Rayleigh-wave mode separation by high-resolution linear radon transform
Luo, Y.; Xia, J.; Miller, R.D.; Xu, Y.; Liu, J.; Liu, Q.
2009-01-01
Multichannel analysis of surface waves (MASW) method is an effective tool for obtaining vertical shear wave profiles from a single non-invasive measurement. One key step of the MASW method is generation of a dispersion image and extraction of a reliable dispersion curve from raw multichannel shot records. Because different Rayleigh-wave modes normally interfere with each other in the time and space domain, it is necessary to perform mode separation and reconstruction to increase the accuracy of phase velocities determined from a dispersion image. In this paper, we demonstrate the effectiveness of high-resolution linear Radon transform (LRT) as a means of separating and reconstructing multimode, dispersive Rayleigh-wave energy. We first introduce high-resolution LRT methods and Rayleigh-wave mode separation using high-resolution LRT. Next, we use synthetic data and a real-world example to demonstrate the effectiveness of Rayleigh-wave mode separation using high-resolution LRT. Our synthetic and real-world results demonstrate that (1) high-resolution LRT successfully separates and reconstructs multimode dispersive Rayleigh-wave energy with high resolution allowing the multimode energy to be more accurately determined. The horizontal resolution of the Rayleigh-wave method can be increased by extraction of dispersion curves from a pair of traces in the mode-separated shot gather and (2) multimode separation and reconstruction expand the usable frequency range of higher mode dispersive energy, which increases the depth of investigation and provides a means for accurately determining cut-off frequencies. ?? 2009 The Authors Journal compilation ?? 2009 RAS.
Luo, Y.; Xia, J.; Miller, R.D.; Liu, J.; Xu, Y.; Liu, Q.
2008-01-01
Multichannel Analysis of Surface Waves (MASW) analysis is an efficient tool to obtain the vertical shear-wave profile. One of the key steps in the MASW method is to generate an image of dispersive energy in the frequency-velocity domain, so dispersion curves can be determined by picking peaks of dispersion energy. In this paper, we image Rayleigh-wave dispersive energy and separate multimodes from a multichannel record by high-resolution linear Radon transform (LRT). We first introduce Rayleigh-wave dispersive energy imaging by high-resolution LRT. We then show the process of Rayleigh-wave mode separation. Results of synthetic and real-world examples demonstrate that (1) compared with slant stacking algorithm, high-resolution LRT can improve the resolution of images of dispersion energy by more than 50% (2) high-resolution LRT can successfully separate multimode dispersive energy of Rayleigh waves with high resolution; and (3) multimode separation and reconstruction expand frequency ranges of higher mode dispersive energy, which not only increases the investigation depth but also provides a means to accurately determine cut-off frequencies.
Ultrahigh pressure fast size exclusion chromatography for top-down proteomics.
Chen, Xin; Ge, Ying
2013-09-01
Top-down MS-based proteomics has gained a solid growth over the past few years but still faces significant challenges in the LC separation of intact proteins. In top-down proteomics, it is essential to separate the high mass proteins from the low mass species due to the exponential decay in S/N as a function of increasing molecular mass. SEC is a favored LC method for size-based separation of proteins but suffers from notoriously low resolution and detrimental dilution. Herein, we reported the use of ultrahigh pressure (UHP) SEC for rapid and high-resolution separation of intact proteins for top-down proteomics. Fast separation of intact proteins (6-669 kDa) was achieved in < 7 min with high resolution and high efficiency. More importantly, we have shown that this UHP-SEC provides high-resolution separation of intact proteins using a MS-friendly volatile solvent system, allowing the direct top-down MS analysis of SEC-eluted proteins without an additional desalting step. Taken together, we have demonstrated that UHP-SEC is an attractive LC strategy for the size separation of proteins with great potential for top-down proteomics. © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
NASA Astrophysics Data System (ADS)
Moini, Mehdi; Rollman, Christopher M.
2016-03-01
We introduce a battery operated capillary electrophoresis electrospray ionization (CE/ESI) source for mass spectrometry with optical isomer separation capability. The source fits in front of low or high resolution mass spectrometers similar to a nanospray source with about the same weight and size. The source has two high voltage power supplies (±25 kV HVPS) capable of operating in forward or reverse polarity modes and powered by a 12 V rechargeable lithium ion battery with operation time of ~10 h. In ultrafast CE mode, in which short narrow capillaries (≤15 μm i.d., 15-25 cm long) and field gradients ≥1000 V/cm are used, peak widths at the base are <1 s wide. Under these conditions, the source provides high resolution separation, including optical isomer resolution in ~1 min. Using a low resolution mass spectrometer (LTQ Velos) with a scan time of 0.07 s/scan, baseline separation of amino acids and their optical isomers were achieved in ~1 min. Moreover, bovine serum albumin (BSA) was analyzed in ~1 min with 56% coverage using the data-dependent MS/MS. Using a high resolution mass spectrometer (Thermo Orbitrap Elite) with 15,000 resolution, the fastest scan time achieved was 0.15 s, which was adequate for CE-MS analysis when optical isomer separation is not required or when the optical isomers were well separated. Figures of merit including a detection limit of 2 fmol and linear dynamic range of two orders of magnitude were achieved for amino acids.
Yang, Cheng-Xiong; Liu, Chang; Cao, Yi-Meng; Yan, Xiu-Ping
2015-08-07
A simple and facile room-temperature solution-phase synthesis was developed to fabricate a spherical covalent organic framework with large surface area, good solvent stability and high thermostability for high-resolution chromatographic separation of diverse important industrial analytes including alkanes, cyclohexane and benzene, α-pinene and β-pinene, and alcohols with high column efficiency and good precision.
Large gamma-ray detector arrays and electromagnetic separators
NASA Astrophysics Data System (ADS)
Lee, I.-Yang
2013-12-01
The use of large gamma-ray detector arrays with electromagnetic separators is a powerful combination. Various types of gamma-ray detectors have been used; some provide high detector efficiency such as scintillation detector array, others use Ge detectors for good energy resolution, and recently developed Ge energy tracking arrays gives both high peak-to-background ratio and position resolution. Similarly, different types of separators were used to optimize the performance under different experimental requirements and conditions. For example, gas-filled separators were used in heavy element studies for their large efficiency and beam rejection factor. Vacuum separators with good isotope resolution were used in transfer and fragmentation reactions for the study of nuclei far from stability. This paper presents results from recent experiments using gamma-ray detector arrays in combination with electromagnetic separators, and discusses the physics opportunities provided by these instruments. In particular, we review the performance of the instruments currently in use, and discuss the requirements of instruments for future radioactive beam accelerator facilities.
Dipping-interface mapping using mode-separated Rayleigh waves
Luo, Y.; Xia, J.; Xu, Y.; Zeng, C.; Miller, R.D.; Liu, Q.
2009-01-01
Multichannel analysis of surface waves (MASW) method is a non-invasive geophysical technique that uses the dispersive characteristic of Rayleigh waves to estimate a vertical shear (S)-wave velocity profile. A pseudo-2D S-wave velocity section is constructed by aligning 1D S-wave velocity profiles at the midpoint of each receiver spread that are contoured using a spatial interpolation scheme. The horizontal resolution of the section is therefore most influenced by the receiver spread length and the source interval. Based on the assumption that a dipping-layer model can be regarded as stepped flat layers, high-resolution linear Radon transform (LRT) has been proposed to image Rayleigh-wave dispersive energy and separate modes of Rayleigh waves from a multichannel record. With the mode-separation technique, therefore, a dispersion curve that possesses satisfactory accuracy can be calculated using a pair of consecutive traces within a mode-separated shot gather. In this study, using synthetic models containing a dipping layer with a slope of 5, 10, 15, 20, or 30 degrees and a real-world example, we assess the ability of using high-resolution LRT to image and separate fundamental-mode Rayleigh waves from raw surface-wave data and accuracy of dispersion curves generated by a pair of consecutive traces within a mode-separated shot gather. Results of synthetic and real-world examples demonstrate that a dipping interface with a slope smaller than 15 degrees can be successfully mapped by separated fundamental waves using high-resolution LRT. ?? Birkh??user Verlag, Basel 2009.
Molnárné Guricza, Lilla; Schrader, Wolfgang
2017-02-10
Simplification of highly complex mixtures such as crude oil by using chromatographic methods makes it possible to get more detailed information about the composition of the analyte. Separation by argentation chromatography can be achieved based on the interaction of different strength between the silver ions (Ag + ) immobilized through a spacer on the silica gel surface and the π-bonds of the analytes. Heavy crude oils contain compounds with a high number of heteroatoms (N, O, S) and a high degree of unsaturation thus making them the perfect analyte for argentation chromatography. The direct coupling of argentation chromatography and ultrahigh-resolution mass spectrometry allows to continuously tracking the separation of the many different compounds by retention time and allows sensitive detection on a molecular level. Direct injection of a heavy crude oil into a ultrahigh-resolution mass spectrometer showed components with DBE of up to 25, whereas analytes with DBE of up to 35 could be detected only after separation with argentation chromatography. The reduced complexity achieved by the separation helps increasing the information depth. Copyright © 2016. Published by Elsevier B.V.
Wojcik, Roza; Webb, Ian K.; Deng, Liulin; ...
2017-01-18
Understanding the biological mechanisms related to lipids and glycolipids is challenging due to the vast number of possible isomers. Mass spectrometry (MS) measurements are currently the dominant approach for studying and providing detailed information on lipid and glycolipid structures. However, difficulties in distinguishing many structural isomers (e.g. distinct acyl chain positions, double bond locations, as well as glycan isomers) inhibit the understanding of their biological roles. Here we utilized ultra-high resolution ion mobility spectrometry (IMS) separations based upon the use of traveling waves in a serpentine long path length multi-pass Structures for Lossless Manipulations (SLIM) to enhance isomer resolution. Themore » multi-pass arrangement allowed separations ranging from ~16 m (1 pass) to ~470 m (32 passes) to be investigated for the distinction of lipids and glycolipids with extremely small structural differences. Lastly, these ultra-high resolution SLIM IMS-MS analyses provide a foundation for exploring and better understanding isomer specific biological and disease processes.« less
Chromatic Modulator for High Resolution CCD or APS Devices
NASA Technical Reports Server (NTRS)
Hartley, Frank T. (Inventor); Hull, Anthony B. (Inventor)
2003-01-01
A system for providing high-resolution color separation in electronic imaging. Comb drives controllably oscillate a red-green-blue (RGB) color strip filter system (or otherwise) over an electronic imaging system such as a charge-coupled device (CCD) or active pixel sensor (APS). The color filter is modulated over the imaging array at a rate three or more times the frame rate of the imaging array. In so doing, the underlying active imaging elements are then able to detect separate color-separated images, which are then combined to provide a color-accurate frame which is then recorded as the representation of the recorded image. High pixel resolution is maintained. Registration is obtained between the color strip filter and the underlying imaging array through the use of electrostatic comb drives in conjunction with a spring suspension system.
Accelerated High-Resolution Differential Ion Mobility Separations Using Hydrogen
Shvartsburg, Alexandre A.; Smith, Richard D.
2011-01-01
The resolving power of differential ion mobility spectrometry (FAIMS) was dramatically increased recently by carrier gases comprising up to 75% He or various vapors, enabling many new applications. However, the need for resolution of complex mixtures is virtually open-ended and many topical analyses demand yet finer separations. Also, the resolving power gains are often at the expense of speed, in particular making high-resolution FAIMS incompatible with online liquid-phase separations. Here, we report FAIMS employing hydrogen, specifically in mixtures with N2 containing up to 90% H2. Such compositions raise the mobilities of all ions and thus the resolving power beyond that previously feasible, while avoiding the electrical breakdown inevitable in He-rich mixtures. The increases in resolving power and ensuing peak resolution are especially significant at H2 fractions above ~50%. Higher resolution can be exchanged for acceleration of the analyses by up to ~4 times, at least. For more mobile species such as multiply-charged peptides, this exchange is presently forced by the constraints of existing FAIMS devices, but future designs optimized for H2 should consistently improve resolution for all analytes. PMID:22074292
Ou, Yang; Lv, Chang-Jiang; Yu, Wei; Mao, Zheng-Wei; Wan, Ling-Shu; Xu, Zhi-Kang
2014-12-24
Thin perforated membranes with ordered pores are ideal barriers for high-resolution and high-efficiency selective transport and separation of biological species. However, for self-assembled thin membranes with a thickness less than several micrometers, an additional step of transferring the membranes onto porous supports is generally required. In this article, we present a facile transfer-free strategy for fabrication of robust perforated composite membranes via the breath figure process, and for the first time, demonstrate the application of the membranes in high-resolution cell separation of yeasts and lactobacilli without external pressure, achieving almost 100% rejection of yeasts and more than 70% recovery of lactobacilli with excellent viability. The avoidance of the transfer step simplifies the fabrication procedure of composite membranes and greatly improves the membrane homogeneity. Moreover, the introduction of an elastic triblock copolymer increases the interfacial strength between the membrane and the support, and allows the preservation of composite membranes in a dry state. Such perforated ordered membranes can also be applied in other size-based separation systems, enabling new opportunities in bioseparation and biosensors.
Uchiyama, Shoichiro; Sasaki, Takaaki; Ishihara, Ryo; Fujiwara, Kunio; Sugo, Takanobu; Umeno, Daisuke; Saito, Kyoichi
2018-01-19
An efficient method for rare metal recovery from environmental water and urban mines is in high demand. Toward rapid and high-resolution rare metal ion separation, a novel bis(2-ethylhexyl) phosphate (HDEHP)-impregnated graft-type particle as a filler for a chromatography column is proposed. To achieve rapid and high-resolution separation, a convection-flow-aided elution mode is required. The combination of 35 μm non-porous particles and a polymer-brush-rich particle structure minimizes the distance from metal ion binding sites to the convection flow in the column, resulting in minimized diffusional mass transfer resistance and the convection-flow-aided elution mode. The HDEHP-impregnated graft-type non-porous-particle-packed cartridge developed in this study exhibited a higher separation performance for model rare metals, neodymium (III) and dysprosium (III) ions, and a narrower peak at a higher linear velocity, than those of previous HDEHP-impregnated fiber-packed and commercially available Lewatit ® VP OC 1026-packed cartridges. Copyright © 2017 Elsevier B.V. All rights reserved.
Endo, Kei; Hayashi, Karin; Saito, Hirohide
2016-02-23
The precise identification and separation of living cell types is critical to both study cell function and prepare cells for medical applications. However, intracellular information to distinguish live cells remains largely inaccessible. Here, we develop a method for high-resolution identification and separation of cell types by quantifying multiple microRNA (miRNA) activities in live cell populations. We found that a set of miRNA-responsive, in vitro synthesized mRNAs identify a specific cell population as a sharp peak and clearly separate different cell types based on less than two-fold differences in miRNA activities. Increasing the number of miRNA-responsive mRNAs enhanced the capability for cell identification and separation, as we precisely and simultaneously distinguished different cell types with similar miRNA profiles. In addition, the set of synthetic mRNAs separated HeLa cells into subgroups, uncovering heterogeneity of the cells and the level of resolution achievable. Our method could identify target live cells and improve the efficiency of cell purification from heterogeneous populations.
Madadkar, Pedram; Nino, Sergio Luna; Ghosh, Raja
2016-11-01
We discuss the use of a laterally-fed membrane chromatography (or LFMC) device for single-step purification of mono-PEGylated lysozyme. Recent studies have shown such LFMC devices to be suitable for high-resolution, multi-component separation of proteins in the bind-and-elute mode. The device used in this study contained a stack of rectangular cation-exchange membranes having 9.25mL bed volume. PEGylation of lysozyme was carried out in batch mode using 5kDa methoxy-polyethyleneglycol propionaldehyde (or m-PEG propionaldehyde) in the presence of sodium cyanoborohydride as reducing agent. Membrane chromatographic separation was carried out at 1.62 membrane bed volumes per minute flow rate, in the bind-and-elute mode. When a salt gradient was applied, the higher PEGylated forms of lysozyme (i.e. the byproducts) eluted earlier than mono-PEGylated lysozyme (the target product), while lysozyme eluted last. Under elution conditions optimized for resolution and speed, the separation could be carried out in less than 15 membrane bed volumes. High purity and recovery of mono-PEGylated lysozyme was obtained. The resolution of separation of mono-PEGylated lysozyme obtained under the above condition was comparable to that reported in the literature for equivalent cation-exchange resin columns while the flow rate expressed in bed volumes/min was 21.7 times higher. Also, the number of theoretical plates per meter was significantly higher with the LFMC device. Therefore the LFMC based purification process discussed in this paper combined high-productivity with high-resolution. Copyright © 2016 Elsevier B.V. All rights reserved.
Tasci, Tonguc O; Johnson, William P; Fernandez, Diego P; Manangon, Eliana; Gale, Bruce K
2014-10-24
Compared to other sub-techniques of field flow fractionation (FFF), cyclical electrical field flow fractionation (CyElFFF) is a relatively new method with many opportunities remaining for improvement. One of the most important limitations of this method is the separation of particles smaller than 100nm. For such small particles, the diffusion rate becomes very high, resulting in severe reductions in the CyElFFF separation efficiency. To address this limitation, we modified the electrical circuitry of the ElFFF system. In all earlier ElFFF reports, electrical power sources have been directly connected to the ElFFF channel electrodes, and no alteration has been made in the electrical circuitry of the system. In this work, by using discrete electrical components, such as resistors and diodes, we improved the effective electric field in the system to allow high resolution separations. By modifying the electrical circuitry of the ElFFF system, high resolution separations of 15 and 40nm gold nanoparticles were achieved. The effects of applying different frequencies, amplitudes and voltage shapes have been investigated and analyzed through experiments. Copyright © 2014 Elsevier B.V. All rights reserved.
Velocity gap mode of capillary electrophoresis developed for high-resolution chiral separations.
Li, Xue; Li, Youxin; Zhao, Lumeng; Shen, Jianguo; Zhang, Yong; Bao, James J
2014-10-01
A new CE method based on velocity gap (VG) theory has been developed for high-resolution chiral separations. In VG, two consecutive electric fields are adopted to drive analytes passing through two capillaries, which are linked together through a joint. The joint is immersed inside another buffer vial which has conductivity communication with the buffer inside the capillary. By adjusting the field strengths onto the two capillaries, it is possible to observe different velocities of an analyte when it passes through those two capillaries and there would be a net velocity change (NVC) for the same analyte. Different analytes may have different NVC which may be specifically meaningful for enantioseparations because enantiomers are usually hard to resolve. By taking advantage of this NVC, it is possible to enhance the resolution of a chiral separation if a proper voltage program is applied. The feasibility of using NVC to enhance chiral separation was demonstrated in the separations of three pairs of enantiomers: terbutaline, chlorpheniramine, and promethazine. All separations started with partial separation in a conventional CE and were significantly improved under the same experimental conditions. The results indicated that VG has the potential to be used to improve the resolving power of CE in chiral separations. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
New design studies for TRIUMF's ARIEL High Resolution Separator
NASA Astrophysics Data System (ADS)
Maloney, J. A.; Baartman, R.; Marchetto, M.
2016-06-01
As part of its new Advanced Rare IsotopE Laboratory (ARIEL), TRIUMF is designing a novel High Resolution Separator (HRS) (Maloney et al., 2015) to separate rare isotopes. The HRS has a 180° bend, separated into two 90° magnetic dipoles, bend radius 1.2 m, with an electrostatic multipole corrector between them. Second order correction comes mainly from the dipole edge curvatures, but is intended to be fine-tuned with a sextupole component and a small octupole component in the multipole. This combination is designed to achieve 1:20,000 resolution for a 3 μm (horizontal) and 6 μm (vertical) emittance. A design for the HRS dipole magnets achieves both radial and integral flatness goals of <10-5. A review of the optical design for the HRS is presented, including the study of limiting factors affecting separation, matching and aberration correction. Field simulations from the OPERA-3D (OPERA) [2] models of the dipole magnets are used in COSY Infinity (COSY) (Berz and Makino, 2005) [3] to find and optimize the transfer maps to 3rd order and study residual nonlinearities to 8th order.
Shen, Yufeng; Tolić, Nikola; Piehowski, Paul D; Shukla, Anil K; Kim, Sangtae; Zhao, Rui; Qu, Yi; Robinson, Errol; Smith, Richard D; Paša-Tolić, Ljiljana
2017-05-19
Separation of proteoforms for global intact protein analysis (i.e. top-down proteomics) has lagged well behind what is achievable for peptides in traditional bottom-up proteomic approach and is becoming a true bottle neck for top-down proteomics. Herein, we report use of long (≥1M) columns containing short alkyl (C1-C4) bonded phases to achieve high-resolution RPLC for separation of proteoforms. At a specific operation pressure limit (i.e., 96.5MPa or 14Kpsi used in this work), column length was found to be the most important factor for achieving maximal resolution separation of proteins when 1.5-5μm particles were used as packings and long columns provided peak capacities greater than 400 for proteoforms derived from a global cell lysate with molecular weights below 50kDa. Larger proteoforms (50-110kDa) were chromatographed on long RPLC columns and detected by MS; however, they cannot be identified yet by tandem mass spectrometry. Our experimental data further demonstrated that long alkyl (e.g., C8 and C18) bonded particles provided high-resolution RPLC for <10kDa proteoforms, not efficient for separation of global proteoforms. Reversed-phase particles with porous, nonporous, and superficially porous surfaces were systematically investigated for high-resolution RPLC. Pore size (200-400Å) and the surface structure (porous and superficially porous) of particles was found to have minor influences on high-resolution RPLC of proteoforms. RPLC presented herein enabled confident identification of ∼900 proteoforms (1% FDR) for a low-microgram quantity of proteomic samples using a single RPLC-MS/MS analysis. The level of RPLC performance attained in this work is close to that typically realized in bottom-up proteomics, and broadly useful when applying e.g., the single-stage MS accurate mass tag approach, but less effective when combined with current tandem MS. Our initial data indicate that MS detection and fragmentation inefficiencies provided by current high-resolution mass spectrometers are key challenges for characterization of larger proteoforms. Copyright © 2017. Published by Elsevier B.V.
Shen, Yufeng; Tolić, Nikola; Piehowski, Paul D.; ...
2017-01-05
Separation of proteoforms for global intact protein analysis (i.e. top-down proteomics) has lagged well behind what is achievable for peptides in traditional bottom-up proteomic approach and is becoming a true bottle neck for top-down proteomics. We report use of long (≥1 M) columns containing short alkyl (C1-C4) bonded phases to achieve high-resolution RPLC for separation of proteoforms. At a specific operation pressure limit (i.e., 96.5 MPa or 14 K psi used in this work), column length was found to be the most important factor for achieving maximal resolution separation of proteins when 1.5–5 μm particles were used as packings andmore » long columns provided peak capacities greater than 400 for proteoforms derived from a global cell lysate with molecular weights below 50 kDa. Furthermore, we chromatographed larger proteoforms (50–110 kDa) on long RPLC columns and detected by MS; however, they cannot be identified yet by tandem mass spectrometry. Our experimental data further demonstrated that long alkyl (e.g., C8 and C18) bonded particles provided high-resolution RPLC for <10 kDa proteoforms, not efficient for separation of global proteoforms. Reversed-phase particles with porous, nonporous, and superficially porous surfaces were systematically investigated for high-resolution RPLC. Pore size (200–400 Å) and the surface structure (porous and superficially porous) of particles was found to have minor influences on high-resolution RPLC of proteoforms. RPLC presented herein enabled confident identification of ~900 proteoforms (1% FDR) for a low-microgram quantity of proteomic samples using a single RPLC–MS/MS analysis. The level of RPLC performance attained in this work is close to that typically realized in bottom-up proteomics, and broadly useful when applying e.g., the single-stage MS accurate mass tag approach, but less effective when combined with current tandem MS. Finally, our initial data indicate that MS detection and fragmentation inefficiencies provided by current high-resolution mass spectrometers are key challenges for characterization of larger proteoforms.« less
Küster, Simon K; Pabst, Martin; Jefimovs, Konstantins; Zenobi, Renato; Dittrich, Petra S
2014-05-20
We present a robust droplet-based device, which enables the fractionation of ultralow flow rate nanoflow liquid chromatography (nano-LC) eluate streams at high frequencies and high peak resolution. This is achieved by directly interfacing the separation column to a micro T-junction, where the eluate stream is compartmentalized into picoliter droplets. This immediate compartmentalization prevents peak dispersion during eluate transport and conserves the chromatographic performance. Subsequently, nanoliter eluate fractions are collected at a rate of one fraction per second on a high-density microarray to retain the separation with high temporal resolution. Chromatographic separations of up to 45 min runtime can thus be archived on a single microarray possessing 2700 sample spots. The performance of this device is demonstrated by fractionating the separation of a tryptic digest of a known protein mixture onto the microarray chip and subsequently analyzing the sample archive using matrix-assisted laser desorption/ionization mass spectrometry (MALDI-MS). Resulting peak widths are found to be significantly reduced compared to standard continuous flow spotting technologies as well as in comparison to a conventional nano-LC-electrospray ionization-mass spectrometry interface. Moreover, we demonstrate the advantage of our high-definition nanofractionation device by applying two different MALDI matrices to all collected fractions in an alternating fashion. Since the information that is obtained from a MALDI-MS measurement depends on the choice of MALDI matrix, we can extract complementary information from neighboring spots containing almost identical composition but different matrices.
Lacy, Joyce W.; Yassa, Michael A.; Stark, Shauna M.; Muftuler, L. Tugan; Stark, Craig E.L.
2011-01-01
Producing and maintaining distinct (orthogonal) neural representations for similar events is critical to avoiding interference in long-term memory. Recently, our laboratory provided the first evidence for separation-like signals in the human CA3/dentate. Here, we extended this by parametrically varying the change in input (similarity) while monitoring CA1 and CA3/dentate for separation and completion-like signals using high-resolution fMRI. In the CA1, activity varied in a graded fashion in response to increases in the change in input. In contrast, the CA3/dentate showed a stepwise transfer function that was highly sensitive to small changes in input. PMID:21164173
Polyacrylamide medium for the electrophoretic separation of biomolecules
Madabhushi, Ramakrishna S.; Gammon, Stuart A.
2003-11-11
A polyacryalmide medium for the electrophoretic separation of biomolecules. The polyacryalmide medium comprises high molecular weight polyacrylamides (PAAm) having a viscosity average molecular weight (M.sub.v) of about 675-725 kDa were synthesized by conventional red-ox polymerization technique. Using this separation medium, capillary electrophoresis of BigDye DNA sequencing standard was performed. A single base resolution of .about.725 bases was achieved in .about.60 minute in a non-covalently coated capillary of 50 .mu.m i.d., 40 cm effective length, and a filed of 160 V/cm at 40.degree. C. The resolution achieved with this formulation to separate DNA under identical conditions is much superior (725 bases vs. 625 bases) and faster (60 min. vs. 75 min.) to the commercially available PAAm, such as supplied by Amersham. The formulation method employed here to synthesize PAAm is straight-forward, simple and does not require cumbersome methods such as emulsion polymerizaiton in order to achieve very high molecular weights. Also, the formulation here does not require separation of PAAm from the reaction mixture prior to reconstituting the polymer to a final concentration. Furthermore, the formulation here is prepared from a single average mol. wt. PAAm as opposed to the mixture of two different average mo. wt. PAAm previously required to achieve high resolution.
Multi-slice ptychography with large numerical aperture multilayer Laue lenses
Ozturk, Hande; Yan, Hanfei; He, Yan; ...
2018-05-09
Here, the highly convergent x-ray beam focused by multilayer Laue lenses with large numerical apertures is used as a three-dimensional (3D) probe to image layered structures with an axial separation larger than the depth of focus. Instead of collecting weakly scattered high-spatial-frequency signals, the depth-resolving power is provided purely by the intense central cone diverged from the focused beam. Using the multi-slice ptychography method combined with the on-the-fly scan scheme, two layers of nanoparticles separated by 10 μm are successfully reconstructed with 8.1 nm lateral resolution and with a dwell time as low as 0.05 s per scan point. Thismore » approach obtains high-resolution images with extended depth of field, which paves the way for multi-slice ptychography as a high throughput technique for high-resolution 3D imaging of thick samples.« less
Multi-slice ptychography with large numerical aperture multilayer Laue lenses
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ozturk, Hande; Yan, Hanfei; He, Yan
Here, the highly convergent x-ray beam focused by multilayer Laue lenses with large numerical apertures is used as a three-dimensional (3D) probe to image layered structures with an axial separation larger than the depth of focus. Instead of collecting weakly scattered high-spatial-frequency signals, the depth-resolving power is provided purely by the intense central cone diverged from the focused beam. Using the multi-slice ptychography method combined with the on-the-fly scan scheme, two layers of nanoparticles separated by 10 μm are successfully reconstructed with 8.1 nm lateral resolution and with a dwell time as low as 0.05 s per scan point. Thismore » approach obtains high-resolution images with extended depth of field, which paves the way for multi-slice ptychography as a high throughput technique for high-resolution 3D imaging of thick samples.« less
Dual-axis confocal microscope for high-resolution in vivo imaging
Wang, Thomas D.; Mandella, Michael J.; Contag, Christopher H.; Kino, Gordon S.
2007-01-01
We describe a novel confocal microscope that uses separate low-numerical-aperture objectives with the illumination and collection axes crossed at angle θ from the midline. This architecture collects images in scattering media with high transverse and axial resolution, long working distance, large field of view, and reduced noise from scattered light. We measured transverse and axial (FWHM) resolution of 1.3 and 2.1 μm, respectively, in free space, and confirm subcellular resolution in excised esophageal mucosa. The optics may be scaled to millimeter dimensions and fiber coupled for collection of high-resolution images in vivo. PMID:12659264
New Clues to the Mysterious Origin of Wide-Separation Planetary-Mass Companions
NASA Astrophysics Data System (ADS)
Bryan, Marta
2018-01-01
Over the past decade, direct imaging searches for young gas giant planets have revealed a new population of young planetary-mass companions with extremely wide orbital separations (>50 AU) and masses near or at the deuterium-burning limit. These companions pose significant challenges to standard formation models, including core accretion, disk instability, and turbulent fragmentation. In my talk I will discuss new results from high-contrast imaging and high-resolution infrared spectroscopy of a sample of directly imaged wide-separation companions that can be used to directly test these three competing formation mechanisms. First, I use high-contrast imaging to strongly discount scattering as a hypothesis for the origin of wide-separation companions. Second, I measure rotation rates of a subset of these companions using their near-IR spectra, and place the first constraints on the angular momentum evolution of young planetary-mass objects. Finally, I explore the ability of high-resolution spectroscopy to constrain the atmospheric C/O ratios of these companions, providing a complementary test of competing formation scenarios.
Wang, Jiafei; Bai, Ligai; Wei, Zhen; Qin, Junxiao; Ma, Yamin; Liu, Haiyan
2015-06-01
An ionic liquid was incorporated into the porous polymer monoliths to afford stationary phases with enhanced chromatographic performance for small molecules in reversed-phase high-performance liquid chromatography. The effect of the ionic liquid in the polymerization mixture on the performance of the monoliths was studied in detail. While monoliths without ionic liquid exhibited poor resolution and low efficiency, the addition of ionic liquid to the polymerization mixture provides highly increased resolution and high efficiency. The chromatographic performances of the monoliths were demonstrated by the separations of various small molecules including aromatic hydrocarbons, isomers, and homologues using a binary polar mobile phase. The present column efficiency reached 27 000 plates/m, which showed that the ionic liquid monoliths are alternative stationary phases in the separation of small molecules by high-performance liquid chromatography. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Deng, Liulin; Ibrahim, Yehia M.; Hamid, Ahmed M.
We report the development and initial evaluation of a 13-m path length Structures for Lossless Manipulations (SLIM) module for achieving high resolution separations using traveling waves (TW) with ion mobility (IM) spectrometry. The TW SLIM module was fabricated using two mirror-image printed circuit boards with appropriately configured RF, DC and TW electrodes and positioned with a 2.75-mm inter-surface gap. Ions were effective confined between the surfaces by RF-generated pseudopotential fields and moved losslessly through a serpentine path including 44 “U” turns using TWs. The ion mobility resolution was characterized at different pressures, gaps between the SLIM surfaces, TW and RFmore » parameters. After initial optimization the SLIM IM-MS module provided about 5-fold higher resolution separations than present commercially available drift tube or traveling wave IM-MS platforms. Peak capacity and peak generation rates achieved were 246 and 370 s-1, respectively, at a TW speed of 148 m/s. The high resolution achieved in the TW SLIM IM-MS enabled e.g., isomeric sugars (Lacto-N-fucopentaose I and Lacto-N-fucopentaose II) to be baseline resolved, and peptides from a albumin tryptic digest much better resolved than with existing commercial IM-MS platforms. The present work also provides a foundation for the development of much higher resolution SLIM devices based upon both considerably longer path lengths and multi-pass designs.« less
Dickel, Timo; Plaß, Wolfgang R; Lippert, Wayne; Lang, Johannes; Yavor, Mikhail I; Geissel, Hans; Scheidenberger, Christoph
2017-06-01
A novel method for (ultra-)high-resolution spatial mass separation in time-of-flight mass spectrometers is presented. Ions are injected into a time-of-flight analyzer from a radio frequency (rf) trap, dispersed in time-of-flight according to their mass-to-charge ratios and then re-trapped dynamically in the same rf trap. This re-trapping technique is highly mass-selective and after sufficiently long flight times can provide even isobaric separation. A theoretical treatment of the method is presented and the conditions for optimum performance of the method are derived. The method has been implemented in a multiple-reflection time-of-flight mass spectrometer and mass separation powers (FWHM) in excess of 70,000, and re-trapping efficiencies of up to 35% have been obtained for the protonated molecular ion of caffeine. The isobars glutamine and lysine (relative mass difference of 1/4000) have been separated after a flight time of 0.2 ms only. Higher mass separation powers can be achieved using longer flight times. The method will have important applications, including isobar separation in nuclear physics and (ultra-)high-resolution precursor ion selection in multiple-stage tandem mass spectrometry. Graphical Abstract ᅟ.
NASA Astrophysics Data System (ADS)
Dickel, Timo; Plaß, Wolfgang R.; Lippert, Wayne; Lang, Johannes; Yavor, Mikhail I.; Geissel, Hans; Scheidenberger, Christoph
2017-06-01
A novel method for (ultra-)high-resolution spatial mass separation in time-of-flight mass spectrometers is presented. Ions are injected into a time-of-flight analyzer from a radio frequency (rf) trap, dispersed in time-of-flight according to their mass-to-charge ratios and then re-trapped dynamically in the same rf trap. This re-trapping technique is highly mass-selective and after sufficiently long flight times can provide even isobaric separation. A theoretical treatment of the method is presented and the conditions for optimum performance of the method are derived. The method has been implemented in a multiple-reflection time-of-flight mass spectrometer and mass separation powers (FWHM) in excess of 70,000, and re-trapping efficiencies of up to 35% have been obtained for the protonated molecular ion of caffeine. The isobars glutamine and lysine (relative mass difference of 1/4000) have been separated after a flight time of 0.2 ms only. Higher mass separation powers can be achieved using longer flight times. The method will have important applications, including isobar separation in nuclear physics and (ultra-)high-resolution precursor ion selection in multiple-stage tandem mass spectrometry. [Figure not available: see fulltext.
He, Jianfeng; Fan, Jun; Yan, Yilun; Chen, Xiaodong; Wang, Tai; Zhang, Yaomou; Zhang, Weiguang
2016-11-01
Enantiomeric pairs of triticonazole have been successfully separated by supercritical fluid chromatography coupled with a tris(3,5-dimethylphenylcarbamoyl) cellulose-coated chiral stationary phase in this work. The effects of co-solvent, dissolution solvent, flow rate, backpressure, and column temperature have been studied in detail with respect to retention, selectivity, and resolution of triticonazole. As indicated, the co-solvents mostly affected the retention factors and resolution, due to the different molecular structure and polarity. In addition, the dissolution solvents, namely, chloromethanes and alcohols, have been also important for enantioseparation because of the different interaction with stationary phase. Higher flow rate and backpressure led to faster elution of the triticonazole molecules, and the change of column temperature showed slight effect on the resolution of triticonazole racemate. Moreover, a comparative separation experiment between supercritical fluid chromatography and high performance liquid chromatography revealed that chiral supercritical fluid chromatography gave the 3.5 times value of R s /t R2 than high performance liquid chromatography, which demonstrated that supercritical fluid chromatography had much higher separation efficiency. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Zeming, Kerwin Kwek; Salafi, Thoriq; Chen, Chia-Hung; Zhang, Yong
2016-01-01
Deterministic lateral displacement (DLD) method for particle separation in microfluidic devices has been extensively used for particle separation in recent years due to its high resolution and robust separation. DLD has shown versatility for a wide spectrum of applications for sorting of micro particles such as parasites, blood cells to bacteria and DNA. DLD model is designed for spherical particles and efficient separation of blood cells is challenging due to non-uniform shape and size. Moreover, separation in sub-micron regime requires the gap size of DLD systems to be reduced which exponentially increases the device resistance, resulting in greatly reduced throughput. This paper shows how simple application of asymmetrical DLD gap-size by changing the ratio of lateral-gap (GL) to downstream-gap (GD) enables efficient separation of RBCs without greatly restricting throughput. This method reduces the need for challenging fabrication of DLD pillars and provides new insight to the current DLD model. The separation shows an increase in DLD critical diameter resolution (separate smaller particles) and increase selectivity for non-spherical RBCs. The RBCs separate better as compared to standard DLD model with symmetrical gap sizes. This method can be applied to separate non-spherical bacteria or sub-micron particles to enhance throughput and DLD resolution. PMID:26961061
Zeming, Kerwin Kwek; Salafi, Thoriq; Chen, Chia-Hung; Zhang, Yong
2016-03-10
Deterministic lateral displacement (DLD) method for particle separation in microfluidic devices has been extensively used for particle separation in recent years due to its high resolution and robust separation. DLD has shown versatility for a wide spectrum of applications for sorting of micro particles such as parasites, blood cells to bacteria and DNA. DLD model is designed for spherical particles and efficient separation of blood cells is challenging due to non-uniform shape and size. Moreover, separation in sub-micron regime requires the gap size of DLD systems to be reduced which exponentially increases the device resistance, resulting in greatly reduced throughput. This paper shows how simple application of asymmetrical DLD gap-size by changing the ratio of lateral-gap (GL) to downstream-gap (GD) enables efficient separation of RBCs without greatly restricting throughput. This method reduces the need for challenging fabrication of DLD pillars and provides new insight to the current DLD model. The separation shows an increase in DLD critical diameter resolution (separate smaller particles) and increase selectivity for non-spherical RBCs. The RBCs separate better as compared to standard DLD model with symmetrical gap sizes. This method can be applied to separate non-spherical bacteria or sub-micron particles to enhance throughput and DLD resolution.
Signal processing techniques were applied to high-resolution time series data obtained from conductivity loggers placed upstream and downstream of a wastewater treatment facility along a river. Data was collected over 14-60 days, and several seasons. The power spectral densit...
NASA Technical Reports Server (NTRS)
Kanik, I.; Beegle, L. W.; Hill, H. H.
2001-01-01
The potential of the high-resolution Electrospray Ionization/Ion Mobility Spectrometry (ESI/IMS) technique as analytical separation tool in analyzing bio-molecular mixtures in the search for the chemical signatures of life is demonstrated. Additional information is contained in the original extended abstract.
Separation of high-resolution samples of overlapping latent fingerprints using relaxation labeling
NASA Astrophysics Data System (ADS)
Qian, Kun; Schott, Maik; Schöne, Werner; Hildebrandt, Mario
2012-06-01
The analysis of latent fingerprint patterns generally requires clearly recognizable friction ridge patterns. Currently, overlapping latent fingerprints pose a major problem for traditional crime scene investigation. This is due to the fact that these fingerprints usually have very similar optical properties. Consequently, the distinction of two or more overlapping fingerprints from each other is not trivially possible. While it is possible to employ chemical imaging to separate overlapping fingerprints, the corresponding methods require sophisticated fingerprint acquisition methods and are not compatible with conventional forensic fingerprint data. A separation technique that is purely based on the local orientation of the ridge patterns of overlapping fingerprints is proposed by Chen et al. and quantitatively evaluated using off-the-shelf fingerprint matching software with mostly artificially composed overlapping fingerprint samples, which is motivated by the scarce availability of authentic test samples. The work described in this paper adapts the approach presented by Chen et al. for its application on authentic high resolution fingerprint samples acquired by a contactless measurement device based on a Chromatic White Light (CWL) sensor. An evaluation of the work is also given, with the analysis of all adapted parameters. Additionally, the separability requirement proposed by Chen et al. is also evaluated for practical feasibility. Our results show promising tendencies for the application of this approach on high-resolution data, yet the separability requirement still poses a further challenge.
Henley, W Hampton; He, Yan; Mellors, J Scott; Batz, Nicholas G; Ramsey, J Michael; Jorgenson, James W
2017-11-10
Ultra-high voltage capillary electrophoresis with high electric field strength has been applied to the separation of the charge variants, drug conjugates, and disulfide isomers of monoclonal antibodies. Samples composed of many closely related species are difficult to resolve and quantify using traditional analytical instrumentation. High performance instrumentation can often save considerable time and effort otherwise spent on extensive method development. Ideally, the resolution obtained for a given CE buffer system scales with the square root of the applied voltage. Currently available commercial CE instrumentation is limited to an applied voltage of approximately 30kV and a maximum electric field strength of 1kV/cm due to design limitations. The instrumentation described here is capable of safely applying potentials of at least 120kV with electric field strengths over 2000V/cm, potentially doubling the resolution of the best conventional CE buffer/capillary systems while decreasing analysis time in some applications. Separations of these complex mixtures using this new instrumentation demonstrate the potential of ultra-high voltage CE to identify the presence of previously unresolved components and to reduce analysis time for complex mixtures of antibody variants and drug conjugates. Copyright © 2017 Elsevier B.V. All rights reserved.
Liu, Lei; Veerappan, Vijaykumar; Pu, Qiaosheng; Cheng, Chang; Wang, Xiayan; Lu, Liping; Allen, Randy D; Guo, Guangsheng
2014-01-07
A high-resolution, rapid, and economical hydrodynamic chromatographic (HDC) method for large DNA separations in free solution was developed using narrow (5 μm diameter), bare open capillaries. Size-based separation was achieved in a chromatographic format with larger DNA molecules being eluting faster than smaller ones. Lambda DNA Mono Cut Mix was baseline-separated with the percentage resolutions generally less than 9.0% for all DNA fragments (1.5 to 48.5 kbp) tested in this work. High efficiencies were achieved for large DNA from this chromatographic technique, and the number of theoretical plates reached 3.6 × 10(5) plates for the longest (48.5 kbp) and 3.7 × 10(5) plates for the shortest (1.5 kbp) fragments. HDC parameters and performances were also discussed. The method was further applied for fractionating large DNA fragments from real-world samples (SacII digested Arabidopsis plant bacterial artificial chromosome (BAC) DNA and PmeI digested Rice BAC DNA) to demonstrate its feasibility for BAC DNA finger printing. Rapid separation of PmeI digested Rice BAC DNA covering from 0.44 to 119.041 kbp was achieved in less than 26 min. All DNA fragments of these samples were baseline separated in narrow bare open capillaries, while the smallest fragment (0.44 kbp) was missing in pulsed-field gel electrophoresis (PFGE) separation mode. It is demonstrated that narrow bare open capillary chromatography can realize a rapid separation for a wide size range of DNA mixtures that contain both small and large DNA fragments in a single run.
Influence of seismic diffraction for high-resolution imaging: applications in offshore Malaysia
NASA Astrophysics Data System (ADS)
Bashir, Yasir; Ghosh, Deva Prasad; Sum, Chow Weng
2018-04-01
Small-scale geological discontinuities are not easy to detect and image in seismic data, as these features represent themselves as diffracted rather than reflected waves. However, the combined reflected and diffracted image contains full wave information and is of great value to an interpreter, for instance enabling the identification of faults, fractures, and surfaces in built-up carbonate. Although diffraction imaging has a resolution below the typical seismic wavelength, if the wavelength is much smaller than the width of the discontinuity then interference effects can be ignored, as they would not play a role in generating the seismic diffractions. In this paper, by means of synthetic examples and real data, the potential of diffraction separation for high-resolution seismic imaging is revealed and choosing the best method for preserving diffraction are discussed. We illustrate the accuracy of separating diffractions using the plane-wave destruction (PWD) and dip frequency filtering (DFF) techniques on data from the Sarawak Basin, a carbonate field. PWD is able to preserve the diffraction more intelligently than DFF, which is proven in the results by the model and real data. The final results illustrate the effectiveness of diffraction separation and possible imaging for high-resolution seismic data of small but significant geological features.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Shen, Yufeng; Tolić, Nikola; Piehowski, Paul D.
Separation of proteoforms for global intact protein analysis (i.e. top-down proteomics) has lagged well behind what is achievable for peptides in traditional bottom-up proteomic approach and is becoming a true bottle neck for top-down proteomics. We report use of long (≥1 M) columns containing short alkyl (C1-C4) bonded phases to achieve high-resolution RPLC for separation of proteoforms. At a specific operation pressure limit (i.e., 96.5 MPa or 14 K psi used in this work), column length was found to be the most important factor for achieving maximal resolution separation of proteins when 1.5–5 μm particles were used as packings andmore » long columns provided peak capacities greater than 400 for proteoforms derived from a global cell lysate with molecular weights below 50 kDa. Furthermore, we chromatographed larger proteoforms (50–110 kDa) on long RPLC columns and detected by MS; however, they cannot be identified yet by tandem mass spectrometry. Our experimental data further demonstrated that long alkyl (e.g., C8 and C18) bonded particles provided high-resolution RPLC for <10 kDa proteoforms, not efficient for separation of global proteoforms. Reversed-phase particles with porous, nonporous, and superficially porous surfaces were systematically investigated for high-resolution RPLC. Pore size (200–400 Å) and the surface structure (porous and superficially porous) of particles was found to have minor influences on high-resolution RPLC of proteoforms. RPLC presented herein enabled confident identification of ~900 proteoforms (1% FDR) for a low-microgram quantity of proteomic samples using a single RPLC–MS/MS analysis. The level of RPLC performance attained in this work is close to that typically realized in bottom-up proteomics, and broadly useful when applying e.g., the single-stage MS accurate mass tag approach, but less effective when combined with current tandem MS. Finally, our initial data indicate that MS detection and fragmentation inefficiencies provided by current high-resolution mass spectrometers are key challenges for characterization of larger proteoforms.« less
NASA Astrophysics Data System (ADS)
Wu, X.; Jiang, Y.; Simonsen, S.; van den Broeke, M. R.; Ligtenberg, S.; Kuipers Munneke, P.; van der Wal, W.; Vermeersen, B. L. A.
2017-12-01
Determining present-day mass transport (PDMT) is complicated by the fact that most observations contain signals from both present day ice melting and Glacial Isostatic Adjustment (GIA). Despite decades of progress in geodynamic modeling and new observations, significant uncertainties remain in both. The key to separate present-day ice mass change and signals from GIA is to include data of different physical characteristics. We designed an approach to separate PDMT and GIA signatures by estimating them simultaneously using globally distributed interdisciplinary data with distinct physical information and a dynamically constructed a priori GIA model. We conducted a high-resolution global reappraisal of present-day ice mass balance with focus on Earth's polar regions and its contribution to global sea-level rise using a combination of ICESat, GRACE gravity, surface geodetic velocity data, and an ocean bottom pressure model. Adding ice altimetry supplies critically needed dual data types over the interiors of ice covered regions to enhance separation of PDMT and GIA signatures, and achieve half an order of magnitude expected higher accuracies for GIA and consequently ice mass balance estimates. The global data based approach can adequately address issues of PDMT and GIA induced geocenter motion and long-wavelength signatures important for large areas such as Antarctica and global mean sea level. In conjunction with the dense altimetry data, we solved for PDMT coefficients up to degree and order 180 by using a higher-resolution GRACE data set, and a high-resolution a priori PDMT model that includes detailed geographic boundaries. The high-resolution approach solves the problem of multiple resolutions in various data types, greatly reduces aliased errors from a low-degree truncation, and at the same time, enhances separation of signatures from adjacent regions such as Greenland and Canadian Arctic territories.
Yusuf, Kareem; Badjah-Hadj-Ahmed, Ahmed Yacine; Aqel, Ahmad; ALOthman, Zeid Abdullah
2016-03-01
A monolithic capillary column containing a composite of metal-organic framework MIL-53(Al) incorporated into hexyl methacrylate-co-ethylene dimethacrylate was prepared to enhance the separation of mixtures of small aromatic compounds by using capillary liquid chromatography. The addition of 10 mg/mL MIL-53(Al) microparticles increased the micropore content in the monolithic matrix and increased the Brunauer-Emmett-Teller surface area from 26.92 to 85.12 m(2) /g. The presence of 1,4-benzenedicarboxylate moieties within the structure of MIL-53(Al) as an organic linker greatly influenced the separation of aromatic mixtures through π-π interactions. High-resolution separation was obtained for a series of alkylbenzenes (with resolution factors in the range 0.96-1.75) in less than 8 min, with 14 710 plates/m efficiency for propylbenzene, using a binary polar mobile phase of water/acetonitrile in isocratic mode. A reversed-phase separation mechanism was indicated by the increased retention factor and resolution as the water percentage in the mobile phase increased. A stability study on the composite column showed excellent mechanical stability under various conditions. The higher resolution and faster separation observed at increased temperature indicated an exothermic separation, whereas the negative values for the free energy change of transfer indicated a spontaneous process. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Signal processing techniques were applied to high-resolution time series data obtained from conductivity loggers placed upstream and downstream of an oil and gas wastewater treatment facility along a river. Data was collected over 14-60 days. The power spectral density was us...
Sim, Arum; Cho, Yunju; Kim, Daae; Witt, Matthias; Birdwell, Justin E.; Kim, Byung Ju; Kim, Sunghwan
2014-01-01
A reversed-phase separation technique was developed in a previous study (Loegel et al., 2012) and successfully applied to the de-asphalted fraction of crude oil. However, to the best of our knowledge, the molecular-level characterization of oil fractions obtained by reversed-phase high-performance liquid chromatography (HPLC) coupled with high-resolution mass spectrometry (MS) has not yet been reported. A detailed characterization of the oil fractions prepared by reversed-phase HPLC was performed in this study. HPLC fractionation was carried out on conventional crude oil and an oil shale pyrolysate. The analyses of the fractions showed that the carbon number of alkyl chains and the double bond equivalent (DBE) value were the major factors determining elution order. The compounds with larger DBE (presumably more condensed aromatic structures) and smaller carbon number (presumably compounds with short side chains) were eluted earlier but those compounds with lower DBE values (presumably less aromatic structures) and higher carbon number (presumably compounds with longer alkyl chains) eluted later in the chromatograms. This separation behavior is in good agreement with that expected from the principles of reversed-phase separation. The data presented in this study show that reversed-phase chromatography is effective in separating crude oil compounds and can be combined with ultrahigh-resolution MS data to better understand natural oils and oil shale pyrolysates.
Sieving polymer synthesis by reversible addition fragmentation chain transfer polymerization.
Nai, Yi Heng; Jones, Roderick C; Breadmore, Michael C
2013-12-01
Replaceable sieving polymers are the fundamental component for high resolution nucleic acids separation in CE. The choice of polymer and its physical properties play significant roles in influencing separation performance. Recently, reversible addition fragmentation chain transfer (RAFT) polymerization has been shown to be a versatile polymerization technique capable of yielding well defined polymers previously unattainable by conventional free radical polymerization. In this study, a high molecular weight PDMA at 765 000 gmol-1 with a PDI of 1.55 was successfully synthesized with the use of chain transfer agent - 2-propionic acidyl butyl trithiocarbonate (PABTC) in a multi-step sequential RAFT polymerization approach. This study represents the first demonstration of RAFT polymerization for synthesizing polymers with the molecular weight range suitable for high resolution DNA separation in sieving electrophoresis. Adjustment of pH in the reaction was found to be crucial for the successful RAFT polymerization of high molecular weight polymer as the buffered condition minimizes the effect of hydrolysis and aminolysis commonly associated with trithiocarbonate chain transfer agents. The separation efficiency of PABTC-PDMA was found to have marginally superior separation performance compared to a commercial PDMA formulation, POP™-CAP, of similar molecular weight range.
NASA Astrophysics Data System (ADS)
Piao, H.; Enever, M. C. N.; Adib, K.; Hrbek, J.; Barteau, M. A.
2004-11-01
Synchrotron-based X-ray photoelectron spectroscopy (XPS) has been used to investigate the adsorption and reaction of styrene oxide on Ag(1 1 1). When adsorption is carried out at 250 K or above, ring opening of styrene oxide forms a stable surface oxametallacycle intermediate which eventually reacts at 485 K to regenerate styrene oxide. High resolution XPS is capable of distinguishing the oxametallacycle from molecularly adsorbed and condensed styrene oxide on the basis of different C1s peak separations. The observed separations are well accounted for by the results of DFT calculations.
Sandra, Koen; Moshir, Mahan; D'hondt, Filip; Tuytten, Robin; Verleysen, Katleen; Kas, Koen; François, Isabelle; Sandra, Pat
2009-04-15
Multidimensional liquid-based separation techniques are described for maximizing the resolution of the enormous number of peptides generated upon tryptic digestion of proteomes, and hence, reduce the spatial and temporal complexity of the sample to a level that allows successful mass spectrometric analysis. This review complements the previous contribution on unidimensional high performance liquid chromatography (HPLC). Both chromatography and electrophoresis will be discussed albeit with reversed-phase HPLC (RPLC) as the final separation dimension prior to MS analysis.
Albrecht, Jennifer Coyne; Kerby, Matthew B.; Niedringhaus, Thomas P.; Lin, Jennifer S.; Wang, Xiaoxiao; Barron, Annelise E.
2012-01-01
Here, we demonstrate the potential for high-resolution electrophoretic separations of ssDNA-protein conjugates in borosilicate glass microfluidic chips, with no sieving media and excellent repeatability. Using polynucleotides of two different lengths conjugated to moderately cationic protein polymer drag-tags, we measured separation efficiency as a function of applied electric field. In excellent agreement with prior theoretical predictions of Slater et al., resolution is found to remain constant as applied field is increased up to 700 V/cm, the highest field we were able to apply. This remarkable result illustrates the fundamentally different physical limitations of Free-Solution Conjugate Electrophoresis (FSCE)-based DNA separations relative to matrix-based DNA electrophoresis. Single-stranded DNA separations in “gels” have always shown rapidly declining resolution as the field strength is increased; this is especially true for ssDNA > 400 bases in length. FSCE’s ability to decouple DNA peak resolution from applied electric field suggests the future possibility of ultra-rapid FSCE sequencing on chips. We investigated sources of peak broadening for FSCE separations on borosilicate glass microchips, using six different protein polymer drag-tags. For drag-tags with four or more positive charges, electrostatic and adsorptive interactions with pHEA-coated microchannel walls led to appreciable band-broadening, while much sharper peaks were seen for bioconjugates with nearly charge-neutral protein drag-tags. PMID:21500207
The Search for Effective Algorithms for Recovery from Loss of Separation
NASA Technical Reports Server (NTRS)
Butler, Ricky W.; Hagen, George E.; Maddalon, Jeffrey M.; Munoz, Cesar A.; Narawicz, Anthony J.
2012-01-01
Our previous work presented an approach for developing high confidence algorithms for recovering aircraft from loss of separation situations. The correctness theorems for the algorithms relied on several key assumptions, namely that state data for all local aircraft is perfectly known, that resolution maneuvers can be achieved instantaneously, and that all aircraft compute resolutions using exactly the same data. Experiments showed that these assumptions were adequate in cases where the aircraft are far away from losing separation, but are insufficient when the aircraft have already lost separation. This paper describes the results of this experimentation and proposes a new criteria specification for loss of separation recovery that preserves the formal safety properties of the previous criteria while overcoming some key limitations. Candidate algorithms that satisfy the new criteria are presented.
Tian, Fei; Zhang, Wei; Cai, Lili; Li, Shanshan; Hu, Guoqing; Cong, Yulong; Liu, Chao; Li, Tiejun; Sun, Jiashu
2017-09-12
The microfluidic passive control of microparticles largely relies on the hydrodynamic effects of the carrier media such as Newtonian fluids and viscoelastic fluids. Yet the viscoelastic/Newtonian interfacial effect has been scarcely investigated, especially for high-resolution particle separation. Here we report a microfluidic co-flow of Newtonian (water or PBS) and viscoelastic fluids (PEO) for the size-dependent separation of microparticles. The co-flow condition generates a stable viscoelastic/Newtonian interface, giving rise to the wall-directed elastic lift forces that compete with the center-directed lift forces, and efficiently hinders the migration of microparticles from the Newtonian to the viscoelastic fluid in a size-dependent manner. An almost complete separation of a binary mixture of 1 μm and 2 μm polystyrene particles is achieved by the co-flow of water and a very dilute PEO solution (100 ppm), whereas the sole use of water or PEO could not lead to an efficient separation. This co-flow microfluidic system is also applied for the separation of Staphylococcus aureus (1 μm) from platelets (2-3 μm) with >90% efficiencies and purities.
Luo, An; Wan, Qiang; Fan, Huajun; Chen, Zhi; Wu, Xuehao; Huang, Xiaowen; Zang, Linquan
2014-09-01
Chromatographic behaviors for enantiomeric separation of arylpropionic acid drugs were systematically developed by reversed phase-high performance liquid chromatography (RP-HPLC) using cellulose-tris-(4-methylbenzoate) (CTMB) as chiral stationary phase (CSP). The effects of the composition of the mobile phase, additives and temperature on chiral separation of flurbiprofen, pranoprofen, naproxen, ibuprofen and loxoprofen were further investigated. The enantiomers had been successfully separated on CSP of CTMB by the mobile phase of methanol-0.1% (v/v) formic acid except naproxen by acetonitrile-0.1% (v/v) formic acid at 25 °C. The mechanisms of the racemic resolution for the above mentioned five drugs are discussed thermodynamically and structurally. The resolutions between respective enantiomers for arylpropionic acid drugs on CTMB had significant differences due to their chromatographic behaviors. The order of resolutions ranked pranoprofen, loxoprofen, flurbiprofen, ibuprofen and naproxen. The method established has been successfully applied to the determination of the enantiomers of the five drugs in commercial preparations under the optimized conditions. It proved that the method is simple, reliable and accurate.
Giordano, Braden C; Copper, Christine L; Collins, Greg E
2006-02-01
The ability to separate nitroaromatic and nitramine explosives in seawater sample matrices is demonstrated using both MEKC and CEC. While several capillary-based separations exist for explosives, none address direct sampling from seawater, a sample matrix of particular interest in the detection of undersea mines. Direct comparisons are made between MEKC and CEC in terms of sensitivity and separation efficiency for the analysis of 14 explosives and explosive degradation products in seawater and diluted seawater. The use of high-salt stacking with MEKC results, on average, in a three-fold increase in the number of theoretical plates, and nearly double resolution for samples prepared in 25% seawater. By taking advantage of long injection times in conjunction with stacking, detection limits down to sub mg/L levels are attainable; however, resolution is sacrificed. CEC of explosive mixtures using sol-gels prepared from methyltrimethoxysilane does not perform as well as MEKC in terms of resolving power, but does permit extended injection times for concentrating analyte onto the head of the separation column with little or no subsequent loss in resolution. Electrokinetic injections of 8 min at high voltage allow for detection limits of explosives below 100 microg/L.
Multi-pulse pumping for far-field super-resolution imaging
NASA Astrophysics Data System (ADS)
Requena, Sebastian; Raut, Sangram; Doan, Hung; Kimball, Joe; Fudala, Rafal; Borejdo, Julian; Gryczynski, Ignacy; Strzhemechny, Yuri; Gryczynski, Zygmunt
2016-02-01
Recently, far-field optical imaging with a resolution significantly beyond diffraction limit has attracted tremendous attention allowing for high resolution imaging in living objects. Various methods have been proposed that are divided in to two basic approaches; deterministic super-resolution like STED or RESOLFT and stochastic super-resolution like PALM or STORM. We propose to achieve super-resolution in far-field fluorescence imaging by the use of controllable (on-demand) bursts of pulses that can change the fluorescence signal of long-lived component over one order of magnitude. We demonstrate that two beads, one labeled with a long-lived dye and another with a short-lived dye, separated by a distance lower than 100 nm can be easily resolved in a single experiment. The proposed method can be used to separate two biological structures in a cell by targeting them with two antibodies labeled with long-lived and short-lived fluorophores.
NASA Astrophysics Data System (ADS)
Wabnitz, H.; Mazurenka, M.; Di Sieno, L.; Contini, D.; Dalla Mora, A.; Farina, A.; Hoshi, Y.; Kirilina, E.; Macdonald, R.; Pifferi, A.
2017-07-01
Non-contact scanning at small source-detector separation enables imaging of cerebral and extracranial signals at high spatial resolution and their separation based on early and late photons accounting for the related spatio-temporal characteristics.
Ortiz, X; Martí, R; Montaña, M J; Gasser, M; Margarit, L; Broto, F; Díaz-Ferrero, J
2010-09-01
The analysis of persistent organic pollutants in foodstuffs has become necessary for control of their levels in products for human and animal consumption. These analytical procedures usually require a fractionation step in order to separate the different families of pollutants to avoid interferences during the instrumental determination. In this study the separation was carried out on a 2-(1-pyrenyl)ethyl silica column, where analyte fractionation was based on differences in planarity and aromaticity. The fractionation of several types of persistent organic pollutants found in fish oil samples was studied; the pollutants included polychlorinated dibenzo-p-dioxins and dibenzofurans, polychlorinated biphenyls, polybrominated diphenyl ethers, and some organochlorine pesticides. Fractions were analyzed by high-resolution gas chromatography with electron-capture detection and high-resolution gas chromatography-high resolution mass spectroscopy. Finally, the whole method (including the purification, fractionation, and instrumental determination steps) was validated and successfully applied to the analysis of several samples of fish oil.
A High Resolution Scale-of-four
DOE R&D Accomplishments Database
Fitch, V.
1949-08-25
A high resolution scale-of-four has been developed to be used in conjunction with the nuclear particle detection devices in applications where the counting rate is unusually high. Specifically, it is intended to precede the commercially available medium resolution scaling circuits and so decrease the resolving time of the counting system. The circuit will function reliably on continuously recurring pulses separated by less than 0.1 microseconds. It will resolve two pulses (occurring at a moderate repetition rate) which are spaced at 0.04 microseconds. A five-volt input signal is sufficient to actuate the device.
Wang, Peng; Liu, Donghui; Jiang, Shuren; Xu, Yangguang; Zhou, Zhiqiang
2008-10-01
The amylose-tris(3,5-dimethylphenylcarbamate) chiral stationary phase was synthesized and used to separate the enantiomers of triazole pesticides by high-performance liquid chromatography. The mobile phase was n-hexane-isopropanol applying a flow rate of 1.0 mL/min. Six triazole pesticides were enantioselectively separated. Myclobutanil, paclobutrazol, tebuconazole, and uniconazole obtained complete separation with the resolution factors of 5.73, 2.99, 1.72, and 2.07, respectively, and imazalil and diniconazole obtained partial separation with the resolution factors of 0.79 and 0.77 under the optimized conditions. The effect of the content of isopropanol as well as column temperature on the separation was investigated. A circular dichroism detector was used to identify the enantiomers and determine the elution orders. The results showed the low temperature was good for the chiral separation except for diniconazole. The thermodynamic parameters calculated based on linear Van't Hoff plots showed the chiral separations were controlled by enthalpy.
Super-resolution reconstruction of hyperspectral images.
Akgun, Toygar; Altunbasak, Yucel; Mersereau, Russell M
2005-11-01
Hyperspectral images are used for aerial and space imagery applications, including target detection, tracking, agricultural, and natural resource exploration. Unfortunately, atmospheric scattering, secondary illumination, changing viewing angles, and sensor noise degrade the quality of these images. Improving their resolution has a high payoff, but applying super-resolution techniques separately to every spectral band is problematic for two main reasons. First, the number of spectral bands can be in the hundreds, which increases the computational load excessively. Second, considering the bands separately does not make use of the information that is present across them. Furthermore, separate band super-resolution does not make use of the inherent low dimensionality of the spectral data, which can effectively be used to improve the robustness against noise. In this paper, we introduce a novel super-resolution method for hyperspectral images. An integral part of our work is to model the hyperspectral image acquisition process. We propose a model that enables us to represent the hyperspectral observations from different wavelengths as weighted linear combinations of a small number of basis image planes. Then, a method for applying super resolution to hyperspectral images using this model is presented. The method fuses information from multiple observations and spectral bands to improve spatial resolution and reconstruct the spectrum of the observed scene as a combination of a small number of spectral basis functions.
Vera, C M; Shock, D; Dennis, G R; Farrell, W; Shalliker, R A
2017-04-14
The chiral separation of d- and l- FMOC amino acids was undertaken using the Lux Cellulose-1 polysaccharide based chiral column in HPLC (normal phase and reverse phase) and SFC conditions. This was done to compare the relative selectivity and separation between the three separation modes and to evaluate the potential benefits of SFC separations with regards to resolution, throughput, economic and environmental impact. It was established that the separation of d- and l- FMOC amino acids in SFC displayed behaviours that were similar to both normal phase and reversed phase, rather than distinctly one or the other. Additionally, although reversed phase conditions yielded significantly higher resolution values between enantiomers across the range of amino acids studied, improvements in selectivity in SFC via the introduction of higher concentrations of formic acid in the mobile phase allowed for better resolution per unit of time. Moreover since the SFC mobile phase is composed mostly of recyclable CO 2 , there is a reduction in organic solvent consumption, which minimises the economic and environmental costs. Copyright © 2017. Published by Elsevier B.V.
Discontinuous pH gradient-mediated separation of TiO2-enriched phosphopeptides
Park, Sung-Soo; Maudsley, Stuart
2010-01-01
Global profiling of phosphoproteomes has proven a great challenge due to the relatively low stoichiometry of protein phosphorylation and poor ionization efficiency in mass spectrometers. Effective, physiologically-relevant, phosphoproteome research relies on the efficient phosphopeptide enrichment from complex samples. Immobilized metal affinity chromatography and titanium dioxide chromatography (TOC) can greatly assist selective phosphopeptide enrichment. However, the complexity of resultant enriched samples is often still high, suggesting that further separation of enriched phosphopeptides is required. We have developed a pH-gradient elution technique for enhanced phosphopeptide identification in conjunction with TOC. Using this process, we have demonstrated its superiority to the traditional ‘one-pot’ strategies for differential protein identification. Our technique generated a highly specific separation of phosphopeptides by an applied pH-gradient between 9.2 and 11.3. The most efficient elution range for high-resolution phosphopeptide separation was between pH 9.2 and 9.4. High-resolution separation of multiply-phosphorylated peptides was primarily achieved using elution ranges > pH 9.4. Investigation of phosphopeptide sequences identified in each pH fraction indicated that phosphopeptides with phosphorylated residues proximal to acidic residues, including glutamic acid, aspartic acid, and other phosphorylated residues, were preferentially eluted at higher pH values. PMID:20946866
High-performance liquid-chromatographic separation of subcomponents of antimycin-A
Abidi, S.L.
1988-01-01
Using a reversed-phase high-performance liquid chromatographic (HPLC) technique, a mixture of antimycins A was separated into eight hitherto unreported subcomponents, Ala, Alb, A2a, A2b, A3a, A3b, A4a, and A4b. Although a base-line resolution of the known four major antimycins Al, A2, A3, and A4 was readily achieved with mobile phases containing acetate buffers, the separation of the new antibiotic subcomponents was highly sensitive to variation in mobile phase conditions. The type and composition of organic modifiers, the nature of buffer salts, and the concentration of added electrolytes had profound effects on capacity factors, separation factors, and peak resolution values. Of the numerous chromatographic systems examined, a mobile phase consisting of methanol-water (70:30) and 0.005 M tetrabutylammonium phosphate at pH 3.0 yielded the most satisfactory results for the separation of the subcomponents. Reversed-phase gradient HPLC separation of the dansylated or methylated antibiotic compounds produced superior chromatographic characteristics and the presence of added electrolytes was not a critical factor for achieving separation. Differences in the chromatographic outcome between homologous and structural isomers were interpretated based on a differential solvophobic interaction rationale. Preparative reversed-phase HPLC under optimal conditions enabled isolation of pure samples of the methylated antimycin subcomponents for use in structural studies.
Rapid calibrated high-resolution hyperspectral imaging using tunable laser source
NASA Astrophysics Data System (ADS)
Nguyen, Lam K.; Margalith, Eli
2009-05-01
We present a novel hyperspectral imaging technique based on tunable laser technology. By replacing the broadband source and tunable filters of a typical NIR imaging instrument, several advantages are realized, including: high spectral resolution, highly variable field-of-views, fast scan-rates, high signal-to-noise ratio, and the ability to use optical fiber for efficient and flexible sample illumination. With this technique, high-resolution, calibrated hyperspectral images over the NIR range can be acquired in seconds. The performance of system features will be demonstrated on two example applications: detecting melamine contamination in wheat gluten and separating bovine protein from wheat protein in cattle feed.
A rapid high-resolution method for resolving DNA topoisomers.
Mitchenall, Lesley A; Hipkin, Rachel E; Piperakis, Michael M; Burton, Nicolas P; Maxwell, Anthony
2018-01-16
Agarose gel electrophoresis has been the mainstay technique for the analysis of DNA samples of moderate size. In addition to separating linear DNA molecules, it can also resolve different topological forms of plasmid DNAs, an application useful for the analysis of the reactions of DNA topoisomerases. However, gel electrophoresis is an intrinsically low-throughput technique and suffers from other potential disadvantages. We describe the application of the QIAxcel Advanced System, a high-throughput capillary electrophoresis system, to separate DNA topoisomers, and compare this technique with gel electrophoresis. We prepared a range of topoisomers of plasmids pBR322 and pUC19, and a 339 bp DNA minicircle, and compared their separation by gel electrophoresis and the QIAxcel System. We found superior resolution with the QIAxcel System, and that quantitative analysis of topoisomer distributions was straightforward. We show that the QIAxcel system has advantages in terms of speed, resolution and cost, and can be applied to DNA circles of various sizes. It can readily be adapted for use in compound screening against topoisomerase targets.
NASA Astrophysics Data System (ADS)
Iinuma, Takeshi; Hino, Ryota; Uchida, Naoki; Nakamura, Wataru; Kido, Motoyuki; Osada, Yukihito; Miura, Satoshi
2016-11-01
Large interplate earthquakes are often followed by postseismic slip that is considered to occur in areas surrounding the coseismic ruptures. Such spatial separation is expected from the difference in frictional and material properties in and around the faults. However, even though the 2011 Tohoku Earthquake ruptured a vast area on the plate interface, the estimation of high-resolution slip is usually difficult because of the lack of seafloor geodetic data. Here using the seafloor and terrestrial geodetic data, we investigated the postseismic slip to examine whether it was spatially separated with the coseismic slip by applying a comprehensive finite-element method model to subtract the viscoelastic components from the observed postseismic displacements. The high-resolution co- and postseismic slip distributions clarified the spatial separation, which also agreed with the activities of interplate and repeating earthquakes. These findings suggest that the conventional frictional property model is valid for the source region of gigantic earthquakes.
Iinuma, Takeshi; Hino, Ryota; Uchida, Naoki; Nakamura, Wataru; Kido, Motoyuki; Osada, Yukihito; Miura, Satoshi
2016-01-01
Large interplate earthquakes are often followed by postseismic slip that is considered to occur in areas surrounding the coseismic ruptures. Such spatial separation is expected from the difference in frictional and material properties in and around the faults. However, even though the 2011 Tohoku Earthquake ruptured a vast area on the plate interface, the estimation of high-resolution slip is usually difficult because of the lack of seafloor geodetic data. Here using the seafloor and terrestrial geodetic data, we investigated the postseismic slip to examine whether it was spatially separated with the coseismic slip by applying a comprehensive finite-element method model to subtract the viscoelastic components from the observed postseismic displacements. The high-resolution co- and postseismic slip distributions clarified the spatial separation, which also agreed with the activities of interplate and repeating earthquakes. These findings suggest that the conventional frictional property model is valid for the source region of gigantic earthquakes. PMID:27853138
Mass Spectrometric Imaging Using Laser Ablation and Solvent Capture by Aspiration (LASCA)
NASA Astrophysics Data System (ADS)
Brauer, Jonathan I.; Beech, Iwona B.; Sunner, Jan
2015-09-01
A novel interface for ambient, laser ablation-based mass spectrometric imaging (MSI) referred to as laser ablation and solvent capture by aspiration (LASCA) is presented and its performance demonstrated using selected, unaltered biological materials. LASCA employs a pulsed 2.94 μm laser beam for specimen ablation. Ablated materials in the laser plumes are collected on a hanging solvent droplet with electric field-enhanced trapping, followed by aspiration of droplets and remaining plume material in the form of a coarse aerosol into a collection capillary. The gas and liquid phases are subsequently separated in a 10 μL-volume separatory funnel, and the solution is analyzed with electrospray ionization in a high mass resolution Q-ToF mass spectrometer. The LASCA system separates the sampling and ionization steps in MSI and combines high efficiencies of laser plume sampling and of electrospray ionization (ESI) with high mass resolution MS. Up to 2000 different compounds are detected from a single ablation spot (pixel). Using the LASCA platform, rapid (6 s per pixel), high sensitivity, high mass-resolution ambient imaging of "as-received" biological material is achieved routinely and reproducibly.
High Spectral Resolution Lidar: System Calibration
NASA Astrophysics Data System (ADS)
Vivek Vivekanandan, J.; Morley, Bruce; Spuler, Scott; Eloranta, Edwin
2015-04-01
One of the unique features of the high spectral resolution lidar (HSRL) is simultaneous measurements of backscatter and extinction of atmosphere. It separates molecular scattering from aerosol and cloud particle backscatter based on their Doppler spectrum width. Scattering from aerosol and cloud particle are referred as Mie scattering. Molecular or Rayleigh scattering is used as a reference for estimating aerosol extinction and backscatter cross-section. Absolute accuracy of the backscattered signals and their separation into Rayleigh and Mie scattering depends on spectral purity of the transmitted signals, accurate measurement of transmit power, and precise performance of filters. Internal calibration is used to characterize optical subsystems Descriptions of high spectral resolution lidar system and its measurement technique can be found in Eloronta (2005) and Hair et al.(2001). Four photon counting detectors are used to measure the backscatter from the combined Rayleigh and molecular scattering (high and low gain), molecular scattering and cross-polarized signal. All of the detectors are sensitive to crosstalk or leakage through the optical filters used to separate the received signals and special data files are used to remove these effects as much as possible. Received signals are normalized with respect to the combined channel response to Mie and Rayleigh scattering. The laser transmit frequency is continually monitored and tuned to the 1109 Iodine absorption line. Aerosol backscatter cross-section is measured by referencing the aerosol return signal to the molecular return signal. Extinction measurements are calculated based on the differences between the expected (theoretical) and actual change in the molecular return. In this paper an overview of calibration of the HSRL is presented. References: Eloranta, E. W., High Spectral Resolution Lidar in Lidar: Range-Resolved Optical Remote Sensing of the Atmosphere, Klaus Weitkamp editor, Springer Series in Optical Sciences, Springer-Verlag, New York, 2005. Hair, JW; Caldwell, LM; Krueger, D. A.Krueger, and C.Y. She 2001: High-spectral-resolution lidar with iodine-vapor filters: measurement of atmospheric-state and aerosol profiles. Appl. Optics, 40, 5280-5294.
Willemse, Chandré M; Stander, Maria A; Vestner, Jochen; Tredoux, Andreas G J; de Villiers, André
2015-12-15
Changes in anthocyanin chemistry represent some of the most important transformations involved in red wine aging. However, accurate analysis of the derived pigments, as required to study the evolution of anthocyanins and tannins during aging, is hampered by their extreme structural diversity, low levels, and the fact that many of these compounds have identical mass spectral characteristics. In this context, chromatographic separation is critical. In this contribution, the application of online hydrophilic interaction chromatography (HILIC) × reversed-phase liquid chromatography (RP-LC) separation coupled to high-resolution mass spectrometry (MS) is described for the detailed characterization of anthocyanins and their derived pigments in aged red wine. A systematic approach was followed for the optimization of HILIC × RP-LC separation parameters using a capillary liquid chromatography (LC) system in the first dimension and an ultrahigh-pressure LC system in the second dimension to ensure maximum sensitivity and performance. Ninety four (94) anthocyanin-derived pigments were tentatively identified in one- and six-year-old Pinotage wines using accurate mass and fragmentation information obtained using quadrupole-time-of-flight mass spectrometry (Q-TOF-MS). Online HILIC × RP-LC-MS was found to offer high-resolution separation, because of the combination of two different separation modes, while the structured elution order observed improved the certainty in compound identification. Therefore, this approach shows promise for the detailed elucidation of the chemical alteration of anthocyanins during wine aging.
Valeja, Santosh G; Xiu, Lichen; Gregorich, Zachery R; Guner, Huseyin; Jin, Song; Ge, Ying
2015-01-01
To address the complexity of the proteome in mass spectrometry (MS)-based top-down proteomics, multidimensional liquid chromatography (MDLC) strategies that can effectively separate proteins with high resolution and automation are highly desirable. Although various MDLC methods that can effectively separate peptides from protein digests exist, very few MDLC strategies, primarily consisting of 2DLC, are available for intact protein separation, which is insufficient to address the complexity of the proteome. We recently demonstrated that hydrophobic interaction chromatography (HIC) utilizing a MS-compatible salt can provide high resolution separation of intact proteins for top-down proteomics. Herein, we have developed a novel 3DLC strategy by coupling HIC with ion exchange chromatography (IEC) and reverse phase chromatography (RPC) for intact protein separation. We demonstrated that a 3D (IEC-HIC-RPC) approach greatly outperformed the conventional 2D IEC-RPC approach. For the same IEC fraction (out of 35 fractions) from a crude HEK 293 cell lysate, a total of 640 proteins were identified in the 3D approach (corresponding to 201 nonredundant proteins) as compared to 47 in the 2D approach, whereas simply prolonging the gradients in RPC in the 2D approach only led to minimal improvement in protein separation and identifications. Therefore, this novel 3DLC method has great potential for effective separation of intact proteins to achieve deep proteome coverage in top-down proteomics.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Deng, Liulin; Webb, Ian K.; Garimella, Sandilya V. B.
Ion mobility (IM) separations have a broad range of analytical applications, but insufficient resolution limits many applications. Here we report on traveling wave (TW) ion mobility (IM) separations in a Serpentine Ultra-long Path with Extended Routing (SUPER) Structures for Lossless Ion Manipulations (SLIM) module in conjunction with mass spectrometry (MS). The extended routing utilized multiple passes was facilitated by the introduction of a lossless ion switch at the end of the ion path that either directed ions to the MS detector or to another pass through the serpentine separation region, providing theoretically unlimited TWIM path lengths. Ions were confined inmore » the SLIM by rf fields in conjunction with a DC guard bias, enabling essentially lossless TW transmission over greatly extended paths (e.g., ~1094 meters over 81 passes through the 13.5 m serpentine path). In this multi-pass SUPER TWIM provided resolution approximately proportional to the square root of the number of passes (or path length). More than 30-fold higher IM resolution for Agilent tuning mix m/z 622 and 922 ions (~340 vs. ~10) was achieved for 40 passes compared to commercially available drift tube IM and other TWIM-based platforms. An initial evaluation of the isomeric sugars Lacto-N-hexaose and Lacto-N-neohexaose showed the isomeric structures to be baseline resolved, and a new conformational feature for Lacto-N-neohexaose was revealed after 9 passes. The new SLIM SUPER high resolution TWIM platform has broad utility in conjunction with MS and is expected to enable a broad range of previously challenging or intractable separations.« less
Back-trajectory modeling of high time-resolution air measurement data to separate nearby sources
Strategies to isolate air pollution contributions from sources is of interest as voluntary or regulatory measures are undertaken to reduce air pollution. When different sources are located in close proximity to one another and have similar emissions, separating source emissions ...
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wojcik, Roza; Webb, Ian K.; Deng, Liulin
Understanding the biological mechanisms related to lipids and glycolipids is challenging due to the vast number of possible isomers. Mass spectrometry (MS) measurements are currently the dominant approach for studying and providing detailed information on lipid and glycolipid structures. However, difficulties in distinguishing many structural isomers (e.g. distinct acyl chain positions, double bond locations, as well as glycan isomers) inhibit the understanding of their biological roles. Here we utilized ultra-high resolution ion mobility spectrometry (IMS) separations based upon the use of traveling waves in a serpentine long path length multi-pass Structures for Lossless Manipulations (SLIM) to enhance isomer resolution. Themore » multi-pass arrangement allowed separations ranging from ~16 m (1 pass) to ~470 m (32 passes) to be investigated for the distinction of lipids and glycolipids with extremely small structural differences. Lastly, these ultra-high resolution SLIM IMS-MS analyses provide a foundation for exploring and better understanding isomer specific biological and disease processes.« less
NASA Technical Reports Server (NTRS)
Egen, N. B.; Twitty, G. E.; Bier, M.
1979-01-01
Isoelectric focusing is a high-resolution technique for separating and purifying large peptides, proteins, and other biomolecules. The apparatus described in the present paper constitutes a new approach to fluid stabilization and increased throughput. Stabilization is achieved by flowing the process fluid uniformly through an array of closely spaced filter elements oriented parallel both to the electrodes and the direction of the flow. This seems to overcome the major difficulties of parabolic flow and electroosmosis at the walls, while limiting the convection to chamber compartments defined by adjacent spacers. Increased throughput is achieved by recirculating the process fluid through external heat exchange reservoirs, where the Joule heat is dissipated.
Laboureur, Laurent; Guérineau, Vincent; Auxilien, Sylvie; Yoshizawa, Satoko; Touboul, David
2018-02-16
A method based on supercritical fluid chromatography coupled to high resolution mass spectrometry for the profiling of canonical and modified nucleosides was optimized, and compared to classical reverse-phase liquid chromatography in terms of separation, number of detected modified nucleosides and sensitivity. Limits of detection and quantification were measured using statistical method and quantifications of twelve nucleosides of a tRNA digest from E. coli are in good agreement with previously reported data. Results highlight the complementarity of both separation techniques to cover the largest view of nucleoside modifications for forthcoming epigenetic studies. Copyright © 2017 Elsevier B.V. All rights reserved.
Refinement procedure for the image alignment in high-resolution electron tomography.
Houben, L; Bar Sadan, M
2011-01-01
High-resolution electron tomography from a tilt series of transmission electron microscopy images requires an accurate image alignment procedure in order to maximise the resolution of the tomogram. This is the case in particular for ultra-high resolution where even very small misalignments between individual images can dramatically reduce the fidelity of the resultant reconstruction. A tomographic-reconstruction based and marker-free method is proposed, which uses an iterative optimisation of the tomogram resolution. The method utilises a search algorithm that maximises the contrast in tomogram sub-volumes. Unlike conventional cross-correlation analysis it provides the required correlation over a large tilt angle separation and guarantees a consistent alignment of images for the full range of object tilt angles. An assessment based on experimental reconstructions shows that the marker-free procedure is competitive to the reference of marker-based procedures at lower resolution and yields sub-pixel accuracy even for simulated high-resolution data. Copyright © 2011 Elsevier B.V. All rights reserved.
Mizutani, Aya; Nagase, Kenichi; Kikuchi, Akihiko; Kanazawa, Hideko; Akiyama, Yoshikatsu; Kobayashi, Jun; Annaka, Masahiko; Okano, Teruo
2010-09-17
Poly(N-isopropylacrylamide-co-N-tert-butylacrylamide) [P(IPAAm-co-tBAAm)] brushes were prepared on poly(hydroxy methacrylate) (PHMA) [hydrolyzed poly(glycidyl methacrylate-co-ethylene glycol dimethacrylate)] beads having large pores by surface-initiated atom transfer radical polymerization (ATRP) and applied to the stationary phases of thermo-responsive chromatography. Optimized amount of copolymer brushes grafted PHMA beads were able to separate peptides and proteins with narrow peaks and a high resolution. The beads were found to have a specific surface area of 43.0 m(2)/g by nitrogen gas adsorption method. Copolymer brush of P(IPAAm-co-tBAAm) grafted PHMA beads improved the stationary phase of thermo-responsive chromatography for the all-aqueous separation of peptides and proteins. 2010 Elsevier B.V. All rights reserved.
High Resolution Separations and Improved Ion Production and Transmission in Metabolomics
Metz, Thomas O.; Page, Jason S.; Baker, Erin S.; Tang, Keqi; Ding, Jie; Shen, Yufeng; Smith, Richard D.
2008-01-01
The goal of metabolomics analyses is the detection and quantitation of as many sample components as reasonably possible in order to identify compounds or “features” that can be used to characterize the samples under study. When utilizing electrospray ionization to produce ions for analysis by mass spectrometry (MS), it is important that metabolome sample constituents be efficiently separated prior to ion production, in order to minimize ionization suppression and thereby extend the dynamic range of the measurement, as well as the coverage of the metabolome. Similarly, optimization of the MS inlet and interface can lead to increased measurement sensitivity. This perspective review will focus on the role of high resolution liquid chromatography (LC) separations in conjunction with improved ion production and transmission for LC-MS-based metabolomics. Additional emphasis will be placed on the compromise between metabolome coverage and sample analysis throughput. PMID:19255623
Yusuf, Kareem; Badjah-Hadj-Ahmed, Ahmed Yacine; Aqel, Ahmad; ALOthman, Zeid Abdullah
2015-08-07
A composite zeolitic imidazolate framework-8 (ZIF-8) with a butyl methacrylate-co-ethylene dimethacrylate (BuMA-co-EDMA) monolithic capillary column (33.5cm long×250μm i.d.) was fabricated to enhance the separation efficiency of methacrylate monoliths toward small molecules using conventional low-pressure gas chromatography in comparison with a neat butyl methacrylate-co-ethylene dimethacrylate (BuMA-co-EDMA) monolithic capillary column (33.5cm long×250μm i.d.). The addition of 10mgmL(-1) ZIF-8 micro-particles increased the BET surface area of BuMA-co-EDMA by 3.4-fold. A fast separation of five linear alkanes in 36s with high resolution (Rs≥1.3) was performed using temperature program. Isothermal separation of the same sample also showed a high efficiency (3315platesm(-1) for octane) at 0.89min. Moreover, the column was able to separate skeletal isomers, such as iso-octane/octane and 2-methyl octane/nonane. In addition, an iso-butane/iso-butylene gas mixture was separated at ambient temperature. Comparison with an open tubular TR-5MS column (30m long×250μm i.d.) revealed the superiority of the composite column in separating the five-membered linear alkane mixture with 4-5 times increase in efficiency and a total separation time of 0.89min instead of 4.67min. A paint thinner sample was fully separated using the composite column in 2.43min with a good resolution (Rs≥0.89). The perfect combination between the polymeric monolith, with its high permeability, and ZIF-8, with its high surface area and flexible 0.34nm pore openings, led to the fast separation of small molecules with high efficiency and opened a new horizon in GC applications. Copyright © 2015 Elsevier B.V. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Jun, Ji Hyun; Song, Zhihong; Liu, Zhenjiu
High-spatial resolution and high-mass resolution techniques are developed and adopted for the mass spectrometric imaging of epicuticular lipids on the surface of Arabidopsis thaliana. Single cell level spatial resolution of {approx}12 {micro}m was achieved by reducing the laser beam size by using an optical fiber with 25 {micro}m core diameter in a vacuum matrix-assisted laser desorption ionization-linear ion trap (vMALDI-LTQ) mass spectrometer and improved matrix application using an oscillating capillary nebulizer. Fine chemical images of a whole flower were visualized in this high spatial resolution showing substructure of an anther and single pollen grains at the stigma and anthers. Themore » LTQ-Orbitrap with a MALDI ion source was adopted to achieve MS imaging in high mass resolution. Specifically, isobaric silver ion adducts of C29 alkane (m/z 515.3741) and C28 aldehyde (m/z 515.3377), indistinguishable in low-resolution LTQ, can now be clearly distinguished and their chemical images could be separately constructed. In the application to roots, the high spatial resolution allowed molecular MS imaging of secondary roots and the high mass resolution allowed direct identification of lipid metabolites on root surfaces.« less
Patterson, Eric E; Pritchett, Jeanita S; Shippy, Scott A
2009-02-01
A system is presented demonstrating the high-temporal resolution coupling of low-flow push-pull perfusion sampling (LFPS) to capillary electrophoresis for the absorbance measurement of ascorbate at the rat vitreoretinal interface. This system holds all separation components at a low pressure as the means for withdrawing sample during LFPS. The system uses a flow-gated interface to directly couple the withdrawal capillary from the LFPS probe to a separation capillary and eliminates the need for any offline sample handling. The temporal resolution of the system was limited by injection time and is less than 16 s. This high temporal resolution was applied to the monitoring of in vivo ascorbate levels at the rat vitreoretinal interface. Baseline concentrations of ascorbate were found to be 86 microM +/- 18 microM at the vitreoretinal interface. Baseline concentrations matched well with those obtained for the postmortem bulk vitreous analysis. Upon stimulation with 145 mM K(+), a maximum increase in baseline values between 32-107% for n = 3 was observed. This system demonstrates the first in vivo temporal study of ascorbate at the rat vitreoretinal interface.
Chang, Hing-Chiu; Bilgin, Ali; Bernstein, Adam; Trouard, Theodore P.
2018-01-01
Over the past several years, significant efforts have been made to improve the spatial resolution of diffusion-weighted imaging (DWI), aiming at better detecting subtle lesions and more reliably resolving white-matter fiber tracts. A major concern with high-resolution DWI is the limited signal-to-noise ratio (SNR), which may significantly offset the advantages of high spatial resolution. Although the SNR of DWI data can be improved by denoising in post-processing, existing denoising procedures may potentially reduce the anatomic resolvability of high-resolution imaging data. Additionally, non-Gaussian noise induced signal bias in low-SNR DWI data may not always be corrected with existing denoising approaches. Here we report an improved denoising procedure, termed diffusion-matched principal component analysis (DM-PCA), which comprises 1) identifying a group of (not necessarily neighboring) voxels that demonstrate very similar magnitude signal variation patterns along the diffusion dimension, 2) correcting low-frequency phase variations in complex-valued DWI data, 3) performing PCA along the diffusion dimension for real- and imaginary-components (in two separate channels) of phase-corrected DWI voxels with matched diffusion properties, 4) suppressing the noisy PCA components in real- and imaginary-components, separately, of phase-corrected DWI data, and 5) combining real- and imaginary-components of denoised DWI data. Our data show that the new two-channel (i.e., for real- and imaginary-components) DM-PCA denoising procedure performs reliably without noticeably compromising anatomic resolvability. Non-Gaussian noise induced signal bias could also be reduced with the new denoising method. The DM-PCA based denoising procedure should prove highly valuable for high-resolution DWI studies in research and clinical uses. PMID:29694400
Root, Brian E.; Hammock, Mallory L.; Barron, Annelise E.
2012-01-01
In recent years, there has been an increasing demand for a wide range of DNA separations that require the development of materials to meet the needs of high resolution and high throughput. Here, we demonstrate the use of thermoresponsive N-alkoxyalkylacrylamide polymers as a sieving matrix for DNA separations on a microfluidic chip. The viscosities of the N-alkoxyalkylacrylamide polymers are more than an order of magnitude lower than that of a linear polyacrylamide of corresponding molecular weight, allowing rapid loading of the microchip. At 25 °C, N-alkoxyalkylacrylamide polymers can provide improved DNA separations compared to LPA in terms of reduced separation time and increased separation efficiency, particularly for the larger DNA fragments. The improved separation efficiency in N-alkoxyalkylacrylamide polymers is attributed to the peak widths increasing only slightly with DNA fragment size, while the peak widths increase appreciably above 150 bp using an LPA matrix. Upon elevating the temperature to 50 °C, the increase in viscosity of the N-alkoxyalkylacrylamide solutions is dependent upon their overall degree of hydrophobicity. The most hydrophobic polymers exhibit an LCST below 50 °C, undergoing a coil-to-globule transition followed by chain aggregation. DNA separation efficiency at 50 °C therefore decreases significantly with increasing hydrophobic character of the polymers, and no separations were possible with solutions with an LCST below 50 °C. The work reported here demonstrates the potential for this class of polymer to be used for applications such as PCR product and RFLP sizing, and provides insight into the effect of polymer hydrophobicity on DNA separations. PMID:19053065
Particle detector spatial resolution
Perez-Mendez, V.
1992-12-15
Method and apparatus for producing separated columns of scintillation layer material, for use in detection of X-rays and high energy charged particles with improved spatial resolution is disclosed. A pattern of ridges or projections is formed on one surface of a substrate layer or in a thin polyimide layer, and the scintillation layer is grown at controlled temperature and growth rate on the ridge-containing material. The scintillation material preferentially forms cylinders or columns, separated by gaps conforming to the pattern of ridges, and these columns direct most of the light produced in the scintillation layer along individual columns for subsequent detection in a photodiode layer. The gaps may be filled with a light-absorbing material to further enhance the spatial resolution of the particle detector. 12 figs.
Particle detector spatial resolution
Perez-Mendez, Victor
1992-01-01
Method and apparatus for producing separated columns of scintillation layer material, for use in detection of X-rays and high energy charged particles with improved spatial resolution. A pattern of ridges or projections is formed on one surface of a substrate layer or in a thin polyimide layer, and the scintillation layer is grown at controlled temperature and growth rate on the ridge-containing material. The scintillation material preferentially forms cylinders or columns, separated by gaps conforming to the pattern of ridges, and these columns direct most of the light produced in the scintillation layer along individual columns for subsequent detection in a photodiode layer. The gaps may be filled with a light-absorbing material to further enhance the spatial resolution of the particle detector.
Capillary electrophoresis-high resolution sector field inductively coupled plasma mass spectrometry.
Sonke, Jeroen E; Salters, Vincent J M
2007-08-03
The background and applications of high resolution sector field inductively coupled plasma mass spectrometry (HR-ICP-MS) as a detector for capillary (CE) and gel electrophoretic separations are reviewed. Notable progress has been made in the fields of bioinorganic and environmental (geo-) chemistry. Metallomics, the study of metal species interactions and functions in biological systems, puts substantial technical demands on speciation analysis. The combination of high species resolving power (CE) and high sensitivity-high mass resolving power (HR-ICP-MS) provides a solid base to meet such demands.
Erny, Guillaume L; Acunha, Tanize; Simó, Carolina; Cifuentes, Alejandro; Alves, Arminda
2017-04-07
Separation techniques hyphenated with high-resolution mass spectrometry have been a true revolution in analytical separation techniques. Such instruments not only provide unmatched resolution, but they also allow measuring the peaks accurate masses that permit identifying monoisotopic formulae. However, data files can be large, with a major contribution from background noise and background ions. Such unnecessary contribution to the overall signal can hide important features as well as decrease the accuracy of the centroid determination, especially with minor features. Thus, noise and baseline correction can be a valuable pre-processing step. The methodology that is described here, unlike any other approach, is used to correct the original dataset with the MS scans recorded as profiles spectrum. Using urine metabolic studies as examples, we demonstrate that this thorough correction reduces the data complexity by more than 90%. Such correction not only permits an improved visualisation of secondary peaks in the chromatographic domain, but it also facilitates the complete assignment of each MS scan which is invaluable to detect possible comigration/coeluting species. Copyright © 2017 Elsevier B.V. All rights reserved.
NASA Technical Reports Server (NTRS)
Parker, Timothy J.; Schneeberger, Dale M.; Pieri, David C.; Saunders, R. Stephen
1987-01-01
Very high resolution Viking Orbiter images of the Martian surface, though rare, make it possible to examine specific areas at image scales approaching those of high altitude terrestrial aerial photographs. Twenty three clear images lie within west Deuteronilus Mensae. The northernmost images which constitute an almost unbroken mosaic of the west wall of a long fingerlike canyon are examined. Morphological details on the plateau surface within zone B, not detectable at low resolution, make it possible to divide the zone into two distinct subzones separated by an east-west escarpment. The morphology of the canyon floor is described in detail.
Danger, Grégoire; Ross, David
2008-08-01
Scanning temperature gradient focusing (TGF) is a recently described technique for the simultaneous concentration and separation of charged analytes. It allows for high analyte peak capacities and low LODs in microcolumn electrophoretic separations. In this paper, we present the application of scanning TGF for chiral separations of amino acids. Using a mixture of seven carboxyfluorescein succinimidyl ester-labeled amino acids (including five chiral amino acids) which constitute the Mars7 standard, we show that scanning TGF is a very simple and efficient method for chiral separations. The modulation of TGF separation parameters (temperature window, pressure scan rate, temperature range, and chiral selector concentration) allows optimization of peak efficiencies and analyte resolutions. The use of hydroxypropyl-beta-CD at low concentration (1-5 mmol/L) as a chiral selector, with an appropriate pressure scan rate ( -0.25 Pa/s) and with a low temperature range (3-25 degrees C over 1 cm) provided high resolution between enantiomers (Rs >1.5 for each pair of enantiomers) using a short, 4 cm long capillary. With these new results, the scanning TGF method appears to be a viable method for in situ trace biomarker analysis for future missions to Mars or other solar system bodies.
Maffezzoni, Filippo; Maddalo, Michele; Frara, Stefano; Mezzone, Monica; Zorza, Ivan; Baruffaldi, Fabio; Doglietto, Francesco; Mazziotti, Gherardo; Maroldi, Roberto; Giustina, Andrea
2016-11-01
Vertebral fractures are an emerging complication of acromegaly but their prediction is still difficult occurring even in patients with normal bone mineral density. In this study we evaluated the ability of high-resolution cone-beam computed tomography to provide information on skeletal abnormalities associated with vertebral fractures in acromegaly. 40 patients (24 females, 16 males; median age 57 years, range 25-72) and 21 healthy volunteers (10 females, 11 males; median age 60 years, range: 25-68) were evaluated for trabecular (bone volume/trabecular volume ratio, mean trabecular separation, and mean trabecular thickness) and cortical (thickness and porosity) parameters at distal radius using a high-resolution cone-beam computed tomography system. All acromegaly patients were evaluated for morphometric vertebral fractures and for mineral bone density by dual-energy X-ray absorptiometry at lumbar spine, total hip, femoral neck, and distal radius. Acromegaly patients with vertebral fractures (15 cases) had significantly (p < 0.05) lower bone volume/trabecular volume ratio, greater mean trabecular separation, and higher cortical porosity vs. nonfractured patients, without statistically significant differences in mean trabecular thickness and cortical thickness. Fractured and nonfractured acromegaly patients did not have significant differences in bone density at either skeletal site. Patients with acromegaly showed lower bone volume/trabecular volume ratio (p = 0.003) and mean trabecular thickness (p < 0.001) and greater mean trabecular separation (p = 0.02) as compared to control subjects, without significant differences in cortical thickness and porosity. This study shows for the first time that abnormalities of bone microstructure are associated with radiological vertebral fractures in acromegaly. High-resolution cone-beam computed tomography at the distal radius may be useful to evaluate and predict the effects of acromegaly on bone microstructure.
Xu, Wen; Zhang, Jing; Zhu, Dayuan; Huang, Juan; Huang, Zhihai; Bai, Junqi; Qiu, Xiaohui
2014-10-01
The lateral root of Aconitum carmichaeli, a popular traditional Chinese medicine, has been widely used to treat rheumatic diseases. For decades, diterpenoid alkaloids have dominated the phytochemical and biomedical research on this plant. In this study, a rapid and sensitive method based on ultra high performance liquid chromatography coupled with linear ion trap-Orbitrap tandem mass spectrometry was developed to characterize the diterpenoid alkaloids in Aconitum carmichaeli. Based on an optimized chromatographic condition, more than 120 diterpenoid alkaloids were separated with good resolution. Using a systematic strategy that combines high resolution separation, highly accurate mass measurements and a good understanding of the diagnostic fragment-based fragmentation patterns, these diterpenoid alkaloids were identified or tentatively identified. The identification of these chemicals provided essential data for further phytochemical studies and toxicity research of Aconitum carmichaeli. Moreover, the ultra high performance liquid chromatography with linear ion trap-Orbitrap mass spectrometry platform was an effective and accurate tool for rapid qualitative analysis of secondary metabolite productions from natural resources. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Liang, Yu; Zhang, Lihua; Zhang, Yukui
2013-03-01
Capillary liquid chromatography (cLC) has great potential for protein and peptide separation, with advantages of high efficiency, high resolution, low sample consumption, and high sensitivity when coupled with mass spectrometry. In recent years, monoliths have been widely used as the stationary phases for capillary columns, owing to easy preparation, high permeability, fast mass transfer, and low backpressure. This review summarizes recent advances (2007-2012) in monolithic columns for protein and peptide separation by cLC. After a brief introduction on the preparation of monolithic capillary columns, the emphasis of this review is focused on the recent application of such columns for protein and peptide separation by cLC. Furthermore, the challenges and potential hot points of monolithic capillary columns in the future are discussed.
Shan, Yi-chu; Zhang, Yu-kui; Zhao, Rui-huan
2002-07-01
In high performance liquid chromatography, it is necessary to apply multi-composition gradient elution for the separation of complex samples such as environmental and biological samples. Multivariate stepwise gradient elution is one of the most efficient elution modes, because it combines the high selectivity of multi-composition mobile phase and shorter analysis time of gradient elution. In practical separations, the separation selectivity of samples can be effectively adjusted by using ternary mobile phase. For the optimization of these parameters, the retention equation of samples must be obtained at first. Traditionally, several isocratic experiments are used to get the retention equation of solute. However, it is time consuming especially for the separation of complex samples with a wide range of polarity. A new method for the fast optimization of ternary stepwise gradient elution was proposed based on the migration rule of solute in column. First, the coefficients of retention equation of solute are obtained by running several linear gradient experiments, then the optimal separation conditions are searched according to the hierarchical chromatography response function which acts as the optimization criterion. For each kind of organic modifier, two initial linear gradient experiments are used to obtain the primary coefficients of retention equation of each solute. For ternary mobile phase, only four linear gradient runs are needed to get the coefficients of retention equation. Then the retention times of solutes under arbitrary mobile phase composition can be predicted. The initial optimal mobile phase composition is obtained by resolution mapping for all of the solutes. A hierarchical chromatography response function is used to evaluate the separation efficiencies and search the optimal elution conditions. In subsequent optimization, the migrating distance of solute in the column is considered to decide the mobile phase composition and sustaining time of the latter steps until all the solutes are eluted out. Thus the first stepwise gradient elution conditions are predicted. If the resolution of samples under the predicted optimal separation conditions is satisfactory, the optimization procedure is stopped; otherwise, the coefficients of retention equation are adjusted according to the experimental results under the previously predicted elution conditions. Then the new stepwise gradient elution conditions are predicted repeatedly until satisfactory resolution is obtained. Normally, the satisfactory separation conditions can be found only after six experiments by using the proposed method. In comparison with the traditional optimization method, the time needed to finish the optimization procedure can be greatly reduced. The method has been validated by its application to the separation of several samples such as amino acid derivatives, aromatic amines, in which satisfactory separations were obtained with predicted resolution.
Goding, Julian C; Ragon, Dorisanne Y; O'Connor, Jack B; Boehm, Sarah J; Hupp, Amber M
2013-07-01
The fatty acid methyl ester (FAME) content of biodiesel fuels has traditionally been determined using gas chromatography with a polar stationary phase. In this study, a direct comparison of the separation of FAMEs present in various biodiesel samples on three polar stationary phases and one moderately polar stationary phase (with comparable column dimensions) was performed. Retention on each column was based on solubility in and polarity of the phase. Quantitative metrics describing the resolution of important FAME pairs indicate high resolution on all polar columns, yet the best resolution, particularly of geometric isomers, is achieved on the cyanopropyl column. In addition, the separation of four C18 monounsaturated isomers was optimized and the elution order determined on each column. FAME composition of various biodiesel fuel types was determined on each column to illustrate (1) chemical differences in biodiesels produced from different feedstocks and (2) chemical similarities in biodiesels of the same feedstock type produced in different locations and harvest seasons.
NASA Astrophysics Data System (ADS)
Catala, L.; Ziad, A.; Fanteï-Caujolle, Y.; Crawford, S. M.; Buckley, D. A. H.; Borgnino, J.; Blary, F.; Nickola, M.; Pickering, T.
2017-05-01
With the prospect of the next generation of ground-based telescopes, the extremely large telescopes, increasingly complex and demanding adaptive optics systems are needed. This is to compensate for image distortion caused by atmospheric turbulence and fully take advantage of mirrors with diameters of 30-40 m. This requires a more precise characterization of the turbulence. The Profiler of Moon Limb (PML) was developed within this context. The PML aims to provide high-resolution altitude profiles of the turbulence using differential measurements of the Moon limb position to calculate the transverse spatio-angular covariance of the angle of arrival fluctuations. The covariance of differential image motion for different separation angles is sensitive to the altitude distribution of the seeing. The use of the continuous Moon limb provides a large number of separation angles allowing for the high-resolution altitude of the profiles. The method is presented and tested with simulated data. Moreover, a PML instrument was deployed at the Sutherland Observatory in South Africa in 2011 August. We present here the results of this measurement campaign.
Gignac, Lynne M; Mittal, Surbhi; Bangsaruntip, Sarunya; Cohen, Guy M; Sleight, Jeffrey W
2011-12-01
The ability to prepare multiple cross-section transmission electron microscope (XTEM) samples from one XTEM sample of specific sub-10 nm features was demonstrated. Sub-10 nm diameter Si nanowire (NW) devices were initially cross-sectioned using a dual-beam focused ion beam system in a direction running parallel to the device channel. From this XTEM sample, both low- and high-resolution transmission electron microscope (TEM) images were obtained from six separate, specific site Si NW devices. The XTEM sample was then re-sectioned in four separate locations in a direction perpendicular to the device channel: 90° from the original XTEM sample direction. Three of the four XTEM samples were successfully sectioned in the gate region of the device. From these three samples, low- and high-resolution TEM images of the Si NW were taken and measurements of the NW diameters were obtained. This technique demonstrated the ability to obtain high-resolution TEM images in directions 90° from one another of multiple, specific sub-10 nm features that were spaced 1.1 μm apart.
Gu, Zhi-Yuan; Yang, Cheng-Xiong; Chang, Na; Yan, Xiu-Ping
2012-05-15
In modern analytical chemistry researchers pursue novel materials to meet analytical challenges such as improvements in sensitivity, selectivity, and detection limit. Metal-organic frameworks (MOFs) are an emerging class of microporous materials, and their unusual properties such as high surface area, good thermal stability, uniform structured nanoscale cavities, and the availability of in-pore functionality and outer-surface modification are attractive for diverse analytical applications. This Account summarizes our research on the analytical applications of MOFs ranging from sampling to chromatographic separation. MOFs have been either directly used or engineered to meet the demands of various analytical applications. Bulk MOFs with microsized crystals are convenient sorbents for direct application to in-field sampling and solid-phase extraction. Quartz tubes packed with MOF-5 have shown excellent stability, adsorption efficiency, and reproducibility for in-field sampling and trapping of atmospheric formaldehyde. The 2D copper(II) isonicotinate packed microcolumn has demonstrated large enhancement factors and good shape- and size-selectivity when applied to on-line solid-phase extraction of polycyclic aromatic hydrocarbons in water samples. We have explored the molecular sieving effect of MOFs for the efficient enrichment of peptides with simultaneous exclusion of proteins from biological fluids. These results show promise for the future of MOFs in peptidomics research. Moreover, nanosized MOFs and engineered thin films of MOFs are promising materials as novel coatings for solid-phase microextraction. We have developed an in situ hydrothermal growth approach to fabricate thin films of MOF-199 on etched stainless steel wire for solid-phase microextraction of volatile benzene homologues with large enhancement factors and wide linearity. Their high thermal stability and easy-to-engineer nanocrystals make MOFs attractive as new stationary phases to fabricate MOF-coated capillaries for high-resolution gas chromatography (GC). We have explored a dynamic coating approach to fabricate a MOF-coated capillary for the GC separation of important raw chemicals and persistent organic pollutants with high resolution and excellent selectivity. We have combined a MOF-coated fiber for solid-phase microextraction with a MOF-coated capillary for GC separation, which provides an effective MOF-based tandem molecular sieve platform for selective microextraction and high-resolution GC separation of target analytes in complex samples. Microsized MOFs with good solvent stability are attractive stationary phases for high-performance liquid chromatography (HPLC). These materials have shown high resolution and good selectivity and reproducibility in both the normal-phase HPLC separation of fullerenes and substituted aromatics on MIL-101 packed columns and position isomers on a MIL-53(Al) packed column and the reversed-phase HPLC separation of a wide range of analytes from nonpolar to polar and acidic to basic solutes. Despite the above achievements, further exploration of MOFs in analytical chemistry is needed. Especially, analytical application-oriented engineering of MOFs is imperative for specific applications.
Peng, Hao; Levin, Craig S
2013-01-01
We studied the performance of a dual-panel positron emission tomography (PET) camera dedicated to breast cancer imaging using Monte Carlo simulation. The proposed system consists of two 4 cm thick 12 × 15 cm2 area cadmium zinc telluride (CZT) panels with adjustable separation, which can be put in close proximity to the breast and/or axillary nodes. Unique characteristics distinguishing the proposed system from previous efforts in breast-dedicated PET instrumentation are the deployment of CZT detectors with superior spatial and energy resolution, using a cross-strip electrode readout scheme to enable 3D positioning of individual photon interaction coordinates in the CZT, which includes directly measured photon depth-of-interaction (DOI), and arranging the detector slabs edge-on with respect to incoming 511 keV photons for high photon sensitivity. The simulation results show that the proposed CZT dual-panel PET system is able to achieve superior performance in terms of photon sensitivity, noise equivalent count rate, spatial resolution and lesion visualization. The proposed system is expected to achieve ~32% photon sensitivity for a point source at the center and a 4 cm panel separation. For a simplified breast phantom adjacent to heart and torso compartments, the peak noise equivalent count (NEC) rate is predicted to be ~94.2 kcts s−1 (breast volume: 720 cm3 and activity concentration: 3.7 kBq cm−3) for a ~10% energy window around 511 keV and ~8 ns coincidence time window. The system achieves 1 mm intrinsic spatial resolution anywhere between the two panels with a 4 cm panel separation if the detectors have DOI resolution less than 2 mm. For a 3 mm DOI resolution, the system exhibits excellent sphere resolution uniformity (σrms/mean) ≤ 10%) across a 4 cm width FOV. Simulation results indicate that the system exhibits superior hot sphere visualization and is expected to visualize 2 mm diameter spheres with a 5:1 activity concentration ratio within roughly 7 min imaging time. Furthermore, we observe that the degree of spatial resolution degradation along the direction orthogonal to the two panels that is typical of a limited angle tomography configuration is mitigated by having high-resolution DOI capabilities that enable more accurate positioning of oblique response lines. PMID:20400807
Image processing enhancement of high-resolution TEM micrographs of nanometer-size metal particles
NASA Technical Reports Server (NTRS)
Artal, P.; Avalos-Borja, M.; Soria, F.; Poppa, H.; Heinemann, K.
1989-01-01
The high-resolution TEM detectability of lattice fringes from metal particles supported on substrates is impeded by the substrate itself. Single value decomposition (SVD) and Fourier filtering (FFT) methods were applied to standard high resolution micrographs to enhance lattice resolution from particles as well as from crystalline substrates. SVD produced good results for one direction of fringes, and it can be implemented as a real-time process. Fourier methods are independent of azimuthal directions and allow separation of particle lattice planes from those pertaining to the substrate, which makes it feasible to detect possible substrate distortions produced by the supported particle. This method, on the other hand, is more elaborate, requires more computer time than SVD and is, therefore, less likely to be used in real-time image processing applications.
High-speed and high-resolution UPLC separation at zero degrees Celsius
Wales, Thomas E.; Fadgen, Keith E.; Gerhardt, Geoff C.; Engen, John R.
2008-01-01
The conformational properties of proteins can be probed with hydrogen/deuterium exchange mass spectrometry (HXMS). In order to maintain the deuterium label during LC/MS analyses, chromatographic separation must be done rapidly (usually in under 8–10 minutes) and at zero degrees Celsius. Traditional RP-HPLC with ~3 micron particles has shown generally poor chromatographic performance under these conditions and thereby has been prohibitive for HXMS analyses of larger proteins and many protein complexes. Ultra performance liquid chromatography (UPLC) employs particles smaller than 2 microns in diameter to achieve superior resolution, speed, and sensitivity as compared to HPLC. UPLC has previously been shown to be compatible with the fast separation and low temperature requirements of HXMS. Here we present construction and validation of a custom UPLC system for HXMS. The system is based on the Waters nanoACQUITY platform and contains a Peltier-cooled module that houses the injection and switching valves, online pepsin digestion column, and C-18 analytical separation column. Single proteins in excess of 95 kDa and a four-protein mixture in excess of 250 kDa have been used to validate the performance of this new system. Near baseline resolution was achieved in 6 minute separations at 0 °C and displayed a median chromatographic peak width of ~2.7 sec at half height. Deuterium recovery was similar to that obtained using a conventional HPLC and icebath. This new system represents a significant advancement in HXMS technology that is expected to make the technique more accessible and mainstream in the near future. PMID:18672890
Dey, B.; Ratcliff, B.; Va’vra, J.
2017-02-16
In this article, we explore the angular resolution limits attainable in small FDIRC designs taking advantage of the new highly pixelated detectors that are now available. Since the basic FDIRC design concept attains its particle separation performance mostly in the angular domain as measured by two-dimensional pixels, this paper relies primarily on a pixel-based analysis, with additional chromatic corrections using the time domain, requiring single photon timing resolution at a level of 100–200 ps only. This approach differs from other modern DIRC design concepts such as TOP or TORCH detectors, whose separation performances rely more strongly on time-dependent analyses. Inmore » conclusion, we find excellent single photon resolution with a geometry where individual bars are coupled to a single plate, which is coupled in turn to a cylindrical lens focusing camera.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Dey, B.; Ratcliff, B.; Va’vra, J.
In this article, we explore the angular resolution limits attainable in small FDIRC designs taking advantage of the new highly pixelated detectors that are now available. Since the basic FDIRC design concept attains its particle separation performance mostly in the angular domain as measured by two-dimensional pixels, this paper relies primarily on a pixel-based analysis, with additional chromatic corrections using the time domain, requiring single photon timing resolution at a level of 100–200 ps only. This approach differs from other modern DIRC design concepts such as TOP or TORCH detectors, whose separation performances rely more strongly on time-dependent analyses. Inmore » conclusion, we find excellent single photon resolution with a geometry where individual bars are coupled to a single plate, which is coupled in turn to a cylindrical lens focusing camera.« less
Lísa, Miroslav; Holcapek, Michal; Sovová, Helena
2009-11-20
The selection of column packing during the development of high-performance liquid chromatography method is a crucial step to achieve sufficient chromatographic resolution of analyzed species in complex mixtures. Various stationary phases are tested in this paper for the analysis of complex mixture of triacylglycerols (TGs) in blackcurrant oil using non-aqueous reversed-phase (NARP) system with acetonitrile-2-propanol mobile phase. Conventional C(18) column in the total length of 45 cm is used for the separation of TGs according to their equivalent carbon number, the number and positions of double bonds and acyl chain lengths. The separation of TGs and their more polar hydrolysis products after the partial enzymatic hydrolysis of blackcurrant oil in one chromatographic run is achieved using conventional C(18) column. Retention times of TGs are reduced almost 10 times without the loss of the chromatographic resolution using ultra high-performance liquid chromatography with 1.7 microm C(18) particles. The separation in NARP system on C(30) column shows an unusual phenomenon, because the retention order of TGs changes depending on the column temperature, which is reported for the first time. The commercial monolithic column modified with C(18) is used for the fast analysis of TGs to increase the sample throughput but at cost of low resolution.
Krishnan, Sunder Ram; Seelamantula, Chandra Sekhar; Bouwens, Arno; Leutenegger, Marcel; Lasser, Theo
2012-10-01
We address the problem of high-resolution reconstruction in frequency-domain optical-coherence tomography (FDOCT). The traditional method employed uses the inverse discrete Fourier transform, which is limited in resolution due to the Heisenberg uncertainty principle. We propose a reconstruction technique based on zero-crossing (ZC) interval analysis. The motivation for our approach lies in the observation that, for a multilayered specimen, the backscattered signal may be expressed as a sum of sinusoids, and each sinusoid manifests as a peak in the FDOCT reconstruction. The successive ZC intervals of a sinusoid exhibit high consistency, with the intervals being inversely related to the frequency of the sinusoid. The statistics of the ZC intervals are used for detecting the frequencies present in the input signal. The noise robustness of the proposed technique is improved by using a cosine-modulated filter bank for separating the input into different frequency bands, and the ZC analysis is carried out on each band separately. The design of the filter bank requires the design of a prototype, which we accomplish using a Kaiser window approach. We show that the proposed method gives good results on synthesized and experimental data. The resolution is enhanced, and noise robustness is higher compared with the standard Fourier reconstruction.
Capillary electrophoresis in two-dimensional separation systems: Techniques and applications.
Kohl, Felix J; Sánchez-Hernández, Laura; Neusüß, Christian
2015-01-01
The analysis of complex samples requires powerful separation techniques. Here, 2D chromatographic separation techniques (e.g. LC-LC, GC-GC) are increasingly applied in many fields. Electrophoretic separation techniques show a different selectivity in comparison to LC and GC and very high separation efficiency. Thus, 2D separation systems containing at least one CE-based separation technique are an interesting alternative featuring potentially a high degree of orthogonality. However, the generally small volumes and strong electrical fields in CE require special coupling techniques. These technical developments are reviewed in this work, discussing benefits and drawbacks of offline and online systems. Emphasis is placed on the design of the systems, their coupling, and the detector used. Moreover, the employment of strategies to improve peak capacity, resolution, or sensitivity is highlighted. Various applications of 2D separations with CE are summarized. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
NASA Astrophysics Data System (ADS)
Hansen, Rebecca L.; Lee, Young Jin
2017-09-01
Metabolomics experiments require chemical identifications, often through MS/MS analysis. In mass spectrometry imaging (MSI), this necessitates running several serial tissue sections or using a multiplex data acquisition method. We have previously developed a multiplex MSI method to obtain MS and MS/MS data in a single experiment to acquire more chemical information in less data acquisition time. In this method, each raster step is composed of several spiral steps and each spiral step is used for a separate scan event (e.g., MS or MS/MS). One main limitation of this method is the loss of spatial resolution as the number of spiral steps increases, limiting its applicability for high-spatial resolution MSI. In this work, we demonstrate multiplex MS imaging is possible without sacrificing spatial resolution by the use of overlapping spiral steps, instead of spatially separated spiral steps as used in the previous work. Significant amounts of matrix and analytes are still left after multiple spectral acquisitions, especially with nanoparticle matrices, so that high quality MS and MS/MS data can be obtained on virtually the same tissue spot. This method was then applied to visualize metabolites and acquire their MS/MS spectra in maize leaf cross-sections at 10 μm spatial resolution. [Figure not available: see fulltext.
Sideband-Separating, Millimeter-Wave Heterodyne Receiver
NASA Technical Reports Server (NTRS)
Ward, John S.; Bumble, Bruce; Lee, Karen A.; Kawamura, Jonathan H.; Chattopadhyay, Goutam; Stek, paul; Stek, Paul
2010-01-01
Researchers have demonstrated a submillimeter-wave spectrometer that combines extremely broad bandwidth with extremely high sensitivity and spectral resolution to enable future spacecraft to measure the composition of the Earth s troposphere in three dimensions many times per day at spatial resolutions as high as a few kilometers. Microwave limb sounding is a proven remote-sensing technique that measures thermal emission spectra from molecular gases along limb views of the Earth s atmosphere against a cold space background.
NASA Astrophysics Data System (ADS)
Seo, Hokuto; Aihara, Satoshi; Namba, Masakazu; Watabe, Toshihisa; Ohtake, Hiroshi; Kubota, Misao; Egami, Norifumi; Hiramatsu, Takahiro; Matsuda, Tokiyoshi; Furuta, Mamoru; Nitta, Hiroshi; Hirao, Takashi
2010-01-01
Our group has been developing a new type of image sensor overlaid with three organic photoconductive films, which are individually sensitive to only one of the primary color components (blue (B), green (G), or red (R) light), with the aim of developing a compact, high resolution color camera without any color separation optical systems. In this paper, we firstly revealed the unique characteristics of organic photoconductive films. Only choosing organic materials can tune the photoconductive properties of the film, especially excellent wavelength selectivities which are good enough to divide the incident light into three primary colors. Color separation with vertically stacked organic films was also shown. In addition, the high-resolution of organic photoconductive films sufficient for high-definition television (HDTV) was confirmed in a shooting experiment using a camera tube. Secondly, as a step toward our goal, we fabricated a stacked organic image sensor with G- and R-sensitive organic photoconductive films, each of which had a zinc oxide (ZnO) thin film transistor (TFT) readout circuit, and demonstrated image pickup at a TV frame rate. A color image with a resolution corresponding to the pixel number of the ZnO TFT readout circuit was obtained from the stacked image sensor. These results show the potential for the development of high-resolution prism-less color cameras with stacked organic photoconductive films.
Development of a Dual-PIV system for high-speed flow applications
NASA Astrophysics Data System (ADS)
Schreyer, Anne-Marie; Lasserre, Jean J.; Dupont, Pierre
2015-10-01
A new Dual-particle image velocimetry (Dual-PIV) system for application in supersonic flows was developed. The system was designed for shock wave/turbulent boundary layer interactions with separation. This type of flow places demanding requirements on the system, from the large range of characteristic frequencies O(100 Hz-100 kHz) to spatial and temporal resolutions necessary for the measurement of turbulent quantities (Dolling in AIAA J 39(8):1517-1531, 2001; Dupont et al. in J Fluid Mech 559:255-277, 2006; Smits and Dussauge in Turbulent shear layers in supersonic flow, 2nd edn. Springer, New York, 2006). While classic PIV systems using high-resolution CCD sensors allow high spatial resolution, these systems cannot provide the required temporal resolution. Existing high-speed PIV systems provide temporal and CMOS sensor resolutions, and even laser pulse energies, that are not adapted to our needs. The only obvious solution allowing sufficiently high spatial resolution, access to high frequencies, and a high laser pulse energy is a multi-frame system: a Dual-PIV system, consisting of two synchronized PIV systems observing the same field of view, will give access to temporal characteristics of the flow. The key technology of our system is frequency-based image separation: two lasers of different wavelengths illuminate the field of view. The cross-pollution with laser light from the respective other branches was quantified during system validation. The overall system noise was quantified, and the prevailing error of only 2 % reflects the good spatial and temporal alignment. The quality of the measurement system is demonstrated with some results on a subsonic jet flow including the spatio-temporal inter-correlation functions between the systems. First measurements in a turbulent flat-plate boundary layer at Mach 2 show the same satisfactory data quality and are also presented and discussed.
First high-resolution stratigraphic column of the Martian north polar layered deposits
Fishbaugh, K.E.; Hvidberg, C.S.; Byrne, S.; Russell, P.S.; Herkenhoff, K. E.; Winstrup, M.; Kirk, R.
2010-01-01
This study achieves the first high-spatial-resolution, layer-scale, measured stratigraphic column of the Martian north polar layered deposits using a 1m-posting DEM. The marker beds found throughout the upper North Polar Layered Deposits range in thickness from 1.6 m-16.0 m +/-1.4 m, and 6 of 13 marker beds are separated by ???25-35 m. Thin-layer sets have average layer separations of 1.6 m. These layer separations may account for the spectral-power-peaks found in previous brightness-profile analyses. Marker-bed layer thicknesses show a weak trend of decreasing thickness with depth that we interpret to potentially be the result of a decreased accumulation rate in the past, for those layers. However, the stratigraphic column reveals that a simple rhythmic or bundled layer sequence is not immediately apparent throughout the column, implying that the relationship between polar layer formation and cyclic climate forcing is quite complex. Copyright ?? 2010 by the American Geophysical Union.
First high-resolution stratigraphic column of the Martian north polar layered deposits
NASA Astrophysics Data System (ADS)
Fishbaugh, Kathryn E.; Hvidberg, Christine S.; Byrne, Shane; Russell, Patrick S.; Herkenhoff, Kenneth E.; Winstrup, Mai; Kirk, Randolph
2010-04-01
This study achieves the first high-spatial-resolution, layer-scale, measured stratigraphic column of the Martian north polar layered deposits using a 1m-posting DEM. The marker beds found throughout the upper North Polar Layered Deposits range in thickness from 1.6 m-16.0 m +/- 1.4 m, and 6 of 13 marker beds are separated by ˜25-35 m. Thin-layer sets have average layer separations of 1.6 m. These layer separations may account for the spectral-power-peaks found in previous brightness-profile analyses. Marker-bed layer thicknesses show a weak trend of decreasing thickness with depth that we interpret to potentially be the result of a decreased accumulation rate in the past, for those layers. However, the stratigraphic column reveals that a simple rhythmic or bundled layer sequence is not immediately apparent throughout the column, implying that the relationship between polar layer formation and cyclic climate forcing is quite complex.
Dvořák, Martin; Svobodová, Jana; Dubský, Pavel; Riesová, Martina; Vigh, Gyula; Gaš, Bohuslav
2015-03-01
Although the classical formula of peak resolution was derived to characterize the extent of separation only for Gaussian peaks of equal areas, it is often used even when the peaks follow non-Gaussian distributions and/or have unequal areas. This practice can result in misleading information about the extent of separation in terms of the severity of peak overlap. We propose here the use of the equivalent peak resolution value, a term based on relative peak overlap, to characterize the extent of separation that had been achieved. The definition of equivalent peak resolution is not constrained either by the form(s) of the concentration distribution function(s) of the peaks (Gaussian or non-Gaussian) or the relative area of the peaks. The equivalent peak resolution value and the classically defined peak resolution value are numerically identical when the separated peaks are Gaussian and have identical areas and SDs. Using our new freeware program, Resolution Analyzer, one can calculate both the classically defined and the equivalent peak resolution values. With the help of this tool, we demonstrate here that the classical peak resolution values mischaracterize the extent of peak overlap even when the peaks are Gaussian but have different areas. We show that under ideal conditions of the separation process, the relative peak overlap value is easily accessible by fitting the overall peak profile as the sum of two Gaussian functions. The applicability of the new approach is demonstrated on real separations. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Recent applications of gas chromatography with high-resolution mass spectrometry.
Špánik, Ivan; Machyňáková, Andrea
2018-01-01
Gas chromatography coupled to high-resolution mass spectrometry is a powerful analytical method that combines excellent separation power of gas chromatography with improved identification based on an accurate mass measurement. These features designate gas chromatography with high-resolution mass spectrometry as the first choice for identification and structure elucidation of unknown volatile and semi-volatile organic compounds. Gas chromatography with high-resolution mass spectrometry quantitative analyses was previously focused on the determination of dioxins and related compounds using magnetic sector type analyzers, a standing requirement of many international standards. The introduction of a quadrupole high-resolution time-of-flight mass analyzer broadened interest in this method and novel applications were developed, especially for multi-target screening purposes. This review is focused on the development and the most interesting applications of gas chromatography coupled to high-resolution mass spectrometry towards analysis of environmental matrices, biological fluids, and food safety since 2010. The main attention is paid to various approaches and applications of gas chromatography coupled to high-resolution mass spectrometry for non-target screening to identify contaminants and to characterize the chemical composition of environmental, food, and biological samples. The most interesting quantitative applications, where a significant contribution of gas chromatography with high-resolution mass spectrometry over the currently used methods is expected, will be discussed as well. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
A narrow open tubular column for high efficiency liquid chromatographic separation.
Chen, Huang; Yang, Yu; Qiao, Zhenzhen; Xiang, Piliang; Ren, Jiangtao; Meng, Yunzhu; Zhang, Kaiqi; Juan Lu, Joann; Liu, Shaorong
2018-04-30
We report a great feature of open tubular liquid chromatography when it is run using an extremely narrow (e.g., 2 μm inner diameter) open tubular column: more than 10 million plates per meter can be achieved in less than 10 min and under an elution pressure of ca. 20 bar. The column is coated with octadecylsilane and both isocratic and gradient separations are performed. We reveal a focusing effect that may be used to interpret the efficiency enhancement. We also demonstrate the feasibility of using this technique for separating complex peptide samples. This high-resolution and fast separation technique is promising and can lead to a powerful tool for trace sample analysis.
McDowell, W J; Farrar, D T; Billings, M R
1974-12-01
A method for the determination of uranium and plutonium by a combined high-resolution liquid scintillation-solvent extraction method is presented. Assuming a sample count equal to background count to be the detection limit, the lower detection limit for these and other alpha-emitting nuclides is 1.0 dpm with a Pyrex sample tube, 0.3 dpm with a quartz sample tube using present detector shielding or 0.02 d.p.m. with pulse-shape discrimination. Alpha-counting efficiency is 100%. With the counting data presented as an alpha-energy spectrum, an energy resolution of 0.2-0.3 MeV peak half-width and an energy identification to +/-0.1 MeV are possible. Thus, within these limits, identification and quantitative determination of a specific alpha-emitter, independent of chemical separation, are possible. The separation procedure allows greater than 98% recovery of uranium and plutonium from solution containing large amounts of iron and other interfering substances. In most cases uranium, even when present in 10(8)-fold molar ratio, may be quantitatively separated from plutonium without loss of the plutonium. Potential applications of this general analytical concept to other alpha-counting problems are noted. Special problems associated with the determination of plutonium in soil and water samples are discussed. Results of tests to determine the pulse-height and energy-resolution characteristics of several scintillators are presented. Construction of the high-resolution liquid scintillation detector is described.
NASA Astrophysics Data System (ADS)
Bowman, Andrew P.; Abzalimov, Rinat R.; Shvartsburg, Alexandre A.
2017-08-01
Maturation of metabolomics has brought a deeper appreciation for the importance of isomeric identity of lipids to their biological role, mirroring that for proteoforms in proteomics. However, full characterization of the lipid isomerism has been thwarted by paucity of rapid and effective analytical tools. A novel approach is ion mobility spectrometry (IMS) and particularly differential or field asymmetric waveform IMS (FAIMS) at high electric fields, which is more orthogonal to mass spectrometry. Here we broadly explore the power of FAIMS to separate lipid isomers, and find a 75% success rate across the four major types of glycero- and phospho- lipids ( sn, chain length, double bond position, and cis/ trans). The resolved isomers were identified using standards, and (for the first two types) tandem mass spectrometry. These results demonstrate the general merit of incorporating high-resolution FAIMS into lipidomic analyses.
Fasihi, Yasser; Fooladi, Saba; Mohammadi, Mohammad Ali; Emaneini, Mohammad; Kalantar-Neyestanaki, Davood
2017-09-06
Molecular typing is an important tool for control and prevention of infection. A suitable molecular typing method for epidemiological investigation must be easy to perform, highly reproducible, inexpensive, rapid and easy to interpret. In this study, two molecular typing methods including the conventional PCR-sequencing method and high resolution melting (HRM) analysis were used for staphylococcal protein A (spa) typing of 30 Methicillin-resistant Staphylococcus aureus (MRSA) isolates recovered from clinical samples. Based on PCR-sequencing method results, 16 different spa types were identified among the 30 MRSA isolates. Among the 16 different spa types, 14 spa types separated by HRM method. Two spa types including t4718 and t2894 were not separated from each other. According to our results, spa typing based on HRM analysis method is very rapid, easy to perform and cost-effective, but this method must be standardized for different regions, spa types, and real-time machinery.
Kazarian, Artaches A; Nesterenko, Pavel N; Soisungnoen, Phimpha; Burakham, Rodjana; Srijaranai, Supalax; Paull, Brett
2014-08-01
Liquid chromatographic assays were developed using a mixed-mode column coupled in sequence with a hydrophilic interaction liquid chromatography column to allow the simultaneous comprehensive analysis of inorganic/organic anions and cations, active pharmaceutical ingredients, and excipients (carbohydrates). The approach utilized dual sample injection and valve-mediated column switching and was based upon a single high-performance liquid chromatography gradient pump. The separation consisted of three distinct sequential separation mechanisms, namely, (i) ion-exchange, (ii) mixed-mode interactions under an applied dual gradient (reversed-phase/ion-exchange), and (iii) hydrophilic interaction chromatography. Upon first injection, the Scherzo SS C18 column (Imtakt) provided resolution of inorganic anions and cations under isocratic conditions, followed by a dual organic/salt gradient to elute active pharmaceutical ingredients and their respective organic counterions and potential degradants. At the top of the mixed-mode gradient (high acetonitrile content), the mobile phase flow was switched to a preconditioned hydrophilic interaction liquid chromatography column, and the standard/sample was reinjected for the separation of hydrophilic carbohydrates, some of which are commonly known excipients in drug formulations. The approach afforded reproducible separation and resolution of up to 23 chemically diverse solutes in a single run. The method was applied to investigate the composition of commercial cough syrups (Robitussin®), allowing resolution and determination of inorganic ions, active pharmaceutical ingredients, excipients, and numerous well-resolved unknown peaks. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hamid, Ahmed M.; Garimella, Sandilya V. B.; Ibrahim, Yehia M.
We report on ion mobility separations (IMS) achievable using traveling waves in a Structures for Lossless Ion Manipulations (TW-SLIM) module having a 44-cm path length and sixteen 90º turns. The performance of the TW-SLIM module was evaluated for ion transmission, and ion mobility separations with different RF, TW parameters and SLIM surface gaps in conjunction with mass spectrometry. In this work TWs were created by the transient and dynamic application of DC potentials. The TW-SLIM module demonstrated highly robust performance and the ion mobility resolution achieved even with sixteen close spaced turns was comparable to a similar straight path TW-SLIMmore » module. We found an ion mobility peak capacity of ~ 31 and peak generation rate of 780 s-1 for TW speeds of <210 m/s using the current multi-turn TW-SLIM module. The separations achieved for isomers of peptides and tetrasaccharides were found to be comparable to those from a ~ 0.9-m drift tube-based IMS-MS platform operated at the same pressure (4 torr). The combined attributes of flexible design, low voltage requirements and lossless ion transmission through multiple turns for the present TW-SLIM module provides a basis for SLIM devices capable of achieving much greater ion mobility resolutions via greatly extended ion path lengths and compact serpentine designs that do not significantly impact the instrumentation profile, a direction described in a companion manuscript.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Choi, Megan; Nordmeyer, Robert A.; Cornell, Earl
2009-10-02
To facilitate a direct interface between protein separation by PAGE and protein identification by mass spectrometry, we developed a multichannel system that continuously collects fractions as protein bands migrate off the bottom of gel electrophoresis columns. The device was constructed using several short linear gel columns, each of a different percent acrylamide, to achieve a separation power similar to that of a long gradient gel. A Counter Free-Flow elution technique then allows continuous and simultaneous fraction collection from multiple channels at low cost. We demonstrate that rapid, high-resolution separation of a complex protein mixture can be achieved on this systemmore » using SDS-PAGE. In a 2.5 h electrophoresis run, for example, each sample was separated and eluted into 48-96 fractions over a mass range of 10-150 kDa; sample recovery rates were 50percent or higher; each channel was loaded with up to 0.3 mg of protein in 0.4 mL; and a purified band was eluted in two to three fractions (200 L/fraction). Similar results were obtained when running native gel electrophoresis, but protein aggregation limited the loading capacity to about 50 g per channel and reduced resolution.« less
Lipok, Christian; Hippler, Jörg; Schmitz, Oliver J
2018-02-09
A two-dimensional GC (2D-GC) method was developed and coupled to an ion mobility-high resolution mass spectrometer, which enables the separation of complex samples in four dimensions (2D-GC, ion mobilility spectrometry and mass spectrometry). This approach works as a continuous multiheart-cutting GC-system (GC+GC), using a long modulation time of 20s, which allows the complete transfer of most of the first dimension peaks to the second dimension column without fractionation, in comparison to comprehensive two-dimensional gas chromatography (GCxGC). Hence, each compound delivers only one peak in the second dimension, which simplifies the data handling even when ion mobility spectrometry as a third and mass spectrometry as a fourth dimension are introduced. The analysis of a plant extract from Calendula officinales shows the separation power of this four dimensional separation method. The introduction of ion mobility spectrometry provides an additional separation dimension and allows to determine collision cross sections (CCS) of the analytes as a further physicochemical constant supporting the identification. A CCS database with more than 800 standard substances including drug-like compounds and pesticides was used for CCS data base search in this work. Copyright © 2017 Elsevier B.V. All rights reserved.
Reversed-phase thin-layer chromatography of homologs of Antimycin-A and related derivatives
Abidi, Sharon L.
1989-01-01
Using a reversed-phase high-performance liquid chromatographic (HPLC) technique, a mixture of antimycins A was separated into eight hitherto unreported subcomponents, Ala, Alb, A2a, A2b, A3a, A3b, A4a, and A4b. Although a base-line resolution of the known four major antimycins Al, A2, A3, and A4 was readily achieved with mobile phases containing acetate buffers, the separation of the new antibiotic subcomponents was highly sensitive to variation in mobile phase conditions. The type and composition of organic modifiers, the nature of buffer salts, and the concentration of added electrolytes had profound effects on capacity factors, separation factors, and peak resolution values. Of the numerous chromatographic systems examined, a mobile phase consisting of methanol-water (70:30) and 0.005 M tetrabutylammonium phosphate at pH 3.0 yielded the most satisfactory results for the separation of the subcomponents. Reversed-phase gradient HPLC separation of the dansylated or methylated antibiotic compounds produced superior chromatographic characteristics and the presence of added electrolytes was not a critical factor for achieving separation. Differences in the chromatographic outcome between homologous and structural isomers were interpretated based on a differential solvophobic interaction rationale. Preparative reversed-phase HPLC under optimal conditions enabled isolation of pure samples of the methylated antimycin subcomponents for use in structural studies.
Image sharpening for mixed spatial and spectral resolution satellite systems
NASA Technical Reports Server (NTRS)
Hallada, W. A.; Cox, S.
1983-01-01
Two methods of image sharpening (reconstruction) are compared. The first, a spatial filtering technique, extrapolates edge information from a high spatial resolution panchromatic band at 10 meters and adds it to the low spatial resolution narrow spectral bands. The second method, a color normalizing technique, is based on the ability to separate image hue and brightness components in spectral data. Using both techniques, multispectral images are sharpened from 30, 50, 70, and 90 meter resolutions. Error rates are calculated for the two methods and all sharpened resolutions. The results indicate that the color normalizing method is superior to the spatial filtering technique.
Chagovets, Vtaliy; Kononikhin, Aleksey; Starodubtseva, Nataliia; Kostyukevich, Yury; Popov, Igor; Frankevich, Vladimir; Nikolaev, Eugene
2016-01-01
The importance of high-resolution mass spectrometry for the correct data interpretation of a direct tissue analysis is demonstrated with an example of its clinical application for an endometriosis study. Multivariate analysis of the data discovers lipid species differentially expressed in different tissues under investigation. High-resolution mass spectrometry allows unambiguous separation of peaks with close masses that correspond to proton and sodium adducts of phosphatidylcholines and to phosphatidylcholines differing in double bond number.
High Spectral Resolution Lidar Measurements Using an I2 Absorption Filter
NASA Technical Reports Server (NTRS)
Eloranta, E. W.; Piironen, P.
1996-01-01
The University of Wisconsin high spectral resolution lidar (HSRL) measures optical properties of the atmosphere by separating the Doppler-broadened molecular backscatter return from the unbroadened aerosol return. The HSRL was modified to use an I2 absorption cell The modified HSRL transmitter uses a continuously pumped, Q-switched, injection seeded, frequency doubled Nd:YAG laser operating at a 4 kHz pulse repetition rate. This laser is tunable over a 124 GHz frequency range by temperature tuning the seed laser under computer control.
Giddings, J C
1995-05-26
While the use of multiple dimensions in separation systems can create very high peak capacities, the effectiveness of the enhanced peak capacity in resolving large numbers of components depends strongly on whether the distribution of component peaks is ordered or disordered. Peak overlap is common in disordered distributions, even with a very high peak capacity. It is therefore of great importance to understand the origin of peak order/disorder in multidimensional separations and to address the question of whether any control can be exerted over observed levels of order and disorder and thus separation efficacy. It is postulated here that the underlying difference between ordered and disordered distributions of component peaks in separation systems is related to sample complexity as measured by a newly defined parameter, the sample dimensionality s, and by the derivative dimensionality s'. It is concluded that the type and degree of order and disorder is determined by the relationship of s (or s') to the dimensionality n of the separation system employed. Thus for some relatively simple samples (defined as having small s values), increased order and a consequent enhancement of resolution can be realized by increasing n. The resolution enhancement is in addition to the normal gain in resolving power resulting from the increased peak capacity of multidimensional systems. However, for other samples (having even smaller s values), an increase in n provides no additional benefit in enhancing component separability.
Zhu, Ling-Ling; Zhao, Yang; Xu, Yong-Wei; Sun, Qing-Long; Sun, Xin-Guang; Kang, Li-Ping; Yan, Ren-Yi; Zhang, Jie; Liu, Chao; Ma, Bai-Ping
2016-02-20
Spirostanol saponins are important active components of some herb medicines, and their isolation and purification are crucial for the research and development of traditional Chinese medicines. We aimed to compare the separation of spirostanol saponins by ultra-high performance supercritical fluid chromatography (UHPSFC) and ultra-high performance liquid chromatography (UHPLC). Four groups of spirostanol saponins were separated respectively by UHPSFC and UHPLC. After optimization, UHPSFC was performed with a HSS C18 SB column or a Diol column and with methanol as the co-solvent. A BEH C18 column and mobile phase containing water (with 0.1% formic acid) and acetonitrile were used in UHPLC. We found that UHPSFC could be performed automatically and quickly. It is effective in separating the spirostanol saponins which share the same aglycone and vary in sugar chains, and is very sensitive to the number and the position of hydroxyl groups in aglycones. However, the resolution of spirostanol saponins with different aglycones and the same sugar moiety by UHPSFC was not ideal and could be resolved by UHPLC instead. UHPLC is good at differentiating the variation in aglycones, and is influenced by double bonds in aglycones. Therefore, UHPLC and UHPSFC are complementary in separating spirostanol saponins. Considering the naturally produced spirostanol saponins in herb medicines are different both in aglycones and in sugar chains, a better separation can be achieved by combination of UHPLC and UHPSFC. UHPSFC is a powerful technique for improving the resolution when UHPLC cannot resolve a mixture of spirostanol saponins and vice versa. Copyright © 2015 Elsevier B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
Kreituss, Imants; Bode, Jeffrey W.
2017-05-01
Kinetic resolution is a common method to obtain enantioenriched material from a racemic mixture. This process will deliver enantiopure unreacted material when the selectivity factor of the process, s, is greater than 1; however, the scalemic reaction product is often discarded. Parallel kinetic resolution, on the other hand, provides access to two enantioenriched products from a single racemic starting material, but suffers from a variety of practical challenges regarding experimental design that limit its applications. Here, we describe the development of a flow-based system that enables practical parallel kinetic resolution of saturated N-heterocycles. This process provides access to both enantiomers of the starting material in good yield and high enantiopurity; similar results with classical kinetic resolution would require selectivity factors in the range of s = 100. To achieve this, two immobilized quasienantiomeric acylating agents were designed for the asymmetric acylation of racemic saturated N-heterocycles. Using the flow-based system we could efficiently separate, recover and reuse the polymer-supported reagents. The amide products could be readily separated and hydrolysed to the corresponding amines without detectable epimerization.
High-temperature high-resolution gas chromatography
(HTGC) is an established technique for the separation of
complex mixtures of high molecular weight (HMW) compounds
which do not elute when analyzed on conventional GC
columns. The combination of this technique wit...
Min, Yi; Jiang, Bo; Wu, Ci; Xia, Simin; Zhang, Xiaodan; Liang, Zhen; Zhang, Lihua; Zhang, Yukui
2014-08-22
In this work, 1.9 μm reversed-phase packing materials with superficially porous structure were prepared to achieve the rapid and high efficient separation of peptides and proteins. The silica particles were synthesized via three steps, nonporous silica particle preparation by a modified seeded growth method, mesoporous shell formation by a one pot templated dissolution and redeposition strategy, and pore size expansion via acid-refluxing. By such a method, 1.9 μm superficially porous materials with 0.18 μm shell thickness and tailored pore diameter (10 nm, 15 nm) were obtained. After pore enlargement, the formerly dense arrays of mesoporous structure changed, the radially oriented pores dominated the superficially porous structure. The chromatographic performance of such particles was investigated after C18 derivatization. For packing materials with 1.9 μm diameter and 10 nm pore size, the column efficiency could reach 211,300 plates per m for naphthalene. To achieve the high resolution separation of peptides and proteins, particles with pore diameter of 15 nm were tailored, by which the baseline separation of 5 peptides and 5 intact proteins could be respectively achieved within 1 min, demonstrating the superiority in the high efficiency and high throughput analysis of biomolecules. Furthermore, BSA digests were well separated with peak capacity of 120 in 30 min on a 15 cm-long column. Finally, we compared our columns with a 1.7 μm Kinetex C18 column under the same conditions, our particles with 10nm pore size demonstrated similar performance for separation of the large intact proteins. Moreover, the particles with 15 nm pore size showed more symmetrical peaks for the separation of large proteins (BSA, OVA and IgG) and provided rapid separation of protein extracts from Escherichia coli in 5 min. All these results indicated that the synthesized 1.9 μm superficially porous silica packing materials would be promising in the ultra-fast and high-resolution separation of biomolecules. Copyright © 2014 Elsevier B.V. All rights reserved.
2008-01-24
This image demonstrates the first detection of Pluto using the high-resolution mode on the NASA New Horizons Long-Range Reconnaissance Imager. The mode provides a clear separation between Pluto and numerous nearby background stars.
Yui, Yuko; Miyazaki, Shota; Ma, Yan; Ohira, Masayoshi; Fiehn, Oliver; Ikegami, Tohru; McCalley, David V; Tanaka, Nobuo
2016-06-10
Separation of diastereomers of dl-α-tocopherol was studied by reversed-phase liquid chromatography using three types of stationary phases, polymeric ODS, polymeric C30, and monomeric ODS. Polymeric ODS stationary phase (Inertsil ODS-P, 3mmID, 20cm) was effective for the separation of the isomers created by the presence of three chiral centers on the alkyl chain of synthetic dl-α-tocopherol. Considerable improvement of the separation of isomers was observed on ODS-P phase at high pressure and at low temperature. Complete separation of four pairs of diastereomers was achieved at 12.0°C, 536bar, while three peaks were observed when the separation was carried out either at 12.0°C at low pressure or at 20°C at 488bar. Higher temperature (30.0°C) with the ODS-P phase resulted in only partial separation of the diastereomers even at high pressure. Only slight resolution was observed for the mixture of diastereomers with the C30 stationary phase (Inertsil C30) at 12.0°C and 441bar, although the stationary phase afforded greater resolution for β- and γ-tocopherol than ODS-P. A monomeric C18 stationary phase did not show any separation at 12.0°C and 463bar. The results suggest that the binding site of the polymeric ODS-P phase is selective for flexible alkyl chains that provided the longest retention for the natural form, (R,R,R) form, and the enantiomer, (S,S,S) form, of dl-α-tocopherol. Copyright © 2016. Published by Elsevier B.V.
SHINOMIYA, Kazufusa; YOSHIDA, Kazunori; TOKURA, Koji; TSUKIDATE, Etsuhiro; YANAGIDAIRA, Kazuhiro; ITO, Yoichiro
2015-01-01
Protein separation was performed using the high-speed counter-current chromatograph (HSCCC) at both synchronous and nonsynchronous type-J planetary motions. The partition efficiency was evaluated with two different column configurations, eccentric coil and toroidal coil, on the separation of a set of stable protein samples including cytochrome C, myoglobin and lysozyme with a polymer phase system composed of 12.5% (w/w) polyethylene glycol 1000 and 12.5% (w/w) dibasic potassium phosphate. Better peak resolution was obtained by the eccentric coil than by the toroidal coil using either lower or upper phase as the mobile phase. The peak resolution was further improved using the eccentric coil by the nonsynchronous type-J planetary motion with the combination of 1066 rpm of column rotation and 1000 rpm of revolution. PMID:25765276
Shinomiya, Kazufusa; Yoshida, Kazunori; Tokura, Koji; Tsukidate, Etsuhiro; Yanagidaira, Kazuhiro; Ito, Yoichiro
2015-01-01
Protein separation was performed using the high-speed countercurrent chromatograph (HSCCC) at both synchronous and nonsynchronous type-J planetary motions. The partition efficiency was evaluated with two different column configurations, eccentric coil and toroidal coil, on the separation of a set of stable protein samples including cytochrome C, myoglobin and lysozyme with a polymer phase system composed of 12.5% (w/w) polyethylene glycol 1000 and 12.5% (w/w) dibasic potassium phosphate. Better peak resolution was obtained by the eccentric coil than by the toroidal coil using either lower or upper phase as the mobile phase. The peak resolution was further improved using the eccentric coil by the nonsynchronous type-J planetary motion with the combination of 1066 rpm of column rotation and 1000 rpm of revolution.
NASA Astrophysics Data System (ADS)
Kaurivi, Jorry Zebby Ujama
The general objective of this research is to develop a methodology that will allow mapping and quantifying shrub encroachment with remote sensing. The multitemporal properties of the Moderate Resolution Imaging Spectroradiometer (MODIS) -250m, 16-day vegetation index products were combined with the hyperspectral and high spatial resolution (3.6m) computation of the Airborne Visible-Infrared Imaging Spectrometer (AVIRIS) to detect the dynamics of mesquite and grass/soil matrix at two sites of high (19.5%) and low (5.7%) mesquite cover in the Santa Rita Experimental Range (SRER). MODIS results showed separability between grassland and mesquite based on phenology. Mesquite landscapes had longer green peak starting in April through February, while the grassland only peaked during the monsoon season (July through October). AVIRIS revealed spectral separability, but high variation in the data implicated high heterogeneity in the landscape. Nonetheless, the methodology for larger data was developed in this study and combines ground, air and satellite data.
Surveillance Range and Interference Impacts on Self-Separation Performance
NASA Technical Reports Server (NTRS)
Idris, Husni; Consiglio, Maria C.; Wing, David J.
2011-01-01
Self-separation is a concept of flight operations that aims to provide user benefits and increase airspace capacity by transferring traffic separation responsibility from ground-based controllers to the flight crew. Self-separation is enabled by cooperative airborne surveillance, such as that provided by the Automatic Dependent Surveillance-Broadcast (ADSB) system and airborne separation assistance technologies. This paper describes an assessment of the impact of ADS-B system performance on the performance of self-separation as a step towards establishing far-term ADS-B performance requirements. Specifically, the impacts of ADS-B surveillance range and interference limitations were analyzed under different traffic density levels. The analysis was performed using a batch simulation of aircraft performing self-separation assisted by NASA s Autonomous Operations Planner prototype flight-deck tool, in two-dimensional airspace. An aircraft detected conflicts within a look-ahead time of ten minutes and resolved them using strategic closed trajectories or tactical open maneuvers if the time to loss of separation was below a threshold. While a complex interaction was observed between the impacts of surveillance range and interference, as both factors are physically coupled, self-separation performance followed expected trends. An increase in surveillance range resulted in a decrease in the number of conflict detections, an increase in the average conflict detection lead time, and an increase in the percentage of conflict resolutions that were strategic. The majority of the benefit was observed when surveillance range was increased to a value corresponding to the conflict detection look-ahead time. The benefits were attenuated at higher interference levels. Increase in traffic density resulted in a significant increase in the number of conflict detections, as expected, but had no effect on the conflict detection lead time and the percentage of conflict resolutions that were strategic. With surveillance range corresponding to ADS-B minimum operational performance standards for Class A3 equipment and without background interference, a significant portion of conflict resolutions, 97 percent, were achieved in the preferred strategic mode. The majority of conflict resolutions, 71 percent, were strategic even with very high interference (over three times that expected in 2035).
A semiparametric spatio-temporal model for solar irradiance data
Patrick, Joshua D.; Harvill, Jane L.; Hansen, Clifford W.
2016-03-01
Here, we evaluate semiparametric spatio-temporal models for global horizontal irradiance at high spatial and temporal resolution. These models represent the spatial domain as a lattice and are capable of predicting irradiance at lattice points, given data measured at other lattice points. Using data from a 1.2 MW PV plant located in Lanai, Hawaii, we show that a semiparametric model can be more accurate than simple interpolation between sensor locations. We investigate spatio-temporal models with separable and nonseparable covariance structures and find no evidence to support assuming a separable covariance structure. These results indicate a promising approach for modeling irradiance atmore » high spatial resolution consistent with available ground-based measurements. Moreover, this kind of modeling may find application in design, valuation, and operation of fleets of utility-scale photovoltaic power systems.« less
An, Meichen; Liu, Ning
2010-02-01
A high performance liquid chromatography-matrix-assisted laser desorption/ionization time of flight/time of flight mass spectrometry (HPLC-MALDI-TOF/TOF MS) method was developed for the separation and identification of bovine lactoferricin (LfcinB). Bovine lactoferrin was hydrolyzed by pepsin and then separated by ion exchange chromatography and reversed-phase liquid chromatography (RP-LC). The antibacterial activities of the fractions from RP-LC separation were determined and the protein concentration of the fraction with the highest activity was measured, whose sequence was indentified by MALDI-TOF/TOF MS. The relative molecular mass of LfcinB was 3 124.89 and the protein concentration was 18.20 microg/mL. The method of producing LfcinB proposed in this study has fast speed, high accuracy and high resolution.
Churchwell, Mona I; Twaddle, Nathan C; Meeker, Larry R; Doerge, Daniel R
2005-10-25
Recent technological advances have made available reverse phase chromatographic media with a 1.7 microm particle size along with a liquid handling system that can operate such columns at much higher pressures. This technology, termed ultra performance liquid chromatography (UPLC), offers significant theoretical advantages in resolution, speed, and sensitivity for analytical determinations, particularly when coupled with mass spectrometers capable of high-speed acquisitions. This paper explores the differences in LC-MS performance by conducting a side-by-side comparison of UPLC for several methods previously optimized for HPLC-based separation and quantification of multiple analytes with maximum throughput. In general, UPLC produced significant improvements in method sensitivity, speed, and resolution. Sensitivity increases with UPLC, which were found to be analyte-dependent, were as large as 10-fold and improvements in method speed were as large as 5-fold under conditions of comparable peak separations. Improvements in chromatographic resolution with UPLC were apparent from generally narrower peak widths and from a separation of diastereomers not possible using HPLC. Overall, the improvements in LC-MS method sensitivity, speed, and resolution provided by UPLC show that further advances can be made in analytical methodology to add significant value to hypothesis-driven research.
Multiple Sensor Camera for Enhanced Video Capturing
NASA Astrophysics Data System (ADS)
Nagahara, Hajime; Kanki, Yoshinori; Iwai, Yoshio; Yachida, Masahiko
A resolution of camera has been drastically improved under a current request for high-quality digital images. For example, digital still camera has several mega pixels. Although a video camera has the higher frame-rate, the resolution of a video camera is lower than that of still camera. Thus, the high-resolution is incompatible with the high frame rate of ordinary cameras in market. It is difficult to solve this problem by a single sensor, since it comes from physical limitation of the pixel transfer rate. In this paper, we propose a multi-sensor camera for capturing a resolution and frame-rate enhanced video. Common multi-CCDs camera, such as 3CCD color camera, has same CCD for capturing different spectral information. Our approach is to use different spatio-temporal resolution sensors in a single camera cabinet for capturing higher resolution and frame-rate information separately. We build a prototype camera which can capture high-resolution (2588×1958 pixels, 3.75 fps) and high frame-rate (500×500, 90 fps) videos. We also proposed the calibration method for the camera. As one of the application of the camera, we demonstrate an enhanced video (2128×1952 pixels, 90 fps) generated from the captured videos for showing the utility of the camera.
Ciftci, Harun; Er, Cigdem
2013-03-01
In the present study, a separation/preconcentration procedure for determination of aluminum in water samples has been developed by using a new atomic absorption spectrometer concept with a high-intensity xenon short-arc lamp as continuum radiation source, a high-resolution double-echelle monochromator, and a charge-coupled device array detector. Sample solution pH, sample volume, flow rate of sample solution, volume, and concentration of eluent for solid-phase extraction of Al chelates with 4-[(dicyanomethyl)diazenyl] benzoic acid on polymeric resin (Duolite XAD-761) have been investigated. The adsorbed aluminum on resin was eluted with 5 mL of 2 mol L(-1) HNO(3) and its concentration was determined by high-resolution continuum source flame atomic absorption spectrometry (HR-CS FAAS). Under the optimal conditions, limit of detection obtained with HR-CS FAAS and Line Source FAAS (LS-FAAS) were 0.49 μg L(-1) and 3.91 μg L(-1), respectively. The accuracy of the procedure was confirmed by analyzing certified materials (NIST SRM 1643e, Trace elements in water) and spiked real samples. The developed procedure was successfully applied to water samples.
A Segmented Neutron Detector with a High Position Resolution for the (p,pn) Reactions
NASA Astrophysics Data System (ADS)
Kubota, Yuki; Sasano, Masaki; Uesaka, Tomohiro; Dozono, Masanori; Itoh, Masatoshi; Kawase, Shoichiro; Kobayashi, Motoki; Lee, CheongSoo; Matsubara, Hiroaki; Miki, Kenjiro; Miya, Hiroyuki; Ota, Shinsuke; Sekiguchi, Kimiko; Shima, Tatsushi; Taguchi, Takahiro; Tamii, Atsushi; Tang, Tsz Leung; Tokieda, Hiroshi; Wakasa, Tomotsugu; Wakui, Takashi; Yasuda, Jumpei; Zenihiro, Juzo
We are developing a neutron detector with a high position resolution to study the single particle properties of nuclei by the knockout (p,pn) reaction at intermediate energies. We constructed a prototype detector consisting of plastic scintillating fibers and multi-anode photomultiplier tubes (PMTs). Test experiments using 200- and 70-MeV proton and 199-, 188-, 68-, and 50-MeV neutron were performed for characterizing its performance. Preliminary results show that a position resolution of about 3 mm at full-width at half-maximum (FWHM) is realized as designed. The resulting separation-energy resolution to be obtained for (p,pn) measurement would be 1 MeV in FWHM, when the detector is used at a distance of 2 m from the target for measuring the neutron momentum.
Ultrahigh resolution retinal imaging by visible light OCT with longitudinal achromatization
Chong, Shau Poh; Zhang, Tingwei; Kho, Aaron; Bernucci, Marcel T.; Dubra, Alfredo; Srinivasan, Vivek J.
2018-01-01
Chromatic aberrations are an important design consideration in high resolution, high bandwidth, refractive imaging systems that use visible light. Here, we present a fiber-based spectral/Fourier domain, visible light OCT ophthalmoscope corrected for the average longitudinal chromatic aberration (LCA) of the human eye. Analysis of complex speckles from in vivo retinal images showed that achromatization resulted in a speckle autocorrelation function that was ~20% narrower in the axial direction, but unchanged in the transverse direction. In images from the improved, achromatized system, the separation between Bruch’s membrane (BM), the retinal pigment epithelium (RPE), and the outer segment tips clearly emerged across the entire 6.5 mm field-of-view, enabling segmentation and morphometry of BM and the RPE in a human subject. Finally, cross-sectional images depicted distinct inner retinal layers with high resolution. Thus, with chromatic aberration compensation, visible light OCT can achieve volume resolutions and retinal image quality that matches or exceeds ultrahigh resolution near-infrared OCT systems with no monochromatic aberration compensation. PMID:29675296
NASA Astrophysics Data System (ADS)
Zhang, Youfeng; Oh, Yunje; Stauffer, Douglas; Polycarpou, Andreas A.
2018-04-01
We present a highly sensitive force-displacement transducer capable of performing ultra-shallow nanoindentation and adhesion measurements. The transducer utilizes electrostatic actuation and capacitive sensing combined with microelectromechanical fabrication technologies. Air indentation experiments report a root-mean-square (RMS) force resolution of 1.8 nN and an RMS displacement resolution of 0.019 nm. Nanoindentation experiments on a standard fused quartz sample report a practical RMS force resolution of 5 nN and an RMS displacement resolution of 0.05 nm at sub-10 nm indentation depths, indicating that the system has a very low system noise for indentation experiments. The high sensitivity and low noise enables the transducer to obtain high-resolution nanoindentation data at sub-5 nm contact depths. The sensitive force transducer is used to successfully perform nanoindentation measurements on a 14 nm thin film. Adhesion measurements were also performed, clearly capturing the pull-on and pull-off forces during approach and separation of two contacting surfaces.
Scott, Jill R [Idaho Falls, ID; Tremblay, Paul L [Idaho Falls, ID
2007-07-10
A laser device includes a target position, an optical component separated a distance J from the target position, and a laser energy source separated a distance H from the optical component, distance H being greater than distance J. A laser source manipulation mechanism exhibits a mechanical resolution of positioning the laser source. The mechanical resolution is less than a spatial resolution of laser energy at the target position as directed through the optical component. A vertical and a lateral index that intersect at an origin can be defined for the optical component. The manipulation mechanism can auto align laser aim through the origin during laser source motion. The laser source manipulation mechanism can include a mechanical index. The mechanical index can include a pivot point for laser source lateral motion and a reference point for laser source vertical motion. The target position can be located within an adverse environment including at least one of a high magnetic field, a vacuum system, a high pressure system, and a hazardous zone. The laser source and an electro-mechanical part of the manipulation mechanism can be located outside the adverse environment. The manipulation mechanism can include a Peaucellier linkage.
High-Speed PLIF Imaging of Hypersonic Transition over Discrete Cylindrical Roughness
NASA Technical Reports Server (NTRS)
Danehy, P. M.; Ivey, C. B.; Inman, J. A.; Bathel, B. F.; Jones, S. B.; McCrea, A. C.; Jiang, N.; Webster, M.; Lempert, W.; Miller, J.;
2010-01-01
In two separate test entries, advanced laser-based instrumentation has been developed and applied to visualize the hypersonic flow over cylindrical protrusions on a flat plate. Upstream of these trips, trace quantities of nitric oxide (NO) were seeded into the boundary layer. The protuberances were sized to force laminar-to-turbulent boundary layer transition. In the first test, a 10-Hz nitric oxide planar laser-induced fluorescence (NO PLIF) flow visualization system was used to provide wide-field-of-view, high-resolution images of the flowfield. The images had sub-microsecond time resolution. However these images, obtained with a time separation of 0.1 sec, were uncorrelated with each other. Fluorescent oil-flow visualizations were also obtained during this test. In the second experiment, a laser and camera system capable of acquiring NO PLIF measurements at 1 million frames per second (1 MHz) was used. This system had lower spatial resolution, and a smaller field of view, but the images were time correlated so that the development of the flow structures could be observed in time.
Scott, Jill R.; Tremblay, Paul L.
2004-11-23
A laser device includes a target position, an optical component separated a distance J from the target position, and a laser energy source separated a distance H from the optical component, distance H being greater than distance J. A laser source manipulation mechanism exhibits a mechanical resolution of positioning the laser source. The mechanical resolution is less than a spatial resolution of laser energy at the target position as directed through the optical component. A vertical and a lateral index that intersect at an origin can be defined for the optical component. The manipulation mechanism can auto align laser aim through the origin during laser source motion. The laser source manipulation mechanism can include a mechanical index. The mechanical index can include a pivot point for laser source lateral motion and a reference point for laser source vertical motion. The target position can be located within an adverse environment including at least one of a high magnetic field, a vacuum system, a high pressure system, and a hazardous zone. The laser source and an electro-mechanical part of the manipulation mechanism can be located outside the adverse environment. The manipulation mechanism can include a Peaucellier linkage.
ERIC Educational Resources Information Center
Lacy, Joyce W.; Yassa, Michael A.; Stark, Shauna M.; Muftuler, L. Tugan; Stark, Craig E. L.
2011-01-01
Producing and maintaining distinct (orthogonal) neural representations for similar events is critical to avoiding interference in long-term memory. Recently, our laboratory provided the first evidence for separation-like signals in the human CA3/dentate. Here, we extended this by parametrically varying the change in input (similarity) while…
Liu, Danzhou; Hua, Kien A; Sugaya, Kiminobu
2008-09-01
With the advances in medical imaging devices, large volumes of high-resolution 3-D medical image data have been produced. These high-resolution 3-D data are very large in size, and severely stress storage systems and networks. Most existing Internet-based 3-D medical image interactive applications therefore deal with only low- or medium-resolution image data. While it is possible to download the whole 3-D high-resolution image data from the server and perform the image visualization and analysis at the client site, such an alternative is infeasible when the high-resolution data are very large, and many users concurrently access the server. In this paper, we propose a novel framework for Internet-based interactive applications of high-resolution 3-D medical image data. Specifically, we first partition the whole 3-D data into buckets, remove the duplicate buckets, and then, compress each bucket separately. We also propose an index structure for these buckets to efficiently support typical queries such as 3-D slicer and region of interest, and only the relevant buckets are transmitted instead of the whole high-resolution 3-D medical image data. Furthermore, in order to better support concurrent accesses and to improve the average response time, we also propose techniques for efficient query processing, incremental transmission, and client sharing. Our experimental study in simulated and realistic environments indicates that the proposed framework can significantly reduce storage and communication requirements, and can enable real-time interaction with remote high-resolution 3-D medical image data for many concurrent users.
Capillary electrophoresis for drug analysis
NASA Astrophysics Data System (ADS)
Lurie, Ira S.
1999-02-01
Capillary electrophoresis (CE) is a high resolution separation technique which is amenable to a wide variety of solutes, including compounds which are thermally degradable, non-volatile and highly polar, and is therefore well suited for drug analysis. Techniques which have been used in our laboratory include electrokinetic chromatography (ECC), free zone electrophoresis (CZE) and capillary electrochromatography (CEC). ECC, which uses a charged run buffer additive which migrates counter to osmotic flow, is excellent for many applications, including, drug screening and analyses of heroin, cocaine and methamphetamine samples. ECC approaches include the use of micelles and charged cyclodextrins, which allow for the separation of complex mixtures. Simultaneous separation of acidic, neutral and basic solutes and the resolution of optical isomers and positional isomers are possible. CZE has been used for the analysis of small ions (cations and anions) in heroin exhibits. For the ECC and CZE experiments performed in our laboratory, uncoated capillaries were used. In contrast, CEC uses capillaries packed with high performance liquid chromatography stationary phases, and offers both high peak capacities and unique selectivities. Applications include the analysis of cannabinoids and drug screening. Although CE suffers from limited concentration sensitivity, it is still applicable to trace analysis of drug samples, especially when using injection techniques such as stacking, or detection schemes such as laser induced fluorescence and extended pathlength UV.
Blanco, M; Coello, J; Iturriaga, H; Maspoch, S; Pérez-Maseda, C
1998-01-09
A method for resolving the enantiomers of various 2-arylpropionic acids (viz. ketoprofen, ibuprofen and fenoprofen) by capillary zone electrophoresis (CZE) using a background electrolyte (BGE) containing a cyclodextrin as chiral selector is proposed. The effects of the type of cyclodextrin used and its concentration on resolution were studied and heptakis-2,3,6-tri- O-methyl-beta-cyclodextrin was found to be the sole effective choice for the quantitative enantiomeric resolution of all the compounds tested. The influence of pH, BGE concentration, capillary temperature and addition of methanol to the BGE on resolution and other separation-related parameters was also studied. The three compounds studied can be enantiomerically resolved with a high efficiency in a short time (less than 20 min) with no capillary treatment. This makes the proposed method suitable for assessing the enantiomeric purity of commercially available pharmaceuticals.
Ortín, A; Torres-Lapasió, J R; García-Álvarez-Coque, M C
2011-08-26
Situations of minimal resolution are often found in liquid chromatography, when samples that contain a large number of compounds, or highly similar in terms of structure and/or polarity, are analysed. This makes full resolution with a single separation condition (e.g., mobile phase, gradient or column) unfeasible. In this work, the optimisation of the resolution of such samples in reversed-phase liquid chromatography is approached using two or more isocratic mobile phases with a complementary resolution behaviour (complementary mobile phases, CMPs). Each mobile phase is dedicated to the separation of a group of compounds. The CMPs are selected in such a way that, when the separation is considered globally, all the compounds in the sample are satisfactorily resolved. The search of optimal CMPs can be carried out through a comprehensive examination of the mobile phases in a selected domain. The computation time of this search has been reported to be substantially reduced by application of a genetic algorithm with local search (LOGA). A much simpler approach is here described, which is accessible to non-experts in programming, and offers solutions of the same quality as LOGA, with a similar computation time. The approach makes a sequential search of CMPs based on the peak count concept, which is the number of peaks exceeding a pre-established resolution threshold. The new approach is described using as test sample a mixture of 30 probe compounds, 23 of them with an ionisable character, and the pH and organic solvent contents as experimental factors. Copyright © 2011 Elsevier B.V. All rights reserved.
Tanner, Scott D; Li, Chunsheng; Vais, Vladimir; Baranov, Vladimir I; Bandura, Dmitry R
2004-06-01
Determination of the concentration and distribution of the Pu and Am isotopes is hindered by the isobaric overlaps between the elements themselves and U, generally requiring time-consuming chemical separation of the elements. A method is described in which chemical resolution of the elemental ions is obtained through ion-molecule reactions in a reaction cell of an ICPMS instrument. The reactions of "natural" U(+), (242)Pu(+), and (243)Am(+) with ethylene, carbon dioxide, and nitric oxide are reported. Since the net sensitivities to the isotopes of an element are similar, chemical resolution is inferred when one isobaric element reacts rapidly with a given gas and the isobar (or in this instance surrogate isotope) is unreactive or slowly reactive. Chemical resolution of the m/z 238 isotopes of U and Pu can be obtained using ethylene as a reaction gas, but little improvement in the resolution of the m/z 239 isobars is obtained. However, high efficiency of reaction of U(+) and UH(+) with CO(2), and nonreaction of Pu(+), allows the sub-ppt determination of (239)Pu, (240)Pu, and (242)Pu (single ppt for (238)Pu) in the presence of 7 orders of magnitude excess U matrix without prior chemical separation. Similarly, oxidation of Pu(+) by NO, and nonreaction of Am(+), permit chemical resolution of the isobars of Pu and Am over 2-3 orders of magnitude relative concentration. The method provides the potential for analysis of the actinides with reduced sample matrix separation.
Irakli, Maria N; Samanidou, Victoria F; Papadoyannis, Ioannis N
2012-03-07
The separation and determination of tocopherols (Ts) and tocotrienols (T3s) by reversed-phase high-performance liquid chromatography with fluorescence detection has been developed and validated after optimization of various chromatographic conditions and other experimental parameters. Analytes were separated on a PerfectSil Target ODS-3 (250 × 4.6 mm, 3 μm) column filled with a novel sorbent material of ultrapure silica gel. The separation of Ts and T3s was optimized in terms of mobile-phase composition and column temperature on the basis of the best compromise among efficiency, resolution, and analysis time. Using a gradient elution of mobile phase composed of isopropanol/water and 7 °C column temperature, a satisfactory resolution was achieved within 62 min. For the quantitative determination, α-T acetate (50 μg/mL) was used as the internal standard. Detection limits ranged from 0.27 μg/mL (γ-T) to 0.76 μg/mL (γ-T3). The validation of the method was examined performing intraday (n = 5) and interday (n = 3) assays and was found to be satisfactory, with high accuracy and precision results. Solid-phase extraction provided high relative extraction recoveries from cereal samples: 87.0% for γ-T3 and 115.5% for δ-T. The method was successfully applied to cereals, such as durum wheat, bread wheat, rice, barley, oat, rye, and corn.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Snow, T.P.; Lamers, H.J.G.L.M.; Joseph, C.L.
1987-10-01
The balloon-borne ultraviolet stellar spectrometer payload has been used to obtain high-resolution data on interstellar absorption lines toward Zeta Per. The only lines clearly present in the 2150-2450 region were several Fe II features, which show double structure. The two velocity components were sufficiently well separated that it was possible to construct separate curves of growth to derive the Fe II column densities for the individual components. These column densities and the component velocity separation were then used to compute a realistic two-component curve of growth for the line of sight to Zeta Per, which was then used to reanalyzemore » existing ultraviolet data from Copernicus. The results were generally similar to an earlier two-component analysis of the Copernicus data, with the important exception that the silicon depletion increased from near zero to about 1 dex. This makes the Zeta Per depletion pattern quite similar to those derived for other reddened lines of sight, supporting the viewpoint that the general diffuse interstellar medium has a nearly constant pattern of depletions. 31 references.« less
Hoguet, Vanessa; Charton, Julie; Hecquet, Paul-Emile; Lakhmi, Chahinaze; Lipka, Emmanuelle
2018-05-11
For analytical applications, SFC has always remained in the shadow of LC. Analytical enantioseparation of eight dihydropyridone derivatives, was run in both High Performance Liquid Chromatography and Supercritical Fluid Chromatography. Four polysaccharide based chiral stationary phases namely amylose and cellulose tris(3, 5-dimethylphenylcarbamate), amylose tris((S)-α-phenylethylcarbamate) and cellulose tris(4-methylbenzoate) with four mobile phases consisted of either n-hexane/ethanol or propan-2-ol (80:20 v:v) or carbon dioxide/ethanol or propan-2-ol (80:20 v:v) mixtures were investigated under same operatory conditions (temperature and flow-rate). The elution strength, enantioselectivity and resolution were compared in the two methodologies. For these compounds, for most of the conditions, HPLC afforded shorter retention times and a higher resolution than SFC. HPLC appears particularly suitable for the separation of the compounds bearing two chiral centers. For instance compound 7 was baseline resolved on OD-H CSP under n-Hex/EtOH 80/20, with resolution values equal to 2.98, 1.55, 4.52, between the four stereoisomers in less than 17 min, whereas in SFC, this latter is not fully separated in 23 min under similar eluting conditions. After analytical screenings, the best conditions were transposed to semi-preparative scale. Copyright © 2018 Elsevier B.V. All rights reserved.
Varma, Gopal; Wang, Xiaoen; Vinogradov, Elena; Bhatt, Rupal S.; Sukhatme, Vikas; Seth, Pankaj; Lenkinski, Robert E.; Alsop, David C.; Grant, Aaron K.
2015-01-01
Purpose In balanced steady state free precession (bSSFP), the signal intensity has a well-known dependence on the off-resonance frequency, or, equivalently, the phase advance between successive radiofrequency (RF) pulses. The signal profile can be used to resolve the contributions from the spectrally separated metabolites. This work describes a method based on use of a variable RF phase advance to acquire spatial and spectral data in a time-efficient manner for hyperpolarized 13C MRI. Theory and Methods The technique relies on the frequency response from a bSSFP acquisition to acquire relatively rapid, high-resolution images that may be reconstructed to separate contributions from different metabolites. The ability to produce images from spectrally separated metabolites was demonstrated in-vitro, as well as in-vivo following administration of hyperpolarized 1-13C pyruvate in mice with xenograft tumors. Results In-vivo images of pyruvate, alanine, pyruvate hydrate and lactate were reconstructed from 4 images acquired in 2 seconds with an in-plane resolution of 1.25 × 1.25mm2 and 5mm slice thickness. Conclusions The phase advance method allowed acquisition of spectroscopically selective images with high spatial and temporal resolution. This method provides an alternative approach to hyperpolarized 13C spectroscopic MRI that can be combined with other techniques such as multi-echo or fluctuating equilibrium bSSFP. PMID:26507361
On the estimation of the current density in space plasmas: Multi- versus single-point techniques
NASA Astrophysics Data System (ADS)
Perri, Silvia; Valentini, Francesco; Sorriso-Valvo, Luca; Reda, Antonio; Malara, Francesco
2017-06-01
Thanks to multi-spacecraft mission, it has recently been possible to directly estimate the current density in space plasmas, by using magnetic field time series from four satellites flying in a quasi perfect tetrahedron configuration. The technique developed, commonly called ;curlometer; permits a good estimation of the current density when the magnetic field time series vary linearly in space. This approximation is generally valid for small spacecraft separation. The recent space missions Cluster and Magnetospheric Multiscale (MMS) have provided high resolution measurements with inter-spacecraft separation up to 100 km and 10 km, respectively. The former scale corresponds to the proton gyroradius/ion skin depth in ;typical; solar wind conditions, while the latter to sub-proton scale. However, some works have highlighted an underestimation of the current density via the curlometer technique with respect to the current computed directly from the velocity distribution functions, measured at sub-proton scales resolution with MMS. In this paper we explore the limit of the curlometer technique studying synthetic data sets associated to a cluster of four artificial satellites allowed to fly in a static turbulent field, spanning a wide range of relative separation. This study tries to address the relative importance of measuring plasma moments at very high resolution from a single spacecraft with respect to the multi-spacecraft missions in the current density evaluation.
NASA Astrophysics Data System (ADS)
Lyu, Jingyuan; Nakarmi, Ukash; Zhang, Chaoyi; Ying, Leslie
2016-05-01
This paper presents a new approach to highly accelerated dynamic parallel MRI using low rank matrix completion, partial separability (PS) model. In data acquisition, k-space data is moderately randomly undersampled at the center kspace navigator locations, but highly undersampled at the outer k-space for each temporal frame. In reconstruction, the navigator data is reconstructed from undersampled data using structured low-rank matrix completion. After all the unacquired navigator data is estimated, the partial separable model is used to obtain partial k-t data. Then the parallel imaging method is used to acquire the entire dynamic image series from highly undersampled data. The proposed method has shown to achieve high quality reconstructions with reduction factors up to 31, and temporal resolution of 29ms, when the conventional PS method fails.
Proceedings of the seventh international conference on high voltage electron microscopy
DOE Office of Scientific and Technical Information (OSTI.GOV)
Fisher, R.M.; Gronsky, R.; Westmacott, K.H.
1983-01-01
Eight-four papers are arranged under the following headings: high resolution, techniques and instrumentation, radiation effects, in-situ and phase transformations, minerals and ceramics, and semiconductors and thin films. Twenty-three papers were abstracted separately for the data base; three of the remainder had previously been abstracted. (DLC)
Innovative Techniques for High-Resolution Imaging and Precision Tracking
1990-04-20
field-of-view ladar. 6 The bipath method employs two separate single-ended ladar systems to measure both the backscattering and extinction coefficients... Transmissometer measurements are very important not only for determining the overall accuracy of the proposed system but also for assessing its performance under...the maximum path length difference between the target elements. The necessary laser power can be deduced from the system resolution requirement. The
Ali, Imran; Sanagi, Mohd Marsin; Aboul-Enein, Hassan Y
2014-04-01
NACE is an alternative technique to aqueous CE in the chiral separations of partially soluble racemates. Besides, partially water-soluble or insoluble chiral selectors may be exploited in the enantiomeric resolution in NACE. The high reproducibility due to low Joule heat generation and no change in BGE concentration may make NACE a routine analytical technique. These facts attracted scientists to use NACE for the chiral resolution. The present review describes the advances in the chiral separations by NACE and its application in pharmaceutical and biomedical analysis. The emphasis has been given to discuss the selection of the chiral selectors and organic solvents, applications of NACE, comparison between NACE and aqueous CE, and chiral recognition mechanism. Besides, efforts have also been made to predict the future perspectives of NACE. © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Luckman, Matthew; Hans, Didier; Cortez, Natalia; Nishiyama, Kyle K; Agarawal, Sanchita; Zhang, Chengchen; Nikkel, Lucas; Iyer, Sapna; Fusaro, Maria; Guo, Edward X; McMahon, Donald J; Shane, Elizabeth; Nickolas, Thomas L
2017-04-03
Studies using high-resolution peripheral quantitative computed tomography showed progressive abnormalities in cortical and trabecular microarchitecture and biomechanical competence over the first year after kidney transplantation. However, high-resolution peripheral computed tomography is a research tool lacking wide availability. In contrast, the trabecular bone score is a novel and widely available tool that uses gray-scale variograms of the spine image from dual-energy x-ray absorptiometry to assess trabecular quality. There are no studies assessing whether trabecular bone score characterizes bone quality in kidney transplant recipients. Between 2009 and 2010, we conducted a study to assess changes in peripheral skeletal microarchitecture, measured by high-resolution peripheral computed tomography, during the first year after transplantation in 47 patients managed with early corticosteroid-withdrawal immunosuppression. All adult first-time transplant candidates were eligible. Patients underwent imaging with high-resolution peripheral computed tomography and dual-energy x-ray absorptiometry pretransplantation and 3, 6, and 12 months post-transplantation. We now test if, during the first year after transplantation, trabecular bone score assesses the evolution of bone microarchitecture and biomechanical competence as determined by high-resolution peripheral computed tomography. At baseline and follow-up, among the 72% and 78%, respectively, of patients having normal bone mineral density by dual-energy x-ray absorptiometry, 53% and 50%, respectively, were classified by trabecular bone score as having high fracture risk. At baseline, trabecular bone score correlated with spine, hip, and ultradistal radius bone mineral density by dual-energy x-ray absorptiometry and cortical area, density, thickness, and porosity; trabecular density, thickness, separation, and heterogeneity; and stiffness and failure load by high-resolution peripheral computed tomography. Longitudinally, each percentage increase in trabecular bone score was associated with increases in trabecular number (0.35%±1.4%); decreases in trabecular thickness (-0.45%±0.15%), separation (-0.40%±0.15%), and network heterogeneity (-0.48%±0.20%); and increases in failure load (0.22%±0.09%) by high-resolution peripheral computed tomography (all P <0.05). Trabecular bone score may be a useful method to assess and monitor bone quality and strength and classify fracture risk in kidney transplant recipients. Copyright © 2017 by the American Society of Nephrology.
Luckman, Matthew; Hans, Didier; Cortez, Natalia; Nishiyama, Kyle K.; Agarawal, Sanchita; Zhang, Chengchen; Nikkel, Lucas; Iyer, Sapna; Fusaro, Maria; Guo, Edward X.; McMahon, Donald J.; Shane, Elizabeth
2017-01-01
Background and objectives Studies using high-resolution peripheral quantitative computed tomography showed progressive abnormalities in cortical and trabecular microarchitecture and biomechanical competence over the first year after kidney transplantation. However, high-resolution peripheral computed tomography is a research tool lacking wide availability. In contrast, the trabecular bone score is a novel and widely available tool that uses gray-scale variograms of the spine image from dual-energy x-ray absorptiometry to assess trabecular quality. There are no studies assessing whether trabecular bone score characterizes bone quality in kidney transplant recipients. Design, settings, participants, & measurements Between 2009 and 2010, we conducted a study to assess changes in peripheral skeletal microarchitecture, measured by high-resolution peripheral computed tomography, during the first year after transplantation in 47 patients managed with early corticosteroid–withdrawal immunosuppression. All adult first-time transplant candidates were eligible. Patients underwent imaging with high-resolution peripheral computed tomography and dual-energy x-ray absorptiometry pretransplantation and 3, 6, and 12 months post-transplantation. We now test if, during the first year after transplantation, trabecular bone score assesses the evolution of bone microarchitecture and biomechanical competence as determined by high-resolution peripheral computed tomography. Results At baseline and follow-up, among the 72% and 78%, respectively, of patients having normal bone mineral density by dual-energy x-ray absorptiometry, 53% and 50%, respectively, were classified by trabecular bone score as having high fracture risk. At baseline, trabecular bone score correlated with spine, hip, and ultradistal radius bone mineral density by dual-energy x-ray absorptiometry and cortical area, density, thickness, and porosity; trabecular density, thickness, separation, and heterogeneity; and stiffness and failure load by high-resolution peripheral computed tomography. Longitudinally, each percentage increase in trabecular bone score was associated with increases in trabecular number (0.35%±1.4%); decreases in trabecular thickness (−0.45%±0.15%), separation (−0.40%±0.15%), and network heterogeneity (−0.48%±0.20%); and increases in failure load (0.22%±0.09%) by high-resolution peripheral computed tomography (all P<0.05). Conclusions Trabecular bone score may be a useful method to assess and monitor bone quality and strength and classify fracture risk in kidney transplant recipients. PMID:28348031
NASA Astrophysics Data System (ADS)
Woolley, Adam T.; Mathies, Richard A.
1994-11-01
Capillary electrophoresis arrays have been fabricated on planar glass substrates by photolithographic masking and chemical etching techniques. The photolithographically defined channel patterns were etched in a glass substrate, and then capillaries were formed by thermally bonding the etched substrate to a second glass slide. High-resolution electrophoretic separations of φX174 Hae III DNA restriction fragments have been performed with these chips using a hydroxyethyl cellulose sieving matrix in the channels. DNA fragments were fluorescently labeled with dye in the running buffer and detected with a laser-excited, confocal fluorescence system. The effects of variations in the electric field, procedures for injection, and sizes of separation and injection channels (ranging from 30 to 120 μm) have been explored. By use of channels with an effective length of only 3.5 cm, separations of φX174 Hae III DNA fragments from ≈70 to 1000 bp are complete in only 120 sec. We have also demonstrated high-speed sizing of PCR-amplified HLA-DQα alleles. This work establishes methods for high-speed, high-throughput DNA separations on capillary array electrophoresis chips.
Agarande, M; Benzoubir, S; Bouisset, P; Calmet, D
2001-08-01
Trace levels (pg kg(-1)) of 241Am in sediments were determined by isotope dilution high resolution inductively coupled plasma mass spectrometry (ID HR ICP-MS) using a microconcentric nebulizer. 241Am was isolated from major elements like Ca and Fe by different selective precipitations. In further steps. Am was first separated from other transuranic elements and purified by anion exchange and extraction chromatography prior to the mass spectrometric measurements. The ID HR ICP-MS results are compared with isotope dilution alpha spectrometry.
Optical resolution of rotenoids
Abidi, S.L.
1987-01-01
Optical resolution of selected rotenoids containing 1-3 asymmetric centers in dihydrobenzopyranofuroben-zopyranone and dihydrobisbenzopyranopyranone series has been achieved on two chiral high-performance liquid chromatographic (hplc) stationary phases. In most cases, the absolute stereochemistry at the cis-B/C ring junction of the rotenoidal antipodes can be related to their elution order. Generally, the 6aα,12aα-enantiomers were more strongly retained by the chiral substrate than their corresponding optical antipodes. The elution-configuration relationship provides potential utility for predicting the absolute configuration of related rotenoidal compounds. Chiral phase hplc on amino-acid-bonded-silica yielded results explicable in terms of Pirkle's bonding schemes for chiral recognition. Resolution data for 12a-hydroxy-, 12a-methoxy-, and 12-hydroxyiminorotenoids further corroborate the mechanistic rationale, and demonstrate that nonpolar π-π interactions appeared to be important for enantiomeric separation on helic poly-triphenylmethylacryl-ate-silica (CPOT). In the latter system, steric effects and conformational factors in association with the modification of E-ring structures might play significant roles in the chiral separation process in view of the reversal to the elution order observed for all methoxylated rotenoids and elliptone derivatives including the parent deguelin. The unique separability (α = 1.44) of 12a-hydroxyelliptone on CPOT was suggestive of structural effects of the 5-side chain on the resolution of the rotenoids having a five-membered-E-ring. The results obtained with two different types of chiral phases are complementary and useful for optical resolution of a wide variety of natural and synthetic rotenoidal compounds.
[Comparative study of cone-beam CT and spiral CT in measuring the length of styloid process].
Song, Y S; Liu, L F
2018-06-19
Objective: To compare the difference of measuring the length of styloid process between spiral CT with high resolution and cone-beam CT(CBCT). Methods: Five specimens (including 5 pairs of styloid processes) were selected randomly from the Anatomy Laboratory of Otolaryngology Department, all the specimens underwent spiral CT with high resolution and cone-beam CT retrospectively.With the original DICOM data, the styloid processes were shown in one plate by multiple plate reconstruction technique, and later the length of styloid processes of each specimen were measured separately by software NNT Viewer (to CBCT) or Osrix (to spiral CT with high resolution). Results: The length of styloid processes measured by CBCT and spiral CT was (26.8±5.5) mm and (27.1±5.4) mm respectively, and there was no statistical difference between the two groups. Conclusion: In respect of measuring the length of styloid process, the CBCT has the same value in clinical practice comparing to spiral CT with high resolution.
Hu, Shao-Qiang; Lü, Wen-Juan; Ma, Yan-Hua; Hu, Qin; Dong, Li-Jun; Chen, Xing-Guo
2013-01-01
Based on the investigation of the effect of microemulsion charge on the chiral separation, a new chiral separation method with MEEKC employing neutral microemulsion was established. The method used a microemulsion containing 3.0% (w/v) neutral surfactant Tween 20 and 0.8% (w/v, 30 mM) dibutyl l-tartrate in 40 mM sodium tetraborate buffer to separate the enantiomers of β-blockers. The effect of major parameters on the chiral separation was investigated. The applied voltage had little effect on the resolution, but the chiral separation could be improved by suppressing the EOF. Nine racemic β-blockers obtained relatively good enantioseparation after appropriate concentrations of tetradecyl trimethyl ammonium bromide were added into the microemulsion to suppress the EOF. These results were explained based on the analysis of the separation mechanism of the method and deduced separation equations. The resolution equation of the method was further elucidated. It was found that the fourth term in the resolution equation, an additional term compared to the conventional resolution equation for column chromatography, represents the ratio of the relative movement distance between the analyte and microemulsion droplets relative to the effective capillary length. It can be regarded as a correction for the effective capillary length. These findings are significant for the development of the theory of MEEKC and the development of new chiral MEEKC method. © 2012 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Malic Acid Carbon Dots: From Super-resolution Live-Cell Imaging to Highly Efficient Separation.
Zhi, Bo; Cui, Yi; Wang, Shengyang; Frank, Benjamin P; Williams, Denise N; Brown, Richard P; Melby, Eric S; Hamers, Robert J; Rosenzweig, Zeev; Fairbrother, D Howard; Orr, Galya; Haynes, Christy L
2018-06-15
As-synthesized malic acid carbon dots are found to possess photoblinking properties that are outstanding and superior compared to those of conventional dyes. Considering their excellent biocompatibility, malic acid carbon dots are suitable for super-resolution fluorescence localization microscopy under a variety of conditions, as we demonstrate in fixed and live trout gill epithelial cells. In addition, during imaging experiments, the so-called "excitation wavelength-dependent" emission was not observed for individual as-made malic acid carbon dots, which motivated us to develop a time-saving and high-throughput separation technique to isolate malic acid carbon dots into fractions of different particle size distributions using C 18 reversed-phase silica gel column chromatography. This post-treatment allowed us to determine how particle size distribution influences the optical properties of malic acid carbon dot fractions, that is, optical band gap energies and photoluminescence behaviors.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Schulz, T.; Remmele, T.; Korytov, M.
2014-01-21
Based on the evaluation of lattice parameter maps in aberration corrected high resolution transmission electron microscopy images, we propose a simple method that allows quantifying the composition and disorder of a semiconductor alloy at the unit cell scale with high accuracy. This is realized by considering, next to the out-of-plane, also the in-plane lattice parameter component allowing to separate the chemical composition from the strain field. Considering only the out-of-plane lattice parameter component not only yields large deviations from the true local alloy content but also carries the risk of identifying false ordering phenomena like formations of chains or platelets.more » Our method is demonstrated on image simulations of relaxed supercells, as well as on experimental images of an In{sub 0.20}Ga{sub 0.80}N quantum well. Principally, our approach is applicable to all epitaxially strained compounds in the form of quantum wells, free standing islands, quantum dots, or wires.« less
Eeltink, Sebastiaan; Wouters, Sam; Dores-Sousa, José Luís; Svec, Frantisek
2017-05-19
This review focuses on the preparation of organic polymer-based monolithic stationary phases and their application in the separation of biomolecules, including antibodies, intact proteins and protein isoforms, oligonucleotides, and protein digests. Column and material properties, and the optimization of the macropore structure towards kinetic performance are also discussed. State-of-the-art liquid chromatography-mass spectrometry biomolecule separations are reviewed and practical aspects such as ion-pairing agent selection and carryover are presented. Finally, advances in comprehensive two-dimensional LC separations using monolithic columns, in particular ion-exchange×reversed-phase and reversed-phase×reversed-phase LC separations conducted at high and low pH, are shown. Copyright © 2017 Elsevier B.V. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Shusterman, Jennifer A.
We are measuring freshly separated uranium samples using modern list mode (event-by-event) electronics with high resolution HPGe detectors to study the in-growth behaviors of uranium daughters’ gamma-rays. These data will show how we can use gamma-ray spectroscopy to determine the separation date for processed uranium. With this knowledge, one can obtain proper uranium isotope ratios using standard safeguards accountability software such as U-235 or MGAU.
Nakajima, Yoji; Arinami, Yuko; Yamamoto, Kiyoshi
2014-12-29
The usefulness of comprehensive two-dimensional gas chromatography (GC×GC) was demonstrated for the selective separation of fluorinated compounds from organic mixtures, such as kerosene/perfluorokerosene mixtures, pyrolysis products derived from polyethylene/ethylene-tetrafluoroethylene alternating copolymer mixture and poly[2-(perfluorohexyl)ethyl acrylate]. Perfluorocarbons were completely separated from hydrocarbons in the two-dimensional chromatogram. Fluorohydrocarbons in the pyrolysis products of polyethylene/ethylene-tetrafluoroethylene alternating copolymer mixture were selectively isolated from their hydrocarbon counterparts and regularly arranged according to their chain length and fluorine content in the two-dimensional chromatogram. A reliable structural analysis of the fluorohydrocarbons was achieved by combining effective GC×GC positional information with accurate mass spectral data obtained by high-resolution time-of-flight mass spectrometry (HRTOF-MS). 2-(Perfluorohexyl)ethyl acrylate monomer, dimer, and trimer as well as 2-(perfluorohexyl)ethyl alcohol in poly[2-(perfluorohexyl)ethyl acrylate] pyrolysis products were detected in the bottommost part of the two-dimensional chromatogram with separation from hydrocarbons possessing terminal structure information about the polymer, such as α-methylstyrene. Pyrolysis-GC×GC/HRTOF-MS appeared particularly suitable for the characterization of fluorinated polymer microstructures, such as monomer sequences and terminal groups. Copyright © 2014 Elsevier B.V. All rights reserved.
Yomogida, Yohei; Tanaka, Takeshi; Zhang, Minfang; Yudasaka, Masako; Wei, Xiaojun; Kataura, Hiromichi
2016-01-01
Single-chirality, single-wall carbon nanotubes are desired due to their inherent physical properties and performance characteristics. Here, we demonstrate a chromatographic separation method based on a newly discovered chirality-selective affinity between carbon nanotubes and a gel containing a mixture of the surfactants. In this system, two different selectivities are found: chiral-angle selectivity and diameter selectivity. Since the chirality of nanotubes is determined by the chiral angle and diameter, combining these independent selectivities leads to high-resolution single-chirality separation with milligram-scale throughput and high purity. Furthermore, we present efficient vascular imaging of mice using separated single-chirality (9,4) nanotubes. Due to efficient absorption and emission, blood vessels can be recognized even with the use of ∼100-fold lower injected dose than the reported value for pristine nanotubes. Thus, 1 day of separation provides material for up to 15,000 imaging experiments, which is acceptable for industrial use. PMID:27350127
Separation of negatively charged carbohydrates by capillary electrophoresis.
Linhardt, R J; Pervin, A
1996-01-12
Capillary electrophoresis (CE) has recently emerged as a highly promising technique consuming an extremely small amount of sample and capable of the rapid, high-resolution separation, characterization, and quantitation of analytes. CE has been used for the separation of biopolymers, including acidic carbohydrates. Since CE is basically an analytical method for ions, acidic carbohydrates that give anions in weakly acid, neutral, or alkaline media are often the direct objects of this method. The scope of this review is limited to the use of CE for the analysis of carbohydrates containing carboxylate, sulfate, and phosphate groups as well as neutral carbohydrates that have been derivatized to incorporate strongly acidic functionality, such as sulfonate groups.
Jilge, G; Unger, K K; Esser, U; Schäfer, H J; Rathgeber, G; Müller, W
1989-08-04
The linear solvent strength model of Snyder was applied to describe fast protein separations on 2.1-micron non-porous, silica-based strong anion exchangers. It was demonstrated on short columns packed with these anion exchangers that (i) a substantially higher resolution of proteins and nucleotides was obtained at gradient times of less than 5 min than on porous anion exchangers; (ii) the low external surface area of the non-porous anion exchanger is not a critical parameter in analytical separations and (iii) microgram-amounts of enzymes of high purity and full biological activity were isolated.
NASA Astrophysics Data System (ADS)
Ikeshima, D.; Yamazaki, D.; Yoshikawa, S.; Kanae, S.
2015-12-01
The specification of worldwide water body distribution is important for discovering hydrological cycle. Global 3-second Water Body Map (G3WBM) is a global scale map, which indicates the distribution of water body in 90m resolutions (http://hydro.iis.u-tokyo.ac.jp/~yamadai/G3WBM/index.html). This dataset was mainly built to identify the width of river channels, which is one of major uncertainties of continental-scale river hydrodynamics models. To survey the true width of the river channel, this water body map distinguish Permanent Water Body from Temporary Water Body, which means separating river channel and flood plain. However, rivers with narrower width, which is a major case in usual river, could not be observed in this map. To overcome this problem, updating the algorithm of G3WBM and enhancing the resolutions to 30m is the goal of this research. Although this 30m-resolution water body map uses similar algorithm as G3WBM, there are many technical issues attributed to relatively high resolutions. Those are such as lack of same high-resolution digital elevation map, or contamination problem of sub-pixel scale object on satellite acquired image, or invisibility of well-vegetated water body such as swamp. To manage those issues, this research used more than 30,000 satellite images of Landsat Global Land Survey (GLS), and lately distributed topography data of Shuttle Rader Topography Mission (SRTM) 1 arc-second (30m) digital elevation map. Also the effect of aerosol, which would scatter the sun reflectance and disturb the acquired result image, was considered. Due to these revises, the global water body distribution was established in more precise resolution.
NASA Astrophysics Data System (ADS)
Kiekens, Kelli C.; Talarico, Olivia; Barton, Jennifer K.
2018-02-01
A multimodality endoscope system has been designed for early detection of ovarian cancer. Multiple illumination and detection systems must be integrated in a compact, stable, transportable configuration to meet the requirements of a clinical setting. The proximal configuration presented here supports visible light navigation with a large field of view and low resolution, high resolution multiphoton microscopy (MPM), and high resolution optical coherence microscopy (OCM). All modalities are integrated into a single optical system in the endoscope. The system requires two light sources: a green laser for visible light navigation and a compact fiber based femtosecond laser for MPM and OCM. Using an inline wavelength division multiplexer, the two sources are combined into a single mode fiber. To accomplish OCM, a fiber coupler is used to separate the femtosecond laser into a reference arm and signal arm. The reflected reference arm and the signal from the sample are interfered and wavelength separated by a reflection grating and detected using a linear array. The MPM signal is collimated and goes through a series of filters to separate the 2nd and 3rd harmonics as well as twophoton excitation florescence (2PEF) and 3PEF. Each signal is independently detected on a photo multiplier tube and amplified. The visible light is collected by multiple high numerical aperture fibers at the endoscope tip which are bundled into one SMA adapter at the proximal end and connected to a photodetector. This integrated system design is compact, efficient and meets both optical and mechanical requirements for clinical applications.
NASA Astrophysics Data System (ADS)
Pandiyan, Vimal Prabhu; Khare, Kedar; John, Renu
2017-09-01
A constrained optimization approach with faster convergence is proposed to recover the complex object field from a near on-axis digital holography (DH). We subtract the DC from the hologram after recording the object beam and reference beam intensities separately. The DC-subtracted hologram is used to recover the complex object information using a constrained optimization approach with faster convergence. The recovered complex object field is back propagated to the image plane using the Fresnel back-propagation method. The results reported in this approach provide high-resolution images compared with the conventional Fourier filtering approach and is 25% faster than the previously reported constrained optimization approach due to the subtraction of two DC terms in the cost function. We report this approach in DH and digital holographic microscopy using the U.S. Air Force resolution target as the object to retrieve the high-resolution image without DC and twin image interference. We also demonstrate the high potential of this technique in transparent microelectrode patterned on indium tin oxide-coated glass, by reconstructing a high-resolution quantitative phase microscope image. We also demonstrate this technique by imaging yeast cells.
Final Report: High Spectral Resolution Atmospheric Emitted Radiance Studies with the ARM UAV
DOE Office of Scientific and Technical Information (OSTI.GOV)
Revercomb, Henry E.
1999-12-31
The active participation in the Atmospheric Radiation Measurement (ARM) Unmanned Airborne Vehicle (UAV) science team that was anticipated in the grant proposal was indefinitely delayed after the first year due to a programmatic decision to exclude the high spectral resolution observations from the existing ARM UAV program. However, this report shows that substantial progress toward the science objectives of this grant have made with the help of separate funding from NASA and other agencies. In the four year grant period (including time extensions), a new high spectral resolution instrument has been flown and has successfully demonstrated the ability to obtainmore » measurements of the type needed in the conduct of this grant. In the near term, the third water vapor intensive observing period (WVIOP-3) in October 2000 will provide an opportunity to bring the high spectral resolution observations of upwelling radiance into the ARM program to complement the downwelling radiance observations from the existing ARM AERI instruments. We look forward to a time when the ARM-UAV program is able to extend its scope to include the capability for making these high spectral resolution measurements from a UAV platform.« less
Obtaining high-resolution velocity spectra using weighted semblance
NASA Astrophysics Data System (ADS)
Ebrahimi, Saleh; Kahoo, Amin Roshandel; Porsani, Milton J.; Kalateh, Ali Nejati
2017-02-01
Velocity analysis employs coherency measurement along a hyperbolic or non-hyperbolic trajectory time window to build velocity spectra. Accuracy and resolution are strictly related to the method of coherency measurements. Semblance, the most common coherence measure, has poor resolution velocity which affects one's ability to distinguish and pick distinct peaks. Increase the resolution of the semblance velocity spectra causes the accuracy of estimated velocity for normal moveout correction and stacking is improved. The low resolution of semblance spectra depends on its low sensitivity to velocity changes. In this paper, we present a new weighted semblance method that ensures high-resolution velocity spectra. To increase the resolution of semblance spectra, we introduce two weighting functions based on the first to second singular values ratio of the time window and the position of the seismic wavelet in the time window to the semblance equation. We test the method on both synthetic and real field data to compare the resolution of weighted and conventional semblance methods. Numerical examples with synthetic and real seismic data indicate that the new proposed weighted semblance method provides higher resolution than conventional semblance and can separate the reflectors which are mixed in the semblance spectrum.
Multibeam monopulse radar for airborne sense and avoid system
NASA Astrophysics Data System (ADS)
Gorwara, Ashok; Molchanov, Pavlo
2016-10-01
The multibeam monopulse radar for Airborne Based Sense and Avoid (ABSAA) system concept is the next step in the development of passive monopulse direction finder proposed by Stephen E. Lipsky in the 80s. In the proposed system the multibeam monopulse radar with an array of directional antennas is positioned on a small aircaraft or Unmanned Aircraft System (UAS). Radar signals are simultaneously transmitted and received by multiple angle shifted directional antennas with overlapping antenna patterns and the entire sky, 360° for both horizontal and vertical coverage. Digitizing of amplitude and phase of signals in separate directional antennas relative to reference signals provides high-accuracy high-resolution range and azimuth measurement and allows to record real time amplitude and phase of reflected from non-cooperative aircraft signals. High resolution range and azimuth measurement provides minimal tracking errors in both position and velocity of non-cooperative aircraft and determined by sampling frequency of the digitizer. High speed sampling with high-accuracy processor clock provides high resolution phase/time domain measurement even for directional antennas with wide Field of View (FOV). Fourier transform (frequency domain processing) of received radar signals provides signatures and dramatically increases probability of detection for non-cooperative aircraft. Steering of transmitting power and integration, correlation period of received reflected signals for separate antennas (directions) allows dramatically decreased ground clutter for low altitude flights. An open architecture, modular construction allows the combination of a radar sensor with Automatic Dependent Surveillance - Broadcast (ADS-B), electro-optic, acoustic sensors.
Diving-flight aerodynamics of a peregrine falcon (Falco peregrinus).
Ponitz, Benjamin; Schmitz, Anke; Fischer, Dominik; Bleckmann, Horst; Brücker, Christoph
2014-01-01
This study investigates the aerodynamics of the falcon Falco peregrinus while diving. During a dive peregrines can reach velocities of more than 320 km h⁻¹. Unfortunately, in freely roaming falcons, these high velocities prohibit a precise determination of flight parameters such as velocity and acceleration as well as body shape and wing contour. Therefore, individual F. peregrinus were trained to dive in front of a vertical dam with a height of 60 m. The presence of a well-defined background allowed us to reconstruct the flight path and the body shape of the falcon during certain flight phases. Flight trajectories were obtained with a stereo high-speed camera system. In addition, body images of the falcon were taken from two perspectives with a high-resolution digital camera. The dam allowed us to match the high-resolution images obtained from the digital camera with the corresponding images taken with the high-speed cameras. Using these data we built a life-size model of F. peregrinus and used it to measure the drag and lift forces in a wind-tunnel. We compared these forces acting on the model with the data obtained from the 3-D flight path trajectory of the diving F. peregrinus. Visualizations of the flow in the wind-tunnel uncovered details of the flow structure around the falcon's body, which suggests local regions with separation of flow. High-resolution pictures of the diving peregrine indicate that feathers pop-up in the equivalent regions, where flow separation in the model falcon occurred.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lanekoff, Ingela T.; Burnum-Johnson, Kristin E.; Thomas, Mathew
Nanospray desorption electrospray ionization (nano-DESI) combined with tandem mass spectrometry (MS/MS), high-resolution mass analysis (m/m=17,500 at m/z 200), and rapid spectral acquisition enabled simultaneous imaging and identification of more than 300 molecules from 92 selected m/z windows (± 1 Da) with a spatial resolution of better than 150 um. Uterine sections of implantation sites on day 6 of pregnancy were analyzed in the ambient environment without any sample pre-treatment. MS/MS imaging was performed by scanning the sample under the nano-DESI probe at 10 um/s while acquiring higher-energy collision-induced dissociation (HCD) spectra for a targeted inclusion list of 92 m/z valuesmore » at a rate of ~6.3 spectra/s. Molecular ions and their corresponding fragments, separated using high-resolution mass analysis, were assigned based on accurate mass measurement. Using this approach, we were able to identify and image both abundant and low-abundance isobaric species within each m/z window. MS/MS analysis enabled efficient separation and identification of isobaric sodium and potassium adducts of phospholipids. Furthermore, we identified several metabolites associated with early pregnancy and obtained the first 2D images of these molecules.« less
Monte Carlo study of x-ray cross talk in a variable resolution x-ray detector
NASA Astrophysics Data System (ADS)
Melnyk, Roman; DiBianca, Frank A.
2003-06-01
A variable resolution x-ray (VRX) detector provides a great increase in the spatial resolution of a CT scanner. An important factor that limits the spatial resolution of the detector is x-ray cross-talk. A theoretical study of the x-ray cross-talk is presented in this paper. In the study, two types of the x-ray cross-talk were considered: inter-cell and inter-arm cross-talk. Both types of the x-ray cross-talk were simulated, using the Monte Carlo method, as functions of the detector field of view (FOV). The simulation was repeated for lead and tungsten separators between detector cells. The inter-cell x-ray cross-talk was maximum at the 34-36 cm FOV, but it was low at small and the maximum FOVs. The inter-arm x-ray cross-talk was high at small and medium FOVs, but it was greatly reduced when variable width collimators were placed on the front surfaces of the detector. The inter-cell, but not inter-arm, x-ray cross-talk was lower for tungsten than for lead separators. From the results, x-ray cross-talk in a VRX detector can be minimized by imaging all objects between 24 cm and 40 cm in diameter with the 40 cm FOV, using tungsten separators, and placing variable width collimators in front of the detector.
The Chorus Conflict and Loss of Separation Resolution Algorithms
NASA Technical Reports Server (NTRS)
Butler, Ricky W.; Hagen, George E.; Maddalon, Jeffrey M.
2013-01-01
The Chorus software is designed to investigate near-term, tactical conflict and loss of separation detection and resolution concepts for air traffic management. This software is currently being used in two different problem domains: en-route self- separation and sense and avoid for unmanned aircraft systems. This paper describes the core resolution algorithms that are part of Chorus. The combination of several features of the Chorus program distinguish this software from other approaches to conflict and loss of separation resolution. First, the program stores a history of state information over time which enables it to handle communication dropouts and take advantage of previous input data. Second, the underlying conflict algorithms find resolutions that solve the most urgent conflict, but also seek to prevent secondary conflicts with the other aircraft. Third, if the program is run on multiple aircraft, and the two aircraft maneuver at the same time, the result will be implicitly co-ordinated. This implicit coordination property is established by ensuring that a resolution produced by Chorus will comply with a mathematically-defined criteria whose correctness has been formally verified. Fourth, the program produces both instantaneous solutions and kinematic solutions, which are based on simple accel- eration models. Finally, the program provides resolutions for recovery from loss of separation. Different versions of this software are implemented as Java and C++ software programs, respectively.
Yang, Xiaohong; Li, Changxia; Qi, Meiling; Qu, Liangti
2016-08-19
This work presents the separation performance of graphene-ZIF8 (G-Z) composite material as stationary phase for capillary gas chromatography (GC). The G-Z stationary phase achieved high column efficiency of 5000 plates/m determined by n-dodecane (k=1.22) at 120°C and showed weakly polar nature. Importantly, it exhibited high selectivity and resolving capability for branched alkane isomers and aromatic positional isomers, showing clear advantages over the reported neat graphene and ZIF8. In addition, it attained high resolution for geometric cis-/trans-isomers. The G-Z column exhibited good column thermal stability up to 300°C and column repeatability with RSD values of retention times in the range of 0.01-0.19% for intra-day, 0.05-0.88% for inter-day and 0.66-5.6% for between-column, respectively, Moreover, the G-Z column was employed for the determination of minor impurity isomers in real reagent samples, which demonstrates its promising potential in GC applications. Copyright © 2016 Elsevier B.V. All rights reserved.
Optimal and fast E/B separation with a dual messenger field
NASA Astrophysics Data System (ADS)
Kodi Ramanah, Doogesh; Lavaux, Guilhem; Wandelt, Benjamin D.
2018-05-01
We adapt our recently proposed dual messenger algorithm for spin field reconstruction and showcase its efficiency and effectiveness in Wiener filtering polarized cosmic microwave background (CMB) maps. Unlike conventional preconditioned conjugate gradient (PCG) solvers, our preconditioner-free technique can deal with high-resolution joint temperature and polarization maps with inhomogeneous noise distributions and arbitrary mask geometries with relative ease. Various convergence diagnostics illustrate the high quality of the dual messenger reconstruction. In contrast, the PCG implementation fails to converge to a reasonable solution for the specific problem considered. The implementation of the dual messenger method is straightforward and guarantees numerical stability and convergence. We show how the algorithm can be modified to generate fluctuation maps, which, combined with the Wiener filter solution, yield unbiased constrained signal realizations, consistent with observed data. This algorithm presents a pathway to exact global analyses of high-resolution and high-sensitivity CMB data for a statistically optimal separation of E and B modes. It is therefore relevant for current and next-generation CMB experiments, in the quest for the elusive primordial B-mode signal.
High-resolution γ-ray spectroscopy: a versatile tool for nuclear β-decay studies at TRIUMF-ISAC
NASA Astrophysics Data System (ADS)
Ball, G. C.; Achtzehn, T.; Albers, D.; Khalili, J. S. Al; Andreoiu, C.; Andreyev, A.; Ashley, S. F.; Austin, R. A. E.; Becker, J. A.; Bricault, P.; Chan, S.; Chakrawarthy, R. S.; Churchman, R.; Coombes, H.; Cunningham, E. S.; Daoud, J.; Dombsky, M.; Drake, T. E.; Eshpeter, B.; Finlay, P.; Garrett, P. E.; Geppert, C.; Grinyer, G. F.; Hackman, G.; Hanemaayer, V.; Hyland, B.; Jones, G. A.; Koopmans, K. A.; Kulp, W. D.; Lassen, J.; Lavoie, J. P.; Leslie, J. R.; Litvinov, Y.; Macdonald, J. A.; Mattoon, C.; Melconian, D.; Morton, A. C.; Osborne, C. J.; Pearson, C. J.; Pearson, M.; Phillips, A. A.; Ressler, J. J.; Sarazin, F.; Schumaker, M. A.; Schwarzenberg, J.; Scraggs, H. C.; Smith, M. B.; Svensson, C. E.; Valiente-Dobon, J. J.; Waddington, J. C.; Walker, P. M.; Wendt, K.; Williams, S. J.; Wood, J. L.; Zganjar, E. F.
2005-10-01
High-resolution γ-ray spectroscopy is essential to fully exploit the unique, high-quality beams available at the next generation of radioactive ion beam facilities such as the TRIUMF isotope separator and accelerator (ISAC). The 8π spectrometer, which consists of 20 Compton-suppressed HPGe detectors, has recently been reconfigured for a vigorous research programme in weak interaction and nuclear structure physics. With the addition of a variety of ancillary detectors it has become the world's most powerful device dedicated to β-decay studies. This paper provides a brief overview of the apparatus and highlights from recent experiments.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hwang, Ji-Gwang; Kim, Eun-San, E-mail: eskim1@knu.ac.kr; Hatanaka, Kichiji
2015-03-15
The rare isotope beam separator with a large angular acceptance and energy acceptance is essential for examining the characteristics of unstable nuclei and exotic nuclear reactions. Careful design, however, is required to compensate for the effects of high order aberrations induced by large aperture magnets, which are used to collect rare isotopes obtained from a high energy primary heavy-ion beam hitting a target. In order to minimize the effect of the high order aberration, the optics was based on the mirror symmetry optics, which provides smaller high order aberrations, for the separation of {sup 132}Sn produced by a fission reactionmore » between the primary beam of {sup 238}U and a relatively thick Pb target. The designed optics provides energy acceptance (full), horizontal angular acceptance, and vertical acceptance of approximately 8%, 60 mrad, and 130 mrad, respectively.« less
Hwang, Ji-Gwang; Kim, Eun-San; Hatanaka, Kichiji
2015-03-01
The rare isotope beam separator with a large angular acceptance and energy acceptance is essential for examining the characteristics of unstable nuclei and exotic nuclear reactions. Careful design, however, is required to compensate for the effects of high order aberrations induced by large aperture magnets, which are used to collect rare isotopes obtained from a high energy primary heavy-ion beam hitting a target. In order to minimize the effect of the high order aberration, the optics was based on the mirror symmetry optics, which provides smaller high order aberrations, for the separation of (132)Sn produced by a fission reaction between the primary beam of (238)U and a relatively thick Pb target. The designed optics provides energy acceptance (full), horizontal angular acceptance, and vertical acceptance of approximately 8%, 60 mrad, and 130 mrad, respectively.
NASA Astrophysics Data System (ADS)
Hwang, Ji-Gwang; Kim, Eun-San; Hatanaka, Kichiji
2015-03-01
The rare isotope beam separator with a large angular acceptance and energy acceptance is essential for examining the characteristics of unstable nuclei and exotic nuclear reactions. Careful design, however, is required to compensate for the effects of high order aberrations induced by large aperture magnets, which are used to collect rare isotopes obtained from a high energy primary heavy-ion beam hitting a target. In order to minimize the effect of the high order aberration, the optics was based on the mirror symmetry optics, which provides smaller high order aberrations, for the separation of 132Sn produced by a fission reaction between the primary beam of 238U and a relatively thick Pb target. The designed optics provides energy acceptance (full), horizontal angular acceptance, and vertical acceptance of approximately 8%, 60 mrad, and 130 mrad, respectively.
NASA Astrophysics Data System (ADS)
Hui, Yu; Rinaldi, Matteo
2013-03-01
This letter presents a miniaturized, fast, and high resolution thermal detector, in which a heat absorbing element and a temperature sensitive microelectromechanical system (MEMS) resonator are perfectly overlapped but separated by a microscale air gap. This unique design guarantees efficient and fast (˜10s μs) heat transfer from the absorbing element to the temperature sensitive device and enables high resolution thermal power detection (˜nW), thanks to the low noise performance of the high quality factor (Q = 2305) MEMS resonant thermal detector. A device prototype was fabricated, and its detection capabilities were experimentally characterized. A thermal power as low as 150 nW was experimentally measured, and a noise equivalent power of 6.5 nW/Hz1/2 was extracted. A device thermal time constant of only 350 μs was measured (smallest ever reported for MEMS resonant thermal detectors), indicating the great potential of the proposed technology for the implementation of ultra-fast and high resolution un-cooled resonant thermal detectors.
Hydrological landscape analysis based on digital elevation data
NASA Astrophysics Data System (ADS)
Seibert, J.; McGlynn, B.; Grabs, T.; Jensco, K.
2008-12-01
Topography is a major factor controlling both hydrological and soil processes at the landscape scale. While this is well-accepted qualitatively, quantifying relationships between topography and spatial variations of hydrologically relevant variables at the landscape scale still remains a challenging research topic. In this presentation, we describe hydrological landscape analysis HLA) as a way to derive relevant topographic indicies to describe the spatial variations of hydrological variables at the landscape scale. We demonstrate our HLA approach with four high-resolution digital elevation models (DEMs) from Sweden, Switzerland and Montana (USA). To investigate scale effects HLA metrics, we compared DEMs of different resolutions. These LiDAR-derived DEMs of 3m, 10m, and 30m, resolution represent catchments of ~ 5 km2 ranging from low to high relief. A central feature of HLA is the flowpath-based analysis of topography and the separation of hillslopes, riparian areas, and the stream network. We included the following metrics: riparian area delineation, riparian buffer potential, separation of stream inflows into right and left bank components, travel time proxies based on flowpath distances and gradients to the channel, and as a hydrologic similarity to the hypsometric curve we suggest the distribution of elevations above the stream network (computed based on the location where a certain flow pathway enters the stream). Several of these indices depended clearly on DEM resolution, whereas this effect was minor for others. While the hypsometric curves all were S-shaped the 'hillslope-hypsometric curves' had the shape of a power function with exponents less than 1. In a similar way we separated flow pathway lengths and gradients between hillslopes and streams and compared a topographic travel time proxy, which was based on the integration of gradients along the flow pathways. Besides the comparison of HLA-metrics for different catchments and DEM resolutions we present examples from experimental catchments to illustrate how these metrics can be used to describe catchment scale hydrological processes and provide context for plot scale observations.
Li, Jun; Gao, Ruixi; Zhao, Dan; Huang, Xianju; Chen, Yu; Gan, Fei; Liu, Hui; Yang, Guangzhong
2017-08-18
Xanthochymol (XCM) and guttiferone E (GFE), a pair of π bond benzophenone isomers from Garcinia xanthochymus, were once reported to be difficult or impossible to separate. The present study reports the successful separation of these two isomers through high performance liquid chromatography (HPLC), as well as their effective isolation using high speed counter-current chromatography (HSCCC) based on the silver nitrate (AgNO 3 ) coordination reaction. First, an effective HPLC separation system was developed, achieving a successful baseline separation with resolution of 2.0. Based on the partition coefficient (K) resolved by HPLC, the two-phase solvent system was determined as n-hexane, methanol and water with the uncommon volume ratio of 4:6:1. A crude extract of Garcinia xanthochymus (0.2g) was purified by normal HSCCC and refined with AgNO 3 -HSCCC. Monomers of XCM and GFE were identified by HPLC, mass spectrometry (MS) and nuclear magnetic resonance (NMR). The results demonstrate the separation and isolation of π bond benzophenone isomers using ordinary octadecyl silane (C 18 ) columns and HSCCC. Copyright © 2017 Elsevier B.V. All rights reserved.
Improving axial resolution in confocal microscopy with new high refractive index mounting media.
Fouquet, Coralie; Gilles, Jean-François; Heck, Nicolas; Dos Santos, Marc; Schwartzmann, Richard; Cannaya, Vidjeacoumary; Morel, Marie-Pierre; Davidson, Robert Stephen; Trembleau, Alain; Bolte, Susanne
2015-01-01
Resolution, high signal intensity and elevated signal to noise ratio (SNR) are key issues for biologists who aim at studying the localisation of biological structures at the cellular and subcellular levels using confocal microscopy. The resolution required to separate sub-cellular biological structures is often near to the resolving power of the microscope. When optimally used, confocal microscopes may reach resolutions of 180 nm laterally and 500 nm axially, however, axial resolution in depth is often impaired by spherical aberration that may occur due to refractive index mismatches. Spherical aberration results in broadening of the point-spread function (PSF), a decrease in peak signal intensity when imaging in depth and a focal shift that leads to the distortion of the image along the z-axis and thus in a scaling error. In this study, we use the novel mounting medium CFM3 (Citifluor Ltd., UK) with a refractive index of 1.518 to minimize the effects of spherical aberration. This mounting medium is compatible with most common fluorochromes and fluorescent proteins. We compare its performance with established mounting media, harbouring refractive indices below 1.500, by estimating lateral and axial resolution with sub-resolution fluorescent beads. We show furthermore that the use of the high refractive index media renders the tissue transparent and improves considerably the axial resolution and imaging depth in immuno-labelled or fluorescent protein labelled fixed mouse brain tissue. We thus propose to use those novel high refractive index mounting media, whenever optimal axial resolution is required.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Walker, Katherine L.; Judenhofer, Martin S.; Cherry, Simon R.
In preclinical single-photon emission computed tomography (SPECT) system development the primary objective has been to improve spatial resolution by using novel parallel-hole or multi-pinhole collimator geometries. Furthermore, such high-resolution systems have relatively poor sensitivity (typically 0.01% to 0.1%). In contrast, a system that does not use collimators can achieve very high-sensitivity. Here we present a high-sensitivity un-collimated detector single-photon imaging (UCD-SPI) system for the imaging of both small animals and plants. This scanner consists of two thin, closely spaced, pixelated scintillator detectors that use NaI(Tl), CsI(Na), or BGO. The performance of the system has been characterized by measuring sensitivity, spatialmore » resolution, linearity, detection limits, and uniformity. With 99mTc (140 keV) at the center of the field of view (20 mm scintillator separation), the sensitivity was measured to be 31.8% using the NaI(Tl) detectors and 40.2% with CsI(Na). The best spatial resolution (FWHM when the image formed as the geometric mean of the two detector heads, 20 mm scintillator separation) was 19.0 mm for NaI(Tl) and 11.9 mm for CsI(Na) at 140 keV, and 19.5 mm for BGO at 1116 keV, which is somewhat degraded compared to the cm-scale resolution obtained with only one detector head and a close source. The quantitative accuracy of the system’s linearity is better than 2% with detection down to activity levels of 100 nCi. Two in vivo animal studies (a renal scan using 99mTc MAG-3 and a thyroid scan with 123I) and one plant study (a 99mTcO 4- xylem transport study) highlight the unique capabilities of this UCD-SPI system. From the renal scan, we observe approximately a one thousand-fold increase in sensitivity compared to the Siemens Inveon SPECT/CT scanner. In conclusion, UCD-SPI is useful for many imaging tasks that do not require excellent spatial resolution, such as high-throughput screening applications, simple radiotracer uptake studies in tumor xenografts, dynamic studies where very good temporal resolution is critical, or in planta imaging of radioisotopes at low concentrations.« less
Turbine component casting core with high resolution region
Kamel, Ahmed; Merrill, Gary B.
2014-08-26
A hollow turbine engine component with complex internal features can include a first region and a second, high resolution region. The first region can be defined by a first ceramic core piece formed by any conventional process, such as by injection molding or transfer molding. The second region can be defined by a second ceramic core piece formed separately by a method effective to produce high resolution features, such as tomo lithographic molding. The first core piece and the second core piece can be joined by interlocking engagement that once subjected to an intermediate thermal heat treatment process thermally deform to form a three dimensional interlocking joint between the first and second core pieces by allowing thermal creep to irreversibly interlock the first and second core pieces together such that the joint becomes physically locked together providing joint stability through thermal processing.
Meckes, Brian; Arce, Fernando Teran; Connelly, Laura S.; Lal, Ratnesh
2014-01-01
Biological membranes contain ion channels, which are nanoscale pores allowing controlled ionic transport and mediating key biological functions underlying normal/abnormal living. Synthetic membranes with defined pores are being developed to control various processes, including filtration of pollutants, charge transport for energy storage, and separation of fluids and molecules. Although ionic transport (currents) can be measured with single channel resolution, imaging their structure and ionic currents simultaneously is difficult. Atomic force microscopy enables high resolution imaging of nanoscale structures and can be modified to measure ionic currents simultaneously. Moreover, the ionic currents can also be used to image structures. A simple method for fabricating conducting AFM cantilevers to image pore structures at high resolution is reported. Tungsten microwires with nanoscale tips are insulated except at the apex. This allows simultaneous imaging via cantilever deflections in normal AFM force feedback mode as well as measuring localized ionic currents. These novel probes measure ionic currents as small as picoampere while providing nanoscale spatial resolution surface topography and is suitable for measuring ionic currents and conductance of biological ion channels. PMID:24663394
Automated Conflict Resolution, Arrival Management and Weather Avoidance for ATM
NASA Technical Reports Server (NTRS)
Erzberger, H.; Lauderdale, Todd A.; Chu, Yung-Cheng
2010-01-01
The paper describes a unified solution to three types of separation assurance problems that occur in en-route airspace: separation conflicts, arrival sequencing, and weather-cell avoidance. Algorithms for solving these problems play a key role in the design of future air traffic management systems such as NextGen. Because these problems can arise simultaneously in any combination, it is necessary to develop integrated algorithms for solving them. A unified and comprehensive solution to these problems provides the foundation for a future air traffic management system that requires a high level of automation in separation assurance. The paper describes the three algorithms developed for solving each problem and then shows how they are used sequentially to solve any combination of these problems. The first algorithm resolves loss-of-separation conflicts and is an evolution of an algorithm described in an earlier paper. The new version generates multiple resolutions for each conflict and then selects the one giving the least delay. Two new algorithms, one for sequencing and merging of arrival traffic, referred to as the Arrival Manager, and the other for weather-cell avoidance are the major focus of the paper. Because these three problems constitute a substantial fraction of the workload of en-route controllers, integrated algorithms to solve them is a basic requirement for automated separation assurance. The paper also reviews the Advanced Airspace Concept, a proposed design for a ground-based system that postulates redundant systems for separation assurance in order to achieve both high levels of safety and airspace capacity. It is proposed that automated separation assurance be introduced operationally in several steps, each step reducing controller workload further while increasing airspace capacity. A fast time simulation was used to determine performance statistics of the algorithm at up to 3 times current traffic levels.
NASA Astrophysics Data System (ADS)
Bonin, J. A.; Chambers, D. P.
2015-09-01
Mass change over Greenland can be caused by either changes in the glacial dynamic mass balance (DMB) or the surface mass balance (SMB). The GRACE satellite gravity mission cannot directly separate the two physical causes because it measures the sum of the entire mass column with limited spatial resolution. We demonstrate one theoretical way to indirectly separate cumulative SMB from DMB with GRACE, using a least squares inversion technique with knowledge of the location of the glaciers. However, we find that the limited 60 × 60 spherical harmonic representation of current GRACE data does not provide sufficient resolution to adequately accomplish the task. We determine that at a maximum degree/order of 90 × 90 or above, a noise-free gravity measurement could theoretically separate the SMB from DMB signals. However, current GRACE satellite errors are too large at present to separate the signals. A noise reduction of a factor of 10 at a resolution of 90 × 90 would provide the accuracy needed for the interannual cumulative SMB and DMB to be accurately separated.
NASA Astrophysics Data System (ADS)
Bonin, J. A.; Chambers, D. P.
2015-02-01
Mass change over Greenland can be caused by either changes in the glacial mass balance (GMB) or the precipitation-based surface mass balance (SMB). The GRACE satellite gravity mission cannot directly separate the two physical causes because it measures the sum of the entire mass column with limited spatial resolution. We demonstrate one theoretical way to indirectly separate SMB from GMB with GRACE, using a least squares inversion technique with knowledge of the location of the glacier. However, we find that the limited 60 × 60 spherical harmonic representation of current GRACE data does not provide sufficient resolution to adequately accomplish the task. We determine that at a maximum degree/order of 90 × 90 or above, a noise-free gravity measurement could theoretically separate the SMB from GMB signals. However, current GRACE satellite errors are too large at present to separate the signals. A noise reduction of a factor of 9 at a resolution of 90 × 90 would provide the accuracy needed for the interannual SMB and GMB to be accurately separated.
de Souza Figueiredo, Fabiana; Celano, Rita; de Sousa Silva, Danila; das Neves Costa, Fernanda; Hewitson, Peter; Ignatova, Svetlana; Piccinelli, Anna Lisa; Rastrelli, Luca; Guimarães Leitão, Suzana; Guimarães Leitão, Gilda
2017-01-20
Ampelozizyphus amazonicus Ducke (Rhamnaceae), a medicinal plant used to prevent malaria, is a climbing shrub, native to the Amazonian region, with jujubogenin glycoside saponins as main compounds. The crude extract of this plant is too complex for any kind of structural identification, and HPLC separation was not sufficient to resolve this issue. Therefore, the aim of this work was to obtain saponin enriched fractions from the bark ethanol extract by countercurrent chromatography (CCC) for further isolation and identification/characterisation of the major saponins by HPLC and MS. The butanol extract was fractionated by CCC with hexane - ethyl acetate - butanol - ethanol - water (1:6:1:1:6; v/v) solvent system yielding 4 group fractions. The collected fractions were analysed by UHPLC-HRMS (ultra-high-performance liquid chromatography/high resolution accurate mass spectrometry) and MS n . Group 1 presented mainly oleane type saponins, and group 3 showed mainly jujubogenin glycosides, keto-dammarane type triterpene saponins and saponins with C 31 skeleton. Thus, CCC separated saponins from the butanol-rich extract by skeleton type. A further purification of group 3 by CCC (ethyl acetate - ethanol - water (1:0.2:1; v/v)) and HPLC-RI was performed in order to obtain these unusual aglycones in pure form. Copyright © 2016 Elsevier B.V. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ari Palczewski, Rongli Geng, Grigory Eremeev
2011-07-01
We designed and built two high resolution (0.6-0.55mm special resolution [1.1-1.2mm separation]) thermometry arrays prototypes out of the Allen Bradley 90-120 ohm 1/8 watt resistor to measure surface temperature profiles on SRF cavities. One array was designed to be physically flexible and conform to any location on a SRF cavity; the other was modeled after the common G-10/stycast 2850 thermometer and designed to fit on the equator of an ILC (Tesla 1.3GHz) SRF cavity. We will discuss the advantages and disadvantages of each array and their construction. In addition we will present a case study of the arrays performance onmore » a real SRF cavity TB9NR001. TB9NR001 presented a unique opportunity to test the performance of each array as it contained a dual (4mm separation) cat eye defect which conventional methods such as OST (Oscillating Superleak second-sound Transducers) and full coverage thermometry mapping were unable to distinguish between. We will discuss the new arrays ability to distinguish between the two defects and their preheating performance.« less
NASA Technical Reports Server (NTRS)
Berendes, Todd; Sengupta, Sailes K.; Welch, Ron M.; Wielicki, Bruce A.; Navar, Murgesh
1992-01-01
A semiautomated methodology is developed for estimating cumulus cloud base heights on the basis of high spatial resolution Landsat MSS data, using various image-processing techniques to match cloud edges with their corresponding shadow edges. The cloud base height is then estimated by computing the separation distance between the corresponding generalized Hough transform reference points. The differences between the cloud base heights computed by these means and a manual verification technique are of the order of 100 m or less; accuracies of 50-70 m may soon be possible via EOS instruments.
NASA Technical Reports Server (NTRS)
King, James D.
2004-01-01
Using high resolution transmission electron images of carbon nanotubes and carbon particles, we are able to use image analysis program to determine several carbon fringe properties, including length, separation, curvature and orientation. Results are shown in the form of histograms for each of those quantities. The combination of those measurements can give a better indication of the graphic structure within nanotubes and particles of carbon and can distinguish carbons based upon fringe properties. Carbon with longer, straighter and closer spaced fringes are considered graphite, while amorphous carbon contain shorter, less structured fringes.
Employing unmanned aerial vehicle to monitor the health condition of wind turbines
NASA Astrophysics Data System (ADS)
Huang, Yishuo; Chiang, Chih-Hung; Hsu, Keng-Tsang; Cheng, Chia-Chi
2018-04-01
Unmanned aerial vehicle (UAV) can gather the spatial information of huge structures, such as wind turbines, that can be difficult to obtain with traditional approaches. In this paper, the UAV used in the experiments is equipped with high resolution camera and thermal infrared camera. The high resolution camera can provide a series of images with resolution up to 10 Megapixels. Those images can be used to form the 3D model using the digital photogrammetry technique. By comparing the 3D scenes of the same wind turbine at different times, possible displacement of the supporting tower of the wind turbine, caused by ground movement or foundation deterioration may be determined. The recorded thermal images are analyzed by applying the image segmentation methods to the surface temperature distribution. A series of sub-regions are separated by the differences of the surface temperature. The high-resolution optical image and the segmented thermal image are fused such that the surface anomalies are more easily identified for wind turbines.
Analysis of high-resolution spectra from a hybrid interferometric/dispersive spectrometer
Ko, Phyllis; Scott, Jill R.; Jovanovic, Igor
2015-09-05
To fully take advantage of a low-cost, small footprint hybrid interferometric/dispersive spectrometer, a math- ematical reconstruction technique was developed to accurately capture the high-resolution and relative peak intensities from complex patterns. A Fabry-Perot etalon was coupled to a Czerny-Turner spectrometer, in- creasing spectral resolution by an order of magnitude without the commensurate increase in spectrometer size. Measurement of the industry standard Hg 313.1555/313.1844 nm doublet yielded a ratio of 0.682 with 1.8%error, which agreed well with an independent measurement and literature values. The doublet separation (29 pm), is similar to the U isotope shift (25 pm) at 424.437 nm thatmore » is of interest to monitoring nuclear nonpro-liferation activities. Additionally, the technique was applied to a LIBS measurement of the mineral cinnabar (HgS) and resulted in a ratio of 0.681. In addition, this reconstruction method could enable significantly smaller, portable high-resolution instruments with isotopic specificity, benefiting a variety of spectroscopic applications.« less
NASA Astrophysics Data System (ADS)
Geib, Timon; Sleno, Lekha; Hall, Rabea A.; Stokes, Caroline S.; Volmer, Dietrich A.
2016-08-01
We describe a systematic comparison of high and low resolution LC-MS/MS assays for quantification of 25-hydroxyvitamin D3 in human serum. Identical sample preparation, chromatography separations, electrospray ionization sources, precursor ion selection, and ion activation were used; the two assays differed only in the implemented final mass analyzer stage; viz. high resolution quadrupole-quadrupole-time-of-flight (QqTOF) versus low resolution triple quadrupole instruments. The results were assessed against measured concentration levels from a routine clinical chemiluminescence immunoassay. Isobaric interferences prevented the simple use of TOF-MS spectra for extraction of accurate masses and necessitated the application of collision-induced dissociation on the QqTOF platform. The two mass spectrometry assays provided very similar analytical figures of merit, reflecting the lack of relevant isobaric interferences in the MS/MS domain, and were successfully applied to determine the levels of 25-hydroxyvitamin D for patients with chronic liver disease.
Measuring the performance of super-resolution reconstruction algorithms
NASA Astrophysics Data System (ADS)
Dijk, Judith; Schutte, Klamer; van Eekeren, Adam W. M.; Bijl, Piet
2012-06-01
For many military operations situational awareness is of great importance. This situational awareness and related tasks such as Target Acquisition can be acquired using cameras, of which the resolution is an important characteristic. Super resolution reconstruction algorithms can be used to improve the effective sensor resolution. In order to judge these algorithms and the conditions under which they operate best, performance evaluation methods are necessary. This evaluation, however, is not straightforward for several reasons. First of all, frequency-based evaluation techniques alone will not provide a correct answer, due to the fact that they are unable to discriminate between structure-related and noise-related effects. Secondly, most super-resolution packages perform additional image enhancement techniques such as noise reduction and edge enhancement. As these algorithms improve the results they cannot be evaluated separately. Thirdly, a single high-resolution ground truth is rarely available. Therefore, evaluation of the differences in high resolution between the estimated high resolution image and its ground truth is not that straightforward. Fourth, different artifacts can occur due to super-resolution reconstruction, which are not known on forehand and hence are difficult to evaluate. In this paper we present a set of new evaluation techniques to assess super-resolution reconstruction algorithms. Some of these evaluation techniques are derived from processing on dedicated (synthetic) imagery. Other evaluation techniques can be evaluated on both synthetic and natural images (real camera data). The result is a balanced set of evaluation algorithms that can be used to assess the performance of super-resolution reconstruction algorithms.
Position-sensitive, fast ionization chambers
NASA Astrophysics Data System (ADS)
Lai, J.; Afanasieva, L.; Blackmon, J. C.; Deibel, C. M.; Gardiner, H. E.; Lauer, A.; Linhardt, L. E.; Macon, K. T.; Rasco, B. C.; Williams, C.; Santiago-Gonzalez, D.; Kuvin, S. A.; Almaraz-Calderon, S.; Baby, L. T.; Baker, J.; Belarge, J.; Wiedenhöver, I.; Need, E.; Avila, M. L.; Back, B. B.; DiGiovine, B.; Hoffman, C. R.
2018-05-01
A high-count-rate ionization chamber design with position-sensitivity has been developed and deployed at several accelerator facilities. Counting rates of ≥ 500 kHz with good Z-separation (up to 5% energy resolution) for particle identification have been demonstrated in a series of commissioning experiments. A position-sensitive capability, with a resolution of 3 mm, has been implemented for the first time to record position information and suppress pileup. The design and performance of the detectors are described.
Hirano, Takao; Chanwimol, Karntida; Weichsel, Julian; Tepelus, Tudor; Sadda, Srinivas
2018-06-20
Optical coherence tomography angiography (OCTA) allows the retinal microvasculature to be visualized at various retinal depths. Previous studies introduced OCTA axial profile analysis and showed regional variations in the number and location of axially distinct vascular retinal plexuses. OCTA acquisition and processing approaches, however, vary in terms of their resulting transverse and axial resolutions, and especially the latter could potentially influence the profile analysis results. Our study imaged normal eyes using the Spectralis OCT2 with a full-spectrum, probabilistic OCTA algorithm, that, in marked contrast to split-spectrum approaches, preserves the original high OCT axial resolution also within the resulting OCTA signal. En face OCTA images are generally created by averaging flow signals over a finite axial depth window. However, we assessed regional OCTA signal profiles at each depth position at full axial resolution. All regions had two sharp vessel density peaks near the inner and outer boundaries of the inner nuclear layer, indicating separate intermediate and deep capillary plexuses. The superficial vascular plexus (SVP) separated into two distinct peaks within the ganglion cell layer in the parafoveal zone. The nasal, superior, and inferior perifovea had a deeper SVP peak that was shifted anteriorly compared to the parafoveal zone. Axial vascular density analysis with high-resolution, full spectrum OCTA thus allows healthy retinal vasculature to be precisely reconstructed and may be useful for clinically assessing retinal pathology.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wang, Jian; Pikridas, Michael; Spielman, Steven R.
This study discusses, a fast integrated mobility spectrometer (FIMS) was previously developed to characterize submicron aerosol size distributions at a frequency of 1 Hz and with high size resolution and counting statistics. However, the dynamic size range of the FIMS was limited to one decade in particle electrical mobility. It was proposed that the FIMS dynamic size range can be greatly increased by using a spatially varying electric field. This electric field creates regions with drastically different field strengths in the separator, such that particles of a wide diameter range can be simultaneously classified and subsequently measured. A FIMS incorporatingmore » this spatially varying electric field is developed. This paper describes the theoretical frame work and numerical simulations of the FIMS with extended dynamic size range, including the spatially varying electric field, particle trajectories, activation of separated particles in the condenser, and the transfer function, transmission efficiency, and mobility resolution. The influences of the particle Brownian motion on FIMS transfer function and mobility resolution are examined. The simulation results indicate that the FIMS incorporating the spatially varying electric field is capable of measuring aerosol size distribution from 8 to 600 nm with high time resolution. As a result, the experimental characterization of the FIMS is presented in an accompanying paper.« less
Wang, Jian; Pikridas, Michael; Spielman, Steven R.; ...
2017-06-01
This study discusses, a fast integrated mobility spectrometer (FIMS) was previously developed to characterize submicron aerosol size distributions at a frequency of 1 Hz and with high size resolution and counting statistics. However, the dynamic size range of the FIMS was limited to one decade in particle electrical mobility. It was proposed that the FIMS dynamic size range can be greatly increased by using a spatially varying electric field. This electric field creates regions with drastically different field strengths in the separator, such that particles of a wide diameter range can be simultaneously classified and subsequently measured. A FIMS incorporatingmore » this spatially varying electric field is developed. This paper describes the theoretical frame work and numerical simulations of the FIMS with extended dynamic size range, including the spatially varying electric field, particle trajectories, activation of separated particles in the condenser, and the transfer function, transmission efficiency, and mobility resolution. The influences of the particle Brownian motion on FIMS transfer function and mobility resolution are examined. The simulation results indicate that the FIMS incorporating the spatially varying electric field is capable of measuring aerosol size distribution from 8 to 600 nm with high time resolution. As a result, the experimental characterization of the FIMS is presented in an accompanying paper.« less
Hypernuclear Spectroscopy with Electron Beam at JLab Hall C
NASA Astrophysics Data System (ADS)
Fujii, Y.; Chiba, A.; Doi, D.; Gogami, T.; Hashimoto, O.; Kanda, H.; Kaneta, M.; Kawama, D.; Maeda, K.; Maruta, T.; Matsumura, A.; Nagao, S.; Nakamura, S. N.; Shichijo, A.; Tamura, H.; Taniya, N.; Yamamoto, T.; Yokota, K.; Kato, S.; Sato, Y.; Takahashi, T.; Noumi, H.; Motoba, T.; Hiyama, E.; Albayrak, I.; Ates, O.; Chen, C.; Christy, M.; Keppel, C.; Kohl, M.; Li, Y.; Liyanage, A.; Tang, L.; Walton, T.; Ye, Z.; Yuan, L.; Zhu, L.; Baturin, P.; Boeglin, W.; Dhamija, S.; Markowitz, P.; Raue, B.; Reinhold, J.; Hungerford, Ed. V.; Ent, R.; Fenker, H.; Gaskell, D.; Horn, T.; Jones, M.; Smith, G.; Vulcan, W.; Wood, S. A.; Johnston, C.; Simicevic, N.; Wells, S.; Samanta, C.; Hu, B.; Shen, J.; Wang, W.; Zhang, X.; Zhang, Y.; Feng, J.; Fu, Y.; Zhou, J.; Zhou, S.; Jiang, Y.; Lu, H.; Yan, X.; Ye, Y.; Gan, L.; Ahmidouch, A.; Danagoulian, S.; Gasparian, A.; Elaasar, M.; Wesselmann, F. R.; Asaturyan, A.; Margaryan, A.; Mkrtchyan, A.; Mkrtchyan, H.; Tadevosyan, V.; Androic, D.; Furic, M.; Petkovic, T.; Seva, T.; Niculescu, G.; Niculescu, I.; López, V. M. Rodríguez; Cisbani, E.; Cusanno, F.; Garibaldi, F.; Uuciuoli, G. M.; de Leo, R.; Maronne, S.
2010-10-01
Hypernuclear spectroscopy with electron beam at JLab Hall C has been studied since 2000. The first experiment, JLab E89-009, demonstrated the possibility of the (e,e'K+) reaction for hypernuclear spectroscopy by achieving an energy resolution of better than 1 MeV (FWHM). The second experiment, JLab E01-011 employed a newly constructed high resolution kaon spectrometer and introduced a vertically tilted electron arm setup to avoid electrons from bremsstrahlung and Moeller scattering. The setup allowed us to have 10 times yield rate and 4 times better signal to accidental ratio with expected energy resolution of 400 keV (FWHM). The third experiment, JLab E05-11B will be performed in 2009 with employing newly constructed high resolution electron spectrometer and a new charge-separation magnet. With the fully customized third generation experimental setup, we can study a variety of targets up to medium-heavy ones such as 52Cr.
Hypernuclear Spectroscopy with Electron Beam at JLab Hall C
NASA Astrophysics Data System (ADS)
Fujii, Y.; Chiba, A.; Doi, D.; Gogami, T.; Hashimoto, O.; Kanda, H.; Kaneta, M.; Kawama, D.; Maeda, K.; Maruta, T.; Matsumura, A.; Nagao, S.; Nakamura, S. N.; Shichijo, A.; Tamura, H.; Taniya, N.; Yamamoto, T.; Yokota, K.; Kato, S.; Sato, Y.; Takahashi, T.; Noumi, H.; Motoba, T.; Hiyama, E.; Albayrak, I.; Ates, O.; Chen, C.; Christy, M.; Keppel, C.; Kohl, M.; Li, Y.; Liyanage, A.; Tang, L.; Walton, T.; Ye, Z.; Yuan, L.; Zhu, L.; Baturin, P.; Boeglin, W.; Dhamija, S.; Markowitz, P.; Raue, B.; Reinhold, J.; Hungerford, Ed. V.; Ent, R.; Fenker, H.; Gaskell, D.; Horn, T.; Jones, M.; Smith, G.; Vulcan, W.; Wood, S. A.; Johnston, C.; Simicevic, N.; Wells, S.; Samanta, C.; Hu, B.; Shen, J.; Wang, W.; Zhang, X.; Zhang, Y.; Feng, J.; Fu, Y.; Zhou, J.; Zhou, S.; Jiang, Y.; Lu, H.; Yan, X.; Ye, Y.; Gan, L.; Ahmidouch, A.; Danagoulian, S.; Gasparian, A.; Elaasar, M.; Wesselmann, F. R.; Asaturyan, A.; Margaryan, A.; Mkrtchyan, A.; Mkrtchyan, H.; Tadevosyan, V.; Androic, D.; Furic, M.; Petkovic, T.; Seva, T.; Niculescu, G.; Niculescu, I.; Rodríguez López, V. M.; Cisbani, E.; Cusanno, F.; Garibaldi, F.; Uuciuoli, G. M.; de Leo, R.; Maronne, S.
Hypernuclear spectroscopy with electron beam at JLab Hall C has been studied since 2000. The first experiment, JLab E89-009, demonstrated the possibility of the (e, e‧ K+) reaction for hypernuclear spectroscopy by achieving an energy resolution of better than 1 MeV (FWHM). The second experiment, JLab E01-011 employed a newly constructed high resolution kaon spectrometer and introduced a vertically tilted electron arm setup to avoid electrons from bremsstrahlung and Moeller scattering. The setup allowed us to have 10 times yield rate and 4 times better signal to accidental ratio with expected energy resolution of 400 keV (FWHM). The third experiment, JLab E05-115 will be performed in 2009 with employing newly constructed high resolution electron spectrometer and a new charge-separation magnet. With the fully customized third generation experimental setup, we can study a variety of targets up to medium-heavy ones such as 52Cr.
Xia, Dan; Gao, Lirong; Zheng, Minghui; Tian, Qichang; Huang, Huiting; Qiao, Lin
2016-07-19
Chlorinated paraffins (CPs) are complex technical mixtures containing thousands of isomers. Analyzing CPs in environmental matrices is extremely challenging. CPs have broad, unresolved profiles when analyzed by one-dimensional gas chromatography (GC). Comprehensive two-dimensional GC (GC×GC) can separate CPs with a high degree of orthogonality. A novel method for simultaneously profiling and quantifying short- and medium-chain CPs, using GC×GC coupled with electron capture negative ionization high-resolution time-of-flight mass spectrometry, was developed. The method allowed 48 CP formula congener groups to be analyzed highly selectively in one injection through accurate mass measurements of the [M - Cl](-) ions in full scan mode. The correlation coefficients (R(2)) for the linear calibration curves for different chlorine contents were 0.982 for short-chain CPs and 0.945 for medium-chain CPs. The method was successfully used to determine CPs in sediment and fish samples. By using this method, with enhanced chromatographic separation and high mass resolution, interferences between CP congeners and other organohalogen compounds, such as toxaphene, are minimized. New compounds, with the formulas C9H14Cl6 and C9H13Cl7, were found in sediment and biological samples for the first time. The method was shown to be a powerful tool for the analysis of CPs in environmental samples.
Kim, Se Jin; Shin, Gi Won; Choi, Seok Jin; Hwang, Hee Sung; Jung, Gyoo Yeol; Seo, Tae Seok
2010-03-01
Rapid and simple analysis for the multiple target pathogens is critical for patient management. CE-SSCP analysis on a microchip provides high speed, high sensitivity, and a portable genetic analysis platform in molecular diagnostic fields. The capability of separating ssDNA molecules in a capillary electrophoretic microchannel with high resolution is a critical issue to perform the precise interpretation in the electropherogram. In this study, we explored the potential of poly(ethyleneoxide)-poly(propyleneoxide)-poly(ethyleneoxide) (PEO-PPO-PEO) triblock copolymer as a sieving matrix for CE-SSCP analysis on a microdevice. To demonstrate the superior resolving power of PEO-PPO-PEO copolymers, 255-bp PCR amplicons obtained from 16S ribosomal RNA genes of four bacterial species, namely Proteus mirabilis, Haemophilus ducreyi, Pseudomonas aeruginosa, and Neisseria meningitidis, were analyzed in the PEO-PPO-PEO matrix in comparison with 5% linear polyacrylamide and commercial GeneScan gel. Due to enhanced dynamic coating and sieving ability, PEO-PPO-PEO copolymer displayed fourfold enhancement of resolving power in the CE-SSCP to separate same-sized DNA molecules. Fivefold input of genomic DNA of P. aeruginosa and/or N. meningitidis produced proportionally increased corresponding amplicon peaks, enabling correct quantitative analysis in the pathogen detection. Besides the high-resolution sieving capability, a facile loading and replenishment of gel in the microchannel due to thermally reversible gelation property makes PEO-PPO-PEO triblock copolymer an excellent matrix in the CE-SSCP analysis on the microdevice.
Shi, Liang; Khandurina, Julia; Ronai, Zsolt; Li, Bi-Yu; Kwan, Wai King; Wang, Xun; Guttman, András
2003-01-01
A capillary gel electrophoresis based automated DNA fraction collection technique was developed to support a novel DNA fragment-pooling strategy for expressed sequence tag (EST) library construction. The cDNA population is first cleaved by BsaJ I and EcoR I restriction enzymes, and then subpooled by selective ligation with specific adapters followed by polymerase chain reaction (PCR) amplification and labeling. Combination of this cDNA fingerprinting method with high-resolution capillary gel electrophoresis separation and precise fractionation of individual cDNA transcript representatives avoids redundant fragment selection and concomitant repetitive sequencing of abundant transcripts. Using a computer-controlled capillary electrophoresis device the transcript representatives were separated by their size and fractions were automatically collected in every 30 s into 96-well plates. The high resolving power of the sieving matrix ensured sequencing grade separation of the DNA fragments (i.e., single-base resolution) and successful fraction collection. Performance and precision of the fraction collection procedure was validated by PCR amplification of the collected DNA fragments followed by capillary electrophoresis analysis for size and purity verification. The collected and PCR-amplified transcript representatives, ranging up to several hundred base pairs, were then sequenced to create an EST library.
Wagner, Brian M.; Schuster, Stephanie A.; Boyes, Barry E.; Shields, Taylor J.; Miles, William L.; Haynes, Mark J.; Moran, Robert E.; Kirkland, Joseph J.; Schure, Mark R.
2017-01-01
To facilitate mass transport and column efficiency, solutes must have free access to particle pores to facilitate interactions with the stationary phase. To ensure this feature, particles should be used for HPLC separations which have pores sufficiently large to accommodate the solute without restricted diffusion. This paper describes the design and properties of superficially porous (also called Fused-Core®, core shell or porous shell) particles with very large (1000 Å) pores specifically developed for separating very large biomolecules and polymers. Separations of DNA fragments, monoclonal antibodies, large proteins and large polystyrene standards are used to illustrate the utility of these particles for efficient, high-resolution applications. PMID:28213987
Wagner, Brian M; Schuster, Stephanie A; Boyes, Barry E; Shields, Taylor J; Miles, William L; Haynes, Mark J; Moran, Robert E; Kirkland, Joseph J; Schure, Mark R
2017-03-17
To facilitate mass transport and column efficiency, solutes must have free access to particle pores to facilitate interactions with the stationary phase. To ensure this feature, particles should be used for HPLC separations which have pores sufficiently large to accommodate the solute without restricted diffusion. This paper describes the design and properties of superficially porous (also called Fused-Core ® , core shell or porous shell) particles with very large (1000Å) pores specifically developed for separating very large biomolecules and polymers. Separations of DNA fragments, monoclonal antibodies, large proteins and large polystyrene standards are used to illustrate the utility of these particles for efficient, high-resolution applications. Copyright © 2017 Elsevier B.V. All rights reserved.
Dual-energy micro-CT with a dual-layer, dual-color, single-crystal scintillator.
Maier, Daniel Simon; Schock, Jonathan; Pfeiffer, Franz
2017-03-20
A wide range of X-ray imaging applications demand micrometer spatial resolution. In material science and biology especially, there is a great interest in material determination and material separation methods. Here we present a new detector design that allows the recording of a low- and a high-energy radiography image simultaneously with micrometer spatial resolution. The detector system is composed of a layered scintillator stack, two CCDs and an optical system to image the scintillator responses onto the CCDs. We used the detector system with a standard laboratory microfocus X-ray tube to prove the working principle of the system and derive important design characteristics. With the recorded and registered dual-energy data set, the material separation and determination could be shown at an X-ray tube peak energy of up to 160 keV with a spatial resolution of 12 μm. The detector design shows a great potential for further development and a wide range of possible applications.
Sequence-dependent base pair stepping dynamics in XPD helicase unwinding
Qi, Zhi; Pugh, Robert A; Spies, Maria; Chemla, Yann R
2013-01-01
Helicases couple the chemical energy of ATP hydrolysis to directional translocation along nucleic acids and transient duplex separation. Understanding helicase mechanism requires that the basic physicochemical process of base pair separation be understood. This necessitates monitoring helicase activity directly, at high spatio-temporal resolution. Using optical tweezers with single base pair (bp) resolution, we analyzed DNA unwinding by XPD helicase, a Superfamily 2 (SF2) DNA helicase involved in DNA repair and transcription initiation. We show that monomeric XPD unwinds duplex DNA in 1-bp steps, yet exhibits frequent backsteps and undergoes conformational transitions manifested in 5-bp backward and forward steps. Quantifying the sequence dependence of XPD stepping dynamics with near base pair resolution, we provide the strongest and most direct evidence thus far that forward, single-base pair stepping of a helicase utilizes the spontaneous opening of the duplex. The proposed unwinding mechanism may be a universal feature of DNA helicases that move along DNA phosphodiester backbones. DOI: http://dx.doi.org/10.7554/eLife.00334.001 PMID:23741615
Phenomenological Model for Infrared Emissions from High-Explosive Detonation Fireballs
2007-09-01
concentrations for H2O, CO2, CO, and HCl. Fitting this model to the observed MWIR spectra affords a compact, high-fidelity representation with... concentrations separates the TNT and ENE events. Spectrally-determined R values are somewhat consistent with stoichiometric expectations. Comparing...78 4.7.2 Atmospheric Water Vapor Concentration . . . . . . . . . . . . . . . . . 79 4.7.3 Spectral Resolution
High suspended sediment concentrations (SSCs) from natural and anthropogenic sources are responsible for biological impairments of many streams, rivers, lakes, and estuaries, but techniques to estimate sediment concentrations or loads accurately at the daily temporal resolution a...
NASA Technical Reports Server (NTRS)
Olsen, E.; Backus, C.; Gulkis, S.; Levin, S.
1993-01-01
The NASA High Resolution Microwave Survey (HRMS) Sky Survey component will survey the entire celestial sphere over the microwave frequency band to search for signals of intelligent origin which originate from beyond our solar system.
Code of Federal Regulations, 2011 CFR
2011-10-01
... 42 Public Health 1 2011-10-01 2011-10-01 false Are Self-Governance Tribes required to adopt a separate resolution or take equivalent Tribal action to assume environmental responsibilities for each...-GOVERNANCE Construction Nepa Process § 137.293 Are Self-Governance Tribes required to adopt a separate...
Effect of combined digital imaging parameters on endodontic file measurements.
de Oliveira, Matheus Lima; Pinto, Geraldo Camilo de Souza; Ambrosano, Glaucia Maria Bovi; Tosoni, Guilherme Monteiro
2012-10-01
This study assessed the effect of the combination of a dedicated endodontic filter, spatial resolution, and contrast resolution on the determination of endodontic file lengths. Forty extracted single-rooted teeth were x-rayed with K-files (ISO size 10 and 15) in the root canals. Images were acquired using the VistaScan system (Dürr Dental, Beitigheim-Bissingen, Germany) under different combining parameters of spatial resolution (10 and 25 line pairs per millimeter [lp/mm]) and contrast resolution (8- and 16-bit depths). Subsequently, a dedicated endodontic filter was applied on the 16-bit images, creating 2 additional parameters. Six observers measured the length of the endodontic files in the root canals using the software that accompanies the system. The mean values of the actual file lengths and the measurements of the radiographic images were submitted to 1-way analysis of variance and the Tukey test at a level of significance of 5%. The intraobserver reproducibility was assessed by the intraclass correlation coefficient. All combined image parameters showed excellent intraobserver agreement with intraclass correlation coefficient means higher than 0.98. The imaging parameter of 25 lp/mm and 16 bit associated with the use of the endodontic filter did not differ significantly from the actual file lengths when both file sizes were analyzed together or separately (P > .05). When the size 15 file was evaluated separately, only 8-bit images differed significantly from the actual file lengths (P ≤ .05). The combination of an endodontic filter with high spatial resolution and high contrast resolution is recommended for the determination of file lengths when using storage phosphor plates. Copyright © 2012 American Association of Endodontists. Published by Elsevier Inc. All rights reserved.
High-contrast imaging with the JWST-NIRSpec Integral Field Unit
NASA Astrophysics Data System (ADS)
Ygouf, M.; Beichman, C.; Hodapp, K.; Roellig, T.
2017-12-01
With its integral field unit, the near-infrared spectrograph NIRSPEC on JWST will allow to measure high-resolution spectra into the 3-\\SI{5}μm range with an increased sensitivity over ground-based systems. This capability will considerably extend our knowledge of brown dwarfs and bright exoplanets at large separations from their host star. But because there is not any coronagraph on NIRSPEC, the performance in term of contrast at close separation will be extremely limited. In this communication, we explore possibilities to further push this limitation by exploiting the wavelength diversity offered by the spectral differential imaging strategy.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kelly, Ryan T.; Wang, Chenchen; Rausch, Sarah J.
2014-07-01
A hybrid microchip/capillary CE system was developed to allow unbiased and lossless sample loading and high throughput repeated injections. This new hybrid CE system consists of a polydimethylsiloxane (PDMS) microchip sample injector featuring a pneumatic microvalve that separates a sample introduction channel from a short sample loading channel and a fused silica capillary separation column that connects seamlessly to the sample loading channel. The sample introduction channel is pressurized such that when the pneumatic microvalve opens briefly, a variable-volume sample plug is introduced into the loading channel. A high voltage for CE separation is continuously applied across the loading channelmore » and the fused silica capillary separation column. Analytes are rapidly separated in the fused silica capillary with high resolution. High sensitivity MS detection after CE separation is accomplished via a sheathless CE/ESI-MS interface. The performance evaluation of the complete CE/ESI-MS platform demonstrated that reproducible sample injection with well controlled sample plug volumes could be achieved by using the PDMS microchip injector. The absence of band broadening from microchip to capillary indicated a minimum dead volume at the junction. The capabilities of the new CE/ESI-MS platform in performing high throughput and quantitative sample analyses were demonstrated by the repeated sample injection without interrupting an ongoing separation and a good linear dependence of the total analyte ion abundance on the sample plug volume using a mixture of peptide standards. The separation efficiency of the new platform was also evaluated systematically at different sample injection times, flow rates and CE separation voltages.« less
Computational Burden Resulting from Image Recognition of High Resolution Radar Sensors
López-Rodríguez, Patricia; Fernández-Recio, Raúl; Bravo, Ignacio; Gardel, Alfredo; Lázaro, José L.; Rufo, Elena
2013-01-01
This paper presents a methodology for high resolution radar image generation and automatic target recognition emphasizing the computational cost involved in the process. In order to obtain focused inverse synthetic aperture radar (ISAR) images certain signal processing algorithms must be applied to the information sensed by the radar. From actual data collected by radar the stages and algorithms needed to obtain ISAR images are revised, including high resolution range profile generation, motion compensation and ISAR formation. Target recognition is achieved by comparing the generated set of actual ISAR images with a database of ISAR images generated by electromagnetic software. High resolution radar image generation and target recognition processes are burdensome and time consuming, so to determine the most suitable implementation platform the analysis of the computational complexity is of great interest. To this end and since target identification must be completed in real time, computational burden of both processes the generation and comparison with a database is explained separately. Conclusions are drawn about implementation platforms and calculation efficiency in order to reduce time consumption in a possible future implementation. PMID:23609804
Computational burden resulting from image recognition of high resolution radar sensors.
López-Rodríguez, Patricia; Fernández-Recio, Raúl; Bravo, Ignacio; Gardel, Alfredo; Lázaro, José L; Rufo, Elena
2013-04-22
This paper presents a methodology for high resolution radar image generation and automatic target recognition emphasizing the computational cost involved in the process. In order to obtain focused inverse synthetic aperture radar (ISAR) images certain signal processing algorithms must be applied to the information sensed by the radar. From actual data collected by radar the stages and algorithms needed to obtain ISAR images are revised, including high resolution range profile generation, motion compensation and ISAR formation. Target recognition is achieved by comparing the generated set of actual ISAR images with a database of ISAR images generated by electromagnetic software. High resolution radar image generation and target recognition processes are burdensome and time consuming, so to determine the most suitable implementation platform the analysis of the computational complexity is of great interest. To this end and since target identification must be completed in real time, computational burden of both processes the generation and comparison with a database is explained separately. Conclusions are drawn about implementation platforms and calculation efficiency in order to reduce time consumption in a possible future implementation.
NASA Astrophysics Data System (ADS)
Mascaro, G.; Vivoni, E. R.; Gochis, D. J.; Watts, C. J.; Rodriguez, J. C.
2013-12-01
In northwest Mexico, the statistical properties of rainfall at high temporal resolution (up to 1 min) have been poorly characterized, mainly due to a lack of observations. Under a combined effort of US and Mexican institutions initiated during the North American Monsoon-Soil Moisture Experiment in 2004 (NAME-SMEX04), a network of 8 tipping-bucket rain gauges were installed across a topographic transect in the Sierra Los Locos basin of Sonora, Mexico. The transect spans a distance of ~14 km and an elevation difference of 748 m, thus including valley, mid-elevation and ridge sites where rainfall generation mechanisms in the summer and winter seasons are potentially affected by orography. In this study, we used the data collected during the period of 2007-2010 to characterize the rainfall statistical properties in a wide range of time scales (1 min to ~45 days) and analyzed how these properties change as a function of elevation, the gauge separation distance, and the summer and winter seasons. We found that the total summer (winter) rainfall decreases (increases) with elevation, and that rainfall has a clear diurnal cycle in the summertime, with a peak around 9 pm at all gauges. The correlation structure across the transect indicates that: (i) when times series are aggregated at a resolution greater than 3 hours, the correlation distance is greater than the maximum separation distance (~14 km), while it dramatically decreases for lower time resolutions (e.g., it is ~1.5 km when the resolution is 10 min). Consistent with other semiarid regions, spectral and scale invariance analyses show the presence of different scaling regimes, which are associated to single convective events and larger stratiform systems, with different intermittency properties dependent on the rainfall season. Results of this work are useful for the interpretation of storm generation mechanisms and hydrologic response in the region, as well as for the calibration of high-resolution, stochastic rainfall models used in climate, hydrology, and engineering applications.
High-aspect-ratio, silicon oxide-enclosed pillar structures in microfluidic liquid chromatography.
Taylor, Lisa C; Lavrik, Nickolay V; Sepaniak, Michael J
2010-11-15
The present paper discusses the ability to separate chemical species using high-aspect-ratio, silicon oxide-enclosed pillar arrays. These miniaturized chromatographic systems require smaller sample volumes, experience less flow resistance, and generate superior separation efficiency over traditional packed bed liquid chromatographic columns, improvements controlled by the increased order and decreased pore size of the systems. In our distinctive fabrication sequence, plasma-enhanced chemical vapor deposition (PECVD) of silicon oxide is used to alter the surface and structural properties of the pillars for facile surface modification while improving the pillar mechanical stability and increasing surface area. The separation behavior of model compounds within our pillar systems indicated an unexpected hydrophobic-like separation mechanism. The effects of organic modifier, ionic concentration, and pressure-driven flow rate were studied. A decrease in the organic content of the mobile phase increased peak resolution while detrimentally effecting peak shape. A resolution of 4.7 (RSD = 3.7%) was obtained for nearly perfect Gaussian shaped peaks, exhibiting plate heights as low as 1.1 and 1.8 μm for fluorescein and sulforhodamine B, respectively. Contact angle measurements and DART mass spectrometry analysis indicate that our employed elastomeric soft bonding technique modifies pillar properties, creating a fortuitous stationary phase. This discovery provides evidence supporting the ability to easily functionalize PECVD oxide surfaces by gas-phase reactions.
Yang, Shengchao; Ye, Fanggui; Lv, Qinghui; Zhang, Cong; Shen, Shufen; Zhao, Shulin
2014-09-19
Metal-organic framework (MOF) HKUST-1 nanoparticles have been incorporated into poly(glycidyl methacrylate-co-ethylene dimethacrylate) (HKUST-1-poly(GMA-co-EDMA)) monoliths to afford stationary phases with enhanced chromatographic performance of small molecules in the reversed phase capillary liquid chromatography. The effect of HKUST-1 nanoparticles in the polymerization mixture on the performance of the monolithic column was explored in detail. While the bare poly(GMA-co-EDMA) monolith exhibited poor resolution (Rs<1.0) and low efficiency (800-16,300plates/m), addition of a small amount of HKUST-1 nanoparticles to the polymerization mixture provide high increased resolution (Rs≥1.3) and high efficiency ranged from 16,300 to 44,300plates/m. Chromatographic performance of HKUST-1-poly(GMA-co-EDMA) monolith was demonstrated by separation of various analytes including polycyclic aromatic hydrocarbons, ethylbenzene and styrene, phenols and aromatic acids using a binary polar mobile phase (CH3CN/H2O). The HKUST-1-poly(GMA-co-EDMA) monolith displayed enhanced hydrophobic and π-π interaction characteristics in the reversed phase separation of test analytes compared to the bare poly(GMA-co-EDMA) monolith. The experiment results showed that HKUST-1-poly(GMA-co-EDMA) monoliths are an alternative to enhance the chromatographic separation of small molecules. Copyright © 2014 Elsevier B.V. All rights reserved.
Speybrouck, David; Doublet, Charline; Cardinael, Pascal; Fiol-Petit, Catherine; Corens, David
2017-08-11
Supercritical Fluid Chromatography is frequently used to efficiently handle separations of enantiomers. The separation of basic analytes usually requires the addition of a basic additive in the mobile phase to improve the peak shape or even to elute the compounds. The effect of increasing the concentration of 2-propylamine as additive on the elution of a series of basic compounds on a Chiralpak-AD stationary phase was studied. In this study, unusual additive concentrations ranging from 0.3% to 10% of 2-propylamine 2-propylaminein the modifier were explored and the effect on retention, peak shape, selectivity and resolution was evaluated. The addition of a large quantity of additive allowed to drastically improve the selectivity and the resolution, and even enantiomers elution order reversal was observed by changing the concentration of basic additive. The role of the ratio additive/modifier appeared a key to tune the enantioselectivity. Finally, the impact of these drastic conditions on the column material was evaluated. Copyright © 2017 Elsevier B.V. All rights reserved.
Nor, Azimah; Zabedah, Md Yunus; Norsiah, Md Desa; Ngu, Lock Hock; Suhaila, Abd Rahman
2010-06-01
Mucopolysaccharidoses (MPS) are a group of inherited disorders caused by the deficiency of specific lysosomal enzymes involved in glycosaminoglycans (GAGs) degradation. Currently, there are 11 enzyme deficiencies resulting in seven distinct MPS clinical syndromes and their subtypes. Different MPS syndromes cannot be clearly distinguished clinically due to overlapping signs and symptoms. Measurement of GAGs content in urine and separation of GAGs using high-resolution electrophoresis (HRE) are very useful initial screening tests for isotyping of MPS before specific enzyme diagnostics. In this study, we measured total urinary GAGs by a method using dimethylmethylene blue (DMB), and followed by isolation and separation of GAGs using high resolution electrophoresis (HRE) technique. Of 760 urine samples analyzed, 40 have abnormal GAGs HRE patterns. Thirty-five of these 40 cases have elevated urinary GAGs levels as well. These abnormal HRE patterns could be classified into 4 patterns: Pattern A (elevated DS and HS; suggestive of MPS I, II or VII; 16 cases), Pattern B (elevated HS and CS; suggestive of MPS III; 17 cases), and Pattern C (elevated KS and CS; suggestive of MPS IV, 5 cases), and Pattern D (elevated DS; suggestive of MPS VI; 2 cases). Based on the GAGs HRE pattern and a few discriminating clinical signs, we performed selective enzymatic investigation in 16 cases. In all except one case with MPS VII, the enzymatic diagnosis correlated well with the provisional MPS type as suggested by the abnormal HRE pattern. Our results showed that GAGs HRE is a useful, inexpensive and practical first-line screening test when MPS is suspected clinically, and it provides an important guide to further enzymatic studies on a selective basis.
2017-01-01
Direct analysis by mass spectrometry (imaging) has become increasingly deployed in preclinical and clinical research due to its rapid and accurate readouts. However, when it comes to biomarker discovery or histopathological diagnostics, more sensitive and in-depth profiling from localized areas is required. We developed a comprehensive, fully automated online platform for high-resolution liquid extraction surface analysis (HR-LESA) followed by micro–liquid chromatography (LC) separation and a data-independent acquisition strategy for untargeted and low abundant analyte identification directly from tissue sections. Applied to tissue sections of rat pituitary, the platform demonstrated improved spatial resolution, allowing sample areas as small as 400 μm to be studied, a major advantage over conventional LESA. The platform integrates an online buffer exchange and washing step for removal of salts and other endogenous contamination that originates from local tissue extraction. Our carry over–free platform showed high reproducibility, with an interextraction variability below 30%. Another strength of the platform is the additional selectivity provided by a postsampling gas-phase ion mobility separation. This allowed distinguishing coeluted isobaric compounds without requiring additional separation time. Furthermore, we identified untargeted and low-abundance analytes, including neuropeptides deriving from the pro-opiomelanocortin precursor protein and localized a specific area of the pituitary gland (i.e., adenohypophysis) known to secrete neuropeptides and other small metabolites related to development, growth, and metabolism. This platform can thus be applied for the in-depth study of small samples of complex tissues with histologic features of ∼400 μm or more, including potential neuropeptide markers involved in many diseases such as neurodegenerative diseases, obesity, bulimia, and anorexia nervosa. PMID:28945354
Wu, Datong; Cai, Pengfei; Zhao, Xiaoyong; Kong, Yong; Pan, Yuanjiang
2018-01-01
Ionic liquids have been functionalized for modern applications. The functional ionic liquids are also called task-specific ionic liquids. Various task-specific ionic liquids with certain groups have been constructed and exploited widely in the field of separation. To take advantage of their properties in separation science, task-specific ionic liquids are generally used in techniques such as liquid-liquid extraction, solid-phase extraction, gas chromatography, high-performance liquid chromatography, and capillary electrophoresis. This review mainly covers original research papers published in the last five years, and we will focus on task-specific ionic liquids as the chiral selectors in chiral resolution and as extractant or sensor for biological samples and metal ion purification. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Johnston, Stephen T; Shtrahman, Matthew; Parylak, Sarah; Gonçalves, J Tiago; Gage, Fred H
2016-03-01
Hippocampal adult neurogenesis is thought to subserve pattern separation, the process by which similar patterns of neuronal inputs are transformed into distinct neuronal representations, permitting the discrimination of highly similar stimuli in hippocampus-dependent tasks. However, the mechanism by which immature adult-born dentate granule neurons cells (abDGCs) perform this function remains unknown. Two theories of abDGC function, one by which abDGCs modulate and sparsify activity in the dentate gyrus and one by which abDGCs act as autonomous coding units, are generally suggested to be mutually exclusive. This review suggests that these two mechanisms work in tandem to dynamically regulate memory resolution while avoiding memory interference and maintaining memory robustness. Copyright © 2015 Elsevier Inc. All rights reserved.
SphinX soft X-ray spectrophotometer: Science objectives, design and performance
NASA Astrophysics Data System (ADS)
Gburek, S.; Sylwester, J.; Kowalinski, M.; Bakala, J.; Kordylewski, Z.; Podgorski, P.; Plocieniak, S.; Siarkowski, M.; Sylwester, B.; Trzebinski, W.; Kuzin, S. V.; Pertsov, A. A.; Kotov, Yu. D.; Farnik, F.; Reale, F.; Phillips, K. J. H.
2011-06-01
The goals and construction details of a new design Polish-led X-ray spectrophotometer are described. The instrument is aimed to observe emission from entire solar corona and is placed as a separate block within the Russian TESIS X- and EUV complex aboard the CORONAS-PHOTON solar orbiting observatory. SphinX uses silicon PIN diode detectors for high time resolution measurements of the solar spectra in the range 0.8-15 keV. Its spectral resolution allows for discerning more than hundred separate energy bands in this range. The instrument dynamic range extends two orders of magnitude below and above these representative for GOES. The relative and absolute accuracy of spectral measurements is expected to be better than few percent, as follows from extensive ground laboratory calibrations.
IoSiS: a radar system for imaging of satellites in space
NASA Astrophysics Data System (ADS)
Jirousek, M.; Anger, S.; Dill, S.; Schreiber, E.; Peichl, M.
2017-05-01
Space debris nowadays is one of the main threats for satellite systems especially in low earth orbit (LEO). More than 700,000 debris objects with potential to destroy or damage a satellite are estimated. The effects of an impact often are not identifiable directly from ground. High-resolution radar images are helpful in analyzing a possible damage. Therefor DLR is currently developing a radar system called IoSiS (Imaging of Satellites in Space), being based on an existing steering antenna structure and our multi-purpose high-performance radar system GigaRad for experimental investigations. GigaRad is a multi-channel system operating at X band and using a bandwidth of up to 4.4 GHz in the IoSiS configuration, providing fully separated transmit (TX) and receive (RX) channels, and separated antennas. For the observation of small satellites or space debris a highpower traveling-wave-tube amplifier (TWTA) is mounted close to the TX antenna feed. For the experimental phase IoSiS uses a 9 m TX and a 1 m RX antenna mounted on a common steerable positioner. High-resolution radar images are obtained by using Inverse Synthetic Aperture Radar (ISAR) techniques. The guided tracking of known objects during overpass allows here wide azimuth observation angles. Thus high azimuth resolution comparable to the range resolution can be achieved. This paper outlines technical main characteristics of the IoSiS radar system including the basic setup of the antenna, the radar instrument with the RF error correction, and the measurement strategy. Also a short description about a simulation tool for the whole instrument and expected images is shown.
Un-collimated single-photon imaging system for high-sensitivity small animal and plant imaging.
Walker, Katherine L; Judenhofer, Martin S; Cherry, Simon R; Mitchell, Gregory S
2015-01-07
In preclinical single-photon emission computed tomography (SPECT) system development the primary objective has been to improve spatial resolution by using novel parallel-hole or multi-pinhole collimator geometries. However, such high-resolution systems have relatively poor sensitivity (typically 0.01-0.1%). In contrast, a system that does not use collimators can achieve very high-sensitivity. Here we present a high-sensitivity un-collimated detector single-photon imaging (UCD-SPI) system for the imaging of both small animals and plants. This scanner consists of two thin, closely spaced, pixelated scintillator detectors that use NaI(Tl), CsI(Na), or BGO. The performance of the system has been characterized by measuring sensitivity, spatial resolution, linearity, detection limits, and uniformity. With (99m)Tc (140 keV) at the center of the field of view (20 mm scintillator separation), the sensitivity was measured to be 31.8% using the NaI(Tl) detectors and 40.2% with CsI(Na). The best spatial resolution (FWHM when the image formed as the geometric mean of the two detector heads, 20 mm scintillator separation) was 19.0 mm for NaI(Tl) and 11.9 mm for CsI(Na) at 140 keV, and 19.5 mm for BGO at 1116 keV, which is somewhat degraded compared to the cm-scale resolution obtained with only one detector head and a close source. The quantitative accuracy of the system's linearity is better than 2% with detection down to activity levels of 100 nCi. Two in vivo animal studies (a renal scan using (99m)Tc MAG-3 and a thyroid scan with (123)I) and one plant study (a (99m)TcO4(-) xylem transport study) highlight the unique capabilities of this UCD-SPI system. From the renal scan, we observe approximately a one thousand-fold increase in sensitivity compared to the Siemens Inveon SPECT/CT scanner. UCD-SPI is useful for many imaging tasks that do not require excellent spatial resolution, such as high-throughput screening applications, simple radiotracer uptake studies in tumor xenografts, dynamic studies where very good temporal resolution is critical, or in planta imaging of radioisotopes at low concentrations.
Un-collimated single-photon imaging system for high-sensitivity small animal and plant imaging
Walker, Katherine L.; Judenhofer, Martin S.; Cherry, Simon R.; ...
2014-12-12
In preclinical single-photon emission computed tomography (SPECT) system development the primary objective has been to improve spatial resolution by using novel parallel-hole or multi-pinhole collimator geometries. Furthermore, such high-resolution systems have relatively poor sensitivity (typically 0.01% to 0.1%). In contrast, a system that does not use collimators can achieve very high-sensitivity. Here we present a high-sensitivity un-collimated detector single-photon imaging (UCD-SPI) system for the imaging of both small animals and plants. This scanner consists of two thin, closely spaced, pixelated scintillator detectors that use NaI(Tl), CsI(Na), or BGO. The performance of the system has been characterized by measuring sensitivity, spatialmore » resolution, linearity, detection limits, and uniformity. With 99mTc (140 keV) at the center of the field of view (20 mm scintillator separation), the sensitivity was measured to be 31.8% using the NaI(Tl) detectors and 40.2% with CsI(Na). The best spatial resolution (FWHM when the image formed as the geometric mean of the two detector heads, 20 mm scintillator separation) was 19.0 mm for NaI(Tl) and 11.9 mm for CsI(Na) at 140 keV, and 19.5 mm for BGO at 1116 keV, which is somewhat degraded compared to the cm-scale resolution obtained with only one detector head and a close source. The quantitative accuracy of the system’s linearity is better than 2% with detection down to activity levels of 100 nCi. Two in vivo animal studies (a renal scan using 99mTc MAG-3 and a thyroid scan with 123I) and one plant study (a 99mTcO 4- xylem transport study) highlight the unique capabilities of this UCD-SPI system. From the renal scan, we observe approximately a one thousand-fold increase in sensitivity compared to the Siemens Inveon SPECT/CT scanner. In conclusion, UCD-SPI is useful for many imaging tasks that do not require excellent spatial resolution, such as high-throughput screening applications, simple radiotracer uptake studies in tumor xenografts, dynamic studies where very good temporal resolution is critical, or in planta imaging of radioisotopes at low concentrations.« less
Un-collimated single-photon imaging system for high-sensitivity small animal and plant imaging
NASA Astrophysics Data System (ADS)
Walker, Katherine L.; Judenhofer, Martin S.; Cherry, Simon R.; Mitchell, Gregory S.
2015-01-01
In preclinical single-photon emission computed tomography (SPECT) system development the primary objective has been to improve spatial resolution by using novel parallel-hole or multi-pinhole collimator geometries. However, such high-resolution systems have relatively poor sensitivity (typically 0.01-0.1%). In contrast, a system that does not use collimators can achieve very high-sensitivity. Here we present a high-sensitivity un-collimated detector single-photon imaging (UCD-SPI) system for the imaging of both small animals and plants. This scanner consists of two thin, closely spaced, pixelated scintillator detectors that use NaI(Tl), CsI(Na), or BGO. The performance of the system has been characterized by measuring sensitivity, spatial resolution, linearity, detection limits, and uniformity. With 99mTc (140 keV) at the center of the field of view (20 mm scintillator separation), the sensitivity was measured to be 31.8% using the NaI(Tl) detectors and 40.2% with CsI(Na). The best spatial resolution (FWHM when the image formed as the geometric mean of the two detector heads, 20 mm scintillator separation) was 19.0 mm for NaI(Tl) and 11.9 mm for CsI(Na) at 140 keV, and 19.5 mm for BGO at 1116 keV, which is somewhat degraded compared to the cm-scale resolution obtained with only one detector head and a close source. The quantitative accuracy of the system’s linearity is better than 2% with detection down to activity levels of 100 nCi. Two in vivo animal studies (a renal scan using 99mTc MAG-3 and a thyroid scan with 123I) and one plant study (a 99mTcO4- xylem transport study) highlight the unique capabilities of this UCD-SPI system. From the renal scan, we observe approximately a one thousand-fold increase in sensitivity compared to the Siemens Inveon SPECT/CT scanner. UCD-SPI is useful for many imaging tasks that do not require excellent spatial resolution, such as high-throughput screening applications, simple radiotracer uptake studies in tumor xenografts, dynamic studies where very good temporal resolution is critical, or in planta imaging of radioisotopes at low concentrations.
Brooker, Gary; Siegel, Nisan; Rosen, Joseph; Hashimoto, Nobuyuki; Kurihara, Makoto; Tanabe, Ayano
2013-12-15
We report a new optical arrangement that creates high-efficiency, high-quality Fresnel incoherent correlation holography (FINCH) holograms using polarization sensitive transmission liquid crystal gradient index (TLCGRIN) diffractive lenses. In contrast, current universal practice in the field employs a reflective spatial light modulator (SLM) to separate sample and reference beams. Polarization sensitive TLCGRIN lenses enable a straight optical path, have >90% transmission efficiency, are not pixilated, and are free of many limitations of reflective SLM devices. For each sample point, two spherical beams created by a glass lens in combination with a polarization sensitive TLCGRIN lens interfere and create a hologram and resultant super resolution image.
Zheng, Juan; Lu, Cuiming; Huang, Junlong; Chen, Luyi; Ni, Chuyi; Xie, Xintong; Zhu, Fang; Wu, Dingcai; Ouyang, Gangfeng
2018-08-15
Novel powdery polymer aerogel (PPA) prepared via the (micro)emulsion polymerization and the following hyper crosslinking reaction was fabricated as stationary phase of capillary column for the first time. Due to its powdery morphology, unique 3D nano-network structure, high surface area and good thermostability, the PPA-coated capillary column demonstrated high-resolution chromatographic separation towards nonpolar and weakly polar organic compounds, including benzene series, n-alkanes, ketone mixtures and trichlorobenzenes. Moreover, the reproducibility, quantitative analysis ability and thermostability of PPA-coated capillary column were also evaluated. The relative standard deviations for three replicate determinations of selected analytes were 0.02-0.11%, 0.12-0.26% and 1.2-3.6% for run-to-run, day-to-day and column-to-column analyses, respectively. The PPA demonstrated good thermostability, and the PPA-coated capillary column was proved to be heat-resistant (270 °C). The results of this study show PPA is an excellent candidate to be employed as stationary phase for gas chromatography capillary. Copyright © 2018 Elsevier B.V. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Vacri, M. L. di; Nisi, S.; Balata, M.
2013-08-08
The measurement of naturally occurring low level radioactivity background in a high voltage (HV) cable by high resolution inductively coupled plasma mass spectrometry (HR ICP MS) is presented in this work. The measurements were performed at the Chemistry Service of the Gran Sasso National Laboratory. The contributions to the radioactive background coming from the different components of the heterogeneous material were separated. Based on the mass fraction of the cable, the whole contamination was calculated. The HR ICP MS results were cross-checked by gamma ray spectroscopy analysis that was performed at the low background facility STELLA (Sub Terranean Low Levelmore » Assay) of the LNGS underground lab using HPGe detectors.« less
Monolithic focused reference beam X-ray holography
Geilhufe, J.; Pfau, B.; Schneider, M.; Büttner, F.; Günther, C. M.; Werner, S.; Schaffert, S.; Guehrs, E.; Frömmel, S.; Kläui, M.; Eisebitt, S.
2014-01-01
Fourier transform holography is a highly efficient and robust imaging method, suitable for single-shot imaging at coherent X-ray sources. In its common implementation, the image contrast is limited by the reference signal generated by a small pinhole aperture. Increased pinhole diameters improve the signal, whereas the resolution is diminished. Here we report a new concept to decouple the spatial resolution from the image contrast by employing a Fresnel zone plate to provide the reference beam. Superimposed on-axis images of distinct foci are separated with a novel algorithm. Our method is insensitive to mechanical drift or vibrations and allows for long integration times common at low-flux facilities like high harmonic generation sources. The application of monolithic focused reference beams improves the efficiency of high-resolution X-ray Fourier transform holography beyond all present approaches and paves the path towards sub-10 nm single-shot X-ray imaging. PMID:24394675
Design and performance of a high resolution, low latency stripline beam position monitor system
NASA Astrophysics Data System (ADS)
Apsimon, R. J.; Bett, D. R.; Blaskovic Kraljevic, N.; Burrows, P. N.; Christian, G. B.; Clarke, C. I.; Constance, B. D.; Dabiri Khah, H.; Davis, M. R.; Perry, C.; Resta López, J.; Swinson, C. J.
2015-03-01
A high-resolution, low-latency beam position monitor (BPM) system has been developed for use in particle accelerators and beam lines that operate with trains of particle bunches with bunch separations as low as several tens of nanoseconds, such as future linear electron-positron colliders and free-electron lasers. The system was tested with electron beams in the extraction line of the Accelerator Test Facility at the High Energy Accelerator Research Organization (KEK) in Japan. It consists of three stripline BPMs instrumented with analogue signal-processing electronics and a custom digitizer for logging the data. The design of the analogue processor units is presented in detail, along with measurements of the system performance. The processor latency is 15.6 ±0.1 ns . A single-pass beam position resolution of 291 ±10 nm has been achieved, using a beam with a bunch charge of approximately 1 nC.
Diving-Flight Aerodynamics of a Peregrine Falcon (Falco peregrinus)
Ponitz, Benjamin; Schmitz, Anke; Fischer, Dominik; Bleckmann, Horst; Brücker, Christoph
2014-01-01
This study investigates the aerodynamics of the falcon Falco peregrinus while diving. During a dive peregrines can reach velocities of more than 320 km h−1. Unfortunately, in freely roaming falcons, these high velocities prohibit a precise determination of flight parameters such as velocity and acceleration as well as body shape and wing contour. Therefore, individual F. peregrinus were trained to dive in front of a vertical dam with a height of 60 m. The presence of a well-defined background allowed us to reconstruct the flight path and the body shape of the falcon during certain flight phases. Flight trajectories were obtained with a stereo high-speed camera system. In addition, body images of the falcon were taken from two perspectives with a high-resolution digital camera. The dam allowed us to match the high-resolution images obtained from the digital camera with the corresponding images taken with the high-speed cameras. Using these data we built a life-size model of F. peregrinus and used it to measure the drag and lift forces in a wind-tunnel. We compared these forces acting on the model with the data obtained from the 3-D flight path trajectory of the diving F. peregrinus. Visualizations of the flow in the wind-tunnel uncovered details of the flow structure around the falcon’s body, which suggests local regions with separation of flow. High-resolution pictures of the diving peregrine indicate that feathers pop-up in the equivalent regions, where flow separation in the model falcon occurred. PMID:24505258
Advanced Mass Spectrometric Methods for the Rapid and Quantitative Characterization of Proteomes
Smith, Richard D.
2002-01-01
Progress is reviewedmore » towards the development of a global strategy that aims to extend the sensitivity, dynamic range, comprehensiveness and throughput of proteomic measurements based upon the use of high performance separations and mass spectrometry. The approach uses high accuracy mass measurements from Fourier transform ion cyclotron resonance mass spectrometry (FTICR) to validate peptide ‘accurate mass tags’ (AMTs) produced by global protein enzymatic digestions for a specific organism, tissue or cell type from ‘potential mass tags’ tentatively identified using conventional tandem mass spectrometry (MS/MS). This provides the basis for subsequent measurements without the need for MS/ MS. High resolution capillary liquid chromatography separations combined with high sensitivity, and high resolution accurate FTICR measurements are shown to be capable of characterizing peptide mixtures of more than 10 5 components. The strategy has been initially demonstrated using the microorganisms Saccharomyces cerevisiae and Deinococcus radiodurans. Advantages of the approach include the high confidence of protein identification, its broad proteome coverage, high sensitivity, and the capability for stableisotope labeling methods for precise relative protein abundance measurements. Abbreviations : LC, liquid chromatography; FTICR, Fourier transform ion cyclotron resonance; AMT, accurate mass tag; PMT, potential mass tag; MMA, mass measurement accuracy; MS, mass spectrometry; MS/MS, tandem mass spectrometry; ppm, parts per million.« less
Canine serum protein patterns using high-resolution electrophoresis (HRE).
Abate, O; Zanatta, R; Malisano, T; Dotta, U
2000-03-01
Serum protein values were determined in 26 healthy dogs using agarose gel electrophoresis (SPE), splitting the electrophoretic separation into six regions: albumin, alpha(1), alpha(2), beta(1), beta(2)and gamma globulins. High-resolution electrophoresis (HRE) was used to separate single proteins. Serum proteins from dogs (26 healthy and 20 affected by various diseases) were then characterized by electrophoretic immunofixation (IFE) and Sudan black staining on HRE film. Haemoglobin and normal canine plasma and serum were used to identify haptoglobin and fibrinogen, respectively. In the standard pattern, determined by HRE, the following proteins were identified: albumin, alpha(1)-lipoprotein (alpha(1)-region), haptoglobin and alpha(2)-macroglobulin (alpha(2)-region), beta -lipoprotein and C3 (beta(1)-region), transferrin and IgM (beta(2)-region), IgG (mostly in gamma -region and partly in beta(2)-region). The HRE pattern shown by healthy dogs could be compared with those of dogs affected by various diseases to obtain clinical information. Copyright 2000 Harcourt Publishers Ltd.
Liu, Jing; Gupta, Naveen K; Wise, Kensall D; Gianchandani, Yogesh B; Fan, Xudong
2011-10-21
This paper reports the investigation of a micro-gas chromatography (μGC) system that utilizes an array of miniaturized motionless Knudsen pumps (KPs) as well as microfabricated separation columns and optical detectors. A prototype system was built to achieve a flow rate of 1 mL min(-1) and 0.26 mL min(-1) for helium and dry air, respectively, when they were used as carrier gas. This system was then employed to evaluate GC performance compromises and demonstrate the ability to separate and detect gas mixtures containing analytes of different volatilities and polarities. Furthermore, the use of pressure programming of the KP array was demonstrated to significantly shorten the analysis time while maintaining a high detection resolution. Using this method, we obtained a high resolution detection of 5 alkanes of different volatilities within 5 min. Finally, we successfully detected gas mixtures of various polarities using a tandem-column μGC configuration by installing two on-column optical detectors to obtain complementary chromatograms.
Improving Axial Resolution in Confocal Microscopy with New High Refractive Index Mounting Media
Fouquet, Coralie; Gilles, Jean-François; Heck, Nicolas; Dos Santos, Marc; Schwartzmann, Richard; Cannaya, Vidjeacoumary; Morel, Marie-Pierre; Davidson, Robert Stephen; Trembleau, Alain; Bolte, Susanne
2015-01-01
Resolution, high signal intensity and elevated signal to noise ratio (SNR) are key issues for biologists who aim at studying the localisation of biological structures at the cellular and subcellular levels using confocal microscopy. The resolution required to separate sub-cellular biological structures is often near to the resolving power of the microscope. When optimally used, confocal microscopes may reach resolutions of 180 nm laterally and 500 nm axially, however, axial resolution in depth is often impaired by spherical aberration that may occur due to refractive index mismatches. Spherical aberration results in broadening of the point-spread function (PSF), a decrease in peak signal intensity when imaging in depth and a focal shift that leads to the distortion of the image along the z-axis and thus in a scaling error. In this study, we use the novel mounting medium CFM3 (Citifluor Ltd., UK) with a refractive index of 1.518 to minimize the effects of spherical aberration. This mounting medium is compatible with most common fluorochromes and fluorescent proteins. We compare its performance with established mounting media, harbouring refractive indices below 1.500, by estimating lateral and axial resolution with sub-resolution fluorescent beads. We show furthermore that the use of the high refractive index media renders the tissue transparent and improves considerably the axial resolution and imaging depth in immuno-labelled or fluorescent protein labelled fixed mouse brain tissue. We thus propose to use those novel high refractive index mounting media, whenever optimal axial resolution is required. PMID:25822785
Real-time Tracking of DNA Fragment Separation by Smartphone.
Tao, Chunxian; Yang, Bo; Li, Zhenqing; Zhang, Dawei; Yamaguchi, Yoshinori
2017-06-01
Slab gel electrophoresis (SGE) is the most common method for the separation of DNA fragments; thus, it is broadly applied to the field of biology and others. However, the traditional SGE protocol is quite tedious, and the experiment takes a long time. Moreover, the chemical consumption in SGE experiments is very high. This work proposes a simple method for the separation of DNA fragments based on an SGE chip. The chip is made by an engraving machine. Two plastic sheets are used for the excitation and emission wavelengths of the optical signal. The fluorescence signal of the DNA bands is collected by smartphone. To validate this method, 50, 100, and 1,000 bp DNA ladders were separated. The results demonstrate that a DNA ladder smaller than 5,000 bp can be resolved within 12 min and with high resolution when using this method, indicating that it is an ideal substitute for the traditional SGE method.
NASA Astrophysics Data System (ADS)
Noh, S. J.; Kim, S.; Habibi, H.; Seo, D. J.; Welles, E.; Philips, B.; Adams, E.; Smith, M. B.; Wells, E.
2017-12-01
With the development of the National Water Model (NWM), the NWS has made a step-change advance in operational water forecasting by enabling high-resolution hydrologic modeling across the US. As a part of a separate initiative to enhance flash flood forecasting and inundation mapping capacity, the NWS has been mandated to provide forecasts at even finer spatiotemporal resolutions when and where such information is demanded. In this presentation, we describe implementation of the NWM at a hyper resolution over a nested domain. We use WRF-Hydro as the core model but at significantly higher resolutions with scale-commensurate model parameters. The demonstration domain is multiple urban catchments within the Cities of Arlington and Grand Prairie in the Dallas-Fort Worth Metroplex. This area is susceptible to urban flooding due to the hydroclimatology coupled with large impervious cover. The nested model is based on hyper-resolution terrain data to resolve significant land surface features such as streets and large man-made structures, and forced by the high-resolution radar-based quantitative precipitation information. In this presentation, we summarize progress and preliminary results and share issues and challenges.
Wang, Xiayan; Wang, Shili; Veerappan, Vijaykumar; Byun, Chang Kyu; Nguyen, Han; Gendhar, Brina; Allen, Randy D.; Liu, Shaorong
2009-01-01
In this work, we demonstrate DNA separation and genotyping analysis in gel-free solutions using a nanocapillary under pressure-driven conditions without application of an external electric field. The nanocapillary is a ~50-cm-long and 500-nm-radius bare fused silica capillary. After a DNA sample is injected, the analytes are eluted out in a chromatographic separation format. The elution order of DNA molecules follows strictly with their sizes, with the longer DNA being eluted out faster than the shorter ones. High resolutions are obtained for both short (a few bases) and long (tens of thousands of base pairs) DNA fragments. Effects of key experimental parameters, such as eluent composition and elution pressure, on separation efficiency and resolution are investigated. We also apply this technique for DNA separations of real-world genotyping samples to demonstrate its feasibility in biological applications. PCR products (without any purification) amplified from Arabidopsis plant genomic DNA crude preparations are directly injected into the nanocapillary, and PCR-amplified DNA fragments are well resolved, allowing for unambiguous identification of samples from heterozygous and homozygous individuals. Since the capillaries used to conduct the separations are uncoated, column lifetime is virtually unlimited. The only material that is consumed in these assays is the eluent, and hence the operation cost is low. PMID:18500828
Size-selective separation of submicron particles in suspensions with ultrasonic atomization.
Nii, Susumu; Oka, Naoyoshi
2014-11-01
Aqueous suspensions containing silica or polystyrene latex were ultrasonically atomized for separating particles of a specific size. With the help of a fog involving fine liquid droplets with a narrow size distribution, submicron particles in a limited size-range were successfully separated from suspensions. Performance of the separation was characterized by analyzing the size and the concentration of collected particles with a high resolution method. Irradiation of 2.4MHz ultrasound to sample suspensions allowed the separation of particles of specific size from 90 to 320nm without regarding the type of material. Addition of a small amount of nonionic surfactant, PONPE20 to SiO2 suspensions enhanced the collection of finer particles, and achieved a remarkable increase in the number of collected particles. Degassing of the sample suspension resulted in eliminating the separation performance. Dissolved air in suspensions plays an important role in this separation. Copyright © 2014 Elsevier B.V. All rights reserved.
Andrighetto, Luke M; Stevenson, Paul G; Pearson, James R; Henderson, Luke C; Conlan, Xavier A
2014-11-01
In-silico optimised two-dimensional high performance liquid chromatographic (2D-HPLC) separations of a model methamphetamine seizure sample are described, where an excellent match between simulated and real separations was observed. Targeted separation of model compounds was completed with significantly reduced method development time. This separation was completed in the heart-cutting mode of 2D-HPLC where C18 columns were used in both dimensions taking advantage of the selectivity difference of methanol and acetonitrile as the mobile phases. This method development protocol is most significant when optimising the separation of chemically similar chemical compounds as it eliminates potentially hours of trial and error injections to identify the optimised experimental conditions. After only four screening injections the gradient profile for both 2D-HPLC dimensions could be optimised via simulations, ensuring the baseline resolution of diastereomers (ephedrine and pseudoephedrine) in 9.7 min. Depending on which diastereomer is present the potential synthetic pathway can be categorized.
Zhao, Kailou; Yang, Li; Wang, Xuejiao; Bai, Quan; Yang, Fan; Wang, Fei
2012-08-30
We have explored a novel dual-function stationary phase which combines both strong cation exchange (SCX) and hydrophobic interaction chromatography (HIC) characteristics. The novel dual-function stationary phase is based on porous and spherical silica gel functionalized with ligand containing sulfonic and benzyl groups capable of electrostatic and hydrophobic interaction functionalities, which displays HIC character in a high salt concentration, and IEC character in a low salt concentration in mobile phase employed. As a result, it can be employed to separate proteins with SCX and HIC modes, respectively. The resolution and selectivity of the dual-function stationary phase were evaluated under both HIC and SCX modes with standard proteins and can be comparable to that of conventional IEC and HIC columns. More than 96% of mass and bioactivity recoveries of proteins can be achieved in both HIC and SCX modes, respectively. The results indicated that the novel dual-function column could replace two individual SCX and HIC columns for protein separation. Mixed retention mechanism of proteins on this dual-function column based on stoichiometric displacement theory (SDT) in LC was investigated to find the optimal balance of the magnitude of electrostatic and hydrophobic interactions between protein and the ligand on the silica surface in order to obtain high resolution and selectivity for protein separation. In addition, the effects of the hydrophobicity of the ligand of the dual-function packings and pH of the mobile phase used on protein separation were also investigated in detail. The results show that the ligand with suitable hydrophobicity to match the electrostatic interaction is very important to prepare the dual-function stationary phase, and a better resolution and selectivity can be obtained at pH 6.5 in SCX mode. Therefore, the dual-function column can replace two individual SCX and HIC columns for protein separation and be used to set up two-dimensional liquid chromatography with a single column (2DLC-1C), which can also be employed to separate three kinds of active proteins completely, such as lysozyme, ovotransferrin and ovalbumin from egg white. The result is very important not only to the development of new 2DLC technology with a single column for proteomics, but also to recombinant protein drug production for saving column expense and simplifying the process in biotechnology. Copyright © 2012 Elsevier B.V. All rights reserved.
Traumatic longitudinal splitting of the inferior rectus muscle
Laursen, Jessica; Demer, Joseph L.
2011-01-01
Orbital floor fractures and associated injuries can cause strabismus. We present the case of a 34-year-old man with incomitant strabismus following orbital reconstruction after a high-impact baseball injury. Multipositional, high-resolution magnetic resonance imaging (MRI) revealed extensive longitudinal splitting of the inferior rectus muscle by an orbital floor implant that separated its orbital and global layers. PMID:21463958
Microchip assays for screening monoclonal antibody product quality.
Chen, Xiaoyu; Tang, Kaiyan; Lee, Maximilian; Flynn, Gregory C
2008-12-01
Microchip CE-SDS was evaluated as a high-throughput alternative to conventional CE-SDS for monitoring monoclonal antibody protein quality. A commercial instrument (LabChip) 90) was used to separate dodecyl sulfate coated proteins through a sieving polymer based on the proteins' sizes. Under reducing conditions, the microchip CE-SDS separation was similar to that of conventional CE-SDS, providing reasonable resolution of the non-glycosylated and the glycosylated heavy chains. The fluorescence detection on LabChip 90 using non-covalent fluorescent labeling method was about as sensitive as the 220 nm UV detection used in a conventional CE instrument. A simple glycan typing assay was developed for the reducing microchip CE-SDS format. Antibodies, either pure or in crude cell culture media are treated with Endoglycosidase H, which specifically cleaves the hybrid and high mannose type glycans. A heavy chain migration shift on reducing CE-SDS resulting from the loss of glycan is used to measure the level of high mannose/hybrid type glycans as a percentage of the total glycans. Microchip CE-SDS, under both non-reducing and reducing conditions, can be used in a variety of antibody product screening assays. The microchip analyses provide sufficient resolution and sensitivity for this purpose but on a time scale approximately 70 times faster (41 s versus 50 min per sample) than conventional CE separation under typical operational conditions.
[Separation and identification of red pigments in natural red yolk of duck's eggs by HPLC-MS-MS].
Liu, Liangzhong; Zhang, Min; Peng, Guanghua; Wang, Haibin; Zhang, Shenghua
2004-05-01
The natural red yolk of duck's eggs is produced by the laying duck in the lake areas in southward of China. In the laying duck breeding areas such as Honghu, Jianli, Xiantao, Tianmen and Hanchuan citys in Hubei Province, the culturists are used to feeding fresh pondweeds to the laying ducks. The yolk of duck's eggs is natural red with the chrominance reaching up to and/or above RCF (Roche Yolk Color Fan) 15. The red pigment components of natural red yolk of duck's eggs were separated and identified by thin layer chromatography (TLC), high performance liquid chromatography-mass spectrometry-mass spectrometry (HPLC-MS-MS) and high resolution electron impact-mass spectrometry (EI-MS). Four isomers of red pigments were separated by HPLC on a RP-C18 column with methanol-water (99.5:0.5, v/v) as mobile phase. The lambda(max) of the four components were 482, 488, 496, 501 nm, respectively, and all of them were single peak on chromatogram. They had the same molecular mass (Mr = 562), and had the same fragment peaks of MS2 with rhodoxanthin. The molecular formula of red pigments was determined as C40H50O2 by high resolution EI-MS. The results indicate that the red pigment is rhodoxanthin, and they are all cis-isomers of rhodoxanthin.
NASA Astrophysics Data System (ADS)
Mann, Klaus R.; Eva, Eric
1998-06-01
Absorption loss in DUV optics during 193 nm irradiation is investigated by employing a high-resolution calorimetric technique which allows determining both single and two photon absorption coefficients at energy densities of several 10 mJ/cm2, avoiding a significant thermal load on the samples. UV calorimetry is also employed to investigate laser induced aging phenomena, e.g. color center formation in fused silica or CaF2. A separation of transient and cumulative effects as a function of intensity can be achieved, giving insight into various loss mechanisms. Moreover, the influence of dielectric coatings on the absorption characteristics is discussed.
Bowen, Amanda L; Martin, R. Scott
2010-01-01
While it has been shown that microchip electrophoresis with electrochemical detection can be used to separate and detect electroactive species, there is a need to increase the separation performance of these devices so that complex mixtures can be routinely analyzed. Previous work in microchip electrophoresis has demonstrated that increasing the separation channel length leads to an increase in resolution between closely eluting analytes. This paper details the use of lengthened serpentine microchannels for microchip electrophoresis and electrochemical detection where a palladium decoupler is used to ground the separation voltage so that the working electrodes remain in the fluidic network. In this work, palladium electrodepositions were used to increase the decoupler surface area and more efficiently dissipate hydrogen produced at the decoupler. Dopamine and norepinephrine, which only differ in structure by a hydroxyl group, were used as model analytes. It was found that increasing the separation channel length led to improvements in both resolution and the number of theoretical plates for these analytes. The use of a bi-layer valving device, where PDMS-based valves are utilized for the injection process, along with serpentine microchannels and amperometric detection resulted in a multi-analyte separation and an average of 28,700 theoretical plates. It was also shown that the increased channel length is beneficial when separating and detecting analytes from a high ionic strength matrix. This was demonstrated by monitoring the stimulated release of neuro-transmitters from a confluent layer of PC 12 cells. PMID:19739137
Lintelmann, Jutta; Wu, Xiao; Kuhn, Evelyn; Ritter, Sebastian; Schmidt, Claudia; Zimmermann, Ralf
2018-05-01
A high-performance liquid chromatographic (HPLC) method with integrated solid-phase extraction for the determination of 1-hydroxypyrene and 1-, 2-, 3-, 4- and 9-hydroxyphenanthrene in urine was developed and validated. After enzymatic treatment and centrifugation of 500 μL urine, 100 μL of the sample was directly injected into the HPLC system. Integrated solid-phase extraction was performed on a selective, copper phthalocyanine modified packing material. Subsequent chromatographic separation was achieved on a pentafluorophenyl core-shell column using a methanol gradient. For quantification, time-programmed fluorescence detection was used. Matrix-dependent recoveries were between 94.8 and 102.4%, repeatability and reproducibility ranged from 2.2 to 17.9% and detection limits lay between 2.6 and 13.6 ng/L urine. A set of 16 samples from normally exposed adults was analyzed using this HPLC-fluorescence detection method. Results were comparable with those reported in other studies. The chromatographic separation of the method was transferred to an ultra-high-performance liquid chromatography pentafluorophenyl core-shell column and coupled to a high-resolution time-of-flight mass spectrometer (HR-TOF-MS). The resulting method was used to demonstrate the applicability of LC-HR-TOF-MS for simultaneous target and suspect screening of monohydroxylated polycyclic aromatic hydrocarbons in extracts of urine and particulate matter. Copyright © 2018 John Wiley & Sons, Ltd.
Albalat, Amaya; Husi, Holger; Siwy, Justyna; Nally, Jarlath E; McLauglin, Mark; Eckersall, Peter D; Mullen, William
2014-02-01
Proteomics is a growing field that has the potential to be applied to many biology-related disciplines. However, the study of the proteome has proven to be very challenging due to its high level of complexity when compared to genome and transcriptome data. In order to analyse this level of complexity, high resolution separation of peptides/proteins are needed together with high resolution analysers. Currently, liquid chromatography and capillary electrophoresis (CE) are the two most widely used separation techniques that can be coupled on-line with a mass spectrometer (MS). In CE, proteins/ peptides are separated according to their size, charge and shape leading to high resolving power. Although further progress in the area of sensitivity, throughput and proteome coverage are expected, MS-based proteomics have developed to a level at which they are habitually applied to study a wide range of biological questions. The aim of this review is to present CE-MS as a proteomic analytical platform for biomarker research that could be used in farm animal and veterinary studies. This is a MS-analytical platform that has been widely used for biomarker research in the biomedical field but its application in animal proteomic studies is relatively novel. The review will focus on introducing the CE-MS platform and the primary considerations for its application to biomarker research. Furthermore, current applications but more importantly potential application in the field of farm animals and veterinary science will be presented and discussed.
VizieR Online Data Catalog: Abundances in the local region. II. F, G, and K dwarfs (Luck+, 2017)
NASA Astrophysics Data System (ADS)
Luck, R. E.
2017-06-01
The McDonald Observatory 2.1m Telescope and Sandiford Cassegrain Echelle Spectrograph provided much of the observational data for this study. High-resolution spectra were obtained during numerous observing runs, from 1996 to 2010. The spectra cover a continuous wavelength range from about 484 to 700nm, with a resolving power of about 60000. The wavelength range used demands two separate observations--one centered at about 520nm, and the other at about 630nm. Typical S/N values per pixel for the spectra are more than 150. Spectra of 57 dwarfs were obtained using the Hobby-Eberly telescope and High-Resolution Spectrograph. The spectra have a resolution of 30000, spanning the wavelength range of 400 to 785nm. They also have very high signal-to-noise ratios, >300 per resolution element in numerous cases. The last set of spectra were obtained from the ELODIE Archive (Moultaka et al. 2004PASP..116..693M). These spectra are fully processed, including order co-addition, and have a continuous wavelength span of 400 to 680nm and a resolution of 42000. The ELODIE spectra utilized here all have S/N>75 per pixel. (6 data files).
Optimization of throughput in semipreparative chiral liquid chromatography using stacked injection.
Taheri, Mohammadreza; Fotovati, Mohsen; Hosseini, Seyed-Kiumars; Ghassempour, Alireza
2017-10-01
An interesting mode of chromatography for preparation of pure enantiomers from pure samples is the method of stacked injection as a pseudocontinuous procedure. Maximum throughput and minimal production costs can be achieved by the use of total chiral column length in this mode of chromatography. To maximize sample loading, often touching bands of the two enantiomers is automatically achieved. Conventional equations show direct correlation between touching-band loadability and the selectivity factor of two enantiomers. The important question for one who wants to obtain the highest throughput is "How to optimize different factors including selectivity, resolution, run time, and loading of the sample in order to save time without missing the touching-band resolution?" To answer this question, tramadol and propranolol were separated on cellulose 3,5-dimethyl phenyl carbamate, as two pure racemic mixtures with low and high solubilities in mobile phase, respectively. The mobile phase composition consisted of n-hexane solvent with alcohol modifier and diethylamine as the additive. A response surface methodology based on central composite design was used to optimize separation factors against the main responses. According to the stacked injection properties, two processes were investigated for maximizing throughput: one with a poorly soluble and another with a highly soluble racemic mixture. For each case, different optimization possibilities were inspected. It was revealed that resolution is a crucial response for separations of this kind. Peak area and run time are two critical parameters in optimization of stacked injection for binary mixtures which have low solubility in the mobile phase. © 2017 Wiley Periodicals, Inc.
NASA Astrophysics Data System (ADS)
Yesiltas, Mehmet
2018-04-01
Synchrotron-based high spatial resolution hyperspectral infrared imaging technique provides thousands of infrared spectra with high resolution, thus allowing us to acquire detailed spatial maps of chemical molecular structures for many grains in short times. Utilizing this technique, thousands of infrared spectra were analyzed at once instead of inspecting each spectrum separately. Sutter's Mill meteorite is a unique carbonaceous type meteorite with highly heterogeneous chemical composition. Multiple grains from the Sutter's Mill meteorite have been studied using this technique and the presence of both hydrous and anhydrous silicate minerals have been observed. It is observed that the carbonate mineralogy varies from simple to more complex carbonates even within a few microns in the meteorite grains. These variations, the type and distribution of calcite-like vs. dolomite-like carbonates are presented by means of hyperspectral FTIR imaging spectroscopy with high resolution. Various scenarios for the formation of different carbonate compositions in the Sutter's Mill parent body are discussed.
EULER-PCR: finishing experiments for repeat resolution.
Mulyukov, Zufar; Pevzner, Pavel A
2002-01-01
Genomic sequencing typically generates a large collection of unordered contigs or scaffolds. Contig ordering (also known as gap closure) is a non-trivial algorithmic and experimental problem since even relatively simple-to-assemble bacterial genomes typically result in large set of contigs. Neighboring contigs maybe separated either by gaps in read coverage or by repeats. In the later case we say that the contigs are separated by pseudogaps, and we emphasize the important difference between gap closure and pseudogap closure. The existing gap closure approaches do not distinguish between gaps and pseudogaps and treat them in the same way. We describe a new fast strategy for closing pseudogaps (repeat resolution). Since in highly repetitive genomes, the number of pseudogaps may exceed the number of gaps by an order of magnitude, this approach provides a significant advantage over the existing gap closure methods.
NASA Astrophysics Data System (ADS)
Wolf, R. N.; Atanasov, D.; Blaum, K.; Kreim, S.; Lunney, D.; Manea, V.; Rosenbusch, M.; Schweikhard, L.; Welker, A.; Wienholtz, F.; Zuber, K.
2016-06-01
In-trap decay in ISOLTRAP's radiofrequency quadrupole (RFQ) ion beam cooler and buncher was used to determine the lifetime of short-lived nuclides. After various storage times, the remaining mother nuclides were mass separated from accompanying isobaric contaminations by the multi-reflection time-of-flight mass separator (MR-ToF MS), allowing for a background-free ion counting. A feasibility study with several online measurements shows that the applications of the ISOLTRAP setup can be further extended by exploiting the high resolving power of the MR-ToF MS in combination with in-trap decay and single-ion counting.
Andrade-Eiroa, Auréa; Diévart, Pascal; Dagaut, Philippe
2010-04-15
A new procedure for optimizing PAHs separation in very complex mixtures by reverse phase high performance (RPLC) is proposed. It is based on changing gradually the experimental conditions all along the chromatographic procedure as a function of the physical properties of the compounds eluted. The temperature and speed flow gradients allowed obtaining the optimum resolution in large chromatographic determinations where PAHs with very different medium polarizability have to be separated. Whereas optimization procedures of RPLC methodologies had always been accomplished regardless of the physico-chemical properties of the target analytes, we found that resolution is highly dependent on the physico-chemical properties of the target analytes. Based on resolution criterion, optimization process for a 16 EPA PAHs mixture was performed on three sets of difficult-to-separate PAHs pairs: acenaphthene-fluorene (for the optimization procedure in the first part of the chromatogram where light PAHs elute), benzo[g,h,i]perylene-dibenzo[a,h]anthracene and benzo[g,h,i]perylene-indeno[1,2,3-cd]pyrene (for the optimization procedure of the second part of the chromatogram where the heavier PAHs elute). Two-level full factorial designs were applied to detect interactions among variables to be optimized: speed flow, temperature of column oven and mobile-phase gradient in the two parts of the studied chromatogram. Experimental data were fitted by multivariate nonlinear regression models and optimum values of speed flow and temperature were obtained through mathematical analysis of the constructed models. An HPLC system equipped with a reversed phase 5 microm C18, 250 mm x 4.6mm column (with acetonitrile/water mobile phase), a column oven, a binary pump, a photodiode array detector (PDA), and a fluorimetric detector were used in this work. Optimum resolution was achieved operating at 1.0 mL/min in the first part of the chromatogram (until 45 min) and 0.5 mL/min in the second one (from 45 min to the end) and by applying programmed temperature gradient (15 degrees C until 30 min and progressively increasing temperature until reaching 40 degrees C at 45 min). (c) 2009 Elsevier B.V. All rights reserved.
Schneider, Bradley B.; Coy, Stephen L.; Krylov, Evgeny V.; Nazarov, Erkinjon G.
2013-01-01
Differential mobility spectrometry (DMS) separates ions on the basis of the difference in their migration rates under high versus low electric fields. Several models describing the physical nature of this field mobility dependence have been proposed but emerging as a dominant effect is the clusterization model sometimes referred to as the dynamic cluster-decluster model. DMS resolution and peak capacity is strongly influenced by the addition of modifiers which results in the formation and dissociation of clusters. This process increases selectivity due to the unique chemical interactions that occur between an ion and neutral gas phase molecules. It is thus imperative to bring the parameters influencing the chemical interactions under control and find ways to exploit them in order to improve the analytical utility of the device. In this paper we describe three important areas that need consideration in order to stabilize and capitalize on the chemical processes that dominate a DMS separation. The first involves means of controlling the dynamic equilibrium of the clustering reactions with high concentrations of specific reagents. The second area involves a means to deal with the unwanted heterogeneous cluster ion populations emitted from the electrospray ionization process that degrade resolution and sensitivity. The third involves fine control of parameters that affect the fundamental collision processes, temperature and pressure. PMID:20065515
Peterman, Erwin J. G.; van Amerongen, Herbert; van Grondelle, Rienk; Dekker, Jan P.
1998-01-01
We studied the electronically excited state of the isolated reaction center of photosystem II with high-resolution fluorescence spectroscopy at 5 K and compared the obtained spectral features with those obtained earlier for the primary electron donor. The results show that there is a striking resemblance between the emitting and charge-separating states in the photosystem II reaction center, such as a very similar shape of the phonon wing with characteristic features at 19 and 80 cm−1, almost identical frequencies of a number of vibrational modes, a very similar double-Gaussian shape of the inhomogeneous distribution function, and relatively strong electron-phonon coupling for both states. We suggest that the emission at 5 K originates either from an exciton state delocalized over the inactive branch of the photosystem or from a fraction of the primary electron donor that is long-lived at 5 K. The latter possibility can be explained by a distribution of the free energy difference of the primary charge separation reaction around zero. Both possibilities are in line with the idea that the state that drives primary charge separation in the reaction center of photosystem II is a collective state, with contributions from all chlorophyll molecules in the central part of the complex. PMID:9600929
Super-Resolution Imaging by Arrays of High-Index Spheres Embedded in Transparent Matrices
2014-06-25
microsphere-assisted imaging. Roles of surface excitations, plasmons, polaritons and Tamm-states, as well as the role of nanoscale gap separating the object...nanometric gap between the object and spheres and the role of surface polariton -plasmons in the metallic nanostructures. Our results, however, show that
USDA-ARS?s Scientific Manuscript database
Two Source Model (TSM) calculates the heat and water exchange and interaction between soil-atmosphere and vegetation-atmosphere separately. This is achieved through decomposition of radiometric surface temperature to soil and vegetation component temperatures either from multi-angular remotely sense...
Stitching-error reduction in gratings by shot-shifted electron-beam lithography
NASA Technical Reports Server (NTRS)
Dougherty, D. J.; Muller, R. E.; Maker, P. D.; Forouhar, S.
2001-01-01
Calculations of the grating spatial-frequency spectrum and the filtering properties of multiple-pass electron-beam writing demonstrate a tradeoff between stitching-error suppression and minimum pitch separation. High-resolution measurements of optical-diffraction patterns show a 25-dB reduction in stitching-error side modes.
Unidentified Organic Compounds. For target analytes, standards are purchased, extraction and clean-up procedures are optimized, and mass spectra and retention times for the chromatographic separation are obtained for comparison to the target compounds in environmental sample ...
Multimodal hard x-ray imaging with resolution approaching 10 nm for studies in material science
NASA Astrophysics Data System (ADS)
Yan, Hanfei; Bouet, Nathalie; Zhou, Juan; Huang, Xiaojing; Nazaretski, Evgeny; Xu, Weihe; Cocco, Alex P.; Chiu, Wilson K. S.; Brinkman, Kyle S.; Chu, Yong S.
2018-03-01
We report multimodal scanning hard x-ray imaging with spatial resolution approaching 10 nm and its application to contemporary studies in the field of material science. The high spatial resolution is achieved by focusing hard x-rays with two crossed multilayer Laue lenses and raster-scanning a sample with respect to the nanofocusing optics. Various techniques are used to characterize and verify the achieved focus size and imaging resolution. The multimodal imaging is realized by utilizing simultaneously absorption-, phase-, and fluorescence-contrast mechanisms. The combination of high spatial resolution and multimodal imaging enables a comprehensive study of a sample on a very fine length scale. In this work, the unique multimodal imaging capability was used to investigate a mixed ionic-electronic conducting ceramic-based membrane material employed in solid oxide fuel cells and membrane separations (compound of Ce0.8Gd0.2O2‑x and CoFe2O4) which revealed the existence of an emergent material phase and quantified the chemical complexity at the nanoscale.
High-Resolution Spectroscopy of some very Active Southern Stars
NASA Technical Reports Server (NTRS)
Soderblom, David R.; King, Jeremy R.; Henry, Todd J.
1998-01-01
We have obtained high-resolution echelle spectra of 18 solar-type stars that an earlier survey showed to have very high levels of Ca II H and K emission. Most of these stars belong to close binary systems, but five remain as probable single stars or well-separated binaries that are younger than the Pleiades on the basis of their lithium abundances and H.alpha emission. Three of these probable single stars also lie more than 1 mag above the main sequence in a color-magnitude diagram, and appear to have ages of 10 to 15 Myr. Two of them, HD 202917 and HD 222259, also appear to have a kinematic association with the pre-main-sequence multiple system HD 98800.
Rabilloud, Thierry; Adessi, C.; Giraudel, A.; Lunardi, J.
2007-01-01
Summary We have carried out the separation of sparingly-soluble (membrane and nuclear) proteins by high resolution two-dimensional electrophoresis. IEF with immobilized pH gradients leads to severe quantitative losses of proteins in the resulting 2-D map, although the resolution is usually kept high. We therefore tried to improve the solubility of proteins in this technique, by using denaturing cocktails containing various detergents and chaotropes. Best results were obtained by using a denaturing solution containing urea, thiourea, and detergents (both nonionic and zwitterionic). The usefulness of thiourea-containing denaturing mixtures are shown in this article on several models including microsomal and nuclear proteins and on tubulin, a protein highly prone to aggregation. PMID:9150907
Adaptive optics and interferometry
NASA Technical Reports Server (NTRS)
Beichman, Charles A.; Ridgway, Stephen
1991-01-01
Adaptive optics and interferometry, two techniques that will improve the limiting resolution of optical and infrared observations by factors of tens or even thousands, are discussed. The real-time adjustment of optical surfaces to compensate for wavefront distortions will improve image quality and increase sensitivity. The phased operation of multiple telescopes separated by large distances will make it possible to achieve very high angular resolution and precise positional measurements. Infrared and optical interferometers that will manipulate light beams and measure interference directly are considered. Angular resolutions of single telescopes will be limited to around 10 milliarcseconds even using the adaptive optics techniques. Interferometry would surpass this limit by a factor of 100 or more. Future telescope arrays with 100-m baselines (resolution of 2.5 milliarcseconds at a 1-micron wavelength) are also discussed.
A method to improve the range resolution in stepped frequency continuous wave radar
NASA Astrophysics Data System (ADS)
Kaczmarek, Paweł
2018-04-01
In the paper one of high range resolution methods - Aperture Sampling - was analysed. Unlike MUSIC based techniques it proved to be very efficient in terms of achieving unambiguous synthetic range profile for ultra-wideband stepped frequency continuous wave radar. Assuming that minimal distance required to separate two targets in depth (distance) corresponds to -3 dB width of received echo, AS provided a 30,8 % improvement in range resolution in analysed scenario, when compared to results of applying IFFT. Output data is far superior in terms of both improved range resolution and reduced side lobe level than used typically in this area Inverse Fourier Transform. Furthermore it does not require prior knowledge or an estimate of number of targets to be detected in a given scan.
High-resolution imaging gamma-ray spectroscopy with externally segmented germanium detectors
NASA Technical Reports Server (NTRS)
Callas, J. L.; Mahoney, W. A.; Varnell, L. S.; Wheaton, W. A.
1993-01-01
Externally segmented germanium detectors promise a breakthrough in gamma-ray imaging capabilities while retaining the superb energy resolution of germanium spectrometers. An angular resolution of 0.2 deg becomes practical by combining position-sensitive germanium detectors having a segment thickness of a few millimeters with a one-dimensional coded aperture located about a meter from the detectors. Correspondingly higher angular resolutions are possible with larger separations between the detectors and the coded aperture. Two-dimensional images can be obtained by rotating the instrument. Although the basic concept is similar to optical or X-ray coded-aperture imaging techniques, several complicating effects arise because of the penetrating nature of gamma rays. The complications include partial transmission through the coded aperture elements, Compton scattering in the germanium detectors, and high background count rates. Extensive electron-photon Monte Carlo modeling of a realistic detector/coded-aperture/collimator system has been performed. Results show that these complicating effects can be characterized and accounted for with no significant loss in instrument sensitivity.
NASA Astrophysics Data System (ADS)
Kendrick, Stephen E.; Harwit, Alex; Kaplan, Michael; Smythe, William D.
2007-09-01
An MWIR TDI (Time Delay and Integration) Imager and Spectrometer (MTIS) instrument for characterizing from orbit the moons of Jupiter and Saturn is proposed. Novel to this instrument is the planned implementation of a digital TDI detector array and an innovative imaging/spectroscopic architecture. Digital TDI enables a higher SNR for high spatial resolution surface mapping of Titan and Enceladus and for improved spectral discrimination and resolution at Europa. The MTIS imaging/spectroscopic architecture combines a high spatial resolution coarse wavelength resolution imaging spectrometer with a hyperspectral sensor to spectrally decompose a portion of the data adjacent to the data sampled in the imaging spectrometer. The MTIS instrument thus maps with high spatial resolution a planetary object while spectrally decomposing enough of the data that identification of the constituent materials is highly likely. Additionally, digital TDI systems have the ability to enable the rejection of radiation induced spikes in high radiation environments (Europa) and the ability to image in low light levels (Titan and Enceladus). The ability to image moving objects that might be missed utilizing a conventional TDI system is an added advantage and is particularly important for characterizing atmospheric effects and separating atmospheric and surface components. This can be accomplished with on-orbit processing or collecting and returning individual non co-added frames.
Factors affecting the separation performance of proteins in capillary electrophoresis.
Zhu, Yueping; Li, Zhenqing; Wang, Ping; Shen, Lisong; Zhang, Dawei; Yamaguchi, Yoshinori
2018-04-15
Capillary electrophoresis (CE) is an effective tool for protein separation and analysis. Compared with capillary gel electrophoresis (CGE), non-gel sieving capillary electrophoresis (NGSCE) processes the superiority on operation, repeatability and automaticity. Herein, we investigated the effect of polymer molecular weight and concentration, electric field strength, and the effective length of the capillary on the separation performance of proteins, and find that (1) polymer with high molecular weight and concentration favors the separation of proteins, although concentrated polymer hinders its injection into the channel of the capillary due to its high viscosity. (2) The resolution between the adjacent proteins decreases with the increase of electric field strength. (3) When the effective length of the capillary is long, the separation performance improves at the cost of separation time. (4) 1.4% (w/v) hydroxyethyl cellulose (HEC), 100 V/cm voltage and 12 cm effective length offers the best separation for the proteins with molecular weight from 14,400 Da to 97,400 Da. Finally, we employed the optimal electrophoretic conditions to resolve Lysozyme, Ovalbumin, BSA and their mixtures, and found that they were baseline resolved within 15 min. Copyright © 2018 Elsevier B.V. All rights reserved.
Qin, Kunming; Zheng, Lijuan; Cai, Hao; Cao, Gang; Lou, Yajing; Lu, Tulin; Shu, Yachun; Zhou, Wei; Cai, Baochang
2013-01-01
Pericarpium Citri Reticulatae (Chenpi in Chinese) has been widely used as an herbal medicine in Korea, China, and Japan. Chenpi extracts are used to treat indigestion and inflammatory syndromes of the respiratory tract such as bronchitis and asthma. This thesis will analyze chemical compositions of Chenpi volatile oil, which was performed by comprehensive two-dimensional gas chromatography with high-resolution time-of-flight mass spectrometry (GC × GC-HR-TOFMS). One hundred and sixty-seven components were tentatively identified, and terpene compounds are the main components of Chenpi volatile oil, a significant larger number than in previous studies. The majority of the eluted compounds, which were identified, were well separated as a result of high-resolution capability of the GC × GC method, which significantly reduces, the coelution. β -Elemene is tentatively qualified by means of GC × GC in tandem with high-resolution TOFMS detection, which plays an important role in enhancing the effects of many anticancer drugs and in reducing the side effects of chemotherapy. This study suggests that GC × GC-HR-TOFMS is suitable for routine characterization of chemical composition of volatile oil in herbal medicines.
High Resolution Observations of Escaping Ions in the Martian Magnetotail
NASA Astrophysics Data System (ADS)
Halekas, J. S.; Raman, C.; Brain, D.; DiBraccio, G. A.; Harada, Y.; McFadden, J. P.; Mitchell, D. L.; Connerney, J. E. P.; Jakosky, B. M.
2016-12-01
Ions escape from the Martian upper atmosphere via a number of channels, including the central plasmasheet of the magnetotail. Mars Express observations show that the heavy ions O+ and O2+ escaping through the central tail often have approximately the same energy, suggesting acceleration in a quasi-static electric field, which has been interpreted as a Hall electric field. The Solar Wind Ion Analyzer (SWIA) on MAVEN was designed to measure the upstream solar wind. However, during orbit segments with appropriate spacecraft attitude, SWIA can also make high resolution measurements of escaping ions in the tail. During the prime mission, these observations were only returned sporadically, during periods of intense escaping fluxes that fortuitously triggered a mode switch. Now, in the extended mission, we return high resolution observations from SWIA routinely. Some of these high resolution measurements reveal slight differences in both the direction and energy of escaping O+ and O2+ ions, which may help determine the acceleration process(es). We investigate the location and solar wind conditions for which the escaping ions separate in energy and angle and the systematics of their energies and flow vectors, and discuss the implications for ion acceleration and the overall picture of Martian atmospheric escape.
Automated Segmentation of High-Resolution Photospheric Images of Active Regions
NASA Astrophysics Data System (ADS)
Yang, Meng; Tian, Yu; Rao, Changhui
2018-02-01
Due to the development of ground-based, large-aperture solar telescopes with adaptive optics (AO) resulting in increasing resolving ability, more accurate sunspot identifications and characterizations are required. In this article, we have developed a set of automated segmentation methods for high-resolution solar photospheric images. Firstly, a local-intensity-clustering level-set method is applied to roughly separate solar granulation and sunspots. Then reinitialization-free level-set evolution is adopted to adjust the boundaries of the photospheric patch; an adaptive intensity threshold is used to discriminate between umbra and penumbra; light bridges are selected according to their regional properties from candidates produced by morphological operations. The proposed method is applied to the solar high-resolution TiO 705.7-nm images taken by the 151-element AO system and Ground-Layer Adaptive Optics prototype system at the 1-m New Vacuum Solar Telescope of the Yunnan Observatory. Experimental results show that the method achieves satisfactory robustness and efficiency with low computational cost on high-resolution images. The method could also be applied to full-disk images, and the calculated sunspot areas correlate well with the data given by the National Oceanic and Atmospheric Administration (NOAA).
A simple heat-pipe cell for X-ray absorption spectrometry of potassium vapor
NASA Astrophysics Data System (ADS)
Pres̆eren, R.; Kodre, A.; Arc̆on, I.; Padez̆nik Gomils̆ek, J.; Hribar, M.
1999-01-01
The construction and operation of a simple high-temperature X-ray absorption cell for potassium vapor is described. The principle of "spectroscopic heat pipe" is exploited to separate kapton windows, indispensable for good transmission in the low-energy region, from the hot and aggressive vapor. High-resolution spectrum of the K-edge region of atomic potassium reveals fingerprints of multielectron photoexcitations.
Wide-angle display-type retarding field analyzer with high energy and angular resolutions
NASA Astrophysics Data System (ADS)
Muro, Takayuki; Ohkochi, Takuo; Kato, Yukako; Izumi, Yudai; Fukami, Shun; Fujiwara, Hidenori; Matsushita, Tomohiro
2017-12-01
Deployments of spherical grids to obtain high energy and angular resolutions for retarding field analyzers (RFAs) having acceptance angles as large as or larger than ±45° were explored under the condition of using commercially available microchannel plates with effective diameters of approximately 100 mm. As a result of electron trajectory simulations, a deployment of three spherical grids with significantly different grid separations instead of conventional equidistant separations showed an energy resolving power (E/ΔE) of 3200 and an angular resolution of 0.6°. The mesh number of the wire mesh retarding grid used for the simulation was 250. An RFA constructed with the simulated design experimentally showed an E/ΔE of 1100 and an angular resolution of 1°. Using the RFA and synchrotron radiation of 900 eV, photoelectron diffraction (PED) measurements were performed for single-crystal graphite. A clear C 1s PED pattern was observed even when the differential energy of the RFA was set at 0.5 eV. Further improvement of the energy resolution was theoretically examined under the assumption of utilizing a retarding grid fabricated by making a large number of radially directed cylindrical holes through a partial spherical shell instead of using a wire mesh retarding grid. An E/ΔE of 14 500 was predicted for a hole design with a diameter of 60 μm and a depth of 100 μm. A retarding grid with this hole design and a holed area corresponding to an acceptance angle of ±7° was fabricated. An RFA constructed with this retarding grid experimentally showed an E/ΔE of 1800. Possible reasons for the experimental E/ΔE lower than the theoretical values are discussed.
Enhancing Analytical Separations Using Super-Resolution Microscopy
NASA Astrophysics Data System (ADS)
Moringo, Nicholas A.; Shen, Hao; Bishop, Logan D. C.; Wang, Wenxiao; Landes, Christy F.
2018-04-01
Super-resolution microscopy is becoming an invaluable tool to investigate structure and dynamics driving protein interactions at interfaces. In this review, we highlight the applications of super-resolution microscopy for quantifying the physics and chemistry that occur between target proteins and stationary-phase supports during chromatographic separations. Our discussion concentrates on the newfound ability of super-resolved single-protein spectroscopy to inform theoretical parameters via quantification of adsorption-desorption dynamics, protein unfolding, and nanoconfined transport.
Laser-induced phase separation of silicon carbide
Choi, Insung; Jeong, Hu Young; Shin, Hyeyoung; Kang, Gyeongwon; Byun, Myunghwan; Kim, Hyungjun; Chitu, Adrian M.; Im, James S.; Ruoff, Rodney S.; Choi, Sung-Yool; Lee, Keon Jae
2016-01-01
Understanding the phase separation mechanism of solid-state binary compounds induced by laser–material interaction is a challenge because of the complexity of the compound materials and short processing times. Here we present xenon chloride excimer laser-induced melt-mediated phase separation and surface reconstruction of single-crystal silicon carbide and study this process by high-resolution transmission electron microscopy and a time-resolved reflectance method. A single-pulse laser irradiation triggers melting of the silicon carbide surface, resulting in a phase separation into a disordered carbon layer with partially graphitic domains (∼2.5 nm) and polycrystalline silicon (∼5 nm). Additional pulse irradiations cause sublimation of only the separated silicon element and subsequent transformation of the disordered carbon layer into multilayer graphene. The results demonstrate viability of synthesizing ultra-thin nanomaterials by the decomposition of a binary system. PMID:27901015
Optimal Exploitation of the Temporal and Spatial Resolution of SEVIRI for the Nowcasting of Clouds
NASA Astrophysics Data System (ADS)
Sirch, Tobias; Bugliaro, Luca
2015-04-01
Optimal Exploitation of the Temporal and Spatial Resolution of SEVIRI for the Nowcasting of Clouds An algorithm was developed to forecast the development of water and ice clouds for the successive 5-120 minutes separately using satellite data from SEVIRI (Spinning Enhanced Visible and Infrared Imager) aboard Meteosat Second Generation (MSG). In order to derive cloud cover, optical thickness and cloud top height of high ice clouds "The Cirrus Optical properties derived from CALIOP and SEVIRI during day and night" (COCS, Kox et al. [2014]) algorithm is applied. For the determination of the liquid water clouds the APICS ("Algorithm for the Physical Investigation of Clouds with SEVIRI", Bugliaro e al. [2011]) cloud algorithm is used, which provides cloud cover, optical thickness and effective radius. The forecast rests upon an optical flow method determining a motion vector field from two satellite images [Zinner et al., 2008.] With the aim of determining the ideal time separation of the satellite images that are used for the determination of the cloud motion vector field for every forecast horizon time the potential of the better temporal resolution of the Meteosat Rapid Scan Service (5 instead of 15 minutes repetition rate) has been investigated. Therefore for the period from March to June 2013 forecasts up to 4 hours in time steps of 5 min based on images separated by a time interval of 5 min, 10 min, 15 min, 30 min have been created. The results show that Rapid Scan data produces a small reduction of errors for a forecast horizon up to 30 minutes. For the following time steps forecasts generated with a time interval of 15 min should be used and for forecasts up to several hours computations with a time interval of 30 min provide the best results. For a better spatial resolution the HRV channel (High Resolution Visible, 1km instead of 3km maximum spatial resolution at the subsatellite point) has been integrated into the forecast. To detect clouds the difference of the measured albedo from SEVIRI and the clear-sky albedo provided by MODIS has been used and additionally the temporal development of this quantity. A pre-requisite for this work was an adjustment of the geolocation accuracy for MSG and MODIS by shifting the MODIS data and quantifying the correlation between both data sets.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Vijayan, S; Rana, V; Setlur Nagesh, S
2014-06-15
Purpose: Our real-time skin dose tracking system (DTS) has been upgraded to monitor dose for the micro-angiographic fluoroscope (MAF), a high-resolution, small field-of-view x-ray detector. Methods: The MAF has been mounted on a changer on a clinical C-Arm gantry so it can be used interchangeably with the standard flat-panel detector (FPD) during neuro-interventional procedures when high resolution is needed in a region-of-interest. To monitor patient skin dose when using the MAF, our DTS has been modified to automatically account for the change in scatter for the very small MAF FOV and to provide separated dose distributions for each detector. Themore » DTS is able to provide a color-coded mapping of the cumulative skin dose on a 3D graphic model of the patient. To determine the correct entrance skin exposure to be applied by the DTS, a correction factor was determined by measuring the exposure at the entrance surface of a skull phantom with an ionization chamber as a function of entrance beam size for various beam filters and kVps. Entrance exposure measurements included primary radiation, patient backscatter and table forward scatter. To allow separation of the dose from each detector, a parameter log is kept that allows a replay of the procedure exposure events and recalculation of the dose components.The graphic display can then be constructed showing the dose distribution from the MAF and FPD separately or together. Results: The DTS is able to provide separate displays of dose for the MAF and FPD with field-size specific scatter corrections. These measured corrections change from about 49% down to 10% when changing from the FPD to the MAF. Conclusion: The upgraded DTS allows identification of the patient skin dose delivered when using each detector in order to achieve improved dose management as well as to facilitate peak skin-dose reduction through dose spreading. Research supported in part by Toshiba Medical Systems Corporation and NIH Grants R43FD0158401, R44FD0158402 and R01EB002873.« less
Antisymmetric Amino-Wagging Band of Hydrazine up toK‧ = 13 Levels
NASA Astrophysics Data System (ADS)
Gulaczyk, Iwona; Kre, Marek; Valentin, Alain
1997-12-01
A newly recorded high-resolution infrared spectrum of hydrazine has been studied in the 729-1198 cm-1region (the ν12antisymmetric wagging band) with a resolution of 0.002 cm-1. About 1350 transitions withK‧ from 7 to 13 have been newly assigned and about 2350 transitions with lower values ofK‧ reanalyzed with the improved precision. The effective parameters have been calculated separately for each value ofK‧ using the Hougen-Ohashi hamiltonian for hydrazine. The extended assignment completes the analysis of the ν12band of hydrazine.
Study of radar pulse compression for high resolution satellite altimetry
NASA Technical Reports Server (NTRS)
Dooley, R. P.; Nathanson, F. E.; Brooks, L. W.
1974-01-01
Pulse compression techniques are studied which are applicable to a satellite altimeter having a topographic resolution of + 10 cm. A systematic design procedure is used to determine the system parameters. The performance of an optimum, maximum likelihood processor is analysed, which provides the basis for modifying the standard split-gate tracker to achieve improved performance. Bandwidth considerations lead to the recommendation of a full deramp STRETCH pulse compression technique followed by an analog filter bank to separate range returns. The implementation of the recommended technique is examined.
Hori, Katsuhito; Tsumura, Kazunobu; Fukusaki, Eiichiro; Bamba, Takeshi
2014-01-01
Supercritical fluid chromatography (SFC) coupled with triple quadrupole mass spectrometry was applied to the profiling of sucrose fatty acid esters (SEs). The SFC conditions (column and modifier gradient) were optimized for the effective separation of SEs. In the column test, a silica gel reversed-phase column was selected. Then, the method was used for the detailed characterization of commercial SEs and the successful analysis of SEs containing different fatty acids. The present method allowed for fast and high-resolution separation of monoesters to tetra-esters within a shorter time (15 min) as compared to the conventional high-performance liquid chromatography. The applicability of our method for the analysis of SEs was thus demonstrated. PMID:26819875
NASA Astrophysics Data System (ADS)
Sato, Yuki; Fukuda, Naoki; Takeda, Hiroyuki; Kameda, Daisuke; Suzuki, Hiroshi; Shimizu, Yohei; Ahn, DeukSoon; Murai, Daichi; Inabe, Naohito; Shimaoka, Takehiro; Tsubota, Masakatsu; Kaneko, Junichi H.; Chayahara, Akiyoshi; Umezawa, Hitoshi; Shikata, Shinichi; Kumagai, Hidekazu; Murakami, Hiroyuki; Sato, Hiromi; Yoshida, Koichi; Kubo, Toshiyuki
A multiple sampling ionization chamber (MUSIC) and parallel-plate avalanche counters (PPACs) were installed within the superconducting in-flight separator, named BigRIPS, at the RIKEN Nishina Center for particle identification of RI beams. The MUSIC detector showed negligible charge collection inefficiency from recombination of electrons and ions, up to a 99-kcps incidence rate for high-energy heavy ions. For the PPAC detectors, the electrical discharge durability for incident heavy ions was improved by changing the electrode material. Finally, we designed a single crystal diamond detector, which is under development for TOF measurements of high-energy heavy ions, that has a very fast response time (pulse width <1 ns).
Approaches to High-Performance Preparative Chromatography of Proteins
NASA Astrophysics Data System (ADS)
Sun, Yan; Liu, Fu-Feng; Shi, Qing-Hong
Preparative liquid chromatography is widely used for the purification of chemical and biological substances. Different from high-performance liquid chromatography for the analysis of many different components at minimized sample loading, high-performance preparative chromatography is of much larger scale and should be of high resolution and high capacity at high operation speed and low to moderate pressure drop. There are various approaches to this end. For biochemical engineers, the traditional way is to model and optimize a purification process to make it exert its maximum capability. For high-performance separations, however, we need to improve chromatographic technology itself. We herein discuss four approaches in this review, mainly based on the recent studies in our group. The first is the development of high-performance matrices, because packing material is the central component of chromatography. Progress in the fabrication of superporous materials in both beaded and monolithic forms are reviewed. The second topic is the discovery and design of affinity ligands for proteins. In most chromatographic methods, proteins are separated based on their interactions with the ligands attached to the surface of porous media. A target-specific ligand can offer selective purification of desired proteins. Third, electrochromatography is discussed. An electric field applied to a chromatographic column can induce additional separation mechanisms besides chromatography, and result in electrokinetic transport of protein molecules and/or the fluid inside pores, thus leading to high-performance separations. Finally, expanded-bed adsorption is described for process integration to reduce separation steps and process time.
Ali, Imran; Sahoo, Dibya Ranjan; ALOthman, Zeid A; Alwarthan, Abdulrahman A; Asnin, Leonid; Larsson, Bernt
2015-08-07
Chiral resolution of dl-alanine-dl-tyrosine and dl-leucine-dl-phenylalanine dipeptides was achieved on AmyCoat-RP column. The mobile phase used for dl-alanine-dl-tyrosine was acetonitrile-ammonium acetate (10mM, pH 6.0) [50:50, v/v]. It was acetonitrile-methanol-ammonium acetate (10mM; pH adjusted to 4.5 with glacial acetic acid) [50:20:30, v/v] for dl-leucine-dl-phenylalanine. The flow rate of the mobile phases was 0.8mL/min with UV detection at 275nm. The values of retention factors for ll-, dd-, dl- and ld-stereomers of dl-alanine-dl-tyrosine were 1.71, 2.86, 5.43 and 9.42, respectively. The values of separation and resolution factors were 1.67, 1.90 and 1.73 and 2.88, 6.43 and 7.90, respectively. Similarly, these values for dl-leucine-dl-phenylalanine stereomers were 1.50, 2.88, 3.50 and 4.07 (retention factors), 1.92, 1.22 and 1.62 (separation factors) and 2.67, 1.55 and 2.30 (resolution factors). The limits of detections and quantitation were ranged from 2.03 to 6.40 and 6.79 to 21.30μg/mL, respectively. The modeling studies were in agreement with the elution orders. The mechanism of chiral recognition was established by modeling and chromatographic studies. It was observed that hydrogen bondings and π-π interactions are the major forces for chiral separation. Copyright © 2015 Elsevier B.V. All rights reserved.
On line separation of overlapped signals from multi-time photons for the GEM-based detection system
NASA Astrophysics Data System (ADS)
Czarski, T.; Pozniak, K. T.; Chernyshova, M.; Malinowski, K.; Kasprowicz, G.; Kolasinski, P.; Krawczyk, R.; Wojenski, A.; Zabolotny, W.
2015-09-01
The Triple Gas Electron Multiplier (T-GEM) is presented as soft X-ray (SXR) energy and position sensitive detector for high-resolution X-ray diagnostics of magnetic confinement fusion plasmas. Multi-channel measurement system and serial data acquisition for X-ray energy and position recognition is described. Fundamental characteristics are presented for two dimensional detector structure. Typical signals of ADC - Analog to Digital Converter are considered for charge value and position estimation. Coinciding signals for high flux radiation cause the problem for cluster charge identification. The amplifier with shaper determines time characteristics and limits the pulses frequency. Separation of coincided signals was introduced and verified for simulation experiments. On line separation of overlapped signals was implemented applying the FPGA technology with relatively simple firmware procedure. Representative results for reconstruction of coinciding signals are demonstrated.
Benkert, Thomas; Feng, Li; Sodickson, Daniel K; Chandarana, Hersh; Block, Kai Tobias
2017-08-01
Conventional fat/water separation techniques require that patients hold breath during abdominal acquisitions, which often fails and limits the achievable spatial resolution and anatomic coverage. This work presents a novel approach for free-breathing volumetric fat/water separation. Multiecho data are acquired using a motion-robust radial stack-of-stars three-dimensional GRE sequence with bipolar readout. To obtain fat/water maps, a model-based reconstruction is used that accounts for the off-resonant blurring of fat and integrates both compressed sensing and parallel imaging. The approach additionally enables generation of respiration-resolved fat/water maps by detecting motion from k-space data and reconstructing different respiration states. Furthermore, an extension is described for dynamic contrast-enhanced fat-water-separated measurements. Uniform and robust fat/water separation is demonstrated in several clinical applications, including free-breathing noncontrast abdominal examination of adults and a pediatric subject with both motion-averaged and motion-resolved reconstructions, as well as in a noncontrast breast exam. Furthermore, dynamic contrast-enhanced fat/water imaging with high temporal resolution is demonstrated in the abdomen and breast. The described framework provides a viable approach for motion-robust fat/water separation and promises particular value for clinical applications that are currently limited by the breath-holding capacity or cooperation of patients. Magn Reson Med 78:565-576, 2017. © 2016 International Society for Magnetic Resonance in Medicine. © 2016 International Society for Magnetic Resonance in Medicine.
State-Based Implicit Coordination and Applications
NASA Technical Reports Server (NTRS)
Narkawicz, Anthony J.; Munoz, Cesar A.
2011-01-01
In air traffic management, pairwise coordination is the ability to achieve separation requirements when conflicting aircraft simultaneously maneuver to solve a conflict. Resolution algorithms are implicitly coordinated if they provide coordinated resolution maneuvers to conflicting aircraft when only surveillance data, e.g., position and velocity vectors, is periodically broadcast by the aircraft. This paper proposes an abstract framework for reasoning about state-based implicit coordination. The framework consists of a formalized mathematical development that enables and simplifies the design and verification of implicitly coordinated state-based resolution algorithms. The use of the framework is illustrated with several examples of algorithms and formal proofs of their coordination properties. The work presented here supports the safety case for a distributed self-separation air traffic management concept where different aircraft may use different conflict resolution algorithms and be assured that separation will be maintained.
Ates, E; Mittendorf, K; Stroka, J; Senyuva, H
2013-01-01
An automated method involving on-line clean-up and analytical separation in a single run using TurboFlow™ reversed phase liquid chromatography coupled to a high resolution mass spectrometer has been developed for the simultaneous determination of deoxynivalenol, T2 toxin, HT2 toxin, zearalenone and fumonisins B1 and B2 in maize, wheat and animal feed. Detection was performed in full scan mode at a resolution of R = 100,000 full width at half maximum with high energy collision cell dissociation for the determination of fragment ions with a mass accuracy below 5 ppm. The extract from homogenised samples, after blending with a 0.1% aqueous mixture of 0.1% formic acid/acetonitrile (43:57) for 45 min, was injected directly onto the TurboFlow™ (TLX) column for automated on-line clean-up followed by analytical separation and accurate mass detection. The TurboFlow™ column enabled specific binding of target mycotoxins, whereas higher molecular weight compounds, like fats, proteins and other interferences with different chemical properties, were removed to waste. Single laboratory method validation was performed by spiking blank materials with mycotoxin standards. The recovery and repeatability was determined by spiking at three concentration levels (50, 100 and 200% of legislative limits) with six replicates. Average recovery, relative standard deviation and intermediate precision values were 71 to 120%, 1 to 19% and 4 to 19%, respectively. The method accuracy was confirmed with certified reference materials and participation in proficiency testing.
NASA Technical Reports Server (NTRS)
Iyomoto, N.; Bandler, S. R.; Brekosky, R. P.; Brown, A.-D.; Chervenak, J. A.; Finkbeiner, F. M.; Kelley, R. L.; Kilbourne, C. A.; Porter, F. S.; Sadleir, J. E.;
2007-01-01
We present measurements of high fill-factor arrays of superconducting transition-edge x-ray microcalorimeters designed to provide rapid thermalization of the x-ray energy. We designed an x-ray absorber that is cantilevered over the sensitive part of the thermometer itself, making contact only at normal metal-features. With absorbers made of electroplated gold, we have demonstrated an energy resolution between 2.4 and 3.1 eV at 5.9 keV on 13 separate pixels. We have determined the thermal and electrical parameters of the devices throughout the superconducting transition, and, using these parameters, have modeled all aspects of the detector performance.
Bakker, Erin; Achenbach, Ute; Bakker, Jeroen; van Vliet, Joke; Peleman, Johan; Segers, Bart; van der Heijden, Stefan; van der Linde, Piet; Graveland, Robert; Hutten, Ronald; van Eck, Herman; Coppoolse, Eric; van der Vossen, Edwin; Bakker, Jaap; Goverse, Aska
2004-06-01
The resistance gene H1 confers resistance to the potato cyst nematode Globodera rostochiensis and is located at the distal end of the long arm of chromosome V of potato. For marker enrichment of the H1 locus, a bulked segregant analysis (BSA) was carried out using 704 AFLP primer combinations. A second source of markers tightly linked to H1 is the ultra-high-density (UHD) genetic map of the potato cross SH x RH. This map has been produced with 387 AFLP primer combinations and consists of 10,365 AFLP markers in 1,118 bins (http://www.dpw.wageningen-ur.nl/uhd/). Comparing these two methods revealed that BSA resulted in one marker/cM and the UHD map in four markers/cM in the H1 interval. Subsequently, a high-resolution genetic map of the H1 locus has been developed using a segregating F(1) SH x RH population consisting of 1,209 genotypes. Two PCR-based markers were designed at either side of the H1 gene to screen the 1,209 genotypes for recombination events. In the high-resolution genetic map, two of the four co-segregating AFLP markers could be separated from the H1 gene. Marker EM1 is located at a distance of 0.2 cM, and marker EM14 is located at a distance of 0.8 cM. The other two co-segregating markers CM1 (in coupling) and EM15 (in repulsion) could not be separated from the H1 gene.
A high-resolution (13)C 3D CSA-CSA-CSA correlation experiment by means of magic angle turning.
Hu, J Z; Ye, C; Pugmire, R J; Grant, D M
2000-08-01
It is shown in this paper that a previously reported 90 degrees sample flipping (13)C 2D CSA-CSA correlation experiment may be carried out alternatively by employing constant slow sample rotation about the magic angle axis and by synchronizing the read pulse to 13 of the rotor cycle. A high-resolution 3D CSA-CSA-CSA correlation experiment based on the magic angle turning technique is reported in which the conventional 90 degrees 2D CSA-CSA powder pattern for each carbon in a system containing a number of inequivalent carbons may be separated according to the isotropic chemical shift value. The technique is demonstrated on 1,2,3-trimethoxybenzene in which all of the overlapping powder patterns that cannot be segregated by the 2D CSA-CSA experiment are resolved successfully by the 3D CSA-CSA-CSA experiment, including even the two methoxy groups (M(1) and M(3)) whose isotropic shifts, confirmed by high-speed MAS, are separated by only 1 ppm. A difference of 4 ppm in the principal value component (delta(33)) between M(1) and M(3) is readily obtained. Copyright 2000 Academic Press.
Separation technologies for stem cell bioprocessing.
Diogo, Maria Margarida; da Silva, Cláudia Lobato; Cabral, Joaquim M S
2012-11-01
Stem cells have been the focus of an intense research due to their potential in Regenerative Medicine, drug discovery, toxicology studies, as well as for fundamental studies on developmental biology and human disease mechanisms. To fully accomplish this potential, the successful application of separation processes for the isolation and purification of stem cells and stem cell-derived cells is a crucial issue. Although separation methods have been used over the past decades for the isolation and enrichment of hematopoietic stem/progenitor cells for transplantation in hemato-oncological settings, recent achievements in the stem cell field have created new challenges including the need for novel scalable separation processes with a higher resolution and more cost-effective. Important examples are the need for high-resolution methods for the separation of heterogeneous populations of multipotent adult stem cells to study their differential biological features and clinical utility, as well as for the depletion of tumorigenic cells after pluripotent stem cell differentiation. Focusing on these challenges, this review presents a critical assessment of separation processes that have been used in the stem cell field, as well as their current and potential applications. The techniques are grouped according to the fundamental principles that govern cell separation, which are defined by the main physical, biophysical, and affinity properties of cells. A special emphasis is given to novel and promising approaches such as affinity-based methods that take advantage of the use of new ligands (e.g., aptamers, lectins), as well as to novel biophysical-based methods requiring no cell labeling and integrated with microscale technologies. Copyright © 2012 Wiley Periodicals, Inc.
High-temperature adsorption layers based on fluoridated polyimide and diatomite carrier
NASA Astrophysics Data System (ADS)
Yakovleva, E. Yu.; Shundrina, I. K.; Gerasimov, E. Yu.
2017-09-01
A way of preparing separation layers by the pyrolysis of fluorinated polyimide obtained from 2,4,6-trimethyl- m-phenylenediamine (2,4,6-TM mPDA) and 2,2-bis(3',4'-dicarboxyphenyl)hexafluoropropane (6FDA) applied onto a diatomite carrier is described. Thermogravimetry, elemental analysis, low-temperature nitrogen adsorption, high-resolution electron microscopy, and gas chromatography are used to study changes in the texture and chromatographic characteristics of these layers. It is found that changes in the structure and the effectivity of separation characteristic of the layers depend on the temperature of pyrolysis, which ranges from 250 to 1100°C. It is established that a layer of separation is formed at 250-350°C, and the order of elution of hydrocarbons is similar to their chromatographic behavior on such stationary phases as OV-101. Layers of amorphous carbon formed on the surfaces of individual particles on a diatomite surface at 500-700°C. These layers ensure highly stable and selective separation of permanent gases and hydrocarbons when they are present together.
Huang, Shaohua; Wu, Rui; Bai, Zhengwu; Yang, Ying; Li, Suying; Dou, Xiaowei
2014-09-01
Polyvinylpyrrolidone (PVP) was used as a virtual stationary phase to separate p-xylene, benzyl alcohol, and p-methylphenol by the chromatographic NMR technique. The effects of concentration and weight-average molecular weight (Mw) of PVP, solvent viscosity, solvent polarity, and sample temperature on the resolution of these components were investigated. It was found that both higher PVP concentration and higher PVP Mw caused the increase of diffusion resolution for the three components. Moreover, the diffusion resolution did not change at viscosity-higher solvents. Moreover, the three components showed different resolution at different solvents. As temperature increased, the diffusion resolution between p-xylene and benzyl alcohol gradually increased, and the one between p-xylene and p-methylphenol slightly increased from 278 to 298 K and then decreased above 298 K. It was also found that the polarity of the analytes played an important role for the separation by affecting the diffusion coefficient. Copyright © 2014 John Wiley & Sons, Ltd.
Chen, Hong; Li, Laishen; Zhang, Yang; Zhou, Rendan
2012-10-01
A new magnolol-bonded silica gel stationary phase (MSP) was used to separate the basic drugs including four purines, eight pyrimidines, four pterins and five flavonoids as polar representative samples by high performance liquid chromatography (HPLC). To clarify the separation mechanism, a commercial ODS column was also tested under the same chromatographic conditions. The high selectivities and fast baseline separations of the above drugs were achieved by using simple mobile phases on MSP. Although there is no end-caped treatment, the peak shapes of basic drugs containing nitrogen such as purines, pyrimidines and pterins were rather symmetrical on MSP, which indicated the the magnolol as ligand with multi-sites could shield the side effect of residual silanol groups on the surface of silica gel. Although somewhat different in the separation resolution, it was found that the elution orders of some drugs were generally similar on both MSP and ODS. The hydrophobic interaction should play a significant role in the separations of the above basic drugs, which was attributed to their reversed-phase property in the nature. However, MSP could provide the additional sites for many polar solutes, which was a rational explanation for the high selectivity of MSP. For example, in the separation of purines, pyrimidines and pterins on MSP, hydrogen-bonding and dipole-dipole interactions played leading roles besides hydrophobic interaction. Some solute molecules (such as mercaptopurine, vitexicarpin) and MSP can form the strong pi-pi stacking in the separation process. All enhanced the retention and improved the separation selectivity of MSP, which facilitated the separation of the basic drugs.
Particle separation by phase modulated surface acoustic waves.
Simon, Gergely; Andrade, Marco A B; Reboud, Julien; Marques-Hueso, Jose; Desmulliez, Marc P Y; Cooper, Jonathan M; Riehle, Mathis O; Bernassau, Anne L
2017-09-01
High efficiency isolation of cells or particles from a heterogeneous mixture is a critical processing step in lab-on-a-chip devices. Acoustic techniques offer contactless and label-free manipulation, preserve viability of biological cells, and provide versatility as the applied electrical signal can be adapted to various scenarios. Conventional acoustic separation methods use time-of-flight and achieve separation up to distances of quarter wavelength with limited separation power due to slow gradients in the force. The method proposed here allows separation by half of the wavelength and can be extended by repeating the modulation pattern and can ensure maximum force acting on the particles. In this work, we propose an optimised phase modulation scheme for particle separation in a surface acoustic wave microfluidic device. An expression for the acoustic radiation force arising from the interaction between acoustic waves in the fluid was derived. We demonstrated, for the first time, that the expression of the acoustic radiation force differs in surface acoustic wave and bulk devices, due to the presence of a geometric scaling factor. Two phase modulation schemes are investigated theoretically and experimentally. Theoretical findings were experimentally validated for different mixtures of polystyrene particles confirming that the method offers high selectivity. A Monte-Carlo simulation enabled us to assess performance in real situations, including the effects of particle size variation and non-uniform acoustic field on sorting efficiency and purity, validating the ability to separate particles with high purity and high resolution.
Biochemical separations by continuous-bed chromatography.
Tisch, T L; Frost, R; Liao, J L; Lam, W K; Remy, A; Scheinpflug, E; Siebert, C; Song, H; Stapleton, A
1998-08-07
Innovations in column-packing media for biomolecule purification have progressed from large spherical, porous polysaccharide beads to advanced polymeric supports. Continuous-bed technology is a radical new technology for chromatography based on the polymerization of advanced monomers and ionomers directly in the chromatographic column. The polymer chains form aggregates which coalesce into a dense, homogeneous network of interconnected nodules consisting of microparticles with an average diameter of 3000 A. The voids or channels between the nodules are large enough to permit a high hydrodynamic flow. Due to the high cross-linking of the polymer matrix, the surface of each nodule is nonporous yet the polymeric microparticles provide a very large surface area for high binding capacity. This paper will demonstrate the properties and advantages of using a continuous bed support for high resolution biomolecule separations at high flow-rates without sacrificing capacity.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kim, J. Y.; Kim, J. W.; Wan, W.
2015-07-15
An in-flight fragment separator usually requires large acceptance and high momentum resolution to minimize the loss of a rare isotope beam of interest produced at a thin target, which is especially important when {sup 238}U fission reactions in the energy of 200 MeV/u are used. The production target and beam dump are located in the pre-separator, where a beam power of up to 400 kW is dissipated. The area is surrounded by thick radiation shielding walls, which result in long drift spaces between adjacent magnetic components at various locations and an asymmetrical layout. Efforts have been made to minimize non-linearmore » effects in the pre-separator beam optics with trials of different separator configurations and correction schemes using COSY Infinity and GICOSY. The main separator is configured to be mirror symmetric such that correction with hexapole and octupole coils can be more readily applied. The separator configuration was finalized to allow the facility design to proceed and the key components including superconducting magnets have been designed and prototyped. In addition, the separator design has been evaluated using LISE++ including a set of wedge degraders at dispersive focal planes to improve the yield and purity of selected isotope beam.« less
Enantioseparation of Six Antihistamines with Immobilized Cellulose Chiral Stationary Phase by HPLC
Zhou, Jie; Luo, Pei; Chen, Shanshan; Meng, Lingchang; Sun, Chong; Du, Qiuzheng; Sun, Fang
2016-01-01
A stereoselective high performance liquid chromatography method has been developed for the chiral separation of the enantiomers of six antihistamines, doxylamine, carbinoxamine, dioxopromethazine, oxomemazine, cetirizine and hydroxyzine. The effects of mobile phase additive, column temperature and flow rate on the retention time and resolution were studied. Enantiomeric separation of cetirizine, doxylamine and hydroxyzine were achieved on cellulose tris-(3,5-dichlorophenylcarbamate) immobilized on silica gel chiral stationary phase known as Chiralpak IC (RS = 3.74, RS = 1.85 and RS = 1.74, respectively). PMID:26657408
Trajectory Segmentation Map-Matching Approach for Large-Scale, High-Resolution GPS Data
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zhu, Lei; Holden, Jacob R.; Gonder, Jeffrey D.
With the development of smartphones and portable GPS devices, large-scale, high-resolution GPS data can be collected. Map matching is a critical step in studying vehicle driving activity and recognizing network traffic conditions from the data. A new trajectory segmentation map-matching algorithm is proposed to deal accurately and efficiently with large-scale, high-resolution GPS trajectory data. The new algorithm separated the GPS trajectory into segments. It found the shortest path for each segment in a scientific manner and ultimately generated a best-matched path for the entire trajectory. The similarity of a trajectory segment and its matched path is described by a similaritymore » score system based on the longest common subsequence. The numerical experiment indicated that the proposed map-matching algorithm was very promising in relation to accuracy and computational efficiency. Large-scale data set applications verified that the proposed method is robust and capable of dealing with real-world, large-scale GPS data in a computationally efficient and accurate manner.« less
Trajectory Segmentation Map-Matching Approach for Large-Scale, High-Resolution GPS Data
Zhu, Lei; Holden, Jacob R.; Gonder, Jeffrey D.
2017-01-01
With the development of smartphones and portable GPS devices, large-scale, high-resolution GPS data can be collected. Map matching is a critical step in studying vehicle driving activity and recognizing network traffic conditions from the data. A new trajectory segmentation map-matching algorithm is proposed to deal accurately and efficiently with large-scale, high-resolution GPS trajectory data. The new algorithm separated the GPS trajectory into segments. It found the shortest path for each segment in a scientific manner and ultimately generated a best-matched path for the entire trajectory. The similarity of a trajectory segment and its matched path is described by a similaritymore » score system based on the longest common subsequence. The numerical experiment indicated that the proposed map-matching algorithm was very promising in relation to accuracy and computational efficiency. Large-scale data set applications verified that the proposed method is robust and capable of dealing with real-world, large-scale GPS data in a computationally efficient and accurate manner.« less
NASA Technical Reports Server (NTRS)
Michell, R. G.; Samara, M.; Grubbs, G., II; Ogasawara, K.; Miller, G.; Trevino, J. A.; Webster, J.; Stange, J.
2016-01-01
We present a description of the Acute Precipitating Electron Spectrometer (APES) that was designed and built for the Ground-to-Rocket Electron Electrodynamics Correlative Experiment (GREECE) auroral sounding rocket mission. The purpose was to measure the precipitating electron spectrum with high time resolution, on the order of milliseconds. The trade-off made in order to achieve high time resolution was to limit the aperture to only one look direction. The energy selection was done by using a permanent magnet to separate the incoming electrons, such that the different energies would fall onto different regions of the microchannel plate and therefore be detected by different anodes. A rectangular microchannel plate (MCP) was used (15 mm x 100 mm), and there was a total of 50 discrete anodes under the MCP, each one 15 mm x 1.5 mm, with a 0.5 mm spacing between anodes. The target energy range of APES was 200 eV to 30 keV.
Development of New High Resolution Neutron Detector
NASA Astrophysics Data System (ADS)
Mostella, L. D., III; Rajabali, M.; Loureiro, D. P.; Grzywacz, R.
2017-09-01
Beta-delayed neutron emission is a prevalent form of decay for neutron-rich nuclei. This occurs when an unstable nucleus undergoes beta decay, but produces a daughter nucleus in an excited state above the neutron separation energy. The daughter nucleus then de-excites by ejecting one or more neutrons. We wish to map the states from which these nuclei decay via neutron spectroscopy using NEXT, a new high resolution neutron detector. NEXT utilizes silicon photomultipliers and 6 mm thick pulse-shape discriminating plastic scintillators, allowing for smaller and more compact modular geometries in the NEXT array. Timing measurements for the detector were performed and a resolution of 893 ps (FWHM) has been achieved so far. Aspects of the detector that were investigated and will be presented here include scintillator geometry, wrapping materials, fitting functions for the digitized signals, and electronic components coupled to the silicon photomultipliers for signal shaping.
Combined optical tomographic and magnetic resonance imaging of tumor bearing mice
NASA Astrophysics Data System (ADS)
Masciotti, J.; Abdoulaev, G.; Hur, J.; Papa, J.; Bae, J.; Huang, J.; Yamashiro, D.; Kandel, J.; Hielscher, A. H.
2005-04-01
With the advent of small animal imaging systems, it has become possible to non-invasively monitor the progression of diseases in living small animals and study the efficacy of drugs and treatment protocols. Magnetic resonance imaging (MRI) is an established imaging modality capable of obtaining high resolution anatomical images as well as studying cerebral blood volume (CBV), cerebral blood flow (CBF), and cerebral metabolic rate of oxygen (CMRO2). Optical tomography, on the other hand, is an emerging imaging modality, which, while much lower in spatial resolution and insensitive to CBF, can separate the effects of oxyhemoglobin, deoxyhemoglobin, and CBV with high temporal resolution. In this study we present our first results concerning coregistration of MRI and optical data. By applying both modalities to imaging of kidney tumors in mice that undergo VEGF treatment, we illustrate how these imaging modalities can supplement each other and cross validation can be performed.
Delayed bunching for multi-reflection time-of-flight mass separation
DOE Office of Scientific and Technical Information (OSTI.GOV)
Rosenbusch, M.; Marx, G.; Schweikhard, L.
2015-06-29
Many experiments are handicapped when the ion sources do not only deliver the ions of interest but also contaminations, i.e., unwanted ions of similar mass. In the recent years, multi-reflection time-of-flight mass separation has become a promising method to isolate the ions of interest from the contaminants, in particular for measurements with low-energy short-lived nuclides. To further improve the performance of multi-reflection mass separators with respect to the limitations by space-charge effects, the simultaneously trapped ions are spatially widely distributed in the apparatus. Thus, the ions can propagate with reduced Coulomb interactions until, finally, they are bunched by a changemore » in the trapping conditions for high-resolution mass separation. Proof-of-principle measurements are presented.« less
A study of the coherence length of ULF waves in the earth's foreshock
NASA Technical Reports Server (NTRS)
Le, G.; Russell, C. T.
1990-01-01
High-time-resolution magnetic-field data for different separations of ISEE 1 and 2 in the earth's ion foreshock region are examined to study the coherence length of upstream ULF waves. Examining the correlation coefficients of the low-frequency waves as a function of separation distance shows that the correlation coefficient depends mainly on the separation distance of ISEE 1 and 2 transverse to the solar-wind flow. It drops to about 0.5 when the transverse separation is about 1 earth radius, a distance much larger than the proton thermal gyroradius in the solar wind. Thus the coherence length of the low-frequency waves is about one earth radius, which is of the order of the wavelength, and is consistent with that estimated from the bandwidth of the waves.
USDA-ARS?s Scientific Manuscript database
The thermal-based Two Source Energy Balance (TSEB) model partitions the water and energy fluxes from vegetation and soil components providing thus the ability for estimating soil evaporation (E) and canopy transpiration (T) separately. However, it is crucial for ET partitioning to retrieve reliable ...
Guidelines for the Practice of Parenting Coordination
ERIC Educational Resources Information Center
American Psychologist, 2012
2012-01-01
Parenting coordination is a nonadversarial dispute resolution process that is court ordered or agreed on by divorced and separated parents who have an ongoing pattern of high conflict and/or litigation about their children. These guidelines are designed to address the developing area of practice known as parenting coordination. In response to the…
Remote sensing of native and invasive species in Hawaiian forests
Gregory P. Asner; Matthew O. Jones; Roberta E. Martin; David E. Knapp; R. Flint Hughes
2008-01-01
Detection and mapping of invasive species is an important component of conservation and management efforts in Hawai'i, but the spectral separability of native, introduced, and invasive species has not been established. We used high spatial resolution airborne imaging spectroscopy to analyze the canopy hyperspectral reflectance properties of 37 distinct species or...
DOE Office of Scientific and Technical Information (OSTI.GOV)
Melchior, Jan-Patrick; Frick, Bernhard
Combining 1H-NMR, 17O-NMR, and high-resolution backscattering QENS hydrodynamic and structural proton transport in phosphoric acid is separated. The rate limiting steps for structural proton diffusion in mixtures of acid with Brønsted bases are found to occur below the nanosecond timescale.
Melchior, Jan-Patrick; Frick, Bernhard
2017-09-22
Combining 1H-NMR, 17O-NMR, and high-resolution backscattering QENS hydrodynamic and structural proton transport in phosphoric acid is separated. The rate limiting steps for structural proton diffusion in mixtures of acid with Brønsted bases are found to occur below the nanosecond timescale.
Improved method for reliable HMW-GS identification by RP-HPLC and SDS-PAGE in common wheat cultivars
USDA-ARS?s Scientific Manuscript database
The accurate identification of alleles for high-molecular weight glutenins (HMW-GS) is critical for wheat breeding programs targeting end-use quality. RP-HPLC methods were optimized for separation of HMW-GS, resulting in enhanced resolution of 1By and 1Dx subunits. Statistically significant differe...
High Spectral Resolution Lidar Measurements of Multiple Scattering
NASA Technical Reports Server (NTRS)
Eloranta, E. W.; Piironen, P.
1996-01-01
The University of Wisconsin High Spectral Resolution Lidar (HSRL) provides unambiguous measurements of backscatter cross section, backscatter phase function, depolarization, and optical depth. This is accomplished by dividing the lidar return into separate particulate and molecular contributions. The molecular return is then used as a calibration target. We have modified the HSRL to use an I2 molecular absorption filter to separate aerosol and molecular signals. This allows measurement in dense clouds. Useful profiles extend above the cloud base until the two way optical depth reaches values between 5 and 6; beyond this, photon counting errors become large. In order to observe multiple scattering, the HSRL includes a channel which records the combined aerosol and molecular lidar return simultaneously with the spectrometer channel measurements of optical properties. This paper describes HSRL multiple scattering measurements from both water and ice clouds. These include signal strengths and depolarizations as a function of receiver field of view. All observations include profiles of extinction and backscatter cross sections. Measurements are also compared to predictions of a multiple scattering model based on small angle approximations.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Cong, Yongzheng; Katipamula, Shanta; Geng, Tao
2016-02-01
A microfluidic platform was developed to perform online electrokinetic sample preconcentration and rapid hydrodynamic sample injection for electrophoresis using a single microvalve. The PDMS microchip consists of a separation channel, a side channel for sample introduction, and a control channel which is used as a pneumatic microvalve aligned at the intersection of the two flow channels. The closed microvalve, created by multilayer soft lithography, can serve as a preconcentrator under an applied electric potential, enabling current to pass through while blocking bulk flow. Once analytes are concentrated, the valve is briefly opened and the stacked sample is pressure injected intomore » the separation channel for electrophoretic separation. Fluorescently labeled peptides were enriched by a factor of ~450 in 230 s. The performance of the platform was validated by the online preconcentration, injection and electrophoretic separation of fluorescently labeled peptides. This method enables both rapid analyte concentration and controlled injection volume for high sensitivity, high resolution capillary electrophoresis.« less
Agnolet, Sara; Wiese, Stefanie; Verpoorte, Robert; Staerk, Dan
2012-11-02
Here, proof-of-concept of a new analytical platform used for the comprehensive analysis of a small set of commercial willow bark products is presented, and compared with a traditional standardization solely based on analysis of salicin and salicin derivatives. The platform combines principal component analysis (PCA) of two chemical fingerprints, i.e., HPLC and (1)H NMR data, and a pharmacological fingerprint, i.e., high-resolution 2,2'-azino-bis(3-ethylbenzothiazoline-6-sulfonate) radical cation (ABTS(+)) reduction profile, with targeted identification of constituents of interest by hyphenated HPLC-solid-phase extraction-tube transfer NMR, i.e., HPLC-SPE-ttNMR. Score plots from PCA of HPLC and (1)H NMR fingerprints showed the same distinct grouping of preparations formulated as capsules of Salix alba bark and separation of S. alba cortex. Loading plots revealed this to be due to high amount of salicin in capsules and ampelopsin, taxifolin, 7-O-methyltaxifolin-3'-O-glucoside, and 7-O-methyltaxifolin in S. alba cortex, respectively. PCA of high-resolution radical scavenging profiles revealed clear separation of preparations along principal component 1 due to the major radical scavengers (+)-catechin and ampelopsin. The new analytical platform allowed identification of 16 compounds in commercial willow bark extracts, and identification of ampelopsin, taxifolin, 7-O-methyltaxifolin-3'-O-glucoside, and 7-O-methyltaxifolin in S. alba bark extract is reported for the first time. The detection of the novel compound, ethyl 1-hydroxy-6-oxocyclohex-2-enecarboxylate, is also described. Copyright © 2012 Elsevier B.V. All rights reserved.
Bouschen, Werner; Schulz, Oliver; Eikel, Daniel; Spengler, Bernhard
2010-02-01
Matrix preparation techniques such as air spraying or vapor deposition were investigated with respect to lateral migration, integration of analyte into matrix crystals and achievable lateral resolution for the purpose of high-resolution biological imaging. The accessible mass range was found to be beyond 5000 u with sufficient analytical sensitivity. Gas-assisted spraying methods (using oxygen-free gases) provide a good compromise between crystal integration of analyte and analyte migration within the sample. Controlling preparational parameters with this method, however, is difficult. Separation of the preparation procedure into two steps, instead, leads to an improved control of migration and incorporation. The first step is a dry vapor deposition of matrix onto the investigated sample. In a second step, incorporation of analyte into the matrix crystal is enhanced by a controlled recrystallization of matrix in a saturated water atmosphere. With this latter method an effective analytical resolution of 2 microm in the x and y direction was achieved for scanning microprobe matrix-assisted laser desorption/ionization imaging mass spectrometry (SMALDI-MS). Cultured A-498 cells of human renal carcinoma were successfully investigated by high-resolution MALDI imaging using the new preparation techniques. Copyright 2010 John Wiley & Sons, Ltd.
Compact Single Site Resolution Cold Atom Experiment for Adiabatic Quantum Computing
2016-02-03
goal of our scientific investigation is to demonstrate high fidelity and fast atom-atom entanglement between physically 1. REPORT DATE (DD-MM-YYYY) 4...of our scientific investigation is to demonstrate high fidelity and fast atom-atom entanglement between physically separated and optically addressed...Specifically, we will design and construct a set of compact single atom traps with integrated optics, suitable for heralded entanglement and loophole
Jones, Jace W; Carter, Claire L; Li, Fei; Yu, Jianshi; Pierzchalski, Keely; Jackson, Isabel L; Vujaskovic, Zeljko; Kane, Maureen A
2017-03-01
Lipids represent biologically ubiquitous and highly dynamic molecules in terms of abundance and structural diversity. Whereas the potential for lipids to inform on disease/injury is promising, their unique characteristics make detection and identification of lipids from biological samples analytically demanding. We report the use of ultraperformance convergence chromatography (UPC 2 ), a variant of supercritical fluid chromatography, coupled to high-resolution, data-independent tandem mass spectrometry for characterization of total lipid extracts from mouse lung tissue. The UPC 2 platform resulted in lipid class separation and when combined with orthogonal column chemistries yielded chromatographic separation of intra-class species based on acyl chain hydrophobicity. Moreover, the combined approach of using UPC 2 with orthogonal column chemistries, accurate mass measurements, time-aligned low- and high-collision energy total ion chromatograms, and positive and negative ion mode product ion spectra correlation allowed for confident lipid identification. Of great interest was the identification of differentially expressed ceramides that were elevated 24 h post whole thorax lung irradiation. The identification of lipids that were elevated 24 h post-irradiation signifies a unique opportunity to investigate early mechanisms of action prior to the onset of clinical symptoms in the whole thorax lung irradiation mouse model. Copyright © 2016 John Wiley & Sons, Ltd.
High resolution quantitative phase imaging of live cells with constrained optimization approach
NASA Astrophysics Data System (ADS)
Pandiyan, Vimal Prabhu; Khare, Kedar; John, Renu
2016-03-01
Quantitative phase imaging (QPI) aims at studying weakly scattering and absorbing biological specimens with subwavelength accuracy without any external staining mechanisms. Use of a reference beam at an angle is one of the necessary criteria for recording of high resolution holograms in most of the interferometric methods used for quantitative phase imaging. The spatial separation of the dc and twin images is decided by the reference beam angle and Fourier-filtered reconstructed image will have a very poor resolution if hologram is recorded below a minimum reference angle condition. However, it is always inconvenient to have a large reference beam angle while performing high resolution microscopy of live cells and biological specimens with nanometric features. In this paper, we treat reconstruction of digital holographic microscopy images as a constrained optimization problem with smoothness constraint in order to recover only complex object field in hologram plane even with overlapping dc and twin image terms. We solve this optimization problem by gradient descent approach iteratively and the smoothness constraint is implemented by spatial averaging with appropriate size. This approach will give excellent high resolution image recovery compared to Fourier filtering while keeping a very small reference angle. We demonstrate this approach on digital holographic microscopy of live cells by recovering the quantitative phase of live cells from a hologram recorded with nearly zero reference angle.
Toward high-resolution NMR spectroscopy of microscopic liquid samples
DOE Office of Scientific and Technical Information (OSTI.GOV)
Butler, Mark C.; Mehta, Hardeep S.; Chen, Ying
A longstanding limitation of high-resolution NMR spectroscopy is the requirement for samples to have macroscopic dimensions. Commercial probes, for example, are designed for volumes of at least 5 mL, in spite of decades of work directed toward the goal of miniaturization. Progress in miniaturizing inductive detectors has been limited by a perceived need to meet two technical requirements: (1) minimal separation between the sample and the detector, which is essential for sensitivity, and (2) near-perfect magnetic-field homogeneity at the sample, which is typically needed for spectral resolution. The first of these requirements is real, but the second can be relaxed,more » as we demonstrate here. By using pulse sequences that yield high-resolution spectra in an inhomogeneous field, we eliminate the need for near-perfect field homogeneity and the accompanying requirement for susceptibility matching of microfabricated detector components. With this requirement removed, typical imperfections in microfabricated components can be tolerated, and detector dimensions can be matched to those of the sample, even for samples of volume << 5 uL. Pulse sequences that are robust to field inhomogeneity thus enable small-volume detection with optimal sensitivity. We illustrate the potential of this approach to miniaturization by presenting spectra acquired with a flat-wire detector that can easily be scaled to subnanoliter volumes. In particular, we report high-resolution NMR spectroscopy of an alanine sample of volume 500 pL.« less
A ``Cyber Wind Facility'' for HPC Wind Turbine Field Experiments
NASA Astrophysics Data System (ADS)
Brasseur, James; Paterson, Eric; Schmitz, Sven; Campbell, Robert; Vijayakumar, Ganesh; Lavely, Adam; Jayaraman, Balaji; Nandi, Tarak; Jha, Pankaj; Dunbar, Alex; Motta-Mena, Javier; Craven, Brent; Haupt, Sue
2013-03-01
The Penn State ``Cyber Wind Facility'' (CWF) is a high-fidelity multi-scale high performance computing (HPC) environment in which ``cyber field experiments'' are designed and ``cyber data'' collected from wind turbines operating within the atmospheric boundary layer (ABL) environment. Conceptually the ``facility'' is akin to a high-tech wind tunnel with controlled physical environment, but unlike a wind tunnel it replicates commercial-scale wind turbines operating in the field and forced by true atmospheric turbulence with controlled stability state. The CWF is created from state-of-the-art high-accuracy technology geometry and grid design and numerical methods, and with high-resolution simulation strategies that blend unsteady RANS near the surface with high fidelity large-eddy simulation (LES) in separated boundary layer, blade and rotor wake regions, embedded within high-resolution LES of the ABL. CWF experiments complement physical field facility experiments that can capture wider ranges of meteorological events, but with minimal control over the environment and with very small numbers of sensors at low spatial resolution. I shall report on the first CWF experiments aimed at dynamical interactions between ABL turbulence and space-time wind turbine loadings. Supported by DOE and NSF.
Mikaeli, S; Thorsén, G; Karlberg, B
2001-01-12
A novel approach to multivariate evaluation of separation electrolytes for micellar electrokinetic chromatography is presented. An initial screening of the experimental parameters is performed using a Plackett-Burman design. Significant parameters are further evaluated using full factorial designs. The total resolution of the separation is calculated and used as response. The proposed scheme has been applied to the optimisation of the separation of phenols and the chiral separation of (+)-1-(9-anthryl)-2-propyl chloroformate-derivatized amino acids. A total of eight experimental parameters were evaluated and optimal conditions found in less than 48 experiments.
García-Ruiz, Marta; Rodrigo, María José; Hernández-Cabrera, Juan A; Máiquez, María Luisa
2013-12-01
This study examined the contribution to parent-adolescent conflict resolution of parental adult attachment styles and attitudes toward adolescent separation. Questionnaires were completed by 295 couples with early to late adolescent children. Structural equation models were used to test self and partner influences on conflict resolution for three attachment orientations: confidence (model A), anxiety (model B) and avoidance (model C). Model A showed self influences between parents' confidence orientation and negotiation and also via positive attitudes towards separation. Also, the fathers' use of negotiation was facilitated by the mothers' confidence orientation and vice versa, indicating partner influences as well. Model B showed self influences between parents' anxiety orientation and the use of dominance and withdrawal and also via negative attitudes towards separation. Model C showed self influences between parents' avoidance orientation and dominance and withdrawal, and a partner influence between fathers' avoidance and mothers' use of dominance. The results indicated that the parents' adult attachment system and the parenting system were related in the area of conflict resolution, and that self influences were stronger than partner influences. © 2013 The Scandinavian Psychological Associations.
Shadpour, Hamed; Zawistowski, Jon S.; Herman, Annadele; Hahn, Klaus; Allbritton, Nancy L.
2011-01-01
Pallet arrays enable cells to be separated while they remain adherent to a surface and provide a much greater range of cell selection criteria relative to that of current technologies. However there remains a need to further broaden cell selection criteria to include dynamic intracellular signaling events. To demonstrate the feasibility of measuring cellular protein behavior on the arrays using high resolution microscopy, the surfaces of individual pallets were modified to minimize the impact of scattered light at the pallet edges. The surfaces of the three-dimensional pallets on an array were patterned with a coating such as fibronectin using a customized stamping tool. Micropatterns of varying shape and size were printed in designated regions on the pallets in single or multiple steps to demonstrate the reliability and precision of patterning molecules on the pallet surface. Use of a fibronectin matrix stamped at the center of each pallet permitted the localization of H1299 and mouse embryonic fibroblast (MEF) cells to the pallet centers and away from the edges. Compared to pallet arrays with fibronection coating the entire top surface, arrays with a central fibronectin pattern increased the percentage of cells localized to the pallet center by 3-4 fold. Localization of cells to the pallet center also enabled the physical separation of cells from optical artifacts created by the rough pallet side walls. To demonstrate the measurement of dynamic intracellular signaling on the arrays, fluorescence measurements of high spatial resolution were performed using a RhoA GTPase biosensor. This biosensor utilized fluorescence resonance energy transfer (FRET) between cyan fluorescent protein (CFP) and yellow fluorescent protein (YFP) to measure localized RhoA activity in cellular ruffles at the cell periphery. These results demonstrated the ability to perform spatially resolved measurements of fluorescence-based sensors on the pallet arrays. Thus, the patterned pallet arrays should enable novel cell separations in which cell selection is based on complex cellular signaling properties. PMID:21621038
Németh, Krisztina; Domonkos, Celesztina; Sarnyai, Virág; Szemán, Julianna; Jicsinszky, László; Szente, Lajos; Visy, Júlia
2014-10-01
The resolution power of permethylated 6-monoamino-6-monodeoxy-βCD (PMMABCD) - a single isomer, cationic CD derivative - developed previously for chiral analyses in capillary electrophoresis was further studied here. Dansylated amino acids (Dns-AA) were chosen as amphoteric chiral model compounds. Changes in the resolutions of Dns-AAs by varying pH and selector concentrations were investigated and correlated with their structures and chemical properties (isoelectric point and lipophilicity). Maximal resolutions could be achieved at pH 6 or pH 4. The separations improved with increasing concentration of the selector. Baseline or substantially better resolution for 8 pairs of these Dns-AAs could be achieved. Low CD concentration was enough for the separation of the most apolar Dns-AAs. Chiral discrimination ability of PMMABCD was demonstrated by the separation of an artificial mixture of 8 Dns-AA pairs. Copyright © 2014 Elsevier B.V. All rights reserved.
View planetary differentiation process through high-resolution 3D imaging
NASA Astrophysics Data System (ADS)
Fei, Y.
2011-12-01
Core-mantle separation is one of the most important processes in planetary evolution, defining the structure and chemical distribution in the planets. Iron-dominated core materials could migrate through silicate mantle to the core by efficient liquid-liquid separation and/or by percolation of liquid metal through solid silicate matrix. We can experimentally simulate these processes to examine the efficiency and time of core formation and its geochemical signatures. The quantitative measure of the efficiency of percolation is usually the dihedral angle, related to the interfacial energies of the liquid and solid phases. To determine the true dihedral angle at high pressure and temperatures, it is necessary to measure the relative frequency distributions of apparent dihedral angles between the quenched liquid metal and silicate grains for each experiment. Here I present a new imaging technique to visualize the distribution of liquid metal in silicate matrix in 3D by combination of focus ion beam (FIB) milling and high-resolution SEM image. The 3D volume rendering provides precise determination of the dihedral angle and quantitative measure of volume fraction and connectivity. I have conducted a series of experiments using mixtures of San Carlos olivine and Fe-S (10wt%S) metal with different metal-silicate ratios, up to 25 GPa and at temperatures above 1800C. High-quality 3D volume renderings were reconstructed from FIB serial sectioning and imaging with 10-nm slice thickness and 14-nm image resolution for each quenched sample. The unprecedented spatial resolution at nano scale allows detailed examination of textural features and precise determination of the dihedral angle as a function of pressure, temperature and composition. The 3D reconstruction also allows direct assessment of connectivity in multi-phase matrix, providing a new way to investigate the efficiency of metal percolation in a real silicate mantle.
Engineering chiral porous metal-organic frameworks for enantioselective adsorption and separation
NASA Astrophysics Data System (ADS)
Peng, Yongwu; Gong, Tengfei; Zhang, Kang; Lin, Xiaochao; Liu, Yan; Jiang, Jianwen; Cui, Yong
2014-07-01
The separation of racemic molecules is of substantial significance not only for basic science but also for technical applications, such as fine chemicals and drug development. Here we report two isostructural chiral metal-organic frameworks decorated with chiral dihydroxy or -methoxy auxiliares from enantiopure tetracarboxylate-bridging ligands of 1,1‧-biphenol and a manganese carboxylate chain. The framework bearing dihydroxy groups functions as a solid-state host capable of adsorbing and separating mixtures of a range of chiral aromatic and aliphatic amines, with high enantioselectivity. The host material can be readily recycled and reused without any apparent loss of performance. The utility of the present adsorption separation is demonstrated in the large-scale resolution of racemic 1-phenylethylamine. Control experiments and molecular simulations suggest that the chiral recognition and separation are attributed to the different orientations and specific binding energies of the enantiomers in the microenvironment of the framework.
Murrie, Rhiannon P; Morgan, Kaye S; Maksimenko, Anton; Fouras, Andreas; Paganin, David M; Hall, Chris; Siu, Karen K W; Parsons, David W; Donnelley, Martin
2015-07-01
The high flux and coherence produced at long synchrotron beamlines makes them well suited to performing phase-contrast X-ray imaging of the airways and lungs of live small animals. Here, findings of the first live-animal imaging on the Imaging and Medical Beamline (IMBL) at the Australian Synchrotron are reported, demonstrating the feasibility of performing dynamic lung motion measurement and high-resolution micro-tomography. Live anaesthetized mice were imaged using 30 keV monochromatic X-rays at a range of sample-to-detector propagation distances. A frame rate of 100 frames s(-1) allowed lung motion to be determined using X-ray velocimetry. A separate group of humanely killed mice and rats were imaged by computed tomography at high resolution. Images were reconstructed and rendered to demonstrate the capacity for detailed, user-directed display of relevant respiratory anatomy. The ability to perform X-ray velocimetry on live mice at the IMBL was successfully demonstrated. High-quality renderings of the head and lungs visualized both large structures and fine details of the nasal and respiratory anatomy. The effect of sample-to-detector propagation distance on contrast and resolution was also investigated, demonstrating that soft tissue contrast increases, and resolution decreases, with increasing propagation distance. This new capability to perform live-animal imaging and high-resolution micro-tomography at the IMBL enhances the capability for investigation of respiratory diseases and the acceleration of treatment development in Australia.
Spiral Transformation for High-Resolution and Efficient Sorting of Optical Vortex Modes.
Wen, Yuanhui; Chremmos, Ioannis; Chen, Yujie; Zhu, Jiangbo; Zhang, Yanfeng; Yu, Siyuan
2018-05-11
Mode sorting is an essential function for optical multiplexing systems that exploit the orthogonality of the orbital angular momentum mode space. The familiar log-polar optical transformation provides a simple yet efficient approach whose resolution is, however, restricted by a considerable overlap between adjacent modes resulting from the limited excursion of the phase along a complete circle around the optical vortex axis. We propose and experimentally verify a new optical transformation that maps spirals (instead of concentric circles) to parallel lines. As the phase excursion along a spiral in the wave front of an optical vortex is theoretically unlimited, this new optical transformation can separate orbital angular momentum modes with superior resolution while maintaining unity efficiency.
NASA Technical Reports Server (NTRS)
Ecklund, W. L.; Balsley, B. B.; Crochet, M.; Carter, D. A.; Riddle, A. C.; Garello, R.
1983-01-01
A joint France/U.S. experiment was conducted near the mouth of the Rhone river in southern France as part of the ALPEX program. This experiment used 3 vertically directed 50 MHz radars separated by 4 to 6 km. The main purpose of this experiment was to study the spatial characteristics of gravity waves. The good height resolution (750 meters) and time resolution (1 minute) and the continuous operation over many weeks have yielded high resolution vertical wind speed power spectra under a variety of synoptic conditions. Vertical spectra obtained during very quiet (low wind) conditions in the troposphere and lower stratosphere from a single site are presented.
The High Resolution Chandra X-Ray Spectrum of 3C273
NASA Technical Reports Server (NTRS)
Fruscione, Antonella; Lavoie, Anthony (Technical Monitor)
2000-01-01
The bright quasar 3C273 was observed by Chandra in January 2000 for 120 ksec as a calibration target. It was observed with all detector- plus-grating combinations (ACIS+HETG, ACIS+LETG, and HRC+LETG) yielding an X-ray spectrum across the entire 0.1-10 keV band with unprecedented spectral resolution. At about 10 arcsec from the nucleus, an X-ray jet is also clearly visible and resolved in the Oth order images. While the jet is much fainter than the nuclear source, the Chandra spatial resolution allows, for the first time, spectral analysis of both components separately. We will present detailed spectral analysis with particular emphasis on possible absorption features and comparison with simultaneous BeppoSAX data.
Spiral Transformation for High-Resolution and Efficient Sorting of Optical Vortex Modes
NASA Astrophysics Data System (ADS)
Wen, Yuanhui; Chremmos, Ioannis; Chen, Yujie; Zhu, Jiangbo; Zhang, Yanfeng; Yu, Siyuan
2018-05-01
Mode sorting is an essential function for optical multiplexing systems that exploit the orthogonality of the orbital angular momentum mode space. The familiar log-polar optical transformation provides a simple yet efficient approach whose resolution is, however, restricted by a considerable overlap between adjacent modes resulting from the limited excursion of the phase along a complete circle around the optical vortex axis. We propose and experimentally verify a new optical transformation that maps spirals (instead of concentric circles) to parallel lines. As the phase excursion along a spiral in the wave front of an optical vortex is theoretically unlimited, this new optical transformation can separate orbital angular momentum modes with superior resolution while maintaining unity efficiency.
Xu, Yi-Fan; Lu, Wenyun; Rabinowitz, Joshua D.
2015-01-15
Liquid chromatography–mass spectrometry (LC-MS) technology allows for rapid quantitation of cellular metabolites, with metabolites identified by mass spectrometry and chromatographic retention time. Recently, with the development of rapid scanning high-resolution high accuracy mass spectrometers and the desire for high throughput screening, minimal or no chromatographic separation has become increasingly popular. Furthermore, when analyzing complex cellular extracts, however, the lack of chromatographic separation could potentially result in misannotation of structurally related metabolites. Here, we show that, even using electrospray ionization, a soft ionization method, in-source fragmentation generates unwanted byproducts of identical mass to common metabolites. For example, nucleotide-triphosphates generate nucleotide-diphosphates, andmore » hexose-phosphates generate triose-phosphates. We also evaluated yeast intracellular metabolite extracts and found more than 20 cases of in-source fragments that mimic common metabolites. Finally and accordingly, chromatographic separation is required for accurate quantitation of many common cellular metabolites.« less
Németh, Krisztina; Tárkányi, Gábor; Varga, Erzsébet; Imre, Tímea; Mizsei, Réka; Iványi, Róbert; Visy, Júlia; Szemán, Julianna; Jicsinszky, László; Szente, Lajos; Simonyi, Miklós
2011-02-20
Capillary electrophoresis (CE) methods for chiral resolution of five antimalarial drugs (primaquine, tafenoquine, mefloquine, chloroquine and quinacrine) were developed by using a wide selection of neutral and anionic cyclodextrin (CD) derivatives. The use of sulfobutyl-β-CD and carboxymethyl-β-CD (CMBCD) resulted in good resolution of quinacrine and tafenoquine, respectively. New results are presented for resolutions of chloroquine and mefloquine. Application of carboxyalkyl- and sulfobutyl-CD derivatives provided improved resolution for primaquine. The impurity in primaquine sample detected by CE was identified as quinocide by MS and NMR. CMBCD provided not only the best separation of primaquine from quinocide but also the simultaneous complete resolution of both compounds. Copyright © 2010 Elsevier B.V. All rights reserved.
Chiral-phase high-performance liquid chromatography of rotenoid racemates
Abidi, S.L.
1987-01-01
The high-performance liquid chromatograhic (HPLC) behavior of parent rotenoids (type I) and the hydroxyl-analogues (type II) on three different chiral stationary phases (CSPs) was studied. Separations of optical isomers were achieved in various degrees depending largely upon the rotenoidal structures and the CSP types employed. Enantiomers of all but elliptone compounds were separable on β-cyclodextrin-bonded silica (CDS). Without exception, the 12a-hydroxyrotenoid antipodes were resolved on Pirkle's phenylglycine-bonded silica (PGS) despite unsuccessful attenmpts to resolve the type I rotenoidal racemates. Conversely, optical resolution of the latter rotenoids was accomplished by using a helical polytriphenylmethylacrylate-coated silica (TPS) column and the observed separation factors (α values) ranged from 1.14 to 1.90. The results from HPLC of type II rotenoids on TPS (α = 1.00–1.63) suggested that variations in E-ring structures had profound influence on the resolution outcome. Conjugated double bonds on the E-ring and the desisopropylation of the five-membered E-ring ot type II rotenoids appeared to be important structural features for chiral recognition involving the TPS substrate. In both reversed-phase (CDS) and normal-pahse (PGS and TPS) HPLC modes, the less polar enantiomers were the 6aβ,12aβ-rotenoids as observed in most cases, though this relationship was reversed in the cases of deguelin and hydroxyelliptone probably due to conformational effects of rotenoidal ring systems.
Cong, Yongzheng; Katipamula, Shanta; Geng, Tao; Prost, Spencer A; Tang, Keqi; Kelly, Ryan T
2016-02-01
A microfluidic platform was developed to perform online electrokinetic sample preconcentration and rapid hydrodynamic sample injection for zone electrophoresis using a single microvalve. The polydimethylsiloxane microchip comprises a separation channel, a side channel for sample introduction, and a control channel which is used as a pneumatic microvalve aligned at the intersection of the two flow channels. The closed microvalve, created by multilayer soft lithography, serves as a nanochannel preconcentrator under an applied electric potential, enabling current to pass through while preventing bulk flow. Once analytes are concentrated, the valve is briefly opened and the stacked sample is pressure injected into the separation channel for electrophoretic separation. Fluorescently labeled peptides were enriched by a factor of ∼450 in 230 s. This method enables both rapid analyte concentration and controlled injection volume for high sensitivity, high-resolution CE. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Görgens, Christian; Guddat, Sven; Orlovius, Anne-Katrin; Sigmund, Gerd; Thomas, Andreas; Thevis, Mario; Schänzer, Wilhelm
2015-07-01
In the field of LC-MS, reversed phase liquid chromatography is the predominant method of choice for the separation of prohibited substances from various classes in sports drug testing. However, highly polar and charged compounds still represent a challenging task in liquid chromatography due to their difficult chromatographic behavior using reversed phase materials. A very promising approach for the separation of hydrophilic compounds is hydrophilic interaction liquid chromatography (HILIC). Despite its great potential and versatile advantages for the separation of highly polar compounds, HILIC is up to now not very common in doping analysis, although most manufacturers offer a variety of HILIC columns in their portfolio. In this study, a novel multi-target approach based on HILIC high resolution/high accuracy mass spectrometry is presented to screen for various polar stimulants, stimulant sulfo-conjugates, glycerol, AICAR, ethyl glucuronide, morphine-3-glucuronide, and myo-inositol trispyrophosphate after direct injection of diluted urine specimens. The usage of an effective online sample cleanup and a zwitterionic HILIC analytical column in combination with a new generation Hybrid Quadrupol-Orbitrap® mass spectrometer enabled the detection of highly polar analytes without any time-consuming hydrolysis or further purification steps, far below the required detection limits. The methodology was fully validated for qualitative and quantitative (AICAR, glycerol) purposes considering the parameters specificity; robustness (rRT < 2.0%); linearity (R > 0.99); intra- and inter-day precision at low, medium, and high concentration levels (CV < 20%); limit of detection (stimulants and stimulant sulfo-conjugates < 10 ng/mL; norfenefrine; octopamine < 30 ng/mL; AICAR < 10 ng/mL; glycerol 100 μg/mL; ETG < 100 ng/mL); accuracy (AICAR 103.8-105.5%, glycerol 85.1-98.3% at three concentration levels) and ion suppression/enhancement effects.
Spórna-Kucab, Aneta; Jagodzińska, Joanna; Wybraniec, Sławomir
2017-03-17
Betacyanins, known as antioxidants and chemopreventive natural compounds with colourful properties, were extracted from purple flowers of Gomphrena globosa L. belonging to the Amaranthaceae family and separated for the first time by ion-pair high-speed counter-current chromatography (HSCCC). The pigments were detected by LC-DAD-ESI-MS/MS technique. Separation of betacyanins (300mg) by HSCCC was accomplished in four solvent systems: tert-butyl methyl ether - butanol - acetonitrile - water (0.7% and 1.0% HFBA - heptafluorobutyric acid - system I and III) and tert-butyl methyl ether - butanol - methanol - water (0.7% and 1.0% HFBA - system II and IV) (2:2:1:5, v/v/v/v) in the head-to-tail mode. The mobile phase (aqueous phase) was run at 2.0ml/min and the column rotation speed was 860rpm. The applied systems enabled to study the influence of HFBA concentration as well as systems polarity on betacyanins separation. Comparison of the systems containing 0.7% HFBA (systems I-II) demonstrates that the replacement of acetonitrile by methanol increases the resolution (R s ) between all betacyanins and does not influence the retention of the stationary phase (S f =76%). Higher concentration of the acid in systems III-IV slightly decreases S f to 71% in the systems with 1.0% HFBA. Comparison of the resolution values for betacyanins in the systems with 0.7% and 1.0% HFBA demonstrates that higher concentration of the acid improves the separation effectiveness for all betacyanins as a result of increasing of the chemical affinity of the pigments to the organic stationary phase in HSCCC. The systems III-IV with 1% HFBA are the most effective for the separation of all the studied betacyanins. Copyright © 2017 Elsevier B.V. All rights reserved.
Hanafi, Rasha Sayed; Lämmerhofer, Michael
2018-01-26
Quality-by-Design approach for enantioselective HPLC method development surpasses Quality-by-Testing in offering the optimal separation conditions with the least number of experiments and in its ability to describe the method's Design Space visually which helps to determine enantiorecognition to a significant extent. Although some schemes exist for enantiomeric separations on Cinchona-based zwitterionic stationary phases, the exact design space and the weights by which each of the chromatographic parameters influences the separation have not yet been statistically studied. In the current work, a screening design followed by a Response Surface Methodology optimization design were adopted for enantioseparation optimization of 3 model drugs namely the acidic Fmoc leucine, the amphoteric tryptophan and the basic salbutamol. The screening design proved that the acid/base additives are of utmost importance for the 3 chiral drugs, and that among 3 different pairs of acids and bases, acetic acid and diethylamine is the couple able to provide acceptable resolution at variable conditions. Visualization of the response surface of the retention factor, separation factor and resolution helped describe accurately the magnitude by which each chromatographic factor (% MeOH, concentration and ratio of acid base modifiers) affects the separation while interacting with other parameters. The global optima compromising highest enantioresolution with the least run time for the 3 chiral model drugs varied extremely, where it was best to set low % methanol with equal ratio of acid-base modifiers for the acidic drug, very high % methanol and 10-fold higher concentration of the acid for the amphoteric drug while 20 folds of the base modifier with moderate %methanol were needed for the basic drug. Considering the selected drugs as models for many series of structurally related compounds, the design space defined and the optimum conditions computed are the key for method development on cinchona-based chiral stationary phases. Copyright © 2017 Elsevier B.V. All rights reserved.
High-Throughput Quantitative Lipidomics Analysis of Nonesterified Fatty Acids in Plasma by LC-MS.
Christinat, Nicolas; Morin-Rivron, Delphine; Masoodi, Mojgan
2017-01-01
Nonesterified fatty acids are important biological molecules which have multiple functions such as energy storage, gene regulation, or cell signaling. Comprehensive profiling of nonesterified fatty acids in biofluids can facilitate studying and understanding their roles in biological systems. For these reasons, we have developed and validated a high-throughput, nontargeted lipidomics method coupling liquid chromatography to high-resolution mass spectrometry for quantitative analysis of nonesterified fatty acids. Sufficient chromatographic separation is achieved to separate positional isomers such as polyunsaturated and branched-chain species and quantify a wide range of nonesterified fatty acids in human plasma samples. However, this method is not limited only to these fatty acid species and offers the possibility to perform untargeted screening of additional nonesterified fatty acid species.
Further developments of series-connected superconducting tunnel junction to radiation detection
NASA Astrophysics Data System (ADS)
Kurakado, Masahiko; Ohsawa, Daisuke; Katano, Rintaro; Ito, Shin; Isozumi, Yasuhito
1997-10-01
One of the promising radiation detection devices for various practical applications is the series-connected superconducting tunnel junction (STJ) detector. In this article, interesting topics of the detectors are described since our previous work: e.g., more than two order higher detection efficiency compared with single STJ detectors, high count rate detection, and position resolution. Detectors were cooled to 0.35-0.4 K by means of a convenient 3He cryostat. The 5.9 and 6.5 keV x rays from 55Fe are separated by a detector specially designed for x-ray detection. The possible count rate of the series-junction detector estimated from the shaping-time constant applied in the measurements is high, e.g., over 104 counts per second. A series-junction detector equipped with a position sensing mechanism has shown a position resolution of about 35 μm in a sensing area with a radius of 1.1 mm. The position resolution of series junctions improves the energy resolution. A new type series-connected STJ detector is also proposed, i.e., the dispersed multitrap series-junction detector, for further improvement of detection efficiency and energy resolution.
Liu, Fan; Jiang, Li; Tan, Huei Ming; Yadav, Ashutosh; Biswas, Preetika; van der Maarel, Johan R C; Nijhuis, Christian A; van Kan, Jeroen A
2016-11-01
Brownian ratchet based particle separation systems for application in lab on chip devices have drawn interest and are subject to ongoing theoretical and experimental investigations. We demonstrate a compact microfluidic particle separation chip, which implements an extended on-off Brownian ratchet scheme that actively separates and sorts particles using periodically switching magnetic fields, asymmetric sawtooth channel sidewalls, and Brownian motion. The microfluidic chip was made with Polydimethylsiloxane (PDMS) soft lithography of SU-8 molds, which in turn was fabricated using Proton Beam Writing. After bonding of the PDMS chip to a glass substrate through surface activation by oxygen plasma treatment, embedded electromagnets were cofabricated by the injection of InSn metal into electrode channels. This fabrication process enables rapid production of high resolution and high aspect ratio features, which results in parallel electrodes accurately aligned with respect to the separation channel. The PDMS devices were tested with mixtures of 1.51 μ m, 2.47 μ m, and 2.60 μ m superparamagnetic particles suspended in water. Experimental results show that the current device design has potential for separating particles with a size difference around 130 nm. Based on the promising results, we will be working towards extending this design for the separation of cells or biomolecules.
Liu, Fan; Jiang, Li; Tan, Huei Ming; Yadav, Ashutosh; Biswas, Preetika; van der Maarel, Johan R. C.; Nijhuis, Christian A.; van Kan, Jeroen A.
2016-01-01
Brownian ratchet based particle separation systems for application in lab on chip devices have drawn interest and are subject to ongoing theoretical and experimental investigations. We demonstrate a compact microfluidic particle separation chip, which implements an extended on-off Brownian ratchet scheme that actively separates and sorts particles using periodically switching magnetic fields, asymmetric sawtooth channel sidewalls, and Brownian motion. The microfluidic chip was made with Polydimethylsiloxane (PDMS) soft lithography of SU-8 molds, which in turn was fabricated using Proton Beam Writing. After bonding of the PDMS chip to a glass substrate through surface activation by oxygen plasma treatment, embedded electromagnets were cofabricated by the injection of InSn metal into electrode channels. This fabrication process enables rapid production of high resolution and high aspect ratio features, which results in parallel electrodes accurately aligned with respect to the separation channel. The PDMS devices were tested with mixtures of 1.51 μm, 2.47 μm, and 2.60 μm superparamagnetic particles suspended in water. Experimental results show that the current device design has potential for separating particles with a size difference around 130 nm. Based on the promising results, we will be working towards extending this design for the separation of cells or biomolecules. PMID:27917252
Tanaka, Yoshihide
2002-07-01
Capillary electrophoresis (CE) has become a powerful tool for enantiomer separations during the last decade. Since 1993, the author has investigated enantiomer separations by affinity capillary electrophoresis (affinity CE) with some proteins and by cyclodextrin electrokinetic chromatography (CDEKC) with some charged cyclodextrins (CDs). Many successful enantiomer separations are demonstrated from our study in this review article. In the enantiomer separations by affinity CE, the deterioration of detection sensitivity was observed under high concentration of the protein in running solutions. The partial filling technique was practically useful to solve the serious problem. It allowed operation at high protein concentrations, such as 500 mumol/L, without the detection problem. Charged CDs had several advantages for the enantiomer separations over neutral ones. Strong electrostatic interactions between a charged CD and oppositely charged analytes should be effective for the formation of the complex. A large difference in electrophoretic mobility between the free analyte and the inclusion complex should also enhance the enantiomeric resolution. In CE-mass spectrometry (CE-MS), the partial filling technique was applied to avoid the introduction of nonvolatile chiral selectors into the CE-MS interface. By replacing the nonvolatile electrolytes in the running buffer by volatile ones, the separation conditions employed in CE with the UV detection method could be transferred to CE-MS.
Separation negatives from Kodak film types SO-368 and SO-242
NASA Technical Reports Server (NTRS)
Weinstein, M. S.
1972-01-01
Two master resolution friskets were produced on Kodak film types SO-368 and SO-242. These target masters consisted of 21 density steps with three-bar resolution targets at five modulation levels within each step. The target masters were contact printed onto Kodak separation negative film, type 4131, using both a contact printing frame and enlarger as one method of exposure, and a Miller-Holzwarth contact printer as the other exposing device. Red, green, and blue Wratten filters were used to filter the exposing source. Tray processing was done with DK-50 developer diluted 1:2 at a temperature of 70 F. The resolution values were read for the SO-368 and SO-242 target masters, and the red, green, and blue separation negatives.
Effect of Conflict Resolution Maneuver Execution Delay on Losses of Separation
NASA Technical Reports Server (NTRS)
Cone, Andrew C.
2010-01-01
This paper examines uncertainty in the maneuver execution delay for data linked conflict resolution maneuvers. This uncertainty could cause the previously cleared primary conflict to reoccur or a secondary conflict to appear. Results show that the likelihood of a primary conflict reoccurring during a horizontal conflict resolution maneuver increases with larger initial turn-out angles and with shorter times until loss of separation. There is also a significant increase in the probability of a primary conflict reoccurring when the time until loss falls under three minutes. Increasing horizontal separation by an additional 1.5 nmi lowers the risk, but does not completely eliminate it. Secondary conflicts were shown to have a small probability of occurring in all tested configurations.
NASA Astrophysics Data System (ADS)
Plaß, Wolfgang R.; Dickel, Timo; Ayet San Andres, Samuel; Ebert, Jens; Greiner, Florian; Hornung, Christine; Jesch, Christian; Lang, Johannes; Lippert, Wayne; Majoros, Tamas; Short, Devin; Geissel, Hans; Haettner, Emma; Reiter, Moritz P.; Rink, Ann-Kathrin; Scheidenberger, Christoph; Yavor, Mikhail I.
2015-11-01
A class of multiple-reflection time-of-flight mass spectrometers (MR-TOF-MSs) has been developed for research with exotic nuclei at present and future accelerator facilities such as GSI and FAIR (Darmstadt), and TRIUMF (Vancouver). They can perform highly accurate mass measurements of exotic nuclei, serve as high-resolution, high-capacity mass separators and be employed as diagnostics devices to monitor the production, separation and manipulation of beams of exotic nuclei. In addition, a mobile high-resolution MR-TOF-MS has been developed for in situ applications in analytical mass spectrometry ranging from environmental research to medicine. Recently, the MR-TOF-MS for GSI and FAIR has been further developed. A novel RF quadrupole-based ion beam switchyard has been developed that allows merging and splitting of ion beams as well as transport of ions into different directions. It efficiently connects a test and reference ion source and an auxiliary detector to the system. Due to an increase in the kinetic energy of the ions in the time-of-flight analyzer of the MR-TOF-MS, a given mass resolving power is now achieved in less than half the time-of-flight. Conversely, depending on the time-of-flight, the mass resolving power has been increased by a factor of more than two.
High resolution humidity, temperature and aerosol profiling with MeteoSwiss Raman lidar
NASA Astrophysics Data System (ADS)
Dinoev, Todor; Arshinov, Yuri; Bobrovnikov, Sergei; Serikov, Ilya; Calpini, Bertrand; van den Bergh, Hubert; Parlange, Marc B.; Simeonov, Valentin
2010-05-01
Meteorological services rely, in part, on numerical weather prediction (NWP). Twice a day radiosonde observations of water vapor provide the required data for assimilation but this time resolution is insufficient to resolve certain meteorological phenomena. High time resolution temperature profiles from microwave radiometers are available as well but have rather low vertical resolution. The Raman LIDARs are able to provide temperature and humidity profiles with high time and range resolution, suitable for NWP model assimilation and validation. They are as well indispensible tools for continuous aerosol profiling for high resolution atmospheric boundary layer studies. To improve the database available for direct meteorological applications the Swiss meteo-service (MeteoSwiss), the Swiss Federal Institute of Technology in Lausanne (EPFL) and the Swiss National Science Foundation (SNSF) initiated a project to design and build an automated Raman lidar for day and night vertical profiling of tropospheric water vapor with the possibility to further upgrade it with an aerosol and temperature channels. The project was initiated in 2004 and RALMO (Raman Lidar for meteorological observations) was inaugurated in August 2008 at MeteoSwiss aerological station at Payerne. RALMO is currently operational and continuously profiles water vapor mixing ratio, aerosol backscatter ratio and aerosol extinction. The instrument is a fully automated, self-contained, eye-safe Raman lidar operated at 355 nm. Narrow field-of-view multi-telescope receiver and narrow band detection allow day and night-time vertical profiling of the atmospheric humidity. The rotational-vibrational Raman lidar responses from water vapor and nitrogen are spectrally separated by a high-throughput fiber coupled diffraction grating polychromator. The elastic backscatter and pure-rotational Raman lidar responses (PRR) from oxygen and nitrogen are spectrally isolated by a double grating polychromator and are used to derive vertical profiles of aerosol backscatter ratio and aerosol extinction at 355 nm. Set of Stokes and anti-Stokes PRR lines are separated by the polychromator to derive temperature profiles. The humidity profiles have vertical resolution from 15 m (within the boundary layer) to 100-450 m (within the free troposphere), time resolution of 30 min and 5 km vertical range at daytime and 10 km at night-time. The aerosol backscatter ratio and extinction profiles have similar resolution with vertical range of approximately 10 km. The temperature profiles are derived from PRR lidar signals, simultaneously recorded in analog and photon counting mode, allowing vertical range of approximately 10 km. Vaisala RS-92 and Snow-White chilled mirror hygrometer radiosondes were used for calibration of the water vapor and temperature channels. Continuous temperature profiles were obtained and were coupled with the available water vapor mixing ratio profiles to obtain relative humidity time series. Lidar derived aerosol backscatter ratio profiles will be used for estimation of the boundary layer height and validation of NWP model results. Optical thickness time series are currently compared to independent measurements from a collocated sun photometer to assess the performance of the aerosol channel.
A New Camera for Powder Diffraction of Macromolecular Crystallography at SPring-8
DOE Office of Scientific and Technical Information (OSTI.GOV)
Miura, Keiko; Inoue, Katsuaki; Goto, Shunji
2004-05-12
A powder diffractometer of Guinier geometry was developed and tested on a beamline, BL40B2, at SPring-8. The long specimen-to-detector distance, 1,000 mm, is advantageous in recording diffraction from Bragg spacing of 20 nm or larger. The angular resolution, 0.012 degrees, was realized together with the focusing optics, the long specimen-to-detector distance and the small pixel size of Blue-type Imaging Plate detector. Such a high resolution makes the peak separation possible in the powder diffraction from microcrystals with large unit cell and low symmetry of biological macromolecules.
Long working distance objective lenses for single atom trapping and imaging
DOE Office of Scientific and Technical Information (OSTI.GOV)
Pritchard, J. D., E-mail: jonathan.pritchard@strath.ac.uk; Department of Physics, University of Strathclyde, 107 Rottenrow East, Glasgow G4 0NG; Isaacs, J. A.
We present a pair of optimized objective lenses with long working distances of 117 mm and 65 mm, respectively, that offer diffraction limited performance for both Cs and Rb wavelengths when imaging through standard vacuum windows. The designs utilise standard catalog lens elements to provide a simple and cost-effective solution. Objective 1 provides NA = 0.175 offering 3 μm resolution whilst objective 2 is optimized for high collection efficiency with NA = 0.29 and 1.8 μm resolution. This flexible design can be further extended for use at shorter wavelengths by simply re-optimising the lens separations.
2004-08-01
on a pair of high -resolution, LCD medical monitors. The change to the new workstation has required us to rewrite the software... In the original CRT-based system, the two 7 images forming a stereo pair were displayed alternately on the same CRT face, at a high frame rate (120 Hz...then, separately, receive the stereo screening exam on the research GE digital mammography unit.
High resolution measurements of the low state of Cyg X-1
NASA Technical Reports Server (NTRS)
Rothschild, R. E.; Boldt, E. A.; Holt, S. S.; Serlemitsos, P. J.
1976-01-01
Cyg X-1 was observed on two occasions separated by a year by the same X-ray rocket payload. High resolution temporal and spectral data reveal that Cyg X-1 was essentially unchanged in these two observations a year apart, with bursts of millisecond duration observed in the earlier flight and also, observed in the second. Analysis of these bursts has failed to reveal any internal temporal structure, either luminous or spectral. The shot noise character of temporal fluctuations on timescales approximately 1 second can be explained by the presence of exponential pulses with a fraction of a second time constant and a rate near 8 sec/1. The possible connection of these pulses with the bursts is examined.
van Hoeij, Froukje B; Bredenoord, Albert J
2016-01-31
Esophageal high-resolution manometry (HRM) is replacing conventional manometry in the clinical evaluation of patients with esophageal symptoms, especially dysphagia. The introduction of HRM gave rise to new objective metrics and recognizable patterns of esophageal motor function, requiring a new classification scheme: the Chicago classification. HRM measurements are more detailed and more easily performed compared to conventional manometry. The visual presentation of acquired data improved the analysis and interpretation of esophageal motor function. This led to a more sensitive, accurate, and objective analysis of esophageal motility. In this review we discuss how HRM changed the way we define and categorize esophageal motility disorders. Moreover, we discuss the clinical applications of HRM for each esophageal motility disorder separately.
van Hoeij, Froukje B; Bredenoord, Albert J
2016-01-01
Esophageal high-resolution manometry (HRM) is replacing conventional manometry in the clinical evaluation of patients with esophageal symptoms, especially dysphagia. The introduction of HRM gave rise to new objective metrics and recognizable patterns of esophageal motor function, requiring a new classification scheme: the Chicago classification. HRM measurements are more detailed and more easily performed compared to conventional manometry. The visual presentation of acquired data improved the analysis and interpretation of esophageal motor function. This led to a more sensitive, accurate, and objective analysis of esophageal motility. In this review we discuss how HRM changed the way we define and categorize esophageal motility disorders. Moreover, we discuss the clinical applications of HRM for each esophageal motility disorder separately. PMID:26631942
Lemons, B; Khaing, H; Ward, A; Thakur, P
2018-06-01
A new sequential separation method for the determination of polonium and actinides (Pu, Am and U) in drinking water samples has been developed that can be used for emergency response or routine water analyses. For the first time, the application of TEVA chromatography column in the sequential separation of polonium and plutonium has been studied. This method utilizes a rapid Fe +3 co-precipitation step to remove matrix interferences, followed by plutonium oxidation state adjustment to Pu 4+ and an incubation period of ~ 1 h at 50-60 °C to allow Po 2+ to oxidize to Po 4+ . The polonium and plutonium were then separated on a TEVA column, while separation of americium from uranium was performed on a TRU column. After separation, polonium was micro-precipitated with copper sulfide (CuS), while actinides were micro co-precipitated using neodymium fluoride (NdF 3 ) for counting by the alpha spectrometry. The method is simple, robust and can be performed quickly with excellent removal of interferences, high chemical recovery and very good alpha peak resolution. The efficiency and reliability of the procedures were tested by using spiked samples. The effect of several transition metals (Cu 2+ , Pb 2+ , Fe 3+ , Fe 2+ , and Ni 2+ ) on the performance of this method were also assessed to evaluate the potential matrix effects. Studies indicate that presence of up to 25 mg of these cations in the samples had no adverse effect on the recovery or the resolution of polonium alpha peaks. Copyright © 2018 Elsevier Ltd. All rights reserved.
Borzooeian, Zahra; Taslim, Mohammad E; Ghasemi, Omid; Rezvani, Saina; Borzooeian, Giti; Nourbakhsh, Amirhasan
2018-01-01
Parametric separation of carbon nanotubes, especially based on their length is a challenge for a number of nano-tech researchers. We demonstrate a method to combine bio-conjugation, SDS-PAGE, and silver staining in order to separate carbon nanotubes on the basis of length. Egg-white lysozyme, conjugated covalently onto the single-walled carbon nanotubes surfaces using carbodiimide method. The proposed conjugation of a biomolecule onto the carbon nanotubes surfaces is a novel idea and a significant step forward for creating an indicator for length-based carbon nanotubes separation. The conjugation step was followed by SDS-PAGE and the nanotube fragments were precisely visualized using silver staining. This high precision, inexpensive, rapid and simple separation method obviates the need for centrifugation, additional chemical analyses, and expensive spectroscopic techniques such as Raman spectroscopy to visualize carbon nanotube bands. In this method, we measured the length of nanotubes using different image analysis techniques which is based on a simplified hydrodynamic model. The method has high precision and resolution and is effective in separating the nanotubes by length which would be a valuable quality control tool for the manufacture of carbon nanotubes of specific lengths in bulk quantities. To this end, we were also able to measure the carbon nanotubes of different length, produced from different sonication time intervals.
Liu, Hongbin; Jeong, Justin; Kao, Yung-Hsiang; Zhang, Yonghua Taylor
2015-05-10
RP-HPLC has been demonstrated as a powerful tool to study antibody free thiol and disulfide variants. Recently, the introduction of UHPLC columns with wide pore size (300Å) and small particle size (1.7μm) offered the opportunity to further improve the separation of such variants. This paper describes a systematic evaluation of stationary phases, operating parameters, and mobile phases for a UHPLC based method to separate free thiol variants of a recombinant monoclonal antibody (referred as mAb A), targeting high resolution, high throughput and improved recovery. Among the four different stationary phases evaluated, UHPLC diphenyl columns were found to provide the best separation. Using an optimized UHPLC method, free thiol variants of mAb A were separated in 5min. Importantly, the UHPLC method revealed minor variants that had coeluted in an HPLC based method, and the UHPLC method is also applicable as a platform method for characterization of other mAbs as well. Furthermore, an on-line UHPLC-MS method was developed to characterize the separated variants, and this method can streamline the characterization of fully assembled monoclonal and bispecific therapeutic antibodies. Copyright © 2015 Elsevier B.V. All rights reserved.
The CHARIS IFS for high contrast imaging at Subaru
NASA Technical Reports Server (NTRS)
Groff, Tyler D.; Kasdin, N. Jeremy; Limbach, Mary Anne; Galvin, Michael; Carr, Michael A.; Knapp, Gillian; Brandt, Timothy; Loomis, Craig; Jarosik, Norman; Mede, Kyle;
2015-01-01
The Coronagraphic High Angular Resolution Imaging Spectrograph (CHARIS) is an integral field spectrograph (IFS) being built for the Subaru telescope. CHARIS will take spectra of brown dwarfs and hot Jovian planets in the coronagraphic image provided by the Subaru Coronagraphic Extreme Adaptive Optics (SCExAO) and AO188 adaptive optics systems. The system is designed to detect objects five orders of magnitude dimmer than their parent star down to an 80 milliarcsecond inner working angle. For characterization, CHARIS has a high-resolution prism providing an average spectral resolution of R82, R69, and R82 in J, H, and K bands respectively. The so-called discovery mode uses a second low-resolution prism with an average spectral resolution of R19 spanning 1.15-2.37 microns (J+H+K bands). This is unique compared to other high contrast IFS designs. It augments low inner working angle performance by reducing the separation at which we can rely on spectral differential imaging. The principal challenge for a high-contrast IFS is quasi-static speckles, which cause undue levels of spectral crosstalk. CHARIS has addressed this through several key design aspects that should constrain crosstalk between adjacent spectral features to be below 1%. Sitting on the Nasmyth platform, the alignment between the lenslet array, prism, and detector will be highly stable, key for the performance of the data pipeline. Nearly every component has arrived and the project is entering its final build phase. Here we review the science case, the resulting design, status of final construction, and lessons learned that are directly applicable to future exoplanet instruments.
Automated segmentations of skin, soft-tissue, and skeleton, from torso CT images
NASA Astrophysics Data System (ADS)
Zhou, Xiangrong; Hara, Takeshi; Fujita, Hiroshi; Yokoyama, Ryujiro; Kiryu, Takuji; Hoshi, Hiroaki
2004-05-01
We have been developing a computer-aided diagnosis (CAD) scheme for automatically recognizing human tissue and organ regions from high-resolution torso CT images. We show some initial results for extracting skin, soft-tissue and skeleton regions. 139 patient cases of torso CT images (male 92, female 47; age: 12-88) were used in this study. Each case was imaged with a common protocol (120kV/320mA) and covered the whole torso with isotopic spatial resolution of about 0.63 mm and density resolution of 12 bits. A gray-level thresholding based procedure was applied to separate the human body from background. The density and distance features to body surface were used to determine the skin, and separate soft-tissue from the others. A 3-D region growing based method was used to extract the skeleton. We applied this system to the 139 cases and found that the skin, soft-tissue and skeleton regions were recognized correctly for 93% of the patient cases. The accuracy of segmentation results was acceptable by evaluating the results slice by slice. This scheme will be included in CAD systems for detecting and diagnosing the abnormal lesions in multi-slice torso CT images.
The Gulf Stream in Ocean Reanalyses: 1993-2010
NASA Astrophysics Data System (ADS)
Chi, L.; Wolfe, C.; Hameed, S.
2017-12-01
In recent years, significant progress has been made in the development of high-resolution ocean reanalysis products. However, errors are likely to remain because of inadequate coverage of observations, model resolutions, physical parameterizations, etc. We compare the representation of the Gulf Stream (GS) in several widely used global reanalysis products with resolutions ranging from 1° to 1/12°. This intercomparison focuses on the Florida Current transport, the separation of GS near Cape Hatteras, GS properties along the Oleander Line (from New Jersey to Bermuda), GS path and the GS north wall positions between 73°W and 55°W. A large spread exists across the reanalysis products. HYCOM and GLORYS2v4 stand out for their top performance in most metrics. Some common biases are found in all discussed products; for example, the velocity structure of the GS near the Oleander Line is too symmetric and the maximum velocity is weaker than in observations. In addition, the annual mean values of GS separation latitude near Cape Hatteras, the GS transport, and net transport across Oleander Line (which runs from New Jersey to Bermuda), less than half of the reanalysis products are correlated to the observations at 95% confidence level.
Block copolymer self-assembly derived ultrafiltration membranes: From science to start-up
NASA Astrophysics Data System (ADS)
Wiesner, Ulrich
In the last ten years a novel method to generate asymmetric ultrafiltration membranes has been established. It is based on the combination of block copolymer self-assembly with non-solvent induced phase separation (NIPS) and is now referred to as SNIPS. NIPS as an industry proven method for the formation of phase inversion membranes opening a pathway to scale up and commercialization of these membranes. The combination of NIPS with block copolymer self-assembly leads to asymmetric membranes with narrow pore size distributions in the top surface layer (so called isoporous membranes) as well as high pore densities, thereby potentially combining high resolution with high flux in membrane separation processes. Such membranes have potential applications in the biopharmaceutical industry where a large fraction of the costs are currently associated with time-consuming non-membrane based separation processes. This talk will describe a family of isoporous ultrafiltration membranes based on the self-assembly behavior of an ABC triblock terpolymer which has led to the formation of a start-up company out of Cornell University. After introduction of the SNIPS process in general, and its application to such ABC triblock terpolymers in particular, open scientific questions associated with the formation mechanisms of the top surface separation layer in such membranes is discussed, which is at the heart of enabling high performance separation behavior. Furthermore, challenges translating scientific work into industrial settings are highlighted.
Zhang, Kai; Cai, Song-Liang; Yan, Yi-Lun; He, Zi-Hao; Lin, Hui-Mei; Huang, Xiao-Ling; Zheng, Sheng-Run; Fan, Jun; Zhang, Wei-Guang
2017-10-13
Covalent organic frameworks (COFs), as an emerging class of crystalline porous organic polymers, have great potential for applications in chromatographic separation owning to their fascinating crystalline structures and outstanding properties. However, development of COF materials as novel stationary phases in high performance liquid chromatography (HPLC) is just in its infancy. Herein, we report the design and construction of a new hydrazone-linked chiral COF, termed BtaMth COF, from a chiral hydrazide building block (Mth) and present a one-pot synthetic method for the fabrication of BtaMth@SiO 2 composite for HPLC separation of isomers. The as-synthesized BtaMth chiral COF displays good crystallinity, high porosity, as well as excellent chemical stability. Meanwhile, the fabricated HPLC column by using BtaMth@SiO 2 composite as the new stationary phase exhibits high resolution performances for the separation of positional isomers including nitrotoluene and nitrochlorobenzene, as well as cis-trans isomers including beta-cypermethrin and metconazole. Additionally, some effects such as the composition of the mobile phase and column temperature for HPLC separations on the BtaMth@SiO 2 packed column also have been studied in detail. The successful applications indicate the great potentials of hydrazone-linked chiral COF-silica composite as novel stationary phase for the efficient HPLC separation. Copyright © 2017 Elsevier B.V. All rights reserved.
Ciogli, Alessia; Ismail, Omar H; Mazzoccanti, Giulia; Villani, Claudio; Gasparrini, Francesco
2018-03-01
The ever-increasing need for enantiomerically pure chiral compounds has greatly expanded the number of enantioselective separation methods available for the precise and accurate measurements of the enantiomeric purity. The introduction of chiral stationary phases for liquid chromatography in the last decades has revolutionized the routine methods to determine enantiomeric purity of chiral drugs, agrochemicals, fragrances, and in general of organic and organometallic compounds. In recent years, additional efforts have been placed on faster, enantioselective analytical methods capable to fulfill the high throughput requirements of modern screening procedures. Efforts in this field, capitalizing on improved chromatographic particle technology and dedicated instrumentation, have led to highly efficient separations that are routinely completed on the seconds time scale. An overview of the recent achievements in the field of ultra-high-resolution chromatography on column packed with chiral stationary phases, both based on sub-2 μm fully porous and sub-3 μm superficially porous particles, will be given, with an emphasis on very recent studies on ultrafast chiral separations. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Droux, S; Roy, M; Félix, G
2014-10-01
We report here the study of the stability under subcritical water conditions of one of the most popular polysaccharide chiral stationary phase (CSP): Chiralcel OD. This CSP was used under high temperature and reversed phase conditions with acetonitrile and 2-propanol as modifier, respectively. The evolution of selectivity and resolution was investigated both in normal and reversed mode conditions with five racemates after packing, heating at 150 °C and separations of some racemic compounds under different high temperatures and mobile phase conditions. The results show that after using at high temperature and subcritical water conditions the selectivity was only moderately affected while the resolution fell dramatically especially in reversed mode due to the creation of a void at the head of the columns which reflects the dissolution of the silica matrix. Copyright © 2014 Elsevier B.V. All rights reserved.
Tomková, Jana; Ondra, Peter; Kocianová, Eva; Václavík, Jan
2017-07-01
This paper presents a method for the determination of acebutolol, betaxolol, bisoprolol, metoprolol, nebivolol and sotalol in human serum by liquid-liquid extraction and ultra-high-performance liquid chromatography coupled with ultra-high-resolution TOF mass spectrometry. After liquid-liquid extraction, beta blockers were separated on a reverse-phase analytical column (Acclaim RS 120; 100 × 2.1 mm, 2.2 μm). The total run time was 6 min for each sample. Linearity, limit of detection, limit of quantification, matrix effects, specificity, precision, accuracy, recovery and sample stability were evaluated. The method was successfully applied to the therapeutic drug monitoring of 108 patients with hypertension. This method was also used for determination of beta blockers in 33 intoxicated patients. Copyright © 2016 John Wiley & Sons, Ltd.
Environmental applications of single collector high resolution ICP-MS.
Krachler, Michael
2007-08-01
The number of environmental applications of single collector high resolution ICP-MS (HR-ICP-MS) has increased rapidly in recent years. There are many factors that contribute to make HR-ICP-MS a very powerful tool in environmental analysis. They include the extremely low detection limits achievable, tremendously high sensitivity, the ability to separate ICP-MS signals of the analyte from spectral interferences, enabling the reliable determination of many trace elements, and the reasonable precision of isotope ratio measurements. These assets are improved even further using high efficiency sample introduction systems. Therefore, external factors such as the stability of laboratory blanks are frequently the limiting factor in HR-ICP-MS analysis rather than the detection power. This review aims to highlight the most recent applications of HR-ICP-MS in this sector, focusing on matrices and applications where the superior capabilities of the instrumental technique are most useful and often ultimately required.
Analysis of Interactive Conflict Resolution Tool Usage in a Mixed Equipage Environment
NASA Technical Reports Server (NTRS)
Homola, Jeffrey; Morey, Susan; Cabrall, Christopher; Martin, Lynne; Mercer, Joey; Prevot, Thomas
2013-01-01
A human-in-the-loop simulation was conducted that examined separation assurance concepts in varying levels of traffic density with mixtures of aircraft equipage and automation. This paper's analysis focuses on one of the experimental conditions in which traffic levels were approximately fifty percent higher than today, and approximately fifty percent of the traffic within the test area were equipped with data communications (data comm) capabilities. The other fifty percent of the aircraft required control by voice much like today. Within this environment, the air traffic controller participants were provided access to tools and automation designed to support the primary task of separation assurance that are currently unavailable. Two tools were selected for analysis in this paper: 1) a pre-probed altitude fly-out menu that provided instant feedback of conflict probe results for a range of altitudes, and 2) an interactive auto resolver that provided on-demand access to an automation-generated conflict resolution trajectory. Although encouraged, use of the support tools was not required; the participants were free to use the tools as they saw fit, and they were also free to accept, reject, or modify the resolutions offered by the automation. This mode of interaction provided a unique opportunity to examine exactly when and how these tools were used, as well as how acceptable the resolutions were. Results showed that the participants used the pre-probed altitude fly-out menu in 14% of conflict cases and preferred to use it in a strategic timeframe on data comm equipped and level flight aircraft. The interactive auto resolver was also used in a primarily strategic timeframe on 22% of conflicts and that their preference was to use it on conflicts involving data comm equipped aircraft as well. Of the 258 resolutions displayed, 46% were implemented and 54% were not. The auto resolver was rated highly by participants in terms of confidence and preference. Factors such as aircraft equipage, ownership, and location of predicted separation loss appeared to play a role in the decision of controllers to accept or reject the auto resolver's resolutions.
Stephens, J C; Rogers, J; Ruano, G
1990-01-01
In a recent paper we have shown that DNA haplotypes of multiply heterozygous individuals can be resolved directly by polymerase-chain-reaction (PCR) amplification of a single molecule of genomic template. Our method (the single-molecule-dilution [SMD] method) relies on the stochastic separation of maternal and paternal alleles at high dilution. The stochasticity of separation and the potential for DNA shearing (which could separate the loci of interest) are two factors that can compromise the results of the experiment. This paper explores the consequences of these two factors and shows that the SMD method can be expected to work very reliably even in the presence of a moderate amount of DNA shearing. PMID:2339707
Matz, Laura M; Hill, Herbert H; Beegle, Luther W; Kanik, Isik
2002-04-01
Recent studies in electrospray ionization (ESI)/ion mobility spectrometry (IMS) have focussed on employing different drift gases to alter separation efficiency for some molecules. This study investigates four structurally similar classes of molecules (cocaine and metabolites, amphetamines, benzodiazepines, and small peptides) to determine the effect of structure on relative mobility changes in four drift gases (helium, nitrogen, argon, carbon dioxide). Collision cross sections were plotted against drift gas polarizability and a linear relationship was found for the nineteen compounds evaluated in the study. Based on the reduced mobility database, all nineteen compounds could be separated in one of the four drift gases, however, the drift gas that provided optimal separation was specific for the two compounds.
Vacancy-mediated fcc/bcc phase separation in Fe1 -xNix ultrathin films
NASA Astrophysics Data System (ADS)
Menteş, T. O.; Stojić, N.; Vescovo, E.; Ablett, J. M.; Niño, M. A.; Locatelli, A.
2016-08-01
The phase separation occurring in Fe-Ni thin films near the Invar composition is studied by using high-resolution spectromicroscopy techniques and density functional theory calculations. Annealed at temperatures around 300 ∘C ,Fe0.70Ni0.30 films on W(110) break into micron-sized bcc and fcc domains with compositions in agreement with the bulk Fe-Ni phase diagram. Ni is found to be the diffusing species in forming the chemical heterogeneity. The experimentally determined energy barrier of 1.59 ±0.09 eV is identified as the vacancy formation energy via density functional theory calculations. Thus, the principal role of the surface in the phase separation process is attributed to vacancy creation without interstitials.
Review of chemical separation techniques applicable to alpha spectrometric measurements
NASA Astrophysics Data System (ADS)
de Regge, P.; Boden, R.
1984-06-01
Prior to alpha-spectrometric measurements several chemical manipulations are usually required to obtain alpha-radiating sources with the desired radiochemical and chemical purity. These include sampling, dissolution or leaching of the elements of interest, conditioning of the solution, chemical separation and preparation of the alpha-emitting source. The choice of a particular method is dependent on different criteria but always involves aspects of the selectivity or the quantitative nature of the separations. The availability of suitable tracers or spikes and modern high resolution instruments resulted in the wide-spread application of isotopic dilution techniques to the problems associated with quantitative chemical separations. This enhanced the development of highly elective methods and reagents which led to important simplifications in the separation schemes. The chemical separation methods commonly used in connection with alpha-spectrometric measurements involve precipitation with selected scavenger elements, solvent extraction, ion exchange and electrodeposition techniques or any combination of them. Depending on the purpose of the final measurement and the type of sample available the chemical separation methods have to be adapted to the particular needs of environment monitoring, nuclear chemistry and metrology, safeguards and safety, waste management and requirements in the nuclear fuel cycle. Against the background of separation methods available in the literature the present paper highlights the current developments and trends in the chemical techniques applicable to alpha spectrometry.
NASA Astrophysics Data System (ADS)
Iwabuchi, Manna; Hetu, Marcel; Maxwell, Eric; Pradel, Jean S.; Ramos, Sashary; Tong, William G.
2015-09-01
Multi-photon degenerate four-wave mixing is demonstrated as an ultrasensitive absorption-based optical method for detection, separation and identification of biomarker proteins in the development of early diagnostic methods for HIV- 1, cancer and neurodegenerative diseases using compact, portable microarrays and capillary- or microchip-based chemical separation systems that offer high chemical specificity levels. The wave-mixing signal has a quadratic dependence on concentration, and hence, it allows more reliable monitoring of smaller changes in analyte properties. Our wave-mixing detection sensitivity is comparable or better than those of current methods including enzyme-linked immunoassay for clinical diagnostic and screening. Detection sensitivity is excellent since the wave-mixing signal is a coherent laser-like beam that can be collected with virtually 100% collection efficiency with high S/N. Our analysis time is short (1-15 minutes) for molecular weight-based protein separation as compared to that of a conventional separation technique, e.g., sodium dodecyl sulfate-polyacrylamide gel electrophoresis. When ultrasensitive wavemixing detection is paired with high-resolution capillary- or microchip-based separation systems, biomarkers can be separated and identified at the zepto- and yocto-mole levels for a wide range of analytes. Specific analytes can be captured in a microchannel through the use of antibody-antigen interactions that provide better chemical specificity as compared to size-based separation alone. The technique can also be combined with immune-precipitation and a multichannel capillary array for high-throughput analysis of more complex protein samples. Wave mixing allows the use of chromophores and absorption-modifying tags, in addition to conventional fluorophores, for online detection of immunecomplexes related to cancer.
Signal to Noise Ratio for Different Gridded Rainfall Products of Indian Monsoon
NASA Astrophysics Data System (ADS)
Nehra, P.; Shastri, H. K.; Ghosh, S.; Mishra, V.; Murtugudde, R. G.
2014-12-01
Gridded rainfall datasets provide useful information of spatial and temporal distribution of precipitation over a region. For India, there are 3 gridded rainfall data products available from India Meteorological Department (IMD), Tropical Rainfall Measurement Mission (TRMM) and Asian Precipitation - Highly Resolved Observational Data Integration towards Evaluation of Water Resources (APHRODITE), these compile precipitation information obtained through satellite based measurement and ground station based data. The gridded rainfall data from IMD is available at spatial resolution of 1°, 0.5° and 0.25° where as TRMM and APHRODITE is available at 0.25°. Here, we employ 7 years (1998-2004) of common time period amongst the 3 data products for the south-west monsoon season, i.e., the months June to September. We examine temporal mean and standard deviation of these 3 products to observe substantial variation amongst them at 1° resolution whereas for 0.25° resolution, all the data types are nearly identical. We determine the Signal to Noise Ratio (SNR) of the 3 products at 1° and 0.25° resolution based on noise separation technique adopting horizontal separation of the power spectrum generated with the Fast Fourier Transformation (FFT). A methodology is developed for threshold based separation of signal and noise from the power spectrum, treating the noise as white. The variance of signal to that of noise is computed to obtain SNR. Determination of SNR for different regions over the country shows the highest SNR with APHRODITE at 0.25° resolution. It is observed that the eastern part of India has the highest SNR in all cases considered whereas the northern and southern most Indian regions have lowest SNR. An incremental linear trend is observed among the SNR values and the spatial variance of corresponding region. Relationship between the computed SNR values and the interpolation method used with the dataset is analyzed. The SNR analysis provides an effective tool to evaluate the gridded precipitation data products. However detailed analysis is needed to determine the processes that lead to these SNR distributions so that the quality of the gridded rainfall data products can be further improved and transferability of the gridding algorithms can be explored to produce a unified high-quality rainfall dataset.
Methylation-Sensitive High Resolution Melting (MS-HRM).
Hussmann, Dianna; Hansen, Lise Lotte
2018-01-01
Methylation-Sensitive High Resolution Melting (MS-HRM) is an in-tube, PCR-based method to detect methylation levels at specific loci of interest. A unique primer design facilitates a high sensitivity of the assays enabling detection of down to 0.1-1% methylated alleles in an unmethylated background.Primers for MS-HRM assays are designed to be complementary to the methylated allele, and a specific annealing temperature enables these primers to anneal both to the methylated and the unmethylated alleles thereby increasing the sensitivity of the assays. Bisulfite treatment of the DNA prior to performing MS-HRM ensures a different base composition between methylated and unmethylated DNA, which is used to separate the resulting amplicons by high resolution melting.The high sensitivity of MS-HRM has proven useful for detecting cancer biomarkers in a noninvasive manner in urine from bladder cancer patients, in stool from colorectal cancer patients, and in buccal mucosa from breast cancer patients. MS-HRM is a fast method to diagnose imprinted diseases and to clinically validate results from whole-epigenome studies. The ability to detect few copies of methylated DNA makes MS-HRM a key player in the quest for establishing links between environmental exposure, epigenetic changes, and disease.
Code of Federal Regulations, 2010 CFR
2010-10-01
... 42 Public Health 1 2010-10-01 2010-10-01 false Are Self-Governance Tribes required to adopt a...-GOVERNANCE Construction Nepa Process § 137.293 Are Self-Governance Tribes required to adopt a separate... project agreement? No, the Self-Governance Tribe may adopt a single resolution or take equivalent Tribal...
Extending the Boundaries of Isotope Ratio MS - Latest Technological Improvements
NASA Astrophysics Data System (ADS)
Hilkert, A.
2016-12-01
Isotope ratio mass spectrometry has a long history, which started with the analysis of the isotopes of CO2. Over several decades a broad range of IRMS techniques has been derived like multi-collector high resolution ICP-MS, TIMS, noble gas static MS and gas IRMS. These different flavors of IRMS are now building a technology tool box, which allows to derive new applications build on new capabilities by combination of specific features of these sister technologies. In the 90's inductive coupled plasma ionization was added for the high precision analysis of rare elements. In 2000 extended multicollection opened the way into clumped isotopes. In 2008 the concept of a high resolution gas source IRMS was layed out to revolutionize stable gas IRMS recently followed by the combination of this static multicollection mode with fast mass scans of the single collector double focusing high resolution GCMS. Recently new technologies were created, like the mid infrared analyzers (IRIS) based on difference frequency generation lasers, the combination of a collision cell with HR MC ICPMS as well as the use of a high resolution electrostatic ion trap for extended stable isotope analysis on individual compounds. All these building blocks for IRMS address selected requirements of sample preparation, sample introduction, referencing, ionization, mass separation, ion detection or signal amplification. Along these lines new technological improvements and applications will be shown and discussed.
A Navier-Stokes Solution of Hull-Ring Wing-Thruster Interaction
NASA Technical Reports Server (NTRS)
Yang, C.-I.; Hartwich, P.; Sundaram, P.
1991-01-01
Navier-Stokes simulations of high Reynolds number flow around an axisymmetric body supported in a water tunnel were made. The numerical method is based on a finite-differencing high resolution second-order accurate implicit upwind scheme. Four different configurations were investigated, these are: (1) barebody; (2) body with an operating propeller; (3) body with a ring wing; and (4) body with a ring wing and an operating propeller. Pressure and velocity components near the stern region were obtained computationally and are shown to compare favorably with the experimental data. The method correctly predicts the existence and extent of stern flow separation for the barebody and the absence of flow separation for the three other configurations with ring wing and/or propeller.
Pennington, Kyla; McGregor, Emma; Beasley, Clare L; Everall, Ian; Cotter, David; Dunn, Michael J
2004-01-01
A major cause of poor resolution in the alkaline pH range of two-dimensional electrophoresis (2-DE) gels is unsatisfactory separation of basic proteins in the first dimension. We have compared methods for the separation of basic proteins in the isoelectric focusing dimension of human brain proteins. The combined use of anodic cup-loading and the hydroxyethyldisulphide containing solution (DeStreak) produced better resolution in both analytical and micropreparative protein loaded 2-DE gels than the other methods investigated.
Asensi-Bernardi, Lucía; Escuder-Gilabert, Laura; Martín-Biosca, Yolanda; Sagrado, Salvador; Medina-Hernández, María José
2014-01-01
The estimation of apparent binding constants and limit mobilities of the complexes of the enantiomers that characterize the interaction of enantiomers with chiral selectors, in this case highly sulfated β-cyclodextrin, was approached using a simple and economic electrophoretic modality, the complete filling technique (CFT) in counter-current mode. The enantiomers of eight psychoactive drugs, four antihistamines (dimethindene, promethazine, orphenadrine and terfenadine) and four antidepressants (bupropion, fluoxetine, nomifensine and viloxazine) were separated for the first time for this cyclodextrin (CD). Estimations of thermodynamic and electrophoretic enantioselectivies were also performed. Results indicate that, in general, thermodynamic enantioselectivity is the main component explaining the high resolution found, but also one case suggests that electrophoretic enantioselectivity itself is enough to obtain a satisfactory resolution. CFT results advantageous compared with conventional capillary electrophoresis (CE) and partial filling technique (PFT) for the study of the interaction between drugs and chiral selectors. It combines the use of a simple fitting model (as in CE), when the enantiomers do not exit the chiral selector plug during the separation (i.e. mobility of electroosmotic flow larger than mobility of CD), and drastic reduction of the consumption (and cost; ~99.7%) of the CD reagent (as in PFT) compared with the conventional CE. Copyright © 2013 John Wiley & Sons, Ltd.
NASA Astrophysics Data System (ADS)
Malone, Robert M.; Capelle, Gene A.; Cox, Brian C.; Frogget, Brent C.; Grover, Mike; Kaufman, Morris I.; Pazuchanics, Peter; Sorenson, Danny S.; Stevens, Gerald D.; Tibbitts, Aric; Turley, William D.
2009-08-01
The design and assembly of a nine-element lens that achieves >2000 lp/mm resolution at a 355-nm wavelength (ultraviolet) has been completed. By adding a doublet to this lens system, operation at a 532-nm wavelength (green) with >1100 lp/mm resolution is achieved. This lens is used with high-power laser light to record holograms of fast-moving ejecta particles from a shocked metal surface located inside a test package. Part of the lens and the entire test package are under vacuum with a 1-cm air gap separation. Holograms have been recorded with both doubled and tripled Nd:YAG laser light. The UV operation is very sensitive to the package window's tilt. If this window is tilted by more than 0.1 degrees, the green operation performs with better resolution than that of the UV operation. The setup and alignment are performed with green light, but the dynamic recording can be done with either UV light or green light. A resolution plate can be temporarily placed inside the test package so that a television microscope located beyond the hologram position can archive images of resolution patterns that prove that the calibration wires, interference filter, holographic plate, and relay lenses are in their correct positions. Part of this lens is under vacuum, at the point where the laser illumination passes through a focus. Alignment and tolerancing of this high-resolution lens are presented. Resolution variation across the 12-mm field of view and throughout the 5-mm depth of field is discussed for both wavelengths.
Matysik, Silke; Liebisch, Gerhard
2017-12-01
A limited specificity is inherent to immunoassays for steroid hormone analysis. To improve selectivity mass spectrometric analysis of steroid hormones by liquid chromatography-tandem mass spectrometry (LC-MS/MS) has been introduced in the clinical laboratory over the past years usually with low mass resolution triple-quadrupole instruments or more recently by high resolution mass spectrometry (HR-MS). Here we introduce liquid chromatography-high resolution tandem mass spectrometry (LC-MS/HR-MS) to further increase selectivity of steroid hormone quantification. Application of HR-MS demonstrates an enhanced selectivity compared to low mass resolution. Separation of isobaric interferences reduces background noise and avoids overestimation. Samples were prepared by automated liquid-liquid extraction with MTBE. The LC-MS/HR-MS method using a quadrupole-Orbitrap analyzer includes eight steroid hormones i.e. androstenedione, corticosterone, cortisol, cortisone, 11-deoxycortisol, 17-hydroxyprogesterone, progesterone, and testosterone. It has a run-time of 5.3min and was validated according to the U.S. Food and Drug Administration (FDA) and the European Medicines Agency (EMA) guidelines. For most of the analytes coefficient of variation were 10% or lower and LOQs were determined significantly below 1ng/ml. Full product ion spectra including accurate masses substantiate compound identification by matching their masses and ratios with authentic standards. In summary, quantification of steroid hormones by LC-MS/HR-MS is applicable for clinical diagnostics and holds also promise for highly selective quantification of other small molecules. Copyright © 2017 Elsevier B.V. All rights reserved.
Scaled multisensor inspection of extended surfaces for industrial quality control
NASA Astrophysics Data System (ADS)
Kayser, Daniel; Bothe, Thorsten; Osten, Wolfgang
2002-06-01
Reliable real-time surface inspection of extended surfaces with high resolution is needed in several industrial applications. With respect to an efficient application to extended technical components such as aircraft or automotive parts, the inspection system has to perform a robust measurement with a ratio of less then 10-6 between depth resolution and lateral extension. This ratio is at least one order beyond the solutions that are offered by existing technologies. The concept of scaled topometry consists of arranging different optical measurement techniques with overlapping ranges of resolution systematically in order to receive characteristic surface information with the required accuracy. In such a surface inspection system, an active algorithm combines measurements on several scales of resolution and distinguishes between local fault indicating structures with different extensions and global geometric properties. The first part of this active algorithm finds indications of critical surface areas in the data of every measurement and separates them into different categories. The second part analyses the detected structures in the data with respect to their resolution and decides whether a further local measurement with a higher resolution has to be performed. The third part positions the sensors and starts the refined measurements. The fourth part finally integrates the measured local data set into the overall data mesh. We have constructed a laboratory setup capable of measuring surfaces with extensions up to 1500mm x 1000mm x 500mm (in x-, y- and z-direction respectively). Using this measurement system we will be able to separate the fault indicating structures on the surface from the global shape and to classify the detected structures according to their extensions and characteristic shapes simultaneously. The level of fault detection probability will be applicable by input parameter control.
Local sensitivities of the gulf stream separation
Schoonover, Joseph; Dewar, William K.; Wienders, Nicolas; ...
2016-12-05
Robust and accurate Gulf Stream separation remains an unsolved problem in general circulation modeling whose resolution will positively impact the ocean and climate modeling communities. Oceanographic literature does not face a shortage of plausible hypotheses that attempt to explain the dynamics of the Gulf Stream separation, yet a single theory that the community agrees on is missing. We investigate the impact of the Deep Western Boundary Current, coastline curvature, and continental shelf steepening on the Gulf Stream separation within regional configurations of the MIT General Circulation Model. Artificial modifications to the regional bathymetry are introduced to investigate the sensitivity ofmore » the separation to each of these factors. Metrics for subsurface separation detection confirm the direct link between flow separation and the surface expression of the Gulf Stream in the Mid-Atlantic Bight. Conversely, the Gulf Stream separation exhibits minimal sensitivity to the presence of the DWBC and coastline curvature. The implications of these results to the development of a “separation recipe” for ocean modeling are discussed. Furthermore, we conclude adequate topographic resolution is a necessary, but not sufficient, condition for proper Gulf Stream separation.« less
Leal, Stephanie L; Noche, Jessica A; Murray, Elizabeth A; Yassa, Michael A
2017-01-01
While aging is generally associated with episodic memory decline, not all older adults exhibit memory loss. Furthermore, emotional memories are not subject to the same extent of forgetting and appear preserved in aging. We conducted high-resolution fMRI during a task involving pattern separation of emotional information in older adults with and without age-related memory impairment (characterized by performance on a word-list learning task: low performers: LP vs. high performers: HP). We found signals consistent with emotional pattern separation in hippocampal dentate (DG)/CA3 in HP but not in LP individuals, suggesting a deficit in emotional pattern separation. During false recognition, we found increased DG/CA3 activity in LP individuals, suggesting that hyperactivity may be associated with overgeneralization. We additionally observed a selective deficit in basolateral amygdala-lateral entorhinal cortex-DG/CA3 functional connectivity in LP individuals during pattern separation of negative information. During negative false recognition, LP individuals showed increased medial temporal lobe functional connectivity, consistent with overgeneralization. Overall, these results suggest a novel mechanistic account of individual differences in emotional memory alterations exhibited in aging. Copyright © 2016 Elsevier Inc. All rights reserved.
Leal, Stephanie L.; Noche, Jessica A.; Murray, Elizabeth A.; Yassa, Michael A.
2018-01-01
While aging is generally associated with episodic memory decline, not all older adults exhibit memory loss. Furthermore, emotional memories are not subject to the same extent of forgetting and appear preserved in aging. We conducted high-resolution fMRI during a task involving pattern separation of emotional information in older adults with and without age-related memory impairment (characterized by performance on a word-list learning task: low performers: LP vs. high performers: HP). We found signals consistent with emotional pattern separation in hippocampal dentate (DG)/CA3 in HP but not in LP individuals, suggesting a deficit in emotional pattern separation. During false recognition, we found increased DG/CA3 activity in LP individuals, suggesting that hyperactivity may be associated with overgeneralization. We additionally observed a selective deficit in basolateral amygdala—lateral entorhinal cortex—DG/CA3 functional connectivity in LP individuals during pattern separation of negative information. During negative false recognition, LP individuals showed increased medial temporal lobe functional connectivity, consistent with overgeneralization. Overall, these results suggest a novel mechanistic account of individual differences in emotional memory alterations exhibited in aging. PMID:27723500
CN-GELFrEE - Clear Native Gel-eluted Liquid Fraction Entrapment Electrophoresis
Skinner, Owen S.; Do Vale, Luis H. F.; Catherman, Adam D.; Havugimana, Pierre C.; Valle de Sousa, Marcelo; Domont, Gilberto B.; Kelleher, Neil L.; Compton, Philip D.
2016-01-01
Protein complexes perform an array of crucial cellular functions. Elucidating their non-covalent interactions and dynamics is paramount for understanding the role of complexes in biological systems. While the direct characterization of biomolecular assemblies has become increasingly important in recent years, native fractionation techniques that are compatible with downstream analysis techniques, including mass spectrometry, are necessary to further expand these studies. Nevertheless, the field lacks a high-throughput, wide-range, high-recovery separation method for native protein assemblies. Here, we present clear native gel-eluted liquid fraction entrapment electrophoresis (CN-GELFrEE), which is a novel separation modality for non-covalent protein assemblies. CN-GELFrEE separation performance was demonstrated by fractionating complexes extracted from mouse heart. Fractions were collected over 2 hr and displayed discrete bands ranging from ~30 to 500 kDa. A consistent pattern of increasing molecular weight bandwidths was observed, each ranging ~100 kDa. Further, subsequent reanalysis of native fractions via SDS-PAGE showed molecular-weight shifts consistent with the denaturation of protein complexes. Therefore, CN-GELFrEE was proved to offer the ability to perform high-resolution and high-recovery native separations on protein complexes from a large molecular weight range, providing fractions that are compatible with downstream protein analyses. PMID:26967310
Studying dynamic processes in liquids by TEM/STEM/DTEM
NASA Astrophysics Data System (ADS)
Abellan, Patricia; Evans, James; Woehl, Taylor; Jungjohann, Katherine; Parent, Lucas; Arslan, Ilke; Ristenpart, William; Browning, Nigel; Mater. Sci. Group Team; Microsc. Group Team; Catal. Sci. Group Collaboration; Ristenpart Res. Group Collaboration
2013-03-01
In order to study dynamic phenomena such as corrosion or catalysis, extreme environmental conditions must be reproduced around the specimen - these include high-temperatures, high-pressures, specific oxidizing/reducing atmospheres or a liquid environment. The use of environmental stages specifically designed to fit in any transmission electron microscope (TEM) allows us to apply the distinct capabilities of each instrument to study dynamic processes. Localized gas/fluid conditions are created around the sample and separated from the high vacuum inside the microscope using hermetically sealed windowed-cells. Advanced capabilities of these techniques include spatial resolutions of ~1 Angstrom or better in aberration corrected instruments or temporal resolutions in the microsecond-nanosecond range in a dynamic TEM (DTEM). Here, unique qualities of the DTEM that benefit the in-situ experiments with gas/fluid environmental cells will be discussed. We also present our results with a liquid stage allowing atomic resolution imaging of nanomaterials in a colloidal suspension, core EEL spectra acquisition, continuous flow, controlled growth of nanocrystals and systematic calibration of the effect of the electron dose on silver nuclei formation.
NASA Technical Reports Server (NTRS)
Peters, Mary Anne; Groff, Tyler; Kasdin, N. Jeremy; McElwain, Michael W.; Galvin, Michael; Carr, Michael A.; Lupton, Robert; Gunn, James E.; Knapp, Gillian; Gong, Qian;
2012-01-01
Recent developments in high-contrast imaging techniques now make possible both imaging and spectroscopy of planets around nearby stars. We present the conceptual design of the Coronagraphic High Angular Resolution Imaging Spectrograph (CHARIS), a lenslet-based, cryogenic integral field spectrograph (IFS) for imaging exoplanets on the Subaru telescope. The IFS will provide spectral information for 140 x 140 spatial elements over a 1.75 arcsecs x 1.75 arcsecs field of view (FOV). CHARIS will operate in the near infrared (lambda = 0.9 - 2.5 micron) and provide a spectral resolution of R = 14, 33, and 65 in three separate observing modes. Taking advantage of the adaptive optics systems and advanced coronagraphs (AO188 and SCExAO) on the Subaru telescope, CHARIS will provide sufficient contrast to obtain spectra of young self-luminous Jupiter-mass exoplanets. CHARIS is in the early design phases and is projected to have first light by the end of 2015. We report here on the current conceptual design of CHARIS and the design challenges.
Advanced Secure Optical Image Processing for Communications
NASA Astrophysics Data System (ADS)
Al Falou, Ayman
2018-04-01
New image processing tools and data-processing network systems have considerably increased the volume of transmitted information such as 2D and 3D images with high resolution. Thus, more complex networks and long processing times become necessary, and high image quality and transmission speeds are requested for an increasing number of applications. To satisfy these two requests, several either numerical or optical solutions were offered separately. This book explores both alternatives and describes research works that are converging towards optical/numerical hybrid solutions for high volume signal and image processing and transmission. Without being limited to hybrid approaches, the latter are particularly investigated in this book in the purpose of combining the advantages of both techniques. Additionally, pure numerical or optical solutions are also considered since they emphasize the advantages of one of the two approaches separately.
C-band Joint Active/Passive Dual Polarization Sea Ice Detection
NASA Astrophysics Data System (ADS)
Keller, M. R.; Gifford, C. M.; Winstead, N. S.; Walton, W. C.; Dietz, J. E.
2017-12-01
A technique for synergistically-combining high-resolution SAR returns with like-frequency passive microwave emissions to detect thin (<30 cm) ice under the difficult conditions of late melt and freeze-up is presented. As the Arctic sea ice cover thins and shrinks, the algorithm offers an approach to adapting existing sensors monitoring thicker ice to provide continuing coverage. Lower resolution (10-26 km) ice detections with spaceborne radiometers and scatterometers are challenged by rapidly changing thin ice. Synthetic Aperture Radar (SAR) is high resolution (5-100m) but because of cross section ambiguities automated algorithms have had difficulty separating thin ice types from water. The radiometric emissivity of thin ice versus water at microwave frequencies is generally unambiguous in the early stages of ice growth. The method, developed using RADARSAT-2 and AMSR-E data, uses higher-ordered statistics. For the SAR, the COV (coefficient of variation, ratio of standard deviation to mean) has fewer ambiguities between ice and water than cross sections, but breaking waves still produce ice-like signatures for both polarizations. For the radiometer, the PRIC (polarization ratio ice concentration) identifies areas that are unambiguously water. Applying cumulative statistics to co-located COV levels adaptively determines an ice/water threshold. Outcomes from extensive testing with Sentinel and AMSR-2 data are shown in the results. The detection algorithm was applied to the freeze-up in the Beaufort, Chukchi, Barents, and East Siberian Seas in 2015 and 2016, spanning mid-September to early November of both years. At the end of the melt, 6 GHz PRIC values are 5-10% greater than those reported by radiometric algorithms at 19 and 37 GHz. During freeze-up, COV separates grease ice (<5 cm thick) from water. As the ice thickens, the COV is less reliable, but adding a mask based on either the PRIC or the cross-pol/co-pol SAR ratio corrects for COV deficiencies. In general, the dual-sensor detection algorithm reports 10-15% higher total ice concentrations than operational scatterometer or radiometer algorithms, mostly from ice edge and coastal areas. In conclusion, the algorithm presented combines high-resolution SAR returns with passive microwave emissions for automated ice detection at SAR resolutions.
Enantiomeric resolution of five chiral pesticides on a Chiralpak IB-H column by SFC.
Jin, Lixia; Gao, Weiliang; Yang, Huayun; Lin, Chunmian; Liu, Weiping
2011-10-01
The enantiomeric separations of five chiral pesticides, diclofopmethyl, 1; benalaxy, 2; acetofenate, 3; myclobutanil, 4; and difenoconazole, 5, were conducted on a Chiralpak IB-H column by a packed-column supercritical fluid chromatography (p-SFC). All compounds, except difenoconazole and myclobutanil, were well resolved within 10 min. As the mobile phase polarity decreased through changing the percentage and the type of alcohol modifiers in the supercritical carbon dioxide (CO(2)), the retention time, the separation factors, and the resolution increased. However, based on the retention time and the resolution, the optimized separations were obtained with the mobile phase containing 10% 2-propanol for diclofop-methyl 1; benalaxy, 2; myclobutanil, 4; difenoconazole, 5; and containing 3% 2-propanol for acetofenate, 3. The optimized separation temperature was at 35°C under the supercritical fluid condition. The π-π interactions and the hydrogen bonding interactions between Chiralpak IB-H CSP and the analytes might be the main chiral discriminations on enantioseparation of these five pesticides.
Caster, Joshua J.; Sankey, Joel B.
2016-04-11
In this study, we examine rainfall datasets of varying temporal length, resolution, and spatial distribution to characterize rainfall depth, intensity, and seasonality for monitoring stations along the Colorado River within Marble and Grand Canyons. We identify maximum separation distances between stations at which rainfall measurements might be most useful for inferring rainfall characteristics at other locations. We demonstrate a method for applying relations between daily rainfall depth and intensity, from short-term high-resolution data to lower-resolution longer-term data, to synthesize a long-term record of daily rainfall intensity from 1950–2012. We consider the implications of our spatio-temporal characterization of rainfall for understanding local landscape change in sedimentary deposits and archaeological sites, and for better characterizing past and present rainfall and its potential role in overland flow erosion within the canyons. We find that rainfall measured at stations within the river corridor is spatially correlated at separation distances of tens of kilometers, and is not correlated at the large elevation differences that separate stations along the Colorado River from stations above the canyon rim. These results provide guidance for reasonable separation distances at which rainfall measurements at stations within the Grand Canyon region might be used to infer rainfall at other nearby locations along the river. Like other rugged landscapes, spatial variability between rainfall measured at monitoring stations appears to be influenced by canyon and rim physiography and elevation, with preliminary results suggesting the highest elevation landform in the region, the Kaibab Plateau, may function as an important orographic influence. Stations at specific locations within the canyons and along the river, such as in southern (lower) Marble Canyon and eastern (upper) Grand Canyon, appear to have strong potential to receive high-intensity rainfall that can generate runoff which may erode alluvium. The characterization of past and present rainfall variability in this study will be useful for future studies that evaluate more spatially continuous datasets in order to better understand the rainfall dynamics within this, and potentially other, deep canyons.
Ito, Yoichiro; Clary, Robert
2016-01-01
High-speed countercurrent chromatography with a spiral tube assembly can retain a satisfactory amount of stationary phase of polymer phase systems used for protein separation. In order to improve the partition efficiency a simple tool to modify the tubing shapes was fabricated, and the following four different tubing modifications were made: intermittently pressed at 10 mm width, flat, flat-wave, and flat-twist. Partition efficiencies of the separation column made from these modified tubing were examined in protein separation with an aqueous-aqueous polymer phase system at flow rates of 1–2 ml/min under 800 rpm. The results indicated that the column with all modified tubing improved the partition efficiency at a flow rate of 1 ml/min, but at a higher flow rate of 2 ml/min the columns made of flattened tubing showed lowered partition efficiency apparently due to the loss of the retained stationary phase. Among all the modified columns, the column with intermittently pressed tubing gave the best peak resolution. It may be concluded that the intermittently pressed and flat-twist improve the partition efficiency in a semi-preparative separation while other modified tubing of flat and flat-wave configurations may be used for analytical separations with a low flow rate. PMID:27790621
Ito, Yoichiro; Clary, Robert
2016-12-01
High-speed countercurrent chromatography with a spiral tube assembly can retain a satisfactory amount of stationary phase of polymer phase systems used for protein separation. In order to improve the partition efficiency a simple tool to modify the tubing shapes was fabricated, and the following four different tubing modifications were made: intermittently pressed at 10 mm width, flat, flat-wave, and flat-twist. Partition efficiencies of the separation column made from these modified tubing were examined in protein separation with an aqueous-aqueous polymer phase system at flow rates of 1-2 ml/min under 800 rpm. The results indicated that the column with all modified tubing improved the partition efficiency at a flow rate of 1 ml/min, but at a higher flow rate of 2 ml/min the columns made of flattened tubing showed lowered partition efficiency apparently due to the loss of the retained stationary phase. Among all the modified columns, the column with intermittently pressed tubing gave the best peak resolution. It may be concluded that the intermittently pressed and flat-twist improve the partition efficiency in a semi-preparative separation while other modified tubing of flat and flat-wave configurations may be used for analytical separations with a low flow rate.
Gangodagamage, Chandana; Wullschleger, Stan
2014-07-03
The dataset represents microtopographic characterization of the ice-wedge polygon landscape in Barrow, Alaska. Three microtopographic features are delineated using 0.25 m high resolution digital elevation dataset derived from LiDAR. The troughs, rims, and centers are the three categories in this classification scheme. The polygon troughs are the surface expression of the ice-wedges that are in lower elevations than the interior polygon. The elevated shoulders of the polygon interior immediately adjacent to the polygon troughs are the polygon rims for the low center polygons. In case of high center polygons, these features are the topographic highs. In this classification scheme, both topographic highs and rims are considered as polygon rims. The next version of the dataset will include more refined classification scheme including separate classes for rims ad topographic highs. The interior part of the polygon just adjacent to the polygon rims are the polygon centers.
Dasarathy, Dhweeja; Ito, Yoichiro
2015-10-30
A new spiral tube assembly was designed to improve the column capacity and partition efficiency for protein separation. This spiral tube assembly has greater column capacity than the original tubing because of an increase in radial grooves from 4 to 12 to accommodate more spiral layers and 12 narrow spots instead of 4 in each circular loop to interrupt the laminar flow that causes sample band broadening. Standard PTFE tubing (1.6mm ID) and the modified flat-twisted tubing were used as the separation column. The performances of both assemblies were compared for separating three stable test proteins including cytochrome c, myoglobin, and lysozyme using a two phase aqueous-aqueous solvent system composed of polyethylene glycol 1000 (12.5% w/w) and dibasic potassium phosphate (12.5% w/w). All samples were run at 1, 2, 3, and 5mL/min at both 800rpm and 1000rpm. The separation of these three protein samples produced high stationary phase retentions at 1, 2, and 3mL/min, yet separated efficiently at 5mL/min in 40min. After comparing the separation efficiency in terms of the peak resolutions, theoretical plate numbers, and separation times, it was determined that the flat-twisted tubing was more effective in separating these protein samples. In order to validate the efficacy of this novel assembly, a mixture of five protein samples (cytochrome c, myoglobin, ovalbumin, lysozyme, and hemoglobin) were separated, under the optimal conditions established with these three protein samples, at 1mL/min with a revolution speed of 1000rpm. There were high stationary phase retentions of around 60%, with effective separations, demonstrating the efficiency of the flat-twisted spiral tube assembly. The separation time of 6h was a limitation but can potentially be shortened by improving the strength of the column that will permit an increase in revolution speed and flow rate. This novel spiral separation column will allow rapid and efficient separation of mixtures with high yield of the constituent components. Published by Elsevier B.V.
A microfluidic separation platform using an array of slanted ramps
NASA Astrophysics Data System (ADS)
Risbud, Sumedh; Bernate, Jorge; Drazer, German
2013-03-01
The separation of the different components of a sample is a crucial step in many micro- and nano-fluidic applications, including the detection of infections, the capture of circulating tumor cells, the isolation of proteins, RNA and DNA, to mention but a few. Vector chromatography, in which different species migrate in different directions in a planar microfluidic device thus achieving spatial as well as temporal resolution, offers the promise of high selectivity along with high throughput. In this work, we present a microfluidic vector chromatography platform consisting of slanted ramps in a microfluidic channel for the separation of suspended particles. We construct these ramps using inclined UV lithography, such that the inclined portion of the ramps is upstream. We show that particles of different size displace laterally to a different extent when driven by a flow field over a slanted ramp. The flow close to the ramp reorients along the ramp, causing the size-dependent deflection of the particles. The cumulative effect of an array of these ramps would cause particles of different size to migrate in different directions, thus allowing their passive and continuous separation.
Chebrolu, Kranthi K; Yousef, Gad G; Park, Ryan; Tanimura, Yoshinori; Brown, Allan F
2015-09-15
A high-throughput, robust and reliable method for simultaneous analysis of five carotenoids, four chlorophylls and one tocopherol was developed for rapid screening large sample populations to facilitate molecular biology and plant breeding. Separation was achieved for 10 known analytes and four unknown carotenoids in a significantly reduced run time of 10min. Identity of the 10 analytes was confirmed by their UV-Vis absorption spectras. Quantification of tocopherol, carotenoids and chlorophylls was performed at 290nm, 460nm and 650nm respectively. In this report, two sub two micron particle core-shell columns, Kinetex from Phenomenex (1.7μm particle size, 12% carbon load) and Cortecs from Waters (1.6μm particle size, 6.6% carbon load) were investigated and their separation efficiencies were evaluated. The peak resolutions were >1.5 for all analytes except for chlorophyll-a' with Cortecs column. The ruggedness of this method was evaluated in two identical but separate instruments that produced CV<2 in peak retentions for nine out of 10 analytes separated. Copyright © 2015 Elsevier B.V. All rights reserved.
Li, Shuifu; Hu, Shouzhi; Cao, Jian; Wu, Ming; Zhang, Dongmei
2012-01-01
Diamondoids in crude oil are useful for assessing the maturity of oil in high maturation. However, they are very difficult to separate and accurately quantify by conventional geochemical methods due to their low abundance in oil. In this paper, we use comprehensive two-dimensional gas chromatography with time-of-flight mass spectrometry (GC×GC-TOFMS) to study the compounds in condensates from the Junggar Basin of northwest China and address their geological and geochemical applications. GC×GC-TOFMS improves the resolution and separation efficiency of the compounds. It not only separates the compounds that coelute in conventional GC-MS (e.g., 4, 8-dimethyl-diamantane and trimethyl-diamantane) but also allows the identification of compounds that were not previously detected (e.g., trimethyl-diamantane (15A)). A reversed-phase column system improves the separation capabilities over the normal phase column system. The diamondoid indexes indicate that a representative condensate from Well DX 10 is highly mature with equivalent Ro being approximately 1.5%. PMID:23109861
A High-Resolution Merged Wind Dataset for DYNAMO: Progress and Future Plans
NASA Technical Reports Server (NTRS)
Lang, Timothy J.; Mecikalski, John; Li, Xuanli; Chronis, Themis; Castillo, Tyler; Hoover, Kacie; Brewer, Alan; Churnside, James; McCarty, Brandi; Hein, Paul;
2015-01-01
In order to support research on optimal data assimilation methods for the Cyclone Global Navigation Satellite System (CYGNSS), launching in 2016, work has been ongoing to produce a high-resolution merged wind dataset for the Dynamics of the Madden Julian Oscillation (DYNAMO) field campaign, which took place during late 2011/early 2012. The winds are produced by assimilating DYNAMO observations into the Weather Research and Forecasting (WRF) three-dimensional variational (3DVAR) system. Data sources from the DYNAMO campaign include the upper-air sounding network, radial velocities from the radar network, vector winds from the Advanced Scatterometer (ASCAT) and Oceansat-2 Scatterometer (OSCAT) satellite instruments, the NOAA High Resolution Doppler Lidar (HRDL), and several others. In order the prep them for 3DVAR, significant additional quality control work is being done for the currently available TOGA and SMART-R radar datasets, including automatically dealiasing radial velocities and correcting for intermittent TOGA antenna azimuth angle errors. The assimilated winds are being made available as model output fields from WRF on two separate grids with different horizontal resolutions - a 3-km grid focusing on the main DYNAMO quadrilateral (i.e., Gan Island, the R/V Revelle, the R/V Mirai, and Diego Garcia), and a 1-km grid focusing on the Revelle. The wind dataset is focused on three separate approximately 2-week periods during the Madden Julian Oscillation (MJO) onsets that occurred in October, November, and December 2011. Work is ongoing to convert the 10-m surface winds from these model fields to simulated CYGNSS observations using the CYGNSS End-To-End Simulator (E2ES), and these simulated satellite observations are being compared to radar observations of DYNAMO precipitation systems to document the anticipated ability of CYGNSS to provide information on the relationships between surface winds and oceanic precipitation at the mesoscale level. This research will improve our understanding of the future utility of CYGNSS for documenting key MJO processes.
Yoshinaga, Kazuaki; Asanuma, Masaharu; Mizobe, Hoyo; Kojima, Koichi; Nagai, Toshiharu; Beppu, Fumiaki; Gotoh, Naohiro
2014-10-01
In this study, the characterisation of all cis- and trans-octadecenoic acid (C18:1) positional isomers in partially hydrogenated vegetable oil (PHVO) and milk fat, which contain several cis- and trans-C18:1 positional isomers, was achieved by gas chromatography-flame ionisation detector equipped with a highly polar ionic liquid capillary column (SLB-IL111). Prior to analysis, the cis- and trans-C18:1 fractions in PHVO and milk fat were separated using a silver-ion cartridge. The resolution of all cis-C18:1 positional isomers was successfully accomplished at the optimal isothermal column temperature of 120 °C. Similarly, the positional isomers of trans-C18:1, except for trans-6-C18:1 and trans-7-C18:1, were separated at 120 °C. The resolution of trans-6-C18:1 and trans-7-C18:1 isomers was made possible by increasing the column temperature to 160 °C. This analytical method is suitable for determining the cis- and trans-C18:1 positional isomers in edible fats and oils. Copyright © 2014 Elsevier Ltd. All rights reserved.
Paleologos, E K; Kontominas, M G
2005-06-10
A method using normal phase high performance liquid chromatography (NP-HPLC) with UV detection was developed for the analysis of acrylamide and methacrylamide. The method relies on the chromatographic separation of these analytes on a polar HPLC column designed for the separation of organic acids. Identification of acrylamide and methacrylamide is approached dually, that is directly in their protonated forms and as their hydrolysis products acrylic and methacrylic acid respectively, for confirmation. Detection and quantification is performed at 200 nm. The method is simple allowing for clear resolution of the target peaks from any interfering substances. Detection limits of 10 microg L(-1) were obtained for both analytes with the inter- and intra-day RSD for standard analysis lying below 1.0%. Use of acetonitrile in the elution solvent lowers detection limits and retention times, without impairing resolution of peaks. The method was applied for the determination of acrylamide and methacrylamide in spiked food samples without native acrylamide yielding recoveries between 95 and 103%. Finally, commercial samples of french and roasted fries, cookies, cocoa and coffee were analyzed to assess applicability of the method towards acrylamide, giving results similar with those reported in the literature.
Continuous flow electrophoresis system experiments on shuttle flights STS-6 and STS-7
NASA Technical Reports Server (NTRS)
Snyder, Robert S.; Rhodes, Percy H.; Miller, Teresa Y.
1987-01-01
A space continuous flow electrophoresis system (CFES) was developed that would incorporate specific modifications to laboratory instruments to take advantage of weightlessness. The specific objectives were to use a model sample material at a high concentration to evaluate the continuous flow electrophoresis process in the CFES instrument and compare its separation resolution and sample throughput with related devices on Earth and to expand the basic knowledge of the limitations imposed by fluid flows and particle concentration effects on the electrophoresis process by careful design and evaluation of the space experiment. Hemoglobin and polysaccharide were selected as primary samples. The results from space show a large band spread of the high concentration of the single species of hemoglobin that was due to the mismatch of electrical conductivity between the sample and the buffer. On STS-7 the major objective was to evaluate the influence of the electrical properties of the sample constituents on the resolution of the CFES. As expected, the polystyrene latex microspheres dispersed in a solution with 3 times the electrical conductivity of the curtain buffer separated with a larger band spread than in the 2nd experiment.
NASA Technical Reports Server (NTRS)
Yang, Cheng I.; Guo, Yan-Hu; Liu, C.- H.
1996-01-01
The analysis and design of a submarine propulsor requires the ability to predict the characteristics of both laminar and turbulent flows to a higher degree of accuracy. This report presents results of certain benchmark computations based on an upwind, high-resolution, finite-differencing Navier-Stokes solver. The purpose of the computations is to evaluate the ability, the accuracy and the performance of the solver in the simulation of detailed features of viscous flows. Features of interest include flow separation and reattachment, surface pressure and skin friction distributions. Those features are particularly relevant to the propulsor analysis. Test cases with a wide range of Reynolds numbers are selected; therefore, the effects of the convective and the diffusive terms of the solver can be evaluated separately. Test cases include flows over bluff bodies, such as circular cylinders and spheres, at various low Reynolds numbers, flows over a flat plate with and without turbulence effects, and turbulent flows over axisymmetric bodies with and without propulsor effects. Finally, to enhance the iterative solution procedure, a full approximation scheme V-cycle multigrid method is implemented. Preliminary results indicate that the method significantly reduces the computational effort.
Applying high-resolution melting (HRM) technology to identify five commonly used Artemisia species.
Song, Ming; Li, Jingjian; Xiong, Chao; Liu, Hexia; Liang, Junsong
2016-10-04
Many members of the genus Artemisia are important for medicinal purposes with multiple pharmacological properties. Often, these herbal plants sold on the markets are in processed forms so it is difficult to authenticate. Routine testing and identification of these herbal materials should be performed to ensure that the raw materials used in pharmaceutical products are suitable for their intended use. In this study, five commonly used Artemisia species included Artemisia argyi, Artemisia annua, Artemisia lavandulaefolia, Artemisia indica, and Artemisia atrovirens were analyzed using high resolution melting (HRM) analysis based on the internal transcribed spacer 2 (ITS2) sequences. The melting profiles of the ITS2 amplicons of the five closely related herbal species are clearly separated so that they can be differentiated by HRM method. The method was further applied to authenticate commercial products in powdered. HRM curves of all the commercial samples tested are similar to the botanical species as labeled. These congeneric medicinal products were also clearly separated using the neighbor-joining (NJ) tree. Therefore, HRM method could provide an efficient and reliable authentication system to distinguish these commonly used Artemisia herbal products on the markets and offer a technical reference for medicines quality control in the drug supply chain.
NASA Astrophysics Data System (ADS)
Jünger, Felix; Olshausen, Philipp V.; Rohrbach, Alexander
2016-07-01
Living cells are highly dynamic systems with cellular structures being often below the optical resolution limit. Super-resolution microscopes, usually based on fluorescence cell labelling, are usually too slow to resolve small, dynamic structures. We present a label-free microscopy technique, which can generate thousands of super-resolved, high contrast images at a frame rate of 100 Hertz and without any post-processing. The technique is based on oblique sample illumination with coherent light, an approach believed to be not applicable in life sciences because of too many interference artefacts. However, by circulating an incident laser beam by 360° during one image acquisition, relevant image information is amplified. By combining total internal reflection illumination with dark-field detection, structures as small as 150 nm become separable through local destructive interferences. The technique images local changes in refractive index through scattered laser light and is applied to living mouse macrophages and helical bacteria revealing unexpected dynamic processes.
[An improved low spectral distortion PCA fusion method].
Peng, Shi; Zhang, Ai-Wu; Li, Han-Lun; Hu, Shao-Xing; Meng, Xian-Gang; Sun, Wei-Dong
2013-10-01
Aiming at the spectral distortion produced in PCA fusion process, the present paper proposes an improved low spectral distortion PCA fusion method. This method uses NCUT (normalized cut) image segmentation algorithm to make a complex hyperspectral remote sensing image into multiple sub-images for increasing the separability of samples, which can weaken the spectral distortions of traditional PCA fusion; Pixels similarity weighting matrix and masks were produced by using graph theory and clustering theory. These masks are used to cut the hyperspectral image and high-resolution image into some sub-region objects. All corresponding sub-region objects between the hyperspectral image and high-resolution image are fused by using PCA method, and all sub-regional integration results are spliced together to produce a new image. In the experiment, Hyperion hyperspectral data and Rapid Eye data were used. And the experiment result shows that the proposed method has the same ability to enhance spatial resolution and greater ability to improve spectral fidelity performance.
Jünger, Felix; Olshausen, Philipp v.; Rohrbach, Alexander
2016-01-01
Living cells are highly dynamic systems with cellular structures being often below the optical resolution limit. Super-resolution microscopes, usually based on fluorescence cell labelling, are usually too slow to resolve small, dynamic structures. We present a label-free microscopy technique, which can generate thousands of super-resolved, high contrast images at a frame rate of 100 Hertz and without any post-processing. The technique is based on oblique sample illumination with coherent light, an approach believed to be not applicable in life sciences because of too many interference artefacts. However, by circulating an incident laser beam by 360° during one image acquisition, relevant image information is amplified. By combining total internal reflection illumination with dark-field detection, structures as small as 150 nm become separable through local destructive interferences. The technique images local changes in refractive index through scattered laser light and is applied to living mouse macrophages and helical bacteria revealing unexpected dynamic processes. PMID:27465033
Analysis of embolic signals with directional dual tree rational dilation wavelet transform.
Serbes, Gorkem; Aydin, Nizamettin
2016-08-01
The dyadic discrete wavelet transform (dyadic-DWT), which is based on fixed integer sampling factor, has been used before for processing piecewise smooth biomedical signals. However, the dyadic-DWT has poor frequency resolution due to the low-oscillatory nature of its wavelet bases and therefore, it is less effective in processing embolic signals (ESs). To process ESs more effectively, a wavelet transform having better frequency resolution than the dyadic-DWT is needed. Therefore, in this study two ESs, containing micro-emboli and artifact waveforms, are analyzed with the Directional Dual Tree Rational-Dilation Wavelet Transform (DDT-RADWT). The DDT-RADWT, which can be directly applied to quadrature signals, is based on rational dilation factors and has adjustable frequency resolution. The analyses are done for both low and high Q-factors. It is proved that, when high Q-factor filters are employed in the DDT-RADWT, clearer representations of ESs can be attained in decomposed sub-bands and artifacts can be successfully separated.
Architectural transitions in Vibrio cholerae biofilms at single-cell resolution
Drescher, Knut; Dunkel, Jörn; Nadell, Carey D.; van Teeffelen, Sven; Grnja, Ivan; Wingreen, Ned S.; Stone, Howard A.; Bassler, Bonnie L.
2016-01-01
Many bacterial species colonize surfaces and form dense 3D structures, known as biofilms, which are highly tolerant to antibiotics and constitute one of the major forms of bacterial biomass on Earth. Bacterial biofilms display remarkable changes during their development from initial attachment to maturity, yet the cellular architecture that gives rise to collective biofilm morphology during growth is largely unknown. Here, we use high-resolution optical microscopy to image all individual cells in Vibrio cholerae biofilms at different stages of development, including colonies that range in size from 2 to 4,500 cells. From these data, we extracted the precise 3D cellular arrangements, cell shapes, sizes, and global morphological features during biofilm growth on submerged glass substrates under flow. We discovered several critical transitions of the internal and external biofilm architectures that separate the major phases of V. cholerae biofilm growth. Optical imaging of biofilms with single-cell resolution provides a new window into biofilm formation that will prove invaluable to understanding the mechanics underlying biofilm development. PMID:26933214
Progress on PEEM3 -- An Aberration Corrected X-Ray Photoemission Electron Microscope at the ALS
DOE Office of Scientific and Technical Information (OSTI.GOV)
MacDowell, A. A.; Feng, J.; DeMello, A.
2007-01-19
A new ultrahigh-resolution photoemission electron microscope called PEEM3 is being developed and built at the Advanced Light Source (ALS). An electron mirror combined with a much-simplified magnetic dipole separator is to be used to provide simultaneous correction of spherical and chromatic aberrations. It is installed on an elliptically polarized undulator (EPU) beamline, and will be operated with very high spatial resolution and high flux to study the composition, structure, electric and magnetic properties of complex materials. The instrument has been designed and is described. The instrumental hardware is being deployed in 2 phases. The first phase is the deployment ofmore » a standard PEEM type microscope consisting of the standard linear array of electrostatic electron lenses. The second phase will be the installation of the aberration corrected upgrade to improve resolution and throughput. This paper describes progress as the instrument enters the commissioning part of the first phase.« less
Progress on PEEM3 - An Aberration Corrected X-Ray PhotoemissionElectron Microscope at the ALS
DOE Office of Scientific and Technical Information (OSTI.GOV)
MacDowell, Alastair A.; Feng, J.; DeMello, A.
2006-05-20
A new ultrahigh-resolution photoemission electron microscope called PEEM3 is being developed and built at the Advanced Light Source (ALS). An electron mirror combined with a much-simplified magnetic dipole separator is to be used to provide simultaneous correction of spherical and chromatic aberrations. It is installed on an elliptically polarized undulator (EPU) beamline, and will be operated with very high spatial resolution and high flux to study the composition, structure, electric and magnetic properties of complex materials. The instrument has been designed and is described. The instrumental hardware is being deployed in 2 phases. The first phase is the deployment ofmore » a standard PEEM type microscope consisting of the standard linear array of electrostatic electron lenses. The second phase will be the installation of the aberration corrected upgrade to improve resolution and throughput. This paper describes progress as the instrument enters the commissioning part of the first phase.« less
Besil, Natalia; Cesio, Verónica; Heinzen, Horacio; Fernandez-Alba, Amadeo R
2017-06-14
The matrix effects of ethyl acetate extracts from seven different citrus fruits on the determination of 80 pesticide residues using liquid chromatography coupled to high-resolution time-of-flight mass spectrometry (UHPLC-(ESI)-HR-TOF) at 4 GHz resolution mode were studied. Only 20% of the evaluated pesticides showed noticeable matrix effects (ME) due to coelution with natural products between t R = 3 and 11 min. Principal component analysis (PCA) of the detected coextractives grouped the mandarins and the orange varieties, but separated lemon, oranges, and mandarins from each other. Matrix effects were different among species but similar between varieties, forcing the determination of pesticide residues through matrix-matched calibration curves with the same fruit. Twenty-three natural products (synephrine, naringin, poncirin, glycosides of hesperitin, limonin, nomilin, and a few fatty acids, among others) were identified in the analyzed extracts. Twelve of the identified compounds coeluted with 28 of the pesticides under study, causing different matrix effects.
NASA Astrophysics Data System (ADS)
Masciotti, J.; Provenzano, F.; Papa, J.; Klose, A.; Hur, J.; Gu, X.; Yamashiro, D.; Kandel, J.; Hielscher, A. H.
2006-02-01
Small animal models are employed to simulate disease in humans and to study its progression, what factors are important to the disease process, and to study the disease treatment. Biomedical imaging modalities such as magnetic resonance imaging (MRI) and Optical Tomography make it possible to non-invasively monitor the progression of diseases in living small animals and study the efficacy of drugs and treatment protocols. MRI is an established imaging modality capable of obtaining high resolution anatomical images and along with contrast agents allow the studying of blood volume. Optical tomography, on the other hand, is an emerging imaging modality, which, while much lower in spatial resolution, can separate the effects of oxyhemoglobin, deoxyhemoglobin, and blood volume with high temporal resolution. In this study we apply these modalities to imaging the growth of kidney tumors and then there treatment by an anti-VEGF agent. We illustrate how these imaging modalities have their individual uses, but can still supplement each other and cross validation can be performed.
Shinomiya, Kazufusa; Sato, Kazuki; Yoshida, Kazunori; Tokura, Koji; Maruyama, Hiroshi; Yanagidaira, Kazuhiro; Ito, Yoichiro
2013-12-27
A new design of universal high-speed counter-current chromatograph (HSCCC) was fabricated in our laboratory. It holds a set of four column holders symmetrically around the rotary frame at a distance of 11.2cm from the central axis. By engaging the stationary gear on the central axis of the centrifuge to the planetary gears on the column holder shaft through a set of idle gears, two pairs of diagonally located column holders simultaneously rotate about their own axes in the opposite directions: one forward (type-J planetary motion) and the other backward (type-I planetary motion) each synchronously with the revolution. Using the eccentric coil assembly, partition efficiencies produced by these two planetary motions were compared on the separation of two different types of sugar derivatives (4-methylumbelliferyl and 5-bromo-4-chloro-3-indoxyl sugar derivatives) using organic-aqueous two-phase solvent systems composed of n-hexane/ethyl acetate/1-butanol/methanol/water and aqueous 0.1M sodium tetraborate, respectively. With lower phase mobile, better peak resolution was obtained by the type-J forward rotation for both samples probably due to higher retention of the stationary phase. With upper phase mobile, however, similar peak resolutions were obtained between these two planetary motions for both sugar derivatives. The overall results indicate that the present universal HSCCC is useful for counter-current chromatographic separation since each planetary motion has its specific applications: e.g., vortex CCC by the type-I planetary motion and HSCCC by the type-J planetary motion both for separation of various natural and synthetic products. Copyright © 2013 Elsevier B.V. All rights reserved.
Sinville, Rondedrick; Coyne, Jennifer; Meagher, Robert J.; Cheng, Yu-Wei; Barany, Francis; Barron, Annelise; Soper, Steven A.
2010-01-01
We have developed a new method for the analysis of low abundant point mutations in genomic DNA using a combination of an allele-specific ligase detection reaction (LDR) with free-solution conjugate electrophoresis (FSCE) to generate and analyze the genetic products. FSCE eliminates the need for a polymer sieving matrix by conjugating chemically synthesized polyamide “drag-tags” onto the LDR primers. The additional drag of the charge-neutral drag-tag breaks the linear scaling of the charge-to-friction ratio of DNA and enables size-based separations of DNA in free solution using electrophoresis with no sieving matrix. We successfully demonstrate the conjugation of polyamide drag-tags onto a set of four LDR primers designed to probe the K-ras oncogene for mutations highly associated with colorectal cancer, the simultaneous generation of fluorescently-labeled LDR/drag-tagged (LDR-dt) products in a multiplexed, single-tube format with mutant:wild-type ratios as low as 1:100, respectively, and the single-base, high-resolution separation of all four LDR-dt products. Separations were conducted in free solution with no polymer network using both a commercial capillary array electrophoresis (CAE) system and a poly(methylmethacrylate), PMMA, microchip replicated via hot-embossing with only a Tris-based running buffer containing additives to suppress the electroosmotic flow (EOF). Typical analysis times for LDR-dt conjugates were 11 min using the CAE system and as low as 85 s for the PMMA microchips. With resolution comparable to traditional gel-based CAE, FSCE along with microchip electrophoresis decreased the separation time by more than a factor of 40. PMID:19053073
Kara, M A; Peters, F P; Rosmolen, W D; Krishnadath, K K; ten Kate, F J; Fockens, P; Bergman, J J G H
2005-10-01
High-resolution endoscopy (HRE) may improve the detection of early neoplasia in Barrett's esophagus. Indigo carmine chromoendoscopy (ICC) and narrow-band imaging (NBI) may be useful techniques to complement HRE. The aim of this study was to compare HRE-ICC with HRE-NBI for the detection of high-grade dysplasia or early cancer (HGD/EC) in patients with Barrett's esophagus. Twenty-eight patients with Barrett's esophagus underwent HRE-ICC and HRE-NBI (separated by 6 - 8 weeks) in a randomized sequence. The two procedures were performed by two different endoscopists, who were blinded to the findings of the other examination. Targeted biopsies were taken from all detected lesions, followed by four-quadrant biopsies at 2-cm intervals. Biopsy evaluation was supervised by a single expert pathologist, who was blinded to the imaging technique used. Fourteen patients were diagnosed with HGD/EC. The sensitivity for HGD/EC was 93 % and 86 % for HRE-ICC and HRE-NBI, respectively. Targeted biopsies had a sensitivity of 79 % with HRE alone. HGD was diagnosed from random biopsies alone in only one patient. ICC and NBI detected a limited number of additional lesions occult to HRE, but these lesions did not alter the sensitivity for identifying patients with HGD/EC. In most patients with high-grade dysplasia or early cancer in Barrett's esophagus, subtle lesions can be identified with high-resolution endoscopy. Indigo carmine chromoendoscopy and narrow-band imaging are comparable as adjuncts to high-resolution endoscopy.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Jensen, P.K.; Lee, Cheng S.; King, J.A.
1997-12-31
The use of capillary electrophoresis equipped with laser-induced tryptophan fluorescence detection is presented for monitoring the refolding pathway of phage P22 tailspike endorhamnosidase. Upon initiation of refolding, tailspike polypeptides rapidly fold into structured monomeric intermediates with a high content of secondary structure. These monomeric species associate to form the triple-chain defined folding intermediates, the protrimers. Conversion of the protrimer into the native, sodium dodecyl sulfate (SDS) resistant tailspike protein is the rate-limiting step in the refolding pathway. Refolding kinetics and yield measured by capillary electrophoresis are in good agreement with those obtained via native gel electrophoresis, SDS polyacrylamide gel electrophoresismore » (SDS-PAGE) and fluorescence spectrophotometry. To enhance separation resolution between protrimer and native protein in capillary electrophoresis, the use of poly(ethylene oxide) is investigated for the introduction of a sieving separation mechanism. The increased viscosity of the electrophoresis buffer may also play a role in resolution enhancement.« less
Semi-blind Bayesian inference of CMB map and power spectrum
NASA Astrophysics Data System (ADS)
Vansyngel, Flavien; Wandelt, Benjamin D.; Cardoso, Jean-François; Benabed, Karim
2016-04-01
We present a new blind formulation of the cosmic microwave background (CMB) inference problem. The approach relies on a phenomenological model of the multifrequency microwave sky without the need for physical models of the individual components. For all-sky and high resolution data, it unifies parts of the analysis that had previously been treated separately such as component separation and power spectrum inference. We describe an efficient sampling scheme that fully explores the component separation uncertainties on the inferred CMB products such as maps and/or power spectra. External information about individual components can be incorporated as a prior giving a flexible way to progressively and continuously introduce physical component separation from a maximally blind approach. We connect our Bayesian formalism to existing approaches such as Commander, spectral mismatch independent component analysis (SMICA), and internal linear combination (ILC), and discuss possible future extensions.
NASA Technical Reports Server (NTRS)
Baldwin, B. S.; Maccormack, R. W.; Deiwert, G. S.
1975-01-01
The time-splitting explicit numerical method of MacCormack is applied to separated turbulent boundary layer flow problems. Modifications of this basic method are developed to counter difficulties associated with complicated geometry and severe numerical resolution requirements of turbulence model equations. The accuracy of solutions is investigated by comparison with exact solutions for several simple cases. Procedures are developed for modifying the basic method to improve the accuracy. Numerical solutions of high-Reynolds-number separated flows over an airfoil and shock-separated flows over a flat plate are obtained. A simple mixing length model of turbulence is used for the transonic flow past an airfoil. A nonorthogonal mesh of arbitrary configuration facilitates the description of the flow field. For the simpler geometry associated with the flat plate, a rectangular mesh is used, and solutions are obtained based on a two-equation differential model of turbulence.
Anumula, K R; Dhume, S T
1998-07-01
Facile labeling of oligosaccharides (acidic and neutral) in a nonselective manner was achieved with highly fluorescent anthranilic acid (AA, 2-aminobenzoic acid) (more than twice the intensity of 2-aminobenzamide, AB) for specific detection at very high sensitivity. Quantitative labeling in acetate-borate buffered methanol (approximately pH 5.0) at 80 degreesC for 60 min resulted in negligible or no desialylation of the oligosaccharides. A high resolution high performance liquid chromatographic method was developed for quantitative oligosaccharide mapping on a polymeric-NH2bonded (Astec) column operating under normal phase and anion exchange (NP-HPAEC) conditions. For isolation of oligosaccharides from the map by simple evaporation, the chromatographic conditions developed use volatile acetic acid-triethylamine buffer (approximately pH 4.0) systems. The mapping and characterization technology was developed using well characterized standard glycoproteins. The fluorescent oligosaccharide maps were similar to the maps obtained by the high pH anion-exchange chromatography with pulsed amperometric detection (HPAEC-PAD), except that the fluorescent maps contained more defined peaks. In the map, the oligosaccharides separated into groups based on charge, size, linkage, and overall structure in a manner similar to HPAEC-PAD with contribution of -COOH function from the label, anthranilic acid. However, selectivity of the column for sialic acid linkages was different. A second dimension normal phase HPLC (NP-HPLC) method was developed on an amide column (TSK Gel amide-80) for separation of the AA labeled neutral complex type and isomeric structures of high mannose type oligosaccharides. The oligosaccharides labeled with AA are compatible with biochemical and biophysical techniques, and use of matrix assisted laser desorption mass spectrometry for rapid determination of oligosaccharide mass map of glycoproteins is demonstrated. High resolution of NP-HPAEC and NP-HPLC methods combined with mass spectrometry (MALDI-TOF) can provide an effective technology for analyzing a wide repertoire of oligosaccharide structures and for determining the action of both transferases and glycosidases.
NASA Astrophysics Data System (ADS)
Toigo, Anthony D.; Lee, Christopher; Newman, Claire E.; Richardson, Mark I.
2012-09-01
We investigate the sensitivity of the circulation and thermal structure of the martian atmosphere to numerical model resolution in a general circulation model (GCM) using the martian implementation (MarsWRF) of the planetWRF atmospheric model. We provide a description of the MarsWRF GCM and use it to study the global atmosphere at horizontal resolutions from 7.5° × 9° to 0.5° × 0.5°, encompassing the range from standard Mars GCMs to global mesoscale modeling. We find that while most of the gross-scale features of the circulation (the rough location of jets, the qualitative thermal structure, and the major large-scale features of the surface level winds) are insensitive to horizontal resolution over this range, several major features of the circulation are sensitive in detail. The northern winter polar circulation shows the greatest sensitivity, showing a continuous transition from a smooth polar winter jet at low resolution, to a distinct vertically “split” jet as resolution increases. The separation of the lower and middle atmosphere polar jet occurs at roughly 10 Pa, with the split jet structure developing in concert with the intensification of meridional jets at roughly 10 Pa and above 0.1 Pa. These meridional jets appear to represent the separation of lower and middle atmosphere mean overturning circulations (with the former being consistent with the usual concept of the “Hadley cell”). Further, the transition in polar jet structure is more sensitive to changes in zonal than meridional horizontal resolution, suggesting that representation of small-scale wave-mean flow interactions is more important than fine-scale representation of the meridional thermal gradient across the polar front. Increasing the horizontal resolution improves the match between the modeled thermal structure and the Mars Climate Sounder retrievals for northern winter high latitudes. While increased horizontal resolution also improves the simulation of the northern high latitudes at equinox, even the lowest model resolution considered here appears to do a good job for the southern winter and southern equinoctial pole (although in detail some discrepancies remain). These results suggest that studies of the northern winter jet (e.g., transient waves and cyclogenesis) will be more sensitive to global model resolution that those of the south (e.g., the confining dynamics of the southern polar vortex relevant to studies of argon transport). For surface winds, the major effect of increased horizontal resolution is in the superposition of circulations forced by local-scale topography upon the large-scale surface wind patterns. While passive predictions of dust lifting are generally insensitive to model horizontal resolution when no lifting threshold is considered, increasing the stress threshold produces significantly more lifting in higher resolution simulations with the generation of finer-scale, higher-stress winds due primarily to better-resolved topography. Considering the positive feedbacks expected for radiatively active dust lifting, we expect this bias to increase when such feedbacks are permitted.
Hiesgen, Renate; Helmly, Stefan; Galm, Ines; Morawietz, Tobias; Handl, Michael; Friedrich, K. Andreas
2012-01-01
The conductivity of fuel cell membranes as well as their mechanical properties at the nanometer scale were characterized using advanced tapping mode atomic force microscopy (AFM) techniques. AFM produces high-resolution images under continuous current flow of the conductive structure at the membrane surface and provides some insight into the bulk conducting network in Nafion membranes. The correlation of conductivity with other mechanical properties, such as adhesion force, deformation and stiffness, were simultaneously measured with the current and provided an indication of subsurface phase separations and phase distribution at the surface of the membrane. The distribution of conductive pores at the surface was identified by the formation of water droplets. A comparison of nanostructure models with high-resolution current images is discussed in detail. PMID:24958429
Rogers, B.T. Jr.; Davis, W.C.
1957-12-17
This patent relates to high speed cameras having resolution times of less than one-tenth microseconds suitable for filming distinct sequences of a very fast event such as an explosion. This camera consists of a rotating mirror with reflecting surfaces on both sides, a narrow mirror acting as a slit in a focal plane shutter, various other mirror and lens systems as well as an innage recording surface. The combination of the rotating mirrors and the slit mirror causes discrete, narrow, separate pictures to fall upon the film plane, thereby forming a moving image increment of the photographed event. Placing a reflecting surface on each side of the rotating mirror cancels the image velocity that one side of the rotating mirror would impart, so as a camera having this short a resolution time is thereby possible.
NASA Technical Reports Server (NTRS)
Case, J. T.; Robbins, J.; Kharkovshy, S.; Hepburn, F. L.; Zoughi, R.
2005-01-01
The Space Shuttle Columbia's catastrophic failure is thought to have been caused by a dislodged piece of external tank SOFI (Spray On Foam Insulation) striking the left wing of the orbiter causing significant damage to some of the reinforced carbodcarbon leading edge wing panels. Microwave and millimeter wave nondestructive evaluation methods, have shown great potential for inspecting the SOFI for the purpose of detecting anomalies such as small voids that may cause separation of the foam from the external tank during the launch. These methods are capable of producing relatively high-resolution images of the interior of SOH particularly when advanced imaging algorithms are incorporated into the overall system. To this end, synthetic aperture focusing techniques are being deveioped for this purpose. These iechniqiies pradiice high-resolution images that are independent of the distance of the imaging probe to the SOFI with spatial resolution in the order of the half size of imaging probe aperture. At microwave and millimeter wave frequencies these apertures are inherently small resulting in high-resolution images. This paper provides the results of this investigation using 2D and 3D SAF based methods and holography. The attributes of these methods and a full discussion of the results will also be provided.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Schoonover, Joseph; Dewar, William K.; Wienders, Nicolas
Robust and accurate Gulf Stream separation remains an unsolved problem in general circulation modeling whose resolution will positively impact the ocean and climate modeling communities. Oceanographic literature does not face a shortage of plausible hypotheses that attempt to explain the dynamics of the Gulf Stream separation, yet a single theory that the community agrees on is missing. We investigate the impact of the Deep Western Boundary Current, coastline curvature, and continental shelf steepening on the Gulf Stream separation within regional configurations of the MIT General Circulation Model. Artificial modifications to the regional bathymetry are introduced to investigate the sensitivity ofmore » the separation to each of these factors. Metrics for subsurface separation detection confirm the direct link between flow separation and the surface expression of the Gulf Stream in the Mid-Atlantic Bight. Conversely, the Gulf Stream separation exhibits minimal sensitivity to the presence of the DWBC and coastline curvature. The implications of these results to the development of a “separation recipe” for ocean modeling are discussed. Furthermore, we conclude adequate topographic resolution is a necessary, but not sufficient, condition for proper Gulf Stream separation.« less
Resolution enhancement of tri-stereo remote sensing images by super resolution methods
NASA Astrophysics Data System (ADS)
Tuna, Caglayan; Akoguz, Alper; Unal, Gozde; Sertel, Elif
2016-10-01
Super resolution (SR) refers to generation of a High Resolution (HR) image from a decimated, blurred, low-resolution (LR) image set, which can be either a single frame or multi-frame that contains a collection of several images acquired from slightly different views of the same observation area. In this study, we propose a novel application of tri-stereo Remote Sensing (RS) satellite images to the super resolution problem. Since the tri-stereo RS images of the same observation area are acquired from three different viewing angles along the flight path of the satellite, these RS images are properly suited to a SR application. We first estimate registration between the chosen reference LR image and other LR images to calculate the sub pixel shifts among the LR images. Then, the warping, blurring and down sampling matrix operators are created as sparse matrices to avoid high memory and computational requirements, which would otherwise make the RS-SR solution impractical. Finally, the overall system matrix, which is constructed based on the obtained operator matrices is used to obtain the estimate HR image in one step in each iteration of the SR algorithm. Both the Laplacian and total variation regularizers are incorporated separately into our algorithm and the results are presented to demonstrate an improved quantitative performance against the standard interpolation method as well as improved qualitative results due expert evaluations.
Performance Evaluation of a PEM Scanner Using the NEMA NU 4—2008 Small Animal PET Standards
NASA Astrophysics Data System (ADS)
Luo, Weidong; Anashkin, Edward; Matthews, Christopher G.
2010-02-01
The recently published NEMA NU 4-2008 Standards has been specially designed for evaluating the performance of small animal PET scanners used in preclinical applications. In this paper, we report on the NU 4 performance of a clinical positron emission mammography (PEM) system. Since there are no PEM specific performance test protocols available, and the NU 2 protocol (intended for whole-body PET scanners) cannot be applied without modification due to the compact design of the PEM scanner, we decided to evaluate the NU 4 Standards as an alternative. We obtained the following results: Trans-axial spatial resolution 1.8 mm FWHM for high resolution reconstruction mode and 2.4 mm FWHM for standard resolution reconstruction mode with no significant variation within the field of view. The total system sensitivity was 0.16 cps/Bq. In image quality testing, the uniformity was found to be 3.9% STD at the standard resolution mode and 5.6% at the high resolution mode when measured with a 34 mm paddle separation. The NEMA NU 4-2008 Standards were found to be a practicable tool to evaluate the performance of the PEM scanner after some modifications to address the specifics of its detector configuration. Furthermore, the PEM scanner's in-plane spatial resolution was comparable to other small animal PET scanners with good image quality.
Wang, Qiang; Wen, Jie; Ravindranath, Bosky; O'Sullivan, Andrew W; Catherall, David; Li, Ke; Wei, Shouyi; Komarov, Sergey; Tai, Yuan-Chuan
2015-09-11
Compact high-resolution panel detectors using virtual pinhole (VP) PET geometry can be inserted into existing clinical or pre-clinical PET systems to improve regional spatial resolution and sensitivity. Here we describe a compact panel PET detector built using the new Though Silicon Via (TSV) multi-pixel photon counters (MPPC) detector. This insert provides high spatial resolution and good timing performance for multiple bio-medical applications. Because the TSV MPPC design eliminates wire bonding and has a package dimension which is very close to the MPPC's active area, it is 4-side buttable. The custom designed MPPC array (based on Hamamatsu S12641-PA-50(x)) used in the prototype is composed of 4 × 4 TSV-MPPC cells with a 4.46 mm pitch in both directions. The detector module has 16 × 16 lutetium yttrium oxyorthosilicate (LYSO) crystal array, with each crystal measuring 0.92 × 0.92 × 3 mm 3 with 1.0 mm pitch. The outer diameter of the detector block is 16.8 × 16.8 mm 2 . Thirty-two such blocks will be arranged in a 4 × 8 array with 1 mm gaps to form a panel detector with detection area around 7 cm × 14 cm in the full-size detector. The flood histogram acquired with Ge-68 source showed excellent crystal separation capability with all 256 crystals clearly resolved. The detector module's mean, standard deviation, minimum (best) and maximum (worst) energy resolution were 10.19%, +/-0.68%, 8.36% and 13.45% FWHM, respectively. The measured coincidence time resolution between the block detector and a fast reference detector (around 200 ps single photon timing resolution) was 0.95 ns. When tested with Siemens Cardinal electronics the performance of the detector blocks remain consistent. These results demonstrate that the TSV-MPPC is a promising photon sensor for use in a flat panel PET insert composed of many high resolution compact detector modules.
NASA Astrophysics Data System (ADS)
Melbourne, J.; Peng, Chien Y.; Soifer, B. T.; Urrutia, Tanya; Desai, Vandana; Armus, L.; Bussmann, R. S.; Dey, Arjun; Matthews, K.
2011-04-01
We have obtained high spatial resolution Keck OSIRIS integral field spectroscopy of four z ~ 1.5 ultra-luminous infrared galaxies that exhibit broad Hα emission lines indicative of strong active galactic nucleus (AGN) activity. The observations were made with the Keck laser guide star adaptive optics system giving a spatial resolution of 0farcs1 or <1 kpc at these redshifts. These high spatial resolution observations help to spatially separate the extended narrow-line regions—possibly powered by star formation—from the nuclear regions, which may be powered by both star formation and AGN activity. There is no evidence for extended, rotating gas disks in these four galaxies. Assuming dust correction factors as high as A(Hα) = 4.8 mag, the observations suggest lower limits on the black hole masses of (1-9) × 108 M sun and star formation rates <100 M sun yr-1. The black hole masses and star formation rates of the sample galaxies appear low in comparison to other high-z galaxies with similar host luminosities. We explore possible explanations for these observations, including host galaxy fading, black hole growth, and the shut down of star formation.
Analysis of results of ASTP experiment in electrophoresis
NASA Technical Reports Server (NTRS)
Vanderhoff, J. W.; Micale, F. J.; Krumrine, P. H.
1977-01-01
The Apollo-Soyuz Test Project (ASTP) included an electrophoretic separation experiment of biological cells. The nature separation results of aldehyde-fixed rabbit, human and horse red blood cells, which were taken in the form of photographs taken at three-minute intervals, are the subject of this report. The electrophoretic separation was successful in that fractionation according to mobility did occur and was found in the sliced samples. Photographic evidence indicates that the low electroosmotic methylcellulose coating was successful in reducing the electroosmosis to a near zero value. Also, the flight film shows that the bands migrated down the column as theory would predict, producing two bands of high cell concentration separated and surrounded by regions of lower cell concentration. However, most likely some clumping of cells occurred to cause the trailing band to be larger than expected from theory. Overall, the experiment was a success in demonstrating a static electrophoresis separation under microgravity conditions with a resolution not possible on earth.
Propagation phasor approach for holographic image reconstruction
Luo, Wei; Zhang, Yibo; Göröcs, Zoltán; Feizi, Alborz; Ozcan, Aydogan
2016-01-01
To achieve high-resolution and wide field-of-view, digital holographic imaging techniques need to tackle two major challenges: phase recovery and spatial undersampling. Previously, these challenges were separately addressed using phase retrieval and pixel super-resolution algorithms, which utilize the diversity of different imaging parameters. Although existing holographic imaging methods can achieve large space-bandwidth-products by performing pixel super-resolution and phase retrieval sequentially, they require large amounts of data, which might be a limitation in high-speed or cost-effective imaging applications. Here we report a propagation phasor approach, which for the first time combines phase retrieval and pixel super-resolution into a unified mathematical framework and enables the synthesis of new holographic image reconstruction methods with significantly improved data efficiency. In this approach, twin image and spatial aliasing signals, along with other digital artifacts, are interpreted as noise terms that are modulated by phasors that analytically depend on the lateral displacement between hologram and sensor planes, sample-to-sensor distance, wavelength, and the illumination angle. Compared to previous holographic reconstruction techniques, this new framework results in five- to seven-fold reduced number of raw measurements, while still achieving a competitive resolution and space-bandwidth-product. We also demonstrated the success of this approach by imaging biological specimens including Papanicolaou and blood smears. PMID:26964671
Nguyen, Kayla X; Holtz, Megan E; Richmond-Decker, Justin; Muller, David A
2016-08-01
A long-standing goal of electron microscopy has been the high-resolution characterization of specimens in their native environment. However, electron optics require high vacuum to maintain an unscattered and focused probe, a challenge for specimens requiring atmospheric or liquid environments. Here, we use an electron-transparent window at the base of a scanning electron microscope's objective lens to separate column vacuum from the specimen, enabling imaging under ambient conditions, without a specimen vacuum chamber. We demonstrate in-air imaging of specimens at nanoscale resolution using backscattered scanning electron microscopy (airSEM) and scanning transmission electron microscopy. We explore resolution and contrast using Monte Carlo simulations and analytical models. We find that nanometer-scale resolution can be obtained at gas path lengths up to 400 μm, although contrast drops with increasing gas path length. As the electron-transparent window scatters considerably more than gas at our operating conditions, we observe that the densities and thicknesses of the electron-transparent window are the dominant limiting factors for image contrast at lower operating voltages. By enabling a variety of detector configurations, the airSEM is applicable to a wide range of environmental experiments including the imaging of hydrated biological specimens and in situ chemical and electrochemical processes.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Nguyen, Kayla X.; Holtz, Megan E.; Richmond-Decker, Justin
2016-07-25
Abstract A long-standing goal of electron microscopy has been the high-resolution characterization of specimens in their native environment. However, electron optics require high vacuum to maintain an unscattered and focused probe, a challenge for specimens requiring atmospheric or liquid environments. Here, we use an electron-transparent window at the base of a scanning electron microscope’s objective lens to separate column vacuum from the specimen, enabling imaging under ambient conditions, without a specimen vacuum chamber. We demonstrate in-air imaging of specimens at nanoscale resolution using backscattered scanning electron microscopy (airSEM) and scanning transmission electron microscopy. We explore resolution and contrast using Montemore » Carlo simulations and analytical models. We find that nanometer-scale resolution can be obtained at gas path lengths up to 400μm, although contrast drops with increasing gas path length. As the electron-transparent window scatters considerably more than gas at our operating conditions, we observe that the densities and thicknesses of the electron-transparent window are the dominant limiting factors for image contrast at lower operating voltages. By enabling a variety of detector configurations, the airSEM is applicable to a wide range of environmental experiments including the imaging of hydrated biological specimens andin situchemical and electrochemical processes.« less
Mapping magnetized geologic structures from space: The effect of orbital and body parameters
NASA Technical Reports Server (NTRS)
Schnetzler, C. C.; Taylor, P. T.; Langel, R. A.
1984-01-01
When comparing previous satellite magnetometer missions (such as MAGSAT) with proposed new programs (for example, Geopotential Research Mission, GRM) it is important to quantify the difference in scientific information obtained. The ability to resolve separate magnetic blocks (simulating geological units) is used as a parameter for evaluating the expected geologic information from each mission. The effect of satellite orbital altitude on the ability to resolve two magnetic blocks with varying separations is evaluated and quantified. A systematic, nonlinear, relationship exists between resolution and distance between magnetic blocks as a function of orbital altitude. The proposed GRM would provide an order-of-magnitude greater anomaly resolution than the earlier MAGSAT mission for widely separated bodies. The resolution achieved at any particular altitude varies depending on the location of the bodies and orientation.
C3Winds: A Novel 3D Wind Observing System to Characterize Severe Weather Events
NASA Astrophysics Data System (ADS)
Kelly, M. A.; Wu, D. L.; Yee, J. H.; Boldt, J.; Demajistre, R.; Reynolds, E.; Tripoli, G. J.; Oman, L.; Prive, N.; Heidinger, A. K.; Wanzong, S.
2015-12-01
The CubeSat Constellation Cloud Winds (C3Winds) is a NASA Earth Venture Instrument (EV-I) concept with the primary objective to resolve high-resolution 3D dynamic structures of severe wind events. Rapid evolution of severe weather events highlights the need for high-resolution mesoscale wind observations. Yet mesoscale observations of severe weather dynamics are quite rare, especially over the ocean where extratropical and tropical cyclones (ETCs and TCs) can undergo explosive development. Measuring wind velocity at the mesoscale from space remains a great challenge, but is critically needed to understand and improve prediction of severe weather and tropical cyclones. Based on compact, visible/IR imagers and a mature stereoscopic technique, C3Winds has the capability to measure high-resolution (~2 km) cloud motion vectors and cloud geometric heights accurately by tracking cloud features from two formation-flying CubeSats, separated by 5-15 minutes. Complementary to lidar wind measurements from space, C3Winds will provide high-resolution wind fields needed for detailed investigations of severe wind events in occluded ETCs, rotational structures inside TC eyewalls, and ozone injections associated with tropopause folding events. Built upon mature imaging technologies and long history of stereoscopic remote sensing, C3Winds provides an innovative, cost-effective solution to global wind observations with the potential for increased diurnal sampling via CubeSat constellation.
Schneider, Bradley B.; Covey, Thomas R.; Coy, Stephen L.; Krylov, Evgeny V.
2010-01-01
Ion filters based on planar DMS can be integrated with the inlet configuration of most mass spectrometers, and are able to enhance the quality of mass analysis and quantitative accuracy by reducing chemical noise, and by pre-separating ions of similar mass. This paper is the first in a series of three papers describing the optimization of DMS / MS instrumentation. In this paper the important physical parameters of a planar DMS-MS interface including analyzer geometry, analyzer coupling to a mass spectrometer, and transport gas flow control are considered. The goal is to optimize ion transmission and transport efficiency, provide optimal and adjustable resolution, and produce stable operation under conditions of high sample contamination. We discuss the principles of DMS separations and highlight the theoretical underpinnings. The main differences between planar and cylindrical geometries are presented, including a discussion of the advantages and disadvantages of RF ion focusing. In addition, we present a description of optimization of the frequency and amplitude of the DMS fields for resolution and ion transmission, and a discussion of the influence and importance of ion residence time in DMS. We have constructed a mass spectrometer interface for planar geometries that takes advantage of atmospheric pressure gas dynamic principles, rather than ion focusing, to minimize ion losses from diffusion in the analyzer and to maximize total ion transport into the mass spectrometer. A variety of experimental results has been obtained that illustrate the performance of this type of interface, including tests of resistance to high contamination levels, and the separation of stereoisomers. In a subsequent publication the control of the chemical interactions that drive the separation process of a DMS / MS system will be considered. In a third publication we describe novel electronics designed to provide the high voltages asymmetric waveform fields (SV) required for these devices as well as the effects of different waveforms. PMID:21278836
NASA Astrophysics Data System (ADS)
Lee, Jooran; Choi, Sunyoung; Bae, Seon Joo; Yoon, Seok Min; Choi, Joon Sig; Yoon, Minjoong
2013-10-01
Nanoscale cell injection techniques combined with nanoscopic photoluminescence (PL) spectroscopy have been important issues in high-resolution optical biosensing, gene and drug delivery and single-cell endoscopy for medical diagnostics and therapeutics. However, the current nanoinjectors remain limited for optical biosensing and communication at the subwavelength level, requiring an optical probe such as semiconductor quantum dots, separately. Here, we show that waveguided red emission is observed at the tip of a single visible light-sensitive APTES-modified ZnO nanowire (APTES-ZnO NW) and it exhibits great enhancement upon interaction with a complementary sequence-based double stranded (ds) DNA, whereas it is not significantly affected by non-complementary ds DNA. Further, the tip of a single APTES-ZnO NW can be inserted into the subcellular region of living HEK 293 cells without significant toxicity, and it can also detect the enhancement of the tip emission from subcellular regions with high spatial resolution. These results indicate that the single APTES-ZnO NW would be useful as a potent nanoinjector which can guide visible light into intracellular compartments of mammalian cells, and can also detect nanoscopic optical signal changes induced by interaction with the subcellular specific target biomolecules without separate optical probes.Nanoscale cell injection techniques combined with nanoscopic photoluminescence (PL) spectroscopy have been important issues in high-resolution optical biosensing, gene and drug delivery and single-cell endoscopy for medical diagnostics and therapeutics. However, the current nanoinjectors remain limited for optical biosensing and communication at the subwavelength level, requiring an optical probe such as semiconductor quantum dots, separately. Here, we show that waveguided red emission is observed at the tip of a single visible light-sensitive APTES-modified ZnO nanowire (APTES-ZnO NW) and it exhibits great enhancement upon interaction with a complementary sequence-based double stranded (ds) DNA, whereas it is not significantly affected by non-complementary ds DNA. Further, the tip of a single APTES-ZnO NW can be inserted into the subcellular region of living HEK 293 cells without significant toxicity, and it can also detect the enhancement of the tip emission from subcellular regions with high spatial resolution. These results indicate that the single APTES-ZnO NW would be useful as a potent nanoinjector which can guide visible light into intracellular compartments of mammalian cells, and can also detect nanoscopic optical signal changes induced by interaction with the subcellular specific target biomolecules without separate optical probes. Electronic supplementary information (ESI) available: Synthesis of APTES-modified ZnO nanowires, DNA functionalization and spectroscopic measurements with additional fluorescence image ad fluorescence decay times, cell culture, injection of a single nanowire into living cells, subcellular imaging and determination of cytotoxicity. See DOI: 10.1039/c3nr03042c
NASA Astrophysics Data System (ADS)
Steiner, Matthias; Houze, Robert A., Jr.; Yuter, Sandra E.
1995-09-01
Three algorithms extract information on precipitation type, structure, and amount from operational radar and rain gauge data. Tests on one month of data from one site show that the algorithms perform accurately and provide products that characterize the essential features of the precipitation climatology. Input to the algorithms are the operationally executed volume scans of a radar and the data from a surrounding rain gauge network. The algorithms separate the radar echoes into convective and stratiform regions, statistically summarize the vertical structure of the radar echoes, and determine precipitation rates and amounts on high spatial resolution.The convective and stratiform regions are separated on the basis of the intensity and sharpness of the peaks of echo intensity. The peaks indicate the centers of the convective region. Precipitation not identified as convective is stratiform. This method avoids the problem of underestimating the stratiform precipitation. The separation criteria are applied in exactly the same way throughout the observational domain and the product generated by the algorithm can be compared directly to model output. An independent test of the algorithm on data for which high-resolution dual-Doppler observations are available shows that the convective stratiform separation algorithm is consistent with the physical definitions of convective and stratiform precipitation.The vertical structure algorithm presents the frequency distribution of radar reflectivity as a function of height and thus summarizes in a single plot the vertical structure of all the radar echoes observed during a month (or any other time period). Separate plots reveal the essential differences in structure between the convective and stratiform echoes.Tests yield similar results (within less than 10%) for monthly rain statistics regardless of the technique used for estimating the precipitation, as long as the radar reflectivity values are adjusted to agree with monthly rain gauge data. It makes little difference whether the adjustment is by monthly mean rates or percentiles. Further tests show that 1-h sampling is sufficient to obtain an accurate estimate of monthly rain statistics.
Zhang, Cheng; Park, Rodney A; Anderson, Jared L
2016-04-01
Structurally-tuned ionic liquids (ILs) have been previously applied as the second dimension column in comprehensive two-dimensional gas chromatography (GC×GC) and have demonstrated high selectivity in the separation of individual aliphatic hydrocarbons from other aliphatic hydrocarbons. However, the maximum operating temperatures of these stationary phases limit the separation of analytes with high boiling points. In order to address this issue, a series of polymeric ionic liquid (PIL)-based stationary phases were prepared in this study using imidazolium-based IL monomers via in-column free radical polymerization. The IL monomers were functionalized with long alkyl chain substituents to provide the needed selectivity for the separation of aliphatic hydrocarbons. Columns were prepared with different film thicknesses to identify the best performing stationary phase for the separation of kerosene. The bis[(trifluoromethyl)sulfonyl]imide ([NTf2](-))-based PIL stationary phase with larger film thickness (0.28μm) exhibited higher selectivity for aliphatic hydrocarbons and showed a maximum allowable operating temperature of 300°C. PIL-based stationary phases containing varied amount of IL-based crosslinker were prepared to study the effect of the crosslinker on the selectivity and thermal stability of the resulting stationary phase. The optimal resolution of aliphatic hydrocarbons was achieved when 50% (w/w) of crosslinker was incorporated into the PIL-based stationary phase. The resulting stationary phase exhibited good selectivity for different groups of aliphatic hydrocarbons even after being conditioned at 325°C. Finally, the crosslinked PIL-based stationary phase was compared with SUPELCOWAX 10 and DB-17 columns for the separation of aliphatic hydrocarbons in diesel fuel. Better resolution of aliphatic hydrocarbons was obtained when employing the crosslinked PIL-based stationary phase as the second dimension column. Copyright © 2016 Elsevier B.V. All rights reserved.
Variables affecting resolution of lung phospholipids in one-dimensional thin-layer chromatography.
Krahn, J
1987-01-01
Resolution of the confusion in the literature about the separation of lung phospholipids in thin-layer chromatographic systems has awaited a systematic study of the variables that potentially affect this separation. In this study I show that: incorporation of ammonium sulfate into silica gel "GHL" has a dramatic effect on separation of lung phospholipids; this effect is equally dramatic but different in activated and nonactivated gels; when it picks up moisture, ammonium sulfate-activated gel very rapidly loses its ability to resolve lecithin from phosphatidylinositol; in gel containing ammonium sulfate, small amounts of phosphatidylethanolamine are hydrolyzed to lyso-phosphatidylethanolamine.
NASA Technical Reports Server (NTRS)
Boggs, S. E.; Lin, R. P.; Coburn, W.; Feffer, P.; Pelling, R. M.; Schroeder, P.; Slassi-Sennou, S.
1997-01-01
The balloon-borne high resolution gamma ray and X-ray germanium spectrometer (HIREGS) was used to observe the Galactic center and two positions along the Galactic plane from Antarctica in January 1995. For its flight, the collimators were configured to measure the Galactic diffuse hard X-ray continuum between 20 and 200 keV by directly measuring the point source contributions to the wide field of view flux for subtraction. The hard X-ray spectra of GX 1+4 and GRO J1655-40 were measured with the diffuse continuum subtracted off. The analysis technique for source separation is discussed and the preliminary separated spectra for these point sources and the Galactic diffuse emission are presented.
Micro-Spec: A High Performance Compact Spectrometer for Submillimeter Astronomy
NASA Technical Reports Server (NTRS)
Hsieh, Wen-Ting; Moseley, Harvey; Stevenson, Thomas; Brown, Ari; Patel, Amil; U-Yen, Kongpop; Ehsan, Negar; Caltado, Giuseppe; Wollock, Edward
2012-01-01
We describe the micro-Spec, an extremely compact high performance spectrometer for the submillimeter and millimeter spectral ranges. We have designed a fully integrated submillimeter spectrometer based on superconducting microstrip technology and fabricated its critical elements. Using low loss transmission lines, we can produce a fully integrated high resolution submillimeter spectrometer on a single four inch Si wafer. A resolution of 500 can readily be achieved with standard fabrication tolerance, higher with phase trimming. All functions of the spectrometer are integrated - light is coupled to the micro strip circuit with a planar antenna, the spectra discrimination is achieved using a synthetic grating, orders are separated using a built-in planar filter, and the light is detected using photon counting Microwave Kinetic Inductance Detectors (MKID). We will discus the design principle of the instrument, describe its technical advantages, and report the progress on the development of the instrument.
Mu-Spec: A High Performance Compact Spectrometer for Submillimeter Astronomy
NASA Technical Reports Server (NTRS)
Hsieh, Wen-Ting; Moseley, Harvey; Stevenson, Thomas; Brown, Ari; Patel, Amil; U-yen, Kongpop; Ehsan, Negar; Cataldo, Giuseppe; Wollack, Ed
2012-01-01
We describe the Mu-Spec, an extremely compact high performance spectrometer for the submillimeter and millimeter spectral ranges. We have designed a fully integrated submillimeter spectrometer based on superconducting microstrip technology and fabricated its critical elements. Using low loss transmission lines, we can produce a fully integrated high resolution submillimeter spectrometer on a single four inch Si wafer. A resolution of 500 can readily be achieved with standard fabrication tolerance, higher with phase trimming. All functions of the spectrometer are integrated - light is coupled to the microstrip circuit with a planar antenna, the spectra discrimination is achieved using a synthetic grating, orders are separated using a built-in planar filter, and the light is detected using photon counting Microwave Kinetic Inductance Detectors (MKID). We will discus the design principle of the instrument, describe its technical advantages, and report the progress on the development of the instrument.
Targeted ENO schemes with tailored resolution property for hyperbolic conservation laws
NASA Astrophysics Data System (ADS)
Fu, Lin; Hu, Xiangyu Y.; Adams, Nikolaus A.
2017-11-01
In this paper, we extend the range of targeted ENO (TENO) schemes (Fu et al. (2016) [18]) by proposing an eighth-order TENO8 scheme. A general formulation to construct the high-order undivided difference τK within the weighting strategy is proposed. With the underlying scale-separation strategy, sixth-order accuracy for τK in the smooth solution regions is designed for good performance and robustness. Furthermore, a unified framework to optimize independently the dispersion and dissipation properties of high-order finite-difference schemes is proposed. The new framework enables tailoring of dispersion and dissipation as function of wavenumber. The optimal linear scheme has minimum dispersion error and a dissipation error that satisfies a dispersion-dissipation relation. Employing the optimal linear scheme, a sixth-order TENO8-opt scheme is constructed. A set of benchmark cases involving strong discontinuities and broadband fluctuations is computed to demonstrate the high-resolution properties of the new schemes.
Recent advances in flexible low power cholesteric LCDs
NASA Astrophysics Data System (ADS)
Khan, Asad; Shiyanovskaya, Irina; Montbach, Erica; Schneider, Tod; Nicholson, Forrest; Miller, Nick; Marhefka, Duane; Ernst, Todd; Doane, J. W.
2006-05-01
Bistable reflective cholesteric displays are a liquid crystal display technology developed to fill a market need for very low power displays. Their unique look, high reflectivity, bistability, and simple structure make them an ideal flat panel display choice for handheld or other portable devices where small lightweight batteries with long lifetimes are important. Applications ranging from low resolution large signs to ultra high resolution electronic books can utilize cholesteric displays to not only benefit from the numerous features, but also create enabling features that other flat panel display technologies cannot. Flexible displays are the focus of attention of numerous research groups and corporations worldwide. Cholesteric displays have been demonstrated to be highly amenable to flexible substrates. This paper will review recent advances in flexible cholesteric displays including both phase separation and emulsification approaches to encapsulation. Both approaches provide unique benefits to various aspects of manufacturability, processes, flexibility, and conformability.
Yang, Bichao; Xin, Huaxia; Wang, Feier; Cai, Jianfeng; Liu, Yanfang; Fu, Qing; Jin, Yu; Liang, Xinmiao
2017-08-01
As a common traditional Chinese medicine, Fructus Arctii has important clinical medical values. Its main components are lignans, which are difficult to separate and analyze because of the complex composition, similar chemical structures, and close properties. In this study, an off-line two-dimensional supercritical fluid chromatography/reversed-phase liquid chromatography method, as well as an effective sample pretreatment method based on hydrophilic interaction chromatography material, was developed to enrich the minor lignan fractions and obtain high-purity compounds. In total, 12 high-purity compounds were isolated from Fructus Arctii. Their structures were identified by using high-resolution mass spectrometry and nuclear magnetic resonance spectroscopy, which showed that all were lignans and that most of them were isomers. The results demonstrated the effective off-line two-dimensional supercritical fluid chromatography/reversed-phase liquid chromatography method for the purification of lignans from Fructus Arctii. The separation protocol established here will be beneficial for the separation of complex samples from other kinds of natural products. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Hemdan, A; Abdel-Aziz, Omar
2018-04-01
Run time is a predominant factor in HPLC for quality control laboratories especially if there is large number of samples have to be analyzed. Working at high flow rates cannot be attained with silica based particle packed column due to elevated backpressure issues. The use of monolithic column as an alternative to traditional C-18 column was tested for fast separation of pharmaceuticals, where the results were very competitive. The performance comparison of both columns was tested for separation of anti-diabetic combination containing Metformin, Pioglitazone and Glimepiride using Gliclazide as an internal standard. Working at high flow rates with less significant backpressure was obtained with the monolithic column where the run time was reduced from 6 min in traditional column to only 1 min in monolithic column with accepted resolution. The structure of the monolith contains many pores which can adapt the high flow rate of the mobile phase. Moreover, peak symmetry and equilibration time were more efficient with monolithic column.
Proceedings of the nineteenth LAMPF Users Group meeting
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bradbury, J.N.
1986-02-01
Separate abstracts were prepared for eight invited talks on various aspects of nuclear and particle physics as well as status reports on LAMPF and discussions of upgrade options. Also included in these proceedings are the minutes of the working groups for: energetic pion channel and spectrometer; high resolution spectrometer; high energy pion channel; neutron facilities; low-energy pion work; nucleon physics laboratory; stopped muon physics; solid state physics and material science; nuclear chemistry; and computing facilities. Recent LAMPF proposals are also briefly summarized. (LEW)
Comparison of Dixon Sequences for Estimation of Percent Breast Fibroglandular Tissue
Ledger, Araminta E. W.; Scurr, Erica D.; Hughes, Julie; Macdonald, Alison; Wallace, Toni; Thomas, Karen; Wilson, Robin; Leach, Martin O.; Schmidt, Maria A.
2016-01-01
Objectives To evaluate sources of error in the Magnetic Resonance Imaging (MRI) measurement of percent fibroglandular tissue (%FGT) using two-point Dixon sequences for fat-water separation. Methods Ten female volunteers (median age: 31 yrs, range: 23–50 yrs) gave informed consent following Research Ethics Committee approval. Each volunteer was scanned twice following repositioning to enable an estimation of measurement repeatability from high-resolution gradient-echo (GRE) proton-density (PD)-weighted Dixon sequences. Differences in measures of %FGT attributable to resolution, T1 weighting and sequence type were assessed by comparison of this Dixon sequence with low-resolution GRE PD-weighted Dixon data, and against gradient-echo (GRE) or spin-echo (SE) based T1-weighted Dixon datasets, respectively. Results %FGT measurement from high-resolution PD-weighted Dixon sequences had a coefficient of repeatability of ±4.3%. There was no significant difference in %FGT between high-resolution and low-resolution PD-weighted data. Values of %FGT from GRE and SE T1-weighted data were strongly correlated with that derived from PD-weighted data (r = 0.995 and 0.96, respectively). However, both sequences exhibited higher mean %FGT by 2.9% (p < 0.0001) and 12.6% (p < 0.0001), respectively, in comparison with PD-weighted data; the increase in %FGT from the SE T1-weighted sequence was significantly larger at lower breast densities. Conclusion Although measurement of %FGT at low resolution is feasible, T1 weighting and sequence type impact on the accuracy of Dixon-based %FGT measurements; Dixon MRI protocols for %FGT measurement should be carefully considered, particularly for longitudinal or multi-centre studies. PMID:27011312
Size fractionation of double-stranded DNA by precipitation with polyethylene glycol
Lis, John T.; Schleif, Robert
1975-01-01
We show that DNA molecules of differing molecular mass are separable by selective precipitation with polyethylene glycol (PEG†). Higher molecular mass DNA precipitates at lower PEG concentrations than lower molecular mass DNA. Double-stranded DNA can be fractionated at least in the range of 3 × 107 to 1 × 105 daltons. The effects of PEG concentration, sodium chloride concentration, DNA concentration, pH, divalent ions, precipitation time, and centrifugal force have been determined. These studies show PEG precipitation offers a size fractionation method for DNA which is convenient, of high capacity, and applicable over a wide range of conditions. However, resolution is not high and separation of two species approaches 100% only if they differ in molecular mass by at least a factor of two. Images PMID:236548
Gumuscu, Burcu; Erdogan, Zeynep; Guler, Mustafa O.; Tekinay, Turgay
2014-01-01
In this work, a new detection method for complete separation of 2,4,6-trinitrotoluene (TNT); 2,4-dinitrotoluene (2,4-DNT); 2,6-dinitrotoluene (2,6-DNT); 2-aminodinitrotoluene (2-ADNT) and 4-aminodinitrotoluene (4-ADNT) molecules in high-performance liquid-chromatography (HPLC) with UV sensor has been developed using diol column. This approach improves on cost, time, and sensitivity over the existing methods, providing a simple and effective alternative. Total analysis time was less than 13 minutes including column re-equilibration between runs, in which water and acetonitrile were used as gradient elution solvents. Under optimized conditions, the minimum resolution between 2,4-DNT and 2,6-DNT peaks was 2.06. The recovery rates for spiked environmental samples were between 95–98%. The detection limits for diol column ranged from 0.78 to 1.17 µg/L for TNT and its byproducts. While the solvent consumption was 26.4 mL/min for two-phase EPA and 30 mL/min for EPA 8330 methods, it was only 8.8 mL/min for diol column. The resolution was improved up to 49% respect to two-phase EPA and EPA 8330 methods. When compared to C-18 and phenyl-3 columns, solvent usage was reduced up to 64% using diol column and resolution was enhanced approximately two-fold. The sensitivity of diol column was afforded by the hydroxyl groups on polyol layer, joining the formation of charge-transfer complexes with nitroaromatic compounds according to acceptor-donor interactions. Having compliance with current requirements, the proposed method demonstrates sensitive and robust separation. PMID:24905826
NASA Astrophysics Data System (ADS)
Hizir, F. E.; Hardt, D. E.
2017-05-01
An in-depth understanding of the liquid transport in roll-based printing systems is essential for advancing the roll-based printing technology and enhancing the performance of the printed products. In this study, phase-field simulations are performed to characterize the liquid transport in roll-based printing systems, and the phase-field method is shown to be an effective tool to simulate the liquid transport. In the phase-field simulations, the liquid transport through the ink transfer rollers is approximated as the stretching and splitting of liquid bridges with pinned or moving contact lines between vertically separating surfaces. First, the effect of the phase-field parameters and the mesh characteristics on the simulation results is examined. The simulation results show that a sharp interface limit is approached as the capillary width decreases while keeping the mobility proportional to the capillary width squared. Close to the sharp interface limit, the mobility changes over a specified range are observed to have no significant influence on the simulation results. Next, the ink transfer from the cells on the surface of an ink-metering roller to the surface of stamp features is simulated. Under negligible inertial effects and in the absence of gravity, the amount of liquid ink transferred from an axisymmetric cell with low surface wettability to a stamp with high surface wettability is found to increase as the cell sidewall steepness and the cell surface wettability decrease and the stamp surface wettability and the capillary number increase. Strategies for improving the resolution and quality of roll-based printing are derived based on an analysis of the simulation results. The application of novel materials that contain cells with irregular surface topography to stamp inking in high-resolution roll-based printing is assessed.
Gumuscu, Burcu; Erdogan, Zeynep; Guler, Mustafa O; Tekinay, Turgay
2014-01-01
In this work, a new detection method for complete separation of 2,4,6-trinitrotoluene (TNT); 2,4-dinitrotoluene (2,4-DNT); 2,6-dinitrotoluene (2,6-DNT); 2-aminodinitrotoluene (2-ADNT) and 4-aminodinitrotoluene (4-ADNT) molecules in high-performance liquid-chromatography (HPLC) with UV sensor has been developed using diol column. This approach improves on cost, time, and sensitivity over the existing methods, providing a simple and effective alternative. Total analysis time was less than 13 minutes including column re-equilibration between runs, in which water and acetonitrile were used as gradient elution solvents. Under optimized conditions, the minimum resolution between 2,4-DNT and 2,6-DNT peaks was 2.06. The recovery rates for spiked environmental samples were between 95-98%. The detection limits for diol column ranged from 0.78 to 1.17 µg/L for TNT and its byproducts. While the solvent consumption was 26.4 mL/min for two-phase EPA and 30 mL/min for EPA 8330 methods, it was only 8.8 mL/min for diol column. The resolution was improved up to 49% respect to two-phase EPA and EPA 8330 methods. When compared to C-18 and phenyl-3 columns, solvent usage was reduced up to 64% using diol column and resolution was enhanced approximately two-fold. The sensitivity of diol column was afforded by the hydroxyl groups on polyol layer, joining the formation of charge-transfer complexes with nitroaromatic compounds according to acceptor-donor interactions. Having compliance with current requirements, the proposed method demonstrates sensitive and robust separation.
Statistical Examination of the Resolution of a Block-Scale Urban Drainage Model
NASA Astrophysics Data System (ADS)
Goldstein, A.; Montalto, F. A.; Digiovanni, K. A.
2009-12-01
Stormwater drainage models are utilized by cities in order to plan retention systems to prevent combined sewage overflows and design for development. These models aggregate subcatchments and ignore small pipelines providing a coarse representation of a sewage network. This study evaluates the importance of resolution by comparing two models developed on a neighborhood scale for predicting the total quantity and peak flow of runoff to observed runoff measured at the site. The low and high resolution models were designed for a 2.6 ha block in Bronx, NYC in EPA Stormwater Management Model (SWMM) using a single catchment and separate subcatchments based on surface cover, respectively. The surface covers represented included sidewalks, street, buildings, and backyards. Characteristics for physical surfaces and the infrastructure in the high resolution mode were determined from site visits, sewer pipe maps, aerial photographs, and GIS data-sets provided by the NYC Department of City Planning. Since the low resolution model was depicted at a coarser scale, generalizations were assumed about the overall average characteristics of the catchment. Rainfall and runoff data were monitored over a four month period during the summer rainy season. A total of 53 rain fall events were recorded but only 29 storms produced significant amount of runoffs to be evaluated in the simulations. To determine which model was more accurate at predicting the observed runoff, three characteristics for each storm were compared: peak runoff, total runoff, and time to peak. Two statistical tests were used to determine the significance of the results: the percent difference for each storm and the overall Chi-squared Goodness of Fit distribution for both the low and high resolution model. These tests will evaluate if there is a statistical difference depending on the resolution of scale of the stormwater model. The scale of representation is being evaluated because it could have a profound impact on how low-impact development strategies are assessed. Rerouting flows to delay the time of entry into the combined sewage is the primary goal of stormwater source controls which may be better differentiated in a high resolution as opposed to low resolution model. The preliminary hypothesis is that the low resolution model simplifies watershed by defining attributes uniformly across the watershed. In the high resolution model, the physical flow can be more accurate depicted by connected the various subcatchments. For example, the runoff from buildings can directly be routed to the backyard. The main drawback to the high resolution model is the risk of adding uncertainty due to the number of parameters.
Rationale for two phase polymer system microgravity separation experiments
NASA Technical Reports Server (NTRS)
Brooks, D. E.; Bamberger, S. B.; Harris, J. M.; Vanalstine, J.
1984-01-01
The two-phase systems that result when aqueous solutions of dextran and poly(ethylene glycol) are mixed at concentrations above a few percent are discussed. They provide useful media for the partition and isolation of macromolecules and cell subpopulations. By manipulating their composition, separations based on a variety of molecular and surface properties are achieved, including membrane hydrophobic properties, cell surface charge, and membrane antigenicity. Work on the mechanism of cell partition shows there is a randomizing, nonthermal energy present which reduces separation resolution. This stochastic energy is probably associated with hydrodynamic interactions present during separation. Because such factors should be markedly reduced in microgravity, a series of shuttle experiments to indicate approaches to increasing the resolution of the procedure are planned.
Analysis of multispectral and hyperspectral longwave infrared (LWIR) data for geologic mapping
NASA Astrophysics Data System (ADS)
Kruse, Fred A.; McDowell, Meryl
2015-05-01
Multispectral MODIS/ASTER Airborne Simulator (MASTER) data and Hyperspectral Thermal Emission Spectrometer (HyTES) data covering the 8 - 12 μm spectral range (longwave infrared or LWIR) were analyzed for an area near Mountain Pass, California. Decorrelation stretched images were initially used to highlight spectral differences between geologic materials. Both datasets were atmospherically corrected using the ISAC method, and the Normalized Emissivity approach was used to separate temperature and emissivity. The MASTER data had 10 LWIR spectral bands and approximately 35-meter spatial resolution and covered a larger area than the HyTES data, which were collected with 256 narrow (approximately 17nm-wide) spectral bands at approximately 2.3-meter spatial resolution. Spectra for key spatially-coherent, spectrally-determined geologic units for overlap areas were overlain and visually compared to determine similarities and differences. Endmember spectra were extracted from both datasets using n-dimensional scatterplotting and compared to emissivity spectral libraries for identification. Endmember distributions and abundances were then mapped using Mixture-Tuned Matched Filtering (MTMF), a partial unmixing approach. Multispectral results demonstrate separation of silica-rich vs non-silicate materials, with distinct mapping of carbonate areas and general correspondence to the regional geology. Hyperspectral results illustrate refined mapping of silicates with distinction between similar units based on the position, character, and shape of high resolution emission minima near 9 μm. Calcite and dolomite were separated, identified, and mapped using HyTES based on a shift of the main carbonate emissivity minimum from approximately 11.3 to 11.2 μm respectively. Both datasets demonstrate the utility of LWIR spectral remote sensing for geologic mapping.
Acoustic technology for high-performance disruption and extraction of plant proteins.
Toorchi, Mahmoud; Nouri, Mohammad-Zaman; Tsumura, Makoto; Komatsu, Setsuko
2008-07-01
Acoustic technology shows the capability of protein pellet homogenization from different tissue samples of soybean and rice in a manner comparable to the ordinary mortar/pestle method and far better than the vortex/ultrasonic method with respect to the resolution of the protein pattern through two-dimensional polyacrylamide gel electrophoresis (2D-PAGE). With acoustic technology, noncontact tissue disruption and protein pellet homogenization can be carried out in a computer-controlled manner, which ultimately increases the efficiency of the process for a large number of samples. A lysis buffer termed the T-buffer containing TBP, thiourea, and CHAPS yields an excellent result for the 2D-PAGE separation of soybean plasma membrane proteins followed by the 2D-PAGE separation of crude protein of soybean and rice tissues. For this technology, the T-buffer is preferred because protein quantification is possible by eliminating the interfering compound 2-mercaptoethanol and because of the high reproducibility of 2D-PAGE separation.
Enantioseparation by Capillary Electrophoresis Using Ionic Liquids as Chiral Selectors.
Greño, Maider; Marina, María Luisa; Castro-Puyana, María
2018-11-02
Capillary electrophoresis (CE) is one of the most widely employed analytical techniques to achieve enantiomeric separations. In spite of the fact that there are many chiral selectors commercially available to perform enantioseparations by CE, one of the most relevant topics in this field is the search for new selectors capable of providing high enantiomeric resolutions. Chiral ionic liquids (CILs) have interesting characteristics conferring them a high potential in chiral separations although only some of them are commercially available. The aim of this article is to review all the works published on the use of CILs as chiral selectors in the development of enantioselective methodologies by CE, covering the period from 2006 (when the first research work on this topic was published) to 2017. The use of CILs as sole chiral selectors, as chiral selectors in dual systems or as chiral ligands will be considered. This review also provides detailed analytical information on the experimental conditions used to carry out enantioseparations in different fields as well as on the separation mechanism involved.
Flow control of micro-ramps on supersonic forward-facing step flow
NASA Astrophysics Data System (ADS)
Qing-Hu, Zhang; Tao, Zhu; Shihe, Yi; Anping, Wu
2016-05-01
The effects of the micro-ramps on supersonic turbulent flow over a forward-facing step (FFS) was experimentally investigated in a supersonic low-noise wind tunnel at Mach number 3 using nano-tracer planar laser scattering (NPLS) and particle image velocimetry (PIV) techniques. High spatiotemporal resolution images and velocity fields of supersonic flow over the testing model were captured. The fine structures and their spatial evolutionary characteristics without and with the micro-ramps were revealed and compared. The large-scale structures generated by the micro-ramps can survive the downstream FFS flowfield. The micro-ramps control on the flow separation and the separation shock unsteadiness was investigated by PIV results. With the micro-ramps, the reduction in the range of the reversal flow zone in streamwise direction is 50% and the turbulence intensity is also reduced. Moreover, the reduction in the average separated region and in separation shock unsteadiness are 47% and 26%, respectively. The results indicate that the micro-ramps are effective in reducing the flow separation and the separation shock unsteadiness. Project supported by the National Natural Science Foundation of China (Grant Nos. 11172326 and 11502280).
Yao, Xiaobin; Tan, Timothy Thatt Yang; Wang, Yong
2014-01-24
This work is the first demonstration of a simple thiol-ene click chemistry to anchor vinyl imidazolium β-CD onto thiol silica to form a novel cationic native cyclodextrin (CD) chiral stationary phase (CSP). The CSP afforded high enantioseparation ability towards dansyl (Dns) amino acids, carboxylic aryl compounds and flavonoids in chiral HPLC. The current CSP demonstrates the highest resolving ability (selectivity >1.1, resolution >1.5) towards Dns amino acids in a mobile phase buffered at pH=6.5, with the resolution of Dns-dl-leucine as high as 6.97. 2,4-dichloride propionic acid (2,4-ClPOPA) was well resolved with the selectivity and resolution of 1.37 and 4.88, respectively. Compared to a previously reported native CD-CSP based on a triazole linkage, the current cationic CD-CSP shows a stronger retention and higher resolution towards acidic chiral compounds, ascribed to the propitious strong electrostatic attraction. Stability evaluation results indicated that thiol-ene reaction can provide a facile and robust approach for the preparation of positively charged CD CSPs. Copyright © 2013 Elsevier B.V. All rights reserved.
Reporting of quantitative oxygen mapping in EPR imaging
NASA Astrophysics Data System (ADS)
Subramanian, Sankaran; Devasahayam, Nallathamby; McMillan, Alan; Matsumoto, Shingo; Munasinghe, Jeeva P.; Saito, Keita; Mitchell, James B.; Chandramouli, Gadisetti V. R.; Krishna, Murali C.
2012-01-01
Oxygen maps derived from electron paramagnetic resonance spectral-spatial imaging (EPRI) are based upon the relaxivity of molecular oxygen with paramagnetic spin probes. This technique can be combined with MRI to facilitate mapping of pO 2 values in specific anatomic locations with high precision. The co-registration procedure, which matches the physical and digital dimensions of EPR and MR images, may present the pO 2 map at the higher MRI resolution, exaggerating the spatial resolution of oxygen, making it difficult to precisely distinguish hypoxic regions from normoxic regions. The latter distinction is critical in monitoring the treatment of cancer by radiation and chemotherapy, since it is well-established that hypoxic regions are three or four times more resistant to treatment compared to normoxic regions. The aim of this article is to describe pO 2 maps based on the intrinsic resolution of EPRI. A spectral parameter that affects the intrinsic spatial resolution of EPRI is the full width at half maximum (FWHM) height of the gradient-free EPR absorption line in frequency-encoded imaging. In single point imaging too, the transverse relaxation times (T2∗) limit the resolution since the signal decays by exp(-tp/T2∗) where the delay time after excitation pulse, t p, is related to the resolution. Although the spin densities of two point objects may be resolved at this separation, it is inadequate to evaluate quantitative changes of pO 2 levels since the linewidths are proportionately affected by pO 2. A spatial separation of at least twice this resolution is necessary to correctly identify a change in pO 2 level. In addition, the pO 2 values are blurred by uncertainties arising from spectral dimensions. Blurring due to noise and low resolution modulates the pO 2 levels at the boundaries of hypoxic and normoxic regions resulting in higher apparent pO 2 levels in hypoxic regions. Therefore, specification of intrinsic resolution and pO 2 uncertainties are necessary to interpret digitally processed pO 2 illustrations.
Hydrogen Exchange Mass Spectrometry
Mayne, Leland
2018-01-01
Hydrogen exchange (HX) methods can reveal much about the structure, energetics, and dynamics of proteins. The addition of mass spectrometry (MS) to an earlier fragmentation-separation HX analysis now extends HX studies to larger proteins at high structural resolution and can provide information not available before. This chapter discusses experimental aspects of HX labeling, especially with respect to the use of MS and the analysis of MS data. PMID:26791986
A Three-Dimensional DOSY HMQC Experiment for the High-Resolution Analysis of Complex Mixtures
NASA Astrophysics Data System (ADS)
Barjat, Hervé; Morris, Gareth A.; Swanson, Alistair G.
1998-03-01
A three-dimensional experiment is described in which NMR signals are separated according to their proton chemical shift,13C chemical shift, and diffusion coefficient. The sequence is built up from a stimulated echo sequence with bipolar field gradient pulses and a conventional decoupled HMQC sequence. Results are presented for a model mixture of quinine, camphene, and geraniol in deuteriomethanol.
Optical Imaging with a High Resolution Microendoscope to Identify Cholesteatoma of the Middle Ear
Levy, Lauren L.; Jiang, Nancy; Smouha, Eric; Richards-Kortum, Rebecca; Sikora, Andrew G.
2013-01-01
Objective High resolution optical imaging is an imaging modality which allows visualization of structural changes in epithelial tissue in real time. Our prior studies using contrast-enhanced microendoscopy to image squamous cell carcinoma in the head and neck demonstrated that the contrast agent, proflavine, has high affinity for keratinized tissue. Thus, high-resolution microendoscopy with proflavine provides a potential mechanism to identify ectopic keratin production, such as that associated with cholesteatoma formation and distinguish between uninvolved mucosa and residual keratin at the time of surgery. Study Design Ex vivo imaging of histopathologically-confirmed samples of cholesteatoma and uninvolved middle-ear epithelium. Methods Seven separate specimens collected from patients who underwent surgical treatment for cholesteatoma were imaged ex vivo with the fiberoptic endoscope after surface staining with proflavine. Following imaging, the specimens were submitted for hematoxylin &eosin staining to allow histopathological correlation. Results Cholesteatoma and surrounding middle ear epithelium have distinct imaging characteristics. Keratin-bearing areas of cholesteatoma lack nuclei and appear as confluent hyperfluorescence, while nuclei are easily visualized in specimens containing normal middle ear epithelium. Hyperfluorescence and loss of cellular detail is the imaging hallmark of keratin allowing for discrimination of cholesteatoma from normal middle ear epithelium. Conclusions This study demonstrates the feasibility of high-resolution optical imaging to discriminate cholesteatoma from uninvolved middle ear mucosa, based on the unique staining properties of keratin. Use of real-time imaging may facilitate more complete extirpation of cholesteatoma by identifying areas of residual disease. PMID:23299781
A resolution measure for three-dimensional microscopy
Chao, Jerry; Ram, Sripad; Abraham, Anish V.; Ward, E. Sally; Ober, Raimund J.
2009-01-01
A three-dimensional (3D) resolution measure for the conventional optical microscope is introduced which overcomes the drawbacks of the classical 3D (axial) resolution limit. Formulated within the context of a parameter estimation problem and based on the Cramer-Rao lower bound, this 3D resolution measure indicates the accuracy with which a given distance between two objects in 3D space can be determined from the acquired image. It predicts that, given enough photons from the objects of interest, arbitrarily small distances of separation can be estimated with prespecified accuracy. Using simulated images of point source pairs, we show that the maximum likelihood estimator is capable of attaining the accuracy predicted by the resolution measure. We also demonstrate how different factors, such as extraneous noise sources and the spatial orientation of the imaged object pair, can affect the accuracy with which a given distance of separation can be determined. PMID:20161040
NASA Astrophysics Data System (ADS)
Regazzoni, V.; Acerbi, F.; Cozzi, G.; Ferri, A.; Fiorini, C.; Paternoster, G.; Piemonte, C.; Rucatti, D.; Zappalà, G.; Zorzi, N.; Gola, A.
2017-07-01
Fondazione Bruno Kessler (FBK) (Trento, Italy) has recently introduced High Density (HD) and Ultra High-Density (UHD) SiPMs, featuring very small micro-cell pitch. The high cell density is a very important factor to improve the linearity of the SiPM in high-dynamic-range applications, such as the scintillation light readout in high-energy gamma-ray spectroscopy and in prompt gamma imaging for proton therapy. The energy resolution at high energies is a trade-off between the excess noise factor caused by the non-linearity of the SiPM and the photon detection efficiency of the detector. To study these effects, we developed a new setup that simulates the LYSO light emission in response to gamma photons up to 30 MeV, using a pulsed light source. We measured the non-linearity and energy resolution vs. energy of the FBK RGB-HD e RGB-UHD SiPM technologies. We considered five different cell sizes, ranging from 10 μm up to 25 μm. With the UHD technology we were able to observe a remarkable reduction of the SiPM non-linearity, less than 5% at 5 MeV with 10 μm cells, which should be compared to a non-linearity of 50% with 25 μm-cell HD-SiPMs. With the same setup, we also measured the different components of the energy resolution (intrinsic, statistical, detector and electronic noise) vs. cell size, over-voltage and energy and we separated the different sources of excess noise factor.
NASA Astrophysics Data System (ADS)
Bryant, Kyle R.
2016-05-01
Foveated imaging can deliver two different resolutions on a single focal plane, which might inexpensively allow more capability for military systems. The following design study results provide starting examples, lessons learned, and helpful setup equations and pointers to aid the lens designer in any foveated lens design effort. Our goal is to put robust sensor in a small package with no moving parts, but still be able to perform some of the functions of a sensor in a moving gimbal. All of the elegant solutions are out (for various reasons). This study is an attempt to see if lens designs can solve this problem and realize some gains in performance versus cost for airborne sensors. We determined a series of design concepts to simultaneously deliver wide field of view and high foveal resolution without scanning or gimbals. Separate sensors for each field of view are easy and relatively inexpensive, but lead to bulky detectors and electronics. Folding and beam-combining of separate optical channels reduces sensor footprint, but induces image inversions and reduced transmission. Entirely common optics provide good resolution, but cannot provide a significant magnification increase in the foveal region. Offsetting the foveal region from the wide field center may not be physically realizable, but may be required for some applications. The design study revealed good general guidance for foveated optics designs with a cold stop. Key lessons learned involve managing distortion, telecentric imagers, matching image inversions and numerical apertures between channels, reimaging lenses, and creating clean resolution zone splits near internal focal planes.
Chen, Bin; Zhao, Kai; Li, Bo; Cai, Wenchao; Wang, Xiaoying; Zhang, Jue; Fang, Jing
2015-10-01
To demonstrate the feasibility of the improved temporal resolution by using compressed sensing (CS) combined imaging sequence in dynamic contrast-enhanced MRI (DCE-MRI) of kidney, and investigate its quantitative effects on renal perfusion measurements. Ten rabbits were included in the accelerated scans with a CS-combined 3D pulse sequence. To evaluate the image quality, the signal-to-noise ratio (SNR) and contrast-to-noise ratio (CNR) were compared between the proposed CS strategy and the conventional full sampling method. Moreover, renal perfusion was estimated by using the separable compartmental model in both CS simulation and realistic CS acquisitions. The CS method showed DCE-MRI images with improved temporal resolution and acceptable image contrast, while presenting significantly higher SNR than the fully sampled images (p<.01) at 2-, 3- and 4-X acceleration. In quantitative measurements, renal perfusion results were in good agreement with the fully sampled one (concordance correlation coefficient=0.95, 0.91, 0.88) at 2-, 3- and 4-X acceleration in CS simulation. Moreover, in realistic acquisitions, the estimated perfusion by the separable compartmental model exhibited no significant differences (p>.05) between each CS-accelerated acquisition and the full sampling method. The CS-combined 3D sequence could improve the temporal resolution for DCE-MRI in kidney while yielding diagnostically acceptable image quality, and it could provide effective measurements of renal perfusion. Copyright © 2015 Elsevier Inc. All rights reserved.
NASA Astrophysics Data System (ADS)
Zou, Xiaoliang; Zhao, Guihua; Li, Jonathan; Yang, Yuanxi; Fang, Yong
2016-06-01
With the rapid developments of the sensor technology, high spatial resolution imagery and airborne Lidar point clouds can be captured nowadays, which make classification, extraction, evaluation and analysis of a broad range of object features available. High resolution imagery, Lidar dataset and parcel map can be widely used for classification as information carriers. Therefore, refinement of objects classification is made possible for the urban land cover. The paper presents an approach to object based image analysis (OBIA) combing high spatial resolution imagery and airborne Lidar point clouds. The advanced workflow for urban land cover is designed with four components. Firstly, colour-infrared TrueOrtho photo and laser point clouds were pre-processed to derive the parcel map of water bodies and nDSM respectively. Secondly, image objects are created via multi-resolution image segmentation integrating scale parameter, the colour and shape properties with compactness criterion. Image can be subdivided into separate object regions. Thirdly, image objects classification is performed on the basis of segmentation and a rule set of knowledge decision tree. These objects imagery are classified into six classes such as water bodies, low vegetation/grass, tree, low building, high building and road. Finally, in order to assess the validity of the classification results for six classes, accuracy assessment is performed through comparing randomly distributed reference points of TrueOrtho imagery with the classification results, forming the confusion matrix and calculating overall accuracy and Kappa coefficient. The study area focuses on test site Vaihingen/Enz and a patch of test datasets comes from the benchmark of ISPRS WG III/4 test project. The classification results show higher overall accuracy for most types of urban land cover. Overall accuracy is 89.5% and Kappa coefficient equals to 0.865. The OBIA approach provides an effective and convenient way to combine high resolution imagery and Lidar ancillary data for classification of urban land cover.
NASA Astrophysics Data System (ADS)
Wang, Jiaoyang; Wang, Lin; Yang, Ying; Gong, Rui; Shao, Xiaopeng; Liang, Chao; Xu, Jun
2016-05-01
In this paper, an integral design that combines optical system with image processing is introduced to obtain high resolution images, and the performance is evaluated and demonstrated. Traditional imaging methods often separate the two technical procedures of optical system design and imaging processing, resulting in the failures in efficient cooperation between the optical and digital elements. Therefore, an innovative approach is presented to combine the merit function during optical design together with the constraint conditions of image processing algorithms. Specifically, an optical imaging system with low resolution is designed to collect the image signals which are indispensable for imaging processing, while the ultimate goal is to obtain high resolution images from the final system. In order to optimize the global performance, the optimization function of ZEMAX software is utilized and the number of optimization cycles is controlled. Then Wiener filter algorithm is adopted to process the image simulation and mean squared error (MSE) is taken as evaluation criterion. The results show that, although the optical figures of merit for the optical imaging systems is not the best, it can provide image signals that are more suitable for image processing. In conclusion. The integral design of optical system and image processing can search out the overall optimal solution which is missed by the traditional design methods. Especially, when designing some complex optical system, this integral design strategy has obvious advantages to simplify structure and reduce cost, as well as to gain high resolution images simultaneously, which has a promising perspective of industrial application.
Xu, Yu; Wang, DanDan; Tang, Lan; Wang, Jian
2017-10-25
Eleven unknown allergic impurities in cefodizime, cefmenoxime and cefonicid were separated and characterized by a trap-free two-dimensional high performance size exclusion chromatography (HPSEC) and reversed phase liquid chromatography (RP-HPLC) coupled to high resolution ion trap/time-of-flight mass spectrometry (2D-HPSEC×LC-IT-TOF MS) with positive and negative modes of electrospray ionization method. Separation and characterization the allergic polymerized impurities in β-lactam antibiotics were on the basis of column-switching technique which effectively combined the advantages of HPSEC and the ability of RP-HPLC to identify the special impurities. In the first dimension HPSEC, the column was Xtimate SEC-120 analytical column (7.8mm×30cm, 5μm), and the gradient elution used pH 7.0 buffer-acetonitrile as mobile phase And the second dimension analytical column was ZORBAX SB-C18 (4.6×150mm, 3.5μm) with ammonium formate solution (10mM) and ammonium formate (8mM) in [acetonitrile-water (4:1, v/v)] solution as mobile phase. Structures of eleven unknown impurities were deduced based on the high resolution MS n data with both positive and negative modes, in which nine impurities were polymerized impurities. The forming mechanism of β-lactam antibiotic polymerization in cephalosporins was also studied. The question on incompatibility between non-volatile salt mobile phase and mass spectrometry was solved completely by multidimensional heart-cutting approaches and online demineralization technique, which was worthy of widespread use and application for the advantages of stability and repeatability. Copyright © 2017. Published by Elsevier B.V.
An advanced algorithm for deformation estimation in non-urban areas
NASA Astrophysics Data System (ADS)
Goel, Kanika; Adam, Nico
2012-09-01
This paper presents an advanced differential SAR interferometry stacking algorithm for high resolution deformation monitoring in non-urban areas with a focus on distributed scatterers (DSs). Techniques such as the Small Baseline Subset Algorithm (SBAS) have been proposed for processing DSs. SBAS makes use of small baseline differential interferogram subsets. Singular value decomposition (SVD), i.e. L2 norm minimization is applied to link independent subsets separated by large baselines. However, the interferograms used in SBAS are multilooked using a rectangular window to reduce phase noise caused for instance by temporal decorrelation, resulting in a loss of resolution and the superposition of topography and deformation signals from different objects. Moreover, these have to be individually phase unwrapped and this can be especially difficult in natural terrains. An improved deformation estimation technique is presented here which exploits high resolution SAR data and is suitable for rural areas. The implemented method makes use of small baseline differential interferograms and incorporates an object adaptive spatial phase filtering and residual topography removal for an accurate phase and coherence estimation, while preserving the high resolution provided by modern satellites. This is followed by retrieval of deformation via the SBAS approach, wherein, the phase inversion is performed using an L1 norm minimization which is more robust to the typical phase unwrapping errors encountered in non-urban areas. Meter resolution TerraSAR-X data of an underground gas storage reservoir in Germany is used for demonstrating the effectiveness of this newly developed technique in rural areas.
NASA Astrophysics Data System (ADS)
Karadjov, Metody; Velitchkova, Nikolaya; Veleva, Olga; Velichkov, Serafim; Markov, Pavel; Daskalova, Nonka
2016-05-01
This paper deals with spectral interferences of complex matrix containing Mo, Al, Ti, Fe, Mg, Ca and Cu in the determination of rhenium in molybdenum and copper concentrates by inductively coupled plasma optical emission spectrometry (ICP-OES). By radial viewing 40.68 MHz ICP equipped with a high resolution spectrometer (spectral bandwidth = 5 pm) the hyperfine structure (HFS) of the most prominent lines of rhenium (Re II 197.248 nm, Re II 221.426 nm and Re II 227.525 nm) was registered. The HFS components under high resolution conditions were used as separate prominent line in order to circumvent spectral interferences. The Q-concept was applied for quantification of spectral interferences. The quantitative databases for the type and the magnitude of the spectral interferences in the presence of above mentioned matrix constituents were obtained by using a radial viewing 40.68 MHz ICP with high resolution and an axial viewing 27.12 MHz ICP with middle resolution. The data for the both ICP-OES systems were collected chiefly with a view to spectrochemical analysis for comparing the magnitude of line and wing (background) spectral interference and the true detection limits with spectroscopic apparatus with different spectral resolution. The sample pretreatment methods by sintering with magnesium oxide and oxidizing agents as well as a microwave acid digestion were applied. The feasibility, accuracy and precision of the analytical results were experimentally demonstrated by certified reference materials.
NASA Astrophysics Data System (ADS)
Lyu, Yuexi; Han, Xi; Sun, Yaoyao; Jiang, Zhi; Guo, Chunyan; Xiang, Wei; Dong, Yinan; Cui, Jie; Yao, Yuan; Jiang, Dongwei; Wang, Guowei; Xu, Yingqiang; Niu, Zhichuan
2018-01-01
We report on the growth of high quality GaSb-based AlInAsSb quaternary alloy by molecular beam epitaxy (MBE) to fabricate avalanche photodiodes (APDs). By means of high resolution X-ray diffraction (HRXRD) and scanning transmission electron microscope (STEM), phase separation phenomenon of AlInAsSb random alloy with naturally occurring vertical superlattice configuration was demonstrated. To overcome the tendency for phase segregation while maintaining a highly crystalline film, a digital alloy technique with migration-enhanced epitaxy growth method was employed, using a shutter sequence of AlSb, AlAs, AlSb, Sb, In, InAs, In, Sb. AlInAsSb digital alloy has proved to be reproducible and consistent with single phase, showing sharp satellite peaks on HRXRD rocking curve and smooth surface morphology under atomic force microscopy (AFM). Using optimized digital alloy, AlInAsSb separate absorption, grading, charge, and multiplication (SAGCM) APD was grown and fabricated. At room temperature, the device showed high performance with low dark current density of ∼14.1 mA/cm2 at 95% breakdown and maximum stable gain before breakdown as high as ∼200, showing the potential for further applications in optoelectronic devices.
Gotoh, Naohiro; Matsumoto, Yumiko; Yuji, Hiromi; Nagai, Toshiharu; Mizobe, Hoyo; Ichioka, Kenji; Kuroda, Ikuma; Noguchi, Noriko; Wada, Shun
2010-01-01
The characteristics of a non-endcapped polymeric ODS column for the resolution of triacylglycerol positional isomers (TAG-PI) were examined using a recycle HPLC-atmospheric pressure chemical ionization/mass spectrometry system. A pair of TAG-PI containing saturated fatty acids at least 12 carbons was separated. Except for TAG-PI containing elaidic acid, pairs of TAG-PI containing three unsaturated fatty acids were not separated, even by recycle runs. These results indicate that the resolution of TAG-PI on a non-endcapped polymeric ODS stationary phase is realized by the recognition of the linear structure of the fatty acid and the binding position of the saturated fatty acid in TAG-PI. Chain length was also an important factor for resolution. This method may be a useful and simple for measuring the abundance ratio of TAG-PI containing saturated fatty acids in natural oils.
Development of novel separation techniques for biological samples in capillary electrophoresis
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chang, Huan -Tsung
1994-07-27
This dissertation includes three different topics: general introduction of capillary electrophoresis (CE); gradient in CE and CE in biological separations; and capillary gel electrophoresis (CGE) for DNA separation. Factors such as temperature, viscosity, pH, and the surface of capillary walls affecting the separation performance are demonstrated. A pH gradient between 3.0 and 5.2 is useful to improve the resolution among eight different organic acids. A flow gradient due to the change in the concentration of surfactant, which is able to coat to the capillary wall to change the flow rate and its direction, is also shown as a good waymore » to improve the resolution for organic compounds. A temperature gradient caused by joule heat is shown by voltage programming to enhance the resolution and shorten the separation time for several phenolic compounds. The author also shows that self-regulating dynamic control of electroosmotic flow in CE by simply running separation in different concentrations of surfactant has less matrix effect on the separation performance. One of the most important demonstrations in this dissertation is that the author proposes on-column reaction which gives several advantages including the use of a small amount of sample, low risk of contamination, and time saving and kinetic features. The author uses this idea with laser induced fluorescence (LIF) as a detection mode to detect an on-column digestion of sub-ng of protein. This technique also is applied to single cell analysis in the group.« less
Wang, Lu; Liu, Shu; Zhang, Xueju; Xing, Junpeng; Liu, Zhiqiang; Song, Fengrui
2016-06-24
In this paper, an analysis strategy integrating macroporous resin (AB-8) column chromatography and high performance liquid chromatography-electrospray ionization-tandem mass spectrometry (HPLC-ESI-MS/MS) combined with ion mobility spectrometry (IMS) was proposed and applied for identification and structural characterization of compounds from the fruits of Gardenia jasminoides. The extracts of G. jasminoides were separated by AB-8 resin column chromatography combined with reversed phase liquid chromatography (C18 column) and detected by electrospray ionization tandem mass spectrometry. Additionally, ion mobility spectrometry (IMS) was employed as a supplementary separation technique to discover previously undetected isomers from the fruits of G. jasminoides. A total of 71 compounds, including iridoids, flavonoids, triterpenes, monoterpenoids, carotenoids and phenolic acids were identified by the characteristic high resolution mass spectrometry and the ESI-MS/MS fragmentations. In conclusion, the IMS-MS technique achieved the separation of isomers in crocin-3 and crocin-4 according to their acquired mobility drift times differing from classical analysis by mass spectrometry. The proposed strategy can be used as a highly sensitive and efficient procedure for identification and separation isomeric components in extracts of herbal medicines. Copyright © 2016 Elsevier B.V. All rights reserved.
Li, Guoyun; Li, Lingyun; Xue, Changhu; Middleton, Dustin; Linhardt, Robert J.; Avci, Fikri Y.
2015-01-01
Pneumococcal type-3 polysaccharide (Pn3P) is considered a major target for the development of a human vaccine to protect against Streptococcus pneumonia infection. Thus, it is critical to develop methods for the preparation and analysis of Pn3P-derived oligosaccharides to better understand its immunological properties. In this paper, we profile oligosaccharides, generated by the free radical depolymerization of Pn3P, using liquid chromatography (LC)-tandem mass spectrometry (MS/MS). Hydrophilic liquid interaction chromatography (HILIC)-mass spectrometry (MS) revealed a series of oligosaccharides with an even- and odd-number of saccharide residues, ranging from monosaccharide, degree of polymerization (dp1) to large oligosaccharides up to dp 20, generated by free radical depolymerization. Isomers of oligosaccharides with an even number of sugar residues were easily separated on a HILIC column, and their sequences could be distinguished by comparing MS/MS of these oligosaccharides and their reduced alditols. Fluorescent labeling with 2-aminoacridone (AMAC) followed by reversed phase (RP)-LC-MS/MS was applied to analyze and sequence poorly separated product mixtures, as RP-LC affords higher resolution of AMAC-labeled oligosaccharides than does HILIC-based separation. The present methodology can be potentially applied to profiling other capsular polysaccharides. PMID:25913329
Li, Guoyun; Li, Lingyun; Xue, Changhu; Middleton, Dustin; Linhardt, Robert J; Avci, Fikri Y
2015-06-05
Pneumococcal type-3 polysaccharide (Pn3P) is considered a major target for the development of a human vaccine to protect against Streptococcus pneumoniae infection. Thus, it is critical to develop methods for the preparation and analysis of Pn3P-derived oligosaccharides to better understand its immunological properties. In this paper, we profile oligosaccharides, generated by the free radical depolymerization of Pn3P, using liquid chromatography (LC)-tandem mass spectrometry (MS/MS). Hydrophilic liquid interaction chromatography (HILIC)-mass spectrometry (MS) revealed a series of oligosaccharides with an even- and odd-number of saccharide residues, ranging from monosaccharide, degree of polymerization (dp1) to large oligosaccharides up to dp 20, generated by free radical depolymerization. Isomers of oligosaccharides with an even number of sugar residues were easily separated on a HILIC column, and their sequences could be distinguished by comparing MS/MS of these oligosaccharides and their reduced alditols. Fluorescent labeling with 2-aminoacridone (AMAC) followed by reversed phase (RP)-LC-MS/MS was applied to analyze and sequence poorly separated product mixtures, as RP-LC affords higher resolution of AMAC-labeled oligosaccharides than does HILIC-based separation. The present methodology can be potentially applied to profiling other capsular polysaccharides. Copyright © 2015 Elsevier B.V. All rights reserved.