model to reproduce rainfall variability and extremes over Southern Africa
NASA Astrophysics Data System (ADS)
Williams, C. J. R.; Kniveton, D. R.; Layberry, R.
2010-01-01
It is increasingly accepted that any possible climate change will not only have an influence on mean climate but may also significantly alter climatic variability. A change in the distribution and magnitude of extreme rainfall events (associated with changing variability), such as droughts or flooding, may have a far greater impact on human and natural systems than a changing mean. This issue is of particular importance for environmentally vulnerable regions such as southern Africa. The sub-continent is considered especially vulnerable to and ill-equipped (in terms of adaptation) for extreme events, due to a number of factors including extensive poverty, famine, disease and political instability. Rainfall variability and the identification of rainfall extremes is a function of scale, so high spatial and temporal resolution data are preferred to identify extreme events and accurately predict future variability. The majority of previous climate model verification studies have compared model output with observational data at monthly timescales. In this research, the assessment of ability of a state of the art climate model to simulate climate at daily timescales is carried out using satellite-derived rainfall data from the Microwave Infrared Rainfall Algorithm (MIRA). This dataset covers the period from 1993 to 2002 and the whole of southern Africa at a spatial resolution of 0.1° longitude/latitude. This paper concentrates primarily on the ability of the model to simulate the spatial and temporal patterns of present-day rainfall variability over southern Africa and is not intended to discuss possible future changes in climate as these have been documented elsewhere. Simulations of current climate from the UK Meteorological Office Hadley Centre's climate model, in both regional and global mode, are firstly compared to the MIRA dataset at daily timescales. Secondly, the ability of the model to reproduce daily rainfall extremes is assessed, again by a comparison with extremes from the MIRA dataset. The results suggest that the model reproduces the number and spatial distribution of rainfall extremes with some accuracy, but that mean rainfall and rainfall variability is under-estimated (over-estimated) over wet (dry) regions of southern Africa.
Vignolles, Cécile; Tourre, Yves M; Mora, Oscar; Imanache, Laurent; Lafaye, Murielle
2010-11-01
In the vicinity of the Barkedji village (in the Ferlo region of Senegal), the abundance and aggressiveness of the vector mosquitoes for Rift Valley fever (RVF) are strongly linked to rainfall events and associated ponds dynamics. Initially, these results were obtained from spectral analysis of high-resolution (~10 m) Spot-5 images, but, as a part of the French AdaptFVR project, identification of the free water dynamics within ponds was made with the new high-resolution (down to 3-meter pixels), Synthetic Aperture Radar satellite (TerraSAR-X) produced by Infoterra GmbH, Friedrichshafen/Potsdam, Germany. During summer 2008, within a 30 x 50 km radar image, it was found that identified free water fell well within the footprints of ponds localized by optical data (i.e. Spot-5 images), which increased the confidence in this new and complementary remote sensing technique. Moreover, by using near real-time rainfall data from the Tropical Rainfall Measuring Mission (TRMM), NASA/JAXA joint mission, the filling-up and flushing-out rates of the ponds can be accurately determined. The latter allows for a precise, spatio-temporal mapping of the zones potentially occupied by mosquitoes capable of revealing the variability of pond surfaces. The risk for RVF infection of gathered bovines and small ruminants (~1 park/km(2)) can thus be assessed. This new operational approach (which is independent of weather conditions) is an important development in the mapping of risk components (i.e. hazards plus vulnerability) related to RVF transmission during the summer monsoon, thus contributing to a RVF early warning system.
NASA Astrophysics Data System (ADS)
Ciampalini, Rossano; Kendon, Elizabeth; Constantine, José Antonio; Schindewolf, Marcus; Hall, Ian
2016-04-01
Twenty-first century climate change simulations for Great Britain reveal an increase in heavy precipitation that may lead to widespread soil loss and reduced soil carbon stores by increasing the likelihood of surface runoff. We find the quality and resolution of the simulated rainfall used to drive soil loss variation can widely influence the results. Hourly high definition rainfall simulations from a 1.5km resolution regional climate model are used to examine the soil erosion response in two UK catchments. The catchments have different sensitivity to soil erosion. "Rother" in West Sussex, England, reports some of the most erosive events that have been observed during the last 50 years in the UK. "Conwy" in North Wales, is resilient to soil erosion because of the abundant natural vegetation cover and very limited agricultural practises. We modelled with Erosion3D to check variations in soil erosion as influenced by climate variations for the periods 1996-2009 and 2086-2099. Our results indicate the Rother catchment is the most erosive, while the Conwy catchment is confirmed as the more resilient to soil erosion. The values of the reference-base period are consistent with the values of those locally observed in the previous decades. A soil erosion comparison for the two periods shows an increasing of sediment production (off-site erosion) for the end of the century at about 27% in the Rother catchment and about 50% for the Conwy catchment. The results, thanks to high-definition rainfall predictions, throw some light on the effect of climatic change effects in Great Britain.
NASA Astrophysics Data System (ADS)
Marra, Francesco; Morin, Efrat
2017-04-01
Forecasting the occurrence of flash floods and debris flows is fundamental to save lives and protect infrastructures and properties. These natural hazards are generated by high-intensity convective storms, on space-time scales that cannot be properly monitored by conventional instrumentation. Consequently, a number of early-warning systems are nowadays based on remote sensing precipitation observations, e.g. from weather radars or satellites, that proved effective in a wide range of situations. However, the uncertainty affecting rainfall estimates represents an important issue undermining the operational use of early-warning systems. The uncertainty related to remote sensing estimates results from (a) an instrumental component, intrinsic of the measurement operation, and (b) a discretization component, caused by the discretization of the continuous rainfall process. Improved understanding on these sources of uncertainty will provide crucial information to modelers and decision makers. This study aims at advancing knowledge on the (b) discretization component. To do so, we take advantage of an extremely-high resolution X-Band weather radar (60 m, 1 min) recently installed in the Eastern Mediterranean. The instrument monitors a semiarid to arid transition area also covered by an accurate C-Band weather radar and by a relatively sparse rain gauge network ( 1 gauge/ 450 km2). Radar quantitative precipitation estimation includes corrections reducing the errors due to ground echoes, orographic beam blockage and attenuation of the signal in heavy rain. Intense, convection-rich, flooding events recently occurred in the area serve as study cases. We (i) describe with very high detail the spatiotemporal characteristics of the convective cores, and (ii) quantify the uncertainty due to spatial aggregation (spatial discretization) and temporal sampling (temporal discretization) operated by coarser resolution remote sensing instruments. We show that instantaneous rain intensity decreases very steeply with the distance from the core of convection with intensity observed at 1 km (2 km) being 10-40% (1-20%) of the core value. The use of coarser temporal resolutions leads to gaps in the observed rainfall and even relatively high resolutions (5 min) can be affected by the problem. We conclude providing to the final user indications about the effects of the discretization component of estimation uncertainty and suggesting viable ways to decrease them.
A comparison of methods to estimate future sub-daily design rainfall
NASA Astrophysics Data System (ADS)
Li, J.; Johnson, F.; Evans, J.; Sharma, A.
2017-12-01
Warmer temperatures are expected to increase extreme short-duration rainfall due to the increased moisture-holding capacity of the atmosphere. While attention has been paid to the impacts of climate change on future design rainfalls at daily or longer time scales, the potential changes in short duration design rainfalls have been often overlooked due to the limited availability of sub-daily projections and observations. This study uses a high-resolution regional climate model (RCM) to predict the changes in sub-daily design rainfalls for the Greater Sydney region in Australia. Sixteen methods for predicting changes to sub-daily future extremes are assessed based on different options for bias correction, disaggregation and frequency analysis. A Monte Carlo cross-validation procedure is employed to evaluate the skill of each method in estimating the design rainfall for the current climate. It is found that bias correction significantly improves the accuracy of the design rainfall estimated for the current climate. For 1 h events, bias correcting the hourly annual maximum rainfall simulated by the RCM produces design rainfall closest to observations, whereas for multi-hour events, disaggregating the daily rainfall total is recommended. This suggests that the RCM fails to simulate the observed multi-duration rainfall persistence, which is a common issue for most climate models. Despite the significant differences in the estimated design rainfalls between different methods, all methods lead to an increase in design rainfalls across the majority of the study region.
NASA Astrophysics Data System (ADS)
von Ruette, Jonas; Lehmann, Peter; Fan, Linfeng; Bickel, Samuel; Or, Dani
2017-04-01
Landslides and subsequent debris-flows initiated by rainfall represent a ubiquitous natural hazard in steep mountainous regions. We integrated a landslide hydro-mechanical triggering model and associated debris flow runout pathways with a graphical user interface (GUI) to represent these natural hazards in a wide range of catchments over the globe. The STEP-TRAMM GUI provides process-based locations and sizes of landslides patterns using digital elevation models (DEM) from SRTM database (30 m resolution) linked with soil maps from global database SoilGrids (250 m resolution) and satellite based information on rainfall statistics for the selected region. In a preprocessing step STEP-TRAMM models soil depth distribution and complements soil information that jointly capture key hydrological and mechanical properties relevant to local soil failure representation. In the presentation we will discuss feature of this publicly available platform and compare landslide and debris flow patterns for different regions considering representative intense rainfall events. Model outcomes will be compared for different spatial and temporal resolutions to test applicability of web-based information on elevation and rainfall for hazard assessment.
NASA Astrophysics Data System (ADS)
Troy, S.; Aharon, P.; Lambert, W. J.
2012-12-01
El Niño-Southern Oscillation's (ENSO) dominant control over the present global climate and its unpredictable response to a global warming makes the study of paleo-ENSO important. So far corals, spanning the Tropical Pacific Ocean, are the most commonly used geological archives of paleo-ENSO. This is because corals typically exhibit high growth rates (>1 cm/yr), and reproduce reliably surface water temperatures at sub-annual resolution. However there are limitations to coral archives because their time span is relatively brief (in the order of centuries), thus far making a long and continuous ENSO record difficult to achieve. On the other hand stalagmites from island settings can offer long and continuous records of ENSO-driven rainfall. Niue Island caves offer an unusual opportunity to investigate ENSO-driven paleo-rainfall because the island is isolated from other large land masses, making it untainted by continental climate artifacts, and its geographical location is within the Tropical Pacific "rain pool" (South Pacific Convergence Zone; SPCZ) that makes the rainfall variability particularly sensitive to the ENSO phase switches. We present here a δ18O and δ13C time series from a stalagmite sampled on Niue Island (19°00' S, 169°50' W) that exhibits exceptionally high growth rates (~1.2 mm/yr) thus affording a resolution comparable to corals but for much longer time spans. A precise chronology, dating back to several millennia, was achieved by U/Th dating of the stalagmite. The stalagmite was sampled using a Computer Automated Mill (CAM) at 300 μm increments in order to receive sub-annual resolution (every 3 months) and calcite powders of 50-100 μg weight were analyzed for δ18O and δ13C using a Continuous Flow Isotope Ratio Mass Spectrometer (CF-IRMS). The isotope time series contains variable shifts at seasonal, inter-annual, and inter-decadal periodicities. The δ13C and δ18O yield ranges of -3.0 to -13.0 (‰ VPDB) and -3.2 to -6.2 (‰ VPDB), respectively. The presentation will describe the factors impacting the seasonal, inter-annual and inter-decadal variability in a highly resolved ENSO record.
NASA Astrophysics Data System (ADS)
Yang, Pan; Ng, Tze Ling
2017-11-01
Accurate rainfall measurement at high spatial and temporal resolutions is critical for the modeling and management of urban storm water. In this study, we conduct computer simulation experiments to test the potential of a crowd-sourcing approach, where smartphones, surveillance cameras, and other devices act as precipitation sensors, as an alternative to the traditional approach of using rain gauges to monitor urban rainfall. The crowd-sourcing approach is promising as it has the potential to provide high-density measurements, albeit with relatively large individual errors. We explore the potential of this approach for urban rainfall monitoring and the subsequent implications for storm water modeling through a series of simulation experiments involving synthetically generated crowd-sourced rainfall data and a storm water model. The results show that even under conservative assumptions, crowd-sourced rainfall data lead to more accurate modeling of storm water flows as compared to rain gauge data. We observe the relative superiority of the crowd-sourcing approach to vary depending on crowd participation rate, measurement accuracy, drainage area, choice of performance statistic, and crowd-sourced observation type. A possible reason for our findings is the differences between the error structures of crowd-sourced and rain gauge rainfall fields resulting from the differences between the errors and densities of the raw measurement data underlying the two field types.
The potential of urban rainfall monitoring with crowdsourced automatic weather stations in Amsterdam
NASA Astrophysics Data System (ADS)
de Vos, Lotte; Leijnse, Hidde; Overeem, Aart; Uijlenhoet, Remko
2017-02-01
The high density of built-up areas and resulting imperviousness of the land surface makes urban areas vulnerable to extreme rainfall, which can lead to considerable damage. In order to design and manage cities to be able to deal with the growing number of extreme rainfall events, rainfall data are required at higher temporal and spatial resolutions than those needed for rural catchments. However, the density of operational rainfall monitoring networks managed by local or national authorities is typically low in urban areas. A growing number of automatic personal weather stations (PWSs) link rainfall measurements to online platforms. Here, we examine the potential of such crowdsourced datasets for obtaining the desired resolution and quality of rainfall measurements for the capital of the Netherlands. Data from 63 stations in Amsterdam (˜ 575 km2) that measure rainfall over at least 4 months in a 17-month period are evaluated. In addition, a detailed assessment is made of three Netatmo stations, the largest contributor to this dataset, in an experimental setup. The sensor performance in the experimental setup and the density of the PWS network are promising. However, features in the online platforms, like rounding and thresholds, cause changes from the original time series, resulting in considerable errors in the datasets obtained. These errors are especially large during low-intensity rainfall, although they can be reduced by accumulating rainfall over longer intervals. Accumulation improves the correlation coefficient with gauge-adjusted radar data from 0.48 at 5 min intervals to 0.60 at hourly intervals. Spatial rainfall correlation functions derived from PWS data show much more small-scale variability than those based on gauge-adjusted radar data and those found in similar research using dedicated rain gauge networks. This can largely be attributed to the noise in the PWS data resulting from both the measurement setup and the processes occurring in the data transfer to the online PWS platform. A double mass comparison with gauge-adjusted radar data shows that the median of the stations resembles the rainfall reference better than the real-time (unadjusted) radar product. Averaging nearby raw PWS measurements further improves the match with gauge-adjusted radar data in that area. These results confirm that the growing number of internet-connected PWSs could successfully be used for urban rainfall monitoring.
Urban rainfall monitoring with crowdsourced automatic weather stations in Amsterdam
NASA Astrophysics Data System (ADS)
de Vos, Lotte; Leijnse, Hidde; Overeem, Aart; Uijlenhoet, Remko
2017-04-01
The high density of built-up areas and resulting imperviousness of the land surface makes urban areas vulnerable to extreme rainfall, which can lead to considerable damage. In order to design and manage cities to be able to deal with the growing number of extreme rainfall events, rainfall data is required at higher temporal and spatial resolutions than those needed for rural catchments. However, the density of operational rainfall monitoring networks managed by local or national authorities is typically low in urban areas. A growing number of automatic personal weather stations (PWSs) link rainfall measurements to online platforms. Here, we examine the potential of such crowdsourced datasets for obtaining the desired resolution and quality of rainfall measurements for the capital of the Netherlands. Data from 63 stations in Amsterdam (˜575 km2}) that measure rainfall over at least 4 months in a 17-month period are evaluated. In addition, a detailed assessment is made of three Netatmo stations, the largest contributor to this dataset, in an experimental set-up. The sensor performance in the experimental set-up and the density of the PWS-network are promising. However, features in the online platforms, like rounding and thresholds, cause changes from the original time series, resulting in considerable errors in the datasets obtained. These errors are especially large during low intensity rainfall, although they can be reduced by accumulating rainfall over longer intervals. Accumulation improves the correlation coefficient with gauge-adjusted radar data from 0.48 at 5 min intervals to 0.60 at hourly intervals. Spatial rainfall correlation functions derived from PWS data show much more small-scale variability than those based on gauge-adjusted radar data and those found in similar research using dedicated rain gauge networks. This can largely be attributed to the noise in the PWS data resulting from both the measurement setup and the processes occurring in the data transfer to the online PWS-platform. A double mass comparison with gauge-adjusted radar data shows that the median of the stations resembles the rainfall reference better than the real-time (unadjusted) radar product. Averaging nearby raw PWS measurements further improves the match with gauge-adjusted radar data in that area. These results confirm that the growing number of internet-connected PWSs could successfully be used for urban rainfall monitoring.
Mixed memory, (non) Hurst effect, and maximum entropy of rainfall in the tropical Andes
NASA Astrophysics Data System (ADS)
Poveda, Germán
2011-02-01
Diverse linear and nonlinear statistical parameters of rainfall under aggregation in time and the kind of temporal memory are investigated. Data sets from the Andes of Colombia at different resolutions (15 min and 1-h), and record lengths (21 months and 8-40 years) are used. A mixture of two timescales is found in the autocorrelation and autoinformation functions, with short-term memory holding for time lags less than 15-30 min, and long-term memory onwards. Consistently, rainfall variance exhibits different temporal scaling regimes separated at 15-30 min and 24 h. Tests for the Hurst effect evidence the frailty of the R/ S approach in discerning the kind of memory in high resolution rainfall, whereas rigorous statistical tests for short-memory processes do reject the existence of the Hurst effect. Rainfall information entropy grows as a power law of aggregation time, S( T) ˜ Tβ with < β> = 0.51, up to a timescale, TMaxEnt (70-202 h), at which entropy saturates, with β = 0 onwards. Maximum entropy is reached through a dynamic Generalized Pareto distribution, consistently with the maximum information-entropy principle for heavy-tailed random variables, and with its asymptotically infinitely divisible property. The dynamics towards the limit distribution is quantified. Tsallis q-entropies also exhibit power laws with T, such that Sq( T) ˜ Tβ( q) , with β( q) ⩽ 0 for q ⩽ 0, and β( q) ≃ 0.5 for q ⩾ 1. No clear patterns are found in the geographic distribution within and among the statistical parameters studied, confirming the strong variability of tropical Andean rainfall.
NASA Astrophysics Data System (ADS)
van der Heijden, Sven; Callau Poduje, Ana; Müller, Hannes; Shehu, Bora; Haberlandt, Uwe; Lorenz, Manuel; Wagner, Sven; Kunstmann, Harald; Müller, Thomas; Mosthaf, Tobias; Bárdossy, András
2015-04-01
For the design and operation of urban drainage systems with numerical simulation models, long, continuous precipitation time series with high temporal resolution are necessary. Suitable observed time series are rare. As a result, intelligent design concepts often use uncertain or unsuitable precipitation data, which renders them uneconomic or unsustainable. An expedient alternative to observed data is the use of long, synthetic rainfall time series as input for the simulation models. Within the project SYNOPSE, several different methods to generate synthetic precipitation data for urban drainage modelling are advanced, tested, and compared. The presented study compares four different approaches of precipitation models regarding their ability to reproduce rainfall and runoff characteristics. These include one parametric stochastic model (alternating renewal approach), one non-parametric stochastic model (resampling approach), one downscaling approach from a regional climate model, and one disaggregation approach based on daily precipitation measurements. All four models produce long precipitation time series with a temporal resolution of five minutes. The synthetic time series are first compared to observed rainfall reference time series. Comparison criteria include event based statistics like mean dry spell and wet spell duration, wet spell amount and intensity, long term means of precipitation sum and number of events, and extreme value distributions for different durations. Then they are compared regarding simulated discharge characteristics using an urban hydrological model on a fictitious sewage network. First results show a principal suitability of all rainfall models but with different strengths and weaknesses regarding the different rainfall and runoff characteristics considered.
NASA Astrophysics Data System (ADS)
Muñoz, Paula; Gorin, Georges; Parra, Norberto; Velásquez, Cesar; Lemus, Diego; Monsalve-M., Carlos; Jojoa, Marcela
2017-01-01
The Páramo de Frontino (3460 m elevation) in Colombia is located approximately halfway between the Pacific and Atlantic oceans. It contains a 17 kyr long, stratigraphically continuous sedimentary sequence dated by 30 AMS 14C ages. Our study covers the last 11,500 cal yr and focuses on the biotic (pollen) and abiotic (microfluorescence-X or μXRF) components of this high mountain ecosystem. The pollen record provides a proxy for temperature and humidity with a resolution of 20-35 yr, and μXRF of Ti and Fe is a proxy for rainfall with a sub-annual (ca. 6-month) resolution. Temperature and humidity display rapid and significant changes over the Holocene. The rapid transition from a cold (mean annual temperature (MAT) 3.5 °C lower than today) and wet Younger Dryas to a warm and dry early Holocene is dated at 11,410 cal yr BP. During the Holocene, MAT varied from ca. 2.5 °C below to 3.5° above present-day temperature. Warm periods (11,410-10,700, 9700-6900, 4000-2400 cal yr BP) were separated by colder intervals. The last 2.4 kyr of the record is affected by human impact. The Holocene remained dry until 7500 cal yr BP. Then, precipitations increased to reach a maximum between 5000 and 4500 cal yr BP. A rapid decrease occurred until 3500 cal yr BP and the late Holocene was dry. Spectral analysis of μXRF data show rainfall cyclicity at millennial scale throughout the Holocene, and at centennial down to ENSO scale in more specific time intervals. The highest rainfall intervals correlate with the highest activity of ENSO. Variability in solar output is possibly the main cause for this millennial to decadal cyclicity. We interpret ENSO and ITCZ as the main climate change-driving mechanisms in Frontino. Comparison with high-resolution XRF data from the Caribbean Cariaco Basin (a proxy for rainfall in the coastal Venezuelian cordilleras) demonstrates that climate in Frontino was Pacific-driven (ENSO-dominated) during the YD and early Holocene, whereas it was Atlantic-driven in Cariaco (ITCZ-dominated). From ca. 8000 cal yr BP, climate in both areas was under the dual influence of ENSO and ITCZ, thereby showing existing teleconnections between the tropical Pacific and Atlantic oceans. The Frontino record is to date the highest-resolution Holocene study in NW Colombia. An implication of these results is that new records should be analyzed with multiproxy tools, in particular those providing high resolution time series, such as μXRF.
NASA Astrophysics Data System (ADS)
Singhofen, P.
2017-12-01
The National Water Model (NWM) is a remarkable undertaking. The foundation of the NWM is a 1 square kilometer grid which is used for near real-time modeling and flood forecasting of most rivers and streams in the contiguous United States. However, the NWM falls short in highly urbanized areas with complex drainage infrastructure. To overcome these shortcomings, the presenter proposes to leverage existing local hyper-resolution H&H models and adapt the NWM forcing data to them. Gridded near real-time rainfall, short range forecasts (18-hour) and medium range forecasts (10-day) during Hurricane Irma are applied to numerous detailed H&H models in highly urbanized areas of the State of Florida. Coastal and inland models are evaluated. Comparisons of near real-time rainfall data are made with observed gaged data and the ability to predict flooding in advance based on forecast data is evaluated. Preliminary findings indicate that the near real-time rainfall data is consistently and significantly lower than observed data. The forecast data is more promising. For example, the medium range forecast data provides 2 - 3 days advanced notice of peak flood conditions to a reasonable level of accuracy in most cases relative to both timing and magnitude. Short range forecast data provides about 12 - 14 hours advanced notice. Since these are hyper-resolution models, flood forecasts can be made at the street level, providing emergency response teams with valuable information for coordinating and dispatching limited resources.
NASA Astrophysics Data System (ADS)
Azadi, S.; Saco, P. M.; Moreno-de las Heras, M.; Willgoose, G. R.
2016-12-01
Arid and semiarid landscapes are particularly sensitive to climatic and anthropogenic disturbances. Previous work has identified that these landscapes are prone to undergo critical degradation thresholds above which rehabilitation is difficult to achieve. This threshold behaviour is tightly linked to the overland flow redistribution and an increase in hydrologic connectivity associated with the climatic or anthropogenic disturbances. In fact, disturbances (such as wildfire, overgrazing or harvesting activities) can disrupt the spatial structure of vegetation, increase landscape hydrologic connectivity, trigger erosion and produce a substantial loss of water. All these effects can eventually affect ecosystem functionality (e.g. Rainfall Use Efficiency). In this study, we explore the impact of degradation processes induced by vegetation disturbances (mostly due to grazing pressure) on ecosystem functionality and connectivity along a precipitation gradient (250 mm to 490 mm annual average rainfall) using a combination of remote sensing observations and Digital Elevation Model data. The sites were carefully selected in the Mulga landscapes bioregion (New South Wales, Queensland) and in sites of the Northern Territory in Australia, which display similar vegetation characteristics and good quality rainfall information. Vegetation patterns and the percent of fractional cover were obtained from high resolution remote sensing images (IKONOS, QuickBird and Pleiades). We computed rainfall use efficiency and precipitation marginal response using local precipitation data and MODIS vegetation indices. We estimated mean Flowlength as an indicator of structural hydrologic connectivity using vegetation binary maps and digital elevation models. We compared the trends for several sites along the precipitation gradient, and found that disturbances substantially increase hydrologic connectivity following a threshold behaviour that affects landscape functionality. Though this threshold behaviour is found in all sites, the plots in higher rainfall landscapes show evidence of higher resilience.
NASA Astrophysics Data System (ADS)
Zittis, G.; Bruggeman, A.; Camera, C.; Hadjinicolaou, P.; Lelieveld, J.
2017-07-01
Climate change is expected to substantially influence precipitation amounts and distribution. To improve simulations of extreme rainfall events, we analyzed the performance of different convection and microphysics parameterizations of the WRF (Weather Research and Forecasting) model at very high horizontal resolutions (12, 4 and 1 km). Our study focused on the eastern Mediterranean climate change hot-spot. Five extreme rainfall events over Cyprus were identified from observations and were dynamically downscaled from the ERA-Interim (EI) dataset with WRF. We applied an objective ranking scheme, using a 1-km gridded observational dataset over Cyprus and six different performance metrics, to investigate the skill of the WRF configurations. We evaluated the rainfall timing and amounts for the different resolutions, and discussed the observational uncertainty over the particular extreme events by comparing three gridded precipitation datasets (E-OBS, APHRODITE and CHIRPS). Simulations with WRF capture rainfall over the eastern Mediterranean reasonably well for three of the five selected extreme events. For these three cases, the WRF simulations improved the ERA-Interim data, which strongly underestimate the rainfall extremes over Cyprus. The best model performance is obtained for the January 1989 event, simulated with an average bias of 4% and a modified Nash-Sutcliff of 0.72 for the 5-member ensemble of the 1-km simulations. We found overall added value for the convection-permitting simulations, especially over regions of high-elevation. Interestingly, for some cases the intermediate 4-km nest was found to outperform the 1-km simulations for low-elevation coastal parts of Cyprus. Finally, we identified significant and inconsistent discrepancies between the three, state of the art, gridded precipitation datasets for the tested events, highlighting the observational uncertainty in the region.
Remote Sensing in a Changing Climate and Environment: the Rift Valley Fever Case
NASA Astrophysics Data System (ADS)
Tourre, Y. M.; Lacaux, J.-P.; Vignolles, C.; Lafaye, M.
2012-07-01
Climate and environment are changing rapidly whilst global population already reached 7 billions people. New public health challenges are posed by new and re-emerging diseases. Innovation is a must i.e., 1) using high resolution remote sensing, 2) re-invent health politics and trans-disciplinary management. The above are part of the 'TransCube Approach' i.e., Transition, Translation, and Transformation. The new concept of Tele-epidemiology includes such approach. A conceptual approach (CA) associated with Rift Valley Fever (RVF) epidemics in Senegal is presented. Ponds are detected using high-resolution SPOT-5 satellite images and radar data from space. Data on rainfall events obtained from the Tropical Rainfall Measuring Mission (NASA/JAXA) are combined with in-situ data. Localization of vulnerable and parked hosts (obtained from QuickBird satellite) is also used. The dynamic spatio-temporal distribution and aggressiveness of RVF mosquitoes, are based on total rainfall amounts, ponds' dynamics and entomological observations. Detailed risks maps (hazards + vulnerability) in real-time are expressed in percentages of parks where animals are potentially at risks. This CA which simply relies upon rainfall distribution from space, is meant to contribute to the implementation of the RVF early warning system (RVFews). It is meant to be applied to other diseases and elsewhere. This is particularly true in new places where new vectors have been rapidly adapting (such as Aedes albopictus) whilst viruses (such as West Nile and Chikungunya,) circulate from constantly moving reservoirs and increasing population.
NASA Astrophysics Data System (ADS)
Rauniyar, S. P.; Protat, A.; Kanamori, H.
2017-05-01
This study investigates the regional and seasonal rainfall rate retrieval uncertainties within nine state-of-the-art satellite-based rainfall products over the Maritime Continent (MC) region. The results show consistently larger differences in mean daily rainfall among products over land, especially over mountains and along coasts, compared to over ocean, by about 20% for low to medium rain rates and 5% for heavy rain rates. However, rainfall differences among the products do not exhibit any seasonal dependency over both surface types (land and ocean) of the MC region. The differences between products largely depends on the rain rate itself, with a factor 2 difference for light rain and 30% for intermediate and high rain rates over ocean. The rain-rate products dominated by microwave measurements showed less spread among themselves over ocean compared to the products dominated by infrared measurements. Conversely, over land, the rain gauge-adjusted post-real-time products dominated by microwave measurements produced the largest spreads, due to the usage of different gauge analyses for the bias corrections. Intercomparisons of rainfall characteristics of these products revealed large discrepancies in detecting the frequency and intensity of rainfall. These satellite products are finally evaluated at subdaily, daily, monthly, intraseasonal, and seasonal temporal scales against high-quality gridded rainfall observations in the Sarawak (Malaysia) region for the 4 year period 2000-2003. No single satellite-based rainfall product clearly outperforms the other products at all temporal scales. General guidelines are provided for selecting a product that could be best suited for a particular application and/or temporal resolution.
Collins, Brian D.; Bedford, David; Corbett, Skye C.; Fairley, Helen C.; Cronkite-Ratcliff, Collin
2016-01-01
Process dynamics in fluvial-based dryland environments are highly complex with fluvial, aeolian, and alluvial processes all contributing to landscape change. When anthropogenic activities such as dam-building affect fluvial processes, the complexity in local response can be further increased by flood- and sediment-limiting flows. Understanding these complexities is key to predicting landscape behavior in drylands and has important scientific and management implications, including for studies related to paleoclimatology, landscape ecology evolution, and archaeological site context and preservation. Here we use multi-temporal LiDAR surveys, local weather data, and geomorphological observations to identify trends in site change throughout the 446-km-long semi-arid Colorado River corridor in Grand Canyon, Arizona, USA, where archaeological site degradation related to the effects of upstream dam operation is a concern. Using several site case studies, we show the range of landscape responses that might be expected from concomitant occurrence of dam-controlled fluvial sand bar deposition, aeolian sand transport, and rainfall-induced erosion. Empirical rainfall-erosion threshold analyses coupled with a numerical rainfall–runoff–soil erosion model indicate that infiltration-excess overland flow and gullying govern large-scale (centimeter- to decimeter-scale) landscape changes, but that aeolian deposition can in some cases mitigate gully erosion. Whereas threshold analyses identify the normalized rainfall intensity (defined as the ratio of rainfall intensity to hydraulic conductivity) as the primary factor governing hydrologic-driven erosion, assessment of false positives and false negatives in the dataset highlight topographic slope as the next most important parameter governing site response. Analysis of 4+ years of high resolution (four-minute) weather data and 75+ years of low resolution (daily) climate records indicates that dryland erosion is dependent on short-term, storm-driven rainfall intensity rather than cumulative rainfall, and that erosion can occur outside of wet seasons and even wet years. These results can apply to other similar semi-arid landscapes where process complexity may not be fully understood.
Evaluation of NU-WRF Rainfall Forecasts for IFloodS
NASA Technical Reports Server (NTRS)
Wu, Di; Peters-Lidard, Christa; Tao, Wei-Kuo; Petersen, Walter
2016-01-01
The Iowa Flood Studies (IFloodS) campaign was conducted in eastern Iowa as a pre- GPM-launch campaign from 1 May to 15 June 2013. During the campaign period, real time forecasts are conducted utilizing NASA-Unified Weather Research and Forecasting (NU-WRF) model to support the everyday weather briefing. In this study, two sets of the NU-WRF rainfall forecasts are evaluated with Stage IV and Multi-Radar Multi-Sensor (MRMS) Quantitative Precipitation Estimation (QPE), with the objective to understand the impact of Land Surface initialization on the predicted precipitation. NU-WRF is also compared with North American Mesoscale Forecast System (NAM) 12 kilometer forecast. In general, NU-WRF did a good job at capturing individual precipitation events. NU-WRF is also able to replicate a better rainfall spatial distribution compare with NAM. Further sensitivity tests show that the high-resolution makes a positive impact on rainfall forecast. The two sets of NU-WRF simulations produce very close rainfall characteristics. The Land surface initialization do not show significant impact on short term rainfall forecast, and it is largely due to the soil conditions during the field campaign period.
NASA Astrophysics Data System (ADS)
Sehad, Mounir; Lazri, Mourad; Ameur, Soltane
2017-03-01
In this work, a new rainfall estimation technique based on the high spatial and temporal resolution of the Spinning Enhanced Visible and Infra Red Imager (SEVIRI) aboard the Meteosat Second Generation (MSG) is presented. This work proposes efficient scheme rainfall estimation based on two multiclass support vector machine (SVM) algorithms: SVM_D for daytime and SVM_N for night time rainfall estimations. Both SVM models are trained using relevant rainfall parameters based on optical, microphysical and textural cloud proprieties. The cloud parameters are derived from the Spectral channels of the SEVIRI MSG radiometer. The 3-hourly and daily accumulated rainfall are derived from the 15 min-rainfall estimation given by the SVM classifiers for each MSG observation image pixel. The SVMs were trained with ground meteorological radar precipitation scenes recorded from November 2006 to March 2007 over the north of Algeria located in the Mediterranean region. Further, the SVM_D and SVM_N models were used to estimate 3-hourly and daily rainfall using data set gathered from November 2010 to March 2011 over north Algeria. The results were validated against collocated rainfall observed by rain gauge network. Indeed, the statistical scores given by correlation coefficient, bias, root mean square error and mean absolute error, showed good accuracy of rainfall estimates by the present technique. Moreover, rainfall estimates of our technique were compared with two high accuracy rainfall estimates methods based on MSG SEVIRI imagery namely: random forests (RF) based approach and an artificial neural network (ANN) based technique. The findings of the present technique indicate higher correlation coefficient (3-hourly: 0.78; daily: 0.94), and lower mean absolute error and root mean square error values. The results show that the new technique assign 3-hourly and daily rainfall with good and better accuracy than ANN technique and (RF) model.
Estimation of Rainfall Erosivity via 1-Minute to Hourly Rainfall Data from Taipei, Taiwan
NASA Astrophysics Data System (ADS)
Huang, Ting-Yin; Yang, Ssu-Yao; Jan, Chyan-Deng
2017-04-01
Soil erosion is a natural process on hillslopes that threats people's life and properties, having a considerable environmental and economic implications for soil degradation, agricultural activity and water quality. The rainfall erosivity factor (R-factor) in the Universal Soil Loss Equation (USLE), composed of total kinetic energy (E) and the maximum 30-min rainfall intensity (I30), is widely used as an indicator to measure the potential risks of soil loss caused by rainfall at a regional scale. This R factor can represent the detachment and entrainment involved in climate conditions on hillslopes, but lack of 30-min rainfall intensity data usually lead to apply this factor more difficult in many regions. In recent years, fixed-interval, hourly rainfall data is readily available and widely used due to the development of automatic weather stations. Here we assess the estimations of R, E, and I30 based on 1-, 5-, 10-, 15-, 30-, 60-minute rainfall data, and hourly rainfall data obtained from Taipei weather station during 2004 to 2010. Results show that there is a strong correlation among R-factors estimated from different interval rainfall data. Moreover, the shorter time-interval rainfall data (e.g., 1-min) yields larger value of R-factor. The conversion factors of rainfall erosivity (ratio of values estimated from the resolution lower than 30-min rainfall data to those estimated from 60-min and hourly rainfall data, respectively) range from 1.85 to 1.40 (resp. from 1.89 to 1.02) for 60-min (resp. hourly) rainfall data as the time resolution increasing from 30-min to 1-min. This paper provides useful information on estimating R-factor when hourly rainfall data is only available.
NASA Astrophysics Data System (ADS)
Lu, Fuzhi; Ma, Chunmei; Zhu, Cheng; Lu, Huayu; Zhang, Xiaojian; Huang, Kangyou; Guo, Tianhong; Li, Kaifeng; Li, Lan; Li, Bing; Zhang, Wenqing
2018-03-01
Projecting how the East Asian summer monsoon (EASM) rainfall will change with global warming is essential for human sustainability. Reconstructing Holocene climate can provide critical insight into its forcing and future variability. However, quantitative reconstructions of Holocene summer precipitation are lacking for tropical and subtropical China, which is the core region of the EASM influence. Here we present high-resolution annual and summer rainfall reconstructions covering the whole Holocene based on the pollen record at Xinjie site from the lower Yangtze region. Summer rainfall was less seasonal and 30% higher than modern values at 10-6 cal kyr BP and gradually declined thereafter, which broadly followed the Northern Hemisphere summer insolation. Over the last two millennia, however, the summer rainfall has deviated from the downward trend of summer insolation. We argue that greenhouse gas forcing might have offset summer insolation forcing and contributed to the late Holocene rainfall anomaly, which is supported by the TraCE-21 ka transient simulation. Besides, tropical sea-surface temperatures could modulate summer rainfall by affecting evaporation of seawater. The rainfall pattern concurs with stalagmite and other proxy records from southern China but differs from mid-Holocene rainfall maximum recorded in arid/semiarid northern China. Summer rainfall in northern China was strongly suppressed by high-northern-latitude ice volume forcing during the early Holocene in spite of high summer insolation. In addition, the El Niño/Southern Oscillation might be responsible for droughts of northern China and floods of southern China during the late Holocene. Furthermore, quantitative rainfall reconstructions indicate that the Paleoclimate Modeling Intercomparison Project (PMIP) simulations underestimate the magnitude of Holocene precipitation changes. Our results highlight the spatial and temporal variability of the Holocene EASM precipitation and potential forcing mechanisms, which are very helpful for calibration of paleoclimate models and prediction of future precipitation changes in East Asia in the scenario of global warming.
NASA Astrophysics Data System (ADS)
Ombadi, Mohammed; Nguyen, Phu; Sorooshian, Soroosh
2017-12-01
Intensity Duration Frequency (IDF) curves are essential for the resilient design of infrastructures. Since their earlier development, IDF relationships have been derived using precipitation records from rainfall gauge stations. However, with the recent advancement in satellite observation of precipitation which provides near global coverage and high spatiotemporal resolution, it is worthy of attention to investigate the validity of utilizing the relatively short record length of satellite rainfall to generate robust IDF relationships. These satellite-based IDF can address the paucity of such information in the developing countries. Few studies have used satellite precipitation data in IDF development but mainly focused on merging satellite and gauge precipitation. In this study, however, IDF have been derived solely from satellite observations using PERSIANN-CDR (Precipitation Estimation from Remotely Sensed Information Using Artificial Neural Networks-Climate Data Record). The unique PERSIANN-CDR attributes of high spatial resolution (0.25°×0.25°), daily temporal resolution and a record dating back to 1983 allow for the investigation at fine resolution. The results are compared over most of the contiguous United States against NOAA Atlas 14. The impact of using different methods of sampling, distribution estimators and regionalization in the resulting relationships is investigated. Main challenges to estimate robust and accurate IDF from satellite observations are also highlighted.
Integrated hydrologic modeling: Effects of spatial scale, discretization and initialization
NASA Astrophysics Data System (ADS)
Seck, A.; Welty, C.; Maxwell, R. M.
2011-12-01
Groundwater discharge contributes significantly to the annual flows of Chesapeake Bay tributaries and is presumed to contribute to the observed lag time between the implementation of management actions and the environmental response in the Chesapeake Bay. To investigate groundwater fluxes and flow paths and interaction with surface flow, we have developed a fully distributed integrated hydrologic model of the Chesapeake Bay Watershed using ParFlow. Here we present a comparison of model spatial resolution and initialization methods. We have studied the effect of horizontal discretization on overland flow processes at a range of scales. Three nested model domains have been considered: the Monocacy watershed (5600 sq. km), the Potomac watershed (92000 sq. km) and the Chesapeake Bay watershed (400,000 sq. km). Models with homogeneous subsurface and topographically-derived slopes were evaluated at 500-m, 1000-m, 2000-m, and 4000-m grid resolutions. Land surface slopes were derived from resampled DEMs and corrected using stream networks. Simulation results show that the overland flow processes are reasonably well represented with a resolution up to 2000 m. We observe that the effects of horizontal resolution dissipate with larger scale models. Using a homogeneous model that includes subsurface and surface terrain characteristics, we have evaluated various initialization methods for the integrated Monocacy watershed model. This model used several options for water table depths and two rainfall forcing methods including (1) a synthetic rainfall-recession cycle corresponding to the region's average annual rainfall rate, and (2) an initial shut-off of rainfall forcing followed by a rainfall-recession cycling. Results show the dominance of groundwater generated runoff during a first phase of the simulation followed by a convergence towards more balanced runoff generation mechanisms. We observe that the influence of groundwater runoff increases in dissected relief areas characterized by high slope magnitudes. This is due to the increase in initial water table gradients in these regions. As a result, in the domain conditions for this study, an initial shut-off of rainfall forcing proved to be the more efficient initialization method. The initialized model is then coupled with a Land Surface Model (CLM). Ongoing work includes coupling a heterogeneous subsurface field with spatially variable meteorological forcing using the National Land Data Assimilation System (NLDAS) data products. Seasonal trends of groundwater levels for current and pre-development conditions of the basin will be compared.
Schönbrodt-Stitt, Sarah; Bosch, Anna; Behrens, Thorsten; Hartmann, Heike; Shi, Xuezheng; Scholten, Thomas
2013-10-01
In densely populated countries like China, clean water is one of the most challenging issues of prospective politics and environmental planning. Water pollution and eutrophication by excessive input of nitrogen and phosphorous from nonpoint sources is mostly linked to soil erosion from agricultural land. In order to prevent such water pollution by diffuse matter fluxes, knowledge about the extent of soil loss and the spatial distribution of hot spots of soil erosion is essential. In remote areas such as the mountainous regions of the upper and middle reaches of the Yangtze River, rainfall data are scarce. Since rainfall erosivity is one of the key factors in soil erosion modeling, e.g., expressed as R factor in the Revised Universal Soil Loss Equation model, a methodology is needed to spatially determine rainfall erosivity. Our study aims at the approximation and spatial regionalization of rainfall erosivity from sparse data in the large (3,200 km(2)) and strongly mountainous catchment of the Xiangxi River, a first order tributary to the Yangtze River close to the Three Gorges Dam. As data on rainfall were only obtainable in daily records for one climate station in the central part of the catchment and five stations in its surrounding area, we approximated rainfall erosivity as R factors using regression analysis combined with elevation bands derived from a digital elevation model. The mean annual R factor (R a) amounts for approximately 5,222 MJ mm ha(-1) h(-1) a(-1). With increasing altitudes, R a rises up to maximum 7,547 MJ mm ha(-1) h(-1) a(-1) at an altitude of 3,078 m a.s.l. At the outlet of the Xiangxi catchment erosivity is at minimum with approximate R a=1,986 MJ mm ha(-1) h(-1) a(-1). The comparison of our results with R factors from high-resolution measurements at comparable study sites close to the Xiangxi catchment shows good consistance and allows us to calculate grid-based R a as input for a spatially high-resolution and area-specific assessment of soil erosion risk.
A TRMM-Calibrated Infrared Technique for Global Rainfall Estimation
NASA Technical Reports Server (NTRS)
Negri, Andrew J.; Adler, Robert F.
2002-01-01
The development of a satellite infrared (IR) technique for estimating convective and stratiform rainfall and its application in studying the diurnal variability of rainfall on a global scale is presented. The Convective-Stratiform Technique (CST), calibrated by coincident, physically retrieved rain rates from the Tropical Rainfall Measuring Mission (TRMM) Precipitation Radar (PR), is applied over the global tropics during 2001. The technique is calibrated separately over land and ocean, making ingenious use of the IR data from the TRMM Visible/Infrared Scanner (VIRS) before application to global geosynchronous satellite data. The low sampling rate of TRMM PR imposes limitations on calibrating IR-based techniques; however, our research shows that PR observations can be applied to improve IR-based techniques significantly by selecting adequate calibration areas and calibration length. The diurnal cycle of rainfall, as well as the division between convective and stratiform rainfall will be presented. The technique is validated using available data sets and compared to other global rainfall products such as Global Precipitation Climatology Project (GPCP) IR product, calibrated with TRMM Microwave Imager (TMI) data. The calibrated CST technique has the advantages of high spatial resolution (4 km), filtering of non-raining cirrus clouds, and the stratification of the rainfall into its convective and stratiform components, the latter being important for the calculation of vertical profiles of latent heating.
Bridging Empirical and Physical Approaches for Landslide Monitoring and Early Warning
NASA Technical Reports Server (NTRS)
Kirschbaum, Dalia; Peters-Lidard, Christa; Adler, Robert; Kumar, Sujay; Harrison, Ken
2011-01-01
Rainfall-triggered landslides typically occur and are evaluated at local scales, using slope-stability models to calculate coincident changes in driving and resisting forces at the hillslope level in order to anticipate slope failures. Over larger areas, detailed high resolution landslide modeling is often infeasible due to difficulties in quantifying the complex interaction between rainfall infiltration and surface materials as well as the dearth of available in situ soil and rainfall estimates and accurate landslide validation data. This presentation will discuss how satellite precipitation and surface information can be applied within a landslide hazard assessment framework to improve landslide monitoring and early warning by considering two disparate approaches to landslide hazard assessment: an empirical landslide forecasting algorithm and a physical slope-stability model. The goal of this research is to advance near real-time landslide hazard assessment and early warning at larger spatial scales. This is done by employing high resolution surface and precipitation information within a probabilistic framework to provide more physically-based grounding to empirical landslide triggering thresholds. The empirical landslide forecasting tool, running in near real-time at http://trmm.nasa.gov, considers potential landslide activity at the global scale and relies on Tropical Rainfall Measuring Mission (TRMM) precipitation data and surface products to provide a near real-time picture of where landslides may be triggered. The physical approach considers how rainfall infiltration on a hillslope affects the in situ hydro-mechanical processes that may lead to slope failure. Evaluation of these empirical and physical approaches are performed within the Land Information System (LIS), a high performance land surface model processing and data assimilation system developed within the Hydrological Sciences Branch at NASA's Goddard Space Flight Center. LIS provides the capabilities to quantify uncertainty from model inputs and calculate probabilistic estimates for slope failures. Results indicate that remote sensing data can provide many of the spatiotemporal requirements for accurate landslide monitoring and early warning; however, higher resolution precipitation inputs will help to better identify small-scale precipitation forcings that contribute to significant landslide triggering. Future missions, such as the Global Precipitation Measurement (GPM) mission will provide more frequent and extensive estimates of precipitation at the global scale, which will serve as key inputs to significantly advance the accuracy of landslide hazard assessment, particularly over larger spatial scales.
NASA Astrophysics Data System (ADS)
Mahmud, Mohd Rizaludin; Hashim, Mazlan; Reba, Mohd Nadzri Mohd
2017-08-01
We investigated the potential of the new generation of satellite precipitation product from the Global Precipitation Mission (GPM) to characterize the rainfall in Malaysia. Most satellite precipitation products have limited ability to precisely characterize the high dynamic rainfall variation that occurred at both time and scale in this humid tropical region due to the coarse grid size to meet the physical condition of the smaller land size, sub-continent and islands. Prior to the status quo, an improved satellite precipitation was required to accurately measure the rainfall and its distribution. Subsequently, the newly released of GPM precipitation product at half-hourly and 0.1° resolution served an opportunity to anticipate the aforementioned conflict. Nevertheless, related evidence was not found and therefore, this study made an initiative to fill the gap. A total of 843 rain gauges over east (Borneo) and west Malaysia (Peninsular) were used to evaluate the rainfall the GPM rainfall data. The assessment covered all critical rainy seasons which associated with Asian Monsoon including northeast (Nov. - Feb.), southwest (May - Aug.) and their subsequent inter-monsoon period (Mar. - Apr. & Sep. - Oct.). The ability of GPM to provide quantitative rainfall estimates and qualitative spatial rainfall patterns were analysed. Our results showed that the GPM had good capacity to depict the spatial rainfall patterns in less heterogeneous rainfall patterns (Spearman's correlation, 0.591 to 0.891) compared to the clustered one (r = 0.368 to 0.721). Rainfall intensity and spatial heterogeneity that is largely driven by seasonal monsoon has significant influence on GPM ability to resolve local rainfall patterns. In quantitative rainfall estimation, large errors can be primarily associated with the rainfall intensity increment. 77% of the error variation can be explained through rainfall intensity particularly the high intensity (> 35 mm d-1). A strong relationship between GPM rainfall and error was found from heavy ( 35 mm d-1) to violent rain (160 mm d-1). The output of this study provides reference regarding the performance of GPM data for respective hydrology studies in this region.
Tromp-van, Meerveld; James, A.L.; McDonnell, Jeffery J.; Peters, N.E.
2008-01-01
Although many hillslope hydrologic investigations have been conducted in different climate, topographic, and geologic settings, subsurface stormflow remains a poorly characterized runoff process. Few, if any, of the existing data sets from these hillslope investigations are available for use by the scientific community for model development and validation or conceptualization of subsurface stormflow. We present a high-resolution spatial and temporal rainfall-runoff data set generated from the Panola Mountain Research Watershed trenched experimental hillslope. The data set includes surface and subsurface (bedrock surface) topographic information and time series of lateral subsurface flow at the trench, rainfall, and subsurface moisture content (distributed soil moisture content and groundwater levels) from January to June 2002. Copyright 2008 by the American Geophysical Union.
NASA Astrophysics Data System (ADS)
Medina-Elizalde, Martín; Burns, Stephen J.; Lea, David W.; Asmerom, Yemane; von Gunten, Lucien; Polyak, Victor; Vuille, Mathias; Karmalkar, Ambarish
2010-09-01
The decline of the Classic Maya civilization was complex and geographically variable, and occurred over a ~ 150-year interval, known as the Terminal Classic Period (TCP, C.E. 800-950). Paleoclimate studies based on lake sediments from the Yucatán Peninsula lowlands suggested that drought prevailed during the TCP and was likely an important factor in the disintegration of the Classic Maya civilization. The lacustrine evidence for decades of severe drought in the Yucatán Peninsula, however, does not readily explain the long 150-year socio-political decline of the Classic Maya civilization. Here we present a new, absolute-dated, high-resolution stalagmite δ18O record from the northwest Yucatán Peninsula that provides a much more detailed picture of climate variability during the last 1500 years. Direct calibration between stalagmite δ18O and rainfall amount offers the first quantitative estimation of rainfall variability during the Terminal Classic Period. Our results show that eight severe droughts, lasting from 3 to 18 years, occurred during major depopulation events of Classic Maya city-states. During these droughts, rainfall was reduced by 52% to 36%. The number and short duration of the dry intervals help explain why the TCP collapse of the Mayan civilization occurred over 150 years.
NASA Astrophysics Data System (ADS)
Yucel, Ismail; Onen, Alper
2013-04-01
Evidence is showing that global warming or climate change has a direct influence on changes in precipitation and the hydrological cycle. Extreme weather events such as heavy rainfall and flooding are projected to become much more frequent as climate warms. Regional hydrometeorological system model which couples the atmosphere with physical and gridded based surface hydrology provide efficient predictions for extreme hydrological events. This modeling system can be used for flood forecasting and warning issues as they provide continuous monitoring of precipitation over large areas at high spatial resolution. This study examines the performance of the Weather Research and Forecasting (WRF-Hydro) model that performs the terrain, sub-terrain, and channel routing in producing streamflow from WRF-derived forcing of extreme precipitation events. The capability of the system with different options such as data assimilation is tested for number of flood events observed in basins of western Black Sea Region in Turkey. Rainfall event structures and associated flood responses are evaluated with gauge and satellite-derived precipitation and measured streamflow values. The modeling system shows skills in capturing the spatial and temporal structure of extreme rainfall events and resulted flood hydrographs. High-resolution routing modules activated in the model enhance the simulated discharges.
NASA Astrophysics Data System (ADS)
Lahet, Florence; Stramski, Dariusz
2007-09-01
Water-leaving radiance data obtained from MODIS-Aqua satellite images at spatial resolution of 250 m (band 1 at 645 nm) and 500 m (band 4 at 555 nm) were used to analyze the correlation between plume area and rainfall during strong storm events in coastal waters of Southern California. Our study is focused on the area between Point Loma and the US-Mexican border in San Diego, which is influenced by terrigenous input of particulate and dissolved materials from San Diego and Tijuana watersheds and non-point sources along the shore. For several events of intense rainstorms that occurred in the winter of 2004-2005, we carried out a correlational analysis between the satellite-derived plume area and rainfall parameters. We examined several rainfall parameters and methods for the estimation of plume area. We identified the optimal threshold values of satellite-derived normalized water-leaving radiances at 645 nm and 555 nm for distinguishing the plume from ambient ocean waters. The satellite-derived plume size showed high correlation with the amount of precipitated water accumulated during storm event over the San Diego and Tijuana watersheds. Our results support the potential of ocean color imagery with relatively high spatial resolution for the study of turbid plumes in the coastal ocean.
Numerical simulations of significant orographic precipitation in Madeira island
NASA Astrophysics Data System (ADS)
Couto, Flavio Tiago; Ducrocq, Véronique; Salgado, Rui; Costa, Maria João
2016-03-01
High-resolution simulations of high precipitation events with the MESO-NH model are presented, and also used to verify that increasing horizontal resolution in zones of complex orography, such as in Madeira island, improve the simulation of the spatial distribution and total precipitation. The simulations succeeded in reproducing the general structure of the cloudy systems over the ocean in the four periods considered of significant accumulated precipitation. The accumulated precipitation over the Madeira was better represented with the 0.5 km horizontal resolution and occurred under four distinct synoptic situations. Different spatial patterns of the rainfall distribution over the Madeira have been identified.
A Comprehensive Framework for Use of NEXRAD Data in Hydrometeorology and Hydrology
NASA Astrophysics Data System (ADS)
Krajewski, W. F.; Bradley, A.; Kruger, A.; Lawrence, R. E.; Smith, J. A.; Steiner, M.; Ramamurthy, M. K.; del Greco, S. A.
2004-12-01
The overall objective of this project is to provide the broad science and engineering communities with ready access to the vast archives and real-time information collected by the national network of NEXRAD weather radars. The main focus is on radar-rainfall data for use in hydrology, hydrometeorology, and water resources. Currently, the NEXRAD data, which are archived at NOAA's National Climatic Data Center (NCDC), are converted to operational products and used by forecasters in real time. The scientific use of the full resolution NEXRAD information is presently limited because current methods of accessing this data require considerable expertise in weather radars, data quality control, formatting and handling, and radar-rainfall algorithms. The goal is to provide professionals in the scientific, engineering, education, and public policy sectors with on-demand NEXRAD data and custom products that are at high spatial and temporal resolutions. Furthermore, the data and custom products will be of a quality suitable for scientific discovery in hydrology and hydrometeorology and in data formats that are convenient to a wide spectrum of users. We are developing a framework and a set of tools for access, visualization, management, rainfall estimation algorithms, and scientific analysis of full resolution NEXRAD data. The framework will address the issues of data dissemination, format conversions and compression, management of terabyte-sized datasets, rapid browsing and visualization, metadata selection and calculation, relational and XML databases, integration with geographic information systems, data queries and knowledge mining, and Web Services. The tools will perform instantaneous comprehensive quality control and radar-rainfall estimation using a variety of algorithms. The algorithms that the user can select will range from "quick look" to complex, and computing-intensive and will include operational algorithms used by federal agencies as well as research grade experimental methods. Options available to the user will include user-specified spatial and temporal resolution, ancillary products such as storm advection velocity fields, estimation of uncertainty associated with rainfall maps, and mathematical synthesis of the products. The data and the developed tools will be provided to the community via the services and the infrastructure of Unidata and the NCDC.
Orrego, R; Abarca-Del-Río, R; Ávila, A; Morales, L
2016-01-01
Climate change scenarios are computed on a large scale, not accounting for local variations presented in historical data and related to human scale. Based on historical records, we validate a baseline (1962-1990) and correct the bias of A2 and B2 regional projections for the end of twenty-first century (2070-2100) issued from a high resolution dynamical downscaled (using PRECIS mesoscale model, hereinafter DGF-PRECIS) of Hadley GCM from the IPCC 3rd Assessment Report (TAR). This is performed for the Araucanía Region (Chile; 37°-40°S and 71°-74°W) using two different bias correction methodologies. Next, we study high-resolution precipitations to find monthly patterns such as seasonal variations, rainfall months, and the geographical effect on these two scenarios. Finally, we compare the TAR projections with those from the recent Assessment Report 5 (AR5) to find regional precipitation patterns and update the Chilean `projection. To show the effects of climate change projections, we compute the rainfall climatology for the Araucanía Region, including the impact of ENSO cycles (El Niño and La Niña events). The corrected climate projection from the high-resolution dynamical downscaled model of the TAR database (DGF-PRECIS) show annual precipitation decreases: B2 (-19.19 %, -287 ± 42 mm) and A2 (-43.38 %, -655 ± 27.4 mm per year. Furthermore, both projections increase the probability of lower rainfall months (lower than 100 mm per month) to 64.2 and 72.5 % for B2 and A2, respectively.
Orrego, R.; Abarca-del-Rio, R.; Avila, A.; ...
2016-09-28
Here, climate change scenarios are computed on a large scale, not accounting for local variations presented in historical data and related to human scale. Based on historical records, we validate a baseline (1962–1990) and correct the bias of A2 and B2 regional projections for the end of twenty-first century (2070–2100) issued from a high resolution dynamical downscaled (using PRECIS mesoscale model, hereinafter DGF-PRECIS) of Hadley GCM from the IPCC 3rd Assessment Report (TAR). This is performed for the Araucanía Region (Chile; 37°–40°S and 71°–74°W) using two different bias correction methodologies. Next, we study high-resolution precipitations to find monthly patterns suchmore » as seasonal variations, rainfall months, and the geographical effect on these two scenarios. Finally, we compare the TAR projections with those from the recent Assessment Report 5 (AR5) to find regional precipitation patterns and update the Chilean `projection. To show the effects of climate change projections, we compute the rainfall climatology for the Araucanía Region, including the impact of ENSO cycles (El Niño and La Niña events). The corrected climate projection from the high-resolution dynamical downscaled model of the TAR database (DGF-PRECIS) show annual precipitation decreases: B2 (-19.19 %, -287 ± 42 mm) and A2 (-43.38 %, -655 ± 27.4 mm per year. Furthermore, both projections increase the probability of lower rainfall months (lower than 100 mm per month) to 64.2 and 72.5 % for B2 and A2, respectively.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Orrego, R.; Abarca-del-Rio, R.; Avila, A.
Here, climate change scenarios are computed on a large scale, not accounting for local variations presented in historical data and related to human scale. Based on historical records, we validate a baseline (1962–1990) and correct the bias of A2 and B2 regional projections for the end of twenty-first century (2070–2100) issued from a high resolution dynamical downscaled (using PRECIS mesoscale model, hereinafter DGF-PRECIS) of Hadley GCM from the IPCC 3rd Assessment Report (TAR). This is performed for the Araucanía Region (Chile; 37°–40°S and 71°–74°W) using two different bias correction methodologies. Next, we study high-resolution precipitations to find monthly patterns suchmore » as seasonal variations, rainfall months, and the geographical effect on these two scenarios. Finally, we compare the TAR projections with those from the recent Assessment Report 5 (AR5) to find regional precipitation patterns and update the Chilean `projection. To show the effects of climate change projections, we compute the rainfall climatology for the Araucanía Region, including the impact of ENSO cycles (El Niño and La Niña events). The corrected climate projection from the high-resolution dynamical downscaled model of the TAR database (DGF-PRECIS) show annual precipitation decreases: B2 (-19.19 %, -287 ± 42 mm) and A2 (-43.38 %, -655 ± 27.4 mm per year. Furthermore, both projections increase the probability of lower rainfall months (lower than 100 mm per month) to 64.2 and 72.5 % for B2 and A2, respectively.« less
A Satellite Infrared Technique for Diurnal Rainfall Variability Studies
NASA Technical Reports Server (NTRS)
Anagnostou, Emmanouil
1998-01-01
Reliable information on the distribution of precipitation at high temporal resolution (
Relation Between the Rainfall and Soil Moisture During Different Phases of Indian Monsoon
NASA Astrophysics Data System (ADS)
Varikoden, Hamza; Revadekar, J. V.
2018-03-01
Soil moisture is a key parameter in the prediction of southwest monsoon rainfall, hydrological modelling, and many other environmental studies. The studies on relationship between the soil moisture and rainfall in the Indian subcontinent are very limited; hence, the present study focuses the association between rainfall and soil moisture during different monsoon seasons. The soil moisture data used for this study are the ESA (European Space Agency) merged product derived from four passive and two active microwave sensors spanning over the period 1979-2013. The rainfall data used are India Meteorological Department gridded daily data. Both of these data sets are having a spatial resolution of 0.25° latitude-longitude grid. The study revealed that the soil moisture is higher during the southwest monsoon period similar to rainfall and during the pre-monsoon period, the soil moisture is lower. The annual cycle of both the soil moisture and rainfall has the similitude of monomodal variation with a peak during the month of August. The interannual variability of soil moisture and rainfall shows that they are linearly related with each other, even though they are not matched exactly for individual years. The study of extremes also exhibits the surplus amount of soil moisture during wet monsoon years and also the regions of surplus soil moisture are well coherent with the areas of high rainfall.
NASA Astrophysics Data System (ADS)
Marra, Francesco; Morin, Efrat
2015-12-01
Intensity-Duration-Frequency (IDF) curves are widely used in flood risk management because they provide an easy link between the characteristics of a rainfall event and the probability of its occurrence. Weather radars provide distributed rainfall estimates with high spatial and temporal resolutions and overcome the scarce representativeness of point-based rainfall for regions characterized by large gradients in rainfall climatology. This work explores the use of radar quantitative precipitation estimation (QPE) for the identification of IDF curves over a region with steep climatic transitions (Israel) using a unique radar data record (23 yr) and combined physical and empirical adjustment of the radar data. IDF relationships were derived by fitting a generalized extreme value distribution to the annual maximum series for durations of 20 min, 1 h and 4 h. Arid, semi-arid and Mediterranean climates were explored using 14 study cases. IDF curves derived from the study rain gauges were compared to those derived from radar and from nearby rain gauges characterized by similar climatology, taking into account the uncertainty linked with the fitting technique. Radar annual maxima and IDF curves were generally overestimated but in 70% of the cases (60% for a 100 yr return period), they lay within the rain gauge IDF confidence intervals. Overestimation tended to increase with return period, and this effect was enhanced in arid climates. This was mainly associated with radar estimation uncertainty, even if other effects, such as rain gauge temporal resolution, cannot be neglected. Climatological classification remained meaningful for the analysis of rainfall extremes and radar was able to discern climatology from rainfall frequency analysis.
Required spatial resolution of hydrological models to evaluate urban flood resilience measures
NASA Astrophysics Data System (ADS)
Gires, A.; Giangola-Murzyn, A.; Tchiguirinskaia, I.; Schertzer, D.; Lovejoy, S.
2012-04-01
During a flood in urban area, several non-linear processes (rainfall, surface runoff, sewer flow, and sub-surface flow) interact. Fully distributed hydrological models are a useful tool to better understand these complex interactions between natural processes and man built environment. Developing an efficient model is a first step to improve the understanding of flood resilience in urban area. Given that the previously mentioned underlying physical phenomenon exhibit different relevant scales, determining the required spatial resolution of such model is tricky but necessary issue. For instance such model should be able to properly represent large scale effects of local scale flood resilience measures such as stop logs. The model should also be as simple as possible without being simplistic. In this paper we test two types of model. First we use an operational semi-distributed model over a 3400 ha peri-urban area located in Seine-Saint-Denis (North-East of Paris). In this model, the area is divided into sub-catchments of average size 17 ha that are considered as homogenous, and only the sewer discharge is modelled. The rainfall data, whose resolution is 1 km is space and 5 min in time, comes from the C-band radar of Trappes, located in the West of Paris, and operated by Météo-France. It was shown that the spatial resolution of both the model and the rainfall field did not enable to fully grasp the small scale rainfall variability. To achieve this, first an ensemble of realistic rainfall fields downscaled to a resolution of 100 m is generated with the help of multifractal space-time cascades whose characteristic exponents are estimated on the available radar data. Second the corresponding ensemble of sewer hydrographs is simulated by inputting each rainfall realization to the model. It appears that the probability distribution of the simulated peak flow exhibits a power-law behaviour. This indicates that there is a great uncertainty associated with small scale rainfall. Second we focus on a 50 ha catchment of this area and implement Multi-Hydro, a fully distributed urban hydrological model currently being developed at Ecole des Ponts ParisTech (El Tabach et al., 2009). The version used in this paper consists in an interactive coupling between a 2D model representing infiltration and surface runoff (TREX, Two dimensional Runoff, Erosion and eXport model, Velleux et al., 2011) and a 1D model of sewer networks (SWMM, Storm Water Management Model, Rossman, 2007). Spatial resolution ranging from 2 m to 50 m for land use, topography and rainfall are tested. A special highlight on the impact of small scales rainfall is done. To achieve this the previously mentioned methodology is implemented with rainfall fields downscaled to 10 m in space and 20 s in time. Finally, we will discuss the gains generated by the implementation of the fully distributed model.
Quantifying discharge uncertainty from remotely sensed precipitation data products in Puerto Rico
NASA Astrophysics Data System (ADS)
Weerasinghe, H.; Raoufi, R.; Yoon, Y.; Beighley, E., II; Alshawabkeh, A.
2014-12-01
Preterm birth is a serious health issue in the United States that contributes to over one-third of all infant deaths. Puerto Rico being one of the hot spots, preliminary research found that the high preterm birth rate can be associated with exposure to some contaminants in water used on daily basis. Puerto Rico has more than 200 contaminated sites including 16 active Superfund sites. Risk of exposure to contaminants is aggravated by unlined landfills lying over the karst regions, highly mobile and dynamic nature of the karst aquifers, and direct contact with surface water through sinkholes and springs. Much of the population in the island is getting water from natural springs or artesian wells that are connected with many of these potentially contaminated karst aquifers. Mobility of contaminants through surface water flows and reservoirs are largely known and are highly correlated with the variations in hydrologic events and conditions. In this study, we quantify the spatial and temporal distribution of Puerto Rico's surface water stores and fluxes to better understand potential impacts on the distribution of groundwater contamination. To quantify and characterize Puerto Rico's surface waters, hydrologic modeling, remote sensing and field measurements are combined. Streamflow measurements are available from 27 U.S. Geological Survey (USGS) gauging stations with drainage areas ranging from 2 to 510 km2. Hillslope River Routing (HRR) model is used to simulate hourly streamflow from watersheds larger than 1 km2 that discharge to ocean. HRR model simulates vertical water balance, lateral surface and subsurface runoff and river discharge. The model consists of 4418 sub-catchments with a mean model unit area (i.e., sub-catchment) of 1.8 km2. Using gauged streamflow measurements for validation, we first assess model results for simulated discharge using three precipitation products: TRMM-3B42 (3 hour temporal resolution, 0.25 degree spatial resolution); NWS stage-III radar rainfall (~ 5 min temporal resolution and 4 km spatial resolution); and gauge measurements from 37 rainfall stations for the period 2000-2012. We then explore methods for combining each product to improve overall model performance. Effects of varied spatial and temporal rainfall resolutions on simulated discharge are also investigated.
NASA Astrophysics Data System (ADS)
Morin, Efrat; Marra, Francesco; Peleg, Nadav; Mei, Yiwen; Anagnostou, Emmanouil N.
2017-04-01
Rainfall frequency analysis is used to quantify the probability of occurrence of extreme rainfall and is traditionally based on rain gauge records. The limited spatial coverage of rain gauges is insufficient to sample the spatiotemporal variability of extreme rainfall and to provide the areal information required by management and design applications. Conversely, remote sensing instruments, even if quantitative uncertain, offer coverage and spatiotemporal detail that allow overcoming these issues. In recent years, remote sensing datasets began to be used for frequency analyses, taking advantage of increased record lengths and quantitative adjustments of the data. However, the studies so far made use of concepts and techniques developed for rain gauge (i.e. point or multiple-point) data and have been validated by comparison with gauge-derived analyses. These procedures add further sources of uncertainty and prevent from isolating between data and methodological uncertainties and from fully exploiting the available information. In this study, we step out of the gauge-centered concept presenting a direct comparison between at-site Intensity-Duration-Frequency (IDF) curves derived from different remote sensing datasets on corresponding spatial scales, temporal resolutions and records. We analyzed 16 years of homogeneously corrected and gauge-adjusted C-Band weather radar estimates, high-resolution CMORPH and gauge-adjusted high-resolution CMORPH over the Eastern Mediterranean. Results of this study include: (a) good spatial correlation between radar and satellite IDFs ( 0.7 for 2-5 years return period); (b) consistent correlation and dispersion in the raw and gauge adjusted CMORPH; (c) bias is almost uniform with return period for 12-24 h durations; (d) radar identifies thicker tail distributions than CMORPH and the tail of the distributions depends on the spatial and temporal scales. These results demonstrate the potential of remote sensing datasets for rainfall frequency analysis for management (e.g. warning and early-warning systems) and design (e.g. sewer design, large scale drainage planning)
What rainfall events trigger landslides on the West Coast US?
NASA Astrophysics Data System (ADS)
Biasutti, Michela; Seager, Richard; Kirschbaum, Dalia
2016-04-01
A dataset of landslide occurrences compiled by collating google news reports covers 9 full years of data. We show that, while this compilation cannot provide consistent and widespread monitoring everywhere, it is adequate to capture the distribution of events in the major urban areas of the West Coast US and it can be used to provide a quantitative relationship between landslides and rainfall events. The case of the Seattle metropolitan area is presented as an example. The landslide dataset shows a clear seasonality in landslide occurrence, corresponding to the seasonality of rainfall, modified by the accumulation of soil moisture as winter progresses. Interannual variability of landslide occurrences is also linked to interannual variability of monthly rainfall. In most instances, landslides are clustered on consecutive days or at least within the same pentad and correspond to days of large rainfall accumulation at the regional scale. A joint analysis of the landslide data and of the high-resolution PRISM daily rainfall accumulation shows that on days when landslides occurred, the distribution of rainfall was shifted, with rainfall accumulation higher than 10mm/day being more common. Accumulations above 50mm/day much increase the probability of landslides, including the possibility of a major landslide event (one with multiple landslides in a day). The synoptic meteorological conditions associated with these major events show a mid-tropospheric ridge to the south of the target area steering a surface low and bringing enhanced precipitable water towards the Pacific North West. The interaction of the low-level flow with the local orography results in instances of a strong Puget Sound Convergence Zone, with widespread rainfall accumulation above 30mm/day and localized maxima as high as 100mm/day or more.
NASA Technical Reports Server (NTRS)
Olson, W. S.; Yeh, C. L.; Weinman, J. A.; Chin, R. T.
1985-01-01
A restoration of the 37, 21, 18, 10.7, and 6.6 GHz satellite imagery from the scanning multichannel microwave radiometer (SMMR) aboard Nimbus-7 to 22.2 km resolution is attempted using a deconvolution method based upon nonlinear programming. The images are deconvolved with and without the aid of prescribed constraints, which force the processed image to abide by partial a priori knowledge of the high-resolution result. The restored microwave imagery may be utilized to examined the distribution of precipitating liquid water in marine rain systems.
Changes to Sub-daily Rainfall Patterns in a Future Climate
NASA Astrophysics Data System (ADS)
Westra, S.; Evans, J. P.; Mehrotra, R.; Sharma, A.
2012-12-01
An algorithm is developed for disaggregating daily rainfall into sub-daily rainfall 'fragments' (continuous high temporal-resolution rainfall sequences whose total depth sums to the daily rainfall amount) under a future, warmer climate. The basis of the algorithm is to re-sample sub-daily fragments from the historical record conditional on the total daily rainfall amount and a range of temperature-based atmospheric predictors. The logic is that as the atmosphere warms, future rainfall patterns will be more reflective of historical rainfall patterns which occurred on warmer days at the same location, or at locations which have an atmospheric temperature profile more representative of expected future atmospheric conditions. It was found that the daily to sub-daily scaling relationship varied significantly by season and by location, with rainfall patterns on warmer seasons or at warmer locations typically exhibiting higher rainfall intensity occurring over shorter periods within a day, compared with cooler seasons and locations. Importantly, by regressing against temperature-based atmospheric covariates, this effect was substantially reduced, suggesting that the approach also may be valid when extrapolating to a future climate. An adjusted method of fragments algorithm was then applied to nine stations around Australia, with the results showing that when holding total daily rainfall constant, the maximum intensity of short duration rainfall increased by a median of about 5% per degree for the maximum 6 minute burst, and 3.5% for the maximum one hour burst, whereas the fraction of the day with no rainfall increased by a median of 1.5%. This highlights that a large proportion of the change to the distribution of rainfall is likely to occur at sub-daily timescales, with significant implications for many hydrological systems.
NASA Astrophysics Data System (ADS)
Wang, Jun; Feng, Jinming; Yan, Zhongwei
2015-09-01
In this study, we investigated how different degrees of urbanization affect local and regional rainfall using high-resolution simulations based on the Weather Research and Forecasting Model. The extreme rainfall event of 21 July 2012 in Beijing was simulated for three representative urban land use distributions (no urbanization, early urbanization level of 1980, and recent urbanization level of 2009). Results suggest that urban modification of rainfall is potentially sensitive to urban land use condition. Rainfall was increased significantly over the downwind Beijing metropolis because of the effects of early urbanization; however, recent conditions of high urban development caused no significant increase. Further comparative analysis revealed that positive urban thermodynamical effects (i.e., urban warming, increased sensible heat transportation, and enhanced convergence and vertical motions) play major roles in urban modification of rainfall during the early urbanization stage. However, after cities expand to a certain extent (i.e., urban agglomeration), the regional moisture depression induced by the prevalence of impervious urban land has an effect on atmospheric instability energy, which might negate the city's positive impact on regional rainfall. Additional results from regional climate simulations for 10 Julys confirm this supposition. Given the explosive urban population growth and increasing demand for freshwater in cities, the potential negative effects of the urban environment on precipitation are worth investigation, particularly in rapidly developing countries and regions.
Assessing Australian Rainfall Projections in Two Model Resolutions
NASA Astrophysics Data System (ADS)
Taschetto, A.; Haarsma, R. D.; Sen Gupta, A.
2016-02-01
Australian climate is projected to change with increases in greenhouse gases. The IPCC reports an increase in extreme daily rainfall across the country. At the same time, mean rainfall over southeast Australia is projected to reduce during austral winter, but to increase during austral summer, mainly associated with changes in the surrounding oceans. Climate models agree better on the future reduction of average rainfall over the southern regions of Australia compared to the increase in extreme rainfall events. One of the reasons for this disagreement may be related to climate model limitations in simulating the observed mechanisms associated with the mid-latitude weather systems, in particular due to coarse model resolutions. In this study we investigate how changes in sea surface temperature (SST) affect Australian mean and extreme rainfall under global warming, using a suite of numerical experiments at two model resolutions: about 126km (T159) and 25km (T799). The numerical experiments are performed with the earth system model EC-EARTH. Two 6-member ensembles are produced for the present day conditions and a future scenario. The present day ensemble is forced with the observed daily SST from the NOAA National Climatic Data Center from 2002 to 2006. The future scenario simulation is integrated from 2094 to 2098 using the present day SST field added onto the future SST change created from a 17-member ensemble based on the RCP4.5 scenario. Preliminary results show an increase in extreme rainfall events over Tasmania associated with enhanced convection driven by the Tasman Sea warming. We will further discuss how the projected changes in SST will impact the southern mid-latitude weather systems that ultimately affect Australian rainfall.
NASA Astrophysics Data System (ADS)
Liu, Q.; Chiu, L. S.; Hao, X.
2017-10-01
The abundance or lack of rainfall affects peoples' life and activities. As a major component of the global hydrological cycle (Chokngamwong & Chiu, 2007), accurate representations at various spatial and temporal scales are crucial for a lot of decision making processes. Climate models show a warmer and wetter climate due to increases of Greenhouse Gases (GHG). However, the models' resolutions are often too coarse to be directly applicable to local scales that are useful for mitigation purposes. Hence disaggregation (downscaling) procedures are needed to transfer the coarse scale products to higher spatial and temporal resolutions. The aim of this paper is to examine the changes in the statistical parameters of rainfall at various spatial and temporal resolutions. The TRMM Multi-satellite Precipitation Analysis (TMPA) at 0.25 degree, 3 hourly grid rainfall data for a summer is aggregated to 0.5,1.0, 2.0 and 2.5 degree and at 6, 12, 24 hourly, pentad (five days) and monthly resolutions. The probability distributions (PDF) and cumulative distribution functions(CDF) of rain amount at these resolutions are computed and modeled as a mixed distribution. Parameters of the PDFs are compared using the Kolmogrov-Smironov (KS) test, both for the mixed and the marginal distribution. These distributions are shown to be distinct. The marginal distributions are fitted with Lognormal and Gamma distributions and it is found that the Gamma distributions fit much better than the Lognormal.
Validation of Satellite-based Rainfall Estimates for Severe Storms (Hurricanes & Tornados)
NASA Astrophysics Data System (ADS)
Nourozi, N.; Mahani, S.; Khanbilvardi, R.
2005-12-01
Severe storms such as hurricanes and tornadoes cause devastating damages, almost every year, over a large section of the United States. More accurate forecasting intensity and track of a heavy storm can help to reduce if not to prevent its damages to lives, infrastructure, and economy. Estimating accurate high resolution quantitative precipitation (QPE) from a hurricane, required to improve the forecasting and warning capabilities, is still a challenging problem because of physical characteristics of the hurricane even when it is still over the ocean. Satellite imagery seems to be a valuable source of information for estimating and forecasting heavy precipitation and also flash floods, particularly for over the oceans where the traditional ground-based gauge and radar sources cannot provide any information. To improve the capability of a rainfall retrieval algorithm for estimating QPE of severe storms, its product is evaluated in this study. High (hourly 4km x 4km) resolutions satellite infrared-based rainfall products, from the NESDIS Hydro-Estimator (HE) and also PERSIANN (Precipitation Estimation from Remotely Sensed Information using an Artificial Neural Networks) algorithms, have been tested against NEXRAD stage-IV and rain gauge observations in this project. Three strong hurricanes: Charley (category 4), Jeanne (category 3), and Ivan (category 3) that caused devastating damages over Florida in the summer 2004, have been considered to be investigated. Preliminary results demonstrate that HE tends to underestimate rain rates when NEXRAD shows heavy storm (rain rates greater than 25 mm/hr) and to overestimate when NEXRAD gives low rainfall amounts, but PERSIANN tends to underestimate rain rates, in general.
NASA Astrophysics Data System (ADS)
Langousis, Andreas; Mamalakis, Antonis; Deidda, Roberto; Marrocu, Marino
2015-04-01
To improve the level skill of Global Climate Models (GCMs) and Regional Climate Models (RCMs) in reproducing the statistics of rainfall at a basin level and at hydrologically relevant temporal scales (e.g. daily), two types of statistical approaches have been suggested. One is the statistical correction of climate model rainfall outputs using historical series of precipitation. The other is the use of stochastic models of rainfall to conditionally simulate precipitation series, based on large-scale atmospheric predictors produced by climate models (e.g. geopotential height, relative vorticity, divergence, mean sea level pressure). The latter approach, usually referred to as statistical rainfall downscaling, aims at reproducing the statistical character of rainfall, while accounting for the effects of large-scale atmospheric circulation (and, therefore, climate forcing) on rainfall statistics. While promising, statistical rainfall downscaling has not attracted much attention in recent years, since the suggested approaches involved complex (i.e. subjective or computationally intense) identification procedures of the local weather, in addition to demonstrating limited success in reproducing several statistical features of rainfall, such as seasonal variations, the distributions of dry and wet spell lengths, the distribution of the mean rainfall intensity inside wet periods, and the distribution of rainfall extremes. In an effort to remedy those shortcomings, Langousis and Kaleris (2014) developed a statistical framework for simulation of daily rainfall intensities conditional on upper air variables, which accurately reproduces the statistical character of rainfall at multiple time-scales. Here, we study the relative performance of: a) quantile-quantile (Q-Q) correction of climate model rainfall products, and b) the statistical downscaling scheme of Langousis and Kaleris (2014), in reproducing the statistical structure of rainfall, as well as rainfall extremes, at a regional level. This is done for an intermediate-sized catchment in Italy, i.e. the Flumendosa catchment, using climate model rainfall and atmospheric data from the ENSEMBLES project (http://ensembleseu.metoffice.com). In doing so, we split the historical rainfall record of mean areal precipitation (MAP) in 15-year calibration and 45-year validation periods, and compare the historical rainfall statistics to those obtained from: a) Q-Q corrected climate model rainfall products, and b) synthetic rainfall series generated by the suggested downscaling scheme. To our knowledge, this is the first time that climate model rainfall and statistically downscaled precipitation are compared to catchment-averaged MAP at a daily resolution. The obtained results are promising, since the proposed downscaling scheme is more accurate and robust in reproducing a number of historical rainfall statistics, independent of the climate model used and the length of the calibration period. This is particularly the case for the yearly rainfall maxima, where direct statistical correction of climate model rainfall outputs shows increased sensitivity to the length of the calibration period and the climate model used. The robustness of the suggested downscaling scheme in modeling rainfall extremes at a daily resolution, is a notable feature that can effectively be used to assess hydrologic risk at a regional level under changing climatic conditions. Acknowledgments The research project is implemented within the framework of the Action «Supporting Postdoctoral Researchers» of the Operational Program "Education and Lifelong Learning" (Action's Beneficiary: General Secretariat for Research and Technology), and is co-financed by the European Social Fund (ESF) and the Greek State. CRS4 highly acknowledges the contribution of the Sardinian regional authorities.
Soil Erosion map of Europe based on high resolution input datasets
NASA Astrophysics Data System (ADS)
Panagos, Panos; Borrelli, Pasquale; Meusburger, Katrin; Ballabio, Cristiano; Alewell, Christine
2015-04-01
Modelling soil erosion in European Union is of major importance for agro-environmental policies. Soil erosion estimates are important inputs for the Common Agricultural Policy (CAP) and the implementation of the Soil Thematic Strategy. Using the findings of a recent pan-European data collection through the EIONET network, it was concluded that most Member States are applying the empirical Revised Universal Soil Loss Equation (RUSLE) for the modelling soil erosion at National level. This model was chosen for the pan-European soil erosion risk assessment and it is based on 6 input factors. Compared to past approaches, each of the factors is modelled using the latest pan-European datasets, expertise and data from Member states and high resolution remote sensing data. The soil erodibility (K-factor) is modelled using the recently published LUCAS topsoil database with 20,000 point measurements and incorporating the surface stone cover which can reduce K-factor by 15%. The rainfall erosivity dataset (R-factor) has been implemented using high temporal resolution rainfall data from more than 1,500 precipitation stations well distributed in Europe. The cover-management (C-factor) incorporates crop statistics and management practices such as cover crops, tillage practices and plant residuals. The slope length and steepness (combined LS-factor) is based on the first ever 25m Digital Elevation Model (DEM) of Europe. Finally, the support practices (P-factor) is modelled for first time at this scale taking into account the 270,000 LUCAS earth observations and the Good Agricultural and Environmental Condition (GAEC) that farmers have to follow in Europe. The high resolution input layers produce the final soil erosion risk map at 100m resolution and allow policy makers to run future land use, management and climate change scenarios.
The extent of wind-induced undercatch in the UK winter storms of 2015
NASA Astrophysics Data System (ADS)
Pollock, Michael; Colli, Matteo; Stagnaro, Mattia; Quinn, Paul; Dutton, Mark; O'Donnell, Greg; Wilkinson, Mark; Black, Andrew; O'Connell, Enda; Lanza, Luca
2016-04-01
The most widely used device for measuring rainfall is the rain gauge, of which the tipping bucket (TBR) is the most prevalent type. Rain gauges are considered by many to be the most accurate method currently available. The data they produce are used in flood-forecasting and flood risk management, water resource management, hydrological modelling and evaluating impacts on climate change; to name but a few. Rain gauges may provide the most accurate measurement of rainfall at a point in space and time, but they are subject to errors - and some gauges are more prone than others. The most significant error is the 'wind-induced undercatch'. This is caused by the gauge itself contributing to an acceleration of the wind speed near the orifice, which disturbs and distorts the airflow. The trajectories of precipitation particles are affected, resulting in an undercatch. Results from Computational Fluid Dynamics (CFD) simulations, presented herein, describe in detail the physical processes contributing to this. High resolution field measurements of rainfall and wind are collected at four field research stations in the UK. Each site is equipped with juxtaposed rain gauges with different funnel profiles, in addition to a WMO reference pit rain gauge measurement. These data describe the rainfall measurement uncertainty. The sites were selected to represent the prevalent rainfall regimes observed in the UK. Two research stations are on the west coast; which is prone to frontal weather systems and storms swept in from the Atlantic, often enhanced by orography. Two are located in the east. Rural lowland and upland areas are represented, both in the west and the east. Urban sites will also have significant undercatch problems but are outside the scope of this study. Data from the four research stations are analysed for the 2015 winter storms which caused devastating flooding in the west of the UK, particularly Cumbria and the Scottish Borders, where two of the sites are located. An assessment of the effect of wind on the rainfall catch during these large storm events is presented for each research station. Based on a reference pit rain gauge, the undercatch for these events is calculated. The difference in rainfall catch between several types of rain gauge mounted at variable heights is also investigated. This work aims to demonstrate the importance of improving the accuracy of rainfall measurements, and to emphasise the need to provide an assessment of the measurement uncertainty. A knowledge gap exists in the understanding of precisely how physical phenomena are contributing to wind-induced undercatch. For instance, a priori, the effect of the wind on the rainfall catch will change depending upon the dimensions of the rain droplets. Rainfall 'type' and rainfall intensity may be able to inform corrections, but rigorous multi-variate statistical analysis of high resolution measurements will be key to the success of these procedures. As the spatio-temporal distribution of rainfall can be highly variable, and each measurement location is different; it is a challenging undertaking to understand and pin down the fundamental processes responsible for the wind-induced undercatch.
Quantitative precipitation estimation for an X-band weather radar network
NASA Astrophysics Data System (ADS)
Chen, Haonan
Currently, the Next Generation (NEXRAD) radar network, a joint effort of the U.S. Department of Commerce (DOC), Defense (DOD), and Transportation (DOT), provides radar data with updates every five-six minutes across the United States. This network consists of about 160 S-band (2.7 to 3.0 GHz) radar sites. At the maximum NEXRAD range of 230 km, the 0.5 degree radar beam is about 5.4 km above ground level (AGL) because of the effect of earth curvature. Consequently, much of the lower atmosphere (1-3 km AGL) cannot be observed by the NEXRAD. To overcome the fundamental coverage limitations of today's weather surveillance radars, and improve the spatial and temporal resolution issues, the National Science Foundation Engineering Center (NSF-ERC) for Collaborative Adaptive Sensing of the Atmosphere (CASA) was founded to revolutionize weather sensing in the lower atmosphere by deploying a dense network of shorter-range, low-power X-band dual-polarization radars. The distributed CASA radars are operating collaboratively to adapt the changing atmospheric conditions. Accomplishments and breakthroughs after five years operation have demonstrated the success of CASA program. Accurate radar quantitative precipitation estimation (QPE) has been pursued since the beginning of weather radar. For certain disaster prevention applications such as flash flood and landslide forecasting, the rain rate must however be measured at a high spatial and temporal resolution. To this end, high-resolution radar QPE is one of the major research activities conducted by the CASA community. A radar specific differential propagation phase (Kdp)-based QPE methodology has been developed in CASA. Unlike the rainfall estimation based on the power terms such as radar reflectivity (Z) and differential reflectivity (Zdr), Kdp-based QPE is less sensitive to the path attenuation, drop size distribution (DSD), and radar calibration errors. The CASA Kdp-based QPE system is also immune to the partial beam blockage and hail contamination. The performance of the CASA QPE system is validated and evaluated by using rain gauges. In CASA's Integrated Project 1 (IP1) test bed in Southwestern Oklahoma, a network of 20 rainfall gauges is used for cross-comparison. 40 rainfall cases, including severe, multicellular thunderstorms, squall lines and widespread stratiform rain, that happened during years 2007 - 2011, are used for validation and evaluation purpose. The performance scores illustrate that the CASA QPE system is a great improvement compared to the current state-of-the-art. In addition, the high-resolution CASA QPE products such as instantaneous rainfall rate map and hourly rainfall amount measurements can serve as a reliable input for various distributed hydrological models. The CASA QPE system can save lived and properties from hazardous flash floods by incorporating hydraulic and hydrologic models for flood monitoring and warning.
A Metastatistical Approach to Satellite Estimates of Extreme Rainfall Events
NASA Astrophysics Data System (ADS)
Zorzetto, E.; Marani, M.
2017-12-01
The estimation of the average recurrence interval of intense rainfall events is a central issue for both hydrologic modeling and engineering design. These estimates require the inference of the properties of the right tail of the statistical distribution of precipitation, a task often performed using the Generalized Extreme Value (GEV) distribution, estimated either from a samples of annual maxima (AM) or with a peaks over threshold (POT) approach. However, these approaches require long and homogeneous rainfall records, which often are not available, especially in the case of remote-sensed rainfall datasets. We use here, and tailor it to remotely-sensed rainfall estimates, an alternative approach, based on the metastatistical extreme value distribution (MEVD), which produces estimates of rainfall extreme values based on the probability distribution function (pdf) of all measured `ordinary' rainfall event. This methodology also accounts for the interannual variations observed in the pdf of daily rainfall by integrating over the sample space of its random parameters. We illustrate the application of this framework to the TRMM Multi-satellite Precipitation Analysis rainfall dataset, where MEVD optimally exploits the relatively short datasets of satellite-sensed rainfall, while taking full advantage of its high spatial resolution and quasi-global coverage. Accuracy of TRMM precipitation estimates and scale issues are here investigated for a case study located in the Little Washita watershed, Oklahoma, using a dense network of rain gauges for independent ground validation. The methodology contributes to our understanding of the risk of extreme rainfall events, as it allows i) an optimal use of the TRMM datasets in estimating the tail of the probability distribution of daily rainfall, and ii) a global mapping of daily rainfall extremes and distributional tail properties, bridging the existing gaps in rain gauges networks.
NASA Technical Reports Server (NTRS)
Shepherd, J. Marshall; Starr, David O'C (Technical Monitor)
2001-01-01
A recent paper by Shepherd and Pierce (conditionally accepted to Journal of Applied Meteorology) used rainfall data from the Precipitation Radar on NASA's Tropical Rainfall Measuring Mission's (TRMM) satellite to identify warm season rainfall anomalies downwind of major urban areas. A convective-mesoscale model with extensive land-surface processes is employed to (a) determine if an urban heat island (UHI) thermal perturbation can induce a dynamic response to affect rainfall processes and (b) quantify the impact of the following three factors on the evolution of rainfall: (1) urban surface roughness, (2) magnitude of the UHI temperature anomaly, and (3) physical size of the UHI temperature anomaly. The sensitivity experiments are achieved by inserting a slab of land with urban properties (e.g. roughness length, albedo, thermal character) within a rural surface environment and varying the appropriate lower boundary condition parameters. Early analysis suggests that urban surface roughness (through turbulence and low-level convergence) may control timing and initial location of UHI-induced convection. The magnitude of the heat island appears to be closely linked to the total rainfall amount with minor impact on timing and location. The physical size of the city may predominantly impact on the location of UHI-induced rainfall anomaly. The UHI factor parameter space will be thoroughly investigated with respect to their effects on rainfall amount, location, and timing. This study extends prior numerical investigations of the impact of urban surfaces on meteorological processes, particularly rainfall development. The work also contains several novel aspects, including the application of a high-resolution (less than I km) cloud-mesoscale model to investigate urban-induce rainfall process; investigation of thermal magnitude of the UHI on rainfall process; and investigation of UHI physical size on rainfall processes.
NASA Astrophysics Data System (ADS)
Williams, C.; Kniveton, D.; Layberry, R.
2009-04-01
It is increasingly accepted that that any possible climate change will not only have an influence on mean climate but may also significantly alter climatic variability. A change in the distribution and magnitude of extreme rainfall events (associated with changing variability), such as droughts or flooding, may have a far greater impact on human and natural systems than a changing mean. This issue is of particular importance for environmentally vulnerable regions such as southern Africa. The subcontinent is considered especially vulnerable to and ill-equipped (in terms of adaptation) for extreme events, due to a number of factors including extensive poverty, famine, disease and political instability. Rainfall variability and the identification of rainfall extremes is a function of scale, so high spatial and temporal resolution data are preferred to identify extreme events and accurately predict future variability. The majority of previous climate model verification studies have compared model output with observational data at monthly timescales. In this research, the assessment of ability of a state of the art climate model to simulate climate at daily timescales is carried out using satellite derived rainfall data from the Microwave Infra-Red Algorithm (MIRA). This dataset covers the period from 1993-2002 and the whole of southern Africa at a spatial resolution of 0.1 degree longitude/latitude. The ability of a climate model to simulate current climate provides some indication of how much confidence can be applied to its future predictions. In this paper, simulations of current climate from the UK Meteorological Office Hadley Centre's climate model, in both regional and global mode, are firstly compared to the MIRA dataset at daily timescales. This concentrates primarily on the ability of the model to simulate the spatial and temporal patterns of rainfall variability over southern Africa. Secondly, the ability of the model to reproduce daily rainfall extremes will be assessed, again by a comparison with extremes from the MIRA dataset.
NASA Astrophysics Data System (ADS)
Williams, C.; Kniveton, D.; Layberry, R.
2007-12-01
It is increasingly accepted that any possible climate change will not only have an influence on mean climate but may also significantly alter climatic variability. This issue is of particular importance for environmentally vulnerable regions such as southern Africa. The subcontinent is considered especially vulnerable extreme events, due to a number of factors including extensive poverty, disease and political instability. Rainfall variability and the identification of rainfall extremes is a function of scale, so high spatial and temporal resolution data are preferred to identify extreme events and accurately predict future variability. The majority of previous climate model verification studies have compared model output with observational data at monthly timescales. In this research, the assessment of a state-of-the-art climate model to simulate climate at daily timescales is carried out using satellite derived rainfall data from the Microwave Infra-Red Algorithm (MIRA). This dataset covers the period from 1993-2002 and the whole of southern Africa at a spatial resolution of 0.1 degree longitude/latitude. Once the model's ability to reproduce extremes has been assessed, idealised regions of SST anomalies are used to force the model, with the overall aim of investigating the ways in which SST anomalies influence rainfall extremes over southern Africa. In this paper, results from sensitivity testing of the UK Meteorological Office Hadley Centre's climate model's domain size are firstly presented. Then simulations of current climate from the model, operating in both regional and global mode, are compared to the MIRA dataset at daily timescales. Thirdly, the ability of the model to reproduce daily rainfall extremes will be assessed, again by a comparison with extremes from the MIRA dataset. Finally, the results from the idealised SST experiments are briefly presented, suggesting associations between rainfall extremes and both local and remote SST anomalies.
Schollaen, Karina; Heinrich, Ingo; Helle, Gerhard
2014-02-01
UV-laser-based microscopic systems were utilized to dissect and sample organic tissue for stable isotope measurements from thin wood cross-sections. We tested UV-laser-based microscopic tissue dissection in practice for high-resolution isotopic analyses (δ(13) C/δ(18) O) on thin cross-sections from different tree species. The method allows serial isolation of tissue of any shape and from millimetre down to micrometre scales. On-screen pre-defined areas of interest were automatically dissected and collected for mass spectrometric analysis. Three examples of high-resolution isotopic analyses revealed that: in comparison to δ(13) C of xylem cells, woody ray parenchyma of deciduous trees have the same year-to-year variability, but reveal offsets that are opposite in sign depending on whether wholewood or cellulose is considered; high-resolution tree-ring δ(18) O profiles of Indonesian teak reflect monsoonal rainfall patterns and are sensitive to rainfall extremes caused by ENSO; and seasonal moisture signals in intra-tree-ring δ(18) O of white pine are weighted by nonlinear intra-annual growth dynamics. The applications demonstrate that the use of UV-laser-based microscopic dissection allows for sampling plant tissue at ultrahigh resolution and unprecedented precision. This new technique facilitates sampling for stable isotope analysis of anatomical plant traits like combined tree eco-physiological, wood anatomical and dendroclimatological studies. © 2013 The Authors. New Phytologist © 2013 New Phytologist Trust.
NASA Astrophysics Data System (ADS)
Collier, J. C.; Zhang, G. J.
2006-05-01
Simulation of the North American monsoon system by the National Center for Atmospheric Research (NCAR) Community Atmosphere Model (CAM3) is evaluated in its sensitivity to increasing horizontal resolution. For two resolutions, T42 and T85, rainfall is compared to TRMM satellite-derived and surface gauge-based rainfall rates over the U.S. and northern Mexico as well as rainfall accumulations in gauges of the North American Monsoon Experiment (NAME) Enhanced Rain Gauge Network (NERN) in the Sierra Madre Occidental mountains. Simulated upper-tropospheric mass and wind fields are compared to those from NCEP-NCAR reanalyses. The comparison presented herein demonstrates that tropospheric motions associated with the North American monsoon system are sensitive to increasing the horizontal resolution of the model. An increase in resolution from T42 to T85 results in changes to a region of large-scale mid-tropospheric descent found north and east of the monsoon anticyclone. Relative to its simulation at T42, this region extends farther south and west at T85. Additionally, at T85, the subsidence is stronger. Consistent with the differences in large-scale descent, the T85 simulation of CAM3 is anomalously dry over Texas and northeastern Mexico during the peak monsoon months. Meanwhile, the geographic distribution of rainfall over the Sierra Madre Occidental region of Mexico is more satisfactorily simulated at T85 than at T42 for July and August. Moisture import into this region is greater at T85 than at T42 during these months. A focused study of the Sierra Madre Occidental region in particular shows that, in the regional average sense, the timing of the peak of the monsoon is relatively insensitive to the horizontal resolution of the model, while a phase bias in the diurnal cycle of monsoon-season precipitation is somewhat reduced in the higher-resolution run. At both resolutions, CAM3 poorly simulates the month-to-month evolution of monsoon rainfall over extreme northwestern Mexico and Arizona, though biases are considerably improved at T85.
NASA Technical Reports Server (NTRS)
Shepherd, J. Marshell; Starr, David OC. (Technical Monitor)
2001-01-01
A novel approach is introduced to correlating urbanization and rainfall modification. This study represents one of the first published attempts (possibly the first) to identify and quantify rainfall modification by urban areas using satellite-based rainfall measurements. Previous investigations successfully used rain gauge networks and around-based radar to investigate this phenomenon but still encountered difficulties due to limited, specialized measurements and separation of topographic and other influences. Three years of mean monthly rainfall rates derived from the first space-based rainfall radar, Tropical Rainfall Measuring Mission's (TRMM) Precipitation Radar, are employed. Analysis of data at half-degree latitude resolution enables identification of rainfall patterns around major metropolitan areas of Atlanta, Montgomery, Nashville, San Antonio, Waco, and Dallas during the warm season. Preliminary results reveal an average increase of 5.6% in monthly rainfall rates (relative to a mean upwind CONTROL area) over the metropolis but an average increase of approx. 28%, in monthly rainfall rates within 30-60 kilometers downwind of the metropolis. Some portions of the downwind area exhibit increases as high as 51%. It was also found that maximum rainfall rates found in the downwind impact area exceeded the mean value in the upwind CONTROL area by 48%-116% and were generally found at an average distance of 39 km from the edge of the urban center or 64 km from the center of the city. These results are quite consistent studies of St. Louis (e.g' METROMEX) and Chicago almost two decades ago and more recent studies in the Atlanta and Mexico City areas.
NASA Astrophysics Data System (ADS)
Burstyn, Yuval; Bar-Matthews, Miryam; Ayalon, Avner; Matthews, Alan
2016-04-01
Speleothem laminae preserve climate information transferred to the cave via dripwater. High spatial resolution methods allow in situ measurement of geochemical and isotopic proxies at seasonal resolution. Existing hydrogeochemical calibration models suggest that high rainfall inhibits karst water chemical evolution, resulting in low δ 18O values, and low Mg/Ca and Sr/Ca ratios that are not necessarily correlated. Drought periods display opposite chemical behaviour owing to lower infiltration rates and increased Prior Calcite Precipitation (PCP). This study aims to provide a site-specific, high-resolution hydrogeochemical calibration for the Soreq Cave. We examine four sites that were continuously sampled since 1990. Four main rainfall conditions are characterized: very wet years, average, drought and very dry years. Two sites are fed by 'fast drips', which only become active after ˜ 250mm rainfall has accumulated since the beginning of the winter season. Two sites, located deeper in the cave, are fed by 'slow drips' that are active all year round. Drip rate measurements identify two main reservoirs - fissure and matrix - that mainly differ in residence time. The δ 18O of fissure water is closer to that of mean annual rainfall (˜ -6 ‰VSMOW), while matrix values are higher (˜ -3.5 ‰VSMOW). Two main Sr and Mg sources are identified - dolomitic bedrock (Mg/Ca ˜ 700 mM/M, Sr/Ca ˜ 0.4 mM/M) and soil leachate (Mg/Ca ˜ 300 mM/M, Sr/Ca ˜ 1.1 mM/M). Most cave dripwater evolves from ˜ 1:1 soil-bedrock solution. PCP effect on dripwater solution at each site is estimated by comparing the ln(Mg/Ca) vs ln(Sr/Ca) linear slope to the PCP slope calculated using cave specific D(Mg) and D(Sr). Soreq Cave PCP slope is similar to the global slope of 0.88± 0.13. The composition and chemical evolution of each reservoir and its contribution to water influx at each site is primarily governed by annual effective infiltration. Higher seasonal amplitude in δ 18O, Mg/Ca and Sr/Ca in all sites is positively correlated to increase in rainfall. For the deeper site, with rock cover of >40 m, the `classic' wet-dry model can be applied - more soil input and less PCP in the wetter years and vice-versa. Conversely, in the shallower sites, high PCP is observed in wetter years. Results from this study are compared with high-resolution δ 18O and trace element records of modern speleothems (age ˜ 20y). The speleothem from the deeper site shows a good match with the hydrogeochemical data, thus supporting the applicability of the model to palaeoclimate studies. However, the speleothem from the shallow site shows a strong winter bias, which may be due to complete secession of summer drip during dry years (micro-hiatuses), or during wetter years, considerable winter calcite precipitation resulting in minimal summer imprint on each seasonal lamina. We plan to analyse a fast growing modern sample from the shallow site to resolve this seasonal bias. Therefore, contemporaneous speleothem records from different sites can be utilized to estimate past changes in annual and decadal effective infiltration, allowing evaluation of water availability in the region during periods of rapid climate change. [1] Orland, I.J. et al. 2014. Chemical Geology, v. 363, p. 322-333.
Projected changes in rainfall and temperature over homogeneous regions of India
NASA Astrophysics Data System (ADS)
Patwardhan, Savita; Kulkarni, Ashwini; Rao, K. Koteswara
2018-01-01
The impact of climate change on the characteristics of seasonal maximum and minimum temperature and seasonal summer monsoon rainfall is assessed over five homogeneous regions of India using a high-resolution regional climate model. Providing REgional Climate for Climate Studies (PRECIS) is developed at Hadley Centre for Climate Prediction and Research, UK. The model simulations are carried out over South Asian domain for the continuous period of 1961-2098 at 50-km horizontal resolution. Here, three simulations from a 17-member perturbed physics ensemble (PPE) produced using HadCM3 under the Quantifying Model Uncertainties in Model Predictions (QUMP) project of Hadley Centre, Met. Office, UK, have been used as lateral boundary conditions (LBCs) for the 138-year simulations of the regional climate model under Intergovernmental Panel on Climate Change (IPCC) A1B scenario. The projections indicate the increase in the summer monsoon (June through September) rainfall over all the homogeneous regions (15 to 19%) except peninsular India (around 5%). There may be marginal change in the frequency of medium and heavy rainfall events (>20 mm) towards the end of the present century. The analysis over five homogeneous regions indicates that the mean maximum surface air temperatures for the pre-monsoon season (March-April-May) as well as the mean minimum surface air temperature for winter season (January-February) may be warmer by around 4 °C towards the end of the twenty-first century.
A TRMM-Calibrated Infrared Technique for Global Rainfall Estimation
NASA Technical Reports Server (NTRS)
Negri, Andrew J.; Adler, Robert F.; Xu, Li-Ming
2003-01-01
This paper presents the development of a satellite infrared (IR) technique for estimating convective and stratiform rainfall and its application in studying the diurnal variability of rainfall on a global scale. The Convective-Stratiform Technique (CST), calibrated by coincident, physically retrieved rain rates from the Tropical Rainfall Measuring Mission (TRMM) Precipitation Radar (PR), is applied over the global tropics during summer 2001. The technique is calibrated separately over land and ocean, making ingenious use of the IR data from the TRMM Visible/Infrared Scanner (VIRS) before application to global geosynchronous satellite data. The low sampling rate of TRMM PR imposes limitations on calibrating IR- based techniques; however, our research shows that PR observations can be applied to improve IR-based techniques significantly by selecting adequate calibration areas and calibration length. The diurnal cycle of rainfall, as well as the division between convective and t i f m rainfall will be presented. The technique is validated using available data sets and compared to other global rainfall products such as Global Precipitation Climatology Project (GPCP) IR product, calibrated with TRMM Microwave Imager (TMI) data. The calibrated CST technique has the advantages of high spatial resolution (4 km), filtering of non-raining cirrus clouds, and the stratification of the rainfall into its convective and stratiform components, the latter being important for the calculation of vertical profiles of latent heating.
Using Remotely Sensed Information for Near Real-Time Landslide Hazard Assessment
NASA Technical Reports Server (NTRS)
Kirschbaum, Dalia; Adler, Robert; Peters-Lidard, Christa
2013-01-01
The increasing availability of remotely sensed precipitation and surface products provides a unique opportunity to explore how landslide susceptibility and hazard assessment may be approached at larger spatial scales with higher resolution remote sensing products. A prototype global landslide hazard assessment framework has been developed to evaluate how landslide susceptibility and satellite-derived precipitation estimates can be used to identify potential landslide conditions in near-real time. Preliminary analysis of this algorithm suggests that forecasting errors are geographically variable due to the resolution and accuracy of the current susceptibility map and the application of satellite-based rainfall estimates. This research is currently working to improve the algorithm through considering higher spatial and temporal resolution landslide susceptibility information and testing different rainfall triggering thresholds, antecedent rainfall scenarios, and various surface products at regional and global scales.
An object-based approach for areal rainfall estimation and validation of atmospheric models
NASA Astrophysics Data System (ADS)
Troemel, Silke; Simmer, Clemens
2010-05-01
An object-based approach for areal rainfall estimation is applied to pseudo-radar data simulated of a weatherforecast model as well as to real radar volume data. The method aims at an as fully as possible exploitation of three-dimensional radar signals produced by precipitation generating systems during their lifetime to enhance areal rainfall estimation. Therefore tracking of radar-detected precipitation-centroids is performed and rain events are investigated using so-called Integral Radar Volume Descriptors (IRVD) containing relevant information of the underlying precipitation process. Some investigated descriptors are statistical quantities from the radar reflectivities within the boundary of a tracked rain cell like the area mean reflectivity or the compactness of a cell; others evaluate the mean vertical structure during the tracking period at the near surface reflectivity-weighted center of the cell like the mean effective efficiency or the mean echo top height. The stage of evolution of a system is given by the trend in the brightband fraction or related quantities. Furthermore, two descriptors not directly derived from radar data are considered: the mean wind shear and an orographic rainfall amplifier. While in case of pseudo-radar data a model based on a small set of IRVDs alone provides rainfall estimates of high accuracy, the application of such a model to the real world remains within the accuracies achievable with a constant Z-R-relationship. However, a combined model based on single IRVDs and the Marshall-Palmer Z-R-estimator already provides considerable enhancements even though the resolution of the data base used has room for improvement. The mean echo top height, the mean effective efficiency, the empirical standard deviation and the Marshall-Palmer estimator are detected for the final rainfall estimator. High correlations between storm height and rain rates, a shift of the probability distribution to higher values with increasing effective efficiency, and the possibility to classify continental and maritime systems using the effective efficiency confirm the informative value of the qualified descriptors. The IRVDs especially correct for the underestimation in case of intense rain events, and the information content of descriptors is most likely higher than demonstrated so far. We used quite sparse information about meteorological variables needed for the calculation of some IRVDs from single radiosoundings, and several descriptors suffered from the range-dependent vertical resolution of the reflectivity profile. Inclusion of neighbouring radars and assimilation runs of weather forecasting models will further enhance the accuracy of rainfall estimates. Finally, the clear difference between the IRVD selection from the pseudo-radar data and from the real world data hint to a new object-based avenue for the validation of higher resolution atmospheric models and for evaluating their potential to digest radar observations in data assimilation schemes.
NASA Astrophysics Data System (ADS)
Pillosu, F. M.; Hewson, T.; Mazzetti, C.
2017-12-01
Prediction of local extreme rainfall has historically been the remit of nowcasting and high resolution limited area modelling, which represent only limited areas, may not be spatially accurate, give reasonable results only for limited lead times (<2 days) and become prohibitively expensive at global scale. ECMWF/EFAS/GLOFAS have developed a novel, cost-effective and physically-based statistical post-processing software ("ecPoint-Rainfall, ecPR", operational in 2017) that uses ECMWF Ensemble (ENS) output to deliver global probabilistic rainfall forecasts for points up to day 10. Firstly, ecPR applies a new notion of "remote calibration", which 1) allows us to replicate a multi-centennial training period using only one year of data, and 2) provides forecasts for anywhere in the world. Secondly, the software applies an understanding of how different rainfall generation mechanisms lead to different degrees of sub-grid variability in rainfall totals, and of where biases in the model can be improved upon. A long-term verification has shown that the post-processed rainfall has better reliability and resolution at every lead time if compared with ENS, and for large totals, ecPR outputs have the same skill at day 5 that the raw ENS has at day 1 (ROC area metric). ecPR could be used as input for hydrological models if its probabilistic output is modified accordingly to the inputs requirements for hydrological models. Indeed, ecPR does not provide information on where the highest total is likely to occur inside the gridbox, nor on the spatial distribution of rainfall values nearby. "Scenario forecasts" could be a solution. They are derived from locating the rainfall peak in sensitive positions (e.g. urban areas), and then redistributing the remaining quantities in the gridbox modifying traditional spatial correlation characterization methodologies (e.g. variogram analysis) in order to take account, for instance, of the type of rainfall forecast (stratiform, convective). Such an approach could be a turning point in the field of medium-range global real-time riverine flood forecasts. This presentation will illustrate for ecPR 1) system calibration, 2) operational implementation, 3) long-term verification, 4) future developments, and 5) early ideas for the application of ecPR outputs in hydrological models.
Spatial and temporal heterogeneity of water soil erosion in a Mediterranean rain-fed crop
NASA Astrophysics Data System (ADS)
López-Vicente, M.; Quijano, L.; Gaspar, L.; Machín, J.; Navas, A.
2012-04-01
Fertile soil loss by raindrop impact and runoff processes in croplands presents significant variations at temporal and spatial scales. The combined use of advanced GIS techniques and detailed databases allows high resolution mapping of runoff and soil erosion processes. In this study the monthly values of soil loss are calculated in a medium size field of rain-fed winter barley and its drainage area located in the Central Spanish Pre-Pyrenees. The field is surrounded by narrow strips of dense Mediterranean vegetation (mainly holm oaks) and grass. Man-made infrastructures (paved trails and drainage ditches) modify the overland flow pathways and the study site appears hydrologically closed in its northern and western boundaries. This area has a continental Mediterranean climate with two humid periods, one in spring and a second in autumn and a dry summer with rainfall events of high intensity from July to October. The average annual rainfall is 495 mm and the average monthly rainfall intensity ranges from 1.1 mm / h in January to 7.4 mm / h in July. The predicted rates were obtained after running the RMMF model (Morgan, 2001) with the enhancements made to this model by Morgan and Duzant (2008) to the topographic module, and by López-Vicente and Navas (2010) to the hydrological module. A total of 613 soil samples were collected and all input and output maps were generated at high spatial resolution (1 x 1 m of cell size) with ArcMapTM 10.0. A map of effective cumulative runoff was calculated for each month of the year with a weighted multiple flow algorithm and four sub-catchments were distinguished within the field. The average soil erosion in the cultivated area is 1.32 Mg / ha yr and the corresponding map shows a high spatial variability (s.d. = 7.52 Mg / ha yr). The highest values of soil erosion appear in those areas where overland flow is concentrated and slope steepness is higher. The unpaved trail present the highest values of soil erosion with an average value of 72.23 Mg / ha yr, whereas the grass and forested areas have annual rates lower than 0.1 Mg / ha yr. The highest values of soil erosion appear in March, April, May, October and November showing a very good correlation with the depth of monthly rainfall (Pearson's r = 0.97) and a good correlation with the number of rainy days per month (Pearson's r = 0.76). However, no correlation was obtained with the values of monthly rainfall intensity. The availability of a detailed database of soil properties, weather values and a high resolution DEM allows mapping and calculating the spatial and temporal variations of the soil erosion processes within the cultivated area and the area surrounding the crop. Thus, the application of soil erosion models at high spatial and temporal resolution improves their predicting capability due to the complexity and large number of relevant interactions between the different sub-factors.
NASA Astrophysics Data System (ADS)
Budde, M. E.; Rowland, J.; Senay, G. B.; Funk, C. C.; Pedreros, D.; Husak, G. J.; Bohms, S.
2011-12-01
The high global food prices in 2008 led to the acknowledgement that there is a need to monitor the inter-connectivity of global and regional markets and their potential impacts on food security in many more regions than previously considered. The crisis prompted an expansion of monitoring by the Famine Early Warning Systems Network (FEWS NET) to include additional countries, beyond those where food security has long been of concern. Scientists at the U.S. Geological Survey (USGS) Earth Resources Observation and Science (EROS) Center and the University of California Santa Barbara Climate Hazards Group have provided new and improved data products as well as visualization and analysis tools in support of this increased mandate for remote monitoring. We present a new product for measuring actual evapotranspiration (ETa) based on the implementation of a surface energy balance model and site improvements of two standard FEWS NET monitoring products: normalized difference vegetation index (NDVI) and satellite-based rainfall estimates. USGS FEWS NET has implemented a simplified surface energy balance model to produce operational ETa anomalies for Africa. During the growing season, ETa anomalies express surplus or deficit crop water use which is directly related to crop condition and biomass. The expedited Moderate Resolution Imaging Spectroradiometer (eMODIS) production system provides FEWS NET with a much improved NDVI dataset for crop and rangeland monitoring. eMODIS NDVI provides a reliable data stream with a vastly improved spatial resolution (250-m) and short latency period (less than 12 hours) which allows for better operational vegetation monitoring. FEWS NET uses satellite rainfall estimates as inputs for monitoring agricultural food production. By combining high resolution (0.05 deg) rainfall mean fields with Tropical Rainfall Measuring Mission rainfall estimates and infrared temperature data, we provide pentadal (5-day) rainfall fields suitable for crop monitoring and modeling. We also present two new monitoring tools, the Early Warning eXplorer (EWX) and the Decision Support Interface (DSI). The EWX is a data analysis tool which provides the ability to rapidly visualize multiple remote sensing datasets and compare standardized anomaly maps and time series. The DSI uses remote sensing data in an automated fashion to map areas of drought concern and ranks their severity at both crop zone and administrative levels. New and improved data products and more targeted analysis tools are a necessity as food security monitoring requirements expand and resources become limited.
Sensitivity of peak flow to the change of rainfall temporal pattern due to warmer climate
NASA Astrophysics Data System (ADS)
Fadhel, Sherien; Rico-Ramirez, Miguel Angel; Han, Dawei
2018-05-01
The widely used design storms in urban drainage networks has different drawbacks. One of them is that the shape of the rainfall temporal pattern is fixed regardless of climate change. However, previous studies have shown that the temporal pattern may scale with temperature due to climate change, which consequently affects peak flow. Thus, in addition to the scaling of the rainfall volume, the scaling relationship for the rainfall temporal pattern with temperature needs to be investigated by deriving the scaling values for each fraction within storm events, which is lacking in many parts of the world including the UK. Therefore, this study analysed rainfall data from 28 gauges close to the study area with a 15-min resolution as well as the daily temperature data. It was found that, at warmer temperatures, the rainfall temporal pattern becomes less uniform, with more intensive peak rainfall during higher intensive times and weaker rainfall during less intensive times. This is the case for storms with and without seasonal separations. In addition, the scaling values for both the rainfall volume and the rainfall fractions (i.e. each segment of rainfall temporal pattern) for the summer season were found to be higher than the corresponding results for the winter season. Applying the derived scaling values for the temporal pattern of the summer season in a hydrodynamic sewer network model produced high percentage change of peak flow between the current and future climate. This study on the scaling of rainfall fractions is the first in the UK, and its findings are of importance to modellers and designers of sewer systems because it can provide more robust scenarios for flooding mitigation in urban areas.
NASA Astrophysics Data System (ADS)
Arnone, E.; Dialynas, Y. G.; Noto, L. V.; Bras, R. L.
2013-12-01
Catchment slope distribution is one of the topographic characteristics that significantly control rainfall-triggered landslide modeling, in both direct and indirect ways. Slope directly determines the soil volume associated with instability. Indirectly slope also affects the subsurface lateral redistribution of soil moisture across the basin, which in turn determines the water pore pressure conditions that impact slope stability. In this study, we investigate the influence of DEM resolution on slope stability and the slope stability analysis by using a distributed eco-hydrological and landslide model, the tRIBS-VEGGIE (Triangulated Irregular Network (TIN)-based Real-time Integrated Basin Simulator - VEGetation Generator for Interactive Evolution). The model implements a triangulated irregular network to describe the topography, and it is capable of evaluating vegetation dynamics and predicting shallow landslides triggered by rainfall. The impact of DEM resolution on the landslide prediction was studied using five TINs derived from five grid DEMs at different resolutions, i.e. 10, 20, 30, 50 and 70 m respectively. The analysis was carried out on the Mameyes Basin, located in the Luquillo Experimental Forest in Puerto Rico, where previous landslide analyses have been carried out. Results showed that the use of the irregular mesh reduced the loss of accuracy in the derived slope distribution when coarser resolutions were used. The impact of the different resolutions on soil moisture patterns was important only when the lateral redistribution was considerable, depending on hydrological properties and rainfall forcing. In some cases, the use of different DEM resolutions did not significantly affect tRIBS-VEGGIE landslide output, in terms of landslide locations, and values of slope and soil moisture at failure.
Prosdocimi, Massimo; Burguet, Maria; Di Prima, Simone; Sofia, Giulia; Terol, Enric; Rodrigo Comino, Jesús; Cerdà, Artemi; Tarolli, Paolo
2017-01-01
Soil water erosion is a serious problem, especially in agricultural lands. Among these, vineyards deserve attention, because they constitute for the Mediterranean areas a type of land use affected by high soil losses. A significant problem related to the study of soil water erosion in these areas consists in the lack of a standardized procedure of collecting data and reporting results, mainly due to a variability among the measurement methods applied. Given this issue and the seriousness of soil water erosion in Mediterranean vineyards, this works aims to quantify the soil losses caused by simulated rainstorms, and compare them with each other depending on two different methodologies: (i) rainfall simulation and (ii) surface elevation change-based, relying on high-resolution Digital Elevation Models (DEMs) derived from a photogrammetric technique (Structure-from-Motion or SfM). The experiments were carried out in a typical Mediterranean vineyard, located in eastern Spain, at very fine scales. SfM data were obtained from one reflex camera and a smartphone built-in camera. An index of sediment connectivity was also applied to evaluate the potential effect of connectivity within the plots. DEMs derived from the smartphone and the reflex camera were comparable with each other in terms of accuracy and capability of estimating soil loss. Furthermore, soil loss estimated with the surface elevation change-based method resulted to be of the same order of magnitude of that one obtained with rainfall simulation, as long as the sediment connectivity within the plot was considered. High-resolution topography derived from SfM revealed to be essential in the sediment connectivity analysis and, therefore, in the estimation of eroded materials, when comparing them to those derived from the rainfall simulation methodology. The fact that smartphones built-in cameras could produce as much satisfying results as those derived from reflex cameras is a high value added for using SfM. Copyright © 2016 Elsevier B.V. All rights reserved.
Quality-control of an hourly rainfall dataset and climatology of extremes for the UK.
Blenkinsop, Stephen; Lewis, Elizabeth; Chan, Steven C; Fowler, Hayley J
2017-02-01
Sub-daily rainfall extremes may be associated with flash flooding, particularly in urban areas but, compared with extremes on daily timescales, have been relatively little studied in many regions. This paper describes a new, hourly rainfall dataset for the UK based on ∼1600 rain gauges from three different data sources. This includes tipping bucket rain gauge data from the UK Environment Agency (EA), which has been collected for operational purposes, principally flood forecasting. Significant problems in the use of such data for the analysis of extreme events include the recording of accumulated totals, high frequency bucket tips, rain gauge recording errors and the non-operation of gauges. Given the prospect of an intensification of short-duration rainfall in a warming climate, the identification of such errors is essential if sub-daily datasets are to be used to better understand extreme events. We therefore first describe a series of procedures developed to quality control this new dataset. We then analyse ∼380 gauges with near-complete hourly records for 1992-2011 and map the seasonal climatology of intense rainfall based on UK hourly extremes using annual maxima, n-largest events and fixed threshold approaches. We find that the highest frequencies and intensities of hourly extreme rainfall occur during summer when the usual orographically defined pattern of extreme rainfall is replaced by a weaker, north-south pattern. A strong diurnal cycle in hourly extremes, peaking in late afternoon to early evening, is also identified in summer and, for some areas, in spring. This likely reflects the different mechanisms that generate sub-daily rainfall, with convection dominating during summer. The resulting quality-controlled hourly rainfall dataset will provide considerable value in several contexts, including the development of standard, globally applicable quality-control procedures for sub-daily data, the validation of the new generation of very high-resolution climate models and improved understanding of the drivers of extreme rainfall.
NASA Technical Reports Server (NTRS)
Cecil, Daniel J.; Buechler, Dennis E.; Blakeslee, Richard J.
2015-01-01
The Tropical Rainfall Measuring Mission (TRMM) Lightning Imaging Sensor (LIS) has been collecting observations of total lightning in the global tropics and subtropics (roughly 38 deg S - 38 deg N) since December 1997. A similar instrument, the Optical Transient Detector, operated from 1995-2000 on another low earth orbit satellite that also saw high latitudes. Lightning data from these instruments have been used to create gridded climatologies and time series of lightning flash rate. These include a 0.5 deg resolution global annual climatology, and lower resolution products describing the annual cycle and the diurnal cycle. These products are updated annually. Results from the update through 2013 will be shown at the conference. The gridded products are publicly available for download. Descriptions of how each product can be used will be discussed, including strengths, weaknesses, and caveats about the smoothing and sampling used in various products.
Review of FEWS NET Biophysical Monitoring Requirements
NASA Technical Reports Server (NTRS)
Ross, K. W.; Brown, Molly E.; Verdin, J.; Underwood, L. W.
2009-01-01
The Famine Early Warning System Network (FEWS NET) provides monitoring and early warning support to decision makers responsible for responding to famine and food insecurity. FEWS NET transforms satellite remote sensing data into rainfall and vegetation information that can be used by these decision makers. The National Aeronautics and Space Administration has recently funded activities to enhance remote sensing inputs to FEWS NET. To elicit Earth observation requirements, a professional review questionnaire was disseminated to FEWS NET expert end-users: it focused upon operational requirements to determine additional useful remote sensing data and; subsequently, beneficial FEWS NET biophysical supplementary inputs. The review was completed by over 40 experts from around the world, enabling a robust set of professional perspectives to be gathered and analyzed rapidly. Reviewers were asked to evaluate the relative importance of environmental variables and spatio-temporal requirements for Earth science data products, in particular for rainfall and vegetation products. The results showed that spatio-temporal resolution requirements are complex and need to vary according to place, time, and hazard: that high resolution remote sensing products continue to be in demand, and that rainfall and vegetation products were valued as data that provide actionable food security information.
NASA Astrophysics Data System (ADS)
Roh, Joon-Woo; Jee, Joon-Bum; Lim, A.-Young; Choi, Young-Jean
2015-04-01
Korean warm-season rainfall, accounting for about three-fourths of the annual precipitation, is primarily caused by Changma front, which is a kind of the East Asian summer monsoon, and localized heavy rainfall with convective instability. Various physical mechanisms potentially exert influences on heavy precipitation over South Korea. Representatively, the middle latitude and subtropical weather fronts, associated with a quasi-stationary moisture convergence zone among varying air masses, make up one of the main rain-bearing synoptic scale systems. Localized heavy rainfall events in South Korea generally arise from mesoscale convective systems embedded in these synoptic scale disturbances along the Changma front or convective instabilities resulted from unstable air mass including the direct or indirect effect of typhoons. In recent years, torrential rainfalls, which are more than 30mm/hour of precipitation amount, in warm-season has increased threefold in Seoul, which is a metropolitan city in South Korea. In order to investigate multiple potential causes of warm-season localized heavy precipitation in South Korea, a localized heavy precipitation case took place on 20 June 2014 at Seoul. This case was mainly seen to be caused by short-wave trough, which is associated with baroclinic instability in the northwest of Korea, and a thermal low, which has high moist and warm air through analysis. This structure showed convective scale torrential rain was embedded in the dynamic and in the thermodynamic structures. In addition to, a sensitivity of rainfall amount and maximum rainfall location to the integration time-step sizes was investigated in the simulations of a localized heavy precipitation case using Weather Research and Forecasting model. The simulation of time-step sizes of 9-27s corresponding to a horizontal resolution of 4.5km and 1.5km varied slightly difference of the maximum rainfall amount. However, the sensitivity of spatial patterns and temporal variations in rainfall were relatively small for the time-step sizes. The effect of topography was also important in the localized heavy precipitation simulation.
NASA Astrophysics Data System (ADS)
Williams, C. J. R.; Kniveton, D. R.; Layberry, R.
2009-04-01
It is increasingly accepted that that any possible climate change will not only have an influence on mean climate but may also significantly alter climatic variability. A change in the distribution and magnitude of extreme rainfall events (associated with changing variability), such as droughts or flooding, may have a far greater impact on human and natural systems than a changing mean. This issue is of particular importance for environmentally vulnerable regions such as southern Africa. The subcontinent is considered especially vulnerable to and ill-equipped (in terms of adaptation) for extreme events, due to a number of factors including extensive poverty, famine, disease and political instability. Rainfall variability and the identification of rainfall extremes is a function of scale, so high spatial and temporal resolution data are preferred to identify extreme events and accurately predict future variability. The majority of previous climate model verification studies have compared model output with observational data at monthly timescales. In this research, the assessment of ability of a state of the art climate model to simulate climate at daily timescales is carried out using satellite derived rainfall data from the Microwave Infra-Red Algorithm (MIRA). This dataset covers the period from 1993-2002 and the whole of southern Africa at a spatial resolution of 0.1 degree longitude/latitude. The ability of a climate model to simulate current climate provides some indication of how much confidence can be applied to its future predictions. In this paper, simulations of current climate from the UK Meteorological Office Hadley Centre's climate model, in both regional and global mode, are firstly compared to the MIRA dataset at daily timescales. This concentrates primarily on the ability of the model to simulate the spatial and temporal patterns of rainfall variability over southern Africa. Secondly, the ability of the model to reproduce daily rainfall extremes will be assessed, again by a comparison with extremes from the MIRA dataset. The paper will conclude by discussing the user needs of satellite rainfall retrievals from a climate change modelling prospective.
NASA Astrophysics Data System (ADS)
Gires, A.; Tchiguirinskaia, I.; Schertzer, D. J.; Lovejoy, S.
2011-12-01
In large urban areas, storm water management is a challenge with enlarging impervious areas. Many cities have implemented real time control (RTC) of their urban drainage system to either reduce overflow or limit urban contamination. A basic component of RTC is hydraulic/hydrologic model. In this paper we use the multifractal framework to suggest an innovative way to test the sensitivity of such a model to the spatio-temporal variability of its rainfall input. Indeed the rainfall variability is often neglected in urban context, being considered as a non-relevant issue at the scales involve. Our results show that on the contrary the rainfall variability should be taken into account. Universal multifractals (UM) rely on the concept of multiplicative cascade and are a standard tool to analyze and simulate with a reduced number of parameters geophysical processes that are extremely variable over a wide range of scales. This study is conducted on a 3 400 ha urban area located in Seine-Saint-Denis, in the North of Paris (France). We use the operational semi-distributed model that was calibrated by the local authority (Direction Eau et Assainnissement du 93) that is in charge of urban drainage. The rainfall data comes from the C-Band radar of Trappes operated by Météo-France. The rainfall event of February 9th, 2009 was used. A stochastic ensemble approach was implemented to quantify the uncertainty on discharge associated to the rainfall variability occurring at scales smaller than 1 km x 1 km x 5 min that is usually available with C-band radar networks. An analysis of the quantiles of the simulated peak flow showed that the uncertainty exceeds 20 % for upstream links. To evaluate a potential gain from a direct use of the rainfall data available at the resolution of X-band radar, we performed similar analysis of the rainfall fields of the degraded resolution of 9 km x 9 km x 20 min. The results show a clear decrease in uncertainty when the original resolution of C-band radar data is used. This analysis highlights the interest of implementing X-band radars in urban areas. Indeed such radars provide the rainfall data at a hectometric resolution that would enable a better nowcasting and management of storm water. The multifractal properties of the simulated hydrographs were analysed with the help of simulated rainfall fields of resolution 111 m x 111 m x 1 min, lasting 4 hours, and corresponding to a 5 year return period event. On the whole, the discharge exhibits a good scaling behaviour over the range 4 h - 5 min. Both UM parameters tend to be greater for the discharge than for the rainfall. The notion of maximum probable singularity was used to clarify the consequences on the assessment of extremes. It appears that the urban drainage network basically reproduces the extremes, or only slightly damps them, at least in terms of multifractal statistics. The results were obtained with the financial support from the EU FP7 SMARTesT Project and the Chair "Hydrology for Resilient Cities" (sponsored by Veolia) of Ecole des Ponts ParisTech.
NASA Astrophysics Data System (ADS)
Bliss Singer, Michael; Michaelides, Katerina
2017-10-01
In drylands, convective rainstorms typically control runoff, streamflow, water supply and flood risk to human populations, and ecological water availability at multiple spatial scales. Since drainage basin water balance is sensitive to climate, it is important to improve characterization of convective rainstorms in a manner that enables statistical assessment of rainfall at high spatial and temporal resolution, and the prediction of plausible manifestations of climate change. Here we present a simple rainstorm generator, STORM, for convective storm simulation. It was created using data from a rain gauge network in one dryland drainage basin, but is applicable anywhere. We employ STORM to assess watershed rainfall under climate change simulations that reflect differences in wetness/storminess, and thus provide insight into observed or projected regional hydrologic trends. Our analysis documents historical, regional climate change manifesting as a multidecadal decline in rainfall intensity, which we suggest has negatively impacted ephemeral runoff in the Lower Colorado River basin, but has not contributed substantially to regional negative streamflow trends.
Skilful Seasonal Predictions of Summer European Rainfall
NASA Astrophysics Data System (ADS)
Dunstone, Nick; Smith, Doug; Scaife, Adam; Hermanson, Leon; Fereday, David; O'Reilly, Chris; Stirling, Alison; Eade, Rosie; Gordon, Margaret; MacLachlan, Craig; Woollings, Tim; Sheen, Katy; Belcher, Stephen
2018-04-01
Year-to-year variability in Northern European summer rainfall has profound societal and economic impacts; however, current seasonal forecast systems show no significant forecast skill. Here we show that skillful predictions are possible (r 0.5, p < 0.001) using the latest high-resolution Met Office near-term prediction system over 1960-2017. The model predictions capture both low-frequency changes (e.g., wet summers 2007-2012) and some of the large individual events (e.g., dry summer 1976). Skill is linked to predictable North Atlantic sea surface temperature variability changing the supply of water vapor into Northern Europe and so modulating convective rainfall. However, dynamical circulation variability is not well predicted in general—although some interannual skill is found. Due to the weak amplitude of the forced model signal (likely caused by missing or weak model responses), very large ensembles (>80 members) are required for skillful predictions. This work is promising for the development of European summer rainfall climate services.
NASA Astrophysics Data System (ADS)
Mishra, Anoop; Rafiq, Mohammd
2017-12-01
This is the first attempt to merge highly accurate precipitation estimates from Global Precipitation Measurement (GPM) with gap free satellite observations from Meteosat to develop a regional rainfall monitoring algorithm to estimate heavy rainfall over India and nearby oceanic regions. Rainfall signature is derived from Meteosat observations and is co-located against rainfall from GPM to establish a relationship between rainfall and signature for various rainy seasons. This relationship can be used to monitor rainfall over India and nearby oceanic regions. Performance of this technique was tested by applying it to monitor heavy precipitation over India. It is reported that our algorithm is able to detect heavy rainfall. It is also reported that present algorithm overestimates rainfall areal spread as compared to rain gauge based rainfall product. This deficiency may arise from various factors including uncertainty caused by use of different sensors from different platforms (difference in viewing geometry from MFG and GPM), poor relationship between warm rain (light rain) and IR brightness temperature, and weak characterization of orographic rain from IR signature. We validated hourly rainfall estimated from the present approach with independent observations from GPM. We also validated daily rainfall from this approach with rain gauge based product from India Meteorological Department (IMD). Present technique shows a Correlation Coefficient (CC) of 0.76, a bias of -2.72 mm, a Root Mean Square Error (RMSE) of 10.82 mm, Probability of Detection (POD) of 0.74, False Alarm Ratio (FAR) of 0.34 and a Skill score of 0.36 with daily rainfall from rain gauge based product of IMD at 0.25° resolution. However, FAR reduces to 0.24 for heavy rainfall events. Validation results with rain gauge observations reveal that present technique outperforms available satellite based rainfall estimates for monitoring heavy rainfall over Indian region.
Simulation of infiltration and redistribution of intense rainfall using Land Surface Models
NASA Astrophysics Data System (ADS)
Mueller, Anna; Verhoef, Anne; Cloke, Hannah
2016-04-01
Flooding from intense rainfall (FFIR) can cause widespread damage and disruption. Numerical Weather Prediction (NWP) models provide distributed information about atmospheric conditions, such as precipitation, that can lead to a flooding event. Short duration, high intensity rainfall events are generally poorly predicted by NWP models, because of the high spatiotemporal resolution required and because of the way the convective rainfall is described in the model. The resolution of NWP models is ever increasing. Better understanding of complex hydrological processes and the effect of scale is important in order to improve the prediction of magnitude and duration of such events, in the context of disaster management. Working as part of the NERC SINATRA project, we evaluated how the Land Surface Model (LSM) components of NWP models cope with high intensity rainfall input and subsequent infiltration problems. Both in terms of the amount of water infiltrated in the soil store, as well as the timing and the amount of surface and subsurface runoff generated. The models investigated are SWAP (Soil Water Air Plant, Alterra, the Netherlands, van Dam 1997), JULES (Joint UK Land Environment Simulator a component of Unified Model in UK Met Office, Best et al. 2011) and CHTESSEL (Carbon and Hydrology- Tiled ECMWF Scheme for Surface Exchanges over Land, Balsamo et al. 2009) We analysed the numerical aspects arising from discontinuities (or sharp gradients) in forcing and/or the model solution. These types of infiltration configurations were tested in the laboratory (Vachaud 1971), for some there are semi-analytical solutions (Philip 1957, Parlange 1972, Vanderborght 2005) or reference numerical solutions (Haverkamp 1977, van Dam 2000, Vanderborght 2005). The maximum infiltration by the surface, Imax, is in general dependent on atmospheric conditions, surface type, soil type, soil moisture content θ, and surface orographic factor σ. The models used differ in their approach to describe and deal with this top boundary condition definition. All three LSMs discretise the spatial derivative in the Richards equation (∂/∂z) using central finite differences, which is a 2nd order method, that according to Godunov's theorem is non-monotone. It is prone to producing non-physical oscillations in the solution. We performed a mesh and timestep dependence study for hypothetical soil columns and showed the presence of the oscillations in Jules and SWAP solutions. We also investigated the rainfall/runoff partition and redistribution in case of intense rainfall using these three models.
NASA Astrophysics Data System (ADS)
Jensen, Tommy G.; Shulman, Igor; Wijesekera, Hemantha W.; Anderson, Stephanie; Ladner, Sherwin
2018-03-01
Large freshwater fluxes into the Bay of Bengal by rainfall and river discharges result in strong salinity fronts in the bay. In this study, a high-resolution coupled atmosphere-ocean-wave model with comprehensive physics is used to model the weather, ocean circulation, and wave field in the Bay of Bengal. Our objective is to explore the submesoscale activity that occurs in a realistic coupled model that resolves mesoscales and allows part of the submesoscale field. Horizontal resolution in the atmosphere varies from 2 to 6 km and is 13 km for surface waves, while the ocean model is submesoscale permitting with resolutions as high as 1.5 km and a vertical resolution of 0.5 m in the upper 10 m. In this paper, three different cases of oceanic submesoscale features are discussed. In the first case, heavy rainfall and intense downdrafts produced by atmospheric convection are found to force submesoscale currents, temperature, and salinity anomalies in the oceanic mixed layer and impact the mesoscale flow. In a second case, strong solitary-like waves are generated by semidiurnal tides in the Andaman Sea and interact with mesoscale flows and fronts and affect submesoscale features generated along fronts. A third source of submesoscale variability is found further north in the Bay of Bengal where river outflows help maintain strong salinity gradients throughout the year. For that case, a comparison with satellite observations of sea surface height anomalies, sea surface temperature, and chlorophyll shows that the model captures the observed mesoscale eddy features of the flow field, but in addition, submesoscale upwelling and downwelling patterns associated with ageostrophic secondary circulations along density fronts are also captured by the model.
Accessing, Utilizing and Visualizing NASA Remote Sensing Data for Malaria Modeling and Surveillance
NASA Technical Reports Server (NTRS)
Kiang, Richard K.; Adimi, Farida; Kempler, Steven
2007-01-01
This poster presentation reviews the use of NASA remote sensing data that can be used to extract environmental information for modeling malaria transmission. The authors discuss the remote sensing data from Landsat, Advanced Very High Resolution Radiometer (AVHRR), Moderate Resolution Imaging Spectroradiometer (MODIS), Tropical Rainfall Measuring Mission (TRMM), Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER), Earth Observing One (EO-1), Advanced Land Imager (ALI) and Seasonal to Interannual Earth Science Information Partner (SIESIP) dataset.
NASA Astrophysics Data System (ADS)
Sinclair, D. J.; Sherrell, R. M.; Rowe, H. D.; Wright, J. D.; Mortlock, R. A.; Hellstrom, J. C.; Cheng, H.; Min, A.; Edwards, R. L.
2014-12-01
The South Pacific Convergence Zone (SPCZ) is the largest component of the Intertropical Convergence Zone (ITCZ), and its impact on global climate rivals that of the deep convection at the heart of the Western Pacific Warm Pool. Rapid glacial climate fluctuations, such as Dansgaard-Oeschger (D-O) Events, would have triggered a reorganization of tropical systems such as the SPCZ, manifesting as significantly altered rainfall across the tropical south Pacific. However, a critical lack of high-resolution glacial records from this region means the dynamics of the SPCZ are largely unknown. We present a decade-resolution, absolute-dated speleothem rainfall record from the Island of Niue in the southern Tropical Pacific spanning 25-45 ka. Sr, Mg, δ18O and δ13C variations show that Niue experienced large, rapid fluctuations in rainfall lasting up to 1200 years. Between 40 and 45 ka, these show a remarkable concordance with the timing, duration and shape of D-O events 9-11. Rapid warming in Greenland was accompanied by a sudden increase in rainfall in Niue, implying that the SPCZ was strongly coupled with climate in the high Northern latitudes. These changes are not consistent with a wholesale northward shift in the SPCZ, which would have resulted in drying in Niue, and instead imply that the SPCZ underwent a more complex reorganization, perhaps rotating around its western edge in a manner analogous to modern-day extreme ENSO events. The speleothem record between 25-40 ka also shows large changes in rainfall, with D-O events identifiable. However, these changes are less well matched to Greenland, and include events not captured by the ice cores. It is clear that the SPCZ response to global climate change is complex: while it can closely couple with high-northern latitude climate for periods, this coupling may not be stationary with time. We speculate that this might result from changing precession, influencing which teleconnections dominate climate changes in the south tropical Pacific.
NASA Astrophysics Data System (ADS)
Hong, Yang
Precipitation estimation from satellite information (VISIBLE , IR, or microwave) is becoming increasingly imperative because of its high spatial/temporal resolution and board coverage unparalleled by ground-based data. After decades' efforts of rainfall estimation using IR imagery as basis, it has been explored and concluded that the limitations/uncertainty of the existing techniques are: (1) pixel-based local-scale feature extraction; (2) IR temperature threshold to define rain/no-rain clouds; (3) indirect relationship between rain rate and cloud-top temperature; (4) lumped techniques to model high variability of cloud-precipitation processes; (5) coarse scales of rainfall products. As continuing studies, a new version of Precipitation Estimation from Remotely Sensed Information using Artificial Neural Network (PERSIANN), called Cloud Classification System (CCS), has been developed to cope with these limitations in this dissertation. CCS includes three consecutive components: (1) a hybrid segmentation algorithm, namely Hierarchically Topographical Thresholding and Stepwise Seeded Region Growing (HTH-SSRG), to segment satellite IR images into separated cloud patches; (2) a 3D feature extraction procedure to retrieve both pixel-based local-scale and patch-based large-scale features of cloud patch at various heights; (3) an ANN model, Self-Organizing Nonlinear Output (SONO) network, to classify cloud patches into similarity-based clusters, using Self-Organizing Feature Map (SOFM), and then calibrate hundreds of multi-parameter nonlinear functions to identify the relationship between every cloud types and their underneath precipitation characteristics using Probability Matching Method and Multi-Start Downhill Simplex optimization techniques. The model was calibrated over the Southwest of United States (100°--130°W and 25°--45°N) first and then adaptively adjusted to the study region of North America Monsoon Experiment (65°--135°W and 10°--50°N) using observations from Geostationary Operational Environmental Satellite (GOES) IR imagery, Next Generation Radar (NEXRAD) rainfall network, and Tropical Rainfall Measurement Mission (TRMM) microwave rain rate estimates. CCS functions as a distributed model that first identifies cloud patches and then dispatches different but the best matching cloud-precipitation function for each cloud patch to estimate instantaneous rain rate at high spatial resolution (4km) and full temporal resolution of GOES IR images (every 30-minute). Evaluated over a range of spatial and temporal scales, the performance of CCS compared favorably with GOES Precipitation Index (GPI), Universal Adjusted GPI (UAGPI), PERSIANN, and Auto-Estimator (AE) algorithms, consistently. Particularly, the large number of nonlinear functions and optimum IR-rain rate thresholds of CCS model are highly variable, reflecting the complexity of dominant cloud-precipitation processes from cloud patch to cloud patch over various regions. As a result, CCS can more successfully capture variability in rain rate at small scales than existing algorithms and potentially provides rainfall product from GOES IR-NEXARD-TRMM TMI (SSM/I) at 0.12° x 0.12° and 3-hour resolution with relative low standard error (˜=3.0mm/hr) and high correlation coefficient (˜=0.65).
The investigation of using 5G millimeter-wave communications links for environmental monitoring
NASA Astrophysics Data System (ADS)
Han, Congzheng
2017-04-01
There has been significantly increasing recognition that millimeter waves from 30 GHz to 300 GHz as carriers for future 5G cellular networks. This is good for high speed, line-of-sight communication, potentially using very densely deployed infrastructure involving many small cells. High resolution, continuous and accurate monitoring of environmental conditions, such as rainfall and water vapor are of great important to meteorology, hydrology (e.g. flood warning), agriculture, environmental policy (e.g. pollution regulation) and weather forecasting. We have built a 28GHz measurement link at our research institute in central Beijing, China. This work will study the potential of using millimeter wave based wireless links to monitor environmental conditions including rainfall and water vapor.
Impacts of rainfall spatial variability on hydrogeological response
NASA Astrophysics Data System (ADS)
Sapriza-Azuri, Gonzalo; Jódar, Jorge; Navarro, Vicente; Slooten, Luit Jan; Carrera, Jesús; Gupta, Hoshin V.
2015-02-01
There is currently no general consensus on how the spatial variability of rainfall impacts and propagates through complex hydrogeological systems. Most studies to date have focused on the effects of rainfall spatial variability (RSV) on river discharge, while paying little attention to other important aspects of system response. Here, we study the impacts of RSV on several responses of a hydrological model of an overexploited system. To this end, we drive a spatially distributed hydrogeological model for the semiarid Upper Guadiana basin in central Spain with stochastic daily rainfall fields defined at three different spatial resolutions (fine → 2.5 km × 2.5 km, medium → 50 km × 50 km, large → lumped). This enables us to investigate how (i) RSV at different spatial resolutions, and (ii) rainfall uncertainty, are propagated through the hydrogeological model of the system. Our results demonstrate that RSV has a significant impact on the modeled response of the system, by specifically affecting groundwater recharge and runoff generation, and thereby propagating through to various other related hydrological responses (river discharge, river-aquifer exchange, groundwater levels). These results call into question the validity of management decisions made using hydrological models calibrated or forced with spatially lumped rainfall.
NASA Astrophysics Data System (ADS)
Blessent, Daniela; Barco, Janet; Temgoua, André Guy Tranquille; Echeverrri-Ramirez, Oscar
2017-03-01
Numerical results are presented of surface-subsurface water modeling of a natural hillslope located in the Aburrá Valley, in the city of Medellín (Antioquia, Colombia). The integrated finite-element hydrogeological simulator HydroGeoSphere is used to conduct transient variably saturated simulations. The objective is to analyze pore-water pressure and saturation variation at shallow depths, as well as volumes of water infiltrated in the porous medium. These aspects are important in the region of study, which is highly affected by soil movements, especially during the high-rain seasons that occur twice a year. The modeling exercise considers rainfall events that occurred between October and December 2014 and a hillslope that is currently monitored because of soil instability problems. Simulation results show that rainfall temporal variability, mesh resolution, coupling length, and the conceptual model chosen to represent the heterogeneous soil, have a noticeable influence on results, particularly for high rainfall intensities. Results also indicate that surface-subsurface coupled modeling is required to avoid unrealistic increase in hydraulic heads when high rainfall intensities cause top-down saturation of soil. This work is a first effort towards fostering hydrogeological modeling expertise that may support the development of monitoring systems and early landslide warning in a country where the rainy season is often the cause of hydrogeological tragedies associated with landslides, mud flow or debris flow.
Assessing future changes in the occurrence of rainfall-induced landslides at a regional scale.
Gariano, S L; Rianna, G; Petrucci, O; Guzzetti, F
2017-10-15
According to the fifth report of the Intergovernmental Panel on Climate Change, an increase in the frequency and the intensity of extreme rainfall is expected in the Mediterranean area. Among different impacts, this increase might result in a variation in the frequency and the spatial distribution of rainfall-induced landslides, and in an increase in the size of the population exposed to landslide risk. We propose a method for the regional-scale evaluation of future variations in the occurrence of rainfall-induced landslides, in response to changes in rainfall regimes. We exploit information on the occurrence of 603 rainfall-induced landslides in Calabria, southern Italy, in the period 1981-2010, and daily rainfall data recorded in the same period in the region. Furthermore, we use high-resolution climate projections based on RCP4.5 and RCP8.5 scenarios. In particular, we consider the mean variations between a 30-year future period (2036-2065) and the reference period 1981-2010 in three variables assumed as proxy for landslide activity: annual rainfall, seasonal cumulated rainfall, and annual maxima of daily rainfall. Based on reliable correlations between landslide occurrence and weather variables estimated in the reference period, we assess future variations in rainfall-induced landslide occurrence for all the municipalities of Calabria. A +45.7% and +21.2% average regional variation in rainfall-induced landslide occurrence is expected in the region for the period 2036-2065, under the RCP4.5 and RCP8.5 scenario, respectively. We also investigate the future variations in the impact of rainfall-induced landslides on the population of Calabria. We find a +80.2% and +54.5% increase in the impact on the population for the period 2036-2065, under the RCP4.5 and RCP8.5 scenario, respectively. The proposed method is quantitative and reproducible, thus it can be applied in similar regions, where adequate landslide and rainfall information is available. Copyright © 2017 Elsevier B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
Nair, Archana; Acharya, Nachiketa; Singh, Ankita; Mohanty, U. C.; Panda, T. C.
2013-11-01
In this study the predictability of northeast monsoon (Oct-Nov-Dec) rainfall over peninsular India by eight general circulation model (GCM) outputs was analyzed. These GCM outputs (forecasts for the whole season issued in September) were compared with high-resolution observed gridded rainfall data obtained from the India Meteorological Department for the period 1982-2010. Rainfall, interannual variability (IAV), correlation coefficients, and index of agreement were examined for the outputs of eight GCMs and compared with observation. It was found that the models are able to reproduce rainfall and IAV to different extents. The predictive power of GCMs was also judged by determining the signal-to-noise ratio and the external error variance; it was noted that the predictive power of the models was usually very low. To examine dominant modes of interannual variability, empirical orthogonal function (EOF) analysis was also conducted. EOF analysis of the models revealed they were capable of representing the observed precipitation variability to some extent. The teleconnection between the sea surface temperature (SST) and northeast monsoon rainfall was also investigated and results suggest that during OND the SST over the equatorial Indian Ocean, the Bay of Bengal, the central Pacific Ocean (over Nino3 region), and the north and south Atlantic Ocean enhances northeast monsoon rainfall. This observed phenomenon is only predicted by the CCM3v6 model.
NASA Astrophysics Data System (ADS)
Cifelli, R.; Chen, H.; Chandrasekar, V.; Xie, P.
2015-12-01
A large number of precipitation products at multi-scales have been developed based upon satellite, radar, and/or rain gauge observations. However, how to produce optimal rainfall estimation for a given region is still challenging due to the spatial and temporal sampling difference of different sensors. In this study, we develop a data fusion mechanism to improve regional quantitative precipitation estimation (QPE) by utilizing satellite-based CMORPH product, ground radar measurements, as well as numerical model simulations. The CMORPH global precipitation product is essentially derived based on retrievals from passive microwave measurements and infrared observations onboard satellites (Joyce et al. 2004). The fine spatial-temporal resolution of 0.05o Lat/Lon and 30-min is appropriate for regional hydrologic and climate studies. However, it is inadequate for localized hydrometeorological applications such as urban flash flood forecasting. Via fusion of the Regional CMORPH product and local precipitation sensors, the high-resolution QPE performance can be improved. The area of interest is the Dallas-Fort Worth (DFW) Metroplex, which is the largest land-locked metropolitan area in the U.S. In addition to an NWS dual-polarization S-band WSR-88DP radar (i.e., KFWS radar), DFW hosts the high-resolution dual-polarization X-band radar network developed by the center for Collaborative Adaptive Sensing of the Atmosphere (CASA). This talk will present a general framework of precipitation data fusion based on satellite and ground observations. The detailed prototype architecture of using regional rainfall instruments to improve regional CMORPH precipitation product via multi-scale fusion techniques will also be discussed. Particularly, the temporal and spatial fusion algorithms developed for the DFW Metroplex will be described, which utilizes CMORPH product, S-band WSR-88DP, and X-band CASA radar measurements. In order to investigate the uncertainties associated with each individual product and demonstrate the precipitation data fusion performance, both individual and fused QPE products are evaluated using rainfall measurements from a disdrometer and gauge network.
Increased Spatial Variability and Intensification of Extreme Monsoon Rainfall due to Urbanization.
Paul, Supantha; Ghosh, Subimal; Mathew, Micky; Devanand, Anjana; Karmakar, Subhankar; Niyogi, Dev
2018-03-02
While satellite data provides a strong robust signature of urban feedback on extreme precipitation; urbanization signal is often not so prominent with station level data. To investigate this, we select the case study of Mumbai, India and perform a high resolution (1 km) numerical study with Weather Research and Forecasting (WRF) model for eight extreme rainfall days during 2014-2015. The WRF model is coupled with two different urban schemes, the Single Layer Urban Canopy Model (WRF-SUCM), Multi-Layer Urban Canopy Model (WRF-MUCM). The differences between the WRF-MUCM and WRF-SUCM indicate the importance of the structure and characteristics of urban canopy on modifications in precipitation. The WRF-MUCM simulations resemble the observed distributed rainfall. WRF-MUCM also produces intensified rainfall as compared to the WRF-SUCM and WRF-NoUCM (without UCM). The intensification in rainfall is however prominent at few pockets of urban regions, that is seen in increased spatial variability. We find that the correlation of precipitation across stations within the city falls below statistical significance at a distance greater than 10 km. Urban signature on extreme precipitation will be reflected on station rainfall only when the stations are located inside the urban pockets having intensified precipitation, which needs to be considered in future analysis.
Using Empirical Orthogonal Teleconnections to Analyze Interannual Precipitation Variability in China
NASA Astrophysics Data System (ADS)
Stephan, C.; Klingaman, N. P.; Vidale, P. L.; Turner, A. G.; Demory, M. E.; Guo, L.
2017-12-01
Interannual rainfall variability in China affects agriculture, infrastructure and water resource management. A consistent and objective method, Empirical Orthogonal Teleconnection (EOT) analysis, is applied to precipitation observations over China in all seasons. Instead of maximizing the explained space-time variance, the method identifies regions in China that best explain the temporal variability in domain-averaged rainfall. It produces known teleconnections, that include high positive correlations with ENSO in eastern China in winter, along the Yangtze River in summer, and in southeast China during spring. New findings include that variability along the southeast coast in winter, in the Yangtze valley in spring, and in eastern China in autumn, are associated with extratropical Rossby wave trains. The same analysis is applied to six climate simulations of the Met Office Unified Model with and without air-sea coupling and at various horizontal resolutions of 40, 90 and 200 km. All simulations reproduce the observed patterns of interannual rainfall variability in winter, spring and autumn; the leading pattern in summer is present in all but one simulation. However, only in two simulations are all patterns associated with the observed physical mechanism. Coupled simulations capture more observed patterns of variability and associate more of them with the correct physical mechanism, compared to atmosphere-only simulations at the same resolution. Finer resolution does not improve the fidelity of these patterns or their associated mechanisms. Evaluating climate models by only geographical distribution of mean precipitation and its interannual variance is insufficient; attention must be paid to associated mechanisms.
Distant Influence of Kuroshio Eddies on North Pacific Weather Patterns?
Ma, Xiaohui; Chang, Ping; Saravanan, R; Montuoro, Raffaele; Hsieh, Jen-Shan; Wu, Dexing; Lin, Xiaopei; Wu, Lixin; Jing, Zhao
2015-12-04
High-resolution satellite measurements of surface winds and sea-surface temperature (SST) reveal strong coupling between meso-scale ocean eddies and near-surface atmospheric flow over eddy-rich oceanic regions, such as the Kuroshio and Gulf Stream, highlighting the importance of meso-scale oceanic features in forcing the atmospheric planetary boundary layer (PBL). Here, we present high-resolution regional climate modeling results, supported by observational analyses, demonstrating that meso-scale SST variability, largely confined in the Kuroshio-Oyashio confluence region (KOCR), can further exert a significant distant influence on winter rainfall variability along the U.S. Northern Pacific coast. The presence of meso-scale SST anomalies enhances the diabatic conversion of latent heat energy to transient eddy energy, intensifying winter cyclogenesis via moist baroclinic instability, which in turn leads to an equivalent barotropic downstream anticyclone anomaly with reduced rainfall. The finding points to the potential of improving forecasts of extratropical winter cyclones and storm systems and projections of their response to future climate change, which are known to have major social and economic impacts, by improving the representation of ocean eddy-atmosphere interaction in forecast and climate models.
Double Bright Band Observations with High-Resolution Vertically Pointing Radar, Lidar, and Profiles
NASA Technical Reports Server (NTRS)
Emory, Amber E.; Demoz, Belay; Vermeesch, Kevin; Hicks, Michael
2014-01-01
On 11 May 2010, an elevated temperature inversion associated with an approaching warm front produced two melting layers simultaneously, which resulted in two distinct bright bands as viewed from the ER-2 Doppler radar system, a vertically pointing, coherent X band radar located in Greenbelt, MD. Due to the high temporal resolution of this radar system, an increase in altitude of the melting layer of approximately 1.2 km in the time span of 4 min was captured. The double bright band feature remained evident for approximately 17 min, until the lower atmosphere warmed enough to dissipate the lower melting layer. This case shows the relatively rapid evolution of freezing levels in response to an advancing warm front over a 2 h time period and the descent of an elevated warm air mass with time. Although observations of double bright bands are somewhat rare, the ability to identify this phenomenon is important for rainfall estimation from spaceborne sensors because algorithms employing the restriction of a radar bright band to a constant height, especially when sampling across frontal systems, will limit the ability to accurately estimate rainfall.
Double bright band observations with high-resolution vertically pointing radar, lidar, and profilers
NASA Astrophysics Data System (ADS)
Emory, Amber E.; Demoz, Belay; Vermeesch, Kevin; Hicks, Micheal
2014-07-01
On 11 May 2010, an elevated temperature inversion associated with an approaching warm front produced two melting layers simultaneously, which resulted in two distinct bright bands as viewed from the ER-2 Doppler radar system, a vertically pointing, coherent X band radar located in Greenbelt, MD. Due to the high temporal resolution of this radar system, an increase in altitude of the melting layer of approximately 1.2 km in the time span of 4 min was captured. The double bright band feature remained evident for approximately 17 min, until the lower atmosphere warmed enough to dissipate the lower melting layer. This case shows the relatively rapid evolution of freezing levels in response to an advancing warm front over a 2 h time period and the descent of an elevated warm air mass with time. Although observations of double bright bands are somewhat rare, the ability to identify this phenomenon is important for rainfall estimation from spaceborne sensors because algorithms employing the restriction of a radar bright band to a constant height, especially when sampling across frontal systems, will limit the ability to accurately estimate rainfall.
NASA Astrophysics Data System (ADS)
Barrera, A.; Altava-Ortiz, V.; Llasat, M. C.; Barnolas, M.
2007-09-01
Between the 11 and 13 October 2005 several flash floods were produced along the coast of Catalonia (NE Spain) due to a significant heavy rainfall event. Maximum rainfall achieved values up to 250 mm in 24 h. The total amount recorded during the event in some places was close to 350 mm. Barcelona city was also in the affected area where high rainfall intensities were registered, but just a few small floods occurred, thanks to the efficient urban drainage system of the city. Two forecasting methods have been applied in order to evaluate their capability of prediction regarding extreme events: the deterministic MM5 model and a probabilistic model based on the analogous method. The MM5 simulation allows analysing accurately the main meteorological features with a high spatial resolution (2 km), like the formation of some convergence lines over the region that partially explains the maximum precipitation location during the event. On the other hand, the analogous technique shows a good agreement among highest probability values and real affected areas, although a larger pluviometric rainfall database would be needed to improve the results. The comparison between the observed precipitation and from both QPF (quantitative precipitation forecast) methods shows that the analogous technique tends to underestimate the rainfall values and the MM5 simulation tends to overestimate them.
Hancock, G R; Verdon-Kidd, D; Lowry, J B C
2017-12-01
Landscape Evolution Modelling (LEM) technologies provide a means by which it is possible to simulate the long-term geomorphic stability of a conceptual rehabilitated landform. However, simulations rarely consider the potential effects of anthropogenic climate change and consequently risk not accounting for the range of rainfall variability that might be expected in both the near and far future. One issue is that high resolution (both spatial and temporal) rainfall projections incorporating the potential effects of greenhouse forcing are required as input. However, projections of rainfall change are still highly uncertain for many regions, particularly at sub annual/seasonal scales. This is the case for northern Australia, where a decrease or an increase in rainfall post 2030 is considered equally likely based on climate model simulations. The aim of this study is therefore to investigate a spatial analogue approach to develop point scale hourly rainfall scenarios to be used as input to the CAESAR - Lisflood LEM to test the sensitivity of the geomorphic stability of a conceptual rehabilitated landform to potential changes in climate. Importantly, the scenarios incorporate the range of projected potential increase/decrease in rainfall for northern Australia and capture the expected envelope of erosion rates and erosion patterns (i.e. where erosion and deposition occurs) over a 100year modelled period. We show that all rainfall scenarios produce sediment output and gullying greater than that of the surrounding natural system, however a 'wetter' future climate produces the highest output. Importantly, incorporating analogue rainfall scenarios into LEM has the capacity to both improve landform design and enhance the modelling software. Further, the method can be easily transferred to other sites (both nationally and internationally) where rainfall variability is significant and climate change impacts are uncertain. Crown Copyright © 2017. Published by Elsevier B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
Kishore, P.; Jyothi, S.; Basha, Ghouse; Rao, S. V. B.; Rajeevan, M.; Velicogna, Isabella; Sutterley, Tyler C.
2016-01-01
Changing rainfall patterns have significant effect on water resources, agriculture output in many countries, especially the country like India where the economy depends on rain-fed agriculture. Rainfall over India has large spatial as well as temporal variability. To understand the variability in rainfall, spatial-temporal analyses of rainfall have been studied by using 107 (1901-2007) years of daily gridded India Meteorological Department (IMD) rainfall datasets. Further, the validation of IMD precipitation data is carried out with different observational and different reanalysis datasets during the period from 1989 to 2007. The Global Precipitation Climatology Project data shows similar features as that of IMD with high degree of comparison, whereas Asian Precipitation-Highly-Resolved Observational Data Integration Towards Evaluation data show similar features but with large differences, especially over northwest, west coast and western Himalayas. Spatially, large deviation is observed in the interior peninsula during the monsoon season with National Aeronautics Space Administration-Modern Era Retrospective-analysis for Research and Applications (NASA-MERRA), pre-monsoon with Japanese 25 years Re Analysis (JRA-25), and post-monsoon with climate forecast system reanalysis (CFSR) reanalysis datasets. Among the reanalysis datasets, European Centre for Medium-Range Weather Forecasts Interim Re-Analysis (ERA-Interim) shows good comparison followed by CFSR, NASA-MERRA, and JRA-25. Further, for the first time, with high resolution and long-term IMD data, the spatial distribution of trends is estimated using robust regression analysis technique on the annual and seasonal rainfall data with respect to different regions of India. Significant positive and negative trends are noticed in the whole time series of data during the monsoon season. The northeast and west coast of the Indian region shows significant positive trends and negative trends over western Himalayas and north central Indian region.
Evaluation of topographical and seasonal feature using GPM IMERG and TRMM 3B42 over Far-East Asia
NASA Astrophysics Data System (ADS)
Kim, Kiyoung; Park, Jongmin; Baik, Jongjin; Choi, Minha
2017-05-01
The acquisition of accurate precipitation data is essential for analyzing various hydrological phenomena and climate change. Recently, the Global Precipitation Measurement (GPM) satellites were launched as a next-generation rainfall mission for observing global precipitation characteristics. The main objective in this study is to assess precipitation products from GPM, especially the Integrated Multi-satellitE Retrievals (GPM-3IMERGHH) and the Tropical Rainfall Measurement Mission (TRMM) Multi-satellite Precipitation Analysis (TMPA), using gauge-based precipitation data from Far-East Asia during the pre-monsoon and monsoon seasons. Evaluation was performed by focusing on three different factors: geographical aspects, seasonal factors, and spatial distributions. In both mountainous and coastal regions, the GPM-3IMERGHH product showed better performance than the TRMM 3B42 V7, although both rainfall products showed uncertainties caused by orographic convection and the land-ocean classification algorithm. GPM-3IMERGHH performed about 8% better than TRMM 3B42 V7 during the pre-monsoon and monsoon seasons due to the improvement of loaded sensor and reinforcement in capturing convective rainfall, respectively. In depicting the spatial distribution of precipitation, GPM-3IMERGHH was more accurate than TRMM 3B42 V7 because of its enhanced spatial and temporal resolutions of 10 km and 30 min, respectively. Based on these results, GPM-3IMERGHH would be helpful for not only understanding the characteristics of precipitation with high spatial and temporal resolution, but also for estimating near-real-time runoff patterns.
Evaluation of different rainfall products over India for the summer monsoon
NASA Astrophysics Data System (ADS)
Prakash, Satya; Mitra, Ashis; Turner, Andrew; Collins, Mathew; AchutoRao, Krishna
2015-04-01
Summer rainfall over India forms an integral part of the Asian monsoon, which plays a key role in the global water cycle and climate system through coupled atmospheric and oceanic processes. Accurate prediction of Indian summer monsoon rainfall and its variability at various spatiotemporal scales are crucial for agriculture, water resources and hydroelectric-power sectors. Reliable rainfall observations are very important for verification of numerical model outputs and model development. However, high spatiotemporal variability of rainfall makes it difficult to measure adequately with ground-based instruments over a large region of various surface types from deserts to oceans. A number of multi-satellite rainfall products are available to users at different spatial and temporal scales. Each rainfall product has some advantages as well as limitations, hence it is essential to find a suitable region-specific data set among these rainfall products for a particular user application, such as water resources, agricultural modelling etc. In this study, we examine seasonal-mean and daily rainfall datasets for monsoon model validation. First, six multi-satellite and gauge-only rainfall products were evaluated over India at seasonal scale for 27 (JJAS 1979-2005) summer monsoon seasons against gridded 0.5-degree IMD gauge-based rainfall. Various skill metrics are computed to assess the potential of these data sets in representation of large-scale monsoon rainfall at all-India and sub-regional scales. Among the gauge-only data sets, APHRODITE and GPCC appear to outperform the others whereas GPCP is better than CMAP in the merged multi-satellite category. However, there are significant differences among these data sets indicating uncertainty in the observed rainfall over this region, with important implications for the evaluation of model simulations. At the daily scale, TRMM TMPA-3B42 is one of the best available products and is widely used for various hydro-meteorological applications. The existing version 6 (V6) products of TRMM underwent major changes and version 7 (V7) products were released in late 2012, and we compare these to the IMD daily gridded data over the 1998-2010 period. We show a clear improvement in V7 over V6 in the South Asian monsoon region using various skill metrics. Over typical monsoon rainfall zones, biases are improved by 5-10% in V7 over higher-rainfall regions. These results will help users to select appropriate rainfall product for their application. With the recent launch of the GPM Core Observatory, the release of a more advanced high-resolution multi-satellite rainfall product is expected soon.
NASA Astrophysics Data System (ADS)
Ogata, Tomomichi; Johnson, Stephanie J.; Schiemann, Reinhard; Demory, Marie-Estelle; Mizuta, Ryo; Yoshida, Kohei; Osamu Arakawa
2017-11-01
In this study, we compare the resolution sensitivity of the Asian Summer Monsoon (ASM) in two Atmospheric General Circulation Models (AGCMs): the MRI-AGCM and the MetUM. We analyze the MetUM at three different resolutions, N96 (approximately 200-km mesh on the equator), N216 (90-km mesh) and N512 (40-km mesh), and the MRI-AGCM at TL95 (approximately 180-km mesh on the equator), TL319 (60-km mesh), and TL959 (20-km mesh). The MRI-AGCM and the MetUM both show decreasing precipitation over the western Pacific with increasing resolution, but their precipitation responses differ over the Indian Ocean. In MRI-AGCM, a large precipitation increase appears off the equator (5-20°N). In MetUM, this off-equatorial precipitation increase is less significant and precipitation decreases over the equator. Moisture budget analysis demonstrates that a changing in moisture flux convergence at higher resolution is related to the precipitation response. Orographic effects, intra-seasonal variability and the representation of the meridional thermal gradient are explored as possible causes of the resolution sensitivity. Both high-resolution AGCMs (TL959 and N512) can represent steep topography, which anchors the rainfall pattern over south Asia and the Maritime Continent. In MRI-AGCM, representation of low pressure systems in TL959 also contributes to the rainfall pattern. Furthermore, the seasonal evolution of the meridional thermal gradient appears to be more accurate at higher resolution, particularly in the MRI-AGCM. These findings emphasize that the impact of resolution is only robust across the two AGCMs for some features of the ASM, and highlights the importance of multi-model studies of GCM resolution sensitivity.
Building Climate Service Capacities in Eastern Africa with CHIRP and GeoCLIM
NASA Astrophysics Data System (ADS)
Pedreros, D. H.; Magadzire, T.; Funk, C. C.; Verdin, J. P.; Peterson, P.; Landsfeld, M.; Husak, G. J.
2013-12-01
In developing countries there is a great need for capacity building within national and regional climate agencies to develop and analyze historical and real time gridded rainfall datasets. These datasets are of key importance for monitoring climate and agricultural food production at decadal and seasonal time scales, and for informing local decision makers. The Famine Early Warning Systems Network (FEWS NET), working together with the U.S. Geological Survey (USGS) and the Climate Hazards Group (CHG) of the University of California Santa Barbara, has developed an integrated set of data products and tools to support the development of African climate services. The core data product is the Climate Hazards Group Infrared Precipitation (CHIRP) dataset. The CHIRP is a new rainfall dataset resulting from the blending of satellite estimated precipitation with high resolution precipitation climatology. The CHIRP depicts rainfall on five day totals at 5km spatial resolution from 1981 to present. The CHG is developing and deploying a standalone tool - the GeoCLIM - which will allow national and regional meteorological agencies to blend the CHIRP with station observations, run simple crop water balance models, and conduct climatological, trend, and time series analysis. Blending satellite estimates and gauge data helps overcome limited in situ observing networks. Furthermore, the GeoCLIM combines rainfall, soil, and evapotranspiration data with crop hydrological requirements to calculate agricultural water balance, presented as the Water Requirement Satisfaction Index (WRSI). The WRSI is a measurement of the degree in which a crop's hydrological requirements have been satisfied by rainfall. We present the results of a training session for personnel of the East African Intergovernmental Authority on Development Climate Prediction and Applications Center. The two week training program included the use of the GeoCLIM to improve CHIRP using station data, and to calculate and analyze trends in rainfall, WRSI, and drought frequency in the region.
Post-processing of global model output to forecast point rainfall
NASA Astrophysics Data System (ADS)
Hewson, Tim; Pillosu, Fatima
2016-04-01
ECMWF (the European Centre for Medium range Weather Forecasts) has recently embarked upon a new project to post-process gridbox rainfall forecasts from its ensemble prediction system, to provide probabilistic forecasts of point rainfall. The new post-processing strategy relies on understanding how different rainfall generation mechanisms lead to different degrees of sub-grid variability in rainfall totals. We use a number of simple global model parameters, such as the convective rainfall fraction, to anticipate the sub-grid variability, and then post-process each ensemble forecast into a pdf (probability density function) for a point-rainfall total. The final forecast will comprise the sum of the different pdfs from all ensemble members. The post-processing is essentially a re-calibration exercise, which needs only rainfall totals from standard global reporting stations (and forecasts) to train it. High density observations are not needed. This presentation will describe results from the initial 'proof of concept' study, which has been remarkably successful. Reference will also be made to other useful outcomes of the work, such as gaining insights into systematic model biases in different synoptic settings. The special case of orographic rainfall will also be discussed. Work ongoing this year will also be described. This involves further investigations of which model parameters can provide predictive skill, and will then move on to development of an operational system for predicting point rainfall across the globe. The main practical benefit of this system will be a greatly improved capacity to predict extreme point rainfall, and thereby provide early warnings, for the whole world, of flash flood potential for lead times that extend beyond day 5. This will be incorporated into the suite of products output by GLOFAS (the GLObal Flood Awareness System) which is hosted at ECMWF. As such this work offers a very cost-effective approach to satisfying user needs right around the world. This field has hitherto relied on using very expensive high-resolution ensembles; by their very nature these can only run over small regions, and only for lead times up to about 2 days.
NASA Astrophysics Data System (ADS)
Griffiths, P. G.; Webb, W. H.; Magirl, C. S.; Pytlak, E.
2008-12-01
An extreme, multi-day rainfall event over southeastern Arizona during 27-31 July 2006 culminated in an historically unprecedented spate of 435 slope failures and associated debris flows in the Santa Catalina Mountains north of Tucson. Previous to this occurrence, only twenty small debris flows had been observed in this region over the past 100 years. Although intense orographic precipitation is routinely delivered by single- cell thunderstorms to the Santa Catalinas during the North American monsoon, in this case repeated nocturnal mesoscale convective systems were induced over southeastern Arizona by an upper-level low- pressure system centered over the Four Corners region for five continuous days, generating five-day rainfall totals up to 360 mm. Calibrating weather radar data with point rainfall data collected at 31 rain gages, mean-area storms totals for the southern Santa Catalina Mountains were calculated for 754 radar grid cells at a resolution of approximately 1 km2 to provide a detailed picture of the spatial and temporal distribution of rainfall during the event. Precipitation intensity for the 31 July storms was typical for monsoonal precipitation in this region, with peak 15-minute rainfall averaging 17 mm/hr for a recurrence interval (RI) < 1 yr. However, RI > 50 yrs for four-day rainfall totals overall, RI > 100 yrs where slope failures occurred, and RI > 1000 yrs for individual grid cells in the heart of the slope failure zone. A comparison of rainfall at locations where debris-flows did and did not occur suggests an intensity (I)-duration (D) threshold for debris flow occurrence for the Santa Catalina Mountains of I = 14.82D-0.39(I in mm/hr). This threshold falls slightly higher than the 1000-year rainfall predicted for this area. The relatively large exponent reflects the high frequency of short-duration, high-intensity rainfall and the relative rarity of the long-duration rainfall that triggered these debris flows. Analysis of the rainfall/runoff ratio in the drainage basin at the heart of the debris flows confirms that sediments were nearly saturated before debris flows were initiated on July 31.
The Amazon forest-rainfall feedback: the roles of transpiration and interception
NASA Astrophysics Data System (ADS)
Dekker, Stefan; Staal, Arie; Tuinenburg, Obbe
2017-04-01
In the Amazon, deep-rooted trees increase local transpiration and high tree cover increase local interception evaporation. These increased local evapotranspiration fluxes to the atmosphere have both positive effects on forests down-wind, as they stimulate rainfall. Although important for the functioning of the Amazon, we have an inadequate assessment on the strength and the timing of these forest-rainfall feedbacks. In this study we (i) estimate local forest transpiration and local interception evaporation, (ii) simulate the trajectories of these moisture flows through the atmosphere and (iii) quantify their contributions to the forest-rainfall feedback for the whole Amazon basin. To determine the atmospheric moisture flows in tropical South America we use a Lagrangian moisture tracking algorithm on 0.25° (c. 25 km) resolution with eight atmospheric layers on a monthly basis for the period 2003-2015. With our approach we account for multiple re-evaporation cycles of this moisture. We also calculate for each month the potential effects of forest loss on evapotranspiration. Combined, these calculations allow us to simulate the effects of land-cover changes on rainfall in downwind areas and estimate the effect on the forest. We found large regional and temporal differences in the importance how forest contribute to rainfall. The transpiration-rainfall feedback is highly important during the dry season. Between September-November, when large parts of the Amazon are at the end of the dry season, more than 50% of the rainfall is caused by the forests upstream. This means that droughts in the Amazon are alleviated by the forest. Furthermore, we found that much moisture cycles several times during its trajectory over the Amazon. After one evapotranspiration-rainfall cycle, more than 40% of the moisture is re-evaporated again. The interception-evaporation feedback is less important during droughts. Finally from our analysis, we show that the forest-rainfall feedback is essential for the resilience of the south-western and northern parts of the Amazon forest. Without the forest-rainfall feedbacks, these forest wouldn't exist.
Duffaut Espinosa, L A; Posadas, A N; Carbajal, M; Quiroz, R
2017-01-01
In this paper, a multifractal downscaling technique is applied to adequately transformed and lag corrected normalized difference vegetation index (NDVI) in order to obtain daily estimates of rainfall in an area of the Peruvian Andean high plateau. This downscaling procedure is temporal in nature since the original NDVI information is provided at an irregular temporal sampling period between 8 and 11 days, and the desired final scale is 1 day. The spatial resolution of approximately 1 km remains the same throughout the downscaling process. The results were validated against on-site measurements of meteorological stations distributed in the area under study.
Posadas, A. N.; Carbajal, M.; Quiroz, R.
2017-01-01
In this paper, a multifractal downscaling technique is applied to adequately transformed and lag corrected normalized difference vegetation index (NDVI) in order to obtain daily estimates of rainfall in an area of the Peruvian Andean high plateau. This downscaling procedure is temporal in nature since the original NDVI information is provided at an irregular temporal sampling period between 8 and 11 days, and the desired final scale is 1 day. The spatial resolution of approximately 1 km remains the same throughout the downscaling process. The results were validated against on-site measurements of meteorological stations distributed in the area under study. PMID:28125607
NASA Astrophysics Data System (ADS)
Hardy, Robert; Pates, Jackie; Quinton, John
2016-04-01
The importance of developing new techniques to study soil movement cannot be underestimated especially those that integrate new technology. Currently there are limited empirical data available about the movement of individual soil particles, particularly high quality time-resolved data. Here we present a new technique which allows multiple individual soil particles to be traced in real time under simulated rainfall conditions. The technique utilises fluorescent videography in combination with a fluorescent soil tracer, which is based on natural particles. The system has been successfully used on particles greater than ~130 micrometres diameter. The technique uses HD video shot at 50 frames per second, providing extremely high temporal (0.02 s) and spatial resolution (sub-millimetre) of a particle's location without the need to perturb the system. Once the tracer has been filmed then the images are processed and analysed using a particle analysis and visualisation toolkit written in python. The toolkit enables the creation of 2 and 3-D time-resolved graphs showing the location of 1 or more particles. Quantitative numerical analysis of a pathway (or collection of pathways) is also possible, allowing parameters such as particle speed and displacement to be assessed. Filming the particles removes the need to destructively sample material and has many side-benefits, reducing the time, money and effort expended in the collection, transport and laboratory analysis of soils, while delivering data in a digital form which is perfect for modern computer-driven analysis techniques. There are many potential applications for the technique. High resolution empirical data on how soil particles move could be used to create, parameterise and evaluate soil movement models, particularly those that use the movement of individual particles. As data can be collected while rainfall is occurring it may offer the ability to study systems under dynamic conditions(rather than rainfall of a constant intensity), which are more realistic and this was one motivations behind the development of this technique.
NASA Technical Reports Server (NTRS)
Hong, Yang; Adler, Robert F.; Huffman, George J.
2006-01-01
Landslides triggered by rainfall can possibly be foreseen in real time by jointly using rainfall intensity-duration thresholds and information related to land surface susceptibility. However, no system exists at either a national or a global scale to monitor or detect rainfall conditions that may trigger landslides due to the lack of extensive ground-based observing network in many parts of the world. Recent advances in satellite remote sensing technology and increasing availability of high-resolution geospatial products around the globe have provided an unprecedented opportunity for such a study. In this paper, a framework for developing an experimental real-time monitoring system to detect rainfall-triggered landslides is proposed by combining two necessary components: surface landslide susceptibility and a real-time space-based rainfall analysis system (http://trmm.gsfc.nasa.aov). First, a global landslide susceptibility map is derived from a combination of semi-static global surface characteristics (digital elevation topography, slope, soil types, soil texture, and land cover classification etc.) using a GIs weighted linear combination approach. Second, an adjusted empirical relationship between rainfall intensity-duration and landslide occurrence is used to assess landslide risks at areas with high susceptibility. A major outcome of this work is the availability of a first-time global assessment of landslide risk, which is only possible because of the utilization of global satellite remote sensing products. This experimental system can be updated continuously due to the availability of new satellite remote sensing products. This proposed system, if pursued through wide interdisciplinary efforts as recommended herein, bears the promise to grow many local landslide hazard analyses into a global decision-making support system for landslide disaster preparedness and risk mitigation activities across the world.
Reduced precipitation over large water bodies in the Brazilian Amazon shown from TRMM data
NASA Astrophysics Data System (ADS)
Paiva, Rodrigo Cauduro Dias; Buarque, Diogo Costa; Clarke, Robin T.; Collischonn, Walter; Allasia, Daniel Gustavo
2011-02-01
Tropical Rainfall Measurement Mission (TRMM) data show lower rainfall over large water bodies in the Brazilian Amazon. Mean annual rainfall (P), number of wet days (rainfall > 2 mm) (W) and annual rainfall accumulated over 3-hour time intervals (P3hr) were computed from TRMM 3B42 data for 1998-2009. Reduced rainfall was marked over the Rio Solimões/Amazon, along most Amazon tributaries and over the Balbina reservoir. In a smaller test area, a heuristic argument showed that P and W were reduced by 5% and 6.5% respectively. Allowing for TRMM 3B42 spatial resolution, the reduction may be locally greater. Analyses of diurnal rainfall patterns showed that rainfall is lowest over large rivers during the afternoon, when most rainfall is convective, but at night and early morning the opposite occurs, with increased rainfall over rivers, although this pattern is less marked. Rainfall patterns reported from studies of smaller Amazonian regions therefore exist more widely.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Li, Fuyu; Collins, William D.; Wehner, Michael F.
High-resolution climate models have been shown to improve the statistics of tropical storms and hurricanes compared to low-resolution models. The impact of increasing horizontal resolution in the tropical storm simulation is investigated exclusively using a series of Atmospheric Global Climate Model (AGCM) runs with idealized aquaplanet steady-state boundary conditions and a fixed operational storm-tracking algorithm. The results show that increasing horizontal resolution helps to detect more hurricanes, simulate stronger extreme rainfall, and emulate better storm structures in the models. However, increasing model resolution does not necessarily produce stronger hurricanes in terms of maximum wind speed, minimum sea level pressure, andmore » mean precipitation, as the increased number of storms simulated by high-resolution models is mainly associated with weaker storms. The spatial scale at which the analyses are conducted appears to have more important control on these meteorological statistics compared to horizontal resolution of the model grid. When the simulations are analyzed on common low-resolution grids, the statistics of the hurricanes, particularly the hurricane counts, show reduced sensitivity to the horizontal grid resolution and signs of scale invariant.« less
Multisite rainfall downscaling and disaggregation in a tropical urban area
NASA Astrophysics Data System (ADS)
Lu, Y.; Qin, X. S.
2014-02-01
A systematic downscaling-disaggregation study was conducted over Singapore Island, with an aim to generate high spatial and temporal resolution rainfall data under future climate-change conditions. The study consisted of two major components. The first part was to perform an inter-comparison of various alternatives of downscaling and disaggregation methods based on observed data. This included (i) single-site generalized linear model (GLM) plus K-nearest neighbor (KNN) (S-G-K) vs. multisite GLM (M-G) for spatial downscaling, (ii) HYETOS vs. KNN for single-site disaggregation, and (iii) KNN vs. MuDRain (Multivariate Rainfall Disaggregation tool) for multisite disaggregation. The results revealed that, for multisite downscaling, M-G performs better than S-G-K in covering the observed data with a lower RMSE value; for single-site disaggregation, KNN could better keep the basic statistics (i.e. standard deviation, lag-1 autocorrelation and probability of wet hour) than HYETOS; for multisite disaggregation, MuDRain outperformed KNN in fitting interstation correlations. In the second part of the study, an integrated downscaling-disaggregation framework based on M-G, KNN, and MuDRain was used to generate hourly rainfall at multiple sites. The results indicated that the downscaled and disaggregated rainfall data based on multiple ensembles from HadCM3 for the period from 1980 to 2010 could well cover the observed mean rainfall amount and extreme data, and also reasonably keep the spatial correlations both at daily and hourly timescales. The framework was also used to project future rainfall conditions under HadCM3 SRES A2 and B2 scenarios. It was indicated that the annual rainfall amount could reduce up to 5% at the end of this century, but the rainfall of wet season and extreme hourly rainfall could notably increase.
NASA Astrophysics Data System (ADS)
Li, Y.; Kurkute, S.; Chen, L.
2017-12-01
Results from the General Circulation Models (GCMs) suggest more frequent and more severe extreme rain events in a climate warmer than the present. However, current GCMs cannot accurately simulate extreme rainfall events of short duration due to their coarse model resolutions and parameterizations. This limitation makes it difficult to provide the detailed quantitative information for the development of regional adaptation and mitigation strategies. Dynamical downscaling using nested Regional Climate Models (RCMs) are able to capture key regional and local climate processes with an affordable computational cost. Recent studies have demonstrated that the downscaling of GCM results with weather-permitting mesoscale models, such as the pseudo-global warming (PGW) technique, could be a viable and economical approach of obtaining valuable climate change information on regional scales. We have conducted a regional climate 4-km Weather Research and Forecast Model (WRF) simulation with one domain covering the whole western Canada, for a historic run (2000-2015) and a 15-year future run to 2100 and beyond with the PGW forcing. The 4-km resolution allows direct use of microphysics and resolves the convection explicitly, thus providing very convincing spatial detail. With this high-resolution simulation, we are able to study the convective mechanisms, specifically the control of convections over the Prairies, the projected changes of rainfall regimes, and the shift of the convective mechanisms in a warming climate, which has never been examined before numerically at such large scale with such high resolution.
NASA Astrophysics Data System (ADS)
Cook, L. M.; Samaras, C.; McGinnis, S. A.
2017-12-01
Intensity-duration-frequency (IDF) curves are a common input to urban drainage design, and are used to represent extreme rainfall in a region. As rainfall patterns shift into a non-stationary regime as a result of climate change, these curves will need to be updated with future projections of extreme precipitation. Many regions have begun to update these curves to reflect the trends from downscaled climate models; however, few studies have compared the methods for doing so, as well as the uncertainty that results from the selection of the native grid scale and temporal resolution of the climate model. This study examines the variability in updated IDF curves for Pittsburgh using four different methods for adjusting gridded regional climate model (RCM) outputs into station scale precipitation extremes: (1) a simple change factor applied to observed return levels, (2) a naïve adjustment of stationary and non-stationary Generalized Extreme Value (GEV) distribution parameters, (3) a transfer function of the GEV parameters from the annual maximum series, and (4) kernel density distribution mapping bias correction of the RCM time series. Return level estimates (rainfall intensities) and confidence intervals from these methods for the 1-hour to 48-hour duration are tested for sensitivity to the underlying spatial and temporal resolution of the climate ensemble from the NA-CORDEX project, as well as, the future time period for updating. The first goal is to determine if uncertainty is highest for: (i) the downscaling method, (ii) the climate model resolution, (iii) the climate model simulation, (iv) the GEV parameters, or (v) the future time period examined. Initial results of the 6-hour, 10-year return level adjusted with the simple change factor method using four climate model simulations of two different spatial resolutions show that uncertainty is highest in the estimation of the GEV parameters. The second goal is to determine if complex downscaling methods and high-resolution climate models are necessary for updating, or if simpler methods and lower resolution climate models will suffice. The final results can be used to inform the most appropriate method and climate model resolutions to use for updating IDF curves for urban drainage design.
Hydrological Applications of a High-Resolution Radar Precipitation Data Base for Sweden
NASA Astrophysics Data System (ADS)
Olsson, Jonas; Berg, Peter; Norin, Lars; Simonsson, Lennart
2017-04-01
There is an increasing need for high-resolution observations of precipitation on local, regional, national and even continental level. Urbanization and other environmental changes often make societies more vulnerable to intense short-duration rainfalls (cloudbursts) and their consequences in terms of e.g. flooding and landslides. Impact and forecasting models of these hazards put very high demands on the rainfall input in terms of both resolution and accuracy. Weather radar systems obviously have a great potential in this context, but also limitations with respect to e.g. conversion algorithms and various error sources that may have a significant impact on the subsequent hydrological modelling. In Sweden, the national weather radar network has been in operation for nearly three decades, but until recently the hydrological applications have been very limited. This is mainly because of difficulties in managing the different errors and biases in the radar precipitation product, which made it hard to demonstrate any distinct added value as compared with gauge-based precipitation products. In the last years, however, in light of distinct progress in developing error correction procedures, substantial efforts have been made to develop a national gauge-adjusted radar precipitation product - HIPRAD (High-Resolution Precipitation from Gauge-Adjusted Weather Radar). In HIPRAD, the original radar precipitation data are scaled to match the monthly accumulations in a national grid (termed PTHBV) created by optimal interpolation of corrected daily gauge observations, with the intention to attain both a high spatio-temporal resolution and accurate long-term accumulations. At present, HIPRAD covers the period 2000-present with resolutions 15 min and 2×2 km2. A key motivation behind the development of HIPRAD is the intention to increase the temporal resolution in the national flood forecasting system from 1 day to 1 hour. Whereas a daily time step is sufficient to describe the rainfall-runoff process in large, slow river basins, which traditionally has been the main focus in the national forecasting, an hourly time step (or preferably even shorter) is required to simulate the flow in fast-responding basins. At the daily scale, the PTHBV product is used for model initialization prior to the forecasts but with its daily resolution it is not applicable at the hourly scale. For this purpose, a real-time version of HIPRAD has been developed which is currently running operationally. HIPRAD is also being used for historical simulations with an hourly time step, which is important for e.g. water quality assessment. Finally, we will use HIPRAD to gain an improved knowledge of the short-duration precipitation climate in Sweden. Currently there are many open issues with respect to e.g. geographical differences, spatial correlations and areal extremes. Here we will show and discuss selected results from the ongoing development and validation of HIPRAD as well as its various applications for hydrological forecasting and risk assessment. Further, web resources containing radar-based observation and forecasting for hydrological applications will be demonstrated. Finally, some future research directions will be outlined. Fast responding hydrological catchments require fine spatial and temporal resolution of the precipitation input data to provide realistic results.
NASA Astrophysics Data System (ADS)
Camera, Corrado; Bruggeman, Adriana; Hadjinicolaou, Panos; Pashiardis, Stelios; Lange, Manfred A.
2014-01-01
High-resolution gridded daily data sets are essential for natural resource management and the analyses of climate changes and their effects. This study aims to evaluate the performance of 15 simple or complex interpolation techniques in reproducing daily precipitation at a resolution of 1 km2 over topographically complex areas. Methods are tested considering two different sets of observation densities and different rainfall amounts. We used rainfall data that were recorded at 74 and 145 observational stations, respectively, spread over the 5760 km2 of the Republic of Cyprus, in the Eastern Mediterranean. Regression analyses utilizing geographical copredictors and neighboring interpolation techniques were evaluated both in isolation and combined. Linear multiple regression (LMR) and geographically weighted regression methods (GWR) were tested. These included a step-wise selection of covariables, as well as inverse distance weighting (IDW), kriging, and 3D-thin plate splines (TPS). The relative rank of the different techniques changes with different station density and rainfall amounts. Our results indicate that TPS performs well for low station density and large-scale events and also when coupled with regression models. It performs poorly for high station density. The opposite is observed when using IDW. Simple IDW performs best for local events, while a combination of step-wise GWR and IDW proves to be the best method for large-scale events and high station density. This study indicates that the use of step-wise regression with a variable set of geographic parameters can improve the interpolation of large-scale events because it facilitates the representation of local climate dynamics.
A framework for probabilistic pluvial flood nowcasting for urban areas
NASA Astrophysics Data System (ADS)
Ntegeka, Victor; Murla, Damian; Wang, Lipen; Foresti, Loris; Reyniers, Maarten; Delobbe, Laurent; Van Herk, Kristine; Van Ootegem, Luc; Willems, Patrick
2016-04-01
Pluvial flood nowcasting is gaining ground not least because of the advancements in rainfall forecasting schemes. Short-term forecasts and applications have benefited from the availability of such forecasts with high resolution in space (~1km) and time (~5min). In this regard, it is vital to evaluate the potential of nowcasting products for urban inundation applications. One of the most advanced Quantitative Precipitation Forecasting (QPF) techniques is the Short-Term Ensemble Prediction System, which was originally co-developed by the UK Met Office and Australian Bureau of Meteorology. The scheme was further tuned to better estimate extreme and moderate events for the Belgian area (STEPS-BE). Against this backdrop, a probabilistic framework has been developed that consists of: (1) rainfall nowcasts; (2) sewer hydraulic model; (3) flood damage estimation; and (4) urban inundation risk mapping. STEPS-BE forecasts are provided at high resolution (1km/5min) with 20 ensemble members with a lead time of up to 2 hours using a 4 C-band radar composite as input. Forecasts' verification was performed over the cities of Leuven and Ghent and biases were found to be small. The hydraulic model consists of the 1D sewer network and an innovative 'nested' 2D surface model to model 2D urban surface inundations at high resolution. The surface components are categorized into three groups and each group is modelled using triangular meshes at different resolutions; these include streets (3.75 - 15 m2), high flood hazard areas (12.5 - 50 m2) and low flood hazard areas (75 - 300 m2). Functions describing urban flood damage and social consequences were empirically derived based on questionnaires to people in the region that were recently affected by sewer floods. Probabilistic urban flood risk maps were prepared based on spatial interpolation techniques of flood inundation. The method has been implemented and tested for the villages Oostakker and Sint-Amandsberg, which are part of the larger city of Gent, Belgium. After each of the different above-mentioned components were evaluated, they were combined and tested for recent historical flood events. The rainfall nowcasting, hydraulic sewer and 2D inundation modelling and socio-economical flood risk results each could be partly evaluated: the rainfall nowcasting results based on radar data and rain gauges; the hydraulic sewer model results based on water level and discharge data at pumping stations; the 2D inundation modelling results based on limited data on some recent flood locations and inundation depths; the results for the socio-economical flood consequences of the most extreme events based on claims in the database of the national disaster agency. Different methods for visualization of the probabilistic inundation results are proposed and tested.
Measurements of effective non-rainfall in soil with the use of time-domain reflectometry technique
NASA Astrophysics Data System (ADS)
Nakonieczna, Anna; Kafarski, Marcin; Wilczek, Andrzej; Szypłowska, Agnieszka; Skierucha, Wojciech
2014-05-01
The non-rainfall vectors are fog, dew, hoarfrost and vapour adsorption directly from the atmosphere. The measurements of the amount of water supplied to the soil due to their temporary existence are essential, because in dry areas such water uptake can exceed that of rainfall. Although several devices and methods were proposed for estimating the effective non-rainfall input into the soil, the measurement standard has not yet been established. This is mainly due to obstacles in measuring small water additions to the medium, problems with taking readings in actual soil samples and atmospheric disturbances during their course in natural environment. There still exists the need for automated devices capable of measuring water deposition on real-world soil surfaces, whose resolution is high enough to measure the non-rainfall intensity and increase rate, which are usually very low. In order to achieve the desirable resolution and accuracy of the effective non-rainfall measurements the time-domain reflectometry (TDR) technique was employed. The TDR sensor designed and made especially for the purpose was an untypical waveguide. It consisted of a base made of laminate covered with copper, which served as a bottom of a cuboidal open container in which the examined materials were placed, and a copper signal wire placed on the top of the container. The wire adhered along its entire length to the tested material in order to eliminate the formation of air gaps between the two, what enhanced the accuracy of the measurements. The tested porous materials were glass beads, rinsed sand and three soil samples, which were collected in south-eastern Poland. The diameter ranges of their constituent particles were measured with the use of the laser diffraction technique. The sensor filled with the wetted material was placed on a scale and connected to the TDR meter. The automated readings of mass and TDR time were collected simultaneously every minute. The TDR time was correlated with the mass loss, which was a measure of the amount of water that evaporated from the porous medium. Preliminary measurements demonstrated that the temperature control is dispensable for the conducted laboratory studies, because small temperature variations do not influence the results noticeably. However, field measurements would definitely require advanced temperature calibration. The aim of the research was to test the designed sensor for the effective non-rainfall intensity measurements in actual soil samples. It turned out that the device is highly sensitive to the amount of water present in the investigated medium. The geometry of the sensor allowed obtaining satisfactory resolution, which in the case of soil samples did not exceed 0.015 mm of water. Moreover, the direct translation of the TDR time into the water amount present in the examined media is straightforward and workable among the tested materials, which is the main advantage of the presented measurement method. Hence, both the applied TDR technique and the construction of the sensor proved to be adequate for the planned measurements of the effective non-rainfall intensity.
NASA Astrophysics Data System (ADS)
Jang, Sangmin; Yoon, Sunkwon; Rhee, Jinyoung; Park, Kyungwon
2016-04-01
Due to the recent extreme weather and climate change, a frequency and size of localized heavy rainfall increases and it may bring various hazards including sediment-related disasters, flooding and inundation. To prevent and mitigate damage from such disasters, very short range forecasting and nowcasting of precipitation amounts are very important. Weather radar data very useful in monitoring and forecasting because weather radar has high resolution in spatial and temporal. Generally, extrapolation based on the motion vector is the best method of precipitation forecasting using radar rainfall data for a time frame within a few hours from the present. However, there is a need for improvement due to the radar rainfall being less accurate than rain-gauge on surface. To improve the radar rainfall and to take advantage of the COMS (Communication, Ocean and Meteorological Satellite) data, a technique to blend the different data types for very short range forecasting purposes was developed in the present study. The motion vector of precipitation systems are estimated using 1.5km CAPPI (Constant Altitude Plan Position Indicator) reflectivity by pattern matching method, which indicates the systems' direction and speed of movement and blended radar-COMS rain field is used for initial data. Since the original horizontal resolution of COMS is 4 km while that of radar is about 1 km, spatial downscaling technique is used to downscale the COMS data from 4 to 1 km pixels in order to match with the radar data. The accuracies of rainfall forecasting data were verified utilizing AWS (Automatic Weather System) observed data for an extreme rainfall occurred in the southern part of Korean Peninsula on 25 August 2014. The results of this study will be used as input data for an urban stream real-time flood early warning system and a prediction model of landslide. Acknowledgement This research was supported by a grant (13SCIPS04) from Smart Civil Infrastructure Research Program funded by Ministry of Land, Infrastructure and Transport (MOLIT) of Korea government and Korea Agency for Infrastructure Technology Advancement (KAIA).
NASA Astrophysics Data System (ADS)
Epps, T.
2015-12-01
Impervious surfaces and stormwater drainage networks transmit rainfall quickly to urban stream systems with greater frequency, volume, energy, and pollutant loadings than in predevelopment conditions. This has a well-established negative impact on stream ecology, channel morphology, and water quality. Green infrastructure retrofits for urban drainage systems promote more natural hydrologic pathways by disconnecting concentrated flows. However, they are expensive due to high land costs and physical constraints. If a systematic strategy for siting green infrastructure is sought to restore natural flows throughout an urban catchment, greater knowledge of the drainage patterns and areas contributing frequent surface runoff is necessary. Five diverse urban watersheds in Knoxville, TN, were assessed using high-resolution topography, land cover, and artificial drainage network data to identify how surface connectivity differs among watersheds and contributes to altered flow regimes. Rainfall-runoff patterns were determined from continuous rainfall and streamflow monitoring over the previous ten years. Fine-scale flowpath connectivity of impervious surfaces was measured by both a binary approach and by a method incorporating runoff potential by saturation excess. The effect of the spatial distribution of connected surfaces was investigated by incorporating several distance-weighting schema along established urban drainage flowpaths. Statistical relationships between runoff generation and connectivity were measured to determine the ability of these different measures of connectivity to predict runoff thresholds, frequency, volumes, and peak flows. Initial results suggest that rapid assessment of connected surficial flowpaths can be used to identify known green infrastructure assets and highly connected impervious areas and that the differences in connectivity measured between watersheds reflects differing runoff patterns observed in monitored data.
NASA Astrophysics Data System (ADS)
Singh, A.; Mohanty, U. C.; Ghosh, K.
2015-12-01
Most regions of India experience varied rainfall duration during the southwest monsoon, changes in which exhibit major impact not only agriculture, but also other sectors like hydrology, agriculture, food and fodder storage etc. In addition, changes in sub-seasonal rainfall characteristics highly impact the rice production. As part of the endeavor seasonal climate outlook, as well as information for weather within climate may be helpful for advance planning and risk management in agriculture. The General Circulation Model (GCM) provide an alternative to gather information for weather within climate but variability is very low in comparison to observation. On the other hand, the spatial resolution of GCM predicted rainfall is not found at the observed station/grid point. To tackle the problem, initially a statistical downscaling over 19 station of Odisha state is undertaken using the atmospheric parameters predicted by a GCM (NCEP-CFSv2). For the purpose, an extended domain is taken for analyzing the significant zone for the atmospheric parameters like zonal wind at 850hPa, Sea Surface Temperature (SST), geopotential height. A statistical model using the pattern projection method is further developed based on empirical orthogonal function. The downscaled rainfall is found better in association with station observation in comparison to raw GCM prediction in view of deterministic and probabilistic skill measure. Further, the sub-seasonal and seasonal forecast from the GCMs can be used at different time steps for risk management. Therefore, downscaled seasonal/monthly rainfall is further converted to sub-seasonal/daily time scale using a non-homogeneous markov model. The simulated weather sequences are further compared with the observed sequence in view of categorical rainfall events. The outcomes suggest that the rainfall amount are overestimated for excess rainfall and henceforth larger excess rainfall events can be realized. The skill for prediction of rainfall events corresponding to lower thresholds is found higher. A detail discussion regarding skill of spatial downscale rainfall at observed stations and its further representation of sub-seasonal characteristics (spells, less rainfall, heavy rainfall, and moderate rainfall events) of rainfall for disaggregated outputs will be presented.
NASA Astrophysics Data System (ADS)
Furl, Chad; Sharif, Hatim; ElHassan, Almoutaz; Mazari, Newfel; Burtch, Daniel; Mullendore, Gretchen
2015-04-01
Heavy rainfall and flooding associated with Tropical Storm Hermine occurred 7-8 September 2010 across central Texas resulting in several fatalities and extensive property damage. The largest rainfall totals were received near Austin, TX and immediately north where twenty four hour accumulations reached a 500 year recurrence interval. Among the most heavily impacted drainage basins was the Bull Creek watershed (58 km2) in Austin, TX where peak flows exceeded 500 m3 s-1. The large flows were produced from a narrow band of intense storm cells training over the small watershed for approximately six hours. Meteorological analysis along with Weather Research and Forecasting (WRF) model simulations indicate a quasi-stationary synoptic feature slowing the storm, orographic enhancement from the Balcones Escarpment, and moist air from the Gulf of Mexico were important features producing the locally heavy rainfall. The effect from the Balcones Escarpment was explicitly tested by conducting simulations with and without the escarpment terrain. High resolution, gauge adjusted radar collected as part of a flash flood warning system was used to describe spatiotemporal rainfall patterns and force the Gridded Surface/Subsurface Hydrologic Analysis (GSSHA) model. The radar dataset indicated the basin received nearly 300 mm of precipitation with maximum sustained intensities of 50 mm hr-1. Roughly 60 percent of storm totals fell during two periods lasting a combined five hours. Stream flow showed a highly non-linear response to two periods of intense rainfall. GSSHA simulations indicate this can be partially explained by the spatial organization of rainfall coupled with landscape retention.
NASA Astrophysics Data System (ADS)
Zhu, Kefeng; Xue, Ming
2016-11-01
On 21 July 2012, an extreme rainfall event that recorded a maximum rainfall amount over 24 hours of 460 mm, occurred in Beijing, China. Most operational models failed to predict such an extreme amount. In this study, a convective-permitting ensemble forecast system (CEFS), at 4-km grid spacing, covering the entire mainland of China, is applied to this extreme rainfall case. CEFS consists of 22 members and uses multiple physics parameterizations. For the event, the predicted maximum is 415 mm d-1 in the probability-matched ensemble mean. The predicted high-probability heavy rain region is located in southwest Beijing, as was observed. Ensemble-based verification scores are then investigated. For a small verification domain covering Beijing and its surrounding areas, the precipitation rank histogram of CEFS is much flatter than that of a reference global ensemble. CEFS has a lower (higher) Brier score and a higher resolution than the global ensemble for precipitation, indicating more reliable probabilistic forecasting by CEFS. Additionally, forecasts of different ensemble members are compared and discussed. Most of the extreme rainfall comes from convection in the warm sector east of an approaching cold front. A few members of CEFS successfully reproduce such precipitation, and orographic lift of highly moist low-level flows with a significantly southeasterly component is suggested to have played important roles in producing the initial convection. Comparisons between good and bad forecast members indicate a strong sensitivity of the extreme rainfall to the mesoscale environmental conditions, and, to less of an extent, the model physics.
NASA Astrophysics Data System (ADS)
Polk, J. S.; van Beynen, P.; Asmerom, Y.
2008-12-01
Understanding atmospheric teleconnections between tropical, subtropical, and higher-latitude regions of the North Atlantic Ocean is necessary to better evaluate the anthropogenic contribution to climate change. Here, we present a precisely dated, high- resolution speleothem record of stable isotopes and trace elements from Florida spanning the last 1,500 years. By using a multi-proxy approach, the different climatic influences were deconvolved, including the NAO, ENSO, PDO, and ITCZ, which all can affect our region. Further comparison using time-series analysis between our data and other high-resolution records covering this same period reveal differing influences of these teleconnections on geographic regions. Our record shows both the influence of changing rainfall above the cave and the influence of sea surface temperatures on atmospheric convection caused by atmospheric-oceanic variability over time.
Hay, S. I.; Lennon, J. J.
2012-01-01
Summary This paper presents the results of an investigation into the utility of remote sensing (RS) using meteorological satellites sensors and spatial interpolation (SI) of data from meteorological stations, for the prediction of spatial variation in monthly climate across continental Africa in 1990. Information from the Advanced Very High Resolution Radiometer (AVHRR) of the National Oceanic and Atmospheric Administration’s (NOAA) polar-orbiting meteorological satellites was used to estimate land surface temperature (LST) and atmospheric moisture. Cold cloud duration (CCD) data derived from the High Resolution Radiometer (HRR) on-board the European Meteorological Satellite programme’s (EUMETSAT) Meteosat satellite series were also used as a RS proxy measurement of rainfall. Temperature, atmospheric moisture and rainfall surfaces were independently derived from SI of measurements from the World Meteorological Organization (WMO) member stations of Africa. These meteorological station data were then used to test the accuracy of each methodology, so that the appropriateness of the two techniques for epidemiological research could be compared. SI was a more accurate predictor of temperature, whereas RS provided a better surrogate for rainfall; both were equally accurate at predicting atmospheric moisture. The implications of these results for mapping short and long-term climate change and hence their potential for the study and control of disease vectors are considered. Taking into account logistic and analytical problems, there were no clear conclusions regarding the optimality of either technique, but there was considerable potential for synergy. PMID:10203175
Hay, S I; Lennon, J J
1999-01-01
This paper presents the results of an investigation into the utility of remote sensing (RS) using meteorological satellites sensors and spatial interpolation (SI) of data from meteorological stations, for the prediction of spatial variation in monthly climate across continental Africa in 1990. Information from the Advanced Very High Resolution Radiometer (AVHRR) of the National Oceanic and Atmospheric Administration's (NOAA) polar-orbiting meteorological satellites was used to estimate land surface temperature (LST) and atmospheric moisture. Cold cloud duration (CCD) data derived from the High Resolution Radiometer (HRR) on-board the European Meteorological Satellite programme's (EUMETSAT) Meteosat satellite series were also used as a RS proxy measurement of rainfall. Temperature, atmospheric moisture and rainfall surfaces were independently derived from SI of measurements from the World Meteorological Organization (WMO) member stations of Africa. These meteorological station data were then used to test the accuracy of each methodology, so that the appropriateness of the two techniques for epidemiological research could be compared. SI was a more accurate predictor of temperature, whereas RS provided a better surrogate for rainfall; both were equally accurate at predicting atmospheric moisture. The implications of these results for mapping short and long-term climate change and hence their potential for the study and control of disease vectors are considered. Taking into account logistic and analytical problems, there were no clear conclusions regarding the optimality of either technique, but there was considerable potential for synergy.
Analyzing Flash Flood Data in an Ultra-Urban Region
NASA Astrophysics Data System (ADS)
Smith, B. K.; Rodriguez, S.
2016-12-01
New York City is an ultra-urban region, with combined sewers and buried stream channels. Traditional flood studies rely on the presence of stream gages to detect flood stage and discharge, but ultra-urban regions frequently lack the surface stream channels and gages necessary for this approach. In this study we aggregate multiple non-traditional data for detecting flash flood events. These data including phone call reports, city records, and, for one particular flood event, news reports and social media reports. These data are compared with high-resolution bias-corrected radar rainfall fields to study flash flood events in New York City. We seek to determine if these non-traditional data will allow for a comprehensive study of rainfall-runoff relationships in New York City. We also seek to map warm season rainfall heterogeneities in the city and to compare them to spatial distribution of reported flood occurrence.
High resolution radiometric measurements of convective storms during the GATE experiment
NASA Technical Reports Server (NTRS)
Fowler, G.; Lisa, A. S.
1976-01-01
Using passive microwave data from the NASA CV-990 aircraft and radar data collected during the Global Atmospheric Research Program Atlantic Tropical Experiment (GATE), an empirical model was developed relating brightness temperatures sensed at 19.35 GHz to surface rainfall rates. This model agreed well with theoretical computations of the relationship between microwave radiation and precipitation in the tropics. The GATE aircraft microwave data was then used to determine the detailed structure of convective systems. The high spatial resolution of the data permitted identification of individual cells which retained unique identities throughout their lifetimes in larger cloud masses and allowed analysis of the effects of cloud merger.
Regional landslide hazard assessment in a deep uncertain future
NASA Astrophysics Data System (ADS)
Almeida, Susana; Holcombe, Liz; Pianosi, Francesca; Wagener, Thorsten
2017-04-01
Landslides have many negative economic and societal impacts, including the potential for significant loss of life and damage to infrastructure. These risks are likely to be exacerbated in the future by a combination of climatic and socio-economic factors. Climate change, for example, is expected to increase the occurrence of rainfall-triggered landslides, because a warmer atmosphere tends to produce more high intensity rainfall events. Prediction of future changes in rainfall, however, is subject to high levels of uncertainty, making it challenging for decision-makers to identify the areas and populations that are most vulnerable to landslide hazards. In this study, we demonstrate how a physically-based model - the Combined Hydrology and Stability Model (CHASM) - can be used together with Global Sensitivity Analysis (GSA) to explore the underlying factors controlling the spatial distribution of landslide risks across a regional landscape, while also accounting for deep uncertainty around future rainfall conditions. We demonstrate how GSA can used to analyse CHASM which in turn represents the spatial variability of hillslope characteristics in the study region, while accounting for other uncertainties. Results are presented in the form of landslide hazard maps, utilising high-resolution digital elevation datasets for a case study in St Lucia in the Caribbean. Our findings about spatial landslide hazard drivers have important implications for data collection approaches and for long-term decision-making about land management practices.
Regional Landslide Hazard Assessment Considering Potential Climate Change
NASA Astrophysics Data System (ADS)
Almeida, S.; Holcombe, E.; Pianosi, F.; Wagener, T.
2016-12-01
Landslides have many negative economic and societal impacts, including the potential for significant loss of life and damage to infrastructure. These risks are likely to be exacerbated in the future by a combination of climatic and socio-economic factors. Climate change, for example, is expected to increase the occurrence of rainfall-triggered landslides, because a warmer atmosphere tends to produce more high intensity rainfall events. Prediction of future changes in rainfall, however, is subject to high levels of uncertainty, making it challenging for decision-makers to identify the areas and populations that are most vulnerable to landslide hazards. In this study, we demonstrate how a physically-based model - the Combined Hydrology and Stability Model (CHASM) - can be used together with Global Sensitivity Analysis (GSA) to explore the underlying factors controlling the spatial distribution of landslide risks across a regional landscape, while also accounting for deep uncertainty around potential future rainfall triggers. We demonstrate how GSA can be used to analyse CHASM which in turn represents the spatial variability of hillslope characteristics in the study region, while accounting for other uncertainties. Results are presented in the form of landslide hazard maps, utilising high-resolution digital elevation datasets for a case study in St Lucia in the Caribbean. Our findings about spatial landslide hazard drivers have important implications for data collection approaches and for long-term decision-making about land management practices.
Attribution of Extreme Rainfall Events in the South of France Using EURO-CORDEX Simulations
NASA Astrophysics Data System (ADS)
Luu, L. N.; Vautard, R.; Yiou, P.
2017-12-01
The Mediterranean region regularly undergoes episodes of intense precipitation in the fall season that exceed 300mm a day. This study focuses on the role of climate change on the dynamics of the events that occur in the South of France. We used an ensemble of 10 EURO-CORDEX model simulations with two horizontal resolutions (EUR-11: 0.11° and EUR-44: 0.44°) for the attribution of extreme rainfall in the fall in the Cevennes mountain range (South of France). The biases of the simulations were corrected with simple scaling adjustment and a quantile correction (CDFt). This produces five datasets including EUR-44 and EUR-11 with and without scaling adjustment and CDFt-EUR-11, on which we test the impact of resolution and bias correction on the extremes. Those datasets, after pooling all of models together, are fitted by a stationary Generalized Extreme Value distribution for several periods to estimate a climate change signal in the tail of distribution of extreme rainfall in the Cévenne region. Those changes are then interpreted by a scaling model that links extreme rainfall with mean and maximum daily temperature. The results show that higher-resolution simulations with bias adjustment provide a robust and confident increase of intensity and likelihood of occurrence of autumn extreme rainfall in the area in current climate in comparison with historical climate. The probability (exceedance probability) of 1-in-1000-year event in historical climate may increase by a factor of 1.8 under current climate with a confident interval of 0.4 to 5.3 following the CDFt bias-adjusted EUR-11. The change of magnitude appears to follow the Clausius-Clapeyron relation that indicates a 7% increase in rainfall per 1oC increase in temperature.
Estimation of the fractional coverage of rainfall in climate models
NASA Technical Reports Server (NTRS)
Eltahir, E. A. B.; Bras, R. L.
1993-01-01
The fraction of the grid cell area covered by rainfall, mu, is an essential parameter in descriptions of land surface hydrology in climate models. A simple procedure is presented for estimating this fraction, based on extensive observations of storm areas and rainfall volumes. Storm area and rainfall volume are often linearly related; this relation can be used to compute the storm area from the volume of rainfall simulated by a climate model. A formula is developed for computing mu, which describes the dependence of the fractional coverage of rainfall on the season of the year, the geographical region, rainfall volume, and the spatial and temporal resolution of the model. The new formula is applied in computing mu over the Amazon region. Significant temporal variability in the fractional coverage of rainfall is demonstrated. The implications of this variability for the modeling of land surface hydrology in climate models are discussed.
NASA Astrophysics Data System (ADS)
Orlandi, A.; Ortolani, A.; Meneguzzo, F.; Levizzani, V.; Torricella, F.; Turk, F. J.
2004-03-01
In order to improve high-resolution forecasts, a specific method for assimilating rainfall rates into the Regional Atmospheric Modelling System model has been developed. It is based on the inversion of the Kuo convective parameterisation scheme. A nudging technique is applied to 'gently' increase with time the weight of the estimated precipitation in the assimilation process. A rough but manageable technique is explained to estimate the partition of convective precipitation from stratiform one, without requiring any ancillary measurement. The method is general purpose, but it is tuned for geostationary satellite rainfall estimation assimilation. Preliminary results are presented and discussed, both through totally simulated experiments and through experiments assimilating real satellite-based precipitation observations. For every case study, Rainfall data are computed with a rapid update satellite precipitation estimation algorithm based on IR and MW satellite observations. This research was carried out in the framework of the EURAINSAT project (an EC research project co-funded by the Energy, Environment and Sustainable Development Programme within the topic 'Development of generic Earth observation technologies', Contract number EVG1-2000-00030).
NASA Astrophysics Data System (ADS)
Yang, L.; Smith, J. A.; Liu, M.; Baeck, M. L.; Chaney, M. M.; Su, Y.
2017-12-01
Hurricane Harvey made landfall on 25 August 2017 and produced more than a meter of rain during a four-day period over eastern Texas, making it the wettest tropical cyclone on record in the United States. Extreme rainfall from Harvey was predominantly related to the dynamics and structure of outer rain bands. In this study, we provide details of the extreme rainfall produced by Hurricane Harvey. The principal research questions that motivate this study are: (1) what are the key microphysical properties of extreme rainfall from landfalling tropical cyclones and (2) what are the capabilities and deficiencies of existing bulk microphysics parameterizations from the physical models in capturing them. Our analyses are centered on intercomparisons of high-resolution simulations using the Weather Research and Forecasting (WRF) model and polarimetric radar fields from KHGX (Houston, Texas) WSR-88D. The WRF simulations accurately capture the track and intensity of Hurricane Harvey. Multi-rainband structure and its key evolution features are also well represented in the simulations. Two microphysics parameterizations (WSM6 and WDM6) are tested in this study. Radar reflectivity and differential reflectivity fields simulated by the WRF model are compared with polarimetric radar observations. An important feature for the extreme rainfall from Hurricane Harvey is the sharp boundary of spatial rainfall accumulation along the coast (with torrential rainfall distributed over Houston and its surrounding inland areas). We will examine the role of land-sea contrasts in dictating storm structure and evolution from both WRF simulations and polarimetric radar fields. Implications for improving hurricane rainfall forecasts and estimates will be provided.
High-Resolution Simulation of Hurricane Bonnie (1998). Part 1; The Organization of Vertical Motion
NASA Technical Reports Server (NTRS)
Braun, Scott A.; Montgomery, Michael T.; Pu, Zhaoxia
2003-01-01
Hurricanes are well known for their strong winds and heavy rainfall, particularly in the intense rainband (eyewall) surrounding the calmer eye of the storm. In some hurricanes, the rainfall is distributed evenly around the eye so that it has a donut shape on radar images. In other cases, the rainfall is concentrated on one side of the eyewall and nearly absent on the other side and is said to be asymmetric. This study examines how the vertical air motions that produce the rainfall are distributed within the eyewall of an asymmetric hurricane and the factors that cause this pattern of rainfall. We use a sophisticated numerical forecast model to simulate Hurricane Bonnie, which occurred in late August of 1998 during a special NASA field experiment designed to study hurricanes. The simulation results suggest that vertical wind shear (a rapid change in wind speed or direction with height) caused the asymmetric rainfall and vertical air motion patterns by tilting the hurricane vortex and favoring upward air motions in the direction of tilt. Although the rainfall in the hurricane eyewall may surround more than half of the eye, the updrafts that produce the rainfall are concentrated in very small-scale, intense updraft cores that occupy only about 10% of the eyewall area. The model simulation suggests that the timing and location of individual updraft cores are controlled by intense, small-scale vortices (regions of rapidly swirling flow) in the eyewall and that the updrafts form when the vortices encounter low-level air moving into the eyewall.
NASA Astrophysics Data System (ADS)
Li, Jingwan; Sharma, Ashish; Evans, Jason; Johnson, Fiona
2018-01-01
Addressing systematic biases in regional climate model simulations of extreme rainfall is a necessary first step before assessing changes in future rainfall extremes. Commonly used bias correction methods are designed to match statistics of the overall simulated rainfall with observations. This assumes that change in the mix of different types of extreme rainfall events (i.e. convective and non-convective) in a warmer climate is of little relevance in the estimation of overall change, an assumption that is not supported by empirical or physical evidence. This study proposes an alternative approach to account for the potential change of alternate rainfall types, characterized here by synoptic weather patterns (SPs) using self-organizing maps classification. The objective of this study is to evaluate the added influence of SPs on the bias correction, which is achieved by comparing the corrected distribution of future extreme rainfall with that using conventional quantile mapping. A comprehensive synthetic experiment is first defined to investigate the conditions under which the additional information of SPs makes a significant difference to the bias correction. Using over 600,000 synthetic cases, statistically significant differences are found to be present in 46% cases. This is followed by a case study over the Sydney region using a high-resolution run of the Weather Research and Forecasting (WRF) regional climate model, which indicates a small change in the proportions of the SPs and a statistically significant change in the extreme rainfall over the region, although the differences between the changes obtained from the two bias correction methods are not statistically significant.
Use the High-Resolution Numerical Model to Simulate Typhoon Morakot 2009
NASA Technical Reports Server (NTRS)
Tao, Wei-Kuo; Shi, Jainn J.; Lin, Pay-Liam
2010-01-01
Typhoon Morakot struck Taiwan on the night of Friday August 7th, 2009 as a category 2 storm with sustained winds of 85 knots (92 mph). Although the center made landfall in Hualien county along the central cast coast of Taiwan and passed over the central northern part of the island, it was southern Taiwan that received the worst effects of the storm where locally as Much as 2200 mm (2.2 m) of rain were reported, resulting in the worst flooding there in 50 years. The result of the enormous amount of rain has been massive flooding and devastating mudslides. More than 600 people are confirmed dead. In this paper, we will present the results from high-resolution (2-km) WRF for this typhoon case. The results showed that the model captured both in terms of maximum rainfall area and intensity. The model results also showed that the heavy amounts of rain over the southern portion of the island is due to persistent southwesterly flow associated with Morakot and it's circulation was able to draw up copious amounts of moisture from the South China Sea into southern Taiwan where it was able to interact with the steep topography. In the paper, we will also present results from sensitivity test of terrain heights and SST on the precipitation processes (rainfall) associated with Typhoon Morakot (2009), In addition, we will present high-resolution visualization (36 second and 2-km) to show the evolution of Typhoon Morakot.
Modelling landscape evolution at the flume scale
NASA Astrophysics Data System (ADS)
Cheraghi, Mohsen; Rinaldo, Andrea; Sander, Graham C.; Barry, D. Andrew
2017-04-01
The ability of a large-scale Landscape Evolution Model (LEM) to simulate the soil surface morphological evolution as observed in a laboratory flume (1-m × 2-m surface area) was investigated. The soil surface was initially smooth, and was subjected to heterogeneous rainfall in an experiment designed to avoid rill formation. Low-cohesive fine sand was placed in the flume while the slope and relief height were 5 % and 20 cm, respectively. Non-uniform rainfall with an average intensity of 85 mm h-1 and a standard deviation of 26 % was applied to the sediment surface for 16 h. We hypothesized that the complex overland water flow can be represented by a drainage discharge network, which was calculated via the micro-morphology and the rainfall distribution. Measurements included high resolution Digital Elevation Models that were captured at intervals during the experiment. The calibrated LEM captured the migration of the main flow path from the low precipitation area into the high precipitation area. Furthermore, both model and experiment showed a steep transition zone in soil elevation that moved upstream during the experiment. We conclude that the LEM is applicable under non-uniform rainfall and in the absence of surface incisions, thereby extending its applicability beyond that shown in previous applications. Keywords: Numerical simulation, Flume experiment, Particle Swarm Optimization, Sediment transport, River network evolution model.
NASA Astrophysics Data System (ADS)
Borup, Morten; Grum, Morten; Linde, Jens Jørgen; Mikkelsen, Peter Steen
2016-08-01
Numerous studies have shown that radar rainfall estimates need to be adjusted against rain gauge measurements in order to be useful for hydrological modelling. In the current study we investigate if adjustment can improve radar rainfall estimates to the point where they can be used for modelling overflows from urban drainage systems, and we furthermore investigate the importance of the aggregation period of the adjustment scheme. This is done by continuously adjusting X-band radar data based on the previous 5-30 min of rain data recorded by multiple rain gauges and propagating the rainfall estimates through a hydraulic urban drainage model. The model is built entirely from physical data, without any calibration, to avoid bias towards any specific type of rainfall estimate. The performance is assessed by comparing measured and modelled water levels at a weir downstream of a highly impermeable, well defined, 64 ha urban catchment, for nine overflow generating rain events. The dynamically adjusted radar data perform best when the aggregation period is as small as 10-20 min, in which case it performs much better than static adjusted radar data and data from rain gauges situated 2-3 km away.
NASA Astrophysics Data System (ADS)
Tourre, Y. M.; Vignolles, C.; Lacaux, J.-P.; Bigeard, G.; Ndione, J.-A.; Lafaye, M.
2009-09-01
This paper presents an analysis of the interaction between the various variables associated with Rift Valley fever (RVF) such as the mosquito vector, available hosts and rainfall distribution. To that end, the varying zones potentially occupied by mosquitoes (ZPOM), rainfall events and pond dynamics, and the associated exposure of hosts to the RVF virus by Aedes vexans, were analyzed in the Barkedji area of the Ferlo, Senegal, during the 2003 rainy season. Ponds were identified by remote sensing using a high-resolution SPOT-5 satellite image. Additional data on ponds and rainfall events from the Tropical Rainfall Measuring Mission were combined with in-situ entomological and limnimetric measurements, and the localization of vulnerable ruminant hosts (data derived from QuickBird satellite). Since "Ae. vexans productive events” are dependent on the timing of rainfall for their embryogenesis (six days without rain are necessary to trigger hatching), the dynamic spatio-temporal distribution of Ae. vexans density was based on the total rainfall amount and pond dynamics. Detailed ZPOM mapping was obtained on a daily basis and combined with aggressiveness temporal profiles. Risks zones, i.e. zones where hazards and vulnerability are combined, are expressed by the percentages of parks where animals are potentially exposed to mosquito bites. This new approach, simply relying upon rainfall distribution evaluated from space, is meant to contribute to the implementation of a new, operational early warning system for RVF based on environmental risks linked to climatic and environmental conditions.
Hydrological and hydrochemical impact studies in the urbanised Petrusse river basin (Luxembourg)
NASA Astrophysics Data System (ADS)
Pfister, L.; Iffly, J.; Guignard, C.; Krein, A.; Matgen, P.; Salvia-Castellvi, M.; van den Bos, R.; Tailliez, C.; Barnich, F.; Hofmmann, L.
2009-04-01
On the basis of ancient topographical maps, the growing urbanisation of the Petrusse river basin (42.9 km2) has been documented on 50-year time steps since 1770. While until the 1950's urban areas remained below 10% of total basin area, they are now close to 50%. This rapid change has consisted mainly in a change from cropland into built areas. As a direct consequence of these considerable changes in landuse, the basin presumably has undergone significant modifications of both its hydrological regime and the quality of the flowing surface waters. In the framework of a national monitoring programme, the Petrusse basin has been progressively equipped with 3 recording streamgauges between 1999 and 2003. Several meteorological stations are located in the immediate vicinity of the basin. The hydrological regime revealed by the 15-minute recordings of the streamgauges is very specific to heavily urbanised basins, i.e. characterised by quick reactions to incoming rainfall, as well as very limited contributions from sub-surface and groundwater reservoirs. A conceptual hydrological model has been used to evaluate roughly the impact of the progressive urbanisation of the Petrusse basin since 1770 on the rainfall-runoff relationship. Major changes were found for summer months, with significantly higher peak discharges and increasingly rapid reactions to rainfall events. However, the limitations of the spatial density of rainfall recordings (only 1 rainfall measurement site available between 1854 - 1949) cause severe shortcomings in the accuracy of the incoming rainfall estimations, especially in the case of convective rainfall events. This in turn also considerably reduces the accuracy of the historical rainfall-runoff simulations. Between 2002 and 2004, several monitoring campaigns have been carried out in the Petrusse basin in order to determine the impact of sewer system contributions from the urbanised areas to the water quality within the Petrusse. The investigations have shown a very strong so-called first-flush effect. During dry sequences, numerous deposits on roads and roofs (heavy metals, oils, etc.) accumulate, before being washed away during the first minutes of rainfall events and being ultimately being transported to the Petrusse river via the sewer systems, causing considerable pollution peaks. Current investigations target a reduction of this pollution. The involved volumes of polluted water are of such extent, that they cannot be dealt with by conventional waste water treatment systems. The currently existing rainfall measurement network around the city of Luxembourg has a spatial resolution that is still too low to capture accurately convective rainfall events. A new rainfall measurement approach will soon be tested to estimate spatio-temporal rainfall dynamics with a high resolution above the city of Luxembourg. Based on a combination of conventional raingauges, weather radar and microwave measurements (via cell-phone networks) this approach is supposed to provide data that might ultimately contribute to a real-time management of the first flush pollutions in the Petrusse river basin.
Kooperman, Gabriel J.; Pritchard, Michael S.; Burt, Melissa A.; ...
2016-02-01
This study evaluates several important statistics of daily rainfall based on frequency and amount distributions as simulated by a global climate model whose precipitation does not depend on convective parameterization—Super-Parameterized Community Atmosphere Model (SPCAM). Three superparameterized and conventional versions of CAM, coupled within the Community Earth System Model (CESM1 and CCSM4), are compared against two modern rainfall products (GPCP 1DD and TRMM 3B42) to discriminate robust effects of superparameterization that emerge across multiple versions. The geographic pattern of annual-mean rainfall is mostly insensitive to superparameterization, with only slight improvements in the double-ITCZ bias. However, unfolding intensity distributions reveal several improvementsmore » in the character of rainfall simulated by SPCAM. The rainfall rate that delivers the most accumulated rain (i.e., amount mode) is systematically too weak in all versions of CAM relative to TRMM 3B42 and does not improve with horizontal resolution. It is improved by superparameterization though, with higher modes in regions of tropical wave, Madden-Julian Oscillation, and monsoon activity. Superparameterization produces better representations of extreme rates compared to TRMM 3B42, without sensitivity to horizontal resolution seen in CAM. SPCAM produces more dry days over land and fewer over the ocean. Updates to CAM’s low cloud parameterizations have narrowed the frequency peak of light rain, converging toward SPCAM. Poleward of 50°, where more rainfall is produced by resolved-scale processes in CAM, few differences discriminate the rainfall properties of the two models. Lastly, these results are discussed in light of their implication for future rainfall changes in response to climate forcing.« less
Watershed scale rainfall‐runoff models are used for environmental management and regulatory modeling applications, but their effectiveness are limited by predictive uncertainties associated with model input data. This study evaluated the effect of temporal and spatial rainfall re...
The assessment of Global Precipitation Measurement estimates over the Indian subcontinent
NASA Astrophysics Data System (ADS)
Murali Krishna, U. V.; Das, Subrata Kumar; Deshpande, Sachin M.; Doiphode, S. L.; Pandithurai, G.
2017-08-01
Accurate and real-time precipitation estimation is a challenging task for current and future spaceborne measurements, which is essential to understand the global hydrological cycle. Recently, the Global Precipitation Measurement (GPM) satellites were launched as a next-generation rainfall mission for observing the global precipitation characteristics. The purpose of the GPM is to enhance the spatiotemporal resolution of global precipitation. The main objective of the present study is to assess the rainfall products from the GPM, especially the Integrated Multi-satellitE Retrievals for the GPM (IMERG) data by comparing with the ground-based observations. The multitemporal scale evaluations of rainfall involving subdaily, diurnal, monthly, and seasonal scales were performed over the Indian subcontinent. The comparison shows that the IMERG performed better than the Tropical Rainfall Measuring Mission (TRMM)-3B42, although both rainfall products underestimated the observed rainfall compared to the ground-based measurements. The analyses also reveal that the TRMM-3B42 and IMERG data sets are able to represent the large-scale monsoon rainfall spatial features but are having region-specific biases. The IMERG shows significant improvement in low rainfall estimates compared to the TRMM-3B42 for selected regions. In the spatial distribution, the IMERG shows higher rain rates compared to the TRMM-3B42, due to its enhanced spatial and temporal resolutions. Apart from this, the characteristics of raindrop size distribution (DSD) obtained from the GPM mission dual-frequency precipitation radar is assessed over the complex mountain terrain site in the Western Ghats, India, using the DSD measured by a Joss-Waldvogel disdrometer.
Computation of rainfall erosivity from daily precipitation amounts.
Beguería, Santiago; Serrano-Notivoli, Roberto; Tomas-Burguera, Miquel
2018-10-01
Rainfall erosivity is an important parameter in many erosion models, and the EI30 defined by the Universal Soil Loss Equation is one of the best known erosivity indices. One issue with this and other erosivity indices is that they require continuous breakpoint, or high frequency time interval, precipitation data. These data are rare, in comparison to more common medium-frequency data, such as daily precipitation data commonly recorded by many national and regional weather services. Devising methods for computing estimates of rainfall erosivity from daily precipitation data that are comparable to those obtained by using high-frequency data is, therefore, highly desired. Here we present a method for producing such estimates, based on optimal regression tools such as the Gamma Generalised Linear Model and universal kriging. Unlike other methods, this approach produces unbiased and very close to observed EI30, especially when these are aggregated at the annual level. We illustrate the method with a case study comprising more than 1500 high-frequency precipitation records across Spain. Although the original records have a short span (the mean length is around 10 years), computation of spatially-distributed upscaling parameters offers the possibility to compute high-resolution climatologies of the EI30 index based on currently available, long-span, daily precipitation databases. Copyright © 2018 Elsevier B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
Zhang, Xuezhen; Xiong, Zhe; Zheng, Jingyun; Ge, Quansheng
2018-02-01
The community of climate change impact assessments and adaptations research needs regional high-resolution (spatial) meteorological data. This study produced two downscaled precipitation datasets with spatial resolutions of as high as 3 km by 3 km for the Heihe River Basin (HRB) from 2011 to 2014 using the Weather Research and Forecast (WRF) model nested with Final Analysis (FNL) from the National Center for Environmental Prediction (NCEP) and ERA-Interim from the European Centre for Medium-Range Weather Forecasts (ECMWF) (hereafter referred to as FNLexp and ERAexp, respectively). Both of the downscaling simulations generally reproduced the observed spatial patterns of precipitation. However, users should keep in mind that the two downscaled datasets are not exactly the same in terms of observations. In comparison to the remote sensing-based estimation, the FNLexp produced a bias of heavy precipitation centers. In comparison to the ground gauge-based measurements, for the warm season (May to September), the ERAexp produced more precipitation (root-mean-square error (RMSE) = 295.4 mm, across the 43 sites) and more heavy rainfall days, while the FNLexp produced less precipitation (RMSE = 115.6 mm) and less heavy rainfall days. Both the ERAexp and FNLexp produced considerably more precipitation for the cold season (October to April) with RMSE values of 119.5 and 32.2 mm, respectively, and more heavy precipitation days. Along with simulating a higher number of heavy precipitation days, both the FNLexp and ERAexp also simulated stronger extreme precipitation. Sensitivity experiments show that the bias of these simulations is much more sensitive to micro-physical parameterizations than to the spatial resolution of topography data. For the HRB, application of the WSM3 scheme may improve the performance of the WRF model.
Precipitation Changes Throughout the South Pacific Convergence Zone During the Last 2000 Years
NASA Astrophysics Data System (ADS)
Maloney, A. E.; Nelson, D. B.; Sachs, J. P.
2016-12-01
The South Pacific Convergence Zone (SPCZ) is the southern hemisphere's most prominent precipitation feature extending 3000km southeastwards from Papua New Guinea to French Polynesia. Seasonal and interannual variability in SPCZ rainfall is well characterized by satellite data, however an understanding of this feature prior to the instrumental record is lacking. Rainfall in the western tropical Pacific is difficult to reconstruct due to a dearth of archives that are both high-resolution and continuous. Here we present molecular fossil hydroclimate reconstructions from the last 2000 years. The hydrogen isotopic composition of the algal lipid biomarker dinosterol was measured in 10 freshwater lake sediment cores from 7 lakes on 4 islands in Vanuatu, the Solomon Islands, and Wallis and Futuna. Coretop δ2Hdinosterol values were well correlated with satellite-derived rainfall rates, providing a transfer function for deriving precipitation rates from sedimentary δ2Hdinosterol values. The Vanuatu and Wallis records indicate that the south-western portion of the SPCZ was driest during the transition from the Medieval Warm Period (MWP) to the Little Ice Age (LIA) (1200-1400 CE) with rainfall rates as low as 2mm/day compare to more typical values of 4mm/day. Conversely, the central SPCZ (Solomon Islands) experienced the driest conditions ( 5mm/day) during the MWP (600-1200 CE) and has maintained high ( 9mm/day) rainfall rates since the LIA. The tropical water cycle influences global climate and these quantitative precipitation records are important for understanding SPCZ natural variability.
Identifying a rainfall event threshold triggering herbicide leaching by preferential flow
NASA Astrophysics Data System (ADS)
McGrath, G. S.; Hinz, C.; Sivapalan, M.; Dressel, J.; Pütz, T.; Vereecken, H.
2010-02-01
How can leaching risk be assessed if the chemical flux and/or the toxicity is highly uncertain? For many strongly sorbing pesticides it is known that their transport through the unsaturated zone occurs intermittently through preferential flow, triggered by significant rainfall events. In these circumstances the timing and frequency of these rainfall events may allow quantification of leaching risk to overcome the limitations of flux prediction. In this paper we analyze the leaching behavior of bromide and two herbicides, methabenzthiazuron and ethidimuron, using data from twelve uncropped lysimeters, with high-resolution climate data, in order to identify the rainfall controls on rapid solute leaching. A regression tree analysis suggested that a coarse-scale fortnightly to monthly water balance was a good predictor of short-term increases in drainage and bromide transport. Significant short-term herbicide leaching, however, was better predicted by the occurrence of a single storm with a depth greater than a 19 mm threshold. Sampling periods where rain events exceeded this threshold accounted for between 38% and 56% of the total mass of herbicides leached during the experiment. The same threshold only accounted for between 1% and 10% of the total mass of bromide leached. On the basis of these results, we conclude that in this system, the leaching risks of strongly sorbing chemicals can be quantified by the timing and frequency of these large rainfall events. Empirical and modeling approaches are suggested to apply this frequentist approach to leaching risk assessment to other soil-climate systems.
Remote sensing of rainfall for flash flood prediction in the United States
NASA Astrophysics Data System (ADS)
Gourley, J. J.; Flamig, Z.; Vergara, H. J.; Clark, R. A.; Kirstetter, P.; Terti, G.; Hong, Y.; Howard, K.
2015-12-01
This presentation will briefly describe the Multi-Radar Multi-Sensor (MRMS) system that ingests all NEXRAD and Canadian weather radar data and produces accurate rainfall estimates at 1-km resolution every 2 min. This real-time system, which was recently transitioned for operational use in the National Weather Service, provides forcing to a suite of flash flood prediction tools. The Flooded Locations and Simulated Hydrographs (FLASH) project provides 6-hr forecasts of impending flash flooding across the US at the same 1-km grid cell resolution as the MRMS rainfall forcing. This presentation will describe the ensemble hydrologic modeling framework, provide an evaluation at gauged basins over a 10-year period, and show the FLASH tools' performance during the record-setting floods in Oklahoma and Texas in May and June 2015.
NASA Astrophysics Data System (ADS)
Sheffer, N. A.; Dafny, E.; Gvirtzman, H.; Frumkin, A.; Navon, S.; Morin, E.
2008-05-01
The western part of the Israeli Mountain Aquifer (WMA) supplies 360-400 MCM/y of fresh water to the Israeli water budget, which is approximately 20% of the total consumption. The annually recharge to the WMA is considered to be 25-35% of annual rainfall. The high variability in recharge to the WMA is due to spatial and temporal differences in the rain contributing to the aquifer. Different winters producing the same amount of rain may contribute differently to the aquifer due to the locations of the storms, intensity, duration, dry spells between successive rain events, etc. Moreover, besides the climatic-meteorological factors, the recharge is dependent also on geographical factors, such as lithology, pedology, land-use, slope gradient, slope direction etc. The need for a robust reliable Hydrometeorological Daily basis REcharge Assessment Model (Hydrometeorological DREAM) brought us to develop a model with a relatively high spatial and temporal resolution. The concept is based on a relatively simple water budget that states that rainfall over land is added to the soil, and removed later on by means of evapotranspiration, recharge and runoff. The method in use to date at the Hydrological Service for estimating recharge to the WMA is based on an annual regression curve that can be implemented only after the total annual rainfall is known. The DREAM is a near real time estimator of recharge to the WMA using daily rainfall and pan evaporation data. Comparison of the DREAM results with the annual regression curve show a high agreement on an annual basis. The improvements introduced by the DREAM are: 1) Near real time daily values of infiltration, as opposed to calculated annual values established after the rain season is over. 2) High spatial resolution. The DREAM produces daily recharge values in more than 3000 mesh points throughout the 2200 km2 of recharge area. By linking the DREAM output as input to a hydrogeological model (such as FEFLOW, MODFLOW etc.) a completion of the water cycle can by achieved.
NASA Astrophysics Data System (ADS)
Sahlu, Dejene; Moges, Semu; Anagnostou, Emmanouil; Nikolopoulos, Efthymios; Hailu, Dereje; Mei, Yiwen
2017-04-01
Water resources assessment, planning and management in Africa is often constrained by the lack of reliable spatio-temporal rainfall data. Satellite products are steadily growing and offering useful alternative datasets of rainfall globally. The aim of this paper is to examine the error characteristics of the main available global satellite precipitation products with the view of improving the reliability of wet season (June to September) and small rainy season rainfall datasets over the Upper Blue Nile Basin. The study utilized six satellite derived precipitation datasets at 0.25-deg spatial grid size and daily temporal resolution:1) the near real-time (3B42_RT) and gauge adjusted (3B42_V7) products of Tropical Rainfall Measuring Mission (TRMM) Multi-satellite Precipitation Analysis (TMPA), 2) gauge adjusted and unadjusted Precipitation Estimation from Remotely Sensed Information using Artificial Neural Networks (PERSIANN) products and 3) the gauge adjusted and un-adjusted product of the National Oceanic and Atmospheric Administration (NOAA) Climate Prediction Center Morphing technique (CMORPH) over the period of 2000 to 2013.The error analysis utilized statistical techniques using bias ratio (Bias), correlation coefficient (CC) and root-mean-square-error (RMSE). Mean relative error (MRE), CC and RMSE metrics are further examined for six categories of 10th, 25th, 50th, 75th, 90thand 95th percentile rainfall thresholds. The skill of the satellite estimates is evaluated using categorical error metrics of missed rainfall volume fraction (MRV), falsely detected rainfall volume fraction (FRV), probability of detection (POD) and False Alarm Ratio (FAR). Results showed that six satellite based rainfall products underestimated wet season (June to September) gauge precipitation, with the exception of non-adjusted PERSIANN that overestimated the initial part of the rainy season (March to May). During the wet season, adjusted CMORPH has relatively better bias ratio (89 %) followed by 3B42_V7 (88%), adjusted-PERSIANN (81%), and non-adjusted products have relatively lower bias ratio. The results from CC statistic range from 0.34 to 0.43 for the wet season with adjusted products having slightly higher values. The initial rainy season has relatively higher CC than the wet season. Results from the categorical error metrics showed that CMORPH products have higher POD (91%), which are better in avoiding detecting false rainfall events in the wet season. For the initial rainy season PERSIANN (<50%), TMPA and CMORPH products are nearly equivalent (63-67%). On the other hand, FAR is below 0.1% for all products while in the wet season is higher (10-25%). In terms of rainfall volume of missed and false detected rainfall, CMORPH exhibited lower MRV ( 4.5%) than the TMPA and PERSIANN products (11-19%.) in the wet season. MRV for the initial rainy season was 20% for TMPA and CMORPH products and above 30% for PERSIANN products. All products are nearly equivalent in the wet season in terms of FRV (< 0.2%). The magnitude of MRE increases with gauge rainfall threshold categories with 3B42-V7 and adjusted CMORPH having lower magnitude, showing that underestimation of rainfall increases with increasing rainfall magnitude. CC also decreases with gauge rainfall threshold categories with CMORPH products having slightly higher values. Overall, all satellite products underestimated (overestimated) lower (higher) quantiles quantiles. We have observed that among the six satellite rainfall products the adjusted CMORPH has relatively better potential to improve wet season rainfall estimate and 3B42-V7 that initial rainy season in the Upper Blue Nile Basin.
NASA Astrophysics Data System (ADS)
Zou, Liwei; Zhou, Tianjun; Peng, Dongdong
2016-02-01
The FROALS (flexible regional ocean-atmosphere-land system) model, a regional ocean-atmosphere coupled model, has been applied to the Coordinated Regional Downscaling Experiment (CORDEX) East Asia domain. Driven by historical simulations from a global climate system model, dynamical downscaling for the period from 1980 to 2005 has been conducted at a uniform horizontal resolution of 50 km. The impacts of regional air-sea couplings on the simulations of East Asian summer monsoon rainfall have been investigated, and comparisons have been made to corresponding simulations performed using a stand-alone regional climate model (RCM). The added value of the FROALS model with respect to the driving global climate model was evident in terms of both climatology and the interannual variability of summer rainfall over East China by the contributions of both the high horizontal resolution and the reasonably simulated convergence of the moisture fluxes. Compared with the stand-alone RCM simulations, the spatial pattern of the simulated low-level monsoon flow over East Asia and the western North Pacific was improved in the FROALS model due to its inclusion of regional air-sea coupling. The results indicated that the simulated sea surface temperature (SSTs) resulting from the regional air-sea coupling were lower than those derived directly from the driving global model over the western North Pacific north of 15°N. These colder SSTs had both positive and negative effects. On the one hand, they strengthened the western Pacific subtropical high, which improved the simulation of the summer monsoon circulation over East Asia. On the other hand, the colder SSTs suppressed surface evaporation and favored weaker local interannual variability in the SST, which led to less summer rainfall and weaker interannual rainfall variability over the Korean Peninsula and Japan. Overall, the reference simulation performed using the FROALS model is reasonable in terms of rainfall over the land area of East Asia and will become the basis for the generation of climate change scenarios for the CORDEX East Asia domain that will be described in future reports.
Evaluation of rainfall retrievals from SEVIRI reflectances over West Africa using TRMM-PR and CMORPH
NASA Astrophysics Data System (ADS)
Wolters, E. L. A.; van den Hurk, B. J. J. M.; Roebeling, R. A.
2011-02-01
This paper describes the evaluation of the KNMI Cloud Physical Properties - Precipitation Properties (CPP-PP) algorithm over West Africa. The algorithm combines condensed water path (CWP), cloud phase (CPH), cloud particle effective radius (re), and cloud-top temperature (CTT) retrievals from visible, near-infrared and thermal infrared observations of the Spinning Enhanced Visible and Infrared Imager (SEVIRI) onboard the Meteosat Second Generation (MSG) satellites to estimate rain occurrence frequency and rain rate. For the 2005 and 2006 monsoon seasons, it is investigated whether the CPP-PP algorithm is capable of retrieving rain occurrence frequency and rain rate over West Africa with sufficient accuracy, using Tropical Monsoon Measurement Mission Precipitation Radar (TRMM-PR) as reference. As a second goal, it is assessed whether SEVIRI is capable of monitoring the seasonal and daytime evolution of rainfall during the West African monsoon (WAM), using Climate Prediction Center Morphing Technique (CMORPH) rainfall observations. The SEVIRI-detected rainfall area agrees well with TRMM-PR, with the areal extent of rainfall by SEVIRI being ~10% larger than from TRMM-PR. The mean retrieved rain rate from CPP-PP is about 8% higher than from TRMM-PR. Examination of the TRMM-PR and CPP-PP cumulative frequency distributions revealed that differences between CPP-PP and TRMM-PR are generally within +/-10%. Relative to the AMMA rain gauge observations, CPP-PP shows very good agreement up to 5 mm h-1. However, at higher rain rates (5-16 mm h-1) CPP-PP overestimates compared to the rain gauges. With respect to the second goal of this paper, it was shown that both the accumulated precipitation and the seasonal progression of rainfall throughout the WAM is in good agreement with CMORPH, although CPP-PP retrieves higher amounts in the coastal region of West Africa. Using latitudinal Hovmüller diagrams, a fair correspondence between CPP-PP and CMORPH was found, which is reflected by high correlation coefficients (~0.7) for both rain rate and rain occurrence frequency. The daytime cycle of rainfall from CPP-PP shows distinctly different patterns for three different regions in West Africa throughout the WAM, with a decrease in dynamical range of rainfall near the Inter Tropical Convergence Zone (ITCZ). The dynamical range as retrieved from CPP-PP is larger than that from CMORPH. It is suggested that this results from both the better spatio-temporal resolution of SEVIRI, as well as from thermal infrared radiances being partly used by CMORPH, which likely smoothes the daytime precipitation signal, especially in case of cold anvils from convective systems. The promising results show that the CPP-PP algorithm, taking advantage of the high spatio-temporal resolution of SEVIRI, is of added value for monitoring daytime precipitation patterns in tropical areas.
Nowcasting for a high-resolution weather radar network
NASA Astrophysics Data System (ADS)
Ruzanski, Evan
Short-term prediction (nowcasting) of high-impact weather events can lead to significant improvement in warnings and advisories and is of great practical importance. Nowcasting using weather radar reflectivity data has been shown to be particularly useful. The Collaborative Adaptive Sensing of the Atmosphere (CASA) radar network provides high-resolution reflectivity data amenable to producing valuable nowcasts. The high-resolution nature of CASA data requires the use of an efficient nowcasting approach, which necessitated the development of the Dynamic Adaptive Radar Tracking of Storms (DARTS) and sinc kernel-based advection nowcasting methodology. This methodology was implemented operationally in the CASA Distributed Collaborative Adaptive Sensing (DCAS) system in a robust and efficient manner necessitated by the high-resolution nature of CASA data and distributed nature of the environment in which the nowcasting system operates. Nowcasts up to 10 min to support emergency manager decision-making and 1--5 min to steer the CASA radar nodes to better observe the advecting storm patterns for forecasters and researchers are currently provided by this system. Results of nowcasting performance during the 2009 CASA IP experiment are presented. Additionally, currently state-of-the-art scale-based filtering methods were adapted and evaluated for use in the CASA DCAS to provide a scale-based analysis of nowcasting. DARTS was also incorporated in the Weather Support to Deicing Decision Making system to provide more accurate and efficient snow water equivalent nowcasts for aircraft deicing decision support relative to the radar-based nowcasting method currently used in the operational system. Results of an evaluation using data collected from 2007--2008 by the Weather Service Radar-1988 Doppler (WSR-88D) located near Denver, Colorado, and the National Center for Atmospheric Research Marshall Test Site near Boulder, Colorado, are presented. DARTS was also used to study the short-term predictability of precipitation patterns depicted by high-resolution reflectivity data observed at microalpha (0.2--2 km) to mesobeta (20--200 km) scales by the CASA radar network. Additionally, DARTS was used to investigate the performance of nowcasting rainfall fields derived from specific differential phase estimates, which have been shown to provide more accurate and robust rainfall estimates compared to those made from radar reflectivity data.
Multifractal analysis of different hydrological products of X-band radar
NASA Astrophysics Data System (ADS)
Skouri-Plakali, Ilektra; Da Silva Rocha Paz, Igor; Ichiba, Abdellah; Gires, Auguste; Tchiguirinskaia, Ioulia; Schertzer, Daniel
2017-04-01
Rainfall is widely considered as the hydrological process that triggers all the others. Its accurate measurements are crucial especially when they are used afterwards for the hydrological modeling of urban and peri-urban catchments for decision-making. Rainfall is a complex process and is scale dependent in space and time. Hence a high spatial and temporal resolution of the data is more appropriate for urban modeling. Therefore, a great interest of high-resolution measurements of precipitation in space and time is manifested. Radar technologies have not stopped evolving since their first appearance about the mid-twentieth. Indeed, the turning point work by Marshall-Palmer (1948) has established the Z - R power-law relation that has been widely used, with major scientific efforts being devoted to find "the best choice" of the two associated parameters. Nowadays X-band radars, being provided with dual-polarization and Doppler means, offer more accurate data of higher resolution. The fact that drops are oblate induces a differential phase shift between the two polarizations. The quantity most commonly used for the rainfall rate computation is actually the specific differential phase shift, which is the gradient of the differential phase shift along the radial beam direction. It is even stronger correlated to the rain rate R than reflectivity Z. Hence the rain rate can be computed with a different power-law relation, which again depends on only two parameters. Furthermore, an attenuation correction is needed to adjust the loss of radar energy due to the absorption and scattering as it passes through the atmosphere. Due to natural variations of reflectivity with altitude, vertical profile of reflectivity should be corrected as well. There are some other typical radar data filtering procedures, all resulting in various hydrological products. In this work, we use the Universal Multifractal framework to analyze and to inter-compare different products of X-band radar operated by Ecole des Ponts ParisTech. Several rainfall events selected during the recent period (2015 - 2016) were studied over two different embedded grids (64kmx64km and 32kmx32km, with a resolution of 250 m) covering the test site, using a variety of hydrological products. Obtained results demonstrate that some of these products are much more compatible with the scaling ideas. Indeed, the choice of data filters and/or data conversion procedures with the associated parameters does affect the scaling behavior. In turn, the scaling principals help to revisit and furthermore to optimize the radar technologies, including the choice of the associated parameters.
Real-time adjusting of rainfall estimates from commercial microwave links
NASA Astrophysics Data System (ADS)
Fencl, Martin; Dohnal, Michal; Bareš, Vojtěch
2017-04-01
Urban stormwater predictions require reliable rainfall information with space-time resolution higher than commonly provided by standard rainfall monitoring networks of national weather services. Rainfall data from commercial microwave links (CMLs) could fill this gap. CMLs are line-of-sight radio connections widely used by cellular operators which operate at millimeter bands, where radio waves are attenuated by raindrops. Attenuation data of each single CML in the cellular network can be remotely accessed in (near) real-time with virtually arbitrary sampling frequency and convert to rainfall intensity. Unfortunately, rainfall estimates from CMLs can be substantially biased. Fencl et al., (2017), therefore, proposed adjusting method which enables to correct for this bias. They used rain gauge (RG) data from existing rainfall monitoring networks, which would have otherwise insufficient spatial and temporal resolution for urban rainfall monitoring when used alone without CMLs. In this investigation, we further develop the method to improve its performance in a real-time setting. First, a shortcoming of the original algorithm which delivers unreliable results at the beginning of a rainfall event is overcome by introducing model parameter prior distributions estimated from previous parameter realizations. Second, weights reflecting variance between RGs are introduced into cost function, which is minimized when optimizing model parameters. Finally, RG data used for adjusting are preprocessed by moving average filter. The performance of improved adjusting method is evaluated on four short CMLs (path length < 2 km) located in the small urban catchment (2.3 km2) in Prague-Letnany (CZ). The adjusted CMLs are compared to reference rainfall calculated from six RGs in the catchment. The suggested improvements of the method lead on average to 10% higher Nash-Sutcliffe efficiency coefficient (median value 0.85) for CML adjustment to hourly RG data. Reliability of CML rainfall estimates is especially improved at the beginning of rainfall events and during strong convective rainfalls, whereas performance during longer frontal rainfalls is almost unchanged. Our results clearly demonstrate that adjusting of CMLs to existing RGs represents a viable approach with great potential for real-time applications in stormwater management. This work was supported by the project of Czech Science Foundation (GACR) No.17-16389S. References: Fencl, M., Dohnal, M., Rieckermann, J. and Bareš, V.: Gauge-Adjusted Rainfall Estimates from Commercial Microwave Links, Hydrol Earth Syst. Sci., 2017 (accepted).
NASA Astrophysics Data System (ADS)
Brauer, Claudia; Overeem, Aart; Uijlenhoet, Remko
2015-04-01
Several rainfall measurement techniques are available for hydrological applications, each with its own spatial and temporal resolution. We investigated the effect of differences in rainfall estimates on discharge simulations in a lowland catchment by forcing a novel rainfall-runoff model (WALRUS) with rainfall data from gauges, radars and microwave links. The hydrological model used for this analysis is the recently developed Wageningen Lowland Runoff Simulator (WALRUS). WALRUS is a rainfall-runoff model accounting for hydrological processes relevant to areas with shallow groundwater (e.g. groundwater-surface water feedback). Here, we used WALRUS for case studies in the Hupsel Brook catchment. We used two automatic rain gauges with hourly resolution, located inside the catchment (the base run) and 30 km northeast. Operational (real-time) and climatological (gauge-adjusted) C-band radar products and country-wide rainfall maps derived from microwave link data from a cellular telecommunication network were also used. Discharges simulated with these different inputs were compared to observations. Traditionally, the precipitation research community places emphasis on quantifying spatial errors and uncertainty, but for hydrological applications, temporal errors and uncertainty should be quantified as well. Its memory makes the hydrologic system sensitive to missed or badly timed rainfall events, but also emphasizes the effect of a bias in rainfall estimates. Systematic underestimation of rainfall by the uncorrected operational radar product leads to very dry model states and an increasing underestimation of discharge. Using the rain gauge 30 km northeast of the catchment yields good results for climatological studies, but not for forecasting individual floods. Simulating discharge using the maps derived from microwave link data and the gauge-adjusted radar product yields good results for both events and climatological studies. This indicates that these products can be used in catchments without gauges in or near the catchment. Uncertainty in rainfall forcing is a major source of uncertainty in discharge predictions, both with lumped and with distributed models. For lumped rainfall-runoff models, the main source of input uncertainty is associated with the way in which (effective) catchment-average rainfall is estimated. Improving rainfall measurements can improve the performance of rainfall-runoff models, indicating their potential for reducing flood damage through real-time control.
Dynamical downscaling inter-comparison for high resolution climate reconstruction
NASA Astrophysics Data System (ADS)
Ferreira, J.; Rocha, A.; Castanheira, J. M.; Carvalho, A. C.
2012-04-01
In the scope of the project: "High-resolution Rainfall EroSivity analysis and fORecasTing - RESORT", an evaluation of various methods of dynamic downscaling is presented. The methods evaluated range from the classic method of nesting a regional model results in a global model, in this case the ECMWF reanalysis, to more recently proposed methods, which consist in using Newtonian relaxation methods in order to nudge the results of the regional model to the reanalysis. The method with better results involves using a system of variational data assimilation to incorporate observational data with results from the regional model. The climatology of a simulation of 5 years using this method is tested against observations on mainland Portugal and the ocean in the area of the Portuguese Continental Shelf, which shows that the method developed is suitable for the reconstruction of high resolution climate over continental Portugal.
Developing Local Scale, High Resolution, Data to Interface with Numerical Storm Models
NASA Astrophysics Data System (ADS)
Witkop, R.; Becker, A.; Stempel, P.
2017-12-01
High resolution, physical storm models that can rapidly predict storm surge, inundation, rainfall, wind velocity and wave height at the intra-facility scale for any storm affecting Rhode Island have been developed by Researchers at the University of Rhode Island's (URI's) Graduate School of Oceanography (GSO) (Ginis et al., 2017). At the same time, URI's Marine Affairs Department has developed methods that inhere individual geographic points into GSO's models and enable the models to accurately incorporate local scale, high resolution data (Stempel et al., 2017). This combination allows URI's storm models to predict any storm's impacts on individual Rhode Island facilities in near real time. The research presented here determines how a coastal Rhode Island town's critical facility managers (FMs) perceive their assets as being vulnerable to quantifiable hurricane-related forces at the individual facility scale and explores methods to elicit this information from FMs in a format usable for incorporation into URI's storm models.
Improving precipitation estimates over the western United States using GOES-R precipitation data
NASA Astrophysics Data System (ADS)
Karbalaee, N.; Kirstetter, P. E.; Gourley, J. J.
2017-12-01
Satellite remote sensing data with fine spatial and temporal resolution are widely used for precipitation estimation for different applications such as hydrological modeling, storm prediction, and flash flood monitoring. The Geostationary Operational Environmental Satellites-R series (GOES-R) is the next generation of environmental satellites that provides hydrologic, atmospheric, and climatic information every 30 seconds over the western hemisphere. The high-resolution and low-latency of GOES-R observations is essential for the monitoring and prediction of floods, specifically in the Western United States where the vantage point of space can complement the degraded weather radar coverage of the NEXRAD network. The GOES-R rainfall rate algorithm will yield deterministic quantitative precipitation estimates (QPE). Accounting for inherent uncertainties will further advance the GOES-R QPEs since with quantifiable error bars, the rainfall estimates can be more readily fused with ground radar products. On the ground, the high-resolution NEXRAD-based precipitation estimation from the Multi-Radar/Multi-Sensor (MRMS) system, which is now operational in the National Weather Service (NWS), is challenged due to a lack of suitable coverage of operational weather radars over complex terrain. Distribution of QPE uncertainties associated with the GOES-R deterministic retrievals are derived and analyzed using MRMS over regions with good radar coverage. They will be merged with MRMS-based probabilistic QPEs developed to advance multisensor QPE integration. This research aims at improving precipitation estimation over the CONUS by combining the observations from GOES-R and MRMS to provide consistent, accurate and fine resolution precipitation rates with uncertainties over the CONUS.
Distant Influence of Kuroshio Eddies on North Pacific Weather Patterns?
Ma, Xiaohui; Chang, Ping; Saravanan, R.; Montuoro, Raffaele; Hsieh, Jen-Shan; Wu, Dexing; Lin, Xiaopei; Wu, Lixin; Jing, Zhao
2015-01-01
High-resolution satellite measurements of surface winds and sea-surface temperature (SST) reveal strong coupling between meso-scale ocean eddies and near-surface atmospheric flow over eddy-rich oceanic regions, such as the Kuroshio and Gulf Stream, highlighting the importance of meso-scale oceanic features in forcing the atmospheric planetary boundary layer (PBL). Here, we present high-resolution regional climate modeling results, supported by observational analyses, demonstrating that meso-scale SST variability, largely confined in the Kuroshio-Oyashio confluence region (KOCR), can further exert a significant distant influence on winter rainfall variability along the U.S. Northern Pacific coast. The presence of meso-scale SST anomalies enhances the diabatic conversion of latent heat energy to transient eddy energy, intensifying winter cyclogenesis via moist baroclinic instability, which in turn leads to an equivalent barotropic downstream anticyclone anomaly with reduced rainfall. The finding points to the potential of improving forecasts of extratropical winter cyclones and storm systems and projections of their response to future climate change, which are known to have major social and economic impacts, by improving the representation of ocean eddy–atmosphere interaction in forecast and climate models. PMID:26635077
A seasonal Bartlett-Lewis Rectangular Pulse model
NASA Astrophysics Data System (ADS)
Ritschel, Christoph; Agbéko Kpogo-Nuwoklo, Komlan; Rust, Henning; Ulbrich, Uwe; Névir, Peter
2016-04-01
Precipitation time series with a high temporal resolution are needed as input for several hydrological applications, e.g. river runoff or sewer system models. As adequate observational data sets are often not available, simulated precipitation series come to use. Poisson-cluster models are commonly applied to generate these series. It has been shown that this class of stochastic precipitation models is able to well reproduce important characteristics of observed rainfall. For the gauge based case study presented here, the Bartlett-Lewis rectangular pulse model (BLRPM) has been chosen. As it has been shown that certain model parameters vary with season in a midlatitude moderate climate due to different rainfall mechanisms dominating in winter and summer, model parameters are typically estimated separately for individual seasons or individual months. Here, we suggest a simultaneous parameter estimation for the whole year under the assumption that seasonal variation of parameters can be described with harmonic functions. We use an observational precipitation series from Berlin with a high temporal resolution to exemplify the approach. We estimate BLRPM parameters with and without this seasonal extention and compare the results in terms of model performance and robustness of the estimation.
NASA Astrophysics Data System (ADS)
Saito, Hitoshi; Uchiyama, Shoichiro; Hayakawa, Yuichi S.; Obanawa, Hiroyuki
2018-12-01
Unmanned aerial systems (UASs) and structure-from-motion multi-view stereo (SfM-MVS) photogrammetry have attracted a tremendous amount of interest for use in the creation of high-definition topographic data for geoscientific studies. By using these techniques, this study examined the topographic characteristics of coseismic landslides triggered by the 2016 Kumamoto earthquake (Mw 7.1) in the Sensuikyo area (1.0 km2) at Aso volcano, Japan. The study area has frequently experienced rainfall-induced landslide events, such as those in 1990, 2001, and 2012. We obtained orthorectified images and digital surface models (DSMs) with a spatial resolution of 0.06 m before and after the 2016 Kumamoto earthquake. By using these high-definition images and DSMs, we detected a total of 54 coseismic landslides with volumes of 9.1-3994.6 m3. These landslides, many of which initiated near topographic ridges, were typically located on upside hillslopes of previous rainfall-induced landslide scars that formed in 2012. This result suggests that the topographic effect on seismic waves, i.e., amplification of ground acceleration, was important for coseismic landslide initiation in the study area. The average depth of the coseismic landslides was 1.5 m, which is deeper than the depth of the rainfall-induced landslides prior to these. The total sediment production of the coseismic landslides reached 2.5 × 104 m3/km2, which is of the same order as the sediment production triggered by the previous single heavy rainfall event. This result indicates that the effects of the 2016 Kumamoto earthquake in terms of sediment production and topographic changes were similar to those of the rainfall-induced landslide event in the study area.
NASA Astrophysics Data System (ADS)
Rossa, Andrea M.; Laudanna Del Guerra, Franco; Borga, Marco; Zanon, Francesco; Settin, Tommaso; Leuenberger, Daniel
2010-11-01
SummaryThis study aims to assess the feasibility of assimilating carefully checked radar rainfall estimates into a numerical weather prediction (NWP) to extend the forecasting lead time for an extreme flash flood. The hydro-meteorological modeling chain includes the convection-permitting NWP model COSMO-2 and a coupled hydrological-hydraulic model. Radar rainfall estimates are assimilated into the NWP model via the latent heat nudging method. The study is focused on 26 September 2007 extreme flash flood which impacted the coastal area of North-eastern Italy around Venice. The hydro-meteorological modeling system is implemented over the 90 km2 Dese river basin draining to the Venice Lagoon. The radar rainfall observations are carefully checked for artifacts, including rain-induced signal attenuation, by means of physics-based correction procedures and comparison with a dense network of raingauges. The impact of the radar rainfall estimates in the assimilation cycle of the NWP model is very significant. The main individual organized convective systems are successfully introduced into the model state, both in terms of timing and localization. Also, high-intensity incorrectly localized precipitation is correctly reduced to about the observed levels. On the other hand, the highest rainfall intensities computed after assimilation underestimate the observed values by 20% and 50% at a scale of 20 km and 5 km, respectively. The positive impact of assimilating radar rainfall estimates is carried over into the free forecast for about 2-5 h, depending on when the forecast was started. The positive impact is larger when the main mesoscale convective system is present in the initial conditions. The improvements in the precipitation forecasts are propagated to the river flow simulations, with an extension of the forecasting lead time up to 3 h.
NASA Astrophysics Data System (ADS)
Leonarduzzi, E.; Molnar, P.; McArdell, B. W.
2017-12-01
In Switzerland floods are responsible for most of the damage caused by rainfall-triggered natural hazards (89%), followed by landslides (6%, almost 600 M USD) as reported in Hilker et al. (2009) for the period 1972-2007. A high-resolution gridded daily precipitation dataset is combined with a landslide inventory containing over 2000 events in the period 1972-2012 to analyze rainfall thresholds that lead to landsliding in Switzerland. First triggering rainfall and landslides are co-located obtaining the distributions of triggering and non-triggering rainfall event properties at the scale of the precipitation data (2*2 km2) and considering 1 day as the interarrival time to separate events. Then rainfall thresholds are obtained by maximizing true positives (accurate predictions) while minimizing false negatives (false alarms), using the True Skill Statistic. The best predictive performance is obtained by the intensity-duration ID threshold curve, followed by peak daily intensity (Imax) and mean event intensity (Imean). Event duration by itself has very low predictive power. In addition to country-wide thresholds, local ones are also defined by regionalization based on surface erodibility and local long-term climate (mean daily precipitation). Different Imax thresholds are determined for each of the regions separately. It is found that wetter local climate and lower erodibility lead to significantly higher rainfall thresholds required to trigger landslides. However, the improvement in model performance due to regionalization is marginal and much lower than what can be achieved by having a high quality landslide database. In order to validate the performance of the Imax rainfall threshold model, reference cases will be presented in which the landslide locations and timing are randomized and the landslide sample size is reduced. Jack-knife and cross-validation experiments demonstrate that the model is robust. The results highlight the potential of using rainfall I-D threshold curves and Imax threshold values for predicting the occurrence of landslides on a country or regional scale even with daily precipitation data, with possible applications in landslide warning systems.
Rainfall erosivity factor estimation in Republic of Moldova
NASA Astrophysics Data System (ADS)
Castraveš, Tudor; Kuhn, Nikolaus
2017-04-01
Rainfall erosivity represents a measure of the erosive force of rainfall. Typically, it is expressed as variable such as the R factor in the Universal Soil Loss Equation (USLE) (Wischmeier and Smith, 1965, 1978) or its derivates. The rainfall erosivity index for a rainfall event (EI30) is calculated from the total kinetic energy and maximum 30 minutes intensity of individual events. However, these data are often unavailable for wide regions and countries. Usually, there are three issues regarding precipitation data: low temporal resolution, low spatial density and limited access to the data. This is especially true for some of postsoviet countries from Eastern Europe, such as Republic of Moldova, where soil erosion is a real and persistent problem (Summer, 2003) and where soils represents the main natural resource of the country. Consequently, researching and managing soil erosion is particularly important. The purpose of this study is to develop a model based on commonly available rainfall data, such as event, daily or monthly amounts, to calculate rainfall erosivity for the territory of Republic of Moldova. Rainfall data collected during 1994-2015 period at 15 meteorological stations in the Republic of Moldova, with 10 minutes temporal resolution, were used to develop and calibrate a model to generate an erosivity map of Moldova. References 1. Summer, W., (2003). Soil erosion in the Republic of Moldova — the importance of institutional arrangements. Erosion Prediction in Ungauged Basins: Integrating Methods and Techniques (Proceedings of symposium HS01 held during IUGG2003 at Sapporo. July 2003). IAHS Publ. no. 279. 2. Wischmeier, W.H., and Smith, D.D. (1965). Predicting rainfall-erosion losses from cropland east of the Rocky Mountains. Agr. Handbook No. 282, U.S. Dept. Agr., Washington, DC 3. Wischmeier, W.H., and Smith, D.D. (1978). Predicting rainfall erosion losses. Agr. handbook No. 537, U.S. Dept. of Agr., Science and Education Administration.
The 2010 Pakistan floods: high-resolution simulations with the WRF model
NASA Astrophysics Data System (ADS)
Viterbo, Francesca; Parodi, Antonio; Molini, Luca; Provenzale, Antonello; von Hardenberg, Jost; Palazzi, Elisa
2013-04-01
Estimating current and future water resources in high mountain regions with complex orography is a difficult but crucial task. In particular, the French-Italian project PAPRIKA is focused on two specific regions in the Hindu-Kush -- Himalaya -- Karakorum (HKKH)region: the Shigar basin in Pakistan, at the feet of K2, and the Khumbu valley in Nepal, at the feet of Mount Everest. In this framework, we use the WRF model to simulate precipitation and meteorological conditions with high resolution in areas with extreme orographic slopes, comparing the model output with station and satellite data. Once validated the model, we shall run a set of three future time-slices at very high spatial resolution, in the periods 2046-2050, 2071-2075 and 2096-2100, nested in different climate change scenarios (EXtreme PREcipitation and Hydrological climate Scenario Simulations -EXPRESS-Hydro project). As a prelude to this study, here we discuss the simulation of specific, high-intensity rainfall events in this area. In this paper we focus on the 2010 Pakistan floods which began in late July 2010, producing heavy monsoon rains in the Khyber Pakhtunkhwa, Sindh, Punjab and Balochistan regions of Pakistan and affecting the Indus River basin. Approximately one-fifth of Pakistan's total land area was underwater, with a death toll of about 2000 people. This event has been simulated with the WRF model (version 3.3.) in cloud-permitting mode (d01 14 km and d02 3.5 km): different convective closures and microphysics parameterization have been used. A deeper understanding of the processes responsible for this event has been gained through comparison with rainfall depth observations, radiosounding data and geostationary/polar satellite images.
Assessing the Change in Rainfall Characteristics and Trends for the Southern African ITCZ Region
NASA Astrophysics Data System (ADS)
Baumberg, Verena; Weber, Torsten; Helmschrot, Jörg
2015-04-01
Southern Africa is strongly influenced by the movement and intensity of the Intertropical Convergence Zone (ITCZ) thus determining the climate in this region with distinct seasonal and inter-annual rainfall dynamics. The amount and variability of rainfall affect the various ecosystems by controlling the hydrological system, regulating water availability and determining agricultural practices. Changes in rainfall characteristics potentially caused by climate change are of uppermost relevance for both ecosystem functioning and human well-being in this region and, thus, need to be investigated. To analyse the rainfall variability governed by the ITCZ in southern Africa, observational daily rainfall datasets with a high spatial resolution of 0.25° x 0.25° (about 28 km x 28 km) from satellite-based Tropical Rainfall Measuring Mission (TRMM) and Global Land Data Assimilation System (GLDAS) are used. These datasets extend from 1998 to 2008 and 1948 to 2010, respectively, and allow for the assessment of rainfall characteristics over different spatial and temporal scales. Furthermore, a comparison of TRMM and GLDAS and, where available, with observed data will be made to determine the differences of both datasets. In order to quantify the intra- and inner-annual variability of rainfall, the amount of total rainfall, duration of rainy seasons and number of dry spells along with further indices are calculated from the observational datasets. Over the southern African ITCZ region, the rainfall characteristics change moving from wetter north to the drier south, but also from west to east, i.e. the coast to the interior. To address expected spatial and temporal variabilities, the assessment of changes in the rainfall parameters will be carried out for different transects in zonal and meridional directions over the region affected by the ITCZ. Revealing trends over more than 60 years, the results will help to identify and understand potential impacts of climate change on rainfall characteristics for the southern African ITCZ region. The findings of this study will feed into various ecosystem assessment and biodiversity change studies in Angola and Zambia.
NASA Astrophysics Data System (ADS)
Sinclair, D.; Sherrell, R. M.; Tremaine, D. M.; Sweeney, J. R.; Rowe, H.; Wright, J. D.; Mortlock, R. A.; Hellstrom, J. C.; Cheng, H.; Min, A.; Edwards, R. L.
2017-12-01
Here we present a high-resolution glacial paleorainfall record from the heart of the South Pacific Convergence Zone (SPCZ) extracted from a stalagmite from the remote island of Niue (19°03'S 169°52'W). The record spans much of MIS3 (25-45 ka) and captures rapid rainfall changes associated with shifts in the SPCZ. It is clear that rapid climate shifts in the Northern Hemisphere have a strong influence on the SPCZ. All of the warm Dansgaard-Oeschger (`D-O') interstadials across this period are represented by rainfall increases, with D-O Events 9-11 particularly strongly represented. Since Niue lies south of the core of the SPCZ, this implies that rather than shifting northwards (as the ITCZ does), the SPCZ instead rotates clockwise in response to northern Hemisphere warming (analogous to a shift between modern El Nino and La Nina states). We propose that changes to surface ocean temperature gradients in the Eastern Pacific modulate the strength of the Wind Evaporation SST feedback, changing the size and westward penetration of the eastern Pacific dry zone, resulting in changes to the diagonality of the SPCZ. Our record also captures a response to strong northern Hemisphere cooling. The 25-45 ka record is bounded by large hiatuses (inferred dry conditions) coincident with cold Heinrich Stadials (HS) 2 and 5, while HS3 and HS4 are captured as distinct reductions in speleothem growth rate and proxy evidence for declining rainfall. This is consistent with a counter-clockwise rotation of the SPCZ during Northern cooling, supporting our proposed mechanism. Interestingly, our record also captures several other (non-Heinrich) cooling events, including a strong 500-year dry interval at 26ka that is seen in Chinese and Brazilian speleothems and coincides with a strong cooling over Asia (inferred from Greenland dust records). We note the (possibly coincidental) timing between this event and the Oruanui super-eruption at 25.6 ka.
NASA Astrophysics Data System (ADS)
Chen, C. T.; Lo, S. H.; Wang, C. C.
2014-12-01
More than 2000 mm rainfall occurred over southern Taiwan when a category 1 Typhoon Morakot pass through Taiwan in early August 2009. Entire village and hundred of people were buried by massive mudslides induced by record-breaking precipitation. Whether the past anthropogenic warming played a significant role in such extreme event remained very controversial. On one hand, people argue it's nearly impossible to attribute an individual extreme event to global warming. On the other hand, the increase of heavy rainfall is consistent with the expected effects of climate change on tropical cyclone. To diagnose possible anthropogenic contributions to the odds of such heavy rainfall associated with Typhoon Morakot, we adapt an existing event attribution framework of modeling a 'world that was' and comparing it to a modeled 'world that might have been' for that same time but for the absence of historical anthropogenic drivers of climate. One limitation for applying such approach to high-impact weather system is that it will require models capable of capturing the essential processes lead to the studied extremes. Using a cloud system resolving model that can properly simulate the complicated interactions between tropical cyclone, large-scale background, topography, we first perform the ensemble 'world that was' simulations using high resolution ECMWF YOTC analysis. We then re-simulate, having adjusted the analysis to 'world that might have been conditions' by removing the regional atmospheric and oceanic forcing due to human influences estimated from the CMIP5 model ensemble mean conditions between all forcing and natural forcing only historical runs. Thus our findings are highly conditional on the driving analysis and adjustments therein, but the setup allows us to elucidate possible contribution of anthropogenic forcing to changes in the likelihood of heavy rainfall associated Typhoon Morakot in early August 2009.
NASA Astrophysics Data System (ADS)
Chen, C. T.; Lo, S. H.; Wang, C. C.; Tsuboki, K.
2017-12-01
More than 2000 mm rainfall occurred over southern Taiwan when a category 1 Typhoon Morakot pass through Taiwan in early August 2009. Entire village and hundred of people were buried by massive mudslides induced by record-breaking precipitation. Whether the past anthropogenic warming played a significant role in such extreme event remained very controversial. On one hand, people argue it's nearly impossible to attribute an individual extreme event to global warming. On the other hand, the increase of heavy rainfall is consistent with the expected effects of climate change on tropical cyclone. To diagnose possible anthropogenic contributions to the odds of such heavy rainfall associated with Typhoon Morakot, we adapt an existing probabilistic event attribution framework to simulate a `world that was' and compare it with an alternative condition, 'world that might have been' that removed the historical anthropogenic drivers of climate. One limitation for applying such approach to high-impact weather system is that it will require models capable of capturing the essential processes lead to the studied extremes. Using a cloud system resolving model that can properly simulate the complicated interactions between tropical cyclone, large-scale background, topography, we first perform the ensemble `world that was' simulations using high resolution ECMWF YOTC analysis. We then re-simulate, having adjusted the analysis to `world that might have been conditions' by removing the regional atmospheric and oceanic forcing due to human influences estimated from the CMIP5 model ensemble mean conditions between all forcing and natural forcing only historical runs. Thus our findings are highly conditional on the driving analysis and adjustments therein, but the setup allows us to elucidate possible contribution of anthropogenic forcing to changes in the likelihood of heavy rainfall associated Typhoon Morakot in early August 2009.
NASA Astrophysics Data System (ADS)
Ciampalini, Rossano; Kendon, Elizabeth; Constantine, José Antonio; Schindewolf, Marcus; Hall, Ian
2017-04-01
Climate change is expected to have a significant impact on the hydrological cycle, twenty-first century climate change simulations for Great Britain forecast an increase of surface runoff and flooding frequency. Once quality and resolution of the simulated rainfall deeply influence the results, we adopted rainfall simulations issued of a high-resolution climate model recently carried out for extended periods (13 years for present-day and future periods 2100) at 1.5 km grid scale over the south of the United Kingdom (simulations, which for the future period use the Intergovernmental Panel on Climate Change RCP 8.5 scenario, Kendon et al., 2014). We simulated soil erosion with 3D soil erosion model Schmidt (1990) on two catchments of Great Britain: the Rother catchment (350 km2) in West Sussex, England, because it has reported some of the most erosive events observed during the last 50 years in the UK, and the Conwy catchment (628 Km2) in North Wales, which is extremely resilient to soil erosion because of the abundant natural vegetation. Estimation of changes in soil moisture, saturation deficit as well as vegetation cover at daily time step have been done with the Joint UK Land Environment Simulator (JULES) (Best et al, 2011). Our results confirm the Rother catchment is the most erosive, while the Conwy catchment is the more resilient to soil erosion. Sediment production is perceived increase in both cases for the end of the century (27% and 50%, respectively). Seasonal disaggregation of the results revels that, while the most part of soil erosion is produced in winter months (DJF), the higher soil erosion variability for future periods is observed in summer (JJA). This behaviour is supported by the rainfall simulation analyse which highlighted this dual behaviour in precipitations.
A space-time multifractal analysis on radar rainfall sequences from central Poland
NASA Astrophysics Data System (ADS)
Licznar, Paweł; Deidda, Roberto
2014-05-01
Rainfall downscaling belongs to most important tasks of modern hydrology. Especially from the perspective of urban hydrology there is real need for development of practical tools for possible rainfall scenarios generation. Rainfall scenarios of fine temporal scale reaching single minutes are indispensable as inputs for hydrological models. Assumption of probabilistic philosophy of drainage systems design and functioning leads to widespread application of hydrodynamic models in engineering practice. However models like these covering large areas could not be supplied with only uncorrelated point-rainfall time series. They should be rather supplied with space time rainfall scenarios displaying statistical properties of local natural rainfall fields. Implementation of a Space-Time Rainfall (STRAIN) model for hydrometeorological applications in Polish conditions, such as rainfall downscaling from the large scales of meteorological models to the scale of interest for rainfall-runoff processes is the long-distance aim of our research. As an introduction part of our study we verify the veracity of the following STRAIN model assumptions: rainfall fields are isotropic and statistically homogeneous in space; self-similarity holds (so that, after having rescaled the time by the advection velocity, rainfall is a fully homogeneous and isotropic process in the space-time domain); statistical properties of rainfall are characterized by an "a priori" known multifractal behavior. We conduct a space-time multifractal analysis on radar rainfall sequences selected from the Polish national radar system POLRAD. Radar rainfall sequences covering the area of 256 km x 256 km of original 2 km x 2 km spatial resolution and 15 minutes temporal resolution are used as study material. Attention is mainly focused on most severe summer convective rainfalls. It is shown that space-time rainfall can be considered with a good approximation to be a self-similar multifractal process. Multifractal analysis is carried out assuming Taylor's hypothesis to hold and the advection velocity needed to rescale the time dimension is assumed to be equal about 16 km/h. This assumption is verified by the analysis of autocorrelation functions along the x and y directions of "rainfall cubes" and along the time axis rescaled with assumed advection velocity. In general for analyzed rainfall sequences scaling is observed for spatial scales ranging from 4 to 256 km and for timescales from 15 min to 16 hours. However in most cases scaling break is identified for spatial scales between 4 and 8, corresponding to spatial dimensions of 16 km to 32 km. It is assumed that the scaling break occurrence at these particular scales in central Poland conditions could be at least partly explained by the rainfall mesoscale gap (on the edge of meso-gamma, storm-scale and meso-beta scale).
Wang, Qiao-lian; Jiang, Yong-jun; Chen, Yu
2016-05-15
High time-resolution auto-monitoring techniques were used to obtain the data for TOC and hydrogeochemistry of groundwater, and air temperature and precipitation from August 2014 to September 2015 in Xueyu Cave karst watershed, Southwest China, and then the principal component regression model was used to reveal the variation of TOC in groundwater and its influencing factors. The results indicated that there were significant variations of the TOC and hydrogeochemistry of groundwater in seasonal timescale. The temperature and specific conductance (SpC) of groundwater showed higher values in summer and lower values in winter; while an opposite variation pattern for pH in groundwater was observed, and the TOC and turbidity of groundwater showed higher values in winter and summer seasons and lower values in spring and autumn seasons. Meanwhile, high time-resolution data revealed that the TOC of groundwater responded quickly to rainfall events with different intensities. Generally, an increasing trend for TOC in groundwater was observed during raining and a decreasing trend for TOC in groundwater was shown after rainfall events, especially after storm events due to the dilution effect of rainfall. The export and variations of the TOC in groundwater were mainly controlled by the precipitation and discharge of underground river in the study area, as revealed by the principal component regression model. The TOC increased with the increase of the precipitation, discharge and turbidity of groundwater, and declined with the increase of air temperature and pH of groundwater.
NASA Astrophysics Data System (ADS)
Koci, J.; Jarihani, B.; Sidle, R. C.; Wilkinson, S. N.; Bartley, R.
2017-12-01
Structure from Motion with Multi-View Stereo (SfM-MVS) photogrammetry provides a cost-effective method of rapidly acquiring high resolution (sub-meter) topographic data, but is rarely used in hydrogeomorphic investigations of gully erosion. This study integrates high resolution topographic and land cover data derived from an unmanned aerial vehicle (UAV) and ground-based SfM-MVS photogrammetry, with rainfall and gully discharge data, to elucidate hydrogeomorphic processes driving hillslope gully erosion. The study is located within a small (13 km2) dry-tropical savanna catchment within the Burdekin River Basin, northeast Australia, which is a major contributor sediments and nutrients to the Great Barrier Reef World Heritage Area. A pre-wet season UAV survey covered an entire hillslope gully system (0.715 km2), and is used to derive topography, ground cover and hydrological flow pathways in the gully contributing area. Ground-based surveys of a single active gully (650 m2) within the broader hillslope are compared between pre- and post-wet season conditions to quantify gully geomorphic change. Rainfall, recorded near to the head of the gully, is related to gully discharge during sporadic storm events. The study provides valuable insights into the relationships among hydrological flow pathways, ground cover, rainfall and runoff, and spatial patterns of gully morphologic change. We demonstrate how UAV and ground-based SfM-MVS photogrammetry can be used to improve hydrogeomorphic process understanding and aid in the modelling and management of hillslope gully systems.
Dynamical downscaling with WRF for the Middle-East and North Africa
NASA Astrophysics Data System (ADS)
Dezfuli, A. K.; Zaitchik, B. F.; Badr, H. S.; Bergaoui, K.; Zaaboul, R.; Bhattacharjee, P.
2014-12-01
The Middle-East and North Africa (MENA) experience the highest risk of water stress in the world. This underlines the importance of climate analysis for water resources management and climate change adaptation for this region, particularly in transboundary basins such as the Tigris-Euphrates system. Such analysis, however, is difficult due to a paucity of high quality precipitation data. The network of gauge stations is quite sparse and the data are often available only at monthly time-scale. Satellite-based products, such as the Tropical Rainfall Measuring Mission (TRMM), offer better temporal resolution; however, these data are available only for periods that are short for hydroclimatic analysis, and they often misrepresent precipitation over regions with complex topography or strong convection. To fill this gap, we have implemented the Weather Research and Forecasting (WRF) Model, initialized with the NCEP/NCAR Reanalysis II, to generate high-resolution precipitation estimates for MENA. Several sensitivity analyses have been performed in order to find a set of physics parameters that appropriately captures the annual cycle and year-to-year variability of rainfall over select areas in MENA. The results show that WRF, particularly over highlands, estimates the precipitation more accurately than the satellite products. In addition to these reanalysis-driven simulations, we have performed several simulations using the historical and twenty first century outputs of a select number of GCMs available at the CMIP5 archive. These runs enable us to detect changes in rainfall behavior under different greenhouse gas scenarios and reveal synoptic to mesoscale mechanisms responsible for such changes.
NASA Technical Reports Server (NTRS)
Tao, Wei-Kuo; Chern, Jiun-Dar
2017-01-01
The importance of precipitating mesoscale convective systems (MCSs) has been quantified from TRMM precipitation radar and microwave imager retrievals. MCSs generate more than 50% of the rainfall in most tropical regions. MCSs usually have horizontal scales of a few hundred kilometers (km); therefore, a large domain with several hundred km is required for realistic simulations of MCSs in cloud-resolving models (CRMs). Almost all traditional global and climate models do not have adequate parameterizations to represent MCSs. Typical multi-scale modeling frameworks (MMFs) may also lack the resolution (4 km grid spacing) and domain size (128 km) to realistically simulate MCSs. In this study, the impact of MCSs on precipitation is examined by conducting model simulations using the Goddard Cumulus Ensemble (GCE) model and Goddard MMF (GMMF). The results indicate that both models can realistically simulate MCSs with more grid points (i.e., 128 and 256) and higher resolutions (1 or 2 km) compared to those simulations with fewer grid points (i.e., 32 and 64) and low resolution (4 km). The modeling results also show the strengths of the Hadley circulations, mean zonal and regional vertical velocities, surface evaporation, and amount of surface rainfall are weaker or reduced in the GMMF when using more CRM grid points and higher CRM resolution. In addition, the results indicate that large-scale surface evaporation and wind feed back are key processes for determining the surface rainfall amount in the GMMF. A sensitivity test with reduced sea surface temperatures shows both reduced surface rainfall and evaporation.
NASA Astrophysics Data System (ADS)
Tao, Wei-Kuo; Chern, Jiun-Dar
2017-06-01
The importance of precipitating mesoscale convective systems (MCSs) has been quantified from TRMM precipitation radar and microwave imager retrievals. MCSs generate more than 50% of the rainfall in most tropical regions. MCSs usually have horizontal scales of a few hundred kilometers (km); therefore, a large domain with several hundred km is required for realistic simulations of MCSs in cloud-resolving models (CRMs). Almost all traditional global and climate models do not have adequate parameterizations to represent MCSs. Typical multiscale modeling frameworks (MMFs) may also lack the resolution (4 km grid spacing) and domain size (128 km) to realistically simulate MCSs. The impact of MCSs on precipitation is examined by conducting model simulations using the Goddard Cumulus Ensemble (GCE, a CRM) model and Goddard MMF that uses the GCEs as its embedded CRMs. Both models can realistically simulate MCSs with more grid points (i.e., 128 and 256) and higher resolutions (1 or 2 km) compared to those simulations with fewer grid points (i.e., 32 and 64) and low resolution (4 km). The modeling results also show the strengths of the Hadley circulations, mean zonal and regional vertical velocities, surface evaporation, and amount of surface rainfall are weaker or reduced in the Goddard MMF when using more CRM grid points and higher CRM resolution. In addition, the results indicate that large-scale surface evaporation and wind feedback are key processes for determining the surface rainfall amount in the GMMF. A sensitivity test with reduced sea surface temperatures shows both reduced surface rainfall and evaporation.
Evaluating a slope-stability model for shallow rain-induced landslides using gage and satellite data
Yatheendradas, S.; Kirschbaum, D.; Baum, Rex L.; Godt, Jonathan W.
2014-01-01
Improving prediction of landslide early warning systems requires accurate estimation of the conditions that trigger slope failures. This study tested a slope-stability model for shallow rainfall-induced landslides by utilizing rainfall information from gauge and satellite records. We used the TRIGRS model (Transient Rainfall Infiltration and Grid-based Regional Slope-stability analysis) for simulating the evolution of the factor of safety due to rainfall infiltration. Using a spatial subset of a well-characterized digital landscape from an earlier study, we considered shallow failure on a slope adjoining an urban transportation roadway near the Seattle area in Washington, USA.We ran the TRIGRS model using high-quality rain gage and satellite-based rainfall data from the Tropical Rainfall Measuring Mission (TRMM). Preliminary results with parameterized soil depth values suggest that the steeper slope values in this spatial domain have factor of safety values that are extremely close to the failure limit within an extremely narrow range of values, providing multiple false alarms. When the soil depths were constrained using a back analysis procedure to ensure that slopes were stable under initial condtions, the model accurately predicted the timing and location of the landslide observation without false alarms over time for gage rain data. The TRMM satellite rainfall data did not show adequately retreived rainfall peak magnitudes and accumulation over the study period, and as a result failed to predict the landslide event. These preliminary results indicate that more accurate and higher-resolution rain data (e.g., the upcoming Global Precipitation Measurement (GPM) mission) are required to provide accurate and reliable landslide predictions in ungaged basins.
NASA Astrophysics Data System (ADS)
Wu, Fan; Cui, Xiaopeng; Zhang, Da-Lin
2018-06-01
Nowcasting short-duration (i.e., <6 h) rainfall (SDR) events is examined using total [i.e., cloud-to-ground (CG) and intra-cloud (IC)] lightning observations over the Beijing Metropolitan Region (BMR) during the warm seasons of 2006-2007. A total of 928 moderate and 554 intense SDR events, i.e., with the respective hourly rainfall rates (HRR) of 10-20 and ≥20 mm h-1, are utilized to estimate sharp-increasing rates in rainfall and lightning flash, termed as rainfall and lightning jumps, respectively. By optimizing the parameters in a lightning jump and a rainfall jump algorithm, their different jump intensity grades are verified for the above two categories of SDR events. Then, their corresponding graded nowcast-warning models are developed for the moderate and intense SDR events, respectively, with a low-grade warning for hitting more SDR events and a high-grade warning for reducing false alarms. Any issued warning in the nowcast-warning models is designed to last for 2 h after the occurrence of a lightning jump. It is demonstrated that the low-grade warnings can have the probability of detection (POD) of 67.8% (87.0%) and the high-grade warnings have the false alarms ratio (FAR) of 27.0% (22.2%) for the moderate (intense) SDR events, with an averaged lead time of 36.7 (52.0) min. The nowcast-warning models are further validated using three typical heavy-rain-producing storms that are independent from those used to develop the models. Results show that the nowcast-warning models can provide encouraging early warnings for the associated SDR events from the regional to meso-γ scales, indicating that they have a great potential in being applied to the other regions where high-resolution total lightning observations are available.
Quality‐control of an hourly rainfall dataset and climatology of extremes for the UK
Lewis, Elizabeth; Chan, Steven C.; Fowler, Hayley J.
2016-01-01
ABSTRACT Sub‐daily rainfall extremes may be associated with flash flooding, particularly in urban areas but, compared with extremes on daily timescales, have been relatively little studied in many regions. This paper describes a new, hourly rainfall dataset for the UK based on ∼1600 rain gauges from three different data sources. This includes tipping bucket rain gauge data from the UK Environment Agency (EA), which has been collected for operational purposes, principally flood forecasting. Significant problems in the use of such data for the analysis of extreme events include the recording of accumulated totals, high frequency bucket tips, rain gauge recording errors and the non‐operation of gauges. Given the prospect of an intensification of short‐duration rainfall in a warming climate, the identification of such errors is essential if sub‐daily datasets are to be used to better understand extreme events. We therefore first describe a series of procedures developed to quality control this new dataset. We then analyse ∼380 gauges with near‐complete hourly records for 1992–2011 and map the seasonal climatology of intense rainfall based on UK hourly extremes using annual maxima, n‐largest events and fixed threshold approaches. We find that the highest frequencies and intensities of hourly extreme rainfall occur during summer when the usual orographically defined pattern of extreme rainfall is replaced by a weaker, north–south pattern. A strong diurnal cycle in hourly extremes, peaking in late afternoon to early evening, is also identified in summer and, for some areas, in spring. This likely reflects the different mechanisms that generate sub‐daily rainfall, with convection dominating during summer. The resulting quality‐controlled hourly rainfall dataset will provide considerable value in several contexts, including the development of standard, globally applicable quality‐control procedures for sub‐daily data, the validation of the new generation of very high‐resolution climate models and improved understanding of the drivers of extreme rainfall. PMID:28239235
Maritime continent coastlines controlling Earth's climate
NASA Astrophysics Data System (ADS)
Yamanaka, Manabu D.; Ogino, Shin-Ya; Wu, Pei-Ming; Jun-Ichi, Hamada; Mori, Shuichi; Matsumoto, Jun; Syamsudin, Fadli
2018-12-01
During the Monsoon Asian Hydro-Atmosphere Scientific Research and Prediction Initiative (MAHASRI; 2006-16), we carried out two projects over the Indonesian maritime continent (IMC), constructing the Hydrometeorological Array for Intraseasonal Variation-Monsoon Automonitoring (HARIMAU; 2005-10) radar network and setting up a prototype institute for climate studies, the Maritime Continent Center of Excellence (MCCOE; 2009-14). Here, we review the climatological features of the world's largest "regional" rainfall over the IMC studied in these projects. The fundamental mode of atmospheric variability over the IMC is the diurnal cycle generated along coastlines by land-sea temperature contrast: afternoon land becomes hotter than sea by clear-sky insolation before noon, with the opposite contrast before sunrise caused by evening rainfall-induced "sprinkler"-like land cooling (different from the extratropical infrared cooling on clear nights). Thus, unlike the extratropics, the diurnal cycle over the IMC is more important in the rainy season. The intraseasonal, seasonal to annual, and interannual climate variabilities appear as amplitude modulations of the diurnal cycle. For example, in Jawa and Bali the rainy season is the southern hemispheric summer, because land heating in the clear morning and water vapor transport by afternoon sea breeze is strongest in the season of maximum insolation. During El Niño, cooler sea water surrounding the IMC makes morning maritime convection and rainfall weaker than normal. Because the diurnal cycle is almost the only mechanism generating convective clouds systematically near the equator with little cyclone activity, the local annual rainfall amount in the tropics is a steeply decreasing function of coastal distance ( e-folding scale 100-300 km), and regional annual rainfall is an increasing function of "coastline density" (coastal length/land area) measured at a horizontal resolution of 100 km. The coastline density effect explains why rainfall and latent heating over the IMC are twice the global mean for an area that makes up only 4% of the Earth's surface. The diurnal cycles appearing almost synchronously over the whole IMC generate teleconnections between the IMC convection and the global climate. Thus, high-resolution (<< 100 km; << 1 day) observations and models over the IMC are essential to improve both local disaster prevention and global climate prediction.
Ensemble climate projections of mean and extreme rainfall over Vietnam
NASA Astrophysics Data System (ADS)
Raghavan, S. V.; Vu, M. T.; Liong, S. Y.
2017-01-01
A systematic ensemble high resolution climate modelling study over Vietnam has been performed using the PRECIS model developed by the Hadley Center in UK. A 5 member subset of the 17-member Perturbed Physics Ensembles (PPE) of the Quantifying Uncertainty in Model Predictions (QUMP) project were simulated and analyzed. The PRECIS model simulations were conducted at a horizontal resolution of 25 km for the baseline period 1961-1990 and a future climate period 2061-2090 under scenario A1B. The results of model simulations show that the model was able to reproduce the mean state of climate over Vietnam when compared to observations. The annual cycles and seasonal averages of precipitation over different sub-regions of Vietnam show the ability of the model in also reproducing the observed peak and magnitude of monthly rainfall. The climate extremes of precipitation were also fairly well captured. Projections of future climate show both increases and decreases in the mean climate over different regions of Vietnam. The analyses of future extreme rainfall using the STARDEX precipitation indices show an increase in 90th percentile precipitation (P90p) over the northern provinces (15-25%) and central highland (5-10%) and over southern Vietnam (up to 5%). The total number of wet days (Prcp) indicates a decrease of about 5-10% all over Vietnam. Consequently, an increase in the wet day rainfall intensity (SDII), is likely inferring that the projected rainfall would be much more severe and intense which have the potential to cause flooding in some regions. Risks due to extreme drought also exist in other regions where the number of wet days decreases. In addition, the maximum 5 day consecutive rainfall (R5d) increases by 20-25% over northern Vietnam but decreases in a similar range over the central and southern Vietnam. These results have strong implications for the management water resources, agriculture, bio diversity and economy and serve as some useful findings to be considered by the policy makers within a wider range of climate uncertainties.
NASA Astrophysics Data System (ADS)
Leuenberger, D.; Rossa, A.
2007-12-01
Next-generation, operational, high-resolution numerical weather prediction models require economical assimilation schemes for radar data. In the present study we evaluate and characterise the latent heat nudging (LHN) rainfall assimilation scheme within a meso-γ scale NWP model in the framework of identical twin simulations of an idealised supercell storm. Consideration is given to the model’s dynamical response to the forcing as well as to the sensitivity of the LHN scheme to uncertainty in the observations and the environment. The results indicate that the LHN scheme is well able to capture the dynamical structure and the right rainfall amount of the storm in a perfect environment. This holds true even in degraded environments but a number of important issues arise. In particular, changes in the low-level humidity field are found to affect mainly the precipitation amplitude during the assimilation with a fast adaptation of the storm to the system dynamics determined by the environment during the free forecast. A constant bias in the environmental wind field, on the other hand, has the potential to render a successful assimilation with the LHN scheme difficult, as the velocity of the forcing is not consistent with the system propagation speed determined by the wind. If the rainfall forcing moves too fast, the system propagation is supported and the assimilated storm and forecasts initialised therefrom develop properly. A too slow forcing, on the other hand, can decelerate the system and eventually disturb the system dynamics by decoupling the low-level moisture inflow from the main updrafts during the assimilation. This distortion is sustained in the free forecast. It has further been found that a sufficient temporal resolution of the rainfall input is crucial for the successful assimilation of a fast moving, coherent convective storm and that the LHN scheme, when applied to a convective storm, appears to necessitate a careful tuning.
WRF model performance under flash-flood associated rainfall
NASA Astrophysics Data System (ADS)
Mejia-Estrada, Iskra; Bates, Paul; Ángel Rico-Ramírez, Miguel
2017-04-01
Understanding the natural processes that precede the occurrence of flash floods is crucial to improve the future flood projections in a changing climate. Using numerical weather prediction tools allows to determine one of the triggering conditions for these particularly dangerous events, difficult to forecast due to their short lead-time. However, simulating the spatial and temporal evolution of the rainfall that leads to a rapid rise in river levels requires determining the best model configuration without compromising the computational efficiency. The current research involves the results of the first part of a cascade modeling approach, where the Weather Research and Forecasting (WRF) model is used to simulate the heavy rainfall in the east of the UK in June 2012 when stationary thunderstorms caused 2-hour accumulated values to match those expected in the whole month of June over the city of Newcastle. The optimum model set-up was obtained after extensive testing regarding physics parameterizations, spin-up times, datasets used as initial conditions and model resolution and nesting, hence determining its sensitivity to reproduce localised events of short duration. The outputs were qualitatively and quantitatively assessed using information from the national weather radar network as well as interpolated rainfall values from gauges, respectively. Statistical and skill score values show that the model is able to produce reliable accumulated precipitation values while explicitly solving the atmospheric equations in high resolution domains as long as several hydrometeors are considered with a spin-up time that allows the model to assimilate the initial conditions without going too far back in time from the event of interest. The results from the WRF model will serve as input to run a semi-distributed hydrological model to determine the rainfall-runoff relationship within an uncertainty assessment framework that will allow evaluating the implications of assumptions at the top of the modeling process in the final outputs of the cascade.
Development of microwave rainfall retrieval algorithm for climate applications
NASA Astrophysics Data System (ADS)
KIM, J. H.; Shin, D. B.
2014-12-01
With the accumulated satellite datasets for decades, it is possible that satellite-based data could contribute to sustained climate applications. Level-3 products from microwave sensors for climate applications can be obtained from several algorithms. For examples, the Microwave Emission brightness Temperature Histogram (METH) algorithm produces level-3 rainfalls directly, whereas the Goddard profiling (GPROF) algorithm first generates instantaneous rainfalls and then temporal and spatial averaging process leads to level-3 products. The rainfall algorithm developed in this study follows a similar approach to averaging instantaneous rainfalls. However, the algorithm is designed to produce instantaneous rainfalls at an optimal resolution showing reduced non-linearity in brightness temperature (TB)-rain rate(R) relations. It is found that the resolution tends to effectively utilize emission channels whose footprints are relatively larger than those of scattering channels. This algorithm is mainly composed of a-priori databases (DBs) and a Bayesian inversion module. The DB contains massive pairs of simulated microwave TBs and rain rates, obtained by WRF (version 3.4) and RTTOV (version 11.1) simulations. To improve the accuracy and efficiency of retrieval process, data mining technique is additionally considered. The entire DB is classified into eight types based on Köppen climate classification criteria using reanalysis data. Among these sub-DBs, only one sub-DB which presents the most similar physical characteristics is selected by considering the thermodynamics of input data. When the Bayesian inversion is applied to the selected DB, instantaneous rain rate with 6 hours interval is retrieved. The retrieved monthly mean rainfalls are statistically compared with CMAP and GPCP, respectively.
NASA Astrophysics Data System (ADS)
Pai, D. S.; Sridhar, Latha; Badwaik, M. R.; Rajeevan, M.
2015-08-01
In this study, analysis of the long term climatology, variability and trends in the daily rainfall events of ≥5 mm [or daily rainfall (DR) events] during the southwest monsoon season (June-September) over four regions of India; south central India (SCI), north central India (NCI), northeast India (NEI) and west coast (WC) have been presented. For this purpose, a new high spatial resolution (0.25° × 0.25°) daily gridded rainfall data set covering 110 years (1901-2010) over the Indian main land has been used. The association of monsoon low pressure systems (LPSs) with the DR events of various intensities has also been examined. Major portion of the rainfall over these regions during the season was received in the form of medium rainfall (≥5-100 mm) or moderate rainfall (MR) events. The mean seasonal cycle of the daily frequency of heavy rainfall (HR) (≥100-150 mm) or HR events and very heavy rainfall (VHR) (≥150 mm) or VHR events over each of the four regions showed peak at different parts of the season. The peak in the mean daily HR and VHR events occurred during middle of July to middle of August over SCI, during late part of June to early part of July over NCI, during middle of June to early July over NEI, and during late June to middle July over WC. Significant long term trends in the frequency and intensity of the DR events were observed in all the four geographical regions. Whereas the intensity of the DR events over all the four regions showed significant positive trends during the second half and the total period, the signs and magnitude of the long term trends in the frequency of the various categories of DR events during the total period and its two halves differed from the region to the region. The trend analysis revealed increased disaster potential for instant flooding over SCI and NCI during the recent years due to significant increasing trends in the frequency (areal coverage) and intensity of the HR and VHR events during the recent half of the data period. However, there is increased disaster potential over NEI and WC due to the increasing trends in the intensity of the rainfall events. There is strong association between the LPS days and the DR events in both the spatial and temporal scales. In all the four regions, the contributions to the total MR events by the LPS days were nearly equal. On the other hand, there was relatively large regional difference in the number of combined HR and VHR events associated with LPS days particularly that associated with monsoon depression (LPS stronger than monsoon depression) days. The possible reasons for the same have also been discussed. The increasing trend in the monsoon low (low pressure) days post 1970s is the primary reason for the observed significant increasing trends in the HR and VHR events over SCI and NCI and decreasing trend in HR events over NEI during the recent half (1956-2010). This is in spite of the decreasing trend in the MD days.
NASA Astrophysics Data System (ADS)
Hussain, Y.; Satgé, F.; Bonnet, M. P.; Pillco, R.; Molina, J.; Timouk, F.; Roig, H.; Martinez-Carvajal, H., Sr.; Gulraiz, A.
2016-12-01
Arid regions are sensitive to rainfall variations which are expressed in the form of flooding and droughts. Unfortunately, those regions are poorly monitored and high quality rainfall estimates are still needed. The Global Precipitation Measurement (GPM) mission released two new satellite rainfall products named Integrated Multisatellite Retrievals GPM (IMERG) and Global Satellite Mapping of Precipitation version 6 (GSMaP-v6) bringing the possibility of accurate rainfall monitoring over these countries. This study assessed both products at monthly scale over Pakistan considering dry and wet season over the 4 main climatic zones from 2014 to 2016. With similar climatic conditions, the Altiplano region of Bolivia is considered to quantify the influence of big lakes (Titicaca and Poopó) in rainfall estimates. For comparison, the widely used TRMM-Multisatellite Precipitation Analysis 3B43 (TMPA-3B43) version 7 is also involved in the analysis to observe the potential enhancement in rainfall estimate brought by GPM products. Rainfall estimates derived from 110 rain-gauges are used as reference to compare IMERG, GSMaP-v6 and TMPA-3B43 at the 0.1° and 0.25° spatial resolution. Over both regions, IMERG and GSMaP-v6 capture the spatial pattern of precipitation as well as TMPA-3B43. All products tend to over estimates rainfall over very arid regions. This feature is even more marked during dry season. However, during this season, both reference and estimated rainfall remain very low and do not impact seasonal water budget computation. On a general way, IMERG slightly outperforms TMPA-3B43 and GSMaP-v6 which provides the less accurate rainfall estimate. The TMPA-3B43 rainfall underestimation previously found over Lake Titicaca is still observed in IMERG estimates. However, GSMaP-v6 considerably decreases the underestimation providing the most accurate rainfall estimate over the lake. MOD11C3 Land Surface Temperature (LST) and ASTER Global Emissivity Dataset reveal strong LST and Emissivity anomaly over the lake in comparison with surrounding lands. These anomalies should explain rainfall underestimations tendency over this lake. LST and Emissivity of lake Poopó are closest to surrounding land and the slight observed rainfall overestimation appears to be related to the very arid context of the region.
NASA Astrophysics Data System (ADS)
Perdigón, J.; Romero-Centeno, R.; Barrett, B.; Ordoñez-Perez, P.
2017-12-01
In many regions of Mexico, precipitation occurs in a very well defined annual cycle with peaks in May-June and September-October and a relative minimum in the middle of the rainy season known as the midsummer drought (MSD). The MJO is the most important mode of intraseasonal variability in the tropics, and, although some studies have shown its evident influence on summer precipitation in Mexico, its role in modulating the bimodal pattern of the summer precipitation cycle is still an open question. The spatio-temporal variability of summer precipitation in Mexico is analyzed through composite analysis according to the phases of the MJO, using the very high resolution CHIRPS precipitation data base and gridded data from the CFSR reanalysis to analyzing the MJO influence on the atmospheric circulation over Mexico and its adjacent basins. In general, during MJO phases 8-2 (4-6) rainfall is above-normal (below-normal), although, in some cases, the summer rainfall patterns during the same phase present considerable differences. The atmospheric circulation shows low (high) troposphere southwesterly (northeasterly) wind anomalies in southern Mexico under wetter conditions compared with climatological patterns, while the inverse pattern is observed under drier conditions. Composite anomalies of several variables also agreed well with those rainfall anomalies. Finally, a MJO complete cycle that reinforces (weakens) the bimodal pattern of summer rainfall in Mexico was found.
Water balance dynamics in the Nile Basin
Senay, Gabriel B.; Asante, Kwabena; Artan, Guleid A.
2009-01-01
Understanding the temporal and spatial dynamics of key water balance components of the Nile River will provide important information for the management of its water resources. This study used satellite-derived rainfall and other key weather variables derived from the Global Data Assimilation System to estimate and map the distribution of rainfall, actual evapotranspiration (ETa), and runoff. Daily water balance components were modelled in a grid-cell environment at 0·1 degree (∼10 km) spatial resolution for 7 years from 2001 through 2007. Annual maps of the key water balance components and derived variables such as runoff and ETa as a percent of rainfall were produced. Generally, the spatial patterns of rainfall and ETa indicate high values in the upstream watersheds (Uganda, southern Sudan, and southwestern Ethiopia) and low values in the downstream watersheds. However, runoff as a percent of rainfall is much higher in the Ethiopian highlands around the Blue Nile subwatershed. The analysis also showed the possible impact of land degradation in the Ethiopian highlands in reducing ETa magnitudes despite the availability of sufficient rainfall. Although the model estimates require field validation for the different subwatersheds, the runoff volume estimate for the Blue Nile subwatershed is within 7·0% of a figure reported from an earlier study. Further research is required for a thorough validation of the results and their integration with ecohydrologic models for better management of water and land resources in the various Nile Basin ecosystems.
NASA Astrophysics Data System (ADS)
Rakesh, V.; Kantharao, B.
2017-03-01
Data assimilation is considered as one of the effective tools for improving forecast skill of mesoscale models. However, for optimum utilization and effective assimilation of observations, many factors need to be taken into account while designing data assimilation methodology. One of the critical components that determines the amount and propagation observation information into the analysis, is model background error statistics (BES). The objective of this study is to quantify how BES in data assimilation impacts on simulation of heavy rainfall events over a southern state in India, Karnataka. Simulations of 40 heavy rainfall events were carried out using Weather Research and Forecasting Model with and without data assimilation. The assimilation experiments were conducted using global and regional BES while the experiment with no assimilation was used as the baseline for assessing the impact of data assimilation. The simulated rainfall is verified against high-resolution rain-gage observations over Karnataka. Statistical evaluation using several accuracy and skill measures shows that data assimilation has improved the heavy rainfall simulation. Our results showed that the experiment using regional BES outperformed the one which used global BES. Critical thermo-dynamic variables conducive for heavy rainfall like convective available potential energy simulated using regional BES is more realistic compared to global BES. It is pointed out that these results have important practical implications in design of forecast platforms while decision-making during extreme weather events
Simulated transient thermal infrared emissions of forest canopies during rainfall events
NASA Astrophysics Data System (ADS)
Ballard, Jerrell R.; Hawkins, William R.; Howington, Stacy E.; Kala, Raju V.
2017-05-01
We describe the development of a centimeter-scale resolution simulation framework for a theoretical tree canopy that includes rainfall deposition, evaporation, and thermal infrared emittance. Rainfall is simulated as discrete raindrops with specified rate. The individual droplets will either fall through the canopy and intersect the ground; adhere to a leaf; bounce or shatter on impact with a leaf resulting in smaller droplets that are propagated through the canopy. Surface physical temperatures are individually determined by surface water evaporation, spatially varying within canopy wind velocities, solar radiation, and water vapor pressure. Results are validated by theoretical canopy gap and gross rainfall interception models.
NASA Astrophysics Data System (ADS)
Stephan, Claudia Christine; Klingaman, Nicholas Pappas; Vidale, Pier Luigi; Turner, Andrew George; Demory, Marie-Estelle; Guo, Liang
2018-06-01
Interannual rainfall variability in China affects agriculture, infrastructure and water resource management. To improve its understanding and prediction, many studies have associated precipitation variability with particular causes for specific seasons and regions. Here, a consistent and objective method, Empirical Orthogonal Teleconnection (EOT) analysis, is applied to 1951-2007 high-resolution precipitation observations over China in all seasons. Instead of maximizing the explained space-time variance, the method identifies regions in China that best explain the temporal variability in domain-averaged rainfall. The EOT method is validated by the reproduction of known relationships to the El Niño Southern Oscillation (ENSO): high positive correlations with ENSO are found in eastern China in winter, along the Yangtze River in summer, and in southeast China during spring. New findings include that wintertime rainfall variability along the southeast coast is associated with anomalous convection over the tropical eastern Atlantic and communicated to China through a zonal wavenumber-three Rossby wave. Furthermore, spring rainfall variability in the Yangtze valley is related to upper-tropospheric midlatitude perturbations that are part of a Rossby wave pattern with its origin in the North Atlantic. A circumglobal wave pattern in the northern hemisphere is also associated with autumn precipitation variability in eastern areas. The analysis is objective, comprehensive, and produces timeseries that are tied to specific locations in China. This facilitates the interpretation of associated dynamical processes, is useful for understanding the regional hydrological cycle, and allows the results to serve as a benchmark for assessing general circulation models.
El Niño and the shifting geography of cholera in Africa.
Moore, Sean M; Azman, Andrew S; Zaitchik, Benjamin F; Mintz, Eric D; Brunkard, Joan; Legros, Dominique; Hill, Alexandra; McKay, Heather; Luquero, Francisco J; Olson, David; Lessler, Justin
2017-04-25
The El Niño Southern Oscillation (ENSO) and other climate patterns can have profound impacts on the occurrence of infectious diseases ranging from dengue to cholera. In Africa, El Niño conditions are associated with increased rainfall in East Africa and decreased rainfall in southern Africa, West Africa, and parts of the Sahel. Because of the key role of water supplies in cholera transmission, a relationship between El Niño events and cholera incidence is highly plausible, and previous research has shown a link between ENSO patterns and cholera in Bangladesh. However, there is little systematic evidence for this link in Africa. Using high-resolution mapping techniques, we find that the annual geographic distribution of cholera in Africa from 2000 to 2014 changes dramatically, with the burden shifting to continental East Africa-and away from Madagascar and portions of southern, Central, and West Africa-where almost 50,000 additional cases occur during El Niño years. Cholera incidence during El Niño years was higher in regions of East Africa with increased rainfall, but incidence was also higher in some areas with decreased rainfall, suggesting a complex relationship between rainfall and cholera incidence. Here, we show clear evidence for a shift in the distribution of cholera incidence throughout Africa in El Niño years, likely mediated by El Niño's impact on local climatic factors. Knowledge of this relationship between cholera and climate patterns coupled with ENSO forecasting could be used to notify countries in Africa when they are likely to see a major shift in their cholera risk.
NASA Astrophysics Data System (ADS)
Zhao, Guangju; Zhai, Jianqing; Tian, Peng; Zhang, Limei; Mu, Xingmin; An, Zhengfeng; Han, Mengwei
2017-08-01
Assessing regional patterns and trends in extreme precipitation is crucial for facilitating flood control and drought adaptation because extreme climate events have more damaging impacts on society and ecosystems than simple shifts in the mean values. In this study, we employed daily precipitation data from 231 climate stations spanning 1961 to 2014 to explore the changes in precipitation extremes on the Loess Plateau, China. Nine of the 12 extreme precipitation indices suggested decreasing trends, and only the annual total wet-day precipitation (PRCPTOT) and R10 declined significantly: - 0.69 mm/a and - 0.023 days/a at the 95% confidence level. The spatial patterns in all of the extreme precipitation indices indicated mixed trends on the Loess Plateau, with decreasing trends in the precipitation extremes at the majority of the stations examined in the Fen-Wei River valley and high-plain plateau. Most of extreme precipitation indices suggested apparent regional differences, whereas R25 and R20 had spatially similar patterns on the Loess Plateau, with many stations revealing no trends. In addition, we found a potential decreasing trend in rainfall amounts and rainy days and increasing trends in rainfall intensities and storm frequencies in some regions due to increasing precipitation events in recent years. The relationships between extreme rainfall events and atmospheric circulation indices suggest that the weakening trend in the East Asia summer monsoon has limited the northward extension of the rainfall belt to northern China, thereby leading to a decrease in rainfall on the Loess Plateau.
NASA Astrophysics Data System (ADS)
Pecoraro, Gaetano; Calvello, Michele
2017-04-01
In Italy rainfall-induced landslides pose a significant and widespread hazard, resulting in a large number of casualties and enormous economic damages. Mitigation of such a diffuse risk cannot be attained with structural measures only. With respect to the risk to life, early warning systems represent a viable and useful tool for landslide risk mitigation over wide areas. Inventories of rainfall-induced landslides are critical to support investigations of where and when landslides have happened and may occur in the future, i.e. to establish reliable correlations between rainfall characteristics and landslide occurrences. In this work a parametric study has been conducted to evaluate the performance of correlation models between rainfall and landslides over the Italian territory using the "FraneItalia" database, an inventory of landslides retrieved from online Italian journalistic news. The information reported for each record of this database always include: the site of occurrence of the landslides, the date of occurrence, the source of the news. Multiple landslides occurring in the same date, within the same province or region, are inventoried together in one single record of the database, in this case also reporting the number of landslides of the event. Each record the database may also include, if the related information is available: hour of occurrence; typology, volume and material of the landslide; activity phase; effects on people, structures, infrastructures, cars or other elements. The database currently contains six complete years of data (2010-2015), including more than 4000 landslide reports, most of them triggered by rainfall. For the aim of this study, different rainfall-landslides correlation models have been tested by analysing the reported landslides, within all the 144 zones identified by the national civil protection for weather-related warnings in Italy, in relation to satellite-based precipitations estimates from the Global Precipitation Measurement (GPM) NASA mission. This remote sensing database contains gridded precipitation and precipitation-error estimates, with a half-hour temporal resolution and a 0.10-degree spatial resolution, covering most of the earth starting from 2014. It is well known that satellite estimates of rainfall have some limitations in resolving specific rainfall features (e.g., shallow orographic events and short-duration, high-intensity events), yet the temporal and spatial accuracy of the GPM data may be considered adequate in relation to the scale of the analysis and the size of the warning zones used for this study. The results of the parametric analysis conducted herein, although providing some indications on the most relevant rainfall conditions leading to widespread landsliding over a warning zone, must be considered preliminary as they show a very heterogeneous behaviour of the employed rainfall-based warning models over the Italian territory. Nevertheless, they clearly show the strong potential of the continuous multi-year landslide records available from the "FraneItalia" database as an important source of information to evaluate the performance of warning models at regional scale throughout Italy.
SDCLIREF - A sub-daily gridded reference dataset
NASA Astrophysics Data System (ADS)
Wood, Raul R.; Willkofer, Florian; Schmid, Franz-Josef; Trentini, Fabian; Komischke, Holger; Ludwig, Ralf
2017-04-01
Climate change is expected to impact the intensity and frequency of hydrometeorological extreme events. In order to adequately capture and analyze extreme rainfall events, in particular when assessing flood and flash flood situations, data is required at high spatial and sub-daily resolution which is often not available in sufficient density and over extended time periods. The ClimEx project (Climate Change and Hydrological Extreme Events) addresses the alteration of hydrological extreme events under climate change conditions. In order to differentiate between a clear climate change signal and the limits of natural variability, unique Single-Model Regional Climate Model Ensembles (CRCM5 driven by CanESM2, RCP8.5) were created for a European and North-American domain, each comprising 50 members of 150 years (1951-2100). In combination with the CORDEX-Database, this newly created ClimEx-Ensemble is a one-of-a-kind model dataset to analyze changes of sub-daily extreme events. For the purpose of bias-correcting the regional climate model ensembles as well as for the baseline calibration and validation of hydrological catchment models, a new sub-daily (3h) high-resolution (500m) gridded reference dataset (SDCLIREF) was created for a domain covering the Upper Danube and Main watersheds ( 100.000km2). As the sub-daily observations lack a continuous time series for the reference period 1980-2010, the need for a suitable method to bridge the gap of the discontinuous time series arouse. The Method of Fragments (Sharma and Srikanthan (2006); Westra et al. (2012)) was applied to transform daily observations to sub-daily rainfall events to extend the time series and densify the station network. Prior to applying the Method of Fragments and creating the gridded dataset using rigorous interpolation routines, data collection of observations, operated by several institutions in three countries (Germany, Austria, Switzerland), and the subsequent quality control of the observations was carried out. Among others, the quality control checked for steps, extensive dry seasons, temporal consistency and maximum hourly values. The resulting SDCLIREF dataset provides a robust precipitation reference for hydrometeorological applications in unprecedented high spatio-temporal resolution. References: Sharma, A.; Srikanthan, S. (2006): Continuous Rainfall Simulation: A Nonparametric Alternative. In: 30th Hydrology and Water Resources Symposium 4-7 December 2006, Launceston, Tasmania. Westra, S.; Mehrotra, R.; Sharma, A.; Srikanthan, R. (2012): Continuous rainfall simulation. 1. A regionalized subdaily disaggregation approach. In: Water Resour. Res. 48 (1). DOI: 10.1029/2011WR010489.
On the properties of stochastic intermittency in rainfall processes.
Molini, A; La, Barbera P; Lanza, L G
2002-01-01
In this work we propose a mixed approach to deal with the modelling of rainfall events, based on the analysis of geometrical and statistical properties of rain intermittency in time, combined with the predictability power derived from the analysis of no-rain periods distribution and from the binary decomposition of the rain signal. Some recent hypotheses on the nature of rain intermittency are reviewed too. In particular, the internal intermittent structure of a high resolution pluviometric time series covering one decade and recorded at the tipping bucket station of the University of Genova is analysed, by separating the internal intermittency of rainfall events from the inter-arrival process through a simple geometrical filtering procedure. In this way it is possible to associate no-rain intervals with a probability distribution both in virtue of their position within the event and their percentage. From this analysis, an invariant probability distribution for the no-rain periods within the events is obtained at different aggregation levels and its satisfactory agreement with a typical extreme value distribution is shown.
W-band spaceborne radar observations of atmospheric river events
NASA Astrophysics Data System (ADS)
Matrosov, S. Y.
2010-12-01
While the main objective of the world first W-band radar aboard the CloudSat satellite is to provide vertically resolved information on clouds, it proved to be a valuable tool for observing precipitation. The CloudSat radar is generally able to resolve precipitating cloud systems in their vertical entirety. Although measurements from the liquid hydrometer layer containing rainfall are strongly attenuated, special retrieval approaches can be used to estimate rainfall parameters. These approaches are based on vertical gradients of observed radar reflectivity factor rather than on absolute estimates of reflectivity. Concurrent independent estimations of ice cloud parameters in the same vertical column allow characterization of precipitating systems and provide information on coupling between clouds and rainfall they produce. The potential of CloudSat for observations atmospheric river events affecting the West Coast of North America is evaluated. It is shown that spaceborne radar measurements can provide high resolution information on the height of the freezing level thus separating areas of rainfall and snowfall. CloudSat precipitation rate estimates complement information from the surface-based radars. Observations of atmospheric rivers at different locations above the ocean and during landfall help to understand evolutions of atmospheric rivers and their structures.
Accounting for rainfall evaporation using dual-polarization radar and mesoscale model data
NASA Astrophysics Data System (ADS)
Pallardy, Quinn; Fox, Neil I.
2018-02-01
Implementation of dual-polarization radar should allow for improvements in quantitative precipitation estimates due to dual-polarization capability allowing for the retrieval of the second moment of the gamma drop size distribution. Knowledge of the shape of the DSD can then be used in combination with mesoscale model data to estimate the motion and evaporation of each size of drop falling from the height at which precipitation is observed by the radar to the surface. Using data from Central Missouri at a range between 130 and 140 km from the operational National Weather Service radar a rain drop tracing scheme was developed to account for the effects of evaporation, where individual raindrops hitting the ground were traced to the point in space and time where they interacted with the radar beam. The results indicated evaporation played a significant role in radar rainfall estimation in situations where the atmosphere was relatively dry. Improvements in radar estimated rainfall were also found in these situations by accounting for evaporation. The conclusion was made that the effects of raindrop evaporation were significant enough to warrant further research into the inclusion high resolution model data in the radar rainfall estimation process for appropriate locations.
NASA Astrophysics Data System (ADS)
Zhu, Dehua; Echendu, Shirley; Xuan, Yunqing; Webster, Mike; Cluckie, Ian
2016-11-01
Impact-focused studies of extreme weather require coupling of accurate simulations of weather and climate systems and impact-measuring hydrological models which themselves demand larger computer resources. In this paper, we present a preliminary analysis of a high-performance computing (HPC)-based hydrological modelling approach, which is aimed at utilizing and maximizing HPC power resources, to support the study on extreme weather impact due to climate change. Here, four case studies are presented through implementation on the HPC Wales platform of the UK mesoscale meteorological Unified Model (UM) with high-resolution simulation suite UKV, alongside a Linux-based hydrological model, Hydrological Predictions for the Environment (HYPE). The results of this study suggest that the coupled hydro-meteorological model was still able to capture the major flood peaks, compared with the conventional gauge- or radar-driving forecast, but with the added value of much extended forecast lead time. The high-resolution rainfall estimation produced by the UKV performs similarly to that of radar rainfall products in the first 2-3 days of tested flood events, but the uncertainties particularly increased as the forecast horizon goes beyond 3 days. This study takes a step forward to identify how the online mode approach can be used, where both numerical weather prediction and the hydrological model are executed, either simultaneously or on the same hardware infrastructures, so that more effective interaction and communication can be achieved and maintained between the models. But the concluding comments are that running the entire system on a reasonably powerful HPC platform does not yet allow for real-time simulations, even without the most complex and demanding data simulation part.
Precipitation Characteristics in Tropical Africa Using Satellite and In-Situ Observations
NASA Technical Reports Server (NTRS)
Dezfuli, Amin; Ichoku, Charles; Huffman, George; Mohr, Karen
2017-01-01
Tropical Africa receives nearly all its precipitation as a result of convection. The characteristics of rain-producing systems in this region, despite their crucial role in regional and global circulation, have not been well-understood. This is mainly due to the lack of in situ observations. Here, we have used precipitation records from the Trans-African Hydro-Meteorological Observatory (TAHMO) to improve our knowledge about the rainfall systems in the region, and to validate the recently-released IMERG precipitation product. The high temporal resolution of the gauge data has allowed us to identify three classes of rain events based on their duration and intensity. The contribution of each class to the total rainfall and the favorable surface atmospheric conditions for each class have been examined. As IMERG aims to continue the legacy of its predecessor, TMPA, and provide higher resolution data, continent-wide comparisons are made between these two products. IMERG, due to its improved temporal resolution, shows some advantages over TMPA in capturing the diurnal cycle and propagation of the meso-scale convective systems. However, the performance of the two satellite-based products varies by season, region and the evaluation statistics. The results of this study serve as a basis for our ongoing work on the impacts of biomass burning on precipitation processes in Africa.
NASA Astrophysics Data System (ADS)
Kogure, Tetsuya; Okuda, Yudai
2018-05-01
Distributed fiber optic sensing with Rayleigh backscattering, which has been recognized as a novel technique for measuring differences in temperature or strain, was adopted in a borehole to a depth of 16 m in an actual landslide to detect a vertical profile of strain changes. Strain changes were measured every 6 hr from 19 June 2017 to 18 October 2017 with a spatial resolution of 10 cm and strain resolution of 1.87 μɛ. The measurements provided a clear-cut vertical profile of the strain changes caused by rainfalls that cannot be detected by conventional methods. The results show that there are two types of deformation in the landslide mass: (1) sliding at the boundary between tuff and mudstone and (2) creep in mudstone layers. Activation of deeper sections of the landslide by heavy rainfalls has also been detected.
The Impact of TRMM on Mesoscale Model Simulation of Super Typhoon Paka
NASA Technical Reports Server (NTRS)
Tao, W.-K.; Jia, Y.; Halverson, J.; Hou, A.; Olson, W.; Rodgers, E.; Simpson, J.
1999-01-01
Tropical cyclone Paka formed during the first week of December 1997 and underwent three periods of rapid intensification over the following two weeks. During one of these periods, which initiated early on December 10, Paka's Dvorak-measured windspeed increased from 23 to 60 m/s over a 48-hr period. On December 18, during the last rapid deepening episode, Paka became a supertyphoon with a maximum wind speed of about 80 m/s. In this study, the Penn State/NCAR Mesoscale Model (MM5) with improved physics (i.e., cloud microphysics, radiation, land-soil-vegetation-surface processes, and TOGA COARE flux scheme) and a multiple level nesting technique (135, 45 and 15 km horizontal resolution) will be used to simulate supertyphoon Paka. We performed two runs initialized with Goddard Earth Observing System (GEOS) data sets. The first GEOS data set does not incorporate either TRMM (tropical rainfall measuring mission satellite) or SSM/I (sensor microwave imager) observed rainfall fields into the GEOS's assimilation system while the second one does. Preliminary results show that the MM5 simulated surface pressure deepened by more than 25 mb (45 km resolution domain) in the run initialized with the GEOS data set incorporating TRMM and SSM/I derived rainfall, compared to the one initialized without. However, the track and precipitation patterns are quite similar between the runs. In our presentation, we will show the impact of TRMM rainfall upon the MM5 simulation of Paka at various horizontal resolutions. We will also examine the physical processes associated with initial explosive development by comparing MM5 simulated rainfall and latent heat release. In addition, budget (vorticity, PV, momentum and heat) calculations and sensitivity tests will be performed to examine the upper-tropospheric and SST mechanisms responsible for the explosive development of Paka.
NASA Astrophysics Data System (ADS)
McGuire, Luke A.; Rengers, Francis K.; Kean, Jason W.; Staley, Dennis M.
2017-07-01
Postwildfire debris flows are frequently triggered by runoff following high-intensity rainfall, but the physical mechanisms by which water-dominated flows transition to debris flows are poorly understood relative to debris flow initiation from shallow landslides. In this study, we combined a numerical model with high-resolution hydrologic and geomorphic data sets to test two different hypotheses for debris flow initiation during a rainfall event that produced numerous debris flows within a recently burned drainage basin. Based on simulations, large volumes of sediment eroded from the hillslopes were redeposited within the channel network throughout the storm, leading to the initiation of numerous debris flows as a result of the mass failure of sediment dams that built up within the channel. More generally, results provide a quantitative framework for assessing the potential of runoff-generated debris flows based on sediment supply and hydrologic conditions.
McGuire, Luke; Rengers, Francis K.; Kean, Jason W.; Staley, Dennis M.
2017-01-01
Postwildfire debris flows are frequently triggered by runoff following high-intensity rainfall, but the physical mechanisms by which water-dominated flows transition to debris flows are poorly understood relative to debris flow initiation from shallow landslides. In this study, we combined a numerical model with high-resolution hydrologic and geomorphic data sets to test two different hypotheses for debris flow initiation during a rainfall event that produced numerous debris flows within a recently burned drainage basin. Based on simulations, large volumes of sediment eroded from the hillslopes were redeposited within the channel network throughout the storm, leading to the initiation of numerous debris flows as a result of the mass failure of sediment dams that built up within the channel. More generally, results provide a quantitative framework for assessing the potential of runoff-generated debris flows based on sediment supply and hydrologic conditions.
Transfer of uncertainty of space-borne high resolution rainfall products at ungauged regions
NASA Astrophysics Data System (ADS)
Tang, Ling
Hydrologically relevant characteristics of high resolution (˜ 0.25 degree, 3 hourly) satellite rainfall uncertainty were derived as a function of season and location using a six year (2002-2007) archive of National Aeronautics and Space Administration (NASA)'s Tropical Rainfall Measuring Mission (TRMM) Multi-satellite Precipitation Analysis (TMPA) precipitation data. The Next Generation Radar (NEXRAD) Stage IV rainfall data over the continental United States was used as ground validation (GV) data. A geostatistical mapping scheme was developed and tested for transfer (i.e., spatial interpolation) of uncertainty information from GV regions to the vast non-GV regions by leveraging the error characterization work carried out in the earlier step. The open question explored here was, "If 'error' is defined on the basis of independent ground validation (GV) data, how are error metrics estimated for a satellite rainfall data product without the need for much extensive GV data?" After a quantitative analysis of the spatial and temporal structure of the satellite rainfall uncertainty, a proof-of-concept geostatistical mapping scheme (based on the kriging method) was evaluated. The idea was to understand how realistic the idea of 'transfer' is for the GPM era. It was found that it was indeed technically possible to transfer error metrics from a gauged to an ungauged location for certain error metrics and that a regionalized error metric scheme for GPM may be possible. The uncertainty transfer scheme based on a commonly used kriging method (ordinary kriging) was then assessed further at various timescales (climatologic, seasonal, monthly and weekly), and as a function of the density of GV coverage. The results indicated that if a transfer scheme for estimating uncertainty metrics was finer than seasonal scale (ranging from 3-6 hourly to weekly-monthly), the effectiveness for uncertainty transfer worsened significantly. Next, a comprehensive assessment of different kriging methods for spatial transfer (interpolation) of error metrics was performed. Three kriging methods for spatial interpolation are compared, which are: ordinary kriging (OK), indicator kriging (IK) and disjunctive kriging (DK). Additional comparison with the simple inverse distance weighting (IDW) method was also performed to quantify the added benefit (if any) of using geostatistical methods. The overall performance ranking of the kriging methods was found to be as follows: OK=DK > IDW > IK. Lastly, various metrics of satellite rainfall uncertainty were identified for two large continental landmasses that share many similar Koppen climate zones, United States and Australia. The dependence of uncertainty as a function of gauge density was then investigated. The investigation revealed that only the first and second ordered moments of error are most amenable to a Koppen-type climate type classification in different continental landmasses.
Multi-century cool- and warm-season rainfall reconstructions for Australia's major climatic regions
NASA Astrophysics Data System (ADS)
Freund, Mandy; Henley, Benjamin J.; Karoly, David J.; Allen, Kathryn J.; Baker, Patrick J.
2017-11-01
Australian seasonal rainfall is strongly affected by large-scale ocean-atmosphere climate influences. In this study, we exploit the links between these precipitation influences, regional rainfall variations, and palaeoclimate proxies in the region to reconstruct Australian regional rainfall between four and eight centuries into the past. We use an extensive network of palaeoclimate records from the Southern Hemisphere to reconstruct cool (April-September) and warm (October-March) season rainfall in eight natural resource management (NRM) regions spanning the Australian continent. Our bi-seasonal rainfall reconstruction aligns well with independent early documentary sources and existing reconstructions. Critically, this reconstruction allows us, for the first time, to place recent observations at a bi-seasonal temporal resolution into a pre-instrumental context, across the entire continent of Australia. We find that recent 30- and 50-year trends towards wetter conditions in tropical northern Australia are highly unusual in the multi-century context of our reconstruction. Recent cool-season drying trends in parts of southern Australia are very unusual, although not unprecedented, across the multi-century context. We also use our reconstruction to investigate the spatial and temporal extent of historical drought events. Our reconstruction reveals that the spatial extent and duration of the Millennium Drought (1997-2009) appears either very much below average or unprecedented in southern Australia over at least the last 400 years. Our reconstruction identifies a number of severe droughts over the past several centuries that vary widely in their spatial footprint, highlighting the high degree of diversity in historical droughts across the Australian continent. We document distinct characteristics of major droughts in terms of their spatial extent, duration, intensity, and seasonality. Compared to the three largest droughts in the instrumental period (Federation Drought, 1895-1903; World War II Drought, 1939-1945; and the Millennium Drought, 1997-2005), we find that the historically documented Settlement Drought (1790-1793), Sturt's Drought (1809-1830) and the Goyder Line Drought (1861-1866) actually had more regionalised patterns and reduced spatial extents. This seasonal rainfall reconstruction provides a new opportunity to understand Australian rainfall variability by contextualising severe droughts and recent trends in Australia.
Verdin, Andrew; Funk, Christopher C.; Rajagopalan, Balaji; Kleiber, William
2016-01-01
Robust estimates of precipitation in space and time are important for efficient natural resource management and for mitigating natural hazards. This is particularly true in regions with developing infrastructure and regions that are frequently exposed to extreme events. Gauge observations of rainfall are sparse but capture the precipitation process with high fidelity. Due to its high resolution and complete spatial coverage, satellite-derived rainfall data are an attractive alternative in data-sparse regions and are often used to support hydrometeorological early warning systems. Satellite-derived precipitation data, however, tend to underrepresent extreme precipitation events. Thus, it is often desirable to blend spatially extensive satellite-derived rainfall estimates with high-fidelity rain gauge observations to obtain more accurate precipitation estimates. In this research, we use two different methods, namely, ordinary kriging and κ-nearest neighbor local polynomials, to blend rain gauge observations with the Climate Hazards Group Infrared Precipitation satellite-derived precipitation estimates in data-sparse Central America and Colombia. The utility of these methods in producing blended precipitation estimates at pentadal (five-day) and monthly time scales is demonstrated. We find that these blending methods significantly improve the satellite-derived estimates and are competitive in their ability to capture extreme precipitation.
Flood of September 2008 in Northwestern Indiana
Fowler, Kathleen K.; Kim, Moon H.; Menke, Chad D.; Arvin, Donald V.
2010-01-01
During September 12-15, 2008, rainfall ranging from 2 to more than 11 inches fell on northwestern Indiana. The rainfall resulted in extensive flooding on many streams within the Lake Michigan and Kankakee River Basins during September 12-18, causing two deaths, evacuation of hundreds of residents, and millions of dollars of damage to residences, businesses, and infrastructure. In all, six counties in northwestern Indiana were declared Federal disaster areas. U.S. Geological Survey (USGS) streamgages at four locations recorded new record peak streamflows as a result of the heavy rainfall. Peak-gage-height data, peak-streamflow data, annual exceedance probabilities, and recurrence intervals are tabulated in this report for 10 USGS streamgages in northwestern Indiana. Recurrence intervals of flood-peak streamflows were estimated to be greater than 100 years at six streamgages. Because flooding was particularly severe in the communities of Munster, Dyer, Hammond, Highland, Gary, Lake Station, Hobart, Schererville, Merrillville, Michiana Shores, and Portage, high-water-park data collected after the flood were tabulated for those communities. Flood peak inundation maps and water-surface profiles for selected streams were made in a geographic information system by combining high-water-mark data with the highest resolution digital elevation model data available.
NASA Astrophysics Data System (ADS)
Duan, Y.; Wilson, A. M.; Barros, A. P.
2014-10-01
A diagnostic analysis of the space-time structure of error in Quantitative Precipitation Estimates (QPE) from the Precipitation Radar (PR) on the Tropical Rainfall Measurement Mission (TRMM) satellite is presented here in preparation for the Integrated Precipitation and Hydrology Experiment (IPHEx) in 2014. IPHEx is the first NASA ground-validation field campaign after the launch of the Global Precipitation Measurement (GPM) satellite. In anticipation of GPM, a science-grade high-density raingauge network was deployed at mid to high elevations in the Southern Appalachian Mountains, USA since 2007. This network allows for direct comparison between ground-based measurements from raingauges and satellite-based QPE (specifically, PR 2A25 V7 using 5 years of data 2008-2013). Case studies were conducted to characterize the vertical profiles of reflectivity and rain rate retrievals associated with large discrepancies with respect to ground measurements. The spatial and temporal distribution of detection errors (false alarm, FA, and missed detection, MD) and magnitude errors (underestimation, UND, and overestimation, OVR) for stratiform and convective precipitation are examined in detail toward elucidating the physical basis of retrieval error. The diagnostic error analysis reveals that detection errors are linked to persistent stratiform light rainfall in the Southern Appalachians, which explains the high occurrence of FAs throughout the year, as well as the diurnal MD maximum at midday in the cold season (fall and winter), and especially in the inner region. Although UND dominates the magnitude error budget, underestimation of heavy rainfall conditions accounts for less than 20% of the total consistent with regional hydrometeorology. The 2A25 V7 product underestimates low level orographic enhancement of rainfall associated with fog, cap clouds and cloud to cloud feeder-seeder interactions over ridges, and overestimates light rainfall in the valleys by large amounts, though this behavior is strongly conditioned by the coarse spatial resolution (5 km) of the terrain topography mask used to remove ground clutter effects. Precipitation associated with small-scale systems (< 25 km2) and isolated deep convection tends to be underestimated, which we attribute to non-uniform beam-filling effects due to spatial averaging of reflectivity at the PR resolution. Mixed precipitation events (i.e., cold fronts and snow showers) fall into OVR or FA categories, but these are also the types of events for which observations from standard ground-based raingauge networks are more likely subject to measurement uncertainty, that is raingauge underestimation errors due to under-catch and precipitation phase. Overall, the space-time structure of the errors shows strong links among precipitation, envelope orography, landform (ridge-valley contrasts), and local hydrometeorological regime that is strongly modulated by the diurnal cycle, pointing to three major error causes that are inter-related: (1) representation of concurrent vertically and horizontally varying microphysics; (2) non uniform beam filling (NUBF) effects and ambiguity in the detection of bright band position; and (3) spatial resolution and ground clutter correction.
NASA Astrophysics Data System (ADS)
Duan, Y.; Wilson, A. M.; Barros, A. P.
2015-03-01
A diagnostic analysis of the space-time structure of error in quantitative precipitation estimates (QPEs) from the precipitation radar (PR) on the Tropical Rainfall Measurement Mission (TRMM) satellite is presented here in preparation for the Integrated Precipitation and Hydrology Experiment (IPHEx) in 2014. IPHEx is the first NASA ground-validation field campaign after the launch of the Global Precipitation Measurement (GPM) satellite. In anticipation of GPM, a science-grade high-density raingauge network was deployed at mid to high elevations in the southern Appalachian Mountains, USA, since 2007. This network allows for direct comparison between ground-based measurements from raingauges and satellite-based QPE (specifically, PR 2A25 Version 7 using 5 years of data 2008-2013). Case studies were conducted to characterize the vertical profiles of reflectivity and rain rate retrievals associated with large discrepancies with respect to ground measurements. The spatial and temporal distribution of detection errors (false alarm, FA; missed detection, MD) and magnitude errors (underestimation, UND; overestimation, OVR) for stratiform and convective precipitation are examined in detail toward elucidating the physical basis of retrieval error. The diagnostic error analysis reveals that detection errors are linked to persistent stratiform light rainfall in the southern Appalachians, which explains the high occurrence of FAs throughout the year, as well as the diurnal MD maximum at midday in the cold season (fall and winter) and especially in the inner region. Although UND dominates the error budget, underestimation of heavy rainfall conditions accounts for less than 20% of the total, consistent with regional hydrometeorology. The 2A25 V7 product underestimates low-level orographic enhancement of rainfall associated with fog, cap clouds and cloud to cloud feeder-seeder interactions over ridges, and overestimates light rainfall in the valleys by large amounts, though this behavior is strongly conditioned by the coarse spatial resolution (5 km) of the topography mask used to remove ground-clutter effects. Precipitation associated with small-scale systems (< 25 km2) and isolated deep convection tends to be underestimated, which we attribute to non-uniform beam-filling effects due to spatial averaging of reflectivity at the PR resolution. Mixed precipitation events (i.e., cold fronts and snow showers) fall into OVR or FA categories, but these are also the types of events for which observations from standard ground-based raingauge networks are more likely subject to measurement uncertainty, that is raingauge underestimation errors due to undercatch and precipitation phase. Overall, the space-time structure of the errors shows strong links among precipitation, envelope orography, landform (ridge-valley contrasts), and a local hydrometeorological regime that is strongly modulated by the diurnal cycle, pointing to three major error causes that are inter-related: (1) representation of concurrent vertically and horizontally varying microphysics; (2) non-uniform beam filling (NUBF) effects and ambiguity in the detection of bright band position; and (3) spatial resolution and ground-clutter correction.
Significant influences of global mean temperature and ENSO on extreme rainfall over Southeast Asia
NASA Astrophysics Data System (ADS)
Villafuerte, Marcelino, II; Matsumoto, Jun
2014-05-01
Along with the increasing concerns on the consequences of global warming, and the accumulating records of disaster related to heavy rainfall events in Southeast Asia, this study investigates whether a direct link can be detected between the rising global mean temperature, as well as the El Niño-Southern Oscillation (ENSO), and extreme rainfall over the region. The maximum likelihood modeling that allows incorporating covariates on the location parameter of the generalized extreme value (GEV) distribution is employed. The GEV model is fitted to annual and seasonal rainfall extremes, which were taken from a high-resolution gauge-based gridded daily precipitation data covering a span of 57 years (1951-2007). Nonstationarities in extreme rainfall are detected over the central parts of Indochina Peninsula, eastern coasts of central Vietnam, northwest of the Sumatra Island, inland portions of Borneo Island, and on the northeastern and southwestern coasts of the Philippines. These nonstationarities in extreme rainfall are directly linked to near-surface global mean temperature and ENSO. In particular, the study reveals that a kelvin increase in global mean temperature anomaly can lead to an increase of 30% to even greater than 45% in annual maximum 1-day rainfall, which were observed pronouncedly over central Vietnam, southern coast of Myanmar, northwestern sections of Thailand, northwestern tip of Sumatra, central portions of Malaysia, and the Visayas island in central Philippines. Furthermore, a pronounced ENSO influence manifested on the seasonal maximum 1-day rainfall; a northward progression of 10%-15% drier condition over Southeast Asia as the El Niño develops from summer to winter is revealed. It is important therefore, to consider the results obtained here for water resources management as well as for adaptation planning to minimize the potential adverse impact of global warming, particularly on extreme rainfall and its associated flood risk over the region. Acknowledgment: This study is supported by the Tokyo Metropolitan Government through its AHRF program.
NASA Astrophysics Data System (ADS)
Tian, Jiyang; Liu, Jia; Wang, Jianhua; Li, Chuanzhe; Yu, Fuliang; Chu, Zhigang
2017-07-01
Mesoscale Numerical Weather Prediction systems can provide rainfall products at high resolutions in space and time, playing an increasingly more important role in water management and flood forecasting. The Weather Research and Forecasting (WRF) model is one of the most popular mesoscale systems and has been extensively used in research and practice. However, for hydrologists, an unsolved question must be addressed before each model application in a different target area. That is, how are the most appropriate combinations of physical parameterisations from the vast WRF library selected to provide the best downscaled rainfall? In this study, the WRF model was applied with 12 designed parameterisation schemes with different combinations of physical parameterisations, including microphysics, radiation, planetary boundary layer (PBL), land-surface model (LSM) and cumulus parameterisations. The selected study areas are two semi-humid and semi-arid catchments located in the Daqinghe River basin, Northern China. The performance of WRF with different parameterisation schemes is tested for simulating eight typical 24-h storm events with different evenness in space and time. In addition to the cumulative rainfall amount, the spatial and temporal patterns of the simulated rainfall are evaluated based on a two-dimensional composed verification statistic. Among the 12 parameterisation schemes, Scheme 4 outperforms the other schemes with the best average performance in simulating rainfall totals and temporal patterns; in contrast, Scheme 6 is generally a good choice for simulations of spatial rainfall distributions. Regarding the individual parameterisations, Single-Moment 6 (WSM6), Yonsei University (YSU), Kain-Fritsch (KF) and Grell-Devenyi (GD) are better choices for microphysics, planetary boundary layers (PBL) and cumulus parameterisations, respectively, in the study area. These findings provide helpful information for WRF rainfall downscaling in semi-humid and semi-arid areas. The methodologies to design and test the combination schemes of parameterisations can also be regarded as a reference for generating ensembles in numerical rainfall predictions using the WRF model.
Godt, J.W.; Baum, R.L.; Savage, W.Z.; Salciarini, D.; Schulz, W.H.; Harp, E.L.
2008-01-01
Application of transient deterministic shallow landslide models over broad regions for hazard and susceptibility assessments requires information on rainfall, topography and the distribution and properties of hillside materials. We survey techniques for generating the spatial and temporal input data for such models and present an example using a transient deterministic model that combines an analytic solution to assess the pore-pressure response to rainfall infiltration with an infinite-slope stability calculation. Pore-pressures and factors of safety are computed on a cell-by-cell basis and can be displayed or manipulated in a grid-based GIS. Input data are high-resolution (1.8??m) topographic information derived from LiDAR data and simple descriptions of initial pore-pressure distribution and boundary conditions for a study area north of Seattle, Washington. Rainfall information is taken from a previously defined empirical rainfall intensity-duration threshold and material strength and hydraulic properties were measured both in the field and laboratory. Results are tested by comparison with a shallow landslide inventory. Comparison of results with those from static infinite-slope stability analyses assuming fixed water-table heights shows that the spatial prediction of shallow landslide susceptibility is improved using the transient analyses; moreover, results can be depicted in terms of the rainfall intensity and duration known to trigger shallow landslides in the study area.
Tree-Ring Reconstruction of Wet Season Rainfall Totals in the Amazon
NASA Astrophysics Data System (ADS)
Stahle, D. W.; Lopez, L.; Granato-Souza, D.; Barbosa, A. C. M. C.; Torbenson, M.; Villalba, R.; Pereira, G. D. A.; Feng, S.; Schongart, J.; Cook, E. R.
2017-12-01
The Amazon Basin is a globally important center of deep atmospheric convection, energy balance, and biodiversity, but only a handful of weather stations in this vast Basin have recorded rainfall measurements for at least 50 years. The available rainfall and river level observations suggest that the hydrologic cycle in the Amazon may have become amplified in the last 40-years, with more extreme rainfall and streamflow seasonality, deeper droughts, and more severe flooding. These changes in the largest hydrological system on earth may be early evidence of the expected consequences of anthropogenic climate change and deforestation in the coming century. Placing these observed and simulated changes in the context of natural climate variability during the late Holocene is a significant challenge for high-resolution paleoclimatology. We have developed exactly dated and well-replicated annual tree-ring chronologies from two native Amazonian tree species (Cedrela sp and Centrolobium microchaete). These moisture sensitive chronologies have been used to compute two reconstructions of wet season rainfall totals, one in the southern Amazon based on Centrolobium and another in the eastern equatorial Amazon using Cedrela. Both reconstructions are over 200-years long and extend the available instrumental observations in each region by over 150-years. These reconstructions are well correlated with the same regional and large-scale climate dynamics that govern the inter-annual variability of the instrumental wet season rainfall totals. Increased multi-decadal variability is reconstructed after 1950 with the Centrolobium chronologies in the southern Amazon. The Cedrela reconstruction from the eastern Amazon exhibits changes in the spatial pattern of correlation with regional rainfall stations and the large-scale sea surface temperature field after 1990 that may be consistent with recent changes in the mean position of the Inter-Tropical Convergence Zone in March over the western Atlantic and South American sector.
Some Precipitation Studies over Andhra Pradesh and the Bay of Bengal using TRMM and SSMI data
NASA Astrophysics Data System (ADS)
Rao, S. Ramalingeswara; Krishna, K. Muni; Kumar, Bhanu
2007-07-01
One of the most difficult issues in modeling the global atmosphere and climate by General Circulation Models is the simulation and initialization of precipitation processes and at the same time rainfall is most important meteorological parameter that effects India's economy. An attempt is made in the present study to evaluate diurnal variation of rain rates over the Bay of Bengal (BoB) for the months June through December during 1999-2002. TMI rainfall product of Wentz and Spencer and SSMI data sets were used in this study. Mean hourly rain rates were calculated over the BoB (10°-15° N and 85°-95°E) and discussed; this study highlights that maximum rain rates are observed in the afternoons during summer monsoon seasons. Secondly mean monthly annual cycle of rainfall is prepared using 3B42RT merged rain product and compared with mean monthly India Meteorological Department (IMD) data for the study period over Andhra Pradesh (A.P). Time series of daily variations of 3B42RT precipitation and observed real time rainfall data over A.P. for the study period is validated and the relationship between them is statistically significant at 1% level. Similarly mean monthly data prepared from the daily analysis and compared with the IMD mean monthly rainfall maps. The comparison suggests that even with only available real time data from 3B42RT and rain gauge, it is possible to construct usable large-scale rainfall maps on regular latitude-longitude grids. This analysis, which uses a high resolution and more local rain gauge data, is able to produce realistic details of Indian summer monsoon rainfall over the study period.
Forecasting Global Point Rainfall using ECMWF's Ensemble Forecasting System
NASA Astrophysics Data System (ADS)
Pillosu, Fatima; Hewson, Timothy; Zsoter, Ervin; Baugh, Calum
2017-04-01
ECMWF (the European Centre for Medium range Weather Forecasts), in collaboration with the EFAS (European Flood Awareness System) and GLOFAS (GLObal Flood Awareness System) teams, has developed a new operational system that post-processes grid box rainfall forecasts from its ensemble forecasting system to provide global probabilistic point-rainfall predictions. The project attains a higher forecasting skill by applying an understanding of how different rainfall generation mechanisms lead to different degrees of sub-grid variability in rainfall totals. In turn this approach facilitates identification of cases in which very localized extreme totals are much more likely. This approach aims also to improve the rainfall input required in different hydro-meteorological applications. Flash flood forecasting, in particular in urban areas, is a good example. In flash flood scenarios precipitation is typically characterised by high spatial variability and response times are short. In this case, to move beyond radar based now casting, the classical approach has been to use very high resolution hydro-meteorological models. Of course these models are valuable but they can represent only very limited areas, may not be spatially accurate and may give reasonable results only for limited lead times. On the other hand, our method aims to use a very cost-effective approach to downscale global rainfall forecasts to a point scale. It needs only rainfall totals from standard global reporting stations and forecasts over a relatively short period to train it, and it can give good results even up to day 5. For these reasons we believe that this approach better satisfies user needs around the world. This presentation aims to describe two phases of the project: The first phase, already completed, is the implementation of this new system to provide 6 and 12 hourly point-rainfall accumulation probabilities. To do this we use a limited number of physically relevant global model parameters (i.e. convective precipitation ratio, speed of steering winds, CAPE - Convective Available Potential Energy - and solar radiation), alongside the rainfall forecasts themselves, to define the "weather types" that in turn define the expected sub-grid variability. The calibration and computational strategy intrinsic to the system will be illustrated. The quality of the global point rainfall forecasts is also illustrated by analysing recent case studies in which extreme totals and a greatly elevated flash flood risk could be foreseen some days in advance but especially by a longer-term verification that arises out of retrospective global point rainfall forecasting for 2016. The second phase, currently in development, is focussing on the relationships with other relevant geographical aspects, for instance, orography and coastlines. Preliminary results will be presented. These are promising but need further study to fully understand their impact on the spatial distribution of point rainfall totals.
Connecting spatial and temporal scales of tropical precipitation in observations and the MetUM-GA6
NASA Astrophysics Data System (ADS)
Martin, Gill M.; Klingaman, Nicholas P.; Moise, Aurel F.
2017-01-01
This study analyses tropical rainfall variability (on a range of temporal and spatial scales) in a set of parallel Met Office Unified Model (MetUM) simulations at a range of horizontal resolutions, which are compared with two satellite-derived rainfall datasets. We focus on the shorter scales, i.e. from the native grid and time step of the model through sub-daily to seasonal, since previous studies have paid relatively little attention to sub-daily rainfall variability and how this feeds through to longer scales. We find that the behaviour of the deep convection parametrization in this model on the native grid and time step is largely independent of the grid-box size and time step length over which it operates. There is also little difference in the rainfall variability on larger/longer spatial/temporal scales. Tropical convection in the model on the native grid/time step is spatially and temporally intermittent, producing very large rainfall amounts interspersed with grid boxes/time steps of little or no rain. In contrast, switching off the deep convection parametrization, albeit at an unrealistic resolution for resolving tropical convection, results in very persistent (for limited periods), but very sporadic, rainfall. In both cases, spatial and temporal averaging smoothes out this intermittency. On the ˜ 100 km scale, for oceanic regions, the spectra of 3-hourly and daily mean rainfall in the configurations with parametrized convection agree fairly well with those from satellite-derived rainfall estimates, while at ˜ 10-day timescales the averages are overestimated, indicating a lack of intra-seasonal variability. Over tropical land the results are more varied, but the model often underestimates the daily mean rainfall (partly as a result of a poor diurnal cycle) but still lacks variability on intra-seasonal timescales. Ultimately, such work will shed light on how uncertainties in modelling small-/short-scale processes relate to uncertainty in climate change projections of rainfall distribution and variability, with a view to reducing such uncertainty through improved modelling of small-/short-scale processes.
Attribution of extreme rainfall from Hurricane Harvey, August 2017
NASA Astrophysics Data System (ADS)
van der Wiel, K.; van Oldenborgh, G. J.; Sebastian, A.; Singh, R.; Arrighi, J.; Otto, F. E. L.; Haustein, K.; Li, S.; Vecchi, G.; Cullen, H. M.
2017-12-01
During August 25-30, 2017, Hurricane Harvey stalled over Texas and caused extreme precipitation over Houston and the surrounding area, particularly on August 26-28. This resulted in extensive flooding with over 80 fatalities and large economic costs. Using observational datasets and high-resolution global climate model experiments we investigate the return period of this event and to what extent anthropogenic climate change influenced the likelihood and intensity of this type of events. The event definition for the attribution is set by the main impact, flooding in the city of Houston. Most rivers crested on August 28 or 29, driven by intensive rainfall on August 26-28. We therefore use the annual maximum of three-day average precipitation as the event definition. Station data (GHCN-D) and a gridded precipitation product (CPC unified analysis) are used to find the return period of the event and changes in the observed record. To attribute changes to anthropogenic climate change we use time-slice experiments from two high-resolution global climate models (EC-Earth 2.3 and GFDL HiFLOR, both integrated at approximately 25 km). A regional model (HadRM3P) was rejected because of unrealistic modelled extremes. Finally we put the attribution results in context, given local vulnerability and exposure.
NASA Astrophysics Data System (ADS)
Zhou, Z.; Smith, J. A.; Yang, L.; Baeck, M. L.; Liu, S.; Ten Veldhuis, M. C.
2016-12-01
The objective of this study is to develop a broad characterization of land surface and hydrometeorological controls of urban flood frequency. We focus on a collection of "small" urban watersheds (with drainage area ranging from 7 to 200 km2) in Charlotte metropolitan region, North Carolina. These watersheds are contrasted by a variety of land surface properties, such as size, shape, land use/land cover type, impervious coverage pattern, stormwater infrastructure, etc. We carried out empirical analyses based on long-term (15 years), high-resolution (1 15 minutes) instantaneous USGS stream gaging observations as well as bias-corrected, high-resolution (1 km2, 15 min) radar rainfall fields developed through the Hydro-NEXRAD system. Extreme floods in Charlotte urban watersheds are primarily induced by a mixture of flood agents including warm season thunderstorms and tropical cyclones, which ultimately contributed to the upper-tail properties of flood frequency. Flood response in urban watersheds is dominantly dictated by space-time characteristics of rainfall, with relatively significant correlation between runoff and rainfall over more developed watersheds. The roles of antecedent soil moisture and stormwater management infrastructure in flood response are also contrasted across the urban watersheds. The largest variability of flood response, in terms of flood peak and timing, exists in the watershed at a scale of 100 km2. The scale-dependent hydrological response is closely related to the pattern and evolution of urban development across watersheds. Our analyses show the complexities of urban flood response in Charlotte metropolitan region. There are no simple metrics that could perfectly explain the contrasts in flood response across urban watersheds. Future research is directed towards sophisticated modeling studies for a predictive understanding of flood frequency in urban watersheds.
Exploring public databases to characterize urban flood risks in Amsterdam
NASA Astrophysics Data System (ADS)
Gaitan, Santiago; ten Veldhuis, Marie-claire; van de Giesen, Nick
2015-04-01
Cities worldwide are challenged by increasing urban flood risks. Precise and realistic measures are required to decide upon investment to reduce their impacts. Obvious flooding factors affecting flood risk include sewer systems performance and urban topography. However, currently implemented sewer and topographic models do not provide realistic predictions of local flooding occurrence during heavy rain events. Assessing other factors such as spatially distributed rainfall and socioeconomic characteristics may help to explain probability and impacts of urban flooding. Several public databases were analyzed: complaints about flooding made by citizens, rainfall depths (15 min and 100 Ha spatio-temporal resolution), grids describing number of inhabitants, income, and housing price (1Ha and 25Ha resolution); and buildings age. Data analysis was done using Python and GIS programming, and included spatial indexing of data, cluster analysis, and multivariate regression on the complaints. Complaints were used as a proxy to characterize flooding impacts. The cluster analysis, run for all the variables except the complaints, grouped part of the grid-cells of central Amsterdam into a highly differentiated group, covering 10% of the analyzed area, and accounting for 25% of registered complaints. The configuration of the analyzed variables in central Amsterdam coincides with a high complaint count. Remaining complaints were evenly dispersed along other groups. An adjusted R2 of 0.38 in the multivariate regression suggests that explaining power can improve if additional variables are considered. While rainfall intensity explained 4% of the incidence of complaints, population density and building age significantly explained around 20% each. Data mining of public databases proved to be a valuable tool to identify factors explaining variability in occurrence of urban pluvial flooding, though additional variables must be considered to fully explain flood risk variability.
Regionalization of monthly rainfall erosivity patternsin Switzerland
NASA Astrophysics Data System (ADS)
Schmidt, Simon; Alewell, Christine; Panagos, Panos; Meusburger, Katrin
2016-10-01
One major controlling factor of water erosion is rainfall erosivity, which is quantified as the product of total storm energy and a maximum 30 min intensity (I30). Rainfall erosivity is often expressed as R-factor in soil erosion risk models like the Universal Soil Loss Equation (USLE) and its revised version (RUSLE). As rainfall erosivity is closely correlated with rainfall amount and intensity, the rainfall erosivity of Switzerland can be expected to have a regional characteristic and seasonal dynamic throughout the year. This intra-annual variability was mapped by a monthly modeling approach to assess simultaneously spatial and monthly patterns of rainfall erosivity. So far only national seasonal means and regional annual means exist for Switzerland. We used a network of 87 precipitation gauging stations with a 10 min temporal resolution to calculate long-term monthly mean R-factors. Stepwise generalized linear regression (GLM) and leave-one-out cross-validation (LOOCV) were used to select spatial covariates which explain the spatial and temporal patterns of the R-factor for each month across Switzerland. The monthly R-factor is mapped by summarizing the predicted R-factor of the regression equation and the corresponding residues of the regression, which are interpolated by ordinary kriging (regression-kriging). As spatial covariates, a variety of precipitation indicator data has been included such as snow depths, a combination product of hourly precipitation measurements and radar observations (CombiPrecip), daily Alpine precipitation (EURO4M-APGD), and monthly precipitation sums (RhiresM). Topographic parameters (elevation, slope) were also significant explanatory variables for single months. The comparison of the 12 monthly rainfall erosivity maps showed a distinct seasonality with the highest rainfall erosivity in summer (June, July, and August) influenced by intense rainfall events. Winter months have the lowest rainfall erosivity. A proportion of 62 % of the total annual rainfall erosivity is identified within four months only (June-September). The highest erosion risk can be expected in July, where not only rainfall erosivity but also erosivity density is high. In addition to the intra-annual temporal regime, a spatial variability of this seasonality was detectable between different regions of Switzerland. The assessment of the dynamic behavior of the R-factor is valuable for the identification of susceptible seasons and regions.
NASA Technical Reports Server (NTRS)
Choudhury, Bhaskar J.; Digirolamo, Nicolo E.
1994-01-01
A major difficulty in interpreting coarse resolution satellite data in terms of land surface characteristics is unavailability of spatially and temporally representative ground observations. Under certain conditions rainfall has been found to provide a proxy measure for surface characteristics, and thus a relation between satellite observations and rainfall might provide an indirect approach for relating satellite data to these characteristics. Relationship between rainfall over Africa and Australia and 7-year average (1979-1985) polarization difference (PD) at 37 GHz from scanning multichannel microwave radiometer (SMMR) on board the Nimbus-7 satellite is studied in this paper. Quantitative methods have been used to screen (accept or reject) PD data considering antenna pattern, geolocation uncertainty, water contamination, surface roughness, and adverse effect of drought on the relation between rainfall and surface characteristics. The rainfall data used in the present analysis are climatologic averages and also 1979-1985 averages, and no screening has been applied to this data. The PD data has been screened considering only the location of rainfall stations, without any regard to rainfall amounts. The present analysis confirms a non-linear relation between rainfall and PD published previously.
Hydro-meteorological evaluation of downscaled global ensemble rainfall forecasts
NASA Astrophysics Data System (ADS)
Gaborit, Étienne; Anctil, François; Fortin, Vincent; Pelletier, Geneviève
2013-04-01
Ensemble rainfall forecasts are of high interest for decision making, as they provide an explicit and dynamic assessment of the uncertainty in the forecast (Ruiz et al. 2009). However, for hydrological forecasting, their low resolution currently limits their use to large watersheds (Maraun et al. 2010). In order to bridge this gap, various implementations of the statistic-stochastic multi-fractal downscaling technique presented by Perica and Foufoula-Georgiou (1996) were compared, bringing Environment Canada's global ensemble rainfall forecasts from a 100 by 70-km resolution down to 6 by 4-km, while increasing each pixel's rainfall variance and preserving its original mean. For comparison purposes, simpler methods were also implemented such as the bi-linear interpolation, which disaggregates global forecasts without modifying their variance. The downscaled meteorological products were evaluated using different scores and diagrams, from both a meteorological and a hydrological view points. The meteorological evaluation was conducted comparing the forecasted rainfall depths against nine days of observed values taken from Québec City rain gauge database. These 9 days present strong precipitation events occurring during the summer of 2009. For the hydrologic evaluation, the hydrological models SWMM5 and (a modified version of) GR4J were implemented on a small 6 km2 urban catchment located in the Québec City region. Ensemble hydrologic forecasts with a time step of 3 hours were then performed over a 3-months period of the summer of 2010 using the original and downscaled ensemble rainfall forecasts. The most important conclusions of this work are that the overall quality of the forecasts was preserved during the disaggregation procedure and that the disaggregated products using this variance-enhancing method were of similar quality than bi-linear interpolation products. However, variance and dispersion of the different members were, of course, much improved for the variance-enhanced products, compared to the bi-linear interpolation, which is a decisive advantage. The disaggregation technique of Perica and Foufoula-Georgiou (1996) hence represents an interesting way of bridging the gap between the meteorological models' resolution and the high degree of spatial precision sometimes required by hydrological models in their precipitation representation. References Maraun, D., Wetterhall, F., Ireson, A. M., Chandler, R. E., Kendon, E. J., Widmann, M., Brienen, S., Rust, H. W., Sauter, T., Themeßl, M., Venema, V. K. C., Chun, K. P., Goodess, C. M., Jones, R. G., Onof, C., Vrac, M., and Thiele-Eich, I. 2010. Precipitation downscaling under climate change: recent developments to bridge the gap between dynamical models and the end user. Reviews of Geophysics, 48 (3): RG3003, [np]. Doi: 10.1029/2009RG000314. Perica, S., and Foufoula-Georgiou, E. 1996. Model for multiscale disaggregation of spatial rainfall based on coupling meteorological and scaling descriptions. Journal Of Geophysical Research, 101(D21): 26347-26361. Ruiz, J., Saulo, C. and Kalnay, E. 2009. Comparison of Methods Used to Generate Probabilistic Quantitative Precipitation Forecasts over South America. Weather and forecasting, 24: 319-336. DOI: 10.1175/2008WAF2007098.1 This work is distributed under the Creative Commons Attribution 3.0 Unported License together with an author copyright. This license does not conflict with the regulations of the Crown Copyright.
El Niño and the shifting geography of cholera in Africa
Moore, Sean M.; Azman, Andrew S.; Zaitchik, Benjamin F.; Mintz, Eric D.; Brunkard, Joan; Legros, Dominique; Hill, Alexandra; McKay, Heather; Luquero, Francisco J.; Olson, David; Lessler, Justin
2017-01-01
The El Niño Southern Oscillation (ENSO) and other climate patterns can have profound impacts on the occurrence of infectious diseases ranging from dengue to cholera. In Africa, El Niño conditions are associated with increased rainfall in East Africa and decreased rainfall in southern Africa, West Africa, and parts of the Sahel. Because of the key role of water supplies in cholera transmission, a relationship between El Niño events and cholera incidence is highly plausible, and previous research has shown a link between ENSO patterns and cholera in Bangladesh. However, there is little systematic evidence for this link in Africa. Using high-resolution mapping techniques, we find that the annual geographic distribution of cholera in Africa from 2000 to 2014 changes dramatically, with the burden shifting to continental East Africa—and away from Madagascar and portions of southern, Central, and West Africa—where almost 50,000 additional cases occur during El Niño years. Cholera incidence during El Niño years was higher in regions of East Africa with increased rainfall, but incidence was also higher in some areas with decreased rainfall, suggesting a complex relationship between rainfall and cholera incidence. Here, we show clear evidence for a shift in the distribution of cholera incidence throughout Africa in El Niño years, likely mediated by El Niño’s impact on local climatic factors. Knowledge of this relationship between cholera and climate patterns coupled with ENSO forecasting could be used to notify countries in Africa when they are likely to see a major shift in their cholera risk. PMID:28396423
NASA Astrophysics Data System (ADS)
Seyoum, Mesgana; van Andel, Schalk Jan; Xuan, Yunqing; Amare, Kibreab
Flow forecasting in poorly gauged, flood-prone Ribb and Gumara sub-catchments of the Blue Nile was studied with the aim of testing the performance of Quantitative Precipitation Forecasts (QPFs). Four types of QPFs namely MM5 forecasts with a spatial resolution of 2 km; the Maximum, Mean and Minimum members (MaxEPS, MeanEPS and MinEPS where EPS stands for Ensemble Prediction System) of the fixed, low resolution (2.5 by 2.5 degrees) National Oceanic and Atmospheric Administration Global Forecast System (NOAA GFS) ensemble forecasts were used. Both the MM5 and the EPS were not calibrated (bias correction, downscaling (for EPS), etc.). In addition, zero forecasts assuming no rainfall in the coming days, and monthly average forecasts assuming average monthly rainfall in the coming days, were used. These rainfall forecasts were then used to drive the Hydrologic Engineering Center’s-Hydrologic Modeling System, HEC-HMS, hydrologic model for flow predictions. The results show that flow predictions using MaxEPS and MM5 precipitation forecasts over-predicted the peak flow for most of the seven events analyzed, whereas under-predicted peak flow was found using zero- and monthly average rainfall. The comparison of observed and predicted flow hydrographs shows that MM5, MaxEPS and MeanEPS precipitation forecasts were able to capture the rainfall signal that caused peak flows. Flow predictions based on MaxEPS and MeanEPS gave results that were quantitatively close to the observed flow for most events, whereas flow predictions based on MM5 resulted in large overestimations for some events. In follow-up research for this particular case study, calibration of the MM5 model will be performed. The overall analysis shows that freely available atmospheric forecasting products can provide additional information on upcoming rainfall and peak flow events in areas where only base-line forecasts such as no-rainfall or climatology are available.
Sedimentary links between hillslopes and channels in a dryland basin
NASA Astrophysics Data System (ADS)
Hollings, R.
2016-12-01
The interface between hillslopes and channels is recognised as playing an important role in basin evolution and functioning. However, this interaction has not been described well in landscapes such as drylands, in which the diffuse process of runoff-driven sediment transport is important for sediment communication to the channel and to the basin outlet. This paper combines field measurements of surface sediment grain sizes in channels and on hillslopes with high resolution topography, >60 years of rainfall and runoff data from the Walnut Gulch Experimental Watershed (WGEW) in Arizona, and simple calculations of spatial stress distributions for various hydrologic scenarios to explore the potential for sediment to move from hillslopes to channels and through channels across the entire basin. Here we generalise the net movement of sediment in to or out of channel reaches, at high resolution in WGEW, as the balance between hillslope sediment supply to the channel and channel evacuation, in response to a variety of storms and discharge events. Our results show that downstream of small, unit source area watersheds, the balance in the channel often switches from being supply-dominated to being evacuation dominated for all scenarios. The low frequency but high discharge event in the channel seems to control the long term evolution of the channel, as stress is far greater for this scenario than other scenarios tested. The results draw on the high variability of rainfall characteristics to drive runoff events and so provides a physical explanation for long-term evolution of the channel network in drylands.
Kern, Andrea K.; Harzhauser, Mathias; Soliman, Ali; Piller, Werner E.; Gross, Martin
2012-01-01
High resolution pollen and dinoflagellate analyses were performed on a continuous 98-cm-long core from Tortonian deposits of Lake Pannon in the Styrian Basin in Austria. The sample distance of 1-cm corresponds to a resolution of roughly one decade, allowing insights into environmental and climatic changes over a millennium of Late Miocene time. Shifts in lake level, surface water productivity on a decadal- to centennial-scale can be explained by variations of rainfall during the Tortonian climatic optimum. Related to negative fine scale shifts of mean annual precipitation, shoreline vegetation belts reacted in an immediate replacement of Poaceae by Cyperaceae as dominant grasses in the marshes fringing the lake. In contrast to such near-synchronous ecosystem-responses to precipitation, a delayed lake level rise of 4–6 decades is evident in the hydrological budget of Lake Pannon. This transgression, caused by a precipitation increase up to > 1200 mm/yr, resulted in a complete dieback of marshes. Simultaneously, “open-water” dinoflagellates, such as Impagidinium, took over in the brackish lagoon and fresh water dinoflagellates disappeared. As soon as the rainfall switched back to moderate levels of ~ 1100–1200 mm/yr, the rise of the lake level slowed down, the marsh plants could keep up again and the former vegetation belts became re-established. Thus, mean annual precipitation, more than temperature, was the main driving force for high-frequency fluctuations in the Tortonian wetlands and surface water conditions of Lake Pannon. Such high resolution studies focusing on Tortonian decadal to centennial climate change will be crucial to test climate models which try to compare the Tortonian models with predictions for future climate change. PMID:23576820
NASA Astrophysics Data System (ADS)
Barcikowska, Monika J.; Kapnick, Sarah B.; Feser, Frauke
2018-03-01
The Mediterranean region, located in the transition zone between the dry subtropical and wet European mid-latitude climate, is very sensitive to changes in the global mean climate state. Projecting future changes of the Mediterranean hydroclimate under global warming therefore requires dynamic climate models to reproduce the main mechanisms controlling regional hydroclimate with sufficiently high resolution to realistically simulate climate extremes. To assess future winter precipitation changes in the Mediterranean region we use the Geophysical Fluid Dynamics Laboratory high-resolution general circulation model for control simulations with pre-industrial greenhouse gas and aerosol concentrations which are compared to future scenario simulations. Here we show that the coupled model is able to reliably simulate the large-scale winter circulation, including the North Atlantic Oscillation and Eastern Atlantic patterns of variability, and its associated impacts on the mean Mediterranean hydroclimate. The model also realistically reproduces the regional features of daily heavy rainfall, which are absent in lower-resolution simulations. A five-member future projection ensemble, which assumes comparatively high greenhouse gas emissions (RCP8.5) until 2100, indicates a strong winter decline in Mediterranean precipitation for the coming decades. Consistent with dynamical and thermodynamical consequences of a warming atmosphere, derived changes feature a distinct bipolar behavior, i.e. wetting in the north—and drying in the south. Changes are most pronounced over the northwest African coast, where the projected winter precipitation decline reaches 40% of present values. Despite a decrease in mean precipitation, heavy rainfall indices show drastic increases across most of the Mediterranean, except the North African coast, which is under the strong influence of the cold Canary Current.
NASA Astrophysics Data System (ADS)
Park, Jeong-Gyun; Jee, Joon-Bum
2017-04-01
Dangerous weather such as severe rain, heavy snow, drought and heat wave caused by climate change make more damage in the urban area that dense populated and industry areas. Urban areas, unlike the rural area, have big population and transportation, dense the buildings and fuel consumption. Anthropogenic factors such as road energy balance, the flow of air in the urban is unique meteorological phenomena. However several researches are in process about prediction of urban meteorology. ASAPS (Advanced Storm-scale Analysis and Prediction System) predicts a severe weather with very short range (prediction with 6 hour) and high resolution (every hour with time and 1 km with space) on Seoul metropolitan area based on KLAPS (Korea Local Analysis and Prediction System) from KMA (Korea Meteorological Administration). This system configured three parts that make a background field (SUF5), analysis field (SU01) with observation and forecast field with high resolution (SUF1). In this study, we improve a high-resolution ASAPS model and perform a sensitivity test for the rainfall case. The improvement of ASAPS include model domain configuration, high resolution topographic data and data assimilation with WISE observation data.
NASA Astrophysics Data System (ADS)
Stager, J. C.; Mayewski, P. A.; White, J.; Chase, B. M.; Neumann, F. H.; Meadows, M. E.; King, C. D.; Dixon, D. A.
2012-05-01
The austral westerlies strongly influence precipitation and ocean circulation in the southern temperate zone, with important consequences for cultures and ecosystems. Global climate models anticipate poleward retreat of the austral westerlies with future warming, but the available paleoclimate records that might test these models have been limited to South America and New Zealand, are not fully consistent with each other and may be complicated by influences from other climatic factors. Here we present the first high-resolution diatom and sedimentological records from the winter rainfall region of South Africa, representing precipitation in the equatorward margin of the westerly wind belt during the last 1400 yr. Inferred rainfall was relatively high ∼1400-1200 cal yr BP, decreased until ∼950 cal yr BP, and rose notably through the Little Ice Age with pulses centred on ∼600, 530, 470, 330, 200, 90, and 20 cal yr BP. Synchronous fluctuations in Antarctic ice core chemistry strongly suggest that these variations were linked to changes in the westerlies. Equatorward drift of the westerlies during the wet periods may have influenced Atlantic meridional overturning circulation by restricting marine flow around the tip of Africa. Apparent inconsistencies among some aspects of records from South America, New Zealand and South Africa warn against the simplistic application of single records to the Southern Hemisphere as a whole. Nonetheless, these findings in general do support model projections of increasing aridity in the austral winter rainfall zones with future warming.
NASA Astrophysics Data System (ADS)
Smitha, P. S.; Narasimhan, B.; Sudheer, K. P.; Annamalai, H.
2018-01-01
Regional climate models (RCMs) are used to downscale the coarse resolution General Circulation Model (GCM) outputs to a finer resolution for hydrological impact studies. However, RCM outputs often deviate from the observed climatological data, and therefore need bias correction before they are used for hydrological simulations. While there are a number of methods for bias correction, most of them use monthly statistics to derive correction factors, which may cause errors in the rainfall magnitude when applied on a daily scale. This study proposes a sliding window based daily correction factor derivations that help build reliable daily rainfall data from climate models. The procedure is applied to five existing bias correction methods, and is tested on six watersheds in different climatic zones of India for assessing the effectiveness of the corrected rainfall and the consequent hydrological simulations. The bias correction was performed on rainfall data downscaled using Conformal Cubic Atmospheric Model (CCAM) to 0.5° × 0.5° from two different CMIP5 models (CNRM-CM5.0, GFDL-CM3.0). The India Meteorological Department (IMD) gridded (0.25° × 0.25°) observed rainfall data was considered to test the effectiveness of the proposed bias correction method. The quantile-quantile (Q-Q) plots and Nash Sutcliffe efficiency (NSE) were employed for evaluation of different methods of bias correction. The analysis suggested that the proposed method effectively corrects the daily bias in rainfall as compared to using monthly factors. The methods such as local intensity scaling, modified power transformation and distribution mapping, which adjusted the wet day frequencies, performed superior compared to the other methods, which did not consider adjustment of wet day frequencies. The distribution mapping method with daily correction factors was able to replicate the daily rainfall pattern of observed data with NSE value above 0.81 over most parts of India. Hydrological simulations forced using the bias corrected rainfall (distribution mapping and modified power transformation methods that used the proposed daily correction factors) was similar to those simulated by the IMD rainfall. The results demonstrate that the methods and the time scales used for bias correction of RCM rainfall data have a larger impact on the accuracy of the daily rainfall and consequently the simulated streamflow. The analysis suggests that the distribution mapping with daily correction factors can be preferred for adjusting RCM rainfall data irrespective of seasons or climate zones for realistic simulation of streamflow.
Rainfall erosivity in Central Chile
NASA Astrophysics Data System (ADS)
Bonilla, Carlos A.; Vidal, Karim L.
2011-11-01
SummaryOne of the most widely used indicators of potential water erosion risk is the rainfall-runoff erosivity factor ( R) of the Revised Universal Soil Loss Equation (RUSLE). R is traditionally determined by calculating a long-term average of the annual sum of the product of a storm's kinetic energy ( E) and its maximum 30-min intensity ( I30), known as the EI30. The original method used to calculate EI30 requires pluviograph records for at most 30-min time intervals. Such high resolution data is difficult to obtain in many parts of the world, and processing it is laborious and time-consuming. In Chile, even though there is a well-distributed rain gauge network, there is no systematic characterization of the territory in terms of rainfall erosivity. This study presents a rainfall erosivity map for most of the cultivated land in the country. R values were calculated by the prescribed method for 16 stations with continuous graphical record rain gauges in Central Chile. The stations were distributed along 800 km (north-south), and spanned a precipitation gradient of 140-2200 mm yr -1. More than 270 years of data were used, and 5400 storms were analyzed. Additionally, 241 spatially distributed R values were generated by using an empirical procedure based on annual rainfall. Point estimates generated by both methods were interpolated by using kriging to create a map of rainfall erosivity for Central Chile. The results show that the empirical procedure used in this study predicted the annual rainfall erosivity well (model efficiency = 0.88). Also, an increment in the rainfall erosivities was found as a result of the rainfall depths, a regional feature determined by elevation and increasing with latitude from north to south. R values in the study area range from 90 MJ mm ha -1 h -1 yr -1 in the north up to 7375 MJ mm ha -1 h -1 yr -1 in the southern area, at the foothills of the Andes Mountains. Although the map and the estimates could be improved in the future by generating additional data points, the erosivity map should prove to be a good tool for land-use planners in Chile and other areas with similar rainfall characteristics.
Vegetation controls on weathering intensity during the last deglacial transition in southeast Africa
Ivory, Sarah J.; McGlue, Michael M.; Ellis, Geoffrey S.; Lézine, Anne-Marie; Cohen, Andrew S.; Vincens, Annie
2015-01-01
Tropical climate is rapidly changing, but the effects of these changes on the geosphere are unknown, despite a likelihood of climatically-induced changes on weathering and erosion. The lack of long, continuous paleo-records prevents an examination of terrestrial responses to climate change with sufficient detail to answer questions about how systems behaved in the past and may alter in the future. We use high-resolution records of pollen, clay mineralogy, and particle size from a drill core from Lake Malawi, southeast Africa, to examine atmosphere-biosphere-geosphere interactions during the last deglaciation (~18–9 ka), a period of dramatic temperature and hydrologic changes. The results demonstrate that climatic controls on Lake Malawi vegetation are critically important to weathering processes and erosion patterns during the deglaciation. At 18 ka, afromontane forests dominated but were progressively replaced by tropical seasonal forest, as summer rainfall increased. Despite indication of decreased rainfall, drought-intolerant forest persisted through the Younger Dryas (YD) resulting from a shorter dry season. Following the YD, an intensified summer monsoon and increased rainfall seasonality were coeval with forest decline and expansion of drought-tolerant miombo woodland. Clay minerals closely track the vegetation record, with high ratios of kaolinite to smectite (K/S) indicating heavy leaching when forest predominates, despite variable rainfall. In the early Holocene, when rainfall and temperature increased (effective moisture remained low), open woodlands expansion resulted in decreased K/S, suggesting a reduction in chemical weathering intensity. Terrigenous sediment mass accumulation rates also increased, suggesting critical linkages among open vegetation and erosion during intervals of enhanced summer rainfall. This study shows a strong, direct influence of vegetation composition on weathering intensity in the tropics. As climate change will likely impact this interplay between the biosphere and geosphere, tropical landscape change could lead to deleterious effects on soil and water quality in regions with little infrastructure for mitigation.
Vegetation Controls on Weathering Intensity during the Last Deglacial Transition in Southeast Africa
Ivory, Sarah J.; McGlue, Michael M.; Ellis, Geoffrey S.; Lézine, Anne-Marie; Cohen, Andrew S.; Vincens, Annie
2014-01-01
Tropical climate is rapidly changing, but the effects of these changes on the geosphere are unknown, despite a likelihood of climatically-induced changes on weathering and erosion. The lack of long, continuous paleo-records prevents an examination of terrestrial responses to climate change with sufficient detail to answer questions about how systems behaved in the past and may alter in the future. We use high-resolution records of pollen, clay mineralogy, and particle size from a drill core from Lake Malawi, southeast Africa, to examine atmosphere-biosphere-geosphere interactions during the last deglaciation (∼18–9 ka), a period of dramatic temperature and hydrologic changes. The results demonstrate that climatic controls on Lake Malawi vegetation are critically important to weathering processes and erosion patterns during the deglaciation. At 18 ka, afromontane forests dominated but were progressively replaced by tropical seasonal forest, as summer rainfall increased. Despite indication of decreased rainfall, drought-intolerant forest persisted through the Younger Dryas (YD) resulting from a shorter dry season. Following the YD, an intensified summer monsoon and increased rainfall seasonality were coeval with forest decline and expansion of drought-tolerant miombo woodland. Clay minerals closely track the vegetation record, with high ratios of kaolinite to smectite (K/S) indicating heavy leaching when forest predominates, despite variable rainfall. In the early Holocene, when rainfall and temperature increased (effective moisture remained low), open woodlands expansion resulted in decreased K/S, suggesting a reduction in chemical weathering intensity. Terrigenous sediment mass accumulation rates also increased, suggesting critical linkages among open vegetation and erosion during intervals of enhanced summer rainfall. This study shows a strong, direct influence of vegetation composition on weathering intensity in the tropics. As climate change will likely impact this interplay between the biosphere and geosphere, tropical landscape change could lead to deleterious effects on soil and water quality in regions with little infrastructure for mitigation. PMID:25406090
Observations of cloud and rainfall enhancement over irrigated agriculture in an arid environment
NASA Astrophysics Data System (ADS)
Garcia-Carreras, Luis; Marsham, John H.; Spracklen, Dominick V.
2017-04-01
The impact of irrigated agriculture on clouds and rainfall remains uncertain, particularly in less studied arid regions. Irrigated crops account for 20% of global cropland area, and non-renewable groundwater accounts for 20% of global irrigation water demand. Quantifying the feedbacks between agriculture and the atmosphere are therefore not only necessary to better understand the climate impacts of land-use change, but are also crucial for predicting long-term water use in water-scarce regions. Here we use high spatial-resolution satellite data to show the impact of irrigated crops in the arid environment of northern Saudi Arabia on cloud cover and rainfall patterns. Land surface temperatures over the crops are 5-10 K lower than their surroundings, linked to evapotranspiration rates of up to 20 mm/ month. Daytime cloud cover is up to 30% higher over the cropland compared to its immediate surroundings, and this enhancement is highly correlated with the seasonal variability in leaf area index. The cloud enhancement is associated with a much more rapid cloud cloud development during the morning. Afternoon rainfall is 85% higher over, and just downwind, of the cropland during the growing season, although rainfall remains very low in absolute terms. The feedback sign we find is the opposite to what has been observed in tropical and semiarid regions, where temperature gradients promote convergence and clouds on the warmer side of land-surface type discontinuities. This suggests that different processes are responsible for the land-atmosphere feedback in very dry environments, where lack of moisture may be a stronger constraint. Increased cloud and rainfall, and associated increases in diffuse radiation and reductions in temperature, can affect vegetation growth thus producing an internal feedback. These effects will therefore need to be taken into account to properly assess the impact of climate change on crop productivity and water use, as well as how global land-use change affects climate.
Ivory, Sarah J; McGlue, Michael M; Ellis, Geoffrey S; Lézine, Anne-Marie; Cohen, Andrew S; Vincens, Annie
2014-01-01
Tropical climate is rapidly changing, but the effects of these changes on the geosphere are unknown, despite a likelihood of climatically-induced changes on weathering and erosion. The lack of long, continuous paleo-records prevents an examination of terrestrial responses to climate change with sufficient detail to answer questions about how systems behaved in the past and may alter in the future. We use high-resolution records of pollen, clay mineralogy, and particle size from a drill core from Lake Malawi, southeast Africa, to examine atmosphere-biosphere-geosphere interactions during the last deglaciation (∼ 18-9 ka), a period of dramatic temperature and hydrologic changes. The results demonstrate that climatic controls on Lake Malawi vegetation are critically important to weathering processes and erosion patterns during the deglaciation. At 18 ka, afromontane forests dominated but were progressively replaced by tropical seasonal forest, as summer rainfall increased. Despite indication of decreased rainfall, drought-intolerant forest persisted through the Younger Dryas (YD) resulting from a shorter dry season. Following the YD, an intensified summer monsoon and increased rainfall seasonality were coeval with forest decline and expansion of drought-tolerant miombo woodland. Clay minerals closely track the vegetation record, with high ratios of kaolinite to smectite (K/S) indicating heavy leaching when forest predominates, despite variable rainfall. In the early Holocene, when rainfall and temperature increased (effective moisture remained low), open woodlands expansion resulted in decreased K/S, suggesting a reduction in chemical weathering intensity. Terrigenous sediment mass accumulation rates also increased, suggesting critical linkages among open vegetation and erosion during intervals of enhanced summer rainfall. This study shows a strong, direct influence of vegetation composition on weathering intensity in the tropics. As climate change will likely impact this interplay between the biosphere and geosphere, tropical landscape change could lead to deleterious effects on soil and water quality in regions with little infrastructure for mitigation.
NASA Technical Reports Server (NTRS)
Case, Jonathan L.; Kumar, Sujay V.; Krikishen, Jayanthi; Jedlovec, Gary J.
2011-01-01
It is hypothesized that high-resolution, accurate representations of surface properties such as soil moisture and sea surface temperature are necessary to improve simulations of summertime pulse-type convective precipitation in high resolution models. This paper presents model verification results of a case study period from June-August 2008 over the Southeastern U.S. using the Weather Research and Forecasting numerical weather prediction model. Experimental simulations initialized with high-resolution land surface fields from the NASA Land Information System (LIS) and sea surface temperature (SST) derived from the Moderate Resolution Imaging Spectroradiometer (MODIS) are compared to a set of control simulations initialized with interpolated fields from the National Centers for Environmental Prediction 12-km North American Mesoscale model. The LIS land surface and MODIS SSTs provide a more detailed surface initialization at a resolution comparable to the 4-km model grid spacing. Soil moisture from the LIS spin-up run is shown to respond better to the extreme rainfall of Tropical Storm Fay in August 2008 over the Florida peninsula. The LIS has slightly lower errors and higher anomaly correlations in the top soil layer, but exhibits a stronger dry bias in the root zone. The model sensitivity to the alternative surface initial conditions is examined for a sample case, showing that the LIS/MODIS data substantially impact surface and boundary layer properties.
Sensitivity of Rainfall Extremes Under Warming Climate in Urban India
NASA Astrophysics Data System (ADS)
Ali, H.; Mishra, V.
2017-12-01
Extreme rainfall events in urban India halted transportation, damaged infrastructure, and affected human lives. Rainfall extremes are projected to increase under the future climate. We evaluated the relationship (scaling) between rainfall extremes at different temporal resolutions (daily, 3-hourly, and 30 minutes), daily dewpoint temperature (DPT) and daily air temperature at 850 hPa (T850) for 23 urban areas in India. Daily rainfall extremes obtained from Global Surface Summary of Day Data (GSOD) showed positive regression slopes for most of the cities with median of 14%/K for the period of 1979-2013 for DPT and T850, which is higher than Clausius-Clapeyron (C-C) rate ( 7%). Moreover, sub-daily rainfall extremes are more sensitive to both DPT and T850. For instance, 3-hourly rainfall extremes obtained from Tropical Rainfall Measurement Mission (TRMM 3B42 V7) showed regression slopes more than 16%/K aginst DPT and T850 for the period of 1998-2015. Half-hourly rainfall extremes from the Integrated Multi-satellitE Retrievals (IMERGE) of Global precipitation mission (GPM) also showed higher sensitivity against changes in DPT and T850. The super scaling of rainfall extremes against changes in DPT and T850 can be attributed to convective nature of precipitation in India. Our results show that urban India may witness non-stationary rainfall extremes, which, in turn will affect stromwater designs and frequency and magniture of urban flooding.
Design and development of surface rainfall forecast products on GRAPES_MESO model
NASA Astrophysics Data System (ADS)
Zhili, Liu
2016-04-01
In this paper, we designed and developed the surface rainfall forecast products using medium scale GRAPES_MESO model precipitation forecast products. The horizontal resolution of GRAPES_MESO model is 10km*10km, the number of Grids points is 751*501, vertical levels is 26, the range is 70°E-145.15°E, 15°N-64.35 °N. We divided the basin into 7 major watersheds. Each watersheds was divided into a number of sub regions. There were 95 sub regions in all. Tyson polygon method is adopted in the calculation of surface rainfall. We used 24 hours forecast precipitation data of GRAPES_MESO model to calculate the surface rainfall. According to the site of information and boundary information of the 95 sub regions, the forecast surface rainfall of each sub regions was calculated. We can provide real-time surface rainfall forecast products every day. We used the method of fuzzy evaluation to carry out a preliminary test and verify about the surface rainfall forecast product. Results shows that the fuzzy score of heavy rain, rainstorm and downpour level forecast rainfall were higher, the fuzzy score of light rain level was lower. The forecast effect of heavy rain, rainstorm and downpour level surface rainfall were better. The rate of missing and empty forecast of light rainfall level surface rainfall were higher, so it's fuzzy score were lower.
Uncertainty in surface water flood risk modelling
NASA Astrophysics Data System (ADS)
Butler, J. B.; Martin, D. N.; Roberts, E.; Domuah, R.
2009-04-01
Two thirds of the flooding that occurred in the UK during summer 2007 was as a result of surface water (otherwise known as ‘pluvial') rather than river or coastal flooding. In response, the Environment Agency and Interim Pitt Reviews have highlighted the need for surface water risk mapping and warning tools to identify, and prepare for, flooding induced by heavy rainfall events. This need is compounded by the likely increase in rainfall intensities due to climate change. The Association of British Insurers has called for the Environment Agency to commission nationwide flood risk maps showing the relative risk of flooding from all sources. At the wider European scale, the recently-published EC Directive on the assessment and management of flood risks will require Member States to evaluate, map and model flood risk from a variety of sources. As such, there is now a clear and immediate requirement for the development of techniques for assessing and managing surface water flood risk across large areas. This paper describes an approach for integrating rainfall, drainage network and high-resolution topographic data using Flowroute™, a high-resolution flood mapping and modelling platform, to produce deterministic surface water flood risk maps. Information is provided from UK case studies to enable assessment and validation of modelled results using historical flood information and insurance claims data. Flowroute was co-developed with flood scientists at Cambridge University specifically to simulate river dynamics and floodplain inundation in complex, congested urban areas in a highly computationally efficient manner. It utilises high-resolution topographic information to route flows around individual buildings so as to enable the prediction of flood depths, extents, durations and velocities. As such, the model forms an ideal platform for the development of surface water flood risk modelling and mapping capabilities. The 2-dimensional component of Flowroute employs uniform flow formulae (Manning's Equation) to direct flow over the model domain, sourcing water from the channel or sea so as to provide a detailed representation of river and coastal flood risk. The initial development step was to include spatially-distributed rainfall as a new source term within the model domain. This required optimisation to improve computational efficiency, given the ubiquity of ‘wet' cells early on in the simulation. Collaboration with UK water companies has provided detailed drainage information, and from this a simplified representation of the drainage system has been included in the model via the inclusion of sinks and sources of water from the drainage network. This approach has clear advantages relative to a fully coupled method both in terms of reduced input data requirements and computational overhead. Further, given the difficulties associated with obtaining drainage information over large areas, tests were conducted to evaluate uncertainties associated with excluding drainage information and the impact that this has upon flood model predictions. This information can be used, for example, to inform insurance underwriting strategies and loss estimation as well as for emergency response and planning purposes. The Flowroute surface-water flood risk platform enables efficient mapping of areas sensitive to flooding from high-intensity rainfall events due to topography and drainage infrastructure. As such, the technology has widespread potential for use as a risk mapping tool by the UK Environment Agency, European Member States, water authorities, local governments and the insurance industry. Keywords: Surface water flooding, Model Uncertainty, Insurance Underwriting, Flood inundation modelling, Risk mapping.
Assessment of C-band Polarimetric Radar Rainfall Measurements During Strong Attenuation.
NASA Astrophysics Data System (ADS)
Paredes-Victoria, P. N.; Rico-Ramirez, M. A.; Pedrozo-Acuña, A.
2016-12-01
In the modern hydrological modelling and their applications on flood forecasting systems and climate modelling, reliable spatiotemporal rainfall measurements are the keystone. Raingauges are the foundation in hydrology to collect rainfall data, however they are prone to errors (e.g. systematic, malfunctioning, and instrumental errors). Moreover rainfall data from gauges is often used to calibrate and validate weather radar rainfall, which is distributed in space. Therefore, it is important to apply techniques to control the quality of the raingauge data in order to guarantee a high level of confidence in rainfall measurements for radar calibration and numerical weather modelling. Also, the reliability of radar data is often limited because of the errors in the radar signal (e.g. clutter, variation of the vertical reflectivity profile, beam blockage, attenuation, etc) which need to be corrected in order to increase the accuracy of the radar rainfall estimation. This paper presents a method for raingauge-measurement quality-control correction based on the inverse distance weighted as a function of correlated climatology (i.e. performed by using the reflectivity from weather radar). Also a Clutter Mitigation Decision (CMD) algorithm is applied for clutter filtering process, finally three algorithms based on differential phase measurements are applied for radar signal attenuation correction. The quality-control method proves that correlated climatology is very sensitive in the first 100 kilometres for this area. The results also showed that ground clutter affects slightly the radar measurements due to the low gradient of the terrain in the area. However, strong radar signal attenuation is often found in this data set due to the heavy storms that take place in this region and the differential phase measurements are crucial to correct for attenuation at C-band frequencies. The study area is located in Sabancuy-Campeche, Mexico (Latitude 18.97 N, Longitude 91.17º W) and the radar rainfall measurements are obtained from a C-band polarimetric radar whereas raingauge measurements come from stations with 10-min and 24-hr time resolutions.
Characterizing the Spatial Contiguity of Extreme Precipitation over the US in the Recent Past
NASA Astrophysics Data System (ADS)
Touma, D. E.; Swain, D. L.; Diffenbaugh, N. S.
2016-12-01
The spatial characteristics of extreme precipitation over an area can define the hydrologic response in a basin, subsequently affecting the flood risk in the region. Here, we examine the spatial extent of extreme precipitation in the US by defining its "footprint": a contiguous area of rainfall exceeding a certain threshold (e.g., 90th percentile) on a given day. We first characterize the climatology of extreme rainfall footprint sizes across the US from 1980-2015 using Daymet, a high-resolution observational gridded rainfall dataset. We find that there are distinct regional and seasonal differences in average footprint sizes of extreme daily rainfall. In the winter, the Midwest shows footprints exceeding 500,000 sq. km while the Front Range exhibits footprints of 10,000 sq. km. Alternatively, the summer average footprint size is generally smaller and more uniform across the US, ranging from 10,000 sq. km in the Southwest to 100,000 sq. km in Montana and North Dakota. Moreover, we find that there are some significant increasing trends of average footprint size between 1980-2015, specifically in the Southwest in the winter and the Northeast in the spring. While gridded daily rainfall datasets allow for a practical framework in calculating footprint size, this calculation heavily depends on the interpolation methods that have been used in creating the dataset. Therefore, we assess footprint size using the GHCN-Daily station network and use geostatistical methods to define footprints of extreme rainfall directly from station data. Compared to the findings from Daymet, preliminary results using this method show fewer small daily footprint sizes over the US while large footprints are of similar number and magnitude to Daymet. Overall, defining the spatial characteristics of extreme rainfall as well as observed and expected changes in these characteristics allows us to better understand the hydrologic response to extreme rainfall and how to better characterize flood risks.
NASA Astrophysics Data System (ADS)
Schumacher, R. S.; Peters, J. M.
2015-12-01
Mesoscale convective systems (MCSs) are responsible for a large fraction of warm-season extreme rainfall events over the continental United States, as well as other midlatitude regions globally. The rainfall production in these MCSs is determined by numerous factors, including the large-scale forcing for ascent, the organization of the convection, cloud microphysical processes, and the surrounding thermodynamic and kinematic environment. Furthermore, heavy-rain-producing MCSs are most common at night, which means that well-studied mechanisms for MCS maintenance and organization such as cold pools (gravity currents) are not always at work. In this study, we use numerical model simulations and recent field observations to investigate the sensitivity of low-level MCS structures, and their influences on rainfall, to the details of the thermodynamic environment. In particular, small alterations to the initial conditions in idealized and semi-idealized simulations result in comparatively large precipitation changes, both in terms of the intensity and the spatial distribution. The uncertainties in the thermodynamic enviroments in the model simulations will be compared with high-resolution observations from the Plains Elevated Convection At Night (PECAN) field experiment in 2015. The results have implications for the paradigms of "surface-based" versus "elevated" convection, as well as for the predictability of warm-season convective rainfall.
NASA Astrophysics Data System (ADS)
Riddle, E. E.; Hopson, T. M.; Gebremichael, M.; Boehnert, J.; Broman, D.; Sampson, K. M.; Rostkier-Edelstein, D.; Collins, D. C.; Harshadeep, N. R.; Burke, E.; Havens, K.
2017-12-01
While it is not yet certain how precipitation patterns will change over Africa in the future, it is clear that effectively managing the available water resources is going to be crucial in order to mitigate the effects of water shortages and floods that are likely to occur in a changing climate. One component of effective water management is the availability of state-of-the-art and easy to use rainfall forecasts across multiple spatial and temporal scales. We present a web-based system for displaying and disseminating ensemble forecast and observed precipitation data over central and eastern Africa. The system provides multi-model rainfall forecasts integrated to relevant hydrological catchments for timescales ranging from one day to three months. A zoom-in features is available to access high resolution forecasts for small-scale catchments. Time series plots and data downloads with forecasts, recent rainfall observations and climatological data are available by clicking on individual catchments. The forecasts are calibrated using a quantile regression technique and an optimal multi-model forecast is provided at each timescale. The forecast skill at the various spatial and temporal scales will discussed, as will current applications of this tool for managing water resources in Sudan and optimizing hydropower operations in Ethiopia and Tanzania.
NASA Astrophysics Data System (ADS)
Gallagher, R. L.
2016-02-01
During heavy rain events in the tropics, areas of relatively low salinity water collect on the ocean surface. Rainfall events increase the buoyancy of the ocean surface and impact upper ocean salinity and temperature profiles. This resists downward mixing and as a result can persist (SPURS II planning group, 2012; Oceanography 28(1) 150-159). Salinity at the surface adjusts through advective and diffusive mixing processes (Scott, J. et al, 2013; AGU Fall meeting abstracts). This project investigates the upper ocean salinity response in both advection and diffusion dominated regions. The changes in ocean surface salinity are tracked before, during, and after rainfall events. Data from a standard oceanographic model, HYCOM, are used to identify areas where each surface process is significant. Rainfall events are identified using a TRMM dataset. It provides a tropical rainfall analysis which uses amalgamated satellite data to develop detailed global precipitation grids between 50 o north and south latitude. TRMM is useful due its high temporal and spatial resolutions. The salinity response in HYCOM is tested against simple theoretical advective and diffusive mixing models. The magnitude of sea surface salinity minima, their persistence and the precision by which HYCOM can resolve these phenomena are of interest.
NASA Astrophysics Data System (ADS)
Vista Wulandari, Ayu; Rizki Pratama, Khafid; Ismail, Prayoga
2018-05-01
Accurate and realtime data in wide spatial space at this time is still a problem because of the unavailability of observation of rainfall in each region. Weather satellites have a very wide range of observations and can be used to determine rainfall variability with better resolution compared with a limited direct observation. Utilization of Himawari-8 satellite data in estimating rainfall using Convective Stratiform Technique (CST) method. The CST method is performed by separating convective and stratiform cloud components using infrared channel satellite data. Cloud components are classified by slope because the physical and dynamic growth processes are very different. This research was conducted in Bali area on December 14, 2016 by verifying the result of CST process with rainfall data from Ngurah Rai Meteorology Station Bali. It is found that CST method result had simililar value with data observation in Ngurah Rai meteorological station, so it assumed that CST method can be used for rainfall estimation in Bali region.
Linking the North Atlantic Oscillation to Rainfall Over Northern Lake Malawi
NASA Astrophysics Data System (ADS)
Johnson, T. C.; Powers, L. A.; Werne, J. P.; Brown, E. T.; Castaneda, I.; Schouten, S.; Sinninghe-Damste, J.
2005-12-01
Piston and multi-cores recovered from the north basin of Lake Malawi in 1998 by the International Decade for the East African Lakes (IDEAL) have provided a rich history of climate variability spanning the past 25,000 years. As we now begin to analyze the cores recovered by the Malawi Drilling Project in early 2005, we are considering the relationships among sedimentary signals of temperature (TEX86), northerly winds associated with a southward excursion of the Inter-Tropical Convergence Zone (per cent biogenic silica), and rainfall (terrigenous mass accumulation rate) in the well dated 1998 cores. A high-resolution record of the past 800 years suggests that rainfall in this region (10 - 12° S, 30 - 35° E) was relatively low during the Little Ice Age, when northerly winds were more prevalent, attributed to a more southerly position of the ITCZ during austral summers. The TEX86 signal of lake (surface?) temperature ranged mostly between 24 and 26°C during this period, with the coldest temperature of about 22°C around AD1680 and the warmest temperature, exceeding 27°C, in the youngest sediment sample. The cooler water temperatures coincide with periods of highest diatom productivity, consistent with the latter being due to relatively intense upwelling associated with the northerly winds. Our observation of low rainfall during periods of more southerly migration of the ITCZ is consistent with the results of McHugh and Rogers (2001), who linked rainfall in southeastern Africa to the North Atlantic Oscillation (NAO). During years of weak NAO, equatorial westerly transport of Atlantic moisture across Africa during austral summer is relatively intense, causing high rainfall in the East African Rift between the equator and 16° S. Conversely, when the NAO is positive, rainfall is higher south of 15° S than north of this latitude, which is consistent with a southward migration of the ITCZ. McHugh, M. J. and J. C. Rogers (2001). "North Atlantic Oscillation influence on precipitation variability around the southeast African convergence zone." Journal of Climate 14: 3631-3642.
Propagation of radar rainfall uncertainty in urban flood simulations
NASA Astrophysics Data System (ADS)
Liguori, Sara; Rico-Ramirez, Miguel
2013-04-01
This work discusses the results of the implementation of a novel probabilistic system designed to improve ensemble sewer flow predictions for the drainage network of a small urban area in the North of England. The probabilistic system has been developed to model the uncertainty associated to radar rainfall estimates and propagate it through radar-based ensemble sewer flow predictions. The assessment of this system aims at outlining the benefits of addressing the uncertainty associated to radar rainfall estimates in a probabilistic framework, to be potentially implemented in the real-time management of the sewer network in the study area. Radar rainfall estimates are affected by uncertainty due to various factors [1-3] and quality control and correction techniques have been developed in order to improve their accuracy. However, the hydrological use of radar rainfall estimates and forecasts remains challenging. A significant effort has been devoted by the international research community to the assessment of the uncertainty propagation through probabilistic hydro-meteorological forecast systems [4-5], and various approaches have been implemented for the purpose of characterizing the uncertainty in radar rainfall estimates and forecasts [6-11]. A radar-based ensemble stochastic approach, similar to the one implemented for use in the Southern-Alps by the REAL system [6], has been developed for the purpose of this work. An ensemble generator has been calibrated on the basis of the spatial-temporal characteristics of the residual error in radar estimates assessed with reference to rainfall records from around 200 rain gauges available for the year 2007, previously post-processed and corrected by the UK Met Office [12-13]. Each ensemble member is determined by summing a perturbation field to the unperturbed radar rainfall field. The perturbations are generated by imposing the radar error spatial and temporal correlation structure to purely stochastic fields. A hydrodynamic sewer network model implemented in the Infoworks software was used to model the rainfall-runoff process in the urban area. The software calculates the flow through the sewer conduits of the urban model using rainfall as the primary input. The sewer network is covered by 25 radar pixels with a spatial resolution of 1 km2. The majority of the sewer system is combined, carrying both urban rainfall runoff as well as domestic and trade waste water [11]. The urban model was configured to receive the probabilistic radar rainfall fields. The results showed that the radar rainfall ensembles provide additional information about the uncertainty in the radar rainfall measurements that can be propagated in urban flood modelling. The peaks of the measured flow hydrographs are often bounded within the uncertainty area produced by using the radar rainfall ensembles. This is in fact one of the benefits of using radar rainfall ensembles in urban flood modelling. More work needs to be done in improving the urban models, but this is out of the scope of this research. The rainfall uncertainty cannot explain the whole uncertainty shown in the flow simulations, and additional sources of uncertainty will come from the structure of the urban models as well as the large number of parameters required by these models. Acknowledgements The authors would like to acknowledge the BADC, the UK Met Office and the UK Environment Agency for providing the various data sets. We also thank Yorkshire Water Services Ltd for providing the urban model. The authors acknowledge the support from the Engineering and Physical Sciences Research Council (EPSRC) via grant EP/I012222/1. References [1] Browning KA, 1978. Meteorological applications of radar. Reports on Progress in Physics 41 761 Doi: 10.1088/0034-4885/41/5/003 [2] Rico-Ramirez MA, Cluckie ID, Shepherd G, Pallot A, 2007. A high-resolution radar experiment on the island of Jersey. Meteorological Applications 14: 117-129. [3] Villarini G, Krajewski WF, 2010. Review of the different sources of uncertainty in single polarization radar-based estimates of rainfall. Surveys in Geophysics 31: 107-129. [4] Rossa A, Liechti K, Zappa M, Bruen M, Germann U, Haase G, Keil C, Krahe P, 2011. The COST 731 Action: A review on uncertainty propagation in advanced hydrometeorological forecast systems. Atmospheric Research 100, 150-167. [5] Rossa A, Bruen M, Germann U, Haase G, Keil C, Krahe P, Zappa M, 2010. Overview and Main Results on the interdisciplinary effort in flood forecasting COST 731-Propagation of Uncertainty in Advanced Meteo-Hydrological Forecast Systems. Proceedings of Sixth European Conference on Radar in Meteorology and Hydrology ERAD 2010. [6] Germann U, Berenguer M, Sempere-Torres D, Zappa M, 2009. REAL - ensemble radar precipitation estimation for hydrology in a mountainous region. Quarterly Journal of the Royal Meteorological Society 135: 445-456. [8] Bowler NEH, Pierce CE, Seed AW, 2006. STEPS: a probabilistic precipitation forecasting scheme which merges and extrapolation nowcast with downscaled NWP. Quarterly Journal of the Royal Meteorological Society 132: 2127-2155. [9] Zappa M, Rotach MW, Arpagaus M, Dorninger M, Hegg C, Montani A, Ranzi R, Ament F, Germann U, Grossi G et al., 2008. MAP D-PHASE: real-time demonstration of hydrological ensemble prediction systems. Atmospheric Science Letters 9, 80-87. [10] Liguori S, Rico-Ramirez MA. Quantitative assessment of short-term rainfall forecasts from radar nowcasts and MM5 forecasts. Hydrological Processes, accepted article. DOI: 10.1002/hyp.8415 [11] Liguori S, Rico-Ramirez MA, Schellart ANA, Saul AJ, 2012. Using probabilistic radar rainfall nowcasts and NWP forecasts for flow prediction in urban catchments. Atmospheric Research 103: 80-95. [12] Harrison DL, Driscoll SJ, Kitchen M, 2000. Improving precipitation estimates from weather radar using quality control and correction techniques. Meteorological Applications 7: 135-144. [13] Harrison DL, Scovell RW, Kitchen M, 2009. High-resolution precipitation estimates for hydrological uses. Proceedings of the Institution of Civil Engineers - Water Management 162: 125-135.
Precipitation characteristics in tropical Africa using satellite and in situ observations
NASA Astrophysics Data System (ADS)
Dezfuli, A. K.; Ichoku, I.; Huffman, G. J.; Mohr, K. I.
2017-12-01
Tropical Africa receives nearly all its precipitation as a result of convection. The characteristics of rain-producing systems in this region have not been well-understood, despite their crucial role in regional and global circulation. This is mainly due to the lack of in situ observations. Here, we have used precipitation records from the Trans-African Hydro-Meteorological Observatory (TAHMO) ground-based gauge network to improve our knowledge about the rainfall systems in the region, and to validate the recently-released IMERG precipitation product based on satellite observations from the Global Precipitation Measurement (GPM) constellation. The high temporal resolution of the gauge data has allowed us to identify three classes of rain events based on their duration and intensity. The contribution of each class to the total rainfall and the favorable surface atmospheric conditions for each class have been examined. As IMERG aims to continue the legacy of its predecessor, TRMM Multi-Satellite Precipitation Analysis (TMPA), and provide higher resolution data, continent-wide comparisons are made between these two products. Due to its improved temporal resolution, IMERG shows some advantages over TMPA in capturing the diurnal cycle and propagation of the meso-scale convective systems. However, the performance of the two satellite-based products varies by season, region and the evaluation statistics. The results of this study serve as a basis for our ongoing work on the impacts of biomass burning on precipitation processes in Africa.
Evaluation of LIS-based Soil Moisture and Evapotranspiration in the Korean Peninsula
NASA Astrophysics Data System (ADS)
Jung, H. C.; Kang, D. H.; Kim, E. J.; Yoon, Y.; Kumar, S.; Peters-Lidard, C. D.; Baeck, S. H.; Hwang, E.; Chae, H.
2017-12-01
K-water is the South Korean national water agency. It is the government-funded private agency for water resource development that provides both civil and industrial water in S. Korea. K-water is interested in exploring how earth remote sensing and modeling can help their tasks. In this context, the NASA Land Information System (LIS) is implemented to simulate land surface processes in the Korean Peninsula. The Noah land surface model with Multi-Parameterization, version 3.6 (Noah-MP) is used to reproduce the water budget variables on a 1 km spatial resolution grid with a daily temporal resolution. The Modern-Era Retrospective analysis for Research and Applications, version 2 (MERRA-2) datasets is used to force the system. The rainfall data are spatially downscaled from high resolution WorldClim precipitation climatology. The other meteorological inputs (i.e. air temperature, humidity, pressure, winds, radiation) are also downscaled by statistical methods (i.e. lapse-rate, slope-aspect). Additional model experiments are conducted with local rainfall datasets and soil maps to replace the downscaled MERRA-2 precipitation field and the hybrid STATSGO/FAO soil texture, respectively. For the evaluation of model performance, daily soil moisture and evapotranspiration measurements at several stations are compared to the LIS-based outputs. This study demonstrates that application of NASA's LIS can enhance drought and flood prediction capabilities in South Asia and Korea.
Interannual rainfall variability over China in the MetUM GA6 and GC2 configurations
NASA Astrophysics Data System (ADS)
Stephan, Claudia Christine; Klingaman, Nicholas P.; Vidale, Pier Luigi; Turner, Andrew G.; Demory, Marie-Estelle; Guo, Liang
2018-05-01
Six climate simulations of the Met Office Unified Model Global Atmosphere 6.0 and Global Coupled 2.0 configurations are evaluated against observations and reanalysis data for their ability to simulate the mean state and year-to-year variability of precipitation over China. To analyse the sensitivity to air-sea coupling and horizontal resolution, atmosphere-only and coupled integrations at atmospheric horizontal resolutions of N96, N216 and N512 (corresponding to ˜ 200, 90 and 40 km in the zonal direction at the equator, respectively) are analysed. The mean and interannual variance of seasonal precipitation are too high in all simulations over China but improve with finer resolution and coupling. Empirical orthogonal teleconnection (EOT) analysis is applied to simulated and observed precipitation to identify spatial patterns of temporally coherent interannual variability in seasonal precipitation. To connect these patterns to large-scale atmospheric and coupled air-sea processes, atmospheric and oceanic fields are regressed onto the corresponding seasonal mean time series. All simulations reproduce the observed leading pattern of interannual rainfall variability in winter, spring and autumn; the leading pattern in summer is present in all but one simulation. However, only in two simulations are the four leading patterns associated with the observed physical mechanisms. Coupled simulations capture more observed patterns of variability and associate more of them with the correct physical mechanism, compared to atmosphere-only simulations at the same resolution. However, finer resolution does not improve the fidelity of these patterns or their associated mechanisms. This shows that evaluating climate models by only geographical distribution of mean precipitation and its interannual variance is insufficient. The EOT analysis adds knowledge about coherent variability and associated mechanisms.
NASA Astrophysics Data System (ADS)
Hu, Xie; Lu, Zhong; Pierson, Thomas C.; Kramer, Rebecca; George, David L.
2018-02-01
The combined application of continuous Global Positioning System data (high temporal resolution) with spaceborne interferometric synthetic aperture radar data (high spatial resolution) can reveal much more about the complexity of large landslide movement than is possible with geodetic measurements tied to only a few specific measurement sites. This approach is applied to an 4 km2 reactivated translational landslide in the Columbia River Gorge (Washington State), which moves mainly during the winter rainy season. Results reveal the complex three-dimensional shape of the landslide mass, how onset of sliding relates to cumulative rainfall, how surface velocity during sliding varies with location on the topographically complex landslide surface, and how the ground surface subsides slightly in weeks prior to downslope sliding.
Hu, Xie; Lu, Zhong; Pierson, Thomas C.; Kramer, Rebecca; George, David L.
2018-01-01
The combined application of continuous Global Positioning System data (high temporal resolution) with spaceborne interferometric synthetic aperture radar data (high spatial resolution) can reveal much more about the complexity of large landslide movement than is possible with geodetic measurements tied to only a few specific measurement sites. This approach is applied to an ~4 km2 reactivated translational landslide in the Columbia River Gorge (Washington State), which moves mainly during the winter rainy season. Results reveal the complex three-dimensional shape of the landslide mass, how onset of sliding relates to cumulative rainfall, how surface velocity during sliding varies with location on the topographically complex landslide surface, and how the ground surface subsides slightly in weeks prior to downslope sliding.
Groundwater Estimation Using Remote Sensing Data on a Catchment Scale in New Zealand
NASA Astrophysics Data System (ADS)
Westerhoff, R.; Mu, Q.
2014-12-01
Long-term time series of satellite evapotranspiration (ET) were trialled for their additional value in aquifer characterisation on the catchment scale in New Zealand. In a simple chain-of-events approach yearly natural groundwater recharge was calculated with a 1x1km resolution. The chain consisted of (1) rainfall; (2) runoff due to slope; (3) actual ET; (4) soil permeability and water holding capacity; and (5) hydraulic conductivity of the deeper geology. As ET is a large part of the water balance (in New Zealand on average appr. 50% of rainfall), high resolution and high quality ET data is important for estimating groundwater recharge. Most global satellite data already embed a pseudo-model with coarse, global, input data. An example is ET data from the MODIS MOD16 product: although the spatial footprint of the satellite data is 1x1 km, input data to calculate ET contains global meteorology data. These data do not capture the extreme diversity in the New Zealand climate, where yearly rainfall and ET can change considerably over small distances. However, enough national ground-observed data are available to improve the MOD16 data. We improved monthly MOD16 ET by using the satellite data pattern as an interpolator between approximately 80 ground stations. Simple least squares fitting gave the best result. The added value of satellite data is obvious: the corrected MOD16 ET data have much higher spatial resolution and vegetation cover and growth is taken into account better.We then used national data to estimate 1x1km natural groundwater recharge: the corrected MOD16 PET and AET, in-situ based precipitation models; soil maps; geology maps; and (satellite-based) elevation. Validation with lysimeters and existing sub-catchment model output data looks promising, and further improvement with satellite soil moisture to estimate monthly recharge is underway. This work was done in the SMART Aquifer Characterisation (SAC) programme, a six-year research project funded by the New Zealand Ministry of Business, Innovation en Employment. Figure: Mean annual 1x1km PET (2000-2012) from MODIS MOD16 data, corrected for ground stations.
Short-term ensemble radar rainfall forecasts for hydrological applications
NASA Astrophysics Data System (ADS)
Codo de Oliveira, M.; Rico-Ramirez, M. A.
2016-12-01
Flooding is a very common natural disaster around the world, putting local population and economy at risk. Forecasting floods several hours ahead and issuing warnings are of main importance to permit proper response in emergency situations. However, it is important to know the uncertainties related to the rainfall forecasting in order to produce more reliable forecasts. Nowcasting models (short-term rainfall forecasts) are able to produce high spatial and temporal resolution predictions that are useful in hydrological applications. Nonetheless, they are subject to uncertainties mainly due to the nowcasting model used, errors in radar rainfall estimation, temporal development of the velocity field and to the fact that precipitation processes such as growth and decay are not taken into account. In this study an ensemble generation scheme using rain gauge data as a reference to estimate radars errors is used to produce forecasts with up to 3h lead-time. The ensembles try to assess in a realistic way the residual uncertainties that remain even after correction algorithms are applied in the radar data. The ensembles produced are compered to a stochastic ensemble generator. Furthermore, the rainfall forecast output was used as an input in a hydrodynamic sewer network model and also in hydrological model for catchments of different sizes in north England. A comparative analysis was carried of how was carried out to assess how the radar uncertainties propagate into these models. The first named author is grateful to CAPES - Ciencia sem Fronteiras for funding this PhD research.
NASA Astrophysics Data System (ADS)
Petroselli, A.; Grimaldi, S.; Romano, N.
2012-12-01
The Soil Conservation Service - Curve Number (SCS-CN) method is a popular rainfall-runoff model widely used to estimate losses and direct runoff from a given rainfall event, but its use is not appropriate at sub-daily time resolution. To overcome this drawback, a mixed procedure, referred to as CN4GA (Curve Number for Green-Ampt), was recently developed including the Green-Ampt (GA) infiltration model and aiming to distribute in time the information provided by the SCS-CN method. The main concept of the proposed mixed procedure is to use the initial abstraction and the total volume given by the SCS-CN to calibrate the Green-Ampt soil hydraulic conductivity parameter. The procedure is here applied on a real case study and a sensitivity analysis concerning the remaining parameters is presented; results show that CN4GA approach is an ideal candidate for the rainfall excess analysis at sub-daily time resolution, in particular for ungauged basin lacking of discharge observations.
NASA Technical Reports Server (NTRS)
Lin, Pay-Liam; Chen, D.; Tao, Wei-Kuo; Shi, Jainn J.; Chang, Mei-Yu
2010-01-01
In recent years, the heavy rainfall that was associated with severe weather events (e.g., typhoons, local heavy precipitation events) has caused significant damages in the economy and loss of human life throughout Taiwan. Especially, the extreme heavy rainfall (over 2500 mm over 24 hours) associated with Typhoon Morakot 2009 caused more than 600 human beings lost and more than $100 million US dollar damage. In this paper, we are using WRF to simulate the precipitation processes associated Typhoon Morakot 2009. The preliminary results indicated that the wrf model with using 2 km grid size and with utilizing the 310E scheme (cloud ice, snow and hail) can simulate more than 2500 mm rainfall over 24 hour integration. In this talk, we will evaluate the performance of the microphysical schemes for the Typhoon Morakot case. In addition, we will examine the impact of model resolution (in both horizontal and vertical) on the Typhoon Morakot case.
An Environmental Data Set for Vector-Borne Disease Modeling and Epidemiology
Chabot-Couture, Guillaume; Nigmatulina, Karima; Eckhoff, Philip
2014-01-01
Understanding the environmental conditions of disease transmission is important in the study of vector-borne diseases. Low- and middle-income countries bear a significant portion of the disease burden; but data about weather conditions in those countries can be sparse and difficult to reconstruct. Here, we describe methods to assemble high-resolution gridded time series data sets of air temperature, relative humidity, land temperature, and rainfall for such areas; and we test these methods on the island of Madagascar. Air temperature and relative humidity were constructed using statistical interpolation of weather station measurements; the resulting median 95th percentile absolute errors were 2.75°C and 16.6%. Missing pixels from the MODIS11 remote sensing land temperature product were estimated using Fourier decomposition and time-series analysis; thus providing an alternative to the 8-day and 30-day aggregated products. The RFE 2.0 remote sensing rainfall estimator was characterized by comparing it with multiple interpolated rainfall products, and we observed significant differences in temporal and spatial heterogeneity relevant to vector-borne disease modeling. PMID:24755954
NASA Astrophysics Data System (ADS)
Tariku, Tebikachew Betru; Gan, Thian Yew
2018-06-01
Regional climate models (RCMs) have been used to simulate rainfall at relatively high spatial and temporal resolutions useful for sustainable water resources planning, design and management. In this study, the sensitivity of the RCM, weather research and forecasting (WRF), in modeling the regional climate of the Nile River Basin (NRB) was investigated using 31 combinations of different physical parameterization schemes which include cumulus (Cu), microphysics (MP), planetary boundary layer (PBL), land-surface model (LSM) and radiation (Ra) schemes. Using the European Centre for Medium-Range Weather Forecast (ECMWF) ERA-Interim reanalysis data as initial and lateral boundary conditions, WRF was configured to model the climate of NRB at a resolution of 36 km with 30 vertical levels. The 1999-2001 simulations using WRF were compared with satellite data combined with ground observation and the NCEP reanalysis data for 2 m surface air temperature (T2), rainfall, short- and longwave downward radiation at the surface (SWRAD, LWRAD). Overall, WRF simulated more accurate T2 and LWRAD (with correlation coefficients >0.8 and low root-mean-square error) than SWRAD and rainfall for the NRB. Further, the simulation of rainfall is more sensitive to PBL, Cu and MP schemes than other schemes of WRF. For example, WRF simulated less biased rainfall with Kain-Fritsch combined with MYJ than with YSU as the PBL scheme. The simulation of T2 is more sensitive to LSM and Ra than to Cu, PBL and MP schemes selected, SWRAD is more sensitive to MP and Ra than to Cu, LSM and PBL schemes, and LWRAD is more sensitive to LSM, Ra and PBL than Cu, and MP schemes. In summary, the following combination of schemes simulated the most representative regional climate of NRB: WSM3 microphysics, KF cumulus, MYJ PBL, RRTM longwave radiation and Dudhia shortwave radiation schemes, and Noah LSM. The above configuration of WRF coupled to the Noah LSM has also been shown to simulate representative regional climate of NRB over 1980-2001 which include a combination of wet and dry years of the NRB.
NASA Astrophysics Data System (ADS)
Gebregiorgis, A. S.; Peters-Lidard, C. D.; Tian, Y.; Hossain, F.
2011-12-01
Hydrologic modeling has benefited from operational production of high resolution satellite rainfall products. The global coverage, near-real time availability, spatial and temporal sampling resolutions have advanced the application of physically based semi-distributed and distributed hydrologic models for wide range of environmental decision making processes. Despite these successes, the existence of uncertainties due to indirect way of satellite rainfall estimates and hydrologic models themselves remain a challenge in making meaningful and more evocative predictions. This study comprises breaking down of total satellite rainfall error into three independent components (hit bias, missed precipitation and false alarm), characterizing them as function of land use and land cover (LULC), and tracing back the source of simulated soil moisture and runoff error in physically based distributed hydrologic model. Here, we asked "on what way the three independent total bias components, hit bias, missed, and false precipitation, affect the estimation of soil moisture and runoff in physically based hydrologic models?" To understand the clear picture of the outlined question above, we implemented a systematic approach by characterizing and decomposing the total satellite rainfall error as a function of land use and land cover in Mississippi basin. This will help us to understand the major source of soil moisture and runoff errors in hydrologic model simulation and trace back the information to algorithm development and sensor type which ultimately helps to improve algorithms better and will improve application and data assimilation in future for GPM. For forest and woodland and human land use system, the soil moisture was mainly dictated by the total bias for 3B42-RT, CMORPH, and PERSIANN products. On the other side, runoff error was largely dominated by hit bias than the total bias. This difference occurred due to the presence of missed precipitation which is a major contributor to the total bias both during the summer and winter seasons. Missed precipitation, most likely light rain and rain over snow cover, has significant effect on soil moisture and are less capable of producing runoff that results runoff dependency on the hit bias only.
NASA Astrophysics Data System (ADS)
Tariku, Tebikachew Betru; Gan, Thian Yew
2017-08-01
Regional climate models (RCMs) have been used to simulate rainfall at relatively high spatial and temporal resolutions useful for sustainable water resources planning, design and management. In this study, the sensitivity of the RCM, weather research and forecasting (WRF), in modeling the regional climate of the Nile River Basin (NRB) was investigated using 31 combinations of different physical parameterization schemes which include cumulus (Cu), microphysics (MP), planetary boundary layer (PBL), land-surface model (LSM) and radiation (Ra) schemes. Using the European Centre for Medium-Range Weather Forecast (ECMWF) ERA-Interim reanalysis data as initial and lateral boundary conditions, WRF was configured to model the climate of NRB at a resolution of 36 km with 30 vertical levels. The 1999-2001 simulations using WRF were compared with satellite data combined with ground observation and the NCEP reanalysis data for 2 m surface air temperature (T2), rainfall, short- and longwave downward radiation at the surface (SWRAD, LWRAD). Overall, WRF simulated more accurate T2 and LWRAD (with correlation coefficients >0.8 and low root-mean-square error) than SWRAD and rainfall for the NRB. Further, the simulation of rainfall is more sensitive to PBL, Cu and MP schemes than other schemes of WRF. For example, WRF simulated less biased rainfall with Kain-Fritsch combined with MYJ than with YSU as the PBL scheme. The simulation of T2 is more sensitive to LSM and Ra than to Cu, PBL and MP schemes selected, SWRAD is more sensitive to MP and Ra than to Cu, LSM and PBL schemes, and LWRAD is more sensitive to LSM, Ra and PBL than Cu, and MP schemes. In summary, the following combination of schemes simulated the most representative regional climate of NRB: WSM3 microphysics, KF cumulus, MYJ PBL, RRTM longwave radiation and Dudhia shortwave radiation schemes, and Noah LSM. The above configuration of WRF coupled to the Noah LSM has also been shown to simulate representative regional climate of NRB over 1980-2001 which include a combination of wet and dry years of the NRB.
NASA Astrophysics Data System (ADS)
Chawla, Ila; Osuri, Krishna K.; Mujumdar, Pradeep P.; Niyogi, Dev
2018-02-01
Reliable estimates of extreme rainfall events are necessary for an accurate prediction of floods. Most of the global rainfall products are available at a coarse resolution, rendering them less desirable for extreme rainfall analysis. Therefore, regional mesoscale models such as the advanced research version of the Weather Research and Forecasting (WRF) model are often used to provide rainfall estimates at fine grid spacing. Modelling heavy rainfall events is an enduring challenge, as such events depend on multi-scale interactions, and the model configurations such as grid spacing, physical parameterization and initialization. With this background, the WRF model is implemented in this study to investigate the impact of different processes on extreme rainfall simulation, by considering a representative event that occurred during 15-18 June 2013 over the Ganga Basin in India, which is located at the foothills of the Himalayas. This event is simulated with ensembles involving four different microphysics (MP), two cumulus (CU) parameterizations, two planetary boundary layers (PBLs) and two land surface physics options, as well as different resolutions (grid spacing) within the WRF model. The simulated rainfall is evaluated against the observations from 18 rain gauges and the Tropical Rainfall Measuring Mission Multi-Satellite Precipitation Analysis (TMPA) 3B42RT version 7 data. From the analysis, it should be noted that the choice of MP scheme influences the spatial pattern of rainfall, while the choice of PBL and CU parameterizations influences the magnitude of rainfall in the model simulations. Further, the WRF run with Goddard MP, Mellor-Yamada-Janjic PBL and Betts-Miller-Janjic CU scheme is found to perform best
in simulating this heavy rain event. The selected configuration is evaluated for several heavy to extremely heavy rainfall events that occurred across different months of the monsoon season in the region. The model performance improved through incorporation of detailed land surface processes involving prognostic soil moisture evolution in Noah scheme compared to the simple Slab model. To analyse the effect of model grid spacing, two sets of downscaling ratios - (i) 1 : 3, global to regional (G2R) scale and (ii) 1 : 9, global to convection-permitting scale (G2C) - are employed. Results indicate that a higher downscaling ratio (G2C) causes higher variability and consequently large errors in the simulations. Therefore, G2R is adopted as a suitable choice for simulating heavy rainfall event in the present case study. Further, the WRF-simulated rainfall is found to exhibit less bias when compared with the NCEP FiNaL (FNL) reanalysis data.
NASA Technical Reports Server (NTRS)
Prabhakara, C.; Iacovazzi, R., Jr.; Yoo, J.-M.; Lau, William K. M. (Technical Monitor)
2002-01-01
Rain is highly variable in space and time. In order to measure rainfall over global land with satellites, we need observations with very high spatial resolution and frequency in time. On board the Tropical Rainfall Measuring Mission (TRMM) satellite, the Precipitation Radar (PR) and Microwave Imager (TMI) are flown together for the purpose of estimating rain rate. The basic method to estimate rain from PR has been developed over the past several decades. On the other hand, the TMI method of rain estimation is still in the state development, particularly over land. The objective of this technical memorandum is to develop a theoretical framework that helps relate the observations made by these two instruments. The principle result of this study is that in order to match the PR observations with the TMI observations in convective rain areas, a mixed layer of graupel and supercooled water drops above the freezing level is needed. On the other hand, to match these observations in the stratiform region, a layer of snowflakes with appropriate densities above the freezing level, and a melting layer below the freezing level, are needed. This understanding can lead to a robust rainfall estimation technique from the microwave radiometer observations.
NASA Astrophysics Data System (ADS)
Belachsen, Idit; Marra, Francesco; Peleg, Nadav; Morin, Efrat
2017-04-01
Space-time patterns of rainfall are important climatic characteristics that influence runoff generation and flash flood magnitude. Their derivation requires high-resolution measurements to adequately represent the rainfall distribution, and is best provided by remote sensing tools. This need is further emphasized in dry climate regions, where rainfall is scarce and, often, local and highly variable. Our research is focused on understanding the nature of rainfall events in the dry Dead Sea region (Eastern Mediterranean) by identifying and characterizing the spatial structure and the dynamics of convective storm cores (known as rain cells). To do so, we take advantage of 25 years of corrected and gauge-adjusted weather radar data. A statistical analysis of convective rain-cells spatial and temporal characteristics was performed with respect to synoptic pattern, geographical location, and flash flood generation. Rain cells were extracted from radar data using a cell segmentation method and a tracking algorithm and were divided into rain events. A total of 10,500 rain cells, 2650 cell tracks and 424 rain events were elicited. Rain cell properties, such as mean areal and maximal rain intensity, area, life span, direction and speed, were derived. Rain events were clustered, according to several ERA-Interim atmospheric parameters, and associated with three main synoptic patterns: Cyprus Low, Low to the East of the study region and Active Red Sea Trough. The first two originate from the Mediterranean Sea, while the third is an extension of the African monsoon. On average, the convective rain cells in the region are 90 km2 in size, moving from West to East in 13 ms-1 and living 18 minutes. Several significant differences between rain cells of the various synoptic types were observed. In particular, Active Red Sea Trough rain cells are characterized by higher rain intensities and lower speeds, suggesting a higher flooding potential for small catchments. The north-south negative gradient of mean annual rainfall in the study region was found to be negatively correlated with rain cells intensity and positively correlated with rain cells area. Additional analysis was done for convective rain cells over two nearby catchments located in the central part of the study region, by ascribing some of the rain events to observed flash-flood events. It was found that rain events associated with flash-floods have higher maximal rain cell intensity and lower minimal cell speed than rain events that did not lead to a flash-flood in the watersheds. This information contributes to our understanding of rain patterns over the dry area of the Dead Sea and their connection to flash-floods. The statistical distributions of rain cells properties can be used for high space-time resolution stochastic simulations of rain storms that can serve as an input to hydrological models.
Relationships between High Impact Tropical Rainfall Events and Environmental Conditions
NASA Astrophysics Data System (ADS)
Painter, C.; Varble, A.; Zipser, E. J.
2017-12-01
While rainfall increases as moisture and vertical motion increase, relationships between regional environmental conditions and rainfall event characteristics remain more uncertain. Of particular importance are long duration, heavy rain rate, and significant accumulation events that contribute sizable fractions of overall precipitation over short time periods. This study seeks to establish relationships between observed rainfall event properties and environmental conditions. Event duration, rain rate, and rainfall accumulation are derived using the Tropical Rainfall Measuring Mission (TRMM) 3B42 3-hourly, 0.25° resolution rainfall retrieval from 2002-2013 between 10°N and 10°S. Events are accumulated into 2.5° grid boxes and matched to monthly mean total column water vapor (TCWV) and 500-hPa vertical motion (omega) in each 2.5° grid box, retrieved from ERA-interim reanalysis. Only months with greater than 3 mm/day rainfall are included to ensure sufficient sampling. 90th and 99th percentile oceanic events last more than 20% longer and have rain rates more than 20% lower than those over land for a given TCWV-omega condition. Event duration and accumulation are more sensitive to omega than TCWV over oceans, but more sensitive to TCWV than omega over land, suggesting system size, propagation speed, and/or forcing mechanism differences for land and ocean regions. Sensitivities of duration, rain rate, and accumulation to TCWV and omega increase with increasing event extremity. For 3B42 and ERA-Interim relationships, the 90th percentile oceanic event accumulation increases by 0.93 mm for every 1 Pa/min change in rising motion, but this increases to 3.7 mm for every 1 Pa/min for the 99th percentile. Over land, the 90th percentile event accumulation increases by 0.55 mm for every 1 mm increase in TCWV, whereas the 99th percentile increases by 0.90 mm for every 1 mm increase in TCWV. These changes in event accumulation are highly correlated with changes in event duration. Relationships between 3B42 event properties and ERA-Interim environmental conditions are currently being evaluated using the MERRA-2 reanalysis and two years of 30-minute, 0.1° Integrated Multi-satellitE Retrievals for GPM (IMERG) data. If results remain consistent, they may be valuable for evaluating weather and climate models.
Coupling of Indian and East Asian Monsoon Precipitation in July-August
NASA Astrophysics Data System (ADS)
Day, J. A.; Fung, I. Y.; Risi, C. M.
2014-12-01
Recent work suggests that summer rainfall in the Indian and East Asian monsoons results from different mechanisms. The onset of intense convection in India is mediated by Hadley Cell transitions, whereas frontal rainfall in China (most notably during Meiyu season in June) arises from forced meridional convergence and zonal heat transport in the wake of the Tibetan Plateau. However, the leading mode of July-August interannual rainfall variability for All-Asia (defined as the region within 68E-140E and 5N-45N) demonstrates a statistically significant coupling between monthly anomalies in India and China. In particular, positive anomalies along the Himalayan Foothills are associated with positive anomalies along the Yangtze River, and also with negative anomalies over central India and northern and southern China. The entire pattern reverses in dry years over the Himalayan Foothills. This coupling is not significantly correlated with ENSO, the leading mode of global interannual variability. We propose that a channel of moisture transport links the Bay of Bengal to the Yangtze River valley across the high terrain of the Yunnan Plateau, on the southeast edge of the Tibetan Plateau. This channel only activates in July, when the maximum of moist static energy (MSE) shifts to land, and weakens in September with the cooling of Bay of Bengal SST. Our mechanism is substantiated by analysis of output from the LMDZ5 model, which includes a high-resolution nested grid nudged to reanalysis, improving the simulation of the Indian Monsoon and performance near high topography. Potential changes in moisture transport across the Yunnan Plateau under 21st century warming conditions may lead to modified interannual variability of Asian rainfall.
Rainfall and Extratropical Transition of Tropical Cyclones: Simulation, Prediction, and Projection
NASA Astrophysics Data System (ADS)
Liu, Maofeng
Rainfall and associated flood hazards are one of the major threats of tropical cyclones (TCs) to coastal and inland regions. The interaction of TCs with extratropical systems can lead to enhanced precipitation over enlarged areas through extratropical transition (ET). To achieve a comprehensive understanding of rainfall and ET associated with TCs, this thesis conducts weather-scale analyses by focusing on individual storms and climate-scale analyses by focusing on seasonal predictability and changing properties of climatology under global warming. The temporal and spatial rainfall evolution of individual storms, including Hurricane Irene (2011), Hurricane Hanna (2008), and Hurricane Sandy (2012), is explored using the Weather Research and Forecast (WRF) model and a variety of hydrometeorological datasets. ET and Orographic mechanism are two key players in the rainfall distribution of Irene over regions experiencing most severe flooding. The change of TC rainfall under global warming is explored with the Forecast-oriented Low Ocean Resolution (FLOR) climate model under representative concentration pathway (RCP) 4.5 scenario. Despite decreased TC frequency, FLOR projects increased landfalling TC rainfall over most regions of eastern United States, highlighting the risk of increased flood hazards. Increased storm rain rate is an important player of increased landfalling TC rainfall. A higher atmospheric resolution version of FLOR (HiFLOR) model projects increased TC rainfall at global scales. The increase of TC intensity and environmental water vapor content scaled by the Clausius-Clapeyron relation are two key factors that explain the projected increase of TC rainfall. Analyses on the simulation, prediction, and projection of the ET activity with FLOR are conducted in the North Atlantic. FLOR model exhibits good skills in simulating many aspects of present-day ET climatology. The 21st-century-projection under RCP4.5 scenario demonstrates the dominant role of ET events on the projected increase of TC frequency in the eastern North Atlantic, highlighting increased exposure of the northeastern United States and Western Europe to storm hazards. Retrospective seasonal forecast experiments demonstrate the skill of HiFLOR in predicting basinwide and regional ET frequency. This skill, however, is not seen in the seasonal prediction of ET rate. More work on the property of signal-to-noise ratio of ET rate is needed.
TRMM and its Connection to the Global Water Cycle
NASA Technical Reports Server (NTRS)
Kummerow, Christian; Hong, Ye
1999-01-01
The importance of quantitative knowledge of tropical rainfall, its associated latent heating and variability is summarized in the context of the global hydrologic cycle. Much of the tropics is covered by oceans. What land exists, is covered largely by rainforests that are only thinly populated. The only way to adequately measure the global tropical rainfall for climate and general circulation models is from space. The Tropical Rainfall Measuring Mission (TRMM) orbit is inclined 35 degrees leading to good sampling in the tropics and a rapid precession to study the diurnal cycle of precipitation. The precipitation instrument complement consists of the first rain radar to be flown in space (PR), a multi-channel passive microwave sensor (TMI) and a five-channel VIS/IR (VIRS) sensor. The precipitation radar operates at a frequency of 13.6 GHz. The swath width is 220 km, with a horizontal resolution of 4 km and the vertical resolution of 250 m. The minimum detectable signal from the precipitation radar has been measured at - 17 dBZ. The TMI instrument is designed similar to the SSM/I with two important changes. The 22.235 GHz water vapor absorption channel of the SSM/I was moved to 21.3 GHz in order to avoid saturation in the tropics and 10.7 GHz V&H polarized channels were added to expand the dynamic range of rainfall estimates. The resolution of the TMI varies from 4.6 km at 85 GHz to 36 km at 10.7 GHz. The visible and infrared sensor (VIRS) measures radiation at 0.63, 1.6, 3.75, 10.8 and 12.0 microns. The spatial resolution of all five VIRS channels is 2 km at nadir. In addition to the three primary rainfall instruments, TRMM will also carry a Lightning Imaging Sensor (LIS) and a Clouds and the Earth's Radiant Energy System (CERES) instrument. This presentation will focus primarily on the advances in our understanding of tropical rain systems needed to interpret the TRMM data. Global averages, as well as case studies from TRMM radar (PR), the TRMM Microwave Imager (TMI) and Visible and Infrared Sensor (VIRS) will be presented. Comparisons and contrasts among the different sensors will be drawn. Results will also be compared to previous rainfall climatologies generated from the SSM/I instrument. In particular this paper will focus on the synergy between the TRMM radar and passive microwave radiometer and what we have learned from its synergy.
NASA Astrophysics Data System (ADS)
Weiler, M.
2016-12-01
Heavy rain induced flash floods are still a serious hazard and generate high damages in urban areas. In particular in the spatially complex urban areas, the temporal and spatial pattern of runoff generation processes at a wide spatial range during extreme rainfall events need to be predicted including the specific effects of green infrastructure and urban forests. In addition, the initial conditions (soil moisture pattern, water storage of green infrastructure) and the effect of lateral redistribution of water (run-on effects and re-infiltration) have to be included in order realistically predict flash flood generation. We further developed the distributed, process-based model RoGeR (Runoff Generation Research) to include the relevant features and processes in urban areas in order to test the effects of different settings, initial conditions and the lateral redistribution of water on the predicted flood response. The uncalibrated model RoGeR runs at a spatial resolution of 1*1m² (LiDAR, degree of sealing, landuse), soil properties and geology (1:50.000). In addition, different green infrastructures are included into the model as well as the effect of trees on interception and transpiration. A hydraulic model was included into RoGeR to predict surface runoff, water redistribution, and re-infiltration. During rainfall events, RoGeR predicts at 5 min temporal resolution, but the model also simulates evapotranspiration and groundwater recharge during rain-free periods at a longer time step. The model framework was applied to several case studies in Germany where intense rainfall events produced flash floods causing high damage in urban areas and to a long-term research catchment in an urban setting (Vauban, Freiburg), where a variety of green infrastructures dominates the hydrology. Urban-RoGeR allowed us to study the effects of different green infrastructures on reducing the flood peak, but also its effect on the water balance (evapotranspiration and groundwater recharge). We could also show that infiltration of surface runoff from areas with a low infiltration (lateral redistribution) reduce the flood peaks by over 90% in certain areas and situations. Finally, we also evaluated the model to long-term runoff observations (surface runoff, ET, roof runoff) and to flood marks in the selected case studies.
The estimation of probable maximum precipitation: the case of Catalonia.
Casas, M Carmen; Rodríguez, Raül; Nieto, Raquel; Redaño, Angel
2008-12-01
A brief overview of the different techniques used to estimate the probable maximum precipitation (PMP) is presented. As a particular case, the 1-day PMP over Catalonia has been calculated and mapped with a high spatial resolution. For this purpose, the annual maximum daily rainfall series from 145 pluviometric stations of the Instituto Nacional de Meteorología (Spanish Weather Service) in Catalonia have been analyzed. In order to obtain values of PMP, an enveloping frequency factor curve based on the actual rainfall data of stations in the region has been developed. This enveloping curve has been used to estimate 1-day PMP values of all the 145 stations. Applying the Cressman method, the spatial analysis of these values has been achieved. Monthly precipitation climatological data, obtained from the application of Geographic Information Systems techniques, have been used as the initial field for the analysis. The 1-day PMP at 1 km(2) spatial resolution over Catalonia has been objectively determined, varying from 200 to 550 mm. Structures with wavelength longer than approximately 35 km can be identified and, despite their general concordance, the obtained 1-day PMP spatial distribution shows remarkable differences compared to the annual mean precipitation arrangement over Catalonia.
NASA Astrophysics Data System (ADS)
Barros, A. P.; Prat, O. P.; Sun, X.; Shrestha, P.; Miller, D.
2009-04-01
The classic conceptual model of orographic rainfall depicts strong stationary horizontal gradients in rainfall accumulations and landcover contrasts across topographic divides (i.e. the rainshadow) at the broad scale of mountain ranges, or isolated orographic features. Whereas this model is sufficient to fingerprint the land-modulation of precipitation at the macroscale in climate studies, and can be useful to force geological models of land evolution for example, it fails to describe the active 4D space-time gradients that are critical at the fundamental scale of mountain hydrometeorology and hydrology, that is the headwater catchment. That is, the scale at which flash-floods are generated and landslides are triggered. Our work surveying the spatial and temporal habits of clouds and rainfall for some of the world's major mountain ranges from remotely-sensed data shows a close alignment of spatial scaling behavior with landform down to the mountain fold scale, that is the ridge-valley. Likewise, we find that diurnal and seasonal cycles are organized and constrained by topography from the macro- to the meso- to the alpha-scale of individual basins varying with synoptic weather conditions. At the catchment scale, the diurnal cycle exhibits an oscillatory behavior with storm features moving up and down from the ridge crests to the valley floor and back and forth from head to mouth along the valley with strong variations in rainfall intensity and duration. Direct observations to provide quantitative estimates of precipitation at this scale are beyond the capability of satellite-based observations present and anticipated in the next 10-20 years. This limitation can be addressed by assimilating the space-time modes of variability of rainfall into satellite-observations at coarser scale using multiscale blending algorithms. The challenge is to characterize the modes of space-time variability of precipitation in a systematic, and quantitative fashion that can be generalized. It requires understanding the physical controls that govern the diurnal cycle and how these physical controls translate into spatial and temporal variability of dynamics and microphysics of precipitation in headwater catchments, and especially in the context of extreme events for natural hazards assessments. Toward this goal, we have initiated a sequence of number of intense observing period (IOP) campaigns in the Great Smoky Mountains National Park using radiosondes, tethersondes, microrain radars, and a high resolution raingauge network that for the first time monitors rainfall systematically along ridges in the Appalachians. Along with field observations, a high-resolution coupled model has been implemented to diagnose the evolution of the 4D structure of regional circulations and associated precipitation for IOP conditions and for reconstructing historical extremes associated with the interaction of tropical cyclones with the mountains. A synthesis of data analysis and model simulations will be presented.
NASA Astrophysics Data System (ADS)
Mascaro, Giuseppe
2018-04-01
This study uses daily rainfall records of a dense network of 240 gauges in central Arizona to gain insights on (i) the variability of the seasonal distributions of rainfall extremes; (ii) how the seasonal distributions affect the shape of the annual distribution; and (iii) the presence of spatial patterns and orographic control for these distributions. For this aim, recent methodological advancements in peak-over-threshold analysis and application of the Generalized Pareto Distribution (GPD) were used to assess the suitability of the GPD hypothesis and improve the estimation of its parameters, while limiting the effect of short sample sizes. The distribution of daily rainfall extremes was found to be heavy-tailed (i.e., GPD shape parameter ξ > 0) during the summer season, dominated by convective monsoonal thunderstorms. The exponential distribution (a special case of GPD with ξ = 0) was instead showed to be appropriate for modeling wintertime daily rainfall extremes, mainly caused by cold fronts transported by westerly flow. The annual distribution exhibited a mixed behavior, with lighter upper tails than those found in summer. A hybrid model mixing the two seasonal distributions was demonstrated capable of reproducing the annual distribution. Organized spatial patterns, mainly controlled by elevation, were observed for the GPD scale parameter, while ξ did not show any clear control of location or orography. The quantiles returned by the GPD were found to be very similar to those provided by the National Oceanic and Atmospheric Administration (NOAA) Atlas 14, which used the Generalized Extreme Value (GEV) distribution. Results of this work are useful to improve statistical modeling of daily rainfall extremes at high spatial resolution and provide diagnostic tools for assessing the ability of climate models to simulate extreme events.
Stochastic rainfall synthesis for urban applications using different regionalization methods
NASA Astrophysics Data System (ADS)
Callau Poduje, A. C.; Leimbach, S.; Haberlandt, U.
2017-12-01
The proper design and efficient operation of urban drainage systems require long and continuous rainfall series in a high temporal resolution. Unfortunately, these time series are usually available in a few locations and it is therefore suitable to develop a stochastic precipitation model to generate rainfall in locations without observations. The model presented is based on an alternating renewal process and involves an external and an internal structure. The members of these structures are described by probability distributions which are site specific. Different regionalization methods based on site descriptors are presented which are used for estimating the distributions for locations without observations. Regional frequency analysis, multiple linear regressions and a vine-copula method are applied for this purpose. An area located in the north-west of Germany is used to compare the different methods and involves a total of 81 stations with 5 min rainfall records. The site descriptors include information available for the whole region: position, topography and hydrometeorologic characteristics which are estimated from long term observations. The methods are compared directly by cross validation of different rainfall statistics. Given that the model is stochastic the evaluation is performed based on ensembles of many long synthetic time series which are compared with observed ones. The performance is as well indirectly evaluated by setting up a fictional urban hydrological system to test the capability of the different methods regarding flooding and overflow characteristics. The results show a good representation of the seasonal variability and good performance in reproducing the sample statistics of the rainfall characteristics. The copula based method shows to be the most robust of the three methods. Advantages and disadvantages of the different methods are presented and discussed.
Site-specific high-resolution models of the monsoon for Africa and Asia
NASA Astrophysics Data System (ADS)
Bryson, R. A.; Bryson, R. U.
2000-11-01
Using the macrophysical climate model of Bryson [Bryson, R.A., 1992. A macrophysical model of the Holocene intertropical convergence and jetstream positions and rainfall for the Saharan region. Meteorol. Atmos. Phys., 47, pp. 247-258], it is possible to calculate the monthly latitude of the jetstream and the latitude of the subtropical anticyclones. From these and modern climatic data, it is possible to model the two-century mean latitude of the intertropical convergence (ITC) month by month and estimate the monthly monsoon rainfall using the ITC-Rainfall model of Ilesanmi [Ilesanmi, O.O., 1971. An empirical formulation of an ITD rainfall model for the tropics — a case study of Nigeria. J. Appl. Meteorol., 10, pp. 882-891] and similar relationships. Input to this model is only calculated radiation and atmospheric optical depth estimated from a database of global volcanicity. Recent work has shown that it is possible to extend these estimates to both precipitation and temperature at specific sites, even in mountainous terrain. Testing of the model against archaeological records and climatic proxies is now underway, as well as refining the fundamental model. Preliminary indications are that the timing of fluctuations in the local climate is very well modeled. Especially well matched are the modeled Nile flood based on calculated rainfall on the Blue and White Nile watersheds and the level of Lake Moeris [Hassan, F., 1985. Holocene lakes and prehistoric settlements of the Western Faiyum, Egypt. J. Archaeol. Res., 13, pp. 483-501]. Modeled precipitation histories for specific sites in China, Thailand, the Arabian Peninsula, and North Africa will be presented and contrasted with the simulated rainfall history of Mesopotamia.
NASA Astrophysics Data System (ADS)
Tang, L.; Hossain, F.
2009-12-01
Understanding the error characteristics of satellite rainfall data at different spatial/temporal scales is critical, especially when the scheduled Global Precipitation Mission (GPM) plans to provide High Resolution Precipitation Products (HRPPs) at global scales. Satellite rainfall data contain errors which need ground validation (GV) data for characterization, while satellite rainfall data will be most useful in the regions that are lacking in GV. Therefore, a critical step is to develop a spatial interpolation scheme for transferring the error characteristics of satellite rainfall data from GV regions to Non-GV regions. As a prelude to GPM, The TRMM Multi-satellite Precipitation Analysis (TMPA) products of 3B41RT and 3B42RT (Huffman et al., 2007) over the US spanning a record of 6 years are used as a representative example of satellite rainfall data. Next Generation Radar (NEXRAD) Stage IV rainfall data are used as the reference for GV data. Initial work by the authors (Tang et al., 2009, GRL) has shown promise in transferring error from GV to Non-GV regions, based on a six-year climatologic average of satellite rainfall data assuming only 50% of GV coverage. However, this transfer of error characteristics needs to be investigated for a range of GV data coverage. In addition, it is also important to investigate if proxy-GV data from an accurate space-borne sensor, such as the TRMM PR (or the GPM DPR), can be leveraged for the transfer of error at sparsely gauged regions. The specific question we ask in this study is, “what is the minimum coverage of GV data required for error transfer scheme to be implemented at acceptable accuracy in hydrological relevant scale?” Three geostatistical interpolation methods are compared: ordinary kriging, indicator kriging and disjunctive kriging. Various error metrics are assessed for transfer such as, Probability of Detection for rain and no rain, False Alarm Ratio, Frequency Bias, Critical Success Index, RMSE etc. Understanding the proper space-time scales at which these metrics can be reasonably transferred is also explored in this study. Keyword: Satellite rainfall, error transfer, spatial interpolation, kriging methods.
NASA Astrophysics Data System (ADS)
von Ruette, J.; Lehmann, P.; Or, D.
2014-10-01
The occurrence of shallow landslides is often associated with intense and prolonged rainfall events, where infiltrating water reduces soil strength and may lead to abrupt mass release. Despite general understanding of the role of rainfall water in slope stability, the prediction of rainfall-induced landslides remains a challenge due to natural heterogeneity that affect hydrologic loading patterns and the largely unobservable internal progressive failures. An often overlooked and potentially important factor is the role of rainfall variability in space and time on landslide triggering that is often obscured by coarse information (e.g., hourly radar data at spatial resolution of a few kilometers). To quantify potential effects of rainfall variability on failure dynamics, spatial patterns, landslide numbers and volumes, we employed a physically based "Catchment-scale Hydromechanical Landslide Triggering" (CHLT) model for a study area where a summer storm in 2002 triggered 51 shallow landslides. In numerical experiments based on the CHLT model, we applied the measured rainfall amount of 53 mm in different artificial spatiotemporal rainfall patterns, resulting in between 30 and 100 landslides and total released soil volumes between 3000 and 60,000 m3 for the various scenarios. Results indicate that low intensity rainfall below soil's infiltration capacity resulted in the largest mechanical perturbation. This study illustrates how small-scale rainfall variability that is often overlooked by present operational rainfall data may play a key role in shaping landslide patterns.
NASA Astrophysics Data System (ADS)
Hamidi, A.; Grossberg, M.; Khanbilvardi, R.
2016-12-01
Flood response in an urban area is the product of interactions of spatially and temporally varying rainfall and infrastructures. In urban areas, however, the complex sub-surface networks of tunnels, waste and storm water drainage systems are often inaccessible, pose challenges for modeling and prediction of the drainage infrastructure performance. The increased availability of open data in cities is an emerging information asset for a better understanding of the dynamics of urban water drainage infrastructure. This includes crowd sourced data and community reporting. A well-known source of this type of data is the non-emergency hotline "311" which is available in many US cities, and may contain information pertaining to the performance of physical facilities, condition of the environment, or residents' experience, comfort and well-being. In this study, seven years of New York City 311 (NYC311) call during 2010-2016 is employed, as an alternative approach for identifying the areas of the city most prone to sewer back up flooding. These zones are compared with the hydrologic analysis of runoff flooding zones to provide a predictive model for the City. The proposed methodology is an example of urban system phenomenology using crowd sourced, open data. A novel algorithm for calculating the spatial distribution of flooding complaints across NYC's five boroughs is presented in this study. In this approach, the features that represent reporting bias are separated from those that relate to actual infrastructure system performance. The sewer backup results are assessed with the spatial distribution of runoff in NYC during 2010-2016. With advances in radar technologies, a high spatial-temporal resolution data set for precipitation is available for most of the United States that can be implemented in hydrologic analysis of dense urban environments. High resolution gridded Stage IV radar rainfall data along with the high resolution spatially distributed land cover data are employed to investigate the urban pluvial flooding. The monthly results of excess runoff are compared with the sewer backup in NYC to build a predictive model of flood zones according to the 311 phone calls.
TRMM and Its Connection to the Global Water Cycle
NASA Technical Reports Server (NTRS)
Kummerow, Christian; Hong, Ye
1999-01-01
The importance of quantitative knowledge of tropical rainfall, its associated latent heating and variability is summarized in the context of the global hydrologic cycle. Much of the tropics is covered by oceans. What land exists, is covered largely by rainforests that are only thinly populated. The only way to adequately measure the global tropical rainfall for climate and general circulation models is from space. The TRMM orbit is inclined 35' leading to good sampling in the tropics and a rapid precession to study the diurnal cycle of precipitation. The precipitation instrument complement consists of the first rain radar to be flown in space (PR), a multi-channel passive microwave sensor (TMI) and a five-channel VIS/IR (VIRS) sensor. The precipitation radar operates at a frequency of 13.6 GHz. The swath width is 220 km, with a horizontal resolution of 4 km and the vertical resolution of 250 in. The minimum detectable signal from the precipitation radar has been measured at 17 dBZ. The TMI instrument is designed similar to the SSM/I with two important changes. The 22.235 GHz water vapor absorption channel of the SSM/I was moved to 21.3 GHz in order to avoid saturation in the tropics and 10.7 GHz V&H polarized channels were added to expand the dynamic range of rainfall estimates. The resolution of the TMI varies from 4.6 km at 85 GHz to 36 km at 10.7 GHz. The visible and infrared sensor (VIRS) measures radiation at 0.63, 1.6, 3.75, 10.8 and 12.0 microns. The spatial resolution of all five VIRS channels is 2 km at nadir. In addition to the three primary rainfall instruments, TRMM will also carry a Lightning Imaging Sensor (LIS) and a Clouds and the Earth's Radiant Energy System (CERES) instrument.
NASA Astrophysics Data System (ADS)
Grace, K.; Husak, G. J.
2016-12-01
Climate change, in the form of increasingly variable temperatures and rainfall, is anticipated to have potentially dramatic impacts on subsistence agricultural communities throughout the world. Poor people who depend on rainfall to produce food or to produce products to sell to buy food are expected to be particularly vulnerable to the negative impacts associated with climate change. Poor people have extremely limited resources that can be used to cope with weather events and these resources are even more strained when the individuals live in poor countries. While poor and rural producers are most likely to face high levels of vulnerability to food insecurity due to their dependence on rainfall for their agricultural production, annual agricultural censuses are virtually non-existent. Surveying all of the producers in a country each year is extremely costly owing to difficulties in accessing farmers and the costs associated with extensive surveys. The result, however, is very limited information on the spatial and temporal variation in production and the resulting impacts on micro-scale food insecurity and livelihood stability. In this project we use a combination of fine and coarse resolution remotely sensed data ( 1m data, 250m NDVI data and 10km rainfall data, and others) and recently collected survey data from the World Bank to estimate agricultural and land use characteristics at a fine spatial scale in Burkina Faso, Mali and Niger. The analysis will produce estimates of cultivated area that incorporate spatially dynamic climate and vegetation data but that also account for the variation in agricultural practices associated with the different ethnic and religious groups within each country. The survey data will help to calibrate the models and will also serve as a way to validate the statistical models used to estimate on the ground agricultural practices. The models will then be used to evaluate fine-scale agricultural response to climate change in the form of drying and warming.
NASA Astrophysics Data System (ADS)
Robles-Morua, A.; Vivoni, E.; Rivera-Fernandez, E. R.; Dominguez, F.; Meixner, T.
2013-05-01
Hydrologic modeling using high spatiotemporal resolution satellite precipitation products in the southwestern United States and northwest Mexico is important given the sparse nature of available rain gauges. In addition, the bimodal distribution of annual precipitation also presents a challenge as differential climate impacts during the winter and summer seasons are not currently well understood. In this work, we focus on hydrological comparisons using rainfall forcing from a satellite-based product, downscaled GCM precipitation estimates and available ground observations. The simulations are being conducted in the Santa Cruz and San Pedro river basins along the Arizona-Sonora border at high spatiotemporal resolutions (~100 m and ~1 hour). We use a distributed hydrologic model, known as the TIN-based Real-time Integrated Basin Simulator (tRIBS), to generate simulated hydrological fields under historical (1991-2000) and climate change (2031-2040) scenarios obtained from an application of the Weather Research and Forecast (WRF) model. Using the distributed model, we transform the meteorological scenarios at 10-km, hourly resolution into predictions of the annual water budget, seasonal land surface fluxes and individual hydrographs of flood and recharge events. We compare the model outputs and rainfall fields of the WRF products against the forcing from the North American Land Data Assimilation System (NLDAS) and available ground observations from the National Climatic Data Center (NCDC) and Arizona Meteorological Network (AZMET). For this contribution, we selected two full years in the historical period and in the future scenario that represent wet and dry conditions for each decade. Given the size of the two basins, we rely on a high performance computing platform and a parallel domain discretization with higher resolutions maintained at experimental catchments in each river basin. Model simulations utilize best-available data across the Arizona-Sonora border on topography, land cover and soils obtained from analysis of remotely-sensed imagery and government databases. In addition, for the historical period, we build confidence in the model simulations through comparisons with streamflow estimates in the region. The model comparisons during the historical and future periods will yield a first-of-its-kind assessment on the impacts of climate change on the hydrology of two large semiarid river basins of the southwestern United States
Probabilistic forecasts based on radar rainfall uncertainty
NASA Astrophysics Data System (ADS)
Liguori, S.; Rico-Ramirez, M. A.
2012-04-01
The potential advantages resulting from integrating weather radar rainfall estimates in hydro-meteorological forecasting systems is limited by the inherent uncertainty affecting radar rainfall measurements, which is due to various sources of error [1-3]. The improvement of quality control and correction techniques is recognized to play a role for the future improvement of radar-based flow predictions. However, the knowledge of the uncertainty affecting radar rainfall data can also be effectively used to build a hydro-meteorological forecasting system in a probabilistic framework. This work discusses the results of the implementation of a novel probabilistic forecasting system developed to improve ensemble predictions over a small urban area located in the North of England. An ensemble of radar rainfall fields can be determined as the sum of a deterministic component and a perturbation field, the latter being informed by the knowledge of the spatial-temporal characteristics of the radar error assessed with reference to rain-gauges measurements. This approach is similar to the REAL system [4] developed for use in the Southern-Alps. The radar uncertainty estimate can then be propagated with a nowcasting model, used to extrapolate an ensemble of radar rainfall forecasts, which can ultimately drive hydrological ensemble predictions. A radar ensemble generator has been calibrated using radar rainfall data made available from the UK Met Office after applying post-processing and corrections algorithms [5-6]. One hour rainfall accumulations from 235 rain gauges recorded for the year 2007 have provided the reference to determine the radar error. Statistics describing the spatial characteristics of the error (i.e. mean and covariance) have been computed off-line at gauges location, along with the parameters describing the error temporal correlation. A system has then been set up to impose the space-time error properties to stochastic perturbations, generated in real-time at gauges location, and then interpolated back onto the radar domain, in order to obtain probabilistic radar rainfall fields in real time. The deterministic nowcasting model integrated in the STEPS system [7-8] has been used for the purpose of propagating the uncertainty and assessing the benefit of implementing the radar ensemble generator for probabilistic rainfall forecasts and ultimately sewer flow predictions. For this purpose, events representative of different types of precipitation (i.e. stratiform/convective) and significant at the urban catchment scale (i.e. in terms of sewer overflow within the urban drainage system) have been selected. As high spatial/temporal resolution is required to the forecasts for their use in urban areas [9-11], the probabilistic nowcasts have been set up to be produced at 1 km resolution and 5 min intervals. The forecasting chain is completed by a hydrodynamic model of the urban drainage network. The aim of this work is to discuss the implementation of this probabilistic system, which takes into account the radar error to characterize the forecast uncertainty, with consequent potential benefits in the management of urban systems. It will also allow a comparison with previous findings related to the analysis of different approaches to uncertainty estimation and quantification in terms of rainfall [12] and flows at the urban scale [13]. Acknowledgements The authors would like to acknowledge the BADC, the UK Met Office and Dr. Alan Seed from the Australian Bureau of Meteorology for providing the radar data and the nowcasting model. The authors acknowledge the support from the Engineering and Physical Sciences Research Council (EPSRC) via grant EP/I012222/1.
NASA Astrophysics Data System (ADS)
Cayuela, C.; Llorens, P.; Sánchez-Costa, E.; Levia, D. F.; Latron, J.
2018-05-01
Stemflow, despite being a small proportion of gross rainfall, is an important and understudied flux of water in forested areas. Recent studies have highlighted its complexity and relative importance for understanding soil and groundwater recharge. Stemflow dynamics offer an insight into how rain water is stored and released from the stems of trees to the soil. Past attempts have been made to understand the variability of stemflow under different types of vegetation, but rather few studies have focused on the combined influence of biotic and abiotic factors on inter and intra-storm stemflow variability, and none in Mediterranean climates. This study presents stemflow data collected at high temporal resolution for two species with contrasting canopies and bark characteristics: Quercus pubescens Willd. (downy oak) and Pinus sylvestris L. (Scots pine) in the Vallcebre research catchments (NE of Spain, 42° 12‧N, 1° 49‧E). The main objective was to understand how the interaction of biotic and abiotic factors affected stemflow dynamics. Mean stemflow production was low for both species (∼1% of incident rainfall) and increased with rainfall amount. However, the magnitude of the response depended on the combination of multiple biotic and abiotic factors. Both species produced similar stemflow volumes and the largest differences were found among trees of the same species. The combined analysis of biotic and abiotic factors showed that funneling ratios and stemflow dynamics were highly influenced by the interaction of rainfall intensity and tree size.
NASA Technical Reports Server (NTRS)
Tao, Wei-Kuo; Li, Xiaowen
2016-01-01
A high-resolution, two-dimensional cloud-resolving model with spectral-bin microphysics is used to study the impact of aerosols on precipitation processes in both a tropical oceanic and a midlatitude continental squall line with regard to three processes: latent heating (LH), cold pool dynamics, and ice microphysics. Evaporative cooling in the lower troposphere is found to enhance rainfall in low cloud condensation nuclei (CCN) concentration scenarios in the developing stages of a midlatitude convective precipitation system. In contrast, the tropical case produced more rainfall under high CCN concentrations. Both cold pools and low-level convergence are stronger for those configurations having enhanced rainfall. Nevertheless, latent heat release is stronger (especially after initial precipitation) in the scenarios having more rainfall in both the tropical and midlatitude environment. Sensitivity tests are performed to examine the impact of ice and evaporative cooling on the relationship between aerosols, LH, and precipitation processes. The results show that evaporative cooling is important for cold pool strength and rain enhancement in both cases. However, ice microphysics play a larger role in the midlatitude case compared to the tropics. Detailed analysis of the vertical velocity-governing equation shows that temperature buoyancy can enhance updraftsdowndrafts in the middlelower troposphere in the convective core region; however, the vertical pressure gradient force (PGF) is of the same order and acts in the opposite direction. Water loading is small but of the same order as the net PGF-temperature buoyancy forcing. The balance among these terms determines the intensity of convection.
Influence of spatial resolution on precipitation simulations for the central Andes Mountains
NASA Astrophysics Data System (ADS)
Trachte, Katja; Bendix, Jörg
2013-04-01
The climate of South America is highly influenced by the north-south oriented Andes Mountains. Their complex structure causes modifications of large-scale atmospheric circulations resulting in various mesoscale phenomena as well as a high variability in the local conditions. Due to their height and length the terrain generates distinctly climate conditions between the western and the eastern slopes. While in the tropical regions along the western flanks the conditions are cold and arid, the eastern slopes are dominated by warm-moist and rainy air coming from the Amazon basin. Below 35° S the situation reverses with rather semiarid conditions in the eastern part and temperate rainy climate along southern Chile. Generally, global circulation models (GCMs) describe the state of the global climate and its changes, but are disabled to capture regional or even local features due to their coarse resolution. This is particularly true in heterogeneous regions such as the Andes Mountains, where local driving features, e. g. local circulation systems, highly varies on small scales and thus, lead to a high variability of rainfall distributions. An appropriate technique to overcome this problem and to gain regional and local scale rainfall information is the dynamical downscaling of the global data using a regional climate model (RCM). The poster presents results of the evaluation of the performance of the Weather Research and Forecasting (WRF) model over South America with special focus on the central Andes Mountains of Ecuador. A sensitivity study regarding the cumulus parametrization, microphysics, boundary layer processes and the radiation budget is conducted. With 17 simulations consisting of 16 parametrization scheme combinations and 1 default run a suitable model set-up for climate research in this region is supposed to be evaluated. The simulations were conducted in a two-way nested mode i) to examine the best physics scheme combination for the target and ii) to analyze the impact of spatial resolution and thus, the representation of the terrain on the result.
NASA Astrophysics Data System (ADS)
Payrastre, Olivier; Bourgin, François; Lebouc, Laurent; Le Bihan, Guillaume; Gaume, Eric
2017-04-01
The October 2015 flash-floods in south eastern France caused more than twenty fatalities, high damages and large economic losses in high density urban areas of the Mediterranean coast, including the cities of Mandelieu-La Napoule, Cannes and Antibes. Following a post event survey and preliminary analyses conducted within the framework of the Hymex project, we set up an entire simulation chain at the regional scale to better understand this outstanding event. Rainfall-runoff simulations, inundation mapping and a first estimation of the impacts are conducted following the approach developed and successfully applied for two large flash-flood events in two different French regions (Gard in 2002 and Var in 2010) by Le Bihan (2016). A distributed rainfall-runoff model applied at high resolution for the whole area - including numerous small ungauged basins - is used to feed a semi-automatic hydraulic approach (Cartino method) applied along the river network - including small tributaries. Estimation of the impacts is then performed based on the delineation of the flooded areas and geographic databases identifying buildings and population at risk.
NASA Astrophysics Data System (ADS)
Mateus, Pedro; Nico, Giovanni; Catalao, Joao
2017-04-01
In the last two decades, SAR interferometry has been used to obtain maps of Precipitable Water Vapor (PWV).This maps are characterized by their high spatial resolution when compared to the currently available PWV measurements (e.g. GNSS, radiometers or radiosondes). Several previous works have shown that assimilating PWV values, mainly derived from GNSS observations, into Numerical Weather Models (NWMs) can significantly improve rainfall predictions.It is noteworthy that the PWV-derived from GNSS observations have a high temporal resolution but a low spatialone. In addition, there are many regions without any GNSS stations, where temporal and spatial distribution of PWV areonly available through satellite measurements. The first attempt to assimilate InSAR-derived maps of PWV (InSAR-PWV) into a NWM was made by Pichelli et al. [1].They used InSAR-PWV maps obtained from ENVISAT-ASAR images and the mesoscale weather prediction model MM5 over the city of Rome, Italy. The statistical indices show that the InSAR-PWVdata assimilation improves the forecast of weak to moderateprecipitation (< 15 mm/3-h). The second and last attempt, was performed by Mateus et al. [2]. They used the same satellite mission and the Weather Research and Forecast (WRF) model over the city of Lisbon, Portugal, during a light rain event not forecast by the model.Results showed that after data assimilation, there is a bias correction of the PWV field and an improvement in the forecast of the weakto moderate rainfall up to 9 h after the assimilation time. We used, for the first time, the Weather Research and Forecast Data Assimilation (WRFDA) model, at micro-scale resolutions (3 km), over the Iberian Peninsula (focusing on the southern region of Spain) and during a convective cell associated with a local heavy rainfall event, to study the impact of assimilation PWV maps obtained from SAR interferometric phase calculated using images acquired by the Sentinel-1 satellite. It's worth noting that, in this case, the model without assimilation PWV maps fails to reproduce the amount and the region of heavy rainfall. The assimilation of InSAR-PWV maps with high spatial variability by the WRF model, promoted alterations in the buoyancy force over the study area and consequently increased the atmospheric instability, were new convection cells were generated over the correct area. We assessed the results using in-situ meteorological data and with a meteorological radar. With the Sentinel-1 A/B C-band sensors its possible generate maps of PWV over large areas with a length of hundreds of kilometers and a width of about 250 km (country-spanning areas), a spatial resolution of 5×20 m and an absolute revisiting time of 6 days or fewer when combined with other sensors, opening new perspectives to the application of SAR meteorology concept. The availability of interferometric PWV maps on a routine basis can help to capture the high variability of the water vapor distribution at micro-scales. In this study, we show that the knowledge of the PWV with high spatial resolution can change the system thermodynamics to improve the NWP accuracy. Publication supported by the Short-Term Mobility Consiglio Nazionale delle Ricerche programs 2015 and 2016 and the Postdoctoral Grant SFRH/BPD/96069/2013. References: [1] E. Pichelli et al., "InSAR water vapor data assimilation into mesoscale model MM5: Technique and pilot study," IEEE J. Sel. Topics Appl. Earth Observ. Remote Sens., vol. 8, no. 8, pp. 3859-3875, Aug. 2015. [2] P. Mateus, R. Tomé, G. Nico, and J. Catalão, "Three-Dimensional Variational Assimilation of InSAR PWV Using the WRFDA Model," IEEE Transactions on Geoscience and Remote Sensing, vol. 54, no. 12, pp. 7323-7330, 2016.
Comparisons of Monthly Oceanic Rainfall Derived from TMI and SSM/I
NASA Technical Reports Server (NTRS)
Chang, A. T. C.; Chiu, L. S.; Meng, J.; Wilheit, T. T.; Kummerow, C. D.
1999-01-01
A technique for estimating monthly oceanic rainfall rate using multi-channel microwave measurements has been developed. There are three prominent features of this algorithm. First, the knowledge of the form of the rainfall intensity probability density function used to augment the measurements. Second, utilizing a linear combination of the 19.35 and 22.235 GHz channels to de-emphasize the effect of water vapor. Third, an objective technique has been developed to estimate the rain layer thickness from the 19.35 and 22.235 GHz brightness temperature histograms. This technique is applied to the SSM/I data since 1987 to infer monthly rainfall for the Global Precipitation Climatology Project (GPCP). A modified version of this algorithm is now being applied to the TRMM Microwave Imager (TMI) data. TMI data with better spatial resolution and 24 hour sampling (vs. sun-synchronized sampling, which is limited to two narrow intervals of local solar time for DMSP satellites) prompt us to study the similarity and difference between these two rainfall estimates. Six months of rainfall data (January to June 1998) are used in this study. Means and standard deviations are calculated. Paired student t-tests are administrated to evaluate the differences between rainfall estimates from SSM/I and TMI data. Their differences are discussed in the context of global satellite rainfall estimation.
NASA Astrophysics Data System (ADS)
Müller, H.; Haberlandt, U.
2018-01-01
Rainfall time series of high temporal resolution and spatial density are crucial for urban hydrology. The multiplicative random cascade model can be used for temporal rainfall disaggregation of daily data to generate such time series. Here, the uniform splitting approach with a branching number of 3 in the first disaggregation step is applied. To achieve a final resolution of 5 min, subsequent steps after disaggregation are necessary. Three modifications at different disaggregation levels are tested in this investigation (uniform splitting at Δt = 15 min, linear interpolation at Δt = 7.5 min and Δt = 3.75 min). Results are compared both with observations and an often used approach, based on the assumption that a time steps with Δt = 5.625 min, as resulting if a branching number of 2 is applied throughout, can be replaced with Δt = 5 min (called the 1280 min approach). Spatial consistence is implemented in the disaggregated time series using a resampling algorithm. In total, 24 recording stations in Lower Saxony, Northern Germany with a 5 min resolution have been used for the validation of the disaggregation procedure. The urban-hydrological suitability is tested with an artificial combined sewer system of about 170 hectares. The results show that all three variations outperform the 1280 min approach regarding reproduction of wet spell duration, average intensity, fraction of dry intervals and lag-1 autocorrelation. Extreme values with durations of 5 min are also better represented. For durations of 1 h, all approaches show only slight deviations from the observed extremes. The applied resampling algorithm is capable to achieve sufficient spatial consistence. The effects on the urban hydrological simulations are significant. Without spatial consistence, flood volumes of manholes and combined sewer overflow are strongly underestimated. After resampling, results using disaggregated time series as input are in the range of those using observed time series. Best overall performance regarding rainfall statistics are obtained by the method in which the disaggregation process ends at time steps with 7.5 min duration, deriving the 5 min time steps by linear interpolation. With subsequent resampling this method leads to a good representation of manhole flooding and combined sewer overflow volume in terms of hydrological simulations and outperforms the 1280 min approach.
Scholl, Martha A.; Murphy, Sheila F.
2014-01-01
Like many mountainous areas in the tropics, watersheds in the Luquillo Mountains of eastern Puerto Rico have abundant rainfall and stream discharge and provide much of the water supply for the densely populated metropolitan areas nearby. Projected changes in regional temperature and atmospheric dynamics as a result of global warming suggest that water availability will be affected by changes in rainfall patterns. It is essential to understand the relative importance of different weather systems to water supply to determine how changes in rainfall patterns, interacting with geology and vegetation, will affect the water balance. To help determine the links between climate and water availability, stable isotope signatures of precipitation from different weather systems were established to identify those that are most important in maintaining streamflow and groundwater recharge. Precipitation stable isotope values in the Luquillo Mountains had a large range, from fog/cloud water with δ2H, δ18O values as high as +12 ‰, −0.73 ‰ to tropical storm rain with values as low as −127 ‰, −16.8 ‰. Temporal isotope values exhibit a reverse seasonality from those observed in higher latitude continental watersheds, with higher isotopic values in the winter and lower values in the summer. Despite the higher volume of convective and low-pressure system rainfall, stable isotope analyses indicated that under the current rainfall regime, frequent trade -wind orographic showers contribute much of the groundwater recharge and stream base flow. Analysis of rain events using 20 years of 15 -minute resolution data at a mountain station (643 m) showed an increasing trend in rainfall amount, in agreement with increased precipitable water in the atmosphere, but differing from climate model projections of drying in the region. The mean intensity of rain events also showed an increasing trend. The determination of recharge sources from stable isotope tracers indicates that water supply will be affected if regional atmospheric dynamics change trade- wind orographic rainfall patterns in the Caribbean.
NASA Astrophysics Data System (ADS)
Singh, J.; Paimazumder, D.; Mohanty, M. P.; Ghosh, S.; Karmakar, S.
2017-12-01
The statistical assumption of stationarity in hydrologic extreme time/event series has been relied heavily in frequency analysis. However, due to the perceivable impacts of climate change, urbanization and land use pattern, assumption of stationarity in hydrologic time series will draw erroneous results, which in turn may affect the policy and decision-making. Also, it may no longer be reasonable to model rainfall extremes as a stationary process, yet nearly all-existing infrastructure design, water resource planning methods assume that historical extreme rainfall events will remain unchanged in the future. Therefore, a comprehensive multivariate nonstationary frequency analysis has been conducted for the CONUS to identify the precipitation characteristics (intensity, duration and depth) responsible for significant nonstationarity. We use 0.250 resolution of precipitation data for a period of 1948-2006, in a Generalized Additive Model for Location, Scale and Shape (GAMLSS) framework. A cluster of 74 GAMLSS models has been developed by considering nonstationarity in different combinations of distribution parameters through different regression techniques, and the best-fit model is further applied for bivariate analysis. Next, four demographic variables i.e. population density, housing unit, low income population and population below poverty line, have been utilized to identify the urbanizing regions through developing urbanization index. Furthermore to strengthen the analysis, Land cover map for 1992, 2001 and 2006 have been utilized to identify the location with the high change in impervious surface. The results show significant differences in the 50- and 100-year intensity, volume and duration estimated under the both stationary and nonstationary condition in urbanizing regions. Further results exhibit that rainfall duration has been decreased while, rainfall volume has been increased under nonstationary condition, which indicates increasing flood potential of rainfall events. The present study facilitate the understanding of anthropogenic climate change to extreme rainfall characteristics i.e. intensity, volume and duration, which could be utilized in designing flood control structure through a proposed nonstationary modeling.
Quantifying the quality of precipitation data from different sources
NASA Astrophysics Data System (ADS)
Leijnse, Hidde; Wauben, Wiel; Overeem, Aart; de Haij, Marijn
2015-04-01
There is an increasing demand for high-resolution rainfall data. The current manual and automatic networks of climate and meteorological stations provide high quality rainfall data, but they cannot provide the high spatial and temporal resolution required for many applications. This can only partly be solved by using remotely sensed data. It is therefore necessary to consider third-party data, such as rain gauges operated by amateurs and rainfall intensities from commercial cellular communication links. The quality of such third-party data is highly variable and generally lower than that of dedicated networks. Often, such data quality information is missing for third party data. In order to be able to use data from various sources it is vital that quantitative knowledge of the data quality is available. This holds for all data sources, including the rain gauges in the reference networks of climate and meteorological stations. Data quality information is generally either not available or very limited for third-party data sources. For most dedicated climate meteorological networks, this information is only available for the sensor in laboratory conditions. In many cases, however, a significant part of the measurement errors and uncertainties is determined by the siting and maintenance of the sensor, for which generally only qualitative information is available. Furthermore sensors may have limitations under specific conditions. We aim to quantify data quality for different data sources by performing analyses on collocated data sets. Here we present an intercomparison of two years of precipitation data from six different sources (manual rain gauge, automatic rain gauge, present weather sensor, weather radar, commercial cellular communication links, and Meteosat) at three different locations in the Netherlands. We use auxiliary meteorological data to determine if the quality is influenced by other variables (e.g. the temperature influencing the evaporation from the rain gauge). We use three techniques to compare the data sets: 1) direct comparison; 2) triple collocation (see Stoffelen, 1998); and 3) comparison of statistics. Stoffelen, A. (1998). Toward the true near-surface wind speed: Error modeling and calibration using triple collocation. Journal of Geophysical Research: Oceans (1978-2012), 103(C4), 7755-7766.
A linked land-sea modeling framework to inform ridge-to-reef management in high oceanic islands.
Delevaux, Jade M S; Whittier, Robert; Stamoulis, Kostantinos A; Bremer, Leah L; Jupiter, Stacy; Friedlander, Alan M; Poti, Matthew; Guannel, Greg; Kurashima, Natalie; Winter, Kawika B; Toonen, Robert; Conklin, Eric; Wiggins, Chad; Knudby, Anders; Goodell, Whitney; Burnett, Kimberly; Yee, Susan; Htun, Hla; Oleson, Kirsten L L; Wiegner, Tracy; Ticktin, Tamara
2018-01-01
Declining natural resources have led to a cultural renaissance across the Pacific that seeks to revive customary ridge-to-reef management approaches to protect freshwater and restore abundant coral reef fisheries. Effective ridge-to-reef management requires improved understanding of land-sea linkages and decision-support tools to simultaneously evaluate the effects of terrestrial and marine drivers on coral reefs, mediated by anthropogenic activities. Although a few applications have linked the effects of land cover to coral reefs, these are too coarse in resolution to inform watershed-scale management for Pacific Islands. To address this gap, we developed a novel linked land-sea modeling framework based on local data, which coupled groundwater and coral reef models at fine spatial resolution, to determine the effects of terrestrial drivers (groundwater and nutrients), mediated by human activities (land cover/use), and marine drivers (waves, geography, and habitat) on coral reefs. We applied this framework in two 'ridge-to-reef' systems (Hā'ena and Ka'ūpūlehu) subject to different natural disturbance regimes, located in the Hawaiian Archipelago. Our results indicated that coral reefs in Ka'ūpūlehu are coral-dominated with many grazers and scrapers due to low rainfall and wave power. While coral reefs in Hā'ena are dominated by crustose coralline algae with many grazers and less scrapers due to high rainfall and wave power. In general, Ka'ūpūlehu is more vulnerable to land-based nutrients and coral bleaching than Hā'ena due to high coral cover and limited dilution and mixing from low rainfall and wave power. However, the shallow and wave sheltered back-reef areas of Hā'ena, which support high coral cover and act as nursery habitat for fishes, are also vulnerable to land-based nutrients and coral bleaching. Anthropogenic sources of nutrients located upstream from these vulnerable areas are relevant locations for nutrient mitigation, such as cesspool upgrades. In this study, we located coral reefs vulnerable to land-based nutrients and linked them to priority areas to manage sources of human-derived nutrients, thereby demonstrating how this framework can inform place-based ridge-to-reef management.
Statistical characterization of spatial patterns of rainfall cells in extratropical cyclones
NASA Astrophysics Data System (ADS)
Bacchi, Baldassare; Ranzi, Roberto; Borga, Marco
1996-11-01
The assumption of a particular type of distribution of rainfall cells in space is needed for the formulation of several space-time rainfall models. In this study, weather radar-derived rain rate maps are employed to evaluate different types of spatial organization of rainfall cells in storms through the use of distance functions and second-moment measures. In particular the spatial point patterns of the local maxima of rainfall intensity are compared to a completely spatially random (CSR) point process by applying an objective distance measure. For all the analyzed radar maps the CSR assumption is rejected, indicating that at the resolution of the observation considered, rainfall cells are clustered. Therefore a theoretical framework for evaluating and fitting alternative models to the CSR is needed. This paper shows how the "reduced second-moment measure" of the point pattern can be employed to estimate the parameters of a Neyman-Scott model and to evaluate the degree of adequacy to the experimental data. Some limitations of this theoretical framework, and also its effectiveness, in comparison to the use of scaling functions, are discussed.
Rainfall Induced Landslides in Puerto Rico (Invited)
NASA Astrophysics Data System (ADS)
Lepore, C.; Kamal, S.; Arnone, E.; Noto, V.; Shanahan, P.; Bras, R. L.
2009-12-01
Landslides are a major geologic hazard in the United States, typically triggered by rainfall, earthquakes, volcanoes and human activity. Rainfall-induced landslides are the most common type in the island of Puerto Rico, with one or two large events per year. We performed an island-wide determination of static landslide susceptibility and hazard assessment as well as dynamic modeling of rainfall-induced shallow landslides in a particular hydrologic basin. Based on statistical analysis of past landslides, we determined that reliable prediction of the susceptibility to landslides is strongly dependent on the resolution of the digital elevation model (DEM) employed and the reliability of the rainfall data. A distributed hydrology model capable of simulating landslides, tRIBS-VEGGIE, has been implemented for the first time in a humid tropical environment like Puerto Rico. The Mameyes basin, located in the Luquillo Experimental Forest in Puerto Rico, was selected for modeling based on the availability of soil, vegetation, topographical, meteorological and historic landslide data. .Application of the model yields a temporal and spatial distribution of predicted rainfall-induced landslides, which is used to predict the dynamic susceptibility of the basin to landslides.
Review of Malaria Epidemics in Ethiopia using Enhanced Climate Services (ENACTS)
NASA Astrophysics Data System (ADS)
Muhammad, A.
2015-12-01
Malaria is a disease directly linked to temperature and rainfall. In Ethiopia, the influence of climate variables on malaria transmission and the subsequent role of ENSO in the rise of malaria incidence are becoming more recognized. Numerous publications attest to the extreme sensitivity of malaria to climate in Ethiopia. The majority of large-scale epidemics in the past were associated with climatic factors such as temperature and rainfall. However, there is limited information on climate variability and ENSO at the district level to aid in public health decision-making. Since 2008, the National Meteorogy Agency (NMA) and the International Research Institute for Climate and Society (IRI) have been collaborating on improving climate services in Ethiopia. This collaboration spurred the implementation of the Enhancing National Climate Services (ENACTS) initiative and the creation of the IRI Data Library (DL) NMA Ethiopia Maproom. ENACTS provides reliable and readily accessible climate data at high resolutions and the Maproom uses ENACTS to build a collection of maps and other figures that monitor climate and societal conditions at present and in the recent past (1981-2010). A recent analysis exploring the relationship of rainfall and temperature ENACTS products to malaria epidemics in proceeding rainy seasons within 12 woredas found above normal temperature anomalies to be more readily associated with epidemics when compared to above normal rainfall anomalies, regardless of the ENSO phase (Figure 1-2).
Tourre, Yves M; Lacaux, Jean-Pierre; Vignolles, Cécile; Lafaye, Murielle
2009-11-11
Climate and environment vary across many spatio-temporal scales, including the concept of climate change, which impact on ecosystems, vector-borne diseases and public health worldwide. To develop a conceptual approach by mapping climatic and environmental conditions from space and studying their linkages with Rift Valley Fever (RVF) epidemics in Senegal. Ponds in which mosquitoes could thrive were identified from remote sensing using high-resolution SPOT-5 satellite images. Additional data on pond dynamics and rainfall events (obtained from the Tropical Rainfall Measuring Mission) were combined with hydrological in-situ data. Localisation of vulnerable hosts such as penned cattle (from QuickBird satellite) were also used. Dynamic spatio-temporal distribution of Aedes vexans density (one of the main RVF vectors) is based on the total rainfall amount and ponds' dynamics. While Zones Potentially Occupied by Mosquitoes are mapped, detailed risk areas, i.e. zones where hazards and vulnerability occur, are expressed in percentages of areas where cattle are potentially exposed to mosquitoes' bites. This new conceptual approach, using precise remote-sensing techniques, simply relies upon rainfall distribution also evaluated from space. It is meant to contribute to the implementation of operational early warning systems for RVF based on both natural and anthropogenic climatic and environmental changes. In a climate change context, this approach could also be applied to other vector-borne diseases and places worldwide.
NASA Astrophysics Data System (ADS)
Ampil, L. J. Y.; Yao, J. G.; Lagrosas, N.; Lorenzo, G. R. H.; Simpas, J.
2017-12-01
The Global Precipitation Measurement (GPM) mission is a group of satellites that provides global observations of precipitation. Satellite-based observations act as an alternative if ground-based measurements are inadequate or unavailable. Data provided by satellites however must be validated for this data to be reliable and used effectively. In this study, the Integrated Multisatellite Retrievals for GPM (IMERG) Final Run v3 half-hourly product is validated by comparing against interpolated ground measurements derived from sixteen ground stations in Metro Manila. The area considered in this study is the region 14.4° - 14.8° latitude and 120.9° - 121.2° longitude, subdivided into twelve 0.1° x 0.1° grid squares. Satellite data from June 1 - August 31, 2014 with the data aggregated to 1-day temporal resolution are used in this study. The satellite data is directly compared to measurements from individual ground stations to determine the effect of the interpolation by contrast against the comparison of satellite data and interpolated measurements. The comparisons are calculated by taking a fractional root-mean-square error (F-RMSE) between two datasets. The results show that interpolation improves errors compared to using raw station data except during days with very small amounts of rainfall. F-RMSE reaches extreme values of up to 654 without a rainfall threshold. A rainfall threshold is inferred to remove extreme error values and make the distribution of F-RMSE more consistent. Results show that the rainfall threshold varies slightly per month. The threshold for June is inferred to be 0.5 mm, reducing the maximum F-RMSE to 9.78, while the threshold for July and August is inferred to be 0.1 mm, reducing the maximum F-RMSE to 4.8 and 10.7, respectively. The maximum F-RMSE is reduced further as the threshold is increased. Maximum F-RMSE is reduced to 3.06 when a rainfall threshold of 10 mm is applied over the entire duration of JJA. These results indicate that IMERG performs well for moderate to high intensity rainfall and that the interpolation remains effective only when rainfall exceeds a certain threshold value. Over Metro Manila, an F-RMSE threshold of 0.5 mm indicated better correspondence between ground measured and satellite measured rainfall.
A Dynamic Optimization Technique for Siting the NASA-Clark Atlanta Urban Rain Gauge Network (NCURN)
NASA Technical Reports Server (NTRS)
Shepherd, J. Marshall; Taylor, Layi
2003-01-01
NASA satellites and ground instruments have indicated that cities like Atlanta, Georgia may create or alter rainfall. Scientists speculate that the urban heat island caused by man-made surfaces in cities impact the heat and wind patterns that form clouds and rainfall. However, more conclusive evidence is required to substantiate findings from satellites. NASA, along with scientists at Clark Atlanta University, are implementing a dense, urban rain gauge network in the metropolitan Atlanta area to support a satellite validation program called Studies of PRecipitation Anomalies from Widespread Urban Landuse (SPRAWL). SPRAWL will be conducted during the summer of 2003 to further identify and understand the impact of urban Atlanta on precipitation variability. The paper provides an. overview of SPRAWL, which represents one of the more comprehensive efforts in recent years to focus exclusively on urban-impacted rainfall. The paper also introduces a novel technique for deploying rain gauges for SPRAWL. The deployment of the dense Atlanta network is unique because it utilizes Geographic Information Systems (GIS) and Decision Support Systems (DSS) to optimize deployment of the rain gauges. These computer aided systems consider access to roads, drainage systems, tree cover, and other factors in guiding the deployment of the gauge network. GIS and DSS also provide decision-makers with additional resources and flexibility to make informed decisions while considering numerous factors. Also, the new Atlanta network and SPRAWL provide a unique opportunity to merge the high-resolution, urban rain gauge network with satellite-derived rainfall products to understand how cities are changing rainfall patterns, and possibly climate.
On the dynamics of an extreme rainfall event in northern India in 2013
NASA Astrophysics Data System (ADS)
Xavier, Anu; Manoj, M. G.; Mohankumar, K.
2018-03-01
India experienced a heavy rainfall event in the year 2013 over Uttarakhand and its adjoining areas, which was exceptional as it witnessed the fastest monsoon progression. This study aims to explore the causative factors of this heavy rainfall event leading to flood and landslides which claimed huge loss of lives and property. The catastrophic event occurred from 14th to 17th June, 2013 during which the state received 375% more rainfall than the highest rainfall recorded during a normal monsoon season. Using the high resolution precipitation data and complementary parameters, we found that the mid-latitude westerlies shifted southward from its normal position during the intense flooding event. The southward extension of subtropical jet (STJ) over the northern part of India was observed only during the event days and its intensity was found to be increasing from 14th to 16th June. The classical theory of westward tilt of mid-latitude trough with height, which acts to intensify the system through the transfer of potential energy of the mean flow, is evident from analysis of relative vorticity at multiple pressure levels. On analysing the North Atlantic Oscillation (NAO), negative values were observed during the event days. Thus, the decrease in pressure gradient resulted in decrease of the intensity of westerlies which caused the cold air to move southward. During the event, as the cold air moved south, it pushed the mid-latitude westerlies south of its normal position during summer monsoon and created a conducive atmosphere for the intensification of the system.
Landslides in West Coast Metropolitan Areas: The Role of Extreme Weather Events
NASA Technical Reports Server (NTRS)
Biasutti, Michela; Seager, Richard; Kirschbaum, Dalia B.
2016-01-01
Rainfall-induced landslides represent a pervasive issue in areas where extreme rainfall intersects complex terrain. A farsighted management of landslide risk requires assessing how landslide hazard will change in coming decades and thus requires, inter alia, that we understand what rainfall events are most likely to trigger landslides and how global warming will affect the frequency of such weather events. We take advantage of 9 years of landslide occurrence data compiled by collating Google news reports and of a high-resolution satellite-based daily rainfall data to investigate what weather triggers landslide along the West Coast US. We show that, while this landslide compilation cannot provide consistent and widespread monitoring everywhere, it captures enough of the events in the major urban areas that it can be used to identify the relevant relationships between landslides and rainfall events in Puget Sound, the Bay Area, and greater Los Angeles. In all these regions, days that recorded landslides have rainfall distributions that are skewed away from dry and low-rainfall accumulations and towards heavy intensities. However, large daily accumulation is the main driver of enhanced hazard of landslides only in Puget Sound. There, landslide are often clustered in space and time and major events are primarily driven by synoptic scale variability, namely "atmospheric rivers" of high humidity air hitting anywhere along the West Coast, and the interaction of frontal system with the coastal orography. The relationship between landslide occurrences and daily rainfall is less robust in California, where antecedent precipitation (in the case of the Bay area) and the peak intensity of localized downpours at sub-daily time scales (in the case of Los Angeles) are key factors not captured by the same-day accumulations. Accordingly, we suggest that the assessment of future changes in landslide hazard for the entire the West Coast requires consideration of future changes in the occurrence and intensity of atmospheric rivers, in their duration and clustering, and in the occurrence of short-duration (sub-daily) extreme rainfall as well. Major regional landslide events, in which multiple occurrences are recorded in the catalog for the same day, are too rare to allow a statistical characterization of their triggering events, but a case study analysis indicates that a variety of synoptic-scale events can be involved, including not only atmospheric rivers but also broader cold- and warm-front precipitation. That a news-based catalog of landslides is accurate enough to allow the identification of different landslide/ rainfall relationships in the major urban areas along the US West Coast suggests that this technology can potentially be used for other English-language cities and could become an even more powerful tool if expanded to other languages and non-traditional news sources, such as social media.
Learning to love the rain in Bergen (Norway) and other lessons from a Climate Services neophyte
NASA Astrophysics Data System (ADS)
Sobolowski, Stefan; Wakker, Joyce
2014-05-01
A question that is often asked of regional climate modelers generally, and Climate Service providers specifically, is: "What is the added-value of regional climate simulations and how can I use this information?" The answer is, unsurprisingly, not straightforward and depends greatly on what one needs to know. In particular it is important for scientist to communicate directly with the users of this information to determine what kind of information is important for them to do their jobs. This study is part of the ECLISE project (Enabling Climate Information Services for Europe) and involves a user at the municipality of Bergen's (Norway) water and drainage administration and a provider from Uni Research and the Bjerknes Center for Climate Research. The water and drain administration is responsible for communicating potential future changes in extreme precipitation, particularly short-term high-intensity rainfall, which is common in Bergen and making recommendations to the engineering department for changes in design criteria. Thus, information that enables better decision-making is crucial. This study then actually has two relevant components for climate services: 1) is a scientific exercise to evaluate the performance of high resolution regional climate simulations and their ability to reproduce high intensity short duration precipitation and 2) an exercise in communication between a provider community and user community with different concerns, mandates, methodological approaches and even vocabularies. A set of Weather Research and Forecasting (WRF) simulations was run at high resolution (8km) over a large domain covering much of Scandinavia and Northern Europe. One simulation was driven by so-called "perfect" boundary conditions taken from reanalysis data (ERA-interim, 1989-2010) the second and third simulations used Norway's global climate model as boundary forcing (NorESM) and were run for a historical period (1950-2005) and a 30yr. end of the century time slice under the rcp4.5 "middle of the road" emissions scenario (2071-2100). A unique feature of the WRF modeling system is the ability to write data for selected locations at every time step, thus creating time series of very high temporal resolution which can be compared to observations. This high temporal resolution also allowed us to directly calculate intensity-duration-frequency (IDF) curves for intense precipitation of short to long duration (5 minutes - 1 day) for a number of return periods (2-100 years) with out resorting to factors to calculate rainfall intensities at higher temporal resolutions, as is commonly done. We investigated the IDF curves using a number of parametric and non-parametric approaches. Given the relatively short time periods of the modeled data the standard Gumble approach is presented here. This is also done to maintain consistency with previous calculations by the water and drain administration. Curves were also generated from observed time series at two locations in Bergen. Both the historical, GCM-driven simulation and the ERA-interim driven simulation closely match the observed IDF curves for all return periods up to durations of about 10 minutes where WRF then fails to reproduce the very short, very high intensity events. IDF curves under future conditions were also generated and the changes were compared with the current standard approach of applying climate change-factors to observed extreme precipitation in order to account for structural errors in global and regional climate models. Our investigation suggests that high-resolution regional simulations can capture many of the topographic features and dynamical processes necessary to accurately model extreme rainfall, even in at highly local scales and over complex terrain such as Bergen, Norway. The exercise also produced many lessons for climate service providers and users alike.
Lefrancq, Marie; Jadas-Hécart, Alain; La Jeunesse, Isabelle; Landry, David; Payraudeau, Sylvain
2017-06-01
Rainfall-induced peaks in pesticide concentrations can occur rapidly. Low frequency sampling may therefore largely underestimate maximum pesticide concentrations and fluxes. Detailed storm-based sampling of pesticide concentrations in runoff water to better predict pesticide sources, transport pathways and toxicity within the headwater catchments is lacking. High frequency monitoring (2min) of seven pesticides (Dimetomorph, Fluopicolide, Glyphosate, Iprovalicarb, Tebuconazole, Tetraconazole and Triadimenol) and one degradation product (AMPA) were assessed for 20 runoff events from 2009 to 2012 at the outlet of a vineyard catchment in the Layon catchment in France. The maximum pesticide concentrations were 387μgL -1 . Samples from all of the runoff events exceeded the legal limit of 0.1μgL -1 for at least one pesticide (European directive 2013/39/EC). High resolution sampling used to detect the peak pesticide levels revealed that Toxic Units (TU) for algae, invertebrates and fish often exceeded the European Uniform principles (25%). The point and average (time or discharge-weighted) concentrations indicated up to a 30- or 4-fold underestimation of the TU obtained when measuring the maximum concentrations, respectively. This highlights the important role of sampling methods for assessing peak exposure. High resolution sampling combined with concentration-discharge hysteresis analyses revealed that clockwise responses were predominant (52%), indicating that Hortonian runoff is the prevailing surface runoff trigger mechanism in the study catchment. The hysteresis patterns for suspended solids and pesticides were highly dynamic and storm- and chemical-dependent. Intense rainfall events induced stronger C-Q hysteresis (magnitude). This study provides new insights into the complexity of pesticide dynamics in runoff water and highlights the ability of hysteresis analysis to improve understanding of pesticide supply and transport. Copyright © 2017 Elsevier B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
Lefrancq, Marie; Jadas-Hécart, Alain; La Jeunesse, Isabelle; Landry, David; Payraudeau, Sylvain
2017-04-01
Rainfall-induced peaks in pesticide concentrations can occur rapidly; therefore, low frequency sampling may largely underestimate maximum pesticide concentrations and fluxes. Detailed storm-based sampling of pesticide concentrations in runoff water to better predict pesticide sources, transport pathways and toxicity within the headwater catchments is actually lacking. High frequency monitoring (2 min) of dissolved concentrations and loads for seven pesticides (Dimetomorph, Fluopicolide, Glyphosate, Iprovalicarb, Tebuconazole, Tetraconazole and Triadimenol) and one degradation product (AMPA) were assessed for 20 runoff events from 2009 to 2012 at the outlet of a vineyard catchment in the Layon catchment in France. The pesticide concentrations reached 387 µg/L. All of the runoff events exceeded the mandated acceptable concentrations of 0.1 µg/L for each pesticide (European directive 2013/39/EC). High resolution sampling used to detect the peak pesticide levels revealed that Toxic Units (TU) for algae, invertebrates and fish often exceeded the European Uniform principles (25%). The instantaneous and average (time or discharge-weighted) concentrations indicated an up to 30- or 4-fold underestimation of the TU obtained when measuring the maximum concentrations, respectively, highlighting the important role of the sampling methods for assessing peak exposure. High resolution sampling combined with concentration-discharge hysteresis analyses revealed that clockwise responses were predominant (52%), indicating that Hortonian runoff is the prevailing surface runoff trigger mechanism in the study catchment. The hysteresis patterns for suspended solids and pesticides were highly dynamic and storm- and chemical-dependent. Intense rainfall events induced stronger C-Q hysteresis (magnitude). This study provides new insights into the complexity of pesticide dynamics in runoff water and highlights the ability of hysteresis analysis to improve the understanding of pesticide supply and transport.
Sediment transport dynamics in steep, tropical volcanic catchments
NASA Astrophysics Data System (ADS)
Birkel, Christian; Solano Rivera, Vanessa; Granados Bolaños, Sebastian; Brenes Cambronero, Liz; Sánchez Murillo, Ricardo; Geris, Josie
2017-04-01
How volcanic landforms in tropical mountainous regions are eroded, and how eroded materials move through these mostly steep landscapes from the headwaters to affect sediment fluxes are critical to water resources management in their downstream rivers. Volcanic landscapes are of particular importance because of the short timescales (< years) over which they transform. Owing to volcanism and seismic activity, landslides and other mass movements frequently occur. These processes are amplified by high intensity precipitation inputs resulting in significant, but natural runoff, erosion and sediment fluxes. Sediment transport is also directly linked to carbon and solute export. However, knowledge on the sediment sources and transport dynamics in the humid tropics remains limited and their fluxes largely unquantified. In order to increase our understanding of the dominant erosion and sediment transport dynamics in humid tropical volcanic landscapes, we conducted an extensive monitoring effort in a pristine and protected (biological reserve Alberto Manuel Brenes, ReBAMB) tropical forest catchment (3.2 km2), located in the Central Volcanic Cordillera of Costa Rica (Figure 1A). Typical for tropical volcanic and montane regions, deeply incised V-form headwaters (Figure 1B) deliver the majority of water (>70%) and sediments to downstream rivers. At the catchment outlet (Figure 1C) of the San Lorencito stream, we established high temporal resolution (5min) water quantity and sediment monitoring (turbidity). We also surveyed the river network on various occasions to characterize fluvial geomorphology including material properties. We could show that the rainfall-runoff-sediment relationships and their characteristic hysteresis patterns are directly linked to variations in the climatic input (storm intensity and duration) and the size, form and mineralogy of the transported material. Such a relationship allowed us to gain the following insights: (i) periodic landslides contribute significant volumes of material (> 100m3 per year) to the stream network, (ii) rainfall events that exceed a threshold of around 30mm/h rain intensity activate superficial flow pathways with associated mobilization of sediments (laminar erosion). However, the erosion processes are spatially very heterogeneous and mostly linked to finer material properties of the soils that mostly developed on more highly weathered bedrock. (iii) extreme events (return period > 50 years) mainly erode the streambed and banks cutting deeper into the bedrock and re-distribute massive amounts of material in the form of removed old alluvial deposits and new deposits created elsewhere, (iv) recovery after such extreme events in the form of fine material transport even during low intensity rainfall towards pre-event rainfall intensity thresholds takes only about two to three months. We conclude that the study catchment geomorphologically represents a low-resistance, but highly resilient catchment that quickly recovers after the impact of extreme rainfall-runoff events. The latter was indicated by a different pre and post-event hysteretic pattern of sediment-runoff dynamics and associated different material properties. The combined use of high-temporal resolution monitoring with spatially distributed surveys provided new insights into the fluvial geomorphology of steep, volcanic headwater catchments with potential to establish more complete sediment budgets and time-scales of land-forming processes of such highly dynamic environments in the humid tropics.
Mapping drought risk in Indonesia related to El-Niño hazard
NASA Astrophysics Data System (ADS)
Supari, Muharsyah, R.; Sopaheluwakan, A.
2016-05-01
This work is aimed to identify areas in the country that are at high propensity to the impact of global climate phenomenon i.e. El-Nino. An affected area is recognized when rainfall decreases up to below normal condition which frequently leads drought event. For this purpose, two packages of gridded rainfall data at monthly basis with 0.5 spatial resolutions for 1950 2010 period were used, e.g. GPCC Full Data Reanalysis V.6 (product of Global Precipitation Climatology Centre) and CRU TS3.22 (product of Climatic Research Unit). El-Nino years were labelled based on Oceanic Nino Index, ONI. We applied frequency analysis to quantify the chance of El-Nino impact. GPCC data was found more accurate in representing rainfall observation than CRU data based on correlation test against station data. The results indicate the strong spatial and temporal dependencies of El-Nino impact. During peak of rainy and first transitional season (DJF and MAM), the probability to be affected by El-Nino is mostly less than 20% over whole country In contrast, July-October are months where areas with high and very high risk were observed over many regions such as Southern part of Sumatera, Java, Kalimantan, Sulawesi, Maluku and Papua. Further investigation at province level found that the timing of El-Nino impact starts in June. These results are potential to improve national capacity in risk management related to weather-climate hazards.