Sample records for high resolution subbottom

  1. Mapping beneath the seafloor: AUV sub-bottom profilers, sediment thickness and resource potential

    NASA Astrophysics Data System (ADS)

    Yeo, I. A.; Vardy, M. E.; Holwell, D.; North, L.; Murton, B. J.

    2017-12-01

    Most AUV seafloor exploration focuses primarily on collecting high-resolution bathymetric and backscatter data in order to identify and map features of interest. Sub-bottom profiler data provides an essential third dimension that can illuminate not only the thickness of overlying sediment packets, but also the scale and tectonic setting of surface features. In this study we present results of high-resolution sub-bottom profiler surveys of Tropic Seamount, a 3000m tall, 40km wide, flat-topped gyot located 400km south of the Canary Islands. We show how the application of AUV derived sub-bottom profiler data can be used to assess the thickness and extent of ferromanganese crusts covering the summit and underlying thin pelagic sediment cover. Bespoke chirp signals at two altitudes were used to increase the likelihood of resolving thin (tens of cm) layers of crust. Drill cores were obtained from an ROV and used to constrain and calibrate the profiler data. The cores show variable crustal thicknesses of zero to 14 cm of FeMn crustal cover over a partially phosphoritised, vuggy, often poorly lithified limestone basement. Initial measurements of sound velocities suggest differences between the limestone basement and the crust of only a few hundred meters per second. Sub-cores, drilled from large samples collected during the cruise were analysed in the NOC Acoustic Pulse Tube and with X-Ray Computer Tomography to better understand how variations in lithology, crustal thickness, surface texture and internal structure affect the returning geoacoustic signal. We discuss the pros and cons of different surveying patterns, altitudes and chirps, the relative usefulness of sub-bottom profiler data in different environments, and the value added by sub-bottom profiler surveying as opposed to bathymetric surveying alone.

  2. 3D AUV Microseismic Implementation for Deepwater Seabed Investigations

    NASA Astrophysics Data System (ADS)

    George, R.; Taylor, M. W.; Gravely, J. G.

    2005-05-01

    Autonomous Underwater Vehicle (AUV) technology, developed commercially over the past 5 years, allows for the geophysical investigation of the seabed on the deepwater continental slope at resolutions, data densities and timelines not previously attainable. High-resolution geophysical systems normally employed on deepwater survey AUVs consist of multibeam bathymetry, side scan sonar and subbottom profiler. Inertial navigation allows positioning accuracies on the order of plus or minus 3 meters in depths up to 2,000 meters. C & C Technologies, Inc. owns and operates the C-Surveyor I AUV, which has collected more than 40,000 km of geohazard survey data on the continental slopes of the Gulf of Mexico, Mediterranean Sea, Brazil and West Africa. The oil and gas industry routinely engineers deepwater platform-mooring systems and other bottom founded subsea systems for exploration and production developments. Resolute subbottom imaging of the foundation zone in order to identify the near-seafloor geologic conditions at these deepwater development sites is critical in order to maintain system integrity. The paper describes the methodology and post-processing techniques used to create a high-resolution (2-8 kHz) 3D seismic cube from subbottom profiler data collected from an AUV system. Data examples of the multibeam bathymetry, side scan sonar and 2D seismic profiles will be provided to complement the results of the 3D seismic cube processing. Examples of inlines, crosslines, arbitrary lines, seafloor amplitude extraction and time slices are presented for the 4-meter binned data set. Advantages, disadvantages and suggested improvements for the survey acquisition technique and post processing are discussed.

  3. 30 CFR 550.197 - Data and information to be made available to the public or for limited inspection.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    .... (2) Data or information is collected with high-resolution systems (e.g., bathymetry, side-scan sonar, subbottom profiler, and magnetometer) to comply with safety or environmental protection requirements...

  4. 30 CFR 550.197 - Data and information to be made available to the public or for limited inspection.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    .... (2) Data or information is collected with high-resolution systems (e.g., bathymetry, side-scan sonar, subbottom profiler, and magnetometer) to comply with safety or environmental protection requirements...

  5. 30 CFR 550.197 - Data and information to be made available to the public or for limited inspection.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    .... (2) Data or information is collected with high-resolution systems (e.g., bathymetry, side-scan sonar, subbottom profiler, and magnetometer) to comply with safety or environmental protection requirements...

  6. Chirp subbottom profile data collected in 2015 from the northern Chandeleur Islands, Louisiana

    USGS Publications Warehouse

    Forde, Arnell S.; DeWitt, Nancy T.; Fredericks, Jake J.; Miselis, Jennifer L.

    2018-01-30

    As part of the Barrier Island Evolution Research project, scientists from the U.S. Geological Survey (USGS) St. Petersburg Coastal and Marine Science Center conducted a nearshore geophysical survey around the northern Chandeleur Islands, Louisiana, in September 2015. The objective of the project is to improve the understanding of barrier island geomorphic evolution, particularly storm-related depositional and erosional processes that shape the islands over annual to interannual time scales (1–5 years). Collecting geophysical data can help researchers identify relations between the geologic history of the islands and their present day morphology and sediment distribution. High-resolution geophysical data collected along this rapidly changing barrier island system can provide a unique time-series dataset to further the analyses and geomorphological interpretations of this and other coastal systems, improving our understanding of coastal response and evolution over medium-term time scales (months to years). Subbottom profile data were collected in September 2015 offshore of the northern Chandeleur Islands, during USGS Field Activity Number 2015-331-FA. Data products, including raw digital chirp subbottom data, processed subbottom profile images, survey trackline map, navigation files, geographic information system data files and formal Federal Geographic Data Committee metadata, and Field Activity Collection System and operation logs are available for download.

  7. Development and applications of an acoustic package for deep-sea sub-bottom profiling and detailed seafloor imaging

    NASA Astrophysics Data System (ADS)

    Nishimura, Kiyokazu; Kisimoto, Kiyoyuki; Joshima, Masato; Arai, Kohsaku

    In the deep-sea geological survey, good survey results are difficult to obtain by a conventional surface-towed acoustic survey system, because the horizontal resolution is limited due to the long distance between the sensor and the target (seafloor). In order to improve the horizontal resolution, a deep-tow system, which tows the sensor in the vicinity of seafloor, is most practical, and many such systems have been developed and used until today. It is not easy, however, to carry out a high-density survey in a small area by maneuvering the towing body altitude sufficiently close to the seafloor with rugged topography. A ROV (Remotely Operated Vehicle) can be used to solve this problem. The ROV makes a high-density 2D survey feasible because of its maneuverability, although a long-distance survey is difficult with it. Accordingly, we have developed an acoustic survey system installed on a ROV. The system named DAIPACK (Deep-sea Acoustic Imaging Package) consists of (1) a deep-sea sub-bottom profiler and (2) a deep-sea sidescan sonar. (1) Deep-sea sub-bottom profiler A light-weight and compact sub-bottom profiler for shallow water was chosen to improve and repackage for the deep sea usage. The system is composed of three units; a transducer, an electronic unit and a notebook computer for system control and data acquisition. The source frequency is 10kHz. To convert the system for the deep sea, the transducer was exchanged for the deep sea model, and the electronic unit was improved accordingly. The electronic unit and the notebook computer were installed in a spherical pressure vessel. (2) Deep-sea sidescan sonar We remodeled a compact shallow sea sidescan sonar(water depth limitation is 30m ) into a deep sea one. This sidescan sonar is composed of a sonar towfish (transducers and an electronic unit ), a cable and a notebook computer (data processor). To accommodate in the deep water, the transducers were remodeled into a high pressure resistance type, and the electronic unit and the computer unit were stored in a spherical pressure vessel. The frequency output of the sidescan sonar is 330kHz, and the ranging distance is variable from 15m to 120m (one side).

  8. MBARI Mapping AUV: A High-Resolution Deep Ocean Seafloor Mapping Capability

    NASA Astrophysics Data System (ADS)

    Caress, D. W.; Kirkwood, W. J.; Thomas, H.; McEwen, R.; Henthorn, R.; McGill, P.; Thompson, D.; Sibenac, M.; Jensen, S.; Shane, F.; Hamilton, A.

    2005-05-01

    The Monterey Bay Aquarium Research Institute (MBARI) is developing an autonomous seafloor mapping capability for deep ocean science applications. The MBARI Mapping AUV is a 0.53 m (21 in) diameter, 5.1 m (16.7 ft) long, Dorado-class vehicle designed to carry four mapping sonars. The primary sensor is a 200 kHz multibeam sonar producing swath bathymetry and sidescan. In addition, the vehicle carries 100 kHz and 410 kHz chirp sidescan sonars, and a 2-16 kHz sweep chirp subbottom profiler. Navigation and attitude data are obtained from an inertial navigation system (INS) incorporating a ring laser gyro and a 300 kHz Doppler velocity log (DVL). The vehicle also includes acoustic modem, ultra-short baseline navigation, and long-baseline navigation systems. The Mapping AUV is powered by 6 kWhr of Li-polymer batteries, providing expected mission duration of 12 hours at a typical speed of 1.5 m/s. All components of the vehicle are rated to 6000 m depth, allowing MBARI to conduct high-resolution mapping of the deep-ocean seafloor. The sonar package is also be mountable on ROV Ventana, allowing surveys at altitudes less than 20 m at topographically challenging sites. The vehicle was assembled and extensively tested during 2004; this year we are commencing operations for MBARI science projects while continuing the process of testing and integrating the complete suite of sensors and systems. MBARI is beginning to use this capability to observe the changing morphology of dynamic systems such as submarine canyons and active slumps, to map deep-water benthic habitats at resolutions comparable to ROV and submersible observations, to provide basemaps for ROV dives, and to provide high resolution bathymetry and subbottom profiles as part of a variety of projects requiring knowledge of the seafloor. We will present initial results from surveys in and around Monterey Canyon, including high resolution repeat surveys of four sites along the canyon axis.

  9. Characterization of a Louisiana Bay Bottom

    NASA Astrophysics Data System (ADS)

    Freeman, A. M.; Roberts, H. H.

    2016-02-01

    This study correlates side-scan sonar and CHIRP water bottom-subbottom acoustic amplitudes with cone penetrometer data to expand the limited understanding of the geotechnical properties of sediments in coastal Louisiana's bays. Standardized analysis procedures were developed to characterize the bay bottom and shallow subsurface of the Sister Lake bay bottom. The CHIRP subbottom acoustic data provide relative amplitude information regarding reflection horizons of the bay bottom and shallow subsurface. An amplitude analysis technique was designed to identify different reflectance regions within the lake from the CHIRP subbottom profile data. This amplitude reflectivity analysis technique provides insight into the relative hardness of the bay bottom and shallow subsurface, useful in identifying areas of erosion versus deposition from storms, as well as areas suitable for cultch plants for state oyster seed grounds, or perhaps other restoration projects. Side-scan and CHIRP amplitude reflectivity results are compared to penetrometer data that quantifies geotechnical properties of surface and near-surface sediments. Initial results indicate distinct penetrometer signatures that characterize different substrate areas including soft bottom, storm-deposited silt-rich sediments, oyster cultch, and natural oyster reef areas. Although amplitude analysis of high resolution acoustic data does not directly quantify the geotechnical properties of bottom sediments, our analysis indicates a close relationship. The analysis procedures developed in this study can be applied in other dynamic coastal environments, "calibrating" the use of synoptic acoustic methods for large-scale water bottom characterization.

  10. Tectonics and Volcanism During the Cretaceous Normal Superchron Seafloor in the Western Pacific Ocean

    NASA Astrophysics Data System (ADS)

    O'Brien, E.

    2017-12-01

    We have conducted an integration study on the origin and evolution of the tectonics and volcanism of seafloor in the Western Pacific Ocean that took place during the Cretaceous Normal Superchron (CNS) where sparse data has so far precluded detailed investigation. We have compiled the latest satellite-based gravity, gravity gradient, and magnetic grids (EMAG2 v.3) for this region. These crustal-scale high-resolution grids suggest that the CNS seafloor contains fossilized lithospheric morphology possibly attributed to the interaction between Cretaceous supervolcanism activity and Mid-Cretaceous Pacific mid ocean ridge systems that have continuously expanded the Pacific Plate. We recognize previously identified fossilized microplates west of the Magellan Rise, short-lived abandoned propagating rifts and fracture zones, all of which show significant rotation of seafloor fabric. In addition to these large scale observations, we have also compiled marine geological information from previously drilled cores and new data from a Kongsberg Topas PS18 Parametric Sub-Bottom Profiler collected on a transect from Honolulu, Hawaii to Apra, Guam acquired during research cruise SKQ2014S2. In particular, the narrow beam and high bandwidth signal of the Topas PS18 sub-bottom profiler provides sonar data of the seabed with a resolution and depth penetration that is unprecedented compared with previously available surveys in the region. A preliminary assessment of this high resolution Topas data allows us to better characterize sub-seafloor sediment properties and identify features, including the Upper Transparent Layer with identifiable pelagic clay and porcelanite-chert reflectors as well as tectonic features such as the westernmost tip of the Waghenaer Fracture Zone.

  11. High resolution shallow imaging of the mega-splay fault in the central Nankai Trough off Kumano

    NASA Astrophysics Data System (ADS)

    Ashi, J.

    2012-12-01

    Steep slopes are continuously developed at water depths between 2200 to 2800 m at the Nankai accretionary prism off Kumano. These slopes are interpreted to be surface expressions caused by the megasplay fault on seismic reflection profiles. The fault plane has been drilled at multiple depths below seafloor by IODP NanTroSEIZE project. Mud breccias only recognized at the hanging wall of the fault (Site C0004) by Xray CT scanner are interpreted be formed by strong ground shaking and the age of the shallowest event of mud breccia layers suggests deformation in 1944 Tonankai earthquake (Sakaguchi et al., 2011). Detailed structures around the fault have been examined by seismic reflection profiles including 3D experiments. Although the fault plane deeper than 100 m is well imaged, the structure shallower than 100 m is characterized by obscure sediment veneer suggesting no recent fault activity. Investigation of shallow deformation structures is significant for understanding of recent tectonic activity. Therefore, we carried out deep towed subbottom profile survey by ROV NSS (Navigable Sampling System) during Hakuho-maru KH-11-9 cruise. We introduced a chirp subbottom profiling system of EdgeTech DW-106 for high resolution mapping of shallow structures. ROV NSS also has capability to take a long core with a pinpoint accuracy. The subbottom profiler crossing the megasplay fault near Site C0004 exhibits a landward dipping reflector suggesting the fault plane. The shallowest depth of the reflector is about 10 m below seafloor and the strata above it shows reflectors parallel to the seafloor without any topographic undulation. The fault must have displaced the shallow formation because intense deformation indicated by mud breccia was restricted to near fault zone. Slumping or sliding probably modified the shallow formation after the faulting. The shallow deformations near the megasplay fault were well imaged at the fault scarp 20 km southwest of Site C0004. Although the fault plane itself is not recognized, displacements of sedimentary layers are observed along the fault up to 30 meter below the seafloor. Landward dip of the fault is estimated to be 30 degrees. Displacements of strata are about 3 m near the surface and about 5 m at 7 m below the seafloor suggesting accumulation of fault displacement. The structure more than 30 m below the seafloor is obscure due to decrease of acoustic signal. Active cold seep is expected in this site by high heat flow (Yamano et al., 2012) and many trails of Calyptogena detected by seafloor observations. These results are consistent with the shallow structures reveled by our subbottom profiling survey. References Sakaguchi, A. et al., Geology 39, 919-922, 2011. Yamano, M. et al., JpGU Meeting abstract, SSS38-P23, 2012

  12. Geomorphology of submerged river channels indicates Late Quaternary tectonic activity in the Gulf of Trieste, Northern Adriatic

    NASA Astrophysics Data System (ADS)

    Vrabec, M.; Slavec, P.; Poglajen, S.; Busetti, M.

    2012-04-01

    We use multibeam and parametric subbottom sonar data, complemented with multichannel and high-resolution single-channel seismic profiles, to investigate sea-bottom morphology and subbottom sediment structure in the south-eastern half of the Gulf of Trieste, northern Adriatic Sea. The study area comprises 180 km2 of predominantly flat seabed with the water depth from 20 to 25 m. Pre-Quaternary basement consists of Mesozoic-Paleogene carbonate platform unit, overlain by Eocene marls and sandstones, covered by up to 300 m thick Quaternary sediments of predominantly continental origin. The uppermost few meters of sediment consist of Holocene fine-grained marine deposits. Structurally, the investigated area belongs to the imbricated rim of the Adriatic microplate and is dissected by several NE-dipping low-angle thrusts with up to several kms of displacement. The thrusts are cut by younger NE-SW-trending steeply dipping faults with sinistral and/or normal offset, mapped onshore. The continuation of those faults into the offshore area is suggested by mismatch of thrust structures between parallel seismic profiles. Geodetic data on present-day tectonic activity is controversial. Whereas the Adriatic microplate is currently moving northwards towards Eurasia at the rate of 2-4 mm/yr, the GNSS data show no measurable deformation in the Gulf of Trieste. On the other hand, onshore precise-levelling data suggest localized vertical motions in the range of 1 mm/yr, interpreted as an indication of thrust activity. High-resolution swath bathymetry revealed several current-related erosional and depositional features such as gullies and megadunes with up to 5 m of relief. The most conspicuous seabed morphological features are pre-Holocene river channels preserved in low-erosion submarine environment, which make excellent markers for studying the long-term geomorphological evolution of the area. The WNW-ESE-trending paleo-Rižana river is characterized by highly sinuous meandering channels. Sequential profiles perpendicular to the river course suggest consistent ~NE-ward lateral shifting of channels, parallel with inclination of the present-day seabed and with the present-day lateral gradient in channel depth. A longitudinal profile of the Rižana river plain revealed downstream increase in elevation of the stream bed, visible both from seabed bathymetry and from vertical position of channel lag deposits in subbottom sonar profiles. These observations suggest post-depositional tectonic tilting of the fluvial sediments that could be related either to activation of NE-dipping thrusts in the pre-Quaternary basement, or to minor anticlinal folding associated with Quaternary transpressional faulting along NW-SE-trending zones, implied from seismic profiles NW-ward of our study area. An enigmatic low-sinuosity channel feature runs along the coastline in the NE-SW direction and crosses the paleo-Rižana channel. Subbottom sonar profiles show asymmetric channel geometry and strong reflectors (channel lag deposits?) at the channel bottom, typical of other documented river channels in the area. This feature is vertically offset by a NE-SW-trending linear morphological flexure that corresponds in location and orientation to the onshore Monte Spaccato fault. Subbottom profiling revealed in several places an abrupt truncation of horizontal reflectors that could be manifestation of faulting. These indications of Late Quaternary - Holocene tectonic activity may have important implications for seismic hazard in the heavily populated coastal area of the Gulf of Trieste.

  13. Pelagic erosion and sedimentation north of Carnegie Ridge, eastern equatorial Pacific

    NASA Astrophysics Data System (ADS)

    Brooks, C. K.; Lyle, M. W.; Marcantonio, F.; Lewis, D. M.; Paul, C.

    2011-12-01

    The Carnegie Ridge is one of three bathymetric highs bounding the Panama Basin and is known to exhibit erosion and redeposition of pelagic sediments. The extent of erosion and redeposition was studied during the R/V Melville cruise MV1014 in November 2010 to compare with geochemical estimates of sediment focusing. The MV1014 cruise acquired geochemical, geological and geophysical data using multichannel 2-D seismic and 3.5 kHz sub-bottom profiler, swathmap bathymetry, coring, and water casts. The seismic reflection, digital sub-bottom profiler and swathmap bathymetry data were used to investigate biogenic sedimentary deposition in the Panama Basin and erosion from Carnegie Ridge. We compare the new geophysical results with drilling on ODP Leg 202, the NEMO-03 site survey cruise for Leg 202, an early survey from 1969 and other data compiled by Ecuadorian surveys. Areas of non-deposition and/or erosion include the bathymetric highs along the ridge, seamounts, and an area of interest, a valley located on the northwestern flank of the ridge. The valley encompasses 183 km2 and exhibits large scale erosion, cutting down through sediments deposited over the 10-million year life of this segment of the Carnegie Ridge. All other valleys located within the Carnegie Ridge study area demonstrate ample deposition with sedimentary packages ranging from 200-800m with an average value trending around 400m. Higher sediment deposition is found in basins to the north of the erosional valley but similar sedimentation is also found even further north, beyond intervening high topography. The thickest sediment deposit near the Carnegie Ridge is actually found on the southern flank of the ridge, more than 100 km to the south of the survey area. Digital chirp sub-bottom profiler data combined with high-resolution seismic illustrate changes in sedimentation and erosion on the Carnegie Ridge, highlighting the dynamic sedimentary environment.

  14. High-resolution surveys for geohazards and shallow gas: NW Adriatic (Italy) and Iskenderun Bay (Turkey)

    USGS Publications Warehouse

    Orange, D.L.; Garcia-Garcia, Ana; McConnell, D.; Lorenson, T.; Fortier, G.; Trincardi, F.; Can, E.

    2005-01-01

    The need for quantifying and understanding the distribution of shallow gas is both of academic interest and of relevance to offshore facilities. The combination of seafloor mapping, subbottom profiling, and multi-channel seismic data can provide information on regions of possible shallow gas, where the gas impacts the acoustic properties of the host material and the seafloor. In this paper, we present two case studies - one academic and one industry - that evaluate the distribution of shallow gas in two field areas in the Mediterranean. In the first case study, geophysical data from Iskenderun Bay, southeastern Turkey, indicate the presence and distribution of shallow gas. Pockmarks on the seafloor are associated with acoustic wipeout in the shallow subbottom data. Although deeper seismic data do not show bright spots or other indicators of possible gas, instantaneous frequency analysis clearly shows laterally restricted anomalies indicating gas-rich zones. The interpretation of possible shallow gas resulted in moving a proposed drilling location to a nearby area characterized by fewer (but still present) shallow gas signatures. In the second case study, cores acquired in the Po Delta, Adriatic Sea, provide quantitative ground-truthing of shallow gas - as suggested by geophysical data - and provide minimum estimates of the percentage of gas in the subsurface. Cores targeted on anomalous subbottom data yielded up to 41,000 ppm methane; cores with anomalous gas content are associated with thick recent flood deposits which may effectively isolate reactive terrigenous organic matter from biologic and physical re-working. ?? Springer 2005.

  15. Multi-angle backscatter classification and sub-bottom profiling for improved seafloor characterization

    NASA Astrophysics Data System (ADS)

    Alevizos, Evangelos; Snellen, Mirjam; Simons, Dick; Siemes, Kerstin; Greinert, Jens

    2018-06-01

    This study applies three classification methods exploiting the angular dependence of acoustic seafloor backscatter along with high resolution sub-bottom profiling for seafloor sediment characterization in the Eckernförde Bay, Baltic Sea Germany. This area is well suited for acoustic backscatter studies due to its shallowness, its smooth bathymetry and the presence of a wide range of sediment types. Backscatter data were acquired using a Seabeam1180 (180 kHz) multibeam echosounder and sub-bottom profiler data were recorded using a SES-2000 parametric sonar transmitting 6 and 12 kHz. The high density of seafloor soundings allowed extracting backscatter layers for five beam angles over a large part of the surveyed area. A Bayesian probability method was employed for sediment classification based on the backscatter variability at a single incidence angle, whereas Maximum Likelihood Classification (MLC) and Principal Components Analysis (PCA) were applied to the multi-angle layers. The Bayesian approach was used for identifying the optimum number of acoustic classes because cluster validation is carried out prior to class assignment and class outputs are ordinal categorical values. The method is based on the principle that backscatter values from a single incidence angle express a normal distribution for a particular sediment type. The resulting Bayesian classes were well correlated to median grain sizes and the percentage of coarse material. The MLC method uses angular response information from five layers of training areas extracted from the Bayesian classification map. The subsequent PCA analysis is based on the transformation of these five layers into two principal components that comprise most of the data variability. These principal components were clustered in five classes after running an external cluster validation test. In general both methods MLC and PCA, separated the various sediment types effectively, showing good agreement (kappa >0.7) with the Bayesian approach which also correlates well with ground truth data (r2 > 0.7). In addition, sub-bottom data were used in conjunction with the Bayesian classification results to characterize acoustic classes with respect to their geological and stratigraphic interpretation. The joined interpretation of seafloor and sub-seafloor data sets proved to be an efficient approach for a better understanding of seafloor backscatter patchiness and to discriminate acoustically similar classes in different geological/bathymetric settings.

  16. Extraction of Seabed/Subsurface Features in a Potential CO2 Sequestration Site in the Southern Baltic Sea, Using Wavelet Transform of High-resolution Sub-Bottom Profiler Data

    NASA Astrophysics Data System (ADS)

    Tegowski, J.; Zajfert, G.

    2014-12-01

    Carbon Capture & Storage (CCS) efficiently prevents the release of anthropogenic CO2 into the atmosphere. We investigate a potential site in the Polish Sector of the Baltic Sea (B3 field site), consisting in a depleted oil and gas reservoir. An area ca. 30 x 8 km was surveyed along 138 acoustic transects, realised from R/V St. Barbara in 2012 and combining multibeam echosounder, sidescan sonar and sub-bottom profiler. Preparation of CCS sites requires accurate knowledge of the subsurface structure of the seafloor, in particular deposit compactness. Gas leaks in the water column were monitored, along with the structure of upper sediment layers. Our analyses show the shallow sub-seabed is layered, and quantified the spatial distribution of gas diffusion chimneys and seabed effusion craters. Remote detection of gas-containing surface sediments can be rather complex if bubbles are not emitted directly into the overlying water and thus detectable acoustically. The heterogeneity of gassy sediments makes conventional bottom sampling methods inefficient. Therefore, we propose a new approach to identification, mapping, and monitoring of potentially gassy surface sediments, based on wavelet analysis of echo signal envelopes of a chirp sub-bottom profiler (EdgeTech SB-0512). Each echo envelope was subjected to wavelet transformation, whose coefficients were used to calculate wavelet energies. The set of echo envelope parameters was input to fuzzy logic and c-means algorithms. The resulting classification highlights seafloor areas with different subsurface morphological features, which can indicate gassy sediments. This work has been conducted under EC FP7-CP-IP project No. 265847: Sub-seabed CO2 Storage: Impact on Marine Ecosystems (ECO2).

  17. Geophysical Data from Offshore of the Chandeleur Islands, Eastern Mississippi Delta

    USGS Publications Warehouse

    Baldwin, Wayne E.; Pendleton, Elizabeth A.; Twichell, David C.

    2009-01-01

    This report contains the geophysical and geospatial data that were collected during two cruises on the R/V Acadiana along the eastern, offshore side of the Chandeleur Islands in 2006 and 2007. Data were acquired with the following equipment: a Systems Engineering and Assessment, Ltd., SwathPlus interferometric sonar; a Klein 3000 dual-frequency sidescan sonar; and an EdgeTech 512i chirp sub-bottom profiling system. The long-term goal of this mapping effort is to produce high-quality, high-resolution geologic maps and geophysical interpretations that can be utilized to investigate the impact of Hurricane Katrina, identify sand resources within the region, and make predictions regarding the future evolution of this coastal system.

  18. High-resolution seismic stratigraphy of an Holocene lacustrine delta in western Lake Geneva (Switzerland)

    USGS Publications Warehouse

    Baster, I.; Girardclos, S.; Pugin, A.; Wildi, W.

    2003-01-01

    A high-resolution seismic survey was conducted in western Lake Geneva on a small delta formed by the Promenthouse, the Asse and the Boiron rivers. This dataset provides information on changes in the geometry and sedimentation patterns of this delta from Late-glacial to Present. The geometry of the deposits of the lacustrine delta has been mapped using 300-m spaced grid lines acquired with a 12 kHz Echosounder subbottom profiler. A complete three dimensional image of the sediment architecture was reconstructed through seismic stratigraphic analysis. Six different delta lobes have been recognized in the prodelta area. Depositional centers and lateral extension of the delta have changed through time, indicating migration and fluctuation of river input as well as changes in lake currents and wind regime from the time of glacier retreat to the Present. The delta slope is characterized by a high instability causing stumps developing and by the accumulation of biogenic gas that prevents seismic penetration.

  19. Coastal habitat mapping in the Aegean Sea using high resolution orthophoto maps

    NASA Astrophysics Data System (ADS)

    Topouzelis, Konstantinos; Papakonstantinou, Apostolos; Doukari, Michaela; Stamatis, Panagiotis; Makri, Despina; Katsanevakis, Stelios

    2017-09-01

    The significance of coastal habitat mapping lies in the need to prevent from anthropogenic interventions and other factors. Until 2015, Landsat-8 (30m) imagery were used as medium spatial resolution satellite imagery. So far, Sentinel-2 satellite imagery is very useful for more detailed regional scale mapping. However, the use of high resolution orthophoto maps, which are determined from UAV data, is expected to improve the mapping accuracy. This is due to small spatial resolution of the orthophoto maps (30 cm). This paper outlines the integration of UAS for data acquisition and Structure from Motion (SfM) pipeline for the visualization of selected coastal areas in the Aegean Sea. Additionally, the produced orthophoto maps analyzed through an object-based image analysis (OBIA) and nearest-neighbor classification for mapping the coastal habitats. Classification classes included the main general habitat types, i.e. seagrass, soft bottom, and hard bottom The developed methodology applied at the Koumbara beach (Ios Island - Greece). Results showed that UAS's data revealed the sub-bottom complexity in large shallow areas since they provide such information in the spatial resolution that permits the mapping of seagrass meadows with extreme detail. The produced habitat vectors are ideal as reference data for studies with satellite data of lower spatial resolution.

  20. Assessing subaqueous mudslide hazard on the Mississippi River delta front, Part 2: Insights revealed through high-resolution geophysical surveying

    NASA Astrophysics Data System (ADS)

    Obelcz, J.; Xu, K.; Bentley, S. J.; Georgiou, I. Y.; Maloney, J. M.; Miner, M. D.; Hanegan, K.; Keller, G.

    2014-12-01

    The northern Gulf of Mexico, including the subaqueous Mississippi River delta front (MRDF), has been productive for oil and gas development since the early 1900s. In 1969 cyclic seafloor wave loading associated with the passage of Hurricane Camille triggered subaqueous mudflows across the MRDF, destroying several offshore oil platforms. This incident spurred geophysical and geotechnical studies of the MRDF, which found that the delta front is prone to mass failures on gentle gradients (<0.5°) due to (1) high rates of fine-grained sedimentation and associated underconsolidation, (2) excess sediment pore pressure attributed to in-situ biogenic gas production, and (3) the frequent passage of tropical cyclones. In June 2014, a geophysical pilot study was conducted 8 km southwest of Southwest Pass, the distributary that currently receives the largest fraction of Mississippi River sediment supply. The resultant dataset encompasses 216 km of subbottom Chirp seismic profiles and a 60 km2 grid of bathymetry and sidescan data. Preliminary interpretation of these data shows the survey area can be classified into four primary sedimentary facies: mudflow gullies, mudflow lobes, undisturbed prodelta, and undisturbed delta front. Subbottom profiles reveal extensive biogenic gas from 20 to about 80 m water depths on the delta front; sidescan data show a variety of bottleneck slides, mudflow gullies and mudflow noses. Previous studies have attempted to constrain the periodicity and magnitude of subaqueous mudslides on the MRDF. However, large age gaps and varied resolution between datasets result in ambiguity regarding the cause and magnitude of observed bathymetric changes. We present high-temporal resolution MRDF bathymetric variations from 2005 (post Hurricane Katrina), 2009 (relatively quiescent storm period), and 2014 (post 2011 Mississippi River flood). These data yield better magnitude and timing estimates of mass movements. This exercise represents a first step towards (1) assembling a comprehensive geologic dataset upon which future MRDF geohazard assessments can be founded, and (2) understanding the dynamics of a massive passive margin deltaic lobe entering a phase of decline.

  1. High-resolution sub-bottom seismic and sediment core records from the Chukchi Abyssal Plain reveal Quaternary glaciation impacts on the western Arctic Ocean

    NASA Astrophysics Data System (ADS)

    Joe, Y. J.; Seokhoon, Y.; Nam, S. I.; Polyak, L.; Niessen, F.

    2017-12-01

    For regional context of the Quaternary history of Arctic marine glaciations, such as glacial events in northern North America and on the Siberian and Chukchi margins, we used CHIRP sub-bottom profiles (SBP) along with sediment cores, including a 14-m long piston core ARA06-04JPC taken from the Chukchi abyssal plain during the RV Araon expedition in 2015. Based on core correlation with earlier developed Arctic Ocean stratigraphies using distribution of various sedimentary proxies, core 04JPC is estimated to extend to at least Marine Isotope Stage 13 (>0.5 Ma). The stratigraphy developed for SBP lines from the Chukchi abyssal plain to surrounding slopes can be divided into four major seismostratigraphic units (SSU 1-4). SBP records from the abyssal plain show well preserved stratification, whereas on the surrounding slopes this pattern is disrupted by lens-shaped, acoustically transparent sedimentary bodies interpreted as glaciogenic debris flow deposits. Based on the integration of sediment physical property and SBP data, we conclude that these debris flows were generated during several ice-sheet grounding events on the Chukchi and East Siberian margins, including adjacent ridges and plateaus, during the middle to late Quaternary.

  2. Application of Sub-Bottom Profiler to Study Riverbed Structure and Sediment Density

    NASA Astrophysics Data System (ADS)

    Rui, Wang; Changzheng, Li; Xiaofei, Yan

    2018-03-01

    In this pater, we present a study on the riverbed structure and sediment density in-situ test by using sub-bottom profiler. Compared with traditional direct observation methods, the sub-bottom profiler method based on sonar technology is non-contact, low-disturbance and high-efficient. We finish the investigation of several sections in Sanmenxia and Xiaolangdi reservoirs, which located on the main channel of lower reaches of Yellow River. Collected data show a detailed layered structure of the riverbed sediment which believed caused by sedimentary processes in different periods. Further more, we analyse the reflection coefficient of water-sediment interface and inverse the sediment density data from the raw wave record. The inversion method is based on the effective density fluid model and Kozeny-Carman formula. The comparison of the inversion results and sample tests shows that the in-situ test is reliable and useable.

  3. A multi-frequency investigation of the influences of groundwater discharge on hydrocarbon emission and transport in the Baltic Sea

    NASA Astrophysics Data System (ADS)

    Weidner, E. F.; Jakobsson, M.; Nycander, J.; Mayer, L. A.

    2017-12-01

    In nearshore coastal regions submarine groundwater discharge is a major component of the hydro-geological cycle: transporting nutrients and pollutants to the ocean, producing up-welling currents through buoyancy effects, and acting as an erosional force at discharge sites. In nearshore regions where biogenic gas production is high, groundwater discharge could potentially act as a control on hydrocarbon emission and transport from the seafloor though the water-column. In the southern Stockholm Archipelago of the Baltic Sea, terraces and semi-circular depressions on shallow (<20 meters) seafloor have been linked to the discharge of ground water, traveling along the permeable layers in glacial clay deposits (Söderberg and Flodén 1995; Jakobsson et al., 2016). Sub-bottom profiles over the same region have identified widespread areas of subsurface blanking, commonly attributed to gas, as well as water-column seep features, both in spatial proximity to the groundwater discharge sites. High-resolution multibeam bathymetry and chirp sub-bottom profiles were combined with water-column data sets collected at multiple frequencies (300 kHz, 45-90 kHz, 160-260 kHz) to map the spatial distribution of seeps and investigate their relationship to localized groundwater discharge as determined by seafloor and subsurface morphology. The spatial extent of seep sites appears closely tied to regions of suspected groundwater discharge, suggesting direct or indirect controls on gas emission pathways. Additionally, seep morphology in the broadband data hints at the possibility of groundwater and gas flow mixing.

  4. High-Resolution Holocene Records of Paleoceanographic and Paleoclimatic Variability from the Southern Alaskan Continental Margin

    NASA Astrophysics Data System (ADS)

    Finney, B. P.; Jaeger, J. M.; Mix, A. C.; Cowan, E. A.; Gulick, S. S.; Mayer, L. A.; Pisias, N. G.; Powell, R. D.; Prahl, F.; Stoner, J. S.

    2004-12-01

    We are investigating sediments from the fjords and continental margin of southern Alaska to develop high-resolution climatic and oceanographic records for the Late Quaternary. Our goal is to better understand linkages between climatic, terrestrial and oceanic systems in this tectonically active and biologically productive region. A field program was conducted aboard the R/V Maurice Ewing in August/September 2004 utilizing geophysical surveys (high-resolution swath bathymetric and backscatter imaging, shallow sub-bottom profiling, and where permitted, high-resolution seismic reflection profiling), piston and multi-coring, and CTD/water sampling at about 30 sites in this region. Cores are being analyzed for sedimentological, microfossil, geochemical and stable isotopic proxies, with chronologies constrained by Pb-210, AMS radiocarbon, tephrochronolgic and paleomagnetic dating. Our preliminary results demonstrate that these rapidly accumulating sedimentary archives can resolve environmental changes on annual to decadal timescales. Records of recent changes in lithogenic sediment accumulation and biological productivity on the Gulf of Alaska shelf track historical climatic data that extends to the early 20th century in this region. The records also correlate with multi-decadal climate regimes during the Little Ice Age as suggested by tree-ring, glacial advance and salmon abundance records from nearby coastal sites. Jack Dymond's enthusiasm for collaborative, interdisciplinary research will help guide us in unraveling the fingerprints of key processes in this relatively unexplored region.

  5. The glacimarine sediment budget of the Nares Strait-Petermann Fjord area since the Last Glacial Maximum

    NASA Astrophysics Data System (ADS)

    Jakobsson, M.; Hogan, K.; Mayer, L. A.; Mix, A. C.; Nielsen, T.; Kamla, E.; Stranne, C.; Eriksson, B.; Jerram, K.

    2016-12-01

    During the Petermann 2015 Expedition of the Swedish icebreaker Oden more than 6500 line-km of high-resolution chirp sub-bottom profiles (2-7 kHz) were acquired in Petermann Fjord and Nares Strait in the area immediately outside of the fjord. The sub-bottom profiles reveal a highly-variable distribution of post-glacial sediment that appears to be largely controlled by the rugged relief of the underlying bedrock. Sediment thicknesses are between 0-60 m above bedrock and comprise predominantly acoustically-stratified, homogeneous to transparent acoustic facies. In Petermann Fjord itself unlithified sediment cover typically comprises two units: an underlying acoustically-transparent unit overlain by an acoustically-stratified unit. Both of these units are conformable over scoured and fairly flat bedrock terrain; small basins are present only locally. Outside of the fjord are a few local sedimentary basins containing up to 40 m of stratified basin-fill deposits, and several areas of stacked mass-flow deposits. Glacial lineations both in the fjord and Nares Strait are formed in an acoustically-homogenous unit that underlies stratified and transparent units. In addition to the sub-bottom profiles, approximately 780 line-km of 2D seismic reflection profiles were acquired using an airgun (210 cu in.) and a 300-m long streamer. These profiles have allowed us to map full unlithified sediment thicknesses down to basement in the area. Here we present the results of this mapping and we calculate the volumes of a prominent grounding-zone wedge at the mouth of Petermann Fjord, and smaller GZWs in Kennedy Channel. These features demarcate former still-stand positions of grounded ice retreating through this system, both towards the present-day grounding line of Petermann Glacier and southwards through Nares Strait. Post-glacial sediment volumes are also calculated and the sedimentary processes responsible for their distribution examined. These data, when combined with chronological information, will provide sediment fluxes through the Petermann system and help us to identify how the system has responded to a past global warming event, namely the last deglaciation. This is particularly important in light of the recent thinning and acceleration of NW Greenland's marine-terminating outlet glaciers at present.

  6. Coupling Geophysical, Geotechnical and Stratigraphic Data to Interpret the Genesis of Mega-Scale-Glacial-Lineations on the Yermak Plateau, Arctic Ocean

    NASA Astrophysics Data System (ADS)

    O'Regan, M. A.; Jakobsson, M.; Kirchner, N.; Dowdeswell, J. A.; Hogan, K.

    2010-12-01

    The recent collection and analysis of multi-beam bathymetry data has revealed Mega-Scale Glacial Lineations (MSGL) in up to 600 m present water depth on the Yermak Plateau (Dowdeswell et al., 2010; Jakobsson et al., 2010). This evidence for large-scale ice grounding in the region supports previous interpretations from side-scan sonar, high-resolution subbottom and multi-channel seismic data. Detailed integration with regional subbottom data illustrates that the formation of the MSGL occurred in the late Quaternary, around MIS6. This event is distinct from a middle Quaternary ice grounding in the same region, that was first recognized by the transition into heavily overconsolidated sediments at ~20 mbsf at Ocean Drilling Program Site 910. While the middle Quaternary ice grounding left an easily recognizable imprint on the geotechnical properties of the sediments, the imprint from the late Quaternary event is far subtler, and not formerly recognized by analysis of sediments from Site 910. Furthermore, stratigraphic information indicates that neither event was associated with significant erosion, implying that the observed stress state of the sediments arose from ice-loading. Coupled with the orientation of the late Quaternary MSGL, the available evidence argues against an active ice-stream being responsible for their formation, and that they were more likely formed by a very large tabular iceberg traversing the ridge. This lends considerable support to the argument that MSGL-like features are not exclusively associated with fast flowing ice-streams. References Jakobsson, M., et al., An Arctic Ocean iceshelf during MIS 6 constrained by new geophysical and geological data. Quaternary Science Reviews (2010), doi:10.1016/j.quascirev.2010.03.015. Dowdeswell, J. A., et al., High-resolution geophysical observations of the Yermak Plateau and northern Svalbard margin: implications for ice-sheet grounding and deep-keeled icebergs. Quaternary Science Reviews (2010), doi:10.1016/j.quascirev.2010.06.002

  7. High-resolution geophysical data collected within Red Brook Harbor, Buzzards Bay, Massachusetts, in 2009

    USGS Publications Warehouse

    Turecek, Aaron M.; Danforth, William W.; Baldwin, Wayne E.; Barnhardt, Walter A.

    2012-01-01

    The U.S. Geological Survey conducted a high-resolution geophysical survey within Red Brook Harbor, Massachusetts, from September 28 through November 17, 2009. Red Brook Harbor is located on the eastern edge of Buzzards Bay, south of the Cape Cod Canal. The survey area was approximately 7 square kilometers, with depths ranging from 0 to approximately 10 meters. Data were collected aboard the U.S. Geological Survey Research Vessel Rafael. The research vessel was equipped with a 234-kilohertz interferometric sonar system to collect bathymetry and backscatter data, a dual frequency (3.5- and 200-kilohertz) compression high-intensity radar pulse seismic reflection profiler to collect subbottom data, a sound velocity profiler to acquire speed of sound within the water column, and a sea floor sampling device to collect sediment samples, video, and photographs. The survey was part of an ongoing cooperative effort between the U.S. Geological Survey and the Massachusetts Office of Coastal Zone Management to map the geology of the Massachusetts inner continental shelf. In addition to inclusion within the cooperative geologic mapping effort, these data will be used to assess the shallow-water mapping capability of the geophysical systems deployed for this project, with an emphasis on identifying resolution benchmarks for the interferometric sonar system.

  8. Assessing giant tsunamigenic subduction earthquakes in the Northern Chile Seismic Gap during the last two millennia

    NASA Astrophysics Data System (ADS)

    Vargas Easton, G.; Ruiz, S.; Leyton, F.; Abrahami, R.; Le Roux, J.; Pantoja, S.; Lange, C.; Contreras Reyes, E.; Campos, J. A.

    2014-12-01

    Marine sedimentary records off Northern Chile provide a new view about the occurrence of large subduction earthquakes along the hyperarid convergent margin of the Central Andes. From high resolution geochronology and sedimentology of laminated series accumulated on narrow shelf, we observed that anomalous structures such as slumps and discontinuities overlaid by turbidite deposits record the last giant Mw~8.8 earthquake and tsunami occurred on 1877 in the region. Once compared with the reanalysis of historical chronicles and seismological data, we suggest that only large magnitude events produce ground accelerations generating slumping or discontinuities. The analysis of long (ca. 5.5 m) sediment cores together with high resolution seismic subbottom profile data allow us to infer the occurrence of several giant earthquakes in the last ca. 1600 years, with a mean recurrence in the order of 400 years. Under this scope, the Mw8.1 occurred this year off Pisagua-Iquique region, as other previous historic events (Mw7.7, Tocopilla, 2007; Mw7.6, Iquique, 1933), seem to be moderate earthquakes into a larger seismic cycle.

  9. High-resolution seismic-reflection data from offshore northern California — Bolinas to Sea Ranch

    USGS Publications Warehouse

    Sliter, Ray W.; Johnson, Samuel Y.; Chin, John L.; Allwardt, Parker; Beeson, Jeffrey; Triezenberg, Peter J.

    2016-12-05

    The U.S. Geological Survey collected high-resolution seismic-reflection data in September 2009, on survey S-8-09-NC, offshore of northern California between Bolinas and Sea Ranch.The survey area spans about 125 km of California’s coast and extends around Point Reyes. Data were collected aboard the U.S. Geological Survey R/V Parke Snavely. Cumulatively, ~1,150 km of seismic-reflection data were acquired using a SIG 2mille minisparker. Subbottom acoustic depth of penetration spanned tens to several hundred meters and varied by location and underlying sediments and rock types.This report includes maps and a navigation file of the surveyed transects, utilizing Google Earth™ software, as well as digital data files showing images of each transect in SEG-Y and JPEG formats. The images of bedrock, sediment deposits, and tectonic structure provide geologic information that is essential to hazard assessment, regional sediment management, and coastal and marine spatial planning at Federal, State and local levels. This information is also valuable for future research on the geomorphic, sedimentary, tectonic, and climatic record of central California.

  10. Seismic-reflection and sidescan-sonar data collected on the Potomac River, Maryland and Virginia, during May 1979

    USGS Publications Warehouse

    Knebel, Harley J.

    1981-01-01

    The U.S. Geological Survey collected 2,170 line kilometers of single-channel seismic-reflection profiles and sidescan sonar records on the Potomac River during R/V NEECHO cruise NE-3-79 in May 1979. The purposes of the survey were to define: (1) areas of sediment accumulation and erosion; (2) the thickness of Holocene sediments; (3) the internal structure of the near-surface sediments; (4) the types of bottom topography; and (5) the general geologic framework of the tidal river and estuary.The survey utilized a variety of acoustic systems. Bottom data were obtained by using a Raytheon _1/ model DE-719 fathometer (200 kHz) and an EDO Western model 606 sidescan-sonar system (100 kHz). Subbottom data were collected with a 7-kHz Raytheon model PTR-106 system and a small airgun system (170-645 Hz band pass; l in3 chamber). An EDO Western sidescan fish (model 604-150) coupled with a 2.5-kHz seismic-reflection system also was used during the longitudinal run up the river. The totals for the ,various kinds of data collected were 481 line kilometers each of fathometer, sidescan sonar, 7-kHz, and airgun records, and 246 line kilometers of 2.5-kHz records. Positional control for all tracklines was provided by frequent radar fixes, by dead reckoning, and by sightings on buoys, landmarks, and other navigational aids.The quality of the acoustic records varied with location in the river. Good fathometer and sidescan-sonar records were collected along all tracklines. However, because of the nature of the sediments within some sections of the river, the degree of subbottom penetration in many places was limited. In general, the subbottom penetration and resolution were poor in the upper and middle reaches of the river, whereas the subbottom records from the lower reach usually were quite good.The original records may be examined at the U.S. Geological Survey, Woods Hole, MA 02543. Microfilm copies of the data are available for purchase from the National Geophysical and Solar-Terrestrial Data Center (NGSDC), Boulder, CO 80303.

  11. The use of Sentinel-2 imagery for seagrass mapping: Kalloni Gulf (Lesvos Island, Greece) case study

    NASA Astrophysics Data System (ADS)

    Topouzelis, Konstantinos; Charalampis Spondylidis, Spyridon; Papakonstantinou, Apostolos; Soulakellis, Nikolaos

    2016-08-01

    Seagrass meadows play a significant role in ecosystems by stabilizing sediment and improving water clarity, which enhances seagrass growing conditions. It is high on the priority of EU legislation to map and protect them. The traditional use of medium spatial resolution satellite imagery e.g. Landsat-8 (30m) is very useful for mapping seagrass meadows on a regional scale. However, the availability of Sentinel-2 data, the recent ESA's satellite with its payload Multi-Spectral Instrument (MSI) is expected to improve the mapping accuracy. MSI designed to improve coastline studies due to its enhanced spatial and spectral capabilities e.g. optical bands with 10m spatial resolution. The present work examines the quality of Sentinel-2 images for seagrass mapping, the ability of each band in detection and discrimination of different habitats and estimates the accuracy of seagrass mapping. After pre-processing steps, e.g. radiometric calibration and atmospheric correction, image classified into four classes. Classification classes included sub-bottom composition e.g. seagrass, soft bottom, and hard bottom. Concrete vectors describing the areas covered by seagrass extracted from the high-resolution satellite image and used as in situ measurements. The developed methodology applied in the Gulf of Kalloni, (Lesvos Island - Greece). Results showed that Sentinel-2 images can be robustly used for seagrass mapping due to their spatial resolution, band availability and radiometric accuracy.

  12. High-Resolution geophysical data from the inner continental shelf at Vineyard Sound, Massachusetts

    USGS Publications Warehouse

    Andrews, Brian D.; Ackerman, Seth D.; Baldwin, Wayne E.; Foster, David S.; Schwab, William C.

    2013-01-01

    The U.S. Geological Survey (USGS) and the Massachusetts Office of Coastal Zone Management (CZM) have mapped approximately 340 square kilometers of the inner continental shelf in Vineyard Sound, Massachusetts, under a cooperative mapping program. The geophysical data collected between 2009 and 2011 by the U.S. Geological Survey as part of this program are published in this report. The data include (1) swath bathymetry from interferometric sonar, (2) acoustic backscatter from sidescan sonar, and (3) seismic-reflection profiles from a chirp subbottom profiler. These data were collected to support research on the influence of sea-level change and sediment supply on coastal evolution and sediment transport processes and to provide baseline seabed characterization information required for management of coastal and offshore resources within the coastal zone of Massachusetts.

  13. High-resolution geophysical data from the Inner Continental Shelf: South of Martha's Vineyard and north of Nantucket, Massachusetts

    USGS Publications Warehouse

    Ackerman, Seth D.; Brothers, Laura L.; Foster, David S.; Andrews, Brian D.; Baldwin, Wayne E.; Schwab, William C.

    2016-10-28

    The U.S. Geological Survey and the Massachusetts Office of Coastal Zone Management have cooperated to map approximately 185 square kilometers of the inner continental shelf south of Martha’s Vineyard and north of Nantucket, Massachusetts. This report contains geophysical data collected by the U.S. Geological Survey during a survey in 2013. The geophysical data include (1) swath bathymetry collected by using interferometric sonar, (2) acoustic backscatter from the interferometric sonar, and (3) seismic-reflection profiles from a chirp subbottom profiler. These spatial data support research on the Quaternary evolution of coastal Massachusetts, the influence of sea-level change and sediment supply on coastal evolution, and efforts to understand the type, distribution, and quality of subtidal marine habitats in the coastal ocean of Massachusetts.

  14. Submarine Neotectonic Investigations of the Bahia Soledad Fault, off Northern Baja California Near the US - Mexico Border

    NASA Astrophysics Data System (ADS)

    Anderson, K.; Lundsten, E. M.; Paull, C. K.; Caress, D. W.; Thomas, H. J.; Maier, K. L.; McGann, M.; Herguera, J. C.; Gwiazda, R.; Arregui, S.; Barrientos, L. A.

    2015-12-01

    The Monterey Bay Aquarium Research Institute (MBARI) conducted detailed surveys at selected sites on the seafloor along the Bahia Soledad Fault offshore of Northern Baja California, Mexico, during a two-ship expedition in the spring of 2015. The Bahia Soledad Fault is a NNW-trending strike-slip fault that is likely continuous with the San Diego Trough Fault offshore of San Diego, California. Constraining the style of deformation, continuity, and slip rate along this fault system is critical to characterizing the seismic hazards to the adjacent coastal areas extending from Los Angeles to Ensenada. Detailed morphologic surveys were conducted using an autonomous underwater vehicle (AUV) to provide ultra high-resolution multibeam bathymetry (vertical precision of 0.15 m and horizontal resolution of 1.0 m). The AUV also carried a 2-10 kHz chirp sub-bottom profiler and an Edgetech 110kHz and 410kHz sidescan. The two sites along the Bahia Soledad Fault each run ~6 km along the fault with ~1.8 km wide footprint. The resulting bathymetry shows these fault zones are marked with distinct lineations that are flanked by ~1 km long elongated ridges and depressions which are interpreted to be transpressional pop-up structures and transtensional pull-apart basins up to 100 m of relief. Offset seismic reflectors that extend to near the seafloor confirm that these lineations are fault scarps. The detailed bathymetric maps and sub-bottom profiles were used to locate key sites where deformed stratigraphic horizons along the fault are within 1.5 m of the seafloor. These areas were sampled using a remotely operated vehicle (ROV) equipped with a vibracoring system capable of collecting precisely located cores that are up to 1.5 m long. The coupled use of multibeam imagery and surgically-collected stratigraphic samples will enable to constrain the frequency and timing of recent movements on this fault which will be useful to incorporated into future seismic hazard assessment.

  15. Application of a new genetic classification and semi-automated geomorphic mapping approach in the Perth submarine canyon, Australia

    NASA Astrophysics Data System (ADS)

    Picard, K.; Nanson, R.; Huang, Z.; Nichol, S.; McCulloch, M.

    2017-12-01

    The acquisition of high resolution marine geophysical data has intensified in recent years (e.g. multibeam echo-sounding, sub-bottom profiling). This progress provides the opportunity to classify and map the seafloor in greater detail, using new methods that preserve the links between processes and morphology. Geoscience Australia has developed a new genetic classification approach, nested within the Harris et al (2014) global seafloor mapping framework. The approach divides parent units into sub-features based on established classification schemes and feature descriptors defined by Bradwell et al. (2016: http://nora.nerc.ac.uk/), the International Hydrographic Organization (https://www.iho.int) and the Coastal Marine and Ecological Classification Standard (https://www.cmecscatalog.org). Owing to the ecological significance of submarine canyon systems in particular, much recent attention has focused on defining their variation in form and process, whereby they can be classified using a range of topographic metrics, fluvial dis/connection and shelf-incising status. The Perth Canyon is incised into the continental slope and shelf of southwest Australia, covering an area of >1500 km2 and extending from 4700 m water depth to the shelf break in 170 m. The canyon sits within a Marine Protected Area, incorporating a Marine National Park and Habitat Protection Zone in recognition of its benthic and pelagic biodiversity values. However, detailed information of the spatial patterns of the seabed habitats that influence this biodiversity is lacking. Here we use 20 m resolution bathymetry and acoustic backscatter data acquired in 2015 by the Schmidt Ocean Institute plus sub-bottom datasets and sediment samples collected Geoscience Australia in 2005 to apply the new geomorphic classification system to the Perth Canyon. This presentation will show the results of the geomorphic feature mapping of the canyon and its application to better defining potential benthic habitats.

  16. The University of Texas Institute for Geophysics Marine Geology and Geophysics Field Course

    NASA Astrophysics Data System (ADS)

    Davis, M. B.; Gulick, S. P.; Allison, M. A.; Goff, J. A.; Duncan, D. D.; Saustrup, S.

    2010-12-01

    During the spring-summer intersession, we annually offer an intensive three-week field course designed to provide hands-on instruction and training for graduate and upper-level undergraduate students in the acquisition, processing, interpretation, and visualization of marine geological and geophysical data. Now in year four, the course covers high-resolution air gun and streamer seismic reflection, CHIRP sub-bottom profiling, multibeam bathymetry, sidescan sonar, several types of sediment coring, grab sampling, and the sedimentology of resulting seabed samples (e.g., core description, grain size analysis, x-radiography, etc.). Students first participate in three days of classroom instruction designed to provide theoretical and technical background on each field method and impart geologic context of the study area. Students then travel to the Gulf Coast for a week of at-sea field work. In the field, students rotate between two small research vessels: one vessel, the 22’ aluminum-hulled R/V Lake Itasca, owned and operated by UTIG, is used for multibeam bathymetry, sidescan sonar, and sediment sampling; the other, NOAA’s R/V Manta or the R/V Acadiana, operated by the Louisiana Universities Marine Consortium, is used for high-resolution seismic reflection, CHIRP sub-bottom profiling, gravity coring, and vibracoring. Students assist with survey design, learn systems setup and acquisition parameters, and safe instrument deployment and retrieval techniques. Students also perform on-shore sedimentology lab work, data quality control, data processing and visualization using industry-standard software such as Focus, Landmark, Caris, and Fledermaus. During the course’s final week, students return to the classroom where, collaborating in teams of three, they integrate and interpret data in a final project which examines the geologic history and/or sedimentary processes as typified by the Gulf Coast continental shelf. The course culminates in a series of professional-level final presentations and discussions. Following the course, students report a greater understanding of marine geology and geophysics via the course’s intensive, hands-on, team approach, and low instructor to student ratio. This course satisfies field experience requirements for some degree programs and thus provides a unique alternative to land-based field courses.

  17. Deglaciation of the Western Margin of the Barents Sea Ice Sheet - a Swath Bathymetric and Sub-Bottom Seismic Study from Eglacom Nice-Streams Data in the Kveithola Trough

    NASA Astrophysics Data System (ADS)

    Rebesco, M.; Liu, Y.; Camerlenghi, A.; Winsborrow, M. C.; Laberg, J.; Caburlotto, A.; Diviacco, P.; Accettella, D.; Sauli, C.; Wardell, N.

    2010-12-01

    IPY Activity N. 367 focusing on Neogene ice streams and sedimentary processes on high- latitude continental margins (NICE-STREAMS) resulted in two coordinated cruises on the adjacent Storfjorden and Kveithola trough-mouth fans in the NW Barents Sea: SVAIS Cruise of BIO Hespérides, summer 2007, and EGLACOM Cruise of Cruise R/V OGS-Explora, summer 2008. The objectives were to acquire a high-resolution set of bathymetric, seismic and sediment core data in order to decipher the Neogene architectural development of the glacially-dominated NW Barents Sea continental margin in response to natural climate change. The paleo-ice streams drained ice from southern Spitsbergen, Spitsbergen Bank, and Bear Island. The short distance from the ice source to the calving front produced a short residence time of ice, and therefore a rapid response to climatic changes. We describe here the EGLACOM data collected within the Kveithola Trough, an E-W trending glacial trough in the NW Barents Sea, NW of the Bear Island. Swath bathymetry shows that the seafloor is characterised by E-W trending mega-scale glacial lineations (MSGL) that record a fast flowing ice stream draining the Svalbard/Barents Sea Ice Sheet (SBIS) during the Last Glacial Maximum (LGM). MSGL are overprinted by transverse sediment ridges about 15 km apart which give rise to a staircase axial profile of the trough. Such transverse ridges are interpreted as grounding-zone wedges (GZW) formed by deposition of unconsolidated, saturated subglacial till during episodic ice stream retreat. Sub-bottom (CHIRP) and multi-channel reflection seismic data show that present-day morphology is largely inherited from the palaeo-seafloor topography at the time of deposition of the transverse ridges, overlain by a draping glaciomarine unit up to over 15 m thick. Our data allow the reconstruction of depositional processes that accompanied the deglaciation of the Spitsbergen Bank area. The sedimentary drape deposited on top of the GZWs which accumulated at a very high rate in the order of 1-1.5 m ka-1 has a potential to preserve a high resolution palaeoclimatic record of the deglaciation and post-glacial condition in this sector of the Barents Sea.

  18. Diversity And Abundance Of Deep-Water Coral Mounds In The Straits Of Florida: A Result of Adaptability To Local Environments?

    NASA Astrophysics Data System (ADS)

    Correa, T. B.; Grasmueck, M.; Eberli, G.; Viggiano, D. A.; Rosenberg, A.; Reed, J. K.

    2007-12-01

    To improve the understanding of the Florida-Bahamas deep-water coral mound ecosystem, Autonomous Underwater Vehicle (AUV) surveys were conducted on five coral mound fields throughout the Straits of Florida (three sites at the base of slope of Great Bahama Bank (GBB), one in the middle of the Straits (MS) and one at the base of the Miami Terrace (MT)) in water depths of 590 to 860 m. The AUV provides high-resolution bathymetric maps, sub-bottom profiles and oceanographic data. The AUV survey sites were subsequently groundtruthed via sample collection and video transects, using the Johnson Sealink submersible. Contrary to previous surveys, we found a high diversity in coral mound morphology between sites separated by 15 to 80 km. The MT site is characterized by sinusoidal coral mound ridges, while the MS site contains densely clustered small coral mounds. Meanwhile, mounds of the GBB region are better developed, with some individual mounds reaching up to 90 m in height. Benthic coverage of live corals also differs between sites; the GBB sites are characterized by mounds densely covered by large thickets of live corals, while small thickets of mostly dead corals dominate the MT and MS sites. Several environmental factors may explain these differences. For example, bottom current patterns change between sites. The MT and the MS sites have a unidirectional regime (southward or northward flow, respectively), whereas the GBB sites have a tidal current regime. Sedimentation patterns as depicted by sub-bottom profiles also vary between the sites; coral mounds in the GBB area appear to receive higher sediment input, which can significantly enhance mound growth rates as the reef framework baffles and traps mobile sediments. However, coral mounds that cannot keep-up with the sedimentation rate are buried. Therefore, in the high sedimentation areas of GBB, flourishing live coral mounds are limited to elevated positions (i.e. plateaus, ridges crests) where sediment accumulation is lessened. Corals in these raised locations also benefit from increased exposure to nutrient-rich tidal currents, supporting a denser live coral coverage. Sub-bottom profiles of the MT site show undulating coral ridges developed on top of a relatively flat sub-surface, indicating that antecedent topography is not the only factor determining mound distribution. The integrated AUV data suggest that variable environmental factors, such as sedimentation and current patterns, contribute to the high diversity between coral mound sites of the Straits of Florida. Environmental conditions change over distances of only a few kilometers creating localized and diverse deep-water coral habitats. The deepwater fauna adapts to the local oceanographic and geological conditions. This results in an unexpectedly high abundance of deep-water coral communities with diverse expressions.

  19. Cold-seep habitat mapping: High-resolution spatial characterization of the Blake Ridge Diapir seep field

    NASA Astrophysics Data System (ADS)

    Wagner, Jamie K. S.; McEntee, Molly H.; Brothers, Laura L.; German, Christopher R.; Kaiser, Carl L.; Yoerger, Dana R.; Van Dover, Cindy Lee

    2013-08-01

    Relationships among seep community biomass, diversity, and physiographic controls such as underlying geology are not well understood. Previous efforts to constrain these relationships at the Blake Ridge Diapir were limited to observations from piloted deep-submergence vehicles. In August 2012, the autonomous underwater vehicle (AUV) Sentry collected geophysical and photographic data over a 0.131 km2 area at the Blake Ridge Diapir seeps. A nested survey approach was used that began with a regional or reconnaissance-style survey using sub-bottom mapping systems to locate and identify seeps and underlying conduits. This survey was followed by AUV-mounted sidescan sonar and multibeam echosounder systems mapping on a mesoscale to characterize the seabed physiography. At the most detailed survey level, digital photographic imaging was used to resolve sub-meter characteristics of the biology. Four pockmarks (25-70 m diameter) were documented, each supporting chemosynthetic communities. Concentric zonation of mussels and clams suggests the influence of chemical gradients on megafaunal distribution. Data collection and analytical techniques used here yield high-resolution habitat maps that can serve as baselines to constrain temporal evolution of seafloor seeps, and to inform ecological niche modeling and resource management.

  20. Cold-seep habitat mapping: high-resolution spatial characterization of the Blake Ridge Diapir seep field

    USGS Publications Warehouse

    Wagner, Jamie K.S.; McEntee, Molly H.; Brothers, Laura L.; German, Christopher R.; Kaiser, Carl L.; Yoerger, Dana R.; Van Dover, Cindy Lee

    2013-01-01

    Relationships among seep community biomass, diversity, and physiographic controls such as underlying geology are not well understood. Previous efforts to constrain these relationships at the Blake Ridge Diapir were limited to observations from piloted deep-submergence vehicles. In August 2012, the autonomous underwater vehicle (AUV) Sentry collected geophysical and photographic data over a 0.131 km2 area at the Blake Ridge Diapir seeps. A nested survey approach was used that began with a regional or reconnaissance-style survey using sub-bottom mapping systems to locate and identify seeps and underlying conduits. This survey was followed by AUV-mounted sidescan sonar and multibeam echosounder systems mapping on a mesoscale to characterize the seabed physiography. At the most detailed survey level, digital photographic imaging was used to resolve sub-meter characteristics of the biology. Four pockmarks (25–70 m diameter) were documented, each supporting chemosynthetic communities. Concentric zonation of mussels and clams suggests the influence of chemical gradients on megafaunal distribution. Data collection and analytical techniques used here yield high-resolution habitat maps that can serve as baselines to constrain temporal evolution of seafloor seeps, and to inform ecological niche modeling and resource management.

  1. High-resolution geophysical data from the inner continental shelf—Buzzards Bay, Massachusetts

    USGS Publications Warehouse

    Ackerman, Seth D.; Andrews, Brian D.; Foster, David S.; Baldwin, Wayne E.; Schwab, William C.

    2012-01-01

    The U.S. Geological Survey (USGS) and the Massachusetts Office of Coastal Zone Management (CZM) have cooperated to map approximately 410 square kilometers (km²) of the inner continental shelf in Buzzards Bay, Massachusetts. This report contains geophysical data collected by the USGS on three cruises conducted in 2009, 2010, and 2011, and additional bathymetry data collected by the National Oceanic and Atmospheric Administration in 2004. The geophysical data include (1) swath bathymetry using interferometric sonar and multibeam echosounder systems, (2) acoustic backscatter from sidescan sonar, and (3) seismic-reflection profiles from a chirp subbottom profiler. These spatial data support research on the Quaternary evolution of Buzzards Bay, the influence of sea-level change and sediment supply on coastal evolution, and efforts to understand the type, distribution, and quality of subtidal marine habitats in the coastal ocean of Massachusetts.

  2. Imaging Reservoir Siltation and Quaternary Stratigraphy Beneath the Mactaquac Headpond by Acoustic and Ground Penetrating Radar Sub-bottom Imaging

    NASA Astrophysics Data System (ADS)

    Grace, M.; Butler, K. E.; Peter, S.; Yamazaki, G.; Haralampides, K.

    2016-12-01

    The Mactaquac Hydroelectric Generating Station, located on the Saint John River in New Brunswick, Canada, is approaching the end of its life due to deterioration of the concrete structures. As part of an aquatic ecosystem study, designed to support a decision on the future of the dam, sediment in the headpond, extending 80 km upriver, is being examined. The focus of this sub-study lies in (i) mapping the thickness of sediments that have accumulated since inundation in 1968, and (ii) imaging the deeper glacial and post-glacial stratigraphy. Acoustic sub-bottom profiling surveys were completed during 2014 and 2015. An initial 3.5 kHz chirp sonar survey proved ineffective, lacking in both resolution and depth of the penetration. A follow-up survey employing a boomer-based "Seistec" sediment profiler provided better results, resolving sediment layers as thin as 12 cm, and yielding coherent reflections from the deeper Quaternary sediments. Post-inundation sediments in the lowermost 25 km of the headpond, between the dam and Bear Island, are interpreted to average 26 cm in thickness with the thickest deposits (up to 65 cm) in deep water areas overlying the pre-inundation riverbed west of Snowshoe Island, and south and east of Bear Island. A recent coring program confirmed the presence of silty sediment and showed good correlation with the Seistec thickness estimates. In the 15 km stretch upriver of Bear Island to Nackawic, the presence of gas in the uppermost sediments severely limits sub-bottom penetration and our ability to interpret sediment thicknesses. Profiles acquired in the uppermost 40 km reach of the headpond, extending to Woodstock, show a strong, positive water bottom reflection and little to no sub-bottom penetration, indicating the absence of soft post-inundation sediment. Deeper reflections observed within 5 km of the dam reveal a buried channel cut into glacial till, extending up to 20 m below the water bottom. Channel fill includes a finely laminated unit interpreted to be glaciolacustrine clay-silt and a possible esker - similar to stratigraphy found 20 - 30 km downriver at Fredericton. Future plans include a small scale survey in late summer, 2016 to evaluate the suitability of waterborne ground penetrating radar (GPR) profiling as an alternative to acoustic profiling in areas of gas-charged sediment.

  3. Investigating Hydrocarbon Seep Environments with High-Resolution, Three-Dimensional Geographic Visualizations.

    NASA Astrophysics Data System (ADS)

    Doolittle, D. F.; Gharib, J. J.; Mitchell, G. A.

    2015-12-01

    Detailed photographic imagery and bathymetric maps of the seafloor acquired by deep submergence vehicles such as Autonomous Underwater Vehicles (AUV) and Remotely Operated Vehicles (ROV) are expanding how scientists and the public view and ultimately understand the seafloor and the processes that modify it. Several recently acquired optical and acoustic datasets, collected during ECOGIG (Ecosystem Impacts of Oil and Gas Inputs to the Gulf) and other Gulf of Mexico expeditions using the National Institute for Undersea Science Technology (NIUST) Eagle Ray, and Mola Mola AUVs, have been fused with lower resolution data to create unique three-dimensional geovisualizations. Included in these data are multi-scale and multi-resolution visualizations over hydrocarbon seeps and seep related features. Resolution of the data range from 10s of mm to 10s of m. When multi-resolution data is integrated into a single three-dimensional visual environment, new insights into seafloor and seep processes can be obtained from the intuitive nature of three-dimensional data exploration. We provide examples and demonstrate how integration of multibeam bathymetry, seafloor backscatter data, sub-bottom profiler data, textured photomosaics, and hull-mounted multibeam acoustic midwater imagery are made into a series a three-dimensional geovisualizations of actively seeping sites and associated chemosynthetic communities. From these combined and merged datasets, insights on seep community structure, morphology, ecology, fluid migration dynamics, and process geomorphology can be investigated from new spatial perspectives. Such datasets also promote valuable inter-comparisons of sensor resolution and performance.

  4. Signature of Transpressional Tectonics in the Holocene Stratigraphy of Lake Azuei, Haiti: Preliminary Results From a High-Resolution Subbottom Profiling Survey

    NASA Astrophysics Data System (ADS)

    Cormier, M. H.; Sloan, H.; Boisson, D.; Brown, B.; Guerrier, K.; Hearn, C. K.; Heil, C. W., Jr.; Kelly, R. P.; King, J. W.; Knotts, P.; Lucier, O. F.; Momplaisir, R.; Stempel, R.; Symithe, S. J.; Ulysse, S. M. J.; Wattrus, N. J.

    2017-12-01

    The left-lateral Enriquillo-Plantain Garden Fault (EPGF) is one of two transform systems that define the Northern Caribbean plate boundary zone. Relative motion across its trace ( 10 mm/yr) evolves from nearly pure strike-slip in western Haiti to transpressional in eastern Haiti, where the fault system may terminate against a south-dipping oblique reverse fault. Lake Azuei is a large (10 km x 25 km) and shallow (< 30 m deep) lake that lies in the direct extension of the EPGF in eastern Haiti. A single core previously collected in the lake suggests high sedimentation rates at its depocenter ( 6 mm/yr). The shallow lake stratigraphy is therefore expected to faithfully record any tectonic deformation that occurred within the past few thousand years. In January 2017, we acquired a grid of high-resolution ( 10 cm), shallow penetration ( 4 to 5 m) subbottom seismic (CHIRP) profiles spaced 1.2 km apart across the entire lake. A new bathymetric map compiled from these CHIRP data and some prior echosounder survey reveals a flat lake floor (<0.01°) surrounded by steep ( 5°) shoreline slopes. The CHIRP profiles highlight several gentle folds that protrude from the flat lakebed near the southern shore, an area where transpressional deformation is presumably focused. Thin (< 20 cm) horizontal strata from the lakebed can be traced onto the flanks of these gentle folds and pinch out in an upward curve. They also often pinch upward onto the base of the shoreline slopes, indicating that young sediments on the lakebed bypassed the folds as well as the shoreline slopes. We interpret this feature as diagnostic of sediments deposited by turbidity currents. The fact that young turbidites pinch out in upward curves suggests that the folds are actively growing, and that active contractional structures (folds and/or blind thrust faults) control much of the periphery of the lake. A few sediment cores were strategically located where beds are pinching out in order to maximize stratigraphic records. Two of these cores successfully penetrated strata imaged by the CHIRP profiles. On-going Pb210 dating of sediment samples from the cores should constrain sedimentation rates and thus help quantify the rates of the tectonic deformation.

  5. High-Resolution Seafloor Observations of an Active Mud Volcano Offshore SW Taiwan - Results of a Repeated Survey after Four Years

    NASA Astrophysics Data System (ADS)

    Hsu, H. H.; Chen, T. T.; Liu, C. S.; Su, C. C.; Paull, C. K.; Caress, D. W.; Gwiazda, R.; Chen, Y. H.

    2017-12-01

    Mud Volcano V (MV5) is an active submarine mud volcano sitting on top of a mud diapir ridge at water depths of 600 m in the active margin offshore of southwestern Taiwan. This cone-shape mud volcano is almost 3-km-wide, 200-m-high, with 9.5° slopes, and explosively ejects streams of mud every 1.5-3 minutes. It was first mapped in 2013 with MBARI's mapping AUV (autonomous underwater vehicle). In 2017, a repeated AUV mapping survey was conducted to see if significant bathymetric changes took place since 2013, and to investigate the fluxes of fluids that pass through diapiric structures in an active continental margin. In addition to high-resolution bathymetry (1-m-resolution), sub-bottom profiling and side-scan sonar data acquired by the AUV, and videos and samples collected by MBARI's miniROV, we also incorporate multichannel seismic reflection data and gravity core sample analyses in this study. AUV bathymetry data reveal that there are two gryphons on the eastern slope of MV5. In the 2017 survey the mapped sizes of the two side cones were 80 m wide, 35 m long, 20 m relief and 40 m wide, 40 m long, 12 m relief, respectively. Comparing the bathymetry mapped in the 2017 AUV survey with that surveyed in 2013, no obvious overall morphological changes in MV5 are detected, except around the two gryphons. In the time period between the surveys, due to venting of mud from the two gryphons, two series of flow deposits which can be up to 5 meters thick are observed along the slope in the east side of both gryphons. The center depressions of these two gryphons have increased by 1-5 meters depth in their west side. Seismic and sub-bottom profiles reveal amplitude anomalies in the sub-strata of MV5 which indicate possible fluid migration paths of mud flows from deep. The trace of mud flow from the top of MV5 to its foot can be delineated from the side-scan sonar images. On the basis of 210Pbex chronology dating method, the sedimentation rate on the surface of MV5 is very slow (0.057 cm/y). High methane anomalies are discovered on MV5 based on the geochemical analysis results of gravity core samples, but the heat probe did not detect obvious temperature changes before and after venting episodes in the 2017 survey. Based on this comprehensive study, a three-step model is proposed to explain mud volcano venting processes in the active margin offshore of SW Taiwan.

  6. High Resolution Seafloor Environmental Characterization of Methane Seeps in the Mississippi Canyon Near Atwater Valley 13/14, Gulf of Mexico.

    NASA Astrophysics Data System (ADS)

    Gardner, J. M.; Hagen, R.; Hart, P.; Czarnecki, M.; Nishimura, C.; Hutchinson, D. R.

    2005-12-01

    The purpose of this project was to conduct detailed surface mapping of one of the areas drilled by the Joint Industry Project with ChevronTexaco to understand gas hydrates in the Gulf of Mexico. The gently sloping, mostly flat floor of the Mississippi Canyon is interrupted by mounds and depressions that presumably reflect the complex geology and geohydrology related to turbidite deposition and pervasive salt tectonism. The seafloor mounds we mapped in this study occur in approximately 1300 water depth along the floor of the Mississippi Canyon in lease block areas Atwater Valley 13 and 14. High resolution sidescan sonar (100 kHz and 500 kHz) backscatter imagery, and chirp sub-bottom profiler data were collected using the DT1 deep-towed oceanographic mapping instrument, concentrating on the region directly adjacent to and surrounding two mounds identified as, mounds D and F, and in the region directly adjacent to and surrounding the mounds. The backscatter data have been mosaiced and normalized to provide information on the shape and extent of the mounds, the possible lateral extent of fauna, such as mussel and clam fields on the mounds, possible seep related flows and the occurrence of carbonate material. The extent of a mudflow can be mapped on the southeastern side of mound F. Previously collected bottom camera images have been used to ground-truth the backscatter information. Coincident with the collection of backscatter information was the collection of very high-resolution bathymetric data. Together, the backscatter and bathymetric data show extremely high-resolution detail about the shape, relief, and morphology of the mounds. This information, coupled with porewater chemistry and heatflow data form a coherent picture of possible mechanics for fluid venting and flora/fauna of the seeps in this region.

  7. Reassessment of seismically induced, tsunamigenic submarine slope failures in Port Valdez, Alaska, USA

    USGS Publications Warehouse

    Lee, H.J.; Haeussler, P.J.; Kayen, R.E.; Hampton, M.A.; Locat, Jacques; Suleimani, E.; Alexander, C.R.

    2007-01-01

    The M9.2 Alaska earthquake of 1964 caused major damage to the port facilities and town of Valdez, most of it the result of submarine landslide and the consequent tsunamis. Recent bathymetric multibeam surveys, high-resolution subbottom profiles, and dated sediment cores in Port Valdez supply new information about the morphology and character of the landslide deposits. A comparison of pre- and post-earthquake bathymetry provides an estimate of the net volume of landslide debris deposited in the basin and the volume of sediment removed from the source region. Landslide features include (1) large blocks (up to 40-m high) near the location of the greatest tsunamiwave runup (~50 m), (2) two debris lobes associated with the blocks, (3) a series of gullies, channels and talus, near the fjord-head delta and badly damaged old town of Valdez, and (4) the front of a debris lobe that flowed half-way down the fjord from the east end.

  8. Predicted seafloor facies of Central Santa Monica Bay, California

    USGS Publications Warehouse

    Dartnell, Peter; Gardner, James V.

    2004-01-01

    Summary -- Mapping surficial seafloor facies (sand, silt, muddy sand, rock, etc.) should be the first step in marine geological studies and is crucial when modeling sediment processes, pollution transport, deciphering tectonics, and defining benthic habitats. This report outlines an empirical technique that predicts the distribution of seafloor facies for a large area offshore Los Angeles, CA using high-resolution bathymetry and co-registered, calibrated backscatter from multibeam echosounders (MBES) correlated to ground-truth sediment samples. The technique uses a series of procedures that involve supervised classification and a hierarchical decision tree classification that are now available in advanced image-analysis software packages. Derivative variance images of both bathymetry and acoustic backscatter are calculated from the MBES data and then used in a hierarchical decision-tree framework to classify the MBES data into areas of rock, gravelly muddy sand, muddy sand, and mud. A quantitative accuracy assessment on the classification results is performed using ground-truth sediment samples. The predicted facies map is also ground-truthed using seafloor photographs and high-resolution sub-bottom seismic-reflection profiles. This Open-File Report contains the predicted seafloor facies map as a georeferenced TIFF image along with the multibeam bathymetry and acoustic backscatter data used in the study as well as an explanation of the empirical classification process.

  9. Fine-scale relief related to late holocene channel shifting within the floor of the upper Redondo Fan, offshore Southern California

    USGS Publications Warehouse

    Normark, W.R.; Paull, C.K.; Caress, D.W.; Ussler, W.; Sliter, R.

    2009-01-01

    Erosional and depositional bedforms have been imaged at outcrop scale in the upper Redondo Fan, in the San Pedro Basin of offshore Southern California in ???600 m water depths, using an Autonomous Underwater Vehicle developed by the Monterey Bay Aquarium Research Institute. The Autonomous Underwater Vehicle is equipped with multibeam and chirp sub-bottom sonars. Sampling and photographic images using the Monterey Bay Aquarium Research Institute Remotely Operated Vehicle Tiburon provide groundtruth for the Autonomous Underwater Vehicle survey. The 0??3 m vertical and 1??5 m lateral bathymetric resolution and 0??1 m sub-bottom profile resolution provide unprecedented detail of bedform morphology and structure. Multiple channels within the Redondo Fan have been active at different times during the Late Holocene (0 to 3000 yr bp). The currently active channel extending from Redondo Canyon makes an abrupt 90?? turn at the canyon mouth before resuming a south-easterly course along the east side of the Redondo Fan. This channel is floored by sand and characterized by small steps generally <1 m in relief, spaced 10 to 80 m in the down-channel direction. A broader channel complex lies along the western side of the fan valley that was last active more than 850 years ago. Two distinct trains of large scours, with widths ranging from tens to a few hundred metres and depths of 20 m, occur on the floor of the western channel complex, which has a thin mud drape. If observed in cross-section only, these large scours would probably be misidentified as the thalweg of an active channel. ?? 2009 The Authors. Journal compilation ?? 2009 International Association of Sedimentologists.

  10. A case study on pseudo 3-D Chirp sub-bottom profiler (SBP) survey for the detection of a fault trace in shallow sedimentary layers at gas hydrate site in the Ulleung Basin, East Sea

    NASA Astrophysics Data System (ADS)

    Kim, Young-Jun; Koo, Nam-Hyung; Cheong, Snons; Kim, Jung-Ki; Chun, Jong-Hwa; Shin, Sung-Ryul; Riedel, Michael; Lee, Ho-Young

    2016-10-01

    A pseudo 3-D Chirp sub-bottom profiler (SBP) survey was conducted to define the extension of a fault that was previously identified on low-resolution 2-D seismic data with an emphasis on the shallow sedimentary layers and to determine if the fault extends to the seafloor. The geophysical survey was conducted as part of an environmental impact assessment for a proposed gas hydrate production test in the Ulleung Basin, East Sea. The Chirp SBP raw data were acquired over an area of 1 km × 1 km with an average line spacing of 20 m. To produce a 3-D Chirp SBP volume, we developed an optimal processing sequence that was divided into two steps. The first phase of 2-D data processing included a sweep signature estimation, correlation, deconvolution, swell effect correction, and migration. The second phase of 3-D data processing was composed of a bin design, bin gathering of the final processed 2-D data set, amplitude normalization, and residual statics correction. The 3-D Chirp SBP volume provides enhanced imaging especially due to the residual static processing using a moving average method and shows better continuity of the sedimentary layers and consistency of the reflection events than the individual 2-D lines. Deformation of the seafloor as a result of the fault was detected, and the fault offset increases in the deeper sedimentary layers. We also determined that the fault strikes northwest-southeast. However, the shallow sub-seafloor sediments have high porosities and therefore do not exhibit brittle fault-behavior but rather deform continuously due to fault movement.

  11. Single-channel seismic-reflection profiles and sidescan sonar records collected during May 15-20, 1978, on the southern New England continental shelf

    USGS Publications Warehouse

    Twichell, David C.

    1980-01-01

    The U.S. Geological Survey completed a cruise aboard the R/V CAPE HENLOPEN during May 15-20, 1978, to map the surface character, thickness and extent of the fine-grained.sediment deposit that covers an area 100 x 200 km on the southern New England Continental Shelf. The study area lies between Great South Channel to the east and Black Channel to the west, and extends from the 50-m isobath to the shelf edge.Single-channel high-resolution seismic-reflection profiles and echo-sounding profiles were collected along 941 km of trackline, sidescan sonar records were collected along 673 km of trackline. The subbottom profiles were collected by using a Huntec*system that was towed at midwater depths. Filters were set at 1 to 7 kHz. Echo-sounding records were collected by using a 60 kHz EDO Western system. A Klein stdescan sonar, set to scan 100 m to either side of the towed fish, was used to collect the sonographs.Navigation during the survey was done by the scientific staff using Loran-C equipment. Fixes were recorded and logged at least every 15 minutes; after the cruise, they were digitized and stored on magnetic tape.The original records can be seen and studied at the U.S. Geological Survey Data Library at Woods Hole, MA 02543. Microfilm copies of the subbottom, echo­sounding, and sidescan sonar records collected during the cruise can be purchased from the National Geophysical and Solar-Terrestrial Data Center, NOAA (National Oceanic ancl Atmosphere Administration), Boulder, CO 80302.

  12. Acoustic profiles and images of the Palos Verdes Margin: Implications concerning deposition from the White's Point outfall

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hampton, M A.; Karl, H; Murray, Christopher J.

    2001-12-01

    Subbottom profiles and sidescan-sonar images collected on and around the Palos Verdes shelf show a surficial deposit interpreted to contain effluent from the White's Point diffusers, as well as showing several geologic features that affect the deposit's distribution. The effluent-affected deposit is visible in high-resolution subbottom profiles on the shelf and the adjacent San Pedro basin slope to water depths of 170 m. It has a maximum thickness of 75 cm and was mapped acoustically over an area of 10.8 km{sup 2}, which encompasses a volume of about 3.2 million m{sup 3}. The deposit's basal reflector is acoustically distinct overmore » most of the mapped area, implying that the deposit has not been extensively mixed across its base, perhaps being relatively free of reworking since its initial deposition. Nearshore, the basal reflector is weak and fades away toward land, which could result from syndepositional intermixing of coarse native sediment (particularly from the Portuguese Bend landslide) with effluent in the high-energy nearshore zone, or postdepositionally by physical (wave) or biological mixing across the interface. The geometry of the deposit implies that effluent is dispersed primarily in a northwesterly and seaward direction from the diffusers. Dispersal across the shelf break is in some places strongly affected by topography, particularly by submarine canyons. The deposit overlies stratified and unstratified Quaternary sediment, up to 30 m thick, that in turn overlies the irregular erosional surface of deformed Miocene bedrock that crops out in places on the shelf and upper basin slope. The effluent-affected deposit rests on potentially unstable landslide deposits on the San Pedro basin slope. The acoustic profiles and side-scan images show evidence for active and inactive vents, probably of hot water and gas, some of which are within the boundary of the effluent-affected sediment deposit and could disrupt it if seepage occurs.« less

  13. Development of levees on deep-sea channels: Insights from high-resolution AUV exploration of the Lucia Chica system, offshore central California

    NASA Astrophysics Data System (ADS)

    Maier, K. L.; Fildani, A.; Romans, B.; Paull, C. K.; McHargue, T.; Graham, S. A.; Caress, D. W.

    2010-12-01

    The Lucia Chica, a tributary channel system of the Lucia Canyon, offshore central California, was imaged using the Monterey Bay Aquarium Research Institute’s (MBARI) Autonomous Underwater Vehicle (AUV) in order to investigate seafloor and subsurface morphologies associated with low-relief submarine channels. In larger, previously investigated seafloor channel-levee systems, initial deposits are either eroded, compacted, or below the resolution of available imaging. In this dataset from the Lucia Chica, the unprecedented high-resolution multibeam bathymetry (1 m lateral resolution) and chirp sub-bottom profiles (11 cm vertical resolution) reveal a highly irregular seafloor with scours, depressions, and discontinuous low-relief conduits over an area of ~70 km2. Sediment packages associated with channels, levees, and deposits related to less confined flows are correlated between chirp profiles and with the multibeam bathymetric image to determine the stratigraphic evolution of the Lucia Chica and the sequence of channel-levee development. In the Lucia Chica, channels appear to have initiated as trains of scours that eventually coalesced into continuous channel thalwegs carved by erosional turbidity currents. Channel incision and stepped lateral migration led to the development of terraces, complex levee stratigraphy, and distinct morphologies associated with inner and outer bends of sinuous channels. The inner bend levee stratigraphy indicates that the channel position migrated in discrete shifts, as opposed to continuous channel migration associated with lateral accretion. Discrete levee packages, formed from flow-stripped turbidity currents, later infilled abandoned portions of the channel and overbank areas. While processes of initial channel and levee development are well established in fluvial settings, detailed examples are lacking for deep-sea systems. These results highlight the differences in initiation between submarine channel systems, their fluvial counterparts, and larger submarine channel-levee systems imaged only with lower-resolution technologies. High-resolution imaging and detailed mapping made possible by cutting-edge oceanographic technology provide an unprecedented examination of deep-water channel-levee morphology and improve understanding of deep-water channel migration and levee development.

  14. Last deglaciation of the Svalbard/Barents Sea Ice Sheet - a swath bathymetric and sub-bottom seismic study from the Kveithola Trough

    NASA Astrophysics Data System (ADS)

    Rebesco, Michele; Liu, Yanguang; Camerlenghi, Angelo; Winsborrow, Monica; Sverre Laberg, Jan; Caburlotto, Andrea; Diviacco, Paolo; Accettella, Daniela; Sauli, Chiara; Wardell, Nigel

    2010-05-01

    Kveithola Trough, an E-W trending cross-shelf glacial trough in the NW Barents Sea, was surveyed for the first time during the EGLACOM cruise between 8th July and 4th August 2008 on board R/V OGS-Explora. EGLACOM (Evolution of a GLacial Arctic COntinental Margin: the southern Svalbard ice stream-dominated sedimentary system) project is the Italian contribution to the International Polar Year (IPY) Activity 367 (Neogene ice streams and sedimentary processes on high- latitude continental margins - NICE STREAMS). Such IPY activity included as well the Spanish SVAIS 2008 cruise on board BIO Hesperides. EGLACOM data acquisition, focused on the Storfjorden Fan and Kveithola Trough, included a multi-channel seismic (MCS) reflection survey and the simultaneous collection of swath bathymetry and sub-bottom CHIRP profiles. Swath bathymetry in the Kveithola Trough shows that the seafloor is characterized by E-W trending mega-scale glacial lineations (MSGL). These include large-scale ridges about 2 km wide and 15 m high as well as smaller grooves about 100 m wide and a few metres deep. Such MSGL record the fast flow of an ice stream draining the Svalbard/Barents Sea Ice Sheet (SBSIS) during the Last Glacial Maximum (LGM). MSGL are overprinted by transverse sediment ridges about 15 km apart which give rise to a staircase long profile of the trough. Such transverse ridges are interpreted as grounding-zone wedges (GZW) formed by deposition of unconsolidated, saturated subglacial till during ice stream retreat. Sub-bottom (CHIRP) and multi-channel reflection seismic data show that the morphology is controlled by stacked sets of lensoidal transparent units (tills) overlain by a draping glaciomarine unit up to over 15 m thick. Formed during temporary stillstands in grounding-zone position before complete deglaciation, GZW ridges are diagnostic of episodic retreat. Our data allow the reconstruction of deglaciation in the Spitsbergen Bank area, with each stage during deglaciation recorded by deposition of a GZW. Three independent lines of reasoning suggest that an ice cap persisted on Spitsbergen Bank for some thousand years and lasted much longer than those that fed the adjacent glacial troughs: 1) the freshness of the morphology in Kveithola Trough compared to that of adjacent Storfjorden and Bear Island troughs; 2) the volume of sediment in the GZW ridges compared to the small catchment area; 3) preliminary assessment of the stratigraphic position of debris flow deposits on the continental slope. The 15 m of sedimentary drape deposited on top of GZW ridges contains a high-resolution palaeoclimatic record of the last thousand years, which accumulated at a very high average sedimentation rate. Sampling (through drilling) of the thin glaciomarine sediments between the till lenses of the successive GZW ridges may allow the dating of deglaciation phases in the Barents Sea.

  15. Compared sub-bottom profile interpretation in fjords of King George Island and Danco Coast, Antarctica

    NASA Astrophysics Data System (ADS)

    Rodrigo, C.; Vilches, L.; Vallejos, C.; Fernandez, R.; Molares, R.

    2015-12-01

    The fjords of the South Shetland Islands (Antarctica) and Danco Coast (Antarctic Peninsula) represent climatic transitional areas (subpolar to polar). The analysis of the distribution of sub-bottom facies helps to understand the prevailing sedimentary and climatic processes. This work seeks to characterize and compare the fjord seismic facies, of the indicated areas, to determine the main sedimentary processes in these regions. Compressed High-Intensity Radiated Pulse (CHIRP) records from 3.5 kHz sub-bottom profiler were obtained from the cruise: NBP0703 (2007); and pinger 3.5 kHz sub-bottom profiler records from the cruises: ECA-50 INACH (2014), and First Colombian Expedition (2015). Several seismic facies were recognized in all studied areas with some variability on their thickness and extent, and indicate the occurrence of similar sedimentary processes. These are: SSD facies (strong to weak intensity, stratified, draped sheet external shape), is interpreted as sedimentary deposits originated from suspended sediments from glaciar plumes and/or ice-rafting. This facies, in general, is thicker in the fjords of King George Island than in the larger fjords of the Danco Coast; on the other hand, within the Danco Coast area, this facies is thinner and more scarce in the smaller fjords and bays. MCM facies (moderate intensity, chaotic and with mounds) is associated with moraine deposits and/or basement. This is present in all areas, being most abundant in the Danco Coast area. WIC facies (weak intensity and chaotic) is interpreted as debris flows, which are present in both regions, but is most common in small fjords or bays in the Danco Coast, perhaps due to higher slopes of the seabed. In this work we discuss the influence of local climate, sediment plumes from the glaciers and other sedimentary processes on the distribution and geometry of the identified seismic facies.

  16. Archive of Digital Chirp Sub-bottom Profile Data Collected During USGS Cruises 08CCT02 and 08CCT03, Mississippi Gulf Islands, July and September 2008

    USGS Publications Warehouse

    Barry, K.M.; Cavers, D.A.; Kneale, C.W.

    2011-01-01

    In July and September of 2008, the U.S. Geological Survey (USGS) conducted geophysical surveys to investigate the geologic controls on island framework from Ship Island to Horn Island, MS, for the Northern Gulf of Mexico (NGOM) Ecosystem Change and Hazard Susceptibility project. This project is also part of a broader USGS study on Coastal Change and Transport (CCT). This report serves as an archive of unprocessed digital Chirp sub-bottom profile data, trackline maps, navigation files, Geographic Information System (GIS) files, Field Activity Collection System (FACS) logs, observer's logbook, and formal Federal Geographic Data Committee (FGDC) metadata. Gained (a relative increase in signal amplitude) digital images of the sub-bottom profiles are also provided. Refer to the Acronyms page for expansion of acronyms and abbreviations used in this report.

  17. Carbonate Sediment Deposits on the Reef Front Around Oahu, Hawaii

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hampton, M A.; Blay, Charles T.; Murray, Christopher J.

    2004-06-01

    Large sediment deposits on the reef front around Oahu are a possible resource for replenishing eroded beaches. High-resolution subbottom profiles clearly depict the deposits in three study areas: Kailua Bay off the windward coast, Makua to Kahe Point off the leeward coast, and Camp Erdman to Waimea off the north coast. Most of the sediment is in water depths between 20 and 100 m, resting on submerged shelves created during lowstands of sea level. The mapped deposits have a volume of about 400 million cubic meters in water depths less than 100 m, being thickest off the mouth of channelsmore » carved into the modern insular shelf, from which most of the sediment issues. Vibracore samples contain various amounts of sediment of similar size to the sand on Oahu beaches, with the most compatible prospects located off Makaha, Haleiwa, and Camp Erdman and the least compatible ones located in Kailua Bay. Laboratory tests show a positive correlation of abrasion with Halimeda content; samples from Kailua Bay suffered high amounts of attrition but others were comparable to tested beach samples.« less

  18. Geophysical data from offshore of the Gulf Islands National Seashore, Cat Island to Western Horn Island, Mississippi

    USGS Publications Warehouse

    Pendleton, E.A.; Baldwin, W.E.; Danforth, W.W.; DeWitt, N.T.; Forde, A.S.; Foster, D.S.; Kelso, K.W.; Pfeiffer, W.R.; Turecek, A.M.; Flocks, J.G.; Twichell, D.C.

    2011-01-01

    This report contains the geophysical and geospatial data that were collected along the western offshore side of the Gulf Islands of Mississippi on the research vessel Tommy Munro during two cruises in 2010. Geophysical data were collected by the U.S. Geological Survey in Woods Hole, Massachusetts, and St. Petersburg, Forida, in cooperation with the U.S. Army Corps of Engineers Mobile District. Bathymetric-sonar, sidescan-sonar, and Chirp seismic-reflection data were acquired with the following equipment, respectively: Systems Engineering and Assessment, Ltd., SwathPlus interferometric sonars; Klein 3000 and 3900 dual-frequency sidescan sonars; and an EdgeTech 512i Chirp sub-bottom profiling system. The long-term goals of this mapping effort are to produce high-quality, high-resolution geologic maps and interpretations that can be utilized to identify sand resources within the region, to better understand the Holocene evolution, and to anticipate future changes in this coastal system. Processed geospatial data files and the geophysical data provided in this report help attain these goals.

  19. Subbottom seismic profiling survey of Lake Azuei, Haiti: Seismic signature of paleo-shorelines in a transpressional environment and possible tectonic implications

    NASA Astrophysics Data System (ADS)

    Sloan, H.; Cormier, M. H.; Boisson, D.; Brown, B.; Guerrier, K.; Hearn, C. K.; Heil, C. W., Jr.; Hines, L.; Kelly, R. P.; King, J. W.; Knotts, P.; Lucier, O. F.; Momplaisir, R.; Stempel, R.; Symithe, S. J.; Ulysse, S. M. J.; Wattrus, N. J.

    2017-12-01

    The left-lateral Enriquillo-Plantain Garden Fault (EPGF) is one of two major transform faults that form the North American-Caribbean plate boundary. GPS measurements indicate that relative motion evolves from nearly pure strike-slip in western Haiti to highly transpressional near Lake Azuei in eastern Haiti, where the EPGF may terminate against a south-dipping oblique reverse fault. Lake Azuei, one of the largest lakes in the Caribbean region (10 km x 23 km), is surrounded by two high-elevation sierras (> 2,000 m). Because the lake has no outlet to the sea, its level is sensitive to variations in precipitation and is thought to have fluctuated by 10's of meters during the Holocene. A rise of 5 m over the past 10 years has had a devastating impact, submerging villages, farmland, and roads. A grid of high-resolution ( 10 cm) subbottom seismic (CHIRP) profiles acquired in January 2017 captures the subtle signature of the 5 m-deep shoreline and also images a prominent paleo-shoreline at 10 m water depth. This 10 m paleo-shoreline is well expressed in the CHIRP data suggesting it was occupied for a long period of time. It is buried beneath a thin (< 20 cm-thick) veneer of sediments, indicating that it was submerged centuries to millennia ago. This paleo-shoreline represents a key horizontal marker that may have been warped by local transpressional tectonics. We therefore catalogued its varying seismic signature with the goal of detecting any subtle but systematic depth variations of the associated shoreline angle around the periphery of the lake. Two sediment cores, collected in water depths of 14 m and 17 m, each bottomed 80-90 cm below the lakebed into a distinctively coarser bed. On-going radiometric dating is expected to constrain the age of this distinctive layer. Should this layer be tied to the perduring 10-m lowstand of the lake, determining its age could help quantify vertical deformation rates around Lake Azuei.

  20. High-Resolution Chirp and Mini-Sparker Seismic-Reflection Data From the Southern California Continental Shelf - Gaviota to Mugu Canyon

    USGS Publications Warehouse

    Sliter, Ray W.; Triezenberg, Peter J.; Hart, Patrick E.; Draut, Amy E.; Normark, William R.; Conrad, James E.

    2008-01-01

    The U.S. Geological Survey (USGS) collected high-resolution shallow seismic-reflection data in September, 2007, and June-July, 2008, from the continental shelf offshore of southern California between Gaviota and Mugu Canyon, in support of the California's State Waters Mapping Program. Data were acquired using SIG 2mille mini-sparker and Edgetech chirp 512 instruments aboard the R/V Zephyr (Sept. 2007) and R/V Parke Snavely (June-July 2008). The survey area spanned approximately 120 km of coastline, and included shore-perpendicular transects spaced 1.0-1.5 km apart that extended offshore to at least the 3-mile limit of State waters, in water depths ranging from 10 m near shore to 300 m near the offshore extent of Mugu and Hueneme submarine canyons. Subbottom acoustic penetration spanned tens to several hundred meters, variable by location. This report includes maps of the surveyed transects, linked to Google Earth software, as well as digital data files showing images of each transect in SEG-Y, JPEG, and TIFF formats. The images of sediment deposits, tectonic structure, and natural-gas seeps collected during this study provide geologic information that is essential to coastal zone and resource management at Federal, State and local levels, as well as to future research on the sedimentary, tectonic, and climatic record of southern California.

  1. The Mentawai forearc sliver off Sumatra: A model for a strike-slip duplex at a regional scale

    NASA Astrophysics Data System (ADS)

    Berglar, Kai; Gaedicke, Christoph; Ladage, Stefan; Thöle, Hauke

    2017-07-01

    At the Sumatran oblique convergent margin the Mentawai Fault and Sumatran Fault zones accommodate most of the trench parallel component of strain. These faults bound the Mentawai forearc sliver that extends from the Sunda Strait to the Nicobar Islands. Based on multi-channel reflection seismic data, swath bathymetry and high resolution sub-bottom profiling we identified a set of wrench faults obliquely connecting the two major fault zones. These wrench faults separate at least four horses of a regional strike-slip duplex forming the forearc sliver. Each horse comprises an individual basin of the forearc with differing subsidence and sedimentary history. Duplex formation started in Mid/Late Miocene southwest of the Sunda Strait. Initiation of new horses propagated northwards along the Sumatran margin over 2000 km until Early Pliocene. These results directly link strike-slip tectonics to forearc evolution and may serve as a model for basin evolution in other oblique subduction settings.

  2. Using High-Resolution Swath Mapping Data and Other Underway Geophysical Measurements Collected during Transit Cruises of RV Isabu to Map Deep Sea Floor of the Pacific and Indian Oceans

    NASA Astrophysics Data System (ADS)

    Hong, G. H.; Lee, S. M.; Kim, D. J.; Lee, Y. H.; Kim, S. S.

    2017-12-01

    Detail images of the seafloor are often the first collection of clues that set one towards a path that leads to a new discovery. The mapping of unchartered seafloor is like exploring the surface of an unknown planet for the first time. The launch of new global-ocean-class RV Isabu operated by Korea Institute of Ocean Science and Technology (KIOST) in November 2016 has reinvigorated the ongoing open ocean research in Korea. The location of the KIOST research vessels can be found at http://www.kiost.net/. Here we present a new collaborative research and education program which utilizes onboard measurements taken during the transit cruises. The measurements include high-resolution swath mapping bathymetric data, underway geophysical measurements (3.5 kHz subbottom profile, sea surface gravity and magnetic field) which are gathered semi-automatically during a scientific operation. The acquisition of data alone is not sufficient for meaningful scientific knowledge as the initial measurements must be cleaned and processed during or after the cruise. As in any scientific endeavor, planning is important. Prior to the cruise, preliminary study will be carried out by carefully examining the previously collected data from various global databases. Whenever possible, a small offset will be made of the ship track lines crossing the region so that important new measurements can be obtained systematically over the years. We anticipate that the program will not only contribute to fill the gap in the high-resolution bathymetry in some part of the Indian Ocean and Pacific. The processed and analyzed data will be available to other scientific communities for further understanding via download from KIOST website.

  3. Seafloor geomorphic manifestations of gas venting and shallow subbottom gas hydrate occurrences

    USGS Publications Warehouse

    Paull, C K; Caress, D W; Thomas, Hans; Lundsten, Eve M.; Anderson, Kayce; Gwiazda, Roberto; Riedel, M; McGann, Mary; Herguera, J C

    2015-01-01

    High-resolution multibeam bathymetry data collected with an autonomous underwater vehicle (AUV) complemented by compressed high-intensity radar pulse (Chirp) profiles and remotely operated vehicle (ROV) observations and sediment sampling reveal a distinctive rough topography associated with seafloor gas venting and/or near-subsurface gas hydrate accumulations. The surveys provide 1 m bathymetric grids of deep-water gas venting sites along the best-known gas venting areas along the Pacific margin of North America, which is an unprecedented level of resolution. Patches of conspicuously rough seafloor that are tens of meters to hundreds of meters across and occur on larger seafloor topographic highs characterize seepage areas. Some patches are composed of multiple depressions that range from 1 to 100 m in diameter and are commonly up to 10 m deeper than the adjacent seafloor. Elevated mounds with relief of >10 m and fractured surfaces suggest that seafloor expansion also occurs. Ground truth observations show that these areas contain broken pavements of methane-derived authigenic carbonates with intervening topographic lows. Patterns seen in Chirp profiles, ROV observations, and core data suggest that the rough topography is produced by a combination of diagenetic alteration, focused erosion, and inflation of the seafloor. This characteristic texture allows previously unknown gas venting areas to be identified within these surveys. A conceptual model for the evolution of these features suggests that these morphologies develop slowly over protracted periods of slow seepage and shows the impact of gas venting and gas hydrate development on the seafloor morphology.

  4. Observations on Cretaceous abyssal hills in the northeast Pacific

    USGS Publications Warehouse

    Eittreim, S.L.; Piper, D.Z.; Chezar, H.; Jones, D.R.; Kaneps, A.

    1984-01-01

    An abyssal hills area of 50 ?? 60 km in the northeast Pacific was studied using bottom transponder navigation, closely spaced survey lines, and long-traverse oblique photography. The block-faulted north-south hills are bounded by scarps, commonly with 40?? slopes. On these steep scarps sedimentation is inhibited and pillow basalts often crop out. An ash layer of high acoustic reflectivity at about 7 m subbottom depth blankets the area. This ash occurs in multiple beds altered to phillipsite and is highly consolidated. A 24 m.y. age for the ash is based on ichthyolith dates from samples in the overlying sediments. Acoustically transparent Neogene sediments above the ash are thickest in trough bottoms and are absent or thin on steep slopes. These Neogene sediments are composed of pale-brown pelagic clays of illite, quartz, smectite, chlorite and kaolinite. Dark-brown pelagic clays, rich in smectite and amorphous iron oxides, underlie the Neogene surficial sediments. Manganese nodules cover the bottom in varying percentages. The nodules are most abundant near basement outcrops and where the subbottom ash layer is absent. ?? 1984.

  5. 75 FR 49709 - Takes of Marine Mammals Incidental to Specified Activities; Taking Marine Mammals Incidental to...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-08-13

    ...]Pa rms. Due to its high frequency range, NMFS does not consider its acoustic energy would be strong... source levels of the sub-bottom profiler and the high-frequency nature of the multi-beam echo sounder...-frequency side scan sonar, (100-400 kHz or 300-600 kHz): Based on Shell's 2006 90-day report, the source...

  6. The University of Texas Institute for Geophysics Marine Geology and Geophysics Field Course

    NASA Astrophysics Data System (ADS)

    Davis, M. B.; Gulick, S. P.; Allison, M. A.; Goff, J. A.; Duncan, D. D.; Saustrup, S.

    2011-12-01

    The University of Texas Institute for Geophysics, part of the Jackson School of Geosciences, annually offers an intensive three-week marine geology and geophysics field course during the spring-summer intersession. Now in year five, the course provides hands-on instruction and training for graduate and upper-level undergraduate students in data acquisition, processing, interpretation, and visualization. Techniques covered include high-resolution seismic reflection, CHIRP sub-bottom profiling, multibeam bathymetry, sidescan sonar, several types of sediment coring, grab sampling, and the sedimentology of resulting seabed samples (e.g., core description, grain size analysis, x-radiography, etc.). Students seek to understand coastal and sedimentary processes of the Gulf Coast and continental shelf through application of these techniques in an exploratory mode. Students participate in an initial three days of classroom instruction designed to communicate geological context of the field area (which changes each year) along with theoretical and technical background on each field method. The class then travels to the Gulf Coast for a week of at-sea field work. In the field, students rotate between two small research vessels: one vessel, the 22' aluminum-hulled R/V Lake Itasca, owned and operated by UTIG, is used principally for multibeam bathymetry, sidescan sonar, and sediment sampling; the other, NOAA's R/V Manta or the R/V Acadiana, operated by the Louisiana Universities Marine Consortium, is used primarily for high-resolution seismic reflection, CHIRP sub-bottom profiling, multibeam bathymetry, gravity coring, and vibracoring. While at sea, students assist with survey design, learn instrumentation set up, acquisition parameters, data quality control, and safe instrument deployment and retrieval. In teams of three, students work in onshore field labs preparing sediment samples for particle size analysis and initial data processing. During the course's final week, teams return to the classroom where they integrate, interpret, and visualize data in a final project using industry-standard software such as Focus, Landmark, Caris, and Fledermaus. The course concludes with a series of professional-level final presentations and discussions in which students examine geologic history and/or sedimentary processes represented by the Gulf Coast continental shelf. With course completion, students report a greater understanding of marine geology and geophysics via the course's intensive, hands-on, team approach and low instructor to student ratio. This course satisfies field experience requirements for some degree programs and thus provides a unique alternative to land-based field courses.

  7. Sensitive clay landslide detection and characterization in and around Lakelse Lake, British Columbia, Canada

    NASA Astrophysics Data System (ADS)

    Geertsema, Marten; Blais-Stevens, Andrée; Kwoll, Eva; Menounos, Brian; Venditti, Jeremy G.; Grenier, Alain; Wiebe, Kelsey

    2018-02-01

    The Lakelse Lake area in northwestern British Columbia, Canada, has a long history, and prehistory, of rapid sensitive clay landslides moving on very low gradients. However, until now, many landslides have gone undetected. We use an array of modern tools to identify hitherto unknown or poorly known landslide deposits, including acoustic subbottom profiles, multibeam sonar, and LiDAR. The combination of these methods reveals not only landslide deposits, but also geomorphic and sedimentologic structures that give clues about landslide type and mode of emplacement. LiDAR and bathymetric data reveal the areal extent of landslide deposits as well as the orientation of ridges that differentiate between spreading and flowing kinematics. The subbottom profiles show two-dimensional structures of disturbed landslide deposits, including horst and grabens indicative of landslides classified as spreads. A preliminary computer tomography (CT) scan of a sediment core confirms the structures of one subbottom profile. We also use archival data from the Ministry of Transportation and Infrastructure and resident interviews to better characterize historic landslides.

  8. Records of continental slope sediment flow morphodynamic responses to gradient and active faulting from integrated AUV and ROV data, offshore Palos Verdes, southern California Borderland

    USGS Publications Warehouse

    Maier, Katherine L.; Brothers, Daniel; Paull, Charles K.; McGann, Mary; Caress, David W.; Conrad, James E.

    2016-01-01

    Variations in seabed gradient are widely acknowledged to influence deep-water deposition, but are often difficult to measure in sufficient detail from both modern and ancient examples. On the continental slope offshore Los Angeles, California, autonomous underwater vehicle, remotely operated vehicle, and shipboard methods were used to collect a dense grid of high-resolution multibeam bathymetry, chirp sub-bottom profiles, and targeted sediment core samples that demonstrate the influence of seafloor gradient on sediment accumulation, depositional environment, grain size of deposits, and seafloor morphology. In this setting, restraining and releasing bends along the active right-lateral Palos Verdes Fault create and maintain variations in seafloor gradient. Holocene down-slope flows appear to have been generated by slope failure, primarily on the uppermost slope (~ 100–200 m water depth). Turbidity currents created a low relief (< 10 m) channel, up-slope migrating sediment waves (λ = ~ 100 m, h ≤ 2 m), and a series of depocenters that have accumulated up to 4 m of Holocene sediment. Sediment waves increase in wavelength and decrease in wave height with decreasing gradient. Integrated analysis of high-resolution datasets provides quantification of morphodynamic sensitivity to seafloor gradients acting throughout deep-water depositional systems. These results help to bridge gaps in scale between existing deep-sea and experimental datasets and may provide constraints for future numerical modeling studies.

  9. Seismic Structural Setting of Western Farallon Basin, Southern Gulf of California, Mexico.

    NASA Astrophysics Data System (ADS)

    Pinero-Lajas, D.; Gonzalez-Fernandez, A.; Lopez-Martinez, M.; Lonsdale, P.

    2007-05-01

    Data from a number of high resolution 2D multichannel seismic (MCS) lines were used to investigate the structure and stratigraphy of the western Farallon basin in the southern Gulf of California. A Generator-Injector air gun provided a clean seismic source shooting each 12 s at a velocity of 6 kts. Each signal was recorded during 6- 8 s, at a sampling interval of 1 ms, by a 600 m long digital streamer with 48 channels and a spacing of 12.5 m. The MCS system was installed aboard CICESE's (Centro de Investigacion Cientifica y de Educacion Superior de Ensenada) 28 m research vessel Francisco de Ulloa. MCS data were conventionally processed, to obtain post- stack time-migrated seismic sections. The MCS seismic sections show a very detailed image of the sub-bottom structure up to 2-3 s two-way travel time (aprox. 2 km). We present detailed images of faulting based on the high resolution and quality of these data. Our results show distributed faulting with many active and inactive faults. Our study also constrains the depth to basement near the southern Baja California eastern coast. The acoustic basement appears as a continuous feature in the western part of the study area and can be correlated with some granite outcrops located in the southern Gulf of California islands. To the East, near the center of the Farallon basin, the acoustic basement changes, it is more discontinuous, and the seismic sections show a number of diffracted waves.

  10. Shallow Investigations of the Deep Seafloor: Quantitative Morphology in the Levant Basin, Eastern Mediterranean

    NASA Astrophysics Data System (ADS)

    Kanari, M.; Ketter, T.; Tibor, G.; Schattner, U.

    2017-12-01

    We aim to characterize the seafloor morphology and its shallow sub-surface structures and deformations in the deep part of the Levant basin (eastern Mediterranean) using recently acquired high-resolution shallow seismic reflection data and multibeam bathymetry, which allow quantitative analysis of morphology and structure. The Levant basin at the eastern Mediterranean is considered a passive continental margin, where most of the recent geological processes were related in literature to salt tectonics rooted at the Messinian deposits from 6Ma. We analyzed two sets of recently acquired high-resolution data from multibeam bathymetry and 3.5 kHz Chirp sub-bottom seismic reflection in the deep basin of the continental shelf offshore Israel (water depths up to 2100 m). Semi-automatic mapping of seafloor features and seismic data interpretation resulted in quantitative morphological analysis of the seafloor and its underlying sediment with penetration depth up to 60 m. The quantitative analysis and its interpretation are still in progress. Preliminary results reveal distinct morphologies of four major elements: channels, faults, folds and sediment waves, validated by seismic data. From the spatial distribution and orientation analyses of these phenomena, we identify two primary process types which dominate the formation of the seafloor in the Levant basin: structural and sedimentary. Characterization of the geological and geomorphological processes forming the seafloor helps to better understand the transport mechanisms and the relations between sediment transport and deposition in deep water and the shallower parts of the shelf and slope.

  11. Developing Age Models to Utilize High Arctic Coastal Sediments for Paleoclimate Research: Results from the Colville Delta and Simpson Lagoon, Alaska

    NASA Astrophysics Data System (ADS)

    Miller, A. J.; Allison, M. A.; Bianchi, T. S.; Marcantonio, F.

    2012-12-01

    Sediment cores collected from Simpson Lagoon on the inner Beaufort Sea shelf adjacent to the Colville River delta, AK are being utilized to develop new, high-resolution (sub-decadal scale) archives of the 0-3,000 year Arctic paleoclimate record necessary to assess natural and anthropogenic climate variability. An imperative first step for developing a new paleoclimate archive is to establish methodologies for constraining the age-depth relationship. Naturally occurring and bomb-produced radioisotopes have been utilized in sediments to constrain downcore variability of accumulation rates on 100-103 y timescales, but this methodology is complicated by low activities of many of these tracers at high latitudes. The present study utilizes the combination of a (1) multi-tracer approach and a (2) tailored measurement strategy to overcome this limitation. 210Pb and 137Cs analyses were conducted on the fine (<32μm) sediment fraction to maximize measurable activity and to minimize radioisotope activity variability resulting from changes in grain size: 137Cs geochronologies proved more reliable in this setting and revealed mm/y sediment accumulation in the lagoon. To corroborate the 137Cs results, 239,240Pu activities were analyzed for selected sites using ICP-MS which has ultra-low detection limits, and yielded accumulation rates that matched the Cs geochronology. Age model development for the remainder of the core lengths (>~100 y in age) were completed using radiocarbon dating of benthic foraminifera tests, which proved the only datable in situ carbon available in this sediment archive. These dates have been used to constrain the ages of acoustic reflectors in CHIRP subbottom seismic records collected from the lagoon. Using this age control, spatial patterns of lagoonal sediment accumulation over the last ~3 ky were derived from the CHIRP data. Two depocenters are identified and validate combining age-dated coring with high-resolution seismic profiling to identify areas of the highest temporal resolution for Arctic paleoclimate research in coastal sediments.

  12. Geo-hazard by sediment mass movements in submarine canyons

    NASA Astrophysics Data System (ADS)

    Ghaith, Afif; Fakhri, Milad; Ivaldi, Roberta; Ciavola, Paolo

    2017-04-01

    Submarine mass movements and their consequences are of major concern for coastal communities and infrastructures but also for the exploitation and the development of seafloor resources. Elevated awareness of the need for better understanding of the underwater mass movement is coupled with great advances in underwater mapping technologies over the past two decades. The seafloor in the Nahr Ibrahim and Saida regions (Lebanon) is characterized by deep canyons, reaching one thousand meters depths in proximity of the coast. Signs of submarine mass movement instability related to these canyons create a connection between shallow and deep water. The presence of these canyons in a tectonically active area generates a particular drained mechanism to the sediment in form of mass movement and slumping. Identification of potential areas where slope movements could be triggered requires data with high spatial resolution. Since this area is poorly explored, in the framework of an international project between Lebanese Navy, Lebanese National Center for Marine Sciences, University of Ferrara and Italian Hydrographic Institute, we analyse the morpho-bathymetric and sedimentological characters of the coastal and shelf sectors. Multibeam echosounder and sub-bottom profiler acoustic systems calibrated with ground truths (sediment grab and core samples) allow us to characterize the nature of seafloor and sub-seafloor with particular detail to the geotechnical properties of sediments and high resolution seismic stratigraphy of the shallow layers. The detection of particular undersea features provides detail maps which are in support to littoral morpho-dynamics, coastal transport and sediment budget. Multilayer hydro-oceanographic map, referring to the seafloor dynamics in connection with deep water environment and drainage system, in accordance to the International Hydrographic Standards and nautical supports, are produced. This high resolution multibeam bathymetry dataset, integrated by the sedimentological characters, will provide useful constraints to the potential natural hazards that may be caused by active tectonics in the offshore and a high coastal risk in a most populated region of Lebanon.

  13. Geophysical Surveys of the San Andreas and Crystal Springs Reservoir System Including Seismic-Reflection Profiles and Swath Bathymetry, San Mateo County, California

    USGS Publications Warehouse

    Finlayson, David P.; Triezenberg, Peter J.; Hart, Patrick E.

    2010-01-01

    This report describes geophysical data acquired by the U.S. Geological Survey (USGS) in San Andreas Reservoir and Upper and Lower Crystal Springs Reservoirs, San Mateo County, California, as part of an effort to refine knowledge of the location of traces of the San Andreas Fault within the reservoir system and to provide improved reservoir bathymetry for estimates of reservoir water volume. The surveys were conducted by the Western Coastal and Marine Geology (WCMG) Team of the USGS for the San Francisco Public Utilities Commission (SFPUC). The data were acquired in three separate surveys: (1) in June 2007, personnel from WCMG completed a three-day survey of San Andreas Reservoir, collecting approximately 50 km of high-resolution Chirp subbottom seismic-reflection data; (2) in November 2007, WCMG conducted a swath-bathymetry survey of San Andreas reservoir; and finally (3) in April 2008, WCMG conducted a swath-bathymetry survey of both the upper and lower Crystal Springs Reservoir system. Top of PageFor more information, contact David Finlayson.

  14. Smooth seaward-dipping horizons - An important factor in sea-floor stability?

    USGS Publications Warehouse

    McGregor, B.A.

    1981-01-01

    Mass movement has influenced in varying degrees the morphology of the United States east coast continental margin seaward of the Baltimore Canyon trough as revealed by detailed geophysical studies using high-resolution 3.5-kHz, and seismic reflection data. Each of three areas studied is along the slope within a distance of 225 km, and is seaward of a nonglaciated shelf but near major land drainage systems. Thick sequences of material believed to be Pleistocene were deposited on the slope in all three areas. Sediment failure in the form of large block movement involving block thicknesses of more than 100 m, however, has taken place in only two of the areas. A factor common to the two areas where failure took place, but absent in the area where no failure took place, is smooth seaward-dipping sub-bottom horizons. Whatever the triggering mechanism, a smooth slip surface that has a seward slope may contribute to mass movement by reducing the internal friction. This may be one of several factors that should be considered in assessing slope stability. ?? 1981.

  15. Geophysical Data Collected off the South Shore of Martha's Vineyard, Massachusetts

    USGS Publications Warehouse

    Denny, J.F.; Danforth, W.W.; Foster, D.S.; Sherwood, C.R.

    2010-01-01

    The U.S. Geological Survey Woods Hole Science Center conducted a nearshore geophysical survey offshore of the southern coast of Martha's Vineyard, in the vicinity of the Martha's Vineyard Coastal Observatory in 2007. This mapping program was part of a larger research effort supporting the Office of Naval Research Ripples Directed-Research Initiative studies at Martha's Vineyard Coastal Observatory designed to improve our understanding of coastal sediment-transport processes. The survey was conducted aboard the Megan T. Miller August 9-13, 2007. The study area covers 35 square kilometers from about 0.2 kilometers to 5 kilometers offshore of the south shore of Martha's Vineyard, and ranges in depth from ~6 to 24 meters. The geophysical mapping utilized the following suite of high-resolution instrumentation to map the surficial sediment distribution, bathymetry, and sub-surface geology: a dual-frequency 100/500 kilohertz sidescan-sonar system, 234 kilohertz interferometric sonar, and 500 hertz -12 kilohertz chirp subbottom profiler. These geophysical data will be used to provide initial conditions for wave and circulation modeling within the study area.

  16. High-Resolution Geophysical Constraints on Late Pleistocene-Present Deformation History, Seabed Morphology, and Slip-Rate along the Queen Charlotte-Fairweather Fault, Offshore Southeastern Alaska

    NASA Astrophysics Data System (ADS)

    Brothers, D. S.; Haeussler, P. J.; Dartnell, P.; Conrad, J. E.; Kluesner, J. W.; Hart, P. E.; Witter, R. C.; Balster-Gee, A. F.; Maier, K. L.; Watt, J. T.; East, A. E.

    2015-12-01

    The Queen Charlotte-Fairweather Fault (QCFF) of southeastern Alaska and British Columbia is the dominant fault along the 1200 km-long transform boundary between the Pacific and North American plates. More than 900 km of the QCFF lies offshore where the style and rates of deformation are poorly constrained due to a lack of high-resolution marine geophysical data. In May 2015, the USGS acquired ~900 km2 of high-resolution multibeam bathymetry data and >2000 line-km of high-resolution multichannel seismic reflection profiles between Cross Sound, Yakobi Sea Valley, and Icy Point (the northernmost offshore section of the QCFF) using a 24-ch streamer and 500 Joule minisparker source. During a second cruise in August 2015 we conducted targeted multichannel seismic and subbottom CHIRP profiling in the same region. The new data reveal a single trace of the QCFF expressed as a clear and remarkably straight seafloor lineation for >60 km. Subtle jogs in the fault (<3 degrees) are associated with pop-up structures and en echelon pull-apart basins. The near surface deformation along the fault never exceeds a width of 1.2 km. Northward, as the fault approaches Icy Point and a restraining bend, it splays into multiple strands and displays evidence for uplift and transpression. The fault appears to transition from almost purely strike-slip in the south to oblique-convergence as it steps onshore to the north. The QCFF cuts through the Yakobi Sea Valley and Cross Sound, two elongate bathymetric troughs that were filled with glaciers as recently as 17-19 ka. The southern wall of the Yakobi Sea Valley is offset 890±30 m by the QCFF, providing a late Pleistocene-present slip-rate estimate of 45-54 mm/yr. This suggests that nearly the entire plate boundary slip budget is confined to a single, narrow, strike-slip fault zone, which may have implications for models of plate boundary strain localization.

  17. Large Erosional Features on the Cascadia Accretionary Wedge Imaged with New High-Resolution Multibeam Bathymetry and Seismic Datasets

    NASA Astrophysics Data System (ADS)

    Beeson, J. W.; Goldfinger, C.

    2013-12-01

    Utilizing new high resolution multibeam bathymetric data along with chirp sub-bottom and multichannel seismic reflection (MCS) data, we identified remarkable erosional features on the toe of the Cascadia accretionary wedge near Willapa Canyon, offshore Washington, USA. Bathymetric data was compiled from the Cascadia Open-Access Seismic Transects (COAST) cruise and from the site survey cruise for the Cascadia Initiative. These features loosely resemble slope failures of the frontal thrust, but can be distinguished from such failures by several key features: They incise the crest of the frontal thrust and encompass the landward limb; They have floors below the level of the abyssal plain, similar to plunge pool morphology; They show no evidence of landslide blocks at the base of the slope indicative of block sliding. The features where likely formed during the latest Pleistocene based on post event deposition, cross-cutting relationships with Juan de Fuca Channel and the Willapa Channel levees and wave field, and post event slip on the frontal thrust of the Cascadia accretionary prism. The Holocene levees of both Willapa Channel and Juan de Fuca Channel overlap these older features, and clearly place an upper bound on the age of the erosional features in the latest Pleistocene. A lower bound is estimated from a sub-bottom profile that images ~30 meters of post scour sediment fill. Using existing literature of Holocene and Pleistocene sedimentation rates we estimate a lower age bound between ~23,000 - 56,000 y.b.p. We also map a fault scarp within the erosional feature, with ~60 m of vertical offset. Using multi-channel seismic reflection profiles from the COAST cruise we interpret this scarp as the surface expression of the landward vergent frontal thrust fault. The apparent short duration of the erosional event along the seaward margin of the accretionary wedge, coupled with the presence of the fresh fault scarp within the erosion zone, are indicative of a dormant feature with significant time required to develop the scarp after cessation of the causative process. Based on morphology, dissimilarity with other submarine features, and available age constraints, we infer that these features were most likely formed during the glacial lake outpouring in the Pacific Northwest known as the Missoula floods which occurred 13,000-19,500 y.b.p. The features themselves bear a strong resemblance to 'coulees' formed during the same glacial events onshore, and the outpourings through Willapa Channel are consistent with previous inferences of the deposition of Missoula Flood deposits in Escanaba Trough. If this timing is correct, the slip rate along the Cascadia frontal thrust can be estimated using fault geometry and scarp height as 2.8 - 4.1 mm/yr.

  18. Marine Geology and Geophysics Field Course Offered by The University of Texas Institute for Geophysics

    NASA Astrophysics Data System (ADS)

    Duncan, D.; Davis, M. B.; Allison, M. A.; Gulick, S. P.; Goff, J. A.; Saustrup, S.

    2012-12-01

    The University of Texas Institute for Geophysics, part of the Jackson School of Geosciences, annually offers an intensive three-week marine geology and geophysics field course during the spring-summer intersession. Now in year six, the course provides hands-on instruction and training for graduate and upper-level undergraduate students in data acquisition, processing, interpretation, and visualization. Techniques covered include high-resolution seismic reflection, CHIRP sub-bottom profiling, multibeam bathymetry, sidescan sonar, several types of sediment coring, grab sampling, and the sedimentology of resulting seabed samples (e.g., core description, grain size analysis, x-radiography, etc.). Students participate in an initial period of classroom instruction designed to communicate geological context of the field area (which changes each year) along with theoretical and technical background on each field method. The class then travels to the Gulf Coast for a week of at-sea field work. Our field sites at Port Aransas and Galveston, Texas, and Grand Isle, Louisiana, have provided ideal locations for students to investigate coastal and sedimentary processes of the Gulf Coast and continental shelf through application of geophysical techniques. In the field, students rotate between two research vessels: one vessel, the 22' aluminum-hulled R/V Lake Itasca, owned and operated by UTIG, is used principally for multibeam bathymetry, sidescan sonar, and sediment sampling; the other, NOAA's R/V Manta or the R/V Acadiana, operated by the Louisiana Universities Marine Consortium, and is used primarily for high-resolution seismic reflection, CHIRP sub-bottom profiling, multibeam bathymetry, gravity coring, and vibrocoring. While at sea, students assist with survey design, learn instrumentation set up, acquisition parameters, data quality control, and safe instrument deployment and retrieval. In teams of three, students work in onshore field labs preparing sediment samples for particle size analysis and initial post-processing of geophysical data. During the course's final week, teams return to the classroom where they integrate, interpret, and visualize data in a final project using industry-standard software such as Focus, Landmark, Caris, and Fledermaus. The course concludes with a series of professional-level final presentations and discussions with academic and industry supporters in which students examine the geologic history and sedimentary processes of the studied area of the Gulf Coast continental shelf. After completion, students report a greater understanding of marine geology and geophysics through the course's intensive, hands-on, team approach and low instructor to student ratio (12 students, three faculty, and three teaching assistants). This course satisfies field experience requirements for some degree programs and thus provides a unique alternative to land-based field courses.

  19. Extreme event archived in the geological record of the Japan Trench: New results from R/V Sonne Cruise SO-251 towards establishing J-TRACK paleoseismology

    NASA Astrophysics Data System (ADS)

    Strasser, Michael; Kopf, Achim; Kanamatsu, Toshyia; Moernaut, Jasper; Ikehara, Ken; McHugh, Cecila

    2017-04-01

    Our perspective of subduction zonés earthquake magnitude and recurrence is limited by short historical records. Examining prehistoric extreme events preserved in the geological record is essential towards understanding large earthquakes and assessing the geohazard potential associated with such rare events. The research field of "subaquatic paleoseismology" is a promising approach to investigate deposits from the deep sea, where earthquakes leave traces preserved in stratigraphic succession. However, at present we lack comprehensive data set that allow conclusive distinctions between quality and completeness of the paleoseismic archives as they may relate to different sediment transport, erosion and deposition processes vs. variability of intrinsic seismogenic behavior across different segments. Initially building on what sedimentary deposits were generated from the 2011 Magnitude 9 Tohoku-oki earthquake, the Japan Trench is a promising study area to investigate earthquake-triggered sediment remobilization processes and how they become embedded in the stratigraphic record. Here we present new results from the recent R/V Sonne expedition SO251 that acquired a complete high-resolution bathymetric map of the trench axis and nearly 2000 km of subbottom Parasound profiles, covering the entire along-strike extent of the Japan Trench from 36° to 40.3° N, and groundtruthed by several nearly 10m long piston cores retrieved from the very deep waters (7 to 8 km below sea level): Several smaller submarine landslide (up to several 100's m of lateral extent) can be identified along the trench axis in the new bathymetric data set. These features were either not yet present, or not resolved in the lower-resolution bathymetric dataset acquired before 2011. Sub-bottom acoustic reflection data reveals striking, up to several meter thick, acoustically transparent bodies interbedded in the otherwise parallel reflection pattern of the trench fill basins, providing a temporal and spatial inventory of major sediment remobilization events along the Japan Trench with potential quantitative constraints on volumes and mass fluxes of material mobilized during each event. Also the cores from the southern and northern part of the Japan Trench confirm previous findings from the central part near the Tohoku-oki epicenter, that the small deep-sea trench-fill basins, that are associated with very high sedimentation rates, comprise repeated thick turbidite sequences to be further tested for correlation to historic earthquakes. Eventually, the results of Cruise SO251 will be integrated with cores and data from various other cruises to provide a solid base for later long-coring efforts and scientific drilling, as proposed within the IODP JTRACK initiative, towards potentially producing a fascinating record unravelling an earthquake history that is 10 to a 100 times longer than currently available information.

  20. Bedforms, Channel Formation, and Flow Stripping in the Navy Fan, Offshore Baja California

    NASA Astrophysics Data System (ADS)

    Carvajal, C.; Paull, C. K.; Caress, D. W.; Fildani, A.; Lundsten, E. M.; Anderson, K.; Maier, K. L.; McGann, M.; Gwiazda, R.; Herguera, J. C.

    2017-12-01

    Deep-sea fans store some of the largest volumes of siliciclastic sediment in marine basins. These sandy accumulations record the history of sediment transfer from land to sea, serving as direct records of the geologic history of the continents. Despite their importance, deep-sea fans are difficult to study due to their remote locations in thousands of meters of water depth. In addition, deep-sea fans have a low relief, and geomorphological changes important for the evolution of the fan are often too subtle to be adequately resolved by 3D seismic data or surface-ship bathymetry. To improve our understanding of deep-sea fans, an autonomous underwater vehicle (AUV) was used to acquire high-resolution bathymetry and sub-bottom CHIRP profiles in the proximal sectors of the Navy Fan, offshore Baja California. A remotely operated vehicle was also used to acquire vibracores. The 1-m grid resolution bathymetry shows the seafloor geomorphology in extreme detail revealing different kinds of bedforms, which in combination with the vibracores help to interpret the sedimentary processes active during the Holocene. Morphological elements in the survey area include a main channel, numerous scours, an incipient channel, sediment waves, and a fault escarpment. Several of the scours are interpreted to result from flow stripping at a bend in the main channel. Along high gradient sectors (e.g. > 1o), the scours form bedforms with an erosionally truncated headwall immediately followed down-dip by an upflow accreting sedimentary bulge. These bedforms, the presence of clean sands in the scours and the high gradients suggest that these scours are net-erosional cyclic steps. Scours seem to coalesce along the sediment transport direction to form an incipient channel with abundant rip-up clast gravels. Elsewhere in the survey area, scours are elongated and intimately associated with sediment waves. The acquired dataset illustrates that deep-sea fans may show a variety of processes and geomorphologies, difficult to infer with the use of low-resolution data.

  1. High-resolution seismic-reflection and marine-magnetic data from offshore central California--San Gregorio to Point Sur

    USGS Publications Warehouse

    Sliter, Ray W.; Johnson, Samuel Y.; Watt, Janet T.; Scheirer, Daniel S.; Allwardt, Parker; Triezenberg, Peter J.

    2013-01-01

    The U.S. Geological Survey collected high-resolution seismic-reflection data on four surveys (S-N1-09-MB, S-15-10-NC, S-06-11-MB, and S-04-12-MB) and marine-magnetic data on one survey (S-06-11-MB) between 2009 and 2012, offshore of central California between San Gregorio and Point Sur. This work was supported in part by the California Seafloor Mapping Program. The survey areas span about 120 km of California's coast (including Monterey Bay). Most data were collected aboard the U.S. Geological Survey R/V Parke Snavely. Cumulatively, approximately 1,410 km of single-channel seismic-reflection data were acquired, mainly using a SIG 2mille minisparker. About 44 km of data were collected simultaneously using an EdgeTech Chirp 512. Subbottom acoustic penetration spanned tens to several hundreds of meters, variable by location. Marine magnetic data were collected on approximately 460 km of track lines (mainly in southern Monterey Bay) using a Geometrics G882 cesium-vapor marine magnetometer. This report includes maps and navigation files of the surveyed transects, linked to Google Earth™ software, as well as digital data files showing images of each transect in SEG-Y and JPEG formats. The images of bedrock, sediment deposits, and tectonic structure provide geologic information that is essential to hazard assessment, regional sediment management, and coastal and marine spatial planning at Federal, State and local levels, as well as to future research on the geomorphic, sedimentary, tectonic, and climatic record of central California.

  2. Atwater Valley Deep-Towed Sidescan Sonar Imagery and Bathymetric Survey

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Joan M. Gardner; Mike Czarnecki; Rick Hagen

    2005-11-22

    The purpose of this project was to conduct detailed surface mapping of one of the areas drilled by the Joint Industry Project with ChevronTexaco to understand gas hydrates in the Gulf of Mexico. The gently sloping, mostly flat floor of the Mississippi Canyon is interrupted by mounds and depressions that presumably reflect the complex geology and geohydrology related to turbidite deposition and pervasive salt tectonism. The seafloor mounds we mapped in this study occur in approximately 1300 water depth along the floor of the Mississippi Canyon in lease block areas Atwater Valley 13 and 14. High resolution sidescan sonar (100more » kHz and 500 kHz) backscatter imagery, and chirp sub-bottom profiler data were collected using the DT1 deep-towed oceanographic mapping instrument, concentrating on the region directly adjacent to and surrounding two mounds identified as, mounds D and F, and in the region directly adjacent to and surrounding the mounds. The backscatter data have been mosaiced and normalized to provide information on the shape and extent of the mounds, the possible lateral extent of fauna, such as mussel and clam fields on the mounds, possible seep related flows and the occurrence of carbonate material. The extent of a mudflow can be mapped on the southeastern side of mound F. The backscatter data show extremely high-resolution detail about the shape, relief, and morphology of the mounds. This information, coupled with porewater chemistry , DTAGS and heatflow data form a coherent picture of possible mechanics for fluid venting and flora/fauna of the seeps in this region.« less

  3. High-resolution seismic-reflection profiles collected by the R/V Columbus Iselin, cruise CI 7807-1, in the Baltimore Canyon outer continental shelf area, offshore New Jersey

    USGS Publications Warehouse

    Robb, James M.

    1980-01-01

    High-resolution seismic-reflection profiles were collected by the U.S. Geological Survey (USGS) aboard R/V COLUMBUS ISELIN, cruise 7807-1, from 18 August to 4 September 1978 over the Continental Slope of the Eastern United States between Wilmington and Hudson Canyons. These data were acquired as part of a study to determine potential geologic hazards to petroleum development of the Baltimore Canyon trough area. On this cruise, the Continental Slope between Lindenkohl and Carteret Canyons was surveyed along lines spaced one-half nautical mile apart to study the size and distribution of mass-wasting features as a guide to assess the importance of mass wasting processes on the Continental Slope. The seismic-reflection profiles were placed to complement other data gathered previously by the USGS.Track-line distances totaled 2,050 km of 40-in3 air-gun (with wave shaper) profiles, 2,100 km of 800-J sparker data, and 2,100 km of 3 .5-kHz data. The air-gun and sparker profiles are of high quality, but the 3.5-kHz system did not function well and achieved no subbottom penetration. The side-scan sonar system was operated along the uppermost Continental Slope to investigate its potential for use in this environment. Data were acquired over 22 km of ship's track.Navigation was by Loran-C (5-minute fix interval).The original records can be examined at the U.S. Geological Survey offices in Woods Hole, Massachusetts 02543. Microfilm copies of the data are available for purchase from the National Geophysical and Solar-Terrestrial Data Center (NGSDC), Boulder, Colorado 80303.

  4. Development of a Florida Coastal Mapping Program Through Local and Regional Coordination

    NASA Astrophysics Data System (ADS)

    Hapke, C. J.; Kramer, P. A.; Fetherston-Resch, E.; Baumstark, R.

    2017-12-01

    The State of Florida has the longest coastline in the contiguous United States (2,170 km). The coastal zone is heavily populated and contains 1,900 km of sandy beaches that support economically important recreation and tourism. Florida's waters also host important marine mineral resources, unique ecosystems, and the largest number of recreational boats and saltwater fishermen in the country. There is increasing need and demand for high resolution data of the coast and adjacent seafloor for resource and habitat mapping, understanding coastal vulnerability, evaluating performance of restoration projects, and many other coastal and marine spatial planning efforts. The Florida Coastal Mapping Program (FCMP), initiated in 2017 as a regional collaboration between four federal and three state agencies, has goals of establishing the priorities for high resolution seafloor mapping of Florida's coastal environment, and developing a strategy for leveraging funds to support mapping priorities set by stakeholders. We began by creating a comprehensive digital inventory of existing data (collected by government, the private sector, and academia) from 1 kilometer inland to the 200 meter isobath for a statewide geospatial database and gap analysis. Data types include coastal topography, bathymetry, and acoustic data such as sidescan sonar and subbottom profiles. Next, we will develop appropriate proposals and legislative budget requests in response to opportunities to collect priority data in high priority areas. Data collection will be undertaken by a combination of state and federal agencies. The FCMP effort will provide the critical baseline information that is required for characterizing changes to fragile ecosystems, assessing marine resources, and forecasting the impacts on coastal infrastructure and recreational beaches from future storms and sea-level rise.

  5. CHIRP survey of the submerged harbors of King Herod's Caesarea, offshore Israel - looking for evidence of ancient disasters

    NASA Astrophysics Data System (ADS)

    Austin, J. A.; Goodman-Tchernov, B.

    2012-12-01

    Caesarea Maritima, located on the Israel coast south of Haifa, is an ancient city/harbor site built ~2,000 years ago that continues to produce important insights into both the maritime livelihoods of antiquity and natural/anthropogenic influences on coastal structures/processes. The grandiose, three-basin harbor complex was built by Herod the Great. Today, the inner harbor basin is terrestrial, while the majority of the intermediate/outer harbors lies 1-7 m beneath the sea surface. Explanations for the harbor's destruction have included earthquakes, liquefaction, deterioration from erosion, storm undercutting and tsunami damage. Recently, evidence for tsunami events has been discovered offshore during excavation and coring expeditions, specifically trench exposures and pneumatic hammer cores. Stratigraphic horizons containing tsunamite signatures suggest the occurrence of at least three tsunamis in the past ~3,500 yrs. One may correspond with the catastrophic eruption of Santorini ~1500 BC; another appears to have done significant damage to Caesarea ~115 AD, and a third occurred within the period 5th-7th centuries AD. Extant combined bathymetric/magnetic surveys offshore also show unusual, anomalous features. Excavations in 2003 suggest that these features may be part of an ancient designated anchoring station, and support the existence of underlying man-made terrestrial structures from an earlier period when sea-level was lower. The primary goal of the current survey was to correlate recognized/potential tsunamigenic sediment layers throughout the proximal shelf offshore Caesarea, using extremely high-resolution geophysical images. Such surficial sub-bottom profiling will allow archaeologists to proceed with investigations of recognized anthropogenically-influenced submerged coastal features. The field survey was conducted in August 2011. Seismic data were collected using UTIG's portable Knudsen 320BP CHIRP (2.5-5.5 kHz) profiler, affixed to a metal pole mounted on the starboard flank of a ~8 m-long catamaran. Data acquisition was generally conducted from dawn to mid-day, when wind/wave conditions were most favorable. A dense (5-10 m average profile spacing) grid of profiles, both along-strike (spanning the entire harbor complex) and across-strike (from intermediate harbor to ~10-15 m of water), was acquired. Total track length is ~126 line-km. In certain places, multiple sub-bottom horizons can be traced and mapped; sub-seafloor penetrations up to ~ 4-5 m were occasionally achieved, particularly in deeper water. However, sub-bottom penetration is spatially variable in sand-prone sediments. Correlation difficulties relate both to uneven acoustic penetration and to the presence offshore of "kurkar" ridges, calcareous sandstone ridges paralleling the modern shoreline that represent now-submerged Pleistocene dune complexes. These ancient dunes can produce physical barriers that both alter the depositional regime as well as complicate the acoustic mapping task. Mapped horizons within the survey area will be shown, along with preliminary correlations to the stratigraphy described from previously cored sediments (e.g., interpreted "tsunamites").

  6. Carbonate sediment deposits on the reef front around Oahu, Hawaii

    USGS Publications Warehouse

    Hampton, M.A.; Blay, C.T.; Murray, C.J.

    2004-01-01

    Large sediment deposits on the reff front around Oahu are a possible resource for replenishing eroded beaches. High-resolution subbottom profiles clearly depict the deposits in three study areas: Kailua Bay off the windward coast, Makua to Kahe Point off the leeward coast, and Camp Erdman to Waimea off the north coast. Most of the sediment is in water depths between 20 and 100 m, resting on submerged shelves created during lowstands of sea level. The mapped deposits have a volume of about 4 ?? 108 m3 in water depths less than 100 m, being thickest off the mouth of channels carved into the modern insular shelf, from which most of the sediment issues. Vibracore samples contain various amounts of sediment of similar size to the sand on Oahu beaches, with the most compatible prospects located off Makaha, Haleiwa, and Camp Erdman, and the least compatible ones located in Kailua Bay. Laboratory tests show a positive correlation of abrasion with Halimeda content: samples from Kailua Bay suffered high amounts of attrition, but others were comparable to tested beach samples. The common gray color of the offshore sediment, aesthetically undesirable for sand on popular tourist beaches, was diminished in the laboratory by soaking in heated hydrogen peroxide. ?? Taylor and Francis Inc.

  7. Shallow Water UXO Technology Demonstration Site, Scoring Record Number 2

    DTIC Science & Technology

    2006-09-01

    The Sound Metrics Corporation High frequency Imaging Sonar ( HFIS ) (fig. 4) dual frequency imaging sonar operates at 1.1 and 1.8 MHz. For this...the HFIS unit was determined using a National Marine Electronics Association (NMEA) GPRMC string from a Leica GPS system antenna mounted directly...above the HFIS instrument. This permits the image data to be integrated with the Multiple Frequency Sub-Bottom Profiler (MFSBP) and MGS data during

  8. Archive of Digital boomer subbottom data collected during USGS cruises 99FGS01 and 99FGS02 offshore southeast and southwest Florida, July and November, 1999

    USGS Publications Warehouse

    Forde, Arnell S.; Dadisman, Shawn V.; Wiese, Dana S.; Phelps, Daniel C.

    2013-01-01

    In July (19 - 26) and November (17 - 18) of 1999, the USGS, in cooperation with the Florida Geological Survey (FGS), conducted two geophysical surveys in: (1) the Atlantic Ocean offshore of Florida's east coast from Orchid to Jupiter, FL, and (2) the Gulf of Mexico offshore of Venice, FL. This report serves as an archive of unprocessed digital boomer subbottom data, trackline maps, navigation files, GIS files, Field Activity Collection System (FACS) logs, and formal Federal Geographic Data Committee (FGDC) metadata. Filtered and gained (showing a relative increase in signal amplitude) digital images of the subbottom profiles are also provided. The USGS St. Petersburg Coastal and Marine Science Center (SPCMSC) assigns a unique identifier to each cruise or field activity. For example, identifiers 99FGS01 and 99FGS02 refer to field data collected in 1999 for cooperative work with the FGS. The numbers 01 and 02 indicate the data were collected during the first and second field activities for that project in that calendar year. Refer to http://walrus.wr.usgs.gov/infobank/programs/html/definition/activity.html for a detailed description of the method used to assign the field activity identification (ID).

  9. A field investigation on the effects of background erosion on the free span development of a submarine pipeline

    NASA Astrophysics Data System (ADS)

    Wen, Shipeng; Xu, Jishang; Hu, Guanghai; Dong, Ping; Shen, Hong

    2015-08-01

    The safety of submarine pipelines is largely influenced by free spans and corrosions. Previous studies on free spans caused by seabed scours are mainly based on the stable environment, where the background seabed scour is in equilibrium and the soil is homogeneous. To study the effects of background erosion on the free span development of subsea pipelines, a submarine pipeline located at the abandoned Yellow River subaqueous delta lobe was investigated with an integrated surveying system which included a Multibeam bathymetric system, a dual-frequency side-scan sonar, a high resolution sub-bottom profiler, and a Magnetic Flux Leakage (MFL) sensor. We found that seabed homogeneity has a great influence on the free span development of the pipeline. More specifically, for homogeneous background scours, the morphology of scour hole below the pipeline is quite similar to that without the background scour, whereas for inhomogeneous background scour, the nature of spanning is mainly dependent on the evolution of seabed morphology near the pipeline. Magnetic Flux Leakage (MFL) detection results also reveal the possible connection between long free spans and accelerated corrosion of the pipeline.

  10. Geophysical Features and Inferred Triggering Factors of Submarine Landslides in the Western Continental Margin of the Ulleung Basin, East Sea of Korea

    NASA Astrophysics Data System (ADS)

    Cukur, D.; Kim, S. P.; Kong, G. S.; Yoon, Y.; Kim, J. K.; Choi, J. G.

    2015-12-01

    Submarine landslides form very complex features on the seafloor and the associated geological processes are yet to be known completely. Various researches are still undergoing not only for their profound academic significance but also for their hazardous impact potential to seafloor infrastructures and coastal areas. In order to investigate the morphology and cause of landslides along the western margin of the Ulleung Basin in the East Sea, we collected multiple geophysical datasets in the summer of 2015, including sparker, subbottom profiler, and multibeam echosounder. The preliminary analysis of the bathymetric data shows a number of U-shaped scarps that occur on a rather steep slope (up to 10°) in water depths of ~600 m. The scarps cover an area of ~100 km2 and have reliefs of up to 50 m. Seismic data clearly image erosional headwalls and the basal gliding plane which is characterized by a prominent high-amplitude reflector. Chaotic- to transparent-seismic facies, located immediately downslope of the headwall scarps, represent landslide deposits of about 20 m in thickness. At the base of slope, the slides form lens-shaped transparent bodies, resting on well-stratified turbidite deposits. Several V-shaped seafloor depressions near the head of these scarps are seen on the subbottom profiles. These depressions, which are ~5 m deep and ~150 m wide, are interpreted to be representing pockmarks, resulted from upward migration of gas in the sediment layers beneath. The presence of these pockmarks directly above the scars may suggest that the gases and/or gas fluids might be playing an important role for destabilizing slope sediments. Furthermore, subbottom profiles suggest the presence of numerous faults in close vicinity of headwall scarps; some are extending to the seafloor suggesting their recent activity. Earthquakes associated with tectonic activity are indicated to be the cause of these faults. Thus the fault-related earthquakes might be the final triggering mechanism of the landslides along the slopes.

  11. Quantitative Evaluations of the Effects of the Seabed Sediments on Scattering and Propagation of Acoustics Energy in Shallow Oceans

    DTIC Science & Technology

    1999-09-30

    Dec. (1998) Yamamoto, T., “ A poroelastic model of highly permeable rocks,” Geophysics, revised August 1999a. Yamamoto, T., “ Acoustical imaging of...scattering mechanisms (volume fluctuation, bottom and sub-bottom roughness) on the acoustic propagation and scattering, and the effects of poroelastic ...properties of the sediments on the propagation of acoustic waves. OBJECTIVES To develop a universal (forward/inverse) model for the seafloor roughness

  12. A giant mass failure in the northern flank of the Kueishantao Island off northeastern Taiwan: debris avalanches and related structures in the offshore downslope

    NASA Astrophysics Data System (ADS)

    Huang, P. C.; Hsu, S. K.; Tsai, C. H.; Chen, S. C.

    2016-12-01

    Based on the ignimbrite layers, previous studies have shown that Kueishantao volcanic island has probably erupted four times in 7000 years. Strong smell of sulfur can easily detect at east of the island with some plumes from the seabed. In May 2016, an earthquake with magnitude 5 occurred to northeast of the island which has triggered small collapse events in the eastern subaerial part. Recent geophysical surveys have also revealed the distribution of submarine debris avalanches in the north, south and east part off Kueishantao volcanic island. With high-resolution swath bathymetric data, we can observe some debris avalanches distributed with hummocky relief around the island. In this study, we present the marine geophysical data in order to have better understanding of the landslide mechanism from the offshore data of the Kueishantao island, especially with the multi-beam bathymetric data, acoustic backscatter analysis, subbottom profile, sidescan sonar and 3.5kHz echo-sounder. At the north of the island, large-scale debris avalanches extend around 4 km northward with the several blocks height up to more than twenty meters; and, the offshore area of deposit is about 5 km2 of hummocky topography distribution. The scale of debris avalanches may be related to the horseshoe scar of subaerial flank and also submarine flank collapsed events. Nevertheless, to identify the landslide history, we need to analyze the related core data in the future. By analyzing the high-resolution geophysical data, we will discuss the possible mechanism or factors that trigger subaerial flank collapse events and also the transportation of the debris avalanches to the submarine basin. The large-scale collapse events may produce tsunamis and directly affect the coast of northeastern Taiwan.

  13. High-resolution Geophysical Constraints on Fault Structure and Morphology in the Catalina Basin, Southern California Inner Continental Borderland

    NASA Astrophysics Data System (ADS)

    Walton, M. A. L.; Roland, E. C.; Brothers, D. S.; Kluesner, J.; Maier, K. L.; Conrad, J. E.; Hart, P. E.; Balster-Gee, A. F.

    2016-12-01

    Southern California's Inner Continental Borderland, offshore of Los Angeles and San Diego, contains a complex arrangement of basins, ridges, and active faults that present seismic hazards to the region. In 2014 and 2016, the U.S. Geological Survey and University of Washington collected new geophysical data throughout the Catalina Basin (CB), including multibeam bathymetry, Chirp sub-bottom profiles, and more than 2000 line-km of high-resolution multi-channel seismic reflection profiles. These data provide the first detailed imaging of the San Clemente and Catalina faults, which border the CB. We now have improved constraints on the seabed morphology, fault structure, and deformation history along significant length of the San Clemente and Catalina fault systems, as well as insights into sediment deposition and basin development in the CB since the late Miocene. New multibeam data image the Catalina Fault as a continuous linear seafloor feature along the base of Catalina Island, and subsurface imaging indicates dominantly strike-slip motion. We also image the San Clemente Fault as a straight lineament along the seafloor downslope of San Clemente Island; the fault offsets several gullies and ridges, suggesting recent strike-slip motion. In the northwest region of the CB, the San Clemente Fault's main trace splits into several transpressional splays, as indicated by a series of uplifted, fault-bounded blocks. Growth strata throughout the CB suggest that oblique transform motion along the Catalina and San Clemente faults has affected regional sedimentation patterns and depocenters over time, providing a fundamental control on sediment distribution within the CB. Buried folds, faults, and unconformities within basin strata, including a prominent surface that is likely late Miocene based on regional geology, indicate multiple episodes of deformation throughout the CB's history.

  14. Assessing the deep drilling potential of Lago de Tota, Colombia, with a seismic survey

    NASA Astrophysics Data System (ADS)

    Bird, B. W.; Wattrus, N. J.; Fonseca, H.; Velasco, F.; Escobar, J.

    2015-12-01

    Reconciling orbital-scale patterns of inter-hemispheric South American climate during the Quaternary requires continuous, high-resolution paleoclimate records that span multiple glacial cycles from both hemispheres. Southern Andean Quaternary climates are represented by multi-proxy results from Lake Titicaca (Peru-Bolivia) spanning the last 400 ka and by pending results from the Lago Junin Drilling Project (Peru). Although Northern Andean sediment records spanning the last few million years have been retrieved from the Bogota and Fúquene Basins in the Eastern Cordillera of the Colombian Andes, climatic reconstructions based on these cores have thus far been limited to pollen-based investigations. When viewed together with the Southern Hemisphere results, these records suggest an anti-phased hemispheric climatic response during glacial cycles. In order to better assess orbital-scale climate responses, however, independent temperature and hydroclimate proxies from the Northern Hemisphere are needed in addition to vegetation histories. As part of this objective, an effort is underway to develop a paleoclimate record from Lago de Tota (3030 m asl), the largest lake in Colombia and the third largest lake in the Andes. One of 17 highland tectonic basins in Eastern Cordillera, Lago de Tota formed during Tertiary uplift that deformed pre-foreland megasequences, synrift and back-arc megasequences. The precise age and thickness of sediments in the Lago de Tota basin has not previously been established. Here, we present results from a recent single-channel seismic reflection survey collected with a small (5 cubic inch) air gun and high-resolution CHIRP sub-bottom data. With these data, we examine the depositional history and sequence stratigraphy of Lago de Tota and assess its potential as a deep drilling target.

  15. Morphology, structure, composition and build-up processes of the active channel-mouth lobe complex of the Congo deep-sea fan with inputs from remotely operated underwater vehicle (ROV) multibeam and video surveys

    NASA Astrophysics Data System (ADS)

    Dennielou, Bernard; Droz, Laurence; Babonneau, Nathalie; Jacq, Céline; Bonnel, Cédric; Picot, Marie; Le Saout, Morgane; Saout, Yohan; Bez, Martine; Savoye, Bruno; Olu, Karine; Rabouille, Christophe

    2017-08-01

    The detailed structure and composition of turbiditic channel-mouth lobes is still largely unknown because they commonly lie at abyssal water depths, are very thin and are therefore beyond the resolution of hull-mound acoustic tools. The morphology, structure and composition of the Congo turbiditic channel-mouth lobe complex (90×40 km; 2525 km2) were investigated with hull-mounted swath bathymetry, air gun seismics, 3.5 kHz sub-bottom profiler, sediment piston cores and also with high-resolution multibeam bathymetry and video acquired with a Remote Operating Vehicle (ROV). The lobe complex lies 760 km off the Congo River mouth in the Angola abyssal plain between 4740 and 5030 m deep. It is active and is fed by turbidity currents that deposit several centimetres of sediment per century. The lobe complex is subdivided into five lobes that have prograded. The lobes are dominantly muddy. Sand represents ca. 13% of the deposits and is restricted to the feeding channel and distributaries. The overall lobe body is composed of thin muddy to silty turbidites. The whole lobe complex is characterized by in situ mass wasting (slumps, debrites). The 1-m-resolution bathymetry shows pervasive slidings and block avalanches on the edges of the feeding channel and the channel mouth indicating that sliding occurs early and continuously in the lobe build-up. Mass wasting is interpreted as a consequence of very-high accumulation rates, over-steepening and erosion along the channels and is therefore an intrinsic process of lobe building. The bifurcation of feeding channels is probably triggered when the gradient in the distributaries at the top of a lobe becomes flat and when turbidity currents find their way on the higher gradient on the lobe side. It may also be triggered by mass wasting on the lobe side. When a new lobe develops, the abandoned lobes continue to collect significant turbiditic deposits from the feeding channel spillover, so that the whole lobe complex remains active. A conceptual lithostratigraphic model is proposed for five morpho-sedimentary environments: lobe rims, lobe body, distributaries, levees, feeding channel. This study shows that high-resolution bathymetry ROV observations are necessary to fully understand the build-up processes of modern channel-mouth lobes.

  16. The gas-hydrate-related seabed features in the Palm Ridge off southwest Taiwan

    NASA Astrophysics Data System (ADS)

    Su, Zheng-Wei; Hsu, Shu-Kun; Tsai, Ching-Hui; Chen, Song-Chuen; Lin, Hsiao-Shan

    2016-04-01

    The offshore area of the SW Taiwan is located in the convergence zone between the northern continental margin of the South China Sea and the Manila subduction complex. Our study area, the Palm Ridge, is located in the passive continental margin. According to the geophysical, geochemical and geothermal data, abundant gas hydrate may exist in the offshore area of SW Taiwan. In this study, we will study the relation between the seabed features and the gas hydrate formation of the Palm Ridge. The data used in this study include high-resolution sidescan sonar images, sub-bottom profiles, echo sounder system, multi-beam bathymetric data, multi-channel reflection seismic and submarine photography in the Palm Ridge. Our results show the existing authigenic carbonates, gas seepages and gas plumes are mainly distributed in the bathymetric high of the Palm Ridge. Numerous submarine landslides have occurred in the place where the BSR distribution is not continuous. We suggest that it may be because of rapid slope failure, causing the change of the gas hydrate stability zone. We also found several faults on the R3.1 anticline structure east of the deformation front. These features imply that abundant deep methane gases have migrated to shallow strata, causing submarine landslides or collapse. The detailed relationship of gas migration and submarine landslides need further studies.

  17. Archive of digital chirp subbottom profile data collected during USGS Cruise 13GFP01, Brownlee Dam and Hells Canyon Reservoir, Idaho and Oregon, 2013

    USGS Publications Warehouse

    Forde, Arnell S.; Dadisman, Shawn V.; Flocks, James G.; Fosness, Ryan L.; Welcker, Chris; Kelso, Kyle W.

    2014-01-01

    From March 16 - 31, 2013, the U.S. Geological Survey in cooperation with the Idaho Power Company conducted a geophysical survey to investigate sediment deposits and long-term sediment transport within the Snake River from Brownlee Dam to Hells Canyon Reservoir, along the Idaho and Oregon border; this effort will help the USGS to better understand geologic processes. This report serves as an archive of unprocessed digital chirp subbottom data, trackline maps, navigation files, Geographic Information System (GIS) files, Field Activity Collection System (FACS) logs, and formal Federal Geographic Data Committee (FGDC) metadata. Gained (showing a relative increase in signal amplitude) digital images of the seismic profiles are also provided. Refer to the Acronyms page for expansions of acronyms and abbreviations used in this report.

  18. Archive of digital chirp subbottom profile data collected during USGS cruise 11BIM01 Offshore of the Chandeleur Islands, Louisiana, June 2011

    USGS Publications Warehouse

    Forde, Arnell S.; Dadisman, Shawn V.; Miselis, Jennifer L.; Flocks, James G.; Wiese, Dana S.

    2013-01-01

    From June 3 to 13, 2011, the U.S. Geological Survey conducted a geophysical survey to investigate the geologic controls on barrier island framework and long-term sediment transport along the oil spill mitigation sand berm constructed at the north end and just offshore of the Chandeleur Islands, LA. This effort is part of a broader USGS study, which seeks to better understand barrier island evolution over medium time scales (months to years). This report serves as an archive of unprocessed digital chirp subbottom data, trackline maps, navigation files, Geographic Information System (GIS) files, Field Activity Collection System (FACS) logs, and formal Federal Geographic Data Committee (FGDC) metadata. Gained (showing a relative increase in signal amplitude) digital images of the seismic profiles are also provided.

  19. Geoacoustic models of the Donghae-to-Gangneung region in the Korean continental margin of the East Sea

    NASA Astrophysics Data System (ADS)

    Ryang, Woo Hun; Kim, Seong Pil; Hahn, Jooyoung

    2016-04-01

    Geoacoustic model is to provide a model of the real seafloor with measured, extrapolated, and predicted values of geoacoustic environmental parameters. It controls acoustic propagation in underwater acoustics. In the Korean continental margin of the East Sea, this study reconstructed geoacoustic models using geoacoustic and marine geologic data of the Donghae-to-Gangneung region (37.4° to 37.8° in latitude). The models were based on the data of the high-resolution subbottom and air-gun seismic profiles with sediment cores. The Donghae region comprised measured P-wave velocities and attenuations of the cores, whereas the Gangneung region comprised regression values using measured values of the adjacent areas. Geoacoustic data of the cores were extrapolated down to a depth of the geoacoustic models. For actual modeling, the P-wave speed of the models was compensated to in situ depth below the sea floor using the Hamilton method. These geoacoustic models of this region probably contribute for geoacoustic and underwater acoustic modelling reflecting vertical and lateral variability of acoustic properties in the Korean continental margin of the western East Sea. Keywords: geoacoustic model, environmental parameter, East Sea, continental margin Acknowledgements: This research was supported by the research grants from the Agency of Defense Development (UD140003DD and UE140033DD).

  20. Surficial geology mapping of the Arctic Ocean: using subbottom profiling and multibeam echosounding data sets to constrain the subsea north of 64° as a layer for the IBCAO

    NASA Astrophysics Data System (ADS)

    Mosher, D. C.; Baldwin, K.; Gebhardt, C.

    2016-12-01

    Barriers to data collection such as perennial ice cover, climate, and remoteness have contributed to a paucity of geologic data in the Arctic. The last decade, however, has seen a multi-national push to increase the quantity and extent of data available at high latitudes. With increased availability of geophysical and geological data holdings, we expand on previous mapping initiatives by creating a comprehensive surficial geology map as a layer to the International Bathymetric Chart of the Arctic Ocean (IBCAO), providing a way to collectively analyze physiography, morphology and geology. Acoustic facies derived from subbottom profiles, combined with morphology illuminated from IBCAO and multibeam bathymetric datasets, and ground truth data compiled from cores and samples are used to map surficial geology units. We identified over 25 seismo-acoustic facies leading to interpretation of 12 distinct geologic units for the Arctic Ocean. The largest variety of seismic facies occurs on the shelves, which demonstrate the complex ice-margin history (e.g. chaotic bottom echoes with amorphous subbottom reflections that imply ice scouring processes). Shelf-crossing troughs generally lead to trough mouth fans on the continental margin with characteristic glaciogenic debris flow deposits (acoustically transparent units) comprising the bulk of the sedimentary succession. Other areas of continental slopes show a variety of facies suggesting sediment mass failure and turbidite deposition. Vast areas of the deep water portion of the Arctic are dominated by parallel reflections, indicative of hemi-pelagic and turbidity current deposition. Some deep water parts of the basin, however, show evidence of current reworking (sigmoidal reflections within bedforms), and contain deep sea channels with thalwegs (bright reflections within channels) and levee deposits (reflection pinch-out). These results delineated in the surficial geology map provide a comprehensive database of regional geologic information of the Arctic Ocean that can be applied to a variety of disciplines, including the study of Arctic sedimentary processes, climatologic and oceanographic processes, environmental and geohazard risk assessment, resource management, and Extended Continental Shelf mapping.

  1. 30 CFR 251.12 - Submission, inspection, and selection of geophysical data and information collected under a...

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... Section 251.12 Mineral Resources BUREAU OF OCEAN ENERGY MANAGEMENT, REGULATION, AND ENFORCEMENT..., shallow and deep subbottom profiles, bathymetry, sidescan sonar, gravity and magnetic surveys, and special...

  2. 30 CFR 282.5 - Disclosure of data and information to the public.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ..., bathymetry, side-scan sonar, subbottom profiler, and magnetometer) in compliance with stipulations or orders concerning protection of environmental aspects of the lease may be made available to the public 60 days after...

  3. Archive of digital chirp subbottom profile data collected during USGS Cruise 13CCT04 offshore of Petit Bois Island, Mississippi, August 2013

    USGS Publications Warehouse

    Forde, Arnell S.; Flocks, James G.; Kindinger, Jack G.; Bernier, Julie C.; Kelso, Kyle W.; Wiese, Dana S.

    2015-01-01

    From August 13-23, 2013, the U.S. Geological Survey (USGS), in cooperation with the U.S. Army Corps of Engineers (USACE) conducted geophysical surveys to investigate the geologic controls on barrier island framework and long-term sediment transport offshore of Petit Bois Island, Mississippi. This investigation is part of a broader USGS study on Coastal Change and Transport (CCT). These surveys were funded through the Mississippi Coastal Improvements Program (MsCIP) with partial funding provided by the Northern Gulf of Mexico Ecosystem Change and Hazard Susceptibility Project. This report serves as an archive of unprocessed digital chirp subbottom data, trackline maps, navigation files, Geographic Information System (GIS) files, Field Activity Collection System (FACS) logs, and formal Federal Geographic Data Committee (FGDC) metadata. Gained-showing a relative increase in signal amplitude-digital images of the seismic profiles are provided.

  4. Quaternary onset and evolution of Kimberley coral reefs (Northwest Australia) revealed by high-resolution seismic imaging

    NASA Astrophysics Data System (ADS)

    Bufarale, Giada; Collins, Lindsay B.; O'Leary, Michael J.; Stevens, Alexandra; Kordi, Moataz; Solihuddin, Tubagus

    2016-07-01

    The inner shelf Kimberley Bioregion of Northwest Australia is characterised by a macrotidal setting where prolific coral reefs growth as developed around a complex drowned landscape and is considered a biodiversity "hotspot". High-resolution shallow seismic studies were conducted across various reef settings in the Kimberley (Buccaneer Archipelago, north of Dampier Peninsula, latitude: between 16°40‧S and 16°00‧S) to evaluate stratigraphic evolution, interaction with different substrates, morphological patterns and distribution. Reef sites were chosen to assess most of the reef types present, particularly high intertidal planar reefs and fringing reefs. Reef internal acoustic reflectors were identified according to their shape, stratigraphic position and characteristics. Two main seismic horizons were identified marking the boundaries between Holocene reef (Marine Isotope Stage 1, MIS 1, last 12 ky), commonly 10-20 m thick, and MIS 5 (Last Interglacial, LIG, ~120 ky, up to 12 m thick) and Proterozoic rock foundation over which Quaternary reef growth occurred. Within the Holocene Reef unit, at least three minor internal reflectors, generally discontinuous, subparallel to the reef flat were recognised and interpreted as either growth hiatuses or a change of the coral framework or sediment matrix. The LIG reefs represent a new northernmost occurrence along the Western Australian coast. The research presented here achieved the first regional geophysical study of the Kimberley reefs. Subbottom profiles demonstrated that the surveyed reefs are characterised by a multi-stage reef buildup, indicating that coral growth occurred in the Kimberley during previous sea level highstands. The data show also that antecedent substrate and regional subsidence have contributed, too, in determining the amount of accommodation available for reef growth and controlling the morphology of the successive reef building stages. Moreover, the study showed that in spite of macrotidal conditions, high-turbidity and frequent high-energy cyclonic events, corals have exhibited prolific reef growth during the Holocene developing significant reef accretionary structures. As a result coral reefs have generating habitat complexity and species diversity in what is a biodiversity hotspot.

  5. Sediment dispersal patterns within the Nares Abyssal Plain: observations from GLORIA Sonographs

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Shephard, L.E.; Tucholke, B.E.; Fry, V.A.

    1985-01-01

    Features evident on GLORIA sonographs from the Nares Abyssal Plain suggest a sediment dispersal pattern for turbidity currents that varies temporally and spatially, resulting in randomly distributed turbidite deposits in the distal abyssal plain east of 64/sup 0/W. Regional variations in backscatter intensities across the abyssal plain are related to the frequency and thickness of near-surface silt beds, basement highs disrupting the seafloor, and subtle changes in surface and sub-surface bedforms related to low-relief turbidite flow paths, biologic activity, and possibly erosion. High backscatter intensities, prevalent west of 64/sup 0/W, are generally associated with those areas containing thicker silt bedsmore » and very regular subbottom reflectors on 3.5 kHz profiles. Low backscatter intensities, prevalent east of 64/sup 0/W, are associated with those areas containing thin silt beds or stringers with a much higher percentage of pelagic clay. Seafloor lineaments occur throughout the survey area but decrease in abundance east of 64/sup 0/W. These features have no apparent relief when crossed by surface-towed seismic reflection profiles. In some instances the lineaments may correspond to low-relief turbidite flow paths that contain varying textural compositions resulting in increased backscatter. These features would be indicative of sediment transport directions. Other possible origins for the lineaments, that often appear trackline parallel, include near-surface morphology that is preferentially detected and aligned by GLORIA, or possibly the lineaments result from complex subbottom interference patterns that would not be readily apparent in areas with a more irregular seafloor.« less

  6. Detection to the DepositFan Occurring in the Sun Moon Lake Using Geophysical Sonar Data

    NASA Astrophysics Data System (ADS)

    Mimi, L.

    2014-12-01

    Located in central Taiwan, the Sun Moon Lake is an U-shaped basin with the waters capacity for 138.68 × 106m³. The water is input through two underground tunnels from the Wu-Jie dam in the upstream of the Zhuo-shui river. Although the Wu-Jie dam has been trying to keep the tunnels transporting clean water into the lake, the water is still mixed with muds. The silty water brings the deposits accumulating outwards from positions of the tunnel outlets resulting in a deposit fan formed in the lake. To monitor how the fan is accumulated is then very important in terms of environmental issue, tourism and electric power resources. Institute of Oceanography, National Taiwan University therefore conducted projects to use the multi-beam echo sounders to collect bathymetric data, and used the Chirp sub-bottom profiler to explore silted pattern inside the deposit fan. With these data, underwater topographic maps were plotted to observe the shape and internal structure of the fan. Moreover, two sets of data obtained in 2006 and 2012 were used to estimate the siltation magnitude and pattern in the six years period.The multi-beam sounder is Resons Seabat 9001s model; it collects 60 values in each of the swaths positioned by the DGPS method.The sub-bottom profiler is the EdgeTech 3100P Chirp Sonar, its acoustic wave frequency is in 2 ~ 16kHz. The data give the siltation amount in the Sun Moon Lake was around 3× 106 m³, which gives annual siltation rate at 5× 105 m³. The leading edge of the deposit fan has been expanded westwards 2 km from the water outlet since the tunnel was built 70 years ago; however, outside the deposit fan, the siltation shows insignificant amount on the water bottom.In the past few years the siltation mainly occurs outside in the east side of lake, more closer to the water outlets, the terrain had been increased from 744 m to 746 m (748.5 meters is stranded level of the lake).Observing sub-bottom profiler data, we can clearly see the location of the paleo-hard- bottom of the lake before the siltation occurred. These sub-bottom profiles can be used to check or to analyze episodic deposition behavior in producing the deposit fan.

  7. Seismic profile analysis of sediment deposits in Brownlee and Hells Canyon Reservoirs near Cambridge, Idaho

    USGS Publications Warehouse

    Flocks, James; Kelso, Kyle; Fosness, Ryan; Welcker, Chris

    2014-01-01

    The U.S. Geological Survey (USGS) St. Petersburg Coastal and Marine Science Center, in cooperation with the USGS Idaho Water Science Center and the Idaho Power Company, collected high-resolution seismic reflection data in the Brownlee and Hells Canyon Reservoirs, in March of 2013.These reservoirs are located along the Snake River, and were constructed in 1958 (Brownlee) and 1967 (Hells Canyon). The purpose of the survey was to gain a better understanding of sediment accumulation within the reservoirs since their construction. The chirp system used in the survey was an EdgeTech Geo-Star Full Spectrum Sub-Bottom (FSSB) system coupled with an SB-424 towfish with a frequency range of 4 to 24 kHz. Approximately 325 kilometers of chirp data were collected, with water depths ranging from 0-90 meters. These reservoirs are characterized by very steep rock valley walls, very low flow rates, and minimal sediment input into the system. Sediments deposited in the reservoirs are characterized as highly fluid clays. Since the acoustic signal was not able to penetrate the rock substrate, only the thin veneer of these recent deposits were imaged. Results from the seismic survey indicate that throughout both of the Brownlee and Hells Canyon reservoirs the accumulation of sediments ranged from 0 to 2.5 m, with an average of 0.5 m. Areas of above average sediment accumulation may be related to lower slope, longer flooding history, and proximity to fluvial sources.

  8. Continuous resistivity profiling and seismic-reflection data collected in April 2010 from Indian River Bay, Delaware

    USGS Publications Warehouse

    Cross, V.A.; Bratton, J.F.; Michael, H.A.; Kroeger, K.D.; Green, Adrian; Bergeron, Emile M.

    2014-01-01

    A geophysical survey to delineate the fresh-saline groundwater interface and associated sub-bottom sedimentary structures beneath Indian River Bay, Delaware, was carried out in April 2010. This included surveying at higher spatial resolution in the vicinity of a study site at Holts Landing, where intensive onshore and offshore studies were subsequently completed. The total length of continuous resistivity profiling (CRP) survey lines was 145 kilometers (km), with 36 km of chirp seismic lines surveyed around the perimeter of the bay. Medium-resolution CRP surveying was performed using a 50-meter streamer in a baywide grid. Results of the surveying and data inversion showed the presence of many buried paleochannels beneath Indian River Bay that generally extended perpendicular from the shoreline in areas of modern tributaries, tidal creeks, and marshes. An especially wide and deep paleochannel system was imaged in the southeastern part of the bay near White Creek. Many paleochannels also had high-resistivity anomalies corresponding to low-salinity groundwater plumes associated with them, likely due to the presence of fine-grained estuarine mud and peats in the channel fills that act as submarine confining units. Where present, these units allow plumes of low-salinity groundwater that was recharged onshore to move beyond the shoreline, creating a complex fresh-saline groundwater interface in the subsurface. The properties of this interface are important considerations in construction of accurate coastal groundwater flow models. These models are required to help predict how nutrient-rich groundwater, recharged in agricultural watersheds such as this one, makes its way into coastal bays and impacts surface-water quality and estuarine ecosystems.

  9. Occurrence of near-seafloor gas hydrates and associated cold vents in the Ulleung Basin, East Sea

    NASA Astrophysics Data System (ADS)

    Bahk, J.-J.; Kong, G.-S.; Park, Y.; Kim, J.-H.; Lee, H.; Park, Y.; Park, K.-P.

    2009-04-01

    During the site survey cruise for proposed drill sites of the Ulleung Basin Gas Hydrate Expedition 01, near-seafloor gas hydrates were discovered in core sediments from both regions of basin plain (2066-2012 m water depth) and southern slope (898 m) of the Ulleung Basin. The gas hydrate-bearing cores were exclusively retrieved from high backscatter intensity areas in processed 13 kHz multi-beam data, implying high seafloor reflectivity. In high-resolution (2-7 kHz) sub-bottom profiles, the coring sites are also characterized by narrow (< about 500 m wide) acoustic blank zones reaching seafloor, where they have surface expressions of low-relief (< about 5 m high) mound. In the data from a 38 kHz split-beam echosounder, which was deployed for acoustic characterization of gas bubbles, there are no apparent gas flares associated with the blank zones. The recovered gas hydrates mainly consist of disseminated nodules or veins in clayey mud, which normally occur from 5-6 m below the seafloor to the maximum penetration depth (<8 m) of the cores. In some cases, they were associated with abundant scattered authigenic carbonate nodules. Compositional and structural analyses of selected gas hydrate samples revealed that they consist of structure I hydrates which contain more than 99% methane with carbon isotope values ranging from -64 to -80 per mil (PDB). The preliminary results of the site survey cruise collectively suggest that the near-seafloor gas hydrates are related to cold vents, where high seafloor reflectivity is caused by presence of gas hydrates and authigenic carbonates. Gas seeping activity in the cold vents appears to be currently dormant.

  10. Bottom Characterization with High Resolution Sonar Data and Geochemical Analyses of an Uninvestigated Cone in Lagoa das Furnas on São Miguel Island, Azores Archipelago

    NASA Astrophysics Data System (ADS)

    Andersson, T.

    2015-12-01

    Lagoa das Furnas is a crater lake located in an area exposed to geohazards from earthquakes and volcanic activity on the island São Miguel in the Azores Archipelago. The Furnas volcanic center has a long history of earthquakes and volcanic activity. The area is relatively well studied except for the lake floor. Therefore, a high resolution geophysical and geological mapping survey was conducted at Lagoa das Furnas. Sidescan sonar was used to map the surface of the lake floor and single beam sonar was used to acquire sub-bottom profiles. In addition to the geophysical mapping, sediment surface sampling and core drilling were carried out followed by geochemical analyses of the retrieved material. The mapped data permitted a characterization of the floor of Lagoa das Furnas and revealed several volcanic features including fumarolic activity and a previously uninvestigated volcanic cone in the southern part of the lake. In order to unravel the origin of this cone several methods were applied, including analyses of tephra and minerals collected from the cone itself and from nearby deposits of two known eruptions, Furnas I and Furnas 1630. Sedimentological, petrological, geochemical and geochronological studies of pyroclastic deposits from the cone suggest a subaqueous eruption linked to the Furnas 1630 eruption. The chemistry of glass and crystal fragments sampled from the cone suggests that it is composed of more evolved magma than that of the main Furnas 1630, implying that the lake cone is likely a product of the last eruptional phase. According to historical records, two of three lakes were lost due the Furnas 1630 eruption. The results of this study show that the remaining lake is most likely Lagoa das Furnas, which consequently must have existed before the 1630 eruption.

  11. Comparison with Offshore and Onshore Mud Volcanoes in the Southwestern Taiwan

    NASA Astrophysics Data System (ADS)

    Chen, Y. H.; Su, C. C.; Chen, T. T.; Liu, C. S.; Paull, C. K.; Caress, D. W.; Gwiazda, R.; Lundsten, E. M.; Hsu, H. H.

    2017-12-01

    The offshore area southwest (SW) of Taiwan is on the convergent boundary between the Eurasian and Philippine Sea plates. The plate convergence manifests in this unique geological setting as a fold-and-thrust-belt. Multi-channel seismic profiles, and bathymetry and gravity anomaly data collected from Taiwan offshore to the SW show the presence of a large amount of mud volcanoes and diapirs with NE-SW orientations. In the absence of comprehensive sampling and detailed geochemistry data from submarine mud volcanoes, the relation between onshore and offshore mud volcanoes remains ambiguous. During two MBARI and IONTU joint cruises conducted in 2017 we collected high-resolution multibeam bathymetry data (1-m-resolution) and chirp sub-bottom profiles with an autonomous underwater vehicle (AUV) from submarine Mud Volcano III (MV3), and obtained precisely located samples and video observations with a remotely operated vehicle (ROV). MV3 is an active submarine mud volcano at 465 m water depth offshore SW Taiwan. This cone-shape mud volcano is almost 780 m wide, 150 m high, with 8° slopes, and a 30 m wide mound on the top. Several linear features are observed in the southwest of the mound, and these features are interpreted as a series of marks caused by rolling rocks that erupted from the top of MV3. We collected three rocks and push cores from MV3 and its top with the ROV, in order to compare their chemical and mineralogical composition to that of samples collected from mud volcanoes along the Chishan fault. The surface and X-radiography imaging, 210Pb chronology, grain size and X-ray diffractometer analyses were conducted to compare geochemical and sedimentary properties of offshore and onshore mud volcanoes. The results indicate that the offshore and onshore mud volcanoes have similar characteristics. We suggest that offshore and onshore mud volcanoes of SW Taiwan are no different in the source of their materials and their mechanism of creation and evolution.

  12. Distinctive Geomorphology of Gas Venting and Near Seafloor Gas Hydrate-Bearing sites

    NASA Astrophysics Data System (ADS)

    Paull, C. K.; Caress, D. W.; Lundsten, E.; Anderson, K.; Gwiazda, R.; McGann, M. L.; Edwards, B. D.; Riedel, M.; Herguera, J.

    2012-12-01

    High-resolution multibeam bathymetry and chirp seismic-reflection profiles collected with an Autonomous Underwater Vehicle (AUV) complimented by Remotely Operated Vehicle (ROV) observations and sampling reveal the fine scale geomorphology associated with gas venting and/or near subsurface gas hydrate accumulations along the Pacific North American continental margin (Santa Monica Basin, Hydrate Ridge, Eel River, Barkley Canyon, and Bullseye Vent) and along the transform faults in the Gulf of California. At the 1 m multibeam grid resolution of the new data, distinctive features and textures that are undetectable at lower resolution, show the impact of gas venting, gas hydrate development, and related phenomena on the seafloor morphology. Together a suite of geomorphic characteristics illustrates different stages in the development of seafloor gas venting systems. The more mature and/or impacted areas are associated with widespread exposures of methane-derived carbonates, which form broken and irregular seafloor pavements with karst-like voids in between the cemented blocks. These mature areas also contain elevated features >10 m high and circular seafloor craters with diameters of 3-50 m that appear to be associated with missing sections of the original seafloor. Smaller mound-like features (<10 m in diameter and 1-3 m higher than the surrounding seafloor) occur at multiple sites. Solid lenses of gas hydrate are occasionally exposed along fractures on the sides of these mounds and suggest that these are push-up features associated with gas hydrate growth within the near seafloor sediments. The youngest appearing features are associated with more-subtle (<3 m in diameter and ~0.5 m high) seafloor mounds, the crests of which are crossed with small cracks lined with white bacterial mats. ROV-collected (<1.5 m long) cores obtained from these subtle mounds encountered a hard layer at 30-60 cm sub-bottom. When this layer was penetrated, methane bubbles gushed out and continued to flow out for over an hour. These observations indicate that these small mounds are young features that trap considerable volumes of gas near the seafloor. Together these observations reveal the integrated effect that gas and/or gas hydrate occurrences can have on the seafloor. The existence of gaseous methane within ~1 m of the seafloor has intriguing implications as to the geo-hazard potential of such sites.

  13. Detailed Gas Chimney Structures in Joetsu Area at Southeastern Margin of Japan Sea, Revealed by High-Resolution 3D Seismic Survey (HR3D)

    NASA Astrophysics Data System (ADS)

    Ohkawa, S.; Hiruta, A.; Yanagimoto, Y.; Matsumoto, R.; Asakawa, E.

    2016-12-01

    To delineate the detailed structure of the gas chimneys, a high-resolution three-dimensional seismic survey (HR3D) was carried out in Joetsu area, at the southeastern margin of Japan Sea where hydrate-related mound and pockmark systems with gas chimneys are widely developed. HR3D data have successfully revealed the fine structure of gas chimneys which were not clearly imaged by the existing seismic data, such as sub-bottom profilers and conventional large-scale 3D surveys for petroleum exploration. HR3D data are also useful to interpolate and extrapolate spatially the geological/geophysical information obtained at wells most of which were drilled into the gas hydrate concentrated zones (GHCZs.) In the areas of low hydrate concentration, the reflections show a parallel-stratified pattern and the bottom simulating reflector (BSR) is parallel to the sea floor reflections. On the other hand, GHCZs are seismologically characterized by (1) strong sea floor reflections on the chimney mounds, (2) chaotic reflection patterns in the chimneys, and (3) pull-up of bottom simulating reflector (BSR) as shown in the attached figure. Strong sea floor reflections suggest that solid hydrates deposit in the very shallow part beneath the sea floor and the chaotic reflections indicate the hydrates are not continuously layered but interspersedly distributed. The BSR pull-up phenomena as much as 70 80msec are caused by high-velocity materials existing between the sea floor and the BSR. The sonic logs acquired by LWD at wells drilled into GHCZs show high velocity up to 3,800 m/s in the massive hydrates. The pull-up times estimated from the sonic data are consistent in general with the observed pull-up times on HR3D sections, suggesting the pull-up times could be useful for a preliminary evaluation of hydrate zones before drilling and/or in the areas without well data. This study was conducted under the commission from AIST as a part of the methane hydrate research project funded by METI (the Ministry of Economy, Trade and Industry, Japan.)

  14. Site assessment using echo sounding, side scan sonar and sub-bottom profiling.

    DOT National Transportation Integrated Search

    2014-02-01

    The primary objective of this research is to use multifaceted geophysical data techniques in order to better map karst terrain beneath : standing bodies of water. This study may help providing stronger mapping techniques for future bridge and dam con...

  15. Sub-seafloor acoustic characterization of seamounts near the Ogasawara Fracture Zone in the western Pacific using chirp (3-7 kHz) subbottom profiles

    USGS Publications Warehouse

    Lee, T.-G.; Hein, J.R.; Lee, Kenneth; Moon, J.-W.; Ko, Y.-T.

    2005-01-01

    A detailed analysis of chirp (3-7 kHz) subbottom profiles and bathymetry was performed on data collected from seamounts near the Ogasawara Fracture Zone (OFZ) in the western Pacific. The OFZ, which is a 150 km wide rift zone showing 600 km of right-lateral movement in a NW-SE direction, is unique among the fracture zones of the Pacific in that it includes many old seamounts (e.g., Magellan Seamounts and seamounts on Dutton Ridge). Sub-seafloor acoustic echoes on the seamounts are classified into nine specific types based on the nature and continuity of the echoes, subbottom structure, and morphology of the seafloor: (1) distinct echoes (types I-1, I-2, I-3), (2) indistinct echoes (types II-1, II-2, II-3), and (3) hyperbolic echoes (types III-1, III-2, III-3). Type I-2 pelagic sediments, characterized by thin and intermittent coverage, were probably deposited in topographically sheltered areas when bottom currents were strong, whereas type I-1 pelagic sediments accumulated during continuous and widespread sedimentation. Development of seamount flank rift zones in the OFZ may have been influenced by preexisting structures in the transform fracture zone at the time of volcanism, whereas those on Ita Mai Tai seamount in the Pigafetta Basin originated solely by edifice-building processes. Flank rift zones that formed by dike intrusions and eruptions played an important role in mass wasting. Mass-wasting processes included block faulting or block slides around the summit margin, sliding/slumping, debris flows, and turbidites, which may have been triggered by faulting, volcanism, dike injection, and weathering during various stages in the evolution of the seamounts. ?? 2005 Elsevier Ltd. All rights reserved.

  16. Archive of Digitized Analog Boomer and Minisparker Seismic Reflection Data Collected from the Alabama-Mississippi-Louisiana Shelf During Cruises Onboard the R/V Carancahua and R/V Gyre, April and July, 1981

    USGS Publications Warehouse

    Sanford, Jordan M.; Harrison, Arnell S.; Wiese, Dana S.; Flocks, James G.

    2009-01-01

    In April and July of 1981, the U.S. Geological Survey (USGS) conducted geophysical surveys to investigate the shallow geologic framework of the Alabama-Mississippi-Louisiana Shelf in the northern Gulf of Mexico. Work was conducted onboard the Texas A&M University R/V Carancahua and the R/V Gyre to develop a geologic understanding of the study area and to locate potential hazards related to offshore oil and gas production. While the R/V Carancahua only collected boomer data, the R/V Gyre used a 400-Joule minisparker, 3.5-kilohertz (kHz) subbottom profiler, 12-kHz precision depth recorder, and two air guns. The authors selected the minisparker data set because, unlike with the boomer data, it provided the most complete record. This report is part of a series to digitally archive the legacy analog data collected from the Mississippi-Alabama SHelf (MASH). The MASH data rescue project is a cooperative effort by the USGS and the Minerals Management Service (MMS). This report serves as an archive of high-resolution scanned Tagged Image File Format (TIFF) and Graphics Interchange Format (GIF) images of the original boomer and minisparker paper records, navigation files, trackline maps, Geographic Information System (GIS) files, cruise logs, and formal Federal Geographic Data Committee (FGDC) metadata.

  17. Geoacoustic models of Coastal Bottom Strata at Jeongdongjin in the Korean continental margin of the East Sea

    NASA Astrophysics Data System (ADS)

    Ryang, Woo Hun; Han, Jooyoung

    2017-04-01

    Geoacoustic models provide submarine environmental data to predict sound transmission through submarine bottom layers of sedimentary strata and acoustic basement. This study reconstructed four geoacoustic models for sediments of 50 m thick at the Jeongdongjin area in the western continental margin of the East Sea. Bottom models were based on about 1100 line-km data of the high-resolution air-gun seismic and subbottom profiles (SBP) with sediment cores. The 4 piston cores were analyzed for reconstruction of the bottom and geoacoustic models in the study area, together with 2 long cores in the adjacent area. P-wave speed in the core sediment was measured by the pulse transmission technique, and the resonance frequency of piezoelectric transducers was maintained at 1 MHz. Measurements of 42 P-wave speeds and 41 attenuations were fulfilled in three core sediments. For actual modeling, the P-wave speeds of the models were compensated to in situ depth below the sea floor using the Hamilton method. These geoacoustic models of coastal bottom strata will be used for geoacoustic and underwater acoustic experiments reflecting vertical and lateral variability of geoacoustic properties in the Jeongdongjin area of the East Sea. Keywords: geoacosutic model, bottom model, P-wave speed, Jeongdongjin, East Sea Acknowledgements: This research was supported by the research grants from the Agency of Defense Development (UD140003DD and UE140033DD).

  18. Acoustic Retrieval of Seafloor Geotechnics.

    DTIC Science & Technology

    1977-12-01

    from the seafloor and subbottom layer interfaces (e.g., Hastrup , 1969; Mackenzie , 1960; Bell and Porter , 1974). It is known that the physical...L. Inderbitzen , New York , Plenum Press, 1974 , pp 1-44. Hastrup , Ole (1969) “Digital analysis of acoustic reflectivity in the Tyrrhenia n A byssal

  19. Diversified seabed substrate, sediment remobilisation and fluid migration features offshore NW Greenland - new insights from marine seismic data acquisition in the Northern Nares Strait during the RV Oden cruise 2015

    NASA Astrophysics Data System (ADS)

    Andresen, Katrine Juul; Heirman, Katrien; Kamla, Elina; Nielsen, Tove; Rønø Clausen, Ole; Jakobsson, Martin; Mix, Alan C.; Andersen, Søren T.; Nørmark, Egon; Piotrowski, Jan A.; Knutz, Paul; Larsen, Nicolaj K.; Hogan, Kelly

    2016-04-01

    We present some preliminary observations from acquired seismic data from the Northern Nares Strait, NW Greenland. The studied area covers the Hall Basin in front of the Petermann Glacier and extends southward into the Kennedy Channel. It represents an area intensely affected by glacial related processes as well as deep tectonics. The data were acquired during the RV Oden cruise in late summer 2015, and thus represent valuable input to the understanding of the geological development of this scarcely accessed area of the Arctic. The data were acquired in nearly ice-free conditions and consist of >700 km 2D seismic airgun data, supplemented by high-resolution subbottom profiler data and multibeam data. The different acoustic data acquired simultaneously enable us to correlate deeper geological observations (e.g. faults observed on airgun seismics) with shallow depositional architectures (observed on subbottom profiler) and finally correlate the relatively scattered 2D interpretation with the detailed 3D seafloor morphology obtained by the multibeam. The seismic data reveal several provinces of varying seabed substrate geometry. The provinces include A: confined mini-basins; B: larger sedimentary basins; C: larger structural highs and D: "rough-and-faulted" terrain. The data also reveal a number of seismic anomalies, which indicate fluid flow and sediment remobilisation. The mini-basins are 100-600 m wide, in contrast to the larger basins which typically extend over 6-12 km. The mini-basins are characterized by a flat, smooth and continuous seafloor reflection and have an infill dominated by parallel and sub-horizontal reflections onlapping the edges of the basins. The larger basins, where the internal reflection pattern appears more diverse and less parallel, have much greater relief at the seafloor. Vertical disturbance zones typically emerging above minor structures at the floor of the mini-basins are likely related to vertical fluid migration. The zones occasionally continue to the seafloor but more often terminate within the sediments. Scattered amplitude anomalies in conjunction with sag-like depressions are further potential indications of fluid migration within the mini-basins (palaeo-pockmarks?). Slumps and mounded features within the mini-basins and at the larger structural highs indicate syn-depositional sediment remobilisation. A BSR-like reflection, potentially representing the base of gas hydrates, is occasionally observed in the larger sedimentary basins (ca. 15-20 ms TWT b.s.fl.) and at the culmination of the larger structural highs (ca. 40-50 ms TWT b.s.fl.). Cone-shaped to elongated ridges 15-20 m high and 500 m across appear to be linked with deeper structures and might indicate remobilisation of the shallow subsurface sediments potentially linked to fluid escape. Alternatively, they might be of glacial origin. Our preliminary results indicate that the basins are filled with subglacial and glaciofluvial sediments and that small-scale fluid migration and sediment remobilisation represent important processes in generating the depositional architecture in the Northern Nares Strait region. Further analyses are expected to constrain the interpretation of the observed features in detail, especially regarding the origin of the fluids.

  20. Marine mammal audibility of selected shallow-water survey sources.

    PubMed

    MacGillivray, Alexander O; Racca, Roberto; Li, Zizheng

    2014-01-01

    Most attention about the acoustic effects of marine survey sound sources on marine mammals has focused on airgun arrays, with other common sources receiving less scrutiny. Sound levels above hearing threshold (sensation levels) were modeled for six marine mammal species and seven different survey sources in shallow water. The model indicated that odontocetes were most likely to hear sounds from mid-frequency sources (fishery, communication, and hydrographic systems), mysticetes from low-frequency sources (sub-bottom profiler and airguns), and pinnipeds from both mid- and low-frequency sources. High-frequency sources (side-scan and multibeam) generated the lowest estimated sensation levels for all marine mammal species groups.

  1. AUV Mapping and ROV Exploration of Los Frailes Submarine Canyon, Cabo Pulmo National Marine Park, Baja California Sur, Mexico

    NASA Astrophysics Data System (ADS)

    Troni, G.; Caress, D. W.; Graves, D.; Thomas, H. J.; Thompson, D.; Barry, J. P.; Aburto-Oropeza, O.; Johnson, A. F.; Lundsten, L.

    2015-12-01

    Los Frailes submarine canyon is located at the south boundary of the Cabo Pulmo National Marine Park on the southeast tip of the Baja California Peninsula. During the Monterey Bay Aquarium Research Institute (MBARI) 2015 Gulf of California expedition we used an autonomous underwater vehicle (AUV) to map this canyon from 50 m to 450 m depths, and then explored the canyon with a small remotely operated vehicle (ROV). This three day R/V Rachel Carson cruise was a collaboration with the Center for Marine Biodiversity and Conservation at Scripps Institution of Oceanography and the Centro para la Biodiversidad Marina y la Conservación in La Paz. The MBARI AUV D. Allan B. collected high resolution bathymetry, sidescan, and subbottom profiles of Los Frailes submarine canyon and part of the north Cabo Pulmo deep reef. In order to safely generate a 1-m lateral resolution multibeam bathymetry map in the nearshore high relief terrain, the mapping operations consisted of an initial short survey following the 100-m isobath followed by a series of short, incremental AUV missions located on the deep edge of the new AUV bathymetry. The MBARI Mini-ROV was used to explore the submarine canyon within the detailed map created by the MBARI AUV. The Mini-ROV is a 1.2-m-long, 350 kg, 1,500-m-depth-rated ROV designed and constructed by MBARI. It is controlled by six 600-watt thrusters and is equipped with a high-definition video camera and navigation sensors. This small ROV carries less accurate, lower cost navigation sensors than larger vehicles. We implemented new algorithms to localize combining Doppler velocity log sensor data and low-cost MEMS-based inertial sensor data with sporadic ultra-short baseline position measurements to provide a high accuracy position estimation. The navigation performance allowed us to colocate the ROV video imagery with the 1-m resolution bathymetric map of the submarine canyon. Upper Los Frailes Canyon is rugged and, aside from small sand pockets along the thalweg, largely bare of sediment. ROV video indicates the north wall is composed of granitic rock similar to outcrops on shore. Few fish or other animals are observed below 100 m depth, but considerable diversity exists along the canyon walls above 100 m depth. These observations are consistent with a pronounced oxygen minimum zone present below about 100 m depth.

  2. 36 CFR 2.1 - Preservation of natural, cultural and archeological resources.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 36 Parks, Forests, and Public Property 1 2012-07-01 2012-07-01 false Preservation of natural, cultural and archeological resources. 2.1 Section 2.1 Parks, Forests, and Public Property NATIONAL PARK... subbottom profilers used for authorized scientific, mining, or administrative activities. (b) The...

  3. 36 CFR 2.1 - Preservation of natural, cultural and archeological resources.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 36 Parks, Forests, and Public Property 1 2014-07-01 2014-07-01 false Preservation of natural, cultural and archeological resources. 2.1 Section 2.1 Parks, Forests, and Public Property NATIONAL PARK... subbottom profilers used for authorized scientific, mining, or administrative activities. (b) The...

  4. 30 CFR 282.5 - Disclosure of data and information to the public.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... public. 282.5 Section 282.5 Mineral Resources BUREAU OF SAFETY AND ENVIRONMENTAL ENFORCEMENT, DEPARTMENT... (including, but not limited to, bathymetry, side-scan sonar, subbottom profiler, and magnetometer) in compliance with stipulations or orders concerning protection of environmental aspects of the lease may be...

  5. 30 CFR 282.5 - Disclosure of data and information to the public.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... public. 282.5 Section 282.5 Mineral Resources BUREAU OF SAFETY AND ENVIRONMENTAL ENFORCEMENT, DEPARTMENT... (including, but not limited to, bathymetry, side-scan sonar, subbottom profiler, and magnetometer) in compliance with stipulations or orders concerning protection of environmental aspects of the lease may be...

  6. 30 CFR 282.5 - Disclosure of data and information to the public.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... public. 282.5 Section 282.5 Mineral Resources BUREAU OF SAFETY AND ENVIRONMENTAL ENFORCEMENT, DEPARTMENT... (including, but not limited to, bathymetry, side-scan sonar, subbottom profiler, and magnetometer) in compliance with stipulations or orders concerning protection of environmental aspects of the lease may be...

  7. 30 CFR 280.51 - What types of geophysical data and information must I submit to MMS?

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ..., shallow and deep subbottom profiles, bathymetry, sidescan sonar, gravity and magnetic surveys, and special... and of a quality suitable for processing; (c) Processed geophysical information derived from seismic... interpretive evaluation, reflecting state-of-the-art processing techniques; and (d) Other geophysical data...

  8. Long-term temperature monitoring at the biological community site on the Nankai accretionary prism off Kii Peninsula

    NASA Astrophysics Data System (ADS)

    Goto, S.; Hamamoto, H.; Yamano, M.; Kinoshita, M.; Ashi, J.

    2008-12-01

    Nankai subduction zone off Kii Peninsula is one of the most intensively surveyed areas for studies on the seismogenic zone. Multichannel seismic reflection surveys carried out in this area revealed the existence of splay faults that branched from the subduction zone plate boundary [Park et al., 2002]. Along the splay faults, reversal of reflection polarity was observed, indicating elevated pore fluid pressure along the faults. Cold seepages with biological communities were discovered along a seafloor outcrop of one of the splay faults through submersible observations. Long-term temperature monitoring at a biological community site along the outcrop revealed high heat flow carried by upward fluid flow (>180 mW/m2) [Goto et al., 2003]. Toki et al. [2004] estimated upward fluid flow rates of 40-200 cm/yr from chloride distribution of interstitial water extracted from sediments in and around biological community sites along the outcrop. These observation results suggest upward fluid flow along the splay fault. In order to investigate hydrological nature of the splay fault, we conducted long-term temperature monitoring again in the same cold seepage site where Goto et al. [2003] carried out long-term temperature monitoring. In this presentation, we present results of the temperature monitoring and estimate heat flow carried by upward fluid flow from the temperature records. In this long-term temperature monitoring, we used stand-alone heat flow meter (SAHF), a probe-type sediment temperature recorder. Two SAHFs (SAHF-3 and SAHF-4) were used in this study. SAHF-4 was inserted into a bacterial mat, within several meters of which the previous long-term temperature monitoring was conducted. SAHF-3 was penetrated into ordinary sediment near the bacterial mat. The sub-bottom temperature records were obtained for 8 months. The subsurface temperatures oscillated reflecting bottom- water temperature variation (BTV). For sub-bottom temperatures measured with SAHF-3 (outside of the bacterial mat), we found that the effects of the BTV propagated into sediment by conduction only. By correcting the effect of the BTV, conductive heat flow estimated is higher than 100 mW/m2. Sub-bottom temperatures measured within bacterial mat (SAHF-4) except for the topmost sensor could be explained by a conduction model. The heat flow estimated based on the conduction model is similar to that measured with SAHF-3. The temperature of the topmost sensor is slightly higher than that expected from the conduction model. To explain the high temperature, upward fluid flow at a rate of 10-7 m/s order is needed. Heat flow carried by the upward fluid flow is higher than that estimated by Goto et al. [2003]. Heat flow value expected from the distribution of heat flow around this area is 70-80 mW/m2. The high heat flow values inside and outside the bacterial mat estimated in the present and previous studies may reflect upward fluid flow along the splay fault.

  9. Integration of orthophotographic and sidescan sonar imagery: an example from Lake Garda, Italy

    USGS Publications Warehouse

    Gentili, Giuseppe; Twichell, David C.; Schwab, Bill

    1996-01-01

    Digital orthophotos of Lake Garda basin area are available at the scale of up to 1:10,000 from a 1994 high altitude (average scale of 1:75,000) air photo coverage of Italy collected with an RC30 camera and Panatomic film. In October 1994 the lake bed was surveyed by USGS and CISIG personnel using a SIS 1000 Sea-Floor Mapping System. Subsystems of the SIS-1000 include high resolution sidescan sonar and sub-bottom profiler. The sidescan imagery was collected in ranges up to 1500m, while preserving a 50cm pixel resolution. The system was navigated using differential GPS. The extended operational range of the sidescan sonar permitted surveying the 370km lake area in 11 days. Data were compiled into a digital image with a pixel resolution of about 2m and stored as 12 gigabytes in exabyte 8mm tape and converted from WGS84 coordinate system to the European Datum (ED50) and integrated with bathymetric data digitized from maps.The digital bathymetric model was generated by interpolation using commercial software and was merged with the land elevation model to obtain a digital elevation model of the Lake Garda basin.The sidescan image data was also projected in the same coordinate system and seamed with the digital orthophoto of the land to produce a continuous image of the basin as if the water were removed. Some perspective scenes were generated by combining elevation and bathymetric data with basin and lake floor images. In deep water the lake's thermal structure created problems with the imagery indicating that winter or spring is best survey period. In shallow waters, ≤ 10 m, where data are missing, the bottom data gap can be filled with available images from the first few channels of the Daedalus built MIVIS, a 102 channel hyperspectral scanner with 20 channel bands of 0.020 μm width, operating in the visible part of the spectrum. By integrating orthophotos with sidescan imagery we can see how the basin morphology extends across the lake, the paths taken by the lake inlet along the lake bed and the areal distribution of sediments. An extensive exposure of debris aprons were noted on the western side of the lake. Various anthropogenic objects were recognized: pipelines, sites of waste disposal on the lake's bed, and relicts of Venitian and Austrian(?) boats.

  10. Northern Cascadia Subduction Zone Earthquake Records from Onshore and Offshore Core Data

    NASA Astrophysics Data System (ADS)

    Hausmann, R. B.; Goldfinger, C.; Black, B.; Romsos, C. G.; Galer, S.; Collins, T.

    2016-12-01

    We are investigating the paleoseismic record at Bull Run Lake, at the latitude of Portland, Oregon, central Cascadia margin. Bull Run is a landslide dammed lake in a cirque basin on the western flanks of Mt. Hood, 65 km east of Portland, and is the City of Portland's primary water supply. We collected full coverage high-resolution multibeam and backscatter data, high resolution CHIRP sub-bottom profiles, and seven sediment cores which contain a correlative turbidite sequence of post Mazama beds. The continuity of the turbidite record shows little or no relationship to the minor stream inlets, suggesting the disturbance beds are not likely to be storm related. CT and physical property data were used to separate major visible beds and background sedimentation, which also contain thin laminae. The XRF element Compton scattering may show grading due to mineralogical variation and a change in wave profile, commonly found at bed boundaries. We have identified 27 post -Mazama event beds and 5 ashes in the lake, and constructed an OxCal age model anchored by radiocarbon ages, the Mazama ash, and the twin Timberline ash beds. The radiocarbon ages, age model results, as well as electron microprobe (EMP) data clearly identify the Mazama ash at the base of our cores. Two closely-spaced ash beds in our cores likely correlate to the Timberline eruptive period at 1.5ka. The number, timing and sequence of the event beds, and physical property log correlation, as well as key bed characteristics, closely matches offshore turbidite sequences off northern Oregon. For example, key regional bed T11, observed as a thick two-pulse bed in all offshore cores, also anchors the Bull Run sequence. One difference is that the twin Timberline ash occupies the stratigraphic position of regional offshore paleoseismic bed T4, which is also a two pulse event at this latitude. The cores also contain many faint laminae that may contain a storm record, however, the identification of small beds is complicated by the low sedimentation rate and low resolution of the Bull Run cores. The watershed and lake may also contain evidence of crustal faulting, though the event sequence appears to be primarily that of the Cascadia subduction zone earthquake sequence. See also Goldfinger et al. for investigation of slope stability and ground motions at Bull Run and other Cascadia lakes.

  11. Interpretation of echo sounding and sub-bottom profiling data : Mark Twain Bridge A-3798, MoDOT Route 107

    DOT National Transportation Integrated Search

    2008-02-01

    The project consists of essentially doing what is outlined in the objective above. In addition, MoDOT will be responsible for choosing the 30 soils and 5 base materials to be tested, for doing initial property tests on them, and delivering them to UM...

  12. 30 CFR 251.12 - Submission, inspection, and selection of geophysical data and information collected under a...

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... information, and interpreted geophysical information including, but not limited to, shallow and deep subbottom...) You must notify the Regional Director, in writing, when you complete the initial processing and interpretation of any geophysical data and information. Initial processing is the stage of processing where the...

  13. Near-surface stratigraphy and morphology, Mississippi Inner Shelf, northern Gulf of Mexico

    USGS Publications Warehouse

    Flocks, James G.; Kindinger, Jack; Kelso, Kyle W.; Bernier, Julie C.; DeWitt, Nancy T.; FitzHarris, Michael

    2015-01-01

    In June 2013, as part of the MsCIP project, the USGS conducted a geophysical survey consisting of about 650 line-kilometers (km), encompassing an area of approximately 212 square kilometers (km2). The survey area extended from 1 to 13 km offshore of Petite Bois Island. The geophysical investigation included interferometric swath bathymetry, sidescan sonar, and chirp subbottom profiling. The intent of the survey was to provide geologic information that would assist the USACE in developing a sediment sampling strategy for identifying deposits suitable for shoreline restoration operations. The data from the geophysical survey would also further our understanding of the geologic framework along the inner shelf. Numerous seafloor and subbottom features were identified. At the surface, shoals and shelf sand sheets of various sizes and orientations are the predominant morphology. In the subsurface, Holocene- and Pleistocene-age features include marine transgressive deposits infilling older fluvia distributary systems. These interpretations from the geophysical research were integrated with sediment cores collected by the USGS and USACE to provide textural and volumetric information.

  14. Archive of digital chirp subbottom profile data collected during USGS cruises 13BIM02 and 13BIM07 offshore of the Chandeleur Islands, Louisiana, 2013

    USGS Publications Warehouse

    Forde, Arnell S.; Miselis, Jennifer L.; Flocks, James G.; Bernier, Julie C.; Wiese, Dana S.

    2014-01-01

    On July 5–19 (cruise 13BIM02) and August 22–September 1 (cruise 13BIM07), 2013, the U.S. Geological Survey (USGS) conducted geophysical surveys to investigate the geologic controls on barrier island evolution and medium-term and interannual sediment transport along the oil spill mitigation sand berm constructed at the north end and offshore of the Chandeleur Islands, Louisiana. This investigation is part of a broader USGS study, which seeks to understand barrier island evolution better over medium time scales (months to years). This report serves as an archive of unprocessed digital chirp subbottom data, trackline maps, navigation files, Geographic Information System (GIS) files, Field Activity Collection System (FACS) logs, and formal Federal Geographic Data Committee (FGDC) metadata. Gained–showing a relative increase in signal amplitude–digital images of the seismic profiles are provided. Refer to the Abbreviations page for explanations of acronyms and abbreviations used in this report.

  15. Sediment Transport and Slope Stability of Ship Shoal Borrow Areas for Coastal Restoration of Louisiana

    NASA Astrophysics Data System (ADS)

    Liu, H.; Xu, K.; Bentley, S. J.; Li, C.; Miner, M. D.; Wilson, C.; Xue, Z.

    2017-12-01

    Sandy barrier islands along Louisiana coast are degrading rapidly due to both natural and anthropogenic factors. Ship Shoal is one of the largest offshore sand resources, and has been used as a borrow area for Caminada Headland Restoration Project. Our knowledge of sediment transport and infilling processes in this new sandy and dynamic borrow area is rather limited. High resolution sub-bottom seismic data, side scan sonar images, multi-beam bathymetry and laser sediment grain size data were used to study seafloor morphological evolution and pit wall stability in response to both physical and geological processes. The multi-beam bathymetry and seismic profiling inside the pit showed that disequilibrium conditions led to rapid infilling in the pits at the beginning, but this process slowed down after the pit slope became stable and topography became smooth. We hypothesize that the erosion of the adjacent seabed sediment by energetic waves and longshore currents, the supply of suspended sediment from the rivers, and the erodible materials produced by local mass wasting on pit walls are three main types of infilling sediments. Compared with mud-capped dredge pits, this sandy dredge pit seems to have more gentle slopes on pit walls, which might be controlled by the angle of repose. Infilling sediment seems to be dominantly sandy, with some mud patches on bathymetric depressions. This study helps us better understand the impacts of mining sediment for coastal restoration and improves sand resource management efforts.

  16. Evolution of the Sedimentary Basin Within the Eastern Eez Polygon at the Gulf of Mexico

    NASA Astrophysics Data System (ADS)

    Valle, S.; Mortera-Gutierrez, C. A.; Bandy, W. L.; Escobar-Briones, E. G.; Perez, D. A.

    2013-05-01

    This study shows the seafloor structures and magnetic anomalies inside the eastern EEZ polygon at the Gulf of Mexico. The objective of this study is to examine the previous hypothesis of the Gulf of Mexico opening, based on the seafloor magnetic character. Researchers from the "Instituto de Ciencias del Mar y Limnología" at UNAM, collected , multibeam bathymetric data, high-resolution seismic reflection and magnetic profiles along 37 E-W transects during two campaigns on board the UNAM vessel, BO JUSTO SIERRA, SIGSBEE-11 in 2008 and SIGSBEE-13 in 2010. Results of the bathymetry data gathered with the EM300 multibeam echo sounder (Kongsberg) and processed with the software Caraibes from IFREMER has generated a bathymetry chart of seafloor at the Eastern Polygon, and a mosaic of back-scattering images. The high-resolution seismic profiles gathered with the subbottom profiler TOPAS PS-18 (Kongsberg) provide information on the stratigraphy sediment packages across this polygon and across the deep Mississippi Canyon. The magnetic anomalies are reduced from the data gathered with a proton-precession magnetometer, G877 (GEOMETRICS). The anomalies are modeled, based on a N_S rift at the Gulf central sector. The bathymetric chart and reflectivity mosaics of SIGSBEE-11 and SIGSBEE-13 documented the smooth relief of the seabed slope toward the Gulf central sector and abrupt morphological features associated to the meanders of the Mississippi Canyon that trend to the East. The multibeam bathymetry chart shows a relief depth that goes from 2,900 to 3,400 m from north to south. Meanders are observed in the seabed within the Eastern Polygon which is related to turbidity currents from the Mississippi River, and having a trend from west to east. The relief of the canyon shows channels with widths between 400 and 1800 m, and canyon depths up to 80 m. The high-resolution seismic sections, show well defined stratigraphy packages, where clear sediment strata are interrupted by transparent sediment stratification. Likewise these opaque sediment packages showing in the seismic sections are product of the enormous contribution of turbidite flowing from the Mississippi River, so the seabed stratification within the Eastern Polygon consists mostly of turbidite deposits. These channels or turbidite deposits have been moving continuously along its evolution, and these structures are areas of great interest, for exploration of hydrocarbon deposits. The magnetic data were obtained covering a small area of the Gulf of Mexico and are integrated to other magnetic data set to revise the Gulf of Mexico opening models.

  17. Marine Geophysical Investigation of Selected Sites in Bridgeport Harbor, Connecticut, 2006

    USGS Publications Warehouse

    Johnson, Carole D.; White, Eric A.

    2007-01-01

    A marine geophysical investigation was conducted in 2006 to help characterize the bottom and subbottom materials and extent of bedrock in selected areas of Bridgeport Harbor, Connecticut. The data will be used by the U.S. Army Corps of Engineers in the design of confined aquatic disposal (CAD) cells within the harbor to facilitate dredging of the harbor. Three water-based geophysical methods were used to evaluate the geometry and composition of subsurface materials: (1) continuous seismic profiling (CSP) methods provide the depth to water bottom, and when sufficient signal penetration can be achieved, delineate the depth to bedrock and subbottom materials; (2) continuous resistivity profiling (CRP) methods were used to define the electrical properties of the shallow subbottom, and to possibly determine the distribution of conductive materials, such as clay, and resistive materials, such as sand and bedrock; (3) and magnetometer data were used to identify conductive anomalies of anthropogenic sources, such as cables and metallic debris. All data points were located using global positioning systems (GPS), and the GPS data were used for real-time navigation. The results of the CRP, CSP, and magnetometer data are consistent with the conceptual site model of a bedrock channel incised beneath the present day harbor. The channel appears to follow a north-northwest to south-southeast trend and is parallel to the Pequannock River. The seismic record and boring data indicate that under the channel, the depth to bedrock is as much as 42.7 meters (m) below mean low-low water (MLLW) in the dredged part of the harbor. The bedrock channel becomes shallower towards the shore, where bedrock outcrops have been mapped at land surface. CSP and CRP data were able to provide a discontinuous, but reasonable, trace from the channel toward the west under the proposed southwestern CAD cell. The data indicate a high amount of relief on the bedrock surface, as well as along the water bottom. Under the southwestern CAD cell, the sediments are only marginally thick enough for a CAD cell, at about 8 to 15 m in depth. Some of the profiles show small diffractions in the unconsolidated sediments, but no large-scale boulders or boulder fields were identified. No bedrock reflectors were imaged under the southeastern CAD cell, where core logs indicate the rock is as much as 30 m below MLLW. The chirp frequency, tuned transducer, and boomer-plate CSP surveys were adversely affected by a highly reflective water bottom causing strong multiples in the seismic record and very limited depths of penetration. These multiples are attributed to entrapped gas (methane) in the sediments or to very hard bottom conditions. In a limited number of places, the bedrock surface was observed in the CSP record, creating a discontinuous and sporadic image of the bedrock surface. These interpretations generally matched core data at FP-03-10 and FB-06-1. Use of two analog CSP systems, the boomer plate and tuned transducer, did not overcome the reflections off the water bottom and did not improve the depth of penetration. In general, the CRP profiles were used to corroborate the results of the CSP profiles. Relatively resistive zones associated with the locations of seismic reflections were interpreted as bedrock. The shape of the bedrock surface generally was similar in the CRP and CSP profiles. Evaluation of the CRP profiles indicated that the inversions were adversely affected where the depth and (or) ionic concentration of the water column varied. Consequently, the CRP profiles were broken into short intervals that extended just over the area of interest, where the depth to water bottom was fairly constant. Over these short profiles, efforts were made to evaluate the resistivity of the very shallow sediments to determine if there were any large contrasts in the resistivity of the sediments that might indicate differences in the shallow subbottom materials. No conclusions abo

  18. Investigation of shallow gas hydrate occurrence and gas seep activity on the Sakhalin continental slope, Russia

    NASA Astrophysics Data System (ADS)

    Jin, Young Keun; Baranov, Boris; Obzhirov, Anatoly; Salomatin, Alexander; Derkachev, Alexander; Hachikubo, Akihiro; Minami, Hrotsugu; Kuk Hong, Jong

    2016-04-01

    The Sakhalin continental slope has been a well-known gas hydrate area since the first finding of gas hydrate in 1980's. This area belongs to the southernmost glacial sea in the northern hemisphere where most of the area sea is covered by sea ice the winter season. Very high organic carbon content in the sediment, cold sea environment, and active tectonic regime in the Sakhalin slope provide a very favorable condition for occurring shallow gas hydrate accumulation and gas emission phenomena. Research expeditions under the framework of a Korean-Russian-Japanese long-term international collaboration projects (CHAOS, SSGH-I, SSGH-II projects) have been conducted to investigate gas hydrate occurrence and gas seepage activities on the Sakhalin continental slope, Russia from 2003 to 2015. During the expeditions, near-surface gas hydrate samples at more than 30 sites have been retrieved and hundreds of active gas seepage structures on the seafloor were newly registered by multidisciplinary surveys. The gas hydrates occurrence at the various water depths from about 300 m to 1000 m in the study area were accompanied by active gas seepage-related phenomena in the sub-bottom, on the seafloor, and in the water column: well-defined upward gas migration structures (gas chimney) imaged by high-resolution seismic, hydroacoustic anomalies of gas emissions (gas flares) detected by echosounders, seafloor high backscatter intensities (seepage structures) imaged by side-scan sonar and bathymetric structures (pockmarks and mounds) mapped by single/multi-beam surveys, and very shallow SMTZ (sulphate-methane transition zone) depths, strong microbial activities and high methane concentrations measured in sediment/seawater samples. The highlights of the expeditions are shallow gas hydrate occurrences around 300 m in the water depth which is nearly closed to the upper boundary of gas hydrate stability zone in the area and a 2,000 m-high gas flare emitted from the deep seafloor.

  19. High Resolution Quaternary Seismic Stratigraphy of the New York Bight Continental Shelf

    USGS Publications Warehouse

    Schwab, William C.; Denny, J.F.; Foster, D.S.; Lotto, L.L.; Allison, M.A.; Uchupi, E.; Swift, B.A.; Danforth, W.W.; Thieler, E.R.; Butman, Bradford

    2003-01-01

    A principal focus for the U.S. Geological Survey (USGS) Coastal and Marine Geology Program (marine.usgs.gov) is regional reconnaissance mapping of inner-continental shelf areas, with initial emphasis on heavily used areas of the sea floor near major population centers. The objectives are to develop a detailed regional synthesis of the sea-floor geology in order to provide information for a wide range of management decisions and to form a basis for further investigations of marine geological processes. In 1995, the USGS, in cooperation with the U.S. Army Corps of Engineers (USACOE), New York District, began to generate reconnaissance maps of the continental shelf seaward of the New York - New Jersey metropolitan area. This mapping encompassed the New York Bight inner-continental shelf, one of the most heavily trafficked and exploited coastal regions in the United States. Contiguous areas of the Hudson Shelf Valley, the largest physiographic feature on this segment of the continental shelf, also were mapped as part of a USGS study of contaminated sediments (Buchholtz ten Brink and others, 1994; 1996). The goal of the reconnaissance mapping was to provide a regional synthesis of the sea-floor geology in the New York Bight area, including: (a) a description of sea-floor morphology; (b) a map of sea-floor sedimentary lithotypes; (c) the geometry and structure of the Cretaceous strata and Quaternary deposits; and (d) the geologic history of the region. Pursuing the course of this mapping effort, we obtained sidescan-sonar images of 100 % of the sea floor in the study area. Initial interpretations of these sidescan data were presented by Schwab and others, (1997a, 1997b, 2000a). High-resolution seismic-reflection profiles collected along each sidescan-sonar line used multiple acoustic sources (e.g., watergun, CHIRP, Geopulse). Multibeam swath-bathymetry data also were obtained for a portion of the study area (Butman and others, 1998;). In this report, we present a series of structural and sediment isopach maps and interpretations of the Quaternary evolution of the inner-continental shelf off the New York - New Jersey metropolitan area based on subbottom, sidescan-sonar, and multibeam-bathymetric data.

  20. Characteristics and features of the submarine landslides in passive and active margin southwestern offshore Taiwan

    NASA Astrophysics Data System (ADS)

    Yeh, Y. C.

    2016-12-01

    In the past decade, numerous multi-channel seismic surveys as well as near seafloor high resolution geophysical investigations were conducted in order to explore and estimate the reserves of gas hydrate southwestern offshore Taiwan. The previous object was focused on searching substitute energy (i.e. gas hydrate) rather than geo-hazards. However, it is suggested that most of the gas hydrate is generally distributed at slope area southwestern offshore Taiwan, which indicates the slope may be failed when steady state was disturbed by some factors, such as sea level or climate change. In addition, once gas hydrate was dissociated, this may induce submarine landslide that further cause devastated tsunami. Thus, it is of great urgency to investigate potential landslide area, particularly, the hydrate-rich continental slope (active and passive margins) in adjacent to populous city like Kaohsiung. In this study, we collected several high resolution multi-channel seismic data with ten seconds shooting rate and 3.125 meters group interval streamer by using R/V ORI and R/V ORV. The seismic data were processed in conventional data processing strategy: bad trace clean, geometry settings, band-pass filter, de-convolution, surface-related multiple rejection, radon filter, stacking,kirchhoff migration and time to depth conversion. Combine the results obtained from the MCS data and subbottom profiles, two major results could be raised in the active margin as followed: (1) Most of the surface creeping and landslide was occurred shallower than 500 meters in water depth, which should be related to the inter-bedded fluid activities. (2) The landslide distribution is lagly affected by the presence of diaper, suggesting the subsequent mud diapirism may destruct slope stability; (3) The submarine landslide deeper than 800 meters in water depth distributes in the thrust fold area, that is probably referred to active thrusting. In the passive margin, large volume mass transportation deposits (MTDs) were identified in deeper stratigraphic section below BSR. This indicated several big former submarine landslide events occurred. In summary, the passive margin often show typical submarine landslide features than active margin, which driven by gravity force.

  1. Late-Quaternary glacial to postglacial sedimentation in three adjacent fjord-lakes of the Québec North Shore (eastern Canadian Shield)

    NASA Astrophysics Data System (ADS)

    Poiré, Antoine G.; Lajeunesse, Patrick; Normandeau, Alexandre; Francus, Pierre; St-Onge, Guillaume; Nzekwe, Obinna P.

    2018-04-01

    High-resolution swath bathymetry imagery allowed mapping in great detail the sublacustrine geomorphology of lakes Pentecôte, Walker and Pasteur, three deep adjacent fjord-lakes of the Québec North Shore (eastern Canada). These sedimentary basins have been glacio-isostatically uplifted to form deep steep-sided elongated lakes. Their key geographical position and limnogeological characteristics typical of fjords suggest exceptional potential for long-term high-resolution paleoenvironmental reconstitutions. Acoustic subbottom profiles acquired using a bi-frequency Chirp echosounder (3.5 & 12 kHz), together with cm- and m-long sediment core data, reveal the presence of four acoustic stratigraphic units. The acoustic basement (Unit 1) represents the structural bedrock and/or the ice-contact sediments of the Laurentide Ice Sheet and reveals V-shaped bedrock valleys at the bottom of the lakes occupied by ice-loaded sediments in a basin-fill geometry (Unit 2). Moraines observed at the bottom of lakes and in their structural valleys indicate a deglaciation punctuated by short-term ice margin stabilizations. Following ice retreat and their isolation, the fjord-lakes were filled by a thick draping sequence of rhythmically laminated silts and clays (Unit 3) deposited during glaciomarine and/or glaciolacustrine settings. These sediments were episodically disturbed by mass-movements during deglaciation due to glacial-isostatic rebound. AMS 14C dating reveal that the transition between deglaciation of the lakes Pentecôte and Walker watersheds and the development of para- and post-glacial conditions occurred around 8000 cal BP. The development of the lake-head river delta plain during the Holocene provided a constant source of fluvial sediment supply to the lakes and the formation of turbidity current bedforms on the sublacustrine delta slopes. The upper sediment succession (i.e., ∼4-∼6.5 m) consists of a continuous para-to post-glacial sediment drape (Unit 4) that contains laminated and massive sediment and series of Rapidly Deposited Layers. These results allow establishing a conceptual model of how a glaciated coastal fjord evolves during and after deglaciation in a context of rapid glacio-isostatically induced forced regression.

  2. Geophysical Mapping of the South Carolina Atlantic Offshore for Wind Energy Development

    NASA Astrophysics Data System (ADS)

    Knapp, C. C.; Brantley, D.; Battista, B.; Gayes, P. T.; Knapp, J. H.; White, S. M.

    2016-12-01

    The submerged continental margin of the southeastern United States records a geologic history of continental collision during Paleozoic time (500-300 Mya), and subsequent continental rifting and break-up with associated magmatism during early Mesozoic time (230-180 Mya). Subsequent development as a passive continental margin has resulted in accumulation of a thick sedimentary cover deposited through numerous cycles of sea level change on the margin. Themost recent phase of deposition (Pleistocene; <1.8 Ma) took place during repeated, large-scale (120 m) sea-level changes which resulted in extensive exposure and inundation of the shelf. The shallow subsurface of the near-shore environment under consideration for wind energy development requires thorough analysis of seabed bottom type, seafloor roughness and geomorphology, potential sites of cultural resources and features such as active and inactive faults, filled channels, and potential slope instabilities which would have a considerable potential impact on siting of installations for wind energy. To this end, a geophysical survey has been conducted to further refine future wind farm locations. The study is focused on the inner shelf from 18 to 26 km offshore of North Myrtle Beach, SC and a second smaller area offshore of Georgetown, SC. The collaborative effort is generating multibeam, side scan sonar, chirp sub-bottom and magnetometer data. Seafloor acoustic backscatter is derived from the same instrument acquiring the bathymetry. Bathymetry shows a radial distribution of coast-perpendicular features that transition between two coastal processes: 1) there is the sediment distribution caused by longshore currents and wave energy, and 2) there are areas related to the coastal inlets that disrupt the primary sedimentation patterns and impose patterns of terrestrial sedimentation such as those from rivers, deltas and estuaries. There are numerous systems tracts and channels acting on the seafloor over time in the region. All the data collected as part of this project will be interpreted and integrated in the same domain using Schlumberger's Petrel™ software package in order to create high resolution images including 1) seabed morphology and bathymetry, and 2) high resolution models of the subsurface structure and stratigraphy.

  3. Structural changes and shallow geological structure of the isolated basins in the forearc slope of the Japan Trench

    NASA Astrophysics Data System (ADS)

    Misawa, A.; Arai, K.; Fujiwara, T.; Sato, M.; Shin'ichiro, Y.; Hirata, K.; Kanamatsu, T.

    2017-12-01

    On the forearc slope of the Japan Trench is a typical subsidence region associated with the subduction erosion in the Japan Trench. Arai et al. (2014) reported the existence of the isolated basins with widths of up to several tens of kilometers using the seismic profiles that acquired before the 2011 Tohoku earthquake (Mw 9.0) in the forearc slope. The isolated basin probably formed due to subsidence accompanying the regional activity of normal fault systems in the forearc slope. Arai et al. (2014) suggested that the geological structures of the forearc slope along the Japan Trench are typical of those resulting from subduction erosion and proposed that the episodic subsidence accompanied by normal faulting is the most recent deformation. During the 2011 large earthquake, seafloor on the landward slope of the Japan Trench moved 50 m east-southeast toward trench (Fujiwara et al., 2011). In addition, aftershock activity after the 2011 large earthquake have predominated in the activity of the normal fault system. Therefore, there have a possibility that new isolated basin is formed after the 2011 large earthquake in the forearc slope of the Japan Trench. In order to capture the structural change in the isolated basins, we compared the seismic profiles acquired before (Multi-Channel Seismic (MCS) data acquired with KR07-05 cruise) and after (Single-Channel Seismic (SCS) data acquired with NT15-07 cruise) the 2011 large earthquake. However, the large-scale structural changes are not identified around the isolated basin. In order to capture the small-scale structural change in the shallow part of the isolated basins using high-resolution data, we make an attempt at the marine geological and geophysical survey in the offshore Tohoku region using R/V Shinsei-Maru of JAMSTEC (KS-17-8 cruise) in August 2017. In this cruise, we plan to carry out the following surveys; (1) swath bathymetric survey, (2) high-resolution parametric subbottom profiler (SBP) survey, (3) geomagnetic survey. In this presentation, we will show the latest results about the shallow structure of the isolated basin in the forearc slope.

  4. 30 CFR 580.51 - What types of geophysical data and information must I submit to BOEM?

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 30 Mineral Resources 2 2013-07-01 2013-07-01 false What types of geophysical data and information must I submit to BOEM? 580.51 Section 580.51 Mineral Resources BUREAU OF OCEAN ENERGY MANAGEMENT... not limited to, shallow and deep subbottom profiles, bathymetry, sidescan sonar, gravity and magnetic...

  5. 30 CFR 580.51 - What types of geophysical data and information must I submit to BOEM?

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 30 Mineral Resources 2 2012-07-01 2012-07-01 false What types of geophysical data and information must I submit to BOEM? 580.51 Section 580.51 Mineral Resources BUREAU OF OCEAN ENERGY MANAGEMENT... not limited to, shallow and deep subbottom profiles, bathymetry, sidescan sonar, gravity and magnetic...

  6. 30 CFR 580.51 - What types of geophysical data and information must I submit to BOEM?

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 30 Mineral Resources 2 2014-07-01 2014-07-01 false What types of geophysical data and information must I submit to BOEM? 580.51 Section 580.51 Mineral Resources BUREAU OF OCEAN ENERGY MANAGEMENT... not limited to, shallow and deep subbottom profiles, bathymetry, sidescan sonar, gravity and magnetic...

  7. Continental shelf landscapes of the southeastern United States since the last interglacial

    NASA Astrophysics Data System (ADS)

    Harris, M. Scott; Sautter, Leslie Reynolds; Johnson, Kacey L.; Luciano, Katherine E.; Sedberry, George R.; Wright, Eric E.; Siuda, Amy N. S.

    2013-12-01

    The wide, sediment-starved continental shelf and modern coastal areas of the southeastern United States retain well-preserved but scattered remnants of a submerged paleolandscape. This paper presents a conceptual model of stratigraphic deposition and landscape formation since the last interglacial on the continental shelf of South Carolina, with portions of North Carolina, Georgia, and Florida (USA). Data for this study include multibeam bathymetry surveys, sidescan sonar mosaics, high-resolution subbottom profiles, and ground-truth surveys from - 250 m to the modern tidewater region. Four bathymetric zones are recognized with eleven landforms and landform indicators. The described zones range in depths from the modern shoreline, across the shelf, and over the shelf edge to - 250 m MSL. Relative sea level curves are presented for the area and discussed in conjunction with cultural and climatic events. The potential for preservation of Paleoamerican sites is high at the shelf edge between - 130 m and - 45 m, with Archaic and later occupations likely in depths of less than - 25 m. Prominent vantage points for Paleoamericans (> 11 kya) would have existed at the shelf edge, and tidewater resources would have been available nearby for a period of almost 6 ka. Rapid transgression rates (> 60 km/ka) after the sea level rose over the shelf edge make preservation of tidewater sites less likely on the outer and middle shelf. Searches for the earliest Paleoamericans should focus on promontories at the edge of the shelf and along future discoveries of paleoincisions on the shelf. Mapping and delineating this paleolandscape and associated unconsolidated sedimentary deposits interspersed with rocky plains and ledges will continue to be a priority to marine archeologists, coastal managers, fishery scientists, and marine spatial planners over the next several decades.

  8. Pre-Holocene to Modern Evolution of the Lower Delaware Estuary: Constraints from High-Resolution Chirp Subbottom Profiles

    NASA Astrophysics Data System (ADS)

    Daw, Julianne

    Throughout the Quaternary Period, the Delaware Estuary, which is located within the Mid-Atlantic region of the United States, has undergone substantial change as a result of sea-level fluctuations. To better understand the recent (late Pleistocene to Holocene) evolution of the region, chirp subbottom profiles were analyzed within Delaware Bay near the southern end of the Delaware River Navigation Channel including the adjacent shoals and sloughs, using RoxAnn bottom classification data and available vibracores to aid in interpreting sediment types and depositional environments within the study area. Using seismic processing software (SonarWiz6), chirp profiles were processed and reflection events were identified and their positions digitized. Major reflection events were analyzed using a seismic facies approach. The identified facies were each characterized as distinct units composed of reflections with unique elements, such as configuration, amplitude, and continuity. Five seismic facies were identified and their thicknesses determined. Depths to the major reflection events were correlated with sediment boundaries as observed in the available vibracores, allowing the seismic facies to be interpreted in terms of their associated sediment types and inferred environments of deposition. The distributions of surficial and subsurface seismic and sedimentological features were visualized using three-dimensional images. The interpretations of the identified facies are as follows: Facies I is a surficial unit of the modern Holocene estuarine deposits; Facies II is a beach-berm washover zone deposition; Facies III is a deposit of a lagoonal environment; Facies IV is a deposit of an open water environment; and Facies V is a marsh deposition. The chirp data, when integrated with available information from vibracores and RoxAnn bottom sediment classification, was also used to map the position of a former major river system (paleochannel). This paleochannel, trending generally northwest to southeast, can be correlated with the southern channel that was identified in previous work by Knebel and Circe (1988). In addition to the knowledge gained by studying the geological evolution of Delaware Bay, our data can be used by decision makers and stakeholders to inform future management of the Delaware Estuary in practical applications that range from planning for maintenance dredging of the navigation channel to determining locations and thicknesses of suitable sand resources for shoreline replenishment. The surficial layer that would be most affected by such applications is mostly composed of sand & muddy sand, but in the deeper portions and along the shoals, it is composed of mixed and coarse sediments and mud & sandy mud, respectively. Furthermore, the surficial unit is thickest (between 1.5 and 4 meters) in the central and eastern regions of the study area encompassing the deeper portions, and it is thinnest (up to 1 meter) along the western and northern regions that include the shoals.

  9. Investigation of Submarine Groundwater Discharge and Preferential Groundwater Flow-paths in a Coastal Karst Area using towed Marine and Terrestrial Electrical Resistivity

    NASA Astrophysics Data System (ADS)

    O'connell, Y.; Daly, E.; Duffy, G.; Henry, T.

    2012-12-01

    Large volumes of groundwater, containing nutrients and contaminants enter the coastal waters of southern Galway Bay on the west coast of Ireland through submarine groundwater discharge (SGD). The SGD occurs through karstified Carboniferous limestone in a major karst region comprising the Burren and Gort Lowlands. The Carboniferous limestones have experienced extensive dissolution resulting in the development of an underground network of conduits and fissures that define a trimodal groundwater flow pattern across the region. Groundwater discharge to the sea in this area is exclusively intertidal and submarine. Storage in the karst is limited and typical winter rainfall conditions result in the karst system becoming saturated. Temporary lakes (turloughs) form in lowlying areas and act as large reservoirs which provide storage to enable the transmission of the large volumes of water in the system to the sea. Between 2010 and 2012, terrestrial and shallow marine geophysical surveying has been undertaken to investigate preferential groundwater flow-paths and SGD locations in order to quantify the groundwater-seawater interactions in this coastal karst system. A report into the groundwater system of this karst region following a major flood event proposed a conceptual conduit model defined by extensive water tracing, water level monitoring, hydrochemical sampling, geological mapping and drilling. Limited information about the dimensions of the conduits was known. Electrical resistivity tomography (ERT) profiling to depths of 100m below ground level, with multiple array configurations, has been carried out to investigate the modes of groundwater flow in to and out of both temporary and permanent freshwater lakes in the system. Towed dipole-dipole profiles have been recorded to investigate conduits beneath a permanent lake exhibiting a tidal influence despite its location 5.5 km from the seashore. The ERT data indicates significant variations in subsurface resistivities including very low resistivity features which have been modeled as large diameter conduits. Ongoing analysis of the data will allow more accurate conduit dimensions to be incorporated in to future groundwater flow models. In the shallow marine bays along the coast, towed ERT employing dipole-dipole and non-conventional modified Wenner arrays has been coupled with high-resolution digital chirp sub-bottom profiling. Combining the two techniques allows the determination of sediment, structural and lithological variations beneath the sea floor, delineating saturated sediment layers, till and bedrock horizons. Incorporation of the water column thickness and conductivity, recorded simultaneously with the ERT survey, constrains the inversion process. In addition, multiple layer boundaries interpreted from the sub-bottom profiling are incorporated in to the model, further constraining the inversion process. The combined inversion allows improved data interpretation to facilitate more accurate assessment of SGD locations.

  10. Holocene Activity of the Enriquillo-Plantain Garden Fault in Lake Enriquillo Derived from Seismic Stratigraphy

    NASA Astrophysics Data System (ADS)

    Rios, J. K.; McHugh, C. M.; Hornbach, M. J.; Mann, P.; Wright, V. D.; Gurung, D.

    2013-12-01

    The Enriquillo-Plantain-Garden fault zone (EPGF) crosses Lake Enriquillo (LE) in the Dominican Republic and extends E-W across the southern peninsula of Haiti, south of the Baie de Port au Prince (BPP). Seismic stratigraphic studies of CHIRP high-resolution subbottom profiles calibrated to ages obtained from sediment cores and previous coral reef studies provide a Holocene record of relative sea level rise into the BPB and LE and a time frame for understanding tectonics of the EPGF. The BPP is 20 km wide, 20 km long, 150 m deep, and surrounded by coral reefs at water depths of 30 m. Three seismic units were identified: Unit 1: stepped terraces 5-10 m high. Laminated strata onlaps the terraces. This unit possibly represents Marine Isotope Stages 6 and 5, but has not been dated. Unit 2: laminated strata, thicker than 10 m and dated near its top at 22 ka BP. The microfossil assemblages reveal that during the latest Pleistocene sea level lowstand the BPP had a restricted connection with the global ocean. Few well-preserved marine microfossils are present and mostly are reworked. Geochemical analyses reveal that the laminated sediments were deposited during wet periods (>Si, Al wt %, Cu ppm) and dry periods (>Ca wt %). Unit 3: acoustically transparent, ~10 m thick, dated near its base and top at 14 ka BP and 2 ka BP, respectively. This unit represents the Holocene initiation of sea level rise and high stand containing well-preserved marine fossils. At ~9.5 ka BP planktonic foraminifers become abundant implying deepening of marine waters. Lake Enriquillo is 127 km east of the BPP. It is 15 km wide, 40 km long and 45 m deep. CHIRP subbottom profiles penetrated ~30 m below the lake floor. Four main acoustic units were identified: Unit 1: deformed basement with steeply dipping and folded beds. Based on land studies this unit is likely Plio-Pleistocene in age. Unit 2: laminated strata. Ages from coral reefs and deformed strata on land indicate this unit is likely pre-20 ka BP. Unit 3: acoustically transparent is 5-10 m thick. This unit shows top-lap terminations with the overlying strata and is interpreted as marine. Based on coral reef ages it was deposited during the Holocene 10 to 2 ka BP. Unit 4: laminated strata is ~ 5 m thick and downlaps offshore forming progradational packages. Pending Pb-210 ages from LE sediment cores a correlation between the two basins is proposed. During the latest Pleistocene sea level lowstand LE was separated from the BPP and the global ocean. The BPP was only partly connected to the sea. Sedimentation in both basins was dominated by wet and dry climate. The initial rise to high-stand of sea level into the BPP was at 14 ka BP. LE marine incursion was at 9.7 ka BP. At 2.8 ka BP LE became separated from the BPP possibly due to increased alluvial fan sedimentation. Evaporative conditions dominated the lake from 2.8 ka BP to the present and the lake waters lowered to ~43 m below sea level. We interpret the top laminated strata as deposited during the evaporative stage of the lake. Sediment progradation resulted from increased sedimentation due to lowering of base level. There is no evidence of tectonic activity in the BPP during the Holocene. In contrast, there are breaks in the Holocene strata in LE. So the EPGF is technically active across LE.

  11. Multi-event behavior of El Golfo landslide (El Hierro Island, Canary Archipelago)

    NASA Astrophysics Data System (ADS)

    León, Ricardo; Biain, Ander; Urgeles, Roger; Somoza, Luis; Ferrer, Mercedes; García-Crespo, Jesús; Francisco Mediato, José; Galindo, Inés; Yepes, Jorge; Gimenez-Moreno, Julia

    2017-04-01

    Based on the re-interpretation of a vast onshore-offshore data set, a new morpho-structural characterization of the El Golfo giant landslide in the island of El Hierro (Canary Archipelago, Spain) is presented. Offshore multibeam echosounder data, chirp sub-bottom profiles, multichannel seismic reflection data and onshore information from water wells and galleries have been analyzed to determine the nature of the event. The subaerial headscarp shows a non-continuous arcuate profile formed by two nested semi-circular amphitheaters that extend offshore along a smooth chute, suggesting the occurrence of at least two large retrogressive events. Channels/gullies and escarpments developed along the submarine sector of the scar also indicate smaller-scale events and predominance of sediment bypass. At the base of submerged island, two subunits within the related submarine mass transport deposit (MTD) are identified on multichannel seismic reflection profiles confirming the multi-event nature of the landslide. The MTD, identified as a debris avalanche, has a total estimated volume of 318 km3: 84 km3 and 234 km3, for the lower and upper subunits respectively. Data from wells and galleries show abrasion platforms with beach deposits at sea-level (0 masl) formed after the landslide scar and buried by the El Golfo post-collapse infill lavas, suggesting an age at least older than 23.5-82.5 ka for the landslide. This work has been supported by the projects IGCP-640 S4SLIDE, High resolution seabed mapping EASME/EMFF/2016/005 and CTM2010-09496-E. Keywords: Submarine landslides, volcanic islands, debris avalanche, Canary Islands

  12. Depositional history of Louisiana-Mississippi outer continental shelf

    USGS Publications Warehouse

    Kindinger, J.L.; Miller, R.J.; Stelting, C.E.

    1982-01-01

    A geological study was undertaken in 1981 in the Louisiana-Mississippi outer continental shelf for the Bureau of Land Management. The study included a high-resolution seismic reflection survey, surficial sediment sampling and surface current drifter sampling. Approximately 7100 sq km of the Louisiana-Mississippi shelf and upper slope were surveyed. The sea floor of the entire area is relatively smooth except for occasional areas of uplift produced by diapiric intrusion along the upper slope. Characteristics of the topography and subsurface shelf sediments are the result of depositional sequences due to delta outbuilding over transgressive sediments with intervening periods of erosion during low sea level stands. Little evidence of structural deformation such as faults, diapirs, and shallow gas is present on the shelf and only a few minor faults and scarps are found on the slope. Minisparker seismic records in combination with air gun (40 and 5 cu in) and 3.5-kHz subbottom profile records reveal that seven major stages of shelf development have occurred since the middle Pleistocene. The shelf development has been controlled by the rise and fall of sea level. These stages are defined by four major unconformities, several depositions of transgressive sediments, sequences of river channeling and progradational delta deposits. Surficial sediment sample and seismic records indicate tat the last major depositional event was the progradation of the St. Bernard Delta lobe. This delta lobe covered the northwestern and central regions. Surficial sediments in most of the study area are the product of the reworking of the San Bernard Delta lobe and previous progradations.

  13. Submarine slope failures near Seward, Alaska, during the M9.2 1964 earthquake

    USGS Publications Warehouse

    Haeussler, Peter J.; Lee, H.J.; Ryan, H.F.; Labay, K.; Kayen, R.E.; Hampton, M.A.; Suleimani, E.

    2007-01-01

    Following the 1964 M9.2 megathrust earthquake in southern Alaska, Seward was the only town hit by tsunamis generated from both submarine landslides and tectonic sources. Within 45 seconds of the start of the earthquake, a 1.2-km-long section of waterfront began sliding seaward, and soon after, ~6-8-m high waves inundated the town. Studies soon after the earthquake concluded that submarine landslides along the Seward waterfront generated the tsunamis that occurred immediately after the earthquake. We analyze pre- and post-earthquake bathymetry data to assess the location and extent of submarine mass failures and sediment transport. New NOAA multibeam bathymetry shows the morphology of the entire fjord at 15 m resolution. We also assembled all older soundings from smooth sheets for comparison to the multibeam dataset. We gridded the sounding data, applied corrections for coseismic subsidence, post-seismic rebound, unrecovered co-seismic subsidence, sea-level rise (vertical datum shift), and measurement errors. The difference grids show changes resulting from the 1964 earthquake. We estimate the total volume of slide material to be about 211 million m3. Most of this material was transported to a deep, flat area, which we refer to as “the bathtub”, about 6 to 13 km south of Seward. Sub-bottom profiling of the bathtub shows an acoustically transparent unit, which we interpret as a sediment flow deposit resulting from the submarine landslides. The scale of the submarine landslides and the distance over which sediment was transported is much larger than previously appreciated.

  14. Modern sediment characteristics and accumulation rates from the delta front to prodelta of the Yellow River (Huanghe)

    NASA Astrophysics Data System (ADS)

    Zhou, Liangyong; Liu, Jian; Saito, Yoshiki; Gao, Maosheng; Diao, Shaobo; Qiu, Jiandong; Pei, Shaofeng

    2016-08-01

    Since 1976, the main channel of the Yellow River (Huanghe) has been on the east side of the delta complex, and the river has prograded a broad new delta lobe in Laizhou Bay of the Bohai Sea. In 2012, extensive bathymetric and high-resolution seismic profiles were conducted and sediment cores were collected off the new delta lobe. This study examined delta sedimentation and morphology along a profile across the modern subaqueous Yellow River delta and into Laizhou Bay, by analyzing sediment radionuclides (137Cs, 210Pb and 7Be), sedimentary structure, grain-size composition, organic carbon content, and morphological changes between 1976 and 2012. The change in the bathymetric profile, longitudinal to the river's course, reveals subaqueous delta progradation during this period. The subbottom boundary between the new delta lobe sediment and the older seafloor sediment (before the 1976 course shift) was identified in terms of lithology and radionuclide distributions, and recognized as a downlap surface in the seismic record. The accumulation rate of the new delta lobe sediment is estimated to be 5-18.6 cm year-1 on the delta front slope, 2 cm year-1 at the toe of the slope, and 1-2 cm year-1 in the shelf areas of Laizhou Bay. Sediment facies also change offshore, from alternations of gray and brown sediment in the proximal area to gray bioturbated fine sediment in the distal area. Based on 7Be distribution, the shorter-term deposition rate was at least 20 cm year-1 in the delta front.

  15. Geologic control on the evolution of the inner shelf morphology offshore of the Mississippi barrier islands, northern Gulf of Mexico, USA

    USGS Publications Warehouse

    Flocks, James G.; Kindinger, Jack G.; Kelso, Kyle W.

    2015-01-01

    Between 2008 and 2013, high-resolution geophysical surveys were conducted around the Mississippi barrier islands and offshore. The sonar surveys included swath and single-beam bathymetry, sidescan, and chirp subbottom data collection. The geophysical data were groundtruthed using vibracore sediment collection. The results provide insight into the evolution of the inner shelf and the relationship between the near surface geologic framework and the morphology of the coastal zone. This study focuses on the buried Pleistocene fluvial deposits and late Holocene shore-oblique sand ridges offshore of Petit Bois Island and Petit Bois Pass. Prior to this study, the physical characteristics, evolution, and interrelationship of the ridges between both the shelf geology and the adjacent barrier island platform had not been evaluated. Numerous studies elsewhere along the coastal margin attribute shoal origin and sand-ridge evolution to hydrodynamic processes in shallow water (<20 m). Here we characterize the correlation between the geologic framework and surface morphology and demonstrate that the underlying stratigraphy must also be considered when developing an evolutionary conceptual model. It is important to understand this near surface, nearshore dynamic in order to understand how the stratigraphy influences the long-term response of the coastal zone to sea-level rise. The study also contributes to a growing body of work characterizing shore-oblique sand ridges which, along with the related geology, are recognized as increasingly important components to a nearshore framework whose origins and evolution must be understood and inventoried to effectively manage the coastal zone.

  16. Late Holocene distal mud deposits off the Nakdong delta, SE Korea: evidence for shore-parallel sediment transport in a current-dominated setting

    NASA Astrophysics Data System (ADS)

    Chun, Jong-Hwa; Kim, Yuri; Bahk, Jang-Jun; Kim, Young Jun; Kang, Dong-Hyo; Kim, Yong Hoon; Kim, Gil Young; Ryu, Byong-Jae

    2015-12-01

    The distal mud deposits (DMDs) off the Nakdong delta represent a subaqueous delta on the inner continental shelf aligned parallel to the southeast coast of Korea and displaying a clinoform geometry. Hydrographically, the coast is characterized by a micro-tidal regime, the strong Korean Coastal Current (KCC) and the East Korean Warm Current (EKWC). Age models and sedimentary facies related to the clinoform geometries are based on high-resolution chirp subbottom profile data and have provided information on shore-parallel sediment transport and accumulation during the late Holocene sea-level highstand. The highest sedimentation rates (6.19-9.17 cm/year) produced steep foresets in the central DMDs at water depths of 35-50 m. Here, vertical burrows are repeatedly truncated by laminated mud packages displaying erosional surfaces. This region represents the main depocenter of the Nakdong subaqueous delta. The topset sediments of the southern DMD at ~40 m water depth closer to the river mouth show relatively low sedimentation rates (0.01-0.12 cm/year). Here, the muds have a predominantly mottled character. Similarly, the foreset sediments of the northern DMD at ~71-80 m water depth with sedimentation rates of 0.10-2.03 cm/year are also predominantly characterized by mottled muds. The spatial dispersal pattern of the DMDs is consistent with the coast-parallel front between the KCC and EKWC along the southeast Korean coast. In addition, the depocenter of the Nakdong subaqueous delta clinoform is affected by the near-bed turbulence generated by episodic storm events.

  17. Geologic control on the evolution of the inner shelf morphology offshore of the Mississippi barrier islands, northern Gulf of Mexico, USA

    NASA Astrophysics Data System (ADS)

    Flocks, James G.; Kindinger, Jack L.; Kelso, Kyle W.

    2015-06-01

    Between 2008 and 2013, high-resolution geophysical surveys were conducted around the Mississippi barrier islands and offshore. The sonar surveys included swath and single-beam bathymetry, sidescan, and chirp subbottom data collection. The geophysical data were groundtruthed using vibracore sediment collection. The results provide insight into the evolution of the inner shelf and the relationship between the near surface geologic framework and the morphology of the coastal zone. This study focuses on the buried Pleistocene fluvial deposits and late Holocene shore-oblique sand ridges offshore of Petit Bois Island and Petit Bois Pass. Prior to this study, the physical characteristics, evolution, and interrelationship of the ridges between both the shelf geology and the adjacent barrier island platform had not been evaluated. Numerous studies elsewhere along the coastal margin attribute shoal origin and sand-ridge evolution to hydrodynamic processes in shallow water (<20 m). Here we characterize the correlation between the geologic framework and surface morphology and demonstrate that the underlying stratigraphy must also be considered when developing an evolutionary conceptual model. It is important to understand this near surface, nearshore dynamic in order to understand how the stratigraphy influences the long-term response of the coastal zone to sea-level rise. The study also contributes to a growing body of work characterizing shore-oblique sand ridges which, along with the related geology, are recognized as increasingly important components to a nearshore framework whose origins and evolution must be understood and inventoried to effectively manage the coastal zone.

  18. Extreme events in the sedimentary record of maar Lake Pavin: Implications for natural hazards assessment in the French Massif Central

    NASA Astrophysics Data System (ADS)

    Chassiot, Léo; Chapron, Emmanuel; Di Giovanni, Christian; Albéric, Patrick; Lajeunesse, Patrick; Lehours, Anne-Catherine; Meybeck, Michel

    2016-06-01

    A set of sedimentary cores, high resolution swath bathymetry and subbottom profiler data provides new insights on sedimentary processes in meromictic maar Lake Pavin, France. Three sedimentary environments (i.e., littoral, plateau and basin) have been identified in the lake from sediment composition using bulk organic geochemistry and the analysis of hydroacoustic images. Various forms of rapidly deposited layers (RDLs) have been identified and radiocarbon dated. An up to date stratigraphy of sedimentary events matching coeval RDLs across the lake is presented and illustrates a wide range of natural hazards linked to Lake Pavin during the last 2000 years. In AD 600, a sudden lake outburst triggered a slump deposit along with a 9 m lake-level drop that drove shifts in sedimentary organic matter composition. Outside the lake, outburst flood deposits have been described downstream and provide sedimentary evidence for this event. The lake-level drop also favored the generation of gravity reworking processes, as shown by (1) a regional earthquake-triggered large slope failure on the plateau connected to a mass-wasting deposit in the basin dated to AD 1300, and (2) a succession of turbidites in AD 1825 and AD 1860 contemporaneous to two historic earthquakes, suggesting that this lake is sensitive to earthquakes with a minimum epicentral intensity of V. Finally, past observations of lake water color changes in AD 1783 and AD 1936, similar to reports in other meromictic lakes, match iron-rich deposits identified in maar lake sediments and suggest that Lake Pavin could have undergone limnic eruptions.

  19. Geomorphic characterization of four shelf-sourced submarine canyons along the U.S. Mid-Atlantic continental margin

    USGS Publications Warehouse

    Obelcz, Jeffrey; Brothers, Daniel S.; Chaytor, Jason D.; ten Brink, Uri S.; Ross, Steve W.; Brooke, Sandra

    2013-01-01

    Shelf-sourced submarine canyons are common features of continental margins and are fundamental to deep-sea sedimentary systems. Despite their geomorphic and geologic significance, relatively few passive margin shelf-breaching canyons worldwide have been mapped using modern geophysical methods. Between 2007 and 2012 a series of geophysical surveys was conducted across four major canyons of the US Mid-Atlantic margin: Wilmington, Baltimore, Washington, and Norfolk canyons. More than 5700 km2 of high-resolution multibeam bathymetry and 890 line-km of sub-bottom CHIRP profiles were collected along the outer shelf and uppermost slope (depths of 80-1200 m). The data allowed us to compare and contrast the fine-scale morphology of each canyon system. The canyons have marked differences in the morphology and orientation of canyon heads, steepness and density of sidewall gullies, and the character of the continental shelf surrounding canyon rims. Down-canyon axial profiles for Washington, Baltimore and Wilmington canyons have linear shapes, and each canyon thalweg exhibits morphological evidence for recent, relatively small-scale sediment transport. For example, Washington Canyon displays extremely steep wall gradients and contains ~100 m wide, 5–10 m deep, v-shaped incisions down the canyon axis, suggesting modern or recent sediment transport. In contrast, the convex axial thalweg profile, the absence of thalweg incision, and evidence for sediment infilling at the canyon head, suggest that depositional processes strongly influence Norfolk Canyon during the current sea-level high-stand. The north walls of Wilmington, Washington and Norfolk canyons are steeper than the south walls due to differential erosion, though the underlying cause for this asymmetry is not clear. Furthermore, we speculate that most of the geomorphic features observed within the canyons (e.g., terraces, tributary canyons, gullies, and hanging valleys) were formed during the Pleistocene, and show only subtle modification by Holocene processes active during the present sea-level high-stand.

  20. Integration of NOAA Ship Okeanos Explorer Seafloor Mapping, Little Hercules ROV, and Sentry AUV Data into Ocean Exploration Operations and Public Data Holdings

    NASA Astrophysics Data System (ADS)

    Lobecker, E.; Malik, M.; Skarke, A. D.; VerPlanck, N.

    2012-12-01

    Within NOAA's Office of Ocean Exploration and Research, the Okeanos Explorer Program's main tools for preliminary ocean exploration include a Kongsberg EM 302 multibeam sonar (30 kHz), Kongsberg EK 60 singlebeam sonar (18 kHz), and Knudsen subbottom profiler (3.5 kHz chirp). The program devoted multiple expeditions in the Gulf of Mexico and U.S. Atlantic Margin during its 2012 Field Season to confirm and further develop the EM 302 multibeam sonar's water column backscatter data capability to detect gaseous seeps and vents. While mapping in the seafloor and water column in the vicinity of the salt domes of the Northern Gulf of Mexico, the EM 302 detected over two hundred distinct seeps in the water column. Several seeps have been explored in more detail using high definition cameras and lighting systems of the remotely operated vehicle Little Hercules and the camera platform Seirios. This included filming bubbles escaping from the seafloor at the locations determined by the EM 302 data to ground truth EM302 observations and deduce other properties of these gas seeps e.g. gas flux, and effect of these seeps on surrounding ecosystem. These seeps are now a major research focus area by scientists at the University of New Hampshire's Center for Coastal and Ocean Mapping and other academic institutions around the U.S., and the U.S. Bureau of Ocean Energy Management. . While mapping the Blake Ridge and Cape Fear Diapirs, seven distinct seeps were detected, each rising approximately 900 meters from the seafloor in water depths ranging from 2200 to 2500 meters. Several of these seeps were further explored with Woods Hole Oceanographic Institute's Sentry autonomous underwater vehicle, utilizing itsReson 7125 high resolution multibeam, photo imagery, sidescan, subbottom, and various in-situ sensors to characterize the local environment. It is to be noted that very few of these seeps were previously known. Following the Okeanos Explorer Program's paradigm of "Always Exploring", the mapping team collects data not only during focused mapping operations, but also during all transits. Okeanos Explorer data are collected with regard to the Integrated Ocean and Coastal Mapping Center's concept to "map once use many times", which aims to encourage and enable the multidisciplinary use of seafloor mapping data, including by the fields of marine archaeology, hydrographic mapping, extended continental shelf, biology, geology, geophysics, biopharmaceutical, ocean energy and resources, marine managed areas, fisheries, corals, oceanography, hazards modeling and assessments, education and outreach. To this end, all mapping, CTD and meteorology data sets collected by the NOAA Ship Okeanos Explorer are monitored and evaluated in the field for quality control purposes, and are made available through NOAA's public archives within 60 to 90 days of data collection, in useable formats and with associated metadata records. Additionally, all data sets collected by vehicles onboard the ship, including ROVs and AUVs, are made available directly following each cruise via NOAA's public archives.

  1. The origin and distribution of subbottom sediments in southern Lake Champlain.

    USGS Publications Warehouse

    Freeman-Lynde, R. P.; Hutchinson, D.R.; Folger, D.W.; Wiley, B.H.; Hewett, M.J.

    1980-01-01

    3 units, correlatable with recent Lake Champlain, late-glacial marine Champlain Sea, and proglacial Lake Vermont sediments, have been identified from seismic reflection profiles and 8 piston cores. Lake Vermont deposits are nonfossiliferous and range from thin to absent nearshore and on bedrock highs to more than 126 m thick near Split Rock Point. Champlain Sea sediments contain marine foraminifers and ostracodes and are fairly uniform in thickness (20-30 m). Recent Lake Champlain sediments range in thickness from 0 to 25 m. Average sedimentation rates for Lake Vermont are considerably higher (4-8 cm/yr) than those for the Champlain Sea (0.8-1.2 cm/yr) and Lake Champlain (0.14-0.15 cm/yr). Bedrock, till, and deltaic and alluvial deposits were also identified.- from Authors

  2. An Analysis of Wind Power Development in the Town of Hull, MA_Appendix 4_Geophysical Survey Report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Adams, Christopher

    2013-06-30

    CR Environmental, Inc. (CR) was contracted by GZA GeoEnvironmental, Inc. (GZA) to perform hydrographic and geophysical surveys of an approximately 3.35 square mile area off the eastern shore of Hull, Massachusetts. Survey components included: • Single-beam bathymetry; • 100-kHz and 500-kHz side scan sonar; • Magnetometry; and • Low to mid-frequency sub-bottom profiling.

  3. Lake Mohave Geophysical Survey 2002: GIS Data Release

    USGS Publications Warehouse

    Cross, VeeAnn A.; Foster, David S.; Twichell, David C.

    2005-01-01

    This CD-ROM contains sidescan-sonar imagery, sub-bottom reflection profiles, and an interpretive map derived from these data. These data were collected in Lake Mohave, a reservoir behind the Davis Dam and below the Hoover Dam on the Colorado River. These data are veiwable within an Environmental system Research Institute, Inc. (ESRI) Geographic Information system (GIS) ArcView 3.2 project file stored on this CD-ROM

  4. Repeat AUV Mapping and ROV Observations of Active Mud Volcanos on the Canadian Beaufort Sea Continental Slope

    NASA Astrophysics Data System (ADS)

    Caress, D. W.; Paull, C. K.; Dallimore, S.; Lundsten, E. M.; Anderson, K.; Gwiazda, R.; Melling, H.; Lundsten, L.; Graves, D.; Thomas, H. J.; Cote, M.

    2017-12-01

    Two active submarine mud volcano sites located at 420 and 740 m depths on the margin of the Canadian Beaufort Sea were mapped in 2013 and again in 2016 using the same survey line pattern allowing detection of change over three years. The surveys were conducted using MBARI's mapping AUVs which fields a 200 kHz or 400 kHz multibeam sonar, a 1-6 kHz chirp sub-bottom profiler, and a 110 kHz chirp sidescan from a 50 m altitude. The resulting bathymetry has 1 m lateral resolution and 0.1 m vertical precision and sidescan mosaics have 1 m lateral resolution. Vertical changes of ≥0.2 m are observable by differencing repeat surveys. These features were also visited with MBARI's miniROV, which was outfitted for these dives with a manipulator mounted temperature probe. The 420 m mud volcano is nearly circular, 1100 m across, flat-topped, and superimposed on the pre-existing smooth slope. The central plateau has low relief <3 m consisting of concentric rings and ovoid mounds that appear to reflect distinct eruptions at shifting locations. The 740 m site contains 3 mud volcanoes, most prominently a 630 m wide, 30 m high flat-topped plateau with about 4 m of relief similar to the 420 m feature plus a 5 m high cone on the southern rim. North of this plateau is a smooth-textured conically shaped feature also standing about 30 m above the floor of the subsidence structure. Sidescan mosaics reveal significant changes in backscatter patterns at both mud volcano sites between surveys. Comparison of bathymetry also reveals new flows of up to 1.8 m thickness at both sites, as well as subtle spreading of the flat plateaus rims. An active mudflow was encountered during a miniROV dive on a high backscatter target at the 740 m site. This tongue of mud was observed to be slowly flowing downslope. The ROV temperature probe inserted 2 cm into the flow measured 23°C, compared to ambient water (-0.4°C), indicating the rapid ascent of the mud from considerable subsurface depths. Bubbles (presumably methane) were escaping from the active mudflow. Combining seafloor mapping with ROV observations indicates that new sediment flows with entrained methane bubbles exhibit very high backscatter which rapidly changes to very low backscatter following degassing of the smooth, bare mud. To our knowledge this is the first time an eruption on a submarine mud volcano has been observed.

  5. Geophysical exploration of an active pockmark field in the Bay of Concarneau, southern Brittany, and implications for resident suspension feeders

    NASA Astrophysics Data System (ADS)

    Baltzer, Agnès; Ehrhold, Axel; Rigolet, Carinne; Souron, Aurélie; Cordier, Céline; Clouet, Hélène; Dubois, Stanislas F.

    2014-06-01

    About a decade ago, a large field of pockmarks (individual features up to 30 m in diameter and <2 m deep) was discovered in water depths of 15-40 m in the Bay of Concarneau in southern Brittany along the French Atlantic coast, covering an overall area of 36 km2 and characterised by unusually high pockmark densities in places reaching 2,500 per square kilometre. As revealed by geophysical swath and subbottom profile data ground-truthed by sediment cores collected during two campaigns in 2005 and 2009, the confines of the pockmark field show a spectacular spatial association with those of a vast expanse of tube mats formed by a benthic community of the suspension-feeding amphipod Haploops nirae. The present study complements those findings with subbottom chirp profiles, seabed sonar imagery and ultrasonic backscatter data from the water column acquired in April 2011. Results show that pockmark distribution is influenced by the thickness of Holocene deposits covering an Oligocene palaeo-valley system. Two groups of pockmarks were identified: (1) a group of large (>10 m diameter), more widely scattered pockmarks deeply rooted (up to 8 ms two-way travel time, TWTT) in the Holocene palaeo-valley infills, and (2) a group of smaller, more densely spaced pockmarks shallowly rooted (up to 2 ms TWTT) in interfluve deposits. Pockmark pore water analyses revealed high methane concentrations peaking at ca. 400 μl/l at 22 and 30 cm core depth in silty sediments immediately above Haploops-bearing layers. Water column data indicate acoustic plumes above pockmarks, implying ongoing pockmark activity. Pockmark gas and/or fluid expulsion resulting in increased turbidity (resuspension of, amongst others, freshly settled phytoplankton) could at least partly account for the strong spatial association with the phytoplankton-feeding H. nirae in the Bay of Concarneau, exacerbating impacts of anthropogenically induced eutrophication and growing offshore trawling activities. Tidally driven hydraulic pumping in gas-charged pockmarks represents a good candidate as large-scale short-term triggering mechanism of pockmark activation, in addition to episodic regional seismic activity.

  6. Distribution, abundance and carbon isotopic composition of gaseous hydrocarbons in Big Soda Lake, Nevada: An alkaline, meromictic lake

    USGS Publications Warehouse

    Oremland, R.S.; Des Marais, D.J.

    1983-01-01

    Distribution and isotopic composition (??13C) of low molecular weight hydrocarbon gases were studied in Big Soda Lake (depth = 64 m), an alkaline, meromictic lake with permanently anoxic bottom waters. Methane increased with depth in the anoxic mixolimnion (depth = 20-35 m), reached uniform concentrations (55 ??M/l) in the monimolimnion (35-64 m) and again increased with depth in monimolimnion bottom sediments (>400 ??M/kg below 1 m sub-bottom depth). The ??13C[CH4] values in bottom sediment below 1 m sub-bottom depth (<-70 per mil) increased with vertical distance up the core (??13C[CH4] = -55 per mil at sediment surface). Monimolimnion ??13C[CH4] values (-55 to -61 per mil) were greater than most ??13C[CH4] values found in the anoxic mixolimnion (92% of samples had ??13C[CH4] values between -20 and -48 per mil). No significant concentrations of ethylene or propylene were found in the lake. However ethane, propane, isobutane and n-butane concentrations all increased with water column depth, with respective maximum concentrations of 260, 80, 23 and 22 nM/l encountered between 50-60 m depth. Concentrations of ethane, propane and butanes decreased with depth in the bottom sediments. Ratios of CH4 [C2H6 + C3H8] were high (250-620) in the anoxic mixolimnion, decreased to ~161 in the monimolimnion and increased with depth in the sediment to values as high as 1736. We concluded that methane has a biogenic origin in both the sediments and the anoxic water column and that C2-C4 alkanes have biogenic origins in the monimolimnion water and shallow sediments. The changes observed in ??13C[CH4] and CH4 (C2H6 + C3H8) with depth in the water column and sediments are probably caused by bacteria] processes. These might include anaerobic methane oxidation and different rates of methanogenesis and C2 to C4 alkane production by microorganisms. ?? 1983.

  7. Holocene glacier fluctuations inferred from lacustrine sediment, Emerald Lake, Kenai Peninsula, Alaska

    NASA Astrophysics Data System (ADS)

    LaBrecque, Taylor S.; Kaufman, Darrell S.

    2016-01-01

    Physical and biological characteristics of lacustrine sediment from Emerald Lake were used to reconstruct the Holocene glacier history of Grewingk Glacier, southern Alaska. Emerald Lake is an ice-marginal threshold lake, receiving glaciofluvial sediment when Grewingk Glacier overtops the topographic divide that separates it from the lake. Sub-bottom acoustical profiles were used to locate core sites to maximize both the length and resolution of the sedimentary sequence recovered in the 4-m-long cores. The age model for the composite sequence is based on 13 14C ages and a 210Pb profile. A sharp transition from the basal inorganic mud to organic-rich mud at 11.4 ± 0.2 ka marks the initial retreat of Grewingk Glacier below the divide of Emerald Lake. The overlaying organic-rich mud is interrupted by stony mud that records a re-advance between 10.7 ± 0.2 and 9.8 ± 0.2 ka. The glacier did not spill meltwater into the lake again until the Little Ice Age, consistent with previously documented Little Ice Ages advances on the Kenai Peninsula. The retreat of Grewingk Glacier at 11.4 ka took place as temperature increased following the Younger Dryas, and the subsequent re-advance corresponds with a climate reversal beginning around 11 ka across southern Alaska.

  8. Shallow Sub-Bottom Reflectors in the Northeast Pacific: Distribution and Physical Properties,

    DTIC Science & Technology

    1986-04-14

    age from Oligocene (ca 30 my) off the coast of California and Baja California, to middle/late Cretaceous (anomaly 34, 84 my) north of Hawaii. Whereas...34 in The Deep Sea Drilling Project: a decade of progress. Edited by Warme , Douglas and Winterer, Society of Economic Paleontologists and Mineraligists...decade of progress. Edited by Warme , Douglas and Winterer, Society of Economic Paleontologists and Mineralo gists, SEPM special publication 32, 129

  9. Wave-Sediment Interaction in Muddy Environments: Subbottom Field Experiment

    DTIC Science & Technology

    2012-09-30

    instrumentation deployed on nearby oil and gas platforms. WORK COMPLETED Field experiment and data analysis : The “Sub-bottom Field Experiment” project...Berkeley, Doctoral thesis, 149p. Chou, H.-T., M.A. Foda , and J.R. Hunt (1993). Rheological response of cohesive sediments to oscillatory forcing”, In...dissipation by muddy seafloors, Geophys. Res. Lett. 35/7, L07611. Foda , A.M., J.R. Hunt, and H.-T. Chou (1993). A nonlinear model for the

  10. Near-shore Evaluation of Holocene Faulting and Earthquake Hazard in the New York City Metropolitan Region

    NASA Astrophysics Data System (ADS)

    Cormier, M. H.; King, J. W.; Seeber, L.; Heil, C. W., Jr.; Caccioppoli, B.

    2016-12-01

    During its relatively short historic period, the Atlantic Seaboard of North America has experienced a few M6+ earthquakes. These events raise the specter of a similar earthquake occurring anywhere along the eastern seaboard, including in the greater New York City (NYC) metropolitan area. Indeed, the NYC Seismic Zone is one of several concentrations of earthquake activity that stand out in the field of epicenters over eastern North America. Various lines of evidence point to a maximum magnitude in the M7 range for metropolitan NYC - a dramatic scenario that is counterbalanced by the low probability of such an event. Several faults mapped near NYC strike NW, sub-normal to the NE-striking structural trends of the Appalachians, and all earthquake sequences with well-established fault sources in the NYC seismic zone originate from NW-striking faults. With funding from the USGS Earthquake Hazard Program, we recently (July 2016) collected 85 km of high-resolution sub-bottom (CHIRP) profiles along the north shore of western Long Island Sound, immediately adjacent to metropolitan NYC. This survey area is characterized by a smooth, 15.5 kyr-old erosional surface and overlying strata with small original relief. CHIRP sonar profiles of these reflectors are expected to resolve fault or fold-related vertical relief (if present) greater than 50 cm. They would also resolve horizontal fault displacements with similar resolution, as may be expressed by offsets of either sedimentary or geomorphic features. No sedimentary cover on the land portion of the metro area offers such ideal reference surfaces, which are continuous in both time and space. Seismic profiles have a spacing of 200 m and have been acquired mostly perpendicular to the NW-striking faults mapped on land. These new data will be analyzed systematically for all resolvable features and then interpreted, distinguishing sedimentary, geomorphic, and tectonic features. The absence of evidence of post-glacial tectonic deformation would be a reliable negative result with implications regarding the lateral dimensions and southeastward continuity of the brittle faults mapped on land, and their potential for generation of large earthquakes with surface ruptures.

  11. Seismic stratigraphy of the Heuksan mud belt in the southeastern Yellow Sea, Korea

    NASA Astrophysics Data System (ADS)

    Lee, Gwang-Soo; Yoo, Dong Geun; Bae, Sung Ho; Min, Gun-Hong; Kim, Seong-Pil; Choi, Hunsoo

    2015-12-01

    To establish the seismic stratigraphy of the Heuksan mud belt (HMB) and reconstruct its depositional history, approximately 1,600 km of high-resolution seismic data were newly obtained using chirp acoustic sub-bottom profiler, sparker, and air-gun seismic systems. Based on seismic stratigraphic analysis, the HMB can be divided into three major seismic units (I, II, and III, from top to bottom) and four subunits (II-a, II-b, III-a, and III-b) overlying transgressive sands, pre-last glacial maximum (LGM) deposits, and the acoustic basement. Each unit and subunit show different seismic facies and geometry, being clearly separated from each other by bounding surfaces formed since the LGM. The spatial distribution, thicknesses and volumes of the seismic units were determined and plotted to document the sequential formation of the HMB. The correlation between deep drill core data (HMB-101, HMB-102, HMB-103, YSDP-101, and YSDP-102) and the seismic data suggests that subunits III-b and III-a were formed by the continuous accumulation of fine-grained sediment with partial sandy sediment in an estuarine/deltaic environment during the early to middle transgressive stage, accompanied by landward migration of the shoreline. Subunits II-b and II-a were probably formed by re-deposition of large volumes of sediment eroded from unit III during the middle transgressive to early highstand stage. Unit I is interpreted as the most recent mud deposit representing the highstand systems tract when sea-level rise terminated. The careful definition of seismic units and their interpretation proposed in this study, on the basis of the large and partly new seismic dataset covering the entire HMB together with deep drill core data, have been instrumental in reconstructing the depositional environment and formation mechanisms of the HMB.

  12. Ocean bottom seismometer: design and test of a measurement system for marine seismology.

    PubMed

    Mànuel, Antoni; Roset, Xavier; Del Rio, Joaquin; Toma, Daniel Mihai; Carreras, Normandino; Panahi, Shahram Shariat; Garcia-Benadí, A; Owen, Tim; Cadena, Javier

    2012-01-01

    The Ocean Bottom Seismometer (OBS) is a key instrument for the geophysical study of sea sub-bottom layers. At present, more reliable autonomous instruments capable of recording underwater for long periods of time and therefore handling large data storage are needed. This paper presents a new Ocean Bottom Seismometer designed to be used in long duration seismic surveys. Power consumption and noise level of the acquisition system are the key points to optimize the autonomy and the data quality. To achieve our goals, a new low power data logger with high resolution and Signal-to-Noise Ratio (SNR) based on Compact Flash memory card is designed to enable continuous data acquisition. The equipment represents the achievement of joint work from different scientific and technological disciplines as electronics, mechanics, acoustics, communications, information technology, marine geophysics, etc. This easy to handle and sophisticated equipment allows the recording of useful controlled source and passive seismic data, as well as other time varying data, with multiple applications in marine environment research. We have been working on a series of prototypes for ten years to improve many of the aspects that make the equipment easy to handle and useful to work in deep-water areas. Ocean Bottom Seismometers (OBS) have received growing attention from the geoscience community during the last forty years. OBS sensors recording motion of the ocean floor hold key information in order to study offshore seismicity and to explore the Earth's crust. In a seismic survey, a series of OBSs are placed on the seabed of the area under study, where they record either natural seismic activity or acoustic signals generated by compressed air-guns on the ocean surface. The resulting data sets are subsequently used to model both the earthquake locations and the crustal structure.

  13. Seismic, side-scan survey, diving, and coring data analyzed by a Macintosh II sup TM computer and inexpensive software provide answers to a possible offshore extension of landslides at Palos Verdes Peninsula, California

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dill, R.F.; Slosson, J.E.; McEachen, D.B.

    1990-05-01

    A Macintosh II{sup TM} computer and commercially available software were used to analyze and depict the topography, construct an isopach sediment thickness map, plot core positions, and locate the geology of an offshore area facing an active landslide on the southern side of Palos Verdes Peninsula California. Profile data from side scan sonar, 3.5 kHz, and Boomer subbottom, high-resolution seismic, diving, echo sounder traverses, and cores - all controlled with a mini Ranger II navigation system - were placed in MacGridzo{sup TM} and WingZ{sup TM} software programs. The computer-plotted data from seven sources were used to construct maps with overlaysmore » for evaluating the possibility of a shoreside landslide extending offshore. The poster session describes the offshore survey system and demonstrates the development of the computer data base, its placement into the MacGridzo{sup TM} gridding program, and transfer of gridded navigational locations to the WingZ{sup TM} data base and graphics program. Data will be manipulated to show how sea-floor features are enhanced and how isopach data were used to interpret the possibility of landslide displacement and Holocene sea level rise. The software permits rapid assessment of data using computerized overlays and a simple, inexpensive means of constructing and evaluating information in map form and the preparation of final written reports. This system could be useful in many other areas where seismic profiles, precision navigational locations, soundings, diver observations, and core provide a great volume of information that must be compared on regional plots to develop of field maps for geological evaluation and reports.« less

  14. Geomorphic and shallow-acoustic investigation of an Antarctic Peninsula fjord system using high-resolution ROV and shipboard geophysical observations: Ice dynamics and behaviour since the Last Glacial Maximum

    NASA Astrophysics Data System (ADS)

    García, Marga; Dowdeswell, J. A.; Noormets, R.; Hogan, K. A.; Evans, J.; Ó Cofaigh, C.; Larter, R. D.

    2016-12-01

    Detailed bathymetric and sub-bottom acoustic observations in Bourgeois Fjord (Marguerite Bay, Antarctic Peninsula) provide evidence on sedimentary processes and glacier dynamics during the last glacial cycle. Submarine landforms observed in the 50 km-long fjord, from the margins of modern tidewater glaciers to the now ice-distal Marguerite Bay, are described and interpreted. The landforms are grouped into four morpho-sedimentary systems: (i) glacial advance and full-glacial; (ii) subglacial and ice-marginal meltwater; (iii) glacial retreat and neoglaciation; and (iv) Holocene mass-wasting. These morpho-sedimentary systems have been integrated with morphological studies of the Marguerite Bay continental shelf and analysed in terms of the specific sedimentary processes and/or stages of the glacial cycle. They demonstrate the action of an ice-sheet outlet glacier that produced drumlins and crag-and-tail features in the main and outer fjord. Meltwater processes eroded bedrock channels and ponds infilled by fine-grained sediments. Following the last deglaciation of the fjord at about 9000 yr BP, subsequent Holocene neoglacial activity involved minor readvances of a tidewater glacier terminus in Blind Bay. Recent stillstands and/or minor readvances are inferred from the presence of a major transverse moraine that indicates grounded ice stabilization, probably during the Little Ice Age, and a series of smaller landforms that reveal intermittent minor readvances. Mass-wasting processes also affected the walls of the fjord and produced scars and fan-shaped deposits during the Holocene. Glacier-terminus changes during the last six decades, derived from satellite images and aerial photographs, reveal variable behaviour of adjacent tidewater glaciers. The smaller glaciers show the most marked recent retreat, influenced by regional physiography and catchment-area size.

  15. Ocean Bottom Seismometer: Design and Test of a Measurement System for Marine Seismology

    PubMed Central

    Mànuel, Antoni; Roset, Xavier; Del Rio, Joaquin; Toma, Daniel Mihai; Carreras, Normandino; Panahi, Shahram Shariat; Garcia-Benadí, A.; Owen, Tim; Cadena, Javier

    2012-01-01

    The Ocean Bottom Seismometer (OBS) is a key instrument for the geophysical study of sea sub-bottom layers. At present, more reliable autonomous instruments capable of recording underwater for long periods of time and therefore handling large data storage are needed. This paper presents a new Ocean Bottom Seismometer designed to be used in long duration seismic surveys. Power consumption and noise level of the acquisition system are the key points to optimize the autonomy and the data quality. To achieve our goals, a new low power data logger with high resolution and Signal–to-Noise Ratio (SNR) based on Compact Flash memory card is designed to enable continuous data acquisition. The equipment represents the achievement of joint work from different scientific and technological disciplines as electronics, mechanics, acoustics, communications, information technology, marine geophysics, etc. This easy to handle and sophisticated equipment allows the recording of useful controlled source and passive seismic data, as well as other time varying data, with multiple applications in marine environment research. We have been working on a series of prototypes for ten years to improve many of the aspects that make the equipment easy to handle and useful to work in deep-water areas. Ocean Bottom Seismometers (OBS) have received growing attention from the geoscience community during the last forty years. OBS sensors recording motion of the ocean floor hold key information in order to study offshore seismicity and to explore the Earth’s crust. In a seismic survey, a series of OBSs are placed on the seabed of the area under study, where they record either natural seismic activity or acoustic signals generated by compressed air-guns on the ocean surface. The resulting data sets are subsequently used to model both the earthquake locations and the crustal structure. PMID:22737032

  16. Coastline shifts and probable ship landing site submerged off ancient Locri-Epizefiri, southern Italy

    USGS Publications Warehouse

    Tennent, J.M.; Stanley, J.-D.; Hart, P.E.; Bernasconi, M.P.

    2009-01-01

    A geophysical survey provides new information on marine features located seaward of Locri-Epizefiri (Locri), an ancient Greek settlement on the Ionian coastal margin in southern Italy. The study supplements previous work by archaeologists who long searched for the site's harbor and recently identified what was once a marine basin that is now on land next to the city walls of Locri. Profiles obtained offshore, between the present coast and outer shelf, made with a high-resolution, seismic subbottom-profiling system, record spatial and temporal variations of buried Holocene deposits. Two of these submerged features are part of a probable now-submerged ship landing facility. The offshore features can be linked to coastline displacements that occurred off Locri: a sea-to-land shift before Greek settlement, followed by a shoreline reversal from the archaeological site back to sea, and more recently, a return landward. The seaward directed coastal shift that occurred after Locri's occupation by Greeks was likely caused by land uplift near the coastal margin and tectonic seaward shift of the coast, as documented along this geologically active sector of the Calabrian Arc. The seismic survey records an angular, hook-shaped, low rise that extends from the present shore and is now buried on the inner shelf. The rise, enclosing a core lens of poorly stratified to transparent acoustic layers, bounds a broad, low-elevation zone positioned immediately seaward of the shoreline. Close proximity of the raised feature to the low-elevation area suggests it may have been a fabricated structure that functioned as a wave-break for a ship-landing site. The study indicates that the basin extended offshore as a function of the coastline's seaward migration during and/or after Greek occupation of Locri.

  17. Holocene evolution of the Tonle Sap Lake: valley network infill and rates of sedimentation in Cambodia's Great Lake

    NASA Astrophysics Data System (ADS)

    Best, J.; Darby, S. E.; Langdon, P. G.; Hackney, C. R.; Leyland, J.; Parsons, D. R.; Aalto, R. E.; Marti, M.

    2017-12-01

    Tonle Sap Lake, the largest freshwater lake in SE Asia (c. 120km long and 35 km wide), is a vital ecosystem that provides 40-60% of the protein for the population of Cambodia. The lake is fed by flow from the Mekong River that causes the lake rise in level by c. 8m during monsoonal and cyclone-related floods, with drainage of the lake following the monsoon. Hydropower dam construction on the Mekong River has raised concerns as to the fragility of the Tonle Sap habitat due to any changing water levels and sedimentation rates within the lake. This paper details results of sub-bottom profiling surveys of Tonle Sap Lake in October 2014 that detailed the stratigraphy of the lake and assessed rates of infill. An Innomar Parametric Echo Sounder (PES) was used to obtain c. 250 km of sub-bottom profiles, with penetration up to 15m below the lake bed at a vertical resolution of c. 0.20m. These PES profiles were linked to cores from the north of the lake and previous literature. The PES profiles reveal a network of valleys, likely LGM, with relief up to c. 15-20m, that have been infilled by a suite of Holocene sediments. The valley surface is picked out as a strong reflector throughout the lake, and displays a series of valleys that are up to c. 15m deep and commonly 50-200m wide, although some of the largest valleys are 1.2km in width. Modelling of channel network incision during LGM conditions generates landscapes consistent with our field observations. The Tonle Sap valley network is infilled by sediments that show firstly fluvial and/or subaerial slope sedimentation, and then by extensive, parallel-bedded, lacustrine sedimentation. Lastly, the top c. 1m of sedimentation is marked by a distinct basal erosional surface that can be traced over much of the Tonle Sap Lake, and that is overlain by a series of parallel PES reflections. This upper sediment layer is interpreted to represent sedimentation in the Tonle Sap lake due to sediment suspension settling but after a period of widespread erosion that generated the extensive erosion surface. This paper will detail the characteristics and interpretation of the PES facies, their correlation to cores and estimates of sedimentation rates. Dating and PES profiles indicate that infill of the lake was complete by c. 6ka and that minimal sedimentation has occurred since then, likely due to reworking by wave resuspension.

  18. Holocene lake level changes at a lowland lake in northeastern Germany inferred from acoustic sub-bottom profiling and a transect of sediment cores

    NASA Astrophysics Data System (ADS)

    Dietze, Elisabeth; Zawiska, Izabela; Słowiński, Michał; Brauer, Achim

    2015-04-01

    Holocene lake level changes were studied at Lake Fürstenseer See, a typical lake with complex basin morphology in northeastern German sandur area. An acoustic sub-bottom profile and a transect of four long sediment cores in the deepest lake sub-basin were analyzed. The cores were dated with AMS-14C and correlated with multiple proxies (sediment facies, μ-XRF, macrofossils, subfossil Cladocera, carbonate isotopes). At sites in 10 and 15 m water depth, shifts in the sand-mud boundary, i.e. sediment limit sensu Digerfeldt (1986), allowed quantitative estimates of the absolute amplitude of lake level changes. At sites in 20 and 23 m water depth, the negative correlation of Ca and Ti reflect lake level changes qualitatively. During high lake stands massive organic muds were deposited. Lower lake levels isolated the lake sub-basins which reduced the overall water circulation and lead to the deposition of Ti-poor carbonate muds. Furthermore, macrofossil and subfossil Cladocera analyses were used as proxies for the intense reworking at the slope and for the trophic state of the lake, respectively. Lake levels were up to 4 m higher, e.g. around 5000 cal. yrs BP and during the Medieval time period (see also Kaiser et al., 2014). During the early to mid-Holocene (between 9400 and 6400 cal. yrs BP), Lake Fürstenseer See fluctuated at an at least 3-m lower level. Further water level changes can be related to known climatic events and regional human impact. Digerfeldt, G., 1986. Studies on past lake-level fluctuations. In Berglund, B. (ed.), Handbook of Holocene Palaeoecology and Palaeohydrology: 127-144. John Wiley & Sons, New York. Kaiser, K., Küster, M., Fülling, A., Theuerkauf, M., Dietze, E., Graventein, H., Koch, P.J., Bens, O., Brauer, A., 2014. Littoral landforms and pedosedimentary sequences indicating late Holocene lake-level changes in northern central Europe ' A case study from northeastern Germany. Geomorphology 216, 58-78.

  19. Electromagnetic Surveying in the Mangrove Lakes Region of Everglades National Park

    NASA Astrophysics Data System (ADS)

    Whitman, D.; Price, R.; Frankovich, T.; Fourqurean, J.

    2015-12-01

    The Mangrove Lakes are an interconnected set of shallow (~ 1m), brackish lake and creek systems on the southern margin of the Everglades adjacent to Florida Bay. Current efforts associated with the Comprehensive Everglades Restoration Plan (CERP) aim to increase freshwater flow into this region. This study describes preliminary results of geophysical surveys in the lakes conducted to assess changes in the groundwater chemistry as part of a larger hydrologic and geochemical study in the Everglades Lakes region. Marine geophysical profiles were conducted in Alligator Creek (West Lake) and McCormick Creek systems in May, 2014. Data included marine electromagnetic (EM) profiles and soundings, water depth measurements, surface water conductivity and salinity measurements. A GSSI Profiler EMP-400 multi-frequency EM conductivity meter continuously recorded in-phase and quadrature field components at 1, 8, and 15 KHz. The system was deployed in a flat bottomed plastic kayak towed behind a motorized skiff. Lake water depths were continuously measured with a sounder/chart plotter which was calibrated with periodic sounding rod measurements. At periodic intervals during the survey, the profiling was stopped and surface water conductivity, temperature and salinity are recorded with a portable YSI probe on the tow boat. Over 40,000 discrete 3-frequency EM measurements were collected. The data were inverted to 2-layer models representing the water layer thickness and conductivity and the lake bottom conductivity. At spot locations, models were constrained with water depth soundings and surface water conductivity measurements. At other locations along the profiles, the water depth and conductivity were allowed to be free, but the free models were generally consistent with the constrained models. Multilayer sub-bottom models were also explored but were found to be poorly constrained. In West Lake, sub-bottom conductivities decreased from 400 mS/m in the west to 200 mS/m in the east indicating a general W to E decrease in groundwater salinity. In the McCormick Creek system, sub-bottom conductivities increased from 200 mS/m at the north end of Seven Palm Lake to over 650 mS/m at the southern end of Monroe Lake indicating a general N to S increase in ground water salinity. Additional profiles are planned in August, 2015.

  20. Results of R/V Yaquina cruise YALOC-74, Leg 3: seabed disposal program, North Pacific study area MPG-2, 33$sup 0$20'N, 151$sup 0$00'W, November 30--December 21, 1974

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Heath, G R

    1975-07-01

    During 10 days in the vicinity of 33$sup 0$20'N, 151$sup 0$00'W (MPG-2 area), three near-bottom current meters were deployed, the bathymetry and subbottom acoustic structure of the surrounding seafloor were determined, and sediment cores were collected for studies of artificial radionuclide distribution, geotechnical properties, geochemical properties, and to identify the character of shallow acoustic reflectors. Large volume water samples for artificial radionuclide studies and suspended sediment were also collected. These samples and data will supplement earlier material to be used in the evaluation of the central North Pacific as a potential site for the ultimate disposal of high-level reactor wastes.more » (auth)« less

  1. Overview of SAX99: Environmental considerations

    USGS Publications Warehouse

    Richardson, M.D.; Briggs, K.B.; Bibee, L.D.; Jumars, P.A.; Sawyer, W.B.; Albert, D.B.; Bennett, R.H.; Berger, T.K.; Buckingham, M.J.; Chotiros, N.P.; Dahl, P.H.; DeWitt, N.T.; Fleischer, P.; Flood, R.; Greenlaw, C.F.; Holliday, D.V.; Hulbert, M.H.; Hutnak, M.P.; Jackson, P.D.; Jaffe, J.S.; Johnson, H. Paul; Lavoie, D.L.; Lyons, A.P.; Martens, C.S.; McGehee, D.E.; Moore, K.D.; Orsi, T.H.; Piper, J.N.; Ray, R.I.; Reed, A.H.; Self, R.F.L.; Schmidt, J.L.; Schock, S.G.; Simonet, F.; Stoll, R.D.; Tang, D.; Thistle, D.E.; Thorsos, E.I.; Walter, D.J.; Wheatcroft, R.A.

    2001-01-01

    A 1-km2 area located 2 km off the Florida Pan-handle (30??22.6???N; 86??38.7???W) was selected as the site to conduct high-frequency acoustic seafloor penetration, sediment propagation, and bottom scattering experiments [1]. Side scan, multibeam, and normal incidence chirp acoustic surveys as well as subsequent video surveys, diver observations, and vibra coring, indicate a uniform distribution of surficial and subbottom seafloor characteristics within the area. The site, in 18-19 m of water, is characterized by 1-2-m thick fine-to-medium clean sand and meets the logistic and scientific requirements specified for the acoustic experiments. This paper provides a preliminary summary of the meteorological, oceanographic, and seafloor conditions found during the experiments and describes the important physical and biological process that control the spatial distribution and temporal changes in these characteristics.

  2. Wave-Sediment Interaction in Muddy Environments: Subbottom Field Experiment

    DTIC Science & Technology

    2011-09-30

    instrumentation deployed on nearby oil and gas platforms. WORK COMPLETED Field experiment and data analysis : The “Sub-bottom Field Experiment” project...Berkeley, Doctoral thesis, 149p. Chou, H.-T., M.A. Foda , and J.R. Hunt (1993). Rheological response of cohesive sediments to oscillatory forcing”, In...Wave dissipation by muddy seafloors, Geophys. Res. Lett. 35/7, L07611. Foda , A.M., J.R. Hunt, and H.-T. Chou (1993). A nonlinear model for the

  3. Some Approaches to the Analysis and Interpretation of Wide-Angle Bottom Loss Data.

    DTIC Science & Technology

    1982-02-15

    1979; Hastrup , 1969). This is described by the equation I ( ) = A( ) x where I(w)z impulse response estimate, A(w) = bottom interacting signal, S(w...quite significant subbottom reflectivity structure ( Hastrup , 1970; Herstein et al, 1979; Santaniello et al, 1979; Chapman, 1980; Tyce et al, 1980...Use of Windows for Harmonic Analysis with the Discrete Fourier Transform," Proo. IEEE 66, 51. 186 Hastrup , 0. F., 1970. "Digital Analysis of Acoustic

  4. The University of Texas Institute for Geophysics' Marine Geology and Geophysics Field Course: A Hand-On Education Approach to Applied Geophysics

    NASA Astrophysics Data System (ADS)

    Davis, M. B.; Goff, J.; Gulick, S. P. S.; Fernandez, R.; Duncan, D.; Saustrup, S.

    2016-12-01

    The University of Texas Institute for Geophysics, Jackson School of Geosciences, offers a 3-week marine geology and geophysics field course. The course provides hands-on instruction and training for graduate and upper-level undergraduate students in high-resolution seismic reflection, CHIRP sub-bottom profiling, multibeam bathymetry, sidescan sonar, and sediment sampling and analysis. Students first participate in 3 days of classroom instruction designed to communicate geological context of the field area along with theoretical and technical background on each field method. The class then travels to the Gulf Coast for a week of at-sea field work at locations that provide an opportunity to investigate coastal and continental shelf processes. Teams of students rotate between UTIG's 26' R/V Scott Petty and NOAA's 82' R/V Manta. They assist with survey design, instrumentation set up, and learn about acquisition, quality control, and safe instrument deployment. Teams also process data and analyze samples in onshore field labs. During the final week teams integrate, interpret, and visualize data in a final project using industry-standard software. The course concludes with team presentations on their interpretations with academic and industry supporters. Students report a greater understanding of marine geology and geophysics through the course's intensive, hands-on, team approach and high instructor/student ratio (sixteen students, three faculty, and three teaching assistants). Post-class, students may incorporate course data in senior honors or graduate thesis and are encouraged to publish and present results at national meetings. This course (to our knowledge) remains the only one of its kind, satisfies field experience requirements for some degree programs, and provides an alternative to land-based field courses. Alumni note the course's applicability to energy, environmental, and geotechnical industries as well as coastal restoration/management fields.

  5. Gas hydrate volume estimations on the South Shetland continental margin, Antarctic Peninsula

    USGS Publications Warehouse

    Jin, Y.K.; Lee, M.W.; Kim, Y.; Nam, S.H.; Kim, K.J.

    2003-01-01

    Multi-channel seismic data acquired on the South Shetland margin, northern Antarctic Peninsula, show that Bottom Simulating Reflectors (BSRs) are widespread in the area, implying large volumes of gas hydrates. In order to estimate the volume of gas hydrate in the area, interval velocities were determined using a 1-D velocity inversion method and porosities were deduced from their relationship with sub-bottom depth for terrigenous sediments. Because data such as well logs are not available, we made two baseline models for the velocities and porosities of non-gas hydrate-bearing sediments in the area, considering the velocity jump observed at the shallow sub-bottom depth due to joint contributions of gas hydrate and a shallow unconformity. The difference between the results of the two models is not significant. The parameters used to estimate the total volume of gas hydrate in the study area were 145 km of total length of BSRs identified on seismic profiles, 350 m thickness and 15 km width of gas hydrate-bearing sediments, and 6.3% of the average volume gas hydrate concentration (based on the second baseline model). Assuming that gas hydrates exist only where BSRs are observed, the total volume of gas hydrates along the seismic profiles in the area is about 4.8 ?? 1010 m3 (7.7 ?? 1012 m3 volume of methane at standard temperature and pressure).

  6. Mass Transport Deposits in the Santaren Channel: Distribution, Characteristics, and Potential Triggering Mechanisms

    NASA Astrophysics Data System (ADS)

    Schnyder, J.

    2015-12-01

    Submarine slope failures are a likely cause for tsunami generation along the East U.S. coast. A possible source are the large slope failures along western Great Bahama Bank (GBB). Numerical models simulate tsunami generation and propagation through the Straits of Florida, caused by these Pleistocene mass wasting events. In order to estimate the likelihood and extent of future landslides, distribution, characteristics, and possible triggering mechanisms of previous failures and their associated mass transport deposits (MTD) have to be investigated. In 2013, the University of Hamburg acquired 2D high-resolution multichannel seismic data, multibeam data, and subbottom profiles inside the Santaren Channel, along the slopes of western GBB and Cay Sal Bank (CSB). The two platforms are different in two ways. CSB is part of the Cuban Fold and Thrust Belt while GBB is situated in a tectonically quiet zone. In addition, the slopes of western GBB are on the leeward side of the bank, while the eastern slopes of CSB are in a windward position. Differences in nature and size of mass wasting events between the Cay Sal side and the western GBB side of the dataset show how influential the tectonically active Cuban Fold and Thrust Belt is to the generation of large MTDs in this area. In the study area, the slope failures can be divided in two categories; small-scale in situ failures with high frequencies on the slopes, dominant on the western GBB side, and large landslides with a lower frequency, but higher volumes and transport distances on the toe of the slope and in the basin, dominant on the Cay Sal side. The distribution of in situ failures, such as slump and debris flow alternation, shows the interplay between high and low inner strength of the sediment, respectively. On the other hand, large MTDs caused by submarine landslides suggest movement in an unconfined manner. Internal sediment preconditions derived from sea level oscillations are suggested as triggering mechanisms for slumps and debris flows, referring to their high frequency. Earthquake shaking is likely to be the causal process for large landslides clustered along northern Cay Sal.

  7. High-resolution AUV-based near bottom magnetic surveys at Palinuro volcanic complex (Southern Tyrrhenian Sea)

    NASA Astrophysics Data System (ADS)

    Cocchi, L.; Plunkett, S.; Augustin, N.; Petersen, S.

    2013-12-01

    In this paper we present the preliminary results of new near bottom magnetic datasets collected during the recent POS442 cruise using the autonomous underwater vehicle (AUV) Abyss. The Southern Tyrrhenian basin is characterized by deep seafloor interspersed with huge volcanic seamounts (e.g Vavilov and Marsili and those associated to the Aeolian volcanic arc), which were formed during eastward roll back of the Apennine subduction system. These submarine edifices often are affected by significant hydrothermal activity and associated mineral deposits such as those observed at Marsili, Palinuro and Panarea. The western part of the Palinuro volcanic complex is characterized by a half rim of a caldera-like structure and hosts hydrothermal barite-pyrite deposits. Until recently, the full extent of the hydrothermal system remained poorly defined, as exploration has been limited to a few specific sites. In November 2012, a set of high resolution near seafloor geophysical surveys were carried out using GEOMAR's AUV Abyss to attempt to better define the hydrothermal mineralization at Palinuro. Five AUV dives were performed, mapping a total area of 3.7 km2 over the western part of Palinuro. Geomar's Abyss AUV (a Remus6000 class vehicle) was equipped with an Applied Physics Systems flux gate magnetometer, writing to a stand alone data logger, powered by the AUV's main batteries. The 5 dives were performed within the same area but with different primary geophysical sensors (multibeam, sidescan sonar, subbottom profiler), survey altitudes above seafloor (100m, 40m) and line spacing (150m, 100m, 20m). Magnetic data was collect on all five dives. At the beginning of each dive, the AUV performed a set of calibration manoeuvres, involving a 360 degree heading variation, a set of three upwards/downwards pitches, and three port and starboard yaws. This magnetic data reveals the magnetization features of the seafloor in unprecedented detail, highlighting a complex pattern mostly due to extensive hydrothermal alteration. In particular, the strongest hydrothermal alteration related magnetic anomaly appears to be centred on a NNE-SSW fault zone located along the eastern margin of the caldera rims. Multibeam and sidescan sonar co-collected in this area by the AUV have delineated a previously unknown large hydrothermal chimney field and likely sulphide mounds, which extend along and within the caldera rim. Near bottom investigation confirms prior interpretation of extensive hydrothermal alteration being responsible of local magnetization lows previously inferred by ship-borne magnetic investigation. Usually, magnetic anomalies due to hydrothermal alteration are spatially limited, and are slightly detectable from ship borne surveys. The results of this magnetic survey demonstrate how near bottom mapping can significantly improve the resolution of the magnetic anomalies associated with hydrothermal deposits, facilitating a more detailed interpretation for geological modelling.

  8. Geophysical study of a magma chamber near Mussau Island, Papua New Guinea

    USGS Publications Warehouse

    Dadisman, Shawn V.; Marlow, M. S.

    1988-01-01

    Analysis of a 24-channel seismic-reflection data collected near Mussau Island, Papua New Guinea, shows a high-amplitude, negative-polarity reflection that we believe is from the top of a magma chamber.  The reflecting horizon lies at a depth of about 4.4 s subbottom and can be traced laterally for 2.6 km.  On shot gathers, the reflection demonstrates normal moveout appropriate for an in-place event.  The frequency spectrum of the reflection shows a decrease in high-frequency content when compared to the sea floor reflection, as would be expected for a deep subsurface event.  The polarity of the reflection event is negative, suggesting that the reflection horizon is the top of a low-velocity zone.  Magnetic data indicate that the ridge containing the reflecting horizon is magnetic, and the geology of Massau Island suggests that the ridge is volcanic in its origin.  We speculate that the high-amplitude reflection is from the top of a magma chamber some 7-11 km deep.

  9. Sublacustrine river valley in the shelf zone of the Black Sea parallel to the Bulgarian coast

    NASA Astrophysics Data System (ADS)

    Preisinger, A.; Aslanian, S.; Beigelbeck, R.; Heinitz, W.-D.

    2009-04-01

    The considered sublacustrine river valley is situated in the shelf zone of the Black Sea. It runs in parallel to the Bulgarian coast, was formed in the time period of the Younger Dryas (Preisinger et al., 2005), and features an inclination of about 0.5 m/km. An about 200 km long sediment wall separates the approximately 10 km broad river valley from the outside shelf zone. This wall was generated during the Older Dryas until the beginning of the Younger Dryas. Its shape was formed by transportation of water and sediment from the Strait of Kerch by a circulating rim current in the Black Sea and water as well as sediment flow of the Danube in direction to the Bosporus. New investigations of the sediments of this river valley were performed by utilizing a Sediment Echo Sounder (SES 2000). This Echo Sounder is a parametric sub-bottom profiler enabling a high resolution sub-bottom analyses. It is capable of penetrating sea beds up to more than 50 m of water depth. The received echo data are real-time processed. The signal amplitudes are valuated in context to a logarithmic scale and graphically visualized by means of a colorized echogram utilizing false colours ranging from red for a high to blue representing a low signal (W.-D. Heinitz et al., 1998). The highest signal (red) is given by the acoustic impedance of the boundary between sea water and river sediment. The echograms of the river valley depict spatially isolated (red) high-signal peaks, which are periodically repeated in vertical direction between the sediment surface and the bottom of the valley. The number of these high-signal parts increase with an increasing valley depth. Studying of the distribution of these peaks allows to draw conclusions regarding the content and composition of the sediment. This prediction of the sediment composition obtained by means of the SES 2000 was successfully verified by analyzing a gravity core taken near Nos Maslen (at 44 m water depth) with a particular focus on the water content. The first 36 cm of the core exhibited the highest water content of 40%. A similar result was found by utilizing quantitative analyses on the basis of framboidal greigites (Fe3S4) in sulfat-reducing bacteria, which show a minimum in this part. The results achieved by our SES-based sediment analysis method enable an insight into the evolution of the sublacustrine river valley. For example, they revealed that the sediment layers are asymmetrically deposited regarding the vertical centre of the river's cross section. This effect can be attributed to Baer-Babinet's law, which is, in this particular case, a direct consequence of the Coriolis forces acting on the counterclockwise flowing rim current near the coast line of the Bulgarian Black Sea (Einstein, 1926). Another important result of our analysis is the localization of different periods which took place since the entrance of water from the Marmara Sea over the Bosporus 9.300 years ago. They are identified by different water and greigites contents and last 352 ± 16 years. References: Preisinger, A., Aslanian, S., Heinitz, W.-D., 2005. The formation of a sublacustrine river valley in the Bulgarian shelf zone of the Black Sea. EGU-Meeting, Vienna, April 2005. Heinitz, W.-D., Ewert, J., Wunderlich, J., 1998. DSP-gestützte Signalverarbeitung im Sediment-Echolot-System SES-96, 9. Symposium Maritime Elektronik, Tagungsband, Rostock 1998. Einstein, A., 1926. Die Ursache der Mäanderbildung der Flussläufe und des sogenannten Baerschen Gesetzes. Die Naturwissenschaften, Volume 2, p.223-224.

  10. Sea-level changes and shelf break prograding sequences during the last 400 ka in the Aegean margins: Subsidence rates and palaeogeographic implications

    NASA Astrophysics Data System (ADS)

    Lykousis, V.

    2009-09-01

    The subsidence rates of the Aegean margins during the Middle-Upper Pleistocene were evaluated based on new and historical seismic profiling data. High-resolution seismic profiling (AirGun, Sparker and 3.5 kHz) have shown that (at least) four major oblique prograding sequences can be traced below the Aegean marginal slopes at increasing subbottom depths. These palaeo-shelf break glacial delta sediments have been developed during successive low sea-level stands (LST prograding sequences), suggesting continuous and gradual subsidence of the Aegean margins during the last 400 ka. Subsidence rates of the Aegean margins were calculated from the vertical displacement of successive topset-to-foreset transitions (palaeo-shelf break) of the LST prograding sediment sequences. The estimated subsidence rates that were calculated in the active boundaries of the Aegean microplate (North Aegean margins, Gulfs of Patras and Corinth) are high and range from 0.7 to 1.88 m ka -1, while the lowest values (0.34-0.60 m ka -1) are related to the low tectonic and seismic activity margins like the margin of Cyclades plateau. Lower subsidence rates (0.34-0.90 m ka -1) were estimated for the period 146-18 ka BP (oxygen isotopic stages 6-2) and higher (1.46-1.88 m ka -1) for the period from 425 to 250 ka BP (oxygen isotopic stages 12/10-8). A decrease of about 50% of the subduction rates in the Aegean margins was observed during the last 400 ka. During the isotopic stages 8, 10, 11 and 12, almost the 50-60% of the present Aegean Sea was land with extensive drainage systems and delta plains and large lakes in the central and North Aegean. Marine transgression in the North Aegean was rather occurred during the isotopic 9 interglacial period. The estimated palaeomorphology should imply fan delta development and sediment failures in the steep escarpments of the North Aegean margins and high sedimentation rates and turbidite sediment accumulation in the basins. It is deduced that the Black Sea was isolated from the Mediterranean during the Pleistocene prior oxygen isotopic stage 5.

  11. Seismic-reflection and sidescan-sonar data collected off eastern Cape Cod, Massachusetts, during April 1979

    USGS Publications Warehouse

    Knebel, Harley J.

    1981-01-01

    The U.S. Geological Survey collected 98 line kilometers of single-channel seismic-reflection profiles and sidescan sonar records on the inner shelf of eastern Cape Cod, Massachusetts, during April 1979. The data were obtained during cruise NE-1-79 of the R/V NEECHO. The purposes of the survey were: (1) to study the development of barrier islands; (2) to document the frequency and rate of migration of inlets that breach barrier islands; and (3) to define the characteristics of shoreface ridges on a barrier island.he survey uti I ized two acoustic systems. Information about the bottom was obtained by using an EDO Western model 606 sidescan-sonar system (100 kHz). Profiles of the subbottom were collected by an EG&G Uni boom transducer (400-4,000 Hz) and a Del Norte streamer. Positional control for al I track! ines was provided by a shore-based Miniranger system and by LORAN-C.The quality of the records generally is very good. However, subbottom penetration did vary somewhat from place to place during the survey due to the nature of the bottom sediments and to the presence or absence of buried channels.The original records may be examined at the U.S. Geological Survey, Woods Hole, MA 02543. Microfilm copies of the data are avai I able for purchase from the National Geophysical pnd Solar-Terrestrial Data Center, NOAA/EDIS/NGSDC, Code D621, 325 Broadway, Boulder, CO 80303 (303-497-6338).

  12. Megafloods in Marginal Basins: New Data from the Black Sea

    NASA Astrophysics Data System (ADS)

    Giosan, L.; Mart, Y.; McHugh, C. M.; Vachtman, D.; Cagatay, N. M.; Kadir, E. K.; Ryan, W. B.

    2005-12-01

    One of Jim Kennett's long-standing scientific interests has been the study of abrupt events ranging from destabilization of the gas hydrate reservoir, to volcanism, to megafloods. In appreciation to his contribution to the study of catastrophes in paleoceanography, we present new data on the Holocene reconnection of the Black Sea basin to the ocean, resulting from a July 2005 survey aboard the R/V Mediterranean Explorer of the EcoOcean Foundation. The survey included tightly-spaced Chirp subbottom profiling on the outer shelf northwest of the Bosporus outlet (Istanbul Bogazi), combined with precisely targeted gravity coring. Subbottom horizons are calibrated by radiocarbon and optical luminescence ages on cores. Chirp profiles reveal channels and ridges nearly transversal to the bathymetric contours. Ridges have grown on a seaward-dipping erosion surface that truncates the top of older prograding clinoforms. The ridges are up 12 m in height and have an asymmetrical cross-section, gentler on the west and steeper on the east. Sediment drifting is apparent on the gentler side. In the interiors of the ridges we found highly reflective mounds that are rooted directly on the erosion surface. The mounds organize in both elongated and circular to oval features. Shell-bearing marine mud drapes the mounds. Between the ridges and mounds the drape rests directly on the erosion surface that can be traced seaward to beyond -120 m. High abundance of exceptionally large shells of Mytilus sp. at the base of the drape suggests that bedforms were seeded by a colonization of mollusks building bioherms right on top of the erosion surface beginning at the time of the Mediterranean connection. The Black Sea lacustrine stage experienced an evaporative drawdown below its outlet and has only tracked the global sea level rise since 8.4 ky bp. The saltwater megaflood from the Mediterranean led to dramatic morphologic reorganization of the shelf sea-floor close to the Bosporus and exceptional preservation of shorelines and coastal bedforms elsewhere. The continued input of Mediterranean water has cut a network of channels through the ridges. Presumably the bioherm explosion was shut down by changes in salinity, nutrient budget, or nepheloid layer activity or it was soon terminated by anoxia. Sediment bodies formerly interpreted as lagoons are mud drifts in the lee of the bioherm ridges and mounds.

  13. Changes in Depositional Setting Reflect Rising Sealevel in Latest Holocene Sediments of the Hudson River

    NASA Astrophysics Data System (ADS)

    Slagle, A.; Carbotte, S. M.; Ryan, W. B.; Bell, R.; Nitsche, F. O.; McHugh, C. M.

    2002-12-01

    An extensive database of geophysical and sampling data in the Hudson River has been obtained in ten study areas between the New York Harbor and the Troy Dam. These data include bathymetry, bank-to-bank coverage of side-looking sonar imagery, subbottom reflection profiles, sediment cores and grabs. Geophysical properties, including gamma density, magnetic susceptibility and P-wave velocity, have been measured in a 9.3 m Vibracore (SD-30) from the near-channel tidal flats of the Tappan Zee area. Three distinct sedimentary facies have been identified, based on changes in physical properties, lithology and seismic reflections. Facies 1 is an oyster-rich unit with unstratified sediments and high sound velocities, and is found in the upper 1.5 m of core SD-30. Chirp subbottom data, which provide reflectors down to approximately 4 m depth, show a distinct horizon at 1.5 m, supporting the change seen in physical property data and lithology at this depth. A unit characterized by laminated sediments, interbedded with homogeneous layers and coquina layers, is identified as Facies 2 and is found between 1.5 and 6.1 m. This facies has high magnetic susceptibility and the appearance of discrete density cycles. The oldest unit, Facies 3, extends from 6.1 m to the base of the core at 9.3 m. It is made up of oyster-rich, unbedded sediments and thick coquina layers, and is characterized by low magnetic susceptibility. Radiocarbon dating of oysters and bivalves indicates that the different facies in SD-30 correspond to different sedimentation rates, with highest values occurring during deposition of Facies 2. The facies changes and variations in sedimentation rates are attributed to an evolving depositional environment in the tidal flats of the Tappan Zee area due to rising sealevel. Extrapolating from nearby cores that penetrate deeper into the sedimentary record, Facies 3 sits above post-glacial fluvial sands and represents the transition from a fresh to more brackish environment, suitable for development of oyster beds. The laminated sediments of Facies 2 are attributed to infilling of the tidal flats during a rapid rise in sealevel. The lack of laminated sediments and low sedimentation rates of Facies 1 are attributed to the modern wave-base dominated depositional setting in the Tappan Zee area.

  14. AUV Reveals Deep-Water Coral Mound Distribution, Morphology and Oceanography in the Florida Straits

    NASA Astrophysics Data System (ADS)

    Grasmueck, M.; Eberli, G. P.; Viggiano, D. A.; Correa, T.; Rathwell, G.; Luo, J.

    2006-12-01

    Since the 1960's dredge sampling and submersible dives have discovered numerous mound-forming deep- water corals in water depths of 400-800 m in the Straits of Florida. This extensive collection of samples and observations however can not be put into a geomorphologic context as existing bathymetric charts do not resolve coral mounds. To make progress in understanding the distribution and genesis of coral mounds, maps of morphology and oceanographic conditions resolving features at the 1-10 m scale are needed. On 11-18 December 2005 the C-Surveyor II(TM) mapped five sites ranging from 14-48 km2 in 590-875 m water acquiring 1-3 m resolution bathymetry and acoustic backscatter together with subbottom profiles, current vectors, salinity, and temperature. The areas mapped with the AUV contain hundreds of coral mounds with heights of 1-120 m. Mound distribution, morphology and currents are different for each survey site. Coral mounds develop on off-bank transported sediment ridges and slump features at the toe-of-slope of Great Bahama bank, while chevron pattern ridges and sinusoidal ridges are found further east in the Straits. Currents range from 0.1-0.5 m/s. At two sites currents reversed every 6 hours indicating tidal control. The AUV surveys and subsequent ground truthing with a drop camera and a submersible revealed a surprising abundance and diversity of deep-water coral habitats. The boundaries between mound fields and the barren muddy or sandy seafloor are sharp. Hull- mounted multi-beam reconnaissance mapping helped us select the most promising coral mound areas to optimize the use of valuable AUV time. Such combined use of hull-mounted and AUV-based mapping enables efficient environmental characterization of large deep-water regions such as the Florida Straits. The synoptic high-resolution datasets acquired by the multiple sensors on board the AUV enable for the first time a comprehensive assessment of deep-water coral mound ecosystems. Utilization of such state-of-the-art deepwater exploration tools is essential to understand and protect these slow growing and fragile oases which are resources for seafood, new medicines and long-term climate records. The AUV data will guide future sampling and monitoring to critical locations and provide the geospatial framework for making inventories of mound resources and designing research and management plans.

  15. 2008 Joint United States-Canadian program to explore the limits of the Extended Continental Shelf aboard the U.S. Coast Guard cutter Healy--Cruise HLY0806

    USGS Publications Warehouse

    Childs, Jonathan R.; Triezenberg, Peter J.; Danforth, William W.

    2012-01-01

    In September 2008, the U.S. Geological Survey (USGS), in cooperation with Natural Resources Canada, Geological Survey of Canada (GSC), conducted bathymetric and geophysical surveys in the Arctic Beaufort Sea aboard the U.S. Coast Guard cutter USCGC Healy. The principal objective of this mission to the high Arctic was to acquire data in support of delineation of the outer limits of the U.S. and Canadian Extended Continental Shelf (ECS) in the Arctic Ocean in accordance with the provisions of Article 76 of the Law of the Sea Convention. The Healy was accompanied by the Canadian Coast Guard icebreaker Louis S. St- Laurent. The science parties on the two vessels consisted principally of staff from the USGS (Healy), and the GSC and the Canadian Hydrographic Service (Louis). The crew included marine mammal and Native-community observers, ice observers, and biologists conducting research of opportunity in the Arctic Ocean. The joint survey proved an unqualified success. The Healy collected 5,528 km of swath (multibeam) bathymetry (38,806 km2) and CHIRP subbottom profile data, with accompanying marine gravity measurements. The Louis acquired 2,817 km of multichannel seismic (airgun) deep-penetration reflection-profile data along 12 continuous lines, as well as 35 sonobuoy refraction stations and accompanying single-beam bathymetry. The coordinated efforts of the two vessels resulted in seismic-reflection profile data of much higher quality and continuity than if the data had been acquired with a single vessel alone. Equipment failure rate of the seismic equipment gear aboard the Louis was greatly improved with the advantage of having a leading icebreaker. When ice conditions proved too severe to deploy the seismic system, the Louis led the Healy, resulting in much improved quality of the swath bathymetry and CHIRP sub-bottom data in comparison with data collected by the Healy in the lead or working alone. Ancillary science objectives, including ice observations, deployment of ice-monitoring buoys and water-column sampling for biologic (phytoplankton) studies, were also successfully accomplished.

  16. A first application of marine-controlled source method on gas-hydrate study off SW Taiwan

    NASA Astrophysics Data System (ADS)

    Chiang, C.; Hsu, S.; Chen, C.; Evans, R. L.

    2011-12-01

    Bottom simulating reflector (BSR), high methane flux, shallow sulfide/methane interface, fluid gushed from the seafloor, self-carbonate within sediment, methane reef, and self-biome are widely distributed in the offshore of the southwestern Taiwan. These geophysical and geochemistry signatures imply a high gas hydrate reservoir area. However, the upper bound of the gas hydrate and shallow section of the sediment are still unclear. This study shows the results of our first marine controlled-source electromagnetic survey in 2010 and provides the information of shallow sediment around the offshore of southwestern Taiwan. Three target areas were conducted: the southeast of Small Ryukyu Islands (seepage, G96), west of Yung-An Ridge (YAR) and northwest of Good Weather Ridge (GWR). In total, fourteen survey lines have been carried out, and the total survey length is about 72 km. Our preliminary result shows that the resistivity/porosity anomalies within pockmarks and seepages correspond to the features from the sub-bottom profilers. The range of porosity change is 4 % in G96 and YAR sites, while in the GWR site there is up to 8 % of porosity change and implies a high gas hydrate potential area.

  17. The Keelung Submarine volcanoes and gas plumes in the nearshore of northern Taiwan

    NASA Astrophysics Data System (ADS)

    Huang, J. C.; Tsia, C. H.; Hsu, S. K.; Lin, S. S.

    2016-12-01

    Taiwan is located in the collision zone between Philippine Sea Plate and Eurasian Plate. The Philippine Sea Plate subducts northward beneath the Ryukyu arc system while the Eurasian Plate subducts eastward beneath the Luzon arc system. The Taiwan mountain building started at 9 My ago and the most active collision has migrated to middle Taiwan. In consequence, the northern Taiwan has changed its stress pattern from forms a series of thrust faults to normal faults. The stress pattern change has probably induced the post-collisional extension and volcanism in and off northern Taiwan. Under such a tectonic environment, the volcanism and gas plumes are widespread in northern Taiwan and its offshore area. Among the volcanoes of the northern Taiwan volcanic zone, the Tatun Volcano Group is the most obvious one. In this study, we use sub-bottom profiler, EK500 echo sounder, and multibeam echo sounder to study the geophysical structure of a submarine volcano in the nearshore of northern Taiwan. We have analyzed the shallow structures and identified the locations of the gas plumes. The identification of the gas plumes can help us understand the nature of the submarine volcano. Our results show that the gas plumes appear near the Kanchiao Fault and Keelung islet. Some intrusive volcanoes can be observed in the subbottom profiler data. Finally, according to the observations, we found that the Keelung Submarine Volcano is still active. We need the monitor of the active Keelung Submarine Volcano to avoid the volcanic hazard. Additionally, we need to pay attention to the earthquakes related to the Keelung Submarine Volcano.

  18. Validation of automated supervised segmentation of multibeam backscatter data from the Chatham Rise, New Zealand

    NASA Astrophysics Data System (ADS)

    Hillman, Jess I. T.; Lamarche, Geoffroy; Pallentin, Arne; Pecher, Ingo A.; Gorman, Andrew R.; Schneider von Deimling, Jens

    2018-06-01

    Using automated supervised segmentation of multibeam backscatter data to delineate seafloor substrates is a relatively novel technique. Low-frequency multibeam echosounders (MBES), such as the 12-kHz EM120, present particular difficulties since the signal can penetrate several metres into the seafloor, depending on substrate type. We present a case study illustrating how a non-targeted dataset may be used to derive information from multibeam backscatter data regarding distribution of substrate types. The results allow us to assess limitations associated with low frequency MBES where sub-bottom layering is present, and test the accuracy of automated supervised segmentation performed using SonarScope® software. This is done through comparison of predicted and observed substrate from backscatter facies-derived classes and substrate data, reinforced using quantitative statistical analysis based on a confusion matrix. We use sediment samples, video transects and sub-bottom profiles acquired on the Chatham Rise, east of New Zealand. Inferences on the substrate types are made using the Generic Seafloor Acoustic Backscatter (GSAB) model, and the extents of the backscatter classes are delineated by automated supervised segmentation. Correlating substrate data to backscatter classes revealed that backscatter amplitude may correspond to lithologies up to 4 m below the seafloor. Our results emphasise several issues related to substrate characterisation using backscatter classification, primarily because the GSAB model does not only relate to grain size and roughness properties of substrate, but also accounts for other parameters that influence backscatter. Better understanding these limitations allows us to derive first-order interpretations of sediment properties from automated supervised segmentation.

  19. Preliminary results of the first scientific Drilling on Lake Baikal, Buguldeika site, southeastern Siberia

    USGS Publications Warehouse

    Williams, Douglas F.; Colman, S.; Grachev, M.; Hearn, P.; Horie, Shoji; Kawai, T.; Kuzmin, Mikhail I.; Logachov, N.; Antipin, V.; Bardardinov, A.; Bucharov, A.; Fialkov, V.; Gorigljad, A.; Tomilov, B.; Khakhaev, B.N.; Kochikov, S.; Logachev, N.; Pevzner, L.A.; Karabanov, E.B.; Mats, V.; Baranova, E.; Khlystov, O.; Khrachenko, E.; Shimaraeva, M.; Stolbova, E.; Efremova, S.; Gvozdkov, A.; Kravchinski, A.; Peck, J.; Fileva, T.; Kashik, S.; Khramtsova, T.; Kalashnikova, I.; Rasskazova, T.; Tatarnikova, V.; Yuretich, Richard; Mazilov, V.; Takemura, K.; Bobrov, V.; Gunicheva, T.; Haraguchi, H.; Ito, S.; Kocho, T.; Markova, M.; Pampura, V.; Proidakova, O.; Ishiwatari, R.; Sawatari, H.; Takeuchi, A.; Toyoda, K.; Vorobieva, S.; Ikeda, A.; Marui, A.; Nakamura, T.; Ogura, K.; Ohta, Takeshi; King, J.; Sakai, H.; Yokoyama, T.; Hayashida, A.; Bezrukova, E.; Fowell, S.; Fujii, N.; Letunova, P.; Misharina, V.; Miyoshi, N.; Chernyaeva, G.; Ignatova, I.; Likhoshvai, E.; Granina, L.; Levina, O.; Dolgikh, P.; Lazo, F.; Lutskaia, N.; Orem, W.; Wada, E.; Yamada, K.; Yamada, S.; Callander, E.; Golobokoval, L.; Shanks, W. C. Pat; Dorofeeva, R.; Duchkov, A.

    1997-01-01

    The Baikal Drilling Project (BDP) is a multinational effort to investigate the paleoclimatic history and tectonic evolution of the Baikal sedimentary basin during the Late Neogene. In March 1993 the Baikal drilling system was successfuly deployed from a barge frozen into position over a topographic high, termed the Buguldeika saddle, in the southern basin of Lake Baikal. The BDP-93 scientific team, made up of Russian, American and Japanese scientists, successfully recovered the first long (>100 m) hydraulic piston cores from two holes in 354 m of water. High quality cores of 98 m (Hole 1) and 102 m (Hole 2), representing sedimentation over the last 500,000 years, were collected in 78 mm diameter plastic liners with an average recovery of 72% and 90%, respectively. Magnetic susceptibility logging reveals an excellent hole-to-hole correlation. In this report the scientific team describes the preliminary analytical results from BDP-93 hole 1 cores. Radiocarbon dating by accelerator mass spectrometry provides an accurate chronology for the upper portion of Hole 1. Detailed lithologic characteristics, rock magnetic properties and inorganic element distributions show a significant change to the depositional environment occuring at 50 m subbottom depth, approximately 250,000 BP. This change may be due to uplift and rotation of the horst block in the Buguldeika saddle. The sedimentary section above 50 m is pelitic with varve-like laminae, whereas the section below 50 m contains a high proportion of sand and gravel horizons often organized into turbidite sequences. Accordingly, high resolution seismic records reveal a change in sonic velocity at this depth. It is inferred that sedimentation prior to 250 ka BP was from the west via the Buguldeika river system. After 250 ka BP the Buguldeika saddle reflects an increase in hemipelagic sediments admixed with fine-grained material from the Selenga River drainage basin, east of Lake Baikal. Variations in the spore-pollen assemblage, diatoms, biogenic silica content, rock magnetic properties, clay mineralogy and organic carbon in the upper 50 m of BDP-93-1 reveal a detailed record of climate change over approximately the last 250,000 years. These variables alternate in a pattern characteristic of glacial/interglacial climatic fluctuations. The present age model suggests that the climate signal recorded in Lake Baikal sediments is similar to Late Quaternary signals recorded in Chinese loess sections and in marine sediments.

  20. Glacimarine sedimentation in Petermann Fjord and Nares Strait, NW Greenland

    NASA Astrophysics Data System (ADS)

    Hogan, Kelly; Jakobsson, Martin; Mayer, Larry; Mix, Alan; Nielsen, Tove; Kamla, Elina; Reilly, Brendan; Heirman, Katrina An; Stranne, Christian; Mohammed, Rezwan; Eriksson, Bjorn; Jerram, Kevin

    2017-04-01

    Here we build on preliminary results from 6500 line-km of high-resolution chirp sub-bottom profiles (2-7 kHz) acquired in Petermann Fjord and Nares Strait during the Petermann 2015 Expedition of the Swedish icebreaker Oden. We map the unlithified sediment cover in Peterman Fjord, which consists of up to 3 conformable "drape" units and calculate volumes of this assumed "post-glacial" fill. In Nares Strait we have mapped sediment volumes in local basins just beyond the sill at the Petermann Fjord-mouth: do these sediments represent material flushed out from the grounding zone of Petermann Glacier when it was grounded at the sill? In this vein, and interestingly, some of the thickest sediments that we observe are found close to a grounding-zone wedge (GZW) in Nares Strait that represents a former grounding zone of ice retreating southwards through the strait. We also map conformable units across Nares Strait and consider the similarities between these and the sediment units in the fjord. Do the strong reflections between the units represent the same climatic, oceanographic or process-shift both inside and outside the fjord? We also aim to tie our new acoustic stratigraphy to sediment-core data (lithofacies, dates) and, therefore, to comment on the age of the mapped sediment units and present ideas on the glacimarine flux of material to the Petermann-Nares system. Primary sediment delivery to the seafloor in this environment is thought to be predominantly through sedimentation from meltwater plumes but also of iceberg-rafted debris (IRD). However, sediment redeposition by slope failures on a variety of scales also occurs and has focussed sediments into discrete basins where the seafloor is rugged. This work - which aims to relate past sediment, meltwater and iceberg fluxes to changes in climate - will help us to identify how the system has responded to a past global warming event, namely the last deglaciation. This is particularly relevant in light of the recent thinning and acceleration of NW Greenland's marine-terminating outlet glaciers.

  1. Gas hydrate exploration of Porangahau Ridge, East Coast, North Island, New Zealand

    NASA Astrophysics Data System (ADS)

    Pecher, I. A.; Henrys, S. A.; Crutchley, G.; Toulmin, S.; Gorman, A. R.; Wood, W. T.; Kukowski, N.; Greinert, J.; Faure, K.; Coffin, R. B.

    2007-12-01

    During June and July 2006 the R/V Tangaroa collected high-resolution seismic profiles, EM 300 swath bathymetry, 3.5 sub-bottom, as well as water column echosounder data across Porangahau Ridge east of the North Island. Piston cores were recovered for pore water chemistry, microbiology, and paleoceanographic analyses. We also acquired heatflow data, CTDs, and seawater samples for water-column chemistry. The seismic data show amplitude anomalies beneath the ridge. The anomalies develop along a prominent N-S fault-propagation anticline. We analyzed reflection coefficients and conclude that the anomalies are most likely caused by free gas within the regional gas hydrate stability field as defined by the depth of bottom simulating reflections. We suggest that local warming associated with fluid expulsion through faults keeps the temperature at the anomalies outside of the gas hydrate stability field. Based on the seismic amplitudes, we predict at least ~7% of the pore space to be saturated with gas if gas is evenly distributed. Gas saturation is predicted to be almost 70% for "patchy'' gas distribution. For the pressure-temperature conditions beneath the ridge, gas at a saturation of 7% would form gas hydrate at a saturation of ~10% of pore space. Should the localized heat flow anomaly weaken, e.g., because of sealing of the faults, the ridge could become an area with significant hydrate deposits. We speculate that the Porangahau Ridge constitutes a gas hydrate "sweet spot" in the process of formation. Pore water chemistry shows a shoaling of the base of the sulfate reduction zone across this feature, indicative of elevated methane flux through the hydrate stability field. There is a distinct thermal anomaly across the Porangahau Ridge, albeit with a complex signature. On the other hand, there are no indications of methane expulsion into the water column, neither in the echosounder records nor in the water chemistry profiles from CTDs.

  2. The Palos Verdes Fault offshore southern California: late Pleistocene to present tectonic geomorphology, seascape evolution and slip rate estimate based on AUV and ROV surveys

    USGS Publications Warehouse

    Brothers, Daniel S.; Conrad, James E.; Maier, Katherine L.; Paull, Charles K.; McGann, Mary L.; Caress, David W.

    2015-01-01

    The Palos Verdes Fault (PVF) is one of few active faults in Southern California that crosses the shoreline and can be studied using both terrestrial and subaqueous methodologies. To characterize the near-seafloor fault morphology, tectonic influences on continental slope sedimentary processes and late Pleistocene to present slip rate, a grid of high-resolution multibeam bathymetric data, and chirp subbottom profiles were acquired with an autonomous underwater vehicle (AUV) along the main trace of PVF in water depths between 250 and 600 m. Radiocarbon dates were obtained from vibracores collected using a remotely operated vehicle (ROV) and ship-based gravity cores. The PVF is expressed as a well-defined seafloor lineation marked by subtle along-strike bends. Right-stepping transtensional bends exert first-order control on sediment flow dynamics and the spatial distribution of Holocene depocenters; deformed strata within a small pull-apart basin record punctuated growth faulting associated with at least three Holocene surface ruptures. An upper (shallower) landslide scarp, a buried sedimentary mound, and a deeper scarp have been right-laterally offset across the PVF by 55 ± 5, 52 ± 4 , and 39 ± 8 m, respectively. The ages of the upper scarp and buried mound are approximately 31 ka; the age of the deeper scarp is bracketed to 17–24 ka. These three piercing points bracket the late Pleistocene to present slip rate to 1.3–2.8 mm/yr and provide a best estimate of 1.6–1.9 mm/yr. The deformation observed along the PVF is characteristic of strike-slip faulting and accounts for 20–30% of the total right-lateral slip budget accommodated offshore Southern California.

  3. Hands-on Marine Geology and Geophysics Field Instruction at the University of Texas

    NASA Astrophysics Data System (ADS)

    Saustrup, S.; Gulick, S. P. S.; Goff, J. A.; Fernandez, R.; Davis, M. B.; Duncan, D.

    2015-12-01

    The University of Texas Institute for Geophysics, part of the Jackson School of Geosciences, annually offers an intensive three-week marine geology and geophysics field course during the spring-summer intersession. Now in its ninth year, the course provides instruction in survey design, data acquisition, processing, interpretation, and visualization. Methods covered include seismic reflection, multibeam bathymetry, sidescan sonar, and sediment sampling. The emphasis of the course is team-oriented, hands-on, field training in real-world situations. The course begins with classroom instruction covering the field area and field methods, followed by a week of at-sea field work in 4-student teams. The students then return to the classroom where they integrate, interpret, and visualize data using industry-standard software. The teams present results in a series of professional-level final presentations before academic and industry supporters. Our rotating field areas provide ideal locations for students to investigate coastal and sedimentary processes of the Gulf Coast and continental shelf . In the field, student teams rotate between two research vessels: the smaller vessel, the Jackson School's newly-commissioned R/V Scott Petty (26 feet LOA), is used principally for multibeam bathymetry, sidescan sonar, and sediment sampling; the other, NOAA's R/V Manta (82 feet LOA) is used for high-resolution seismic reflection, CHIRP sub-bottom profiling, multibeam bathymetry, gravity coring, and vibracoring. Teams also rotate through a field laboratory performing processing of geophysical data and sediment samples. This past year's course in Freeport, Texas proceeded unabated despite concurrent record-breaking rainfall and flooding, which offered students a unique opportunity to observe and image, in real time, flood-related bedform migration on a time scale of hours. The data also allowed an in-class opportunity to examine natural and anthropogenic processes recorded in the river and coastal morphology and stratigraphy. http://www.ig.utexas.edu/research/mgg/courses/geof348K/

  4. Coastal bathymetry and backscatter data collected in 2012 from the Chandeleur Islands, Louisiana

    USGS Publications Warehouse

    DeWitt, Nancy T.; Bernier, Julie C.; Pfeiffer, William R.; Miselis, Jennifer L.; Reynolds, B.J.; Wiese, Dana S.; Kelso, Kyle W.

    2014-01-01

    As part of the Barrier Island Evolution Research Project, scientists from the U.S. Geological Survey St. Petersburg Coastal and Marine Science Center conducted nearshore geophysical surveys off the northern Chandeleur Islands, Louisiana, in July and August of 2012. The objective of the study is to better understand barrier island geomorphic evolution, particularly storm-related depositional and erosional processes that shape the islands over annual to interannual timescales (1-5 years). Collecting geophysical data will allow us to identify relationships between the geologic history of the island and its present day morphology and sediment distribution. This mapping effort was the second in a series of three planned surveys in this area. High resolution geophysical data collected in each of 3 consecutive years along this rapidly changing barrier island system will provide a unique time-series dataset that will significantly further the analyses and geomorphological interpretations of this and other coastal systems, improving our understanding of coastal response and evolution over short time scales (1-5 years). This Data Series report includes the geophysical data that were collected during two cruises (USGS Field Activity Numbers 12BIM03 and 12BIM04) aboard the RV Survey Cat and the RV Twin Vee along the northern portion of the Chandeleur Islands, Breton National Wildlife Refuge, Louisiana. Data were acquired with the following equipment: a Systems Engineering and Assessment, Ltd., SWATHplus interferometric sonar (468 kilohertz (kHz)), an EdgeTech 424 (4-24 kHz) chirp sub-bottom profiling system, and a Knudsen 320BP (210 kHz) echosounder. This report serves as an archive of processed interferometric swath and single-beam bathymetry data. Geographic information system data products include an interpolated digital elevation model, an acoustic backscatter mosaic, trackline maps, and point data files. Additional files include error analysis maps, Field Activity Collection System logs, and formal Federal Geographic Data Committee metadata. NOTE: These data are scientific in nature and are not to be used for navigation.

  5. Submarine landslide: A case study from the southwestern of Taiwan offshore

    NASA Astrophysics Data System (ADS)

    Hung, Y. H.; Dong, J. J.

    2016-12-01

    Based on the new multibeam bathymetric data and seismic reflection profiles of the southwestern Taiwan, more and more submarine landslides developed there have been being discovered nowadays. Palm Ridge, located between the boundary of the active and passive margins, is the place where a deformation front passes through. And previous studies suspected that there were old submarine landslides developed here. To learn whether there are old submarine landslides here, a further study is conducted with the collection and analysis of new high-resolution swath-bathymetry and seismic data. Firstly, based on the swath-bathymetry, the topography range of the landslide is mapped and interpreted with the three dimensional model. Then, according to the profile of the mapping, the extending of the sliding surface is predicted. And referred on the properties of soil in adjacent region, the engineering geologic models of the landslide before and after failure are proposed. Thirdly, through a detailed analysis of the seismic data of Taiwan in the past three decades, a magnitude of 7.7 MW is selected as the lower bound of earthquake for the analysis of the trigger of the submarine landslide. And based on the record of earthquakes with 8 MW in the world, some other earthquake magnitudes are also considered in this study. After applying them into STABL 5M, the failure process of the landslide is modeled with its possible deposited ranges being reached. Finally, the sub-bottom and seismic data are used to verify the rationality of the above results. Preliminary result shows that there were at least three landslides occurred in Palm Ridge. The first landslide is largest which covers the approximate range of the study area. The second one is developed in the margin area of the first one, which is resulted by the occurrence of the first one. The third event is caused by the further collapse of the first one due to the loose of its inner structure.

  6. Sediment data collected in 2014 and 2015 from around Breton and Gosier Islands, Breton National Wildlife Refuge, Louisiana

    USGS Publications Warehouse

    Bernier, Julie C.; Kelso, Kyle W.; Tuten, Thomas M.; Stalk, Chelsea A.; Flocks, James G.

    2017-03-08

    Breton Island, located at the southern end of the Chandeleur Islands, supports one of Louisiana’s largest historical brown pelican (Pelecanus occidentalis) nesting colonies. Although the brown pelican was delisted as an endangered species in 2009, nesting areas are threatened by continued land loss and are extremely vulnerable to storm impacts. The U.S. Fish and Wildlife Service proposed to restore Breton Island to pre-Hurricane Katrina conditions through rebuilding the shoreface, dune, and back-barrier marsh environments. Prior to restoration, scientists from the U.S. Geological Survey’s (USGS) St. Petersburg Coastal and Marine Science Center Geologic and Morphologic Evolution of Coastal Margins project collected high-resolution geophysical (topography, bathymetry, and sub-bottom profiles) and sedimentologic data from around Breton Island to characterize the geologic framework of the island platform, nearshore, and shelf environments. These data will be used to characterize the geologic framework around Breton Island, identify potential borrow areas for restoration efforts, quantify seafloor change, and provide information for sediment transport and morphologic change models to assess island response to restoration and natural processes.This report, along with the accompanying USGS data release, serves as an archive of sediment data from vibracores, push cores, and submerged grab samples collected from around Breton and Gosier Islands, Louisiana, during two surveys conducted in July 2014 and January 2015 (USGS Field Activity Numbers 2014–314–FA and 2014–336–FA, respectively). Sedimentologic and stratigraphic metrics (for example, sediment texture or unit thicknesses) derived from these data can be used to ground-truth the geophysical data and characterize potential sand resources or can be incorporated into sediment transport or morphologic change models. Data products, including sample location tables, descriptive core logs, core photographs and x-radiographs, results of sediment grain-size analyses, and geographic information system data files with accompanying formal Federal Geographic Data Committee metadata can be downloaded from the accompanying data release.

  7. Structural Imaging around the SMS Deposit by the Multi-Source ZVCS Survey Method in the Izena Hole, Mid-Okinawa Trough

    NASA Astrophysics Data System (ADS)

    Tara, K.; Asakawa, E.; Murakami, F.; Tsukahara, H.; Saito, S.; Lee, S.; Katou, M.; Jamali Hondori, E.; Sumi, T.; Kadoshima, K.; Kose, M.

    2017-12-01

    Seafloor Massive Sulfide (SMS) deposits typically show rugged topography such as abundant chimney structures and sulfide mounds. However, buried SMS deposits are not well studied because of few efficient methods to detect and characterize them. Therefore, we proposed a Zero-offset Vertical Cable Seismic (ZVCS) survey using a Sparker and a Remotely Operated Vehicle (ROV) which was equipped with autonomous hydrophone arrays and a sub-bottom profiler (SBP). Zero-offset shooting and near-bottom recording can acquire high resolution acoustic data that could separate the reflection and scattered wave by vertically towed hydrophone arrays. We conducted the multi-source ZVCS survey in the Hakurei site, where the existence of the exposed and the buried SMS deposits has been reported, in Izena Hole, the Mid-Okinawa Trough, during the exploration cruise JM16-04. We obtained the two source's cross-sections of the buried SMS that enabled us to identify the area from the viewpoint of seismic facies. Buried SMS area is characterized by wavy to subparallel internal configuration and semi-continuously reflections. These features suggest that results from collapse of original sedimentary structure and hydrothermal alteration. Previous our exploration of the entire Izena Hole by the Autonomous Cable Seismic (ACS) were conducted in the JM16-02. Comparison between the ZVCS and ACS results gave us not only structural features in the surrounding area of SMS, but also the hydrothermal system of the Izena Hole. These results suggest that the hydrothermal circulation in the Izena Hole is vertically limited to the fracture zone caused by the depression and the buried SMS occurs in a sedimentary layer in the fracture zone. We conclude that ZVCS and ACS imaging of the shallow sub-seafloor structures will be useful for discussion about the geological background of SMS deposits.

  8. Revisiting the Cretaceous Normal Superchron in the SW Indian Ocean

    NASA Astrophysics Data System (ADS)

    Dyment, J.; Gallet, Y.; Granot, R.; Seama, N.; Poitou, C.; Okino, K.; Sato, T.; Choe, H.; Pasenko, A.; Phua, M.; Roth, S.; Zhang, T.; Hemond, C.; Blanc, M.; Kraus, E.; Makuzeni, M.; Raifman, G.; Razafimamonjy, V. S.; Schatz, A.; Resseguier, F.

    2017-12-01

    The Cretaceous Normal Superchron (CNS) is a 40 Myr-long period of constant normal geomagnetic polarity during which no geomagnetic reversal has been convincingly observed so far. It extended from Chron M0 ( 120 Ma) to Chron 34 (83 Ma). In a previous study we showed that significant differences in the variability of the geomagnetic dipole moment exist within the CNS, with long wavelength, low amplitude variations in its first third, short wavelength, high amplitude variations within the median third, and long wavelength, very low amplitude variations in the last third (Granot et al., Nature Geoscience, 2012). We also demonstrated the existence of markers that can be identified within the CNS and allow intermediate plate reconstructions between Chrons M0 and 34 (Granot & Dyment, EPSL, 2015). Our inspection of a global set of marine magnetic profiles suggested that the Mozambique Basin and its conjugate off Antarctica may host the best records of the CNS We therefore carried out project Magofond 4, a two leg-expedition (January-March 2017) in this area to better constrain (1) the variability in magnetic dipole moment, the possible occurrence of short reversed polarity intervals, and more generally the evolution of the geodynamo during, immediately before and after the CNS, and (2) the presence of markers allowing detailed reconstructions of the Antarctic and African plates within the CNS. During Leg 1 onboard R/V Pourquoi pas?, we acquired a long deep tow, high-resolution magnetic profile across the median part of the CNS, a shorter profile across Chron 33r, and three sea-surface magnetic profiles across the CNS in the Mozambique Basin. During Leg 2 onboard R/V Marion Dufresne, we acquired four sea-surface magnetic profiles across the CNS in the Riiser-Larsen Sea. A sea-surface vector magnetometer and two scalar magnetometers (gradiometer) were used during half of Leg 2. During both legs we collected (almost) continuously shipboard three-component magnetics, multibeam bathymetry and imagery, sub-bottom profiler data, and gravity. Best use was made of the transits to acquire valuable data across the SWIR. We will present the cruise, the data, and some initial results.

  9. Morphology and shallow structure of seafloor mounds in the Canary Basin (Eastern Central Atlantic Ocean)

    NASA Astrophysics Data System (ADS)

    Sanchez-Guillamón, O.; Vázquez, J. T.; Palomino, D.; Medialdea, T.; Fernández-Salas, L. M.; León, R.; Somoza, L.

    2018-07-01

    The increasing volume of high-resolution multibeam bathymetry data collected along continental margins and adjacent deep seafloor regions is providing further opportunities to study new morphological seafloor features in deep water environments. In this paper, seafloor mounds have been imaged in detail with multibeam echosounders and parametric sub-bottom profilers in the deep central area of the Canary Basin ( 350-550 km west off El Hierro Island) between 4800 and 5200 mbsl. These features have circular to elongated shapes with heights of 10 to 250 m, diameters of 2-24 km and with flank slopes of 2-50°. Based on their morphological features and the subsurface structures these mounds have been classified into five different types of mounds that follow a linear correlation between height and slope but not between height and size. The first, second (Subgroup A), and third mound-types show heights lower than 80 m and maximum slopes of 35° with extension ranging from 2 to 400 km2 and correspond to domes formed at the surface created by intrusions located at depth that have not outcropped yet. The second (Subgroup B), fourth, and fifth mound-types show higher heights up to 250 m high, maximum slopes of 47° and sizes between 10 and 20 km2 and are related to the expulsion of hot and hydrothermal fluids and/or volcanics from extrusive deep-seated systems. Based on the constraints on their morphological and structural analyses, we suggest that morphostructural types of mounds are intimately linked to a specific origin that leaves its footprint in the morphology of the mounds. We propose a growth model for the five morphostructural types of mounds where different intrusive and extrusive phenomena represent the dominant mechanisms for mound growth evolution. These structures are also affected by tectonics (bulge-like structures clearly deformed by faulting) and mass movements (slide scars and mass transport deposits). In this work, we report how intrusive and extrusive processes may affect the seafloor morphology, identifying a new type of geomorphological feature as 'intrusive' domes that have, to date, only been reported in fossil environments but might extend to other oceanic areas.

  10. Submarine sand ridges and sand waves in the eastern part of the China Sea

    NASA Astrophysics Data System (ADS)

    Wu, Ziyin; Li, Shoujun; Shang, Jihong; Zhou, Jieqiong; Zhao, Dineng; Liang, Yuyang

    2016-04-01

    Integrated with multi-beam and single-beam echo sounding data, as well as historical bathymetric data, submarine bathymetric maps of the eastern part of the China Sea, including the Bohai Sea, Huanghai Sea, and East China Sea, are constructed to systematically study submarine sand ridges and sand waves in the eastern part of the China Sea, combined with high-resolution seismic, sub-bottom profile and borehole data. Submarine sand ridges are extraordinarily developed in the eastern part of the China Sea, and 7 sand ridge areas can be divided from north to south, that is, the Laotieshan Channel sand ridge area in the Bohai Sea, the Korea Bay sand ridge area in the southern Huanghai Sea, the sand ridge area in the eastern Huanghai islands and the Huanghai Troughs, the Jianggang sand ridge area in the western Huanghai Sea, the sand ridge area in the East China Sea shelf, and the sand ridge and sand wave area in the Taiwan Strait and Taiwan Banks. The distribution area of the sand ridges and sand waves covers more than 450,000 km2, wherein ~10,000 km2 in the Bohai Bay, ~200,000 km2 in the Huanghai Sea, ~200,000 km2 in the East China Sea shelf, and ~40,000 km2 in the Taiwan Strait and Taiwan Banks, respectively. The great mass of sand ridges are distributed within water depth of 5-160 m, with a total length of over 160 km and a main width of 5-10 km. The inner structure of the sand ridges presents features of high-angle inclined beddings, with main lithology of sands, sand-mud alternations partly visible, and a small number of mud cores. Dating results indicate that the sand ridges in the eastern part of the China Sea are mainly developed in the Holocene. Sea-level variation dominates the sand ridge evolution in the eastern part of the China Sea since the LGM, and the sand ridges developed in the area of < 60m water depth are appeared in bad activity, meanwhile sand ridges with good activity are still developed in large scale.

  11. Archive of digital boomer subbottom data collected during USGS cruise 05FGS01 offshore east-central Florida, July 17-29, 2005

    USGS Publications Warehouse

    Forde, Arnell S.; Dadisman, Shawn V.; Wiese, Dana S.; Phelps, Daniel C.

    2012-01-01

    In July of 2005, the U.S. Geological Survey (USGS), in cooperation with the Florida Geological Survey (FGS), conducted a geophysical survey of the Atlantic Ocean offshore of Florida's east coast from Flagler Beach to Daytona Beach. This report serves as an archive of unprocessed digital boomer subbottom data, trackline maps, navigation files, Geographic Information System (GIS) files, Field Activity Collection System (FACS) logs and formal Federal Geographic Data Committee (FGDC) metadata. Filtered and gained (showing a relative increase in signal amplitude) digital images of the seismic profiles are also provided. Refer to the Acronyms page for expansions of acronyms and abbreviations used in this report. The USGS Saint Petersburg Coastal and Marine Science Center (SPCMSC) assigns a unique identifier to each cruise or field activity. For example, 05FGS01 tells us the data were collected in 2005 for cooperative work with the FGS and the data were collected during the first field activity for that project in that calendar year. Refer to http://walrus.wr.usgs.gov/infobank/programs/html/definition/activity.html for a detailed description of the method used to assign the field activity ID. The boomer subbottom processing system consists of an acoustic energy source that is made up of capacitors charged to a high voltage and discharged through a transducer in the water. The transducer is towed on a sled floating on the water surface and when discharged emits a short acoustic pulse, or shot, which propagates through the water column and shallow stratrigraphy below. The acoustic energy is reflected at density boundaries (such as the seafloor or sediment layers beneath the seafloor), detected by the receiver (a hydrophone streamer), and recorded by a PC-based seismic acquisition system. This process is repeated at timed intervals (for example, 0.5 s) and recorded for specific intervals of time (for example, 100 ms). In this way, a two-dimensional (2-D) vertical image of the shallow geologic structure beneath the ship track is produced. Figure 1 displays the acquisition geometry. Refer to table 1 for a summary of acquisition parameters and table 2 for trackline statistics. The archived trace data are in standard Society of Exploration Geophysicists (SEG) SEG Y format (Barry and others, 1975), except an ASCII format is used for the first 3,200 bytes of the card image header instead of the standard EBCDIC format. For a detailed description about the recorded trace headers, refer to the SEG Y Format page. The SEG Y files may be downloaded and processed with commercial or public domain software such as Seismic Unix (Cohen and Stockwell, 2005). See the How To Download SEG Y Data page for download instructions. The printable profiles provided here are GIF images that were processed and gained using SU software; refer to the Software page for links to example SU processing scripts. The processed SEG Y data were also exported to Chesapeake Technology, Inc. (CTI) SonarWeb software to produce a geospatially interactive version of the profile that allows the user to obtain a geographic location and depth from the profile for a given cursor position; this information is displayed in the status bar of the browser. Please note that clicking on the profile image switches it to "Expanded View" (a compressed image of the entire line) and cursor tracking is not available in this mode.

  12. Application of parasound data for sediment study on methane seep site at Simeulue basin

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wiguna, Taufan, E-mail: taufan.wiguna@bppt.go.id; Ardhyastuti, Sri

    2015-09-30

    The Parasound data presents sea depth and sub-bottom profiler. In terms of geological terminology, parasound data represents significant recent surface sedimentary structures that valuable for the selection of subsequent sampling site such as sampling at methane seep site. Therefore, Parasound is used to detailing methane seep at surface sediment following seismic data interpretation. In this study, parasound is used to focus observe area especially for sediment study on methane seep site. The Parasound systems works both as narrow beam sounder use high frequency and as sediment echosounder use low frequency. Parasound acquisition applies parametric effect. It produces additional frequency bymore » nonlinear acoustic interaction of finite amplitude waves. Parasound transducers have 128 elements on 1 m2 and need transmission power up to 70 kW. The results of this study are discovered large seep carbonate with porous surface which means there are gas expulsions passing through that rock.« less

  13. New oil and gas province of Russia

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gramberg, I.S.; Shcola, A.I.

    1994-12-31

    Geological and geophysical researches and exploration works conducted in the Russian Arctic offshore during the last two decades indicate the presence of extensive sedimentary basins. The data coverage in this vast continental margin is uneven, and the reliability of hydrocarbon prediction varies significantly from one basin to the next. Nevertheless, the existence of a major frontier Barents-Northern Kara Oil and Gas Province (BNKP) is quite evident. The BNKP encompasses the Barents Sea and the Northern Kara Sea subbottom, the islands along the shelf edge, the Kola Peninsula shelf, the Arkhangelsk coastal territory, and a large part of the northernmost Komimore » Republic. The total area of BNKP is close to 1,500,000 sq. km, and the sediments in the deepest depocenter (South Barents Basin) reach 16--18 km. Vast areal extent, great thickness of sedimentary cover, favorable conditions for oil and gas generation and accumulation, presence of oil and gas fields in all major sequences suggest a very high hydrocarbon potential for the BNKP.« less

  14. Two-stage opening of the Dover Strait and the origin of island Britain

    PubMed Central

    Gupta, Sanjeev; Collier, Jenny S.; Garcia-Moreno, David; Oggioni, Francesca; Trentesaux, Alain; Vanneste, Kris; De Batist, Marc; Camelbeeck, Thierry; Potter, Graeme; Van Vliet-Lanoë, Brigitte; Arthur, John C. R.

    2017-01-01

    Late Quaternary separation of Britain from mainland Europe is considered to be a consequence of spillover of a large proglacial lake in the Southern North Sea basin. Lake spillover is inferred to have caused breaching of a rock ridge at the Dover Strait, although this hypothesis remains untested. Here we show that opening of the Strait involved at least two major episodes of erosion. Sub-bottom records reveal a remarkable set of sediment-infilled depressions that are deeply incised into bedrock that we interpret as giant plunge pools. These support a model of initial erosion of the Dover Strait by lake overspill, plunge pool erosion by waterfalls and subsequent dam breaching. Cross-cutting of these landforms by a prominent bedrock-eroded valley that is characterized by features associated with catastrophic flooding indicates final breaching of the Strait by high-magnitude flows. These events set-up conditions for island Britain during sea-level highstands and caused large-scale re-routing of NW European drainage. PMID:28375202

  15. Two-stage opening of the Dover Strait and the origin of island Britain

    NASA Astrophysics Data System (ADS)

    Gupta, Sanjeev; Collier, Jenny S.; Garcia-Moreno, David; Oggioni, Francesca; Trentesaux, Alain; Vanneste, Kris; de Batist, Marc; Camelbeeck, Thierry; Potter, Graeme; van Vliet-Lanoë, Brigitte; Arthur, John C. R.

    2017-04-01

    Late Quaternary separation of Britain from mainland Europe is considered to be a consequence of spillover of a large proglacial lake in the Southern North Sea basin. Lake spillover is inferred to have caused breaching of a rock ridge at the Dover Strait, although this hypothesis remains untested. Here we show that opening of the Strait involved at least two major episodes of erosion. Sub-bottom records reveal a remarkable set of sediment-infilled depressions that are deeply incised into bedrock that we interpret as giant plunge pools. These support a model of initial erosion of the Dover Strait by lake overspill, plunge pool erosion by waterfalls and subsequent dam breaching. Cross-cutting of these landforms by a prominent bedrock-eroded valley that is characterized by features associated with catastrophic flooding indicates final breaching of the Strait by high-magnitude flows. These events set-up conditions for island Britain during sea-level highstands and caused large-scale re-routing of NW European drainage.

  16. Gas hydrates from the continental slope, offshore Sakhalin Island, Okhotsk Sea

    USGS Publications Warehouse

    Ginsburg, G.D.; Soloviev, V.A.; Cranston, R.E.; Lorenson, T.D.; Kvenvolden, K.A.

    1993-01-01

    Ten gas-vent fields were discovered in the Okhotsk Sea on the northeast continental slope offshore from Sakhalin Island in water depths of 620-1040 m. At one vent field, estimated to be more than 250 m across, gas hydrates, containing mainly microbial methane (??13C = -64.3???), were recovered from subbottom depths of 0.3-1.2 m. The sediment, having lenses and bedded layers of gas hydrate, contained 30-40% hydrate per volume of wet sediment. Although gas hydrates were not recovered at other fields, geochemical and thermal measurements suggest that gas hydrates are present. ?? 1993 Springer-Verlag.

  17. K1-95-HW, cruise report 1995: preliminary results. Phase III: sediment chemistry and biological sampling survey

    USGS Publications Warehouse

    Torresan, M.E.; Hampton, M.A.; Barber, J.H.; Wong, F.L.

    1995-01-01

    Mamala Bay, off the south shore of the island of Oahu, has been used as a repository of dredged material primarily from Pearl and Honolulu Harbors for over a century. The U.S. Geological Survey, U.S. Army Corps of Engineers, and the U.S. Environmental Protection Agency are conducting an integrated study on the distribution and character of dredged materials as well as the effects of dredged material on the marine environment. A three phase study is providing information to evaluate the effects on seafloor substrate and the benthic fauna. The studies include geophysical profiling and imaging, bottom photography, sampling, chemical and physical analyses of sediment, and evaluations of the benthic population, population density, and adverse impacts to the benthic fauna. Phase 1, conducted in 1993, inventoried the seafloor via remote sensing. Sidescan sonar and subbottom profilers characterized the seafloor in and around the disposal sites, and the resulting products reveal the character and extent of the dredged material. These data were used to plan Phase 2 in 1994, a sampling program that employed subbottom profilers, video and still photography, and seafloor sampling to ground truth the sonar mosaic and identify the seafloor substrates responsible for the various acoustic signatures on the sonar images and subbottom profiles. Box coring provided the samples necessary to distinguish dredged material from native sediment, and for the chemical analyses used to determine contaminant concentrations. Phase 3 studies conducted in June of 1995 consisted of box core sampling for chemical and biological analyses. Specific studies include: infaunal taxonomy and population density, bioassay/bioaccumulation, sediment chemistry, and post-disposal resuspension and transport. The 1995 survey, conducted June 14 through 17, resulted in the collection of 39 box cores from 20 different stations. Multiple box cores were composited at 7 different locations occupied in 1994, to provide the material required for the 7 bioassay and bioaccumulation analyses currently underway (Figure 1). Seventeen of the 20 stations occupied provided the biological samples for the benthic infaunal identification and population density study conducted by Dr. Julie Brock of the University of Hawaii, and the sediment chemistry analyses conducted (and completed) by Quanterra Environmental Laboratories (Figure 1). Seven of the 20 stations occupied in 1995 were occupied in 1994, and provide the data for direct comparison of sediment chemistry at the same sites from two consecutive years. The sum total of the data collected from all three phases of the monitoring program will provide the U.S. Army Corps of Engineers and the U.S. Environmental Protection Agency with the information required to make informed decisions as to the management of the South Oahu disposal site in Mamala Bay.

  18. Gas hydrates (clathrates) causing pore-water freshening and oxygen isotope fractionation in deep-water sedimentary sections of terrigenous continental margins

    USGS Publications Warehouse

    Hesse, R.; Harrison, W.E.

    1981-01-01

    The occurrence of gas hydrates in deep-water sections of the continental margins predicted from anomalous acoustic reflectors on seismic profiles has been confirmed by recent deep-sea drilling results. On the Pacific continental slope off Guatemala gas hydrates were brought up for the first time from two holes (497, 498A) drilled during Leg 67 of the DSDP in water depths of 2360 and 5500 m, respectively. The hydrates occur in organic matter-rich Pleistocene to Miocene terrigenous sediments. In the hydrate-bearing zone a marked decrease in interstitial water chlorinities was observed starting at about 10-20 m subbottom depth. Pore waters at the bottom of the holes (near 400 m subbottom) have as little as half the chlorinity of seawater (i.e. 9???). Similar, but less pronounced, trends were observed during previous legs of the DSDP in other hydrate-prone segments of the continental margins where recharge of fresh water from the continent can be excluded (e.g. Leg 11). The crystallization of hydrates, like ice, excludes salt ions from the crystal structure. During burial the dissolved salts are separated from the solids. Subsidence results in a downward motion of the solids (including hydrates) relative to the pore fluids. Thawing of hydrates during recovery releases fresh water which is remixed with the pore fluid not involved in hydrate formation. The volume of the latter decreases downhole thus causing downward decreasing salinity (chlorinity). Hydrate formation is responsible for oxygen isotope fractionation with 18O-enrichment in the hydrate explaining increasingly more positive ??18O values in the pore fluids recovered (after hydrate dissociation) with depth. ?? 1981.

  19. Preliminary Results from Acoustic Survey Offshore Kefken, Southwestern Black Sea Margin

    NASA Astrophysics Data System (ADS)

    Dondurur, Derman; Karaca, Onur; Nasıf, Aslıhan

    2017-04-01

    In March 2016, different marine acoustic datasets were collected aboard of R/V K. Piri Reis research vessel of Dokuz Eylül University within the scope of Turkish Research Council (Tübitak) Project (115Y218) to reveal submarine morphology and seismo-acoustical structure of the continental shelf and upper slope of Şile-Kefken region in the southwest of the Black Sea. A total of 1564 km high resolution seismic, multibeam bathymetry and Chirp sub-bottom profiler data were collected. Seismic data was collected using a 1500 m long digital streamer with 240 active channels. Group and shot intervals were 6.25 m and 25 m, respectively. Collected data were analyzed by means of (i) stratigraphic and (ii) structural components, and (iii) the structure of upper slope and shelf break. The stratigraphic elements in the region indicate the existence of Eocene and younger units. A distinctive acoustical basement in the seismic data observed throughout the shelf which is interpreted as uplifted Cretaceous basement of the Black Sea, that is Akveren or Yemişliçay Formation. The basement also outcrops around the Kefken Island. Chirp data is used to map the shallow stratigraphy of the shelf including the Holocene sediment distribution which exists on a very restricted area on the shelf. To the east, there is a large outcrop zone offshore Kefken where no Holocene sediments are observed. Initial evaluation of the collected data indicates that there is no present day delta formation in the area due to a few weak streams observed in the study area. The penetration of Chirp data in the western and the southern parts of the shelf area is very limited while it increases towards to upper continental slope to the North, and east of Kefken Cape. The acoustic data suggests that the study area is under the influence of the Pontide overthrust. Possible existence of reverse faults of Pontide overthrust is evident on the seismic data from southwestern shelf. In addition to the reverse faults to the SW, the whole shelf is highly affected by a northwards trending strike slip fault system with a significant vertical slip. Canyon heads and shelf break is deformed by numerous near vertical normal faults. Multibeam bathymetric data indicate that the upper slope is formed by highly steep canyon heads with several small scale gullies connecting to the thalweg at low angles.

  20. New method for the detection and monitoring of subsea power cable

    NASA Astrophysics Data System (ADS)

    Held, Philipp; Schneider, Jens; Feldens, Peter; Wilken, Dennis

    2016-04-01

    Marine renewable energy farms, no matter what kind of, have in common that they need a connection with the onshore power grid. Thus, not only their offshore generation facilities could have impacts on the surrounding environment, but also associated submarine power cables. These cables have to be buried in the seabed - at least in coastal heavy shipping environments - for safety reasons. Cable laying disturbs the local seafloor and the sub-bottom. Refillment of dredged sediments are expected softer than the original material and could be washed away by currents. Therefore, buried cables have to be repeatedly monitored to ensure their burial depth. This study presents a new method for efficient cable detection. A parametric echosounder system using 15 kHz as secondary frequency was adapted to investigate the angular response of sub-bottom backscatter strength of layered mud and to introduce a new method for enhanced acoustic detection of buried targets. Adaptations to achieve both vertical (0°) and non-vertical inclination of incident sound on the seabed (1-15°, 30°, 45°, and 60°) comprise mechanical tilting of the acoustic transducer and electronic beam steering. A sample data set was acquired at a study site at 18 m water depth and a flat and muddy seafloor. At this site, a 0.1 m diameter power cable is buried 1-2 m below the sea floor. Surveying the cable with vertical incidence revealed that the buried cable can hardly be discriminated against the backscatter strength of the layered mud. However, the backscatter strength of layered mud was found to strongly decrease at >3±0.5° incidence and the layered mud echo pattern vanished beyond 5°. As a consequence the visual recognition of the cable echo in acoustic images improves for higher incidence angles of 15°, 30°, 45°, and 60°. Data analysis support this visual impression. The size of the cable echo pattern was found to linearly increase with incidence, whereas the signal-to-noise ratio peaks at about 40°. At the peak, the signal-to-noise ratio is up to 2.6 times higher than at normal incidence. The effects are attributed to reflection loss from layered mud at larger incidence and to the scattering of the 0.1 m diameter buried cable. Thus, the presented method is suitable for cable detection and monitoring and can also provide information of the surrounding sedimentological strati. One of its advantages is that it is based on small and mobile transducers and is therefore useable on reasonable small survey platforms. We foresee a large potential using the presented mechanic or electronic sound inclination approach for enhanced sub-bottom classification and to better detect shallow buried acoustic scatterers like cables, pipelines, stones, dumping material (mines, waste), submerged shipwrecks, archaeological settlement remains, manganese nodules and shallow gas.

  1. Puzzling mass movement features in the Navarinsky Canyon head, Bering Sea

    USGS Publications Warehouse

    Carlson, P.R.; Karl, Herman A.; Edwards, B.D.

    1982-01-01

    Two types of morphologic features in the head of Navarinsky Canyon are attributed to mass movement of near-surface sediment. A series of pull-aparts is located downslope of large sand waves. These pull-aparts, possibly induced by liquefaction, affect the upper 5 to 10 m of sandy sediment (water depths 350 to 600 m) on a 1o slope. A hummocky elongate mound of muddy sand (water depths 550 to 800 m) contains chaotic internal reflectors to a subbottom depth of 30 to 40 m and possibly is the product of a shallow slide. We speculate that Holocene seismicity is the likely triggering mechanism. ?? 1982 A. M. Dowden, Inc.

  2. An Inverse Method for Obtaining the Attenuation Profile and Small Variations in the Sound Speed and Density Profiles of the Ocean Bottom.

    DTIC Science & Technology

    1985-05-01

    Source level in decibels SBL Sub-bottom loss TL Transmission loss of signal going through the water/sediment interface -- 4 - • .’ I.. zL...explained in the legend to figure 3-1. ’-4 RLb - S-BL-2Oog2D-2aD (3.1) RL8b S- TLb- SBL -TLW-2az-2Olog(D+z)-2aD (3.2) jZ h𔃾 -57- OCEAN SURFACE...RLb -RLab= SBL + [TL,+TL,-BL-201og2D" + 2az + 20log(D+z). (3.3) Assuming that the term within the bracket remains constant for the entire wedge, we

  3. Propagation and Signal Modeling

    NASA Astrophysics Data System (ADS)

    Jensen, Finn B.

    The use of sound in the sea is ubiquitous: Apart from the military aspect of trying to detect an adversary’s mines and submarines, ship-mounted sonars measure water depth, ship speed, and the presence of fish shoals. Side-scan systems are used for mapping the bottom topography, sub-bottom profilers for getting information about the deeper layering, and other sonar systems for locating pipelines and cables on the seafloor. Sound is also used for navigating submerged vehicles, for underwater communications and for tracking marine mammals. Finally, in the realm of ‘acoustical oceanography’ and ‘ocean acoustic tomography,’ sound is used for measuring physical parameters of the ocean environment and for monitoring oceanic processes [1-6].

  4. Site 765: Sediment Lithostratigraphy

    USGS Publications Warehouse

    ,

    1990-01-01

    A 935-m-thick succession of Quaternary through Lower Cretaceous sediments was recovered at Site 765 (Fig. 10). A single core of Quaternary sediment was obtained from Hole 765A; drilling terminated and a new hole was drilled in an attempt to establish the mud line. Quaternary through middle Miocene sediments were cored in Hole 765B down to a depth of 395.6 mbsf. Middle Miocene through Lower Cretaceous sediments were cored in Hole 765C, after washing the interval between 0 and 350.2 mbsf. Exact lithologic correlation of the basal cores from Hole 765B with the upper cores from Hole 765C is not possible because of poor recovery; hence, correlation is based solely on matching sub-bottom depths.

  5. Potential tsunamigenic hazard associated to submarine mass movement along the Ionian continental margin (Mediterranean Sea).

    NASA Astrophysics Data System (ADS)

    Ceramicola, S.; Tinti, S.; Praeg, D.; Zaniboni, F.; Planinsek, P.

    2012-04-01

    Submarine mass movements are natural geomorphic processes that transport marine sediment down continental slopes into deep-marine environments. Type of mass wasting include creep, slides, slump, debris flows, each with its own features and taking place over timescale from seconds to years. Submarine landslides can be triggered by a number of different causes, either internal (such as changes in physical chemical sediment properties) or external (e.g. earthquakes, volcanic activity, salt movements, sea level changes etc.). Landslides may mobilize sediments in such a way as to form an impulsive vertical displacement of a body of water, originating a wave or series of waves with long wavelengths and long periods called tsunamis ('harbor waves'). Over 600 km of continental margin has been investigated by OGS in the Ionian sea using geophysical data - morpho-bathymetry (Reson 8111, 8150) and sub-bottom profiles (7-10 KHz) - collected aboard the research vessel OGS Explora in the framework of the MAGIC Project (Marine Geohazard along the Italian Coasts), funded by the Italian Civil Protection. The objective of this project is the definition of elements that may constitute geological risk for coastal areas. Geophysical data allowed the recognition of four main types of mass wasting phenomena along the slopes of the ICM: 1) mass transport complexes (MTCs) within intra-slope basins. Seabed imagery show the slopes of all the seabed ridges to be marked by headwall scarps recording widespread failure, multiple debris flows in several basins indicate one or more past episodes of failure that may be linked to activity on the faults bounding the structural highs. 2) submarine landslide - a multiple failure event have been identified (Assi landslide) at about 6 km away from the coastline nearby Riace Marina. Headwall scars up to 50 m high across water depths of 700 to 1400 m, while sub-bottom profiles indicate stacked slide deposits at and near seabed. 4) canyon headwalls - in the upper parts of all canyons, numerous headwall scarps are consistent with retrogressive activity of the canyons. 3) possible gravity sliding -elongate seabed features oriented subparallel to contours are observed, associated with diapiric structures suggest that the elongate seabed features may record a form of downslope sediment sliding above salt. The aim of this work is to reconstruct the dynamics of different type of submarine mass movements on the tectonically active Ionian Calabrian margin (ICM), calculate the volume of sediment mobilized and assess the potential tsunamigenic hazard associated to different type of mass movements. Assessments of tsunami arrival time in adjacent coastal areas, period and wavelength of the tsunami and implication for coastal geohazards have been formulated for the Calabrian margin (small scale) and extrapolated to adjacent margins of the Mediterranean basin (large scale).

  6. Relationship Between Subduction Erosion, Seamount Subduction, Fluid Venting and Mound Formation on the Slope of the Costa Rican Continental Margin

    NASA Astrophysics Data System (ADS)

    Petersen, C.; Klaucke, I.; Weinrebe, W.

    2006-12-01

    The oceanic crust off central Costa Rica northwest of the Cocos Ridge is dominated by chains of seamounts rising 1-2 km above the seafloor with diameters of up to 20 km. The subduction of these seamounts leads to strong indentations, scars and slides on the continental margin. A smoother segment of about 80 km width is located offshore Nicoya peninsula. The segment ends at a fracture zone which marks the transition of oceanic crust created at the Cocos-Nazca spreading center (CNS) and at the East Pacific Rise (EPR). Offshore Nicaragua the incoming EPR crust is dominated by bending related faults. To investigate the relationship between subduction erosion, fluid venting and mound formation, multibeam bathymetry and high-resolution deep-tow sidescan sonar and sediment echosounder data were acquired during R/V Sonne cruises SO163 and SO173 (2002/2003). The deep-tow system consisted of a dual-frequency 75/410 kHz sidescan sonar and a 2-12 kHz chirp sub-bottom profiler. The connection of the observed seafloor features to deeper subduction related processes is obtained by analysis of multi-channel streamer (MCS) data acquired during cruises SO81 (1992) and BGR99 (1999). Data examples and interpretations for different settings along the margin are presented. Near the Fisher seamount the large Nicoya slump failed over the flank of a huge subducted seamount. The sidescan and echosounder data permit a detailed characterization of fault patterns and fluid escape structures around the headwall of the slump. Where the fracture zone separating CNS and EPR crust subducts, the Hongo mound field was mapped in detail. Several mounds of up to 100 m height are located in line with a scar possibly created by a subducting ridge of the fracture zone. MCS data image a topographic high on the subducting oceanic crust beneath the mound field which lead to uplift and possibly enabled ascent of fluids from the subducting plate. The combined analysis of geoacoustic and seismic MCS data confirms that fracturing of the continental slope by subducting oceanic relief is a major mechanism which causes the opening of pathways for fluids to migrate upwards.

  7. The history of retreat dynamics of Petermann Glacier inferred from submarine glacial landforms

    NASA Astrophysics Data System (ADS)

    Jakobsson, M.; Hogan, K.; Mayer, L. A.; Mix, A. C.; Jerram, K.; Mohammad, R.; Stranne, C.; Eriksson, B.

    2016-12-01

    Preserved submarine glacial landforms produced at the base and margin of ice sheets and outlet glaciers comprise records of past ice dynamics complementary to modern glaciological process studies. The Petermann 2015 Expedition on the Swedish icebreaker Oden systematically mapped approximately 3100 km2 of the seafloor in Petermann Fjord and the adjacent Hall Basin of Nares Strait, northwest Greenland, with an EM122 (12 kHz) multibeam and SBP120 (2-7 kHz) chirp sub-bottom profiler. Complete, overlapping mapping coverage permitted compilation of a high-quality (15x15m) digital terrain model (DTM). In addition, the seafloor at the margin of one of the smaller outlet glaciers draining into the Petermann Fjord and selected shallow areas along the coast were mapped using a small survey boat (RV Skidbladner), equipped with an EM2040 (200-300 kHz) multibeam. High-resolution (2 x 2 m) DTMs were compiled from the RV Skidbladner surveys. The seafloor morphology of Petermann Fjord and adjacent Hall Basin is dominated by a stunning glacial landform record comprising the imprints of Petermann Glacier's retreat dynamics since the Last Glacial Maximum (LGM). The entrance to Petermann Fjord consists of a prominent bathymetric sill formed by a large well-develop grounding zone wedge that undoubtedly represents a stability point during the glacier's retreat history. The deepest entrance to the fjord is 443 m and located on the southern side of this grounding zone wedge. Outside of this grounding zone wedge in Hall Basin, less well developed grounding zones appears to be present. The landform assemblage in between the grounding zones, in particular the lack of retreat ridges, may signify a leap-frog behavior of the glacier's retreat; rapid break-up and disintegration of the outlet glacier causing retreat back to the next stability point dictated by the local bedrock geology. While numerous classical glacial landforms characteristic for fast flowing ice streams are identified, the multibeam bathymetry also reveals an enigmatic, toilet bowl-shaped features whose origin is still unclear. The collected data during the Petermann 2015 Expedition will among other things provide new insights into ice shelf-ocean interactions, essential to projecting future climate impacts on Greenland and global sea level changes.

  8. Gas-controlled seafloor doming on Opouawe Bank, offshore New Zealand

    NASA Astrophysics Data System (ADS)

    Koch, Stephanie; Berndt, Christian; Bialas, Joerg; Haeckel, Matthias; Crutchley, Gareth; Papenberg, Cord; Klaeschen, Dirk; Greinert, Jens

    2015-04-01

    The process of gas accumulation and subsequent sediment doming appears to be a precursory process in the development of methane seep sites on Opouawe Bank and might be a common characteristic for gas seeps in general. Seabed domes appear as unimpressive topographic highs with diameters ranging from 10-1000 m and exhibit small vertical displacements and layer thickness in comparison to their width. The dome-like uplift of the sediments results from an increase in pore pressure caused by gas accumulation in near-seabed sediments. In this context sediment doming is widely discussed to be a precursor of pockmark formation. Our results suggest that by breaching of domed seafloor sediments a new seep site can develop and contrary to ongoing discussion does not necessarily lead to the formation of pockmarks. There are clear differences in individual gas migration structures that indicate a progression through different evolutionary stages, which range from channeled gas flow and associated seismic blanking, to gas trapping beneath relatively low-permeability horizons, and finally overpressure accumulation and doming. We present high resolution sub-bottom profiler (Parasound) and 2D multichannel seismic data from Opouawe Bank, an accretionary ridge at the Hikurangi Margin, offshore New Zealand's North Island. Beneath this bank, methane migrates along stratigraphic pathways from a maximum source depth of 1500-2100 mbsf (meter below seafloor) towards active cold seeps at the seafloor. We show that, in the shallow sediment of the upper 100 mbsf, this primary migration mechanism changes into a process of gas accumulation leading to sediment doming. Modeling the height of the gas column necessary to create different dome geometries, shows that doming due to gas accumulation is feasible and consistent with field observations. The well-stratified, sub-horizontal strata that exist beneath Opouawe Bank provide favorable conditions for this type of seep development because shallow sub-vertical gas migration is forced to traverse sedimentary layering in the absence of faults that might otherwise have provided more efficient gas migration pathways. Thus, gas has to generate its own migration pathways through the progressive process of doming and breaking through the strata. The data from offshore New Zealand document that shallow sediment doming does not have to be associated with seafloor pockmarks and that models in which fluid migration through soft sediments necessarily culminates in pockmark formations are not applicable everywhere.

  9. Tectonic activity and stratigraphic history over the last 130-540 ka on the Southern Shelf of the Sea of Marmara, western North Anatolian Fault, Turkey

    NASA Astrophysics Data System (ADS)

    Smith, W. H.; Grall, C.; Sorlien, C. C.; Steckler, M. S.; Okay, S.; Cormier, M. H.; Seeber, L.; Cifci, G.; Dondurur, D.

    2016-12-01

    The submerged section of the North Anatolian Fault in the Sea of Marmara, which corresponds to the dextral plate boundary between Eurasia and Anatolia, poses strong hazard for earthquakes and subsequent submarine landslides and tsunamis in the vicinity of the highly populated region of Istanbul. Most of the right-lateral slip is accommodated by the Northern Branch of the North Anatolian Fault (NAF-N), which crosses the central part of the Sea of Marmara and is capable of an earthquake with a magnitude greater than 7. However, both the geology and the geodesy suggest that the NAF-N accommodates only 3/4 of the total slip between the plates. The deformation mechanisms for the rest of the strain (slip distributed on secondary faults, strain partitioning, and diffuse deformation) remains unexplained. Other fault systems, primarily south of the NAF-N, are shown to be important regarding the tectonic evolution of the Sea of Marmara. However, the activity of these peripheral fault systems as well as their relationships with the NAF-N need to be further constrained. For this purpose, a dense dataset of 2D geophysical images (high-resolution seismic reflection data, sparker reflection, CHIRP sub-bottom profiling), as well as multibeam bathymetry, have been acquired in 2008, 2010, 2013 and 2014 during TAMAM and SOMAR cruises, primarily in the southern shelf of the Sea of Marmara. The 15-20 km-wide southern shelf ledge is relatively flat and mostly shallower than 90 m. In this shallow marine region, we have been able to image the detailed stratigraphic record associated with the 125 ka and younger glacio-eustatic cycles and, notably, to identify paleo-shorelines at water depths shallower than 100 m. Several erosional unconformities, laterally correlative to low-stand deltas have been regionally linked to the stratigraphic boundaries previously defined for the last 130-540 ka. While the present-day shelf is relatively flat, a shallow ridge separates the inner and outer parts of the shelf. This ridge exhibits erosional unconformities, and a set of transtensive faults are mapped along its length. We show that parts of these faults were active during the last 540 ka. By estimating fault slip and folding rates along these structures, we estimate the deformation that they accommodated over this time-frame.

  10. Nearshore geophysical investigation of the underwater trace of the Enriquillo-Plantain Garden Fault following the 12 January 2010 Haiti earthquake

    NASA Astrophysics Data System (ADS)

    Johnson, H. E.; Hornbach, M.; Cormier, M.; McHugh, C. M.; Gulick, S. P.; Braudy, N.; Davis, M.; Dieudonne, N.; Diebold, J. B.; Douilly, R.; Mishkin, K.; Seeber, L.; Sorlien, C. C.; Steckler, M. S.; Symithe, S. J.; Templeton, J.

    2010-12-01

    In response to the January 12, 2010 earthquake in Haiti, we investigated offshore structures where aftershocks, lateral spreading, and a small tsunami suggested a coseismic underwater rupture. One aspect of that expedition involved mapping the trace of the Enriquillo-Plantain Garden fault (EPGF) very close to shore, in water as shallow as 2 m. For this, we deployed from the ship a small inflatable boat mounted with a sidescan sonar and a chirp subbottom profiler. These nearshore surveys focused on Grand Goave Bay and Petit Goave Bay, two areas 40-60 km west of Port-au-Prince where the EPGF briefly extends offshore. In Grand Goave Bay, the combination of shipboard multibeam bathymetric data and nearshore geophysical data highlights a series of en-echelon ridges striking about EW, sub-parallel to the expected fault trend. These rise 50-80 m above the surrounding seafloor and some slumps occur on their steep flanks. Although the sidescan imagery does not capture any well-defined seafloor offset or mole tracks that could be attributed to a 2010 earthquake rupture, the chirp profiles document faults that clearly affect the upper 20 m of sediments. The chirp also imaged an EW-striking ridge that appears to be fault-bounded on its north flank and is located about 1 km north of the onshore trace of the EPGF, suggesting that this fault system affects a relatively broad zone. In Petit Goave Bay, a series of textured, sub-circular mounds rising ~5 m above the sedimented bottom most likely indicate bioherms. These align roughly EW at the base of a 20-30 m-high ridge and may be forming at cold seeps associated with an active fault strand, as reported for other offshore transform fault systems. Lateral spreading and slumps fringe the southern shoreline of that bay. Based on the sharp resolution of the sidescan imagery over the slumps, detailing individual fissures and angular blocks, we interpret these to have been triggered by the 2010 earthquake, and that they therefore are likely to have enhanced tsunamigenesis in the area, as addressed in Hornbach et al. (Nature Geoscience, Accepted Sept. 2010).

  11. Variability of Plant Wax Concentrations and Carbon Isotope Values in Surface Lake Sediments Provide Clues into Their Transport and Deposition

    NASA Astrophysics Data System (ADS)

    Bates, B.; Lowell, T. V.; Diefendorf, A. F.; Freimuth, E. J.; Stewart, A. K.

    2017-12-01

    Plant wax compounds preserved in lake sediments are used as proxies for paleohydrologic reconstructions. Despite their presence in lake sediments, little is known about their transport from plants to their deposition in lake sediments. By drawing on the leaf and pollen taphonomy literature combined with sediment focusing models, it is possible to develop several working hypotheses for the transport and deposition of plant waxes in lake sediments. An improved understanding of plant wax transport and deposition into lake sediments is necessary to increase the accuracy of paleohydrologic reconstructions. To better understand the controls on plant wax transport and deposition in lake sediment, we analyzed the sedimentary plant waxes from 3 lakes in the Adirondack Mountains of New York. These lakes were chosen to capture a range of basin-specific properties to evaluate their influences on the transport and deposition of plant wax compounds in surface sediments. We spatially characterized sediment properties with surface sediment samples and high-resolution underwater imaging, acoustically profiled the sub-bottom, and measured temperature profiles. From each site, we measured n-alkanes, bulk organic content (loss-on-ignition), bulk carbon and nitrogen concentrations, C:N ratios, and bulk carbon isotopes. Preliminary n-alkane concentrations and chain length distributions, as well as bulk carbon isotopes, are variable within each lake basin suggesting a mix of aquatic and terrestrial sources. The bulk carbon isotope values for two of the three lakes show a similar range of -2‰ compared to a range of -6.3‰ at the third lake. Likewise, the range of total n-alkane concentrations is much higher in the third lake suggesting that the controls on the distribution of n-alkanes and organic carbon are different between lakes. For terrestrial plant waxes, we find low n-alkane concentrations in sandy nearshore sediments relative to higher n-alkane concentrations in deeper fine-grained sediments. Combined, this information suggests that littoral processes focus organic compounds and fine sediments towards the main depo-center of the lake. These and other observations highlight important relationships between basin-specific properties and processes controlling the transport and deposition of plant wax compounds.

  12. Coastal bathymetry data collected in 2013 from the Chandeleur Islands, Louisiana

    USGS Publications Warehouse

    DeWitt, Nancy T.; Miselis, Jennifer L.; Fredericks, Jake J.; Bernier, Julie C.; Reynolds, Billy J.; Kelso, Kyle W.; Thompson, David M.; Flocks, James G.; Wiese, Dana S.

    2017-01-12

    As part of the Barrier Island Evolution Research Project, scientists from the U.S. Geological Survey (USGS) St. Petersburg Coastal and Marine Science Center conducted nearshore geophysical surveys around the northern Chandeleur Islands, Louisiana, in July and August of 2013. The objective of the study is to better understand barrier-island geomorphic evolution, particularly storm-related depositional and erosional processes that shape the islands over annual to interannual timescales (1‒5 years). Collecting geophysical data will allow us to identify relationships between the geologic history of the island and its present day morphology and sediment distribution. This mapping effort was the third in a series of three planned surveys in this area. High resolution geophysical data collected in each of three consecutive years along this rapidly changing barrier island system will provide a unique time-series dataset that will significantly further the analyses and geomorphological interpretations of this and other coastal systems, improving our understanding of coastal response and evolution over short time scales (1‒5 years).This data series includes the geophysical data that were collected during two cruises (USGS Field Activity Numbers (FAN) 13BIM02, 13BIM03, and 13BIM04, in July 2013; and FANs 13BIM07 and 13BIM08 in August 2013) aboard the R/V Sallenger, the R/V Jabba Jaw, and the R/V Shark along the northern portion of the Chandeleur Islands, Breton National Wildlife Refuge, Louisiana. Primary data were acquired with the following equipment: (1) a Systems Engineering and Assessment, Ltd., SWATHplus interferometric sonar (468 kilohertz [kHz]), (2) an EdgeTech 424 (4‒24 kHz) chirp sub-bottom profiling system, and (3) two Odom Hydrographic Systems, Incorporated, Echotrach CV100 single beam echosounders.This data series report serves as an archive of processed interferometric swath and single-beam bathymetry data. Geographic information system data products include an interpolated digital elevation model, trackline maps, and point data files. Additional files include error analysis maps, Field Activity Collection System logs, and formal Federal Geographic Data Committee metadata.

  13. Dynamics, rate and nature of retreat of the British Irish Ice-Sheet offshore of NW Ireland following the Last Glacial Maximum

    NASA Astrophysics Data System (ADS)

    Weilbach, K.; O'Cofaigh, C.; Lloyd, J. M.; Benetti, S.; Dunlop, P.

    2016-12-01

    Recent studies of the British and Irish Ice Sheet (BIIS) have identified evidence of ice extending to the continental shelf edge along the western margin of the ice sheet off NW Ireland. While this advance is assumed to have occurred during the LGM, exact timing of maximum advance, and the timing and nature of the subsequent retreat is not well constrained. The location of the north-western sector of the BIIS adjacent to the North Atlantic makes this area ideal to study the ice sheet dynamics of a major marine terminating ice sheet, and the rate and nature of its retreat following the LGM. High resolution swath bathymetry and sub-bottom profiler (SBP) data along with sedimentological, micropalaeontological and geochronological investigations of sediment cores, collected across the NW Irish shelf, have been used to establish the extent, timing and nature of retreat of this sector of the BIIS. Swath bathymetry show glacial landforms on the shelf, and SBP-data along with twenty seven vibro-cores were collected in east-west oriented transects across a series of arcuate recessional moraines stretching from the shelf edge to Donegal Bay. These moraines record progressive still stands of a lobate ice margin during its retreat from the shelf edge, and are therefore ideal for the investigation of ice-sheet dynamics and chronology during retreat. Twenty two radiocarbon dates from foraminifera and macrofossils, sampled from the sediment cores, indicate that maximum ice sheet extent occurred around 26200 y cal BP, with an initial rapid retreat across the shelf. Visual logging, X-ray imagery, MSCL data and palaeoenvironmental analyses of the sediment cores, indicate that retreat happened in a glacimarine environment, and was punctuated by multiple stillstands and possible readvances across the mid and inner shelf, forming the arcuate moraines. The radiocarbon dates suggest that final retreat occurred after 17857 y. cal BP, which is consistent with onshore cosmogenic exposure ages from NW Ireland, showing de-glaciation around 17400 y cal BP.

  14. Quantifying Methane Flux from a Prominent Seafloor Crater with Water Column Imagery Filtering and Bubble Quantification Techniques

    NASA Astrophysics Data System (ADS)

    Mitchell, G. A.; Gharib, J. J.; Doolittle, D. F.

    2015-12-01

    Methane gas flux from the seafloor to atmosphere is an important variable for global carbon cycle and climate models, yet is poorly constrained. Methodologies used to estimate seafloor gas flux commonly employ a combination of acoustic and optical techniques. These techniques often use hull-mounted multibeam echosounders (MBES) to quickly ensonify large volumes of the water column for acoustic backscatter anomalies indicative of gas bubble plumes. Detection of these water column anomalies with a MBES provides information on the lateral distribution of the plumes, the midwater dimensions of the plumes, and their positions on the seafloor. Seafloor plume locations are targeted for visual investigations using a remotely operated vehicle (ROV) to determine bubble emission rates, venting behaviors, bubble sizes, and ascent velocities. Once these variables are measured in-situ, an extrapolation of gas flux is made over the survey area using the number of remotely-mapped flares. This methodology was applied to a geophysical survey conducted in 2013 over a large seafloor crater that developed in response to an oil well blowout in 1983 offshore Papua New Guinea. The site was investigated by multibeam and sidescan mapping, sub-bottom profiling, 2-D high-resolution multi-channel seismic reflection, and ROV video and coring operations. Numerous water column plumes were detected in the data suggesting vigorously active vents within and near the seafloor crater (Figure 1). This study uses dual-frequency MBES datasets (Reson 7125, 200/400 kHz) and ROV video imagery of the active hydrocarbon seeps to estimate total gas flux from the crater. Plumes of bubbles were extracted from the water column data using threshold filtering techniques. Analysis of video images of the seep emission sites within the crater provided estimates on bubble size, expulsion frequency, and ascent velocity. The average gas flux characteristics made from ROV video observations is extrapolated over the number of individual flares detected acoustically and extracted to estimate gas flux from the survey area. The gas flux estimate from the water column filtering and ROV observations yields a range of 2.2 - 6.6 mol CH4 / min.

  15. Seafloor features delineate Late Wisconsinan ice stream configurations in eastern Parry Channel, Canadian Arctic Archipelago

    NASA Astrophysics Data System (ADS)

    MacLean, B.; Blasco, S.; Bennett, R.; Lakeman, T.; Pieńkowski, A. J.; Furze, M. F. A.; Hughes Clarke, J.; Patton, E.

    2017-03-01

    Multibeam imagery and 3.5 kHz sub-bottom profiles acquired from CCGS Amundsen between 2003 and 2013 by ArcticNet and the Ocean Mapping Group at the University of New Brunswick provide information on seafloor features, geology, bathymetry and morphology in eastern Parry Channel and the adjoining large channels in the Canadian Arctic Archipelago. Together these include Peel Sound, Barrow Strait, Lancaster Sound, Wellington Channel, Prince Regent Inlet, Admiralty Inlet and Navy Board Inlet. Those data are in part complemented by high resolution single channel seismic reflection profiles acquired by the Geological Survey of Canada in the 1970s and 1980s and by sediment cores that provide chronological and depositional information. The occurrence and pattern of streamlined mega-scale ridge and groove lineations (MSGLs) indicate that these waterways were occupied by glacial ice streams in the past. Chronological information from marine and adjoining terrestrial areas suggests a long history of glacial events ranging in time from Early Pleistocene to Late Wisconsinan. Seafloor morphology and MSGL trends together with terrestrial ice flow patterns indicate that ice streams flowed into Barrow Strait from Peel Sound and Wellington Channel, and ice streams in Prince Regent, Admiralty and Navy Board inlets flowed northward into and eastward along Lancaster Sound. Recession of the ice stream westward along Parry Channel occurred ∼16 cal ka BP to 10.8 cal ka BP. Thick ice-contact sediments deposited by a late ice advance from Prince Regent Inlet constitute the seabed across a large area of western Lancaster Sound. Timing for that late ice advance appears to be bracketed between the 11.5 cal ka BP lift-off of the eastern Parry ice stream north of Prince Leopold Island and the ∼10.0 cal ka BP deglaciation of Prince Regent Inlet. Seafloor morphology and lineation trends suggest that ice delivered by the ice stream in Peel Sound was the westernmost tributary to the ice stream occupying Lancaster Sound during the late Wisconsinan glaciation. Bathymetric data and MSGLs indicate that the ice stream emanating from M'Clintock Channel flowed westward.

  16. Late-Wisconsinan submarine moraines along the north shore of the Estuary and Gulf of St. Lawrence (Eastern Canada)

    NASA Astrophysics Data System (ADS)

    Lajeunesse, Patrick; St-Onge, Guillaume

    2013-04-01

    A series of ice-contact submarine fans and morainal banks along the Québec North-Shore of the Estuary and Gulf of St. Lawrence (Eastern Canada), between the Manicouagan River delta and the Mingan Islands, have been revealed with great detail by recent multibeam echosounder and high-resolution subbottom profiler surveys. These grounding-line landforms are observed between 65 and 190 m water depths and were constructed as the marine-based margin of the Laurentide Ice Sheet (LIS) stabilized or readvanced. Radiocarbon ages obtained from shells sampled in sediment cores collected in glaciomarine deposits 6 km south of a grounding line in the Sept-Iles area indicate a stabilisation that took place around 11 000 14C yr BP (12.5 ka cal BP with a ΔR=120 ± 40 yr). In the Mingan Islands area, organic matter collected in distal deposits of an ice-contact fan is dated at 10 800 14C yr BP (11.6 ka cal BP). The position of the Sept-Iles and Mingan deposits, 20 km south of the ~9.7-9.5 14C kyr BP North-Shore Moraine, suggests that these ice marginal landforms were constructed during the Younger Dryas (YD) cold episode and that they might be the eastward submarine extent of the early YD St. Narcisse morainic system. Superimposed till sheets and morainal banks observed within grounding line deposits indicate that this stability phase was interrupted by local readvances that were marked in some cases by ice streaming. Segments of this morainic system are also visible along the shoreline in some sectors, where they have been generally washed out of fine fragments by waves. Another series of ice-contact deposits and landforms of similar nature observed farther offshore and at greater depths (100-190 m) were formed during a previous phase of stabilisation of the LIS margin. This older morainic system was probably deposited immediately after the opening of the Estuary and Gulf of the St. Lawrence.

  17. The University of Texas Institute for Geophysics Marine Geology and Geophysics Field Course

    NASA Astrophysics Data System (ADS)

    Duncan, D.; Davis, M. B.; Goff, J. A.; Gulick, S. P. S.; McIntosh, K. D.; Saustrup, S., Sr.

    2014-12-01

    The University of Texas Institute for Geophysics, part of the Jackson School of Geosciences, annually offers a three-week marine geology and geophysics field course during the spring-summer intersession. The course provides hands-on instruction and training for graduate and upper-level undergraduate students in high-resolution seismic reflection, CHIRP sub-bottom profiling, multibeam bathymetry, sidescan sonar, several types of sediment coring, grab sampling, and the sedimentology of resulting seabed samples. Students participate in an initial three days of classroom instruction designed to communicate geological context of the field area along with theoretical and technical background on each field method. The class then travels to the Gulf Coast for a week of at-sea field work. Our field sites at Port Aransas, and Galveston, TX, and Grand Isle, LA, provide ideal locations for students to investigate coastal processes of the Gulf Coast and continental shelf through application of geophysical techniques in an exploratory mode. At sea, students assist with survey design and instrumentation set up while learning about acquisition parameters, data quality control, trouble-shooting, and safe instrument deployment and retrieval. In teams of four, students work in onshore field labs preparing sediment samples for particle size analysis and data processing. During the course's final week, teams return to the classroom where they integrate, interpret, and visualize data in a final project using industry-standard software such as Echos, Landmark, Caris, and Fledermaus. The course concludes with a series of final presentations and discussions in which students examine geologic history and/or sedimentary processes represented by the Gulf Coast continental shelf with academic and industry supporters. Students report a greater understanding of marine geology and geophysics through the course's intensive, hands-on, team approach and low instructor to student ratio (sixteen students, three faculty, and three teaching assistants). This course (to our knowledge) remains the only one of its kind, satisfies field experience requirements for some degree programs, and provides an alternative to land-based field courses. www.ig.utexas.edu/research/mgg/courses/geof348K/

  18. A Hands-on Approach to Teaching Geophysics through the University of Texas Institute for Geophysics Marine Geology and Geophysics Field Course in the Gulf of Mexico.

    NASA Astrophysics Data System (ADS)

    Duncan, D.; Davis, M. B.; Goff, J.; Gulick, S. P. S.; Fernandez-Vasquez, R. A.; Saustrup, S.

    2017-12-01

    The three week field course is offered to graduate and upper-level undergraduate students as hands-on instruction and training for marine geology and geophysics applications. Instructors provide theoretical and technical background of high-resolution seismic reflection, CHIRP sub-bottom profiling, multibeam bathymetry, sidescan sonar, sediment coring, grab sampling, and the sedimentology of resulting seabed samples in the initial phase of the course. The class then travels to the Gulf Coast for a week of at-sea field work. Over the last 10 years, field sites at Freeport, Port Aransas, and Galveston, TX, and Grand Isle, LA, have provided ideal locations for students to explore and investigate coastal and continental shelf processes through the application of geophysical techniques. Students with various backgrounds work in teams of four and rotate between two marine vessels: the R/V Scott Petty, a 26' vessel owned and operated by UTIG, and the R/V Manta, an 82' vessel owned and operated by NOAA. They assist with survey design, instrumentation setup and breakdown, data acquisition, trouble-shooting, data quality control, and safe instrumentation deployment and recovery. Teams also process data and sediment samples in an onshore field lab. During the final week, students visualize, integrate and interpret data for a final project using industry software. The course concludes with final presentations and discussions wherein students examine Gulf Coast geological history and sedimentary processes with academic and industry supporters. Students report a greater understanding of marine geology and geophysics through the course's intensive, hands-on, team approach and low instructor to student ratio (sixteen students, three faculty, and three teaching assistants). Post-class, students may incorporate course data in senior honors or graduate thesis and are encouraged to publish and present results at national meetings. This course satisfies field experience requirements for some degree programs, provides an alternative to land-based field courses and to our knowledge, remains the only class of its kind. Alumni note the course's applicability to energy, environmental, and geotechnical industries as well as coastal restoration/management fields.

  19. Analysis of Complex Marine Hazards on the Romanian Black Sea Shelf Using Combined Geophysical Methods

    NASA Astrophysics Data System (ADS)

    Samoila, I. V.; Radulescu, V.; Moise, G.; Diaconu, A.; Radulescu, R.

    2017-12-01

    Combined geophysical acquisition technologies including High Resolution 2D Seismic (HR2D), Multi-Beam Echo-Sounding (MBES), Sub-Bottom Profiling (SBP) and Magnetometry were used in the Western Black Sea (offshore Romania) to identify possible geohazards, such as gas escaping surface sediments and tectonic hazard areas up to 1 km below the seafloor. The National Project was funded by the Research and Innovation Ministry of Romania, and has taken place over 1.5 years with the purpose of creating risk maps for the surveyed pilot area. Using an array of geophysical methods and creating a workflow to identify geohazard susceptible areas on the Romanian Black Sea continental shelf is important and beneficial for future research projects. The SBP and MBES data show disturbed areas that can be interpreted as gas escapes on the surface of the seafloor, and some escapes were confirmed on the HR2D profiles. Shallow gas indicators like gas chimneys and acoustic blanking are usually delimited by vertical, sub-vertical and/or quasi-horizontal faults that mark possible hazard areas on shallow sedimentary sections. Interpreted seismic profiles show three main markers: one delimiting the Pliocene-Quaternary boundary and two for the Miocene (Upper and Lower). Vertical and quasi-horizontal faults are characteristic for the Upper Miocene, while the Lower Miocene has NW-SE horizontal faults. Faults and possible hazard areas were marked on seismic sections and were further correlated with the MBES, SBP, Magnetometry and previously recorded data, such as earthquake epicenters scattered offshore in the Western Black Sea. The main fault systems likely to cause those earthquakes also aid the migration of gas if the faults are not sealed. We observed that the gas escapes were correlated with faults described on the recent seismic profiles. Mapping hazard areas will have an important contribution to better understand the recent evolution of the Western Black Sea basin but also for projecting the future offshore infrastructures. The resulting correlations in the geophysical data allowed us to create a workflow that shows desirable results for this area, and can be applied to other interest areas successfully and cost effectively.

  20. Multibeam bathymetric survey of the Ipala Submarine Canyon, Jalisco, Mexico (20°N): The southern boundary of the Banderas Forearc Block?

    NASA Astrophysics Data System (ADS)

    Urías Espinosa, J.; Bandy, W. L.; Mortera Gutiérrez, C. A.; Núñez Cornú, Fco. J.; Mitchell, N. C.

    2016-03-01

    The Middle America Trench bends sharply northward at 20°N. This, along with the close proximity of the Rivera-North America Euler pole to the northern end of this trench, sharply increases the obliquity of subduction at 20°N. By analogy with other subduction zones with similar sharply changing obliquity, significant trench parallel extension is expected to exist in the forearc region near the bend. To evaluate this possibility, multibeam bathymetric, seafloor backscatter and sub-bottom seismic reflection data were collected in this area during the MORTIC08 campaign of the B.O. El Puma. These data image in detail a large submarine canyon (the Ipala Canyon) extending from the coast at 20°05‧N to the Middle America Trench at 19°50‧N. This canyon is 114 km long and is fed by sediments originating from two, possibly three, small rivers: the Ipala, Tecolotlán and Maria Garza. This canyon deeply incises (up to 600 m) the entire continental slope and at least the outer part of the shelf. Within the canyon, we observe meanders and narrow channels produced by turbidity flows indicating that the canyon is active. In the marginal areas of the canyon slumps, rills, and uplifts suggest that mass movements and fluid flow have had a major impact on the seafloor morphology. The seafloor bathymetry, backscatter images and sub-bottom reflection profiles evidence the tectonic processes occurring in this area. Of particular interest, the canyon is deflected by almost 90° at three locations, the deflections all having a similar azimuth of between 125° and 130°. Given the prominence and geometry of this canyon, along with its tectonic setting, we propose that the presence of the canyon is related to extension produced by the sharp change in the plate convergence. If so, the canyon may lie along the southeast boundary of a major forearc block (the Banderas Forearc Block).

  1. WHISPERS Project on the easternmost slope of the Ross Sea (Antarctica): preliminary results.

    NASA Astrophysics Data System (ADS)

    Olivo, E.; De Santis, L.; Bergamasco, A.; Colleoni, F.; Gales, J. A.; Florindo-Lopez, C.; Kim, S.; Kovacevic, V.; Rebesco, M.

    2017-12-01

    The advance and retreat of the West Antarctic Ice Sheet from the outer continental shelf and the oceanic circulation are the main causes of the depositional processes on the Ross Sea continental slope, at present time and during the most of the Cenozoic. Currently the Antarctic Bottom Water formation is directly linked to the relatively warm Circumpolar Deep Water that, encroaching the continental shelf, mixes with the colder Ross Sea Bottom Water. Detailed multibeam and geological surveys useful to locate and characterize peculiar morphological structures on the bottom are essential to study how the glacial and oceanographic processes interact with the seabed sediments. In the framework of the PNRA-WHISPERS project (XXXIIth Italian Antarctic expedition - January/March 2017), new multibeam bathymetric, sub-bottom chirp, were acquired from the easternmost margin of the Ross Sea, on the southeastern side of the Hayes Bank, usually covered by sea ice. We observed on the upper slope erosional features (incised gullies of likely glacial meltwater origin). A broad scar in the upper slope is characterized by an elongated SSW-NNE ridge (10 km long, 850-1200 m water depth, 2 km wide), that may be a remnants of previous glacial or debris flow deposits, eroded by meltwater outwash discharge at the beginning of grounding ice retreat and by RSBW cascading along the slope, as documented by Expandable Bathy-Thermograph and Acoustic Depth Current Profile data. Sub-bottom chirp profiles crossing this ridge show a very low amplitude reflective sea bed, supporting the hypothesis of its soft sediment nature, in good agreement with a very low acoustic velocity obtained by multichannel seismic data reprocessing. The occurrence of internal stratification on 2D multichannel seismic profiles would discount a gas-fluids related mud volcano origin. No sediment cores were collected, due to bad sea conditions and limited ship time, further data collection would be needed to fully understand the origin of such depositional feature and its relation with slope glacial and oceanographic processes.

  2. National Scale Marine Geophysical Data Portal for the Israel EEZ with Public Access Web-GIS Platform

    NASA Astrophysics Data System (ADS)

    Ketter, T.; Kanari, M.; Tibor, G.

    2017-12-01

    Recent offshore discoveries and regulation in the Israel Exclusive Economic Zone (EEZ) are the driving forces behind increasing marine research and development initiatives such as infrastructure development, environmental protection and decision making among many others. All marine operations rely on existing seabed information, while some also generate new data. We aim to create a single platform knowledge-base to enable access to existing information, in a comprehensive, publicly accessible web-based interface. The Israel EEZ covers approx. 26,000 sqkm and has been surveyed continuously with various geophysical instruments over the past decades, including 10,000 km of multibeam survey lines, 8,000 km of sub-bottom seismic lines, and hundreds of sediment sampling stations. Our database consists of vector and raster datasets from multiple sources compiled into a repository of geophysical data and metadata, acquired nation-wide by several research institutes and universities. The repository will enable public access via a web portal based on a GIS platform, including datasets from multibeam, sub-bottom profiling, single- and multi-channel seismic surveys and sediment sampling analysis. Respective data products will also be available e.g. bathymetry, substrate type, granulometry, geological structure etc. Operating a web-GIS based repository allows retrieval of pre-existing data for potential users to facilitate planning of future activities e.g. conducting marine surveys, construction of marine infrastructure and other private or public projects. User interface is based on map oriented spatial selection, which will reveal any relevant data for designated areas of interest. Querying the database will allow the user to obtain information about the data owner and to address them for data retrieval as required. Wide and free public access to existing data and metadata can save time and funds for academia, government and commercial sectors, while aiding in cooperation and data sharing among the various stakeholders.

  3. 2014/2015 Investigations of the Ontong Java and Kerguelen Plateaus

    NASA Astrophysics Data System (ADS)

    Coffin, M. F.; Whittaker, J. M.

    2013-12-01

    The two largest oceanic plateaus, Ontong Java in the western Pacific, and Kerguelen in the southern Indian Ocean, will be the focus of scheduled multidisciplinary/interdisciplinary shipboard expeditions in 2014 and 2015. In mid-2014, scientists aboard the Schmidt Ocean Institute's RV Falkor will investigate the origin and evolution of two large atolls, Ontong Java and Nukumanu, surmounting the ca 122 Ma Ontong Java Plateau, as well how Kroenke Canyon, which deeply incises the plateau, formed and evolved. First-ever multibeam bathymetry and sub-bottom profiling data from the atolls and canyon will reveal their submarine and shallow sub-seafloor morphology, and, if combined with geochemical and geochronological analyses of potential igneous basement samples, will yield important information on their origin and evolution. The primary goals of this atoll and canyon project are: to test potential genetic relationships between a) the atolls and the OJP, and b) the atolls and Kroenke Canyon; to understand and model how atolls and canyons form and evolve on oceanic plateaus, isolated from terrestrial influences and subject to sea level fluctuations; and to contribute to understanding tsunami risk on low-lying atolls. In late 2014 and early 2015, researchers aboard Australia's new Marine National Facility, RV Investigator, will investigate active submarine hotspot volcanism on the Kerguelen Plateau and its consequences. The project's overall aim is to test the hypothesis that hydrothermal activity driven by active submarine magmatism fertilizes surface waters with iron that enhances primary biological productivity. Surmounting the Cretaceous plateau, Heard and McDonald Islands are among the world's most active hotspot volcanoes, and new multibeam bathymetry and sub-bottom profiling data will enable identification of candidate active submarine volcanoes, which we will sample. In the overlying water column, we will collect samples to test for the presence or absence of associated hydrothermalism as well as iron and other elemental enrichment. If present, we will compare our data to satellite images of primary biological productivity (eg, chlorophyll) to test for temporal and spatial correlations.

  4. Detailed analysis of the Valdes slide: a landward facing slope failure off Chile

    NASA Astrophysics Data System (ADS)

    Anasetti, Andrea; Krastel, Sebastian; Weinrebe, Willy; Klaucke, Ingo; Bialas, Jorge

    2010-05-01

    The Chilean continental margin is a very active area interested by important tectonic movements and characterized by a fast morphological evolution. Geophysical data acquired during cruise JC 23, aboard RV JAMES COOK in March/April 2008 and previous cruises cover most of the active Chilean continental margin between 33° and 37° S. Integrated interpretation of multi-beam bathymetric, sub-bottom profiles, side-scan sonar and seismic data allowed the identification of a number of slope failures. The main topic of this project is the morphological and sedimentological analysis of the Valdes slide, a medium-sized submarine landslide offshore the city of Talcahuano (300 km south of Santiago). In contrast to most other slides along continental margins, the Valdes slide is located on the landward facing eastern slope of a submarine ridge. This setting has important implications for the associated tsunami wave field (first arrival of positive amplitude). We measured geometrical parameters of the failure and adjacent slope. The slide affected an area of 19 km2 between ~1060 m and >1700 m water depths. Its is ~ 6 km long, up to 3 km wide and involved a total sedimentary volume of about 0,8 km3. The failure process was characterized by a multiple-event and we assume its tsunami potential to be high. Using the high resolution bathymetric data and the seismic profiles along the slide deposit it was possible to reconstruct the original morphology of the area in order to understand the relation between the slide event and the structural evolution of the ridge. Through the analysis of the data and bibliographic information about the Chilean margin, we analyzed potential trigger mechanisms for the landslide. The Valdes slide is situated on a steep ridge flank. The ridge follows an elongated fault zone running app. parallel to the margin. This fault zone has a dextral component which in combination with the faults elongation results in a compressional regime that is superimposed on the overall subduction-related compression and ultimately generated this ridge. Over-steepening (slope angle >6° ) of rapidly accumulated sediments (high sedimentation rate) and the huge uplift of the ridge seem to be the most important preconditioning factors of this slide. Seismic data and core analysis suggest that a weak layer acted as sliding surface. The most likely trigger can be assumed one of the frequently occurring strong earthquakes in this area.

  5. Advances in Shallow-Water, High-Resolution Seafloor Mapping: Integrating an Autonomous Surface Vessel (ASV) Into Nearshore Geophysical Studies

    NASA Astrophysics Data System (ADS)

    Denny, J. F.; O'Brien, T. F.; Bergeron, E.; Twichell, D.; Worley, C. R.; Danforth, W. W.; Andrews, B. A.; Irwin, B.

    2006-12-01

    The U.S. Geological Survey (USGS) has been heavily involved in geological mapping of the seafloor since the 1970s. Early mapping efforts such as GLORIA provided broad-scale imagery of deep waters (depths > 400 meters) within the Exclusive Economic Zone (EEZ). In the early 1990's, the USGS research emphasis shifted from deep- to shallow-water environments (inner continental shelf, nearshore, estuaries) to address pertinent coastal issues such as erosion, sediment availability, sediment transport, vulnerability of coastal areas to natural and anthropogenic hazards, and resource management. Geologic framework mapping in these shallow- water environments has provided valuable data used to 1) define modern sediment distribution and thickness, 2) determine underlying stratigraphic and structural controls on shoreline behavior, and 3) enable onshore-to- offshore geologic mapping within the coastal zone when coupled with subaerial techniques such as GPR and topographic LIDAR. Research in nearshore areas presents technological challenges due to the dynamics of the environment, high volume of data collected, and the geophysical limitations of operating in very shallow water. In 2004, the USGS, in collaboration with NOAA's Coastal Services Center, began a multi-year seafloor mapping effort to better define oyster habitats within Apalachicola Bay, Florida, a shallow water estuary along the northern Gulf of Mexico. The bay poses a technological challenge due to its shallow depths (< 4-m) and high turbidity that prohibits the use of bathymetric LIDAR. To address this extreme shallow water setting, the USGS incorporated an Autonomous Surface Vessel (ASV) into seafloor mapping operations, in June 2006. The ASV is configured with a chirp sub-bottom profiler (4 24 kHz), dual-frequency chirp sidescan-sonar (100/500 kHz), single-beam echosounder (235 kHz), and forward-looking digital camera, and will be used to delineate the distribution and thickness of surficial sediment, presence of oyster beds, and sea bed morphology in water depths less than 5-m. The ASV is a catamaran-based platform, 10 feet in length, 4 feet in width, and approximately 260 lbs in weight. The vehicle is operated remotely through a wireless modem network enabling real-time monitoring of data acquisition. The ASV is navigated using RTK, and heave, pitch and roll are recorded with onboard motion sensors. Additional sensors, such as ADCPs, can also be housed within the vehicle. The ASV is able to operate in previously inaccessible areas, and will not only augment existing shallow-water research capabilities, but will also improve our understanding of the geologic controls to modern beach behavior and coastal evolution.

  6. Late Glacial to Holocene evolution and sea-level history of Gulf of Gemlik, Sea of Marmara, Turkey

    NASA Astrophysics Data System (ADS)

    Sabuncu, Asen; Kadir Eriş, K.; Kaslilar, Ayse; Namık Çaǧatay, M.; Gasperini, Luca; Filikçi, Betül

    2016-04-01

    The Gulf of Gemlik is an E-W elongated trans-tensional basin with a maximum depth of 113 m, located on the middle strand of the North Anatolian Fault (NAF) in the south eastern part of the Sea of Marmara (SoM). While during the Holocene the sea level in the Gulf of Gemlik changed in tandem with the water level changes in the SoM, it may have been different in the late glacial when the Sea of Marmara was lacustrine. Beside the tectonic activity related to the NAFZ, eustatic sea level changes would have controlled the basin evolution and consequent sedimentary history during the different paleocanographic phases of the SoM. Considering the limited studies on the late glacial-Holocene stratigraph of the Gulf of Gemlik, this study aims to investigate the depositional units and their environments with respect to different allogenic and autogenic controls. For these purposes, we analyzed over 300 2 - 7 kHz bandwidth high-resolution gridded seismic sub-bottom CHIRP profiles together with 70 kHz high resolution multibeam bathymetry with backscatter data. Four seismic stratigraphic units were defined and correlated with chronstratigraphic units in five piston cores covering the last 15.8 ka BP according to radiocarbon ages (14C). The depth-scale accuracy of chronostratigraphic units in cores is of key importance for the precise calculation of sedimentation rates. Correlation between the seismic profiles and cores were made by matching Multi-Sensor Core-Logger (MSCL) data and seismic reflection coefficients and amplitudes for different stratigraphic units. The impedance data derived from the logger were used to generate a synthetic seismogram. We used an approach to display, estimate, and correct the depth-scale discrepancies due to oversampling affecting the upper part of sedimentary series during piston coring. The method is based on the resynchronization of synthetic seismograms computed from high-quality physical property logs to the corresponding CHIRP profiles. Each sequence boundary represented by different reflection coefficient and various amplitude values were mapped for the whole gulf area from the pseudo-3D seismic data. Isopach and isochron maps were generated using 2-D cubic B-spline interpolation method to reconstruct basin evolution models through late glacial to Holocene. Each map shows various depositional period with respect to water level changes that has been controlled by sea level fluctuations in the SoM. The seismic units labeled as Unit S1-S4 from top to bottom display different seismic facies and geometries. Unit S1 is a transgressive marine mud drape younger than 10.6 ka BP, which lacustrine sediments, Unit S2 is a parallel bedded mud drape in the basin and progradational clinoforms on the shelf edge. It is dated between 13.9-10.6 ka BP, Unit S3 is characterized by erosional gullies and a clinoform architecture indicating a deltaic system dated between 15.8-13.9 ka BP. Unit S4 represents mounded sediments that are truncated by erosional gullies and dated >15.8 ka BP. Key words: Gulf of Gemlik, Seismic Stratigraphy, Numerical Modelling, Late Pleistocene to Holocene

  7. Internal structures of the nieuwpoort bank (southern north sea)

    NASA Astrophysics Data System (ADS)

    de Maeyer, P.; Wartel, S.; de Moor, G.

    The subbottom survey of the Nieuwpoort Banks allows recognition of 4 successive stages underlain by leper Clay: (1) The bank rests upon a sedimentary unit, at least 2 to 5 m thick, having a subhorizontal or wedge-like interior stratification. (2) This unit is cut by a subhorizontal erosive surface. (3) On top of this a first ridge, still recognizable on its interior structure and with shoreward-dipping foreset beds, developed. (4) On top of this former ridge the present-day bank was formed with shoreward-dipping foreset beds. Since the same structures are observed in the Stroom Bank, it seems likely that the above mentioned scheme can be generalized for all near-shore ridges close to the Belgian coast.

  8. Archive of digital chirp subbottom profile data collected during USGS cruise 10BIM04 offshore Cat Island, Mississippi, September 2010

    USGS Publications Warehouse

    Forde, Arnell S.; Dadisman, Shawn V.; Kindinger, Jack G.; Miselis, Jennifer L.; Wiese, Dana S.; Buster, Noreen A.

    2012-01-01

    In September of 2010, the U.S. Geological Survey (USGS), in cooperation with the U.S. Army Corps of Engineers (USACE), conducted a geophysical survey to investigate the geologic controls on barrier island framework of Cat Island, Miss., as part of a broader USGS study on Barrier Island Mapping (BIM). These surveys were funded through the Mississippi Coastal Improvements Program (MsCIP) and the Northern Gulf of Mexico (NGOM) Ecosystem Change and Hazard Susceptibility Project as part of the Holocene Coastal Evolution of the Mississippi-Alabama Region Subtask. This report serves as an archive of unprocessed digital chirp subbottom data, trackline maps, navigation files, GIS files, Field Activity Collection System (FACS) logs, and formal FGDC metadata. Gained (showing a relative increase in signal amplitude) digital images of the seismic profiles are also provided. Refer to the Acronyms page for expansions of acronyms and abbreviations used in this report. The USGS Saint Petersburg Coastal and Marine Science Center (SPCMSC) assigns a unique identifier to each cruise or field activity. For example, 10BIM04 tells us the data were collected in 2010 during the fourth field activity for that project in that calendar year. Refer to http://walrus.wr.usgs.gov/infobank/programs/html/definition/activity.html for a detailed description of the method used to assign the field activity identification (ID). All chirp systems use a signal of continuously varying frequency; the EdgeTech SB-512i system used during this survey produces high-resolution, shallow-penetration (typically less than 50 milliseconds (ms)) profile images of sub-seafloor stratigraphy. The towfish contains a transducer that transmits and receives acoustic energy; it was housed within a float system (built at the SPCMSC), which allows the towfish to be towed at a constant depth of 1.07 meters (m) below the sea surface. As transmitted acoustic energy intersects density boundaries, such as the seafloor or sub-surface sediment layers, some energy is reflected back toward the transducer, received, and recorded by a Personal Computer (PC)-based seismic acquisition system. This process is repeated at regular time intervals (for example, 0.125 seconds (s)), and returned energy is recorded for a specific duration (for example, 50 ms). In this way, a two-dimensional (2-D) vertical image of the shallow geologic structure beneath the ship track is produced. Figure 1 displays the acquisition geometry. Refer to table 1 for a summary of acquisition parameters and table 2 for trackline statistics. The archived trace data are in standard Society of Exploration Geophysicists (SEG) SEG Y rev. 0 format (Barry and others, 1975); the first 3,200 bytes of the card image header are in American Standard Code for Information Interchange (ASCII) format instead of Extended Binary Coded Decimal Interchange Code (EBCDIC) format. The SEG Y files may be downloaded and processed with commercial or public domain software such as Seismic Unix (SU) (Cohen and Stockwell, 2010). See the How To Download SEG Y Data page for download instructions. The printable profiles provided here are GIF images that were processed and gained using SU software, and they can be viewed from the Profiles page or from links located on the trackline maps; refer to the Software page for links to example SU processing scripts. The SEG Y files are available on the DVD version of this report or on the Web, downloadable via the USGS Coastal and Marine Geoscience Data System (http://cmgds.marine.usgs.gov). The data are also available for viewing using GeoMapApp (http://www.geomapapp.org) and Virtual Ocean (http://www.virtualocean.org) multi-platform open source software.

  9. Inversion of sonobuoy data from shallow-water sites with simulated annealing.

    PubMed

    Lindwall, Dennis; Brozena, John

    2005-02-01

    An enhanced simulated annealing algorithm is used to invert sparsely sampled seismic data collected with sonobuoys to obtain seafloor geoacoustic properties at two littoral marine environments as well as for a synthetic data set. Inversion of field data from a 750-m water-depth site using a water-gun sound source found a good solution which included a pronounced subbottom reflector after 6483 iterations over seven variables. Field data from a 250-m water-depth site using an air-gun source required 35,421 iterations for a good inversion solution because 30 variables had to be solved for, including the shot-to-receiver offsets. The sonobuoy derived compressional wave velocity-depth (Vp-Z) models compare favorably with Vp-Z models derived from nearby, high-quality, multichannel seismic data. There are, however, substantial differences between seafloor reflection coefficients calculated from field models and seafloor reflection coefficients based on commonly used Vp regression curves (gradients). Reflection loss is higher at one field site and lower at the other than predicted from commonly used Vp gradients for terrigenous sediments. In addition, there are strong effects on reflection loss due to the subseafloor interfaces that are also not predicted by Vp gradients.

  10. The Himalaya-Bengal Fan source to sink system - new insights by correlation of re-processed seismic data and IODP Expedition 354 results

    NASA Astrophysics Data System (ADS)

    Bergmann, Fenna; Schwenk, Tilmann; Spiess, Volkard; France-Lanord, Christian

    2016-04-01

    The Bengal Fan, hosted in the northern Indian Ocean, is the largest submarine fan on Earth. Fan evolution started in the Early Eocene as a direct response to the collision of India with the Asian continent in Middle Paleocene times. Subsequently the Himalayan plateau uplift was initiated. Thereby generated interactions with the regional climate caused the evolution of the Indian monsoonal system. Drained by the rivers Ganges and Brahmaputra, ~ 80% of eroded Himalayan sediments are deposited in the Bengal Fan. Hence, the Fan provides the most complete record of the Himalayan history and is well suited to investigate the direct link between the tectonic uplift and the climate evolution of the region. Sediments are transported onto the deep sea fan by turbidity currents building up chan-nel-levee systems. These channel-levee systems are the main architectural elements of the Bengal Fan and are suspected to have their onset in Late Miocene times. Frequent channel avulsion on the upper fan led to the abandonment of old channels and formation of new channel-levee systems or even channel-reoccupation. This complex erosional/depositional system involves lateral depocenter migration, probably on millennial timescales. Conse-quently, investigations of the Himalaya as sediment source begins with a comprehensive understanding of transport, deposition and modification within the Bengal Fan sediment sink. In February/March 2015 the IODP Expedition 354 drilled at 7 sites along a ~320 km long E-W transect at 8° N. Aiming at the recovery of pre-fan deposits and deposits of the Pliocene and Upper Miocene Fan evolution, three deep sites (900 - 1200 mbsf) were realized. These where complemented by four shallow sites (200-300 mbsf) for a detailed study of the depos-its of the last 1-2 million years, including the latest known channel activities (Holocene times). Several channel-levee systems and inter-channel deposits were drilled, active at different times of Fan evolution. To connect the sites of the drilling transect by means of seismo-stratigraphic analysis a large seismo-acoustic dataset gathered during cruises SO93 (1994), SO125/126 (1997) and SO188 (2006), all carried out in cooperation between the University of Bremen and the BGR, Hannover, is available. The dataset contains multichannel seismic data acquired with differ-ent seismic sources (GI-Gun/Watergun) to achieve differing subbottom penetration/resolution ratios. Although most of the pre-site survey data were already processed, major improve-ment could be gained by thoroughly (re) processing using new processing techniques and software developments. First processing results show significantly enhanced S/N ratio, reso-lution and reflector coherency. Full processing of the Watergun data was conducted for the first time. This high vertical resolution data has so far never been investigated and comple-ments the database, especially for a more detailed study of the upper few hundred meters of Bengal Fan deposits. First examinations of the watergun data in combination with drilling results proved them to be beneficial for the crucial borehole - seismic correlation and the investigations of the internal levee architecture, especially for the latest active channel-levee system.

  11. Association among active seafloor deformation, mound formation, and gas hydrate growth and accumulation within the seafloor of the Santa Monica Basin, offshore California

    USGS Publications Warehouse

    Paull, C.K.; Normark, W.R.; Ussler, W.; Caress, D.W.; Keaten, R.

    2008-01-01

    Seafloor blister-like mounds, methane migration and gas hydrate formation were investigated through detailed seafloor surveys in Santa Monica Basin, offshore of Los Angeles, California. Two distinct deep-water (??? 800??m water depth) topographic mounds were surveyed using an autonomous underwater vehicle (carrying a multibeam sonar and a chirp sub-bottom profiler) and one of these was explored with the remotely operated vehicle Tiburon. The mounds are > 10??m high and > 100??m wide dome-shaped bathymetric features. These mounds protrude from crests of broad anticlines (~ 20??m high and 1 to 3??km long) formed within latest Quaternary-aged seafloor sediment associated with compression between lateral offsets in regional faults. No allochthonous sediments were observed on the mounds, except slumped material off the steep slopes of the mounds. Continuous streams of methane gas bubbles emanate from the crest of the northeastern mound, and extensive methane-derived authigenic carbonate pavements and chemosynthetic communities mantle the mound surface. The large local vertical displacements needed to produce these mounds suggests a corresponding net mass accumulation has occurred within the immediate subsurface. Formation and accumulation of pure gas hydrate lenses in the subsurface is proposed as a mechanism to blister the seafloor and form these mounds. ?? 2008 Elsevier B.V. All rights reserved.

  12. Sedimentary response to ice stream advance and retreat on the Storfjorden Trough Mouth Fan (NW Barents Sea), during Late Weichselian

    NASA Astrophysics Data System (ADS)

    Pedrosa, Mayte; Camerlengui, Angelo; de Mol, Ben; Lucchi, Renata. G.; Úrgeles, Roger; Rebesco, Michele; Winsborrow, Monica; Laberg, Jan. S.; Andreassen, Karin; Accettella, Daniela

    2010-05-01

    This seafloor morphological study of the Storfjorden Trough Mouth Fan (TMF) (offshore Svalbard, NW Barents Sea) is based on new multibeam bathymetry and chirp sub-bottom profiler data acquired in 2007 during the BIO Hespérides cruise SVAIS that provides an unprecedented image of the sedimentary processes that accompanied the last advance and retreat of the Storfjorden Ice Stream. Compared to other glacial-marine sedimentary systems (such as the adjacent Bjørnøyrenna TMF), the Storfjorden TMF system is small and associated to a relatively small terrestrial ice sheet, approximately 40.000 km2, with local provenance from Svalbard and the Spitsbergen Bank. Due to this short distance from the ice source to the calving areas and the resulting short residence time of ice in the ice sheet, therefore the glacio -marine system of the Storfjorden reacts rapidly to climatic changes. The Storfjorden continental slope is characterized by three depositional lobes, produced by focused sedimentation at the terminus of ice streams that have changed their location with time. The superficial morphology features associated to the two northernmost lobes are straight gullies in the upper slope, and debris lobes starting from the midslope onwards. The seafloor expression of the southernmost lobe, adjacent to the much smaller Kveithola TMF, demonstrate almost no gully incisions and is dominated by the widespread occurrence of small-scale submarine landslides. The subbottom profiles illustrate that sediment failures occurred throughout the Late Neogene evolution of the southern Storfjorden and Kveithola margin, including large-scale mass transport deposits of up to 200 m thick. Seismic facies of the Neogene sequence shows an alternation of glacigenic debris flows and laminated sediment drape inferred to be plumites. Gullies incising glacigenic debris flows at the surface and subsurface and are filled by an interglacial drape sequence. The gullies are formed during each deglaciation phase, most likely by the erosive action of short-lived high density currents originated by sediment-loaded subglacial melt water discharge.At the outer continental shelf of the southernmost lobe a striking fresh linear straight, which has a width of 1, 5 kilometres and cut the morainal deposits. These features are interpreted as mega-scale glacial lineations, which are tentatively attributed to mega-iceberg scours. These lineations are witness the latest advances of the Storfjorden ice streams before the final retreat which was located at the southernmost lobe. One of the main pre-conditioning factors to slope instability on the southern part of the Storfjorden TMF is identified as high sedimentation rate plumites deposited on the middle-upper continental slope by glacial melt water plumes. This study is part of the SVAIS project (funded by the Spanish IPY), that has a main objective to improve the understanding and the relationship between sedimentation and ice sheet dynamics under natural climatic changes.

  13. Preliminary Report on Cruise NBP01-01, East Antarctic Margin

    NASA Astrophysics Data System (ADS)

    Leventer, A.; Brachfeld, S.; Domack, E.; Dunbar, R.; Manley, P.; McClennen, C.; Kryc, K.; Beaman, R.; Moy, A.; Pike, J.; Shevenell, A.; Taylor, F.

    2001-12-01

    Cruise NBP01-01 of the RVIB NB Palmer was a marine geologic and geophysical investigation of the East Antarctic Margin, from Wilkes Land to Edward VIII Gulf, between approximately 150 E to 50 E. The primary objective of the cruise was to develop a record of climate and oceanographic change during the Quaternary, using sediment cores collected via a combination of short and long coring (25 meter jumbo piston cores [JPCs]). Specific goals of this project include development of (1) a century to millennial-scale record of Holocene paleoenvironments and (2) a record of previous stadial and interstadial events on the shelf. Fieldwork on NBP01-01 is a continuation of previous work along the Antarctic Peninsula and in the Ross Sea that has helped us develop an understanding of both the glacial-interglacial history of Antarctica as well as the details of climate variability within the present interglacial. However, both the Antarctic Peninsula and the Ross Sea are influenced primarily by the West Antarctic Ice Sheet, while limited information has been acquired based on data from the East Antarctic Margin. Given large-scale differences between these systems, Cruise NBP0101 gave us the chance to combine our previous knowledge with new data to develop an integrated perspective on climate history in Antarctica through the Quaternary. Core sites were selected based on a combination of sub-bottom profiling via the Bathy2000 and seafloor mapping using the MultiBeam, in addition to information based on previous work. Two depositional environments were targeted - deep basins and troughs of the shelf, and the Prydz Channel and Amery Depression. Deeps investigated include the Mertz Trough, Mertz-Ninnis Trough, and the Dumont d'Urville Trough along the Wilkes Land Margin, the Svenner Channel in Prydz Bay, Nielsen Basin and Iceberg Alley along the Mac.Robertson Shelf, and Edward VIII Gulf, off Enderby Land. A total of 13 JPCs were recovered from these sites, with cores often paired to obtain both the highest resolution record possible and a lower resolution record reaching back to glacial conditions. The four cores opened so far demonstrate complete Holocene records and reach back to glacial sediments. In the Prydz Channel and Amery Depression, three JPCs were collected. Initial data suggest these cores penetrate sequences of up to 5 alternating siliceous mud and glacial units.

  14. Sedimentary processes in High Arctic lakes (Cape Bounty, Melville Island, Canada): What do sediments really record?

    NASA Astrophysics Data System (ADS)

    Normandeau, Alexandre; Lamoureux, Scott; Lajeunesse, Patrick; Francus, Pierre

    2016-04-01

    Lacustrine sedimentary sequences can hold a substantial amount of information regarding paleoenvironments, hydroclimate variability and extreme events, providing critical insights into past climate change. The study of lacustrine sediments is often limited to the analysis of sediment cores from which past changes are inferred. However, studies have provided evidence that the accumulation of sediments in lacustrine basins and their distribution can be affected by a wide range of internal and external forcing mechanisms. It is therefore crucial to have a good knowledge of the factors controlling the transport and distribution of sediments in lakes prior to investigating paleoenvironmental archives. To address this knowledge gap, the Cape Bounty Arctic Watershed Observatory (CBAWO), located on southern Melville Island in the Canadian High Arctic, was initiated in 2003 as a long term monitoring site with the aim of understanding the controls over sediment transport within similar paired watersheds and lakes. The East and West lakes have been monitored each year since 2003 to document the role of hydro-climate variability on water column processes and sediment deposition. Moorings recording water electrical conductivity, temperature, density, dissolved oxygen and turbidity, as well as sediment traps were deployed during the active hydrological period (generally May-July). These data were analyzed in combination with hydrological and climatic data from the watersheds. Additionally, a high-resolution bathymetric and sub-bottom survey was completed in 2015 and allowed imaging the lake floor and sub-surface in great detail. This combination of process and lake morphological data are unique in the Arctic. The morphostratigraphic analysis reveals two highly disturbed lake floors, being widely affected by subaqueous mass movements that were triggered during the last 2000 years. Backscatter intensity maps and the presence of bedforms on each delta foresets indicate that underflows (turbidity currents) generated at the river mouths are frequent and deliver coarse-grained sediments to the deeper waters. According to the 2003-2014 mooring data, no single hydroclimatic process can explain this underflow activity. Spring snowmelt is often responsible for delivering a substantial amount of sediment to the lakes in the form of underflows, while the contribution of summer rainfalls has also been important in some years. However, one of the largest rainfall recorded (100 mm over four days in August 2013) did not trigger a corresponding underflow event in West Lake, confirming that antecedent soil conditions can significantly reduce runoff and suspended sediment concentrations in the rivers. Moreover, high peaks of turbidity were recorded below ice cover, during the winter, a season thought to be inactive in terms of sedimentary processes. Hence, reconciling the range of processes responsible for sediment deposition and that generate both bedforms and subaqueous mass movements are important to developing consistent records and interpretations of sediment deposition in High Arctic lakes.

  15. Seafloor morphology of the continental slope in front the Petacalco Bay and its tsunamigenic relationship at the Mexican sector of the Middle American subduction zone

    NASA Astrophysics Data System (ADS)

    Mortera-Gutierrez, C. A.; Bandy, W. L.; Millan-Motolinia, C.; Ponce-Nuñez, F.; Ortega-Ramirez, J.

    2014-12-01

    The recent occurrence of offshore, large, earthquake ruptures in the western limit of the Guerrero Seismic Gap and the scattered data of seafloor morphology of the continental slope along this sector at the Mexican Mid American subduction zone have encouraged the UNAM marine geophysical group to initiate a mapping program at the Guerrero margin, from the shelf break to the Middle American Trench. The main objective of this initiative is to have a complete cover of the seafloor morphology of the Guerrero slope as the background data for comparative studies of the seafloor deformation in case of future offshore earthquake ruptures in this region. At he first stage of this initiative, we have mapped the continental slope in front the Petacalco Bay, west of the Guerrero Seismic Gap, where three important large earthquakes occurred and caused great damages in Mexico City: Petatlán earthquake (Mw=7.6) at 1979, Michoacán earthquake (Mw=8.1) and its aftershock (Mw=7.9) at 1985. Geophysical results of two campaigns carry in 2012 (MAMRIV12) and 2013 (BABPET13) on board the BO EL PUMA are presented which include multibeam data and subbottom profiles. These data sets cover an area between 101°W and 103°W, and from the shelf-slope break to the trench. The multibeam chart shows details of the hydrological erosion induced by many submarine cannons at the upper slope, whereas the seafloor relief in the lower slope is dominated by tectonic structures. The subbottom profiles and the seafloor morphology evidence zones of big slumps and faults. For first time the Rio Balsas submarine cannon is completed chart, reaching the trench basin. The river course is deflected, possibly by shear faulting. There are slump sites near the trench that probably one is associated to the 1925 tsunami at Zihuatanejo, Guerrero. The 1985 Michoacán aftershock was accompany by a small Tsunami. At that time, the lack of morphology data in this slope inhibited further studies of seafloor-deformation and its tsunamigenic relationship. Funding providing by UNAM-DGAPA-PAPIIT grants: IN115613 and IN115513

  16. The effects of tectonic deformation and sediment allocation on shelf habitats and megabenthic distribution and diversity in southern California

    NASA Astrophysics Data System (ADS)

    Switzer, Ryan D.; Parnell, P. Ed; Leichter, James L.; Driscoll, Neal W.

    2016-02-01

    Landscape and seascape structures are typically complex and manifest as patch mosaics within characteristic biomes, bordering one another in gradual or abrupt ecotones. The underlying patch structure in coastal shelf ecosystems is driven by the interaction of tectonic, sedimentary, and sea level dynamic processes. Animals and plants occupy and interact within these mosaics. Terrestrial landscape ecological studies have shown that patch structure is important for ecological processes such as foraging, connectivity, predation, and species dynamics. The importance of patch structure for marine systems is less clear because far fewer pattern-process studies have been conducted in these systems. For many coastal shelf systems, there is a paucity of information on how species occupy shelf seascapes, particularly for seascapes imbued with complex patch structure and ecotones that are common globally due to tectonic activity. Here, we present the results of a study conducted along a myriameter-scale gradient of bottom and sub-bottom geological forcing altered by tectonic deformation, sea level transgression and sediment allocation. The resulting seascape is dominated by unconsolidated sediments throughout, but also exhibits increasing density and size of outcropping patches along a habitat patch gradient forced by the erosion of a sea level transgressive surface that has been deformed and tilted by tectonic forcing. A combination of sub-bottom profiling, multibeam bathymetry, and ROV surveys of the habitats and the demersal megafauna occupying the habitats indicate (1) significant beta diversity along this gradient, (2) biological diversity does not scale with habitat diversity, and (3) species occupy the patches disproportionately (non-linearly) with regard to the proportional availability of their preferred habitats. These results indicate that shelf habitat patch structure modulates species specific processes and interactions with other species. Further studies are needed to examine experimentally the mechanics of how patch structure modulates ecological processes in shelf systems. Our results also provide further support for including multiple spatial scales of patch structure for the application of remote habitat sensing as a surrogate for biological community structure.

  17. The impact of floods and storms on the acoustic reflectivity of the inner continental shelf: A modeling assessment

    USGS Publications Warehouse

    Pratson, Lincoln F.; Hutton, E.W.H.; Kettner, A.J.; Syvitski, J.P.M.; Hill, P.S.; George, D.A.; Milligan, T.G.

    2007-01-01

    Flood deposition and storm reworking of sediments on the inner shelf can change the mixture of grain sizes on the seabed and thus its porosity, bulk density, bulk compressional velocity and reflectivity. Whether these changes are significant enough to be detectable by repeat sub-bottom sonar surveys, however, is uncertain. Here the question is addressed through numerical modeling. Episodic flooding of a large versus small river over the course of a century are modeled with HYDROTREND using the drainage basin characteristics of the Po and Pescara Rivers (respectively). A similarly long stochastic record of storms offshore of both rivers is simulated from the statistics of a long-term mooring recording of waves in the western Adriatic Sea. These time series are then input to the stratigraphic model SEDFLUX2D, which simulates flood deposition and storm reworking on the inner shelf beyond the river mouths. Finally, annual changes in seabed reflectivity across these shelf regions are computed from bulk densities output by SEDFLUX2D and compressional sound speeds computed from mean seafloor grain size using the analytical model of Buckingham [1997. Theory of acoustic attenuation, dispersion, and pulse propagation in unconsolidated granular materials including marine sediments. Journal of the Acoustical Society of America 102, 2579-2596; 1998. Theory of compressional and shear waves in fluidlike marine sediments. Journal of the Acoustical Society of America 103, 288-299; 2000. Wave propagation, stress relaxation, and grain-tograin shearing in saturated, unconsolidated marine sediments. Journal of the Acoustical Society of America 108, 2796-2815]. The modeling predicts reflectivities that change from 9 dB for muds farther offshore, values that agree with reflectivity measurements for these sediment types. On local scales of ???100 m, however, maximum changes in reflectivity are <0.5 dB. So are most annual changes in reflectivity over all water depths modeled (i.e., 0-35 m). Given that signal differences need to be ???2-3 dB to be resolved, the results suggest that grain-size induced changes in reflectivity caused by floods and storms will rarely be detectable by most current sub-bottom sonars. ?? 2006 Elsevier Ltd. All rights reserved.

  18. Geophysical Inversion with Adaptive Array Processing of Ambient Noise

    NASA Astrophysics Data System (ADS)

    Traer, James

    2011-12-01

    Land-based seismic observations of microseisms generated during Tropical Storms Ernesto and Florence are dominated by signals in the 0.15--0.5Hz band. Data from seafloor hydrophones in shallow water (70m depth, 130 km off the New Jersey coast) show dominant signals in the gravity-wave frequency band, 0.02--0.18Hz and low amplitudes from 0.18--0.3Hz, suggesting significant opposing wave components necessary for DF microseism generation were negligible at the site. Both storms produced similar spectra, despite differing sizes, suggesting near-coastal shallow water as the dominant region for observed microseism generation. A mathematical explanation for a sign-inversion induced to the passive fathometer response by minimum variance distortionless response (MVDR) beamforming is presented. This shows that, in the region containing the bottom reflection, the MVDR fathometer response is identical to that obtained with conventional processing multiplied by a negative factor. A model is presented for the complete passive fathometer response to ocean surface noise, interfering discrete noise sources, and locally uncorrelated noise in an ideal waveguide. The leading order term of the ocean surface noise produces the cross-correlation of vertical multipaths and yields the depth of sub-bottom reflectors. Discrete noise incident on the array via multipaths give multiple peaks in the fathometer response. These peaks may obscure the sub-bottom reflections but can be attenuated with use of Minimum Variance Distortionless Response (MVDR) steering vectors. A theory is presented for the Signal-to-Noise-Ratio (SNR) for the seabed reflection peak in the passive fathometer response as a function of seabed depth, seabed reflection coefficient, averaging time, bandwidth and spatial directivity of the noise field. The passive fathometer algorithm was applied to data from two drifting array experiments in the Mediterranean, Boundary 2003 and 2004, with 0.34s of averaging time. In the 2004 experiment, the response showed the array depth varied periodically with an amplitude of 1 m and a period of 7 s consistent with wave driven motion of the array. This introduced a destructive interference which prevents the SNR growing with averaging time, unless the motion is removed by use of a peak tracker.

  19. Recent Sedimentary Processes Along the Western Continental Margin of the South Korea Plateau, East Sea of Korea

    NASA Astrophysics Data System (ADS)

    Cukur, D.; Um, I. K.; Bahk, J. J.; Chun, J. H.; Lee, G. S.; Soo, K. G.; Horozal, S.; Kim, S. P.

    2017-12-01

    The continental margins of the marginal seas is largely shaped by a complex interplay of sediment transport processes directed both downslope and along-slope. Factors influence the sediment transport from shelf to the deep basin include: (i) seabed morphology, (ii) climate, (iii) sea level changes, (iv) slope stability, (v) oceanographic regime, and (vi) sediment sources. In order to understand the recent sedimentary processes along the western margin of the South Korea Plateau in the East Sea, we collected multiple geophysical datasets including the subbottom profiler and multibeam echosounder as well as geological sampling. Twelve echo types have been defined and interpreted as deposits formed by shallow marine, hemipelagic sedimentation, bottom currents, combined- (mass-movement/hemipelagic and hemipelagic/turbidites) and mass-movement-processes. Hemipelagic sedimentation, which is reflected as undisturbed layered sediments, appears to have been the primary sedimentary process throughout the study area. Two major slope-parallel channels appear to have acted as major conduits for turbidity currents from shallower shelf into the deep basins. Bottom current deposits, which is expressed as undulating seafloor morphology, are prevalent in the southern mid-slope at water depths between 250 to 450 m. Mass-transport deposits, consisting of chaotic seismic facies, occur in the upper and lower parts of the continental slope. Piston cores confirm the presence of MTDs that are characterized by mud clasts of variable size and shape. Multibeam bathymetry data show that these MTDs chiefly initiate on lower-slopes (400-600 m) where the gradient is up to 3°. In addition, subbottom profiles suggest the presence of numerous faults in close vicinity of headwall scarps; some are extending to the seafloor suggesting their recent activity. Earthquakes associated with tectonic activity are considered as the main triggering mechanism for these MTDs. Overall, the acoustic facies distribution shows that the sedimentary processes change downslope and differ within each physiographic province. In particular, the role of geological inheritance (i.e., structural folds and faults) on the geomorphology and sediment facies on the lower slopes appears to be quite important.

  20. Geologic framework of the northern North Carolina, USA inner continental shelf and its influence on coastal evolution

    USGS Publications Warehouse

    Thieler, E. Robert; Foster, David S.; Himmelstoss, Emily A.; Mallinson, David J.

    2013-01-01

    The inner continental shelf off the northern Outer Banks of North Carolina was mapped using sidescan sonar, interferometric swath bathymetry, and high-resolution chirp and boomer subbottom profiling systems. We use this information to describe the shallow stratigraphy, reinterpret formation mechanisms of some shoal features, evaluate local relative sea-levels during the Late Pleistocene, and provide new constraints, via recent bedform evolution, on regional sediment transport patterns. The study area is approximately 290 km long by 11 km wide, extending from False Cape, Virginia to Cape Lookout, North Carolina, in water depths ranging from 6 to 34 m. Late Pleistocene sedimentary units comprise the shallow geologic framework of this region and determine both the morphology of the inner shelf and the distribution of sediment sources and sinks. We identify Pleistocene sedimentary units beneath Diamond Shoals that may have provided a geologic template for the location of modern Cape Hatteras and earlier paleo-capes during the Late Pleistocene. These units indicate shallow marine deposition 15–25 m below present sea-level. The uppermost Pleistocene unit may have been deposited as recently as Marine Isotope Stage 3, although some apparent ages for this timing may be suspect. Paleofluvial valleys incised during the Last Glacial Maximum traverse the inner shelf throughout the study area and dissect the Late Pleistocene units. Sediments deposited in the valleys record the Holocene transgression and provide insight into the evolutionary history of the barrier-estuary system in this region. The relationship between these valleys and adjacent shoal complexes suggests that the paleo-Roanoke River did not form the Albemarle Shelf Valley complex as previously proposed; a major fluvial system is absent and thus makes the formation of this feature enigmatic. Major shoal features in the study area show mobility at decadal to centennial timescales, including nearly a kilometer of shoal migration over the past 134 yr. Sorted bedforms occupy ~ 1000 km2 of seafloor in Raleigh Bay, and indicate regional sediment transport patterns between Capes Hatteras and Lookout that help explain long-term sediment accumulation and morphologic development. Portions of the inner continental shelf with relatively high sediment abundance are characterized by shoals and shoreface-attached ridges, and where sediment is less abundant, the seafloor is dominated by sorted bedforms. These relationships are also observed in other passive margin settings, suggesting a continuum of shelf morphology that may have broad application for interpreting inner shelf sedimentation patterns.

  1. Evolution of mud-capped dredge pits following excavation: sediment trapping and slope instability

    NASA Astrophysics Data System (ADS)

    Obelcz, J.; Xu, K.; Bentley, S. J.; Li, C.; Miner, M. D.; O'Connor, M. C.; Wang, J.

    2016-02-01

    Many fluvial channels incised the Northern Gulf of Mexico inner continental shelf during the late Quaternary. Mud-capped dredge pits (MCDPs), which are generally elongate and deep (8-10 m) excavations, target sandy fluvial channel deposits for coastal restoration projects. The morphological evolution of dredge excavations in noncohesive sandy substrate is well studied, but MCDPs have up to a several-meter-thick veneer of Holocene shelf mud overlying sandy channel deposits. This stratigraphy is hypothesized to result in more complex post-dredge morphology than pit walls simply slumping to the angle of repose shortly after excavation. Numerical modeling of MCDP post-dredge response conducted prior to excavation indicates pit walls may retrogressively fail, which is accounted for in pit design by assigning no-dredge setback buffers from pipelines or cultural and environmental resources. To validate model results and test effectiveness of setback buffers, a geophysical survey of the Sandy Point MCDP (20 km west of the Mississippi River Delta in 10m deep water), where 1.7 million m3 of sandy sediment was excavated in 2012, was conducted May 2015. A total of 84 line-km of high-resolution chirp subbottom and a 27 km2 grid of swath bathymetry and sidescan sonar were collected. The data indicate the dredge pit walls are differentially slumping, with the western pit wall in a more active state of failure than the eastern wall. The western failures morphologically resemble features observed along the muddy Mississippi River Delta Front at water depths of 20-100 m, including bowl-shaped collapse failures and retrogressive stair-stepped slumps; these failures may play a key role in evaluating the distance of setback buffer zone to pipelines. These features indicate the cohesive mud overlying the sandy infill has a prominent role in pit wall stability. A 0.5-1 m thick acoustically transparent package overlies the entire pit floor (interpreted as a possible fluid mud layer), overlying 1-3 m of post-dredge deposition that is concentrated along the western wall and center of the pit. The Sandy Point MCDP lies within a clockwise gyre, and its relief may serve as a significant trap of suspended sediment. These findings emphasize the role MCDPs play in sediment dynamics as well as their potential for submarine geohazards.

  2. Methanogenic calcite, 13C-depleted bivalve shells, and gas hydrate from a mud volcano offshore southern California

    USGS Publications Warehouse

    Hein, J.R.; Normark, W.R.; McIntyre, B.R.; Lorenson, T.D.; Powell, C.L.

    2006-01-01

    Methane and hydrogen sulfide vent from a cold seep above a shallowly buried methane hydrate in a mud volcano located 24 km offshore southern California in?? 800 m of water. Bivalves, authigenic calcite, and methane hydrate were recovered in a 2.1 m piston core. Aragonite shells of two bivalve species are unusually depleted in 13C (to -91??? ??13C), the most 13C-depleted shells of marine macrofauna yet discovered. Carbon isotopes for both living and dead specimens indicate that they used, in part, carbon derived from anaerobically oxidized methane to construct their shells. The ??13C values are highly variable, but most are within the range -12??? to -91???. This variability may be diagnostic for identifying cold-seep-hydrate systems in the geologic record. Authigenic calcite is abundant in the cores down to ???1.5 m subbottom, the top of the methane hydrate. The calcite is depleted in 13C (??13C = -46??? to -58???), indicating that carbon produced by anaerobically oxidized methane is the main source of the calcite. Methane sources include a geologic hydrocarbon reservoir from Miocene source rocks, and biogenic and thermogenic degradation of organic matter in basin sediments. Oxygen isotopes indicate that most calcite formed out of isotopic equilibrium with ambient bottom water, under the influence of gas hydrate dissociation and strong methane flux. High metal content in the mud volcano sediment indicates leaching of basement rocks by fluid circulating along an underlying fault, which also allows for a high flux of fossil methane. ?? 2006 Geological Society of America.

  3. Archive of digital Chirp subbottom profile data collected during USGS cruises 10CCT01, 10CCT02, and 10CCT03, Mississippi and Alabama Gulf Islands, March and April 2010

    USGS Publications Warehouse

    Forde, Arnell S.; Dadisman, Shawn V.; Flocks, James G.; Wiese, Dana S.; DeWitt, Nancy T.; Pfeiffer, William R.; Kelso, Kyle W.; Thompson, Phillip R.

    2011-01-01

    This Digital Versatile Disc (DVD) publication was prepared by an agency of the United States Government. Although these data have been processed successfully on a computer system at the U.S. Geological Survey, no warranty expressed or implied is made regarding the display or utility of the data on any other system, nor shall the act of distribution imply any such warranty. The U.S. Geological Survey shall not be held liable for improper or incorrect use of the data described and (or) contained herein. Reference herein to any specific commercial product, process, or service by trade name, trademark, manufacturer, or otherwise does not constitute or imply its endorsement, recommendation, or favoring by the United States Government or any agency thereof.

  4. Archive of Digital Chirp Sub-bottom profile data collected during USGS cruise 09CCT01 offshore of Sabine Pass and Galveston, Texas, March 2009

    USGS Publications Warehouse

    Forde, Arnell S.; Dadisman, Shawn V.; Flocks, James G.; Dellapenna, Timothy M.; Sanford, Jordan M.; Wiese, Dana S.

    2010-01-01

    This Digital Versatile Disc (DVD) publication was prepared by an agency of the United States Government. Although these data have been processed successfully on a computer system at the U.S. Geological Survey, no warranty expressed or implied is made regarding the display or utility of the data on any other system, nor shall the act of distribution imply any such warranty. The U.S. Geological Survey shall not be held liable for improper or incorrect use of the data described and (or) contained herein. Reference herein to any specific commercial product, process, or service by trade name, trademark, manufacturer, or otherwise does not constitute or imply its endorsement, recommendation, or favoring by the United States Government or any agency thereof.

  5. A new seepage site south of Svalbard? Results from Eurofleets-2 BURSTER cruise

    NASA Astrophysics Data System (ADS)

    Giulia Lucchi, Renata; Morigi, Caterina; Sabbatini, Anna; Mazzini, Adriano; Krueger, Martin; de Vittor, Cinzia; Kovacevic, Vedrana; Deponte, Davide; Stefano, Graziani; Bensi, Manuel; Langone, Leonardo; Eurofleets2-Burster*, Scientific Party Of

    2017-04-01

    The oceanographic and environmental characteristics of the Kveithola Glacial Trough, located south of Svalbard, have been investigated during the Eurofleets2-BURSTER project onboard the German icebreaker Polarstern (expedition PS99-1a, June, 19-20, 2016). The inner part of the glacial trough contains a complex sediment drift that deposited under persistent bottom currents, active in the area after Last Glacial Maximum. Notwithstanding the highly dynamic environment depicted from the morphological and structural characteristics of the Kveithola sediment drift, previous studies indicated the presence of an apparently "stagnant" environment with black anoxic sediments and absence of bottom current related sediment features. We present the preliminary results from the new dataset that includes micropaleontological, geochemical and microbial analyses of multi-core sediments; morphological analyses of sea floor sediments with benthic camera (Ocean Floor Observatory System); acoustic analyses of the sub-bottom record, and oceanographic analyses of CTD-Rosette sampling, all together indicating the possible presence of a new seepage site in the Arctic area south of 75°N Latitude. *Bazzaro, M., Biebow, N., Carbonara, K., Caridi, F., Dominiczak, A., Gamboa Sojo, V.M., Laterza R., Le Gall, C., Musco, M.E., Povea, P., Relitti, F., Ruggiero, L., Rui, L., Sánchez Guillamón, O., Tagliaferro, M., Topchiy, M., Wiberg, D., Zoch, D.

  6. Using Multi-Disciplinary Data to Compile a Hydrocarbon Budget for GC600, a Natural Seep in the Gulf of Mexico

    NASA Astrophysics Data System (ADS)

    MacDonald, I. R.; Johansen, C.; Marty, E.; Natter, M.; Silva, M.; Hill, J. C.; Viso, R. F.; Lobodin, V.; Diercks, A. R.; Woolsey, M.; Macelloni, L.; Shedd, W. W.; Joye, S. B.; Abrams, M.

    2016-12-01

    Fluid exchange between the deep subsurface and the overlying ocean and atmosphere occurs at hydrocarbon seeps along continental margins. Seeps are key features that alter the seafloor morphology and geochemically affect the sediments that support chemosynthetic communities. However, the dynamics and discharge rates of hydrocarbons at cold seeps remain largely unconstrained. Here we merge complementary geochemical (oil fingerprinting), geophysical (seismic, subbottom, backscatter, multibeam) and video/imaging (Video Time Lapse Camera, DSV ALVIN video) data sets to constrain pathways and magnitudes of hydrocarbon fluxes from the source rock to the seafloor at a well-studied, prolific seep site in the Northern Gulf of Mexico (GC600). Oil fingerprinting showed compositional similarities for samples from the following collections: the reservoir, an active vent, and the sea-surface. This was consistent with reservoir structures and pathways identified in seismic data. Video data, which showed the spatial distribution of seep indicators such as bacteria mats, or hydrate outcrops at the sediment interface, were combined with known hydrocarbon fluxes from the literature and used to quantify the total hydrocarbon fluxes in the seep domain. Using a systems approach, we combined data sets and published values at various scales and resolutions to compile a preliminary hydrocarbon budget for the GC600 seep site. Total estimated in-flow of hydrocarbons was 2.07 x 109 mol/yr. The combined total of out-flow and sequestration amounted to 7.56 x 106 mol/yr leaving a potential excess (in-flow - out-flow) of 2.06 x 109 mol/yr. Thus quantification of the potential out-flow from the seep domains based on observable processes does not equilibrate with the theoretical inputs from the reservoir. Processes that might balance this budget include accumulation of gas hydrate and sediment free-gas, as well as greater efficiency of biological sinks.

  7. A global survey of the distribution of free gas in marine sediments

    NASA Astrophysics Data System (ADS)

    Fleischer, Peter; Orsi, Tim; Richardson, Michael

    2003-10-01

    Following the work of Aubrey Anderson in the Gulf of Mexico, we have attempted to quantify the global distribution of free gas in shallow marine sediments, and have identified and indexed over one hundred documented cases in the scientific and engineering literature. Our survey confirms previous assumptions, primarily that gas bubbles are ubiquitous in the organic-rich muds of coastal waters and shallow adjacent seas. Acoustic turbidity as recorded during seismo-acoustic surveys is the most frequently cited evidence used to infer the presence of seafloor gas. Biogenic methane predominates within these shallow subbottom deposits. The survey also reveals significant imbalances in the geographic distribution of studies, which might be addressed in the future by accessing proprietary data or local studies with limited distribution. Because of their global prevalence, growing interest in gassy marine sediments is understandable as their presence has profound scientific, engineering and environmental implications.

  8. Evidence for a common scale O(0.1) m that controls seabed scattering and reverberation in shallow water.

    PubMed

    Holland, Charles W

    2012-10-01

    Analysis of the spectral content of long-range reverberation yields two observations. First, there is a remarkably similar scale, O(0.1) m, between three diverse continental shelf regions. This is surprising given the complexity and diversity of geologic processes. Second, there is strong evidence that the scale is associated with heterogeneities within the sediment. Thus, sediment volume scattering, not interface scattering, controls long-range reverberation from a few hundred hertz to several kilohertz. This is also unexpected given that at long ranges the vertical grazing angles are less than the critical angle, and hence the penetration of the acoustic field into the sub-bottom is expected to be modest. The consistency of the scale, O(0.1) m, suggests an underlying feature or mechanism that is consistent across many ostensibly diverse geological settings. Neither the feature nor mechanism is known at this time.

  9. Search for ancient microorganisms in Lake Baikal

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hunter-Cevera, Jennie C.; Repin, Vladimir E.; Torok, Tamas

    Lake Baikal in Russia, the world's oldest and deepest continental lake lies in south central Siberia, near the border to Mongolia. The lake is 1,643 m deep and has an area of about 46,000 km2. It holds one-fifth of all the terrestrial fresh water on Earth. Lake Baikal occupies the deepest portion of the Baikal Rift Zone. It was formed some 30-45 million years ago. The isolated Lake Baikal ecosystem represents a unique niche in nature based on its historical formation. The microbial diversity present in this environment has not yet been fully harvested or examined for products and processesmore » of commercial interest and value. Thus, the collection of water, soil, and sub-bottom sediment samples was decided to characterize the microbial diversity of the isolated strains and to screen the isolates for their biotechnological value.« less

  10. High resolution time interval meter

    DOEpatents

    Martin, A.D.

    1986-05-09

    Method and apparatus are provided for measuring the time interval between two events to a higher resolution than reliability available from conventional circuits and component. An internal clock pulse is provided at a frequency compatible with conventional component operating frequencies for reliable operation. Lumped constant delay circuits are provided for generating outputs at delay intervals corresponding to the desired high resolution. An initiation START pulse is input to generate first high resolution data. A termination STOP pulse is input to generate second high resolution data. Internal counters count at the low frequency internal clock pulse rate between the START and STOP pulses. The first and second high resolution data are logically combined to directly provide high resolution data to one counter and correct the count in the low resolution counter to obtain a high resolution time interval measurement.

  11. Comparison of Two Grid Refinement Approaches for High Resolution Regional Climate Modeling: MPAS vs WRF

    NASA Astrophysics Data System (ADS)

    Leung, L.; Hagos, S. M.; Rauscher, S.; Ringler, T.

    2012-12-01

    This study compares two grid refinement approaches using global variable resolution model and nesting for high-resolution regional climate modeling. The global variable resolution model, Model for Prediction Across Scales (MPAS), and the limited area model, Weather Research and Forecasting (WRF) model, are compared in an idealized aqua-planet context with a focus on the spatial and temporal characteristics of tropical precipitation simulated by the models using the same physics package from the Community Atmosphere Model (CAM4). For MPAS, simulations have been performed with a quasi-uniform resolution global domain at coarse (1 degree) and high (0.25 degree) resolution, and a variable resolution domain with a high-resolution region at 0.25 degree configured inside a coarse resolution global domain at 1 degree resolution. Similarly, WRF has been configured to run on a coarse (1 degree) and high (0.25 degree) resolution tropical channel domain as well as a nested domain with a high-resolution region at 0.25 degree nested two-way inside the coarse resolution (1 degree) tropical channel. The variable resolution or nested simulations are compared against the high-resolution simulations that serve as virtual reality. Both MPAS and WRF simulate 20-day Kelvin waves propagating through the high-resolution domains fairly unaffected by the change in resolution. In addition, both models respond to increased resolution with enhanced precipitation. Grid refinement induces zonal asymmetry in precipitation (heating), accompanied by zonal anomalous Walker like circulations and standing Rossby wave signals. However, there are important differences between the anomalous patterns in MPAS and WRF due to differences in the grid refinement approaches and sensitivity of model physics to grid resolution. This study highlights the need for "scale aware" parameterizations in variable resolution and nested regional models.

  12. Growth of gas hydrate mounds and gas chimneys of the eastern margin of Japan Sea as revealed by MBES, SSS and SBP of AUV

    NASA Astrophysics Data System (ADS)

    Matsumoto, R.; Satoh, M.; Hiromatsu, M.; Tomaru, H.; Machiyama, H.

    2010-12-01

    A series of PC, ROV and SCS surveys to study the origin and evolution of gas hydrate systems along the eastern margin of Japan Sea have identified a number of shallow GH accumulations on the mounds, 300m to 500m in diameter and 30m to 40m high, on the Umitaka spur and Joetsu knoll in Joetsu basin with the WD of 880m to 1200m (Matsumoto et al., 2005; 2009). All of the hydrate mounds develop on gas chimneys as recognized by seismic profiles, and some are associated with gigantic methane plumes, 600m to 700m high. Multi Beam Echo Sounder (MBES), Side Scan Sonar (SSS) and Sub-Bottom Profiler (SBP) of AUV Urashima have revealed ultra-high resolution topographic features and subsurface structures of the mounds and adjacent areas during the JAMSTEC YK10-08 cruise, July 2010. AUV Urashima ran over the spur and knoll at 50m to 80m above seafloor at a cruising speed of 2.4 knots. MBES and SSS mosaics demonstrate two types of mounds. One is a low swell with smooth surface and weak reflectance, while the other is characterized by rough and uneven topographic features with strong SSS images due to incrustation by methane-induced carbonate concretions and gas hydrates. SBP provides clear stratigraphic and structural relations down to 50mbsf to 80mbsf and recognizes three stratigraphic units as I: upper massive unit (5-10m thick), II: middle evenly bedded unit (15-25m thick) and III: lower slightly bedded unit (> 15-25m thick). Gas chimneys grow up toward the seafloor through Units III, II, and I. When the ceiling of gas chimney stays within Unit III or II, the mound above the chimney is either low swell or nearly flat, while the swell grows up higher when the ceiling reaches to Unit I or the seafloor. Eventually, the ceiling breaks through the seafloor and protrudes to form GH mound up to 40m to 50m high, and then start to decay probably due to mechanical collapse and chemical dissolution of gas hydrates. The ceiling of gas chimneys is often represented by high amplitude, uneven acoustic reflectors on SBP, even below the seafloor. Deep thermogenic gases migrate upward in gas chimneys and accumulate as GH in the stability zone, whereas the sediments should dry due to excess gas supply and consumption of free water. Therefore, gases migrate through the stability zone up to shallower levels, where the increased water supply from the seafloor facilitates the accumulation of GH. On the other hand excess methane should be oxidized by seawater-derived sulfate to increase alkalinity and enhance carbonate precipitation. The ceiling of gas chimney is considered as a front of GH and carbonate mineralization. Migration of the mineralization front should result in the formation of vertically stacked buildups composed of the mixture of GH and carbonate concretions. Above model for the accumulation of shallow GH well explains high and low P-wave anomalies in shallow, gas chimney type GH system (Matsumoto et al., 2009).

  13. A method for generating high resolution satellite image time series

    NASA Astrophysics Data System (ADS)

    Guo, Tao

    2014-10-01

    There is an increasing demand for satellite remote sensing data with both high spatial and temporal resolution in many applications. But it still is a challenge to simultaneously improve spatial resolution and temporal frequency due to the technical limits of current satellite observation systems. To this end, much R&D efforts have been ongoing for years and lead to some successes roughly in two aspects, one includes super resolution, pan-sharpen etc. methods which can effectively enhance the spatial resolution and generate good visual effects, but hardly preserve spectral signatures and result in inadequate analytical value, on the other hand, time interpolation is a straight forward method to increase temporal frequency, however it increase little informative contents in fact. In this paper we presented a novel method to simulate high resolution time series data by combing low resolution time series data and a very small number of high resolution data only. Our method starts with a pair of high and low resolution data set, and then a spatial registration is done by introducing LDA model to map high and low resolution pixels correspondingly. Afterwards, temporal change information is captured through a comparison of low resolution time series data, and then projected onto the high resolution data plane and assigned to each high resolution pixel according to the predefined temporal change patterns of each type of ground objects. Finally the simulated high resolution data is generated. A preliminary experiment shows that our method can simulate a high resolution data with a reasonable accuracy. The contribution of our method is to enable timely monitoring of temporal changes through analysis of time sequence of low resolution images only, and usage of costly high resolution data can be reduces as much as possible, and it presents a highly effective way to build up an economically operational monitoring solution for agriculture, forest, land use investigation, environment and etc. applications.

  14. Archive of digital Chirp sub-bottom profile data collected during USGS Cruise 07SCC01 offshore of the Chandeleur Islands, Louisiana, June 2007

    USGS Publications Warehouse

    Forde, Arnell S.; Dadisman, Shawn V.; Flocks, James G.; Wiese, Dana S.

    2010-01-01

    In June of 2007, the U.S. Geological Survey (USGS) conducted a geophysical survey offshore of the Chandeleur Islands, Louisiana, in cooperation with the Louisiana Department of Natural Resources (LDNR) as part of the USGS Barrier Island Comprehensive Monitoring (BICM) project. This project is part of a broader study focused on Subsidence and Coastal Change (SCC). The purpose of the study was to investigate the shallow geologic framework and monitor the enviromental impacts of Hurricane Katrina (Louisiana landfall was on August 29, 2005) on the Gulf Coast's barrier island chains. This report serves as an archive of unprocessed digital 512i and 424 Chirp sub-bottom profile data, trackline maps, navigation files, Geographic Information System (GIS) files, Field Activity Collection System (FACS) logs, observer's logbook, and formal Federal Geographic Data Committee (FGDC) metadata. Gained (a relative increase in signal amplitude) digital images of the seismic profiles are also provided. Refer to the Acronyms page for expansion of acronyms and abbreviations used in this report. The USGS St. Petersburg Coastal and Marine Science Center (SPCMSC) assigns a unique identifier to each cruise or field activity. For example, 07SCC01 tells us the data were collected in 2007 for the Subsidence and Coastal Change (SCC) study and the data were collected during the first field activity for that study in that calendar year. Refer to http://walrus.wr.usgs.gov/infobank/programs/html/definition/activity.html for a detailed description of the method used to assign the field activity identification (ID). All Chirp systems use a signal of continuously varying frequency; the Chirp systems used during this survey produce high resolution, shallow penetration profile images beneath the seafloor. The towfish is a sound source and receiver, which is typically towed 1 - 2 m below the sea surface. The acoustic energy is reflected at density boundaries (such as the seafloor or sediment layers beneath the seafloor), detected by a receiver, and recorded by a PC-based seismic acquisition system. This process is repeated at timed intervals (for example, 0.125 s) and recorded for specific intervals of time (for example, 50 ms). In this way, a two-dimensional vertical image of the shallow geologic structure beneath the ship track is produced. Figure 1 displays the acquisition geometry. Refer to table 1 for a summary of acquisition parameters. See the digital FACS equipment log (11-KB PDF) for details about the acquisition equipment used. Table 2 lists trackline statistics. Scanned images of the handwritten FACS logs and handwritten science logbook (449-KB PDF) are also provided. The archived trace data are in standard Society of Exploration Geophysicists (SEG) SEG-Y rev 1 format (Norris and Faichney, 2002); ASCII character encoding is used for the first 3,200 bytes of the card image header instead of the SEG-Y rev 0 (Barry and others, 1975) EBCDIC format. The SEG-Y files may be downloaded and processed with commercial or public domain software such as Seismic Unix (SU) (Cohen and Stockwell, 2010). See the How To Download SEG-Y Data page for download instructions. The web version of this archive does not contain the SEG-Y trace files. These files are very large and would require extremely long download times. To obtain the complete DVD archive, contact USGS Information at 1-888-ASK-USGS or infoservices@usgs.gov. The printable profiles provided here are GIF images that were processed and gained using SU software; refer to the Software page for links to example SU processing scripts and USGS software for viewing the SEG-Y files (Zihlman, 1992). The processed SEG-Y data were also exported to Chesapeake Technology, Inc. (CTI) SonarWeb software to produce an interactive version of the profile that allows the user to obtain a geographic location and depth from the profile for a given cursor position. This information is displayed in the status bar of the browser.

  15. Archive of digital chirp subbottom profile data collected during USGS cruise 12BIM03 offshore of the Chandeleur Islands, Louisiana, July 2012

    USGS Publications Warehouse

    Forde, Arnell S.; Miselis, Jennifer L.; Wiese, Dana S.

    2014-01-01

    From July 23 - 31, 2012, the U.S. Geological Survey conducted geophysical surveys to investigate the geologic controls on barrier island framework and long-term sediment transport along the oil spill mitigation sand berm constructed at the north end and just offshore of the Chandeleur Islands, La. (figure 1). This effort is part of a broader USGS study, which seeks to better understand barrier island evolution over medium time scales (months to years). This report serves as an archive of unprocessed digital chirp subbottom data, trackline maps, navigation files, Geographic Information System (GIS) files, Field Activity Collection System (FACS) logs, and formal Federal Geographic Data Committee (FGDC) metadata. Gained (showing a relative increase in signal amplitude) digital images of the seismic profiles are also provided. Refer to the Abbreviations page for expansions of acronyms and abbreviations used in this report. The USGS St. Petersburg Coastal and Marine Science Center (SPCMSC) assigns a unique identifier to each cruise or field activity. For example, 12BIM03 tells us the data were collected in 2012 during the third field activity for that project in that calendar year and BIM is a generic code, which represents efforts related to Barrier Island Mapping. Refer to http://walrus.wr.usgs.gov/infobank/programs/html/definition/activity.html for a detailed description of the method used to assign the field activity ID. All chirp systems use a signal of continuously varying frequency; the EdgeTech SB-424 system used during this survey produces high-resolution, shallow-penetration (typically less than 50 milliseconds (ms)) profile images of sub-seafloor stratigraphy. The towfish contains a transducer that transmits and receives acoustic energy and is typically towed 1 - 2 m below the sea surface. As transmitted acoustic energy intersects density boundaries, such as the seafloor or sub-surface sediment layers, energy is reflected back toward the transducer, received, and recorded by a PC-based seismic acquisition system. This process is repeated at regular time intervals (for example, 0.125 seconds (s)) and returned energy is recorded for a specific duration (for example, 50 ms). In this way, a two-dimensional (2-D) vertical image of the shallow geologic structure beneath the ship track is produced. Figure 2 displays the acquisition geometry. Refer to table 1 for a summary of acquisition parameters and table 2 for trackline statistics. The archived trace data are in standard Society of Exploration Geophysicists (SEG) SEG Y rev. 0 format (Barry and others, 1975); the first 3,200 bytes of the card image header are in ASCII format instead of EBCDIC format. The SEG Y files may be downloaded and processed with commercial or public domain software such as Seismic Unix (SU) (Cohen and Stockwell, 2010). See the How To Download SEG Y Data page for download instructions. The web version of this archive does not contain the SEG Y trace files. These files are very large and would require extremely long download times. To obtain the complete DVD archive, contact USGS Information Services at 1-888-ASK-USGS or infoservices@usgs.gov. The printable profiles provided here are GIF images that were processed and gained using SU software and can be viewed from the Profiles page or from links located on the trackline maps; refer to the Software page for links to example SU processing scripts. The SEG Y files are available on the DVD version of this report or on the Web, downloadable via the USGS Coastal and Marine Geoscience Data System (http://cmgds.marine.usgs.gov). The data are also available for viewing using GeoMapApp (http://www.geomapapp.org) and Virtual Ocean (http://www.virtualocean.org) multi-platform open source software. Detailed information about the navigation system used can be found in table 1 and the Field Activity Collection System (FACS) logs. To view the trackline maps and navigation files, and for more information about these items, see the Navigation page.

  16. New constraints on the structure of Hess Deep from regional- and micro-bathymetry data acquired during RRS James Cook in Jan-Feb 2008 (JC021)

    NASA Astrophysics Data System (ADS)

    Shillington, D. J.; Ferrini, V. L.; MacLeod, C. J.; Teagle, D. A.; Gillis, K. M.; Cazenave, P. W.; Hurst, S. D.; Scientific Party, J.

    2008-12-01

    In January-February 2008, new geophysical and geological data were acquired in Hess Deep using the RRS James Cook and the British ROV Isis. Hess Deep provides a tectonic window into oceanic crust emplaced by fast seafloor spreading at the East Pacific Rise, thereby offering the opportunity to test competing hypotheses for oceanic crustal accretion. The goal of this cruise was to collect datasets that can constrain the structure and composition of the lower crustal section exposed in the south-facing slope of the Intrarift Ridge just north of the Deep, and thus provide insights into the emplacement of gabbroic lower crust at fast spreading rates. Additionally, the acquired datasets provide site survey data for IODP Proposal 551-Full. The following datasets were acquired during JC021: 1) regional multibeam bathymetry survey complemented with sub-bottom profiler (SBP) data (in selected areas), 2) two micro-bathymetry surveys, and 3) seafloor rock samples acquired with an ROV. Here we present grids of regional multibeam and microbathymetry data following post-cruise processing. Regional multibeam bathymetry were acquired using the hull-mounted Kongsberg Simrad EM120 system (12 kHz). These data provide new coverage of the northern flank of the rift as far east as 100°W, which show that it comprises of a series of 50- to 100-km-long en echelon segments. Both E-W and NE-SW striking features are observed in the immediate vicinity of the Deep, including in a newly covered region to the SW of the rift tip. Such features might arise due to the rotation of the Galapagos microplate(s), as proposed by other authors. The ROV Isis acquired micro-bathymetry data in two areas using a Simrad SM2000 (200 kHz) multibeam sonar. Data were acquired at a nominal altitude of ~100 m and speed of 0.3 kts to facilitate high-resolution mapping of seabed features and also permit coverage of two relatively large areas. Swath widths were ~200- 350 m depending on noise and seabed characteristics. Following the cruise, we reprocessed navigation and sonar data using software tools developed through National Deep Submergence Facility (USA) to 1) regenerate seafloor picks with more robust algorithm, 2) incorporate high-resolution navigation (which could not be included in shipboard processing) and 3) correct for attitude variations. The first survey covers a ~15 km2 area on the south-facing slope of the Intrarift Ridge immediately north of the Deep, where lower crustal gabbros have been sampled by Isis during JC021 and by dredging and other deep submergence vehicles during previous cruises. This area also contains the highest priority drill sites from IODP Proposal 551-Full. The second survey covers a ~5.5 km2 area on the Intrarift Ridge and its southern flank, including the location of ODP Site 894. Both grids show structures that strike both E-W and NE-SW, similar to what is observed at a larger scale in the regional bathymetry data. The first survey area also contains a series of sedimented benches, which might be suitable drilling targets. The second survey is characterized by steep scarps that predominantly strike NE-SW. These features were observed to correspond to sizable cliffs during seafloor operations with Isis.

  17. Single sensor processing to obtain high resolution color component signals

    NASA Technical Reports Server (NTRS)

    Glenn, William E. (Inventor)

    2010-01-01

    A method for generating color video signals representative of color images of a scene includes the following steps: focusing light from the scene on an electronic image sensor via a filter having a tri-color filter pattern; producing, from outputs of the sensor, first and second relatively low resolution luminance signals; producing, from outputs of the sensor, a relatively high resolution luminance signal; producing, from a ratio of the relatively high resolution luminance signal to the first relatively low resolution luminance signal, a high band luminance component signal; producing, from outputs of the sensor, relatively low resolution color component signals; and combining each of the relatively low resolution color component signals with the high band luminance component signal to obtain relatively high resolution color component signals.

  18. Immersive, hands-on, team-based geophysical education at the University of Texas Marine Geology and Geophysics Field Course

    NASA Astrophysics Data System (ADS)

    Saustrup, S.; Gulick, S. P.; Goff, J. A.; Davis, M. B.; Duncan, D.; Reece, R.

    2013-12-01

    The University of Texas Institute for Geophysics (UTIG), part of the Jackson School of Geosciences, annually offers a unique and intensive three-week marine geology and geophysics field course during the spring/summer semester intersession. Now entering its seventh year, the course transitions students from a classroom environment through real-world, hands-on field acquisition, on to team-oriented data interpretation, culminating in a professional presentation before academic and industry employer representatives. The course is available to graduate students and select upper-division undergraduates, preparing them for direct entry into the geoscience workforce or for further academic study. Geophysical techniques used include high-resolution multichannel seismic reflection, CHIRP sub-bottom profiling, multibeam bathymetry, sidescan sonar, sediment coring, grab sampling, data processing, and laboratory analysis of sediments. Industry-standard equipment, methods, software packages, and visualization techniques are used throughout the course, putting students ahead of many of their peers in this respect. The course begins with a 3-day classroom introduction to the field area geology, geophysical methods, and computing resources used. The class then travels to the Gulf Coast for a week of hands-on field and lab work aboard two research vessels: UTIG's 22-foot, aluminum hulled Lake Itasca; and NOAA's 82-foot high-speed catamaran R/V Manta. The smaller vessel handles primarily shallow, inshore targets using multibeam bathymetry, sidescan sonar, and grab sampling. The larger vessel is used both inshore and offshore for multichannel seismic, CHIRP profiling, multibeam bathymetry, gravity coring, and vibracoring. Field areas to date have included Galveston and Port Aransas, Texas, and Grand Isle, Louisiana, with further work in Grand Isle scheduled for 2014. In the field, students work in teams of three, participating in survey design, instrument set-up, field deployment, data acquisition optimization, quality control, data archival, log-keeping, real-time data processing, laboratory sediment analysis, and even boat-handling. Teams are rotated through the two vessels and the onshore field laboratory to ensure that each student has hands-on experience with each aspect of the process. Although all students work on all data areas in the field, after returning from the field each team is assigned a particular region or geologic problem to interpret. Each team prepares and presents a formal presentation to UTIG researchers and industry representatives, explaining and defending their interpretations. This unique approach to hands-on field training, real-world science, and project-based teamwork helps prepare students for direct entry into the workforce, giving them a leg up on competitors for positions. This course has an impressive success ratio to show, with many students receiving job offers directly as a result of their participation in the course.

  19. Magnetic investigation of the mid-Holocene aged coastal lake Heimerdalsvatnet in the Lofoten Islands, northern Norway

    NASA Astrophysics Data System (ADS)

    Murdock, K. J.; Brown, L. L.

    2012-12-01

    The coastal lake Heimerdalsvatnet is located on the island of Vestvågøya in the Lofoten Islands off the northern coast of Norway. Recently, Balascio et al. (2011) performed a comprehensive investigation of the lake using bathymetric and sub-bottom profiles, bulk geochemistry, diatom assemblages, molecular biomarkers, high resolution X-ray fluorescence (XRF) scans, and magnetic susceptibility to study its geologic history over the past 7800 years. They determined the lake had undergone a regressive sea level sequence and identified three distinct and separate units exemplifying the transition of a restricted marine environment within the lake to a completely freshwater lacustrine setting. Unit I, located at the bottom of the 5.8m sediment core, spans 7800-6500 years before present and is at a period of time when sea level was higher than the edge of the lake basin. Magnetic susceptibility is extremely low during this period, and it is theorized that this is due to stratification within the lake from a density difference between the marine salt water and the influx of freshwater. Unit II is broken into Unit IIa and IIb, making up the transitional period within the lake history from 6500 to 4900 years before present. This phase is marked by fluxes of higher and lower magnetic susceptibility and shifts between more freshwater to brackish water biological markers. Unit III (4900 years to present) has high magnetic susceptibility compared to the other two units, and represents the final stage of the lake as a completely freshwater environment. Questions remain about the lake, such as what was driving the changes in magnetic susceptibility? Was it dilution of the magnetic grains due to higher productivity of organisms within the lake, or is it related to dissolution of magnetite due to anoxic conditions caused by lake stratification? Rock magnetic investigations using magnetic susceptibility, hysteresis parameters, and Curie temperature analyses have led to a better understanding of the causes of the magnetic fluctuations within the lake. In addition to Heimerdalsvatnet providing a wealth of information about sea level changes in the Arctic, it can also offer a unique opportunity to study paleomagnetic data during the Holocene. Initial measurements (performed at the Laboratoire de paléomagnétisme sédimentaire of ISMER) showed reliable paleomagnetic data for the most recent Unit III. However, Units I and II are not as consistent as Unit III. The rock magnetic investigation outlined above is also being used to better constrain the causes of inconsistency within the paleomagnetic record and provide insight as to how the paleomagnetic data can be interpreted at older ages.

  20. Image resolution enhancement via image restoration using neural network

    NASA Astrophysics Data System (ADS)

    Zhang, Shuangteng; Lu, Yihong

    2011-04-01

    Image super-resolution aims to obtain a high-quality image at a resolution that is higher than that of the original coarse one. This paper presents a new neural network-based method for image super-resolution. In this technique, the super-resolution is considered as an inverse problem. An observation model that closely follows the physical image acquisition process is established to solve the problem. Based on this model, a cost function is created and minimized by a Hopfield neural network to produce high-resolution images from the corresponding low-resolution ones. Not like some other single frame super-resolution techniques, this technique takes into consideration point spread function blurring as well as additive noise and therefore generates high-resolution images with more preserved or restored image details. Experimental results demonstrate that the high-resolution images obtained by this technique have a very high quality in terms of PSNR and visually look more pleasant.

  1. Impact of high resolution land surface initialization in Indian summer monsoon simulation using a regional climate model

    NASA Astrophysics Data System (ADS)

    Unnikrishnan, C. K.; Rajeevan, M.; Rao, S. Vijaya Bhaskara

    2016-06-01

    The direct impact of high resolution land surface initialization on the forecast bias in a regional climate model in recent years over Indian summer monsoon region is investigated. Two sets of regional climate model simulations are performed, one with a coarse resolution land surface initial conditions and second one used a high resolution land surface data for initial condition. The results show that all monsoon years respond differently to the high resolution land surface initialization. The drought monsoon year 2009 and extended break periods were more sensitive to the high resolution land surface initialization. These results suggest that the drought monsoon year predictions can be improved with high resolution land surface initialization. Result also shows that there are differences in the response to the land surface initialization within the monsoon season. Case studies of heat wave and a monsoon depression simulation show that, the model biases were also improved with high resolution land surface initialization. These results show the need for a better land surface initialization strategy in high resolution regional models for monsoon forecasting.

  2. High Resolution Image Reconstruction from Projection of Low Resolution Images DIffering in Subpixel Shifts

    NASA Technical Reports Server (NTRS)

    Mareboyana, Manohar; Le Moigne-Stewart, Jacqueline; Bennett, Jerome

    2016-01-01

    In this paper, we demonstrate a simple algorithm that projects low resolution (LR) images differing in subpixel shifts on a high resolution (HR) also called super resolution (SR) grid. The algorithm is very effective in accuracy as well as time efficiency. A number of spatial interpolation techniques using nearest neighbor, inverse-distance weighted averages, Radial Basis Functions (RBF) etc. used in projection yield comparable results. For best accuracy of reconstructing SR image by a factor of two requires four LR images differing in four independent subpixel shifts. The algorithm has two steps: i) registration of low resolution images and (ii) shifting the low resolution images to align with reference image and projecting them on high resolution grid based on the shifts of each low resolution image using different interpolation techniques. Experiments are conducted by simulating low resolution images by subpixel shifts and subsampling of original high resolution image and the reconstructing the high resolution images from the simulated low resolution images. The results of accuracy of reconstruction are compared by using mean squared error measure between original high resolution image and reconstructed image. The algorithm was tested on remote sensing images and found to outperform previously proposed techniques such as Iterative Back Projection algorithm (IBP), Maximum Likelihood (ML), and Maximum a posterior (MAP) algorithms. The algorithm is robust and is not overly sensitive to the registration inaccuracies.

  3. SEAFLOOR MANIFESTATIONS OF GAS VENTING AND NEAR SEAFLOOR GAS HYDRATE OCCURRENCES

    NASA Astrophysics Data System (ADS)

    Paull, C. K.; Ussler, W.; Caress, D. W.; Thomas, H.; Lundsten, E.; Riedel, M.; Lapham, L.

    2009-12-01

    High-resolution multibeam bathymetry and chirp seismic profiles collected with an AUV complimented by ROV observations and sampling reveal the fine scale geomorphology and seafloor structures associated with gas venting and/or near subsurface gas hydrate accumulations along the Pacific North American continental margin. Sites from Santa Monica Basin, northern and southern Hydrate Ridge, Barkley Canyon, Bullseye Vent and three previously unexplored vent sites near Bullseye Vent have been recently investigated. The new AUV data allow the identification of features and seafloor textures that were previously undetected and reveal the impact of gas venting, gas hydrate development and related phenomena on the seafloor morphology. Distinct geomorphic characteristics are interpreted to represent different stages in the development and evolution of the seafloor in these areas. The more mature features include distinct (>10 m high) elevated features (e.g., Santa Monica Mounds and the Hydrate Ridge Pinnacle), widespread areas where methane-derived carbonates are exposed on the surrounding seafloor (e.g., both Hydrate Ridge sites, and an unnamed ridge north of Bullseye Vent), circular seafloor craters with diameters of 3 to 50 m that appear to be associated with missing sections of the original seafloor (e.g., Bullseye Vent, northern Hydrate Ridge, and an unnamed ridge north of Bullseye Vent). Smaller mound-like features (<10 m in diameter and 1-3 m higher than the surrounding seafloor occur at Barkley Canyon and a newly explored vent system called Spinnaker Vent 6 km NW of Bullseye vent. Solid lens of gas hydrate are occasionally exposed along fractures on the sides of these mounds and suggest that these are push-up features associated with gas hydrate growth within the near seafloor sediments. The existence of both extensive methane-derived carbonates and chemosynthetic biological communities characterized by Vesicomya clams and Lamellibrachia tubeworms (which are slow growing) indicate that methane venting has occurred for protracted periods of time at these sites. However, the youngest appearing features occur in a gulch ~1 km NE of Bullseye Vent. They are associated with more-subtle (2-3 m in diameter and ~0.5 m high) seafloor mounds, with their crests crossed with small cracks lined with white bacterial mats, lack exposed methane-derived carbonates, Vesicomya clams or Lamellibrachia tubeworms. ROV-collected vibracores (<1.5 cm long) obtained from these subtle mounds characteristically encountered a hard layer at 30-60 cm sub-bottom. Where this layer was penetrated, methane bubbles would spontaneously gush out the hole and continue to flow out for more than an hour. These observations suggest that these small mounds are young features which have considerable volumes of over-pressured gas trapped near the seafloor. Together these observations reveal the integrated effect that gas and/or gas hydrate occurrences can have on the seafloor. The existence of apparently over-pressured gas within ~1 m of the seafloor has intriguing implications as to the geo-hazard potential of such sites.

  4. Arctic storms simulated in atmospheric general circulation models under uniform high, uniform low, and variable resolutions

    NASA Astrophysics Data System (ADS)

    Roesler, E. L.; Bosler, P. A.; Taylor, M.

    2016-12-01

    The impact of strong extratropical storms on coastal communities is large, and the extent to which storms will change with a warming Arctic is unknown. Understanding storms in reanalysis and in climate models is important for future predictions. We know that the number of detected Arctic storms in reanalysis is sensitive to grid resolution. To understand Arctic storm sensitivity to resolution in climate models, we describe simulations designed to identify and compare Arctic storms at uniform low resolution (1 degree), at uniform high resolution (1/8 degree), and at variable resolution (1 degree to 1/8 degree). High-resolution simulations resolve more fine-scale structure and extremes, such as storms, in the atmosphere than a uniform low-resolution simulation. However, the computational cost of running a globally uniform high-resolution simulation is often prohibitive. The variable resolution tool in atmospheric general circulation models permits regional high-resolution solutions at a fraction of the computational cost. The storms are identified using the open-source search algorithm, Stride Search. The uniform high-resolution simulation has over 50% more storms than the uniform low-resolution and over 25% more storms than the variable resolution simulations. Storm statistics from each of the simulations is presented and compared with reanalysis. We propose variable resolution as a cost-effective means of investigating physics/dynamics coupling in the Arctic environment. Future work will include comparisons with observed storms to investigate tuning parameters for high resolution models. Sandia National Laboratories is a multi-program laboratory managed and operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin Corporation, for the U.S. Department of Energy's National Nuclear Security Administration under contract DE-AC04-94AL85000. SAND2016-7402 A

  5. Attention Modifies Spatial Resolution According to Task Demands.

    PubMed

    Barbot, Antoine; Carrasco, Marisa

    2017-03-01

    How does visual attention affect spatial resolution? In texture-segmentation tasks, exogenous (involuntary) attention automatically increases resolution at the attended location, which improves performance where resolution is too low (at the periphery) but impairs performance where resolution is already too high (at central locations). Conversely, endogenous (voluntary) attention improves performance at all eccentricities, which suggests a more flexible mechanism. Here, using selective adaptation to spatial frequency, we investigated the mechanism by which endogenous attention benefits performance in resolution tasks. Participants detected a texture target that could appear at several eccentricities. Adapting to high or low spatial frequencies selectively affected performance in a manner consistent with changes in resolution. Moreover, adapting to high, but not low, frequencies mitigated the attentional benefit at central locations where resolution was too high; this shows that attention can improve performance by decreasing resolution. Altogether, our results indicate that endogenous attention benefits performance by modulating the contribution of high-frequency information in order to flexibly adjust spatial resolution according to task demands.

  6. Attention Modifies Spatial Resolution According to Task Demands

    PubMed Central

    Barbot, Antoine; Carrasco, Marisa

    2017-01-01

    How does visual attention affect spatial resolution? In texture-segmentation tasks, exogenous (involuntary) attention automatically increases resolution at the attended location, which improves performance where resolution is too low (at the periphery) but impairs performance where resolution is already too high (at central locations). Conversely, endogenous (voluntary) attention improves performance at all eccentricities, which suggests a more flexible mechanism. Here, using selective adaptation to spatial frequency, we investigated the mechanism by which endogenous attention benefits performance in resolution tasks. Participants detected a texture target that could appear at several eccentricities. Adapting to high or low spatial frequencies selectively affected performance in a manner consistent with changes in resolution. Moreover, adapting to high, but not low, frequencies mitigated the attentional benefit at central locations where resolution was too high; this shows that attention can improve performance by decreasing resolution. Altogether, our results indicate that endogenous attention benefits performance by modulating the contribution of high-frequency information in order to flexibly adjust spatial resolution according to task demands. PMID:28118103

  7. A digital gigapixel large-format tile-scan camera.

    PubMed

    Ben-Ezra, M

    2011-01-01

    Although the resolution of single-lens reflex (SLR) and medium-format digital cameras has increased in recent years, applications for cultural-heritage preservation and computational photography require even higher resolutions. Addressing this issue, a large-format cameras' large image planes can achieve very high resolution without compromising pixel size and thus can provide high-quality, high-resolution images.This digital large-format tile scan camera can acquire high-quality, high-resolution images of static scenes. It employs unique calibration techniques and a simple algorithm for focal-stack processing of very large images with significant magnification variations. The camera automatically collects overlapping focal stacks and processes them into a high-resolution, extended-depth-of-field image.

  8. Late-Pleistocene evolution of the East Mediterranean shallow continental shelf of north-central Israel

    NASA Astrophysics Data System (ADS)

    Shtienberg, Gilad; Dix, Justin; Waldmann, Nicolas; Makovsky, Yizhaq; Bookman, Revital; Roskin, Joel; Bialik, Or; Golan, Arik; Sivan, Dorit

    2016-04-01

    Sea-level fluctuations are a dominant and dynamic mechanism that control coastal environmental through time. This is especially the case for the successive regressions and transgressions over the last interglacial cycle, which have shaped the deposition, preservation and erosion patterns of unconsolidated sediments currently submerged on continental shelves. The current study focuses on an integrated high-resolution marine and terrestrial litho-stratigraphic and geophysical framework of the north-central Mediterranean coastal zone of Israel. The interpretation enabled the reconstruction of the coastal evolution over the last ˜130 ka. A multi-disciplinary approach was applied by compiling existing elevation raster grids, bathymetric charts, detailed lithological borehole data-sets, a dense 110 km long sub-bottom geophysical survey and seven continuous boreholes sediment records. Based on seismic stratigraphic analysis, observed geometries, and reflective appearances, six bounding surfaces and seven seismic units were identified and characterized. Meanwhile, the chronostratigraphy of the terrestrial side was constructed through integration of magnetic susceptibility, sedimentological and geochemical analysis with 17 new OSL ages. The seismic units were correlated with the available terrestrial borehole data and then associated to the retrieved terrestrial chronostratigraphy to produce a 4D reconstruction model of the paleo-landscape. The entire unconsolidated sequence overlies a calcareous aeolianite (locally named Kurkar unit) dated from ˜131 - ˜104 ka, which represents the top of the last interglacial cycle dune sediments. The lower unconsolidated unit consists of a red silty loam dated to ˜71 ka. This Red-Paleosol unit is overlaid by a dark brown clayey silty loam This Brown-Paleosol unit dates to ˜58 - ˜36 ka and is overlaid by a dark silty clay wetland deposit dated to ˜21 - ˜10 ka. The wetland unit is topped by a quartz sand dated to ˜6.6 - 0.1 ka. This approach allowed us to investigate the relationship between the lithological units and sea-level change and thus enable the reconstruction of the coastal evolution over the last ˜130 ka. This reconstruction suggests that the stratigraphy is dominated by a sea level lowstand during which aeolian, fluvial and paleosol sediments were deposited in a terrestrial environment. The coastal-terrestrial landscape was flooded by the early to middle Holocene transgression. The results of this study provide a valuable framework for future national strategic shallow-water infrastructure construction and also for the possible locations of past human settlements in relation to coastal evolution through time.

  9. Approaching the potential seismogenic source of the 8 September 1905 earthquake: New geophysical, geological and biochemical data from the S. Eufemia Gulf (S Italy)

    NASA Astrophysics Data System (ADS)

    Loreto, Maria Filomena; Fracassi, Umberto; Franzo, Annalisa; Del Negro, Paola; Zgur, Fabrizio; Facchin, Lorenzo

    2013-04-01

    The earthquake that occurred on 8 September 1905 is one of the strongest events that ever affected western Calabria. This event caused 557 casualties, more than 2000 injured, and left about 300,000 people homeless. The mainshock was followed by a feeble tsunami and hundreds of aftershocks. During the last 15 years, various authors proposed hypotheses for a seismogenic source causative of the 1905 earthquake, apparently diverse and without an unequivocal solution. To study the active tectonics of the region and to gain insight into a potential seismogenic source responsible for the 1905 event, we carried out a well-targeted multidisciplinary survey within the Gulf of S. Eufemia (summer 2010) in the frame of the ISTEGE project, using the R/V OGS-Explora. The acquired dataset consists of geophysical data, oceanographical measurements, and biological, chemical and sedimentary samples. The analysis of the geophysical data (330 km of MultiChannel Seismic, 2223 km of sub-bottom Chirp profiles, and 2231 km2 of high resolution morpho-bathymetric data) allowed the identification of some main morpho-structural features characterizing the sedimentary basin hosted within the S. Eufemia Gulf. The three main tectonic structures shaping the basin and its sedimentary bodies are: 1) an E-dipping large normal fault, N31° oriented; 2) a WNW-trending polyphased fault system; and 3) a likely E-W trending fault with dip-slip motion. Among these, the large normal fault shows evidence of activity, as witnessed by the deformed recent sediments, and by the lineament due to consistent seabed rupture observed on the seafloor along which, locally, fluids leakage occurs. Finally, evidence of probable geothermal activity is reflected by the anomalous distribution of prokaryotic abundance and biopolymeric C content, whereas no such evidence comes from water temperature analysis (CTD measurements). The various seismogenic sources proposed in the literature make up a composite framework of this sector of western Calabria, and can be reviewed a) in the light of the geological evidence arising from the newly acquired multidisciplinary dataset and b) against regional seismotectonic models - with surprising results. Re-appraising such a major historical earthquakes as the 1905 one located within poorly explored submarine areas, promisingly enhances the seismotectonic picture of western Calabria. A comprehensive understanding of the region and robust constraining of the seismogenic source of the 1905 earthquake may arise from an integrated interpretation of our data together with a) on-land field evidence and b) seismological modeling.

  10. Geologic framework of the 2005 Keathley Canyon gas hydrate research well, northern Gulf of Mexico

    USGS Publications Warehouse

    Hutchinson, D.R.; Hart, P.E.; Collett, T.S.; Edwards, K.M.; Twichell, D.C.; Snyder, F.

    2008-01-01

    The Keathley Canyon sites drilled in 2005 by the Chevron Joint Industry Project are located along the southeastern edge of an intraslope minibasin (Casey basin) in the northern Gulf of Mexico at 1335 m water depth. Around the drill sites, a grid of 2D high-resolution multichannel seismic data designed to image depths down to at least 1000 m sub-bottom reveals 7 unconformities and disconformities that, with the seafloor, bound 7 identifiable seismic stratigraphic units. A major disconformity in the middle of the units stands out for its angular baselapping geometry. From these data, three episodes of sedimentary deposition and deformation are inferred. The oldest episode consists of fine-grained muds deposited during a period of relative stability in the basin (units e, f, and g). Both the BSR and inferred gas hydrate occur within these older units. The gas hydrate occurs in near-vertical fractures. A second episode (units c and d) involved large vertical displacements associated with infilling and ponding of sediment. This second interval corresponds to deposition of intercalated fine and coarse-grained material that was recovered in the drill hole that penetrated the thin edges of the regionally much thicker units. The final episode of deposition (units a and b) occurred during more subdued vertical motions. Hemipelagic drape (unit a) characterizes the modern seafloor. The present-day Casey basin is mostly filled. Its sill is part of a subsiding graben structure that is only 10-20 m shallower than the deepest point in the basin, indicating that gravity-driven transport would mostly bypass the basin. Contemporary faulting along the basin margins has selectively reactivated an older group of faults. The intercalated sand and mud deposits of units c and d are tentatively correlated with Late Pleistocene deposition derived from the western shelf-edge delta/depocenter of the Mississippi River, which was probably most active from 320 ka to 70 ka [Winker, C.D., Booth, J., 2000. Sedimentary dynamics of the salt-dominated continental slope, Gulf of Mexico: integration of observations from the seafloor, near-surface, and deep subsurface. In: Proceedings of the GCSSEPM Foundation 20th Annual Research Conference, Deep-water Reservoirs of the World, pp. 1059-1086]. The presence of sand within the gas hydrate stability zone (in units c and d) is not sufficient to concentrate gas hydrate even though dispersed gas hydrate occurs deeper in the fractured mud/clay-rich sections of units e and f.

  11. CNV detection method optimized for high-resolution arrayCGH by normality test.

    PubMed

    Ahn, Jaegyoon; Yoon, Youngmi; Park, Chihyun; Park, Sanghyun

    2012-04-01

    High-resolution arrayCGH platform makes it possible to detect small gains and losses which previously could not be measured. However, current CNV detection tools fitted to early low-resolution data are not applicable to larger high-resolution data. When CNV detection tools are applied to high-resolution data, they suffer from high false-positives, which increases validation cost. Existing CNV detection tools also require optimal parameter values. In most cases, obtaining these values is a difficult task. This study developed a CNV detection algorithm that is optimized for high-resolution arrayCGH data. This tool operates up to 1500 times faster than existing tools on a high-resolution arrayCGH of whole human chromosomes which has 42 million probes whose average length is 50 bases, while preserving false positive/negative rates. The algorithm also uses a normality test, thereby removing the need for optimal parameters. To our knowledge, this is the first formulation for CNV detecting problems that results in a near-linear empirical overall complexity for real high-resolution data. Copyright © 2012 Elsevier Ltd. All rights reserved.

  12. Comparison of High-Resolution MR Imaging and Digital Subtraction Angiography for the Characterization and Diagnosis of Intracranial Artery Disease.

    PubMed

    Lee, N J; Chung, M S; Jung, S C; Kim, H S; Choi, C-G; Kim, S J; Lee, D H; Suh, D C; Kwon, S U; Kang, D-W; Kim, J S

    2016-12-01

    High-resolution MR imaging has recently been introduced as a promising diagnostic modality in intracranial artery disease. Our aim was to compare high-resolution MR imaging with digital subtraction angiography for the characterization and diagnosis of various intracranial artery diseases. Thirty-seven patients who had undergone both high-resolution MR imaging and DSA for intracranial artery disease were enrolled in our study (August 2011 to April 2014). The time interval between the high-resolution MR imaging and DSA was within 1 month. The degree of stenosis and the minimal luminal diameter were independently measured by 2 observers in both DSA and high-resolution MR imaging, and the results were compared. Two observers independently diagnosed intracranial artery diseases on DSA and high-resolution MR imaging. The time interval between the diagnoses on DSA and high-resolution MR imaging was 2 weeks. Interobserver diagnostic agreement for each technique and intermodality diagnostic agreement for each observer were acquired. High-resolution MR imaging showed moderate-to-excellent agreement (interclass correlation coefficient = 0.892-0.949; κ = 0.548-0.614) and significant correlations (R = 0.766-892) with DSA on the degree of stenosis and minimal luminal diameter. The interobserver diagnostic agreement was good for DSA (κ = 0.643) and excellent for high-resolution MR imaging (κ = 0.818). The intermodality diagnostic agreement was good (κ = 0.704) for observer 1 and moderate (κ = 0.579) for observer 2, respectively. High-resolution MR imaging may be an imaging method comparable with DSA for the characterization and diagnosis of various intracranial artery diseases. © 2016 by American Journal of Neuroradiology.

  13. Whole-animal imaging with high spatio-temporal resolution

    NASA Astrophysics Data System (ADS)

    Chhetri, Raghav; Amat, Fernando; Wan, Yinan; Höckendorf, Burkhard; Lemon, William C.; Keller, Philipp J.

    2016-03-01

    We developed isotropic multiview (IsoView) light-sheet microscopy in order to image fast cellular dynamics, such as cell movements in an entire developing embryo or neuronal activity throughput an entire brain or nervous system, with high resolution in all dimensions, high imaging speeds, good physical coverage and low photo-damage. To achieve high temporal resolution and high spatial resolution at the same time, IsoView microscopy rapidly images large specimens via simultaneous light-sheet illumination and fluorescence detection along four orthogonal directions. In a post-processing step, these four views are then combined by means of high-throughput multiview deconvolution to yield images with a system resolution of ≤ 450 nm in all three dimensions. Using IsoView microscopy, we performed whole-animal functional imaging of Drosophila embryos and larvae at a spatial resolution of 1.1-2.5 μm and at a temporal resolution of 2 Hz for up to 9 hours. We also performed whole-brain functional imaging in larval zebrafish and multicolor imaging of fast cellular dynamics across entire, gastrulating Drosophila embryos with isotropic, sub-cellular resolution. Compared with conventional (spatially anisotropic) light-sheet microscopy, IsoView microscopy improves spatial resolution at least sevenfold and decreases resolution anisotropy at least threefold. Compared with existing high-resolution light-sheet techniques, such as lattice lightsheet microscopy or diSPIM, IsoView microscopy effectively doubles the penetration depth and provides subsecond temporal resolution for specimens 400-fold larger than could previously be imaged.

  14. Regional Community Climate Simulations with variable resolution meshes in the Community Earth System Model

    NASA Astrophysics Data System (ADS)

    Zarzycki, C. M.; Gettelman, A.; Callaghan, P.

    2017-12-01

    Accurately predicting weather extremes such as precipitation (floods and droughts) and temperature (heat waves) requires high resolution to resolve mesoscale dynamics and topography at horizontal scales of 10-30km. Simulating such resolutions globally for climate scales (years to decades) remains computationally impractical. Simulating only a small region of the planet is more tractable at these scales for climate applications. This work describes global simulations using variable-resolution static meshes with multiple dynamical cores that target the continental United States using developmental versions of the Community Earth System Model version 2 (CESM2). CESM2 is tested in idealized, aquaplanet and full physics configurations to evaluate variable mesh simulations against uniform high and uniform low resolution simulations at resolutions down to 15km. Different physical parameterization suites are also evaluated to gauge their sensitivity to resolution. Idealized variable-resolution mesh cases compare well to high resolution tests. More recent versions of the atmospheric physics, including cloud schemes for CESM2, are more stable with respect to changes in horizontal resolution. Most of the sensitivity is due to sensitivity to timestep and interactions between deep convection and large scale condensation, expected from the closure methods. The resulting full physics model produces a comparable climate to the global low resolution mesh and similar high frequency statistics in the high resolution region. Some biases are reduced (orographic precipitation in the western United States), but biases do not necessarily go away at high resolution (e.g. summertime JJA surface Temp). The simulations are able to reproduce uniform high resolution results, making them an effective tool for regional climate studies and are available in CESM2.

  15. The influence of model grid resolution on estimation of national scale nitrogen deposition and exceedance of critical levels

    NASA Astrophysics Data System (ADS)

    Dore, A. J.; Kryza, M.; Hall, J. R.; Hallsworth, S.; Keller, V. J. D.; Vieno, M.; Sutton, M. A.

    2011-12-01

    The Fine Resolution Atmospheric Multi-pollutant Exchange model (FRAME) has been applied to model the spatial distribution of nitrogen deposition and air concentration over the UK at a 1 km spatial resolution. The modelled deposition and concentration data were gridded at resolutions of 1 km, 5 km and 50 km to test the sensitivity of calculations of the exceedance of critical loads for nitrogen deposition to the deposition data resolution. The modelled concentrations of NO2 were validated by comparison with measurements from the rural sites in the national monitoring network and were found to achieve better agreement with the high resolution 1 km data. High resolution plots were found to represent a more physically realistic distribution of nitrogen air concentrations and deposition resulting from use of 1 km resolution precipitation and emissions data as compared to 5 km resolution data. Summary statistics for national scale exceedance of the critical load for nitrogen deposition were not highly sensitive to the grid resolution of the deposition data but did show greater area exceedance with coarser grid resolution due to spatial averaging of high nitrogen deposition hot spots. Local scale deposition at individual Sites of Special Scientific Interest and high precipitation upland sites was sensitive to choice of grid resolution of deposition data. Use of high resolution data tended to generate lower deposition values in sink areas for nitrogen dry deposition (Sites of Scientific Interest) and higher values in high precipitation upland areas. In areas with generally low exceedance (Scotland) and for certain vegetation types (montane), the exceedance statistics were more sensitive to model data resolution.

  16. The influence of model grid resolution on estimation of national scale nitrogen deposition and exceedance of critical loads

    NASA Astrophysics Data System (ADS)

    Dore, A. J.; Kryza, M.; Hall, J. R.; Hallsworth, S.; Keller, V. J. D.; Vieno, M.; Sutton, M. A.

    2012-05-01

    The Fine Resolution Atmospheric Multi-pollutant Exchange model (FRAME) was applied to model the spatial distribution of reactive nitrogen deposition and air concentration over the United Kingdom at a 1 km spatial resolution. The modelled deposition and concentration data were gridded at resolutions of 1 km, 5 km and 50 km to test the sensitivity of calculations of the exceedance of critical loads for nitrogen deposition to the deposition data resolution. The modelled concentrations of NO2 were validated by comparison with measurements from the rural sites in the national monitoring network and were found to achieve better agreement with the high resolution 1 km data. High resolution plots were found to represent a more physically realistic distribution of reactive nitrogen air concentrations and deposition resulting from use of 1 km resolution precipitation and emissions data as compared to 5 km resolution data. Summary statistics for national scale exceedance of the critical load for nitrogen deposition were not highly sensitive to the grid resolution of the deposition data but did show greater area exceedance with coarser grid resolution due to spatial averaging of high nitrogen deposition hot spots. Local scale deposition at individual Sites of Special Scientific Interest and high precipitation upland sites was sensitive to choice of grid resolution of deposition data. Use of high resolution data tended to generate lower deposition values in sink areas for nitrogen dry deposition (Sites of Scientific Interest) and higher values in high precipitation upland areas. In areas with generally low exceedance (Scotland) and for certain vegetation types (montane), the exceedance statistics were more sensitive to model data resolution.

  17. Very high resolution aerial films

    NASA Astrophysics Data System (ADS)

    Becker, Rolf

    1986-11-01

    The use of very high resolution aerial films in aerial photography is evaluated. Commonly used panchromatic, color, and CIR films and their high resolution equivalents are compared. Based on practical experience and systematic investigations, the very high image quality and improved height accuracy that can be achieved using these films are demonstrated. Advantages to be gained from this improvement and operational restrictions encountered when using high resolution film are discussed.

  18. [Study on the effect of solar spectra on the retrieval of atmospheric CO2 concentration using high resolution absorption spectra].

    PubMed

    Hu, Zhen-Hua; Huang, Teng; Wang, Ying-Ping; Ding, Lei; Zheng, Hai-Yang; Fang, Li

    2011-06-01

    Taking solar source as radiation in the near-infrared high-resolution absorption spectrum is widely used in remote sensing of atmospheric parameters. The present paper will take retrieval of the concentration of CO2 for example, and study the effect of solar spectra resolution. Retrieving concentrations of CO2 by using high resolution absorption spectra, a method which uses the program provided by AER to calculate the solar spectra at the top of atmosphere as radiation and combine with the HRATS (high resolution atmospheric transmission simulation) to simulate retrieving concentration of CO2. Numerical simulation shows that the accuracy of solar spectrum is important to retrieval, especially in the hyper-resolution spectral retrieavl, and the error of retrieval concentration has poor linear relation with the resolution of observation, but there is a tendency that the decrease in the resolution requires low resolution of solar spectrum. In order to retrieve the concentration of CO2 of atmosphere, the authors' should take full advantage of high-resolution solar spectrum at the top of atmosphere.

  19. Development and application of high-resolution solid- state NMR dipolar recovery techniques for spin-1/2 nuclei

    NASA Astrophysics Data System (ADS)

    Joers, James M.

    The use of magic angle spinning to obtain high resolution solid state spectra has been well documented. This resolution occurs by coherently averaging the chemical shift anisotropy and dipolar interactions to zero over the period of a full rotation. While this allows for higher resolution, the structural information is seemingly lost to the spectrometer eye. Thus, high resolution spectra and structural information appear to be mutually exlusive. Recently, the push in solid state NMR is the development of recoupling techniques which afford both high resolution and structural information. The following dissertation demonstrates the feasibility of implementing such experiments in solving real world problems, and is centered on devising a method to recover homonuclear dipolar interactions in the high resolution regime.

  20. Satellite image fusion based on principal component analysis and high-pass filtering.

    PubMed

    Metwalli, Mohamed R; Nasr, Ayman H; Allah, Osama S Farag; El-Rabaie, S; Abd El-Samie, Fathi E

    2010-06-01

    This paper presents an integrated method for the fusion of satellite images. Several commercial earth observation satellites carry dual-resolution sensors, which provide high spatial resolution or simply high-resolution (HR) panchromatic (pan) images and low-resolution (LR) multi-spectral (MS) images. Image fusion methods are therefore required to integrate a high-spectral-resolution MS image with a high-spatial-resolution pan image to produce a pan-sharpened image with high spectral and spatial resolutions. Some image fusion methods such as the intensity, hue, and saturation (IHS) method, the principal component analysis (PCA) method, and the Brovey transform (BT) method provide HR MS images, but with low spectral quality. Another family of image fusion methods, such as the high-pass-filtering (HPF) method, operates on the basis of the injection of high frequency components from the HR pan image into the MS image. This family of methods provides less spectral distortion. In this paper, we propose the integration of the PCA method and the HPF method to provide a pan-sharpened MS image with superior spatial resolution and less spectral distortion. The experimental results show that the proposed fusion method retains the spectral characteristics of the MS image and, at the same time, improves the spatial resolution of the pan-sharpened image.

  1. High-Spatial and High-Mass Resolution Imaging of Surface Metabolites of Arabidopsis thaliana by Laser Desorption-Ionization Mass Spectrometry Using Colloidal Silver

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jun, Ji Hyun; Song, Zhihong; Liu, Zhenjiu

    High-spatial resolution and high-mass resolution techniques are developed and adopted for the mass spectrometric imaging of epicuticular lipids on the surface of Arabidopsis thaliana. Single cell level spatial resolution of {approx}12 {micro}m was achieved by reducing the laser beam size by using an optical fiber with 25 {micro}m core diameter in a vacuum matrix-assisted laser desorption ionization-linear ion trap (vMALDI-LTQ) mass spectrometer and improved matrix application using an oscillating capillary nebulizer. Fine chemical images of a whole flower were visualized in this high spatial resolution showing substructure of an anther and single pollen grains at the stigma and anthers. Themore » LTQ-Orbitrap with a MALDI ion source was adopted to achieve MS imaging in high mass resolution. Specifically, isobaric silver ion adducts of C29 alkane (m/z 515.3741) and C28 aldehyde (m/z 515.3377), indistinguishable in low-resolution LTQ, can now be clearly distinguished and their chemical images could be separately constructed. In the application to roots, the high spatial resolution allowed molecular MS imaging of secondary roots and the high mass resolution allowed direct identification of lipid metabolites on root surfaces.« less

  2. Initial report of the IMAGES VIII/PAGE 127 gas hydrate and paleoclimate cruise on the RV Marion Dufresne in the Gulf of Mexico, 2-18 July 2002

    USGS Publications Warehouse

    Winters, William J.; Lorenson, T.D.; Paull, Charles K.

    2007-01-01

    The northern Gulf of Mexico contains many documented gas hydrate deposits near the sea floor. Although gas hydrate often is present in shallow subbottom sediment, the extent of hydrate occurrence deeper than 10 meters below sea floor in basins away from vents and other surface expressions is unknown. We obtained giant piston cores, box cores, and gravity cores and performed heat-flow analyses to study these shallow gas hydrate deposits aboard the RV Marion Dufresne in July 2002. This report presents measurements and interpretations from that cruise. Our results confirm the presence of gas hydrate in vent-related sediments near the sea bed. The presence of gas hydrate near the vents is governed by the complex interaction of regional and local factors, including heat flow, fluid flow, faults, pore-water salinity, gas concentrations, and sediment properties. However, conditions appropriate for extensive gas hydrate formation were not found away from the vents.

  3. Preliminary results from 2017 OGS Explora cruise to the Ross Sea continental slope

    NASA Astrophysics Data System (ADS)

    Rebesco, Michele; De Santis, Laura; Gales, Jenny; Kim, Sookwan; Liu, Yanguang; Sauli, Chiara; Cuffaro, Marco; Bergamasco, Andrea; Colleoni, Florence; Kovacevic, Vedrana; Olivo, Elisabetta; Florindo-Lopez, Cristian; Codiglia, Riccardo; Zgur, Fabrizio; Accettella, Daniela; Gordini, Emiliano; Visnovic, Paolo; Tomini, Isabella; Mansutti, Paolo; Sterzai, Paolo

    2017-04-01

    OGS Explora is back to Antarctica for three projects focused on the Ross Sea eastern continental slope: EU/FP7-EUROFLEETS (http://www.eurofleets.eu) ANTSSS, PNRA (Programma Nazionale Di Ricerche in Antartide) ODYSSEA, and PNRA WHISPERS. These projects employ three main methods: 1) geophysics (multichannel seismic reflection, sub-bottom and multibeam morphobathymetric survey); 2) geology (gravity corer and box-corer); oceanography (CTD, LADCP, turbulence). The general objective is to contribute to the understanding of past and present ocean dynamics and glacial history of this Antarctic sector. In particular, to find evidence (in the geometry and distribution of the stratigraphic sequences) of Miocene-Pleistocene West Antarctic Ice Sheet and East Antarctic Ice Sheet advances and retreats and of their effects on Ross Sea Bottom Water formation and dynamics. The gravity cores provide the chronological control for the Quaternary. Deep sea drilling (through IODP Exp. 374, whose additional alternative sites are surveyed during this cruise) will provide the chronological control for the pre-Quaternary seismic sequences.

  4. Archive of digital Chirp subbottom profile data collected during USGS cruise 08CCT01, Mississippi Gulf Islands, July 2008

    USGS Publications Warehouse

    Forde, Arnell S.; Dadisman, Shawn V.; Flocks, James G.; Worley, Charles R.

    2011-01-01

    In July of 2008, the U.S. Geological Survey (USGS) conducted geophysical surveys to investigate the geologic controls on island framework from Ship Island to Horn Island, Mississippi, for the Northern Gulf of Mexico (NGOM) Ecosystem Change and Hazard Susceptibility project. Funding was provided through the Geologic Framework and Holocene Coastal Evolution of the Mississippi-Alabama Region Subtask (http://ngom.er.usgs.gov/task2_2/index.php); this project is also part of a broader USGS study on Coastal Change and Transport (CCT). This report serves as an archive of unprocessed digital Chirp seismic reflection data, trackline maps, navigation files, Geographic Information System (GIS) files, Field Activity Collection System (FACS) logs, observer's logbook, and formal Federal Geographic Data Committee (FGDC) metadata. Gained (a relative increase in signal amplitude) digital images of the seismic profiles are also provided. Refer to the Acronyms page for expansion of acronyms and abbreviations used in this report.

  5. Structure of the southern Juan de Fuca Ridge from seismic reflection records

    USGS Publications Warehouse

    Morton, Janet L.; Sleep, Norman H.; Normark, William R.; Tompkins, Donald H.

    1987-01-01

    Twenty-four-channel seismic reflection records were obtained from the axial region of the southern Juan de Fuca Ridge. Two profiles are normal to the strike of the spreading center and intersect the ridge at latitude 44°40′N and 45°05′N; a third profile extends south along the ridge axis from latitude 45°20′N and crosses the Blanco Fracture Zone. Processing of the axial portions of the cross-strike lines resolved a weak reflection centered beneath the axis. The reflector is at a depth similar to seismically detected magma chambers on the East Pacific Rise and a Lau Basin spreading center; we suggest that the reflector represents the top of an axial magma chamber. In the migrated sections the top of the probable magma chamber is relatively flat and 1–2 km wide, and the subbottom depth of the chamber is greater where the depth to the ridge axis is greater.

  6. MASH Suite: a user-friendly and versatile software interface for high-resolution mass spectrometry data interpretation and visualization.

    PubMed

    Guner, Huseyin; Close, Patrick L; Cai, Wenxuan; Zhang, Han; Peng, Ying; Gregorich, Zachery R; Ge, Ying

    2014-03-01

    The rapid advancements in mass spectrometry (MS) instrumentation, particularly in Fourier transform (FT) MS, have made the acquisition of high-resolution and high-accuracy mass measurements routine. However, the software tools for the interpretation of high-resolution MS data are underdeveloped. Although several algorithms for the automatic processing of high-resolution MS data are available, there is still an urgent need for a user-friendly interface with functions that allow users to visualize and validate the computational output. Therefore, we have developed MASH Suite, a user-friendly and versatile software interface for processing high-resolution MS data. MASH Suite contains a wide range of features that allow users to easily navigate through data analysis, visualize complex high-resolution MS data, and manually validate automatically processed results. Furthermore, it provides easy, fast, and reliable interpretation of top-down, middle-down, and bottom-up MS data. MASH Suite is convenient, easily operated, and freely available. It can greatly facilitate the comprehensive interpretation and validation of high-resolution MS data with high accuracy and reliability.

  7. Resolution Enhancement of Hyperion Hyperspectral Data using Ikonos Multispectral Data

    DTIC Science & Technology

    2007-09-01

    spatial - resolution hyperspectral image to produce a sharpened product. The result is a product that has the spectral properties of the ...multispectral sensors. In this work, we examine the benefits of combining data from high- spatial - resolution , low- spectral - resolution spectral imaging...sensors with data obtained from high- spectral - resolution , low- spatial - resolution spectral imaging sensors.

  8. Interior tomography in microscopic CT with image reconstruction constrained by full field of view scan at low spatial resolution

    NASA Astrophysics Data System (ADS)

    Luo, Shouhua; Shen, Tao; Sun, Yi; Li, Jing; Li, Guang; Tang, Xiangyang

    2018-04-01

    In high resolution (microscopic) CT applications, the scan field of view should cover the entire specimen or sample to allow complete data acquisition and image reconstruction. However, truncation may occur in projection data and results in artifacts in reconstructed images. In this study, we propose a low resolution image constrained reconstruction algorithm (LRICR) for interior tomography in microscopic CT at high resolution. In general, the multi-resolution acquisition based methods can be employed to solve the data truncation problem if the project data acquired at low resolution are utilized to fill up the truncated projection data acquired at high resolution. However, most existing methods place quite strict restrictions on the data acquisition geometry, which greatly limits their utility in practice. In the proposed LRICR algorithm, full and partial data acquisition (scan) at low and high resolutions, respectively, are carried out. Using the image reconstructed from sparse projection data acquired at low resolution as the prior, a microscopic image at high resolution is reconstructed from the truncated projection data acquired at high resolution. Two synthesized digital phantoms, a raw bamboo culm and a specimen of mouse femur, were utilized to evaluate and verify performance of the proposed LRICR algorithm. Compared with the conventional TV minimization based algorithm and the multi-resolution scout-reconstruction algorithm, the proposed LRICR algorithm shows significant improvement in reduction of the artifacts caused by data truncation, providing a practical solution for high quality and reliable interior tomography in microscopic CT applications. The proposed LRICR algorithm outperforms the multi-resolution scout-reconstruction method and the TV minimization based reconstruction for interior tomography in microscopic CT.

  9. Partial homogeneity based high-resolution nuclear magnetic resonance spectra under inhomogeneous magnetic fields

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wei, Zhiliang; Lin, Liangjie; Lin, Yanqin, E-mail: linyq@xmu.edu.cn, E-mail: chenz@xmu.edu.cn

    2014-09-29

    In nuclear magnetic resonance (NMR) technique, it is of great necessity and importance to obtain high-resolution spectra, especially under inhomogeneous magnetic fields. In this study, a method based on partial homogeneity is proposed for retrieving high-resolution one-dimensional NMR spectra under inhomogeneous fields. Signals from series of small voxels, which characterize high resolution due to small sizes, are recorded simultaneously. Then, an inhomogeneity correction algorithm is developed based on pattern recognition to correct the influence brought by field inhomogeneity automatically, thus yielding high-resolution information. Experiments on chemical solutions and fish spawn were carried out to demonstrate the performance of the proposedmore » method. The proposed method serves as a single radiofrequency pulse high-resolution NMR spectroscopy under inhomogeneous fields and may provide an alternative of obtaining high-resolution spectra of in vivo living systems or chemical-reaction systems, where performances of conventional techniques are usually degenerated by field inhomogeneity.« less

  10. High throughput screening of ligand binding to macromolecules using high resolution powder diffraction

    DOEpatents

    Von Dreele, Robert B.; D'Amico, Kevin

    2006-10-31

    A process is provided for the high throughput screening of binding of ligands to macromolecules using high resolution powder diffraction data including producing a first sample slurry of a selected polycrystalline macromolecule material and a solvent, producing a second sample slurry of a selected polycrystalline macromolecule material, one or more ligands and the solvent, obtaining a high resolution powder diffraction pattern on each of said first sample slurry and the second sample slurry, and, comparing the high resolution powder diffraction pattern of the first sample slurry and the high resolution powder diffraction pattern of the second sample slurry whereby a difference in the high resolution powder diffraction patterns of the first sample slurry and the second sample slurry provides a positive indication for the formation of a complex between the selected polycrystalline macromolecule material and at least one of the one or more ligands.

  11. HIRIS (High-Resolution Imaging Spectrometer: Science opportunities for the 1990s. Earth observing system. Volume 2C: Instrument panel report

    NASA Technical Reports Server (NTRS)

    1987-01-01

    The high-resolution imaging spectrometer (HIRIS) is an Earth Observing System (EOS) sensor developed for high spatial and spectral resolution. It can acquire more information in the 0.4 to 2.5 micrometer spectral region than any other sensor yet envisioned. Its capability for critical sampling at high spatial resolution makes it an ideal complement to the MODIS (moderate-resolution imaging spectrometer) and HMMR (high-resolution multifrequency microwave radiometer), lower resolution sensors designed for repetitive coverage. With HIRIS it is possible to observe transient processes in a multistage remote sensing strategy for Earth observations on a global scale. The objectives, science requirements, and current sensor design of the HIRIS are discussed along with the synergism of the sensor with other EOS instruments and data handling and processing requirements.

  12. Image quality improvement in cone-beam CT using the super-resolution technique.

    PubMed

    Oyama, Asuka; Kumagai, Shinobu; Arai, Norikazu; Takata, Takeshi; Saikawa, Yusuke; Shiraishi, Kenshiro; Kobayashi, Takenori; Kotoku, Jun'ichi

    2018-04-05

    This study was conducted to improve cone-beam computed tomography (CBCT) image quality using the super-resolution technique, a method of inferring a high-resolution image from a low-resolution image. This technique is used with two matrices, so-called dictionaries, constructed respectively from high-resolution and low-resolution image bases. For this study, a CBCT image, as a low-resolution image, is represented as a linear combination of atoms, the image bases in the low-resolution dictionary. The corresponding super-resolution image was inferred by multiplying the coefficients and the high-resolution dictionary atoms extracted from planning CT images. To evaluate the proposed method, we computed the root mean square error (RMSE) and structural similarity (SSIM). The resulting RMSE and SSIM between the super-resolution images and the planning CT images were, respectively, as much as 0.81 and 1.29 times better than those obtained without using the super-resolution technique. We used super-resolution technique to improve the CBCT image quality.

  13. Using high spectral resolution spectrophotometry to study broad mineral absorption features on Mars

    NASA Technical Reports Server (NTRS)

    Blaney, D. L.; Crisp, D.

    1993-01-01

    Traditionally telescopic measurements of mineralogic absorption features have been made using relatively low to moderate (R=30-300) spectral resolution. Mineralogic absorption features tend to be broad so high resolution spectroscopy (R greater than 10,000) does not provide significant additional compositional information. Low to moderate resolution spectroscopy allows an observer to obtain data over a wide wavelength range (hundreds to thousands of wavenumbers) compared to the several wavenumber intervals that are collected using high resolution spectrometers. However, spectrophotometry at high resolution has major advantages over lower resolution spectroscopy in situations that are applicable to studies of the Martian surface, i.e., at wavelengths where relatively weak surface absorption features and atmospheric gas absorption features both occur.

  14. Image super-resolution via sparse representation.

    PubMed

    Yang, Jianchao; Wright, John; Huang, Thomas S; Ma, Yi

    2010-11-01

    This paper presents a new approach to single-image super-resolution, based on sparse signal representation. Research on image statistics suggests that image patches can be well-represented as a sparse linear combination of elements from an appropriately chosen over-complete dictionary. Inspired by this observation, we seek a sparse representation for each patch of the low-resolution input, and then use the coefficients of this representation to generate the high-resolution output. Theoretical results from compressed sensing suggest that under mild conditions, the sparse representation can be correctly recovered from the downsampled signals. By jointly training two dictionaries for the low- and high-resolution image patches, we can enforce the similarity of sparse representations between the low resolution and high resolution image patch pair with respect to their own dictionaries. Therefore, the sparse representation of a low resolution image patch can be applied with the high resolution image patch dictionary to generate a high resolution image patch. The learned dictionary pair is a more compact representation of the patch pairs, compared to previous approaches, which simply sample a large amount of image patch pairs, reducing the computational cost substantially. The effectiveness of such a sparsity prior is demonstrated for both general image super-resolution and the special case of face hallucination. In both cases, our algorithm generates high-resolution images that are competitive or even superior in quality to images produced by other similar SR methods. In addition, the local sparse modeling of our approach is naturally robust to noise, and therefore the proposed algorithm can handle super-resolution with noisy inputs in a more unified framework.

  15. Assessment of prediction skill in equatorial Pacific Ocean in high resolution model of CFS

    NASA Astrophysics Data System (ADS)

    Arora, Anika; Rao, Suryachandra A.; Pillai, Prasanth; Dhakate, Ashish; Salunke, Kiran; Srivastava, Ankur

    2018-01-01

    The effect of increasing atmospheric resolution on prediction skill of El Niño southern oscillation phenomenon in climate forecast system model is explored in this paper. Improvement in prediction skill for sea surface temperature (SST) and winds at all leads compared to low resolution model in the tropical Indo-Pacific basin is observed. High resolution model is able to capture extreme events reasonably well. As a result, the signal to noise ratio is improved in the high resolution model. However, spring predictability barrier (SPB) for summer months in Nino 3 and Nino 3.4 region is stronger in high resolution model, in spite of improvement in overall prediction skill and dynamics everywhere else. Anomaly correlation coefficient of SST in high resolution model with observations in Nino 3.4 region targeting boreal summer months when predicted at lead times of 3-8 months in advance decreased compared its lower resolution counterpart. It is noted that higher variance of winds predicted in spring season over central equatorial Pacific compared to observed variance of winds results in stronger than normal response on subsurface ocean, hence increases SPB for boreal summer months in high resolution model.

  16. Fluid pathways from mantle wedge up to forearc seafloor in the coseismic slip area of the 2011 Tohoku earthquake

    NASA Astrophysics Data System (ADS)

    Park, J. O.; Tsuru, T.; Fujie, G.; Kagoshima, T.; Sano, Y.

    2017-12-01

    A lot of fluids at subduction zones are exchanged between the solid Earth and ocean, affecting the earthquake and tsunami generation. New multi-channel seismic reflection and sub-bottom profiling data reveal normal and reverse faults as the fluid pathways in the coseismic slip area of the 2011 Tohoku earthquake (M9.0). Based on seismic reflection characteristics and helium isotope anomalies, we recognize variations in fluid pathways (i.e., faults) from the mantle wedge up to forearc seafloor in the Japan Trench margin. Some fluids are migrated from the mantle wedge along plate interface and then normal or reverse faults cutting through the overriding plate. Others from the mantle wedge are migrated directly up to seafloor along normal faults, without passing through the plate interface. Locations of the normal faults are roughly consistent with aftershocks of the 2011 Tohoku earthquake, which show focal mechanism of normal faulting. It is noticeable that landward-dipping normal faults developing down into Unit C (Cretaceous basement) from seafloor are dominant in the middle slope region where basal erosion is inferred to be most active. A high-amplitude, reverse-polarity reflection of the normal faults within Unit C suggests that the fluids are locally trapped along the faults in high pore pressures. The 2011 Tohoku mainshock and subsequent aftershocks could lead the pre-existing normal faults to be reactive and more porous so that the trapped fluids are easily transported up to seafloor through the faults. Elevated fluid pressures can decrease the effective normal stress for the fault plane, allowing easier slip of the landward-dipping normal fault and also enhancing its tsunamigenic potential.

  17. Relationship of Hotspots to the Distribution of Surficial Surf-Zone Sediments along the Outer Banks of North Carolina

    NASA Astrophysics Data System (ADS)

    Schupp, C. A.; McNinch, J. E.; List, J. H.; Farris, A. S.

    2002-12-01

    The formation and behavior of hotspots, or sections of the beach that exhibit markedly higher shoreline change rates than adjacent regions, are poorly understood. Several hotspots have been identified on the Outer Banks, a developed barrier island in North Carolina. To better understand hotspot dynamics and the potential relationship to the geologic framework in which they occur, the surf zone between Duck and Bodie Island was surveyed in June 2002 as part of a research effort supported by the U.S. Geological Survey and U.S. Army Corps of Engineers. Swath bathymetry, sidescan sonar, and chirp seismic were used to characterize a region 40 km long and1 km wide. Hotspot locations were pinpointed using standard deviation values for shoreline position as determined by monthly SWASH buggy surveys of the mean high water contour between October 1999 and September 2002. Observational data and sidescan images were mapped to delineate regions of surficial sediment distributions, and regions of interest were ground-truthed via grab samples or visual inspection. General kilometer-scale correlation between acoustic backscatter and high shoreline standard deviation is evident. Acoustic returns are uniform in a region of Duck where standard deviation is low, but backscatter is patchy around the Kitty Hawk hotspot, where standard deviation is higher. Based on ground-truthing of an area further north, these patches are believed to be an older ravinement surface of fine sediment. More detailed analyses of the correlation between acoustic data, standard deviation, and hotspot locations will be presented. Future work will include integration of seismic, bathymetric, and sidescan data to better understand the links between sub-bottom geology, temporal changes in surficial sediments, surf-zone sediment budgets, and short-term changes in shoreline position and morphology.

  18. An atlas of high-resolution IRAS maps on nearby galaxies

    NASA Technical Reports Server (NTRS)

    Rice, Walter

    1993-01-01

    An atlas of far-infrared IRAS maps with near 1 arcmin angular resolution of 30 optically large galaxies is presented. The high-resolution IRAS maps were produced with the Maximum Correlation Method (MCM) image construction and enhancement technique developed at IPAC. The MCM technique, which recovers the spatial information contained in the overlapping detector data samples of the IRAS all-sky survey scans, is outlined and tests to verify the structural reliability and photometric integrity of the high-resolution maps are presented. The infrared structure revealed in individual galaxies is discussed. The atlas complements the IRAS Nearby Galaxy High-Resolution Image Atlas, the high-resolution galaxy images encoded in FITS format, which is provided to the astronomical community as an IPAC product.

  19. NREL: International Activities - Afghanistan Resource Maps

    Science.gov Websites

    facilities, load centers, terrain conditions, and land use. The high-resolution (1-km) annual wind power maps . The high-resolution (10-km) annual and seasonal solar resource maps were developed using weather -km Resolution Annual Maps (Direct) Low-Res (JPG 104 KB) | High-Res (ZIP 330 KB) 40-km Resolution

  20. The effect of horizontal resolution on simulation quality in the Community Atmospheric Model, CAM5.1

    DOE PAGES

    Wehner, Michael F.; Reed, Kevin A.; Li, Fuyu; ...

    2014-10-13

    We present an analysis of version 5.1 of the Community Atmospheric Model (CAM5.1) at a high horizontal resolution. Intercomparison of this global model at approximately 0.25°, 1°, and 2° is presented for extreme daily precipitation as well as for a suite of seasonal mean fields. In general, extreme precipitation amounts are larger in high resolution than in lower-resolution configurations. In many but not all locations and/or seasons, extreme daily precipitation rates in the high-resolution configuration are higher and more realistic. The high-resolution configuration produces tropical cyclones up to category 5 on the Saffir-Simpson scale and a comparison to observations revealsmore » both realistic and unrealistic model behavior. In the absence of extensive model tuning at high resolution, simulation of many of the mean fields analyzed in this study is degraded compared to the tuned lower-resolution public released version of the model.« less

  1. Machine Learning Predictions of a Multiresolution Climate Model Ensemble

    NASA Astrophysics Data System (ADS)

    Anderson, Gemma J.; Lucas, Donald D.

    2018-05-01

    Statistical models of high-resolution climate models are useful for many purposes, including sensitivity and uncertainty analyses, but building them can be computationally prohibitive. We generated a unique multiresolution perturbed parameter ensemble of a global climate model. We use a novel application of a machine learning technique known as random forests to train a statistical model on the ensemble to make high-resolution model predictions of two important quantities: global mean top-of-atmosphere energy flux and precipitation. The random forests leverage cheaper low-resolution simulations, greatly reducing the number of high-resolution simulations required to train the statistical model. We demonstrate that high-resolution predictions of these quantities can be obtained by training on an ensemble that includes only a small number of high-resolution simulations. We also find that global annually averaged precipitation is more sensitive to resolution changes than to any of the model parameters considered.

  2. High-resolution X-ray crystal structure of bovine H-protein using the high-pressure cryocooling method.

    PubMed

    Higashiura, Akifumi; Ohta, Kazunori; Masaki, Mika; Sato, Masaru; Inaka, Koji; Tanaka, Hiroaki; Nakagawa, Atsushi

    2013-11-01

    Recently, many technical improvements in macromolecular X-ray crystallography have increased the number of structures deposited in the Protein Data Bank and improved the resolution limit of protein structures. Almost all high-resolution structures have been determined using a synchrotron radiation source in conjunction with cryocooling techniques, which are required in order to minimize radiation damage. However, optimization of cryoprotectant conditions is a time-consuming and difficult step. To overcome this problem, the high-pressure cryocooling method was developed (Kim et al., 2005) and successfully applied to many protein-structure analyses. In this report, using the high-pressure cryocooling method, the X-ray crystal structure of bovine H-protein was determined at 0.86 Å resolution. Structural comparisons between high- and ambient-pressure cryocooled crystals at ultra-high resolution illustrate the versatility of this technique. This is the first ultra-high-resolution X-ray structure obtained using the high-pressure cryocooling method.

  3. Relationship between perception of image resolution and peripheral visual field in stereoscopic images

    NASA Astrophysics Data System (ADS)

    Ogawa, Masahiko; Shidoji, Kazunori

    2011-03-01

    High-resolution stereoscopic images are effective for use in virtual reality and teleoperation systems. However, the higher the image resolution, the higher is the cost of computer processing and communication. To reduce this cost, numerous earlier studies have suggested the use of multi-resolution images, which have high resolution in region of interests and low resolution in other areas. However, observers can perceive unpleasant sensations and incorrect depth because they can see low-resolution areas in their field of vision. In this study, we conducted an experiment to research the relationship between the viewing field and the perception of image resolution, and determined respective thresholds of image-resolution perception for various positions of the viewing field. The results showed that participants could not distinguish between the high-resolution stimulus and the decreased stimulus, 63 ppi, at positions more than 8 deg outside the gaze point. Moreover, with positions shifted a further 11 and 13 deg from the gaze point, participants could not distinguish between the high-resolution stimulus and the decreased stimuli whose resolution densities were 42 and 25 ppi. Hence, we will propose the composition of multi-resolution images in which observers do not perceive unpleasant sensations and incorrect depth with data reduction (compression).

  4. Physical Properties of Sediment Related to Gas Hydrate in the Northern Gulf of Mexico

    NASA Astrophysics Data System (ADS)

    Winters, W. J.; Novosel, I.; Boldina, O. M.; Waite, W. F.; Lorenson, T. D.; Paull, C. K.; Bryant, W.

    2002-12-01

    Eighteen giant piston cores, up to 38-m long, were recovered during July 2002 to determine the distribution of gas hydrate in widely different geologic environments of the Northern Gulf of Mexico. Physical properties, including electrical resistivity, three different shear strengths, P-wave velocity, and thermal conductivity were measured on split and whole-round cores at sea. Water content, grain density, and related properties are being determined in a shore-based laboratory from shipboard-acquired subsamples. These physical property data are important for two primary reasons: (1) to relate the presence of gas hydrate to the natural host sediment; and (2) to correlate with shallow seismic reflection records so they can be interpreted more accurately within and below the depth of coring. Preliminary results indicate that porosity and water content typically decrease rapidly to a subbottom depth of about 8 to 9 m, but then decrease at a much lower rate to the base of the core - often 30 or more mbsf. Although higher water contents are measured in the sediments that were recovered in association with gas hydrates, they are probably an artifact of post-sampling hydrate dissociation rather than an in-situ characteristic. The hydrate recovered during the cruise, was present either as particles distributed throughout the sediment or as massive chunks that filled the entire 10-cm diameter of the core liner. The sediments immediately adjacent to the recovered gas hydrates are visually similar to surrounding sediments, and thus primary lithologic differences do not appear to control the distribution of these gas hydrates. Vane shear strength measurements correlate better to subbottom depth than to water content. The strength values typically increase from less than 10 kPa near the seafloor to as much as 80 to 90 kPa at the base of some cores. Electrical resistivity appears to be related to water content (and probably porewater salinity) since a break in slope with depth is often recorded in the upper 8 to 15 m of sediment. Electrical resistivity typically increases from about 0.4 to 0.5 ohm-m near the top of many cores, to about 0.7 ohm-m near the base of the deeper recovered sediment. These values are typical for clay-rich fine-grained sediment with high water content. Although the amount of gas hydrate in the natural environment is enormous, little is known about its distribution in sea-floor sediment or even exactly how it forms. A goal of this cruise was to find evidence for the existence of gas hydrate away from obvious seafloor gas-hydrate mounds and at depth in the sediment. This international, multi-discipline coring cruise was conducted jointly by the Institut Polaire Francais, Paul-Emile Victor (IPEV) and the USGS aboard the 120-m-long French research vessel, Marion Dufresne. Partial funding was provided by the U.S. Dept. of Energy and considerable at-sea help was provided by an international group of about 40 scientists under the IMAGES (International Marine Past Global Changes Study) and PAGE (Paleoceanography of the Atlantic and Geochemistry) programs.

  5. Preliminary Analysis of Multibeam, Subbottom, and Water Column Data Collected from the Juan de Fuca Plate and Gorda Ridge Earthquake Swarm Sites, March-April 2008.

    NASA Astrophysics Data System (ADS)

    Merle, S. G.; Dziak, R. P.; Embley, R. W.; Lupton, J. E.; Greene, R. R.; Chadwick, W. W.; Lilley, M.; Bohnenstiehl, D. R.; Braunmiller, J.; Fowler, M.; Resing, J.

    2008-12-01

    Two oceanographic expeditions were undertaken in the northeast Pacific during April and September of 2008 to collect a variety of scientific data at the sites of intense earthquake swarms that occurred from 30 March to 9 April 2008. The earthquake swarms were detected by the NOAA/PMEL and US Navy SOSUS hydrophone system in the northeast Pacific. The first swarm occurred within the central Juan de Fuca Plate, ~280 km west of the Oregon coast and ~70 km north of the Blanco Transform Fault Zone (BTFZ). Time history of the events indicate this swarm was not a typical mainshock-aftershock sequence, and was the largest SOSUS detected swarm within the intraplate. This intraplate swarm activity was followed by three distinct clusters of earthquakes located along the BTFZ. Two of the clusters, which began on 10 and 12 April, were initiated by MW 5+ earthquakes suggesting these were mainshock-aftershock sequences, and the number of earthquakes on the BTFZ were small relative to the intraplate swarm. On 22 April, another intense earthquake swarm began on the northern Gorda Ridge segment adjacent to the BTFZ. The Gorda swarm produced >1000 SOSUS detected earthquakes over a five-day duration, with activity distributed between the mid-segment high and the ridge-transform intersection. This swarm was of special interest because of previous magmatic activity near its location in 1996. Overall, the March-April earthquake activity showed an interesting spatio-temporal progression, beginning at the intraplate, to the transform, then to a spreading event at the ridge. This pattern once again demonstrates the Juan de Fuca plate is continually moving and converging with North America at the Cascadia Subduction Zone. As the initial swarm was not focused on the ridge crest, it was not interpreted as a significant eruptive event, and we did not advocate a large-scale Ridge2000 response effort. The earthquake activity, however, did have an unusual character and therefore a short (four-day) cruise was organized using the R/V Wecoma in April (support via NOAA Vents Program and NSF). While this cruise was underway, the Gorda Ridge swarm began and therefore another day was added to also sample the Gorda site. A total of 11 CTD casts were completed, covering the significant areas of earthquake activity. Measurements for helium isotopes have been completed on all 11 casts, and for methane and CO2 on one of the Gorda Ridge casts. A second response cruise aboard the R/V Melville will take place in September, funded by the NOAA/Vents, providing 2 days of multibeam survey time. The cruise plan is to collect EM120 multibeam bathymetry and backscatter data, as well as 3.5 kHz subbottom in the area of the initial swarm. The northern Gorda Ridge will also be surveyed, with the goal of comparing this bathymetry with previously collected data to see if there is evidence of depth anomalies and therefore recent seafloor eruptions.

  6. Single image super-resolution via an iterative reproducing kernel Hilbert space method.

    PubMed

    Deng, Liang-Jian; Guo, Weihong; Huang, Ting-Zhu

    2016-11-01

    Image super-resolution, a process to enhance image resolution, has important applications in satellite imaging, high definition television, medical imaging, etc. Many existing approaches use multiple low-resolution images to recover one high-resolution image. In this paper, we present an iterative scheme to solve single image super-resolution problems. It recovers a high quality high-resolution image from solely one low-resolution image without using a training data set. We solve the problem from image intensity function estimation perspective and assume the image contains smooth and edge components. We model the smooth components of an image using a thin-plate reproducing kernel Hilbert space (RKHS) and the edges using approximated Heaviside functions. The proposed method is applied to image patches, aiming to reduce computation and storage. Visual and quantitative comparisons with some competitive approaches show the effectiveness of the proposed method.

  7. Final Act of an Oceanic Detachment Fault Revealed by Submersible Dives at 13°48'N on the Mid-Atlantic Ridge

    NASA Astrophysics Data System (ADS)

    Parnell-Turner, R. E.; Mittelstaedt, E. L.; Kurz, M. D.; Klein, F.

    2017-12-01

    A large proportion of crustal accretion on the slow-spreading Mid-Atlantic Ridge occurs under the influence of slip on low-angle detachment faults. The final stages of activity on an individual detachment system remain poorly understood, since it is difficult to place age constraints on exposed fault surfaces or lava flows. We use data from a combination of manned (Alvin) and autonomous (Sentry) submersible dives on a detachment near 13°48'N, to infer the history of slip and volcanism on a detachment fault which has recently become extinct. The corrugated surface, near the toe of the detachment, is cross-cut by a volcanic ridge, where pillow lavas have been photographed and sampled. Sub-bottom (CHIRP) profiles acquired by Sentry provide estimates of sediment thickness, which we use as a proxy for seafloor age, thus providing a relative dating tool for the exposed detachment footwall and erupted lavas. Sediments covering the footwall are 2 m thinner than those on lavas which cut across the detachment, implying that slip continued for 150 ka after eruption (assuming a constant sedimentation rate of 7 ± 2 mm/yr). Alternatively, sediment on the footwall may have been mass-wasted, and volcanism could have been contemporaneous with detachment inactivity. These results demonstrate that detachment faults may be highly sensitive to local changes in magma supply, and that direct seafloor observations are crucial to understanding slow-spreading ridge mechanics.

  8. Widespread Mega-Pockmarks Imaged Along the Western Edge of the Cocos Ridge

    NASA Astrophysics Data System (ADS)

    Gibson, J. C.; Kluesner, J. W.; Silver, E. A.; Bangs, N. L.; McIntosh, K. D.

    2012-12-01

    A large field (245km2) of 31 seabed mega-pockmarks was imaged between the Cocos ridge and the Quepos plateau on ~16.5 Ma oceanic crust generated at the Cocos-Nazca spreading center. The imaged pockmarks represent only a fraction of the much larger pockmark field evident in 100 m grid cell bathymetry data secured from MGDS. The pockmarks are clustered around 1800-2100 mbsl and were mapped using EM122 multibeam sonar, a 3.5 kHz sub-bottom profiler, and 3D Multi-Channel Seismic (MCS) aboard R/V Marcus G. Langseth during the CRISP seismic survey (2011). Using a constrained swath width of 1.4 km, the increased sounding density facilitated bathymetry/backscatter to be gridded at 10m and 8m respectively. The diameter of the pockmarks varies from ~1 km to ~2 km with a relief range of ~30-80 m, and average slopes of 15°. The MCS data also reveal older buried pockmarks in trench adjacent sediments. Small high-backscatter mounds occur within a subset of the pockmarks, which may indicate bioherms or carbonate banks above focused fluid flow conduits. Based on drilling results of DSDP Site 158 and ODP Site 1381, the pockmarks appear to be the result of paleo-differential advancement of a silica diagenetic front (opal-A to opal-CT). Although, the pockmarks may be erosional features sourced at depth from dewatering of sediments inter-bedded with igneous layers.

  9. High Efficiency Multi-shot Interleaved Spiral-In/Out Acquisition for High Resolution BOLD fMRI

    PubMed Central

    Jung, Youngkyoo; Samsonov, Alexey A.; Liu, Thomas T.; Buracas, Giedrius T.

    2012-01-01

    Growing demand for high spatial resolution BOLD functional MRI faces a challenge of the spatial resolution vs. coverage or temporal resolution tradeoff, which can be addressed by methods that afford increased acquisition efficiency. Spiral acquisition trajectories have been shown to be superior to currently prevalent echo-planar imaging in terms of acquisition efficiency, and high spatial resolution can be achieved by employing multiple-shot spiral acquisition. The interleaved spiral in-out trajectory is preferred over spiral-in due to increased BOLD signal CNR and higher acquisition efficiency than that of spiral-out or non-interleaved spiral in/out trajectories (1), but to date applicability of the multi-shot interleaved spiral in-out for high spatial resolution imaging has not been studied. Herein we propose multi-shot interleaved spiral in-out acquisition and investigate its applicability for high spatial resolution BOLD fMRI. Images reconstructed from interleaved spiral-in and -out trajectories possess artifacts caused by differences in T2* decay, off-resonance and k-space errors associated with the two trajectories. We analyze the associated errors and demonstrate that application of conjugate phase reconstruction and spectral filtering can substantially mitigate these image artifacts. After applying these processing steps, the multishot interleaved spiral in-out pulse sequence yields high BOLD CNR images at in-plane resolution below 1x1 mm while preserving acceptable temporal resolution (4 s) and brain coverage (15 slices of 2 mm thickness). Moreover, this method yields sufficient BOLD CNR at 1.5 mm isotropic resolution for detection of activation in hippocampus associated with cognitive tasks (Stern memory task). The multi-shot interleaved spiral in-out acquisition is a promising technique for high spatial resolution BOLD fMRI applications. PMID:23023395

  10. High-Resolution Soil Moisture Retrieval using SMAP-L Band Radiometer and RISAT-C band Radar Data for the Indian Subcontinent

    NASA Astrophysics Data System (ADS)

    Singh, G.; Das, N. N.; Panda, R. K.; Mohanty, B.; Entekhabi, D.; Bhattacharya, B. K.

    2016-12-01

    Soil moisture status at high resolution (1-10 km) is vital for hydrological, agricultural and hydro-metrological applications. The NASA Soil Moisture Active Passive (SMAP) mission had potential to provide reliable soil moisture estimate at finer spatial resolutions (3 km and 9 km) at the global extent, but suffered a malfunction of its radar, consequently making the SMAP mission observations only from radiometer that are of coarse spatial resolution. At present, the availability of high-resolution soil moisture product is limited, especially in developing countries like India, which greatly depends on agriculture for sustaining a huge population. Therefore, an attempt has been made in the reported study to combine the C-band synthetic aperture radar (SAR) data from Radar Imaging Satellite (RISAT) of the Indian Space Research Organization (ISRO) with the SMAP mission L-band radiometer data to obtain high-resolution (1 km and 3 km) soil moisture estimates. In this study, a downscaling approach (Active-Passive Algorithm) implemented for the SMAP mission was used to disaggregate the SMAP radiometer brightness temperature (Tb) using the fine resolution SAR backscatter (σ0) from RISAT. The downscaled high-resolution Tb was then subjected to tau-omega model in conjunction with high-resolution ancillary data to retrieve soil moisture at 1 and 3 km scale. The retrieved high-resolution soil moisture estimates were then validated with ground based soil moisture measurement under different hydro-climatic regions of India. Initial results show tremendous potential and reasonable accuracy for the retrieved soil moisture at 1 km and 3 km. It is expected that ISRO will implement this approach to produce high-resolution soil moisture estimates for the Indian subcontinent.

  11. A novel ToF-SIMS operation mode for sub 100 nm lateral resolution: Application and performance.

    PubMed

    Kubicek, Markus; Holzlechner, Gerald; Opitz, Alexander K; Larisegger, Silvia; Hutter, Herbert; Fleig, Jürgen

    2014-01-15

    A novel operation mode for time of flight-secondary ion mass spectrometry (ToF-SIMS) is described for a TOF.SIMS 5 instrument with a Bi-ion gun. It features sub 100 nm lateral resolution, adjustable primary ion currents and the possibility to measure with high lateral resolution as well as high mass resolution. The adjustment and performance of the novel operation mode are described and compared to established ToF-SIMS operation modes. Several examples of application featuring novel scientific results show the capabilities of the operation mode in terms of lateral resolution, accuracy of isotope analysis of oxygen, and combination of high lateral and mass resolution. The relationship between high lateral resolution and operation of SIMS in static mode is discussed.

  12. Gas scintillation glass GEM detector for high-resolution X-ray imaging and CT

    NASA Astrophysics Data System (ADS)

    Fujiwara, T.; Mitsuya, Y.; Fushie, T.; Murata, K.; Kawamura, A.; Koishikawa, A.; Toyokawa, H.; Takahashi, H.

    2017-04-01

    A high-spatial-resolution X-ray-imaging gaseous detector has been developed with a single high-gas-gain glass gas electron multiplier (G-GEM), scintillation gas, and optical camera. High-resolution X-ray imaging of soft elements is performed with a spatial resolution of 281 μm rms and an effective area of 100×100 mm. In addition, high-resolution X-ray 3D computed tomography (CT) is successfully demonstrated with the gaseous detector. It shows high sensitivity to low-energy X-rays, which results in high-contrast radiographs of objects containing elements with low atomic numbers. In addition, the high yield of scintillation light enables fast X-ray imaging, which is an advantage for constructing CT images with low-energy X-rays.

  13. Evaluating an image-fusion algorithm with synthetic-image-generation tools

    NASA Astrophysics Data System (ADS)

    Gross, Harry N.; Schott, John R.

    1996-06-01

    An algorithm that combines spectral mixing and nonlinear optimization is used to fuse multiresolution images. Image fusion merges images of different spatial and spectral resolutions to create a high spatial resolution multispectral combination. High spectral resolution allows identification of materials in the scene, while high spatial resolution locates those materials. In this algorithm, conventional spectral mixing estimates the percentage of each material (called endmembers) within each low resolution pixel. Three spectral mixing models are compared; unconstrained, partially constrained, and fully constrained. In the partially constrained application, the endmember fractions are required to sum to one. In the fully constrained application, all fractions are additionally required to lie between zero and one. While negative fractions seem inappropriate, they can arise from random spectral realizations of the materials. In the second part of the algorithm, the low resolution fractions are used as inputs to a constrained nonlinear optimization that calculates the endmember fractions for the high resolution pixels. The constraints mirror the low resolution constraints and maintain consistency with the low resolution fraction results. The algorithm can use one or more higher resolution sharpening images to locate the endmembers to high spatial accuracy. The algorithm was evaluated with synthetic image generation (SIG) tools. A SIG developed image can be used to control the various error sources that are likely to impair the algorithm performance. These error sources include atmospheric effects, mismodeled spectral endmembers, and variability in topography and illumination. By controlling the introduction of these errors, the robustness of the algorithm can be studied and improved upon. The motivation for this research is to take advantage of the next generation of multi/hyperspectral sensors. Although the hyperspectral images will be of modest to low resolution, fusing them with high resolution sharpening images will produce a higher spatial resolution land cover or material map.

  14. High-resolution retinal imaging using adaptive optics and Fourier-domain optical coherence tomography

    DOEpatents

    Olivier, Scot S.; Werner, John S.; Zawadzki, Robert J.; Laut, Sophie P.; Jones, Steven M.

    2010-09-07

    This invention permits retinal images to be acquired at high speed and with unprecedented resolution in three dimensions (4.times.4.times.6 .mu.m). The instrument achieves high lateral resolution by using adaptive optics to correct optical aberrations of the human eye in real time. High axial resolution and high speed are made possible by the use of Fourier-domain optical coherence tomography. Using this system, we have demonstrated the ability to image microscopic blood vessels and the cone photoreceptor mosaic.

  15. O-space with high resolution readouts outperforms radial imaging.

    PubMed

    Wang, Haifeng; Tam, Leo; Kopanoglu, Emre; Peters, Dana C; Constable, R Todd; Galiana, Gigi

    2017-04-01

    While O-Space imaging is well known to accelerate image acquisition beyond traditional Cartesian sampling, its advantages compared to undersampled radial imaging, the linear trajectory most akin to O-Space imaging, have not been detailed. In addition, previous studies have focused on ultrafast imaging with very high acceleration factors and relatively low resolution. The purpose of this work is to directly compare O-Space and radial imaging in their potential to deliver highly undersampled images of high resolution and minimal artifacts, as needed for diagnostic applications. We report that the greatest advantages to O-Space imaging are observed with extended data acquisition readouts. A sampling strategy that uses high resolution readouts is presented and applied to compare the potential of radial and O-Space sequences to generate high resolution images at high undersampling factors. Simulations and phantom studies were performed to investigate whether use of extended readout windows in O-Space imaging would increase k-space sampling and improve image quality, compared to radial imaging. Experimental O-Space images acquired with high resolution readouts show fewer artifacts and greater sharpness than radial imaging with equivalent scan parameters. Radial images taken with longer readouts show stronger undersampling artifacts, which can cause small or subtle image features to disappear. These features are preserved in a comparable O-Space image. High resolution O-Space imaging yields highly undersampled images of high resolution and minimal artifacts. The additional nonlinear gradient field improves image quality beyond conventional radial imaging. Copyright © 2016 Elsevier Inc. All rights reserved.

  16. Enhancing SMAP Soil Moisture Retrievals via Superresolution Techniques

    NASA Astrophysics Data System (ADS)

    Beale, K. D.; Ebtehaj, A. M.; Romberg, J. K.; Bras, R. L.

    2017-12-01

    Soil moisture is a key state variable that modulates land-atmosphere interactions and its high-resolution global scale estimates are essential for improved weather forecasting, drought prediction, crop management, and the safety of troop mobility. Currently, NASA's Soil Moisture Active/Passive (SMAP) satellite provides a global picture of soil moisture variability at a resolution of 36 km, which is prohibitive for some hydrologic applications. The goal of this research is to enhance the resolution of SMAP passive microwave retrievals by a factor of 2 to 4 using modern superresolution techniques that rely on the knowledge of high-resolution land surface models. In this work, we explore several super-resolution techniques including an empirical dictionary method, a learned dictionary method, and a three-layer convolutional neural network. Using a year of global high-resolution land surface model simulations as training set, we found that we are able to produce high-resolution soil moisture maps that outperform the original low-resolution observations both qualitatively and quantitatively. In particular, on a patch-by-patch basis we are able to produce estimates of high-resolution soil moisture maps that improve on the original low-resolution patches by on average 6% in terms of mean-squared error, and 14% in terms of the structural similarity index.

  17. Collection and Analysis of Crowd Data with Aerial, Rooftop, and Ground Views

    DTIC Science & Technology

    2014-11-10

    collected these datasets using different aircrafts. Erista 8 HL OctaCopter is a heavy-lift aerial platform capable of using high-resolution cinema ...is another high-resolution camera that is cinema grade and high quality, with the capability of capturing videos with 4K resolution at 30 frames per...292.58 Imaging Systems and Accessories Blackmagic Production Camera 4 Crowd Counting using 4K Cameras High resolution cinema grade digital video

  18. a Spiral-Based Downscaling Method for Generating 30 M Time Series Image Data

    NASA Astrophysics Data System (ADS)

    Liu, B.; Chen, J.; Xing, H.; Wu, H.; Zhang, J.

    2017-09-01

    The spatial detail and updating frequency of land cover data are important factors influencing land surface dynamic monitoring applications in high spatial resolution scale. However, the fragmentized patches and seasonal variable of some land cover types (e. g. small crop field, wetland) make it labor-intensive and difficult in the generation of land cover data. Utilizing the high spatial resolution multi-temporal image data is a possible solution. Unfortunately, the spatial and temporal resolution of available remote sensing data like Landsat or MODIS datasets can hardly satisfy the minimum mapping unit and frequency of current land cover mapping / updating at the same time. The generation of high resolution time series may be a compromise to cover the shortage in land cover updating process. One of popular way is to downscale multi-temporal MODIS data with other high spatial resolution auxiliary data like Landsat. But the usual manner of downscaling pixel based on a window may lead to the underdetermined problem in heterogeneous area, result in the uncertainty of some high spatial resolution pixels. Therefore, the downscaled multi-temporal data can hardly reach high spatial resolution as Landsat data. A spiral based method was introduced to downscale low spatial and high temporal resolution image data to high spatial and high temporal resolution image data. By the way of searching the similar pixels around the adjacent region based on the spiral, the pixel set was made up in the adjacent region pixel by pixel. The underdetermined problem is prevented to a large extent from solving the linear system when adopting the pixel set constructed. With the help of ordinary least squares, the method inverted the endmember values of linear system. The high spatial resolution image was reconstructed on the basis of high spatial resolution class map and the endmember values band by band. Then, the high spatial resolution time series was formed with these high spatial resolution images image by image. Simulated experiment and remote sensing image downscaling experiment were conducted. In simulated experiment, the 30 meters class map dataset Globeland30 was adopted to investigate the effect on avoid the underdetermined problem in downscaling procedure and a comparison between spiral and window was conducted. Further, the MODIS NDVI and Landsat image data was adopted to generate the 30m time series NDVI in remote sensing image downscaling experiment. Simulated experiment results showed that the proposed method had a robust performance in downscaling pixel in heterogeneous region and indicated that it was superior to the traditional window-based methods. The high resolution time series generated may be a benefit to the mapping and updating of land cover data.

  19. Beyond Population Distribution: Enhancing Sociocultural Resolution from Remote Sensing

    NASA Astrophysics Data System (ADS)

    Bhaduri, B. L.; Rose, A.

    2017-12-01

    At Oak Ridge National Laboratory, since late 1990s, we have focused on developing high resolution population distribution and dynamics data from local to global scales. Increasing resolutions of geographic data has been mirrored by population data sets developed across the community. However, attempts to increase temporal and sociocultural resolutions have been limited given the lack of high resolution data on human settlements and activities. While recent advancements in moderate to high resolution earth observation have led to better physiographic data, the approach of exploiting very high resolution (sub-meter resolution) imagery has also proven useful for generating accurate human settlement maps. It allows potential (social and vulnerability) characterization of population from settlement structures by exploiting image texture and spectral features. Our recent research utilizing machine learning and geocomputation has not only validated "poverty mapping from imagery" hypothesis, but has delineated a new paradigm of rapid analysis of high resolution imagery to enhance such "neighborhood" mapping techniques. Such progress in GIScience is allowing us to move towards the goal of creating a global foundation level database for impervious surfaces and "neighborhoods," and holds tremendous promise for key applications focusing on sustainable development including many social science applications.

  20. Seamount subduction and related deformation and seismicity of the continental slope off Manzanillo, Mexico, as evidenced by multibeam data

    NASA Astrophysics Data System (ADS)

    Bandy, W. L.; Castillo Maldonado, M.; Mortera-Gutierrez, C. A.

    2014-12-01

    The west coast of Mexico presents a complex pattern of deformation related to the convergence and subduction of the Rivera plate beneath the Jalisco Block/North American plate. Previous single beam bathymetric data have evidenced a large bathymetric high at 104.6218oW, 18.7123oN, in the continental slope region off Manzanillo, Mexico. One school of thought held that this high was the offshore extension of the onshore Manzanillo horst, although the two features are offset in a right-lateral sense. Alternatively, given the presence of a large positive magnetic anomaly near the bathymetric high, the high could also be caused by the collision and subsequent subduction of a large seamount. Given that the offset between the two structures was the main evidence for proposing the existence of a forearc sliver in the offshore area of the Jalisco margin, resolving the nature of this bathymetric high is quite important in our attempts to understand the plate kinematics and tectonics of this region. Thus, to better define the deformation pattern associated with the bathymetric high, multibeam bathymetric data (obtained using the Kongsberg EM300 multibeam system), subbottom profiles (obtained using the Kongsberg TOPAS18 system), and total field magnetic data (obtained using the Geometrics G877 marine proton precession magnetometer) were collected in the continental slope region between Manzanillo, Colima, and Chamela, Jalisco, during several cruises of UNAM´s research vessel the B.O. EL PUMA. The morphology and structural deformation patterns obtained in this study indicate very clearly that a large seamount is in the process of subducting beneath the continental slope off Manzanillo. The results also indicate that not only has the seamount uplifted the slope but has resulted in slumping of the area of the slope landward of the seamount. Given these results the proposal of the existence of an independent forearc sliver in the offshore area of the southern Jalisco block needs to be reevaluated.(Funding provided by DGAPA grants IN115513, IN108110 and IN104707 and CONACyT grant 50235)

  1. High-resolution 3D imaging of polymerized photonic crystals by lab-based x-ray nanotomography with 50-nm resolution

    NASA Astrophysics Data System (ADS)

    Yin, Leilei; Chen, Ying-Chieh; Gelb, Jeff; Stevenson, Darren M.; Braun, Paul A.

    2010-09-01

    High resolution x-ray computed tomography is a powerful non-destructive 3-D imaging method. It can offer superior resolution on objects that are opaque or low contrast for optical microscopy. Synchrotron based x-ray computed tomography systems have been available for scientific research, but remain difficult to access for broader users. This work introduces a lab-based high-resolution x-ray nanotomography system with 50nm resolution in absorption and Zernike phase contrast modes. Using this system, we have demonstrated high quality 3-D images of polymerized photonic crystals which have been analyzed for band gap structures. The isotropic volumetric data shows excellent consistency with other characterization results.

  2. High Resolution PET with 250 micrometer LSO Detectors and Adaptive Zoom

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cherry, Simon R.; Qi, Jinyi

    2012-01-08

    There have been impressive improvements in the performance of small-animal positron emission tomography (PET) systems since their first development in the mid 1990s, both in terms of spatial resolution and sensitivity, which have directly contributed to the increasing adoption of this technology for a wide range of biomedical applications. Nonetheless, current systems still are largely dominated by the size of the scintillator elements used in the detector. Our research predicts that developing scintillator arrays with an element size of 250 {micro}m or smaller will lead to an image resolution of 500 {micro}m when using 18F- or 64Cu-labeled radiotracers, giving amore » factor of 4-8 improvement in volumetric resolution over the highest resolution research systems currently in existence. This proposal had two main objectives: (i) To develop and evaluate much higher resolution and efficiency scintillator arrays that can be used in the future as the basis for detectors in a small-animal PET scanner where the spatial resolution is dominated by decay and interaction physics rather than detector size. (ii) To optimize one such high resolution, high sensitivity detector and adaptively integrate it into the existing microPET II small animal PET scanner as a 'zoom-in' detector that provides higher spatial resolution and sensitivity in a limited region close to the detector face. The knowledge gained from this project will provide valuable information for building future PET systems with a complete ring of very high-resolution detector arrays and also lay the foundations for utilizing high-resolution detectors in combination with existing PET systems for localized high-resolution imaging.« less

  3. The Impact of Horizontal and Temporal Resolution on Convection and Precipitation with High-Resolution GEOS-5

    NASA Technical Reports Server (NTRS)

    Putman, William P.

    2012-01-01

    Using a high-resolution non-hydrostatic version of GEOS-5 with the cubed-sphere finite-volume dynamical core, the impact of spatial and temporal resolution on cloud properties will be evaluated. There are indications from examining convective cluster development in high resolution GEOS-5 forecasts that the temporal resolution within the model may playas significant a role as horizontal resolution. Comparing modeled convective cloud clusters versus satellite observations of brightness temperature, we have found that improved. temporal resolution in GEOS-S accounts for a significant portion of the improvements in the statistical distribution of convective cloud clusters. Using satellite simulators in GEOS-S we will compare the cloud optical properties of GEOS-S at various spatial and temporal resolutions with those observed from MODIS. The potential impact of these results on tropical cyclone formation and intensity will be examined as well.

  4. Recent applications of gas chromatography with high-resolution mass spectrometry.

    PubMed

    Špánik, Ivan; Machyňáková, Andrea

    2018-01-01

    Gas chromatography coupled to high-resolution mass spectrometry is a powerful analytical method that combines excellent separation power of gas chromatography with improved identification based on an accurate mass measurement. These features designate gas chromatography with high-resolution mass spectrometry as the first choice for identification and structure elucidation of unknown volatile and semi-volatile organic compounds. Gas chromatography with high-resolution mass spectrometry quantitative analyses was previously focused on the determination of dioxins and related compounds using magnetic sector type analyzers, a standing requirement of many international standards. The introduction of a quadrupole high-resolution time-of-flight mass analyzer broadened interest in this method and novel applications were developed, especially for multi-target screening purposes. This review is focused on the development and the most interesting applications of gas chromatography coupled to high-resolution mass spectrometry towards analysis of environmental matrices, biological fluids, and food safety since 2010. The main attention is paid to various approaches and applications of gas chromatography coupled to high-resolution mass spectrometry for non-target screening to identify contaminants and to characterize the chemical composition of environmental, food, and biological samples. The most interesting quantitative applications, where a significant contribution of gas chromatography with high-resolution mass spectrometry over the currently used methods is expected, will be discussed as well. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  5. Application of high-resolution linear Radon transform for Rayleigh-wave dispersive energy imaging and mode separating

    USGS Publications Warehouse

    Luo, Y.; Xia, J.; Miller, R.D.; Liu, J.; Xu, Y.; Liu, Q.

    2008-01-01

    Multichannel Analysis of Surface Waves (MASW) analysis is an efficient tool to obtain the vertical shear-wave profile. One of the key steps in the MASW method is to generate an image of dispersive energy in the frequency-velocity domain, so dispersion curves can be determined by picking peaks of dispersion energy. In this paper, we image Rayleigh-wave dispersive energy and separate multimodes from a multichannel record by high-resolution linear Radon transform (LRT). We first introduce Rayleigh-wave dispersive energy imaging by high-resolution LRT. We then show the process of Rayleigh-wave mode separation. Results of synthetic and real-world examples demonstrate that (1) compared with slant stacking algorithm, high-resolution LRT can improve the resolution of images of dispersion energy by more than 50% (2) high-resolution LRT can successfully separate multimode dispersive energy of Rayleigh waves with high resolution; and (3) multimode separation and reconstruction expand frequency ranges of higher mode dispersive energy, which not only increases the investigation depth but also provides a means to accurately determine cut-off frequencies.

  6. High resolution surface plasmon microscopy for cell imaging

    NASA Astrophysics Data System (ADS)

    Argoul, F.; Monier, K.; Roland, T.; Elezgaray, J.; Berguiga, L.

    2010-04-01

    We introduce a new non-labeling high resolution microscopy method for cellular imaging. This method called SSPM (Scanning Surface Plasmon Microscopy) pushes down the resolution limit of surface plasmon resonance imaging (SPRi) to sub-micronic scales. High resolution SPRi is obtained by the surface plasmon lauching with a high numerical aperture objective lens. The advantages of SPPM compared to other high resolution SPRi's rely on three aspects; (i) the interferometric detection of the back reflected light after plasmon excitation, (ii) the twodimensional scanning of the sample for image reconstruction, (iii) the radial polarization of light, enhancing both resolution and sensitivity. This microscope can afford a lateral resolution of - 150 nm in liquid environment and - 200 nm in air. We present in this paper images of IMR90 fibroblasts obtained with SSPM in dried environment. Internal compartments such as nucleus, nucleolus, mitochondria, cellular and nuclear membrane can be recognized without labelling. We propose an interpretation of the ability of SSPM to reveal high index contrast zones by a local decomposition of the V (Z) function describing the response of the SSPM.

  7. High Resolution Mesoscale Weather Data Improvement to Spatial Effects for Dose-Rate Contour Plot Predictions

    DTIC Science & Technology

    2007-03-01

    time. This is a very powerful tool in determining fine spatial resolution , as boundary conditions are not only updated at every timestep, but the ...HIGH RESOLUTION MESOSCALE WEATHER DATA IMPROVEMENT TO SPATIAL EFFECTS FOR DOSE-RATE CONTOUR PLOT PREDICTIONS THESIS Christopher P...11 1 HIGH RESOLUTION MESOSCALE WEATHER DATA IMPROVEMENT TO SPATIAL EFFECTS FOR DOSE-RATE CONTOUR PLOT

  8. The influence of spatially and temporally high-resolution wind forcing on the power input to near-inertial waves in the ocean

    NASA Astrophysics Data System (ADS)

    Rimac, Antonija; von Storch, Jin-Song; Eden, Carsten

    2013-04-01

    The estimated power required to sustain global general circulation in the ocean is about 2 TW. This power is supplied with wind stress and tides. Energy spectrum shows pronounced maxima at near-inertial frequency. Near-inertial waves excited by high-frequency winds represent an important source for deep ocean mixing since they can propagate into the deep ocean and dissipate far away from the generation sites. The energy input by winds to near-inertial waves has been studied mostly using slab ocean models and wind stress forcing with coarse temporal resolution (e.g. 6-hourly). Slab ocean models lack the ability to reproduce fundamental aspects of kinetic energy balance and systematically overestimate the wind work. Also, slab ocean models do not account the energy used for the mixed layer deepening or the energy radiating downward into the deep ocean. Coarse temporal resolution of the wind forcing strongly underestimates the near-inertial energy. To overcome this difficulty we use an eddy permitting ocean model with high-frequency wind forcing. We establish the following model setup: We use the Max Planck Institute Ocean Model (MPIOM) on a tripolar grid with 45 km horizontal resolution and 40 vertical levels. We run the model with wind forcings that vary in horizontal and temporal resolution. We use high-resolution (1-hourly with 35 km horizontal resolution) and low-resolution winds (6-hourly with 250 km horizontal resolution). We address the following questions: Is the kinetic energy of near-inertial waves enhanced when high-resolution wind forcings are used? If so, is this due to higher level of overall wind variability or higher spatial or temporal resolution of wind forcing? How large is the power of near-inertial waves generated by winds? Our results show that near-inertial waves are enhanced and the near-inertial kinetic energy is two times higher (in the storm track regions 3.5 times higher) when high-resolution winds are used. Filtering high-resolution winds in space and time, the near-inertial kinetic energy reduces. The reduction is faster when a temporal filter is used suggesting that the high-frequency wind forcing is more efficient in generating near-inertial wave energy than the small-scale wind forcing. Using low-resolution wind forcing the wind generated power to near-inertial waves is 0.55 TW. When we use high-resolution wind forcing the result is 1.6 TW meaning that the result increases by 300%.

  9. High-resolution anoscopy or expectant management for anal intraepithelial neoplasia for the prevention of anal cancer: is there really a difference?

    PubMed

    Crawshaw, Benjamin P; Russ, Andrew J; Stein, Sharon L; Reynolds, Harry L; Marderstein, Eric L; Delaney, Conor P; Champagne, Bradley J

    2015-01-01

    High-resolution anoscopy has been shown to improve identification of anal intraepithelial neoplasia but a reduction in progression to anal squamous-cell cancer has not been substantiated when serial high-resolution anoscopy is compared with traditional expectant management. The aim of this study was to compare high-resolution anoscopy versus expectant management for the surveillance of anal intraepithelial neoplasia and the prevention of anal cancer. This is a retrospective review of all patients who presented with anal squamous dysplasia, positive anal Pap smears, or anal squamous-cell cancer from 2007 to 2013. This study was performed in the colorectal department of a university-affiliated, tertiary care hospital. Included patients had biopsy-proven anal intraepithelial neoplasia from 2007 to 2013. Patients were treated with high-resolution anoscopy with ablation or standard anoscopy with ablation. Both groups were treated with imiquimod and followed every 6 months indefinitely. The incidence of anal squamous-cell cancer in each group was the primary end point. From 2007 to 2013, 424 patients with anal squamous dysplasia were seen in the clinic (high-resolution anoscopy, 220; expectant management, 204). Three patients (high-resolution anoscopy, 1; expectant management, 2) progressed to anal squamous-cell cancer; 2 were noncompliant with follow-up and with HIV treatment, and the third was allergic to imiquimod and refused to take topical 5-fluorouracil. The 5-year progression rate was 6.0% (95% CI, 1.5-24.6) for expectant management and 4.5% (95% CI, 0.7-30.8) for high-resolution anoscopy (p = 0.37). This was a retrospective review. There is potential for selection and referral bias. Because of the rarity of the outcome, the study may be underpowered. Patients with squamous-cell dysplasia followed with expectant management or high-resolution anoscopy rarely develop squamous-cell cancer if they are compliant with the protocol. The cost, morbidity, and value of high-resolution anoscopy should be further evaluated in lieu of these findings.

  10. Urban-scale mapping of PM2.5 distribution via data fusion between high-density sensor network and MODIS Aerosol Optical Depth

    NASA Astrophysics Data System (ADS)

    Ba, Yu Tao; xian Liu, Bao; Sun, Feng; Wang, Li hua; Tang, Yu jia; Zhang, Da wei

    2017-04-01

    High-resolution mapping of PM2.5 is the prerequisite for precise analytics and subsequent anti-pollution interventions. Considering the large variances of particulate distribution, urban-scale mapping is challenging either with ground-based fixed stations, with satellites or via models. In this study, a dynamic fusion method between high-density sensor network and MODIS Aerosol Optical Depth (AOD) was introduced. The sensor network was deployed in Beijing ( > 1000 fixed monitors across 16000 km2 area) to provide raw observations with high temporal resolution (sampling interval < 1 hour), high spatial resolution in flat areas ( < 1 km), and low spatial resolution in mountainous areas ( > 5 km). The MODIS AOD was calibrated to provide distribution map with low temporal resolution (daily) and moderate spatial resolution ( = 3 km). By encoding the data quality and defects (e.g. could, reflectance, abnormal), a hybrid interpolation procedure with cross-validation generated PM2.5 distribution with both high temporal and spatial resolution. Several no-pollutant and high-pollution periods were tested to validate the proposed fusion method for capturing the instantaneous patterns of PM2.5 emission.

  11. A generic framework for internet-based interactive applications of high-resolution 3-D medical image data.

    PubMed

    Liu, Danzhou; Hua, Kien A; Sugaya, Kiminobu

    2008-09-01

    With the advances in medical imaging devices, large volumes of high-resolution 3-D medical image data have been produced. These high-resolution 3-D data are very large in size, and severely stress storage systems and networks. Most existing Internet-based 3-D medical image interactive applications therefore deal with only low- or medium-resolution image data. While it is possible to download the whole 3-D high-resolution image data from the server and perform the image visualization and analysis at the client site, such an alternative is infeasible when the high-resolution data are very large, and many users concurrently access the server. In this paper, we propose a novel framework for Internet-based interactive applications of high-resolution 3-D medical image data. Specifically, we first partition the whole 3-D data into buckets, remove the duplicate buckets, and then, compress each bucket separately. We also propose an index structure for these buckets to efficiently support typical queries such as 3-D slicer and region of interest, and only the relevant buckets are transmitted instead of the whole high-resolution 3-D medical image data. Furthermore, in order to better support concurrent accesses and to improve the average response time, we also propose techniques for efficient query processing, incremental transmission, and client sharing. Our experimental study in simulated and realistic environments indicates that the proposed framework can significantly reduce storage and communication requirements, and can enable real-time interaction with remote high-resolution 3-D medical image data for many concurrent users.

  12. Computation of high-resolution SAR distributions in a head due to a radiating dipole antenna representing a hand-held mobile phone.

    PubMed

    Van de Kamer, J B; Lagendijk, J J W

    2002-05-21

    SAR distributions in a healthy female adult head as a result of a radiating vertical dipole antenna (frequency 915 MHz) representing a hand-held mobile phone have been computed for three different resolutions: 2 mm, 1 mm and 0.4 mm. The extremely high resolution of 0.4 mm was obtained with our quasistatic zooming technique, which is briefly described in this paper. For an effectively transmitted power of 0.25 W, the maximum averaged SAR values in both cubic- and arbitrary-shaped volumes are, respectively, about 1.72 and 2.55 W kg(-1) for 1 g and 0.98 and 1.73 W kg(-1) for 10 g of tissue. These numbers do not vary much (<8%) for the different resolutions, indicating that SAR computations at a resolution of 2 mm are sufficiently accurate to describe the large-scale distribution. However, considering the detailed SAR pattern in the head, large differences may occur if high-resolution computations are performed rather than low-resolution ones. These deviations are caused by both increased modelling accuracy and improved anatomical description in higher resolution simulations. For example, the SAR profile across a boundary between tissues with high dielectric contrast is much more accurately described at higher resolutions. Furthermore, low-resolution dielectric geometries may suffer from loss of anatomical detail, which greatly affects small-scale SAR distributions. Thus. for strongly inhomogeneous regions high-resolution SAR modelling is an absolute necessity.

  13. SPARTAN II: An Instructional High Resolution Land Combat Model

    DTIC Science & Technology

    1993-03-01

    93M-09 SPARTAN II: AN INSTRUCTIONAL HIGH RESOLUTION LAND COMBAT MODEL THESIS DWquALfl’ 4 Presented to the Faculty of the School of Engineering of the...ADVISOR NAJ Edward Negrelli/ENS REALDER MAJ Bruce Marl an/MA LD1 { The goal of this thesis was to improve SPARTAN, a high resolution land combat model...should serve as a useful tool for learning about the advantages and disadvantages of high resolution combat modeling. I wish to thank I4AJ Edward

  14. High-Resolution Array with Prony, MUSIC, and ESPRIT Algorithms

    DTIC Science & Technology

    1992-08-25

    N avalI Research La bora tory AD-A255 514 Washington, DC 20375-5320 NRL/FR/5324-92-9397 High-resolution Array with Prony, music , and ESPRIT...unlimited t"orm n pprovoiREPORT DOCUMENTATION PAGE OMB. o 0 104 0188 4. TITLE AND SUBTITLE S. FUNDING NUMBERS High-resolution Array with Prony. MUSIC . and...the array high-resolution properties of three algorithms: the Prony algo- rithm, the MUSIC algorithm, and the ESPRIT algorithm. MUSIC has been much

  15. High efficiency multishot interleaved spiral-in/out: acquisition for high-resolution BOLD fMRI.

    PubMed

    Jung, Youngkyoo; Samsonov, Alexey A; Liu, Thomas T; Buracas, Giedrius T

    2013-08-01

    Growing demand for high spatial resolution blood oxygenation level dependent (BOLD) functional magnetic resonance imaging faces a challenge of the spatial resolution versus coverage or temporal resolution tradeoff, which can be addressed by methods that afford increased acquisition efficiency. Spiral acquisition trajectories have been shown to be superior to currently prevalent echo-planar imaging in terms of acquisition efficiency, and high spatial resolution can be achieved by employing multiple-shot spiral acquisition. The interleaved spiral in/out trajectory is preferred over spiral-in due to increased BOLD signal contrast-to-noise ratio (CNR) and higher acquisition efficiency than that of spiral-out or noninterleaved spiral in/out trajectories (Law & Glover. Magn Reson Med 2009; 62:829-834.), but to date applicability of the multishot interleaved spiral in/out for high spatial resolution imaging has not been studied. Herein we propose multishot interleaved spiral in/out acquisition and investigate its applicability for high spatial resolution BOLD functional magnetic resonance imaging. Images reconstructed from interleaved spiral-in and -out trajectories possess artifacts caused by differences in T2 decay, off-resonance, and k-space errors associated with the two trajectories. We analyze the associated errors and demonstrate that application of conjugate phase reconstruction and spectral filtering can substantially mitigate these image artifacts. After applying these processing steps, the multishot interleaved spiral in/out pulse sequence yields high BOLD CNR images at in-plane resolution below 1 × 1 mm while preserving acceptable temporal resolution (4 s) and brain coverage (15 slices of 2 mm thickness). Moreover, this method yields sufficient BOLD CNR at 1.5 mm isotropic resolution for detection of activation in hippocampus associated with cognitive tasks (Stern memory task). The multishot interleaved spiral in/out acquisition is a promising technique for high spatial resolution BOLD functional magnetic resonance imaging applications. © 2012 Wiley Periodicals, Inc.

  16. Introducing Graduate Students to High-Resolution Mass Spectrometry (HRMS) Using a Hands-On Approach

    ERIC Educational Resources Information Center

    Stock, Naomi L.

    2017-01-01

    High-resolution mass spectrometry (HRMS) features both high resolution and high mass accuracy and is a powerful tool for the analysis and quantitation of compounds, determination of elemental compositions, and identification of unknowns. A hands-on laboratory experiment for upper-level undergraduate and graduate students to investigate HRMS is…

  17. Transmission/Scanning Transmission Electron Microscopy | Materials Science

    Science.gov Websites

    imaging such as high resolution TEM. Transmission electron diffraction patterns help to determine the microstructure of a material and its defects. Phase-contrast imaging or high-resolution (HR) TEM imaging gives high scattering angle can be collected to form high-resolution, chemically sensitive, atomic number (Z

  18. NREL: International Activities - Pakistan Resource Maps

    Science.gov Websites

    . The high-resolution (1-km) annual wind power maps were developed using a numerical modeling approach along with NREL's empirical validation methodology. The high-resolution (10-km) annual and seasonal KB) | High-Res (ZIP 281 KB) 40-km Resolution Annual Maps (Direct) Low-Res (JPG 156 KB) | High-Res

  19. A high resolution on-chip delay sensor with low supply-voltage sensitivity for high-performance electronic systems.

    PubMed

    Sheng, Duo; Lai, Hsiu-Fan; Chan, Sheng-Min; Hong, Min-Rong

    2015-02-13

    An all-digital on-chip delay sensor (OCDS) circuit with high delay-measurement resolution and low supply-voltage sensitivity for efficient detection and diagnosis in high-performance electronic system applications is presented. Based on the proposed delay measurement scheme, the quantization resolution of the proposed OCDS can be reduced to several picoseconds. Additionally, the proposed cascade-stage delay measurement circuit can enhance immunity to supply-voltage variations of the delay measurement resolution without extra self-biasing or calibration circuits. Simulation results show that the delay measurement resolution can be improved to 1.2 ps; the average delay resolution variation is 0.55% with supply-voltage variations of ±10%. Moreover, the proposed delay sensor can be implemented in an all-digital manner, making it very suitable for high-performance electronic system applications as well as system-level integration.

  20. Basilar artery atherosclerotic plaques in paramedian and lacunar pontine infarctions: a high-resolution MRI study.

    PubMed

    Klein, Isabelle F; Lavallée, Philippa C; Mazighi, Mikael; Schouman-Claeys, Elisabeth; Labreuche, Julien; Amarenco, Pierre

    2010-07-01

    Pontine infarction is most often related to basilar artery atherosclerosis when the lesion abuts on the basal surface (paramedian pontine infarction), whereas small medial pontine lesion is usually attributed to small vessel lipohyalinosis. A previous study has found that high-resolution MRI can detect basilar atherosclerotic plaques in up to 70% of patient with paramedian pontine infarction, even in patients with normal angiograms, but none has evaluated the presence of basilar artery plaque by high-resolution MRI in patients with small medial pontine lesion in the medial part of the pons. Consecutive patients with pontine infarction underwent basilar angiography using time-of-flight and contrast-enhanced 3-dimensional MR angiography to assess the presence of basilar artery stenosis and high-resolution MRI to assess the presence of atherosclerotic plaque. Basilar artery angiogram was scored as "normal," "irregular," or "stenosed" >or=30%" and basilar artery by high-resolution MRI was scored as "normal" or "presence of plaque." Medial pontine infarcts were divided into paramedian pontine infarction and small medial pontine lesion groups. Forty-one patients with pontine infarction were included, 26 with paramedian pontine infarction and 15 with small medial pontine lesion. High-resolution MRI detected basilar artery atherosclerosis in 42% of patients with a pontine infarction and normal basilar angiograms. Among patients with paramedian pontine infarction, 65% had normal basilar angiograms but 77% had basilar artery atherosclerosis detected on high-resolution MRI. Among patients with small medial pontine lesion, 46% had normal basilar angiograms but 73% had basilar artery plaques detected on by high-resolution MRI. This study suggests that medial pontine lacunes may be due to a penetrating artery disease secondary to basilar artery atherosclerosis. High-resolution MRI could help precise stroke subtyping.

  1. High-resolution observations of the near-surface wind field over an isolated mountain and in a steep river canyon

    Treesearch

    B. W. Butler; N. S. Wagenbrenner; J. M. Forthofer; B. K. Lamb; K. S. Shannon; D. Finn; R. M. Eckman; K. Clawson; L. Bradshaw; P. Sopko; S. Beard; D. Jimenez; C. Wold; M. Vosburgh

    2015-01-01

    A number of numerical wind flow models have been developed for simulating wind flow at relatively fine spatial resolutions (e.g., 100 m); however, there are very limited observational data available for evaluating these high-resolution models. This study presents high-resolution surface wind data sets collected from an isolated mountain and a steep river canyon. The...

  2. Data Descriptor: TerraClimate, a high-resolution global dataset of monthly climate and climatic water balance from 1958-2015

    Treesearch

    John T. Abatzoglou; Solomon Z. Dobrowski; Sean A. Parks; Katherine C. Hegewisch

    2018-01-01

    We present TerraClimate, a dataset of high-spatial resolution (1/24°, ~4-km) monthly climate and climatic water balance for global terrestrial surfaces from 1958–2015. TerraClimate uses climatically aided interpolation, combining high-spatial resolution climatological normals from the WorldClim dataset, with coarser resolution time varying (i.e., monthly) data from...

  3. Assessment of a vertical high-resolution distributed-temperature-sensing system in a shallow thermohaline environment

    NASA Astrophysics Data System (ADS)

    Suárez, F.; Aravena, J. E.; Hausner, M. B.; Childress, A. E.; Tyler, S. W.

    2011-03-01

    In shallow thermohaline-driven lakes it is important to measure temperature on fine spatial and temporal scales to detect stratification or different hydrodynamic regimes. Raman spectra distributed temperature sensing (DTS) is an approach available to provide high spatial and temporal temperature resolution. A vertical high-resolution DTS system was constructed to overcome the problems of typical methods used in the past, i.e., without disturbing the water column, and with resistance to corrosive environments. This paper describes a method to quantitatively assess accuracy, precision and other limitations of DTS systems to fully utilize the capacity of this technology, with a focus on vertical high-resolution to measure temperatures in shallow thermohaline environments. It also presents a new method to manually calibrate temperatures along the optical fiber achieving significant improved resolution. The vertical high-resolution DTS system is used to monitor the thermal behavior of a salt-gradient solar pond, which is an engineered shallow thermohaline system that allows collection and storage of solar energy for a long period of time. The vertical high-resolution DTS system monitors the temperature profile each 1.1 cm vertically and in time averages as small as 10 s. Temperature resolution as low as 0.035 °C is obtained when the data are collected at 5-min intervals.

  4. High axial resolution imaging system for large volume tissues using combination of inclined selective plane illumination and mechanical sectioning

    PubMed Central

    Zhang, Qi; Yang, Xiong; Hu, Qinglei; Bai, Ke; Yin, Fangfang; Li, Ning; Gang, Yadong; Wang, Xiaojun; Zeng, Shaoqun

    2017-01-01

    To resolve fine structures of biological systems like neurons, it is required to realize microscopic imaging with sufficient spatial resolution in three dimensional systems. With regular optical imaging systems, high lateral resolution is accessible while high axial resolution is hard to achieve in a large volume. We introduce an imaging system for high 3D resolution fluorescence imaging of large volume tissues. Selective plane illumination was adopted to provide high axial resolution. A scientific CMOS working in sub-array mode kept the imaging area in the sample surface, which restrained the adverse effect of aberrations caused by inclined illumination. Plastic embedding and precise mechanical sectioning extended the axial range and eliminated distortion during the whole imaging process. The combination of these techniques enabled 3D high resolution imaging of large tissues. Fluorescent bead imaging showed resolutions of 0.59 μm, 0.47μm, and 0.59 μm in the x, y, and z directions, respectively. Data acquired from the volume sample of brain tissue demonstrated the applicability of this imaging system. Imaging of different depths showed uniform performance where details could be recognized in either the near-soma area or terminal area, and fine structures of neurons could be seen in both the xy and xz sections. PMID:29296503

  5. High resolution land surface geophysical parameters estimation from ALOS PALSAR data

    USDA-ARS?s Scientific Manuscript database

    High resolution land surface geophysical products, such as soil moisture, surface roughness and vegetation water content, are essential for a variety of applications ranging from water management to regional climate predictions. In India high resolution geophysical products, in particular soil moist...

  6. Automatic optimization high-speed high-resolution OCT retinal imaging at 1μm

    NASA Astrophysics Data System (ADS)

    Cua, Michelle; Liu, Xiyun; Miao, Dongkai; Lee, Sujin; Lee, Sieun; Bonora, Stefano; Zawadzki, Robert J.; Mackenzie, Paul J.; Jian, Yifan; Sarunic, Marinko V.

    2015-03-01

    High-resolution OCT retinal imaging is important in providing visualization of various retinal structures to aid researchers in better understanding the pathogenesis of vision-robbing diseases. However, conventional optical coherence tomography (OCT) systems have a trade-off between lateral resolution and depth-of-focus. In this report, we present the development of a focus-stacking optical coherence tomography (OCT) system with automatic optimization for high-resolution, extended-focal-range clinical retinal imaging. A variable-focus liquid lens was added to correct for de-focus in real-time. A GPU-accelerated segmentation and optimization was used to provide real-time layer-specific enface visualization as well as depth-specific focus adjustment. After optimization, multiple volumes focused at different depths were acquired, registered, and stitched together to yield a single, high-resolution focus-stacked dataset. Using this system, we show high-resolution images of the ONH, from which we extracted clinically-relevant parameters such as the nerve fiber layer thickness and lamina cribrosa microarchitecture.

  7. Single-shot and single-sensor high/super-resolution microwave imaging based on metasurface.

    PubMed

    Wang, Libo; Li, Lianlin; Li, Yunbo; Zhang, Hao Chi; Cui, Tie Jun

    2016-06-01

    Real-time high-resolution (including super-resolution) imaging with low-cost hardware is a long sought-after goal in various imaging applications. Here, we propose broadband single-shot and single-sensor high-/super-resolution imaging by using a spatio-temporal dispersive metasurface and an imaging reconstruction algorithm. The metasurface with spatio-temporal dispersive property ensures the feasibility of the single-shot and single-sensor imager for super- and high-resolution imaging, since it can convert efficiently the detailed spatial information of the probed object into one-dimensional time- or frequency-dependent signal acquired by a single sensor fixed in the far-field region. The imaging quality can be improved by applying a feature-enhanced reconstruction algorithm in post-processing, and the desired imaging resolution is related to the distance between the object and metasurface. When the object is placed in the vicinity of the metasurface, the super-resolution imaging can be realized. The proposed imaging methodology provides a unique means to perform real-time data acquisition, high-/super-resolution images without employing expensive hardware (e.g. mechanical scanner, antenna array, etc.). We expect that this methodology could make potential breakthroughs in the areas of microwave, terahertz, optical, and even ultrasound imaging.

  8. Imaging whole mouse brains with a dual resolution serial swept-source optical coherence tomography scanner

    NASA Astrophysics Data System (ADS)

    Lefebvre, Joël.; Castonguay, Alexandre; Lesage, Frédéric

    2018-02-01

    High resolution imaging of whole rodent brains using serial OCT scanners is a promising method to investigate microstructural changes in tissue related to the evolution of neuropathologies. Although micron to sub-micron sampling resolution can be obtained by using high numerical aperture objectives and dynamic focusing, such an imaging system is not adapted to whole brain imaging. This is due to the large amount of data it generates and the significant computational resources required for reconstructing such volumes. To address this limitation, a dual resolution serial OCT scanner was developed. The optical setup consists in a swept-source OCT made of two sample and reference arms, each arm being coupled with different microscope objectives (3X / 40X). Motorized flip mirrors were used to switch between each OCT arm, thus allowing low and high resolution acquisitions within the same sample. The low resolution OCT volumes acquired with the 3X arm were stitched together, providing a 3D map of the whole mouse brain. This brain can be registered to an OCT brain template to enable neurological structures localization. The high resolution volumes acquired with the 40X arm were also stitched together to create local high resolution 3D maps of the tissue microstructure. The 40X data can be acquired at any arbitrary location in the sample, thus limiting storage-heavy high resolution data to application restricted to specific regions of interest. By providing dual-resolution OCT data, this setup can be used to validate diffusion MRI with tissue microstructure derived metrics measured at any location in ex vivo brains.

  9. A compact high-resolution 3-D imaging spectrometer for discovering Oases on Mars

    USGS Publications Warehouse

    Ge, J.; Ren, D.; Lunine, J.I.; Brown, R.H.; Yelle, R.V.; Soderblom, L.A.; ,

    2002-01-01

    A new design for a very lightweight, very high throughput reflectance sectrometer enabled by two new technologies being developed is presented. These new technologies include integral field unit optics to enable simultaneous imaging and spectroscopy at high spatial resolution with an infrared (IR) array, and silicon grisms to enable compact and high-resolution spectroscopy.

  10. High-spatial resolution and high-spectral resolution detector for use in the measurement of solar flare hard X-rays

    NASA Technical Reports Server (NTRS)

    Desai, U. D.; Orwig, Larry E.

    1988-01-01

    In the areas of high spatial resolution, the evaluation of a hard X-ray detector with 65 micron spatial resolution for operation in the energy range from 30 to 400 keV is proposed. The basic detector is a thick large-area scintillator faceplate, composed of a matrix of high-density scintillating glass fibers, attached to a proximity type image intensifier tube with a resistive-anode digital readout system. Such a detector, combined with a coded-aperture mask, would be ideal for use as a modest-sized hard X-ray imaging instrument up to X-ray energies as high as several hundred keV. As an integral part of this study it was also proposed that several techniques be critically evaluated for X-ray image coding which could be used with this detector. In the area of high spectral resolution, it is proposed to evaluate two different types of detectors for use as X-ray spectrometers for solar flares: planar silicon detectors and high-purity germanium detectors (HPGe). Instruments utilizing these high-spatial-resolution detectors for hard X-ray imaging measurements from 30 to 400 keV and high-spectral-resolution detectors for measurements over a similar energy range would be ideally suited for making crucial solar flare observations during the upcoming maximum in the solar cycle.

  11. Application of Super-Resolution Convolutional Neural Network for Enhancing Image Resolution in Chest CT.

    PubMed

    Umehara, Kensuke; Ota, Junko; Ishida, Takayuki

    2017-10-18

    In this study, the super-resolution convolutional neural network (SRCNN) scheme, which is the emerging deep-learning-based super-resolution method for enhancing image resolution in chest CT images, was applied and evaluated using the post-processing approach. For evaluation, 89 chest CT cases were sampled from The Cancer Imaging Archive. The 89 CT cases were divided randomly into 45 training cases and 44 external test cases. The SRCNN was trained using the training dataset. With the trained SRCNN, a high-resolution image was reconstructed from a low-resolution image, which was down-sampled from an original test image. For quantitative evaluation, two image quality metrics were measured and compared to those of the conventional linear interpolation methods. The image restoration quality of the SRCNN scheme was significantly higher than that of the linear interpolation methods (p < 0.001 or p < 0.05). The high-resolution image reconstructed by the SRCNN scheme was highly restored and comparable to the original reference image, in particular, for a ×2 magnification. These results indicate that the SRCNN scheme significantly outperforms the linear interpolation methods for enhancing image resolution in chest CT images. The results also suggest that SRCNN may become a potential solution for generating high-resolution CT images from standard CT images.

  12. Breaking the acoustic diffraction limit via nonlinear effect and thermal confinement for potential deep-tissue high-resolution imaging

    PubMed Central

    Yuan, Baohong; Pei, Yanbo; Kandukuri, Jayanth

    2013-01-01

    Our recently developed ultrasound-switchable fluorescence (USF) imaging technique showed that it was feasible to conduct high-resolution fluorescence imaging in a centimeter-deep turbid medium. Because the spatial resolution of this technique highly depends on the ultrasound-induced temperature focal size (UTFS), minimization of UTFS becomes important for further improving the spatial resolution USF technique. In this study, we found that UTFS can be significantly reduced below the diffraction-limited acoustic intensity focal size via nonlinear acoustic effects and thermal confinement by appropriately controlling ultrasound power and exposure time, which can be potentially used for deep-tissue high-resolution imaging. PMID:23479498

  13. Mesosacle eddies in a high resolution OGCM and coupled ocean-atmosphere GCM

    NASA Astrophysics Data System (ADS)

    Yu, Y.; Liu, H.; Lin, P.

    2017-12-01

    The present study described high-resolution climate modeling efforts including oceanic, atmospheric and coupled general circulation model (GCM) at the state key laboratory of numerical modeling for atmospheric sciences and geophysical fluid dynamics (LASG), Institute of Atmospheric Physics (IAP). The high-resolution OGCM is established based on the latest version of the LASG/IAP Climate system Ocean Model (LICOM2.1), but its horizontal resolution and vertical resolution are increased to 1/10° and 55 layers, respectively. Forced by the surface fluxes from the reanalysis and observed data, the model has been integrated for approximately more than 80 model years. Compared with the simulation of the coarse-resolution OGCM, the eddy-resolving OGCM not only better simulates the spatial-temporal features of mesoscale eddies and the paths and positions of western boundary currents but also reproduces the large meander of the Kuroshio Current and its interannual variability. Another aspect, namely, the complex structures of equatorial Pacific currents and currents in the coastal ocean of China, are better captured due to the increased horizontal and vertical resolution. Then we coupled the high resolution OGCM to NCAR CAM4 with 25km resolution, in which the mesoscale air-sea interaction processes are better captured.

  14. Human brain diffusion tensor imaging at submillimeter isotropic resolution on a 3 Tesla clinical MRI scanner

    PubMed Central

    Chang, Hing-Chiu; Sundman, Mark; Petit, Laurent; Guhaniyogi, Shayan; Chu, Mei-Lan; Petty, Christopher; Song, Allen W.; Chen, Nan-kuei

    2015-01-01

    The advantages of high-resolution diffusion tensor imaging (DTI) have been demonstrated in a recent post-mortem human brain study (Miller et al., NeuroImage 2011;57(1):167–181), showing that white matter fiber tracts can be much more accurately detected in data at submillimeter isotropic resolution. To our knowledge, in vivo human brain DTI at submillimeter isotropic resolution has not been routinely achieved yet because of the difficulty in simultaneously achieving high resolution and high signal-to-noise ratio (SNR) in DTI scans. Here we report a 3D multi-slab interleaved EPI acquisition integrated with multiplexed sensitivity encoded (MUSE) reconstruction, to achieve high-quality, high-SNR and submillimeter isotropic resolution (0.85 × 0.85 × 0.85 mm3) in vivo human brain DTI on a 3 Tesla clinical MRI scanner. In agreement with the previously reported post-mortem human brain DTI study, our in vivo data show that the structural connectivity networks of human brains can be mapped more accurately and completely with high-resolution DTI as compared with conventional DTI (e.g., 2 × 2 × 2 mm3). PMID:26072250

  15. Fuzzy Classification of High Resolution Remote Sensing Scenes Using Visual Attention Features.

    PubMed

    Li, Linyi; Xu, Tingbao; Chen, Yun

    2017-01-01

    In recent years the spatial resolutions of remote sensing images have been improved greatly. However, a higher spatial resolution image does not always lead to a better result of automatic scene classification. Visual attention is an important characteristic of the human visual system, which can effectively help to classify remote sensing scenes. In this study, a novel visual attention feature extraction algorithm was proposed, which extracted visual attention features through a multiscale process. And a fuzzy classification method using visual attention features (FC-VAF) was developed to perform high resolution remote sensing scene classification. FC-VAF was evaluated by using remote sensing scenes from widely used high resolution remote sensing images, including IKONOS, QuickBird, and ZY-3 images. FC-VAF achieved more accurate classification results than the others according to the quantitative accuracy evaluation indices. We also discussed the role and impacts of different decomposition levels and different wavelets on the classification accuracy. FC-VAF improves the accuracy of high resolution scene classification and therefore advances the research of digital image analysis and the applications of high resolution remote sensing images.

  16. Fuzzy Classification of High Resolution Remote Sensing Scenes Using Visual Attention Features

    PubMed Central

    Xu, Tingbao; Chen, Yun

    2017-01-01

    In recent years the spatial resolutions of remote sensing images have been improved greatly. However, a higher spatial resolution image does not always lead to a better result of automatic scene classification. Visual attention is an important characteristic of the human visual system, which can effectively help to classify remote sensing scenes. In this study, a novel visual attention feature extraction algorithm was proposed, which extracted visual attention features through a multiscale process. And a fuzzy classification method using visual attention features (FC-VAF) was developed to perform high resolution remote sensing scene classification. FC-VAF was evaluated by using remote sensing scenes from widely used high resolution remote sensing images, including IKONOS, QuickBird, and ZY-3 images. FC-VAF achieved more accurate classification results than the others according to the quantitative accuracy evaluation indices. We also discussed the role and impacts of different decomposition levels and different wavelets on the classification accuracy. FC-VAF improves the accuracy of high resolution scene classification and therefore advances the research of digital image analysis and the applications of high resolution remote sensing images. PMID:28761440

  17. High-resolution dynamic 31 P-MRSI using a low-rank tensor model.

    PubMed

    Ma, Chao; Clifford, Bryan; Liu, Yuchi; Gu, Yuning; Lam, Fan; Yu, Xin; Liang, Zhi-Pei

    2017-08-01

    To develop a rapid 31 P-MRSI method with high spatiospectral resolution using low-rank tensor-based data acquisition and image reconstruction. The multidimensional image function of 31 P-MRSI is represented by a low-rank tensor to capture the spatial-spectral-temporal correlations of data. A hybrid data acquisition scheme is used for sparse sampling, which consists of a set of "training" data with limited k-space coverage to capture the subspace structure of the image function, and a set of sparsely sampled "imaging" data for high-resolution image reconstruction. An explicit subspace pursuit approach is used for image reconstruction, which estimates the bases of the subspace from the "training" data and then reconstructs a high-resolution image function from the "imaging" data. We have validated the feasibility of the proposed method using phantom and in vivo studies on a 3T whole-body scanner and a 9.4T preclinical scanner. The proposed method produced high-resolution static 31 P-MRSI images (i.e., 6.9 × 6.9 × 10 mm 3 nominal resolution in a 15-min acquisition at 3T) and high-resolution, high-frame-rate dynamic 31 P-MRSI images (i.e., 1.5 × 1.5 × 1.6 mm 3 nominal resolution, 30 s/frame at 9.4T). Dynamic spatiospectral variations of 31 P-MRSI signals can be efficiently represented by a low-rank tensor. Exploiting this mathematical structure for data acquisition and image reconstruction can lead to fast 31 P-MRSI with high resolution, frame-rate, and SNR. Magn Reson Med 78:419-428, 2017. © 2017 International Society for Magnetic Resonance in Medicine. © 2017 International Society for Magnetic Resonance in Medicine.

  18. 40 CFR 766.16 - Developing the analytical test method.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... Resolution Gas Chromatography (HRGC) with High Resolution Mass Spectrometry (HRMS) is the method of choice... meet the requirements of the chemical matrix. (d) Analysis. The method of choice is High Resolution Gas...

  19. 40 CFR 766.16 - Developing the analytical test method.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... Resolution Gas Chromatography (HRGC) with High Resolution Mass Spectrometry (HRMS) is the method of choice... meet the requirements of the chemical matrix. (d) Analysis. The method of choice is High Resolution Gas...

  20. High Spatial Resolution Commercial Satellite Imaging Product Characterization

    NASA Technical Reports Server (NTRS)

    Ryan, Robert E.; Pagnutti, Mary; Blonski, Slawomir; Ross, Kenton W.; Stnaley, Thomas

    2005-01-01

    NASA Stennis Space Center's Remote Sensing group has been characterizing privately owned high spatial resolution multispectral imaging systems, such as IKONOS, QuickBird, and OrbView-3. Natural and man made targets were used for spatial resolution, radiometric, and geopositional characterizations. Higher spatial resolution also presents significant adjacency effects for accurate reliable radiometry.

  1. The investigation of classification methods of high-resolution imagery

    Treesearch

    Tracey S. Frescino; Gretchen G. Moisen; Larry DeBlander; Michel Guerin

    2007-01-01

    As remote-sensing technology advances, high-resolution imagery, such as Quickbird and photography from the National Agriculture Imagery Program (NAIP), is becoming more readily available for use in forestry applications. Quickbird imagery is currently the highest resolution imagery commercially available. It consists of 2.44-m (8-ft) resolution multispectral bands...

  2. A 4.5 km resolution Arctic Ocean simulation with the global multi-resolution model FESOM 1.4

    NASA Astrophysics Data System (ADS)

    Wang, Qiang; Wekerle, Claudia; Danilov, Sergey; Wang, Xuezhu; Jung, Thomas

    2018-04-01

    In the framework of developing a global modeling system which can facilitate modeling studies on Arctic Ocean and high- to midlatitude linkage, we evaluate the Arctic Ocean simulated by the multi-resolution Finite Element Sea ice-Ocean Model (FESOM). To explore the value of using high horizontal resolution for Arctic Ocean modeling, we use two global meshes differing in the horizontal resolution only in the Arctic Ocean (24 km vs. 4.5 km). The high resolution significantly improves the model's representation of the Arctic Ocean. The most pronounced improvement is in the Arctic intermediate layer, in terms of both Atlantic Water (AW) mean state and variability. The deepening and thickening bias of the AW layer, a common issue found in coarse-resolution simulations, is significantly alleviated by using higher resolution. The topographic steering of the AW is stronger and the seasonal and interannual temperature variability along the ocean bottom topography is enhanced in the high-resolution simulation. The high resolution also improves the ocean surface circulation, mainly through a better representation of the narrow straits in the Canadian Arctic Archipelago (CAA). The representation of CAA throughflow not only influences the release of water masses through the other gateways but also the circulation pathways inside the Arctic Ocean. However, the mean state and variability of Arctic freshwater content and the variability of freshwater transport through the Arctic gateways appear not to be very sensitive to the increase in resolution employed here. By highlighting the issues that are independent of model resolution, we address that other efforts including the improvement of parameterizations are still required.

  3. High-resolution harmonic motion imaging (HR-HMI) for tissue biomechanical property characterization

    PubMed Central

    Ma, Teng; Qian, Xuejun; Chiu, Chi Tat; Yu, Mingyue; Jung, Hayong; Tung, Yao-Sheng; Shung, K. Kirk

    2015-01-01

    Background Elastography, capable of mapping the biomechanical properties of biological tissues, serves as a useful technique for clinicians to perform disease diagnosis and determine stages of many diseases. Many acoustic radiation force (ARF) based elastography, including acoustic radiation force impulse (ARFI) imaging and harmonic motion imaging (HMI), have been developed to remotely assess the elastic properties of tissues. However, due to the lower operating frequencies of these approaches, their spatial resolutions are insufficient for revealing stiffness distribution on small scale applications, such as cancerous tumor margin detection, atherosclerotic plaque composition analysis and ophthalmologic tissue characterization. Though recently developed ARF-based optical coherence elastography (OCE) methods open a new window for the high resolution elastography, shallow imaging depths significantly limit their usefulness in clinics. Methods The aim of this study is to develop a high-resolution HMI method to assess the tissue biomechanical properties with acceptable field of view (FOV) using a 4 MHz ring transducer for efficient excitation and a 40 MHz needle transducer for accurate detection. Under precise alignment of two confocal transducers, the high-resolution HMI system has a lateral resolution of 314 µm and an axial resolution of 
147 µm with an effective FOV of 2 mm in depth. Results The performance of this high resolution imaging system was validated on the agar-based tissue mimicking phantoms with different stiffness distributions. These data demonstrated the imaging system’s improved resolution and sensitivity on differentiating materials with varying stiffness. In addition, ex vivo imaging of a human atherosclerosis coronary artery demonstrated the capability of high resolution HMI in identifying layer-specific structures and characterizing atherosclerotic plaques based on their stiffness differences. Conclusions All together high resolution HMI appears to be a promising ultrasound-only technology for characterizing tissue biomechanical properties at the microstructural level to improve the image-based diseases diagnosis in multiple clinical applications. PMID:25694960

  4. High-resolution harmonic motion imaging (HR-HMI) for tissue biomechanical property characterization.

    PubMed

    Ma, Teng; Qian, Xuejun; Chiu, Chi Tat; Yu, Mingyue; Jung, Hayong; Tung, Yao-Sheng; Shung, K Kirk; Zhou, Qifa

    2015-02-01

    Elastography, capable of mapping the biomechanical properties of biological tissues, serves as a useful technique for clinicians to perform disease diagnosis and determine stages of many diseases. Many acoustic radiation force (ARF) based elastography, including acoustic radiation force impulse (ARFI) imaging and harmonic motion imaging (HMI), have been developed to remotely assess the elastic properties of tissues. However, due to the lower operating frequencies of these approaches, their spatial resolutions are insufficient for revealing stiffness distribution on small scale applications, such as cancerous tumor margin detection, atherosclerotic plaque composition analysis and ophthalmologic tissue characterization. Though recently developed ARF-based optical coherence elastography (OCE) methods open a new window for the high resolution elastography, shallow imaging depths significantly limit their usefulness in clinics. The aim of this study is to develop a high-resolution HMI method to assess the tissue biomechanical properties with acceptable field of view (FOV) using a 4 MHz ring transducer for efficient excitation and a 40 MHz needle transducer for accurate detection. Under precise alignment of two confocal transducers, the high-resolution HMI system has a lateral resolution of 314 µm and an axial resolution of 
147 µm with an effective FOV of 2 mm in depth. The performance of this high resolution imaging system was validated on the agar-based tissue mimicking phantoms with different stiffness distributions. These data demonstrated the imaging system's improved resolution and sensitivity on differentiating materials with varying stiffness. In addition, ex vivo imaging of a human atherosclerosis coronary artery demonstrated the capability of high resolution HMI in identifying layer-specific structures and characterizing atherosclerotic plaques based on their stiffness differences. All together high resolution HMI appears to be a promising ultrasound-only technology for characterizing tissue biomechanical properties at the microstructural level to improve the image-based diseases diagnosis in multiple clinical applications.

  5. Sensitivity to grid resolution in the ability of a chemical transport model to simulate observed oxidant chemistry under high-isoprene conditions

    NASA Astrophysics Data System (ADS)

    Yu, Karen; Jacob, Daniel J.; Fisher, Jenny A.; Kim, Patrick S.; Marais, Eloise A.; Miller, Christopher C.; Travis, Katherine R.; Zhu, Lei; Yantosca, Robert M.; Sulprizio, Melissa P.; Cohen, Ron C.; Dibb, Jack E.; Fried, Alan; Mikoviny, Tomas; Ryerson, Thomas B.; Wennberg, Paul O.; Wisthaler, Armin

    2016-04-01

    Formation of ozone and organic aerosol in continental atmospheres depends on whether isoprene emitted by vegetation is oxidized by the high-NOx pathway (where peroxy radicals react with NO) or by low-NOx pathways (where peroxy radicals react by alternate channels, mostly with HO2). We used mixed layer observations from the SEAC4RS aircraft campaign over the Southeast US to test the ability of the GEOS-Chem chemical transport model at different grid resolutions (0.25° × 0.3125°, 2° × 2.5°, 4° × 5°) to simulate this chemistry under high-isoprene, variable-NOx conditions. Observations of isoprene and NOx over the Southeast US show a negative correlation, reflecting the spatial segregation of emissions; this negative correlation is captured in the model at 0.25° × 0.3125° resolution but not at coarser resolutions. As a result, less isoprene oxidation takes place by the high-NOx pathway in the model at 0.25° × 0.3125° resolution (54 %) than at coarser resolution (59 %). The cumulative probability distribution functions (CDFs) of NOx, isoprene, and ozone concentrations show little difference across model resolutions and good agreement with observations, while formaldehyde is overestimated at coarse resolution because excessive isoprene oxidation takes place by the high-NOx pathway with high formaldehyde yield. The good agreement of simulated and observed concentration variances implies that smaller-scale non-linearities (urban and power plant plumes) are not important on the regional scale. Correlations of simulated vs. observed concentrations do not improve with grid resolution because finer modes of variability are intrinsically more difficult to capture. Higher model resolution leads to decreased conversion of NOx to organic nitrates and increased conversion to nitric acid, with total reactive nitrogen oxides (NOy) changing little across model resolutions. Model concentrations in the lower free troposphere are also insensitive to grid resolution. The overall low sensitivity of modeled concentrations to grid resolution implies that coarse resolution is adequate when modeling continental boundary layer chemistry for global applications.

  6. Conductive Atomic Force Microscopy | Materials Science | NREL

    Science.gov Websites

    electrical measurement techniques is the high spatial resolution. For example, C-AFM measurements on : High-resolution image of a sample semiconductor device; the image shows white puff-like clusters on a dark background and was obtained using atomic force microscopy. Bottom: High-resolution image of the

  7. SALT high resolution spectroscopy of GX339-4 in outburst

    NASA Astrophysics Data System (ADS)

    Buckley, D. A. H.; Aydi, E.; Kotze, M. M.; Gandhi, P.; Altamirano, D.; Charles, P. A.; Russell, D.

    2017-10-01

    High resolution (R = 15,000) spectroscopy of the current outbursting black hole transient GX339-4 (ATel #10797) was obtained with the SALT High Resolution Spectrograph (HRS; Crause et al. 2014, Proc SPIE, 91476) on 2017-09-29 starting at 17:28 UTC, during evening twilight.

  8. Application and evaluation of high-resolution WRF-CMAQ with simple urban parameterization.

    EPA Science Inventory

    The 2-way coupled WRF-CMAQ meteorology and air quality modeling system is evaluated for high-resolution applications by comparing to a regional air quality field study (Discover-AQ). The model was modified to better account for the effects of urban environments. High-resolution...

  9. Mapping evapotranspiration with high resolution aircraft imagery over vineyards using one and two source modeling schemes

    USDA-ARS?s Scientific Manuscript database

    Thermal and multispectral remote sensing data from low-altitude aircraft can provide high spatial resolution necessary for sub-field (= 10 m) and plant canopy (= 1 m) scale evapotranspiration (ET) monitoring. In this study, high resolution aircraft sub-meter scale thermal infrared and multispectral...

  10. Application and evaluation of high-resolution WRF-CMAQ with simple urban parameterization

    EPA Science Inventory

    The 2-way coupled WRF-CMAQ meteorology and air quality modeling system is evaluated for high-resolution applications by comparing to a regional air quality field study (Discover-AQ). The model was modified to better account for the effects of urban environments. High-resolution...

  11. Waveform digitization for high resolution timing detectors with silicon photomultipliers

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ronzhin, A.; Albrow, M. G.; Los, S.

    2012-03-01

    The results of time resolution studies with silicon photomultipliers (SiPMs) read out with high bandwidth constant fraction discrimination electronics were presented earlier [1-3]. Here we describe the application of fast waveform digitization readout based on the DRS4 chip [4], a switched capacitor array (SCA) produced by the Paul Scherrer Institute, to further our goal of developing high time resolution detectors based on SiPMs. The influence of the SiPM signal shape on the time resolution was investigated. Different algorithms to obtain the best time resolution are described, and test beam results are presented.

  12. Dual-axis confocal microscope for high-resolution in vivo imaging

    PubMed Central

    Wang, Thomas D.; Mandella, Michael J.; Contag, Christopher H.; Kino, Gordon S.

    2007-01-01

    We describe a novel confocal microscope that uses separate low-numerical-aperture objectives with the illumination and collection axes crossed at angle θ from the midline. This architecture collects images in scattering media with high transverse and axial resolution, long working distance, large field of view, and reduced noise from scattered light. We measured transverse and axial (FWHM) resolution of 1.3 and 2.1 μm, respectively, in free space, and confirm subcellular resolution in excised esophageal mucosa. The optics may be scaled to millimeter dimensions and fiber coupled for collection of high-resolution images in vivo. PMID:12659264

  13. Refinement procedure for the image alignment in high-resolution electron tomography.

    PubMed

    Houben, L; Bar Sadan, M

    2011-01-01

    High-resolution electron tomography from a tilt series of transmission electron microscopy images requires an accurate image alignment procedure in order to maximise the resolution of the tomogram. This is the case in particular for ultra-high resolution where even very small misalignments between individual images can dramatically reduce the fidelity of the resultant reconstruction. A tomographic-reconstruction based and marker-free method is proposed, which uses an iterative optimisation of the tomogram resolution. The method utilises a search algorithm that maximises the contrast in tomogram sub-volumes. Unlike conventional cross-correlation analysis it provides the required correlation over a large tilt angle separation and guarantees a consistent alignment of images for the full range of object tilt angles. An assessment based on experimental reconstructions shows that the marker-free procedure is competitive to the reference of marker-based procedures at lower resolution and yields sub-pixel accuracy even for simulated high-resolution data. Copyright © 2011 Elsevier B.V. All rights reserved.

  14. Transmission of digital images within the NTSC analog format

    DOEpatents

    Nickel, George H.

    2004-06-15

    HDTV and NTSC compatible image communication is done in a single NTSC channel bandwidth. Luminance and chrominance image data of a scene to be transmitted is obtained. The image data is quantized and digitally encoded to form digital image data in HDTV transmission format having low-resolution terms and high-resolution terms. The low-resolution digital image data terms are transformed to a voltage signal corresponding to NTSC color subcarrier modulation with retrace blanking and color bursts to form a NTSC video signal. The NTSC video signal and the high-resolution digital image data terms are then transmitted in a composite NTSC video transmission. In a NTSC receiver, the NTSC video signal is processed directly to display the scene. In a HDTV receiver, the NTSC video signal is processed to invert the color subcarrier modulation to recover the low-resolution terms, where the recovered low-resolution terms are combined with the high-resolution terms to reconstruct the scene in a high definition format.

  15. Mauna Kea Spectrographic Explorer (MSE): a conceptual design for multi-object high resolution spectrograph

    NASA Astrophysics Data System (ADS)

    Zhang, Kai; Zhu, Yongtian; Hu, Zhongwen

    2016-08-01

    The Maunakea Spectroscopic Explorer (MSE) project will transform the CFHT 3.6m optical telescope into a 10m class dedicated multi-object spectroscopic facility, with an ability to simultaneously measure thousands of objects with a spectral resolution range spanning 2,000 to 40,000. MSE will develop two spectrographic facilities to meet the science requirements. These are respectively, the Low/Medium Resolution spectrographs (LMRS) and High Resolution spectrographs (HRS). Multi-object high resolution spectrographs with total of 1,156 fibers is a big challenge, one that has never been attempted for a 10m class telescope. To date, most spectral survey facilities work in single order low/medium resolution mode, and only a few Wide Field Spectrographs (WFS) provide a cross-dispersion high resolution mode with a limited number of orders. Nanjing Institute of Astronomical Optics and Technology (NIAOT) propose a conceptual design with the use of novel image slicer arrays and single order immersed Volume Phase Holographic (VPH) grating for the MSE multi-object high resolution spectrographs. The conceptual scheme contains six identical fiber-link spectrographs, each of which simultaneously covers three restricted bands (λ/30, λ/30, λ/15) in the optical regime, with spectral resolution of 40,000 in Blue/Visible bands (400nm / 490nm) and 20,000 in Red band (650nm). The details of the design is presented in this paper.

  16. High-resolution spatial modeling of daily weather elements for a catchment in the Oregon Cascade Mountains, United States

    Treesearch

    Christopher Daly; Jonathan W. Smith; Joseph I. Smith; Robert B. McKane

    2007-01-01

    High-quality daily meteorological data at high spatial resolution are essential for a variety of hydrologic and ecological modeling applications that support environmental risk assessments and decisionmaking. This paper describes the development. application. and assessment of methods to construct daily high resolution (~50-m cell size) meteorological grids for the...

  17. Patch-Based Super-Resolution of MR Spectroscopic Images: Application to Multiple Sclerosis

    PubMed Central

    Jain, Saurabh; Sima, Diana M.; Sanaei Nezhad, Faezeh; Hangel, Gilbert; Bogner, Wolfgang; Williams, Stephen; Van Huffel, Sabine; Maes, Frederik; Smeets, Dirk

    2017-01-01

    Purpose: Magnetic resonance spectroscopic imaging (MRSI) provides complementary information to conventional magnetic resonance imaging. Acquiring high resolution MRSI is time consuming and requires complex reconstruction techniques. Methods: In this paper, a patch-based super-resolution method is presented to increase the spatial resolution of metabolite maps computed from MRSI. The proposed method uses high resolution anatomical MR images (T1-weighted and Fluid-attenuated inversion recovery) to regularize the super-resolution process. The accuracy of the method is validated against conventional interpolation techniques using a phantom, as well as simulated and in vivo acquired human brain images of multiple sclerosis subjects. Results: The method preserves tissue contrast and structural information, and matches well with the trend of acquired high resolution MRSI. Conclusions: These results suggest that the method has potential for clinically relevant neuroimaging applications. PMID:28197066

  18. Rayleigh-wave mode separation by high-resolution linear radon transform

    USGS Publications Warehouse

    Luo, Y.; Xia, J.; Miller, R.D.; Xu, Y.; Liu, J.; Liu, Q.

    2009-01-01

    Multichannel analysis of surface waves (MASW) method is an effective tool for obtaining vertical shear wave profiles from a single non-invasive measurement. One key step of the MASW method is generation of a dispersion image and extraction of a reliable dispersion curve from raw multichannel shot records. Because different Rayleigh-wave modes normally interfere with each other in the time and space domain, it is necessary to perform mode separation and reconstruction to increase the accuracy of phase velocities determined from a dispersion image. In this paper, we demonstrate the effectiveness of high-resolution linear Radon transform (LRT) as a means of separating and reconstructing multimode, dispersive Rayleigh-wave energy. We first introduce high-resolution LRT methods and Rayleigh-wave mode separation using high-resolution LRT. Next, we use synthetic data and a real-world example to demonstrate the effectiveness of Rayleigh-wave mode separation using high-resolution LRT. Our synthetic and real-world results demonstrate that (1) high-resolution LRT successfully separates and reconstructs multimode dispersive Rayleigh-wave energy with high resolution allowing the multimode energy to be more accurately determined. The horizontal resolution of the Rayleigh-wave method can be increased by extraction of dispersion curves from a pair of traces in the mode-separated shot gather and (2) multimode separation and reconstruction expand the usable frequency range of higher mode dispersive energy, which increases the depth of investigation and provides a means for accurately determining cut-off frequencies. ?? 2009 The Authors Journal compilation ?? 2009 RAS.

  19. High resolution PFPE-based molding High resolution PFPE-based molding High resolution PFPE-based molding techniques for nanofabrication of high pattern density sub-20 nm features: A fundamental materials approach

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Williams, Stuart S; Samulski, Edward; Lopez, Renee

    2010-01-01

    ABSTRACT. Described herein is the development and investigation of PFPE-based elastomers for high resolution replica molding applications. The modulus of the elastomeric materials was increased through synthetic and additive approaches while maintaining relatively low surface energies (<25 mN/m). Using practically relevant large area master templates, we show that the resolution of the molds is strongly dependant upon the elastomeric mold modulus. A composite mold approach was used to form flexible molds out of stiff, high modulus materials that allow for replication of sub-20 nm post structures. Sub-100 nm line grating master templates, formed using e-beam lithography, were used to determinemore » the experimental stability of the molding materials. It was observed that as the feature spacing decreased, high modulus composite molds were able to effectively replicate the nano-grating structures without cracking or tear-out defects that typically occur with high modulus elastomers.« less

  20. On high-resolution reciprocal-space mapping with a triple-crystal diffractometer for high-energy X-rays.

    PubMed

    Liss, K D; Royer, A; Tschentscher, T; Suortti, P; Williams, A P

    1998-03-01

    High-energy X-rav diffraction by means of triple-crystal techniques is a powerful tool for investigating dislocations and strain in bulk materials. Radiation with an energy typically higher than 80 keV combines the advantage of low attenuation with high resolution at large momentum transfers. The triple-crystal diffractometer at the High Energy Beamline of the European Synchrotron Radiation Facility is described. It is shown how the transverse and longitudinal resolution depend on the choice of the crystal reflection, and how the orientation of a reciprocal-lattice distortion in an investigated sample towards the resolution element of the instrument can play an important role. This effect is demonstrated on a single crystal of silicon where a layer of macro pores reveals satellites around the Bragg reflection. The resulting longitudinal distortion can be investigated using the high transverse resolution of the instrument when choosing an appropriate reflection.

  1. MRI Superresolution Using Self-Similarity and Image Priors

    PubMed Central

    Manjón, José V.; Coupé, Pierrick; Buades, Antonio; Collins, D. Louis; Robles, Montserrat

    2010-01-01

    In Magnetic Resonance Imaging typical clinical settings, both low- and high-resolution images of different types are routinarily acquired. In some cases, the acquired low-resolution images have to be upsampled to match with other high-resolution images for posterior analysis or postprocessing such as registration or multimodal segmentation. However, classical interpolation techniques are not able to recover the high-frequency information lost during the acquisition process. In the present paper, a new superresolution method is proposed to reconstruct high-resolution images from the low-resolution ones using information from coplanar high resolution images acquired of the same subject. Furthermore, the reconstruction process is constrained to be physically plausible with the MR acquisition model that allows a meaningful interpretation of the results. Experiments on synthetic and real data are supplied to show the effectiveness of the proposed approach. A comparison with classical state-of-the-art interpolation techniques is presented to demonstrate the improved performance of the proposed methodology. PMID:21197094

  2. Satellite image time series simulation for environmental monitoring

    NASA Astrophysics Data System (ADS)

    Guo, Tao

    2014-11-01

    The performance of environmental monitoring heavily depends on the availability of consecutive observation data and it turns out an increasing demand in remote sensing community for satellite image data in the sufficient resolution with respect to both spatial and temporal requirements, which appear to be conflictive and hard to tune tradeoffs. Multiple constellations could be a solution if without concerning cost, and thus it is so far interesting but very challenging to develop a method which can simultaneously improve both spatial and temporal details. There are some research efforts to deal with the problem from various aspects, a type of approaches is to enhance the spatial resolution using techniques of super resolution, pan-sharpen etc. which can produce good visual effects, but mostly cannot preserve spectral signatures and result in losing analytical value. Another type is to fill temporal frequency gaps by adopting time interpolation, which actually doesn't increase informative context at all. In this paper we presented a novel method to generate satellite images in higher spatial and temporal details, which further enables satellite image time series simulation. Our method starts with a pair of high-low resolution data set, and then a spatial registration is done by introducing LDA model to map high and low resolution pixels correspondingly. Afterwards, temporal change information is captured through a comparison of low resolution time series data, and the temporal change is then projected onto high resolution data plane and assigned to each high resolution pixel referring the predefined temporal change patterns of each type of ground objects to generate a simulated high resolution data. A preliminary experiment shows that our method can simulate a high resolution data with a good accuracy. We consider the contribution of our method is to enable timely monitoring of temporal changes through analysis of low resolution images time series only, and usage of costly high resolution data can be reduced as much as possible, and it presents an efficient solution with great cost performance to build up an economically operational monitoring service for environment, agriculture, forest, land use investigation, and other applications.

  3. Spatially detailed retrievals of spring phenology from single-season high-resolution image time series

    NASA Astrophysics Data System (ADS)

    Vrieling, Anton; Skidmore, Andrew K.; Wang, Tiejun; Meroni, Michele; Ens, Bruno J.; Oosterbeek, Kees; O'Connor, Brian; Darvishzadeh, Roshanak; Heurich, Marco; Shepherd, Anita; Paganini, Marc

    2017-07-01

    Vegetation indices derived from satellite image time series have been extensively used to estimate the timing of phenological events like season onset. Medium spatial resolution (≥250 m) satellite sensors with daily revisit capability are typically employed for this purpose. In recent years, phenology is being retrieved at higher resolution (≤30 m) in response to increasing availability of high-resolution satellite data. To overcome the reduced acquisition frequency of such data, previous attempts involved fusion between high- and medium-resolution data, or combinations of multi-year acquisitions in a single phenological reconstruction. The objectives of this study are to demonstrate that phenological parameters can now be retrieved from single-season high-resolution time series, and to compare these retrievals against those derived from multi-year high-resolution and single-season medium-resolution satellite data. The study focuses on the island of Schiermonnikoog, the Netherlands, which comprises a highly-dynamic saltmarsh, dune vegetation, and agricultural land. Combining NDVI series derived from atmospherically-corrected images from RapidEye (5 m-resolution) and the SPOT5 Take5 experiment (10m-resolution) acquired between March and August 2015, phenological parameters were estimated using a function fitting approach. We then compared results with phenology retrieved from four years of 30 m Landsat 8 OLI data, and single-year 100 m Proba-V and 250 m MODIS temporal composites of the same period. Retrieved phenological parameters from combined RapidEye/SPOT5 displayed spatially consistent results and a large spatial variability, providing complementary information to existing vegetation community maps. Retrievals that combined four years of Landsat observations into a single synthetic year were affected by the inclusion of years with warmer spring temperatures, whereas adjustment of the average phenology to 2015 observations was only feasible for a few pixels due to cloud cover around phenological transition dates. The Proba-V and MODIS phenology retrievals scaled poorly relative to their high-resolution equivalents, indicating that medium-resolution phenology retrievals need to be interpreted with care, particularly in landscapes with fine-scale land cover variability.

  4. High-resolution satellite imagery is an important yet underutilized resource in conservation biology.

    PubMed

    Boyle, Sarah A; Kennedy, Christina M; Torres, Julio; Colman, Karen; Pérez-Estigarribia, Pastor E; de la Sancha, Noé U

    2014-01-01

    Technological advances and increasing availability of high-resolution satellite imagery offer the potential for more accurate land cover classifications and pattern analyses, which could greatly improve the detection and quantification of land cover change for conservation. Such remotely-sensed products, however, are often expensive and difficult to acquire, which prohibits or reduces their use. We tested whether imagery of high spatial resolution (≤5 m) differs from lower-resolution imagery (≥30 m) in performance and extent of use for conservation applications. To assess performance, we classified land cover in a heterogeneous region of Interior Atlantic Forest in Paraguay, which has undergone recent and dramatic human-induced habitat loss and fragmentation. We used 4 m multispectral IKONOS and 30 m multispectral Landsat imagery and determined the extent to which resolution influenced the delineation of land cover classes and patch-level metrics. Higher-resolution imagery more accurately delineated cover classes, identified smaller patches, retained patch shape, and detected narrower, linear patches. To assess extent of use, we surveyed three conservation journals (Biological Conservation, Biotropica, Conservation Biology) and found limited application of high-resolution imagery in research, with only 26.8% of land cover studies analyzing satellite imagery, and of these studies only 10.4% used imagery ≤5 m resolution. Our results suggest that high-resolution imagery is warranted yet under-utilized in conservation research, but is needed to adequately monitor and evaluate forest loss and conversion, and to delineate potentially important stepping-stone fragments that may serve as corridors in a human-modified landscape. Greater access to low-cost, multiband, high-resolution satellite imagery would therefore greatly facilitate conservation management and decision-making.

  5. Single-shot and single-sensor high/super-resolution microwave imaging based on metasurface

    PubMed Central

    Wang, Libo; Li, Lianlin; Li, Yunbo; Zhang, Hao Chi; Cui, Tie Jun

    2016-01-01

    Real-time high-resolution (including super-resolution) imaging with low-cost hardware is a long sought-after goal in various imaging applications. Here, we propose broadband single-shot and single-sensor high-/super-resolution imaging by using a spatio-temporal dispersive metasurface and an imaging reconstruction algorithm. The metasurface with spatio-temporal dispersive property ensures the feasibility of the single-shot and single-sensor imager for super- and high-resolution imaging, since it can convert efficiently the detailed spatial information of the probed object into one-dimensional time- or frequency-dependent signal acquired by a single sensor fixed in the far-field region. The imaging quality can be improved by applying a feature-enhanced reconstruction algorithm in post-processing, and the desired imaging resolution is related to the distance between the object and metasurface. When the object is placed in the vicinity of the metasurface, the super-resolution imaging can be realized. The proposed imaging methodology provides a unique means to perform real-time data acquisition, high-/super-resolution images without employing expensive hardware (e.g. mechanical scanner, antenna array, etc.). We expect that this methodology could make potential breakthroughs in the areas of microwave, terahertz, optical, and even ultrasound imaging. PMID:27246668

  6. Determination of atmospheric moisture structure and infrared cooling rates from high resolution MAMS radiance data

    NASA Technical Reports Server (NTRS)

    Menzel, W. Paul; Moeller, Christopher C.; Smith, William L.

    1991-01-01

    This program has applied Multispectral Atmospheric Mapping Sensor (MAMS) high resolution data to the problem of monitoring atmospheric quantities of moisture and radiative flux at small spatial scales. MAMS, with 100-m horizontal resolution in its four infrared channels, was developed to study small scale atmospheric moisture and surface thermal variability, especially as related to the development of clouds, precipitation, and severe storms. High-resolution Interferometer Sounder (HIS) data has been used to develop a high spectral resolution retrieval algorithm for producing vertical profiles of atmospheric temperature and moisture. The results of this program are summarized and a list of publications resulting from this contract is presented. Selected publications are attached as an appendix.

  7. Photoionization Rate of Atomic Oxygen

    NASA Astrophysics Data System (ADS)

    Meier, R. R.; McLaughlin, B. M.; Warren, H. P.; Bishop, J.

    2006-05-01

    Accurate knowledge of the photoionization rate of atomic oxygen is important for the study and understanding of the ionospheres and emission processes of terrestrial, planetary, and cometary atmospheres. Past calculations of the photoionization rate have been carried out at various spectral resolutions, but none were at sufficiently high resolution to accommodate accidental resonances between solar emission lines and highly structured auto-ionization features in the photoionization cross section. A new version of the NRLEUV solar spectral irradiance model (at solar minimum) and a new model of the O photoionization cross section enable calculations at very high spectral resolution. We find unattenuated photoionization rates computed at 0.001 nm resolution are larger than those at moderate resolution (0.1 nm) by amounts approaching 20%. Allowing for attenuation in the terrestrial atmosphere, we find differences in photoionization rates computed at high and moderate resolution to vary with altitude, especially below 200 km where deviations of plus or minus 20% occur between the two cases.

  8. [Possibile application of X-ray and high resolution CT in pneumoconiosis management].

    PubMed

    Vlasov, V G; Laptev, V Ia; Logvinenko, I I; Smirnova, E L; Brovchenko, E P; Mironova, M V

    2011-01-01

    The article covers results of clinical and roentgenologic data analysis. The data were obtained in the study that covered 447 pneumoconiosis patients, 75 of which were subjected to high resolution CT. If compared to chest X-ray, high resolution CT helps more precise forecast of further course in pneumoconiosis.

  9. Urban cover mapping using digital, high-resolution aerial imagery

    Treesearch

    Soojeong Myeong; David J. Nowak; Paul F. Hopkins; Robert H. Brock

    2003-01-01

    High-spatial resolution digital color-infrared aerial imagery of Syracuse, NY was analyzed to test methods for developing land cover classifications for an urban area. Five cover types were mapped: tree/shrub, grass/herbaceous, bare soil, water and impervious surface. Challenges in high-spatial resolution imagery such as shadow effect and similarity in spectral...

  10. High resolution manometry findings in patients with esophageal epiphrenic diverticula.

    PubMed

    Vicentine, Fernando P P; Herbella, Fernando A M; Silva, Luciana C; Patti, Marco G

    2011-12-01

    The pathophysiology of esophageal epiphrenic diverticula is still uncertain even though a concomitant motility disorder is found in the majority of patients in different series. High resolution manometry may allow detection of motor abnormalities in a higher number of patients with esophageal epiphrenic diverticula compared with conventional manometry. This study aims to evaluate the high resolution manometry findings in patients with esophageal epiphrenic diverticula. Nine individuals (mean age 63 ± 10 years, 4 females) with esophageal epiphrenic diverticula underwent high resolution manometry. A single diverticulum was observed in eight patients and multiple diverticula in one. Visual analysis of conventional tracings and color pressure plots for identification of segmental abnormalities was performed by two researchers experienced in high resolution manometry. Upper esophageal sphincter was normal in all patients. Esophageal body was abnormal in eight patients; lower esophageal sphincter was abnormal in seven patients. Named esophageal motility disorders were found in seven patients: achalasia in six, diffuse esophageal spasm in one. In one patient, a segmental hypercontractile zone was noticed with pressure of 196 mm Hg. High resolution manometry demonstrated motor abnormalities in all patients with esophageal epiphrenic diverticula.

  11. Application of Convolutional Neural Network in Classification of High Resolution Agricultural Remote Sensing Images

    NASA Astrophysics Data System (ADS)

    Yao, C.; Zhang, Y.; Zhang, Y.; Liu, H.

    2017-09-01

    With the rapid development of Precision Agriculture (PA) promoted by high-resolution remote sensing, it makes significant sense in management and estimation of agriculture through crop classification of high-resolution remote sensing image. Due to the complex and fragmentation of the features and the surroundings in the circumstance of high-resolution, the accuracy of the traditional classification methods has not been able to meet the standard of agricultural problems. In this case, this paper proposed a classification method for high-resolution agricultural remote sensing images based on convolution neural networks(CNN). For training, a large number of training samples were produced by panchromatic images of GF-1 high-resolution satellite of China. In the experiment, through training and testing on the CNN under the toolbox of deep learning by MATLAB, the crop classification finally got the correct rate of 99.66 % after the gradual optimization of adjusting parameter during training. Through improving the accuracy of image classification and image recognition, the applications of CNN provide a reference value for the field of remote sensing in PA.

  12. Evaluation of the sparse coding super-resolution method for improving image quality of up-sampled images in computed tomography

    NASA Astrophysics Data System (ADS)

    Ota, Junko; Umehara, Kensuke; Ishimaru, Naoki; Ohno, Shunsuke; Okamoto, Kentaro; Suzuki, Takanori; Shirai, Naoki; Ishida, Takayuki

    2017-02-01

    As the capability of high-resolution displays grows, high-resolution images are often required in Computed Tomography (CT). However, acquiring high-resolution images takes a higher radiation dose and a longer scanning time. In this study, we applied the Sparse-coding-based Super-Resolution (ScSR) method to generate high-resolution images without increasing the radiation dose. We prepared the over-complete dictionary learned the mapping between low- and highresolution patches and seek a sparse representation of each patch of the low-resolution input. These coefficients were used to generate the high-resolution output. For evaluation, 44 CT cases were used as the test dataset. We up-sampled images up to 2 or 4 times and compared the image quality of the ScSR scheme and bilinear and bicubic interpolations, which are the traditional interpolation schemes. We also compared the image quality of three learning datasets. A total of 45 CT images, 91 non-medical images, and 93 chest radiographs were used for dictionary preparation respectively. The image quality was evaluated by measuring peak signal-to-noise ratio (PSNR) and structure similarity (SSIM). The differences of PSNRs and SSIMs between the ScSR method and interpolation methods were statistically significant. Visual assessment confirmed that the ScSR method generated a high-resolution image with sharpness, whereas conventional interpolation methods generated over-smoothed images. To compare three different training datasets, there were no significance between the CT, the CXR and non-medical datasets. These results suggest that the ScSR provides a robust approach for application of up-sampling CT images and yields substantial high image quality of extended images in CT.

  13. Ultra high spatial and temporal resolution breast imaging at 7T.

    PubMed

    van de Bank, B L; Voogt, I J; Italiaander, M; Stehouwer, B L; Boer, V O; Luijten, P R; Klomp, D W J

    2013-04-01

    There is a need to obtain higher specificity in the detection of breast lesions using MRI. To address this need, Dynamic Contrast-Enhanced (DCE) MRI has been combined with other structural and functional MRI techniques. Unfortunately, owing to time constraints structural images at ultra-high spatial resolution can generally not be obtained during contrast uptake, whereas the relatively low spatial resolution of functional imaging (e.g. diffusion and perfusion) limits the detection of small lesions. To be able to increase spatial as well as temporal resolution simultaneously, the sensitivity of MR detection needs to increase as well as the ability to effectively accelerate the acquisition. The required gain in signal-to-noise ratio (SNR) can be obtained at 7T, whereas acceleration can be obtained with high-density receiver coil arrays. In this case, morphological imaging can be merged with DCE-MRI, and other functional techniques can be obtained at higher spatial resolution, and with less distortion [e.g. Diffusion Weighted Imaging (DWI)]. To test the feasibility of this concept, we developed a unilateral breast coil for 7T. It comprises a volume optimized dual-channel transmit coil combined with a 30-channel receive array coil. The high density of small coil elements enabled efficient acceleration in any direction to acquire ultra high spatial resolution MRI of close to 0.6 mm isotropic detail within a temporal resolution of 69 s, high spatial resolution MRI of 1.5 mm isotropic within an ultra high temporal resolution of 6.7 s and low distortion DWI at 7T, all validated in phantoms, healthy volunteers and a patient with a lesion in the right breast classified as Breast Imaging Reporting and Data System (BI-RADS) IV. Copyright © 2012 John Wiley & Sons, Ltd.

  14. Archive of digital Chirp subbottom profile data collected during USGS cruises 09CCT03 and 09CCT04, Mississippi and Alabama Gulf Islands, June and July 2009

    USGS Publications Warehouse

    Forde, Arnell S.; Dadisman, Shawn V.; Flocks, James G.; Wiese, Dana S.

    2011-01-01

    In June and July of 2009, the U.S. Geological Survey (USGS) conducted geophysical surveys to investigate the geologic controls on island framework from Cat Island, Mississippi, to Dauphin Island, Alabama, as part of a broader USGS study on Coastal Change and Transport (CCT). The surveys were funded through the Northern Gulf of Mexico Ecosystem Change and Hazard Susceptibility Project as part of the Holocene Evolution of the Mississippi-Alabama Region Subtask (http://ngom.er.usgs.gov/task2_2/index.php). This report serves as an archive of unprocessed digital Chirp seismic profile data, trackline maps, navigation files, Geographic Information System (GIS) files, Field Activity Collection System (FACS) logs, and formal Federal Geographic Data Committee (FGDC) metadata. Single-beam and Swath bathymetry data were also collected during these cruises and will be published as a separate archive. Gained (a relative increase in signal amplitude) digital images of the seismic profiles are also provided. Refer to the Acronyms page for expansion of acronyms and abbreviations used in this report.

  15. FALCON: fast and unbiased reconstruction of high-density super-resolution microscopy data

    NASA Astrophysics Data System (ADS)

    Min, Junhong; Vonesch, Cédric; Kirshner, Hagai; Carlini, Lina; Olivier, Nicolas; Holden, Seamus; Manley, Suliana; Ye, Jong Chul; Unser, Michael

    2014-04-01

    Super resolution microscopy such as STORM and (F)PALM is now a well known method for biological studies at the nanometer scale. However, conventional imaging schemes based on sparse activation of photo-switchable fluorescent probes have inherently slow temporal resolution which is a serious limitation when investigating live-cell dynamics. Here, we present an algorithm for high-density super-resolution microscopy which combines a sparsity-promoting formulation with a Taylor series approximation of the PSF. Our algorithm is designed to provide unbiased localization on continuous space and high recall rates for high-density imaging, and to have orders-of-magnitude shorter run times compared to previous high-density algorithms. We validated our algorithm on both simulated and experimental data, and demonstrated live-cell imaging with temporal resolution of 2.5 seconds by recovering fast ER dynamics.

  16. FALCON: fast and unbiased reconstruction of high-density super-resolution microscopy data

    PubMed Central

    Min, Junhong; Vonesch, Cédric; Kirshner, Hagai; Carlini, Lina; Olivier, Nicolas; Holden, Seamus; Manley, Suliana; Ye, Jong Chul; Unser, Michael

    2014-01-01

    Super resolution microscopy such as STORM and (F)PALM is now a well known method for biological studies at the nanometer scale. However, conventional imaging schemes based on sparse activation of photo-switchable fluorescent probes have inherently slow temporal resolution which is a serious limitation when investigating live-cell dynamics. Here, we present an algorithm for high-density super-resolution microscopy which combines a sparsity-promoting formulation with a Taylor series approximation of the PSF. Our algorithm is designed to provide unbiased localization on continuous space and high recall rates for high-density imaging, and to have orders-of-magnitude shorter run times compared to previous high-density algorithms. We validated our algorithm on both simulated and experimental data, and demonstrated live-cell imaging with temporal resolution of 2.5 seconds by recovering fast ER dynamics. PMID:24694686

  17. The Joint Astrophysical Plasmadynamic Experiment (J-PEX): a high-resolution rocket spectrometer

    NASA Astrophysics Data System (ADS)

    Barstow, Martin A.; Bannister, Nigel P.; Cruddace, Raymond G.; Kowalski, Michael P.; Wood, Kent S.; Yentis, Daryl J.; Gursky, Herbert; Barbee, Troy W., Jr.; Goldstein, William H.; Kordas, Joseph F.; Fritz, Gilbert G.; Culhane, J. Leonard; Lapington, Jonathan S.

    2003-02-01

    We report on the successful sounding rocket flight of the high resolution (R=3000-4000) J-PEX EUV spectrometer. J-PEX is a novel normal incidence instrument, which combines the focusing and dispersive elements of the spectrometer into a single optical element, a multilayer-coated grating. The high spectral resolution achieved has had to be matched by unprecedented high spatial resolution in the imaging microchannel plate detector used to record the data. We illustrate the performance of the complete instrument through an analysis of the 220-245Å spectrum of the white dwarf G191-B2B obtained with a 300 second exposure. The high resolution allows us to detect a low-density ionized helium component along the line of sight to the star and individual absorption lines from heavier elements in the photosphere.

  18. Flat field concave holographic grating with broad spectral region and moderately high resolution.

    PubMed

    Wu, Jian Fen; Chen, Yong Yan; Wang, Tai Sheng

    2012-02-01

    In order to deal with the conflicts between broad spectral region and high resolution in compact spectrometers based on a flat field concave holographic grating and line array CCD, we present a simple and practical method to design a flat field concave holographic grating that is capable of imaging a broad spectral region at a moderately high resolution. First, we discuss the principle of realizing a broad spectral region and moderately high resolution. Second, we provide the practical method to realize our ideas, in which Namioka grating theory, a genetic algorithm, and ZEMAX are used to reach this purpose. Finally, a near-normal-incidence example modeled in ZEMAX is shown to verify our ideas. The results show that our work probably has a general applicability in compact spectrometers with a broad spectral region and moderately high resolution.

  19. Impacts of high resolution data on traveler compliance levels in emergency evacuation simulations

    DOE PAGES

    Lu, Wei; Han, Lee D.; Liu, Cheng; ...

    2016-05-05

    In this article, we conducted a comparison study of evacuation assignment based on Traffic Analysis Zones (TAZ) and high resolution LandScan USA Population Cells (LPC) with detailed real world roads network. A platform for evacuation modeling built on high resolution population distribution data and activity-based microscopic traffic simulation was proposed. This platform can be extended to any cities in the world. The results indicated that evacuee compliance behavior affects evacuation efficiency with traditional TAZ assignment, but it did not significantly compromise the performance with high resolution LPC assignment. The TAZ assignment also underestimated the real travel time during evacuation. Thismore » suggests that high data resolution can improve the accuracy of traffic modeling and simulation. The evacuation manager should consider more diverse assignment during emergency evacuation to avoid congestions.« less

  20. High-resolution and high-throughput multichannel Fourier transform spectrometer with two-dimensional interferogram warping compensation

    NASA Astrophysics Data System (ADS)

    Watanabe, A.; Furukawa, H.

    2018-04-01

    The resolution of multichannel Fourier transform (McFT) spectroscopy is insufficient for many applications despite its extreme advantage of high throughput. We propose an improved configuration to realise both performance using a two-dimensional area sensor. For the spectral resolution, we obtained the interferogram of a larger optical path difference by shifting the area sensor without altering any optical components. The non-linear phase error of the interferometer was successfully corrected using a phase-compensation calculation. Warping compensation was also applied to realise a higher throughput to accumulate the signal between vertical pixels. Our approach significantly improved the resolution and signal-to-noise ratio by factors of 1.7 and 34, respectively. This high-resolution and high-sensitivity McFT spectrometer will be useful for detecting weak light signals such as those in non-invasive diagnosis.

  1. Methane seepage along the Hikurangi Margin offshore New Zealand: 6 years of multidisciplinary studies

    NASA Astrophysics Data System (ADS)

    Greinert, J.; Bialas, J.; Klaucke, I.; Crutchley, G.; Dale, A.; Linke, P.; Sommer, S.; Bowden, D.; Rowden, A.; de Haas, H.; de Stigter, H.; Faure, K.

    2012-12-01

    Detailed studies in 2006, 2007 and 2011 along the east coast of New Zealand's North Island highlighted the close link of sub-bottom fluid pathways and seafloor expressions of methane seepage such as clam fields, carbonate build-ups, tubeworms, bacterial mats and methane release (Marine Geology 272). Prior to our studies, only accidental observations of hydroacoustic anomalies, recoveries of calyptogena shells and methane-derived carbonate chimneys indicated active seepage. Wide areas of the sub-seafloor show BSR structures, gas migration pathways, gas chimneys and blanking zones, which are closely linked to actual seep sites. Sidescan surveys showed four prominent seep areas at Omakere Ridge in 1120m water depth, three of them perfectly matching the shapes and locations of faults seen in high resolution 3D-seismic surveys. The fourth seep, Bear's Paw, on its western side represents an old seep which developed into a cold water coral habitat. At the actively seeping eastern part, gas hydrates could be retrieved and bubble release was observed hydroacoustically and confirmed by high dissolved methane values (380nM). No strong microbial oxidation effects could be found in δ13C values plotting along a mixing curve between pure seep (-70 ‰PDB) and atmospheric methane (-47 ‰PDB). Lander deployments show a tide-influenced gas discharge with sometimes eruptive bubble release with possible plume development transporting methane-charged water higher up into the water column. Rock Garden, with just above 600m water depth at its top outside the gas hydrate stability zone, hosts two main seep areas. ROV observations at Faure Site document eruptive releases of free gas from decimeter-wide craters at the seafloor. Flux estimates show peak releases of 420ml/min with bubbles up to 9mm in diameter. Concentrations of dissolved methane reach up to 3500nM close to the bottom, but higher concentrations are limited to below 400m of water depth; here, methane is transported towards the sea surface or even into the mixed layer. Faure site is just at the limit of the gas hydrate phase boundary, where relatively high-permeable sediment layers act as preferred pathway for fluids from below a shallow BSR. Seismic studies at the seep site LM-3 show gas chimneys as main fluid migration pathways in the sub-seafloor. Opouawe Bank has the densest occurrence of seeps. In water depths between 800 and 1200m, seeps of different ages and appearances exist in close proximity. North and South Tower resemble old structures with massive aragonitic carbonate blocks paving the seafloor, tube worms, bacterial mats, clams and beds of ampharetid polychaetes. These patchy polychaetes habitats have a very high total oxygen uptake of up to 83.7 mmol m^-2 day^-1) feeding from organic carbon generated via aerobic methane oxidation. Hydroacoustic flares at the 1200m deep Towers rise more than 600m into the water column above, which the dissolved gas concentrations quickly drop to background. In contrast, the isolated Takahe seep only 2 miles away shows no carbonates at the seafloor surface despite a well developed acoustic gas chimney and surface-near gas hydrates. This seep represents a much younger seep which highlights the great spatial and temporal variability in seep occurrences and activity, which can also be found in fossil seeps on land.

  2. X-ray structure determination at low resolution

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Brunger, Axel T., E-mail: brunger@stanford.edu; Department of Molecular and Cellular Physiology, Stanford University; Department of Neurology and Neurological Sciences, Stanford University

    2009-02-01

    Refinement is meaningful even at 4 Å or lower, but with present methodologies it should start from high-resolution crystal structures whenever possible. As an example of structure determination in the 3.5–4.5 Å resolution range, crystal structures of the ATPase p97/VCP, consisting of an N-terminal domain followed by a tandem pair of ATPase domains (D1 and D2), are discussed. The structures were originally solved by molecular replacement with the high-resolution structure of the N-D1 fragment of p97/VCP, whereas the D2 domain was manually built using its homology to the D1 domain as a guide. The structure of the D2 domain alonemore » was subsequently solved at 3 Å resolution. The refined model of D2 and the high-resolution structure of the N-D1 fragment were then used as starting models for re-refinement against the low-resolution diffraction data for full-length p97. The re-refined full-length models showed significant improvement in both secondary structure and R values. The free R values dropped by as much as 5% compared with the original structure refinements, indicating that refinement is meaningful at low resolution and that there is information in the diffraction data even at ∼4 Å resolution that objectively assesses the quality of the model. It is concluded that de novo model building is problematic at low resolution and refinement should start from high-resolution crystal structures whenever possible.« less

  3. Large Area Field of View for Fast Temporal Resolution Astronomy

    NASA Astrophysics Data System (ADS)

    Covarrubias, Ricardo A.

    2018-01-01

    Scientific CMOS (sCMOS) technology is especially relevant for high temporal resolution astronomy combining high resolution, large field of view with very fast frame rates, without sacrificing ultra-low noise performance. Solar Astronomy, Near Earth Object detections, Space Debris Tracking, Transient Observations or Wavefront Sensing are among the many applications this technology can be utilized. Andor Technology is currently developing the next-generation, very large area sCMOS camera with an extremely low noise, rapid frame rates, high resolution and wide dynamic range.

  4. Current position of high-resolution MS for drug quantification in clinical & forensic toxicology.

    PubMed

    Meyer, Markus R; Helfer, Andreas G; Maurer, Hans H

    2014-08-01

    This paper reviews high-resolution MS approaches published from January 2011 until March 2014 for the quantification of drugs (of abuse) and/or their metabolites in biosamples using LC-MS with time-of-flight or Orbitrap™ mass analyzers. Corresponding approaches are discussed including sample preparation and mass spectral settings. The advantages and limitations of high-resolution MS for drug quantification, as well as the demand for a certain resolution or a specific mass accuracy are also explored.

  5. Fiber optic cable-based high-resolution, long-distance VGA extenders

    NASA Astrophysics Data System (ADS)

    Rhee, Jin-Geun; Lee, Iksoo; Kim, Heejoon; Kim, Sungjoon; Koh, Yeon-Wan; Kim, Hoik; Lim, Jiseok; Kim, Chur; Kim, Jungwon

    2013-02-01

    Remote transfer of high-resolution video information finds more applications in detached display applications for large facilities such as theaters, sports complex, airports, and security facilities. Active optical cables (AOCs) provide a promising approach for enhancing both the transmittable resolution and distance that standard copper-based cables cannot reach. In addition to the standard digital formats such as HDMI, the high-resolution, long-distance transfer of VGA format signals is important for applications where high-resolution analog video ports should be also supported, such as military/defense applications and high-resolution video camera links. In this presentation we present the development of a compressionless, high-resolution (up to WUXGA, 1920x1200), long-distance (up to 2 km) VGA extenders based on serialized technique. We employed asynchronous serial transmission and clock regeneration techniques, which enables lower cost implementation of VGA extenders by removing the necessity for clock transmission and large memory at the receiver. Two 3.125-Gbps transceivers are used in parallel to meet the required maximum video data rate of 6.25 Gbps. As the data are transmitted asynchronously, 24-bit pixel clock time stamp is employed to regenerate video pixel clock accurately at the receiver side. In parallel to the video information, stereo audio and RS-232 control signals are transmitted as well.

  6. A cloud mask methodology for high resolution remote sensing data combining information from high and medium resolution optical sensors

    NASA Astrophysics Data System (ADS)

    Sedano, Fernando; Kempeneers, Pieter; Strobl, Peter; Kucera, Jan; Vogt, Peter; Seebach, Lucia; San-Miguel-Ayanz, Jesús

    2011-09-01

    This study presents a novel cloud masking approach for high resolution remote sensing images in the context of land cover mapping. As an advantage to traditional methods, the approach does not rely on thermal bands and it is applicable to images from most high resolution earth observation remote sensing sensors. The methodology couples pixel-based seed identification and object-based region growing. The seed identification stage relies on pixel value comparison between high resolution images and cloud free composites at lower spatial resolution from almost simultaneously acquired dates. The methodology was tested taking SPOT4-HRVIR, SPOT5-HRG and IRS-LISS III as high resolution images and cloud free MODIS composites as reference images. The selected scenes included a wide range of cloud types and surface features. The resulting cloud masks were evaluated through visual comparison. They were also compared with ad-hoc independently generated cloud masks and with the automatic cloud cover assessment algorithm (ACCA). In general the results showed an agreement in detected clouds higher than 95% for clouds larger than 50 ha. The approach produced consistent results identifying and mapping clouds of different type and size over various land surfaces including natural vegetation, agriculture land, built-up areas, water bodies and snow.

  7. Telepresence field research experience for undergraduate and graduate students: An R/V Okeanos Explorer/AUV Sentry success story

    NASA Astrophysics Data System (ADS)

    Van Dover, C. L.; German, C. R.; Yoerger, D. R.; Kaiser, C. L.; Brothers, L.

    2012-12-01

    Telepresence and ocean exploration are generally perceived as rich visual experiences informed by streaming video of ocean environments from ship to shore. In an NSF/NOAA-funded partnership, our team of engineers, scientists, and students pushed the boundary of what it means to engage in a telepresence research experience. Instead of using a tethered ROV as our data-gathering platform, we used the autonomous underwater vehicle Sentry on science missions to explore the Blake Ridge and Cape Fear Diapirs off the Carolina coast. The shore-based team included one senior engineer, two senior scientists, the talented support staff of the Inner Space Center at the University of Rhode Island, three PhD students, four undergraduate interns, and one MFA graduate student. The ship-based team included an engineer, a scientist, and extremely capable NOAA personnel. Sentry was deployed nightly on science missions designed from shore with input from shipboard science and engineering. The vehicle was recovered and data was downloaded and sent to shore each morning, where the data was 'attacked' by student teams. Within three days of the start of the field program, the student teams had developed their research questions under the mentorship of the senior scientists and identified the priority data streams required from Sentry. Students initially were audience to science mission planning discussions, but less than halfway through the 11-mission program, student teams were providing key data to inform planning decisions. Their entrepreneurial engagement with the research was so complete that the last two missions were designed by the students in collaboration with the engineers who programmed each mission. This scientific maturation of the students was markedly swift by usual standards and is attributed in large part to the data-sharing and data-processing capacity of the Inner Space Center. Post-cruise analysis of the data by students continued with the same avidity, resulting in new knowledge and new ways of visualizing relationships among bubble flares in the water column, near-bottom sensor signals (e.g., backscatter, dissolved oxygen), high-resolution seafloor bathymetry, side-scan sonar images, sub-bottom profiles, and images of chemosynthetic communities. The scientific success of the cruise would not have been anywhere near as great without the student talent and their analysis of large data files and many 10's of thousands of images. We began this expedition uncertain of whether one could do AUV-based research from shore that would meaningfully entrain the next generation of scientists. The resounding answer, with >6 terabytes of data to explore and >80 person-hours per day to undertake this data exploration, was: ABSOLUTELY.

  8. Partnership to Enhance Diversity in Marine Geosciences: Holocene Climate and Anthorpogenic Changes from Long Island Sound, NY

    NASA Astrophysics Data System (ADS)

    McHugh, C. M.; Cormier, M.; Marchese, P.; Zheng, Y.; Kohfeld, K.

    2006-12-01

    This NSF-funded program developed an oceanographic field experience coupled to a strong curriculum and one-on-one mentoring of individual research projects, as a means to increase diversity in the geosciences. The working hypothesis is that New York City students will be attracted to geosciences through an integrated field and research experience that familiarizes them with their environment. As part of this program, multidisciplinary investigations of Long Island Sound were conducted from the R/V Hugh Sharp, part of the University-National Oceanographic Laboratory System (UNOLS) fleet, for one-week during June 2006. Nine students from underrepresented groups in the geosciences (native Americans, Hispanics, and African- Americans) and five investigators from various institutions specializing in marine geophysics, geology, geochemistry, biology, and physical oceanography participate in this project. The expedition introduced the students to a variety of oceanographic techniques, including multibeam bathymetric mapping, high-resolution subbottom profiling, side scan sonar, sediment, water, and biological sampling, and current profiling. The collected dataset is now analyzed by the students to extract the late Quaternary history of Long Island Sound and to assess the impact of anthropogenic activities in the sediments, waters, and ecosystems. 85 % of the student participants have declared either a geoscience and/or environmental science major with concentrations in biology and geosciences. Recruiting for the program relied on partnerships with: 1) Alliance for Minority Participation (AMP) Program of the City University of New York (CUNY). A program supported by the National Science Foundation and in which Queens College (QC) and CUNY participate; 2) the Search for Education, Elevation, and Knowledge Program (SEEK) in place at Queens College. A program designed to provide educational opportunities for academically motivated students who need substantial financial assistance to attend college; and 3) through our regular teaching schedule for non-geoscience majors. The PIs work at four different institutions from NY metropolitan area: 1) Queens College (QC) from the City University of New York (CUNY.); 2) Queensborough Community College (CUNY), a minority serving college; 3) Lehman College (CUNY), a minority serving college; and 4) Lamont-Doherty Earth Observatory (LDEO), a world-class earth science research institution. External financial support for the program has been secured through the City University of New York Graduate Center through a MAGNET fellowship, Minorities Striving and Pursuing Higher Degrees of Success in Earth Systems Science Professional Development Program 2006, through two industry grants (Entergy Co. and NRG Energy), and in the future, through the availability at competitive rates of local research vessels for day- trips. We anticipate that the program will further gain momentum through partnerships with other City University of New York senior and community colleges, and thanks to word of mouth from those students who participated in the program.

  9. Morphologic Response and Sediment Redistribution of the Beach and Nearshore Sand Bars due to Extratropical and Tropical Storm Forcing: a Spatial and Temporal Analysis

    NASA Astrophysics Data System (ADS)

    Miselis, J. L.; McNinch, J. E.

    2005-05-01

    Shore-oblique bars and associated exposures of an underlying geologic stratum in the nearshore have been documented along the US East Coast and have been linked to shoreline erosional hotspots. While earlier studies acknowledged that the bedforms responded to extratropical and tropical storms, neither quantified the extent of sediment redistribution after the events. An approach that encompasses actual volume measurements across the nearshore-beach down to a non-sandy stratum and quantifies the response of the beach and the nearshore to the same hydrodynamic forcing will enable a better understanding of the exchange of sediment between the two regions. Total nearshore sediment volume has been shown to be a first-order contributor to the behavior of the shoreline. This volumetric approach is employed in the analysis of morphological changes and the redistribution of sediment in the nearshore and beach following storms. A regional survey from 2002 provides the initial, fair-weather morphologic state of the nearshore (1.5-15m water depth) spanning 40 km of the North Carolina Outer Banks. Four small-scale surveys were conducted in subsequent years, focusing on four 1-km2 regions within the initial 2002 survey area. The smaller regions were selected on the basis of the morphological state observed during the 2002 survey and historical shoreline behavior. Data were collected in March 2003 following a Northeaster; in May 2003 following an extended period of fair weather conditions; in November 2003 following Hurricane Isabel; and finally, in June 2004 after another period of fair weather. A swath bathymetry system was used to collect bathymetry and side scan sonar (acoustic backscatter) and a high-resolution chirp sub-bottom profiler imaged the shallow sub-surface geology of the nearshore. In addition, RTK-GPS was used to map the sub-aerial beach at each 1-km2 site from the toe of the dune to the water line for the May 2003, November 2003, and June 2004 sampling periods. This sampling regime and data set offers a unique opportunity 1) to compare the simultaneous response of the beach and the nearshore to storms and 2) to investigate how the response of the beach and the nearshore varies depending on sandbar morphology and differences in the geologic framework. Three-dimensional maps of the beach and nearshore, from the toe of the dune to the 15m isobath, are used to demonstrate changes in total shoreface volume after storms and during recovery. Understanding the redistribution of sediment in the context of volumetric change enables the quantification of the exchange of sediment between the beach and the nearshore during large-scale forcing events.

  10. Latest Holocene evolution and human disturbance of a channel segment in the Hudson River Estuary

    USGS Publications Warehouse

    Klingbeil, A.D.; Sommerfield, C.K.

    2005-01-01

    The latest Holocene sedimentary record of a cohesive channel and subtidal shoal in the lower Hudson River Estuary was examined to elucidate natural (sea-level rise, sediment transport) and anthropogenic (bulkheading, dredging) influences on the recent morphodynamic evolution of the system. To characterize the seafloor and shallow subbottom, ??? 100 km of high-resolution seismic reflection profiles (chirp) were collected within a 20-km reach of the estuary and correlated with sediment lithologies provided by eight vibracores recovered along seismic lines. Sediment geochronology with 137Cs and 14C was used to estimate intermediate and long-term sedimentation rates, respectively, and historical bathymetric data were analyzed to identify regional patterns of accretion and erosion, and to quantify changes in channel geometry and sediment volume. The shoal lithosome originated around 4 ka presumably with decelerating eustatic sea level rise during the latest Holocene. Long-term sedimentation rates on the shoal (2.3-2.6 mm/yr) are higher than in the channel (2 mm/yr) owing to hydrodynamic conditions that preferentially sequester suspended sediment on the western side of the estuary. As a result, the shoal accretes oblique to the principal axis of tidal transport, and more rapidly than the channel to produce an asymmetric cross-section. Shoal deposits consist of tidally bedded muds and are stratified by minor erosion surfaces that seismic profiles reveal to extend for 10s of meters to kilometers. The frequency and continuity of these surfaces suggest that the surficial shoal is catastrophically stripped on decadal-centennial time scales by elevated tidal flows; tidal erosion maintains the shoal at a uniform depth below sea level and prevents it from transitioning to an intertidal environment. Consequently, the long-term sedimentation rate approximates the rate of sea-level rise in the lower estuary (1-3 mm/yr). After the mid 1800s, the natural geometry of the lower Hudson River Estuary changed rapidly in response to engineering works that forced the channel to self-deepen. Analysis of historical bathymetric data indicates that the channel lost an estimated 3 ?? 106 tons of sediment between ca. 1939 and 2002 (50,000 tons/yr average) by subaqueous erosion, increasing in depth by as much as 4 m in places. Erosion appears to have been concurrent with systematic bulkheading of the shoreline after ca. 1865, which decreased the estuary surface area by ??? 19% overall. Evidently, self-deepening of the channel is a morphodynamic adjustment to reestablish equilibrium cross-sectional area, yet the state of this change locally and elsewhere in the estuary is unknown. Subaqueous erosion documented in this study is a significant source of sediment with implications to the sediment budget and environmental quality of the Hudson River Estuary. ?? 2005 Elsevier B.V. All rights reserved.

  11. Impact of Hurricane Sandy on the Shoreface and Inner Shelf, Offshore Long Island: Evidence for Ravinement?

    NASA Astrophysics Data System (ADS)

    Goff, J. A.; Austin, J. A.; Flood, R. D.; Schwab, W. C.; Denny, J. F.; Christensen, B. A.; Browne, C. M.; Saustrup, S.

    2013-12-01

    In January 2013, approximately two months after Hurricane Sandy made landfall in the Mid-Atlantic Bight, a scientific team from the University of Texas Institute for Geophysics, partnering with colleagues at Adelphi and Stony Brook universities and the USGS, conducted marine geophysical and surficial sampling surveys both offshore and in the inshore bays of Long Island, NY. The primary scientific goal was to assess the impact of the storm on the shoreface and inner shelf. Sandy made landfall as a post-tropical cyclone near Brigantine, NJ, with 70-kt maximum sustained winds. However, its unusual trajectory and massive size created record storm surges along the heavily-populated NJ and NY coastlines. As a result, infrastructure in the NY metropolitan area was damaged, and the Long Island barrier island system was both breached in places and elsewhere seriously eroded. The surveys included ten days of operations aboard Stony Brook's R/V Seawolf, offshore of Long Beach and Fire Island, barrier islands south of Long Island, complementing ongoing land-based studies of Sandy's impact on the NY-NJ barrier island system. Data collection involved multibeam bathymetric swath mapping, CHIRP very high resolution acoustic subbottom profiling, and surface sediment (grab) sampling to provide ground truth for the geophysical data. We surveyed regions that had been previously surveyed, both by Stony Brook in 2001 and 2005 to support reef management, and by the USGS for coastal sedimentary research, most recently in 2011 offshore Fire Island. These areas include shoreface-attached sand ridges that may be exchanging sand with the barrier island shoreface. We focus on before-and-after data comparisons on the shoreface and inner shelf, searching in particular for evidence that the storm contributed significantly to ravinement, either by wave- or current-forced erosion along the shoreface or via migration of shoreface-attached or detached sand ridges on the inner shelf. The interpreted (Holocene) transgressive ravinement surface, which may have been modified in part by Sandy, is frequently well-imaged in CHIRP data on the inner- to outer shelf; it represents the physical contrast between Holocene sands above and either Holocene estuarine (often residing in buried river channels) or older (Pleistocene) material below, typically with coarser-grained lag material at the interface. However, the process of ravinement in response to shelf-wide base-level changes is not well understood, and is also difficult to observe because it presumably happens during the most inclement of conditions. Our study provides an opportunity to investigate the ravinement process directly in response to a specific event, to link that process to the stratigraphic record, and therefore to gauge one large storm's contribution to this important part of the sediment budget for inner shelf/beach barrier systems.

  12. Combined multi-plane phase retrieval and super-resolution optical fluctuation imaging for 4D cell microscopy

    NASA Astrophysics Data System (ADS)

    Descloux, A.; Grußmayer, K. S.; Bostan, E.; Lukes, T.; Bouwens, A.; Sharipov, A.; Geissbuehler, S.; Mahul-Mellier, A.-L.; Lashuel, H. A.; Leutenegger, M.; Lasser, T.

    2018-03-01

    Super-resolution fluorescence microscopy provides unprecedented insight into cellular and subcellular structures. However, going `beyond the diffraction barrier' comes at a price, since most far-field super-resolution imaging techniques trade temporal for spatial super-resolution. We propose the combination of a novel label-free white light quantitative phase imaging with fluorescence to provide high-speed imaging and spatial super-resolution. The non-iterative phase retrieval relies on the acquisition of single images at each z-location and thus enables straightforward 3D phase imaging using a classical microscope. We realized multi-plane imaging using a customized prism for the simultaneous acquisition of eight planes. This allowed us to not only image live cells in 3D at up to 200 Hz, but also to integrate fluorescence super-resolution optical fluctuation imaging within the same optical instrument. The 4D microscope platform unifies the sensitivity and high temporal resolution of phase imaging with the specificity and high spatial resolution of fluorescence microscopy.

  13. Sparse super-resolution reconstructions of video from mobile devices in digital TV broadcast applications

    NASA Astrophysics Data System (ADS)

    Boon, Choong S.; Guleryuz, Onur G.; Kawahara, Toshiro; Suzuki, Yoshinori

    2006-08-01

    We consider the mobile service scenario where video programming is broadcast to low-resolution wireless terminals. In such a scenario, broadcasters utilize simultaneous data services and bi-directional communications capabilities of the terminals in order to offer substantially enriched viewing experiences to users by allowing user participation and user tuned content. While users immediately benefit from this service when using their phones in mobile environments, the service is less appealing in stationary environments where a regular television provides competing programming at much higher display resolutions. We propose a fast super-resolution technique that allows the mobile terminals to show a much enhanced version of the broadcast video on nearby high-resolution devices, extending the appeal and usefulness of the broadcast service. The proposed single frame super-resolution algorithm uses recent sparse recovery results to provide high quality and high-resolution video reconstructions based solely on individual decoded frames provided by the low-resolution broadcast.

  14. Large-scale microfluidics providing high-resolution and high-throughput screening of Caenorhabditis elegans poly-glutamine aggregation model

    NASA Astrophysics Data System (ADS)

    Mondal, Sudip; Hegarty, Evan; Martin, Chris; Gökçe, Sertan Kutal; Ghorashian, Navid; Ben-Yakar, Adela

    2016-10-01

    Next generation drug screening could benefit greatly from in vivo studies, using small animal models such as Caenorhabditis elegans for hit identification and lead optimization. Current in vivo assays can operate either at low throughput with high resolution or with low resolution at high throughput. To enable both high-throughput and high-resolution imaging of C. elegans, we developed an automated microfluidic platform. This platform can image 15 z-stacks of ~4,000 C. elegans from 96 different populations using a large-scale chip with a micron resolution in 16 min. Using this platform, we screened ~100,000 animals of the poly-glutamine aggregation model on 25 chips. We tested the efficacy of ~1,000 FDA-approved drugs in improving the aggregation phenotype of the model and identified four confirmed hits. This robust platform now enables high-content screening of various C. elegans disease models at the speed and cost of in vitro cell-based assays.

  15. Multiple slope failures shaped the lower continental slope offshore NW Svalbard in the Fram Strait

    NASA Astrophysics Data System (ADS)

    Osti, Giacomo; Mienert, Jürgen; Forwick, Matthias; Sverre Laberg, Jan

    2016-04-01

    Bathymetry data show that the lower slope (between 1300 m and 3000 m water depth) of the NW-Svalbard passive margin has been affected by multiple slope failure events. The single events differ in terms of extension, volume of mobilized sediments, morphology of the slide scar, run-out distance and age. As for several mega-scale and minor Arctic slides, the trigger mechanism is still speculative and may include high sedimentation rates, dissociation of gas hydrates, excess pore pressure, or earthquakes caused by isostatic rebound. In this study, we discuss the potential trigger mechanisms that have led to the multiple slope failure events within what we suggest to be named the Fram Strait Slide Complex. The slide complex lies in proximity to the tectonically active Spitsbergen Fracture Zone where earthquakes events, occurrences of potential weak layers in the sediment column, low sedimentation rates, and extended gas hydrate-bearing sediments may all have contributed to the causes leading to multiple slope failures. Preliminary results obtained from 14C dating on N. pachyderma sin. from sediment cores from the Spitsbergen Fracture Zone slides (SFZS 1 and 2), coupled with sub-bottom profiler data (frequency 9 to 15 KHz) show that the two shallowest glide planes within one of the observed slide scars failed ~100,000 and ~115,000 yr BP. Whilst SFZS 1 affected an area of 750 km2 mobilizing a total sediment volume of 40 km3, SFZS 2 moved an area of 230 km2 with a sediment volume of 4.5 km3.

  16. Modern sedimentary environments in Boston Harbor, Massachusetts

    USGS Publications Warehouse

    Knebel, H.J.; Rendigs, R. R.; Bothner, Michael H.

    1991-01-01

    Analyses of sidescan-sonar records supplemented by available bathymetric, sedimentary, subbottom, and bottom-current data reveal the distributions of the following three categories of sedimentary environments within the glaciated, topographically complex Boston Harbor estuary in Massachusetts. 1) Environments of erosion appear on the sonographs either as patterns with isolated strong reflections or as uniform patterns of strong reflectivity. These patterns define outcrops of bedrock or till and coarse lag deposits that are being scoured and winnowed by tidal- and wave-induced currents. Erosional areas are located primarily along mainland and insular shores, within large channels that have strong tidal currents, atop submerged ridges and knolls, and across much of the harbor entrance. 2) Environments of deposition are depicted on the sidescan-sonar records as smooth, featureless surfaces that have low to moderate reflectivity. Depositional environments are found predominantly over shallow subtidal flats and in broad bathymetric lows where tidal currents are weak. Sediments within depositional areas are organic-rich sandy and clayey silts that are accumulating at rates ranging from 0.01 to 0.11 g/cm 2 /yr or 4000 to 46,100 metric tons/yr. The cumulative mass of modern mud in harbor depocenters is 24.3 million metric tons. 3) Environments of sediment reworking constitute areas affected by a combination of erosional and depositional processes. They are characterized on the sonographs by mosaics of light and dark patches produced by relatively subtle and gradational changes in reflectivity. Reworked sediments have diverse grain sizes that overlap and are transitional between those of the other two sedimentary environments, and they are indicative of highly variable bottom currents.

  17. Tidally controlled gas bubble emissions: A comprehensive study using long-term monitoring data from the NEPTUNE cabled observatory offshore Vancouver Island

    NASA Astrophysics Data System (ADS)

    Römer, Miriam; Riedel, Michael; Scherwath, Martin; Heesemann, Martin; Spence, George D.

    2016-09-01

    Long-term monitoring over 1 year revealed high temporal variability of gas emissions at a cold seep in 1250 m water depth offshore Vancouver Island, British Columbia. Data from the North East Pacific Time series Underwater Networked Experiment observatory operated by Ocean Networks Canada were used. The site is equipped with a 260 kHz Imagenex sonar collecting hourly data, conductivity-temperature-depth sensors, bottom pressure recorders, current meter, and an ocean bottom seismograph. This enables correlation of the data and analyzing trigger mechanisms and regulating criteria of gas discharge activity. Three periods of gas emission activity were observed: (a) short activity phases of few hours lasting several months, (b) alternating activity and inactivity of up to several day-long phases each, and (c) a period of several weeks of permanent activity. These periods can neither be explained by oceanographic conditions nor initiated by earthquakes. However, we found a clear correlation of gas emission with bottom pressure changes controlled by tides. Gas bubbles start emanating during decreasing tidal pressure. Tidally induced pressure changes also influence the subbottom fluid system by shifting the methane solubility resulting in exsolution of gas during falling tides. These pressure changes affect the equilibrium of forces allowing free gas in sediments to emanate into the water column at decreased hydrostatic load. We propose a model for the fluid system at the seep, fueled by a constant subsurface methane flux and a frequent tidally controlled discharge of gas bubbles into the ocean, transferable to other gas emission sites in the world's oceans.

  18. Impact of the spatial resolution of satellite remote sensing sensors in the quantification of total suspended sediment concentration: A case study in turbid waters of Northern Western Australia.

    PubMed

    Dorji, Passang; Fearns, Peter

    2017-01-01

    The impact of anthropogenic activities on coastal waters is a cause of concern because such activities add to the total suspended sediment (TSS) budget of the coastal waters, which have negative impacts on the coastal ecosystem. Satellite remote sensing provides a powerful tool in monitoring TSS concentration at high spatiotemporal resolution, but coastal managers should be mindful that the satellite-derived TSS concentrations are dependent on the satellite sensor's radiometric properties, atmospheric correction approaches, the spatial resolution and the limitations of specific TSS algorithms. In this study, we investigated the impact of different spatial resolutions of satellite sensor on the quantification of TSS concentration in coastal waters of northern Western Australia. We quantified the TSS product derived from MODerate resolution Imaging Spectroradiometer (MODIS)-Aqua, Landsat-8 Operational Land Image (OLI), and WorldView-2 (WV2) at native spatial resolutions of 250 m, 30 m and 2 m respectively and coarser spatial resolution (resampled up to 5 km) to quantify the impact of spatial resolution on the derived TSS product in different turbidity conditions. The results from the study show that in the waters of high turbidity and high spatial variability, the high spatial resolution WV2 sensor reported TSS concentration as high as 160 mg L-1 while the low spatial resolution MODIS-Aqua reported a maximum TSS concentration of 23.6 mg L-1. Degrading the spatial resolution of each satellite sensor for highly spatially variable turbid waters led to variability in the TSS concentrations of 114.46%, 304.68% and 38.2% for WV2, Landsat-8 OLI and MODIS-Aqua respectively. The implications of this work are particularly relevant in the situation of compliance monitoring where operations may be required to restrict TSS concentrations to a pre-defined limit.

  19. Impact of the spatial resolution of satellite remote sensing sensors in the quantification of total suspended sediment concentration: A case study in turbid waters of Northern Western Australia

    PubMed Central

    Fearns, Peter

    2017-01-01

    The impact of anthropogenic activities on coastal waters is a cause of concern because such activities add to the total suspended sediment (TSS) budget of the coastal waters, which have negative impacts on the coastal ecosystem. Satellite remote sensing provides a powerful tool in monitoring TSS concentration at high spatiotemporal resolution, but coastal managers should be mindful that the satellite-derived TSS concentrations are dependent on the satellite sensor’s radiometric properties, atmospheric correction approaches, the spatial resolution and the limitations of specific TSS algorithms. In this study, we investigated the impact of different spatial resolutions of satellite sensor on the quantification of TSS concentration in coastal waters of northern Western Australia. We quantified the TSS product derived from MODerate resolution Imaging Spectroradiometer (MODIS)-Aqua, Landsat-8 Operational Land Image (OLI), and WorldView-2 (WV2) at native spatial resolutions of 250 m, 30 m and 2 m respectively and coarser spatial resolution (resampled up to 5 km) to quantify the impact of spatial resolution on the derived TSS product in different turbidity conditions. The results from the study show that in the waters of high turbidity and high spatial variability, the high spatial resolution WV2 sensor reported TSS concentration as high as 160 mg L-1 while the low spatial resolution MODIS-Aqua reported a maximum TSS concentration of 23.6 mg L-1. Degrading the spatial resolution of each satellite sensor for highly spatially variable turbid waters led to variability in the TSS concentrations of 114.46%, 304.68% and 38.2% for WV2, Landsat-8 OLI and MODIS-Aqua respectively. The implications of this work are particularly relevant in the situation of compliance monitoring where operations may be required to restrict TSS concentrations to a pre-defined limit. PMID:28380059

  20. Multibeam interferometric illumination as the primary source of resolution in optical microscopy

    NASA Astrophysics Data System (ADS)

    Ryu, J.; Hong, S. S.; Horn, B. K. P.; Freeman, D. M.; Mermelstein, M. S.

    2006-04-01

    High-resolution images of a fluorescent target were obtained using a low-resolution optical detector by illuminating the target with interference patterns produced with 31 coherent beams. The beams were arranged in a cone with 78° half angle to produce illumination patterns consistent with a numerical aperture of 0.98. High-resolution images were constructed from low-resolution images taken with 930 different illumination patterns. Results for optical detectors with numerical apertures of 0.1 and 0.2 were similar, demonstrating that the resolution is primarily determined by the illuminator and not by the low-resolution detector. Furthermore, the long working distance, large depth of field, and large field of view of the low-resolution detector are preserved.

  1. Assessment of summer rainfall forecast skill in the Intra-Americas in GFDL high and low-resolution models

    NASA Astrophysics Data System (ADS)

    Krishnamurthy, Lakshmi; Muñoz, Ángel G.; Vecchi, Gabriel A.; Msadek, Rym; Wittenberg, Andrew T.; Stern, Bill; Gudgel, Rich; Zeng, Fanrong

    2018-05-01

    The Caribbean low-level jet (CLLJ) is an important component of the atmospheric circulation over the Intra-Americas Sea (IAS) which impacts the weather and climate both locally and remotely. It influences the rainfall variability in the Caribbean, Central America, northern South America, the tropical Pacific and the continental Unites States through the transport of moisture. We make use of high-resolution coupled and uncoupled models from the Geophysical Fluid Dynamics Laboratory (GFDL) to investigate the simulation of the CLLJ and its teleconnections and further compare with low-resolution models. The high-resolution coupled model FLOR shows improvements in the simulation of the CLLJ and its teleconnections with rainfall and SST over the IAS compared to the low-resolution coupled model CM2.1. The CLLJ is better represented in uncoupled models (AM2.1 and AM2.5) forced with observed sea-surface temperatures (SSTs), emphasizing the role of SSTs in the simulation of the CLLJ. Further, we determine the forecast skill for observed rainfall using both high- and low-resolution predictions of rainfall and SSTs for the July-August-September season. We determine the role of statistical correction of model biases, coupling and horizontal resolution on the forecast skill. Statistical correction dramatically improves area-averaged forecast skill. But the analysis of spatial distribution in skill indicates that the improvement in skill after statistical correction is region dependent. Forecast skill is sensitive to coupling in parts of the Caribbean, Central and northern South America, and it is mostly insensitive over North America. Comparison of forecast skill between high and low-resolution coupled models does not show any dramatic difference. However, uncoupled models show improvement in the area-averaged skill in the high-resolution atmospheric model compared to lower resolution model. Understanding and improving the forecast skill over the IAS has important implications for highly vulnerable nations in the region.

  2. Simulation of Mean Flow and Turbulence over a 2D Building Array Using High-Resolution CFD and a Distributed Drag Force Approach

    DTIC Science & Technology

    2016-06-16

    procedure. The predictive capabilities of the high-resolution computational fluid dynamics ( CFD ) simulations of urban flow are validated against a very...turbulence over a 2D building array using high-resolution CFD and a distributed drag force approach a Department of Mechanical Engineering, University

  3. 2010 Joint United States-Canadian Program to explore the limits of the Extended Continental Shelf aboard U.S. Coast Guard Cutter Healy--Cruise HLY1002

    USGS Publications Warehouse

    Edwards, Brian D.; Childs, Jonathan R.; Triezenberg, Peter J.; Danforth, William W.; Gibbons, Helen

    2013-01-01

    In August and September 2010, the U.S. Geological Survey, in cooperation with Natural Resources Canada, Geological Survey of Canada, conducted bathymetric and geophysical surveys in the Beaufort Sea and eastern Arctic Ocean aboard the U.S. Coast Guard Cutter Healy. The principal objective of this mission to the high Arctic was to acquire data in support of a delineation of the outer limits of the U.S. and Canadian Extended Continental Shelf in the Arctic Ocean, in accordance with the provisions of Article 76 of the United Nations Convention on the Law of the Sea. The Healy was accompanied by the Canadian Coast Guard icebreaker Louis S. St-Laurent. The scientific parties on board the two vessels consisted principally of staff from the U.S. Geological Survey (Healy), and the Geological Survey of Canada and the Canadian Hydrographic Service (Louis). The crew also included marine-mammal observers, Native-community observers, ice observers, and biologists conducting research of opportunity in the Arctic Ocean. Despite interruptions necessitated by three medical emergencies, the joint survey proved largely successful. The Healy collected 7,201 trackline-kilometers of swath (multibeam) bathymetry (47,663 square kilometers) and CHIRP subbottom data, with accompanying marine gravity measurements, and expendable bathythermograph data. The Louis acquired 3,673 trackline-kilometers of multichannel seismic (airgun) deep-penetration reflection data along 25 continuous profiles, as well as 34 sonobuoy refraction stations and 9,500 trackline-kilometers of single-beam bathymetry. The coordinated efforts of the two vessels resulted in seismic-reflection-profile data that were of much higher quality and continuity than if the data had been acquired with a single vessel alone. The equipment-failure rate of the seismic equipment aboard the Louis was greatly reduced when the Healy led as the ice breaker. When ice conditions proved too severe to deploy the seismic system, the Louis led the Healy, resulting in much improved quality of the swath bathymetric and CHIRP subbottom data in comparison with data collected either by the Healy in the lead or the Healy working alone. During periods when the Healy was operating alone (principally when the Louis was diverted for emergency medical evacuations or ship repairs), the Healy was able to deploy a piston-core-sampler (10 meters maximum potential recovery depending on configuration). The coring operations resulted in recovery of cores at five locations ranging from 2.4 to 5.7 meters in length from water depths ranging from 1,157 to 3,700 meters. One of these cores sited on the Alaskan margin recovered the first reported occurrence of methane hydrate from the Arctic Ocean. Ancillary science objectives, including ice observations and deployment of ice-monitoring buoys and water-column sampling to measure acidification of Arctic waters were successfully conducted. The water-column sampling included using 10 full-ocean-depth, water-sampling casts with accompanying conductivity-temperature-depth measurements. Except for the data deemed proprietary, data from the cruise have been archived and are available for download at the National Geophysical Data Center and at cooperating organizations. Outreach staff and guest teachers aboard the two vessels provided near-real-time connection between the research activities and the public through online blogs, web pages, and other media.

  4. Analyzing and leveraging self-similarity for variable resolution atmospheric models

    NASA Astrophysics Data System (ADS)

    O'Brien, Travis; Collins, William

    2015-04-01

    Variable resolution modeling techniques are rapidly becoming a popular strategy for achieving high resolution in a global atmospheric models without the computational cost of global high resolution. However, recent studies have demonstrated a variety of resolution-dependent, and seemingly artificial, features. We argue that the scaling properties of the atmosphere are key to understanding how the statistics of an atmospheric model should change with resolution. We provide two such examples. In the first example we show that the scaling properties of the cloud number distribution define how the ratio of resolved to unresolved clouds should increase with resolution. We show that the loss of resolved clouds, in the high resolution region of variable resolution simulations, with the Community Atmosphere Model version 4 (CAM4) is an artifact of the model's treatment of condensed water (this artifact is significantly reduced in CAM5). In the second example we show that the scaling properties of the horizontal velocity field, combined with the incompressibility assumption, necessarily result in an intensification of vertical mass flux as resolution increases. We show that such an increase is present in a wide variety of models, including CAM and the regional climate models of the ENSEMBLES intercomparision. We present theoretical arguments linking this increase to the intensification of precipitation with increasing resolution.

  5. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhu, Fan, E-mail: zf5016@126.com; Center of Ultra-precision Optoelectronic Instrument Engineering, Harbin Institute of Technology, Harbin 150080; Tan, Xinran

    An autocollimation (AC) setup with ultra-high resolution and stability for micro-angle measurement is presented. The telephoto objective, which is characterized in long focal length at a compact structure size, and the optical enlargement unit, which can magnify the image displacement to improve its measurement resolution and accuracy, are used to obtain an ultra-high measurement resolution of the AC. The common-path beam drift compensation is used to suppress the drift of measurement results, which is evident in the high-resolution AC, thus to obtain a high measurement stability. Experimental results indicate that an effective resolution of better than 0.0005 arc sec (2.42more » nrad) over a measurement range of ±30 arc sec and a 2-h stability of 0.0061 arc sec (29.57 nrad) can be achieved.« less

  6. Comparing Magnetic Resonance Imaging and High-Resolution Dynamic Ultrasonography for Diagnosis of Plantar Plate Pathology: A Case Series.

    PubMed

    Donegan, Ryan J; Stauffer, Anthony; Heaslet, Michael; Poliskie, Michael

    Plantar plate pathology has gained noticeable attention in recent years as an etiology of lesser metatarsophalangeal joint pain. The heightened clinical awareness has led to the need for more effective diagnostic imaging accuracy. Numerous reports have established the accuracy of both magnetic resonance imaging and ultrasonography for the diagnosis of plantar plate pathology. However, no conclusions have been made regarding which is the superior imaging modality. The present study reports a case series directly comparing high-resolution dynamic ultrasonography and magnetic resonance imaging. A multicenter retrospective comparison of magnetic resonance imaging versus high-resolution dynamic ultrasonography to evaluate plantar plate pathology with surgical confirmation was conducted. The sensitivity, specificity, and positive and negative predictive values for magnetic resonance imaging were 60%, 100%, 100%, and 33%, respectively. The overall diagnostic accuracy compared with the intraoperative findings was 66%. The sensitivity, specificity, and positive and negative predictive values for high-resolution dynamic ultrasound imaging were 100%, 100%, 100%, and 100%, respectively. The overall diagnostic accuracy compared with the intraoperative findings was 100%. The p value using Fisher's exact test for magnetic resonance imaging and high-resolution dynamic ultrasonography was p = .45, a difference that was not statistically significant. High-resolution dynamic ultrasonography had greater accuracy than magnetic resonance imaging in diagnosing lesser metatarsophalangeal joint plantar plate pathology, although the difference was not statistically significant. The present case series suggests that high-resolution dynamic ultrasonography can be considered an equally accurate imaging modality for plantar plate pathology at a potential cost savings compared with magnetic resonance imaging. Therefore, high-resolution dynamic ultrasonography warrants further investigation in a prospective study. Copyright © 2016 American College of Foot and Ankle Surgeons. Published by Elsevier Inc. All rights reserved.

  7. Adaptive optics high-resolution IR spectroscopy with silicon grisms and immersion gratings

    NASA Astrophysics Data System (ADS)

    Ge, Jian; McDavitt, Daniel L.; Chakraborty, Abhijit; Bernecker, John L.; Miller, Shane

    2003-02-01

    The breakthrough of silicon immersion grating technology at Penn State has the ability to revolutionize high-resolution infrared spectroscopy when it is coupled with adaptive optics at large ground-based telescopes. Fabrication of high quality silicon grism and immersion gratings up to 2 inches in dimension, less than 1% integrated scattered light, and diffraction-limited performance becomes a routine process thanks to newly developed techniques. Silicon immersion gratings with etched dimensions of ~ 4 inches are being developed at Penn State. These immersion gratings will be able to provide a diffraction-limited spectral resolution of R = 300,000 at 2.2 micron, or 130,000 at 4.6 micron. Prototype silicon grisms have been successfully used in initial scientific observations at the Lick 3m telescope with adaptive optics. Complete K band spectra of a total of 6 T Tauri and Ae/Be stars and their close companions at a spectral resolution of R ~ 3000 were obtained. This resolving power was achieved by using a silicon echelle grism with a 5 mm pupil diameter in an IR camera. These results represent the first scientific observations conducted by the high-resolution silicon grisms, and demonstrate the extremely high dispersing power of silicon-based gratings. New discoveries from this high spatial and spectral resolution IR spectroscopy will be reported. The future of silicon-based grating applications in ground-based AO IR instruments is promising. Silicon immersion gratings will make very high-resolution spectroscopy (R > 100,000) feasible with compact instruments for implementation on large telescopes. Silicon grisms will offer an efficient way to implement low-cost medium to high resolution IR spectroscopy (R ~ 1000-50000) through the conversion of existing cameras into spectrometers by locating a grism in the instrument's pupil location.

  8. High Resolution CryoFESEM of Microbial Surfaces

    NASA Astrophysics Data System (ADS)

    Erlandsen, Stanley; Lei, Ming; Martin-Lacave, Ines; Dunny, Gary; Wells, Carol

    2003-08-01

    The outer surfaces of three microorganisms, Giardia lamblia, Enterococcus faecalis, and Proteus mirabilis, were investigated by cryo-immobilization followed by sublimation of extracellular ice and cryocoating with either Pt alone or Pt plus carbon. Cryocoated samples were examined at [minus sign]125°C in either an in-lens field emission SEM or a below-the-lens field emission SEM. Cryocoating with Pt alone was sufficient for low magnification observation, but attempts to do high-resolution imaging resulted in radiolysis and cracking of the specimen surface. Double coating with Pt and carbon, in combination with high resolution backscatter electron detectors, enabled high-resolution imaging of the glycocalyx of bacteria, revealing a sponge-like network over the surface. High resolution examination of bacterial flagella also revealed a periodic substructure. Common artifacts included radiolysis leading to “cracking” of the surface, and insufficient deposition of Pt resulting in the absence of detectable surface topography.

  9. Research relative to high resolution camera on the advanced X-ray astrophysics facility

    NASA Technical Reports Server (NTRS)

    1986-01-01

    The HRC (High Resolution Camera) is a photon counting instrument to be flown on the Advanced X-Ray Astrophysics Facility (AXAF). It is a large field of view, high angular resolution, detector for the x-ray telescope. The HRC consists of a CsI coated microchannel plate (MCP) acting as a soft x-ray photocathode, followed by a second MCP for high electronic gain. The MCPs are readout by a crossed grid of resistively coupled wires to provide high spatial resolution along with timing and pulse height data. The instrument will be used in two modes, as a direct imaging detector with a limiting sensitivity of 10 to the -15 ergs sq cm sec in a 10 to the 5th second exposure, and as a readout for an objective transmission grating providing spectral resolution of several hundreds to thousands.

  10. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Smith, Donald F.; Schulz, Carl; Konijnenburg, Marco

    High-resolution Fourier transform ion cyclotron resonance (FT-ICR) mass spectrometry imaging enables the spatial mapping and identification of biomolecules from complex surfaces. The need for long time-domain transients, and thus large raw file sizes, results in a large amount of raw data (“big data”) that must be processed efficiently and rapidly. This can be compounded by largearea imaging and/or high spatial resolution imaging. For FT-ICR, data processing and data reduction must not compromise the high mass resolution afforded by the mass spectrometer. The continuous mode “Mosaic Datacube” approach allows high mass resolution visualization (0.001 Da) of mass spectrometry imaging data, butmore » requires additional processing as compared to featurebased processing. We describe the use of distributed computing for processing of FT-ICR MS imaging datasets with generation of continuous mode Mosaic Datacubes for high mass resolution visualization. An eight-fold improvement in processing time is demonstrated using a Dutch nationally available cloud service.« less

  11. High Resolution Tissue Imaging Using the Single-probe Mass Spectrometry under Ambient Conditions

    NASA Astrophysics Data System (ADS)

    Rao, Wei; Pan, Ning; Yang, Zhibo

    2015-06-01

    Ambient mass spectrometry imaging (MSI) is an emerging field with great potential for the detailed spatial analysis of biological samples with minimal pretreatment. We have developed a miniaturized sampling and ionization device, the Single-probe, which uses in-situ surface micro-extraction to achieve high detection sensitivity and spatial resolution during MSI experiments. The Single-probe was coupled to a Thermo LTQ Orbitrap XL mass spectrometer and was able to create high spatial and high mass resolution MS images at 8 ± 2 and 8.5 μm on flat polycarbonate microscope slides and mouse kidney sections, respectively, which are among the highest resolutions available for ambient MSI techniques. Our proof-of-principle experiments indicate that the Single-probe MSI technique has the potential to obtain ambient MS images with very high spatial resolutions with minimal sample preparation, which opens the possibility for subcellular ambient tissue MSI to be performed in the future.

  12. High spatial resolution compressed sensing (HSPARSE) functional MRI.

    PubMed

    Fang, Zhongnan; Van Le, Nguyen; Choy, ManKin; Lee, Jin Hyung

    2016-08-01

    To propose a novel compressed sensing (CS) high spatial resolution functional MRI (fMRI) method and demonstrate the advantages and limitations of using CS for high spatial resolution fMRI. A randomly undersampled variable density spiral trajectory enabling an acceleration factor of 5.3 was designed with a balanced steady state free precession sequence to achieve high spatial resolution data acquisition. A modified k-t SPARSE method was then implemented and applied with a strategy to optimize regularization parameters for consistent, high quality CS reconstruction. The proposed method improves spatial resolution by six-fold with 12 to 47% contrast-to-noise ratio (CNR), 33 to 117% F-value improvement and maintains the same temporal resolution. It also achieves high sensitivity of 69 to 99% compared the original ground-truth, small false positive rate of less than 0.05 and low hemodynamic response function distortion across a wide range of CNRs. The proposed method is robust to physiological noise and enables detection of layer-specific activities in vivo, which cannot be resolved using the highest spatial resolution Nyquist acquisition. The proposed method enables high spatial resolution fMRI that can resolve layer-specific brain activity and demonstrates the significant improvement that CS can bring to high spatial resolution fMRI. Magn Reson Med 76:440-455, 2016. © 2015 The Authors. Magnetic Resonance in Medicine published by Wiley Periodicals, Inc. on behalf of International Society for Magnetic Resonance in Medicine. This is an open access article under the terms of the Creative Commons Attribution-NonCommercial-NoDerivs License, which permits use and distribution in any medium, provided the original work is properly cited, the use is non-commercial and no modifications or adaptations are made. © 2015 The Authors. Magnetic Resonance in Medicine published by Wiley Periodicals, Inc. on behalf of International Society for Magnetic Resonance in Medicine.

  13. Comparing high-resolution microscopy techniques for potential intraoperative use in guiding low-grade glioma resections.

    PubMed

    Meza, Daphne; Wang, Danni; Wang, Yu; Borwege, Sabine; Sanai, Nader; Liu, Jonathan T C

    2015-04-01

    Fluorescence image-guided surgery (FIGS), with contrast provided by 5-ALA-induced PpIX, has been shown to enable a higher extent of resection of high-grade gliomas. However, conventional FIGS with low-power microscopy lacks the sensitivity to aid in low-grade glioma (LGG) resection because PpIX signal is weak and sparse in such tissues. Intraoperative high-resolution microscopy of PpIX fluorescence has been proposed as a method to guide LGG resection, where sub-cellular resolution allows for the visualization of sparse and punctate mitochondrial PpIX production in tumor cells. Here, we assess the performance of three potentially portable high-resolution microscopy techniques that may be used for the intraoperative imaging of human LGG tissue samples with PpIX contrast: high-resolution fiber-optic microscopy (HRFM), high-resolution wide-field microscopy (WFM), and dual-axis confocal (DAC) microscopy. Thick unsectioned human LGG tissue samples (n = 7) with 5-ALA-induced PpIX contrast were imaged using three imaging techniques (HRFM, WFM, DAC). The average signal-to-background ratio (SBR) was then calculated for each imaging modality (5 images per tissue, per modality). HRFM provides the ease of use and portability of a flexible fiber bundle, and is simple and inexpensive to build. However, in most cases (6/7), HRFM is not capable of detecting PpIX signal from LGGs due to high autofluorescence, generated by the fiber bundle under laser illumination at 405 nm, which overwhelms the PpIX signal and impedes its visualization. WFM is a camera-based method possessing high lateral resolution but poor axial resolution, resulting in sub-optimal image contrast. Consistent successful detection of PpIX signal throughout our human LGG tissue samples (n = 7), with an acceptable image contrast (SBR >2), was only achieved using DAC microscopy, which offers superior image resolution and contrast that is comparable to histology, but requires a laser-scanning mechanism to achieve optical sectioning. © 2015 Wiley Periodicals, Inc.

  14. Submicron-resolution photoacoustic microscopy of endogenous light-absorbing biomolecules

    NASA Astrophysics Data System (ADS)

    Zhang, Chi

    Photoacoustic imaging in biomedicine has the unique advantage of probing endogenous light absorbers at various length scales with a 100% relative sensitivity. Among the several modalities of photoacoustic imaging, optical-resolution photoacoustic microscopy (OR-PAM) can achieve high spatial resolution, on the order of optical wavelength, at <1 mm depth in biological tissue (the optical ballistic regime). OR-PAM has been applied successfully to structural and functional imaging of blood vasculature and red blood cells in vivo. Any molecules which absorb sufficient light at certain wavelengths can potentially be imaged by PAM. Compared with pure optical imaging, which typically targets fluorescent markers, label-free PAM avoids the major concerns that the fluorescent labeling probes may disturb the function of biomolecules and may have an insufficient density. This dissertation aims to advance label-free OR-PAM to the subcellular scale. The first part of this dissertation describes the technological advancement of PAM yielding high spatial resolution in 3D. The lateral resolution was improved by using optical objectives with high numerical apertures for optical focusing. The axial resolution was improved by using broadband ultrasonic transducers for ultrasound detection. We achieved 220 nm lateral resolution in transmission mode, 0.43 microm lateral resolution in reflection mode, 7.6 microm axial resolution in normal tissue, and 5.8 microm axial resolution with silicone oil immersion/injection. The achieved lateral resolution and axial resolution were the finest reported at the time. With high-resolution in 3D, PAM was demonstrated to resolve cellular and subcellular structures in vivo, such as red blood cells and melanosomes in melanoma cells. Compared with previous PAM systems, our high-resolution PAM could resolve capillaries in mouse ears more clearly. As an example application, we demonstrated intracellular temperature imaging, assisted by fluorescence signal detection, with sub-degree temperature resolution and sub-micron lateral resolution. The second part of this dissertation describes the exploration of endogenous light-absorbing biomolecules for PAM. We demonstrated cytochromes and myoglobin as new absorption contrasts for PAM and identified the corresponding optimal wavelengths for imaging. Fixed fibroblasts on slides and mouse ear sections were imaged by PAM at 422 nm and 250 nm wavelengths to reveal cytoplasms and nuclei, respectively, as confirmed by standard hematoxylin and eosin (H&E) histology. By imaging a blood-perfused mouse heart at 532 nm down to 150 microm in depth, we derived the myocardial sheet thickness and the cleavage height from an undehydrated heart for the first time. The findings promote PAM at new wavelengths and open up new possibilities for characterizing biological tissue. Of particular interest, dual-wavelength PAM around 250 nm and 420 nm wavelengths is analogous to H&E histology. The last part of this dissertation describes the development of sectioning photoacoustic microscopy (SPAM), based on the advancement in spatial resolution and new contrasts for PAM, with applications in brain histology. Label-free SPAM, assisted by a microtome, acquires serial distortion-free images of a specimen on the surface. By exciting cell nuclei at 266 nm wavelength with high resolution, SPAM could pinpoint cell nuclei sensitively and specifically in the mouse brain section, as confirmed by H&E histology. SPAM was demonstrated to generate high-resolution 3D images, highlighting cell nuclei, of formalin-fixed paraffin-embedded mouse brains without tissue staining or clearing. SPAM can potentially serve as a high-throughput and minimal-artifact substitute for histology, probe many other biomolecules and cells, and become a universal tool for animal or human whole-organ microscopy, with diverse applications in life sciences.

  15. Effects of spatial resolution ratio in image fusion

    USGS Publications Warehouse

    Ling, Y.; Ehlers, M.; Usery, E.L.; Madden, M.

    2008-01-01

    In image fusion, the spatial resolution ratio can be defined as the ratio between the spatial resolution of the high-resolution panchromatic image and that of the low-resolution multispectral image. This paper attempts to assess the effects of the spatial resolution ratio of the input images on the quality of the fused image. Experimental results indicate that a spatial resolution ratio of 1:10 or higher is desired for optimal multisensor image fusion provided the input panchromatic image is not downsampled to a coarser resolution. Due to the synthetic pixels generated from resampling, the quality of the fused image decreases as the spatial resolution ratio decreases (e.g. from 1:10 to 1:30). However, even with a spatial resolution ratio as small as 1:30, the quality of the fused image is still better than the original multispectral image alone for feature interpretation. In cases where the spatial resolution ratio is too small (e.g. 1:30), to obtain better spectral integrity of the fused image, one may downsample the input high-resolution panchromatic image to a slightly lower resolution before fusing it with the multispectral image.

  16. Burried MIS 5 abrasion platforms in the Bay of Koper (Gulf of Trieste, Northern Adriatic) confirm long-term subsidence of the Northern Adriatic region

    NASA Astrophysics Data System (ADS)

    Trobec, Ana; Šmuc, Andrej; Poglajen, Sašo; Vrabec, Marko

    2016-04-01

    The youngest seafloor sediments of the Gulf of Trieste (Northern Adriatic) are represented by an up to several 100 meters thick succession of Pliocene to Quaternary continental and shallow-marine deposits recording numerous transgressive-regressive cycles. These sediments are separated from older lithologies (mainly Eocene flysch) by an erosional unconformity. Previous geophysical campaigns conducted in the Italian part of the Gulf of Trieste revealed a complex undulating morphology of the unconformity characterised by numerous morphological steps in the flysch appearing between 40 and 200 m below sea level. From correlation with onshore well data from the Friuli and Veneto area it is assumed that the highest system of these unconformities located at approximately 40 mbsl represents a marine abrasion platform formed during the MIS 5 period sea-level highstand. We present the first observations of these abrasion platforms in the Bay of Koper in the southern (Slovenian) part of the Gulf of Trieste. A series of perpendicular sub-bottom sonar profiles with a spacing of 250-500 meters was acquired in the Bay of Koper between 2009 and 2012 with the Innomar parametric sediment echo sounder SES-2000. Along the northern coast of the bay several acoustic facies were resolved, including the top erosional unconformity surface of the flysch. On this surface we located platforms at 35 ms (platform A), 40 ms (platform B) and 50 ms (platform C) of two-way-travel time. The top of abrasion platform B coincides with the top of a sediment progradational wedge which overlies abrasion platform C. No progradational wedge is developed at the top of platform A. Due to signal attenuation and multiples sub-bottom profiles could not be interpreted below 53 ms TWT time. We used a sound velocity of 1650 m/s for the time to depth conversion, which places the platforms at the depth of 28, 33 and 41 mbsl, respectively. Assuming that the abrasion platforms are a remnant of the MIS 5 highstand, this implies an average subsidence rate of the area between 0.28 and 0.38 mm/year, which agrees with previously published data for the Gulf of Trieste. This new dataset demonstrates that the Bay of Koper was connected to the Adriatic Sea approximately 125.000 ky ago during the MIS 5 sea-level highstand. Together with marine abrasion platforms and well data previously documented in the northeastern part of the Gulf of Trieste and well data from the northwestern part of the gulf our data corroborates the long-term subsidence of the Northern Adriatic region.

  17. Extended-range high-resolution dynamical downscaling over a continental-scale spatial domain with atmospheric and surface nudging

    NASA Astrophysics Data System (ADS)

    Husain, S. Z.; Separovic, L.; Yu, W.; Fernig, D.

    2014-12-01

    Extended-range high-resolution mesoscale simulations with limited-area atmospheric models when applied to downscale regional analysis fields over large spatial domains can provide valuable information for many applications including the weather-dependent renewable energy industry. Long-term simulations over a continental-scale spatial domain, however, require mechanisms to control the large-scale deviations in the high-resolution simulated fields from the coarse-resolution driving fields. As enforcement of the lateral boundary conditions is insufficient to restrict such deviations, large scales in the simulated high-resolution meteorological fields are therefore spectrally nudged toward the driving fields. Different spectral nudging approaches, including the appropriate nudging length scales as well as the vertical profiles and temporal relaxations for nudging, have been investigated to propose an optimal nudging strategy. Impacts of time-varying nudging and generation of hourly analysis estimates are explored to circumvent problems arising from the coarse temporal resolution of the regional analysis fields. Although controlling the evolution of the atmospheric large scales generally improves the outputs of high-resolution mesoscale simulations within the surface layer, the prognostically evolving surface fields can nevertheless deviate from their expected values leading to significant inaccuracies in the predicted surface layer meteorology. A forcing strategy based on grid nudging of the different surface fields, including surface temperature, soil moisture, and snow conditions, toward their expected values obtained from a high-resolution offline surface scheme is therefore proposed to limit any considerable deviation. Finally, wind speed and temperature at wind turbine hub height predicted by different spectrally nudged extended-range simulations are compared against observations to demonstrate possible improvements achievable using higher spatiotemporal resolution.

  18. The fusion of satellite and UAV data: simulation of high spatial resolution band

    NASA Astrophysics Data System (ADS)

    Jenerowicz, Agnieszka; Siok, Katarzyna; Woroszkiewicz, Malgorzata; Orych, Agata

    2017-10-01

    Remote sensing techniques used in the precision agriculture and farming that apply imagery data obtained with sensors mounted on UAV platforms became more popular in the last few years due to the availability of low- cost UAV platforms and low- cost sensors. Data obtained from low altitudes with low- cost sensors can be characterised by high spatial and radiometric resolution but quite low spectral resolution, therefore the application of imagery data obtained with such technology is quite limited and can be used only for the basic land cover classification. To enrich the spectral resolution of imagery data acquired with low- cost sensors from low altitudes, the authors proposed the fusion of RGB data obtained with UAV platform with multispectral satellite imagery. The fusion is based on the pansharpening process, that aims to integrate the spatial details of the high-resolution panchromatic image with the spectral information of lower resolution multispectral or hyperspectral imagery to obtain multispectral or hyperspectral images with high spatial resolution. The key of pansharpening is to properly estimate the missing spatial details of multispectral images while preserving their spectral properties. In the research, the authors presented the fusion of RGB images (with high spatial resolution) obtained with sensors mounted on low- cost UAV platforms and multispectral satellite imagery with satellite sensors, i.e. Landsat 8 OLI. To perform the fusion of UAV data with satellite imagery, the simulation of the panchromatic bands from RGB data based on the spectral channels linear combination, was conducted. Next, for simulated bands and multispectral satellite images, the Gram-Schmidt pansharpening method was applied. As a result of the fusion, the authors obtained several multispectral images with very high spatial resolution and then analysed the spatial and spectral accuracies of processed images.

  19. High-resolution ultrashort echo time (UTE) imaging on human knee with AWSOS sequence at 3.0 T.

    PubMed

    Qian, Yongxian; Williams, Ashley A; Chu, Constance R; Boada, Fernando E

    2012-01-01

    To demonstrate the technical feasibility of high-resolution (0.28-0.14 mm) ultrashort echo time (UTE) imaging on human knee at 3T with the acquisition-weighted stack of spirals (AWSOS) sequence. Nine human subjects were scanned on a 3T MRI scanner with an 8-channel knee coil using the AWSOS sequence and isocenter positioning plus manual shimming. High-resolution UTE images were obtained on the subject knees at TE = 0.6 msec with total acquisition time of 5.12 minutes for 60 slices at an in-plane resolution of 0.28 mm and 10.24 minutes for 40 slices at an in-plane resolution of 0.14 mm. Isocenter positioning, manual shimming, and the 8-channel array coil helped minimize image distortion and achieve high signal-to-noise ratio (SNR). It is technically feasible on a clinical 3T MRI scanner to perform UTE imaging on human knee at very high spatial resolutions (0.28-0.14 mm) within reasonable scan time (5-10 min) using the AWSOS sequence. Copyright © 2011 Wiley Periodicals, Inc.

  20. High-resolution DEM Effects on Geophysical Flow Models

    NASA Astrophysics Data System (ADS)

    Williams, M. R.; Bursik, M. I.; Stefanescu, R. E. R.; Patra, A. K.

    2014-12-01

    Geophysical mass flow models are numerical models that approximate pyroclastic flow events and can be used to assess the volcanic hazards certain areas may face. One such model, TITAN2D, approximates granular-flow physics based on a depth-averaged analytical model using inputs of basal and internal friction, material volume at a coordinate point, and a GIS in the form of a digital elevation model (DEM). The volume of modeled material propagates over the DEM in a way that is governed by the slope and curvature of the DEM surface and the basal and internal friction angles. Results from TITAN2D are highly dependent upon the inputs to the model. Here we focus on a single input: the DEM, which can vary in resolution. High resolution DEMs are advantageous in that they contain more surface details than lower-resolution models, presumably allowing modeled flows to propagate in a way more true to the real surface. However, very high resolution DEMs can create undesirable artifacts in the slope and curvature that corrupt flow calculations. With high-resolution DEMs becoming more widely available and preferable for use, determining the point at which high resolution data is less advantageous compared to lower resolution data becomes important. We find that in cases of high resolution, integer-valued DEMs, very high-resolution is detrimental to good model outputs when moderate-to-low (<10-15°) slope angles are involved. At these slope angles, multiple adjacent DEM cell elevation values are equal due to the need for the DEM to approximate the low slope with a limited set of integer values for elevation. The first derivative of the elevation surface thus becomes zero. In these cases, flow propagation is inhibited by these spurious zero-slope conditions. Here we present evidence for this "terracing effect" from 1) a mathematically defined simulated elevation model, to demonstrate the terracing effects of integer valued data, and 2) a real-world DEM where terracing must be addressed. We discuss the effect on the flow model output and present possible solutions for rectification of the problem.

  1. Fabrication and characterization of a 0.5-mm lutetium oxyorthosilicate detector array for high-resolution PET applications.

    PubMed

    Stickel, Jennifer R; Qi, Jinyi; Cherry, Simon R

    2007-01-01

    With the increasing use of in vivo imaging in mouse models of disease, there are many interesting applications that demand imaging of organs and tissues with submillimeter resolution. Though there are other contributing factors, the spatial resolution in small-animal PET is still largely determined by the detector pixel dimensions. In this work, a pair of lutetium oxyorthosilicate (LSO) arrays with 0.5-mm pixels was coupled to multichannel photomultiplier tubes and evaluated for use as high-resolution PET detectors. Flood histograms demonstrated that most crystals were clearly identifiable. Energy resolution varied from 22% to 38%. The coincidence timing resolution was 1.42-ns full width at half maximum (FWHM). The intrinsic spatial resolution was 0.68-mm FWHM as measured with a 30-gauge needle filled with (18)F. The improvement in spatial resolution in a tomographic setting is demonstrated using images of a line source phantom reconstructed with filtered backprojection and compared with images obtained from 2 dedicated small-animal PET scanners. Finally, a projection image of the mouse foot is shown to demonstrate the application of these 0.5-mm LSO detectors to a biologic task. A pair of highly pixelated LSO detections has been constructed and characterized for use as high-spatial-resolution PET detectors. It appears that small-animal PET systems capable of a FWHM spatial resolution of 600 microm or less are feasible and should be pursued.

  2. FDR-controlled metabolite annotation for high-resolution imaging mass spectrometry.

    PubMed

    Palmer, Andrew; Phapale, Prasad; Chernyavsky, Ilya; Lavigne, Regis; Fay, Dominik; Tarasov, Artem; Kovalev, Vitaly; Fuchser, Jens; Nikolenko, Sergey; Pineau, Charles; Becker, Michael; Alexandrov, Theodore

    2017-01-01

    High-mass-resolution imaging mass spectrometry promises to localize hundreds of metabolites in tissues, cell cultures, and agar plates with cellular resolution, but it is hampered by the lack of bioinformatics tools for automated metabolite identification. We report pySM, a framework for false discovery rate (FDR)-controlled metabolite annotation at the level of the molecular sum formula, for high-mass-resolution imaging mass spectrometry (https://github.com/alexandrovteam/pySM). We introduce a metabolite-signal match score and a target-decoy FDR estimate for spatial metabolomics.

  3. High Resolution Gamma Ray Spectroscopy at MHz Counting Rates With LaBr3 Scintillators for Fusion Plasma Applications

    NASA Astrophysics Data System (ADS)

    Nocente, M.; Tardocchi, M.; Olariu, A.; Olariu, S.; Pereira, R. C.; Chugunov, I. N.; Fernandes, A.; Gin, D. B.; Grosso, G.; Kiptily, V. G.; Neto, A.; Shevelev, A. E.; Silva, M.; Sousa, J.; Gorini, G.

    2013-04-01

    High resolution γ-ray spectroscopy measurements at MHz counting rates were carried out at nuclear accelerators, combining a LaBr 3(Ce) detector with dedicated hardware and software solutions based on digitization and off-line analysis. Spectra were measured at counting rates up to 4 MHz, with little or no degradation of the energy resolution, adopting a pile up rejection algorithm. The reported results represent a step forward towards the final goal of high resolution γ-ray spectroscopy measurements on a burning plasma device.

  4. High resolution gamma-ray spectroscopy at high count rates with a prototype High Purity Germanium detector

    NASA Astrophysics Data System (ADS)

    Cooper, R. J.; Amman, M.; Vetter, K.

    2018-04-01

    High-resolution gamma-ray spectrometers are required for applications in nuclear safeguards, emergency response, and fundamental nuclear physics. To overcome one of the shortcomings of conventional High Purity Germanium (HPGe) detectors, we have developed a prototype device capable of achieving high event throughput and high energy resolution at very high count rates. This device, the design of which we have previously reported on, features a planar HPGe crystal with a reduced-capacitance strip electrode geometry. This design is intended to provide good energy resolution at the short shaping or digital filter times that are required for high rate operation and which are enabled by the fast charge collection afforded by the planar geometry crystal. In this work, we report on the initial performance of the system at count rates up to and including two million counts per second.

  5. High-Resolution of Electron Microscopy of Montmorillonite and Montmorillonite/Epoxy Nanocomposites

    DTIC Science & Technology

    2005-01-01

    AFRL-ML-WP-TP-2006-464 HIGH-RESOLUTION OF ELECTRON MICROSCOPY OF MONTMORILLONITE AND MONTMORILLONITE /EPOXY NANOCOMPOSITES Lawrence F...HIGH-RESOLUTION OF ELECTRON MICROSCOPY OF MONTMORILLONITE AND MONTMORILLONITE /EPOXY NANOCOMPOSITES 5c. PROGRAM ELEMENT NUMBER 62102F 5d...transmission electron microscopy the structure and morphology of montmorillonite (MMT), a material of current interest for use in polymer nanocomposites, was

  6. High resolution scintillation detector with semiconductor readout

    DOEpatents

    Levin, Craig S.; Hoffman, Edward J.

    2000-01-01

    A novel high resolution scintillation detector array for use in radiation imaging such as high resolution Positron Emission Tomography (PET) which comprises one or more parallelepiped crystals with at least one long surface of each crystal being in intimate contact with a semiconductor photodetector such that photons generated within each crystal by gamma radiation passing therethrough is detected by the photodetector paired therewith.

  7. High-resolution ground-based spectroscopy: where and how ?

    NASA Astrophysics Data System (ADS)

    Pallavicini, R.

    2002-07-01

    An overview is presented of high-resolution optical spectrographs in operation or under development at large telescopes, with emphasis on those facilities best suited for the study of late-type stars and stellar surface inhomogeneities. Plans for the development of new high-resolution spectroscopic instruments are discussed with emphasis on the ICE spectrograph for the PEPSI spectropolarimeter at the LBT.

  8. Microdome-gooved Gd(2)O(2)S:Tb scintillator for flexible and high resolution digital radiography.

    PubMed

    Jung, Phill Gu; Lee, Chi Hoon; Bae, Kong Myeong; Lee, Jae Min; Lee, Sang Min; Lim, Chang Hwy; Yun, Seungman; Kim, Ho Kyung; Ko, Jong Soo

    2010-07-05

    A flexible microdome-grooved Gd(2)O(2)S:Tb scintillator is simulated, fabricated, and characterized for digital radiography applications. According to Monte Carlo simulation results, the dome-grooved structure has a high spatial resolution, which is verified by X-ray image performance of the scintillator. The proposed scintillator has lower X-ray sensitivity than a nonstructured scintillator but almost two times higher spatial resolution at high spatial frequency. Through evaluation of the X-ray performance of the fabricated scintillators, we confirm that the microdome-grooved scintillator can be applied to next-generation flexible digital radiography systems requiring high spatial resolution.

  9. Length-extension resonator as a force sensor for high-resolution frequency-modulation atomic force microscopy in air.

    PubMed

    Beyer, Hannes; Wagner, Tino; Stemmer, Andreas

    2016-01-01

    Frequency-modulation atomic force microscopy has turned into a well-established method to obtain atomic resolution on flat surfaces, but is often limited to ultra-high vacuum conditions and cryogenic temperatures. Measurements under ambient conditions are influenced by variations of the dew point and thin water layers present on practically every surface, complicating stable imaging with high resolution. We demonstrate high-resolution imaging in air using a length-extension resonator operating at small amplitudes. An additional slow feedback compensates for changes in the free resonance frequency, allowing stable imaging over a long period of time with changing environmental conditions.

  10. High-Resolution NMR Reveals Secondary Structure and Folding of Amino Acid Transporter from Outer Chloroplast Membrane

    PubMed Central

    Zook, James D.; Molugu, Trivikram R.; Jacobsen, Neil E.; Lin, Guangxin; Soll, Jürgen; Cherry, Brian R.; Brown, Michael F.; Fromme, Petra

    2013-01-01

    Solving high-resolution structures for membrane proteins continues to be a daunting challenge in the structural biology community. In this study we report our high-resolution NMR results for a transmembrane protein, outer envelope protein of molar mass 16 kDa (OEP16), an amino acid transporter from the outer membrane of chloroplasts. Three-dimensional, high-resolution NMR experiments on the 13C, 15N, 2H-triply-labeled protein were used to assign protein backbone resonances and to obtain secondary structure information. The results yield over 95% assignment of N, HN, CO, Cα, and Cβ chemical shifts, which is essential for obtaining a high resolution structure from NMR data. Chemical shift analysis from the assignment data reveals experimental evidence for the first time on the location of the secondary structure elements on a per residue basis. In addition T 1Z and T2 relaxation experiments were performed in order to better understand the protein dynamics. Arginine titration experiments yield an insight into the amino acid residues responsible for protein transporter function. The results provide the necessary basis for high-resolution structural determination of this important plant membrane protein. PMID:24205117

  11. The implementation of sea ice model on a regional high-resolution scale

    NASA Astrophysics Data System (ADS)

    Prasad, Siva; Zakharov, Igor; Bobby, Pradeep; McGuire, Peter

    2015-09-01

    The availability of high-resolution atmospheric/ocean forecast models, satellite data and access to high-performance computing clusters have provided capability to build high-resolution models for regional ice condition simulation. The paper describes the implementation of the Los Alamos sea ice model (CICE) on a regional scale at high resolution. The advantage of the model is its ability to include oceanographic parameters (e.g., currents) to provide accurate results. The sea ice simulation was performed over Baffin Bay and the Labrador Sea to retrieve important parameters such as ice concentration, thickness, ridging, and drift. Two different forcing models, one with low resolution and another with a high resolution, were used for the estimation of sensitivity of model results. Sea ice behavior over 7 years was simulated to analyze ice formation, melting, and conditions in the region. Validation was based on comparing model results with remote sensing data. The simulated ice concentration correlated well with Advanced Microwave Scanning Radiometer for EOS (AMSR-E) and Ocean and Sea Ice Satellite Application Facility (OSI-SAF) data. Visual comparison of ice thickness trends estimated from the Soil Moisture and Ocean Salinity satellite (SMOS) agreed with the simulation for year 2010-2011.

  12. Ultrahigh Frequency (100 MHz–300 MHz) Ultrasonic Transducers for Optical Resolution Medical Imagining

    PubMed Central

    Fei, Chunlong; Chiu, Chi Tat; Chen, Xiaoyang; Chen, Zeyu; Ma, Jianguo; Zhu, Benpeng; Shung, K. Kirk; Zhou, Qifa

    2016-01-01

    High resolution ultrasonic imaging requires high frequency wide band ultrasonic transducers, which produce short pulses and highly focused beam. However, currently the frequency of ultrasonic transducers is limited to below 100 MHz, mainly because of the challenge in precise control of fabrication parameters. This paper reports the design, fabrication, and characterization of sensitive broadband lithium niobate (LiNbO3) single element ultrasonic transducers in the range of 100–300 MHz, as well as their applications in high resolution imaging. All transducers were built for an f-number close to 1.0, which was achieved by press-focusing the piezoelectric layer into a spherical curvature. Characterization results demonstrated their high sensitivity and a −6 dB bandwidth greater than 40%. Resolutions better than 6.4 μm in the lateral direction and 6.2 μm in the axial direction were achieved by scanning a 4 μm tungsten wire target. Ultrasonic biomicroscopy images of zebrafish eyes were obtained with these transducers which demonstrate the feasibility of high resolution imaging with a performance comparable to optical resolution. PMID:27329379

  13. Wavelength scanning achieves pixel super-resolution in holographic on-chip microscopy

    NASA Astrophysics Data System (ADS)

    Luo, Wei; Göröcs, Zoltan; Zhang, Yibo; Feizi, Alborz; Greenbaum, Alon; Ozcan, Aydogan

    2016-03-01

    Lensfree holographic on-chip imaging is a potent solution for high-resolution and field-portable bright-field imaging over a wide field-of-view. Previous lensfree imaging approaches utilize a pixel super-resolution technique, which relies on sub-pixel lateral displacements between the lensfree diffraction patterns and the image sensor's pixel-array, to achieve sub-micron resolution under unit magnification using state-of-the-art CMOS imager chips, commonly used in e.g., mobile-phones. Here we report, for the first time, a wavelength scanning based pixel super-resolution technique in lensfree holographic imaging. We developed an iterative super-resolution algorithm, which generates high-resolution reconstructions of the specimen from low-resolution (i.e., under-sampled) diffraction patterns recorded at multiple wavelengths within a narrow spectral range (e.g., 10-30 nm). Compared with lateral shift-based pixel super-resolution, this wavelength scanning approach does not require any physical shifts in the imaging setup, and the resolution improvement is uniform in all directions across the sensor-array. Our wavelength scanning super-resolution approach can also be integrated with multi-height and/or multi-angle on-chip imaging techniques to obtain even higher resolution reconstructions. For example, using wavelength scanning together with multi-angle illumination, we achieved a halfpitch resolution of 250 nm, corresponding to a numerical aperture of 1. In addition to pixel super-resolution, the small scanning steps in wavelength also enable us to robustly unwrap phase, revealing the specimen's optical path length in our reconstructed images. We believe that this new wavelength scanning based pixel super-resolution approach can provide competitive microscopy solutions for high-resolution and field-portable imaging needs, potentially impacting tele-pathology applications in resource-limited-settings.

  14. ON THE IMPACT OF SUPER RESOLUTION WSR-88D DOPPLER RADAR DATA ASSIMILATION ON HIGH RESOLUTION NUMERICAL MODEL FORECASTS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chiswell, S

    2009-01-11

    Assimilation of radar velocity and precipitation fields into high-resolution model simulations can improve precipitation forecasts with decreased 'spin-up' time and improve short-term simulation of boundary layer winds (Benjamin, 2004 & 2007; Xiao, 2008) which is critical to improving plume transport forecasts. Accurate description of wind and turbulence fields is essential to useful atmospheric transport and dispersion results, and any improvement in the accuracy of these fields will make consequence assessment more valuable during both routine operation as well as potential emergency situations. During 2008, the United States National Weather Service (NWS) radars implemented a significant upgrade which increased the real-timemore » level II data resolution to 8 times their previous 'legacy' resolution, from 1 km range gate and 1.0 degree azimuthal resolution to 'super resolution' 250 m range gate and 0.5 degree azimuthal resolution (Fig 1). These radar observations provide reflectivity, velocity and returned power spectra measurements at a range of up to 300 km (460 km for reflectivity) at a frequency of 4-5 minutes and yield up to 13.5 million point observations per level in super-resolution mode. The migration of National Weather Service (NWS) WSR-88D radars to super resolution is expected to improve warning lead times by detecting small scale features sooner with increased reliability; however, current operational mesoscale model domains utilize grid spacing several times larger than the legacy data resolution, and therefore the added resolution of radar data is not fully exploited. The assimilation of super resolution reflectivity and velocity data into high resolution numerical weather model forecasts where grid spacing is comparable to the radar data resolution is investigated here to determine the impact of the improved data resolution on model predictions.« less

  15. Survey of currently available high-resolution raster graphics systems

    NASA Technical Reports Server (NTRS)

    Jones, Denise R.

    1987-01-01

    Presented are data obtained on high-resolution raster graphics engines currently available on the market. The data were obtained through survey responses received from various vendors and also from product literature. The questionnaire developed for this survey was basically a list of characteristics desired in a high performance color raster graphics system which could perform real-time aircraft simulations. Several vendors responded to the survey, with most reporting on their most advanced high-performance, high-resolution raster graphics engine.

  16. Bibliography of In-House and Contract Reports. Supplement 17

    DTIC Science & Technology

    1991-10-01

    Area Exit Pupil Viewer ETL-0399 1985 63 TILE REPORT NO. YEAR Extension of Kendall’s Concordance Test Where ETL-0316 1983 Ties are Allowed, An Extraction...Phase 11 ETL-0360 1984 High Resolution Optical Power Spectrum Analyzer ETL-0127 1978 High Resolution Orthophoto Output Table (HIROOT) AD 856 731L 1969...High Resolution Orthophoto Output Table ETL-ETR-72-3 1972 High Speed Disc Memory and a Color Image AD 878 975L 1970 Display for a Small Computer High

  17. High Resolution Live Cell Raman Imaging Using Subcellular Organelle-Targeting SERS-Sensitive Gold Nanoparticles with Highly Narrow Intra-Nanogap

    PubMed Central

    Kang, Jeon Woong; So, Peter T. C.; Dasari, Ramachandra R.; Lim, Dong-Kwon

    2015-01-01

    We report a method to achieve high speed and high resolution live cell Raman images using small spherical gold nanoparticles with highly narrow intra-nanogap structures responding to NIR excitation (785 nm) and high-speed confocal Raman microscopy. The three different Raman-active molecules placed in the narrow intra-nanogap showed a strong and uniform Raman intensity in solution even under transient exposure time (10 ms) and low input power of incident laser (200 μW), which lead to obtain high-resolution single cell image within 30 s without inducing significant cell damage. The high resolution Raman image showed the distributions of gold nanoparticles for their targeted sites such as cytoplasm, mitochondria, or nucleus. The high speed Raman-based live cell imaging allowed us to monitor rapidly changing cell morphologies during cell death induced by the addition of highly toxic KCN solution to cells. These results strongly suggest that the use of SERS-active nanoparticle can greatly improve the current temporal resolution and image quality of Raman-based cell images enough to obtain the detailed cell dynamics and/or the responses of cells to potential drug molecules. PMID:25646716

  18. High-resolution MRI in detecting subareolar breast abscess.

    PubMed

    Fu, Peifen; Kurihara, Yasuyuki; Kanemaki, Yoshihide; Okamoto, Kyoko; Nakajima, Yasuo; Fukuda, Mamoru; Maeda, Ichiro

    2007-06-01

    Because subareolar breast abscess has a high recurrence rate, a more effective imaging technique is needed to comprehensively visualize the lesions and guide surgery. We performed a high-resolution MRI technique using a microscopy coil to reveal the characteristics and extent of subareolar breast abscess. High-resolution MRI has potential diagnostic value in subareolar breast abscess. This technique can be used to guide surgery with the aim of reducing the recurrence rate.

  19. Evaluating the Value of High Spatial Resolution in National Capacity Expansion Models using ReEDS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Krishnan, Venkat; Cole, Wesley

    2016-11-14

    Power sector capacity expansion models (CEMs) have a broad range of spatial resolutions. This paper uses the Regional Energy Deployment System (ReEDS) model, a long-term national scale electric sector CEM, to evaluate the value of high spatial resolution for CEMs. ReEDS models the United States with 134 load balancing areas (BAs) and captures the variability in existing generation parameters, future technology costs, performance, and resource availability using very high spatial resolution data, especially for wind and solar modeled at 356 resource regions. In this paper we perform planning studies at three different spatial resolutions--native resolution (134 BAs), state-level, and NERCmore » region level--and evaluate how results change under different levels of spatial aggregation in terms of renewable capacity deployment and location, associated transmission builds, and system costs. The results are used to ascertain the value of high geographically resolved models in terms of their impact on relative competitiveness among renewable energy resources.« less

  20. In vivo high-resolution cortical imaging with extended-focus optical coherence microscopy in the visible-NIR wavelength range

    NASA Astrophysics Data System (ADS)

    Marchand, Paul J.; Szlag, Daniel; Bouwens, Arno; Lasser, Theo

    2018-03-01

    Visible light optical coherence tomography has shown great interest in recent years for spectroscopic and high-resolution retinal and cerebral imaging. Here, we present an extended-focus optical coherence microscopy system operating from the visible to the near-infrared wavelength range for high axial and lateral resolution imaging of cortical structures in vivo. The system exploits an ultrabroad illumination spectrum centered in the visible wavelength range (λc = 650 nm, Δλ ˜ 250 nm) offering a submicron axial resolution (˜0.85 μm in water) and an extended-focus configuration providing a high lateral resolution of ˜1.4 μm maintained over ˜150 μm in depth in water. The system's axial and lateral resolution are first characterized using phantoms, and its imaging performance is then demonstrated by imaging the vasculature, myelinated axons, and neuronal cells in the first layers of the somatosensory cortex of mice in vivo.

  1. Using High Spatial Resolution to Improve BOLD fMRI Detection at 3T

    PubMed Central

    Claise, Béatrice; Jean, Betty

    2015-01-01

    For different functional magnetic resonance imaging experiments using blood oxygenation level-dependent (BOLD) contrast, the acquisition of T 2*-weighted scans at a high spatial resolution may be advantageous in terms of time-course signal-to-noise ratio and of BOLD sensitivity when the regions are prone to susceptibility artifacts. In this study, we explore this solution by examining how spatial resolution influences activations elicited when appetizing food pictures are viewed. Twenty subjects were imaged at 3 T with two different voxel volumes, 3.4 μl and 27 μl. Despite the diminution of brain coverage, we found that high-resolution acquisition led to a better detection of activations. Though known to suffer to different degrees from susceptibility artifacts, the activations detected by high spatial resolution were notably consistent with those reported in published activation likelihood estimation meta-analyses, corresponding to taste-responsive regions. Furthermore, these regions were found activated bilaterally, in contrast with previous findings. Both the reduction of partial volume effect, which improves BOLD contrast, and the mitigation of susceptibility artifact, which boosts the signal to noise ratio in certain regions, explained the better detection noted with high resolution. The present study provides further evidences that high spatial resolution is a valuable solution for human BOLD fMRI, especially for studying food-related stimuli. PMID:26550990

  2. Exploring the impacts of physics and resolution on aqua-planet simulations from a nonhydrostatic global variable-resolution modeling framework: IMPACTS OF PHYSICS AND RESOLUTION

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhao, Chun; Leung, L. Ruby; Park, Sang-Hun

    Advances in computing resources are gradually moving regional and global numerical forecasting simulations towards sub-10 km resolution, but global high resolution climate simulations remain a challenge. The non-hydrostatic Model for Prediction Across Scales (MPAS) provides a global framework to achieve very high resolution using regional mesh refinement. Previous studies using the hydrostatic version of MPAS (H-MPAS) with the physics parameterizations of Community Atmosphere Model version 4 (CAM4) found notable resolution dependent behaviors. This study revisits the resolution sensitivity using the non-hydrostatic version of MPAS (NH-MPAS) with both CAM4 and CAM5 physics. A series of aqua-planet simulations at global quasi-uniform resolutionsmore » ranging from 240 km to 30 km and global variable resolution simulations with a regional mesh refinement of 30 km resolution over the tropics are analyzed, with a primary focus on the distinct characteristics of NH-MPAS in simulating precipitation, clouds, and large-scale circulation features compared to H-MPAS-CAM4. The resolution sensitivity of total precipitation and column integrated moisture in NH-MPAS is smaller than that in H-MPAS-CAM4. This contributes importantly to the reduced resolution sensitivity of large-scale circulation features such as the inter-tropical convergence zone and Hadley circulation in NH-MPAS compared to H-MPAS. In addition, NH-MPAS shows almost no resolution sensitivity in the simulated westerly jet, in contrast to the obvious poleward shift in H-MPAS with increasing resolution, which is partly explained by differences in the hyperdiffusion coefficients used in the two models that influence wave activity. With the reduced resolution sensitivity, simulations in the refined region of the NH-MPAS global variable resolution configuration exhibit zonally symmetric features that are more comparable to the quasi-uniform high-resolution simulations than those from H-MPAS that displays zonal asymmetry in simulations inside the refined region. Overall, NH-MPAS with CAM5 physics shows less resolution sensitivity compared to CAM4. These results provide a reference for future studies to further explore the use of NH-MPAS for high-resolution climate simulations in idealized and realistic configurations.« less

  3. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ogura, Toshihiko, E-mail: t-ogura@aist.go.jp

    Scanning electron microscopy (SEM) has been widely used to examine biological specimens of bacteria, viruses and proteins. Until now, atmospheric and/or wet biological specimens have been examined using various atmospheric holders or special equipment involving SEM. Unfortunately, they undergo heavy radiation damage by the direct electron beam. In addition, images of unstained biological samples in water yield poor contrast. We recently developed a new analytical technology involving a frequency transmission electric-field (FTE) method based on thermionic SEM. This method is suitable for high-contrast imaging of unstained biological specimens. Our aim was to optimise the method. Here we describe a high-resolutionmore » FTE system based on field-emission SEM; it allows for imaging and nanoscale examination of various biological specimens in water without radiation damage. The spatial resolution is 8 nm, which is higher than 41 nm of the existing FTE system. Our new method can be easily utilised for examination of unstained biological specimens including bacteria, viruses and protein complexes. Furthermore, our high-resolution FTE system can be used for diverse liquid samples across a broad range of scientific fields, e.g. nanoparticles, nanotubes and organic and catalytic materials. - Highlights: • We developed a high-resolution frequency transmission electric-field (FTE) system. • High-resolution FTE system is introduced in the field-emission SEM. • The spatial resolution of high-resolution FTE method is 8 nm. • High-resolution FTE system enables observation of the intact IgM particles in water.« less

  4. Classification of high resolution remote sensing image based on geo-ontology and conditional random fields

    NASA Astrophysics Data System (ADS)

    Hong, Liang

    2013-10-01

    The availability of high spatial resolution remote sensing data provides new opportunities for urban land-cover classification. More geometric details can be observed in the high resolution remote sensing image, Also Ground objects in the high resolution remote sensing image have displayed rich texture, structure, shape and hierarchical semantic characters. More landscape elements are represented by a small group of pixels. Recently years, the an object-based remote sensing analysis methodology is widely accepted and applied in high resolution remote sensing image processing. The classification method based on Geo-ontology and conditional random fields is presented in this paper. The proposed method is made up of four blocks: (1) the hierarchical ground objects semantic framework is constructed based on geoontology; (2) segmentation by mean-shift algorithm, which image objects are generated. And the mean-shift method is to get boundary preserved and spectrally homogeneous over-segmentation regions ;(3) the relations between the hierarchical ground objects semantic and over-segmentation regions are defined based on conditional random fields framework ;(4) the hierarchical classification results are obtained based on geo-ontology and conditional random fields. Finally, high-resolution remote sensed image data -GeoEye, is used to testify the performance of the presented method. And the experimental results have shown the superiority of this method to the eCognition method both on the effectively and accuracy, which implies it is suitable for the classification of high resolution remote sensing image.

  5. Multiple Sensor Camera for Enhanced Video Capturing

    NASA Astrophysics Data System (ADS)

    Nagahara, Hajime; Kanki, Yoshinori; Iwai, Yoshio; Yachida, Masahiko

    A resolution of camera has been drastically improved under a current request for high-quality digital images. For example, digital still camera has several mega pixels. Although a video camera has the higher frame-rate, the resolution of a video camera is lower than that of still camera. Thus, the high-resolution is incompatible with the high frame rate of ordinary cameras in market. It is difficult to solve this problem by a single sensor, since it comes from physical limitation of the pixel transfer rate. In this paper, we propose a multi-sensor camera for capturing a resolution and frame-rate enhanced video. Common multi-CCDs camera, such as 3CCD color camera, has same CCD for capturing different spectral information. Our approach is to use different spatio-temporal resolution sensors in a single camera cabinet for capturing higher resolution and frame-rate information separately. We build a prototype camera which can capture high-resolution (2588×1958 pixels, 3.75 fps) and high frame-rate (500×500, 90 fps) videos. We also proposed the calibration method for the camera. As one of the application of the camera, we demonstrate an enhanced video (2128×1952 pixels, 90 fps) generated from the captured videos for showing the utility of the camera.

  6. Automatic public access to documents and maps stored on and internal secure system.

    NASA Astrophysics Data System (ADS)

    Trench, James; Carter, Mary

    2013-04-01

    The Geological Survey of Ireland operates a Document Management System for providing documents and maps stored internally in high resolution and in a high level secure environment, to an external service where the documents are automatically presented in a lower resolution to members of the public. Security is devised through roles and Individual Users where role level and folder level can be set. The application is an electronic document/data management (EDM) system which has a Geographical Information System (GIS) component integrated to allow users to query an interactive map of Ireland for data that relates to a particular area of interest. The data stored in the database consists of Bedrock Field Sheets, Bedrock Notebooks, Bedrock Maps, Geophysical Surveys, Geotechnical Maps & Reports, Groundwater, GSI Publications, Marine, Mine Records, Mineral Localities, Open File, Quaternary and Unpublished Reports. The Konfig application Tool is both an internal and public facing application. It acts as a tool for high resolution data entry which are stored in a high resolution vault. The public facing application is a mirror of the internal application and differs only in that the application furnishes high resolution data into low resolution format which is stored in a low resolution vault thus, making the data web friendly to the end user for download.

  7. High-resolution mapping based on an Unmanned Aerial Vehicle (UAV) to capture paleoseismic offsets along the Altyn-Tagh fault, China.

    PubMed

    Gao, Mingxing; Xu, Xiwei; Klinger, Yann; van der Woerd, Jerome; Tapponnier, Paul

    2017-08-15

    The recent dramatic increase in millimeter- to centimeter- resolution topographic datasets obtained via multi-view photogrammetry raises the possibility of mapping detailed offset geomorphology and constraining the spatial characteristics of active faults. Here, for the first time, we applied this new method to acquire high-resolution imagery and generate topographic data along the Altyn Tagh fault, which is located in a remote high elevation area and shows preserved ancient earthquake surface ruptures. A digital elevation model (DEM) with a resolution of 0.065 m and an orthophoto with a resolution of 0.016 m were generated from these images. We identified piercing markers and reconstructed offsets based on both the orthoimage and the topography. The high-resolution UAV data were used to accurately measure the recent seismic offset. We obtained the recent offset of 7 ± 1 m. Combined with the high resolution satellite image, we measured cumulative offsets of 15 ± 2 m, 20 ± 2 m, 30 ± 2 m, which may be due to multiple paleo-earthquakes. Therefore, UAV mapping can provide fine-scale data for the assessment of the seismic hazards.

  8. TandemPET-A High Resolution, Small Animal, Virtual Pinhole-Based PET Scanner: Initial Design Study

    NASA Astrophysics Data System (ADS)

    Raylman, Raymond R.; Stolin, Alexander V.; Martone, Peter F.; Smith, Mark F.

    2016-02-01

    Mice are the perhaps the most common species of rodents used in biomedical research, but many of the current generation of small animal PET scanners are non-optimal for imaging these small rodents due to their relatively low resolution. Consequently, a number of researchers have investigated the development of high-resolution scanners to address this need. In this investigation, the design of a novel, high-resolution system based on the dual-detector, virtual-pinhole PET concept was explored via Monte Carlo simulations. Specifically, this system, called TandemPET, consists of a 5 cm × 5 cm high-resolution detector made-up of a 90 × 90 array of 0.5 mm × 0.5 × 10 mm (pitch = 0.55 mm) LYSO detector elements in coincidence with a lower resolution detector consisting of a 68 × 68 array of 1.5 mm × 1.5 mm × 10 mm LYSO detector elements (total size = 10.5 cm × 10.5 cm). Analyses indicated that TandemPET's optimal geometry is to position the high-resolution detector 3 cm from the center-of-rotation, with the lower resolution detector positioned 9 cm from center. Measurements using modified NEMA NU4-2008-based protocols revealed that the spatial resolution of the system is 0.5 mm FWHM, after correction of positron range effects. Peak sensitivity is 2.1%, which is comparable to current small animal PET scanners. Images from a digital mouse brain phantom demonstrated the potential of the system for identifying important neurological structures.

  9. A new omni-directional multi-camera system for high resolution surveillance

    NASA Astrophysics Data System (ADS)

    Cogal, Omer; Akin, Abdulkadir; Seyid, Kerem; Popovic, Vladan; Schmid, Alexandre; Ott, Beat; Wellig, Peter; Leblebici, Yusuf

    2014-05-01

    Omni-directional high resolution surveillance has a wide application range in defense and security fields. Early systems used for this purpose are based on parabolic mirror or fisheye lens where distortion due to the nature of the optical elements cannot be avoided. Moreover, in such systems, the image resolution is limited to a single image sensor's image resolution. Recently, the Panoptic camera approach that mimics the eyes of flying insects using multiple imagers has been presented. This approach features a novel solution for constructing a spherically arranged wide FOV plenoptic imaging system where the omni-directional image quality is limited by low-end sensors. In this paper, an overview of current Panoptic camera designs is provided. New results for a very-high resolution visible spectrum imaging and recording system inspired from the Panoptic approach are presented. The GigaEye-1 system, with 44 single cameras and 22 FPGAs, is capable of recording omni-directional video in a 360°×100° FOV at 9.5 fps with a resolution over (17,700×4,650) pixels (82.3MP). Real-time video capturing capability is also verified at 30 fps for a resolution over (9,000×2,400) pixels (21.6MP). The next generation system with significantly higher resolution and real-time processing capacity, called GigaEye-2, is currently under development. The important capacity of GigaEye-1 opens the door to various post-processing techniques in surveillance domain such as large perimeter object tracking, very-high resolution depth map estimation and high dynamicrange imaging which are beyond standard stitching and panorama generation methods.

  10. Spatial and temporal resolution effects on urban catchments with different imperviousness degrees

    NASA Astrophysics Data System (ADS)

    Cristiano, Elena; ten Veldhuis, Marie-Claire; van de Giesen, Nick C.

    2015-04-01

    One of the main problems in urban hydrological analysis is to measure the rainfall at urban scale with high resolution and use these measurements to model urban runoff processes to predict flows and reduce flood risk. With the aim of building a semi-distribute hydrological sewer model for an urban catchment, high resolution rainfall data are required as input. In this study, the sensitivity of hydrological response to high resolution precipitation data for hydrodynamic models at urban scale is evaluated with different combinations of spatial and temporal resolutions. The aim is to study sensitivity in relation to catchment characteristics, especially drainage area size, imperviousness degree and hydraulic properties such as special structures (weirs, pumping stations). Rainfall data of nine storms are considered with 4 different spatial resolutions (3000m, 1000m, 500m and 100m) combined with 4 different temporal resolutions (10min, 5min, 3min and 1min). The dual polarimetric X-band weather radar, located in the Cabauw Experimental Site for Atmospheric Research (CESAR) provided the high resolution rainfall data of these rainfall events, used to improve the sewer model. The effects of spatial-temporal rainfall input resolution on response is studied in three Districts of Rotterdam (NL): Kralingen, Spaanse Polder and Centrum district. These catchments have different average drainage area size (from 2km2 to 7km2), and different general characteristics. Centrum district and Kralingen are, indeed, more various and include residential and commercial areas, big green areas and a small industrial area, while Spaanse Polder is a industrial area, densely urbanized, and presents a high percentage of imperviousness.

  11. High Resolution Bathymetry Estimation Improvement with Single Image Super-Resolution Algorithm Super-Resolution Forests

    DTIC Science & Technology

    2017-01-26

    Naval Research Laboratory Washington, DC 20375-5320 NRL/MR/5514--17-9692 High Resolution Bathymetry Estimation Improvement with Single Image Super...collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources...gathering and maintaining the data needed, and completing and reviewing this collection of information. Send comments regarding this burden estimate

  12. Los Angeles megacity: a high-resolution land–atmosphere modelling system for urban CO 2 emissions

    DOE PAGES

    Feng, Sha; Lauvaux, Thomas; Newman, Sally; ...

    2016-07-22

    Megacities are major sources of anthropogenic fossil fuel CO 2 (FFCO 2) emissions. The spatial extents of these large urban systems cover areas of 10 000 km 2 or more with complex topography and changing landscapes. We present a high-resolution land–atmosphere modelling system for urban CO 2 emissions over the Los Angeles (LA) megacity area. The Weather Research and Forecasting (WRF)-Chem model was coupled to a very high-resolution FFCO 2 emission product, Hestia-LA, to simulate atmospheric CO 2 concentrations across the LA megacity at spatial resolutions as fine as ~1 km. We evaluated multiple WRF configurations, selecting one that minimizedmore » errors in wind speed, wind direction, and boundary layer height as evaluated by its performance against meteorological data collected during the CalNex-LA campaign (May–June 2010). Our results show no significant difference between moderate-resolution (4 km) and high-resolution (1.3 km) simulations when evaluated against surface meteorological data, but the high-resolution configurations better resolved planetary boundary layer heights and vertical gradients in the horizontal mean winds. We coupled our WRF configuration with the Vulcan 2.2 (10 km resolution) and Hestia-LA (1.3 km resolution) fossil fuel CO 2 emission products to evaluate the impact of the spatial resolution of the CO 2 emission products and the meteorological transport model on the representation of spatiotemporal variability in simulated atmospheric CO 2 concentrations. We find that high spatial resolution in the fossil fuel CO 2 emissions is more important than in the atmospheric model to capture CO 2 concentration variability across the LA megacity. Finally, we present a novel approach that employs simultaneous correlations of the simulated atmospheric CO 2 fields to qualitatively evaluate the greenhouse gas measurement network over the LA megacity. Spatial correlations in the atmospheric CO 2 fields reflect the coverage of individual measurement sites when a statistically significant number of sites observe emissions from a specific source or location. We conclude that elevated atmospheric CO 2 concentrations over the LA megacity are composed of multiple fine-scale plumes rather than a single homogenous urban dome. Furthermore, we conclude that FFCO 2 emissions monitoring in the LA megacity requires FFCO 2 emissions modelling with ~1 km resolution because coarser-resolution emissions modelling tends to overestimate the observational constraints on the emissions estimates.« less

  13. Los Angeles megacity: a high-resolution land–atmosphere modelling system for urban CO 2 emissions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Feng, Sha; Lauvaux, Thomas; Newman, Sally

    Megacities are major sources of anthropogenic fossil fuel CO 2 (FFCO 2) emissions. The spatial extents of these large urban systems cover areas of 10 000 km 2 or more with complex topography and changing landscapes. We present a high-resolution land–atmosphere modelling system for urban CO 2 emissions over the Los Angeles (LA) megacity area. The Weather Research and Forecasting (WRF)-Chem model was coupled to a very high-resolution FFCO 2 emission product, Hestia-LA, to simulate atmospheric CO 2 concentrations across the LA megacity at spatial resolutions as fine as ~1 km. We evaluated multiple WRF configurations, selecting one that minimizedmore » errors in wind speed, wind direction, and boundary layer height as evaluated by its performance against meteorological data collected during the CalNex-LA campaign (May–June 2010). Our results show no significant difference between moderate-resolution (4 km) and high-resolution (1.3 km) simulations when evaluated against surface meteorological data, but the high-resolution configurations better resolved planetary boundary layer heights and vertical gradients in the horizontal mean winds. We coupled our WRF configuration with the Vulcan 2.2 (10 km resolution) and Hestia-LA (1.3 km resolution) fossil fuel CO 2 emission products to evaluate the impact of the spatial resolution of the CO 2 emission products and the meteorological transport model on the representation of spatiotemporal variability in simulated atmospheric CO 2 concentrations. We find that high spatial resolution in the fossil fuel CO 2 emissions is more important than in the atmospheric model to capture CO 2 concentration variability across the LA megacity. Finally, we present a novel approach that employs simultaneous correlations of the simulated atmospheric CO 2 fields to qualitatively evaluate the greenhouse gas measurement network over the LA megacity. Spatial correlations in the atmospheric CO 2 fields reflect the coverage of individual measurement sites when a statistically significant number of sites observe emissions from a specific source or location. We conclude that elevated atmospheric CO 2 concentrations over the LA megacity are composed of multiple fine-scale plumes rather than a single homogenous urban dome. Furthermore, we conclude that FFCO 2 emissions monitoring in the LA megacity requires FFCO 2 emissions modelling with ~1 km resolution because coarser-resolution emissions modelling tends to overestimate the observational constraints on the emissions estimates.« less

  14. The research of road and vehicle information extraction algorithm based on high resolution remote sensing image

    NASA Astrophysics Data System (ADS)

    Zhou, Tingting; Gu, Lingjia; Ren, Ruizhi; Cao, Qiong

    2016-09-01

    With the rapid development of remote sensing technology, the spatial resolution and temporal resolution of satellite imagery also have a huge increase. Meanwhile, High-spatial-resolution images are becoming increasingly popular for commercial applications. The remote sensing image technology has broad application prospects in intelligent traffic. Compared with traditional traffic information collection methods, vehicle information extraction using high-resolution remote sensing image has the advantages of high resolution and wide coverage. This has great guiding significance to urban planning, transportation management, travel route choice and so on. Firstly, this paper preprocessed the acquired high-resolution multi-spectral and panchromatic remote sensing images. After that, on the one hand, in order to get the optimal thresholding for image segmentation, histogram equalization and linear enhancement technologies were applied into the preprocessing results. On the other hand, considering distribution characteristics of road, the normalized difference vegetation index (NDVI) and normalized difference water index (NDWI) were used to suppress water and vegetation information of preprocessing results. Then, the above two processing result were combined. Finally, the geometric characteristics were used to completed road information extraction. The road vector extracted was used to limit the target vehicle area. Target vehicle extraction was divided into bright vehicles extraction and dark vehicles extraction. Eventually, the extraction results of the two kinds of vehicles were combined to get the final results. The experiment results demonstrated that the proposed algorithm has a high precision for the vehicle information extraction for different high resolution remote sensing images. Among these results, the average fault detection rate was about 5.36%, the average residual rate was about 13.60% and the average accuracy was approximately 91.26%.

  15. High spatial resolution distributed optical fiber dynamic strain sensor with enhanced frequency and strain resolution.

    PubMed

    Masoudi, Ali; Newson, Trevor P

    2017-01-15

    A distributed optical fiber dynamic strain sensor with high spatial and frequency resolution is demonstrated. The sensor, which uses the ϕ-OTDR interrogation technique, exhibited a higher sensitivity thanks to an improved optical arrangement and a new signal processing procedure. The proposed sensing system is capable of fully quantifying multiple dynamic perturbations along a 5 km long sensing fiber with a frequency and spatial resolution of 5 Hz and 50 cm, respectively. The strain resolution of the sensor was measured to be 40 nε.

  16. BLIPPED (BLIpped Pure Phase EncoDing) high resolution MRI with low amplitude gradients

    NASA Astrophysics Data System (ADS)

    Xiao, Dan; Balcom, Bruce J.

    2017-12-01

    MRI image resolution is proportional to the maximum k-space value, i.e. the temporal integral of the magnetic field gradient. High resolution imaging usually requires high gradient amplitudes and/or long spatial encoding times. Special gradient hardware is often required for high amplitudes and fast switching. We propose a high resolution imaging sequence that employs low amplitude gradients. This method was inspired by the previously proposed PEPI (π Echo Planar Imaging) sequence, which replaced EPI gradient reversals with multiple RF refocusing pulses. It has been shown that when the refocusing RF pulse is of high quality, i.e. sufficiently close to 180°, the magnetization phase introduced by the spatial encoding magnetic field gradient can be preserved and transferred to the following echo signal without phase rewinding. This phase encoding scheme requires blipped gradients that are identical for each echo, with low and constant amplitude, providing opportunities for high resolution imaging. We now extend the sequence to 3D pure phase encoding with low amplitude gradients. The method is compared with the Hybrid-SESPI (Spin Echo Single Point Imaging) technique to demonstrate the advantages in terms of low gradient duty cycle, compensation of concomitant magnetic field effects and minimal echo spacing, which lead to superior image quality and high resolution. The 3D imaging method was then applied with a parallel plate resonator RF probe, achieving a nominal spatial resolution of 17 μm in one dimension in the 3D image, requiring a maximum gradient amplitude of only 5.8 Gauss/cm.

  17. High-resolution high-efficiency multilayer Fresnel zone plates for soft and hard x-rays

    NASA Astrophysics Data System (ADS)

    Sanli, Umut T.; Keskinbora, Kahraman; Gregorczyk, Keith; Leister, Jonas; Teeny, Nicolas; Grévent, Corinne; Knez, Mato; Schütz, Gisela

    2015-09-01

    X-ray microscopy enables high spatial resolutions, high penetration depths and characterization of a broad range of materials. Calculations show that nanometer range resolution is achievable in the hard X-ray regime by using Fresnel zone plates (FZPs) if certain conditions are satisfied. However, this requires, among other things, aspect ratios of several thousands. The multilayer (ML) type FZPs, having virtually unlimited aspect ratios, are strong candidates to achieve single nanometer resolutions. Our research is focused on the fabrication of ML-FZPs which encompasses deposition of multilayers over a glass fiber via the atomic layer deposition (ALD), which is subsequently sliced in the optimum thickness for the X-ray energy by a focused ion beam (FIB). We recently achieved aberration free imaging by resolving 21 nm features with an efficiency of up to 12.5 %, the highest imaging resolution achieved by an ML-FZP. We also showed efficient focusing of 7.9 keV X-rays down to 30 nm focal spot size (FWHM). For resolutions below ~10 nm, efficiencies would decrease significantly due to wave coupling effects. To compensate this effect high efficiency, low stress materials have to be researched, as lower intrinsic stresses will allow fabrication of larger FZPs with higher number of zones, leading to high light intensity at the focus. As a first step we fabricated an ML-FZP with a diameter of 62 μm, an outermost zone width of 12 nm and 452 active zones. Further strategies for fabrication of high resolution high efficiency multilayer FZPs will also be discussed.

  18. Limited Area Coverage/High Resolution Picture Transmission (LAC/HRPT) data vegetative index calculation processor user's manual

    NASA Technical Reports Server (NTRS)

    Obrien, S. O. (Principal Investigator)

    1980-01-01

    The program, LACVIN, calculates vegetative indexes numbers on limited area coverage/high resolution picture transmission data for selected IJ grid sections. The IJ grid sections were previously extracted from the full resolution data tapes and stored on disk files.

  19. k-space and q-space: combining ultra-high spatial and angular resolution in diffusion imaging using ZOOPPA at 7 T.

    PubMed

    Heidemann, Robin M; Anwander, Alfred; Feiweier, Thorsten; Knösche, Thomas R; Turner, Robert

    2012-04-02

    There is ongoing debate whether using a higher spatial resolution (sampling k-space) or a higher angular resolution (sampling q-space angles) is the better way to improve diffusion MRI (dMRI) based tractography results in living humans. In both cases, the limiting factor is the signal-to-noise ratio (SNR), due to the restricted acquisition time. One possible way to increase the spatial resolution without sacrificing either SNR or angular resolution is to move to a higher magnetic field strength. Nevertheless, dMRI has not been the preferred application for ultra-high field strength (7 T). This is because single-shot echo-planar imaging (EPI) has been the method of choice for human in vivo dMRI. EPI faces several challenges related to the use of a high resolution at high field strength, for example, distortions and image blurring. These problems can easily compromise the expected SNR gain with field strength. In the current study, we introduce an adapted EPI sequence in conjunction with a combination of ZOOmed imaging and Partially Parallel Acquisition (ZOOPPA). We demonstrate that the method can produce high quality diffusion-weighted images with high spatial and angular resolution at 7 T. We provide examples of in vivo human dMRI with isotropic resolutions of 1 mm and 800 μm. These data sets are particularly suitable for resolving complex and subtle fiber architectures, including fiber crossings in the white matter, anisotropy in the cortex and fibers entering the cortex. Copyright © 2011 Elsevier Inc. All rights reserved.

  20. Mapping land cover change over continental Africa using Landsat and Google Earth Engine cloud computing.

    PubMed

    Midekisa, Alemayehu; Holl, Felix; Savory, David J; Andrade-Pacheco, Ricardo; Gething, Peter W; Bennett, Adam; Sturrock, Hugh J W

    2017-01-01

    Quantifying and monitoring the spatial and temporal dynamics of the global land cover is critical for better understanding many of the Earth's land surface processes. However, the lack of regularly updated, continental-scale, and high spatial resolution (30 m) land cover data limit our ability to better understand the spatial extent and the temporal dynamics of land surface changes. Despite the free availability of high spatial resolution Landsat satellite data, continental-scale land cover mapping using high resolution Landsat satellite data was not feasible until now due to the need for high-performance computing to store, process, and analyze this large volume of high resolution satellite data. In this study, we present an approach to quantify continental land cover and impervious surface changes over a long period of time (15 years) using high resolution Landsat satellite observations and Google Earth Engine cloud computing platform. The approach applied here to overcome the computational challenges of handling big earth observation data by using cloud computing can help scientists and practitioners who lack high-performance computational resources.

Top